WorldWideScience

Sample records for angiogenic molecule expression

  1. The Effect of Turmeric Decoctum to the Angiogenic Molecules Expression on Chicken Embryo

    OpenAIRE

    Zahariah, Sultanah; Winarsih, Sri; Baktiyani, Siti Candra Windu; Rahardjo, Bambang; Kalsum, Umi

    2017-01-01

    Turmeric (Curcuma longa) is widely used as herbal medicine, not an exception by pregnant women. Turmeric consumption by expectant mothers requires standard dose, because of its antiangiogenic effect could be harmful on placentation process and embryonic development. This experiment was undertaken to determine the effect of different concentrations of turmeric decoctum to the expression of Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2) and Angiopoietin 1 (Ang-1) on the 48-hours-old ch...

  2. The imbalance in expression of angiogenic and anti-angiogenic factors as candidate predictive biomarker in preeclampsia

    Directory of Open Access Journals (Sweden)

    Pooneh Nikuei

    2015-07-01

    Full Text Available Preeclampsia is an important pregnancy disorder with serious maternal and fetal complications which its etiology has not been completely understood yet. Early diagnosis and management of disease could reduce its potential side effects. The vascular endothelial growth factor (VEGF family including VEGF-A is the most potent endothelial growth factor which induces angiogenesis and endothelial cell proliferation and has basic role in vasculogenesis. VEGF and its tyrosine kinase receptors (Flt1 and KDR are major factors for fetal and placental angiogenic development. Finding mechanisms involved in expression of angiogenic factors may lead to new prognostic and therapeutic points in management of preeclampsia. Recent researches, has shown capability of some anti-angiogenic factors as potential candidate to be used as early predictors for preeclampsia. Soluble fms-like tyrosin kinase-1 (sFlt1 is a truncated splice variant of the membrane-bound VEGF receptor Flt1, that is produced by the placenta and it can bind to angiogenic growth factors and neutraliz, their effects. It is also observed that the ratio of sFlt1 to placental growth factor is valuable as prognostic marker. In this review, VEGF family member’s role in angiogenesis is evaluated as biomarkers to be used for prediction of preeclampsia.

  3. Mel-18, a mammalian Polycomb gene, regulates angiogenic gene expression of endothelial cells.

    Science.gov (United States)

    Jung, Ji-Hye; Choi, Hyun-Jung; Maeng, Yong-Sun; Choi, Jung-Yeon; Kim, Minhyung; Kwon, Ja-Young; Park, Yong-Won; Kim, Young-Myeong; Hwang, Daehee; Kwon, Young-Guen

    2010-10-01

    Mel-18 is a mammalian homolog of Polycomb group (PcG) genes. Microarray analysis revealed that Mel-18 expression was induced during endothelial progenitor cell (EPC) differentiation and correlates with the expression of EC-specific protein markers. Overexpression of Mel-18 promoted EPC differentiation and angiogenic activity of ECs. Accordingly, silencing Mel-18 inhibited EC migration and tube formation in vitro. Gene expression profiling showed that Mel-18 regulates angiogenic genes including kinase insert domain receptor (KDR), claudin 5, and angiopoietin-like 2. Our findings demonstrate, for the first time, that Mel-18 plays a significant role in the angiogenic function of ECs by regulating endothelial gene expression. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Protein kinase D1 signaling in angiogenic gene expression and VEGF-mediated angiogenesis

    Directory of Open Access Journals (Sweden)

    Bin eRen MD, Phd, FAHA

    2016-05-01

    Full Text Available Protein kinase D 1 (PKD-1 is a signaling kinase important in fundamental cell functions including migration, proliferation and differentiation. PKD-1 is also a key regulator of gene expression and angiogenesis that is essential for cardiovascular development and tumor progression. Further understanding molecular aspects of PKD-1 signaling in the regulation of angiogenesis may have translational implications in obesity, cardiovascular disease and cancer. The author will summarize and provide the insights into molecular mechanisms by which PKD-1 regulates transcriptional expression of angiogenic genes, focusing on the transcriptional regulation of CD36 by PKD-1-FoxO1 signaling axis along with the potential implications of this axis in arterial differentiation and morphogenesis. He will also discuss a new concept of dynamic balance between proangiogenic and antiangiogenic signaling in determining angiogenic switch, and stress how PKD-1 signaling regulates VEGF signaling-mediated angiogenesis.

  5. Target Therapy Using a Small Molecule Inhibitor against Angiogenic Receptors in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Peter Büchler

    2007-02-01

    Full Text Available PURPOSE: PD173074, a small molecule inhibitor of VEGF-RII and FGF-RI, targets neoangiogenesis and mitogenesis. This study aimed to analyze a singlecompound-driven inhibition of FGF and VEGF receptors in pancreatic cancer. EXPERIMENTAL DESIGN: RT-PCR and Western blots were performed to quantify protein expression and phosphorylation. Anchorage dependent and independent growth assays were used to study cell growth. With flow cytometry, cell cycle analysis and apoptosis were studied. In vivo HPAF-II and MIA PaCa-2 cells were xenografted. Animals were treated daily for 10 weeks. Immunohistochemistry was used to quantify microvessel density and apoptosis. RESULTS: Highest levels of FGF-RI were detectable in MIA PaCa-2 cells, lowest in HPAF-II cells. PD173074 inhibited cell growth most prominently in cells expressing high levels of FGF-RI. Cell cycle progression was inhibited by blocking transition in the G0/G1 phase, and consequently, apoptosis was increased. In vivo significant inhibition of orthotopic tumor growth was achieved by a combination effect of inhibition of mitogenesis, induction of apoptosis, and reduction of angiogenesis in PD173074-treated animals. CONCLUSIONS: These data highlight VEGF-RII and FGF-RI as therapeutic targets and suggest a potential role for the combined use of tyrosine kinase inhibitors in the management of inoperable pancreatic cancer patients.

  6. Correlation between spontaneous apoptosis and the expression of angiogenic factors in advanced gastric adenocarcinoma.

    Science.gov (United States)

    Ikeguchi, M; Cai, J; Fukuda, K; Oka, S; Katano, K; Tsujitani, S; Maeta, M; Kaibara, N

    2001-06-01

    The aim of this study was to investigate whether angiogenic factors influence the occurrence of spontaneous apoptosis in advanced gastric cancer. The apoptotic indices (AIs) of 97 tumors from 97 patients with advanced gastric cancer (pT3, pN0, pM0, Stage II) were analyzed by the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate biotin nick end labeling (TUNEL) method. Intratumoral microvessel densities (IMVDs) of tumors stained with anti-CD34 monoclonal antibody were quantified under x 200 magnification using computer-assisted image analysis. The expressions of angiogenic factors, such as vascular endothelial growth factor (VEGF), thymidine phosphorylase (dThdPase), transforming growth factor-alpha (TGF-alpha), and p53 were analyzed immunohistochemically and compared with IMVDs and AIs. The mean IMVD of the 97 tumors was 365/mm2 (range 147-990/mm2). The mean AI of tumors was 2.1% (range 0-11.3%). A significant inverse correlation between the AIs and the IMVDs was shown (p = -0.278, P = 0.0064). The mean IMVDs of tumors with high expressions of dThdPase, TGF-alpha, or p53 were significantly higher than those of tumors with low expressions of these factors. The mean AI of tumors with high expressions of dThdPase was significantly lower than that of tumors with low expressions of dThdPase (P = 0.023). However, no significant correlations were detected between AIs and the expression levels of VEGF, TGF-alpha, or p53. In gastric cancer, dThdPase may play an important role in tumor progression by increasing microvessels and by suppressing apoptosis of cancer cells.

  7. Syndecan-1 knock-down in decidualized human endometrial stromal cells leads to significant changes in cytokine and angiogenic factor expression patterns

    Directory of Open Access Journals (Sweden)

    Krüssel Jan-Steffen

    2010-11-01

    Full Text Available Abstract Background Successful embryonic implantation depends on a synchronized embryo-maternal dialogue. Chemokines, such as chemokine ligand 1 (CXCL1, play essential roles in the maternal reproductive tract leading to morphological changes during decidualization, mediating maternal acceptance towards the semi-allograft embryo and induction of angiogenesis. Chemokine binding to their classical G-protein coupled receptors is essentially supported by the syndecan (Sdc family of heparan sulfate proteoglycans. The aim of this study was to identify the involvement of Sdc-1 at the embryo-maternal interface regarding changes of the chemokine and angiogenic profile of the decidua during the process of decidualization and implantation in human endometrium. Methods A stable Sdc-1 knock-down was generated in the immortalized human endometrial stromal cell line St-T1 and was named KdS1. The ability of KdS1 to decidualize was proven by Insulin-like growth factor binding 1 (IGFBP1 and prolactin (PRL confirmation on mRNA level before further experiments were carried out. Dot blot protein analyses of decidualized knock-down cells vs non-transfected controls were performed. In order to imitate embryonic implantation, decidualized KdS1 were then incubated with IL-1beta, an embryo secretion product, vs controls. Statistical analyses were performed applying the Student's t-test with p Results The induction of the Sdc-1 knock-down revealed significant changes in cytokine and angiogenic factor expression profiles of dKdS1 vs decidualized controls. Incubation with embryonic IL-1beta altered the expression patterns of KdS1 chemokines and angiogenic factors towards inflammatory-associated molecules and factors involved in matrix regulation. Conclusions Sdc-1 knock-down in human endometrial stroma cells led to fulminant changes regarding cytokine and angiogenic factor expression profiles upon decidualization and imitation of embryonic contact. Sdc-1 appears to play an

  8. Effect of estradiol on the expression of angiogenic factors in epithelial ovarian cancer.

    Science.gov (United States)

    Valladares, Macarena; Plaza-Parrochia, Francisca; Lépez, Macarena; López, Daniela; Gabler, Fernando; Gayan, Patricio; Selman, Alberto; Vega, Margarita; Romero, Carmen

    2017-11-01

    Ovarian cancer presents a high angiogenesis (formation of new blood vessels) regulated by pro-angiogenic factors, mainly vascular endothelial growth factor (VEGF) and nerve growth factor (NGF). An association between endogenous levels of estrogen and increased risk of developing ovarian cancer has been reported. Estrogen action is mediated by the binding to its specific receptors (ERα and ERβ), altered ERα/ERβ ratio may constitute a marker of ovarian carcinogenesis progression. To determine the effect of estradiol through ERα on the expression of NGF and VEGF in epithelial ovarian cancer (EOC). Levels of phosphorylated estrogen receptor alpha (pERα) were evaluated in well, moderate and poorly differentiated EOC samples (EOC-I, EOC-II, EOC-III). Additionally, ovarian cancer explants were stimulated with NGF (0, 10 and 100 ng/ml) and ERα, ERβ and pERα levels were detected. Finally, human ovarian surface epithelial (HOSE) and epithelial ovarian cancer (A2780) cell lines were stimulated with estradiol, where NGF and VEGF protein levels were evaluated. In tissues, ERs were detected being pERα levels significantly increased in EOC-III samples compared with EOC-I (p<0.05). Additionally, ovarian explants treated with NGF increased pERα levels meanwhile total ERα and ERβ levels did not change. Cell lines stimulated with estradiol revealed an increase of NGF and VEGF protein levels (p<0.05). Estradiol has a positive effect on pro-angiogenic factors such as NGF and VEGF expression in EOC, probably through the activation of ERα; generating a positive loop induced by NGF increasing pERα levels in epithelial ovarian cells.

  9. Reduced angiogenic factor expression in intrauterine fetal growth restriction using semiquantitative immunohistochemistry and digital image analysis.

    Science.gov (United States)

    Alahakoon, Thushari I; Zhang, Weiyi; Arbuckle, Susan; Zhang, Kewei; Lee, Vincent

    2018-05-01

    To localize, quantify and compare angiogenic factors, vascular endothelial growth factor (VEGF), placental growth factor (PlGF), as well as their receptors fms-like tyrosine kinase receptor (Flt-1) and kinase insert domain receptor (KDR) in the placentas of normal pregnancy and complications of preeclampsia (PE), intrauterine fetal growth restriction (IUGR) and PE + IUGR. In a prospective cross-sectional case-control study, 30 pregnant women between 24-40 weeks of gestation, were recruited into four clinical groups. Representative placental samples were stained for VEGF, PlGF, Flt-1 and KDR. Analysis was performed using semiquantitative methods and digital image analysis. The overall VEGF and Flt-1 were strongly expressed and did not show any conclusive difference in the expression between study groups. PlGF and KDR were significantly reduced in expression in the placentas from pregnancies complicated by IUGR compared with normal and preeclamptic pregnancies. The lack of PlGF and KDR may be a cause for the development of IUGR and may explain the loss of vasculature and villous architecture in IUGR. Automated digital image analysis software is a viable alternative method to the manual reading of placental immunohistochemical staining. © 2018 Japan Society of Obstetrics and Gynecology.

  10. Angiogenic CXC chemokine expression during differentiation of human mesenchymal stem cells towards the osteoblastic lineage.

    Science.gov (United States)

    Bischoff, D S; Zhu, J H; Makhijani, N S; Kumar, A; Yamaguchi, D T

    2008-02-15

    The potential role of ELR(+) CXC chemokines in early events in bone repair was studied using human mesenchymal stem cells (hMSCs). Inflammation, which occurs in the initial phase of tissue healing in general, is critical to bone repair. Release of cytokines from infiltrating immune cells and injured bone can lead to recruitment of MSCs to the region of repair. CXC chemokines bearing the Glu-Leu-Arg (ELR) motif are also released by inflammatory cells and serve as angiogenic factors stimulating chemotaxis and proliferation of endothelial cells. hMSCs, induced to differentiate with osteogenic medium (OGM) containing ascorbate, beta-glycerophosphate (beta-GP), and dexamethasone (DEX), showed an increase in mRNA and protein secretion of the ELR(+) CXC chemokines CXCL8 and CXCL1. CXCL8 mRNA half-life studies reveal an increase in mRNA stability upon OGM stimulation. Increased expression and secretion is a result of DEX in OGM and is dose-dependent. Inhibition of the glucocorticoid receptor with mifepristone only partially inhibits DEX-stimulated CXCL8 expression indicating both glucocorticoid receptor dependent and independent pathways. Treatment with signal transduction inhibitors demonstrate that this expression is due to activation of the ERK and p38 mitogen-activated protein kinase (MAPK) pathways and is mediated through the G(alphai)-coupled receptors. Angiogenesis assays demonstrate that OGM-stimulated conditioned media containing secreted CXCL8 and CXCL1 can induce angiogenesis of human microvascular endothelial cells in an in vitro Matrigel assay. Copyright 2007 Wiley-Liss, Inc.

  11. Celecoxib restores angiogenic factor expression at the maternal-fetal interface in the BPH/5 mouse model of preeclampsia.

    Science.gov (United States)

    Reijnders, Dorien; Liu, Chin-Chi; Xu, Xinjing; Zhao, Anna M; Olson, Kelsey N; Butler, Scott D; Douglas, Nataki C; Sones, Jenny L

    2018-05-01

    Preeclampsia (PE), a hypertensive disease of pregnancy, is a leading cause of fetal and maternal morbidity/mortality. Early angiogenic and inflammatory disturbances within the placenta are thought to underlie the development of the maternal PE syndrome and poor pregnancy outcomes. However, the exact etiology remains largely unknown. Here, we use the BPH/5 mouse model of PE to elucidate the way in which inflammation early in pregnancy contributes to abnormal expression of angiogenic factors at the maternal-fetal interface. We have previously described improvement in maternal hypertension and fetal growth restriction in this model after treatment with the anti-inflammatory cyclooxygenase-2 (Cox2) specific inhibitor celecoxib. To further characterize the mechanisms by which celecoxib improves poor pregnancy outcomes in BPH/5 mice, we determined expression of angiogenic factors and complement pathway components after celecoxib. In BPH/5 implantation sites there was increased hypoxia inducible factor-1α ( Hif1α), heme oxygenase-1 ( Ho-1), and stem cell factor ( Scf) mRNA concomitant with elevated prostaglandin synthase 2 ( Ptgs2), encoding Cox2, and elevated VEGF protein. Angiopoietin 1 ( Ang1), tunica interna endothelial cell kinase-2 receptor ( Tie2), complement factor 3 ( C3), and complement factor B ( CfB) were increased in midgestation BPH/5 placentae. Whereas BPH/5 expression levels of VEGF, Ang1, and Tie2 normalized after celecoxib, placental C3 and CfB mRNA remained unchanged. However, celecoxib did reduce the pregnancy-specific circulating soluble fms-like tyrosine kinase-1 (sFlt-1) rise in BPH/5 mice at midgestation. These data show that elevated Cox2 during implantation contributes to placental angiogenic factor imbalances in the BPH/5 mouse model of PE.

  12. Aging-induced dysregulation of dicer1-dependent microRNA expression impairs angiogenic capacity of rat cerebromicrovascular endothelial cells.

    Science.gov (United States)

    Ungvari, Zoltan; Tucsek, Zsuzsanna; Sosnowska, Danuta; Toth, Peter; Gautam, Tripti; Podlutsky, Andrej; Csiszar, Agnes; Losonczy, Gyorgy; Valcarcel-Ares, M Noa; Sonntag, William E; Csiszar, Anna

    2013-08-01

    Age-related impairment of angiogenesis is likely to play a central role in cerebromicrovascular rarefaction and development of vascular cognitive impairment, but the underlying mechanisms remain elusive. To test the hypothesis that dysregulation of Dicer1 (ribonuclease III, a key enzyme of the microRNA [miRNA] machinery) impairs endothelial angiogenic capacity in aging, primary cerebromicrovascular endothelial cells (CMVECs) were isolated from young (3 months old) and aged (24 months old) Fischer 344 × Brown Norway rats. We found an age-related downregulation of Dicer1 expression both in CMVECs and in small cerebral vessels isolated from aged rats. In aged CMVECs, Dicer1 expression was increased by treatment with polyethylene glycol-catalase. Compared with young cells, aged CMVECs exhibited altered miRNA expression profile, which was associated with impaired proliferation, adhesion to vitronectin, collagen and fibronectin, cellular migration (measured by a wound-healing assay using electric cell-substrate impedance sensing technology), and impaired ability to form capillary-like structures. Overexpression of Dicer1 in aged CMVECs partially restored miRNA expression profile and significantly improved angiogenic processes. In young CMVECs, downregulation of Dicer1 (siRNA) resulted in altered miRNA expression profile associated with impaired proliferation, adhesion, migration, and tube formation, mimicking the aging phenotype. Collectively, we found that Dicer1 is essential for normal endothelial angiogenic processes, suggesting that age-related dysregulation of Dicer1-dependent miRNA expression may be a potential mechanism underlying impaired angiogenesis and cerebromicrovascular rarefaction in aging.

  13. 链脲佐菌素诱导的小鼠糖尿病视网膜病模型及促血管新生分子的表达%Streptozotocin induced diabetic retinopathy in C57 mice and the expression of some pro-angiogenic molecules

    Institute of Scientific and Technical Information of China (English)

    余增洋; 陆宾; 龚陈媛; 季莉莉

    2016-01-01

    AIM: To estabIish the mice modeI of streptozotocin (STZ)-induced proIiferative diabetic retinopathy (PDR), and observe the aItered expression of some pro -angiogenic moIecuIes such as vascuIar endotheIiaI growth factor (VEGF) and its receptors (VEGFR1 and VEGFR2), and matrix metaIIoproteinase ( MMP2 and MMP9 ) during the deveIopment of PDR. METHODS:C57BL/6J mice were intraperitoneaI injected with STZ (55 mg/kg) for 5 consecutive days, and bIood gIucose concentrations were measured after 7d of the injection. The diabetic mice were further housed for 3, 4, 5mo respectiveIy after the deveIopment of diabetes. HistoIogicaI evaIuation of retinas was performed. The retinaI vesseIs were detected by immunofIuorescence staining with the cIuster of differentiation 31 ( CD31 ) . The mRNA expression of VEGF, VEGFR1, VEGFR2, MMP2 and MMP9 in mice retinas was detected by ReaI-time PCR anaIysis. RESULTS: RetinaI histoIogicaI observation and CD31 staining both demonstrate that there are more vesseIs in diabetic mice than in normaI controI mice at 5mo after the deveIopment of diabetes. As compared with normaI controI, the mRNA expression of VEGF, VEGFR1, VEGFR2, MMP2 and MMP9 are aII increased in diabetic mice at 5mo after the deveIopment of diabetes. CONCLUSION: This study demonstrates that PDR is occurred at 5mo after the deveIopment of diabetes in STZ-induced diabetic mice. In addition, the mRNA expression of VEGF, VEGFR1, VEGFR2, MMP2 and MMP9 are aII increased after the deveIopment of PDR.%目的::建立链脲佐菌素( streptozotocin, STZ)诱导的小鼠增殖性糖尿病视网膜病( proliferative diabetic retinopathy, PDR)动物模型,并观察在增殖性糖尿病视网膜病发生、发展过程中血管内皮生长因子( vascular endothelial growth factor, VEGF)及其受体(VEGFR1, VEGFR2),金属基质蛋白酶(matrix metalloproteinase, MMP)2, MMP9表达的变化。方法:C57 BL/6 J小鼠连续5 d腹腔注射STZ (55 mg/kg )。末次注射后7d检测血糖浓度。

  14. Expression of the angiogenic mediator, angiopoietin-like 4, in the eyes of patients with proliferative sickle retinopathy.

    Directory of Open Access Journals (Sweden)

    Kathleen Jee

    Full Text Available The recent success of therapies directly targeting the angiogenic mediator, vascular endothelial growth factor (VEGF, for the treatment of proliferative diabetic retinopathy has encouraged clinicians to extend the use of anti-VEGF therapies for the treatment of another ischemic retinal vascular disease, proliferative sickle cell retinopathy (PSR, the most common cause of irreversible blindness in patients with sickle cell disease. However, results from case reports evaluating anti-VEGF therapies for PSR have been mixed. This highlights the need to identify alternative therapeutic targets for the treatment of retinal neovascularization in sickle cell patients. In this regard, angiopoietin-like 4 (ANGPTL4 is a novel angiogenic factor regulated by the transcription factor, hypoxia-inducible factor 1, the master regulator of angiogenic mediators (including VEGF in ischemic retinal disease. In an effort to identify alternative targets for the treatment of sickle cell retinopathy, we have explored the expression of ANGPTL4 in the eyes of patients with PSR. To this end, we examined expression and localization of ANGPTL4 by immunohistochemistry in autopsy eyes from patients with known PSR (n = 5 patients. Complementary studies were performed using enzyme-linked immunosorbent assays in aqueous (n = 8; 7 patients, 2 samples from one eye of same patient and vitreous (n = 3 patients samples from a second group of patients with active PSR. We detected expression of ANGPTL4 in neovascular tissue and in the ischemic inner retina in PSR, but not control, eyes. We further observed elevated expression of ANGPTL4 in the aqueous and vitreous of PSR patients compared to controls. These results suggest that ANGPTL4 could contribute to the development of retinal neovascularization in sickle cell patients and could therefore be a therapeutic target for the treatment of PSR.

  15. Extra virgin olive oil rich in polyphenols modulates VEGF-induced angiogenic responses by preventing NADPH oxidase activity and expression.

    Science.gov (United States)

    Calabriso, Nadia; Massaro, Marika; Scoditti, Egeria; D'Amore, Simona; Gnoni, Antonio; Pellegrino, Mariangela; Storelli, Carlo; De Caterina, Raffaele; Palasciano, Giuseppe; Carluccio, Maria Annunziata

    2016-02-01

    Previous studies have shown the antiinflammatory, antioxidant and antiangiogenic properties by pure olive oil polyphenols; however, the effects of olive oil phenolic fraction on the inflammatory angiogenesis are unknown. In this study, we investigated the effects of the phenolic fraction (olive oil polyphenolic extract, OOPE) from extra virgin olive oil and related circulating metabolites on the VEGF-induced angiogenic responses and NADPH oxidase activity and expression in human cultured endothelial cells. We found that OOPE (1-10 μg/ml), at concentrations achievable nutritionally, significantly reduced, in a concentration-dependent manner, the VEGF-induced cell migration, invasiveness and tube-like structure formation through the inhibition of MMP-2 and MMP-9. OOPE significantly (Pextra virgin olive oil, with high polyphenol content, decreased VEGF-induced NADPH oxidase activity and Nox4 expression, as well as, MMP-9 expression, as compared with fasting control serum. Overall, native polyphenols and serum metabolites of extra virgin olive oil rich in polyphenols are able to lower the VEGF-induced angiogenic responses by preventing endothelial NADPH oxidase activity and decreasing the expression of selective NADPH oxidase subunits. Our results provide an alternative mechanism by which the consumption of olive oil rich in polyphenols may account for a reduction of oxidative stress inflammatory-related sequelae associated with chronic degenerative diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Differential expression of anti-angiogenic factors and guidance genes in the developing macula.

    Science.gov (United States)

    Kozulin, Peter; Natoli, Riccardo; O'Brien, Keely M Bumsted; Madigan, Michele C; Provis, Jan M

    2009-01-01

    The primate retina contains a specialized, cone-rich macula, which mediates high acuity and color vision. The spatial resolution provided by the neural retina at the macula is optimized by stereotyped retinal blood vessel and ganglion cell axon patterning, which radiate away from the macula and reduce shadowing of macular photoreceptors. However, the genes that mediate these specializations, and the reasons for the vulnerability of the macula to degenerative disease, remain obscure. The aim of this study was to identify novel genes that may influence retinal vascular patterning and definition of the foveal avascular area. We used RNA from human fetal retinas at 19-20 weeks of gestation (WG; n=4) to measure differential gene expression in the macula, a region nasal to disc (nasal) and in the surrounding retina (surround) by hybridization to 12 GeneChip microarrays (HG-U133 Plus 2.0). The raw data was subjected to quality control assessment and preprocessing, using GC-RMA. We then used ANOVA analysis (Partek) Genomic Suite 6.3) and clustering (DAVID website) to identify the most highly represented genes clustered according to "biological process." The neural retina is fully differentiated at the macula at 19-20 WG, while neuronal progenitor cells are present throughout the rest of the retina. We therefore excluded genes associated with the cell cycle, and markers of differentiated neurons, from further analyses. Significantly regulated genes (pmacula versus surround" and "macula versus nasal." KEGG pathway clustering of the filtered gene lists identified 25 axon guidance-related genes that are differentially regulated in the macula. Furthermore, we found significant upregulation of three anti-angiogenic factors in the macula: pigment epithelium derived factor (PEDF), natriuretic peptide precurusor B (NPPB), and collagen type IValpha2. Differential expression of several members of the ephrin and semaphorin axon guidance gene families, PEDF, and NPPB was verified by

  17. T-Cadherin Expression in Melanoma Cells Stimulates Stromal Cell Recruitment and Invasion by Regulating the Expression of Chemokines, Integrins and Adhesion Molecules

    International Nuclear Information System (INIS)

    Rubina, Kseniya A.; Surkova, Ekaterina I.; Semina, Ekaterina V.; Sysoeva, Veronika Y.; Kalinina, Natalia I.; Poliakov, Alexei A.; Treshalina, Helena M.; Tkachuk, Vsevolod A.

    2015-01-01

    T-cadherin is a glycosyl-phosphatidylinositol (GPI) anchored member of the cadherin superfamily involved in the guidance of migrating cells. We have previously shown that in vivo T-cadherin overexpression leads to increased melanoma primary tumor growth due to the recruitment of mesenchymal stromal cells as well as the enhanced metastasis. Since tumor progression is highly dependent upon cell migration and invasion, the aim of the present study was to elucidate the mechanisms of T-cadherin participation in these processes. Herein we show that T-cadherin expression results in the increased invasive potential due to the upregulated expression of pro-oncogenic integrins, chemokines, adhesion molecules and extracellular matrix components. The detected increase in chemokine expression could be responsible for the stromal cell recruitment. At the same time our previous data demonstrated that T-cadherin expression inhibited neoangiogenesis in the primary tumors. We demonstrate that T-cadherin overexpression leads to the increase in the expression of anti-angiogenic molecules and reduction in pro-angiogenic factors. Thus, T-cadherin plays a dual role in melanoma growth and progression: T-cadherin expression results in anti-angiogenic effects in melanoma, however, this also stimulates transcription of genes responsible for migration and invasion of melanoma cells

  18. T-Cadherin Expression in Melanoma Cells Stimulates Stromal Cell Recruitment and Invasion by Regulating the Expression of Chemokines, Integrins and Adhesion Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Rubina, Kseniya A., E-mail: rkseniya@mail.ru; Surkova, Ekaterina I.; Semina, Ekaterina V.; Sysoeva, Veronika Y.; Kalinina, Natalia I. [Department of Biochemistry and Molecular Medicine, Faculty of Medicine, M.V. Lomonosov Moscow State University, Lomonosovsky av., 31/5, Moscow 119192 (Russian Federation); Poliakov, Alexei A. [Division of Developmental Neurobiology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA (United Kingdom); Treshalina, Helena M. [Federal State Budgetary Scietific Institution «N.N. Blokhin Russian Cancer Research Center» (FSBSI “N.N.Blokhin RCRC”), Kashirskoe Shosse 24, Moscow 115478 (Russian Federation); Tkachuk, Vsevolod A. [Department of Biochemistry and Molecular Medicine, Faculty of Medicine, M.V. Lomonosov Moscow State University, Lomonosovsky av., 31/5, Moscow 119192 (Russian Federation)

    2015-07-21

    T-cadherin is a glycosyl-phosphatidylinositol (GPI) anchored member of the cadherin superfamily involved in the guidance of migrating cells. We have previously shown that in vivo T-cadherin overexpression leads to increased melanoma primary tumor growth due to the recruitment of mesenchymal stromal cells as well as the enhanced metastasis. Since tumor progression is highly dependent upon cell migration and invasion, the aim of the present study was to elucidate the mechanisms of T-cadherin participation in these processes. Herein we show that T-cadherin expression results in the increased invasive potential due to the upregulated expression of pro-oncogenic integrins, chemokines, adhesion molecules and extracellular matrix components. The detected increase in chemokine expression could be responsible for the stromal cell recruitment. At the same time our previous data demonstrated that T-cadherin expression inhibited neoangiogenesis in the primary tumors. We demonstrate that T-cadherin overexpression leads to the increase in the expression of anti-angiogenic molecules and reduction in pro-angiogenic factors. Thus, T-cadherin plays a dual role in melanoma growth and progression: T-cadherin expression results in anti-angiogenic effects in melanoma, however, this also stimulates transcription of genes responsible for migration and invasion of melanoma cells.

  19. A preliminary study of pamidronic acid downregulation of angiogenic factors IGF-1/PECAM-1 expression in circulating level in bone metastatic breast cancer patients

    Directory of Open Access Journals (Sweden)

    Wang Z

    2016-05-01

    Full Text Available Zeng Wang,1,2 Lei Lei,2,3 Xin-jun Cai,4 Ling Ya Chen,1,2 Meiqin Yuan,2,3 Guonong Yang,1,2 Ping Huang,1,2 Xiaojia Wang2,3 1Department of Pharmacy, 2Zhejiang Key Lab of Diagnosis & Treatment Technology on Thoracic Oncology, 3Department of Chemotherapy Center, Zhejiang Cancer Hospital, 4Department of Pharmacy, Integrated Chinese and Western Medicine Hospital of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China Objective: To evaluate the expressions of circulating angiogenic factors affected by pamidronic acid (PA intravenous infusion in bone metastatic breast cancer patients and the impact on their prognosis.Methods: Peripheral blood of ten bone metastatic breast cancer patients was collected for serum insulin-like growth factor-1 (IGF-1 and platelet endothelial cell adhesion molecule-1 expression detection just before and 2 days after PA infusion.Results: Both IGF-1 and platelet endothelial cell adhesion molecule-1 concentrations decreased after PA treatment for 48 hours (P<0.05. Modification was defined as >20% decrease recorded 2 days after PA administration. The decrease of IGF-1 was more significant in breast cancer patients who had received previous hormonotherapy. Moreover, the progression-free survival of first-line chemotherapy treatment of IGF-1 modified patients was longer than that of IGF-1 unmodified patients (P=0.009.Conclusion: PA treatment could suppress circulating serum IGF-1 and platelet endothelial cell adhesion molecule-1 concentrations; moreover, the prognosis of patients in IGF-1 unmodified group was relatively poor. Keywords: pamidronic acid, insulin-like growth factor-1, platelet endothelial cell adhesion molecule-1, bone metastatic breast cancer, prognosis

  20. Systemic Effects of Anti-Angiogenic Therapy

    International Nuclear Information System (INIS)

    Starlinger, P.

    2011-01-01

    protein expression and processing in more detail. In the course of this study, we identified platelets as the major source of circulating TSP-1. While platelets release the full-length molecule, proteolytic fragmentation of TSP-1 occurs during the angiogenic process which we identified as a hallmark of in vivo as compared to in vitro platelet activation. In conclusion our results suggest that platelets which are known to produce and store angiogenesis factors may have a major impact on anti-angiogenic cancer therapy. Hence, for combined application thrombocytopenic chemotherapeutics should be avoided. However, prospective clinical trials will have to prove if this hypothesis will translate into therapeutic benefit. (author) [de

  1. Dual expression of hTERT and VEGF prolongs life span and enhances angiogenic ability of aged BMSCs

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Hao [Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou (China); Department of Neurosurgery, Affiliated Bayi Brain Hospital, The Military General Hospital of Beijing PLA, Beijing (China); Xiang, Yongsheng [Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou (China); Department of Neurosurgery, First Affiliated Hospital of Jinan University, Guangzhou (China); Jiang, Xiaodan; Ke, Yiquan; Xiao, Zongyu; Guo, Yang; Wang, Qiujing; Du, Mouxuan; Qin, Linsha; Zou, Yuxi; Cai, Yingqian [Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou (China); Chen, Zhenzhou, E-mail: czz1020@163.com [Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou (China); Xu, Ruxiang, E-mail: zjxuruxiang@163.com [Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou (China); Department of Neurosurgery, Affiliated Bayi Brain Hospital, The Military General Hospital of Beijing PLA, Beijing (China)

    2013-11-01

    Highlights: •Expression of hTERT and VEGF changed the lifespan and morphology of hBMSCs. •The expression of VEGF and hTRET promoted angiogenesis in vitro and in vivo. •The expression of VEGF and hTRET in hBMSCs had few effects on tumorigenicity. -- Abstract: Previous studies have confirmed the therapeutic effects of bone marrow stromal cells (BMSCs) transplantation on cerebral ischemia. However, the proliferative, differentiative, and homing capacity of BMSC from the elderly are significantly reduced, especially after several passages expansion in vitro. In this study, by introducing lentivirus-mediated hTERT and VEGF genes to modify human BMSCs from aged donors, we observed extended lifespan, promoted angiogenic capacity while less enhanced tumorigenicity of the genetically engineering BMSCs. These results therefore suggest that the modification of aged BMSCs by dual expression of hTERT and VEGF may be used for autologous cell replacement for ischemic cerebrovascular disease in elderly patients.

  2. Dual expression of hTERT and VEGF prolongs life span and enhances angiogenic ability of aged BMSCs

    International Nuclear Information System (INIS)

    Tang, Hao; Xiang, Yongsheng; Jiang, Xiaodan; Ke, Yiquan; Xiao, Zongyu; Guo, Yang; Wang, Qiujing; Du, Mouxuan; Qin, Linsha; Zou, Yuxi; Cai, Yingqian; Chen, Zhenzhou; Xu, Ruxiang

    2013-01-01

    Highlights: •Expression of hTERT and VEGF changed the lifespan and morphology of hBMSCs. •The expression of VEGF and hTRET promoted angiogenesis in vitro and in vivo. •The expression of VEGF and hTRET in hBMSCs had few effects on tumorigenicity. -- Abstract: Previous studies have confirmed the therapeutic effects of bone marrow stromal cells (BMSCs) transplantation on cerebral ischemia. However, the proliferative, differentiative, and homing capacity of BMSC from the elderly are significantly reduced, especially after several passages expansion in vitro. In this study, by introducing lentivirus-mediated hTERT and VEGF genes to modify human BMSCs from aged donors, we observed extended lifespan, promoted angiogenic capacity while less enhanced tumorigenicity of the genetically engineering BMSCs. These results therefore suggest that the modification of aged BMSCs by dual expression of hTERT and VEGF may be used for autologous cell replacement for ischemic cerebrovascular disease in elderly patients

  3. Increased expression of pro-angiogenic factors and vascularization in thyroid hyperfunctioning adenomas with and without TSH receptor activating mutations.

    Science.gov (United States)

    Celano, Marilena; Sponziello, Marialuisa; Tallini, Giovanni; Maggisano, Valentina; Bruno, Rocco; Dima, Mariavittoria; Di Oto, Enrico; Redler, Adriano; Durante, Cosimo; Sacco, Rosario; Filetti, Sebastiano; Russo, Diego

    2013-02-01

    Autonomously functioning thyroid nodules (AFTN) are known to receive an increased blood influx necessary to sustain their high rate of growth and hormone production. Here, we investigated the expression of hematic and lymphatic vases in a series of 20 AFTN compared with the contralateral non-tumor tissues of the same patients, and the transcript levels of proteins involved in the control of vascular proliferation, including the vascular endothelial growth factor (VEGF) and platelet-derived growth factors (PDGF) and their receptors and the endothelial nitric oxide synthase (eNOS). In parallel, the expression of the differentiation markers sodium/iodide symporter (NIS), thyroperoxidase (TPO), thyroglobulin (Tg), and TSH receptor (TSHR) was also investigated. The data were further analyzed comparing subgroups of tumors with or without mutations in the TSHR gene. Analysis by means of CD31 and D2-40 immunostaining showed in AFTN an increased number of hematic, but not lymphatic, vessels in parallel with an enhanced proliferation rate shown by increased Ki67 staining. Quantitative RT-PCR analysis revealed an increase of VEGF, VEGFR1 and 2, PDGF-A, PDGF-B, and eNOS expression in tumor versus normal tissues. Also, higher transcript levels of NIS, TPO, and Tg were detected. Comparison of the two subgroups of samples revealed only few differences in the expression of the genes examined. In conclusion, these data demonstrate an increased expression of angiogenesis-related factors associated with an enhanced proliferation of hematic, but not lymphatic, vessels in AFTNs. In this context, the presence of TSHR mutations may only slightly influence the expression of pro-angiogenic growth factors.

  4. Subchronic inhalation of soluble manganese induces expression of hypoxia-associated angiogenic genes in adult mouse lungs

    International Nuclear Information System (INIS)

    Bredow, Sebastian; Falgout, Melanie M.; March, Thomas H.; Yingling, Christin M.; Malkoski, Stephen P.; Aden, James; Bedrick, Edward J.; Lewis, Johnnye L.; Divine, Kevin K.

    2007-01-01

    Although the lung constitutes the major exposure route for airborne manganese (Mn), little is known about the potential pulmonary effects and the underlying molecular mechanisms. Transition metals can mimic a hypoxia-like response, activating the hypoxia inducible factor-1 (HIF-1) transcription factor family. Through binding to the hypoxia-response element (HRE), these factors regulate expression of many genes, including vascular endothelial growth factor (VEGF). Increases in VEGF, an important biomarker of angiogenesis, have been linked to respiratory diseases, including pulmonary hypertension. The objective of this study was to evaluate pulmonary hypoxia-associated angiogenic gene expression in response to exposure of soluble Mn(II) and to assess the genes' role as intermediaries of potential pulmonary Mn toxicity. In vitro, 0.25 mM Mn(II) altered morphology and slowed the growth of human pulmonary epithelial cell lines. Acute doses between 0.05 and 1 mM stimulated VEGF promoter activity up to 3.7-fold in transient transfection assays. Deletion of the HRE within the promoter had no effect on Mn(II)-induced VEGF expression but decreased cobalt [Co(II)]-induced activity 2-fold, suggesting that HIF-1 may not be involved in Mn(II)-induced VEGF gene transcription. Nose-only inhalation to 2 mg Mn(II)/m 3 for 5 days at 6 h/day produced no significant pulmonary inflammation but induced a 2-fold increase in pulmonary VEGF mRNA levels in adult mice and significantly altered expression of genes associated with murine angiogenesis. These findings suggest that even short-term exposures to soluble, occupationally relevant Mn(II) concentrations may alter pulmonary gene expression in pathways that ultimately could affect the lungs' susceptibility to respiratory disease

  5. The endothelial adaptor molecule TSAd is required for VEGF-induced angiogenic sprouting through junctional c-Src activation

    NARCIS (Netherlands)

    Gordon, Emma J; Fukuhara, Daisuke; Weström, Simone; Padhan, Narendra; Sjöström, Elisabet O; van Meeteren, Laurens|info:eu-repo/dai/nl/299142353; He, Liqun; Orsenigo, Fabrizio; Dejana, Elisabetta; Bentley, Katie; Spurkland, Anne; Claesson-Welsh, Lena

    2016-01-01

    Activation of vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2) by VEGF binding is critical for vascular morphogenesis. In addition, VEGF disrupts the endothelial barrier by triggering the phosphorylation and turnover of the junctional molecule VE-cadherin, a process mediated by the

  6. Expression of angiogenic switch, cachexia and inflammation factors at the crossroad in undifferentiated thyroid carcinoma with BRAF(V600E).

    Science.gov (United States)

    Husain, Amjad; Hu, Nina; Sadow, Peter M; Nucera, Carmelo

    2016-10-01

    Cachexia is the result of complex metabolic alterations which cause morbidity and mortality in patients with advanced cancers including undifferentiated (anaplastic) thyroid carcinoma (ATC). ATC is a lethal disease with limited therapeutic options and unclear etiology for cachexia. We hypothesize that the BRAF(V600E) oncoprotein triggers microvascular endothelial cell tubule formation (in vitro angiogenesis) by means of factors which play a crucial role in angiogenic switch, inflammation/immune response and cachexia. We use human ATC cells and applied multiplex ELISA assay to screen for and measure angiogenic/cachectic and pro-inflammatory factors in the ATC-derived secretome. We find that vemurafenib anti-BRAF(V600E) therapy significantly reduces secreted VEGFA, VEGFC and IL6 protein levels compared to vehicle-treated ATC cells. As a result, the secretome from vemurafenib-treated ATC cells inhibits microvascular endothelial cell-related in vitro angiogenesis. Furthermore, ATC clinical samples express VEGFA, VEGFC and IL6 proteins. Our results suggest that angiogenic/cachectic and pro-inflammatory/immune response factors could play a crucial role in BRAF(V600E)-positive human ATC aggressiveness. Understanding the extent to which microenvironment-associated angiogenic factors participate in cachexia and cancer metabolism in advanced thyroid cancers will reveal new biomarkers and foster novel therapeutic approaches. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. T-Cadherin Expression in Melanoma Cells Stimulates Stromal Cell Recruitment and Invasion by Regulating the Expression of Chemokines, Integrins and Adhesion Molecules

    Directory of Open Access Journals (Sweden)

    Kseniya A. Rubina

    2015-07-01

    Full Text Available T-cadherin is a glycosyl-phosphatidylinositol (GPI anchored member of the cadherin superfamily involved in the guidance of migrating cells. We have previously shown that in vivo T-cadherin overexpression leads to increased melanoma primary tumor growth due to the recruitment of mesenchymal stromal cells as well as the enhanced metastasis. Since tumor progression is highly dependent upon cell migration and invasion, the aim of the present study was to elucidate the mechanisms of T-cadherin participation in these processes. Herein we show that T-cadherin expression results in the increased invasive potential due to the upregulated expression of pro-oncogenic integrins, chemokines, adhesion molecules and extracellular matrix components. The detected increase in chemokine expression could be responsible for the stromal cell recruitment. At the same time our previous data demonstrated that T-cadherin expression inhibited neoangiogenesis in the primary tumors. We demonstrate molecules and reduction in pro-angiogenic factors. Thus, T-cadherin plays a dual role in melanoma growth and progression: T-cadherin expression results in anti-angiogenic effects in melanoma, however, this also stimulates transcription of genes responsible for migration and invasion of melanoma cells.

  8. ACE inhibition modifies exercise-induced pro-angiogenic and mitochondrial gene transcript expression

    NARCIS (Netherlands)

    van Ginkel, S.; Ruoss, S.; Valdivieso, P.; Degens, H.; Waldron, S.; de Haan, Arnold; Flück, M.

    2016-01-01

    Skeletal muscle responds to endurance exercise with an improvement of biochemical pathways that support substrate supply and oxygen-dependent metabolism. This is reflected by enhanced expression of associated factors after exercise and is specifically modulated by tissue perfusion and oxygenation.

  9. Analysis of angiogenic factors and cyclooxygenase-2 expression in cartilaginous tumors: clinical and histological correlation

    Directory of Open Access Journals (Sweden)

    Francisco Fontes Cintra

    2011-01-01

    Full Text Available OBJECTIVES: To study the role of angiogenesis and cyclooxygenase-2 expression in cartilaginous tumors and correlate these factors with prognosis. INTRODUCTION: For chondrosarcoma, the histological grade is the current standard for predicting tumor outcome. However, a low-grade chondrosarcoma can follow an aggressive course-as monitored by sequential imaging techniques-even when it is histologically indistinguishable from an enchondroma. Therefore, additional tools are needed to help identify the biological potential of these tumors. The degree of angiogenesis that is induced by the tumor could assist in this task. Angiogenesis can be quantified by measuring the expression of vascular endothelial growth factor and CD34, and cyclooxygenase-2 can induce angiogenesis by stimulating the production of proangiogenic factors. METHODS: In total, 21 enchondromas and 58 conventional chondrosarcomas were studied by examining the clinical and histopathological findings in conjunction with the immunostaining markers of angiogenesis and cyclooxygenase- 2 expression. RESULTS: The significant variables that were associated with poor outcome were 1 higher-grade chondrosarcomas, 2 tumors that developed in flat bones, and 3 over-expression of CD34 (with a median count that was higher than 5.9 vessels in 5 high power fields. Moreover, CD34 expression (measured using the Chalkley method revealed significantly higher microvessel density in flat bone chondrosarcomas. DISCUSSION: Previous studies have shown a positive correlation between Chalkley microvessel density and histological grade; however, in our sample, we found that the former is predictive of the outcome. Chondrosarcomas in flat bones have been shown to correlate with a poor prognosis. We also found that CD34 microvessel density values were significantly higher in flat-bone chondrosarcomas. This could explain-at least in part-the more aggressive biological course that is taken by these tumors. CONCLUSIONS

  10. Leptin’s Pro-Angiogenic Signature in Breast Cancer

    International Nuclear Information System (INIS)

    Gonzalez-Perez, Ruben Rene; Lanier, Viola; Newman, Gale

    2013-01-01

    Obesity is linked to increased incidence of breast cancer. The precise causes and mechanisms of these morbid relationships are unknown. Contradictory data on leptin angiogenic actions have been published. However, accumulating evidence would suggest that leptin’s pro-angiogenic effects in cancer play an essential role in the disease. Leptin, the main adipokine secreted by adipose tissue, is also abnormally expressed together with its receptor (OB-R) by breast cancer cells. Leptin induces proliferation and angiogenic differentiation of endothelial cells upregulates VEGF/VEGFR2 and transactivates VEGFR2 independent of VEGF. Leptin induces two angiogenic factors: IL-1 and Notch that can increase VEGF expression. Additionally, leptin induces the secretion and synthesis of proteases and adhesion molecules needed for the development of angiogenesis. Leptin’s paracrine actions can further affect stromal cells and tumor associated macrophages, which express OB-R and secrete VEGF and IL-1, respectively. A complex crosstalk between leptin, Notch and IL-1 (NILCO) that induces VEGF/VEGFR2 is found in breast cancer. Leptin actions in tumor angiogenesis could amplify, be redundant and/or compensatory to VEGF signaling. Current failure of breast cancer anti-angiogenic therapies emphasizes the necessity of targeting the contribution of other pro-angiogenic factors in breast cancer. Leptin’s impact on tumor angiogenesis could be a novel target for breast cancer, especially in obese patients. However, more research is needed to establish the importance of leptin in tumor angiogenesis. This review is focused on updated information on how leptin could contribute to tumor angiogenesis

  11. Human thymic epithelial cells express functional HLA-DP molecules

    DEFF Research Database (Denmark)

    Jørgensen, A; Röpke, C; Nielsen, M

    1996-01-01

    T lymphocytes, we examined whether human thymic epithelial cells (TEC) expressed HLA-DP molecules. We present evidence that TEC obtained from short time culture express low but significant levels of HLA-DP molecules. The expression of HLA-DP molecules was comparable to or higher than the expression...... of HLA-DP allospecific primed lymphocyte typing (PLT) CD4 T cell lines. IFN-gamma treatment strongly upregulated the HLA-DP allospecific PLT responses whereas other PLT responses remained largely unchanged. In conclusion, these data indicate that human thymus epithelial cells express significant levels...

  12. Tissue factor is an angiogenic-specific receptor for factor VII-targeted immunotherapy and photodynamic therapy.

    Science.gov (United States)

    Hu, Zhiwei; Cheng, Jijun; Xu, Jie; Ruf, Wolfram; Lockwood, Charles J

    2017-02-01

    Identification of target molecules specific for angiogenic vascular endothelial cells (VEC), the inner layer of pathological neovasculature, is critical for discovery and development of neovascular-targeting therapy for angiogenesis-dependent human diseases, notably cancer, macular degeneration and endometriosis, in which vascular endothelial growth factor (VEGF) plays a central pathophysiological role. Using VEGF-stimulated vascular endothelial cells (VECs) isolated from microvessels, venous and arterial blood vessels as in vitro angiogenic models and unstimulated VECs as a quiescent VEC model, we examined the expression of tissue factor (TF), a membrane-bound receptor on the angiogenic VEC models compared with quiescent VEC controls. We found that TF is specifically expressed on angiogenic VECs in a time-dependent manner in microvessels, venous and arterial vessels. TF-targeted therapeutic agents, including factor VII (fVII)-IgG1 Fc and fVII-conjugated photosensitizer, can selectively bind angiogenic VECs, but not the quiescent VECs. Moreover, fVII-targeted photodynamic therapy can selectively and completely eradicate angiogenic VECs. We conclude that TF is an angiogenic-specific receptor and the target molecule for fVII-targeted therapeutics. This study supports clinical trials of TF-targeted therapeutics for the treatment of angiogenesis-dependent diseases such as cancer, macular degeneration and endometriosis.

  13. [HPV DNA vaccines expressing recombinant CRT/HPV6bE7 fusion protein inhibit tumor growth and angiogenic activity].

    Science.gov (United States)

    Xu, Yan; Cheng, Hao; Zhao, Ke-Jia; Zhu, Ke-Jian; Zhang, Xing

    2007-11-01

    This paper was to study the angiogenic inhibitory effect and the potential antitumor effect of the constructed recombinant DNA vaccine CRT/HPV6bE7 in vivo. The C57BL/6 mice were vaccinated respectively with recombinant CRT/HPV6bE7 DNA plamids. The inhibitory effects on angiogenesis of generated vaccines in vivo were evaluated by a bFGF-induced angiogenesis assay using the Matrigel kit. To investigate the potential antitumor effect, the mean tumor weights, sizes and tumor appearing times were measured in C57BL/6 mice treated with HPV6bE7-expressing B16 cells. The results indicated that the recombinants CRT180/HPV6bE7 and CRT180 showed strong anti-angiogenic effects in bFGF-induced angiogenesis in vivo. Moreover, CRT180/HPV6bE7 and CRT180 DNA vaccines could significantly inhibit the tumor growth in tumor challenge experiment, and CRT180/HPV6bE7 was superior to other vaccines in delaying tumor formation time, limiting tumor size and weight in tumor protection experiment. In conclusion, recombinant CRT180/HPV6bE7 DNA could elicit a most efficient anti-angiogenic effect and inhibit tumor growth in mice inoculated with DNA vaccines. The antiangiogenic activity of CRT were suggested residing in a domain between CRT 120-180 aa.

  14. Extravillous trophoblast invasion in placenta accreta is associated with differential local expression of angiogenic and growth factors: a cross-sectional study.

    Science.gov (United States)

    Duzyj, C M; Buhimschi, I A; Laky, C A; Cozzini, G; Zhao, G; Wehrum, M; Buhimschi, C S

    2018-02-22

    Placenta accreta is clinically associated with maternal uterine scar. Our objective was to investigate the biochemical contribution of maternal scarring to hyperinvasive trophoblast. We hypothesised that trophoblast over-invasion in placenta accreta is associated with aberrant invasion-site signalling of growth and angiogenic factors known to be involved in wound healing and promotion of cell invasion through the epithelial to mesenchymal cellular programme. Cross-sectional series. Yale-New Haven Hospital. Women with histologically confirmed normal and abnormal placentation. Placental invasion site tissue sections were immunostained for endoglin and other angiogenic regulators, and transforming growth factor β (TGFβ) proteins. Maternal serum endoglin, and the vascular endothelial growth factor (VEGF) mediators hypoxia-inducible factor-1α (HIF1α) and endostatin, were assessed using immunoassay. Differences in median H-score by immunostaining and in mean serum level by immunoassay. By immunostaining, placenta accreta samples demonstrated intervillous endoglin shedding and increased trophoblast expression of its cleavage protein matrix metalloproteinase-14. Absent decidual HIF1α and endostatin were observed in areas of VEGF upregulation. TGFβ1 was present in myocytes but not in collagen bundles into which accreta trophoblast invaded. Maternal serum endoglin decreased in praevia and accreta when corrected for gestational age. Angiogenic and growth factors at the placental invasion site are altered in accreta, both by decidual absence and within myometrial scar. We postulate this promotes the invasive phenotype of placenta accreta by activating hyperinvasive trophoblast and by dysregulating placental vascular remodelling. Yale Department of Obstetrics, Gynecology and Reproductive Sciences funds. Placenta accreta histology shows dysregulation of angiogenic and growth factors. © 2018 Royal College of Obstetricians and Gynaecologists.

  15. Date syrup-derived polyphenols attenuate angiogenic responses and exhibits anti-inflammatory activity mediated by vascular endothelial growth factor and cyclooxygenase-2 expression in endothelial cells.

    Science.gov (United States)

    Taleb, Hajer; Morris, R Keith; Withycombe, Cathryn E; Maddocks, Sarah E; Kanekanian, Ara D

    2016-07-01

    Bioactive components such as polyphenols, present in many plants, are purported to have anti-inflammatory and antiangiogenic properties. Date syrup, produced from date fruit of the date palm tree, has traditionally been used to treat a wide range of diseases with etiologies involving angiogenesis and inflammation. It was hypothesized that polyphenols in date syrup reduce angiogenic responses such as cell migration, tube formation, and matrix metalloproteinase activity in an inflammatory model by exhibiting anti-inflammatory activity mediated by vascular endothelial growth factor (VEGF) and the prostaglandin enzyme cyclooxygenase-2 (COX-2) in endothelial cells. Date syrup polyphenols at 60 and 600μg/mL reduced inflammation and suppressed several stages of angiogenesis, including endothelial cell migration, invasion, matrix metalloproteinase activity, and tube formation, without evidence of cytotoxicity. VEGF and COX-2 expression induced by tumor necrosis factor-alpha at both gene expression and protein level was significantly reduced by date syrup polyphenols in comparison to untreated cells. In conclusion, polyphenols in date syrup attenuated angiogenic responses and exhibited anti-inflammatory activity mediated by VEGF and COX-2 expression in endothelial cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Cardioprotective effect of valsartan in mice with short-term high-salt diet by regulating cardiac aquaporin 1 and angiogenic factor expression.

    Science.gov (United States)

    Jiang, Yong; Wang, Hui-Yan; Zheng, Sheng; Mu, Shang-Qiang; Ma, Meng-Ni; Xie, Xin; Zhang, Yang-Yang; Zhang, Chun-Xue; Cai, Jian-Hui

    2015-01-01

    Hypertension is the most common risk factor for various cardiovascular and cerebrovascular diseases that affects approximately 61 million, or 25% of the population in United States. The dietary salt intake is one of the most important but modifiable factors for hypertension. In the current study, we aim to elucidate the role of aquaporin 1 in high-salt-induced hypertension and cardiac injuries and whether angiotensin II receptor blocker valsartan could ameliorate the effect of high salt on blood pressure. Mice were fed with normal diet, high-salt diet in the presence or absence of valsartan for 4 weeks. The body weight gain, feeding behavior, blood pressure, and cardiac pathology changes were monitored after 4 weeks. The expression of aquaporin 1, vascular endothelial growth factor, transforming growth factor β1, and basic fibroblast growth factor were analyzed using quantitative real-time polymerase chain reaction, Western blot, and immunohistochemical staining. Valsartan partially reversed the effects of high-salt diet on hypertension, cardiac injuries such as fibrosis and inflammatory cell infiltration, and inhibition of aquaporin 1 and angiogenic factors; valsartan alone did not exert such effects. The current data demonstrated that the reduction of cardiac aquaporin 1 and angiogenic factor expression level might be associated with high-salt-induced hypertension and cardiac injuries in mice, which could be ameliorated by angiotensin II receptor blocker treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Tasquinimod (ABR-215050, a quinoline-3-carboxamide anti-angiogenic agent, modulates the expression of thrombospondin-1 in human prostate tumors

    Directory of Open Access Journals (Sweden)

    Isaacs John T

    2010-05-01

    Full Text Available Abstract Background The orally active quinoline-3-carboxamide tasquinimod [ABR-215050; CAS number 254964-60-8, which currently is in a phase II-clinical trial in patients against metastatic prostate cancer, exhibits anti-tumor activity via inhibition of tumor angiogenesis in human and rodent tumors. To further explore the mode of action of tasquinimod, in vitro and in vivo experiments with gene microarray analysis were performed using LNCaP prostate tumor cells. The array data were validated by real-time semiquantitative reversed transcriptase polymerase chain reaction (sqRT-PCR and protein expression techniques. Results One of the most significant differentially expressed genes both in vitro and in vivo after exposure to tasquinimod, was thrombospondin-1 (TSP1. The up-regulation of TSP1 mRNA in LNCaP tumor cells both in vitro and in vivo correlated with an increased expression and extra cellular secretion of TSP1 protein. When nude mice bearing CWR-22RH human prostate tumors were treated with oral tasquinimod, there was a profound growth inhibition, associated with an up-regulation of TSP1 and a down- regulation of HIF-1 alpha protein, androgen receptor protein (AR and glucose transporter-1 protein within the tumor tissue. Changes in TSP1 expression were paralleled by an anti-angiogenic response, as documented by decreased or unchanged tumor tissue levels of VEGF (a HIF-1 alpha down stream target in the tumors from tasquinimod treated mice. Conclusions We conclude that tasquinimod-induced up-regulation of TSP1 is part of a mechanism involving down-regulation of HIF1α and VEGF, which in turn leads to reduced angiogenesis via inhibition of the "angiogenic switch", that could explain tasquinimods therapeutic potential.

  18. Clinicopathological Features and Prognosis of Papillary Thyroid Microcarcinoma for Surgery and Relationships with the BRAFV600E Mutational Status and Expression of Angiogenic Factors.

    Directory of Open Access Journals (Sweden)

    Chenlei Shi

    Full Text Available To investigate the clinicopathological characteristics of papillary thyroid microcarcinoma (PTMC for surgery by comparing the difference between PTMC and larger papillary thyroid carcinoma (LPTC.We analyzed the differences in the clinicopathological characteristics, prognosis, B-type RAF kinase (BRAFV600E mutational status and expression of angiogenic factors, including pigment epithelium-derived factor (PEDF, Vascular Endothelial Growth Factor (VEGF, and hypoxia-inducible factor alpha subunit (HIF-1α, between PTMC and LPTC by retrospectively reviewing the records of 251 patients with papillary thyroid carcinoma, 169 with PTMC, and 82 with LPTC (diameter >1 cm.There were no significant differences in the gender, age, multifocality, Hashimoto's thyroiditis, TNM stage, PEDF protein expression, rate of recurrence, or mean follow-up duration between patients with PTMC or LPTC. The prevalence of extrathyroidal invasion (EI, lymph node metastasis (LNM, and BRAF mutation in patients with PTMC was significantly lower than in patients with LPTC. In addition, in PTMC patients with EI and/or LNM and/or positive BRAF (high-risk PTMC patients, the prevalence of extrathyroidal invasion, Hashimoto's disease, lymph node metastasis, tumor TNM stage, PEDF positive protein expression, the rate of recurrent disease, and the mRNA expression of anti-angiogenic factors was almost as high as in patients with larger PTC, but with no significant difference.Extrathyroid invasion, lymph node metastases, and BRAFV600E mutation were the high risk factors of PTMC. PTMC should be considered for the same treatment strategy as LPTC when any of these factors is found. Particularly, PTMC with BRAFV600E gene mutations needed earlier surgical treatment. In addition, the high cell subtype of PTMC with BRAFV600E gene mutation is recommended for total thyroidectomy in primary surgery to reduce the risk of recurrence.

  19. Snake venom VEGF Vammin induces a highly efficient angiogenic response in skeletal muscle via VEGFR-2/NRP specific signaling.

    Science.gov (United States)

    Toivanen, Pyry I; Nieminen, Tiina; Laakkonen, Johanna P; Heikura, Tommi; Kaikkonen, Minna U; Ylä-Herttuala, Seppo

    2017-07-17

    Vascular Endothelial Growth Factors (VEGFs) are promising molecules for the treatment of ischemic diseases by pro-angiogenic therapy. Snake venom VEGFs are a novel subgroup with unique receptor binding profiles and as such are potential new therapeutic agents. We determined the ligand-receptor interactions, gene regulation and angiogenic properties of Vipera ammodytes venom VEGF, Vammin, and compared it to the canonical angiogenic factor VEGF-A to evaluate the use of Vammin for therapeutic angiogenesis. Vammin efficiently induced VEGFR-2 mediated proliferation and expression of genes associated with proliferation, migration and angiogenesis. VEGF-A 165 and especially VEGF-A 109 induced less pronounced effects. Vammin regulates a number of signaling pathways by inducing the expression of NR4A family nuclear receptors and regulators of calcium signaling and MAP kinase pathways. Interestingly, MARC1, which encodes an enzyme discovered to catalyze reduction of nitrate to NO, was identified as a novel VEGFR-2 regulated gene. In rabbit skeletal muscle adenoviral delivery of Vammin induced prominent angiogenic responses. Both the vector dose and the co-receptor binding of the ligand were critical parameters controlling the type of angiogenic response from sprouting angiogenesis to vessel enlargement. Vammin induced VEGFR-2/NRP-1 mediated signaling more effectively than VEGF-A, consequently it is a promising candidate for development of pro-angiogenic therapies.

  20. Intraepithelial lymphocytes express junctional molecules in murine small intestine

    International Nuclear Information System (INIS)

    Inagaki-Ohara, Kyoko; Sawaguchi, Akira; Suganuma, Tatsuo; Matsuzaki, Goro; Nawa, Yukifumi

    2005-01-01

    Intestinal intraepithelial lymphocytes (IEL) that reside at basolateral site regulate the proliferation and differentiation of epithelial cells (EC) for providing a first line of host defense in intestine. However, it remains unknown how IEL interact and communicate with EC. Here, we show that IEL express junctional molecules like EC. We identified mRNA expression of the junctional molecules in IEL such as zonula occludens (ZO)-1, occludin and junctional adhesion molecule (JAM) (tight junction), β-catenin and E-cadherin (adherens junction), and connexin26 (gap junction). IEL constitutively expressed occludin and E-cadherin at protein level, while other T cells in the thymus, spleen, liver, mesenteric lymph node, and Peyer's patches did not. γδ IEL showed higher level of these expressions than αβ IEL. The expression of occludin was augmented by anti-CD3 Ab stimulation. These results suggest the possibility of a novel role of IEL concerning epithelial barrier and communication between IEL and EC

  1. Growth hormone increases vascular cell adhesion molecule 1 expression

    DEFF Research Database (Denmark)

    Hansen, Troels Krarup; Fisker, Sanne; Dall, Rolf

    2004-01-01

    We investigated the impact of GH administration on endothelial adhesion molecules, vascular cell adhesion molecule-1 (VCAM-1) and E-selectin, in vivo and in vitro. Soluble VCAM-1, E-selectin, and C-reactive protein concentrations were measured before and after treatment in 25 healthy subjects...... and 25 adult GH-deficient (GHD) patients randomized to GH treatment or placebo. Furthermore, we studied the direct effect of GH and IGF-I and serum from GH-treated subjects on basal and TNF alpha-stimulated expression of VCAM-1 and E-selectin on cultured human umbilical vein endothelial cells. Baseline......% confidence interval: 95.0-208.7 microg/liter); P cells, there was no direct stimulatory effect of either GH or IGF-I on the expression of VCAM-1 and E-selectin, but serum from GH-treated healthy subjects significantly increased the expression of VCAM-1 (P

  2. Mechanical strain stimulates vasculogenesis and expression of angiogenesis guidance molecules of embryonic stem cells through elevation of intracellular calcium, reactive oxygen species and nitric oxide generation.

    Science.gov (United States)

    Sharifpanah, Fatemeh; Behr, Sascha; Wartenberg, Maria; Sauer, Heinrich

    2016-12-01

    Differentiation of embryonic stem (ES) cells may be regulated by mechanical strain. Herein, signaling molecules underlying mechanical stimulation of vasculogenesis and expression of angiogenesis guidance cues were investigated in ES cell-derived embryoid bodies. Treatment of embryoid bodies with 10% static mechanical strain using a Flexercell strain system significantly increased CD31-positive vascular structures and the angiogenesis guidance molecules plexinB1, ephrin B2, neuropilin1 (NRP1), semaphorin 4D (sem4D) and robo4 as well as vascular endothelial growth factor (VEGF), fibroblast growth factor-2 (FGF-2) and platelet-derived growth factor-BB (PDGF-BB) as evaluated by Western blot and real time RT-PCR. In contrast ephrin type 4 receptor B (EphB4) expression was down-regulated upon mechanical strain, indicating an arterial-type differentiation. Robo1 protein expression was modestly increased with no change in mRNA expression. Mechanical strain increased intracellular calcium as well as reactive oxygen species (ROS) and nitric oxide (NO). Mechanical strain-induced vasculogenesis was abolished by the NOS inhibitor L-NAME, the NADPH oxidase inhibitor VAS2870, upon chelation of intracellular calcium by BAPTA as well as upon siRNA inactivation of ephrin B2, NRP1 and robo4. BAPTA blunted the strain-induced expression of angiogenic growth factors, the increase in NO and ROS as well as the expression of NRP1, sem4D and plexinB1, whereas ephrin B2, EphB4 as well as robo1 and robo4 expression were not impaired. Mechanical strain stimulates vasculogenesis of ES cells by the intracellular messengers ROS, NO and calcium as well as by upregulation of angiogenesis guidance molecules and the angiogenic growth factors VEGF, FGF-2 and PDGF-BB. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Increased Retinal Expression of the Pro-Angiogenic Receptor GPR91 via BMP6 in a Mouse Model of Juvenile Hemochromatosis.

    Science.gov (United States)

    Arjunan, Pachiappan; Gnanaprakasam, Jaya P; Ananth, Sudha; Romej, Michelle A; Rajalakshmi, Veeranan-Karmegam; Prasad, Puttur D; Martin, Pamela M; Gurusamy, Mariappan; Thangaraju, Muthusamy; Bhutia, Yangzom D; Ganapathy, Vadivel

    2016-04-01

    Hemochromatosis, an iron-overload disease, occurs as adult and juvenile types. Mutations in hemojuvelin (HJV), an iron-regulatory protein and a bone morphogenetic protein (BMP) coreceptor, underlie most of the juvenile type. Hjv(-/-) mice accumulate excess iron in retina and exhibit aberrant vascularization and angiomas. A succinate receptor, GPR91, is pro-angiogenic in retina. We hypothesized that Hjv(-/-) retinas have increased BMP signaling and increased GPR91 expression as the basis of angiomas. Expression of GPR91 was examined by qPCR, immunofluorescence, and Western blot in wild-type and Hjv(-/-) mouse retinas and pRPE cells. Influence of excess iron and BMP6 on GPR91 expression was investigated in ARPE-19 cells, and wild-type and Hjv(-/-) pRPE cells. Succinate was used to activate GPR91 and determine the effects of GPR91 signaling on VEGF expression. Signaling of BMP6 was studied by the expression of Smad1/5/8 and pSmad4, and the BMP-target gene Id1. The interaction of pSmad4 with GPR91 promoter was studied by ChIP. Expression of GPR91 was higher in Hjv(-/-) retinas and RPE than in wild-type counterparts. Unexpectedly, BMP signaling was increased, not decreased, in Hjv(-/-) retinas and RPE. Bone morphogenetic protein 6 induced GPR91 in RPE, suggesting that increased BMP signaling in Hjv(-/-) retinas was likely responsible for GPR91 upregulation. Exposure of RPE to excess iron and succinate as well as BMP6 and succinate increased VEGF expression. Bone morphogenetic protein 6 promoted the interaction of pSmad4 with GPR91 promoter in RPE. G-protein-coupled receptor 91 is a BMP6 target and Hjv deletion enhances BMP signaling in retina, thus underscoring a role for excess iron and hemochromatosis in abnormal retinal vascularization.

  4. Expression of costimulatory molecules in the bovine corpus luteum

    Directory of Open Access Journals (Sweden)

    Pate Joy L

    2007-01-01

    Full Text Available Abstract Background Bovine luteal parenchymal cells express class II major histocompatibility complex (MHC molecules and stimulate class II MHC-dependent activation of T cells in vitro. The ability of a class II MHC-expressing cell type to elicit a response from T cells in vivo is also dependent on expression of costimulatory molecules by the antigen presenting cell and delivery of a costimulatory signal to the T cell. Whether bovine luteal parenchymal cells express costimulatory molecules and can deliver the costimulatory signal is currently unknown. Methods Bovine luteal tissue was collected during the early (day 5; day of estrus = day 0, mid (day 11–12, or late (day 18 luteal phase of the estrous cycle, and at 0, 0.5, 1, 4, 12 or 24 hours following administration of PGF2alpha to cows on day 10 of the estrous cycle. Northern analysis was used to measure CD80 or CD86 mRNA concentrations in luteal tissue samples. Mixed luteal parenchymal cell cultures and purified luteal endothelial cell cultures were prepared, and real-time RT-PCR was used to examine the presence of CD80 and CD86 mRNA in each culture type. Monoclonal antibodies to CD80 and CD86 were added to a mixed luteal parenchymal cell-T cell co-culture in vitro T cell proliferation assay to assess the functional significance of costimulatory molecules on activation of T lymphocytes by luteal parenchymal cells. Results Northern analysis revealed CD80 and CD86 mRNAs in luteal tissue, with greatest steady-state concentrations at midcycle. CD80 and CD86 mRNAs were detected in mixed luteal parenchymal cell cultures, but only slight amounts of CD80 (and not CD86 mRNA were detected in cultures of luteal endothelial cells. Luteinizing hormone, PGF2alpha and TNF-alpha were without effect on concentrations of CD80 or CD86 mRNA in mixed luteal parenchymal cells cultures. Anti-CD80 or anti-CD86 monoclonal antibodies inhibited T cell proliferation in the in vitro T cell proliferation assay

  5. Anti-angiogenic effect of triptolide in rheumatoid arthritis by targeting angiogenic cascade.

    Directory of Open Access Journals (Sweden)

    Xiangying Kong

    Full Text Available Rheumatoid arthritis (RA is characterized by a pre-vascular seriously inflammatory phase, followed by a vascular phase with high increase in vessel growth. Since angiogenesis has been considered as an essential event in perpetuating inflammatory and immune responses, as well as supporting pannus growth and development of RA, inhibition of angiogenesis has been proposed as a novel therapeutic strategy for RA. Triptolide, a diterpenoid triepoxide from Tripterygium wilfordii Hook F, has been extensively used in treatment of RA patients. It also acts as a small molecule inhibitor of tumor angiogenesis in several cancer types. However, it is unclear whether triptolide possesses an anti-angiogenic effect in RA. To address this problem, we constructed collagen-induced arthritis (CIA model using DA rats by the injection of bovine type II collagen. Then, CIA rats were treated with triptolide (11-45 µg/kg/day starting on the day 1 after first immunization. The arthritis scores (P<0.05 and the arthritis incidence (P<0.05 of inflamed joints were both significantly decreased in triptolide-treated CIA rats compared to vehicle CIA rats. More interestingly, doses of 11~45 µg/kg triptolide could markedly reduce the capillaries, small, medium and large vessel density in synovial membrane tissues of inflamed joints (all P<0.05. Moreover, triptolide inhibited matrigel-induced cell adhesion of HFLS-RA and HUVEC. It also disrupted tube formation of HUVEC on matrigel and suppressed the VEGF-induced chemotactic migration of HFLS-RA and HUVEC, respectively. Furthermore, triptolide significantly reduced the expression of angiogenic activators including TNF-α, IL-17, VEGF, VEGFR, Ang-1, Ang-2 and Tie2, as well as suppressed the IL1-β-induced phosphorylated of ERK, p38 and JNK at protein levels. In conclusion, our data suggest for the first time that triptolide may possess anti-angiogenic effect in RA both in vivo and in vitro assay systems by downregulating the

  6. Role of chrysin on expression of insulin signaling molecules

    Directory of Open Access Journals (Sweden)

    Kottireddy Satyanarayana

    2015-01-01

    Full Text Available Background: Currently available drugs are unsuccessful for the treatment of tye-2 diabetes due to their adverseside-effects. Hence, a search for novel drugs, especially ofplant origin, continues. Chrysin (5,7-dihydroxyflavone is a flavonoid, natural component of traditional medicinal herbs, present in honey, propolis and many plant extracts that hasbeen used in traditional medicine around the world to treat numerous ailments. Objective: The present study was aimed to identify the protective role of chrysin on the expression of insulin-signaling molecules in the skeletal muscle of high fat and sucrose-induced type-2 diabetic adult male rats. Materials and Methods: The oral effective dose of chrysin (100 mg/kg body weight was given once a day until the end of the study (30 days post-induction of diabetes to high fat diet-induced diabetic rats.At the end of the experimental period, fasting blood glucose, oral glucose tolerance, serum lipid profile, lipid peroxidation (LPO and free radical generation, as well as the levels of insulin signaling molecules and tissue glycogen in the gastrocnemius muscle were assessed. Results: Diabetic rats showed impaired glucose tolerance and impairment in insulin signaling molecules (IR, IRS-1, p-IRS-1Tyr 632 , p- Akt Thr308 , glucose transporter subtype 4 [GLUT4] proteins and glycogen concentration. Serum insulin, lipid profile, LPO and free radical generation were found to be increased in diabetic control rats.The treatment with chrysin normalized the altered levels of blood glucose, serum insulin, lipid profile, LPO and insulin signaling molecules as well as GLUT4 proteins. Conclusion: Our present findings indicate that chrysin improves glycemic control through activation of insulin signal transduction in the gastrocnemius muscle of high fat and sucrose-induced type-2 diabetic male rats.

  7. Tumor Vesicle—Associated CD147 Modulates the Angiogenic Capability of Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Danilo Millimaggi

    2007-04-01

    Full Text Available Matrix metalloproteinase (MMP degradation of extracellular matrix is thought to play an important role in invasion, angiogenesis, tumor growth, and metastasis. Several studies have demonstrated that CD147/ extracellular MMP inducer, a membrane-spanning molecule highly expressed in tumor cells, may be involved in the progression of malignancies by regulating expression of MMP in peritumoral stromal cells. In the present study we show that CD147 is expressed in microvesicles derived from epithelial ovarian cancer cells and that CD147-positive vesicles may promote an angiogenic phenotype in endothelial cells in vitro. Vesicles shed by human ovarian carcinoma cell lines OVCAR3, SKOV3, and A2780 expressed different levels of CD147 and stimulated proangiogenic activities of human umbilical vein endothelial cells (HUVECs in a CD147-dependent fashion (OVCAR3 > SKOV3 > A2780. Moreover, vesicles shed by ovarian carcinoma cell line CABA I with low CD147 expression had no significant effect on the development of angiogenic phenotype in HUVECs. The treatment of OVCAR3 cells with small interfering RNA against CD147 suppressed the angiogenic potential of OVCAR3-derived microvesicles. However, transfection of CD147 cDNA into the CABA I cell line enabled CABA I-derived vesicles to induce angiogenesis and to promote MMP genes expression in HUVECs. We therefore conclude that vesicles shed by ovarian cancer cells may induce proangiogenic activities of HUVECs by a CD147-mediated mechanism.

  8. Maternal vitamin D sufficiency and reduced placental gene expression in angiogenic biomarkers related to comorbidities of pregnancy.

    Science.gov (United States)

    Schulz, Elizabeth V; Cruze, Lori; Wei, Wei; Gehris, John; Wagner, Carol L

    2017-10-01

    Maternal circulating 25-hydroxyvitamin D [25(OH)D] has been shown to optimize production of 1,25-dihydroxyvitamin D [1,25(OH) 2 D] during pregnancy at approximately 100nmoles/L, which has pronounced effects on fetal health outcomes. Additionally, associations are noted between low maternal 25(OH)D concentrations and vascular pregnancy complications, such as preeclampsia. To further elucidate the effects of vitamin D activity in pregnancy, we investigated the role of maternal 25(OH)D, the nutritional indicator of vitamin D status, in relation to placental maintenance and, specifically, expression of placental gene targets related to angiogenesis and vitamin D metabolism. A focused analysis of placental mRNA expression related to angiogenesis, pregnancy maintenance, and vitamin D metabolism was conducted in placentas from 43 subjects enrolled in a randomized controlled trial supplementing 400IU or 4400IU of vitamin D 3 per day during pregnancy. Placental mRNA was isolated from biopsies within one hour of delivery, followed by quantitative PCR. We classified pregnant women with circulating concentrations of D concentrations D ≥100ng/mL compared to the subgroup vitamin D status and the expression of sFlt-1 and VEGF at the mRNA level. Achieving maternal circulating 25(OH)D ≥100nmoles/L suggests the impact of maternal vitamin D 3 supplementation on gene transcription in the placenta, thereby potentially decreasing antiangiogenic factors that may contribute to vascular pregnancy complications. Published by Elsevier Ltd.

  9. Cellular endocytic compartment localization of expressed canine CD1 molecules

    DEFF Research Database (Denmark)

    Schjærff, Mette; Keller, Stefan M.; Affolter, Verena K.

    2016-01-01

    CD1 molecules are glycoproteins present primarily on dendritic cells (DCs), which recognize and presenta variety of foreign- and self-lipid antigens to T-cells. Humans have five different CD1 isoforms that sur-vey distinct cellular compartments allowing for recognition of a large repertoire...... onlya diminished GFP expression. In conclusion, canine CD1 transfectants show distinct localization patternsthat are similar to human CD1 proteins with the exception of the canine CD1d isoform, which most likelyis non-functional. These findings imply that canine CD1 localization overall resembles human...... CD1 traf-ficking patterns. This knowledge is important for the understanding of lipid antigen-receptor immunityin the dog....

  10. Macrophage colony-stimulating factor augments Tie2-expressing monocyte differentiation, angiogenic function, and recruitment in a mouse model of breast cancer.

    Science.gov (United States)

    Forget, Mary A; Voorhees, Jeffrey L; Cole, Sara L; Dakhlallah, Duaa; Patterson, Ivory L; Gross, Amy C; Moldovan, Leni; Mo, Xiaokui; Evans, Randall; Marsh, Clay B; Eubank, Tim D

    2014-01-01

    Reports demonstrate the role of M-CSF (CSF1) in tumor progression in mouse models as well as the prognostic value of macrophage numbers in breast cancer patients. Recently, a subset of CD14+ monocytes expressing the Tie2 receptor, once thought to be predominantly expressed on endothelial cells, has been characterized. We hypothesized that increased levels of CSF1 in breast tumors can regulate differentiation of Tie2- monocytes to a Tie2+ phenotype. We treated CD14+ human monocytes with CSF1 and found a significant increase in CD14+/Tie2+ positivity. To understand if CSF1-induced Tie2 expression on these cells improved their migratory ability, we pre-treated CD14+ monocytes with CSF1 and used Boyden chemotaxis chambers to observe enhanced response to angiopoietin-2 (ANG2), the chemotactic ligand for the Tie2 receptor. We found that CSF1 pre-treatment significantly augmented chemotaxis and that Tie2 receptor upregulation was responsible as siRNA targeting Tie2 receptor abrogated this effect. To understand any augmented angiogenic effect produced by treating these cells with CSF1, we cultured human umbilical vein endothelial cells (HUVECs) with conditioned supernatants from CSF1-pre-treated CD14+ monocytes for a tube formation assay. While supernatants from CSF1-pre-treated TEMs increased HUVEC branching, a neutralizing antibody against the CSF1R abrogated this activity, as did siRNA against the Tie2 receptor. To test our hypothesis in vivo, we treated PyMT tumor-bearing mice with CSF1 and observed an expansion in the TEM population relative to total F4/80+ cells, which resulted in increased angiogenesis. Investigation into the mechanism of Tie2 receptor upregulation on CD14+ monocytes by CSF1 revealed a synergistic contribution from the PI3 kinase and HIF pathways as the PI3 kinase inhibitor LY294002, as well as HIF-1α-deficient macrophages differentiated from the bone marrow of HIF-1αfl/fl/LysMcre mice, diminished CSF1-stimulated Tie2 receptor expression.

  11. Macrophage colony-stimulating factor augments Tie2-expressing monocyte differentiation, angiogenic function, and recruitment in a mouse model of breast cancer.

    Directory of Open Access Journals (Sweden)

    Mary A Forget

    Full Text Available Reports demonstrate the role of M-CSF (CSF1 in tumor progression in mouse models as well as the prognostic value of macrophage numbers in breast cancer patients. Recently, a subset of CD14+ monocytes expressing the Tie2 receptor, once thought to be predominantly expressed on endothelial cells, has been characterized. We hypothesized that increased levels of CSF1 in breast tumors can regulate differentiation of Tie2- monocytes to a Tie2+ phenotype. We treated CD14+ human monocytes with CSF1 and found a significant increase in CD14+/Tie2+ positivity. To understand if CSF1-induced Tie2 expression on these cells improved their migratory ability, we pre-treated CD14+ monocytes with CSF1 and used Boyden chemotaxis chambers to observe enhanced response to angiopoietin-2 (ANG2, the chemotactic ligand for the Tie2 receptor. We found that CSF1 pre-treatment significantly augmented chemotaxis and that Tie2 receptor upregulation was responsible as siRNA targeting Tie2 receptor abrogated this effect. To understand any augmented angiogenic effect produced by treating these cells with CSF1, we cultured human umbilical vein endothelial cells (HUVECs with conditioned supernatants from CSF1-pre-treated CD14+ monocytes for a tube formation assay. While supernatants from CSF1-pre-treated TEMs increased HUVEC branching, a neutralizing antibody against the CSF1R abrogated this activity, as did siRNA against the Tie2 receptor. To test our hypothesis in vivo, we treated PyMT tumor-bearing mice with CSF1 and observed an expansion in the TEM population relative to total F4/80+ cells, which resulted in increased angiogenesis. Investigation into the mechanism of Tie2 receptor upregulation on CD14+ monocytes by CSF1 revealed a synergistic contribution from the PI3 kinase and HIF pathways as the PI3 kinase inhibitor LY294002, as well as HIF-1α-deficient macrophages differentiated from the bone marrow of HIF-1αfl/fl/LysMcre mice, diminished CSF1-stimulated Tie2 receptor

  12. [The diagnostic value of microsatellite LOH analysis and the prognostic relevance of angiogenic gene expression in urinary bladder cancer].

    Science.gov (United States)

    Szarvas, Tibor

    2009-12-01

    Bladder cancer is the second most common malignancy affecting the urinary system. Currently, histology is the only tool that determines therapy and patients' prognosis. As the treatment of non-invasive (Ta/T1) and muscle invasive (T2-T4) bladder tumors are completely different, correct staging is important, although it is often hampered by disturbing factors. Molecular methods offer new prospects for early disease detection, confirmation of unclear histological findings and prognostication. Applying molecular biological methods, the present study is searching for answers to current diagnostic and prognostic problems in bladder carcinoma. We analyzed tumor, blood and/or urine samples of 334 bladder cancer patients and 117 control individuals. Genetic alterations were analyzed in urine samples of patients and controls, both by PCR-based microsatellite loss of heterozigosity (LOH) analysis using 12 fluorescently labeled primers and by DNA hybridization based UroVysion FISH technique using 4 probes, to assess the diagnostic values of these methods. Whole genome microsatellite analysis (with 400 markers) was performed in tumor and blood specimens of bladder cancer patients to find chromosomal regions, the loss of which may be associated with tumor stage. Furthermore, we assessed the prognostic value of Tie2, VEGF, Angiopoietin-1 and -2. We concluded that DNA analysis of voided urine samples by microsatellite analysis and FISH are sensitive and non-invasive methods to detect bladder cancer. Furthermore, we established a panel of microsatellite markers that could differentiate between non-invasive and invasive bladder cancer. However, further analyses in a larger cohort of patients are needed to assess their specificity and sensitivity. Finally, we identified high Ang-2 and low Tie2 gene expression as significant and independent risk factors of tumor recurrence and cancer related survival.

  13. Emblica officinalis extract downregulates pro-angiogenic molecules via upregulation of cellular and exosomal miR-375 in human ovarian cancer cells

    Science.gov (United States)

    De, Alok; Powers, Benjamin; De, Archana; Zhou, Jianping; Sharma, Siddarth; Van Veldhuizen, Peter; Bansal, Ajay; Sharma, Ramratan; Sharma, Mukut

    2016-01-01

    Ovarian cancer (OC) is highly resistant to current treatment strategies based on a combination of surgery, chemotherapy and radiation therapy. We have recently demonstrated the anti-neoplastic effect of Amla extract (Emblica officinalis, AE) on OC cells in vitro and in vivo. We hypothesized that AE attenuates growth of OC through microRNA (miR)-regulated mechanism(s). The inhibitory effect of AE on proliferation, migration and invasiveness (P≤0.001) of SKOV3 cells and >90% attenuation of tumor growth in a xenograft mouse model suggested multiple targets. RT-qPCR analysis of microRNAs associated with OC showed a >2,000-fold increase in the expression of miR-375 in AE-treated SKOV3 cells that was blocked by an exogenous miR-375 inhibitor (P≤0.001). AE also decreased the gene and protein expression of IGF1R, a target of miR-375 (P≤0.001), and SNAIL1 (P≤0.002), an EMT-associated transcription factor that represses E-cadherin expression (P≤0.003). AE increased E-cadherin expression (P≤0.001). Treatment of SKOV3 cells with AE resulted in increased miR-375 in exosomes in the medium (P≤0.01). Finally, AE significantly decreased the expression of IGF1R and SNAIL1 proteins during attenuation of SKOV3-derived xenograft tumor. Together, these results show that AE modulates cancer cells and the tumor microenvironment via activation of miR-375 and by targeting IGF1R and SNAIL1 in OC cells. PMID:27129171

  14. Angiogenic biomarkers in pregnancy

    DEFF Research Database (Denmark)

    Rasmussen, Lene G; Lykke, Jacob A; Staff, Anne C

    2015-01-01

    We review diagnostic and predictive roles of the angiogenic proteins placental growth factor, soluble fms-like tyrosine kinase 1, and soluble endoglin in preeclampsia, and their association with future cardiovascular disease, diabetes, and breast cancer. Specific patterns of these proteins repres...

  15. [Anti-angiogenic drugs].

    Science.gov (United States)

    Sato, Yasufumi

    2010-06-01

    Angiogenesis or neovascularization, the formation of neo-vessels, is a physiological phenomenon endued in vasculature, but is involved in various pathological conditions. Angiogenesis is required for tumor growth and metastasis, and thus constitutes an important target for the control of tumor progression. Indeed, the recent development of bevacizumab, a neutralizing anti-VEGF monoclonal antibody as the first anti-angiogenic drug, legalized the clinical merit of anti-angiogenesis in cancers. Thereafter, various drugs targeting VEGF-mediated signals have been developed to control tumor angiogenesis. Thus, anti-angiogenic drugs are now recognized in the clinic as a major step forward for the treatment of cancers. This review focuses on the current status of antiangiogenesis treatment in cancers.

  16. Expression of adhesion and activation molecules on lymphocytes during open-heart surgery with cardiopulmonary bypass

    DEFF Research Database (Denmark)

    Toft, P; Tønnesen, Else Kirstine; Zülow, I

    1997-01-01

    Open-heart surgery with cardiopulmonary bypass (CPB) and abdominal surgery are associated with lymphocytopenia. We measured a panel of adhesion and activation molecules on lymphocytes to clarify possible association of CPB with increased expression of these molecules. Eight patients undergoing open...... open-heart and abdominal surgery. The proportion of CD11a/CD18-positive lymphocytes rose from 67.6 +/- 8% to 86.4 +/- 3% after aortic declamping (p ... was associated with increased expression of the adhesion molecule CD11a/CD18 on lymphocytes, while the expression of activation molecules on lymphocytes was unchanged....

  17. Synthetic Receptors Induce Anti Angiogenic and Stress Signaling on Human First Trimester Cytotrophoblast Cells

    Directory of Open Access Journals (Sweden)

    Ahmed F. Pantho

    2017-05-01

    Full Text Available The cytotrophoblast (CTB cells of the human placenta have membrane receptors that bind certain cardiotonic steroids (CTS found in blood plasma. One of these, marinobufagenin, is a key factor in the etiology of preeclampsia. Herein, we used synthetic receptors (SR to study their effectiveness on the angiogenic profile of human first trimester CTB cells. The humanextravillous CTB cells (Sw.71 used in this study were derived from first trimester chorionic villus tissue. Culture media of CTB cells treated with ≥1 nM SR level revealed sFlt-1 (Soluble fms-like tyrosine kinase-1 was significantly increased while VEGF (vascular endothelial growth factor was significantly decreased in the culture media (* p < 0.05 for each The AT2 receptor (Angiotensin II receptor type 2 expression was significantly upregulated in ≥1 nM SR-treated CTB cells as compared to basal; however, the AT1 (Angiotensin II receptor, type 1 and VEGFR-1 (vascular endothelial growth factor receptor 1 receptor expression was significantly downregulated (* p < 0.05 for each. Our results show that the anti-proliferative and anti-angiogenic effects of SR on CTB cells are similar to the effects of CTS. The observed anti angiogenic activity of SR on CTB cells demonstrates that the functionalized-urea/thiourea molecules may be useful as potent inhibitors to prevent CTS-induced impairment of CTB cells.

  18. Anti-inflammatory and angiogenic activity of polysaccharide extract obtained from Tibetan kefir.

    Science.gov (United States)

    Prado, Maria Rosa Machado; Boller, Christian; Zibetti, Rosiane Guetter Mello; de Souza, Daiany; Pedroso, Luciana Lopes; Soccol, Carlos Ricardo

    2016-11-01

    The search for new bioactive molecules is a driving force for research pharmaceutical industries, especially those molecules obtained from fermentation. The molecules possessing angiogenic and anti-inflammatory attributes have attracted attention and are the focus of this study. Angiogenic activity from kefir polysaccharide extract, via chorioallantoic membrane assay, exhibited a pro-angiogenic effect compared with vascular endothelial factor (pro-angiogenic) and hydrocortisone (anti-angiogenic) activity as standards with an EC50 of 192ng/mL. In terms of anti-inflammatory activity determined via hyaluronidase enzyme assay, kefir polysaccharide extract inhibited the enzyme with a minimal activity of 2.08mg/mL and a maximum activity of 2.57mg/mL. For pharmaceutical purposes, kefir polysaccharide extract is considered to be safe because it does not inhibit VERO cells in cytotoxicity assays. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Immuno-Expression of Endoglin and Smooth Muscle Actin in the Vessels of Brain Metastases. Is There a Rational for Anti-Angiogenic Therapy?

    Directory of Open Access Journals (Sweden)

    Valeria Barresi

    2014-04-01

    Full Text Available Despite ongoing clinical trials, the efficacy of anti-angiogenic drugs for the treatment of brain metastases (BM is still questionable. The lower response rate to anti-angiogenic therapy in the presence of BM than in metastatic disease involving other sites suggests that BM may be insensitive to these drugs, although the biological reasons underlining this phenomenon are still to be clarified. With the aim of assessing whether the targets of anti-angiogenic therapies are actually present in BM, in the present study, we analyzed the microvessel density (MVD, a measure of neo-angiogenesis, and the vascular phenotype (mature vs. immature in the tumor tissue of a series of BM derived from different primary tumors. By using immunohistochemistry against endoglin, a specific marker for newly formed vessels, we found that neo-angiogenesis widely varies in BM depending on the site of the primary tumor, as well as on its histotype. According to our results, BM from lung cancer displayed the highest MVD counts, while those from renal carcinoma had the lowest. Then, among BM from lung cancer, those from large cell and adenocarcinoma histotypes had significantly higher MVD counts than those originating from squamous cell carcinoma (p = 0.0043; p = 0.0063. Of note, MVD counts were inversely correlated with the maturation index of the endoglin-stained vessels, reflected by the coverage of smooth muscle actin (SMA positive pericytes (r = −0.693; p < 0.0001. Accordingly, all the endoglin-positive vessels in BM from pulmonary squamous cell carcinoma and renal carcinoma, displayed a mature phenotype, while vessels with an immature phenotype were found in highly vascularized BM from pulmonary large cell and adenocarcinoma. The low MVD and mature phenotype observed in BM from some primary tumors may account for their low sensitivity to anti-angiogenic therapies. Although our findings need to be validated in correlative studies with a clinical response, this should

  20. Friends Turned Foes: Angiogenic Growth Factors beyond Angiogenesis.

    Science.gov (United States)

    Matkar, Pratiek N; Ariyagunarajah, Ramya; Leong-Poi, Howard; Singh, Krishna K

    2017-10-02

    Angiogenesis, the formation of new blood vessels from pre-existing ones is a biological process that ensures an adequate blood flow is maintained to provide the cells with a sufficient supply of nutrients and oxygen within the body. Numerous soluble growth factors and inhibitors, cytokines, proteases as well as extracellular matrix proteins and adhesion molecules stringently regulate the multi-factorial process of angiogenesis. The properties and interactions of key angiogenic molecules such as vascular endothelial growth factors (VEGFs), fibroblast growth factors (FGFs) and angiopoietins have been investigated in great detail with respect to their molecular impact on angiogenesis. Since the discovery of angiogenic growth factors, much research has been focused on their biological actions and their potential use as therapeutic targets for angiogenic or anti-angiogenic strategies in a context-dependent manner depending on the pathologies. It is generally accepted that these factors play an indispensable role in angiogenesis. However, it is becoming increasingly evident that this is not their only role and it is likely that the angiogenic factors have important functions in a wider range of biological and pathological processes. The additional roles played by these molecules in numerous pathologies and biological processes beyond angiogenesis are discussed in this review.

  1. Comparison of anti-angiogenic properties of pristine carbon nanoparticles

    DEFF Research Database (Denmark)

    Wierzbicki, Mateusz; Sawosz, Ewa; Grodzik, Marta

    2013-01-01

    nanomaterials on blood vessel development. Diamond nanoparticles, graphite nanoparticles, graphene nanosheets, multi-wall nanotubes and C60 fullerenes were evaluated for their angiogenic activities using the in ovo chick embryo chorioallantoic membrane model. Diamond nanoparticles and multi-wall nanotubes...... showed the greatest anti-angiogenic properties. Interestingly, fullerene exhibited the opposite effect, increasing blood vessel development, while graphite nanoparticles and graphene had no effect. Subsequently, protein levels of pro-angiogenic growth factor receptors were analysed, showing that diamond...... nanoparticles decreased the expression of vascular endothelial growth factor receptor. These results provide new insights into the biological activity of carbon nanomaterials and emphasise the potential use of multi-wall nanotubes and diamond nanoparticles in anti-angiogenic tumour therapy....

  2. Expression of adhesion and activation molecules on lymphocytes during open-heart surgery with cardiopulmonary bypass

    DEFF Research Database (Denmark)

    Toft, P; Tønnesen, Else Kirstine; Zülow, I

    1997-01-01

    Open-heart surgery with cardiopulmonary bypass (CPB) and abdominal surgery are associated with lymphocytopenia. We measured a panel of adhesion and activation molecules on lymphocytes to clarify possible association of CPB with increased expression of these molecules. Eight patients undergoing open...

  3. Small Molecule Microarrays Enable the Identification of a Selective, Quadruplex-Binding Inhibitor of MYC Expression.

    Science.gov (United States)

    Felsenstein, Kenneth M; Saunders, Lindsey B; Simmons, John K; Leon, Elena; Calabrese, David R; Zhang, Shuling; Michalowski, Aleksandra; Gareiss, Peter; Mock, Beverly A; Schneekloth, John S

    2016-01-15

    The transcription factor MYC plays a pivotal role in cancer initiation, progression, and maintenance. However, it has proven difficult to develop small molecule inhibitors of MYC. One attractive route to pharmacological inhibition of MYC has been the prevention of its expression through small molecule-mediated stabilization of the G-quadruplex (G4) present in its promoter. Although molecules that bind globally to quadruplex DNA and influence gene expression are well-known, the identification of new chemical scaffolds that selectively modulate G4-driven genes remains a challenge. Here, we report an approach for the identification of G4-binding small molecules using small molecule microarrays (SMMs). We use the SMM screening platform to identify a novel G4-binding small molecule that inhibits MYC expression in cell models, with minimal impact on the expression of other G4-associated genes. Surface plasmon resonance (SPR) and thermal melt assays demonstrated that this molecule binds reversibly to the MYC G4 with single digit micromolar affinity, and with weaker or no measurable binding to other G4s. Biochemical and cell-based assays demonstrated that the compound effectively silenced MYC transcription and translation via a G4-dependent mechanism of action. The compound induced G1 arrest and was selectively toxic to MYC-driven cancer cell lines containing the G4 in the promoter but had minimal effects in peripheral blood mononucleocytes or a cell line lacking the G4 in its MYC promoter. As a measure of selectivity, gene expression analysis and qPCR experiments demonstrated that MYC and several MYC target genes were downregulated upon treatment with this compound, while the expression of several other G4-driven genes was not affected. In addition to providing a novel chemical scaffold that modulates MYC expression through G4 binding, this work suggests that the SMM screening approach may be broadly useful as an approach for the identification of new G4-binding small

  4. Increased Expression of Intercellular Adhesion Molecule-1, Vascular Cellular Adhesion Molecule-1 and Leukocyte Common Antigen in Diabetic Rat Retina

    Institute of Scientific and Technical Information of China (English)

    Ningyan Bai; Shibo Tang; Jing Ma; Yan Luo; Shaofeng Lin

    2003-01-01

    Purpose: To understand the expression and distribution of intercellular adhesion molecule- 1(ICAM- 1),vascular cellular adhesion molecule- 1 (VCAM- 1)and CD45 (Leukocyte Common Antigen) in the control nondiabetic and various courses of diabetic rats retina. To explore the role of adhesion molecules (Ams) and the adhesion of leukocytes to vascular endothelial cells via Ams in diabetic retinopathy(DR).Methods: Sixty healthy adult male Wistar rats were randomly divided into diabetic groups(induced by Streptozotocin, STZ) and normal control groups. Rats in these two groups were further randomly divided into 3, 7, 14, 30, 90 and 180 days-group,including 5 rats respectively. The immunohistochemical studies of ICAM-1, VCAM-1 and CD45 were carried out in the retinal digest preparations or retinal paraffin sections, and the results were analyzed qualitatively, semi-quantitatively.Results: No positive reaction of VCAM-1 was found, and weak reactions of ICAM-1,CD45 were found in nondiabetic rats retina. The difference of 6 control groups had no statistical significance(P > 0.05). The increased ICAM-1 and CD45 staining pattern were detectable 3 days after diabetes induction, and a few VCAM-1 positive cells were observed in the retinal blood capillaries. The difference of diabetes and control is significant( P < 0.05).Following the course, the expressions of ICAM-1, VCAM-1 and CD45 were increasingly enhanced, reaching a peak at the 14th day.Conclusion: Increased expression of ICAM-1, VCAM-1 and leukocytes adhering and stacking in retinal capillaries are the very early events in DR. Coherence of expression and distribution of the three further accounts for it is the key point for the onset of DR that Ams mediates leukocytes adhesion and endothelial cell injury.

  5. Combinatorial expressions of the solutions to initial value problems of the discrete and ultradiscrete Toda molecules

    International Nuclear Information System (INIS)

    Kamioka, Shuhei; Takagaki, Tomoaki

    2013-01-01

    Combinatorial expressions are presented of the solutions to initial value problems of the discrete and ultradiscrete Toda molecules. For the discrete Toda molecule, a subtraction-free expression of the solution is derived in terms of non-intersecting paths, for which two results in combinatorics, Flajolet’s interpretation of continued fractions and Gessel–Viennot’s lemma on determinants, are applied. By ultradiscretizing the subtraction-free expression, the solution to the ultradiscrete Toda molecule is obtained. It is finally shown that the initial value problem of the ultradiscrete Toda molecule is exactly solved in terms of shortest paths on a specific graph. The behavior of the solution is also investigated in comparison with the box–ball system. (paper)

  6. Growth hormone increases vascular cell adhesion molecule 1 expression

    DEFF Research Database (Denmark)

    Hansen, Troels Krarup; Fisker, Sanne; Dall, Rolf

    2004-01-01

    and 25 adult GH-deficient (GHD) patients randomized to GH treatment or placebo. Furthermore, we studied the direct effect of GH and IGF-I and serum from GH-treated subjects on basal and TNF alpha-stimulated expression of VCAM-1 and E-selectin on cultured human umbilical vein endothelial cells. Baseline...... levels of VCAM-1, but not E-selectin, were significantly lower in GHD patients than in healthy subjects (362 +/- 15 microg/liter vs. 516 +/- 21 microg/liter, P liter (95......% confidence interval: 95.0-208.7 microg/liter); P

  7. Abundant expression of guidance and synaptogenic molecules in the injured spinal cord.

    Directory of Open Access Journals (Sweden)

    Anne Jacobi

    Full Text Available BACKGROUND: Spinal interneurons have emerged as crucial targets of supraspinal input during post-injury axonal remodelling. For example, lesioned corticospinal projections use propriospinal neurons as relay stations to form intraspinal detour circuits that circumvent the lesion site and contribute to functional recovery. While a number of the molecules that determine the formation of neuronal circuits in the developing nervous system have been identified, it is much less understood which of these cues are also expressed in the injured spinal cord and can thus guide growing collaterals and initiate synaptogenesis during circuit remodelling. METHODOLOGY/PRINCIPAL FINDINGS: To address this question we characterized the expression profile of a number of guidance and synaptogenic molecules in the cervical spinal cord of healthy and spinal cord-injured mice by in situ hybridization. To assign the expression of these molecules to distinct populations of interneurons we labeled short and long propriospinal neurons by retrograde tracing and glycinergic neurons using a transgenically expressed fluorescent protein. Interestingly, we found that most of the molecules studied including members of slit-, semaphorin-, synCAM-, neuroligin- and ephrin- families as well as their receptors are also present in the adult CNS. While many of these molecules were abundantly expressed in all interneurons examined, some molecules including slits, semaphorin 7a, synCAM4 and neuroligin 1 showed preferential expression in propriospinal interneurons. Overall the expression pattern of guidance and synaptogenic molecules in the cervical spinal cord appeared to be stable over time and was not substantially altered following a midthoracic spinal cord injury. CONCLUSIONS: Taken together, our study indicates that many of the guidance and synaptogenic cues that regulate neuronal circuit formation in development are also present in the adult CNS and therefore likely contribute to the

  8. INFLUENCE OF SOLUBLE PLACENTAL TISSUE-DERIVED MOLECULES UPON EXPRESSION OF ADHESION MOLECULES BY EA.HY926 ENDOTHELIAL CELLS

    Directory of Open Access Journals (Sweden)

    O. I. Stepanova

    2011-01-01

    Full Text Available Abstract.  Leukocyte  recruitment  to  placental  tissue  is  an  important  factor  of  its  development.  In  this respect, adhesion molecules at the endothelial cell surface represent a key determining factor of leukocyte adhesion and their trans-endothelial migration. The goal of investigation was to evaluate changed expression of adhesion molecules on the endothelial cells induced by supernates of placental tissue cultures. Placental tissue supernatants produced by the first- and third-trimester placental tissue from normal pregnancy, as well as from women with gestosis, induced higher expression of CD31, CD9, CD62E, CD62P, CD34, CD54, CD51/61, CD49d  and  integrin  β7  expression  by  endothelial  cells,  as  compared  with  their  baseline  levels.  However, the  supernates  from  pre-eclamptic  placental  tissue (3rd  trimester  caused  an  increased  CD9  expression by  endothelial  cells,  as  compared  with  effects  of placental  supernates  from  eclampsia-free  cases.  Our data  contribute  to  understanding  a  possible  role  of endothelial cell adhesion molecules in recruitment of leukocytes to placental tissue and possible participation of adhesion molecules in pathogenesis of pre-eclampsia. The work was supported by a grant from Russian Ministry of Education and Science ГК №02.740.11.0711 and Presidential grant № НШ-3594.2010.7 and МД-150.2011.7. (Med. Immunol., 2011, vol. 13, N 6, pp 589-596

  9. Expression of major histocompatibility complex class II and costimulatory molecules in oral carcinomas in vitro.

    Science.gov (United States)

    Villarroel-Dorrego, Mariana; Speight, Paul M; Barrett, A William

    2005-01-01

    Recognition in the 1980 s that keratinocytes can express class II molecules of the Major Histocompatibility Complex (MHC) first raised the possibility that these cells might have an immunological function, and may even act as antigen presenting cells (APC). For effective T lymphocyte activation, APC require, in addition to MHC II, appropriate costimulatory signals. The aim of this study was to determine the expression of MHC class II and the co-stimulatory molecules CD40, CD80 and CD86 in keratinocytes derived from healthy oral mucosa and oral carcinomas. Using flow cytometry, it was confirmed that oral keratinocytes, switch on, expression of MHC class II molecules after stimulation with IFNgamma in vitro. All keratinocyte lines expressed CD40 constitutively; by contrast, CD80 and CD86 were universally absent. Loss of CD80 and CD86 may be one means whereby tumours escape immunological surveillance.

  10. Forming a complex with MHC class I molecules interferes with mouse CD1d functional expression.

    Directory of Open Access Journals (Sweden)

    Renukaradhya J Gourapura

    Full Text Available CD1d molecules are structurally similar to MHC class I, but present lipid antigens as opposed to peptides. Here, we show that MHC class I molecules physically associate with (and regulate the functional expression of mouse CD1d on the surface of cells. Low pH (3.0 acid stripping of MHC class I molecules resulted in increased surface expression of murine CD1d on antigen presenting cells as well as augmented CD1d-mediated antigen presentation to NKT cells. Consistent with the above results, TAP1-/- mice were found to have a higher percentage of type I NKT cells as compared to wild type mice. Moreover, bone marrow-derived dendritic cells from TAP1-/- mice showed increased antigen presentation by CD1d compared to wild type mice. Together, these results suggest that MHC class I molecules can regulate NKT cell function, in part, by masking CD1d.

  11. Study of miR-155 expression in villus tissue of patients with recurrent spontaneous abortion and its relationship with apoptosis molecules and angiogenesis molecules

    Institute of Scientific and Technical Information of China (English)

    Hong-Ying Du; Man-Zhen Zuo; Qiao-Ling Wang; Xiao-Juan Xie

    2016-01-01

    Objective:To study miR-155 expression in villus tissue of patients with recurrent spontaneous abortion and its relationship with apoptosis molecules and angiogenesis molecules.Methods:40 cases of patients with unexplained recurrent spontaneous abortion were selected as URSA group, 30 cases of normal early pregnant women receiving artificial abortion were selected as control group, and villus tissue was collected to detect expression levels of miR-155, apoptosis molecules (Bcl-2, Bcl-xl, Bax, Bad, Fas and FasL) and angiogenesis molecules (HIF-1α, VEGF and sFlt-1).Results: MiR-155 expression level in villus tissue of URSA group was significantly lower than that of control group and the more the times of abortion, the lower the miR-155 expression level; pro-apoptosis molecules Bax, Bad, Fas and FasL expression levels in villus tissue of URSA group were higher than those of control group and negatively correlated with miR-155 expression level, and anti-apoptosis genes Bcl-2 and Bcl-xl expression levels were lower than those of control group and positively correlated with miR-155 expression level; HIF-1α and VEGF expression levels in villus tissue of URSA group were lower than those of control group and positively correlated with miR-155 expression level, and sFlt-1 expression level was higher than that of control group and negatively correlated with miR-155 expression level.Conclusions:MiR-155 is lowly expressed in villus tissue of patients with recurrent spontaneous abortion, and miR-155 may be involved in the occurrence and development of the disease through regulating the expression of apoptosis molecules and angiogenesis molecules.

  12. Correlation of Slug gene expression with lymph node metastasis and invasion molecule expression in oral squamous cell carcinoma tissue

    Directory of Open Access Journals (Sweden)

    Shan-Ming Lu

    2017-10-01

    Full Text Available Objective: To study the correlation of Slug gene expression with lymph node metastasis and invasion molecule expression in oral squamous cell carcinoma tissue. Methods: Oral squamous cell carcinoma tissue surgical removed in Affiliated Stomatological Hospital of Nanjing Medical University between March 2015 and April 2017 was selected and divided into the oral squamous cell carcinoma tissue with neck lymph node metastasis and the oral squamous cell carcinoma tissues without lymph node metastasis according to the condition of lymph node metastasis. The expression of Slug, epithelial-mesenchymal transition molecules and invasion molecules in the oral squamous cell carcinoma tissue were detected. Results: Slug, N-cadherin, Vimentin, CD147, OPN, GRP78, SDF-1 and CXCR4 protein expression in oral squamous cell carcinoma tissue with neck lymph node metastasis were significantly higher than those in oral squamous cell carcinoma tissue without lymph node metastasis while E-cadherin, P120ctn and ZO-1 protein expression were significantly lower than those in oral squamous cell carcinoma tissue without lymph node metastasis; N-cadherin, Vimentin, CD147, OPN, GRP78, SDF-1 and CXCR4 protein expression in oral squamous cell carcinoma tissue with high Slug expression were significantly higher than those in oral squamous cell carcinoma tissue with low Slug expression while E-cadherin, P120ctn and ZO-1 protein expression were significantly lower than those in oral squamous cell carcinoma tissue with low Slug expression. Conclusion: The highly expressed Slug in oral squamous cell carcinoma tissue can promote the epithelial-mesenchymal transition and invasion of the cells to participate in the lymph node metastasis of tumor cells.

  13. Expression and Function of the Homeostatic Molecule Del-1 in Endothelial Cells and the Periodontal Tissue

    Directory of Open Access Journals (Sweden)

    Jieun Shin

    2013-01-01

    Full Text Available Developmental endothelial locus-1 (Del-1 is an endothelial cell-secreted protein that limits the recruitment of neutrophils by antagonizing the interaction between the LFA-1 integrin on neutrophils and the intercellular adhesion molecule (ICAM-1 on endothelial cells. Mice with genetic or age-associated Del-1 deficiency exhibit increased neutrophil infiltration in the periodontium resulting in inflammatory bone loss. Here we investigated additional novel mechanisms whereby Del-1 could interfere with neutrophil recruitment and inflammation. Treatment of human endothelial cells with Del-1 did not affect the expression of endothelial molecules involved in the leukocyte adhesion cascade (ICAM-1, VCAM-1, and E-selectin. Moreover, genetic or age-associated Del-1 deficiency did not significantly alter the expression of these adhesion molecules in the murine periodontium, further ruling out altered adhesion molecule expression as a mechanism whereby Del-1 regulates leukocyte recruitment. Strikingly, Del-1 inhibited ICAM-1-dependent chemokine release (CXCL2, CCL3 by neutrophils. Therefore, Del-1 could potentially suppress the amplification of inflammatory cell recruitment mediated through chemokine release by infiltrating neutrophils. Interestingly, Del-1 was itself regulated by inflammatory stimuli, which generally exerted opposite effects on adhesion molecule expression. The reciprocal regulation between Del-1 and inflammation may contribute to optimally balance the protective and the potentially harmful effects of inflammatory cell recruitment.

  14. Low dose radiation induced protein and its effect on expression of CD25 molecule in lymphocytes

    International Nuclear Information System (INIS)

    Lu Duicai; Su Liaoyuan

    2001-01-01

    Objective: To find the substantial basis for effects of low dose radiation, on development, extraction, and the biogical activity of the low-dose radiation-induced proteins, and the effects of LDR induced proteins on CD25 molecule expression of human lymphocytes. Methods: 1. Healthy Kumning male mice exposed to radiation of 226 Ra γ-rays at 5, 10 and 15 cGy respectively. The mice were killed 2 hours after exposure, the spleen cells were broken with ultrasonic energy and then ultra-centrifugalized at low temperature (4 degree C). The LDR-induced proteins were obtained in the supernatant solution. Then the changes of CD25 molecule was measured by flow cytometry (FCM) with immunofluorescence technique, which was used to reflect the effect of LDR induced proteins on CD25 molecule expression of human lymphocytes. Results: LDR induced proteins were obtained from spleen cells in mice exposed to 5-15 cGy whole body radiation. Conclusion: The expression of CD25 molecule of lymphocytes was increased significantly after use of LDR induced proteins. LDR induced proteins can enhance expression of CD25 molecule of lymphocytes slightly

  15. Acupuncture Alters Expression of Insulin Signaling Related Molecules and Improves Insulin Resistance in OLETF Rats

    Directory of Open Access Journals (Sweden)

    Xin-Yu Huang

    2016-01-01

    Full Text Available To determine effect of acupuncture on insulin resistance in Otsuka Long-Evans Tokushima Fatty (OLETF rats and to evaluate expression of insulin signaling components. Rats were divided into three groups: Sprague-Dawley (SD rats, OLETF rats, and acupuncture+OLETF rats. Acupuncture was subcutaneously applied to Neiguan (PC6, Zusanli (ST36, and Sanyinjiao (SP6; in contrast, acupuncture to Shenshu (BL23 was administered perpendicularly. For Neiguan (PC6 and Zusanli (ST36, needles were connected to an electroacupuncture (EA apparatus. Fasting blood glucose (FPG was measured by glucose oxidase method. Plasma fasting insulin (FINS and serum C peptide (C-P were determined by ELISA. Protein and mRNA expressions of insulin signaling molecules were determined by Western blot and real-time RT-PCR, respectively. OLETF rats exhibit increased levels of FPG, FINS, C-P, and homeostasis model assessment-estimated insulin resistance (HOMA-IR, which were effectively decreased by acupuncture treatment. mRNA expressions of several insulin signaling related molecules IRS1, IRS2, Akt2, aPKCζ, and GLUT4 were decreased in OLETF rats compared to SD controls. Expression of these molecules was restored back to normal levels upon acupuncture administration. PI3K-p85α was increased in OLETF rats; this increase was also reversed by acupuncture treatment. Acupuncture improves insulin resistance in OLETF rats, possibly via regulating expression of key insulin signaling related molecules.

  16. Anti-angiogenic treatment of gastrointestinal malignancies.

    Science.gov (United States)

    Salmon, J Stuart; Lockhart, A Craig; Berlin, Jordan

    2005-01-01

    The scientific rationale to block angiogenesis as a treatment strategy for human cancer has been developed over the last 30 years, but is only now entering the clinical arena. Preclinical studies have demonstrated the importance of the vascular endothelial growth factor (VEGF) pathways in both physiologic and pathologic angiogenesis, and have led to the development of approaches to block its role in tumor angiogenesis. Bevacizumab is an antibody to VEGF and has been shown to prolong survival when given with chemotherapy in the treatment of metastatic colorectal cancer (CRC). Although this is the first anti-angiogenic treatment to be approved for the treatment of human epithelial malignancy, a number of other approaches currently are in development. Soluble chimeric receptors to sequester serum VEGF and monoclonal antibodies against VEGF receptors have both shown considerable promise in the laboratory and are being brought into clinical investigation. A number of small-molecule tyrosine kinase inhibitors that have activity against VEGF receptors also are in clinical trials. Although these novel treatments are being pioneered in CRC, anti-angiogenic approaches also are being tested in the treatment of other gastrointestinal malignancies. Anti-VEGF therapy has shown promise in such traditionally resistant tumors as pancreatic cancer and hepatocellular carcinoma. This review will examine the preclinical foundation and then focus on the clinical studies of anti-VEGF therapy in gastrointestinal cancers.

  17. Markedly diminished epidermal keratinocyte expression of intercellular adhesion molecule-1 (ICAM-1) in Sezary syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Nickoloff, B.J.; Griffiths, E.M.; Baadsgaard, O.; Voorhees, J.J.; Hanson, C.A.; Cooper, K.D. (Univ. of Michigan Medical Center, Ann Arbor (USA))

    1989-04-21

    In mucosis fungoides the malignant T cells express lymphocyte function-associated antigen-1, which allows them to bind to epidermal keratinocytes expressing the gamma interferon-inducible intercellular adhesion molecule-1. In this report, a patient with leukemic-stage mucosis fungoides (Sezary syndrome) had widespread erythematous dermal infiltrates containing malignant T cells, but without any epidermotropism. The authors discovered that the T cells expressed normal amounts of functional lymphocyte function-associated antigen-1, but the keratinocytes did not express significant levels of intercellular adhesion molecule-1, which was probably due to the inability of the malignant T cells to produce gamma interferon. These results support the concept that the inability of malignant T cells to enter the epidermis may contribute to emergence of more clinically aggressive T-cell clones that are no longer confined to the skin, but infiltrate the blood, lymph nodes, and viscera, as is seen in Sezary syndrome.

  18. Cell Adhesion Molecule and Lymphocyte Activation Marker Expression during Experimental Vaginal Candidiasis

    Science.gov (United States)

    Wormley, Floyd L.; Chaiban, Joseph; Fidel, Paul L.

    2001-01-01

    Cell-mediated immunity by Th1-type CD4+ T cells is the predominant host defense mechanism against mucosal candidiasis. However, studies using an estrogen-dependent murine model of vaginal candidiasis have demonstrated little to no change in resident vaginal T cells during infection and no systemic T-cell infiltration despite the presence of Candida-specific systemic Th1-type responses in infected mice. The present study was designed to further investigate these observations by characterizing T-cell activation and cell adhesion molecule expression during primary and secondary C. albicans vaginal infections. While flow cytometry analysis of activation markers showed some evidence for activation of CD3+ draining lymph node and/or vaginal lymphocytes during both primary and secondary vaginal Candida infection, CD3+ cells expressing the homing receptors and integrins α4β7, αM290β7, and α4β1 in draining lymph nodes of mice with primary and secondary infections were reduced compared to results for uninfected mice. At the local level, few vaginal lymphocytes expressed integrins, with only minor changes observed during both primary and secondary infections. On the other hand, immunohistochemical analysis of vaginal cell adhesion molecule expression showed increases in mucosal addressin cell adhesion molecule 1 and vascular cell adhesion molecule 1 expression during both primary and secondary infections. Altogether, these data suggest that although the vaginal tissue is permissive to cellular infiltration during a vaginal Candida infection, the reduced numbers of systemic cells expressing the reciprocal cellular adhesion molecules may preempt cellular infiltration, thereby limiting Candida-specific T-cell responses against infection. PMID:11447188

  19. Along the Central Dogma-Controlling Gene Expression with Small Molecules.

    Science.gov (United States)

    Schneider-Poetsch, Tilman; Yoshida, Minoru

    2018-05-04

    The central dogma of molecular biology, that DNA is transcribed into RNA and RNA translated into protein, was coined in the early days of modern biology. Back in the 1950s and 1960s, bacterial genetics first opened the way toward understanding life as the genetically encoded interaction of macromolecules. As molecular biology progressed and our knowledge of gene control deepened, it became increasingly clear that expression relied on many more levels of regulation. In the process of dissecting mechanisms of gene expression, specific small-molecule inhibitors played an important role and became valuable tools of investigation. Small molecules offer significant advantages over genetic tools, as they allow inhibiting a process at any desired time point, whereas mutating or altering the gene of an important regulator would likely result in a dead organism. With the advent of modern sequencing technology, it has become possible to monitor global cellular effects of small-molecule treatment and thereby overcome the limitations of classical biochemistry, which usually looks at a biological system in isolation. This review focuses on several molecules, especially natural products, that have played an important role in dissecting gene expression and have opened up new fields of investigation as well as clinical venues for disease treatment. Expected final online publication date for the Annual Review of Biochemistry Volume 87 is June 20, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  20. Prolonged hypoxic culture and trypsinization increase the pro-angiogenic potential of human adipose tissue-derived stem cells

    DEFF Research Database (Denmark)

    Rasmussen, Jeppe Grøndahl; Frøbert, Ole; Pilgaard, Linda

    2011-01-01

    Transplantation of mesenchymal stromal cells (MSC), including adipose tissue-derived stem cells (ASC), is a promising option in the treatment of vascular disease. Short-term hypoxic culture of MSC augments secretion of anti-apoptotic and angiogenic cytokines. We hypothesized that prolonged hypoxic...... (1% and 5% oxygen) culture and trypsinization would augment ASC expression of anti-apoptotic and angiogenic cytokines and increase the angiogenic potential of ASC-conditioned media....

  1. Expression of adhesion and activation molecules on lymphocytes during open-heart surgery with cardiopulmonary bypass

    DEFF Research Database (Denmark)

    Toft, P; Tønnesen, Else Kirstine; Zülow, I

    1997-01-01

    Open-heart surgery with cardiopulmonary bypass (CPB) and abdominal surgery are associated with lymphocytopenia. We measured a panel of adhesion and activation molecules on lymphocytes to clarify possible association of CPB with increased expression of these molecules. Eight patients undergoing open-heart...... open-heart and abdominal surgery. The proportion of CD11a/CD18-positive lymphocytes rose from 67.6 +/- 8% to 86.4 +/- 3% after aortic declamping (p open-heart as well as abdominal operations. Thus CPB...

  2. Angiogenic and angiostatic factors in the molecular control of angiogenesis.

    Science.gov (United States)

    Distler, J H W; Hirth, A; Kurowska-Stolarska, M; Gay, R E; Gay, S; Distler, O

    2003-09-01

    The vascular system that ensures an adequate blood flow is required to provide the cells with sufficient supply of nutrients and oxygen. Two different mechanisms of the formation of new vessels can be distinguished: vasculogenesis, the formation of the first primitive vascular plexus de novo and angiogenesis, the formation of new vessels from preexisting ones. Both processes are regulated by a delicate balance of pro- and anti-angiogenic factors. Physiologically, angiostatic mediators outweigh the angiogenic molecules and angiogenesis does not occur. Under certain conditions such as tumor formation or wound healing, the positive regulators of angiogenesis predominate and the endothelium becomes activated. Angiogenesis is initiated by vasodilatation and an increased permeability. After destabilization of the vessel wall, endothelial cells proliferate, migrate and form a tube, which is finally stabilized by pericytes and smooth muscle cells. Numerous soluble growth factors and inhibitors, cytokines and proteases as well as extracellular matrix proteins and adhesion molecules strictly control this multi-step process. The properties and interactions of angiogenic molecules such as VEGFs, FGFs, angiopoietins, PDGF, angiogenin, angiotropin, HGF, CXC chemokines with ELR motif, PECAM-1, integrins and VE-cadherin as well as angiostatic key players such as angiostatin, endostatin, thrombospondin, CXC chemokines without ELR motif, PEDF are discussed in this review with respect to their molecular impact on angiogenesis.

  3. Hypertonic saline impedes tumor cell-endothelial cell interaction by reducing adhesion molecule and laminin expression.

    LENUS (Irish Health Repository)

    Shields, Conor J

    2012-02-03

    BACKGROUND: Hypertonic saline infusion dampens inflammatory responses and suppresses neutrophil-endothelial interaction by reducing adhesion molecule expression. This study tested the hypothesis that hypertonic saline attenuates tumor cell adhesion to the endothelium through a similar mechanism. METHODS: Human colon cancer cells (LS174T) were transfected with green fluorescent protein and exposed to lipopolysaccharide, tumor necrosis factor-alpha, and interleukin-6 under hypertonic and isotonic conditions for 1 and 4 hours. Confluent human umbilical vein endothelial cells were similarly exposed. Cellular apoptosis and expression of adhesion molecules and laminin were measured by flow cytometry. Tumor cell adhesion to endothelium and laminin was assessed with fluorescence microscopy. Data are represented as mean +\\/- standard error of mean, and an ANOVA test was performed to gauge statistical significance, with P <.05 considered significant. RESULTS: Hypertonic exposure significantly reduced tumor cell adhesion despite the presence of the perioperative cell stressors (42 +\\/- 2.9 vs 172.5 +\\/- 12.4, P <.05), attenuated tumor cell beta-1 integrin (14.43 vs 23.84, P <.05), and endothelial cell laminin expression (22.78 +\\/- 2.2 vs 33.74 +\\/- 2.4, P <.05), but did not significantly alter cell viability. CONCLUSION: Hypertonic saline significantly attenuates tumor cell adhesion to endothelium by inhibiting adhesion molecule and laminin expression. This may halt the metastatic behavior of tumor cells shed at surgery.

  4. Insulin-Like Growth Factor-1 Inscribes a Gene Expression Profile for Angiogenic Factors and Cancer Progression in Breast Epithelial Cells

    Directory of Open Access Journals (Sweden)

    J.S. Oh

    2002-01-01

    Full Text Available Activation of the insulin-like growth factor-1 receptor (IGF-11R by IGF-1 is associated with the risk and progression of many types of cancer, although despite this it remains unclear how activated IGF-1 R contributes to cancer progression. In this study, gene expression changes elicited by IGF-1 were profiled in breast epithelial cells. We noted that many genes are functionally linked to cancer progression and angiogenesis. To validate some of the changes observed, the RNA and/or protein was confirmed for c-fos, cytochrome P4501Al, cytochrome P450 1131, interleukin-1 beta, fas ligand, vascular endothelial growth factor, and urokinase plasminogen activator. Nuclear proteins were also temporally monitored to address how gene expression changes were regulated. We found that IGF-1 stimulated the nuclear translocation of phosphorylated AKT, hypoxic-inducible factor-1 alpha, and phosphorylated cAMP-responsive element-binding protein, which correlated with temporal changes in gene expression. Next, the promoter regions of IGF-1-regulated genes were searched in silico. The promoters of genes that clustered together had similar regulatory regions. In summary, IGF-1 inscribes a gene expression profile relevant to cancer progression, and this study provides insight into the mechanism(s whereby some of these changes occur.

  5. Altered expression of adhesion molecules on peripheral blood leukocytes in feline infectious peritonitis.

    Science.gov (United States)

    Olyslaegers, Dominique A J; Dedeurwaerder, Annelike; Desmarets, Lowiese M B; Vermeulen, Ben L; Dewerchin, Hannah L; Nauwynck, Hans J

    2013-10-25

    Feline infectious peritonitis (FIP) is a fatal, coronavirus-induced systemic disease in domestic and wild felids. The pathology associated with FIP (multifocal granulomatous vasculitis) is considered to be elicited by exaggerated activation and subsequent extravasation of leukocytes. As changes in the expression of adhesion molecules on circulating leukocytes precede their margination and emigration, we reasoned that the expression of leukocyte adhesion molecules may be altered in FIP. In present study, the expression of principal adhesion molecules involved in leukocyte transmigration (CD15s, CD11a, CD11b, CD18, CD49d, and CD54) on peripheral blood leukocytes from cats with naturally occurring FIP (n=15) and controls (n=12) was quantified by flow cytometry using a formaldehyde-based rapid leukocyte preparation technique. T- and B-lymphocytes from FIP patients exhibit higher expression of both subunits (CD11a and CD18) composing the β2 integrin lymphocyte function-associated antigen (LFA)-1. In addition, the expression of the α4 subunit (CD49d) of the β1 integrin very late antigen (VLA)-4 was elevated on B-lymphocytes from FIP patients. The expression of CD11b and CD18, that combine to form the β2 integrin macrophage-1 antigen (Mac-1), was elevated on monocytes, whereas the density of CD49d was reduced on this population in FIP. Granulocytes of FIP cats displayed an increased expression of the α chain of Mac-1 (CD11b). These observations suggest that leukocytes from FIP patients show signs of systemic activation causing them to extravasate into surrounding tissues and ultimately contribute to pyogranuloma formation seen in FIP. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Effect of intercellular adhesion molecule 1 expression in radiation otitis media murine model

    International Nuclear Information System (INIS)

    Wang Shengzi; Cheng Qingfang; Lu Shenbin; Liu Jianping; Wang Shuyi

    2003-01-01

    Objective: To characterize the dose- and time-dependent changes in intercellular adhesion molecule 1 (ICAM-1) expression and the role of this molecule as a mediator of middle ear inflammation induced by radiation. Methods: Radiation-induced otitis media animal models were established by using guinea pigs after 60 Co irradiation with 3 Gy/fraction per day, 5 times per week to a total dose of 15, 30, 45 Gy. The expression of ICAM-1 was studied by SP immunohistochemistry with the relation between radiation dose and infiltration of leukocytes investigated. Results: ICAM-1 was not expressed in the normal epithelium of the middle ear mucosa. Mucosal epithelium strongly expressed ICAM-1 after having been administered with 45 Gy of irradiation showing a significant correlation between the expression of ICAM-1 and the infiltration of leukocytes. Conclusions: Irradiation increases the expression of ICAM-1 in the middle ear mucosa. ICAM-1 may be related to the inflammation in the middle ear after irradiation

  7. Inhibition of STAT3 phosphorylation by sulforaphane reduces adhesion molecule expression in vascular endothelial cell.

    Science.gov (United States)

    Cho, Young S; Kim, Chan H; Ha, Tae S; Ahn, Hee Y

    2015-11-18

    Intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) play key roles in the initiation of vascular inflammation. In this study, we explored whether sulforaphane, a dietary phytochemical, can inhibit the expression of ICAM-1 and VCAM-1 in human umbilical vein endothelial cells (HUVEC) stimulated with lipopolysaccharide (LPS), and the mechanisms involved. Sulforaphane prevented the LPS-mediated increase in ICAM-1 and VCAM-1 expression, (P < 0.01) in HUVEC. Sulforaphane also prevented the LPS-mediated increase in the phosphorylation of signal transducer and activator of transcription 3 (STAT3) (P < 0.01). Stattic, a STAT3 inhibitor, reduced the LPS-induced expression of ICAM-1 and VCAM-1, and STAT3 phosphorylation (P < 0.01). STAT3 small interfering RNA treatment reduced the LPS-induced expression of ICAM-1, VCAM-1, and STAT3 (P < 0.01). Sulforaphane reduced LPS-mediated THP-1 monocyte adhesion to HUVEC (P < 0.01). In C57BL/6 mice, injection of LPS increased aortic ICAM-1 and VCAM-1 expression, and this effect was prevented by sulforaphane. These data provide insight into the mechanism through which sulforaphane partly reduces the expression of ICAM-1 and VCAM-1 on the vascular wall by inhibiting STAT3 phosphorylation.

  8. Highly sensitivity adhesion molecules detection in hereditary haemochromatosis patients reveals altered expression.

    LENUS (Irish Health Repository)

    Norris, S

    2012-02-01

    Several abnormalities in the immune status of patients with hereditary haemochromatosis (HH) have been reported, suggesting an imbalance in their immune function. This may include persistent production of, or exposure to, altered immune signalling contributing to the pathogenesis of this disorder. Adhesion molecules L-, E- and P-Selectin, intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) are some of the major regulators of the immune processes and altered levels of these proteins have been found in pathological states including cardiovascular diseases, arthritis and liver cancer. The aim of this study was to assess L-, E- and P-Selectin, ICAM-1 and VCAM-1 expression in patients with HH and correlate these results with HFE mutation status and iron indexes. A total of 139 subjects were diagnosed with HH (C282Y homozygotes = 87, C282Y\\/H63D = 26 heterozygotes, H63D homozygotes = 26), 27 healthy control subjects with no HFE mutation (N\\/N), 18 normal subjects heterozygous for the H63D mutation served as age-sex-matched controls. We observed a significant decrease in L-selectin (P = 0.0002) and increased E-selectin and ICAM-1 (P = 0.0006 and P = 0.0059) expression in HH patients compared with healthy controls. This study observes for the first time that an altered adhesion molecules profile occurs in patients with HH that is associated with specific HFE genetic component for iron overload, suggesting that differential expression of adhesion molecules may play a role in the pathogenesis of HH.

  9. Cell surface and gene expression regulation molecules in dystrophinopathy: mdx vs. Duchenne

    Directory of Open Access Journals (Sweden)

    RICARDO FADIC

    2005-01-01

    Full Text Available Duchenne muscular dystrophy (DMD is secondary to loss-of-function mutations in the dystrophin gene. The causes underlying the progression of DMD, differential muscle involvement, and the discrepancies in phenotypes among species with the same genetic defect are not understood. The mdx mouse, an animal model with dystrophin mutation, has a milder phenotype. This article reviews the available information on expression of signaling-related molecules in DMD and mdx. Extracellular matrix proteoglycans, growth factors, integrins, caveolin-3, and neuronal nitric oxide synthase expression do not show significant differences. Calcineurin is inconsistently activated in mdx, which is associated with lack of cardiomyopathy, compared to the permanent calcineurin activation in mdx/utrophin null mice that have a DMD-like cardiomyopathy. Levels of focal adhesion kinase (FAK and extracellular regulated kinases (ERKs differ among mdx and DMD. Further work is needed to identify the point of discrepancy in these signaling molecules' pathways in dystrophynopathies.

  10. Differential expression of the neural cell adhesion molecule NCAM 140 in human pituitary tumors

    OpenAIRE

    Aletsee-Ufrecht, M. C.; Langley, O. K.; Gratzl, O.; Gratzl, Manfred

    1990-01-01

    We have analyzed the expression of the intracellular marker protein neuron specific enolase (NSE), synaptophysin (SYN) and of the cell surface marker NCAM (neural cell adhesion molecule) in both normal human hypophysis and in pituitary adenomas in order to explore their potential use as diagnostic tools. All adenomas (4 prolactinomas, 3 growth hormone (GH) producing adenomas and 4 inactive adenomas) showed SYN and NSE immunoreactivity on tissue sections and this was confirmed by immunoblots. ...

  11. Regulation of endothelial cell adhesion molecule expression by mast cells, macrophages, and neutrophils.

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    2011-01-01

    Full Text Available Leukocyte adhesion to the vascular endothelium and subsequent transendothelial migration play essential roles in the pathogenesis of cardiovascular diseases such as atherosclerosis. The leukocyte adhesion is mediated by localized activation of the endothelium through the action of inflammatory cytokines. The exact proinflammatory factors, however, that activate the endothelium and their cellular sources remain incompletely defined.Using bone marrow-derived mast cells from wild-type, Tnf(-/-, Ifng(-/-, Il6(-/- mice, we demonstrated that all three of these pro-inflammatory cytokines from mast cells induced the expression of vascular cell adhesion molecule-1 (VCAM-1, intercellular adhesion molecule-1 (ICAM-1, P-selectin, and E-selectin in murine heart endothelial cells (MHEC at both mRNA and protein levels. Compared with TNF-α and IL6, IFN-γ appeared weaker in the induction of the mRNA levels, but at protein levels, both IL6 and IFN-γ were weaker inducers than TNF-α. Under physiological shear flow conditions, mast cell-derived TNF-α and IL6 were more potent than IFN-γ in activating MHEC and in promoting neutrophil adhesion. Similar observations were made when neutrophils or macrophages were used. Neutrophils and macrophages produced the same sets of pro-inflammatory cytokines as did mast cells to induce MHEC adhesion molecule expression, with the exception that macrophage-derived IFN-γ showed negligible effect in inducing VCAM-1 expression in MHEC.Mast cells, neutrophils, and macrophages release pro-inflammatory cytokines such as TNF-α, IFN-γ, and IL6 that induce expression of adhesion molecules in endothelium and recruit of leukocytes, which is essential to the pathogenesis of vascular inflammatory diseases.

  12. Targeting Metabolic Symbiosis to Overcome Resistance to Anti-angiogenic Therapy

    Directory of Open Access Journals (Sweden)

    Laura Pisarsky

    2016-05-01

    Full Text Available Despite the approval of several anti-angiogenic therapies, clinical results remain unsatisfactory, and transient benefits are followed by rapid tumor recurrence. Here, we demonstrate potent anti-angiogenic efficacy of the multi-kinase inhibitors nintedanib and sunitinib in a mouse model of breast cancer. However, after an initial regression, tumors resume growth in the absence of active tumor angiogenesis. Gene expression profiling of tumor cells reveals metabolic reprogramming toward anaerobic glycolysis. Indeed, combinatorial treatment with a glycolysis inhibitor (3PO efficiently inhibits tumor growth. Moreover, tumors establish metabolic symbiosis, illustrated by the differential expression of MCT1 and MCT4, monocarboxylate transporters active in lactate exchange in glycolytic tumors. Accordingly, genetic ablation of MCT4 expression overcomes adaptive resistance against anti-angiogenic therapy. Hence, targeting metabolic symbiosis may be an attractive avenue to avoid resistance development to anti-angiogenic therapy in patients.

  13. Transglutaminase 2 expression in acute myeloid leukemia: Association with adhesion molecule expression and leukemic blast motility

    Science.gov (United States)

    Meyer, Stefan; Ravandi-Kashani, Farhad; Borthakur, Gautam; Coombes, Kevin R.; Zhang, Nianxiang; Kornblau, Steven

    2016-01-01

    Acute myeloid leukemia (AML) is a heterogenous disease with differential oncogene association, outcome and treatment regimens. Treatment strategies for AML have improved outcome but despite increased molecular biological information AML is still associated with poor prognosis. Proteomic analysis on the effects of a range of leukemogenic oncogenes showed that the protein transglutaminase 2 (TG2) is expressed at greater levels as a consequence of oncogenic transformation. Further analysis of this observation was performed with 511 AML samples using reverse phase proteomic arrays, demonstrating that TG2 expression was higher at relapse than diagnosis in many cases. In addition elevated TG2 expression correlated with increased expression of numerous adhesion proteins and many apoptosis regulating proteins, two processes related to leukemogenesis. TG2 has previously been linked to drug resistance in cancer and given the negative correlation between TG2 levels and peripheral blasts observed increased TG2 levels may lead to the protection of the leukemic stem cell due to increased adhesion/reduced motility. TG2 may therefore form part of a network of proteins that define poor outcome in AML patients and potentially offer a target to sensitize AML stem cells to drug treatment. PMID:23576428

  14. GRANULOCYTE INFILTRATION AND EXPRESSION OF THE PRO-ANGIOGENIC BV8 PROTEIN IN EXPERIMENTAL EL4 AND LEWIS LUNG CARCINOMA TUMORS.

    Science.gov (United States)

    Jiang, Kan; Kwak, Hyeongil; Tosato, Giovanna

    2013-01-18

    Although Vascular Endothelial Growth Factor (VEGF)-targeted therapies have shown efficacy in the treatment of certain advanced cancers, benefits to patients have been modest, which is attributed to tumor resistance to VEGF neutralization. Recent efforts to identify new targets to inhibit tumor angiogenesis have identified Bv8 (prokineticin 2), a myeloid cell-derived protein that promotes endothelial cell growth and tumor angiogenesis, but many mechanistic aspects of the pro-tumorigenic function of Bv8 are unclear. Here we demonstrate that CD11b+, Ly6C+, Ly6G+ granulocytes are the predominant cell source of Bv8 expression in bone marrow, spleen and in tumor tissues. Using granulocyte-deficient Growth factor independence-1 (Gfi1)-null mutant mice and normal littermates, we found that EL4 lymphoma tumors grow significantly larger in the granulocyte and Bv8-deficient mutant mice in comparison to the normal mice that display abundant tumor-associated granulocytes and Bv8 expression. Conversely, Lewis lung carcinoma (LLC-1) tumors grew to a significantly greater size in the normal mice in comparison to the Gfi1-null mice, but normal granulocyte tumor infiltration was modest. Quantitative analysis of tissue vascularization showed that EL4 and LLC-1 tumors from normal and Gfi1-mutant mice are similarly vascularized. These results confirm the critical contribution of the tumor microenvironment in determining the rate of tumor progression independently of tumor angiogenesis, and reveal some of the complexities of granulocyte and Bv8 functions in modulating tumor growth.

  15. Lipofection indirectly increases expression of endogenous major histocompatibility complex class I molecules on tumor cells.

    Science.gov (United States)

    Fox, B A; Drury, M; Hu, H M; Cao, Z; Huntzicker, E G; Qie, W; Urba, W J

    1998-01-01

    Direct intratumoral injection of a lipid/DNA complex encoding an allogeneic major histocompatibility complex (MHC) class I molecule leads to regression of both an immunogenic murine tumor and also melanoma lesions in some patients. We have sought to understand the mechanism(s) for this augmentation of antitumor activity. While optimizing parameters for in vitro gene transfer into the D5 subclone of B16BL6, it was noted that lipofected tumors not only expressed the new alloantigen but also exhibited increased expression of endogenous MHC class I, both H-2 Kb and H-2 Db. This increase in expression was not restricted to the small percentage of cells that expressed the transfected gene, but appeared to affect the majority of cells in culture. Class I expression was not increased by lipopolysaccharide, DNA alone, lipid, or lipid/lipopolysaccharide mixtures. Enhanced class I expression required a DNA/lipid complex and was greatest when parameters optimized for gene transfer of the alloantigen were used. All DNA plasmids tested had this effect, including one plasmid whose DNA was not transcribed because it lacked an expression cassette. Because of the critical role that MHC class I antigens play in immune recognition, we propose that lipid complex-mediated gene transfer may provide immunological advantages beyond those that are attributable to expression of the specific gene transferred.

  16. Dynamic pattern of endothelial cell adhesion molecule expression in muscle and perineural vessels from patients with classic polyarteritis nodosa.

    Science.gov (United States)

    Coll-Vinent, B; Cebrián, M; Cid, M C; Font, C; Esparza, J; Juan, M; Yagüe, J; Urbano-Márquez, A; Grau, J M

    1998-03-01

    To investigate endothelial cell adhesion molecule expression in vessels from patients with classic polyarteritis nodosa (PAN). Frozen sections of 21 muscle and 16 nerve samples from 30 patients with biopsy-proven PAN and 12 histologically normal muscle and 2 histologically normal nerve samples from 12 controls were studied immunohistochemically, using specific monoclonal antibodies (MAb) that recognize adhesion molecules. Adhesion molecules identified were intercellular adhesion molecule 1 (ICAM-1), ICAM-2, ICAM-3, vascular cell adhesion molecule 1 (VCAM-1), platelet endothelial cell adhesion molecule 1 (PECAM-1), E-selectin, P-selectin, L-selectin, lymphocyte function-associated antigen 1 (LFA-1), and very late activation antigen 4 (VLA-4). Neutrophils were identified with a MAb recognizing neutrophil elastase. Endothelial cells were identified with the lectin ulex europaeus. In early lesions, expression of PECAM-1, ICAM-1, ICAM-2, and P-selectin was similar to that in control samples, and VCAM-1 and E-selectin were induced in vascular endothelium. In advanced lesions, immunostaining for adhesion molecules diminished or disappeared in luminal endothelium, whereas these molecules were clearly expressed in microvessels within and surrounding inflamed vessels. Staining in endothelia from vessels in a healing stage tended to be negative. A high proportion of infiltrating leukocytes expressed LFA-1 and VLA-4, and only a minority expressed L-selectin. No relationship between the expression pattern of adhesion molecules and clinical features, disease duration, or previous corticosteroid treatment was observed. Endothelial adhesion molecule expression in PAN is a dynamic process that varies according to the histopathologic stage of the vascular lesions. The preferential expression of constitutive and inducible adhesion molecules in microvessels suggests that angiogenesis contributes to the persistence of inflammatory infiltration in PAN.

  17. Experimental variation of the level and the ratio of angiogenic and osteogenic signaling affects the spatiotemporal expression of bone-specific markers and organization of bone formation in ectopic sites.

    Science.gov (United States)

    Moser, Norman; Goldstein, Jan; Kauffmann, Phillip; Epple, Matthias; Schliephake, Henning

    2018-04-01

    The aim of the present study was to test the hypothesis that the ratio of angiogenic and osteogenic signaling affects ectopic bone formation when delivered in different amounts. Porous composite PDLLA/CaCO 3 scaffolds were loaded with rhBMP2 and rhVEGF in different dosage combinations and implanted into the gluteal muscles of 120 adult male Wistar rats. Bone formation and expression of alkaline phosphatase and Runx2 were quantified by histomorphometry. Spatial distribution across the scaffolds was assessed by using a grid that discriminated between the periphery and center of the scaffolds. The evaluation showed that the combined delivery of bone morphogenetic protein BMP2 and VEGF in different dosage combinations did not enhance the overall quantity of ectopic bone formation compared to the delivery of BMP2 alone. The addition of VEGF generally upregulated Runx2 after 4 weeks, which may have retarded terminal osteogenic differentiation. However, slow combined delivery of 1.5-2.0 μg BMP2 combined with 50 ng VEGF165 over a period of 5 weeks supported a more even distribution of bone formation across the implanted scaffolds whereas higher amounts of VEGF did not elicit this effect. The findings suggest that structural organization rather than the quantity of ectopic bone formation is affected by the dosage and the ratio of BMP2 and VEGF levels at the observed intervals. The development of carriers for dual growth factor delivery has to take into account the necessity to carefully balance the ratio of growth release.

  18. CD1 molecule expression on human monocytes induced by granulocyte-macrophage colony-stimulating factor.

    Science.gov (United States)

    Kasinrerk, W; Baumruker, T; Majdic, O; Knapp, W; Stockinger, H

    1993-01-15

    In this paper we demonstrate that granulocyte-macrophage CSF (GM-CSF) specifically induces the expression of CD1 molecules, CD1a, CD1b and CD1c, upon human monocytes. CD1 molecules appeared upon monocytes on day 1 of stimulation with rGM-CSF, and expression was up-regulated until day 3. Monocytes cultured in the presence of LPS, FMLP, PMA, recombinant granulocyte-CSF, rIFN-gamma, rTNF-alpha, rIL-1 alpha, rIL-1 beta, and rIL-6 remained negative. The induction of CD1 molecules by rGM-CSF was restricted to monocytes, since no such effect was observed upon peripheral blood granulocytes, PBL, and the myeloid cell lines Monomac1, Monomac6, MV4/11, HL60, U937, THP1, KG1, and KG1A. CD1a mRNA was detectable in rGM-CSF-induced monocytes but not in those freshly isolated. SDS-PAGE and immunoblotting analyses of CD1a mAb VIT6 immunoprecipitate from lysate of rGM-CSF-activated monocytes revealed an appropriate CD1a polypeptide band of 49 kDa associated with beta 2-microglobulin. Expression of CD1 molecules on monocytes complements the distribution of these structures on accessory cells, and their specific induction by GM-CSF strengthens the suggestion that CD1 is a family of crucial structures required for interaction between accessory cells and T cells.

  19. Expression of the Classical and Nonclassical HLA Molecules in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Gisela Bevilacqua Rolfsen Ferreira da Silva

    2013-01-01

    Full Text Available Considering that downregulation of HLA expression could represent a potential mechanism for breast carcinogenesis and metastasis, the aim of the present study was to use immunohistochemical methods to analyze the expression of HLA-Ia, HLA-DR, HLA-DQ, HLA-E, and HLA-G in invasive ductal carcinoma (IDC of the breast and to relate this HLA profile to anatomopathological parameters. Fifty-two IDC from breast biopsies were stratified according to histological differentiation (well, moderately, and poorly differentiated and to the presence of metastases in axillary lymph nodes. The expression of HLA molecules was assessed by immunohistochemistry, using a computer-assisted system. Overall, 31 (59.6% out of the 52 IDC breast biopsies exhibited high expression of HLA-G, but only 14 (26.9% showed high expression of HLA-E. A large number (41, 78.8% of the biopsies showed low expression of HLA-Ia, while 45 (86.5% showed high expression of HLA-DQ and 36 (69.2% underexpressed HLA-DR. Moreover, 24 (41.2% of 52 biopsies had both low HLA-Ia expression and high HLA-G expression, while 11 (21.2% had low HLA-Ia expression and high HLA-E expression. These results suggest that, by different mechanisms, the downregulation of HLA-Ia, HLA-E, and HLA-DR and the upregulation of HLA-G and HLA-DQ are associated with immune response evasion and breast cancer aggressiveness.

  20. Angiogenic factors stimulate growth of adult neural stem cells.

    Directory of Open Access Journals (Sweden)

    Andreas Androutsellis-Theotokis

    2010-02-01

    Full Text Available The ability to grow a uniform cell type from the adult central nervous system (CNS is valuable for developing cell therapies and new strategies for drug discovery. The adult mammalian brain is a source of neural stem cells (NSC found in both neurogenic and non-neurogenic zones but difficulties in culturing these hinders their use as research tools.Here we show that NSCs can be efficiently grown in adherent cell cultures when angiogenic signals are included in the medium. These signals include both anti-angiogenic factors (the soluble form of the Notch receptor ligand, Dll4 and pro-angiogenic factors (the Tie-2 receptor ligand, Angiopoietin 2. These treatments support the self renewal state of cultured NSCs and expression of the transcription factor Hes3, which also identifies the cancer stem cell population in human tumors. In an organotypic slice model, angiogenic factors maintain vascular structure and increase the density of dopamine neuron processes.We demonstrate new properties of adult NSCs and a method to generate efficient adult NSC cultures from various central nervous system areas. These findings will help establish cellular models relevant to cancer and regeneration.

  1. Proteomic analysis of exosomes from nasopharyngeal carcinoma cell identifies intercellular transfer of angiogenic proteins

    KAUST Repository

    Chan, Yuk-kit

    2015-04-01

    Exosomes, a group of secreted extracellular nanovesicles containing genetic materials and signaling molecules, play a critical role in intercellular communication. During tumorigenesis, exosomes have been demonstrated to promote tumor angiogenesis and metastasis while their biological functions in nasopharyngeal carcinoma (NPC) are poorly understood. In this study, we focused on the role of NPC-derived exosomes on angiogenesis. Exosomes derived from the NPC C666-1 cells and immortalized nasopharyngeal epithelial cells (NP69 and NP460) were isolated using ultracentrifugation. The molecular profile and biophysical characteristics of exosomes were verified by Western blotting, sucrose density gradient, and electron microscopy. We showed that the C666-1 exosomes (10 and 20 μg/ml) could significantly increase the tubulogenesis, migration and invasion of human umbilical vein endothelial cells (HUVECs) in a dose-dependent manner. Subsequently, an iTRAQ-based quantitative proteomics was used to identify the differentially expressed proteins in C666-1 exosomes. Among the 640 identified proteins, 51 and 89 proteins were considered as up- and down-regulated (≥ 1.5-fold variations) in C666-1 exosomes compared to the normal counterparts, respectively. As expected, pro-angiogenic proteins including intercellular adhesion molecule-1 (ICAM-1) and CD44 variant isoform 5 (CD44v5) are among the up-regulated proteins, whereas angio-suppressive protein, thrombospondin-1 (TSP-1) was down-regulated in C666-1 exosomes. Further confocal microscopic study and Western blotting clearly demonstrated that the alteration of ICAM-1, and TSP-1 expressions in recipient HUVECs are due to internalization of exosomes. Taken together, these data strongly indicated the critical roles of identified angiogenic proteins in the involvement of exosomes-induced angiogenesis, which could potentially be developed as therapeutic targets in future. This article is protected by copyright. All rights reserved.

  2. Proteomic analysis of exosomes from nasopharyngeal carcinoma cell identifies intercellular transfer of angiogenic proteins

    KAUST Repository

    Chan, Yuk-kit; Zhang, Huoming; Liu, Pei; Tsao, George Sai-wah; Li Lung, Maria; Mak, Nai-ki; Ngok-shun Wong, Ricky; Ying-kit Yue, Patrick

    2015-01-01

    Exosomes, a group of secreted extracellular nanovesicles containing genetic materials and signaling molecules, play a critical role in intercellular communication. During tumorigenesis, exosomes have been demonstrated to promote tumor angiogenesis and metastasis while their biological functions in nasopharyngeal carcinoma (NPC) are poorly understood. In this study, we focused on the role of NPC-derived exosomes on angiogenesis. Exosomes derived from the NPC C666-1 cells and immortalized nasopharyngeal epithelial cells (NP69 and NP460) were isolated using ultracentrifugation. The molecular profile and biophysical characteristics of exosomes were verified by Western blotting, sucrose density gradient, and electron microscopy. We showed that the C666-1 exosomes (10 and 20 μg/ml) could significantly increase the tubulogenesis, migration and invasion of human umbilical vein endothelial cells (HUVECs) in a dose-dependent manner. Subsequently, an iTRAQ-based quantitative proteomics was used to identify the differentially expressed proteins in C666-1 exosomes. Among the 640 identified proteins, 51 and 89 proteins were considered as up- and down-regulated (≥ 1.5-fold variations) in C666-1 exosomes compared to the normal counterparts, respectively. As expected, pro-angiogenic proteins including intercellular adhesion molecule-1 (ICAM-1) and CD44 variant isoform 5 (CD44v5) are among the up-regulated proteins, whereas angio-suppressive protein, thrombospondin-1 (TSP-1) was down-regulated in C666-1 exosomes. Further confocal microscopic study and Western blotting clearly demonstrated that the alteration of ICAM-1, and TSP-1 expressions in recipient HUVECs are due to internalization of exosomes. Taken together, these data strongly indicated the critical roles of identified angiogenic proteins in the involvement of exosomes-induced angiogenesis, which could potentially be developed as therapeutic targets in future. This article is protected by copyright. All rights reserved.

  3. Mesencephalic dopaminergic neurons express a repertoire of olfactory receptors and respond to odorant-like molecules.

    Science.gov (United States)

    Grison, Alice; Zucchelli, Silvia; Urzì, Alice; Zamparo, Ilaria; Lazarevic, Dejan; Pascarella, Giovanni; Roncaglia, Paola; Giorgetti, Alejandro; Garcia-Esparcia, Paula; Vlachouli, Christina; Simone, Roberto; Persichetti, Francesca; Forrest, Alistair R R; Hayashizaki, Yoshihide; Carloni, Paolo; Ferrer, Isidro; Lodovichi, Claudia; Plessy, Charles; Carninci, Piero; Gustincich, Stefano

    2014-08-27

    The mesencephalic dopaminergic (mDA) cell system is composed of two major groups of projecting cells in the Substantia Nigra (SN) (A9 neurons) and the Ventral Tegmental Area (VTA) (A10 cells). Selective degeneration of A9 neurons occurs in Parkinson's disease (PD) while abnormal function of A10 cells has been linked to schizophrenia, attention deficit and addiction. The molecular basis that underlies selective vulnerability of A9 and A10 neurons is presently unknown. By taking advantage of transgenic labeling, laser capture microdissection coupled to nano Cap-Analysis of Gene Expression (nanoCAGE) technology on isolated A9 and A10 cells, we found that a subset of Olfactory Receptors (OR)s is expressed in mDA neurons. Gene expression analysis was integrated with the FANTOM5 Helicos CAGE sequencing datasets, showing the presence of these ORs in selected tissues and brain areas outside of the olfactory epithelium. OR expression in the mesencephalon was validated by RT-PCR and in situ hybridization. By screening 16 potential ligands on 5 mDA ORs recombinantly expressed in an heterologous in vitro system, we identified carvone enantiomers as agonists at Olfr287 and able to evoke an intracellular Ca2+ increase in solitary mDA neurons. ORs were found expressed in human SN and down-regulated in PD post mortem brains. Our study indicates that mDA neurons express ORs and respond to odor-like molecules providing new opportunities for pharmacological intervention in disease.

  4. Pro-angiogenic TIE-2-expressing monocytes/TEMs as a biomarker of the effect of sorafenib in patients with advanced hepatocellular carcinoma.

    Science.gov (United States)

    Shoji, Hirotaka; Yoshio, Sachiyo; Mano, Yohei; Doi, Hiroyoshi; Sugiyama, Masaya; Osawa, Yosuke; Kimura, Kiminori; Arai, Taeang; Itokawa, Norio; Atsukawa, Masanori; Aoki, Yoshihiko; Fukai, Moto; Taketomi, Akinobu; Mizokami, Masashi; Kanto, Tatsuya

    2017-09-01

    Sorafenib, a multi-kinase inhibitor, inhibits tumor angiogenesis and is the first-line systemic therapy for patients with advanced hepatocellular carcinoma (HCC). However, due to its limited effects and frequent occurrence of side effects, biomarkers are needed to predict the effects of sorafenib. We considered the possibility of using TIE-2-expressing monocytes (TEMs) to predict the response in sorafenib-treated patients with advanced HCC. TEMs serve as a diagnostic marker of HCC and are related to angiogenesis. We analyzed 25 advanced HCC patients and prospectively evaluated TEMs before (Pre TEMs) and at 1 month after initial therapy (T1m TEMs). The radiologic response was evaluated by modified Response Evaluation Criteria in Solid Tumors (mRECIST). Median survival time (MST) was significantly longer in the partial response/stable disease (PR/SD) group (21.8 months) than in the PD group (8.7 months). ΔTEMs (changes of T1m TEMs compared to Pre TEMs) were significantly lower in the PR/SD group than in the PD group. MST of the ΔTEMs low group (14.2 months) was significantly longer than that of the high group (8.7 months). Univariate and multivariate Cox regression analyses showed that ΔTEMs [hazard ratio (HR) = 8.53, 95% confidence interval (CI) = 1.51-48.16, p = 0.015] and Child-Pugh class (HR = 5.59, 95% CI = 1.06-29.63, p = 0.043) were independently associated with overall survival. Our results suggest that ΔTEMs could serve as a biomarker for predicting radiologic response and overall survival in sorafenib-treated patients with advanced HCC. © 2017 UICC.

  5. Acoustic input and efferent activity regulate the expression of molecules involved in cochlear micromechanics

    Science.gov (United States)

    Lamas, Veronica; Arévalo, Juan C.; Juiz, José M.; Merchán, Miguel A.

    2015-01-01

    Electromotile activity in auditory outer hair cells (OHCs) is essential for sound amplification. It relies on the highly specialized membrane motor protein prestin, and its interactions with the cytoskeleton. It is believed that the expression of prestin and related molecules involved in OHC electromotility may be dynamically regulated by signals from the acoustic environment. However little is known about the nature of such signals and how they affect the expression of molecules involved in electromotility in OHCs. We show evidence that prestin oligomerization is regulated, both at short and relatively long term, by acoustic input and descending efferent activity originating in the cortex, likely acting in concert. Unilateral removal of the middle ear ossicular chain reduces levels of trimeric prestin, particularly in the cochlea from the side of the lesion, whereas monomeric and dimeric forms are maintained or even increased in particular in the contralateral side, as shown in Western blots. Unilateral removal of the auditory cortex (AC), which likely causes an imbalance in descending efferent activity on the cochlea, also reduces levels of trimeric and tetrameric forms of prestin in the side ipsilateral to the lesion, whereas in the contralateral side prestin remains unaffected, or even increased in the case of trimeric and tetrameric forms. As far as efferent inputs are concerned, unilateral ablation of the AC up-regulates the expression of α10 nicotinic Ach receptor (nAChR) transcripts in the cochlea, as shown by RT-Quantitative real-time PCR (qPCR). This suggests that homeostatic synaptic scaling mechanisms may be involved in dynamically regulating OHC electromotility by medial olivocochlear efferents. Limited, unbalanced efferent activity after unilateral AC removal, also affects prestin and β-actin mRNA levels. These findings support that the concerted action of acoustic and efferent inputs to the cochlea is needed to regulate the expression of major

  6. Different angiogenic phenotypes in primary and secondary glioblastomas.

    Science.gov (United States)

    Karcher, Sibylle; Steiner, Hans-Herbert; Ahmadi, Rezvan; Zoubaa, Saida; Vasvari, Gergely; Bauer, Harry; Unterberg, Andreas; Herold-Mende, Christel

    2006-05-01

    Primary and secondary glioblastomas (pGBM, sGBM) are supposed to evolve through different genetic pathways, including EGF receptor and PDGF and its receptor and thus genes that are involved in tumor-induced angiogenesis. However, whether other angiogenic cytokines are also differentially expressed in these glioblastoma subtypes is not known so far, but this knowledge might be important to optimize an antiangiogenic therapy. Therefore, we studied the expression of several angiogenic cytokines, including VEGF-A, HGF, bFGF, PDGF-AB, PDGF-BB, G-CSF and GM-CSF in pGBMs and sGBMs as well as in gliomas WHO III, the precursor lesions of sGBMs. In tumor tissues, expression of all cytokines was observed albeit with marked differences concerning intensity and distribution pattern. Quantification of the cytokines in the supernatant of 30 tissue-corresponding glioma cultures revealed a predominant expression of VEGF-A in pGBMs and significantly higher expression levels of PDGF-AB in sGBMs. HGF and bFGF were determined in nearly all tumor cultures but with no GBM subtype or malignancy-related differences. Interestingly, GM-CSF and especially G-CSF were produced less frequently by tumor cells. However, GM-CSF secretion occurred together with an increased number of simultaneously secreted cytokines and correlated with a worse patient prognosis and may thus represent a more aggressive angiogenic phenotype. Finally, we confirmed an independent contribution of each tumor-derived cytokine analyzed to tumor-induced vascularization. Our data indicate that an optimal antiangiogenic therapy may require targeting of multiple angiogenic pathways that seem to differ markedly in pGBMs and sGBMs. 2005 Wiley-Liss, Inc.

  7. Regulated expression of the neural cell adhesion molecule L1 by specific patterns of neural impulses.

    Science.gov (United States)

    Itoh, K; Stevens, B; Schachner, M; Fields, R D

    1995-11-24

    Development of the mammalian nervous system is regulated by neural impulse activity, but the molecular mechanisms are not well understood. If cell recognition molecules [for example, L1 and the neural cell adhesion molecule (NCAM)] were influenced by specific patterns of impulse activity, cell-cell interactions controlling nervous system structure could be regulated by nervous system function at critical stages of development. Low-frequency electrical pulses delivered to mouse sensory neurons in culture (0.1 hertz for 5 days) down-regulated expression of L1 messenger RNA and protein (but not NCAM). Fasciculation of neurites, adhesion of neuroblastoma cells, and the number of Schwann cells on neurites was reduced after 0.1-hertz stimulation, but higher frequencies or stimulation after synaptogenesis were without effect.

  8. A simple and robust method for connecting small-molecule drugs using gene-expression signatures

    Directory of Open Access Journals (Sweden)

    Gant Timothy W

    2008-06-01

    Full Text Available Abstract Background Interaction of a drug or chemical with a biological system can result in a gene-expression profile or signature characteristic of the event. Using a suitably robust algorithm these signatures can potentially be used to connect molecules with similar pharmacological or toxicological properties by gene expression profile. Lamb et al first proposed the Connectivity Map [Lamb et al (2006, Science 313, 1929–1935] to make successful connections among small molecules, genes, and diseases using genomic signatures. Results Here we have built on the principles of the Connectivity Map to present a simpler and more robust method for the construction of reference gene-expression profiles and for the connection scoring scheme, which importantly allows the valuation of statistical significance of all the connections observed. We tested the new method with two randomly generated gene signatures and three experimentally derived gene signatures (for HDAC inhibitors, estrogens, and immunosuppressive drugs, respectively. Our testing with this method indicates that it achieves a higher level of specificity and sensitivity and so advances the original method. Conclusion The method presented here not only offers more principled statistical procedures for testing connections, but more importantly it provides effective safeguard against false connections at the same time achieving increased sensitivity. With its robust performance, the method has potential use in the drug development pipeline for the early recognition of pharmacological and toxicological properties in chemicals and new drug candidates, and also more broadly in other 'omics sciences.

  9. Intercellular adhesion molecule-1 expression by skeletal muscle cells augments myogenesis

    International Nuclear Information System (INIS)

    Goh, Qingnian; Dearth, Christopher L.; Corbett, Jacob T.; Pierre, Philippe; Chadee, Deborah N.; Pizza, Francis X.

    2015-01-01

    We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast–myoblast adhesion, myotube formation, myonuclear number, myotube alignment, myotube–myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube–myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. - Highlights: • We examined mechanisms through which skeletal muscle cell expression of ICAM-1 facilitates events of in vitro myogenesis. • Expression of ICAM-1 by cultured myoblasts did not influence their ability to proliferate or differentiate. • Skeletal muscle cell expression of ICAM-1 augmented myoblast fusion, myotube alignment, myotube–myotube fusion, and myotube size. • ICAM-1 augmented myogenic processes through

  10. Intercellular adhesion molecule-1 expression by skeletal muscle cells augments myogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Goh, Qingnian; Dearth, Christopher L.; Corbett, Jacob T. [Department of Kinesiology, The University of Toledo, Toledo, OH (United States); Pierre, Philippe [Centre d’Immunologie de Marseille-Luminy U2M, Aix-Marseille Université, Marseille (France); INSERM U631, Institut National de la Santé et Recherche Médicale, Marseille (France); CNRS UMR6102, Centre National de la Recherche Scientifique, Marseille (France); Chadee, Deborah N. [Department of Biological Sciences, The University of Toledo, Toledo, OH (United States); Pizza, Francis X., E-mail: Francis.Pizza@utoledo.edu [Department of Kinesiology, The University of Toledo, Toledo, OH (United States)

    2015-02-15

    We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast–myoblast adhesion, myotube formation, myonuclear number, myotube alignment, myotube–myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube–myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. - Highlights: • We examined mechanisms through which skeletal muscle cell expression of ICAM-1 facilitates events of in vitro myogenesis. • Expression of ICAM-1 by cultured myoblasts did not influence their ability to proliferate or differentiate. • Skeletal muscle cell expression of ICAM-1 augmented myoblast fusion, myotube alignment, myotube–myotube fusion, and myotube size. • ICAM-1 augmented myogenic processes through

  11. Dragon (repulsive guidance molecule b) inhibits IL-6 expression in macrophages.

    Science.gov (United States)

    Xia, Yin; Cortez-Retamozo, Virna; Niederkofler, Vera; Salie, Rishard; Chen, Shanzhuo; Samad, Tarek A; Hong, Charles C; Arber, Silvia; Vyas, Jatin M; Weissleder, Ralph; Pittet, Mikael J; Lin, Herbert Y

    2011-02-01

    Repulsive guidance molecule (RGM) family members RGMa, RGMb/Dragon, and RGMc/hemojuvelin were found recently to act as bone morphogenetic protein (BMP) coreceptors that enhance BMP signaling activity. Although our previous studies have shown that hemojuvelin regulates hepcidin expression and iron metabolism through the BMP pathway, the role of the BMP signaling mediated by Dragon remains largely unknown. We have shown previously that Dragon is expressed in neural cells, germ cells, and renal epithelial cells. In this study, we demonstrate that Dragon is highly expressed in macrophages. Studies with RAW264.7 and J774 macrophage cell lines reveal that Dragon negatively regulates IL-6 expression in a BMP ligand-dependent manner via the p38 MAPK and Erk1/2 pathways but not the Smad1/5/8 pathway. We also generated Dragon knockout mice and found that IL-6 is upregulated in macrophages and dendritic cells derived from whole lung tissue of these mice compared with that in respective cells derived from wild-type littermates. These results indicate that Dragon is an important negative regulator of IL-6 expression in immune cells and that Dragon-deficient mice may be a useful model for studying immune and inflammatory disorders.

  12. Effects of ethanol and NAP on cerebellar expression of the neural cell adhesion molecule L1.

    Directory of Open Access Journals (Sweden)

    Devon M Fitzgerald

    Full Text Available The neural cell adhesion molecule L1 is critical for brain development and plays a role in learning and memory in the adult. Ethanol inhibits L1-mediated cell adhesion and neurite outgrowth in cerebellar granule neurons (CGNs, and these actions might underlie the cerebellar dysmorphology of fetal alcohol spectrum disorders. The peptide NAP potently blocks ethanol inhibition of L1 adhesion and prevents ethanol teratogenesis. We used quantitative RT-PCR and Western blotting of extracts of cerebellar slices, CGNs, and astrocytes from postnatal day 7 (PD7 rats to investigate whether ethanol and NAP act in part by regulating the expression of L1. Treatment of cerebellar slices with 20 mM ethanol, 10(-12 M NAP, or both for 4 hours, 24 hours, and 10 days did not significantly affect L1 mRNA and protein levels. Similar treatment for 4 or 24 hours did not regulate L1 expression in primary cultures of CGNs and astrocytes, the predominant cerebellar cell types. Because ethanol also damages the adult cerebellum, we studied the effects of chronic ethanol exposure in adult rats. One year of binge drinking did not alter L1 gene and protein expression in extracts from whole cerebellum. Thus, ethanol does not alter L1 expression in the developing or adult cerebellum; more likely, ethanol disrupts L1 function by modifying its conformation and signaling. Likewise, NAP antagonizes the actions of ethanol without altering L1 expression.

  13. Analytic expression for any pure rotational transition (ΔJ≥1) for a diatomic molecule

    International Nuclear Information System (INIS)

    Korek, M.; Hamdoun, B.; Fakhreddine, K.

    1999-01-01

    Full text.The problem of the pure rotational transitions vJ↔vJ' for any spectra |J-J'|≥1 for a diatomic molecule is considered. It is proved that, the wave functions ΨvJ and ΨvJ' are expanded in terms of the running number m=[J'(J'+1)-J(J+1)]/2 as ΨvJ=Σπ n m n (n=0) and ΨvJ'=Σπ n (-m) n (n=0) where π n are expressed in terms of the pure vibrational wave function φ 0 and its rotational corrections φ n (defined in the conventional perturbation theory). By using this m-representation of the wave functions the pure rotational matrix elements of the considered transitions are given by M vJ vJ' = =Σμ 2n m 2n (n=0) where μ 2n are simple combinations of simple integrals of the form i |γ|φ n >. This formulation is valid for any potential (either numerical or analytical), any vibrational level v and any operator γ. The numerical application to the Dunham potential of the molecule H 2 in the Raman transitions and to the Huffaker potential of the molecule CO in the infrared transitions shows the validity and the high accuracy of the present formulation

  14. Age-related changes in expression of the neural cell adhesion molecule in skeletal muscle

    DEFF Research Database (Denmark)

    Andersson, A M; Olsen, M; Zhernosekov, D

    1993-01-01

    Neural cell adhesion molecule (NCAM) is expressed by muscle and involved in muscle-neuron and muscle-muscle cell interactions. The expression in muscle is regulated during myogenesis and by the state of innervation. In aged muscle, both neurogenic and myogenic degenerative processes occur. We here...... report quantitative and qualitative changes in NCAM protein and mRNA forms during aging in normal rat skeletal muscle. Determination of the amount of NCAM by e.l.i.s.a. showed that the level decreased from perinatal to adult age, followed by a considerable increase in 24-month-old rat muscle. Thus NCAM...... concentration in aged muscle was sixfold higher than in young adult muscle. In contrast with previous reports, NCAM polypeptides of 200, 145, 125 and 120 kDa were observed by immunoblotting throughout postnatal development and aging, the relative proportions of the individual NCAM polypeptides remaining...

  15. Semaphorin7A promotes tumor growth and exerts a pro-angiogenic effect in macrophages of mammary tumor-bearing mice

    Directory of Open Access Journals (Sweden)

    Ramon eGarcia-Areas

    2014-02-01

    Full Text Available Semaphorins, a large family of molecules involved in the axonal guidance and development of the nervous system, have been recently shown to have both angiogenic and anti-angiogenic properties. Specifically, semaphorin 7A (SEMA7A has been reported to have a chemotactic activity in neurogenesis, and to be an immune modulator via it binding to α1β1integrins. Additionally, SEMA7A has been shown to promote chemotaxis of monocytes, inducing them to produce proinflammatory mediators. In this study we explored the role of SEMA7A in the tumoral context. We show that SEMA7A is highly expressed by DA-3 murine mammary tumor cells in comparison to normal mammary cells (EpH4, and that peritoneal macrophages from mammary tumor-bearing mice also express SEMA7A at higher levels compared to peritoneal macrophages derived from normal control mice. We also show that murine macrophages treated with recombinant murine SEMA7A significantly increased their expression of proangiogenic molecules, such as CXCL2/MIP-2. Gene silencing of SEMA7A in peritoneal elicited macrophages from DA-3 tumor-bearing mice resulted in decreased CXCL2 expression. Mice implanted with SEMA7A silenced tumor cells showed decreased angiogenesis in the tumors compared to the wild type tumors. Furthermore, peritoneal elicited macrophages from mice bearing SEMA7A-silenced tumors produce significantly (p< 0.01 lower levels of angiogenic proteins, such as MIP-2, CXCL1 and MMP-9, compared to macrophages from control DA-3 mammary tumors. We postulate that SEMA7A derived from mammary carcinomas may serve as a monocyte chemoattractant and skew monocytes into a pro-tumorigenic phenotype. A putative relationship between tumor-derived SEMA7A and monocytes could prove valuable in establishing new research avenues towards unraveling important tumor-host immune interactions in breast cancer patients.

  16. Imbalanced expression of functional surface molecules in regulatory and effector T cells in systemic lupus erythematosus

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita Júnior, D. [Disciplina de Reumatologia, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Cruvinel, W.M. [Disciplina de Reumatologia, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Departamento de Biomedicina, Universidade Católica de Goiás, Goiânia, GO (Brazil); Araujo, J.A.P. [Disciplina de Reumatologia, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Salmazi, K.C.; Kallas, E.G. [Disciplina de Imunologia Clínica e Alergia, Departamento de Clínica Médica, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Andrade, L.E.C. [Disciplina de Reumatologia, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil)

    2014-08-22

    Regulatory T (TREG) cells play an important role in maintaining immune tolerance and avoiding autoimmunity. We analyzed the expression of membrane molecules in TREG and effector T cells in systemic lupus erythematosus (SLE). TREG and effector T cells were analyzed for the expression of CTLA-4, PD1, CD28, CD95, GITR, HLA-DR, OX40, CD40L, and CD45RO in 26 patients with active disease, 31 with inactive disease, and 26 healthy controls. TREG cells were defined as CD25{sup +/high}CD127{sup Ø/low}FoxP3{sup +}, and effector T cells were defined as CD25{sup +}CD127{sup +}FoxP3{sup Ø}. The ratio of TREG to effector T cells expressing GITR, PD1, HLA-DR, OX40, CD40L, and CD45RO was determined in the three groups. The frequency of TREG cells was similar in patients with SLE and controls. However, SLE patients had a decreased frequency of CTLA-4{sup +}TREG and CD28{sup +}TREG cells and an increased frequency of CD40L{sup +}TREG cells. There was a decrease in the TREG/effector-T ratio for GITR{sup +}, HLA-DR{sup +}, OX40{sup +}, and CD45RO{sup +} cells, and an increased ratio of TREG/effector-T CD40L{sup +} cells in patients with SLE. In addition, CD40L{sup +}TREG cell frequency correlated with the SLE disease activity index (P=0.0163). In conclusion, our findings showed several abnormalities in the expression of functionally critical surface molecules in TREG and effector T cells in SLE that may be relevant to the pathogenesis of this disease.

  17. Imbalanced expression of functional surface molecules in regulatory and effector T cells in systemic lupus erythematosus

    International Nuclear Information System (INIS)

    Mesquita Júnior, D.; Cruvinel, W.M.; Araujo, J.A.P.; Salmazi, K.C.; Kallas, E.G.; Andrade, L.E.C.

    2014-01-01

    Regulatory T (TREG) cells play an important role in maintaining immune tolerance and avoiding autoimmunity. We analyzed the expression of membrane molecules in TREG and effector T cells in systemic lupus erythematosus (SLE). TREG and effector T cells were analyzed for the expression of CTLA-4, PD1, CD28, CD95, GITR, HLA-DR, OX40, CD40L, and CD45RO in 26 patients with active disease, 31 with inactive disease, and 26 healthy controls. TREG cells were defined as CD25 +/high CD127 Ø/low FoxP3 + , and effector T cells were defined as CD25 + CD127 + FoxP3 Ø . The ratio of TREG to effector T cells expressing GITR, PD1, HLA-DR, OX40, CD40L, and CD45RO was determined in the three groups. The frequency of TREG cells was similar in patients with SLE and controls. However, SLE patients had a decreased frequency of CTLA-4 + TREG and CD28 + TREG cells and an increased frequency of CD40L + TREG cells. There was a decrease in the TREG/effector-T ratio for GITR + , HLA-DR + , OX40 + , and CD45RO + cells, and an increased ratio of TREG/effector-T CD40L + cells in patients with SLE. In addition, CD40L + TREG cell frequency correlated with the SLE disease activity index (P=0.0163). In conclusion, our findings showed several abnormalities in the expression of functionally critical surface molecules in TREG and effector T cells in SLE that may be relevant to the pathogenesis of this disease

  18. Spatiotemporal expression of repulsive guidance molecules (RGMs and their receptor neogenin in the mouse brain.

    Directory of Open Access Journals (Sweden)

    Dianne M A van den Heuvel

    Full Text Available Neogenin has been implicated in a variety of developmental processes such as neurogenesis, neuronal differentiation, apoptosis, migration and axon guidance. Binding of repulsive guidance molecules (RGMs to Neogenin inhibits axon outgrowth of different neuronal populations. This effect requires Neogenin to interact with co-receptors of the uncoordinated locomotion-5 (Unc5 family to activate downstream Rho signaling. Although previous studies have reported RGM, Neogenin, and/or Unc5 expression, a systematic comparison of RGM and Neogenin expression in the developing nervous system is lacking, especially at later developmental stages. Furthermore, information on RGM and Neogenin expression at the protein level is limited. To fill this void and to gain further insight into the role of RGM-Neogenin signaling during mouse neural development, we studied the expression of RGMa, RGMb, Neogenin and Unc5A-D using in situ hybridization, immunohistochemistry and RGMa section binding. Expression patterns in the primary olfactory system, cortex, hippocampus, habenula, and cerebellum were studied in more detail. Characteristic cell layer-specific expression patterns were detected for RGMa, RGMb, Neogenin and Unc5A-D. Furthermore, strong expression of RGMa, RGMb and Neogenin protein was found on several major axon tracts such as the primary olfactory projections, anterior commissure and fasciculus retroflexus. These data not only hint at a role for RGM-Neogenin signaling during the development of different neuronal systems, but also suggest that Neogenin partners with different Unc5 family members in different systems. Overall, the results presented here will serve as a framework for further dissection of the role of RGM-Neogenin signaling during neural development.

  19. Abscisic acid ameliorates experimental IBD by downregulating cellular adhesion molecule expression and suppressing immune cell infiltration.

    Science.gov (United States)

    Guri, Amir J; Hontecillas, Raquel; Bassaganya-Riera, Josep

    2010-12-01

    Abscisic acid (ABA) has shown effectiveness in ameliorating inflammation in obesity, diabetes and cardiovascular disease models. The objective of this study was to determine whether ABA prevents or ameliorates experimental inflammatory bowel disease (IBD). C57BL/6J mice were fed diets with or without ABA (100mg/kg) for 35 days prior to challenge with 2.5% dextran sodium sulfate (DSS). The severity of clinical disease was assessed daily. Colonic mucosal lesions were evaluated by histopathology, and cellular adhesion molecular and inflammatory markers were assayed by real-time quantitative PCR. Flow cytometry was used to quantify leukocyte populations in the blood, spleen, and mesenteric lymph nodes (MLN). The effect of ABA on cytotoxic T-lymphocyte antigen 4 (CTLA-4) expression in splenocytes was also investigated. ABA significantly ameliorated disease activity, colitis and reduced colonic leukocyte infiltration and inflammation. These improvements were associated with downregulation in vascular cell adhesion marker-1 (VCAM-1), E-selectin, and mucosal addressin adhesion marker-1 (MAdCAM-1) expression. ABA also increased CD4(+) and CD8(+) T-lymphocytes in blood and MLN and regulatory T cells in blood. In vitro, ABA increased CTLA-4 expression through a PPAR γ-dependent mechanism. We conclude that ABA ameliorates gut inflammation by modulating T cell distribution and adhesion molecule expression. Copyright © 2010 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  20. Effect of irradiation on gene expression of rat liver adhesion molecules. In vivo and in vitro studies

    International Nuclear Information System (INIS)

    Moriconi, Federico; Malik, Ihtzaz; Ahmad, Ghayyor; Dudas, Joszef; Ramadori, Giuliano; Rave-Fraenk, Margret; Vorwerk, Hilke; Hille, Andrea; Hess, Clemens Friedrich; Christiansen, Hans

    2009-01-01

    Background and purpose: Migration of leukocytes into tissue is a key element of innate and adaptive immunity. An animal study showed that liver irradiation, in spite of induction of chemokine gene expression, does not lead to recruitment of leukocytes into the parenchyma. The aim of this study was to analyze gene expression of adhesion molecules, which mediate leukocyte recruitment into organs, in irradiated rat liver in vivo and rat hepatocytes in vitro. Material and methods: Rat livers in vivo were irradiated selectively at 25 Gy. Isolated hepatocytes in vitro were irradiated at 8 Gy. RNA extracted within 48 h after irradiation in vivo and in vitro was analyzed by real-time PCR (polymerase chain reaction) and Northern blot. Adhesion molecule concentration in serum was measured by ELISA (enzyme-linked immunosorbent assay). Cryostat sections of livers were used for immunohistology. Results: Significant radiation-induced increase of ICAM-1 (intercellular adhesion molecule-1), VCAM-1 (vascular cell adhesion molecule-1), JAM-1 (junctional adhesion molecule-1), β 1 -integrin, β 2 -integrin, E-cadherin, and P-selectin gene expression could be detected in vivo, while PECAM-1 (platelet-endothelial cell adhesion molecule-1) gene expression remained unchanged. In vitro, β 1 -integrin, JAM-1, and ICAM-2 showed a radiation-induced increased expression, whereas the levels of P-selectin, ICAM-1, PECAM-1, VCAM-1, Madcam-1 (mucosal addressin cell adhesion molecule-1), β 2 -integrin, and E-cadherin were downregulated. However, incubation of irradiated hepatocytes with either tumor necrosis factor-(TNF-)α, interleukin-(IL-)1β, or IL-6 plus TNF-α led to an upregulation of P-selectin, ICAM-1 and VCAM-1. Conclusion: The findings suggest that liver irradiation modulates gene expression of the main adhesion molecules in vivo and in cytokine-activated hepatocytes, with the exception of PECAM-1. This may be one reason for the lack of inflammation in the irradiated rat liver. (orig.)

  1. Angiogenic Factors and Cytokines in Diabetic Retinopathy

    Science.gov (United States)

    Abcouwer, Steven F.

    2013-01-01

    Diabetic retinopathy (DR) is a sight-threatening complication of both type-1 and type-2 diabetes. The recent success of treatments inhibiting the function of vascular endothelial growth factor (VEGF) demonstrates that specific targeting of a growth factor responsible for vascular permeability and growth is an effective means of treating DR-associated vascular dysfunction, edema and angiogenesis. This has stimulated research of alternative therapeutic targets involved in the control of retinal vascular function. However, additional treatment options and preventative measures are still needed and these require a greater understanding of the pathological mechanisms leading to the disturbance of retinal tissue homeostasis in DR. Although severe DR can be treated as a vascular disease, abundant data suggests that inflammation is also occurring in the diabetic retina.Thus, anti-inflammatory therapies may also be useful for treatment and prevention of DR. Herein, the evidence for altered expression of angiogenic factors and cytokines in DR is reviewed and possible mechanisms by which the expression of VEGF and cytokines may be increased in the diabetic retina are examined. In addition, the potential role for microglial activation in diabetic retinal neuroinflammation is explored. PMID:24319628

  2. Beyond differential expression: the quest for causal mutations and effector molecules

    Directory of Open Access Journals (Sweden)

    Hudson Nicholas J

    2012-07-01

    Full Text Available Abstract High throughput gene expression technologies are a popular choice for researchers seeking molecular or systems-level explanations of biological phenomena. Nevertheless, there has been a groundswell of opinion that these approaches have not lived up to the hype because the interpretation of the data has lagged behind its generation. In our view a major problem has been an over-reliance on isolated lists of differentially expressed (DE genes which – by simply comparing genes to themselves – have the pitfall of taking molecular information out of context. Numerous scientists have emphasised the need for better context. This can be achieved through holistic measurements of differential connectivity in addition to, or in replacement, of DE. However, many scientists continue to use isolated lists of DE genes as the major source of input data for common readily available analytical tools. Focussing this opinion article on our own research in skeletal muscle, we outline our resolutions to these problems – particularly a universally powerful way of quantifying differential connectivity. With a well designed experiment, it is now possible to use gene expression to identify causal mutations and the other major effector molecules with whom they cooperate, irrespective of whether they themselves are DE. We explain why, for various reasons, no other currently available experimental techniques or quantitative analyses are capable of reaching these conclusions.

  3. Allelic imbalance modulates surface expression of the tolerance-inducing HLA-G molecule on primary trophoblast cells

    DEFF Research Database (Denmark)

    Djurisic, S; Teiblum, S; Tolstrup, C K

    2015-01-01

    The HLA-G molecule is expressed on trophoblast cells at the feto-maternal interface, where it interacts with local immune cells, and upholds tolerance against the semi-allogeneic fetus. Aberrant HLA-G expression in the placenta and reduced soluble HLA-G levels are observed in pregnancy complicati...

  4. Arsenite enhances tumor necrosis factor-α-induced expression of vascular cell adhesion molecule-1

    International Nuclear Information System (INIS)

    Tsou, T.-C.; Yeh, Szu Ching; Tsai, E.-M.; Tsai, F.-Y.; Chao, H.-R.; Chang, Louis W.

    2005-01-01

    Epidemiological studies demonstrated a high association of vascular diseases with arsenite exposure. We hypothesize that arsenite potentiates the effect of proinflammatory cytokines on vascular endothelial cells, and hence contributes to atherosclerosis. In this study, we investigated the effect of arsenite and its induction of glutathione (GSH) on vascular cell adhesion molecule-1 (VCAM-1) protein expression in human umbilical vein endothelial cells (HUVECs) in response to tumor necrosis factor-α (TNF-α), a typical proinflammatory cytokine. Our study demonstrated that arsenite pretreatment potentiated the TNF-α-induced VCAM-1 expression with up-regulations of both activator protein-1 (AP-1) and nuclear factor-κB (NF-κB). To elucidate the role of GSH in regulation of AP-1, NF-κB, and VCAM-1 expression, we employed L-buthionine (S,R)-sulfoximine (BSO), a specific γ-glutamylcysteine synthetase (γ-GCS) inhibitor, to block intracellular GSH synthesis. Our investigation revealed that, by depleting GSH, arsenite attenuated the TNF-α-induced VCAM-1 expression as well as a potentiation of AP-1 and an attenuation of NF-κB activations by TNF-α. Moreover, we found that depletion of GSH would also attenuate the TNF-α-induced VCAM-1 expression with a down-regulation of the TNF-α-induced NF-κB activation and without significant effect on AP-1. On the other hand, the TNF-α-induced VCAM-1 expression could be completely abolished by inhibition of AP-1 or NF-κB activity, suggesting that activation of both AP-1 and NF-κB was necessary for VCAM-1 expression. In summary, we demonstrate that arsenite enhances the TNF-α-induced VCAM-1 expression in HUVECs via regulation of AP-1 and NF-κB activities in a GSH-sensitive manner. Our present study suggested a potential mechanism for arsenite in the induction of vascular inflammation and vascular diseases via modulating the actions of proinflammatory cytokines

  5. HIF-1α effects on angiogenic potential in human small cell lung carcinoma

    Directory of Open Access Journals (Sweden)

    Xia Wanli

    2011-08-01

    Full Text Available Abstract Background Hypoxia-inducible factor-1 alpha (HIF-1α maybe an important regulatory factor for angiogenesis of small cell lung cancer (SCLC. Our study aimed to investigate the effect of HIF-1α on angiogenic potential of SCLC including two points: One is the effect of HIF-1α on the angiogenesis of SCLC in vivo. The other is the regulation of angiogenic genes by HIF-1α in vitro and in vivo. Methods In vivo we used an alternative method to study the effect of HIF-1a on angiogenic potential of SCLC by buliding NCI-H446 cell transplantation tumor on the chick embryo chorioallantoic membrane (CAM surface. In vitro we used microarray to screen out the angiogenic genes regulated by HIF-1a and tested their expression level in CAM transplantation tumor by RT-PCR and Western-blot analysis. Results In vivo angiogenic response surrounding the SCLC transplantation tumors in chick embryo chorioallantoic membrane (CAM was promoted after exogenous HIF-1α transduction (p In vitro the changes of angiogenic genes expression induced by HIF-1α in NCI-H446 cells were analyzed by cDNA microarray experiments. HIF-1α upregulated the expression of angiogenic genes VEGF-A, TNFAIP6, PDGFC, FN1, MMP28, MMP14 to 6.76-, 6.69-, 2.26-, 2.31-, 4.39-, 2.97- fold respectively and glycolytic genes GLUT1, GLUT2 to2.98-, 3.74- fold respectively. In addition, the expression of these angiogenic factors were also upregulated by HIF-1α in the transplantion tumors in CAM as RT-PCR and Western-blot analysis indicated. Conclusions These results indicated that HIF-1α may enhance the angiogenic potential of SCLC by regulating some angiogenic genes such as VEGF-A, MMP28 etc. Therefore, HIF-1α may be a potential target for the gene targeted therapy of SCLC.

  6. Scleroderma dermal microvascular endothelial cells exhibit defective response to pro-angiogenic chemokines

    Science.gov (United States)

    Rabquer, Bradley J.; Ohara, Ray A.; Stinson, William A.; Campbell, Phillip L.; Amin, M. Asif; Balogh, Beatrix; Zakhem, George; Renauer, Paul A.; Lozier, Ann; Arasu, Eshwar; Haines, G. Kenneth; Kahaleh, Bashar; Schiopu, Elena; Khanna, Dinesh; Koch, Alisa E.

    2016-01-01

    Objectives. Angiogenesis plays a critical role in SSc (scleroderma). The aim of this study was to examine the expression of growth-regulated protein-γ (Gro-γ/CXCL3), granulocyte chemotactic protein 2 (GCP-2/CXCL6) and their receptor CXCR2 in endothelial cells (ECs) isolated from SSc skin and determine whether these cells mount an angiogenic response towards pro-angiogenic chemokines. The downstream signalling pathways as well as the pro-angiogenic transcription factor inhibitor of DNA-binding protein 1 (Id-1) were also examined. Methods. Skin biopsies were obtained from patients with dcSSc. ECs were isolated via magnetic positive selection. Angiogenesis was measured by EC chemotaxis assay. Results. Gro-γ/CXCL3 and GCP-2/CXCL6 were minimally expressed in both skin types but elevated in SSc serum. Pro-angiogenic chemokine mRNA was greater in SSc ECs than in normal ECs. SSc ECs did not migrate to vascular endothelial growth factor (VEGF), Gro-γ/CXCL3, GCP-2/CXCL6 or CXCL16. The signalling pathways stimulated by these chemokines were also dysregulated. Id-1 mRNA in SSc ECs was lower compared with normal ECs, and overexpression of Id-1 in SSc ECs increased their ability to migrate towards VEGF and CXCL16. Conclusion. Our results show that SSc ECs are unable to respond to pro-angiogenic chemokines despite their increased expression in serum and ECs. This might be due to the differences in the signalling pathways activated by these chemokines in normal vs SSc ECs. In addition, the lower expression of Id-1 also decreases the angiogenic response. The inability of pro-angiogenic chemokines to promote EC migration provides an additional mechanism for the impaired angiogenesis that characterizes SSc. PMID:26705326

  7. Effects of phytoestrogens derived from soy bean on expression of adhesion molecules on HUVEC.

    Science.gov (United States)

    Andrade, C M de; Sá, M F Silva de; Toloi, M R Torqueti

    2012-04-01

    The risks of hormone replacement therapy have led to a search for new alternatives such as phytoestrogens, plant compounds with estrogen-like biological activity. Isoflavones are the phytoestrogens most extensively studied and can be found in soybean, red clover and other plants. Due to this estrogen-like activity, phytoestrogens can have some effect on atherosclerosis. Human umbilical vein endothelial cells (HUVEC) have been extensively used to study the biology and pathobiology of human endothelial cells and most of the knowledge acquired is due to experiments with cultures of these cells. To evaluate the effects of the phytoestrogen extracts from Glycine max soy bean, genistein, formononetin, biochanin A and daidzein, as well as a mixture of these extracts (Mix), on expression of adhesion molecules, VCAM-1, ICAM-1 and E-selectin, by endothelial cell HUVEC, stimulated with lipopolysaccharide. HUVEC were cultured in medium EBM(2), pretreated with isoflavones for 24 and 48 h and then stimulated with lipopolysaccharide; in addition, isoflavones were added, after stimulation by lipopolysaccharide, to HUVEC. We evaluated the production of VCAM-1, ICAM-1 and E-selectin on cell surface, by cell-based enzyme immunoassay, and of sVCAM-1, sICAM-1 and sE-selectin in culture supernatant, by ELISA. Genistein, formononetin, biochanin A and daidzein, as well as the Mix were able to reduce VCAM-1, ICAM-1 and E-selectin on cell surface and in culture supernatant. Conclusion Isoflavones extracted from Glycine max soy bean, in vitro, presented antiatherogenic effects, reducing the expression of adhesion molecules and acting as preventive agents as well as therapeutic agents.

  8. Expression pattern of adhesion molecules in junctional epithelium differs from that in other gingival epithelia.

    Science.gov (United States)

    Hatakeyama, S; Yaegashi, T; Oikawa, Y; Fujiwara, H; Mikami, T; Takeda, Y; Satoh, M

    2006-08-01

    The gingival epithelium is the physiologically important interface between the bacterially colonized gingival sulcus and periodontal soft and mineralized connective tissues, requiring protection from exposure to bacteria and their products. However, of the three epithelia comprising the gingival epithelium, the junctional epithelium has much wider intercellular spaces than the sulcular epithelium and oral gingival epithelium. Hence, the aim of the present study was to characterize the cell adhesion structure in the junctional epithelium compared with the other two epithelia. Gingival epithelia excised at therapeutic flap surgery from patients with periodontitis were examined for expression of adhesion molecules by immunofluorescence. In the oral gingival epithelium and sulcular epithelium, but not in the junctional epithelium, desmoglein 1 and 2 in cell-cell contact sites were more abundant in the upper than the suprabasal layers. E-cadherin, the main transmembranous molecule of adherens junctions, was present in spinous layers of the oral gingival epithelium and sulcular epithelium, but was scarce in the junctional epithelium. In contrast, desmoglein 3 and P-cadherin were present in all layers of the junctional epithelium as well as the oral gingival epithelium and sulcular epithelium. Connexin 43 was clearly localized to spinous layers of the oral gingival epithelium, sulcular epithelium and parts of the junctional epithelium. Claudin-1 and occludin were expressed in the cell membranes of a few superficial layers of the oral gingival epithelium. These findings indicated that the junctional epithelium contains only a few desmosomes, composed of only desmoglein 3; adherens junctions are probably absent because of defective E-cadherin. Thus, the anchoring junctions connecting junctional epithelium cells are lax, causing widened intercellular spaces. In contrast, the oral gingival epithelium, which has a few tight junctions, functions as a barrier.

  9. Differential Expression of Osteo-Modulatory Molecules in Periodontal Ligament Stem Cells in Response to Modified Titanium Surfaces

    Directory of Open Access Journals (Sweden)

    So Yeon Kim

    2014-01-01

    Full Text Available This study assessed differential gene expression of signaling molecules involved in osteogenic differentiation of periodontal ligament stem cells (PDLSCs subjected to different titanium (Ti surface types. PDLSCs were cultured on tissue culture polystyrene (TCPS, and four types of Ti discs (PT, SLA, hydrophilic PT (pmodPT, and hydrophilic SLA (modSLA with no osteoinductive factor and then osteogenic activity, including alkaline phosphatase (ALP activity, mRNA expression of runt-related gene 2, osterix, FOSB, FRA1, and protein levels of osteopontin and collagen type IA, were examined. The highest osteogenic activity appeared in PDLSCs cultured on SLA, compared with the TCPS and other Ti surfaces. The role of surface properties in affecting signaling molecules to modulate PDLSC behavior was determined by examining the regulation of Wnt pathways. mRNA expression of the canonical Wnt signaling molecules, Wnt3a and β-catenin, was higher on SLA and modSLA than on smooth surfaces, but gene expression of the calcium-dependent Wnt signaling molecules Wnt5a, calmodulin, and NFATc1 was increased significantly on PT and pmodPT. Moreover, integrin α2/β1, sonic hedgehog, and Notch signaling molecules were affected differently by each surface modification. In conclusion, surface roughness and hydrophilicity can affect differential Wnt pathways and signaling molecules, targeting the osteogenic differentiation of PDLSCs.

  10. Cannabinoids inhibit angiogenic capacities of endothelial cells via release of tissue inhibitor of matrix metalloproteinases-1 from lung cancer cells.

    Science.gov (United States)

    Ramer, Robert; Fischer, Sascha; Haustein, Maria; Manda, Katrin; Hinz, Burkhard

    2014-09-15

    Cannabinoids inhibit tumor neovascularization as part of their tumorregressive action. However, the underlying mechanism is still under debate. In the present study the impact of cannabinoids on potential tumor-to-endothelial cell communication conferring anti-angiogenesis was studied. Cellular behavior of human umbilical vein endothelial cells (HUVEC) associated with angiogenesis was evaluated by Boyden chamber, two-dimensional tube formation and fibrin bead assay, with the latter assessing three-dimensional sprout formation. Viability was quantified by the WST-1 test. Conditioned media (CM) from A549 lung cancer cells treated with cannabidiol, Δ(9)-tetrahydrocannabinol, R(+)-methanandamide or the CB2 agonist JWH-133 elicited decreased migration as well as tube and sprout formation of HUVEC as compared to CM of vehicle-treated cancer cells. Inhibition of sprout formation was further confirmed for cannabinoid-treated A549 cells co-cultured with HUVEC. Using antagonists to cannabinoid-activated receptors the antimigratory action was shown to be mediated via cannabinoid receptors or transient receptor potential vanilloid 1. SiRNA approaches revealed a cannabinoid-induced expression of tissue inhibitor of matrix metalloproteinases-1 (TIMP-1) as well as its upstream trigger, the intercellular adhesion molecule-1, to be causally linked to the observed decrease of HUVEC migration. Comparable anti-angiogenic effects were not detected following direct exposure of HUVEC to cannabinoids, but occurred after addition of recombinant TIMP-1 to HUVEC. Finally, antimigratory effects were confirmed for CM of two other cannabinoid-treated lung cancer cell lines (H460 and H358). Collectively, our data suggest a pivotal role of the anti-angiogenic factor TIMP-1 in intercellular tumor-endothelial cell communication resulting in anti-angiogenic features of endothelial cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. The coffee diterpene kahweol inhibits tumor necrosis factor-α-induced expression of cell adhesion molecules in human endothelial cells

    International Nuclear Information System (INIS)

    Kim, Hyung Gyun; Kim, Ji Young; Hwang, Yong Pil; Lee, Kyung Jin; Lee, Kwang Youl; Kim, Dong Hee; Kim, Dong Hyun; Jeong, Hye Gwang

    2006-01-01

    Endothelial cells produce adhesion molecules after being stimulated with various inflammatory cytokines. These adhesion molecules play an important role in the development of atherogenesis. Recent studies have highlighted the chemoprotective and anti-inflammatory effects of kahweol, a coffee-specific diterpene. This study examined the effects of kahweol on the cytokine-induced monocyte/human endothelial cell interaction, which is a crucial early event in atherogenesis. Kahweol inhibited the adhesion of TNFα-induced monocytes to endothelial cells and suppressed the TNFα-induced protein and mRNA expression of the cell adhesion molecules, VCAM-1 and ICAM-1. Furthermore, kahweol inhibited the TNFα-induced JAK2-PI3K/Akt-NF-κB activation pathway in these cells. Overall, kahweol has anti-inflammatory and anti-atherosclerotic activities, which occurs partly by down-regulating the pathway that affects the expression and interaction of the cell adhesion molecules on endothelial cells

  12. Platelet lysate-based pro-angiogenic nanocoatings.

    Science.gov (United States)

    Oliveira, Sara M; Pirraco, Rogério P; Marques, Alexandra P; Santo, Vítor E; Gomes, Manuela E; Reis, Rui L; Mano, João F

    2016-03-01

    Human platelet lysate (PL) is a cost-effective and human source of autologous multiple and potent pro-angiogenic factors, such as vascular endothelial growth factor A (VEGF A), fibroblast growth factor b (FGF b) and angiopoietin-1. Nanocoatings previously characterized were prepared by layer-by-layer assembling incorporating PL with marine-origin polysaccharides and were shown to activate human umbilical vein endothelial cells (HUVECs). Within 20 h of incubation, the more sulfated coatings induced the HUVECS to the form tube-like structures accompanied by an increased expression of angiogenic-associated genes, such as angiopoietin-1 and VEGF A. This may be a cost-effective approach to modify 2D/3D constructs to instruct angiogenic cells towards the formation of neo-vascularization, driven by multiple and synergistic stimulations from the PL combined with sulfated polysaccharides. The presence, or fast induction, of a stable and mature vasculature inside 3D constructs is crucial for new tissue formation and its viability. This has been one of the major tissue engineering challenges, limiting the dimensions of efficient tissue constructs. Many approaches based on cells, growth factors, 3D bioprinting and channel incorporation have been proposed. Herein, we explored a versatile technique, layer-by-layer assembling in combination with platelet lysate (PL), that is a cost-effective source of many potent pro-angiogenic proteins and growth factors. Results suggest that the combination of PL with sulfated polyelectrolytes might be used to introduce interfaces onto 2D/3D constructs with potential to induce the formation of cell-based tubular structures. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Preeclampsia and the Anti-Angiogenic State

    OpenAIRE

    Agarwal, Isha; Karumanchi, S. Ananth

    2011-01-01

    Preeclampsia is a major cause of maternal and fetal morbidity and mortality worldwide, however, its etiology remains unclear. Abnormal placental angiogenesis during pregnancy resulting from high levels of anti-angiogenic factors, soluble Flt1 (sFlt1) and soluble endoglin (sEng), has been implicated in preeclampsia pathogenesis. Accumulating evidence also points to a role for these anti-angiogenic proteins as serum biomarkers for the clinical diagnosis and prediction of preeclampsia. Uncoverin...

  14. Stable isotope labeling of glycoprotein expressed in silkworms using immunoglobulin G as a test molecule

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, Hirokazu [Nagoya City University, Faculty and Graduate School of Pharmaceutical Sciences (Japan); Nakamura, Masatoshi [National Institute of Agrobiological Sciences, Genetic Resources Conservation Research Unit, Genetic Resources Center (Japan); Yokoyama, Jun [Taiyo Nippon Sanso Corporation, Tsukuba Laboratories (Japan); Zhang, Ying; Yamaguchi, Takumi [National Institutes of Natural Sciences, Institute for Molecular Science and Okazaki Institute for Integrative Bioscience (Japan); Kondo, Sachiko [Nagoya City University, Faculty and Graduate School of Pharmaceutical Sciences (Japan); Kobayashi, Jun [Yamaguchi University, Department of Biological and Environmental Sciences, Faculty of Agriculture (Japan); Kato, Tatsuya; Park, Enoch Y. [Shizuoka University, Laboratory of Biotechnology, Research Institute of Green Science and Technology (Japan); Nakazawa, Shiori [Nagoya University, Sugashima Marine Biological Laboratory, Graduate School of Science (Japan); Hashii, Noritaka; Kawasaki, Nana [National Institute of Health Sciences, Division of Biological Chemistry and Biologicals (Japan); Kato, Koichi, E-mail: kkato@phar.nagoya-cu.ac.jp [Nagoya City University, Faculty and Graduate School of Pharmaceutical Sciences (Japan)

    2015-06-15

    Silkworms serve as promising bioreactors for the production of recombinant proteins, including glycoproteins and membrane proteins, for structural and functional protein analyses. However, lack of methodology for stable isotope labeling has been a major deterrent to using this expression system for nuclear magnetic resonance (NMR) structural biology. Here we developed a metabolic isotope labeling technique using commercially available silkworm larvae. The fifth instar larvae were infected with baculoviruses for co-expression of recombinant human immunoglobulin G (IgG) as a test molecule, with calnexin as a chaperone. They were subsequently reared on an artificial diet containing {sup 15}N-labeled yeast crude protein extract. We harvested 0.1 mg of IgG from larva with a {sup 15}N-enrichment ratio of approximately 80 %. This allowed us to compare NMR spectral data of the Fc fragment cleaved from the silkworm-produced IgG with those of an authentic Fc glycoprotein derived from mammalian cells. Therefore, we successfully demonstrated that our method enables production of isotopically labeled glycoproteins for NMR studies.

  15. Gene expression profiles of cell adhesion molecules, matrix metalloproteinases and their tissue inhibitors in canine oral tumors.

    Science.gov (United States)

    Pisamai, Sirinun; Rungsipipat, Anudep; Kalpravidh, Chanin; Suriyaphol, Gunnaporn

    2017-08-01

    Perturbation of cell adhesion can be essential for tumor cell invasion and metastasis, but the current knowledge on the gene expression of molecules that mediate cell adhesion in canine oral tumors is limited. The present study aimed to investigate changes in the gene expression of cell adhesion molecules (E-cadherin or CDH1, syndecan 1 or SDC1, NECTIN2 and NECTIN4), matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs), in canine oral tumors, including benign tumors, oral melanoma (OM) and non-tonsillar oral squamous cell carcinoma (OSCC), by quantitative real-time reverse transcription PCR. When compared with the normal gingival controls, decreased CDH1, SDC1 and NECTIN4 expression levels were observed in OSCC and OM, reflecting a possible role as cell adhesion molecules and tumor suppressors in canine oral cancers in contrast to the upregulation of MMP2 expression. Downregulated MMP7 was specifically revealed in the OM group. In the late-stage OM, the positive correlation of MMP7 and CDH1 expression was noticed as well as that of SDC1 and NECTIN4. Enhanced TIMP1 expression was shown in all tumor groups with prominent expression in the benign tumors and the early-stage OM. MMP14 expression was notable in the early-stage OM. Higher MMP9 and TIMP1 expression was observed in the acanthomatous ameloblastoma. In conclusion, this study revealed that the altered expression of cell adhesion molecules, MMP7 and MMP2 was correlated with clinicopathologic features in canine oral cancers whereas TIMP1 and MMP14 expression was probably associated with early-stage tumors; therefore, these genes might serve as molecular markers for canine oral tumors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Angiopoietin-like-4 is a potential angiogenic mediator in arthritis

    NARCIS (Netherlands)

    Hermann, L.M.; Pinkerton, M.; Jennings, K.; Yang, L.; Grom, A.; Sowders, D.; Kersten, A.H.; Witte, D.P.; Hirsch, R.; Thornton, S.

    2005-01-01

    Our previous studies of gene expression profiling during collagen-induced arthritis (CIA) indicated that the putative angiogenic factor Angptl4 was one of the most highly expressed mRNAs early in disease. To investigate the potential involvement of Angptl4 in CIA pathogenesis, Angptl4 protein levels

  17. Disrupted Balance of Angiogenic and Antiangiogenic Signalings in Preeclampsia

    Directory of Open Access Journals (Sweden)

    Mitsuko Furuya

    2011-01-01

    Full Text Available The placenta plays a central role in governing local circulatory system that mediates maternal condition and fetal growth. In early gestational phases, the placenta exerts properties of invasion and neovascularization for successful placentation. Extravillous invasive trophoblasts replace uterine endometrial vasculature and establish local blood pathway to obtain oxygen and nutrients from the mother. In later phases, the placenta promotes villous angiogenesis and vascular maturation that are finely controlled by angiogenic and antiangiogenic molecules. Among various molecules involved in placental neovascularization, vascular endothelial growth factor receptors (VEGFRs and angiotensin II receptor type 1 (AT1 mediate important signaling pathways for maternal circulatory system and fetal growth. VEGFR1 and VEGFR2 are functional receptors for placental growth factor (PlGF and VEGF, respectively, and PlGF-VEGFR1 and VEGF-VEGFR2 interactions are disturbed in many preeclamptic patients by excess amount of soluble form of VEGFR1 (also named sFlt1, a natural PlGF/VEGF antagonist. Recent studies have disclosed that excessive sFlt1 production in the placenta and aberrant AT1 signaling in the mother are closely associated with the pathology of preeclampsia and intrauterine growth restriction (IUGR. In this paper, neovascularization of the placenta and pathological events associated with disrupted balance between angiogenic and antiangiogenic signaling in preeclampsia are discussed.

  18. Repression of Salmonella enterica phoP Expression by Small Molecules from Physiological Bile

    Science.gov (United States)

    Antunes, L. Caetano M.; Wang, Melody; Andersen, Sarah K.; Ferreira, Rosana B. R.; Kappelhoff, Reinhild; Han, Jun; Borchers, Christoph H.

    2012-01-01

    Infection with Salmonella enterica serovar Typhi in humans causes the life-threatening disease typhoid fever. In the laboratory, typhoid fever can be modeled through the inoculation of susceptible mice with Salmonella enterica serovar Typhimurium. Using this murine model, we previously characterized the interactions between Salmonella Typhimurium and host cells in the gallbladder and showed that this pathogen can successfully invade gallbladder epithelial cells and proliferate. Additionally, we showed that Salmonella Typhimurium can use bile phospholipids to grow at high rates. These abilities are likely important for quick colonization of the gallbladder during typhoid fever and further pathogen dissemination through fecal shedding. To further characterize the interactions between Salmonella and the gallbladder environment, we compared the transcriptomes of Salmonella cultures grown in LB broth or physiological murine bile. Our data showed that many genes involved in bacterial central metabolism are affected by bile, with the citric acid cycle being repressed and alternative respiratory systems being activated. Additionally, our study revealed a new aspect of Salmonella interactions with bile through the identification of the global regulator phoP as a bile-responsive gene. Repression of phoP expression could also be achieved using physiological, but not commercial, bovine bile. The biological activity does not involve PhoPQ sensing of a bile component and is not caused by bile acids, the most abundant organic components of bile. Bioactivity-guided purification allowed the identification of a subset of small molecules from bile that can elicit full activity; however, a single compound with phoP inhibitory activity could not be isolated, suggesting that multiple molecules may act in synergy to achieve this effect. Due to the critical role of phoP in Salmonella virulence, further studies in this area will likely reveal aspects of the interaction between Salmonella

  19. Post-Spaceflight (STS-135 Mouse Splenocytes Demonstrate Altered Activation Properties and Surface Molecule Expression.

    Directory of Open Access Journals (Sweden)

    Shen-An Hwang

    Full Text Available Alterations in immune function have been documented during or post-spaceflight and in ground based models of microgravity. Identification of immune parameters that are dysregulated during spaceflight is an important step in mitigating crew health risks during deep space missions. The in vitro analysis of leukocyte activity post-spaceflight in both human and animal species is primarily focused on lymphocytic function. This report completes a broader spectrum analysis of mouse lymphocyte and monocyte changes post 13 days orbital flight (mission STS-135. Analysis includes an examination in surface markers for cell activation, and antigen presentation and co-stimulatory molecules. Cytokine production was measured after stimulation with T-cell mitogen or TLR-2, TLR-4, or TLR-5 agonists. Splenocyte surface marker analysis immediate post-spaceflight and after in vitro culture demonstrated unique changes in phenotypic populations between the flight mice and matched treatment ground controls. Post-spaceflight splenocytes (flight splenocytes had lower expression intensity of CD4+CD25+ and CD8+CD25+ cells, lower percentage of CD11c+MHC II+ cells, and higher percentage of CD11c+MHC I+ populations compared to ground controls. The flight splenocytes demonstrated an increase in phagocytic activity. Stimulation with ConA led to decrease in CD4+ population but increased CD4+CD25+ cells compared to ground controls. Culturing with TLR agonists led to a decrease in CD11c+ population in splenocytes isolated from flight mice compared to ground controls. Consequently, flight splenocytes with or without TLR-agonist stimulation showed a decrease in CD11c+MHC I+, CD11c+MHC II+, and CD11c+CD86+ cells compared to ground controls. Production of IFN-γ was decreased and IL-2 was increased from ConA stimulated flight splenocytes. This study demonstrated that expression of surface molecules can be affected by conditions of spaceflight and impaired responsiveness persists under

  20. γ-Oryzanol reduces adhesion molecule expression in vascular endothelial cells via suppression of nuclear factor-κB activation.

    Science.gov (United States)

    Sakai, Satoshi; Murata, Takahisa; Tsubosaka, Yoshiki; Ushio, Hideki; Hori, Masatoshi; Ozaki, Hiroshi

    2012-04-04

    γ-Oryzanol (γ-ORZ) is a mixture of phytosteryl ferulates purified from rice bran oil. In this study, we examined whether γ-ORZ represents a suppressive effect on the lipopolysaccharide (LPS)-induced adhesion molecule expression on vascular endothelium. Treatment with LPS elevated the mRNA expression of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and E-selectin in bovine aortic endothelial cells (BAECs). Pretreatment with γ-ORZ dose-dependently decreased the LPS-mediated expression of these genes. Western blotting also revealed that pretreatment with γ-ORZ dose-dependently inhibited LPS-induced VCAM-1 expression in human umbilical vein endothelial cells. Consistently, pretreatment with γ-ORZ dose-dependently reduced LPS-induced U937 monocyte adhesion to BAECs. In immunofluorescence, LPS caused nuclear factor-κB (NF-κB) nuclear translocation in 40% of BAECs, which indicates NF-κB activation. Pretreatment with γ-ORZ, as well as its components (cycloartenyl ferulate, ferulic acid, or cycloartenol), dose-dependently inhibited LPS-mediated NF-κB activation. Collectively, our results suggested that γ-ORZ reduced LPS-mediated adhesion molecule expression through NF-κB inhibition in vascular endothelium.

  1. Effect of spironolactone on renal and intercellular adhesion molecule-1 expression in Type 2 diabetic rats

    International Nuclear Information System (INIS)

    Zhang Suwan; Li Sumei; Zhai Fei; Zhang Li; Zhang Rong; Ru Yan

    2011-01-01

    Objective: To observe the influence of spironolactone on the serum and urine intercellular adhesion molecule-1 (ICAM-1) level, and the change of renal structure and function of type 2 diabetic rats. Methods: 30 healthy male SD rats were chosen 10 of them were randomly selected as normal controls (group NC) n=10; Then these rats were randomly divided into type 2 diabetes group (group DM) n=10 and type 2 diabetes + spironolactone treated group (group SPI) n=10. After 8 weeks, the levels of blood glucose, serum lipids, urine biochemical, renal pathological changes were examined; while the serum and urine ICAM-1 levels changes were also detected. Results: 1. Compared with group NC, the levels of fBG and HbA1c were significantly increased in group DM and group SPI (P 0.05). 2. After 8 weeks,the levels of ACR, URBP, UICAM-1, SICAM-1 and kidney/body weight ratio in group DM and group SPI were higher than group NC (P<0.05); the five indexes were significantly lower in group SPI compared with group DM (P<0.05). In addition, UICAM-1 excretion rate and SICAM-1 level showed positive correlations with ACR, URBP excretion rate and kidney/body weight ratio (P<0.01). 3. Pathology showed that the extent of glomerular lesions in rats in group SPI apparently reduced, ICAM-1 expression was decreased compared with that in group DM (P<0.01). Conclusion: Spironolactone can definitely protect type 2 diabetic kidney,and this protective effect was independent on the hypoglycemic effect. The mechanisms might be associated with its inhibition effect on ICAM-1 expression and its excretion. (authors)

  2. In vitro and in situ intercellular adhesion molecule-1 (ICAM-1) expression by endothelial cells lining a polyester fabric.

    Science.gov (United States)

    Rémy, M; Valli, N; Brethes, D; Labrugère, C; Porté-Durrieu, M C; Dobrova, N B; Novikova, S P; Gorodkov, A J; Bordenave, L

    1999-02-01

    In order to improve long-term patency of vascular grafts, the promising concept of endothelial cell seeding is actually under investigation. Our laboratory tested a polyester coated with albumin and chitosan which permits a rapid colonization by human umbilical vein endothelial cells (HUVEC) and it seems relevant to test in vitro the expression of adhesive molecules expressed by cells with regard to the inflammatory process. We studied intercellular adhesion molecule-1 (ICAM-1) expression and focused our work on the determination of ICAM-1 sites expressed per adherent cell lining the biomaterial, thus in situ, in comparison to control HUVEC on plastic wells: the results obtained by binding experiments were correlated to flow cytometry analyses and showed that the polyester does not induce a proinflammatory state and that HUVEC covering the structure are able to respond to a stimulus.

  3. Effect of low dose irradiation on expression of membrane molecules of T lymphocytes in cord blood

    International Nuclear Information System (INIS)

    Liu Chang'an; Yang Guang; Jia Tingzhen

    2001-01-01

    The membrane molecules expression of T lymphocytes of cord blood after low dose irradiation (LDI) was investigated. Freshly isolated lymphocytes from cord blood were irradiated with 62 mGy γ-ray. At different time (4 h, 12 h, 24 h) after irradiation the changes of TCR + , CD3 + , CD4 + , CD8 + cells were examined by flow cytometry with direct immunofluorescence, respectively. The experimental results showed that the proportion of CD3 + , TCR + /CD3 + , CD4 + , CD8 + cells increased significantly after LDI, with the most obvious enhancement noted in the 24 h experimental group. The ratio of CD4 to CD8 showed no significant changes. It is suggested that expedition of the maturation, activation and signal transduction of T lymphocytes from cord blood can be induced by irradiation of 62 mGy γ-ray. So the reconstruction of immune functions after cord blood transplantation can be accelerated, enhancing the graft versus leukemia (GVL) effect and preventing the tumor from relapsing

  4. DEPTOR regulates vascular endothelial cell activation and proinflammatory and angiogenic responses.

    Science.gov (United States)

    Bruneau, Sarah; Nakayama, Hironao; Woda, Craig B; Flynn, Evelyn A; Briscoe, David M

    2013-09-05

    The maintenance of normal tissue homeostasis and the prevention of chronic inflammatory disease are dependent on the active process of inflammation resolution. In endothelial cells (ECs), proinflammation results from the activation of intracellular signaling responses and/or the inhibition of endogenous regulatory/pro-resolution signaling networks that, to date, are poorly defined. In this study, we find that DEP domain containing mTOR interacting protein (DEPTOR) is expressed in different microvascular ECs in vitro and in vivo, and using a small interfering RNA (siRNA) knockdown approach, we find that it regulates mammalian target of rapamycin complex 1 (mTORC1), extracellular signal-regulated kinase 1/2, and signal transducer and activator of transcription 1 activation in part through independent mechanisms. Moreover, using limited gene arrays, we observed that DEPTOR regulates EC activation including mRNA expression of the T-cell chemoattractant chemokines CXCL9, CXCL10, CXCL11, CX3CL1, CCL5, and CCL20 and the adhesion molecules intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 (P < .05). DEPTOR siRNA-transfected ECs also bound increased numbers of peripheral blood mononuclear cells (P < .005) and CD3+ T cells (P < .005) in adhesion assays in vitro and had increased migration and angiogenic responses in spheroid sprouting (P < .01) and wound healing (P < .01) assays. Collectively, these findings define DEPTOR as a critical upstream regulator of EC activation responses and suggest that it plays an important role in endogenous mechanisms of anti-inflammation and pro-resolution.

  5. Is human fracture hematoma inherently angiogenic?

    LENUS (Irish Health Repository)

    Street, J

    2012-02-03

    This study attempts to explain the cellular events characterizing the changes seen in the medullary callus adjacent to the interfragmentary hematoma during the early stages of fracture healing. It also shows that human fracture hematoma contains the angiogenic cytokine vascular endothelial growth factor and has the inherent capability to induce angiogenesis and thus promote revascularization during bone repair. Patients undergoing emergency surgery for isolated bony injury were studied. Raised circulating levels of vascular endothelial growth factor were seen in all injured patients, whereas the fracture hematoma contained significantly higher levels of vascular endothelial growth factor than did plasma from these injured patients. However, incubation of endothelial cells in fracture hematoma supernatant significantly inhibited the in vitro angiogenic parameters of endothelial cell proliferation and microtubule formation. These phenomena are dependent on a local biochemical milieu that does not support cytokinesis. The hematoma potassium concentration is cytotoxic to endothelial cells and osteoblasts. Subcutaneous transplantation of the fracture hematoma into a murine wound model resulted in new blood vessel formation after hematoma resorption. This angiogenic effect is mediated by the significant concentrations of vascular endothelial growth factor found in the hematoma. This study identifies an angiogenic cytokine involved in human fracture healing and shows that fracture hematoma is inherently angiogenic. The differences between the in vitro and in vivo findings may explain the phenomenon of interfragmentary hematoma organization and resorption that precedes fracture revascularization.

  6. The mouse tumor cell lines EL4 and RMA display mosaic expression of NK-related and certain other surface molecules and appear to have a common origin.

    Science.gov (United States)

    Gays, F; Unnikrishnan, M; Shrestha, S; Fraser, K P; Brown, A R; Tristram, C M; Chrzanowska-Lightowlers, Z M; Brooks, C G

    2000-05-15

    As a potential means for facilitating studies of NK cell-related molecules, we examined the expression of these molecules on a range of mouse tumor cell lines. Of the lines we initially examined, only EL4 and RMA expressed such molecules, both lines expressing several members of the Ly49 and NKRP1 families. Unexpectedly, several of the NK-related molecules, together with certain other molecules including CD2, CD3, CD4, CD32, and CD44, were often expressed in a mosaic manner, even on freshly derived clones, indicating frequent switching in expression. In each case examined, switching was controlled at the mRNA level, with expression of CD3zeta determining expression of the entire CD3-TCR complex. Each of the variable molecules was expressed independently, with the exception that CD3 was restricted to cells that also expressed CD2. Treatment with drugs that affect DNA methylation and histone acetylation could augment the expression of at least some of the variable molecules. The striking phenotypic similarity between EL4 and RMA led us to examine the state of their TCRbeta genes. Both lines had identical rearrangements on both chromosomes, indicating that RMA is in fact a subline of EL4. Overall, these findings suggest that EL4 is an NK-T cell tumor that may have retained a genetic mechanism that permits the variable expression of a restricted group of molecules involved in recognition and signaling.

  7. Expression of CD80 and CD86 costimulatory molecules are potential markers for better survival in nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Chang, Cheng-Shyong; Chang, Julia H; Hsu, Nicholas C; Lin, Hsuan-Yu; Chung, Chih-Yuan

    2007-01-01

    B7 Costimulatory signal is essential to trigger T-cell activation upon the recognition of tumor antigens. This study examined the expression of B7-1 (CD80) and B7-2 (CD86) costimulatory molecules along with HLA-DR and the presence of infiltrating lymphocytes and dendritic cells to assess their significance in patients with nasopharyngeal carcinoma (NPC). Expression of CD80, CD86, HLA-DR, S-100 protein and the presence of infiltrating lymphocytes and follicular dendritic reticulum cells were immunohistochemically examined on the paraffin-embedded tissue blocks from newly diagnosed NPC patients (n = 50). The results were correlated with clinical outcome of patients. CD80 and CD86 were each expressed in 10 of 50 cases in which they co-expressed in 9 cases. Univariate analysis revealed that patients with CD80/CD86 expression had significantly better overall survival than those without it (P = 0.017), but after adjustment for stage, nodal status, and treatment, the expression of CD80/CD86 did not significantly correlate with overall survival. Expression of HLA-DR and the presence of infiltrating lymphocytes and dendritic cells did not appear to have impact on the survival of patients. Expression of CD80 and CD86 costimulatory molecules appears to be a marker of better survival in patient with NPC

  8. Effects of irradiation on the expression of the adhesion molecules (NCAM, ICAM-1) by glioma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Yamanaka, Ryuya; Tanaka, Ryuichi; Yoshida, Seiichi [Niigata Univ. (Japan). Brain Research Inst.

    1993-11-01

    The expression of the intercellular adhesion molecule-1 (ICAM-1) and neural cell adhesion molecule (NCAM) by glioma cell lines was investigated. The effects of interferon (IFN)-[gamma] or irradiation on the expression was also assessed. Two glioma cell lines showed more than 75% NCAM-positive cells. After treatment with IFN-[gamma] or irradiation, another three cell lines were induced to show more than 50% positive cells. Three glioma cell lines showed more than 50% ICAM-1-positive cells. After treatment with IFN-[gamma], another two cell lines were induced to show more than 50% positive cells. After treatment with irradiation, one more cell line was induced to show more than 50% positive cells. ICAM-1 and NCAM expression by glioma cell lines is susceptible to modulation by IFN-[gamma] or irradiation. (author).

  9. Small molecule inhibition of cGAS reduces interferon expression in primary macrophages from autoimmune mice.

    Science.gov (United States)

    Vincent, Jessica; Adura, Carolina; Gao, Pu; Luz, Antonio; Lama, Lodoe; Asano, Yasutomi; Okamoto, Rei; Imaeda, Toshihiro; Aida, Jumpei; Rothamel, Katherine; Gogakos, Tasos; Steinberg, Joshua; Reasoner, Seth; Aso, Kazuyoshi; Tuschl, Thomas; Patel, Dinshaw J; Glickman, J Fraser; Ascano, Manuel

    2017-09-29

    Cyclic GMP-AMP synthase is essential for innate immunity against infection and cellular damage, serving as a sensor of DNA from pathogens or mislocalized self-DNA. Upon binding double-stranded DNA, cyclic GMP-AMP synthase synthesizes a cyclic dinucleotide that initiates an inflammatory cellular response. Mouse studies that recapitulate causative mutations in the autoimmune disease Aicardi-Goutières syndrome demonstrate that ablating the cyclic GMP-AMP synthase gene abolishes the deleterious phenotype. Here, we report the discovery of a class of cyclic GMP-AMP synthase inhibitors identified by a high-throughput screen. These compounds possess defined structure-activity relationships and we present crystal structures of cyclic GMP-AMP synthase, double-stranded DNA, and inhibitors within the enzymatic active site. We find that a chemically improved member, RU.521, is active and selective in cellular assays of cyclic GMP-AMP synthase-mediated signaling and reduces constitutive expression of interferon in macrophages from a mouse model of Aicardi-Goutières syndrome. RU.521 will be useful toward understanding the biological roles of cyclic GMP-AMP synthase and can serve as a molecular scaffold for development of future autoimmune therapies.Upon DNA binding cyclic GMP-AMP synthase (cGAS) produces a cyclic dinucleotide, which leads to the upregulation of inflammatory genes. Here the authors develop small molecule cGAS inhibitors, functionally characterize them and present the inhibitor and DNA bound cGAS crystal structures, which will facilitate drug development.

  10. Endothelium adhesion molecules ICAM-1, ICAM-2, VCAM-1 and VLA-4 expression in leprosy.

    Science.gov (United States)

    de Sousa, Juarez; Sousa Aarão, Tinara Leila; Rodrigues de Sousa, Jorge; Hirai, Kelly Emi; Silva, Luciana Mota; Dias, Leonidas Braga; Oliveira Carneiro, Francisca Regina; Fuzii, Hellen Thais; Quaresma, Juarez Antonio Simões

    2017-03-01

    Leprosy triggers a complex relationship between the pathogen and host immune response. Endothelium plays an important role in this immune response by directly influencing cell migration to infected tissues. The objective of this work is to investigate the possible role of endothelium in M. leprae infection, correlating the characteristics of endothelial markers with the expression pattern of cytokines. Thirty-six skin biopsy samples were cut into 5-μm thick sections and stained with hematoxylin-eosin and Ziehl-Neelsen for morphological analysis and then submitted to immunohistochemical analysis using monoclonal antibodies against ICAM-1, ICAM-2, VCAM-1, and VLA-4. Immunostaining for ICAM-1 showed a significantly larger number of stained endothelial cells in the tuberculoid leprosy (9.92 ± 1.11 cells/mm 2 ) when compared to lepromatous samples (5.87 ± 1.01 cells/mm 2 ) and ICAM-2 revealed no significant difference in the number of endothelial cells expressing this marker between the tuberculoid (13.21 ± 1.27 cells/mm 2 ) and lepromatous leprosy (14.3 ± 1.02 cells/mm 2 ). VCAM-1-immunostained showed 18.28 ± 1.46/mm 2 cells in tuberculoid leprosy and 10.67 ± 1.25 cells/mm 2 in the lepromatous leprosy. VLA-4 exhibited 22.46 ± 1.38 cells/mm 2 in the tuberculoid leprosy 16.04 ± 1.56 cells/mm 2 in the lepromatous leprosy. Samples with characteristics of the tuberculoid leprosy exhibited a larger number of cells stained with ICAM-1, VCAM-1 and VLA-4, demonstrating the importance of these molecules in the migration and selection of cells that reach the inflamed tissue. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Identification of a potent endothelium-derived angiogenic factor

    DEFF Research Database (Denmark)

    Jankowski, Vera; Tölle, Markus; Tran, Thi Nguyet Anh

    2013-01-01

    The secretion of angiogenic factors by vascular endothelial cells is one of the key mechanisms of angiogenesis. Here we report on the isolation of a new potent angiogenic factor, diuridine tetraphosphate (Up4U) from the secretome of human endothelial cells. The angiogenic effect of the endothelia...

  12. Glutamine Supplementation Attenuates Expressions of Adhesion Molecules and Chemokine Receptors on T Cells in a Murine Model of Acute Colitis

    Directory of Open Access Journals (Sweden)

    Yu-Chen Hou

    2014-01-01

    Full Text Available Background. Migration of T cells into the colon plays a major role in the pathogenesis in inflammatory bowel disease. This study investigated the effects of glutamine (Gln supplementation on chemokine receptors and adhesion molecules expressed by T cells in mice with dextran sulfate sodium- (DSS- induced colitis. Methods. C57BL/6 mice were fed either a standard diet or a Gln diet replacing 25% of the total nitrogen. After being fed the diets for 5 days, half of the mice from both groups were given 1.5% DSS in drinking water to induce colitis. Mice were killed after 5 days of DSS exposure. Results. DSS colitis resulted in higher expression levels of P-selectin glycoprotein ligand- (PSGL- 1, leukocyte function-associated antigen- (LFA- 1, and C-C chemokine receptor type 9 (CCR9 by T helper (Th and cytotoxic T (Tc cells, and mRNA levels of endothelial adhesion molecules in colons were upregulated. Gln supplementation decreased expressions of PSGL-1, LFA-1, and CCR9 by Th cells. Colonic gene expressions of endothelial adhesion molecules were also lower in Gln-colitis mice. Histological finding showed that colon infiltrating Th cells were less in the DSS group with Gln administration. Conclusions. Gln supplementation may ameliorate the inflammation of colitis possibly via suppression of T cell migration.

  13. Apelin is a novel angiogenic factor in retinal endothelial cells

    International Nuclear Information System (INIS)

    Kasai, Atsushi; Shintani, Norihito; Oda, Maki; Kakuda, Michiya; Hashimoto, Hitoshi; Matsuda, Toshio; Hinuma, Shuji; Baba, Akemichi

    2004-01-01

    There has been much focus recently on the possible functions of apelin, an endogenous ligand for the orphan G-protein-coupled receptor APJ, in cardiovascular and central nervous systems. We report a new function of apelin as a novel angiogenic factor in retinal endothelial cells. The retinal endothelial cell line RF/6A highly expressed both apelin and APJ transcripts, while human umbilical venous endothelial cells (HUVECs) only expressed apelin mRNA. In accordance with these observations, apelin at concentrations of 1 pM-1 μM significantly enhanced migration, proliferation, and capillary-like tube formation of RF/6A cells, but not those of HUVECs, whereas VEGF stimulates those parameters of both cell types. In vivo Matrigel plug assay for angiogenesis, the inclusion of 1 nM apelin in the Matrigel resulted in clear capillary-like formations with an increase of hemoglobin content in the plug. This is the first report showing that apelin is an angiogenic factor in retinal endothelial cells

  14. Evaluation of the first 44Sc-labeled Affibody molecule for imaging of HER2-expressing tumors

    International Nuclear Information System (INIS)

    Honarvar, Hadis; Müller, Cristina; Cohrs, Susan; Haller, Stephanie; Westerlund, Kristina; Karlström, Amelie Eriksson; Meulen, Nicholas P. van der; Schibli, Roger; Tolmachev, Vladimir

    2017-01-01

    Introduction: Affibody molecules are small (58 amino acids) high-affinity proteins based on a tri-helix non-immunoglobulin scaffold. A clinical study has demonstrated that PET imaging using Affibody molecules labeled with 68 Ga (T ½ = 68 min) can visualize metastases of breast cancer expressing human epidermal growth factor receptor type 2 (HER2) and provide discrimination between tumors with high and low expression level. This may help to identify breast cancer patients benefiting from HER2-targeting therapies. The best discrimination was at 4 h post injection. Due to longer half-life, a positron-emitting radionuclide 44 Sc (T ½ = 4.04 h) might be a preferable label for Affibody molecules for imaging at several hours after injection. Methods: A synthetic second-generation anti-HER2 Affibody molecule Z HER2:2891 was labeled with 44 Sc via a DOTA-chelator conjugated to the N-terminal amino group. Binding specificity, affinity and cellular processing 44 Sc-DOTA-Z HER2:2891 and 68 Ga-DOTA-Z HER2:2891 were compared in vitro using HER2-expressing cells. Biodistribution and imaging properties of 44 Sc-DOTA-Z HER2:2891 and 68 Ga-DOTA-Z HER2:2891 were evaluated in Balb/c nude mice bearing HER2-expression xenografts. Results: The labeling yield of 98 ± 2% and specific activity of 7.8 GBq/μmol were obtained. The conjugate demonstrated specific binding to HER2-expressing SKOV3.ip cells in vitro and to SKOV3.ip xenografts in nude mice. The distribution of radioactivity at 3 h post injection was similar for 44 Sc-DOTA-Z HER2:2891 and 68 Ga-DOTA-Z HER2:2891 , but the blood clearance of the 44 Sc-labeled variant was slower and the tumor-to-blood ratio was reduced (15 ± 2 for 44 Sc-DOTA-Z HER2:2891 vs 46 ± 9 for 68 Ga-DOTA-Z HER2:2891 ). At 6 h after injection of 44 Sc-DOTA-Z HER2:2891 the tumor uptake was 8 ± 2% IA/g and the tumor-to-blood ratio was 51 ± 8. Imaging using small-animal PET/CT demonstrated that 44 Sc-DOTA-Z HER2:2891 provides specific and high

  15. Cardiac angiogenic imbalance leads to peripartum cardiomyopathy.

    Science.gov (United States)

    Patten, Ian S; Rana, Sarosh; Shahul, Sajid; Rowe, Glenn C; Jang, Cholsoon; Liu, Laura; Hacker, Michele R; Rhee, Julie S; Mitchell, John; Mahmood, Feroze; Hess, Philip; Farrell, Caitlin; Koulisis, Nicole; Khankin, Eliyahu V; Burke, Suzanne D; Tudorache, Igor; Bauersachs, Johann; del Monte, Federica; Hilfiker-Kleiner, Denise; Karumanchi, S Ananth; Arany, Zoltan

    2012-05-09

    Peripartum cardiomyopathy (PPCM) is an often fatal disease that affects pregnant women who are near delivery, and it occurs more frequently in women with pre-eclampsia and/or multiple gestation. The aetiology of PPCM, and why it is associated with pre-eclampsia, remain unknown. Here we show that PPCM is associated with a systemic angiogenic imbalance, accentuated by pre-eclampsia. Mice that lack cardiac PGC-1α, a powerful regulator of angiogenesis, develop profound PPCM. Importantly, the PPCM is entirely rescued by pro-angiogenic therapies. In humans, the placenta in late gestation secretes VEGF inhibitors like soluble FLT1 (sFLT1), and this is accentuated by multiple gestation and pre-eclampsia. This anti-angiogenic environment is accompanied by subclinical cardiac dysfunction, the extent of which correlates with circulating levels of sFLT1. Exogenous sFLT1 alone caused diastolic dysfunction in wild-type mice, and profound systolic dysfunction in mice lacking cardiac PGC-1α. Finally, plasma samples from women with PPCM contained abnormally high levels of sFLT1. These data indicate that PPCM is mainly a vascular disease, caused by excess anti-angiogenic signalling in the peripartum period. The data also explain how late pregnancy poses a threat to cardiac homeostasis, and why pre-eclampsia and multiple gestation are important risk factors for the development of PPCM.

  16. Cord Blood Angiogenic Profile in Normotensive Pregnancies

    African Journals Online (AJOL)

    2017-06-30

    Jun 30, 2017 ... favorable anti- to pro-angiogenic balance in pregnant women. ... tweak,and build upon the work non-commercially,as long as the author is credited and the new ..... utero blood pressure in childhood and adult life and mortality.

  17. Roles of pro-angiogenic and anti-angiogenic factors as well as matrix metalloproteinases in healing of NSAID-induced small intestinal ulcers in rats.

    Science.gov (United States)

    Gyenge, Melinda; Amagase, Kikuko; Kunimi, Shino; Matsuoka, Rie; Takeuchi, Koji

    2013-10-06

    We examined changes in the expression of a pro-angiogenic factor, vascular endothelial growth factor (VEGF), and an anti-angiogenic factor, endostatin, as well as matrix metalloproteinase (MMP)-2 and MMP-9 in the rat small intestine after administration of indomethacin and investigated the roles of these factors in the healing of indomethacin-induced small intestinal ulcers. Male SD rats were given indomethacin (10mg/kg) p.o. and euthanized at various time points (3-24h and 2-7days) after the administration. To impair the healing of these lesions, low-dose of indomethacin (2mg/kg) was given p.o. once daily for 6days starting 1day after ulceration. Levels of VEGF, endostatin, MMP-2 and MMP-9 were determined by Western blotting. The expression of both VEGF and endostatin was upregulated after the ulceration. Repeated administration of low-dose indomethacin impaired the ulcer healing with a decrease of VEGF expression and a further increase of endostatin expression, resulting in a marked decrease in the ratio of VEGF/endostatin expression. The levels of MMP-2 and MMP-9 were both significantly increased after the ulceration, but these responses were suppressed by the repeated indomethacin treatment. The healing of these ulcers was significantly delayed by the repeated administration of MMP inhibitors such as ARP-101 and SB-3CT. The results confirm the importance of the balance between pro-angiogenic and anti-angiogenic activities in the healing of indomethacin-induced small intestinal damage and further suggest that the increased expression of MMP-2 and MMP-9 is another important factor for ulcer healing in the small intestine. © 2013.

  18. Increased fluidity and oxidation of malarial lipoproteins: relation with severity and induction of endothelial expression of adhesion molecules

    Directory of Open Access Journals (Sweden)

    Looareesuwan Sornchai

    2004-06-01

    Full Text Available Abstract Introduction Oxidative stress has been demonstrated in malaria. The potential oxidative modification of lipoproteins derived from malaria patients was studied. These oxidized lipids may have role in pathogenesis of malaria. Method The plasma lipid profile and existence of oxidized forms of very low density lipoprotein (VLDL, low density lipoprotein (LDL and high density lipoprotein (HDL were investigated in malaria (17 mild and 24 severe patients and 37 control subjects. Thiobarbituric acid reactive substances (TBARs, conjugated dienes, tryptophan fluorescence and fluidity of lipoproteins were determined as markers of oxidation. The biological effect of malarial lipoproteins was assessed by the expression of adhesion molecules on endothelial cells. Results Malarial lipoproteins had decreased cholesterol (except in VLDL and phospholipid. The triglyceride levels were unchanged. The cholesterol/phospholipid ratio of LDL was decreased in malaria, but increased in VLDL and HDL. TBARs and conjugate dienes were increased in malarial lipoproteins, while the tryptophan fluorescence was decreased. The fluidity of lipoproteins was increased in malaria. These indicated the presence of oxidized lipoproteins in malaria by which the degree of oxidation was correlated with severity. Of three lipoproteins from malarial patients, LDL displayed the most pronounced oxidative modification. In addition, oxidized LDL from malaria patients increased endothelial expression of adhesion molecules. Conclusion In malaria, the lipoproteins are oxidatively modified, and the degree of oxidation is related with severity. Oxidized LDL from malarial patients increases the endothelial expression of adhesion molecules. These suggest the role of oxidized lipoproteins, especially LDL, on the pathogenesis of disease.

  19. Inhibition of TNFα-induced adhesion molecule expression by (Z)-(S)-9-octadecenamide, N-(2-hydroxyethyl,1-methyl).

    Science.gov (United States)

    Chen, Caixia; Jin, Xin; Meng, Xianglan; Zheng, Chengwei; Shen, Yanhui; Wang, Yiqing

    2011-06-25

    Inflammation is a primary event in atherogenesis. Oleoylethanolamide (OEA), a naturally occurring fatty-acid ethanolamide, lowers lipid levels in liver and blood through activation of the nuclear receptor, peroxisome proliferator-activated receptor-alpha (PPARα). We designed and synthesized (Z)-(S)-9-octadecenamide, N-(2-hydroxyethyl, 1-methyl) (OPA), an OEA analog. The present study investigated the effect of OPA on the expression of adhesion molecules in human umbilical vein endothelial cells (HUVEC). OPA inhibited expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) stimulated by Tumor Necrosis Factor-α (TNF-α) via activation of PPARα. This inhibition of VCAM-1 and ICAM-1 expression decreased adhesion of monocyte-like cells to stimulated endothelial cells. These results demonstrate that OPA may have anti-inflammatory properties. Our results thus provide new insights into possible future therapeutic approaches to the treatment of atherosclerosis. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Identification of a regulatory T cell specific cell surface molecule that mediates suppressive signals and induces Foxp3 expression.

    Science.gov (United States)

    Wang, Rui; Wan, Qi; Kozhaya, Lina; Fujii, Hodaka; Unutmaz, Derya

    2008-07-16

    Regulatory T (T(reg)) cells control immune activation and maintain tolerance. How T(regs) mediate their suppressive function is unclear. Here we identified a cell surface molecule, called GARP, (or LRRC32), which within T cells is specifically expressed in T(regs) activated through the T cell receptor (TCR). Ectopic expression of GARP in human naïve T (T(N)) cells inhibited their proliferation and cytokine secretion upon TCR activation. Remarkably, GARP over-expression in T(N) cells induced expression of T(reg) master transcription factor Foxp3 and endowed them with a partial suppressive function. The extracellular but not the cytoplasmic region of GARP, was necessary for these functions. Silencing Foxp3 in human T(reg) cells reduced expression of GARP and attenuated their suppressive function. However, GARP function was not affected when Foxp3 was downregulated in GARP-overexpressing cells, while silencing GARP in Foxp3-overexpressing cells reduced their suppressive activity. These findings reveal a novel cell surface molecule-mediated regulatory mechanism, with implications for modulating aberrant immune responses.

  1. Identification of a regulatory T cell specific cell surface molecule that mediates suppressive signals and induces Foxp3 expression.

    Directory of Open Access Journals (Sweden)

    Rui Wang

    2008-07-01

    Full Text Available Regulatory T (T(reg cells control immune activation and maintain tolerance. How T(regs mediate their suppressive function is unclear. Here we identified a cell surface molecule, called GARP, (or LRRC32, which within T cells is specifically expressed in T(regs activated through the T cell receptor (TCR. Ectopic expression of GARP in human naïve T (T(N cells inhibited their proliferation and cytokine secretion upon TCR activation. Remarkably, GARP over-expression in T(N cells induced expression of T(reg master transcription factor Foxp3 and endowed them with a partial suppressive function. The extracellular but not the cytoplasmic region of GARP, was necessary for these functions. Silencing Foxp3 in human T(reg cells reduced expression of GARP and attenuated their suppressive function. However, GARP function was not affected when Foxp3 was downregulated in GARP-overexpressing cells, while silencing GARP in Foxp3-overexpressing cells reduced their suppressive activity. These findings reveal a novel cell surface molecule-mediated regulatory mechanism, with implications for modulating aberrant immune responses.

  2. House dust mite induces expression of intercellular adhesion molecule-1 in EoL-1 human eosinophilic leukemic cells.

    Science.gov (United States)

    Kwon, Byoung Chul; Sohn, Myung Hyun; Kim, Kyung Won; Kim, Eun Soo; Kim, Kyu-Earn; Shin, Myeong Heon

    2007-10-01

    The house dust mite (HDM) is considered to be the most common indoor allergen associated with bronchial asthma. In this study, we investigated whether crude extract of the HDM Dermatophagoides farinae could activate human eosinophilic leukemic cells (EoL-1) to induce upregulation of cell-surface adhesion molecules. When EoL-1 cells were incubated with D. farinae extract, expression of intercellular adhesion molecule-1 (ICAM-1) significantly increased on the cell surfaces compared to cells incubated with medium alone. In contrast, surface expression of CD11b and CD49d in EoL-1 cells was not affected by D. farinae extract. In addition, pretreatment of cells with NF-kappaB inhibitor (MG-132) or JNK inhibitor (SP600125) significantly inhibited ICAM-1 expression promoted by HDM extract. However, neither p38 MAP kinase inhibitor nor MEK inhibitor prevented HDM-induced ICAM-1 expression in EoL-1 cells. These results suggest that crude extract of D. farinae induces ICAM-1 expression in EoL-1 cells through signaling pathways involving both NF-kappaB and JNK.

  3. Expression analysis of taste signal transduction molecules in the fungiform and circumvallate papillae of the rhesus macaque, Macaca mulatta.

    Directory of Open Access Journals (Sweden)

    Yoshiro Ishimaru

    Full Text Available The molecular mechanisms of the mammalian gustatory system have been examined in many studies using rodents as model organisms. In this study, we examined the mRNA expression of molecules involved in taste signal transduction in the fungiform papillae (FuP and circumvallate papillae (CvP of the rhesus macaque, Macaca mulatta, using in situ hybridization. TAS1R1, TAS1R2, TAS2Rs, and PKD1L3 were exclusively expressed in different subsets of taste receptor cells (TRCs in the FuP and CvP. This finding suggests that TRCs sensing different basic taste modalities are mutually segregated in macaque taste buds. Individual TAS2Rs exhibited a variety of expression patterns in terms of the apparent level of expression and the number of TRCs expressing these genes, as in the case of human TAS2Rs. GNAT3, but not GNA14, was expressed in TRCs of FuP, whereas GNA14 was expressed in a small population of TRCs of CvP, which were distinct from GNAT3- or TAS1R2-positive TRCs. These results demonstrate similarities and differences between primates and rodents in the expression profiles of genes involved in taste signal transduction.

  4. Generation of murine tumor cell lines deficient in MHC molecule surface expression using the CRISPR/Cas9 system.

    Directory of Open Access Journals (Sweden)

    Krishna Das

    Full Text Available In this study, the CRISPR/Cas9 technology was used to establish murine tumor cell lines, devoid of MHC I or MHC II surface expression, respectively. The melanoma cell line B16F10 and the murine breast cancer cell line EO-771, the latter stably expressing the tumor antigen NY-BR-1 (EO-NY, were transfected with an expression plasmid encoding a β2m-specific single guide (sgRNA and Cas9. The resulting MHC I negative cells were sorted by flow cytometry to obtain single cell clones, and loss of susceptibility of peptide pulsed MHC I negative clones to peptide-specific CTL recognition was determined by IFNγ ELISpot assay. The β2m knockout (KO clones did not give rise to tumors in syngeneic mice (C57BL/6N, unless NK cells were depleted, suggesting that outgrowth of the β2m KO cell lines was controlled by NK cells. Using sgRNAs targeting the β-chain encoding locus of the IAb molecule we also generated several B16F10 MHC II KO clones. Peptide loaded B16F10 MHC II KO cells were insusceptible to recognition by OT-II cells and tumor growth was unaltered compared to parental B16F10 cells. Thus, in our hands the CRISPR/Cas9 system has proven to be an efficient straight forward strategy for the generation of MHC knockout cell lines. Such cell lines could serve as parental cells for co-transfection of compatible HLA alleles together with human tumor antigens of interest, thereby facilitating the generation of HLA matched transplantable tumor models, e.g. in HLAtg mouse strains of the newer generation, lacking cell surface expression of endogenous H2 molecules. In addition, our tumor cell lines established might offer a useful tool to investigate tumor reactive T cell responses that function independently from MHC molecule surface expression by the tumor.

  5. Omentin inhibits TNF-{alpha}-induced expression of adhesion molecules in endothelial cells via ERK/NF-{kappa}B pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Xia, E-mail: zhongxia1977@126.com [Department of Emergency, Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China); Li, Xiaonan; Liu, Fuli; Tan, Hui [Department of Emergency, Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China); Shang, Deya, E-mail: wenhuashenghuo1@163.com [Department of Emergency, Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Omentin inhibited TNF-{alpha}-induced adhesion of THP-1 cells to HUVECs. Black-Right-Pointing-Pointer Omentin reduces expression of ICAM-1 and VCAM-1 induced by TNF-{alpha} in HUVECs. Black-Right-Pointing-Pointer Omentin inhibits TNF-{alpha}-induced ERK and NF-{kappa}B activation in HUVECs. Black-Right-Pointing-Pointer Omentin supreeses TNF-{alpha}-induced expression of ICAM-1 and VCAM-1 via ERK/NF-{kappa}B pathway. -- Abstract: In the present study, we investigated whether omentin affected the expression of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in tumor necrosis factor-{alpha} (TNF-{alpha}) induced human umbilical vein endothelial cells (HUVECs). Our data showed that omentin decreased TNF-{alpha}-induced expression of ICAM-1 and VCAM-1 in HUVECs. In addition, omentin inhibited TNF-{alpha}-induced adhesion of THP-1 cells to HUVECs. Further, we found that omentin inhibited TNF-{alpha}-activated signal pathway of nuclear factor-{kappa}B (NF-{kappa}B) by preventing NF-{kappa}B inhibitory protein (I{kappa}B{alpha}) degradation and NF-{kappa}B/DNA binding activity. Omentin pretreatment significantly inhibited TNF-{alpha}-induced ERK activity and ERK phosphorylation in HUVECs. Pretreatment with PD98059 suppressed TNF-{alpha}-induced NF-{kappa}B activity. Omentin, NF-kB inhibitor (BAY11-7082) and ERK inhibitor (PD98059) reduced the up-regulation of ICAM-1 and VCAM-1 induced by TNF-{alpha}. These results suggest that omentin may inhibit TNF-{alpha}-induced expression of adhesion molecules in endothelial cells via blocking ERK/NF-{kappa}B pathway.

  6. Differential expression of neural cell adhesion molecule and cadherins in pancreatic islets, glucagonomas, and insulinomas

    DEFF Research Database (Denmark)

    Møller, C J; Christgau, S; Williamson, M R

    1992-01-01

    The endocrine cells of the pancreas develop from the endoderm and yet display several characteristics of a neuronal phenotype. During embryonic life, ductal epithelial cells give rise to first the glugagon-producing cells (alpha-cells) and then cells that express insulin (beta-cells), somatostatin...... primary islet cells at all ages express unsialylated NCAM and E-cadherin, as do insulinomas, the glucagonomas express the polysialylated NCAM, which is characteristic for developing neurons. The glucagonomas also lose E-cadherin expression and instead express a cadherin which is similar to N...

  7. Impaired Circulating Angiogenic Cells Mobilization and Metalloproteinase-9 Activity after Dynamic Exercise in Early Metabolic Syndrome.

    Science.gov (United States)

    Rocha, Natalia G; Sales, Allan R K; Penedo, Leticia A; Pereira, Felipe S; Silva, Mayra S; Miranda, Renan L; Silva, Jemima F R; Silva, Bruno M; Santos, Aline A; Nobrega, Antonio C L

    2015-01-01

    Increased levels of adhesion molecules or metalloproteinases (MMPs) may indicate endothelial dysfunction. Exercise mobilizes circulating angiogenic cells (CACs) from bone marrow in healthy subjects, improving vascular function. However, it is unclear whether this mechanism is preserved in the early stages of metabolic syndrome (early MetS). We aimed to evaluate the acute effects of exercise on adhesion molecules, angiogenic factors, MMPs, and CACs in early MetS. Fifteen subjects with early MetS and nine healthy controls underwent an exercise session and a nonexercise session, randomly. Adhesion molecules, angiogenic factors, CACs, and MMPs were evaluated before and after exercise or nonexercise sessions. At baseline, levels of sE-selectin, sICAM-1, and MMP-9 were higher in early MetS than in controls (P ≤ 0.03). After exercise, sE-selectin, sICAM-1, and MMP-9 levels were still higher in early MetS (P exercise. There was no difference between moments in nonexercise session (P > 0.05). In conclusion, subjects with early MetS already presented impaired endothelial function at rest along with a decrease in CACs and an increase in MMP-9 activity in response to exercise.

  8. Nasal allergen provocation induces adhesion molecule expression and tissue eosinophilia in upper and lower airways

    NARCIS (Netherlands)

    Braunstahl, G. J.; Overbeek, S. E.; Kleinjan, A.; Prins, J. B.; Hoogsteden, H. C.; Fokkens, W. J.

    2001-01-01

    BACKGROUND: Allergic rhinitis (AR) and asthma are characterized by means of a similar inflammatory process in which eosinophils are important effector cells. The migration of eosinophils from the blood into the tissues is dependent on adhesion molecules. OBJECTIVE: To analyze the aspects of

  9. The transcription factor SOX18 regulates the expression of matrix metalloproteinase 7 and guidance molecules in human endothelial cells.

    Directory of Open Access Journals (Sweden)

    Martina Hoeth

    Full Text Available Mutations in the transcription factor SOX18 are responsible for specific cardiovascular defects in humans and mice. In order to gain insight into the molecular basis of its action, we identified target genes of SOX18 and analyzed one, MMP7, in detail.SOX18 was expressed in HUVEC using a recombinant adenoviral vector and the altered gene expression profile was analyzed using microarrays. Expression of several regulated candidate SOX18 target genes was verified by real-time PCR. Knock-down of SOX18 using RNA interference was then used to confirm the effect of the transcription factor on selected genes that included the guidance molecules ephrin B2 and semaphorin 3G. One gene, MMP7, was chosen for further analysis, including detailed promoter studies using reporter gene assays, electrophoretic mobility shift analysis and chromatin-immunoprecipitation, revealing that it responds directly to SOX18. Immunohistochemical analysis demonstrated the co-expression of SOX18 and MMP7 in blood vessels of human skin.The identification of MMP7 as a direct SOX18 target gene as well as other potential candidates including guidance molecules provides a molecular basis for the proposed function of this transcription factor in the regulation of vessel formation.

  10. Expression of intercellular adhesion molecule-1 in UVA-irradiated human skin cells in vitro and in vivo

    International Nuclear Information System (INIS)

    Treina, G.; Scaletta, C.; Frenk, E.; Applegate, L.A.; Fourtanier, A.; Seite, S.

    1996-01-01

    Ultraviolet A (UVA) radiation represents an important oxidative stress to human skin and certain forms of oxidative stress have been shown to modulate intercellular adhesion molecule-1 (ICAM-1) expression. ICAM-1 has been shown to play an important part in many immune reactions and the perturbations of this molecule by ultraviolet radiation could have implications in many inflammatory responses. An enhancement immunohistochemical method with avidin/biotin was used for analysing the early effects of UVA radiation on human cell cultures and human skin (340-400 nm). Both in vitro and in vivo data show that ICAM-1 staining in epidermal keratinocytes, which was expressed constitutively, decreased in a UVA dose-dependent manner. The decrease was most noted at 3-6 h following UVA radiation with some ICAM-1 staining returning by 48 h post-UVA. ICAM-1 positive staining in the dermis was specific for vascular structures and was increased 24 h after UVA radiation. Cultured dermal fibroblasts exhibited ICAM-1 staining which increased slightly within 6-48 h post-UVA radiation. As epidermal ICAM-1 expression is depleted following UVA radiation and dermal expression increases due to an increase in the vascular structures, ICAM-1 provides a valuable marker following UVA radiation in human skin that can be readily measured in situ. (author)

  11. Angiogenic activity of sesamin through the activation of multiple signal pathways

    International Nuclear Information System (INIS)

    Chung, Byung-Hee; Lee, Jung Joon; Kim, Jong-Dai; Jeoung, Dooil; Lee, Hansoo; Choe, Jongseon; Ha, Kwon-Soo; Kwon, Young-Geun; Kim, Young-Myeong

    2010-01-01

    The natural product sesamin has been known to act as a potent antioxidant and prevent endothelial dysfunction. We here found that sesamin increased in vitro angiogenic processes, such as endothelial cell proliferation, migration, and tube formation, as well as neovascularization in an animal model. This compound elicited the activation of multiple angiogenic signal modulators, such as ERK, Akt, endothelial nitric oxide synthase (eNOS), NO production, FAK, and p38 MAPK, but not Src. The MEK inhibitor PD98059 and the PI3K inhibitor Wortmannin specifically inhibited sesamin-induced activation of the ERK and Akt/eNOS pathways. These inhibitors reduced angiogenic events, with high specificity for MEK/ERK-dependent cell proliferation and migration and PI3K/Akt-mediated tube formation. Moreover, inhibition of p38 MAPK effectively inhibited sesamin-induced cell migration. The angiogenic activity of sesamin was not associated with VEGF expression. Furthermore, this compound did not induce vascular permeability and upregulated ICAM-1 and VCAM-1 expression, which are hallmarks of vascular inflammation. These results suggest that sesamin stimulates angiogenesis in vitro and in vivo through the activation of MEK/ERK-, PI3K/Akt/eNOS-, p125 FAK -, and p38 MAPK-dependent pathways, without increasing vascular inflammation, and may be used for treating ischemic diseases and tissue regeneration.

  12. The anti-proliferative and anti-angiogenic effect of the methanol extract from brittle star.

    Science.gov (United States)

    Baharara, Javad; Amini, Elaheh; Mousavi, Marzieh

    2015-04-01

    Anti-angiogenic therapy is a crucial step in cancer treatment. The discovery of new anti-angiogenic compounds from marine organisms has become an attractive concept in anti-cancer therapy. Because little data correlated to the pro- and anti-angiogenic efficacies of Ophiuroidea, which include brittle star, the current study was designed to explore the anti-angiogenic potential of brittle star methanol extract in vitro and in vivo. The anti-proliferative effect of brittle star extract on A2780cp cells was examined by MTT assays, and transcriptional expression of VEGF and b-FGF was evaluated by RT-PCR. In an in vivo model, 40 fertilized Ross eggs were divided into control and three experimental groups. The experimental groups were incubated with brittle star extract at concentrations of 25, 50 and 100 µg/ml, and photographed by photo-stereomicroscopy. Ultimately, numbers and lengths of vessels were measured by Image J software. Data were analyzed with SPSS software (pstar extract exerted a dose- and time-dependent anti-proliferative effect on A2780cp cancer cells. In addition, VEGF and b-FGF expression decreased with brittle star methanol extract treatment. Macroscopic evaluations revealed significant changes in the second and third experimental group compared to controls (pstar methanol extract in vitro and in vivo confer novel insight into the application of natural marine products in angiogenesis-related pathologies.

  13. Synthesis of pro-inflammatory cytokines and adhesion molecules expression by the irradiated human monocyte/macrophage

    International Nuclear Information System (INIS)

    Pons, I.

    1997-09-01

    As lesions induced by ionizing radiations are essentially noticed in organs the functional and structural organisation of which depend on the highly proliferative stem cell pool, the author reports an in-vivo investigation of the effect of a gamma irradiation on the expression and secretion of pro-inflammatory cytokines par human monocytes/macrophages. In order to study the role of the cell environment in the radiation-induced inflammation, the author studied whether a co-stimulation of monocytes/macrophages by gamma irradiation, or the exposure of co-cultures of monocytes/macrophages and lymphocytes, could modulate the regulation of inflammatory cytokines. The author also studied the modulation of the expression of adhesion molecules mainly expressed by the monocyte/macrophage, and the membrane density of the CD14 receptor after irradiation of monocytes/macrophages during 24 hours, and of totally differentiated macrophages after seven days of culture

  14. Effect of Batroxobin on Expression of Neural Cell Adhesion Molecule in Temporal Infarction Rats and Spatial Learning and Memory Disorder

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effect of Batroxobin expression of neural cell adhesion molecule (NCAM) in left temporal ischemic rats with spatial memory disorder was investigated by means of Morri's water maze and immunohistochemical methods. The results showed that the mean reaction time and distance of temporal ischemic rats for searching a goal were significantly longer than those of sham-operated rats and at the same time NCAM expression of left temporal ischemic region was significantly increased. However, the mean reaction time and distance of Batroxobin-treated rats were shorter and they used normal strategies more often and earlier than those of ischemic rats. The number of NCAM immune reactive cells of Batroxobin-treated rats was more than that of ischemic group. In conclusion, Batroxobin can improve spatial memory disorder of temporal ischemic rats and the regulation of the expression of NCAM is probably related to the neuroprotective mechanism.

  15. Angiogenic activity of Synadenium umbellatum Pax latex

    Directory of Open Access Journals (Sweden)

    PR. Melo-Reis

    Full Text Available Synadenium umbellatum Pax, popularly known as "cola-nota", is a medicinal plant that grows in tropical regions. Latex of this plant is used to treat various diseases such as diabetes mellitus, Hansen´s disease, tripanosomiases, leukemia and several malignant tumors. In the present study, the angiogenic activity of S. umbellatum latex was evaluated using the chick embryo chorioallantoic membrane (CAM assay. Results showed significant increase of the vascular net (p < 0.05 compared to the negative control (H2O. The histological analysis was in accordance with the results obtained. In conclusion, our data indicate that S. umbellatum latex, under the conditions of this research, presented angiogenic effect.

  16. Selective loss of mouse embryos due to the expression of transgenic major histocompatibility class I molecules early in embryogenesis.

    Science.gov (United States)

    Aït-Azzouzene, D; Langkopf, A; Cohen, J; Bleux, C; Gendron, M C; Kanellopoulos-Langevin, C

    1998-05-01

    Among the numerous hypotheses proposed to explain the absence of fetal rejection by the mother in mammals, it has been suggested that regulation of expression of the polymorphic major histocompatibility complex (MHC) at the fetal-maternal interface plays a major role. In addition to a lack of MHC gene expression in the placenta throughout gestation, the absence of polymorphic MHC molecules on the early embryo, as well as their low level of expression after midgestation, could contribute to this important biologic phenomenon. In order to test this hypothesis, we have produced transgenic mice able to express polymorphic MHC class I molecules early in embryogenesis. We have placed the MHC class la gene H-2Kb under the control of a housekeeping gene promoter, the hydroxy-methyl-glutaryl coenzyme A reductase (HMG) gene minimal promoter. This construct has been tested for functionality after transfection into mouse fibroblast L cells. The analysis of three founder transgenic mice and their progeny suggested that fetoplacental units that could express the H-2Kb heavy chains are unable to survive in utero beyond midgestation. We have shown further that a much higher resorption rate, on days 11 to 13 of embryonic development, is observed among transgenic embryos developing from eggs microinjected at the one-cell stage with the pHMG-Kb construct than in control embryos. This lethality is not due to immune phenomena, since it is observed in histocompatible combinations between mother and fetus. These results are discussed in the context of what is currently known about the regulation of MHC expression at the fetal-maternal interface and in various transgenic mouse models.

  17. Infusion of hypertonic saline (7.5%) does not change neutrophil oxidative burst or expression of endothelial adhesion molecules after abdominal hysterectomy

    DEFF Research Database (Denmark)

    Kølsen-Petersen, Jens Aage; Rasmussen, Torsten Bøgh; Krog, Jan

    2006-01-01

    of leukocyte and differential count, neutrophil membrane expression of endothelial adhesion molecules by flow cytometry, and O2- -generation by superoxide dismutase-inhibitable reduction of cytochrome C. RESULTS: Surgery induced well-known changes in the number and distribution of white blood cells, reduced...... the expression of adhesion molecules, and halved the superoxide production unrelated to the tonicity or volume of the infused fluids. CONCLUSION: Infusion of a clinically relevant dose of hypertonic saline has no detectable effect on the membrane expression of endothelial adhesion molecules or O2- -generation...

  18. Effect of helicobacter pylori L-form infection on proliferation, apoptosis and invasion molecule expression in gastric cancer tissue

    Directory of Open Access Journals (Sweden)

    Hua Xin

    2017-05-01

    Full Text Available Objective: To study the effect of Helicobacter pylori L-form infection on proliferation, apoptosis and invasion molecule expression in gastric cancer tissue. Methods: The gastric cancer tissues surgically removed in our hospital between May 2013 and October 2016 were collected and divided into Hp negative, Hp-L negative and Hp-L positive according to the condition of helicobacter pylori infection. The proliferation, apoptosis and invasion gene expression were detected. Results: LOXL2, PCNA, CyclinD1, Rab1A, Bcl-2, Snail, N-cadherin, UHRF1 and AnnexinII mRNA expression in Hp-L-positive gastric cancer tissues were significantly higher than those in Hp-L-negative and Hp-negative gastric cancer tissues while ING5, PTPN13, Beclin1 and Mst1 mRNA expression were significantly lower than those in Hp-L-negative and Hp-negative gastric cancer tissues; LOXL2, PCNA, CyclinD1, Rab1A, Bcl-2, ING5, PTPN13, Beclin1, Mst1, Snail, N-cadherin, UHRF1 and AnnexinII mRNA expression in Hp-L-negative gastric cancer tissues were not different from those in Hpnegative gastric cancer tissues. Conclusion: Helicobacter pylori L-form infection can influence the proliferation, apoptosis and invasion gene expression to promote cell proliferation and invasion, and inhibit cell apoptosis.

  19. Analysis of GLUT-1, GLUT-3, and angiogenic index in syndromic and non-syndromic keratocystic odontogenic tumors

    Directory of Open Access Journals (Sweden)

    Rafaella Bastos LEITE

    2017-04-01

    Full Text Available Abstract The aim of this study was to evaluate the immunoexpression of glucose transporters 1 (GLUT-1 and 3 (GLUT-3 in keratocystic odontogenic tumors associated with Gorlin syndrome (SKOTs and non-syndromic keratocystic odontogenic tumors (NSKOTs, and to establish correlations with the angiogenic index. Seventeen primary NSKOTs, seven recurrent NSKOTs, and 17 SKOTs were selected for the study. The percentage of immunopositive cells for GLUT-1 and GLUT-3 in the epithelial component of the tumors was assessed. The angiogenic index was determined by microvessel count. The results were analyzed statistically using the nonparametric Kruskal-Wallis test and Spearman’s correlation test. High epithelial immunoexpression of GLUT-1 was observed in most tumors (p = 0.360. There was a higher frequency of negative cases for GLUT-3 in all groups. The few GLUT-3-positive tumors exhibited low expression of this protein in epithelial cells. No significant difference in the angiogenic index was observed between groups (p = 0.778. GLUT-1 expression did not correlate significantly with the angiogenic index (p > 0.05. The results suggest that the more aggressive biological behavior of SKOTs when compared to NSKOTs may not be related to GLUT-1 or GLUT-3 expression. GLUT-1 may play an important role in glucose uptake by epithelial cells of KOTs and this process is unlikely related to the angiogenic index. GLUT-1 could be a potential target for future development of therapeutic strategies for KOTs.

  20. Integrative Gene Cloning and Expression System for Streptomyces sp. US 24 and Streptomyces sp. TN 58 Bioactive Molecule Producing Strains

    Directory of Open Access Journals (Sweden)

    Samiha Sioud

    2009-01-01

    Full Text Available Streptomyces sp. US 24 and Streptomyces sp. TN 58, two strains producing interesting bioactive molecules, were successfully transformed using E. coli ET12567 (pUZ8002, as a conjugal donor, carrying the integrative plasmid pSET152. For the Streptomyces sp. US 24 strain, two copies of this plasmid were tandemly integrated in the chromosome, whereas for Streptomyces sp. TN 58, the integration was in single copy at the attB site. Plasmid pSET152 was inherited every time for all analysed Streptomyces sp. US 24 and Streptomyces sp. TN 58 exconjugants under nonselective conditions. The growth, morphological differentiation, and active molecules production of all studied pSET152 integrated exconjugants were identical to those of wild type strains. Consequently, conjugal transfer using pSET152 integration system is a suitable means of genes transfer and expression for both studied strains. To validate the above gene transfer system, the glucose isomerase gene (xylA from Streptomyces sp. SK was expressed in strain Streptomyces sp. TN 58. Obtained results indicated that heterologous glucose isomerase could be expressed and folded effectively. Glucose isomerase activity of the constructed TN 58 recombinant strain is of about eighteenfold higher than that of the Streptomyces sp. SK strain. Such results are certainly of importance due to the potential use of improved strains in biotechnological process for the production of high-fructose syrup from starch.

  1. Characterization of a novel human scavenger receptor cysteine-rich molecule SCART1 expressed by lymphocytes

    DEFF Research Database (Denmark)

    Holm, D.; Fink, D. R.; Steffensen, M. A.

    2013-01-01

    a member of the SRCR superfamily, mSCART1, which primarily is expressed on a large subset of γδ T cells in mice. Here we report the cloning and characterization of human SCART1 (hSCART1) mainly expressed by CD4(+) and CD8(+) T lymphocytes. The hSCART1 gene maps to chromosome 10, region q26.3, a region...... domain. Shorter splice forms have also been isolated. Quantitative real-time PCR analysis on human blood-fractions has shown that hSCART1 is expressed primarily by CD4(+) and CD8(+) T lymphocytes with either αβ or γδ T cell receptors, and real-time PCR on 22 different human tissues showed high expression...... that the protein plays a role in the immune system, perhaps as a co-receptor on αβ and γδ T cells....

  2. The Expression and Regulation of the Cell Adhesion Molecule CD44 in Human Breast Cancer

    National Research Council Canada - National Science Library

    Ge, Lisheng

    1997-01-01

    ... alternative splicing signals of CD44 variant exons as control elements in CEPT. In our colon cancer metastasis to liver model, we developed dual modulation vectors to increase tissue-specific expression of cytosine deaminase (CD...

  3. Use of heterologous expressed polyketide synthase and small molecule foldases to make aromatic and cyclic compounds

    DEFF Research Database (Denmark)

    2016-01-01

    A method for producing individual or libraries of tri- to pentadecaketide-derived aromatic compounds of interest by heterologous expression of polyketide synthase and aromatase/cyclase in a recombinant host cell.......A method for producing individual or libraries of tri- to pentadecaketide-derived aromatic compounds of interest by heterologous expression of polyketide synthase and aromatase/cyclase in a recombinant host cell....

  4. Angiogenic effect induced by mineral fibres

    International Nuclear Information System (INIS)

    Carbonari, Damiano; Campopiano, Antonella; Ramires, Deborah; Strafella, Elisabetta; Staffolani, Sara; Tomasetti, Marco; Curini, Roberta; Valentino, Matteo; Santarelli, Lory; Amati, Monica

    2011-01-01

    Highlights: → In this study we described the angiogenetic effect of some mineral fibres. → Wollastonite fibres induce blood vessel formation. → The size and shape of the fibres were important factors for the cell signalling. → Wollastonite induce ROS-NFκB activation and EGFR signalling. → Involvement of wollastonite exposure in the development of pathological conditions. -- Abstract: Due to the toxic effect of asbestos, other materials with similar chemical-physical characteristics have been introduced to substitute it. We evaluate the angiogenic effect of certain asbestos substitute fibres such as glass fibres (GFs), ceramic fibres (CFs) and wollastonite fibres (WFs) and then compare angiogenic responses to those induced by crocidolite asbestos fibres (AFs). An in vitro model using human endothelial cells in small islands within a culture matrix of fibroblasts (Angio-Kit) was used to evaluate vessel formation. The release of IL-6, sIL-R6, IL-8, VEGF-A and their soluble receptors, sVEGFR-1, sVEGFR-2, was determined in the conditioning medium of Angio-Kit system after fibre treatment. ROS formation and cell viability were evaluated in cultured endothelial cells (HUVEC). To evaluate the involvement of intracellular mechanisms, EGFR signalling, ROS formation and nuclear factor-κB (NFκB) pathway were then inhibited by incubating HUVEC cells with AG1478, NAC and PDTC respectively, and the cytokine and growth factor release was analyzed in the culture medium after 7 days of fibre incubation. Among the mineral fibres tested, WFs markedly induced blood vessel formation which was associated with release of IL-6 and IL-8, VEGF-A and their soluble receptors. ROS production was observed in HUVEC after WFs treatment which was associated with cell cytotoxicity. The EGFR-induced ERK phosphorylation and ROS-mediated NFκB activation were involved in the cytokine and angiogenic factor release. However, only the EGFR activation was able to induce angiogenesis. The WFs

  5. B cell lymphomas express CX3CR1 a non-B cell lineage adhesion molecule

    DEFF Research Database (Denmark)

    Andreasson, U.; Ek, S.; Merz, H.

    2008-01-01

    normally is not expressed on B cells, is expressed both at the mRNA and protein level in several subtypes of lymphoma. CX3CR1 has also shown to be involved in the homing to specific tissues that express the ligand, CX3CL1, in breast and prostate cancer and may thus be involved in dissemination of lymphoma......To study the differential expression of cell membrane-bound receptors and their potential role in growth and/or survival of the tumor cells, highly purified follicular lymphoma cells were analyzed, using gene expression analysis, and compared to non-malignant B cell populations. Filtering...... the genome for overexpressed genes coding for cell membrane-bound proteins/receptors resulted in a hit list of 27 identified genes. Among these, we have focused on the aberrant over expression of CX3CR1, in different types of B cell lymphoma, as compared to non-malignant B cells. We show that CX3CR1, which...

  6. Fluorescent Affibody Molecule Administered In Vivo at a Microdose Level Labels EGFR Expressing Glioma Tumor Regions.

    Science.gov (United States)

    de Souza, Ana Luiza Ribeiro; Marra, Kayla; Gunn, Jason; Samkoe, Kimberley S; Hoopes, P Jack; Feldwisch, Joachim; Paulsen, Keith D; Pogue, Brian W

    2017-02-01

    Fluorescence guidance in surgical oncology provides the potential to realize enhanced molecular tumor contrast with dedicated targeted tracers, potentially with a microdose injection level. For most glioma tumors, the blood brain barrier is compromised allowing some exogenous drug/molecule delivery and accumulation for imaging. The aberrant overexpression and/or activation of epidermal growth factor receptor (EGFR) is associated with many types of cancers, including glioblastoma, and so the use of a near-infrared (NIR) fluorescent molecule targeted to the EGFR receptor provides the potential for improving tumor contrast during surgery. Fluorescently labeled affibody molecule (ABY-029) has high EGFR affinity and high potential specificity with reasonably fast plasma clearance. In this study, ABY-29 was evaluated in glioma versus normal brain uptake from intravenous injection at a range of doses, down to a microdose injection level. Nude rats were inoculated with the U251 human glioma cell line in the brain. Tumors were allowed to grow for 3-4 weeks. ABY-029 fluorescence ex vivo imaging of brain slices was acquired at different time points (1-48 h) and varying injection doses from 25 to 122 μg/kg (from human protein microdose equivalent to five times microdose levels). The tumor was most clearly visualized at 1-h post-injection with 8- to 16-fold average contrast relative to normal brain. However, the tumor still could be identified after 48 h. In all cases, the ABY-029 fluorescence appeared to localize preferentially in EGFR-positive regions. Increasing the injected dose from a microdose level to five times, a microdose level increased the signal by 10-fold, and the contrast was from 8 to 16, showing that there was value in doses slightly higher than the microdose restriction. Normal tissue uptake was found to be affected by the tumor size, indicating that edema was a likely factor affecting the expected tumor to normal tissue contrast. These results suggest

  7. Cell adhesion molecules expression pattern indicates that somatic cells arbitrate gonadal sex of differentiating bipotential fetal mouse gonad.

    Science.gov (United States)

    Piprek, Rafal P; Kolasa, Michal; Podkowa, Dagmara; Kloc, Malgorzata; Kubiak, Jacek Z

    2017-10-01

    Unlike other organ anlagens, the primordial gonad is sexually bipotential in all animals. In mouse, the bipotential gonad differentiates into testis or ovary depending on the genetic sex (XY or XX) of the fetus. During gonad development cells segregate, depending on genetic sex, into distinct compartments: testis cords and interstitium form in XY gonad, and germ cell cysts and stroma in XX gonad. However, our knowledge of mechanisms governing gonadal sex differentiation remains very vague. Because it is known that adhesion molecules (CAMs) play a key role in organogenesis, we suspected that diversified expression of CAMs should also play a crucial role in gonad development. Using microarray analysis we identified 129 CAMs and factors regulating cell adhesion during sexual differentiation of mouse gonad. To identify genes expressed differentially in three cell lines in XY and XX gonads: i) supporting (Sertoli or follicular cells), ii) interstitial or stromal cells, and iii) germ cells, we used transgenic mice expressing EGFP reporter gene and FACS cell sorting. Although a large number of CAMs expressed ubiquitously, expression of certain genes was cell line- and genetic sex-specific. The sets of CAMs differentially expressed in supporting versus interstitial/stromal cells may be responsible for segregation of these two cell lines during gonadal development. There was also a significant difference in CAMs expression pattern between XY supporting (Sertoli) and XX supporting (follicular) cells but not between XY and XX germ cells. This indicates that differential CAMs expression pattern in the somatic cells but not in the germ line arbitrates structural organization of gonadal anlagen into testis or ovary. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Angiogenic potential of human macrophages on electrospun bioresorbable vascular grafts

    Energy Technology Data Exchange (ETDEWEB)

    Garg, K; Sell, S A; Madurantakam, P; Bowlin, G L, E-mail: glbowlin@vcu.ed [Virginia Commonwealth University, Richmond, VA 23284 (United States)

    2009-06-15

    The aim of this study was to investigate macrophage interactions with electrospun scaffolds and quantify the expression of key angiogenic growth factors in vitro. This study will further help in evaluating the potential of these electrospun constructs as vascular grafts for tissue repair and regeneration in situ. Human peripheral blood macrophages were seeded in serum free media on electrospun (10 mm) discs of polydioxanone (PDO), elastin and PDO:elastin blends (50:50, 70:30 and 90:10). The growth factor secretion was analyzed by ELISA. Macrophages produced high levels of vascular endothelial growth factor and acidic fibroblast growth factor. Transforming growth factor beta-1 (TGF-beta1) secretion was relatively low and there was negligible production of basic fibroblast growth factor. Therefore, it can be anticipated that these scaffolds will support tissue regeneration and angiogenesis. (communication)

  9. SDF-1/CXCR4 expression in bladder cancer tissue and the correlation with negative costimulatory molecule PD-L1, cell apoptosis and invasion

    Directory of Open Access Journals (Sweden)

    Ming-Bao Ye

    2017-06-01

    Full Text Available Objective: To study the SDF-1/CXCR4 expression in bladder cancer tissue and the correlation with negative costimulatory molecule PD-L1, cell apoptosis and invasion. Methods: A total of 118 cases of bladder cancer tissue and para-carcinoma tissue surgically removed in our hospital between May 2014 and May 2016 were selected as the research samples, the RNA was extracted and then reverse-transcribed into cDNA, and the expression levels of SDF-1/ CXCR4, PD-L1/PD-1, cell apoptosis-related molecules and cell invasion-related molecules were detected. Results: SDF-1 and CXCR4 mRNA expression in bladder cancer tissue were significantly higher than those in para-carcinoma tissue; PD-L1, PD-1, Rec1, Survivin, MRPS5, Nanog, BCAPP2Ac, TRPM8, TRPV2, ILK, β-catenin and GUGBP1 mRNA expression in bladder cancer tissue were significantly higher than those in para-carcinoma tissue and positively correlated with SDF-1 and CXCR4 mRNA expression. Conclusion: Highly expressed SDF-1/CXCR4 in bladder cancer tissue are closely related to the high expression of negative costimulatory molecule PD-L1, pro-proliferation molecules and proinvasion molecules, and SDF-1/CXCR4 can promote the immune escape, proliferation and invasion of bladder cancer cells.

  10. In Vitro and In Vivo Investigation of the Angiogenic Effects of Liraglutide during Islet Transplantation.

    Directory of Open Access Journals (Sweden)

    Allan Langlois

    Full Text Available This study investigated the angiogenic properties of liraglutide in vitro and in vivo and the mechanisms involved, with a focus on Hypoxia Inducible Factor-1α (HIF-1α and mammalian target of rapamycin (mTOR.Rat pancreatic islets were incubated in vitro with 10 μmol/L of liraglutide (Lira for 12, 24 and 48 h. Islet viability was studied by fluorescein diacetate/propidium iodide staining and their function was assessed by glucose stimulation. The angiogenic effect of liraglutide was determined in vitro by the measure of vascular endothelial growth factor (VEGF secretion using enzyme-linked immunosorbent assay and by the evaluation of VEGF and platelet-derived growth factor-α (PDGFα expression with quantitative polymerase chain reaction technic. Then, in vitro and in vivo, angiogenic property of Lira was evaluated using immunofluorescence staining targeting the cluster of differentiation 31 (CD31. To understand angiogenic mechanisms involved by Lira, HIF-1α and mTOR activation were studied using western blotting. In vivo, islets (1000/kg body-weight were transplanted into diabetic (streptozotocin Lewis rats. Metabolic control was assessed for 1 month by measuring body-weight gain and fasting blood glucose.Islet viability and function were respectively preserved and enhanced (p<0.05 with Lira, versus control. Lira increased CD31-positive cells, expression of VEGF and PDGFα (p<0.05 after 24 h in culture. Increased VEGF secretion versus control was also observed at 48 h (p<0.05. Moreover, Lira activated mTOR (p<0.05 signalling pathway. In vivo, Lira improved vascular density (p<0.01, body-weight gain (p<0.01 and reduced fasting blood glucose in transplanted rats (p<0.001.The beneficial effects of liraglutide on islets appeared to be linked to its angiogenic properties. These findings indicated that glucagon-like peptide-1 analogues could be used to improve transplanted islet revascularisation.

  11. Effects of anisodamine on the expressions of vascular endothelial growth factor and intercellular adhesion molecule 1 in experimental infusion phlebitis.

    Science.gov (United States)

    Zhang, Zhen-Xiang; Wang, Peng; Zhang, Qiu-Shi; Pan, Xue; Zhao, Qing-Xia; Wang, Xiao-Kai

    2012-01-01

    Infusion phlebitis is the most common side effect of clinical intravenous drug therapy and several clinical studies have demonstrated that anisodamine can effectively prevent the occurrence of infusion phlebitis. This study was designed to investigate effects of anisodamine on the expressions of vascular endothelial growth factor (VEGF) and intercellular adhesion molecule 1 (ICAM-1) in a rabbit model of infusion phlebitis and to analyze the mechanisms of anisodamine effect on the prevention and treatment of experimental infusion phlebitis. Twenty-four specific pathogen-free male Japanese white rabbits were randomly assigned to the control group, the model group, the magnesium sulfate group and the anisodamine group. The rabbit model of infusion phlebitis, induced by intravenous administration, was established and expressions of VEGF and ICAM-1 were determined and contrasted with the control group treated with normal saline. We evaluated expression by histopathology, immunohistochemistry, reverse transcription-polymerase chain reaction, and Western blotting assay. Pathohistological changes of the model group were observed, such as loss of venous endothelial cells, inflammatory cell infiltration, edema and thrombus. The magnesium sulfate group and the anisodamine group showed significant protective effects on vascular congestion, inflammatory cell infiltration, proliferation, swelling of endothelium and perivascular hemorrhage. The model group showed the highest expressions of VEGF and ICAM-1 of the four groups (P 0.05). Anisodamine alleviates inflammatory damage by significantly reducing the expressions of VEGF and ICAM-1, and shows significant protective effects in an animal model of infusion phlebitis.

  12. Activated leukocyte cell adhesion molecule expression in oral squamus cell carcinoma and its association with clinical and histopathologic parameters

    Directory of Open Access Journals (Sweden)

    Omid Mirmohammadkhani

    2013-03-01

    Full Text Available Introduction: The aim of the present research was to study the expression of activated-leukocyte cell adhesion molecule (ALCAM in oral squamus cell carcinoma (OSCC and its association with histopathological and prognostic parameters.Materials and Methods: In a cross-sectional study, samples of OSCC tumors from tongue and oral mucosa available in Institute of Cancer of Imam Hospital in Tehran were simultaneously studied in term of tumor size, lymph node metastasis, and differentiation and ALCAM expression. Analysis was performed using multiple logistic regression models. Results: 39 samples of tongue and 19 samples of oral medusa belonged to 35 men and 23 women with mean (Standard deviation of age 58(15.69 years of old were studied. More than half of lesions had good differentiation and lymph node metastasis. From all, 42 (72.4% of samples were positive of ALCAM. Odds of ALCAM total expression in tumors with size of at least 20 mm was more (OR=3.9, p=0.001. Odds ratios for membranous and cytoplasmic expression of ALCAM in positive samples of lymph node metastasis (OR=0.4, p=0.03 and in patients with age 40 and more (OR=2.7, p=0.002 were respectively significant.Conclusion: The study confirmed positive relationship between ALCAM expression and tumor size as while as ambiguity of ALCAM role as a "Paradox" indicator. Next researches may make the role of ALCAM in different phases of tumor developing clearer

  13. Balance of antiangiogenic and angiogenic factors in the context of the etiology of preeclampsia.

    Science.gov (United States)

    Seki, Hiroyuki

    2014-10-01

    The "two-stage disorder" theory that is assumed for the etiology of preeclampsia hypothesizes that antiangiogenic and angiogenic factors and/or placental debris play an important role in this disorder. The physiological actions of placental debris occur via the balance between antiangiogenic and angiogenic factors. Accordingly, this balance between antiangiogenic and angiogenic factors should be investigated to elucidate the various pathological features of preeclampsia. Their accurate evaluation is needed to investigate not only antiangiogenic factors (such as sFlt-1 and sEng) and angiogenic factors (such as vascular endothelial growth factor, placental growth factor and transforming growth factor-β) but also the expression level of their receptors such as Flt-1 and Eng. However, it is ethically and technically difficult to investigate the above-mentioned factors at antepartum in human patients. The examination of the ratios of sFlt-1/vascular endothelial growth factor receptor ligands and sEng/transforming vascular endothelial growth factor-β and the use of experimental animal models may help in elucidating various unresolved issues in preeclampsia. © 2014 Nordic Federation of Societies of Obstetrics and Gynecology.

  14. Carvacrol promotes angiogenic paracrine potential and endothelial differentiation of human mesenchymal stem cells at low concentrations.

    Science.gov (United States)

    Matluobi, Danial; Araghi, Atefeh; Maragheh, Behnaz Faramarzian Azimi; Rezabakhsh, Aysa; Soltani, Sina; Khaksar, Majid; Siavashi, Vahid; Feyzi, Adel; Bagheri, Hesam Saghaei; Rahbarghazi, Reza; Montazersaheb, Soheila

    2018-01-01

    Phenolic monoterpene compound, named Carvacrol, has been found to exert different biological outcomes. It has been accepted that the angiogenic activity of human mesenchymal stem cells was crucial in the pursuit of appropriate regeneration. In the current experiment, we investigated the contribution of Carvacrol on the angiogenic behavior of primary human mesenchymal stem cells. Mesenchymal stem cells were exposed to Carvacrol in a dose ranging from 25 to 200μM for 48h. We measured cell survival rate by MTT assay and migration rate by a scratch test. The oxidative status was monitored by measuring SOD, GPx activity. The endothelial differentiation was studied by evaluating the level of VE-cadherin and vWF by real-time PCR and ELISA analyses. The content of VEGF and tubulogenesis behavior was monitored in vitro. We also conducted Matrigel plug in vivo CAM assay to assess the angiogenic potential of conditioned media from human mesenchymal stem cells after exposure to Carvacrol. Carvacrol was able to increase mesenchymal stem cell survival and migration rate (pcells by detecting vWF and VE-cadherin expression (pmesenchymal stem cells conditioned media improved angiogenesis tube formation in vitro (pmesenchymal stem cells by modulating cell differentiation and paracrine angiogenic response. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Mast Cell Proteases 6 and 7 Stimulate Angiogenesis by Inducing Endothelial Cells to Release Angiogenic Factors.

    Directory of Open Access Journals (Sweden)

    Devandir Antonio de Souza Junior

    Full Text Available Mast cell proteases are thought to be involved with tumor progression and neo-vascularization. However, their exact role is still unclear. The present study was undertaken to further elucidate the function of specific subtypes of recombinant mouse mast cell proteases (rmMCP-6 and 7 in neo-vascularization. SVEC4-10 cells were cultured on Geltrex® with either rmMCP-6 or 7 and tube formation was analyzed by fluorescence microscopy and scanning electron microscopy. Additionally, the capacity of these proteases to induce the release of angiogenic factors and pro and anti-angiogenic proteins was analyzed. Both rmMCP-6 and 7 were able to stimulate tube formation. Scanning electron microscopy showed that incubation with the proteases induced SVEC4-10 cells to invade the gel matrix. However, the expression and activity of metalloproteases were not altered by incubation with the mast cell proteases. Furthermore, rmMCP-6 and rmMCP-7 were able to induce the differential release of angiogenic factors from the SVEC4-10 cells. rmMCP-7 was more efficient in stimulating tube formation and release of angiogenic factors than rmMCP-6. These results suggest that the subtypes of proteases released by mast cells may influence endothelial cells during in vivo neo-vascularization.

  16. Endothelial juxtaposition of distinct adult stem cells activates angiogenesis signaling molecules in endothelial cells.

    Science.gov (United States)

    Mohammadi, Elham; Nassiri, Seyed Mahdi; Rahbarghazi, Reza; Siavashi, Vahid; Araghi, Atefeh

    2015-12-01

    Efficacy of therapeutic angiogenesis needs a comprehensive understanding of endothelial cell (EC) function and biological factors and cells that interplay with ECs. Stem cells are considered the key components of pro- and anti-angiogenic milieu in a wide variety of physiopathological states, and interactions of EC-stem cells have been the subject of controversy in recent years. In this study, the potential effects of three tissue-specific adult stem cells, namely rat marrow-derived mesenchymal stem cells (rBMSCs), rat adipose-derived stem cells (rADSCs) and rat muscle-derived satellite cells (rSCs), on the endothelial activation of key angiogenic signaling molecules, including VEGF, Ang-2, VEGFR-2, Tie-2, and Tie2-pho, were investigated. Human umbilical vein endothelial cells (HUVECs) and rat lung microvascular endothelial cells (RLMECs) were cocultured with the stem cells or incubated with the stem cell-derived conditioned media on Matrigel. Following HUVEC-stem cell coculture, CD31-positive ECs were flow sorted and subjected to western blotting to analyze potential changes in the expression of the pro-angiogenic signaling molecules. Elongation and co-alignment of the stem cells were seen along the EC tubes in the EC-stem cell cocultures on Matrigel, with cell-to-cell dye communication in the EC-rBMSC cocultures. Moreover, rBMSCs and rADSCs significantly improved endothelial tubulogenesis in both juxtacrine and paracrine manners. These two latter stem cells dynamically up-regulated VEGF, Ang-2, VREGR-2, and Tie-2 but down-regulated Tie2-pho and the Tie2-pho/Tie-2 ratio in HUVECs. Induction of pro-angiogenic signaling in ECs by marrow- and adipose-derived MSCs further indicates the significance of stem cell milieu in angiogenesis dynamics.

  17. Cocoa Enriched Diets Enhance Expression of Phosphatases and Decrease Expression of Inflammatory Molecules in Trigeminal Ganglion Neurons

    Science.gov (United States)

    Cady, Ryan J.; Durham, Paul L.

    2010-01-01

    Activation of trigeminal nerves and release of neuropeptides that promote inflammation are implicated in the underlying pathology of migraine and temporomandibular joint (TMJ) disorders. The overall response of trigeminal nerves to peripheral inflammatory stimuli involves a balance between enzymes that promote inflammation, kinases, and those that restore homeostasis, phosphatases. The goal of this study was to determine the effects of a cocoa-enriched diet on the expression of key inflammatory proteins in trigeminal ganglion neurons under basal and inflammatory conditions. Rats were fed a control diet or an isocaloric diet enriched in cocoa for 14 days prior to an injection of noxious stimuli to cause acute or chronic excitation of trigeminal neurons. In animals fed a cocoa-enriched diet, basal levels of the mitogen-activated kinase (MAP) phosphatases MKP-1 and MKP-3 were elevated in neurons. Importantly, the stimulatory effects of acute or chronic peripheral inflammation on neuronal expression of the MAPK p38 and extracellular signal-regulated kinases (ERK) were significantly repressed in response to cocoa. Similarly, dietary cocoa significantly suppressed basal neuronal expression of calcitonin gene-related peptide (CGRP) as well as stimulated levels of the inducible form of nitric oxide synthase (iNOS), proteins implicated in the underlying pathology of migraine and TMJ disorders. To our knowledge, this is first evidence that a dietary supplement can cause upregulation of MKP, and that cocoa can prevent inflammatory responses in trigeminal ganglion neurons. Furthermore, our data provide evidence that cocoa contains biologically active compounds that would be beneficial in the treatment of migraine and TMJ disorders. PMID:20138852

  18. Research of the degradation products of chitosan's angiogenic function

    International Nuclear Information System (INIS)

    Wang Jianyun; Chen Yuanwei; Ding Yulong; Shi Guoqi; Wan Changxiu

    2008-01-01

    Angiogenesis is of great importance in tissue engineering and has gained large attention in the past decade. But how it will be influenced by the biodegradable materials, especially their degradation products, remains unknown. Chitosan (CS) is a kind of naturally occurred polysaccharide which can be degraded in physiological environment. In order to gain some knowledge of the influences of CS degradation products on angiogenesis, the interaction of vascular endothelial cells with the degradation products was investigated in the present study. The CS degradation products were prepared by keeping CS sample in physiological saline aseptically at 37 deg. C for 120 days. Endothelial cells were co-cultured with the degradation products and the angiogenic cell behaviors, including cell proliferation, migration and tube-like structure (TLS) formation, were tested by MTT assay, cell migration quantification method (CMQM), and tube-like structure quantification method (TLSQM) respectively. Furthermore, mRNA expressions of vascular endothelial growth factor (VEGF) and matrix metallo proteinase (MMP-2) were determined by real-time reverse transcriptional polymerase chain reaction (RT-PCR). Physiological saline served as a negative control. As the results showed, the degradation products obtained from 20th to 60th day significantly inhibited the proliferation, migration, and TLS formation of endothelial cells. However, degradation products of the first 14 days and the last 30 days were found to be proangiogenic. At the molecular level, the initial results indicated that the mRNA expressions of VEGF and MMP-2 were increased by the degradation products of 7th day, but were decreased by the ones of 60th day. According to all the results, it could be concluded that the angiogenic behaviors of endothelial cells at both cellular and molecular level could be significantly stimulated or suppressed by the degradation products of CS and the influences are quite time-dependent

  19. Cloning and expression of the receptor for human urokinase plasminogen activator, a central molecule in cell surface, plasmin dependent proteolysis

    DEFF Research Database (Denmark)

    Roldan, A.L.; Cubellis, M.V.; Masucci, M.T.

    1990-01-01

    , and therefore the capacity of cells to migrate and invade neighboring tissues. We have isolated a 1.4 kb cDNA clone coding for the entire human uPAR. An oligonucleotide synthesized on the basis of the N-terminal sequence of the purified protein was used to screen a cDNA library made from SV40 transformed human......, a size very close to that of the cloned cDNA. Expression of the uPAR cDNA in mouse cells confirms that the clone is complete and expresses a functional uPA binding protein, located on the cell surface and with properties similar to the human uPAR. Caseinolytic plaque assay, immunofluorescence analysis......The surface receptor for urokinase plasminogen activator (uPAR) has been recognized in recent years as a key molecule in regulating plasminogen mediated extracellular proteolysis. Surface plasminogen activation controls the connections between cells, basement membrane and extracellular matrix...

  20. Small-molecule inhibitors of toxT expression in Vibrio cholerae.

    Science.gov (United States)

    Anthouard, Rebecca; DiRita, Victor J

    2013-08-06

    Vibrio cholerae, a Gram-negative bacterium, infects humans and causes cholera, a severe disease characterized by vomiting and diarrhea. These symptoms are primarily caused by cholera toxin (CT), whose production by V. cholerae is tightly regulated by the virulence cascade. In this study, we designed and carried out a high-throughput chemical genetic screen to identify inhibitors of the virulence cascade. We identified three compounds, which we named toxtazin A and toxtazin B and B', representing two novel classes of toxT transcription inhibitors. All three compounds reduce production of both CT and the toxin-coregulated pilus (TCP), an important colonization factor. We present evidence that toxtazin A works at the level of the toxT promoter and that toxtazins B and B' work at the level of the tcpP promoter. Treatment with toxtazin B results in a 100-fold reduction in colonization in an infant mouse model of infection, though toxtazin A did not reduce colonization at the concentrations tested. These results add to the growing body of literature indicating that small-molecule inhibitors of virulence genes could be developed to treat infections, as alternatives to antibiotics become increasingly needed. V. cholerae caused more than 580,000 infections worldwide in 2011 alone (WHO, Wkly. Epidemiol. Rec. 87:289-304, 2012). Cholera is treated with an oral rehydration therapy consisting of water, glucose, and electrolytes. However, as V. cholerae is transmitted via contaminated water, treatment can be difficult for communities whose water source is contaminated. In this study, we address the need for new therapeutic approaches by targeting the production of the main virulence factor, cholera toxin (CT). The high-throughput screen presented here led to the identification of two novel classes of inhibitors of the virulence cascade in V. cholerae, toxtazin A and toxtazins B and B'. We demonstrate that (i) small-molecule inhibitors of virulence gene production can be

  1. Major histocompatibility complex class I molecule expression is normal on peripheral blood lymphocytes from patients with insulin-dependent diabetes mellitus.

    OpenAIRE

    Hao, W; Gladstone, P; Engardt, S; Greenbaum, C; Palmer, J P

    1996-01-01

    Recent work from one laboratory has shown, in both nonobese diabetic mice and humans, an association between insulin-dependent diabetes mellitus (IDDM) and quantitative difference in MHC class I molecule expression. This reported decrease in MHC class I molecule expression is very controversial in the nonobese diabetic mouse model of IDDM, but to our knowledge, it has not been evaluated by another group in human IDDM. To evaluate this question, we studied 30 patients with IDDM and 30 age- and...

  2. Expression of the synaptic exocytosis-regulating molecule complexin 2 in taste buds and its participation in peripheral taste transduction.

    Science.gov (United States)

    Kurokawa, Azusa; Narukawa, Masataka; Ohmoto, Makoto; Yoshimoto, Joto; Abe, Keiko; Misaka, Takumi

    2015-06-01

    Taste information from type III taste cells to gustatory neurons is thought to be transmitted via synapses. However, the molecular mechanisms underlying taste transduction through this pathway have not been fully elucidated. In this study, to identify molecules that participate in synaptic taste transduction, we investigated whether complexins (Cplxs), which play roles in regulating membrane fusion in synaptic vesicle exocytosis, were expressed in taste bud cells. Among four Cplx isoforms, strong expression of Cplx2 mRNA was detected in type III taste cells. To investigate the function of CPLX2 in taste transduction, we observed taste responses in CPLX2-knockout mice. When assessed with electrophysiological and behavioral assays, taste responses to some sour stimuli in CPLX2-knockout mice were significantly lower than those in wild-type mice. These results suggested that CPLX2 participated in synaptic taste transduction from type III taste cells to gustatory neurons. A part of taste information is thought to be transmitted via synapses. However, the molecular mechanisms have not been fully elucidated. To identify molecules that participate in synaptic taste transduction, we investigated complexins (Cplxs) expression in taste bud cells. Strong expression of Cplx2 mRNA was detected in taste bud cells. Furthermore, taste responses to some sour stimuli in CPLX2- knockout mice were significantly lower than those in wild-type mice. These suggested that CPLX2 participated in synaptic taste transduction. © 2015 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of The International Society for Neurochemistry.

  3. A tapeworm molecule manipulates vitellogenin expression in the beetle Tenebrio molitor

    Science.gov (United States)

    Warr, E.; Meredith, J. M.; Nimmo, D. D.; Basu, S.; Hurd, H.; Eggleston, P.

    2006-01-01

    Metacestodes of Hymenolepis diminuta secrete a molecule that decreases vitellogenin (Vg) synthesis in the beetle host, Tenebrio molitor. The 5608 bp T. molitor Vg cDNA represents a single-copy gene encoding a single open reading frame of 1821 amino acids with a predicted molecular mass of 206 kDa. Northern blot analysis revealed detectable levels of transcripts only in adult females. In vivo, Vg mRNA abundance was significantly higher in fat bodies from infected females compared with control females at all but the earliest time point. In vitro, Vg mRNA abundance was significantly increased in fat bodies incubated with live stage I–II parasites. The apparent conflict between increased Vg mRNA abundance and decreased Vg protein in fat bodies from infected females is discussed. PMID:16907836

  4. Single-cell multiple gene expression analysis based on single-molecule-detection microarray assay for multi-DNA determination

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lu [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Wang, Xianwei [School of Life Sciences, Shandong University, Jinan 250100 (China); Zhang, Xiaoli [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Wang, Jinxing [School of Life Sciences, Shandong University, Jinan 250100 (China); Jin, Wenrui, E-mail: jwr@sdu.edu.cn [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2015-01-07

    Highlights: • A single-molecule-detection (SMD) microarray for 10 samples is fabricated. • The based-SMD microarray assay (SMA) can determine 8 DNAs for each sample. • The limit of detection of SMA is as low as 1.3 × 10{sup −16} mol L{sup −1}. • The SMA can be applied in single-cell multiple gene expression analysis. - Abstract: We report a novel ultra-sensitive and high-selective single-molecule-detection microarray assay (SMA) for multiple DNA determination. In the SMA, a capture DNA (DNAc) microarray consisting of 10 subarrays with 9 spots for each subarray is fabricated on a silanized glass coverslip as the substrate. On the subarrays, the spot-to-spot spacing is 500 μm and each spot has a diameter of ∼300 μm. The sequence of the DNAcs on the 9 spots of a subarray is different, to determine 8 types of target DNAs (DNAts). Thus, 8 types of DNAts are captured to their complementary DNAcs at 8 spots of a subarray, respectively, and then labeled with quantum dots (QDs) attached to 8 types of detection DNAs (DNAds) with different sequences. The ninth spot is used to detect the blank value. In order to determine the same 8 types of DNAts in 10 samples, the 10 DNAc-modified subarrays on the microarray are identical. Fluorescence single-molecule images of the QD-labeled DNAts on each spot of the subarray are acquired using a home-made single-molecule microarray reader. The amounts of the DNAts are quantified by counting the bright dots from the QDs. For a microarray, 8 types of DNAts in 10 samples can be quantified in parallel. The limit of detection of the SMA for DNA determination is as low as 1.3 × 10{sup −16} mol L{sup −1}. The SMA for multi-DNA determination can also be applied in single-cell multiple gene expression analysis through quantification of complementary DNAs (cDNAs) corresponding to multiple messenger RNAs (mRNAs) in single cells. To do so, total RNA in single cells is extracted and reversely transcribed into their cDNAs. Three

  5. Cigarette Smoke Enhances the Expression of Profibrotic Molecules in Alveolar Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Marco Checa

    Full Text Available Idiopathic pulmonary fibrosis (IPF is a progressive and lethal disease of unknown etiology. A growing body of evidence indicates that it may result from an aberrant activation of alveolar epithelium, which induces the expansion of the fibroblast population, their differentiation to myofibroblasts and the excessive accumulation of extracellular matrix. The mechanisms that activate the alveolar epithelium are unknown, but several studies indicate that smoking is the main environmental risk factor for the development of IPF. In this study we explored the effect of cigarette smoke on the gene expression profile and signaling pathways in alveolar epithelial cells. Lung epithelial cell line from human (A549, was exposed to cigarette smoke extract (CSE for 1, 3, and 5 weeks at 1, 5 and 10% and gene expression was evaluated by complete transcriptome microarrays. Signaling networks were analyzed with the Ingenuity Pathway Analysis software. At 5 weeks of exposure, alveolar epithelial cells acquired a fibroblast-like phenotype. At this time, gene expression profile revealed a significant increase of more than 1000 genes and deregulation of canonical signaling pathways such as TGF-β and Wnt. Several profibrotic genes involved in EMT were over-expressed, and incomplete EMT was observed in these cells, and corroborated in mouse (MLE-12 and rat (RLE-6TN epithelial cells. The secretion of activated TGF-β1 increased in cells exposed to cigarette smoke, which decreased when the integrin alpha v gene was silenced. These findings suggest that the exposure of alveolar epithelial cells to CSE induces the expression and release of a variety of profibrotic genes, and the activation of TGF-β1, which may explain at least partially, the increased risk of developing IPF in smokers.

  6. De-repressing LncRNA-Targeted Genes to Upregulate Gene Expression: Focus on Small Molecule Therapeutics

    Directory of Open Access Journals (Sweden)

    Roya Pedram Fatemi

    2014-01-01

    Full Text Available Non-protein coding RNAs (ncRNAs make up the overwhelming majority of transcripts in the genome and have recently gained attention for their complex regulatory role in cells, including the regulation of protein-coding genes. Furthermore, ncRNAs play an important role in normal development and their expression levels are dysregulated in several diseases. Recently, several long noncoding RNAs (lncRNAs have been shown to alter the epigenetic status of genomic loci and suppress the expression of target genes. This review will present examples of such a mechanism and focus on the potential to target lncRNAs for achieving therapeutic gene upregulation by de-repressing genes that are epigenetically silenced in various diseases. Finally, the potential to target lncRNAs, through their interactions with epigenetic enzymes, using various tools, such as small molecules, viral vectors and antisense oligonucleotides, will be discussed. We suggest that small molecule modulators of a novel class of drug targets, lncRNA-protein interactions, have great potential to treat some cancers, cardiovascular disease, and neurological disorders.

  7. Irradiation induces increase of adhesion molecules and accumulation of β2-integrin-expressing cells in humans

    International Nuclear Information System (INIS)

    Handschel, Joerg; Prott, Franz-Josef; Sunderkoetter, Cord; Metze, Dieter; Meyer, Ulrich; Joos, Ulrich

    1999-01-01

    Purpose: The purpose of our investigation was to describe the dose- and time-dependent histomorphologic alterations of the irradiated tissue, the composition of the infiltrate, and the expression patterns of various adhesion molecules. Methods and Materials: We analyzed immunohistochemically alterations in oral mucosa in 13 head and neck cancer patients before radiotherapy and with 30 Gy and 60 Gy. All had oral mucosa irradiation, with a final dose of 60 Gy using conventional fractionation. Snap-frozen specimens were stained using the indirect immunoperoxidase technique. Histomorphology was studied in paraffin-embedded sections. In addition, we determined the clinical degree of oral mucositis. Results: Histomorphologic evaluation showed no vascular damage. Irradiation caused a steep increase of β 2 -integrin-bearing cells (p 1 -integrin-positive cells remained at low levels. Additionally we found an increase in the expression of endothelial intercellular adhesion molecule-1 (ICAM-1) (p 2 is more involved than β 1 . Pharmaceuticals that block leukocyte adhesion to E-selectin or ICAM-1 may prevent radiation-mediated inflammation in oral mucosa

  8. Small-molecule screen identifies modulators of EWS/FLI1 target gene expression and cell survival in Ewing's sarcoma.

    Science.gov (United States)

    Boro, Aleksandar; Prêtre, Kathya; Rechfeld, Florian; Thalhammer, Verena; Oesch, Susanne; Wachtel, Marco; Schäfer, Beat W; Niggli, Felix K

    2012-11-01

    Ewing's sarcoma family of tumors (EFT) is characterized by the presence of chromosomal translocations leading to the expression of oncogenic transcription factors such as, in the majority of cases, EWS/FLI1. Because of its key role in Ewing's sarcoma development and maintenance, EWS/FLI1 represents an attractive therapeutic target. Here, we characterize PHLDA1 as a novel direct target gene whose expression is repressed by EWS/FLI1. Using this gene and additional specific well-characterized target genes such as NROB1, NKX2.2 and CAV1, all activated by EWS/FLI1, as a read-out system, we screened a small-molecule compound library enriched for FDA-approved drugs that modulated the expression of EWS/FLI1 target genes. Among a hit-list of nine well-known drugs such as camptothecin, fenretinide, etoposide and doxorubicin, we also identified the kinase inhibitor midostaurin (PKC412). Subsequent experiments demonstrated that midostaurin is able to induce apoptosis in a panel of six Ewing's sarcoma cell lines in vitro and can significantly suppress xenograft tumor growth in vivo. These results suggest that midostaurin might be a novel drug that is active against Ewing's cells, which might act by modulating the expression of EWS/FLI1 target genes. Copyright © 2012 UICC.

  9. Expression of GABA signaling molecules KCC2, NKCC1, and GAD1 in cortical development and schizophrenia.

    Science.gov (United States)

    Hyde, Thomas M; Lipska, Barbara K; Ali, Towhid; Mathew, Shiny V; Law, Amanda J; Metitiri, Ochuko E; Straub, Richard E; Ye, Tianzhang; Colantuoni, Carlo; Herman, Mary M; Bigelow, Llewellyn B; Weinberger, Daniel R; Kleinman, Joel E

    2011-07-27

    GABA signaling molecules are critical for both human brain development and the pathophysiology of schizophrenia. We examined the expression of transcripts derived from three genes related to GABA signaling [GAD1 (GAD67 and GAD25), SLC12A2 (NKCC1), and SLC12A5 (KCC2)] in the prefrontal cortex (PFC) and hippocampal formation of a large cohort of nonpsychiatric control human brains (n = 240) across the lifespan (from fetal week 14 to 80 years) and in patients with schizophrenia (n = 30-31), using quantitative RT-PCR. We also examined whether a schizophrenia risk-associated promoter SNP in GAD1 (rs3749034) is related to expression of these transcripts. Our studies revealed that development and maturation of both the PFC and hippocampal formation are characterized by progressive switches in expression from GAD25 to GAD67 and from NKCC1 to KCC2. Previous studies have demonstrated that the former leads to GABA synthesis, and the latter leads to switching from excitatory to inhibitory neurotransmission. In the hippocampal formation, GAD25/GAD67 and NKCC1/KCC2 ratios are increased in patients with schizophrenia, reflecting a potentially immature GABA physiology. Remarkably, GAD25/GAD67 and NKCC1/KCC2 expression ratios are associated with rs3749034 genotype, with risk alleles again predicting a relatively less mature pattern. These findings suggest that abnormalities in GABA signaling critical to brain development contribute to genetic risk for schizophrenia.

  10. Analysis of monoclonal antibodies reactive with molecules upregulated or expressed only on activated lymphocytes.

    Science.gov (United States)

    Davis, W C; Naessens, J; Brown, W C; Ellis, J A; Hamilton, M J; Cantor, G H; Barbosa, J I; Ferens, W; Bohach, G A

    1996-08-01

    Monoclonal antibodies potentially specific for antigens expressed or upregulated on activated leukocytes were selected for further analysis from the panel submitted to the third international workshop on ruminant leukocyte antigens. The kinetics of expression of these activation antigens on resting peripheral mononuclear cells (PBMC) and PBMC stimulated with concanavalin A or staphylococcal superantigen SECI for 4, 24 or 96 h were compared, as well as their appearance on various subsets of cells. For some of them, a molecular mass could be determined after immunoprecipitation from radio-labeled, lectin-stimulated cells. Based on the results from the clustering, kinetic studies and biochemical data, evidence was gathered for assigning two additional mAbs to cluster BoCD25 (IL-2 receptor) and two mAbs to cluster BoCD71 (transferrin receptor). Four mAbs recognized an early activation antigen predominantly expressed on gamma delta T cells in short-term cultures. A number of other activation antigens were further characterized.

  11. Expression of polysialylated neural cell adhesion molecules on adult stem cells after neuronal differentiation of inner ear spiral ganglion neurons

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyoung Ho [Department of Otolaryngology Head and Neck Surgery, College of Medicine, Catholic University, Seoul (Korea, Republic of); Yeo, Sang Won, E-mail: swyeo@catholic.ac.kr [Department of Otolaryngology Head and Neck Surgery, College of Medicine, Catholic University, Seoul (Korea, Republic of); Troy, Frederic A., E-mail: fatroy@ucdavis.edu [Department of Biochemistry and Molecular Medicine, University of California, School of Medicine, Davis, CA 95616 (United States); Xiamen University, School of Medicine, Xiamen City (China)

    2014-10-17

    Highlights: • PolySia expressed on neurons primarily during early stages of neuronal development. • PolySia–NCAM is expressed on neural stem cells from adult guinea pig spiral ganglion. • PolySia is a biomarker that modulates neuronal differentiation in inner ear stem cells. - Abstract: During brain development, polysialylated (polySia) neural cell adhesion molecules (polySia–NCAMs) modulate cell–cell adhesive interactions involved in synaptogenesis, neural plasticity, myelination, and neural stem cell (NSC) proliferation and differentiation. Our findings show that polySia–NCAM is expressed on NSC isolated from adult guinea pig spiral ganglion (GPSG), and in neurons and Schwann cells after differentiation of the NSC with epidermal, glia, fibroblast growth factors (GFs) and neurotrophins. These differentiated cells were immunoreactive with mAb’s to polySia, NCAM, β-III tubulin, nestin, S-100 and stained with BrdU. NSC could regenerate and be differentiated into neurons and Schwann cells. We conclude: (1) polySia is expressed on NSC isolated from adult GPSG and on neurons and Schwann cells differentiated from these NSC; (2) polySia is expressed on neurons primarily during the early stage of neuronal development and is expressed on Schwann cells at points of cell–cell contact; (3) polySia is a functional biomarker that modulates neuronal differentiation in inner ear stem cells. These new findings suggest that replacement of defective cells in the inner ear of hearing impaired patients using adult spiral ganglion neurons may offer potential hope to improve the quality of life for patients with auditory dysfunction and impaired hearing disorders.

  12. Dragon (Repulsive Guidance Molecule RGMb) Inhibits E-cadherin Expression and Induces Apoptosis in Renal Tubular Epithelial Cells*

    Science.gov (United States)

    Liu, Wenjing; Li, Xiaoling; Zhao, Yueshui; Meng, Xiao-Ming; Wan, Chao; Yang, Baoxue; Lan, Hui-Yao; Lin, Herbert Y.; Xia, Yin

    2013-01-01

    Dragon is one of the three members of the repulsive guidance molecule (RGM) family, i.e. RGMa, RGMb (Dragon), and RGMc (hemojuvelin). We previously identified the RGM members as bone morphogenetic protein (BMP) co-receptors that enhance BMP signaling. Our previous studies found that Dragon is highly expressed in the tubular epithelial cells of mouse kidneys. However, the roles of Dragon in renal epithelial cells are yet to be defined. We now show that overexpression of Dragon increased cell death induced by hypoxia in association with increased cleaved poly(ADP-ribose) polymerase and cleaved caspase-3 levels in mouse inner medullary collecting duct (IMCD3) cells. Dragon also inhibited E-cadherin expression but did not affect epithelial-to-mesenchymal transition induced by TGF-β in IMCD3 cells. Previous studies suggest that the three RGM members can function as ligands for the receptor neogenin. Interestingly, our present study demonstrates that the Dragon actions on apoptosis and E-cadherin expression in IMCD3 cells were mediated by the neogenin receptor but not through the BMP pathway. Dragon expression in the kidney was up-regulated by unilateral ureteral obstruction in mice. Compared with wild-type mice, heterozygous Dragon knock-out mice exhibited 45–66% reduction in Dragon mRNA expression, decreased epithelial apoptosis, and increased tubular E-cadherin expression and had attenuated tubular injury after unilateral ureteral obstruction. Our results suggest that Dragon may impair tubular epithelial integrity and induce epithelial apoptosis both in vitro and in vivo. PMID:24052264

  13. Dragon (repulsive guidance molecule RGMb) inhibits E-cadherin expression and induces apoptosis in renal tubular epithelial cells.

    Science.gov (United States)

    Liu, Wenjing; Li, Xiaoling; Zhao, Yueshui; Meng, Xiao-Ming; Wan, Chao; Yang, Baoxue; Lan, Hui-Yao; Lin, Herbert Y; Xia, Yin

    2013-11-01

    Dragon is one of the three members of the repulsive guidance molecule (RGM) family, i.e. RGMa, RGMb (Dragon), and RGMc (hemojuvelin). We previously identified the RGM members as bone morphogenetic protein (BMP) co-receptors that enhance BMP signaling. Our previous studies found that Dragon is highly expressed in the tubular epithelial cells of mouse kidneys. However, the roles of Dragon in renal epithelial cells are yet to be defined. We now show that overexpression of Dragon increased cell death induced by hypoxia in association with increased cleaved poly(ADP-ribose) polymerase and cleaved caspase-3 levels in mouse inner medullary collecting duct (IMCD3) cells. Dragon also inhibited E-cadherin expression but did not affect epithelial-to-mesenchymal transition induced by TGF-β in IMCD3 cells. Previous studies suggest that the three RGM members can function as ligands for the receptor neogenin. Interestingly, our present study demonstrates that the Dragon actions on apoptosis and E-cadherin expression in IMCD3 cells were mediated by the neogenin receptor but not through the BMP pathway. Dragon expression in the kidney was up-regulated by unilateral ureteral obstruction in mice. Compared with wild-type mice, heterozygous Dragon knock-out mice exhibited 45-66% reduction in Dragon mRNA expression, decreased epithelial apoptosis, and increased tubular E-cadherin expression and had attenuated tubular injury after unilateral ureteral obstruction. Our results suggest that Dragon may impair tubular epithelial integrity and induce epithelial apoptosis both in vitro and in vivo.

  14. Expression of polysialylated neural cell adhesion molecules on adult stem cells after neuronal differentiation of inner ear spiral ganglion neurons

    International Nuclear Information System (INIS)

    Park, Kyoung Ho; Yeo, Sang Won; Troy, Frederic A.

    2014-01-01

    Highlights: • PolySia expressed on neurons primarily during early stages of neuronal development. • PolySia–NCAM is expressed on neural stem cells from adult guinea pig spiral ganglion. • PolySia is a biomarker that modulates neuronal differentiation in inner ear stem cells. - Abstract: During brain development, polysialylated (polySia) neural cell adhesion molecules (polySia–NCAMs) modulate cell–cell adhesive interactions involved in synaptogenesis, neural plasticity, myelination, and neural stem cell (NSC) proliferation and differentiation. Our findings show that polySia–NCAM is expressed on NSC isolated from adult guinea pig spiral ganglion (GPSG), and in neurons and Schwann cells after differentiation of the NSC with epidermal, glia, fibroblast growth factors (GFs) and neurotrophins. These differentiated cells were immunoreactive with mAb’s to polySia, NCAM, β-III tubulin, nestin, S-100 and stained with BrdU. NSC could regenerate and be differentiated into neurons and Schwann cells. We conclude: (1) polySia is expressed on NSC isolated from adult GPSG and on neurons and Schwann cells differentiated from these NSC; (2) polySia is expressed on neurons primarily during the early stage of neuronal development and is expressed on Schwann cells at points of cell–cell contact; (3) polySia is a functional biomarker that modulates neuronal differentiation in inner ear stem cells. These new findings suggest that replacement of defective cells in the inner ear of hearing impaired patients using adult spiral ganglion neurons may offer potential hope to improve the quality of life for patients with auditory dysfunction and impaired hearing disorders

  15. Immunohistochemical expression of epithelial cell adhesion molecule (EpCAM) in mucoepidermoid carcinoma compared to normal salivary gland tissues.

    Science.gov (United States)

    Kamal, Noura M; Salem, Hend M; Dahmoush, Heba M

    2017-07-01

    Mucoepidermoid carcinoma (MEC) is the most common malignant salivary gland tumor which displays biological, histological and clinical diversity thus representing a challenge for its diagnosis and management. Epithelial cell adhesion molecule (EpCAM) is a transmembrane glycoprotein identified as a tumor specific antigen due to its frequent overexpression in the majority of epithelial carcinomas and its correlation with prognosis. It is considered to be a promising biomarker used as a therapeutic target already in ongoing clinical trials. The purpose of this study was to investigate the pattern, cellular characterization and level of EpCAM expression in MEC and demonstrate its correlation with histologic grading which may benefit future clinical trials using EpCAM targeted therapy. 48 specimens (12 normal salivary gland tissue and 36 MEC) were collected and EpCAM membranous expression was evaluated by immunohistochemistry. Total immunoscore (TIS) was evaluated, the term 'EpCAM overexpression' was given for tissues showing a total immunoscore >4. A highly significant difference was observed between TIS percent values in control and different grades of MEC (p<0.001). High grade MEC (HG-MEC) was the highest EpCAM expressor. In addition, EpCAM expression pattern differed among the different grades. EpCAM expression was detected in MEC, and its overexpression correlated with increasing the histological grade. The diffuse membranous expression in HG-MEC could be of diagnostic value in relation to the patchy expression observed in both low grade and intermediate grade MEC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Productive infection of HUVEC by HHV-8 is associated with changes compatible with angiogenic transformations.

    Science.gov (United States)

    Foglieni, C; Scabini, S; Belloni, D; Broccolo, F; Lusso, P; Malnati, M S; Ferrero, E

    2005-01-01

    Kaposi's Sarcoma (KS) is an angioproliferative disease associated with human herpesvirus 8 (HHV-8) infection. We have characterized the morphologic and phenotypic modifications of HUVEC in a model of productive HHV-8 infection. HHV-8 replication was associated with ultra-structural changes, flattened soma and a loss of marginal folds and intercellular contacts, and morphologic features, spindle cell conversion and cordon-like structures formation. Phenotypic changes observed on cordon-like structures included partial loss and redistribution of CD31/PECAM-1 and VE-cadherin, uPAR up-regulation and de novo expression of CD13/APN. Such changes demonstrate the induction, in HUVEC, of an angiogenic profile. Most of these findings are directly linked to HHV-8-encoded proteins expression, suggesting that HHV-8 itself may participate to the initial steps of the angiogenic transformation in KS.

  17. Expression of adhesion molecules, chemokines and matrix metallo- proteinases (MMPs) in viable and degenerating stage of Taenia solium metacestode in swine neurocysticercosis.

    Science.gov (United States)

    Singh, Satyendra K; Singh, Aloukick K; Prasad, Kashi N; Singh, Amrita; Singh, Avinash; Rai, Ravi P; Tripathi, Mukesh; Gupta, Rakesh K; Husain, Nuzhat

    2015-11-30

    Neurocysticercosis (NCC) is a parasitic infection of central nervous system (CNS). Expression of adhesion molecules, chemokines and matrix metalloproteinases (MMPs) were investigated on brain tissues surrounding viable (n=15) and degenerating cysticerci (n=15) of Taenia solium in swine by real-time RT-PCR and ELISA. Gelatin gel zymography was performed for MMPs activity. ICAM-1 (intercellular adhesion molecule-1), E-selectin, MIP-1α (macrophage inflammatory protein-1α), Eotaxin-1 and RANTES (regulated on activation, normal T cell expressed and secreted) were associated with degenerating cysticerci (cysts). However, VCAM-1 (vascular cell adhesion molecule-1), MCP-1 (monocyte chemotactic protein-1), MMP-2 and MMP-9 were associated with both viable and degenerating cysts. In conclusion, viable and degenerating cysticerci have different immune molecule profiles and role of these molecules in disease pathogenesis needs to be investigated. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Differential expression of the costimulatory molecules CD86, CD28, CD152 and PD-1 correlates with the host-parasite outcome in leprosy

    Directory of Open Access Journals (Sweden)

    Maria de Lourdes Palermo

    2012-12-01

    Full Text Available Leprosy is a spectral disease exhibiting two polar sides, namely, lepromatous leprosy (LL characterised by impaired T-cell responses and tuberculoid leprosy in which T-cell responses are strong. Proper T-cell activation requires signalling through costimulatory molecules expressed by antigen presenting cells and their ligands on T-cells. We studied the influence of costimulatory molecules on the immune responses of subjects along the leprosy spectrum. The expression of the costimulatory molecules was evaluated in in vitro-stimulated peripheral blood mononuclear cells of lepromatous and tuberculoid patients and healthy exposed individuals (contacts. We show that LL patients have defective monocyte CD86 expression, which likely contributes to the impairment of the antigen presentation process and to patients anergy. Accordingly, CD86 but not CD80 blockade inhibited the lymphoproliferative response to Mycobacterium leprae. Consistent with the LL anergy, there was reduced expression of the positive signalling costimulatory molecules CD28 and CD86 on the T-cells in these patients. In contrast, tuberculoid leprosy patients displayed increased expression of the negative signalling molecules CD152 and programmed death-1 (PD-1, which represents a probable means of modulating an exacerbated immune response and avoiding immunopathology. Notably, the contacts exhibited proper CD86 and CD28 expression but not exacerbated CD152 or PD-1 expression, suggesting that they tend to develop a balanced immunity without requiring immunosuppressive costimulatory signalling.

  19. Small molecule PGC-1α1 protein stabilizers induce adipocyte Ucp1 expression and uncoupled mitochondrial respiration

    Directory of Open Access Journals (Sweden)

    A.T. Pettersson-Klein

    2018-03-01

    Full Text Available Objective: The peroxisome proliferator-activated receptor-γ coactivator-1α1 (PGC-1α1 regulates genes involved in energy metabolism. Increasing adipose tissue energy expenditure through PGC-1α1 activation is potentially beneficial for systemic metabolism. Pharmacological PGC-1α1 activators could be valuable tools in the fight against obesity and metabolic disease. Finding such compounds has been challenging partly because PGC-1α1 is a transcriptional coactivator with no known ligand-binding properties. While, PGC-1α1 activation is regulated by several mechanisms, protein stabilization is a crucial limiting step due to its short half-life under unstimulated conditions. Methods: We designed a cell-based high-throughput screening system to identify PGC-1α1 protein stabilizers. Positive hits were tested for their ability to induce endogenous PGC-1α1 protein accumulation and activate target gene expression in brown adipocytes. Select compounds were analyzed for their effects on global gene expression and cellular respiration in adipocytes. Results: Among 7,040 compounds screened, we highlight four small molecules with high activity as measured by: PGC-1α1 protein accumulation, target gene expression, and uncoupled mitochondrial respiration in brown adipocytes. Conclusions: We identify compounds that induce PGC-1α1 protein accumulation and show that this increases uncoupled respiration in brown adipocytes. This screening platform establishes the foundation for a new class of therapeutics with potential use in obesity and associated disorders. Keywords: Small molecule screening, PGC-1a, PGC-1alpha, PGC-1alpha1, Protein stabilization, UCP1, Mitochondrial respiration, Brown adipose tissue

  20. Development of a surrogate angiogenic potency assay for clinical-grade stem cell production.

    Science.gov (United States)

    Lehman, Nicholas; Cutrone, Rochelle; Raber, Amy; Perry, Robert; Van't Hof, Wouter; Deans, Robert; Ting, Anthony E; Woda, Juliana

    2012-09-01

    Clinical results from acute myocardial infarction (AMI) patients treated with MultiStem®, a large-scale expanded adherent multipotent progenitor cell population (MAPC), have demonstrated a strong safety and benefit profile for these cells. The mechanism of benefit with MAPC treatment is a result, in part, of its ability to induce neovascularization through trophic support. Production of clinical-grade stem cell products requires the development of lot-release criteria based on potency assays that directly reflect the fundamental mechanistic pathway underlying the therapeutic response to verify manufacturing process consistency and product potency. Using an in vitro endothelial tube formation assay, a potency assay has been developed that reflects MAPC pro-angiogenic activity. Serum-free conditioned media collected from MAPC culture induced endothelial tube formation. A proteomic survey of angiogenic factors produced by the cells in vitro revealed candidate factors linked to angiogenic potency. Three cytokines, chemokine (C-X-C motif) ligand 5 (CXCL5), interleukin 8 (IL-8) and vascular endothelial growth factor (VEGF), were required for this angiogenic activity. Depletion of any of these factors from the media prevented tube formation, while adding back increasing amounts of these cytokines into the depleted serum-free conditioned media established the lower limits of each of the cytokines required to induce angiogenesis. A necessary threshold of angiogenic factor expression was established using an in vitro angiogenesis assay. By correlating the levels of the cytokines required to induce tube formation in vitro with levels of the factors found in the spent media from manufacturing production runs, detection of these factors was identified as a surrogate potency assay with defined pass/fail criteria.

  1. Cytotoxicity, oxidative stress and expression of adhesion molecules in human umbilical vein endothelial cells exposed to dust from paints with or without nanoparticles

    DEFF Research Database (Denmark)

    Mikkelsen, Lone; Jensen, Keld A; Koponen, Ismo K

    2013-01-01

    Abstract Nanoparticles in primary form and nanoproducts might elicit different toxicological responses. We compared paint-related nanoparticles with respect to effects on endothelial oxidative stress, cytotoxicity and cell adhesion molecule expression. Primary human umbilical vein endothelial cells...... were exposed to primary nanoparticles (fine, photocatalytic or nanosized TiO(2), aluminium silicate, carbon black, nano-silicasol or axilate) and dust from sanding reference- or nanoparticle-containing paints. Most of the samples increased cell surface expressions of vascular cell adhesion molecule-1...... (VCAM-1) and intracellular adhesion molecule-1 (ICAM-1), but paint sanding dust samples generally generated less response than primary particles of TiO(2) and carbon black. We found no relationship between the expression of adhesion molecules, cytotoxicity and production of reactive oxygen species...

  2. Interleukin 20 regulates dendritic cell migration and expression of co-stimulatory molecules

    DEFF Research Database (Denmark)

    Bech, Rikke; Jalilian, Babak; Agger, Ralf

    2016-01-01

    BACKGROUND: Psoriasis is an inflammatory disease characterized by leukocyte skin infiltration. Interestingly, recent works suggest that the migration of dendritic cells (DCs) is abnormal in psoriatic skin. DCs have significant role in regulating the function of T lymphocytes, at least in part...... influenced by the local environment of cytokines. In psoriatic skin lesions the expression of IL-20 is highly up-regulated. It is unclear if this cytokine has any influence on DCs. METHODS: Here, we investigated the influence of IL-20 in monocyte-derived dendritic cell (MDDCs) in vitro. This work addressed...

  3. Induction of Pro-Angiogenic Factors by Pregnancy-Specific Glycoproteins and Studies on Receptor Usage

    Science.gov (United States)

    2008-01-01

    induce pro- angiogenic factors during pregancy . To address this, the specific aims of this study are to: 1. Examine the cytokine expression of monocytes...dialyzed into a 20 mM sodium phosphate...it was processed as described below. 68 PSG1d-Flag and PSG22N1A were dialyzed into a 20 mM sodium phosphate buffer containing 20 mM imidazole

  4. Circulating microparticles in severe pulmonary arterial hypertension increase intercellular adhesion molecule-1 expression selectively in pulmonary artery endothelium

    Directory of Open Access Journals (Sweden)

    Leslie A. Blair

    2016-10-01

    Full Text Available Abstract Background Microparticles (MPs stimulate inflammatory adhesion molecule expression in systemic vascular diseases, however it is unknown whether circulating MPs stimulate localized ICAM-1 expression in the heterogeneically distinct pulmonary endothelium during pulmonary arterial hypertension (PAH. Pulmonary vascular lesions with infiltrating inflammatory cells in PAH form in the pulmonary arteries and arterioles, but not the microcirculation. Therefore, we sought to determine whether circulating MPs from PAH stimulate pulmonary artery endothelial cell-selective ICAM-1 expression. Results Pulmonary artery endothelial cells (PAECs were exposed to MPs isolated from the circulation of a rat model of severe PAH. During late-stage (8-weeks PAH, but not early-stage (3-weeks, an increase in ICAM-1 was observed. To determine whether PAH MP-induced ICAM-1 was selective for a specific segment of the pulmonary circulation, pulmonary microvascular endothelial cells (PMVECs were exposed to late-stage PAH MPs and no increase in ICAM-1 was detected. A select population of circulating MPs, the late-stage endoglin + MPs, were used to assess their ability to stimulate ICAM-1 and it was determined that the endoglin + MPs were sufficient to promote ICAM-1 increases in the whole cell, but not surface only expression. Conclusions Late-stage, but not early-stage, MPs in a model of severe PAH selectively induce ICAM-1 in pulmonary artery endothelium, but not pulmonary microcirculation. Further, the selected endoglin + PAH MPs, but not endoglin + MPs from control, are sufficient to promote whole cell ICAM-1 in PAECs. The implications of this work are that MPs in late-stage PAH are capable of inducing ICAM-1 expression selectively in the pulmonary artery. ICAM-1 likely plays a significant role in the observed inflammatory cell recruitment, specifically to vascular lesions in the pulmonary artery and not the pulmonary microcirculation.

  5. Characterization and expression analysis of B Cell receptor accessory molecule CD79 gene in humphead snapper ( Lutjanus sanguineus)

    Science.gov (United States)

    Huang, Yucong; Yan, Xiuying; Cai, Shuanghu; Cai, Jia; Jian, Jichang; Lu, Yishan; Tang, Jufen; Wu, Zaohe

    2016-04-01

    CD79, a key component of the B cell antigen receptor complex, is composed of CD79α(Igα) and CD79β(Igβ) encoded by mb-1 and B29 respectively, and plays an important role in B cell signaling. In this study, we isolated and characterized mb-1 and B29 from humphead snapper ( Lutjanus sanguineus). Their tissue distribution and expression profiles after stimulations in vitro and in vivo were also investigated. The humphead snapper mb-1 and B29 contain open reading frames of 684 bp and 606 bp, encoding 227 amino acids and 201 amino acids, respectively. Both CD79α and CD79β possess signal peptide, extracellular Ig domain, transmembrane region and immunoreceptor tyrosine kinase activation motif (ITAM). Mb-1 is highly expressed in lymphoid organs (thymus, posterior kidney and spleen) and mucosal-associated lymphoid tissues (gill and intestine), while B29 is mainly detected in posterior kidney, spleen, gill and skin. Furthermore, transcription of mb-1 and B29 in head kidney leucocytes was up-regulated following lipopolysaccharide (LPS), pokeweed mitogen (PWM), and polyinosinic-polycytidylic acid (PolyI:C) stimulation, respectively, and their expression level in anterior kidney and spleen was also increased after challenged with formalin-inactived Vibrio harveyi. These results indicated that humphead snapper CD79 molecule might play an important role in immune response to pathogen infection.

  6. Allelic imbalance modulates surface expression of the tolerance-inducing HLA-G molecule on primary trophoblast cells.

    Science.gov (United States)

    Djurisic, S; Teiblum, S; Tolstrup, C K; Christiansen, O B; Hviid, T V F

    2015-03-01

    The HLA-G molecule is expressed on trophoblast cells at the feto-maternal interface, where it interacts with local immune cells, and upholds tolerance against the semi-allogeneic fetus. Aberrant HLA-G expression in the placenta and reduced soluble HLA-G levels are observed in pregnancy complications, partly explained by HLA-G polymorphisms which are associated with differences in the alternative splicing pattern and of the stability of HLA-G mRNA. Of special importance is a 14 bp insertion/deletion polymorphism located in the 3'-untranslated region of the HLA-G gene. In the current study, we present novel evidence for allelic imbalance of the 14 bp insertion/deletion polymorphism, using a very accurate and sensitive Digital droplet PCR technique. Allelic imbalance in heterozygous samples was observed as differential expression levels of 14 bp insertion/deletion allele-specific mRNA transcripts, which was further associated with low levels of HLA-G surface expression on primary trophoblast cells. Full gene sequencing of HLA-G allowed us to study correlations between HLA-G extended haplotypes and single-nucleotide polymorphisms and HLA-G surface expression. We found that a 1:1 expression (allelic balance) of the 14 bp insertion/deletion mRNA alleles was associated with high surface expression of HLA-G and with a specific HLA-G extended haplotype. The 14 bp del/del genotype was associated with a significantly lower abundance of the G1 mRNA isoform, and a higher abundance of the G3 mRNA isoform. Overall, the present study provides original evidence for allelic imbalance of the 14 bp insertion/deletion polymorphism, which influences HLA-G surface expression on primary trophoblast cells, considered to be important in the pathogenesis of pre-eclampsia and other pregnancy complications. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Simple expressions of the nuclear relaxation rate enhancement due to quadrupole nuclei in slowly tumbling molecules

    Energy Technology Data Exchange (ETDEWEB)

    Fries, Pascal H., E-mail: pascal-h.fries@cea.fr [Université Grenoble Alpes, INAC-SCIB, RICC, F-38000 Grenoble (France); CEA, INAC-SCIB, RICC, F-38000 Grenoble (France); Belorizky, Elie [Université Grenoble Alpes, LIPHY, F-38000 Grenoble (France); CEA, Leti-Clinatec, F-38000 Grenoble (France)

    2015-07-28

    For slowly tumbling entities or quasi-rigid lattices, we derive very simple analytical expressions of the quadrupole relaxation enhancement (QRE) of the longitudinal relaxation rate R{sub 1} of nuclear spins I due to their intramolecular magnetic dipolar coupling with quadrupole nuclei of arbitrary spins S ≥ 1. These expressions are obtained by using the adiabatic approximation for evaluating the time evolution operator of the quantum states of the quadrupole nuclei S. They are valid when the gyromagnetic ratio of the spin S is much smaller than that of the spin I. The theory predicts quadrupole resonant peaks in the dispersion curve of R{sub 1} vs magnetic field. The number, positions, relative intensities, Lorentzian shapes, and widths of these peaks are explained in terms of the following properties: the magnitude of the quadrupole Hamiltonian and the asymmetry parameter of the electric field gradient (EFG) acting on the spin S, the S-I inter-spin orientation with respect to the EFG principal axes, the rotational correlation time of the entity carrying the S–I pair, and/or the proper relaxation time of the spin S. The theory is first applied to protein amide protons undergoing dipolar coupling with fast-relaxing quadrupole {sup 14}N nuclei and mediating the QRE to the observed bulk water protons. The theoretical QRE agrees well with its experimental counterpart for various systems such as bovine pancreatic trypsin inhibitor and cartilages. The anomalous behaviour of the relaxation rate of protons in synthetic aluminium silicate imogolite nano-tubes due to the QRE of {sup 27}Al (S = 5/2) nuclei is also explained.

  8. Synergistic combination of gemcitabine and dietary molecule induces apoptosis in pancreatic cancer cells and down regulates PKM2 expression.

    Directory of Open Access Journals (Sweden)

    Archana Pandita

    Full Text Available Gemcitabine, an effective agent in treatment of cancer of pancreas, has undergone failures in many instances after multiple cycles of therapy due to emergence of drug resistance. Combination of dietary compounds with clinically validated drugs has emerged as an effective therapeutic approach to treat pancreatic tumors, refractory to gemcitabine therapy. In order to optimize a possible synergistic combination of Gemcitabine (GCB with dietary molecules, Betuilnic acid (BA and Thymoquinone (TQ, stand-alone IC50 dose of GCB, BA and TQ was calculated for pancreatic cancer cell lines. Fixed IC50 dose ratio of the dietary molecules in combination with reduced IC50 dose of GCB was tested on GCB resistant PANC-1 and sensitive MIA PaCa-2 cells for synergism, additive response and antagonism, using calcusyn. Combination index (CI revealed that pre-treatment of BA and TQ along with GCB synergistically inhibited the cancer cell proliferation in in-vitro experiments. Pyruvate kinase (PK M2 isoform, a promising target involved in cancer cell metabolism, showed down-regulation in presence of TQ or BA in combination with GCB. GCB with BA acted preferentially on tumor mitochondria and triggered mitochondrial permeability transition. Pre-exposure of the cell lines, MIA PaCa-2 and PANC-1, to TQ in combination with GCB induced apoptosis. Thus, the effectiveness of BA or TQ in combination with GCB to inhibit cell proliferation, induce apoptosis and down-regulate the expression of PKM2, reflects promise in pancreatic cancer treatment.

  9. Cell type-specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection.

    Science.gov (United States)

    Chung, Chee Yeun; Seo, Hyemyung; Sonntag, Kai Christian; Brooks, Andrew; Lin, Ling; Isacson, Ole

    2005-07-01

    Molecular differences between dopamine (DA) neurons may explain why the mesostriatal DA neurons in the A9 region preferentially degenerate in Parkinson's disease (PD) and toxic models, whereas the adjacent A10 region mesolimbic and mesocortical DA neurons are relatively spared. To characterize innate physiological differences between A9 and A10 DA neurons, we determined gene expression profiles in these neurons in the adult mouse by laser capture microdissection, microarray analysis and real-time PCR. We found 42 genes relatively elevated in A9 DA neurons, whereas 61 genes were elevated in A10 DA neurons [> 2-fold; false discovery rate (FDR) neurotoxic or protective biochemical pathways. Three A9-elevated molecules [G-protein coupled inwardly rectifying K channel 2 (GIRK2), adenine nucleotide translocator 2 (ANT-2) and the growth factor IGF-1] and three A10-elevated peptides (GRP, CGRP and PACAP) were further examined in both alpha-synuclein overexpressing PC12 (PC12-alphaSyn) cells and rat primary ventral mesencephalic (VM) cultures exposed to MPP+ neurotoxicity. GIRK2-positive DA neurons were more vulnerable to MPP+ toxicity and overexpression of GIRK2 increased the vulnerability of PC12-alphaSyn cells to the toxin. Blocking of ANT decreased vulnerability to MPP+ in both cell culture systems. Exposing cells to IGF-1, GRP and PACAP decreased vulnerability of both cell types to MPP+, whereas CGRP protected PC12-alphaSyn cells but not primary VM DA neurons. These results indicate that certain differentially expressed molecules in A9 and A10 DA neurons may play key roles in their relative vulnerability to toxins and PD.

  10. CXCL16 is a novel angiogenic factor for human umbilical vein endothelial cells

    International Nuclear Information System (INIS)

    Zhuge, Xin; Murayama, Toshinori; Arai, Hidenori; Yamauchi, Ryoko; Tanaka, Makoto; Shimaoka, Takeshi; Yonehara, Shin; Kume, Noriaki; Yokode, Masayuki; Kita, Toru

    2005-01-01

    CXCL16 is a unique chemokine with characteristics as a receptor for phosphatidylserine and oxidized low density lipoproteins in macrophages, and is involved in the accumulation of cellular cholesterol during atherosclerotic lesion development. In this study, we report a new function of CXCL16 as a novel angiogenic factor in human umbilical vein endothelial cells (HUVEC). CXCL16 stimulated proliferation and chemotaxis of HUVEC in a dose-dependent manner, reaching a maximum at 1 nM. CXCL16 also significantly induced tube formation of HUVEC on Matrigel. Further, exposure of HUVEC to CXCL16 led to a time- and dose-dependent activation of mitogen-activated protein kinase (ERK1/2), which was completely inhibited by a mitogen-activated protein kinase kinase inhibitor, PD98059. Proliferation and tube formation in response to CXCL16 were also blocked by the pretreatment with PD98059, but not CXCL16-induced chemotaxis. Thus, our data indicate that CXCL16 may act as a novel angiogenic factor for HUVEC and that ERK is involved as an important signaling molecule to mediate its angiogenic effects

  11. [Potential role of the angiogenic factor "EG-VEGF" in gestational trophoblastic diseases].

    Science.gov (United States)

    Boufettal, H; Feige, J-J; Benharouga, M; Aboussaouira, T; Nadifi, S; Mahdaoui, S; Samouh, N; Alfaidy, N

    2013-10-01

    Gestational trophoblastic disease (MGT) includes a wide spectrum of pathologies of the placenta, ranging from benign precancerous lesions, with gestational trophoblastic tumors. Metastases are the leading causes of death as a result of this tumor. They represent a major problem for obstetrics and for the public health system. To date, there is no predictor of the progression of molar pregnancies to gestational trophoblastic tumor (GTT). Only an unfavorable plasma hCG monitoring after evacuation of hydatidiform mole is used to diagnose a TTG. The causes of the development of this cancer are still poorly understood. Increasing data in the literature suggests a close association between the development of this tumor and poor placental vascularization during the first trimester of pregnancy. The development of the human placenta depends on a coordination between the trophoblast and endothelial cells. A disruption in the expression of angiogenic factors could contribute to uterine or extra-uterine tissue invasion by extravillous trophoblast, contributing to the development of TTG. This review sheds lights on the phenomenon of angiogenesis during normal and abnormal placentation, especially during the MGT and reports preliminary finding concerning, the variability of expression of "Endocrine Gland-Derived Vascular Endothelial Growth Factor" (EG-VEGF), a specific placental angiogenic factor, in normal and molar placentas, and the potential role of differentiated expressions of the main placental angiogenic factors in the scalability of hydatidiform moles towards a recovery or towards the development of gestational trophoblastic tumor. Deciphering the mechanisms by which the angiogenic factor influences these processes will help understand the pathophysiology of MGT and to create opportunities for early diagnosis and treatment of the latter. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  12. Activated endothelial interleukin-1beta, -6, and -8 concentrations and intercellular adhesion molecule-1 expression are attenuated by lidocaine.

    LENUS (Irish Health Repository)

    Lan, Wei

    2012-02-03

    Endothelial cells play a key role in ischemia reperfusion injury. We investigated the effects of lidocaine on activated human umbilical vein endothelial cell (HUVEC) interleukin (IL)-1beta, IL-6, and IL-8 concentrations and intercellular adhesion molecule-1 (ICAM-1) expression. HUVECs were pretreated with different concentrations of lidocaine (0 to 0.5 mg\\/mL) for 60 min, thereafter tumor necrosis factor-alpha was added at a concentration of 2.5 ng\\/mL and the cells incubated for 4 h. Supernatants were harvested, and cytokine concentrations were analyzed by enzyme-linked immunosorbent assay. Endothelial ICAM-1 expression was analyzed by using flow cytometry. Differences were assessed using analysis of variance and post hoc unpaired Student\\'s t-test where appropriate. Lidocaine (0.5 mg\\/mL) decreased IL-1beta (1.89 +\\/- 0.11 versus 4.16 +\\/- 1.27 pg\\/mL; P = 0.009), IL-6 (65.5 +\\/- 5.14 versus 162 +\\/- 11.5 pg\\/mL; P < 0.001), and IL-8 (3869 +\\/- 785 versus 14,961 +\\/- 406 pg\\/mL; P < 0.001) concentrations compared with the control. IL-1beta, IL-6, and IL-8 concentrations in HUVECs treated with clinically relevant plasma concentrations of lidocaine (0.005 mg\\/mL) were similar to control. ICAM-1 expression on lidocaine-treated (0.05 mg\\/mL) HUVECs was less than on controls (198 +\\/- 52.7 versus 298 +\\/- 50.3; Mean Channel Fluorescence; P < 0.001). Activated endothelial IL-1beta, IL-6, and IL-8 concentrations and ICAM-1 expression are attenuated only by lidocaine at concentrations larger than clinically relevant concentrations.

  13. Generation of functional scFv intrabody to abate the expression of CD147 surface molecule of 293A cells

    Directory of Open Access Journals (Sweden)

    Mai Sabine

    2008-01-01

    Full Text Available Abstract Background Expression of intracellular antibodies (intrabodies has become a broadly applicable technology for generation of phenotypic knockouts in vivo. The method uses surface depletion of cellular membrane proteins to examine their biological function. In this study, we used this strategy to block the transport of cell surface molecule CD147 to the cell membrane. Phage display technology was introduced to generate the functional antibody fragment to CD147, and we subsequently constructed a CD147-specific scFv that was expressed intracellularly and retained in the endoplasmic reticulum by adenoviral gene transfer. Results The recombinant antibody fragments, Fab and scFv, of the murine monoclonal antibody (clone M6-1B9 reacted specifically to CD147 by indirect enzyme-linked immunosorbent assays (ELISA using a recombinant CD147-BCCP as a target. This indicated that the Fab- and scFv-M6-1B9 displaying on phage surfaces were correctly folded and functionally active. We subsequently constructed a CD147-specific scFv, scFv-M6-1B9-intrabody, in 293A cells. The expression of CD147 on 293A cell surface was monitored at 36 h after transduction by flow cytometry and demonstrated remarkable reduction. Colocalization of scFv-M6-1B9 intrabody with CD147 in the ER network was depicted using a 3D deconvolution microscopy system. Conclusion The results suggest that our approach can generate antibody fragments suitable for decreasing the expression of CD147 on 293A cells. This study represents a step toward understanding the role of the cell surface protein, CD147.

  14. Small molecule kaempferol modulates PDX-1 protein expression and subsequently promotes pancreatic β-cell survival and function via CREB

    Science.gov (United States)

    Zhang, Yanling.; Zhen, Wei.; Maechler, Pierre; Liu, Dongmin

    2013-01-01

    Chronic hyperlipidemia causes β-cell apoptosis and dysfunction, thereby contributing to the pathogenesis of T2D. Thus, searching for agents to promote pancreatic β-cell survival and improve its function could be a promising strategy to prevent and treat T2D. We investigated the effects of kaempferol, a small molecule isolated from ginkgo biloba, on apoptosis and function of β-cells and further determined the mechanism underlying its actions. Kaempferol treatment promoted viability, inhibited apoptosis, and reduced caspase-3 activity in INS-1E cells and human islets chronically exposed to palmitate. In addition, kaempferol prevented the lipotoxicity-induced down-regulation of anti-apoptotic proteins Akt and Bcl-2. The cytoprotective effects of kaempferol were associated with improved insulin secretion, synthesis, and PDX-1 expression. Chronic hyperlipidemia significantly diminished cAMP production, PKA activation, and CREB phosphorylation and its regulated transcriptional activity in β-cells, all of which were restored by kaempferol treatment. Disruption of CREB expression by transfection of CREB siRNA in INS-1E cells or adenoviral transfer of dominant-negative forms of CREB in human islets ablated kaempferol protection of β-cell apoptosis and dysfunction caused by palmitate. Incubation of INS-1E cells or human islets with kaempferol for 48 h induced PDX-1 expression. This effect of kaempferol on PDX-1 expression was not shared by a host of structurally related flavonoid compounds. PDX-1 gene knockdown reduced kaempferol–stimulated cAMP generation and CREB activation in INS-1E cells. These findings demonstrate that kaempferol is a novel survivor factor for pancreatic β-cells via up-regulating the PDX-1/cAMP/PKA/CREB signaling cascade. PMID:22819546

  15. Effects of natural mineral-rich water consumption on the expression of sirtuin 1 and angiogenic factors in the erectile tissue of rats with fructose-induced metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Cidália D Pereira

    2014-08-01

    Full Text Available Consuming a high-fructose diet induces metabolic syndrome (MS-like features, including endothelial dysfunction. Erectile dysfunction is an early manifestation of endothelial dysfunction and systemic vascular disease. Because mineral deficiency intensifies the deleterious effects of fructose consumption and mineral ingestion is protective against MS, we aimed to characterize the effects of 8 weeks of natural mineral-rich water consumption on the structural organization and expression of vascular growth factors and receptors on the corpus cavernosum (CC in 10% fructose-fed Sprague-Dawley rats (FRUCT. Differences were not observed in the organization of the CC either on the expression of vascular endothelial growth factor (VEGF or the components of the angiopoietins/Tie2 system. However, opposing expression patterns were observed for VEGF receptors (an increase and a decrease for VEGFR1 and VEGFR2, respectively in FRUCT animals, with these patterns being strengthened by mineral-rich water ingestion. Mineral-rich water ingestion (FRUCTMIN increased the proportion of smooth muscle cells compared with FRUCT rats and induced an upregulatory tendency of sirtuin 1 expression compared with the control and FRUCT groups. Western blot results were consistent with the dual immunofluorescence evaluation. Plasma oxidized low-density lipoprotein and plasma testosterone levels were similar among the experimental groups, although a tendency for an increase in the former was observed in the FRUCTMIN group. The mineral-rich water-treated rats presented changes similar to those observed in rats treated with MS-protective polyphenol-rich beverages or subjected to energy restriction, which led us to hypothesize that the effects of mineral-rich water consumption may be more vast than those directly observed in this study.

  16. Molecular mechanisms of anti-angiogenic effect of curcumin.

    Science.gov (United States)

    Gururaj, Anupama E; Belakavadi, Madesh; Venkatesh, Deepak A; Marmé, Dieter; Salimath, Bharathi P

    2002-10-04

    Modulation of pathological angiogenesis by curcumin (diferuloylmethane), the active principle of turmeric, seems to be an important possibility meriting mechanistic investigations. In this report, we have studied the effect of curcumin on the growth of Ehrlich ascites tumor cells and endothelial cells in vitro. Further, regulation of tumor angiogenesis by modulation of angiogenic ligands and their receptor gene expression in tumor and endothelial cells, respectively, by curcumin was investigated. Curcumin, when injected intraperitoneally (i.p) into mice, effectively decreased the formation of ascites fluid by 66% in EAT bearing mice in vivo. Reduction in the number of EAT cells and human umbelical vein endothelial cells (HUVECs) in vitro by curcumin, without being cytotoxic to these cells, is attributed to induction of apoptosis by curcumin, as is evident by an increase in cells with fractional DNA content seen in our results on FACS analysis. However, curcumin had no effect on the growth of NIH3T3 cells. Curcumin proved to be a potent angioinhibitory compound, as demonstrated by inhibition of angiogenesis in two in vivo angiogenesis assay systems, viz. peritoneal angiogenesis and chorioallantoic membrane assay. The angioinhibitory effect of curcumin in vivo was corroborated by the results on down-regulation of the expression of proangiogenic genes, in EAT, NIH3T3, and endothelial cells by curcumin. Our results on Northern blot analysis clearly indicated a time-dependent (0-24h) inhibition by curcumin of VEGF, angiopoietin 1 and 2 gene expression in EAT cells, VEGF and angiopoietin 1 gene expression in NIH3T3 cells, and KDR gene expression in HUVECs. Further, decreased VEGF levels in conditioned media from cells treated with various doses of curcumin (1 microM-1mM) for various time periods (0-24h) confirm its angioinhibitory action at the level of gene expression. Because of its non-toxic nature, curcumin could be further developed to treat chronic diseases that

  17. Assessment of the expression of mir-29c, mir-200a and mir-145 in endometrial tissue and the downstream molecules in infertile patients with endometriosis

    Directory of Open Access Journals (Sweden)

    Xiao-Mei Shu

    2017-10-01

    Full Text Available Objective: To study the expression of mir-29c, mir-200a and mir-145 in endometrial tissue and analyze the downstream molecules in infertile patients with endometriosis. Methods: Female patients with infertility caused by endometriosis who were treated in Leshan Maternal and Child Health Hospital between May 2014 and February 2017 were selected as the infertility group of the research, and female patients with infertility caused by male factors over the same period were selected as the control group of the research. Endometrial tissue was collected to detect the expression of mir-29c, mir-200a, mir-145, HOXA-10 and HOXA-11 as well as downstream molecules and adhesion molecules. Results: mir-29c, mir-200a and mir-145 expression in endometrial tissue of infertility group were significantly higher than those of control group; HOXA-10, HOXA-11, integrin αvβ3, IGFBP-1, CD44V6, N-cadherin and FAK mRNA expression in endometrial tissue of infertility group were significantly lower than those of control group and negatively correlated with mir-29c, mir-200a and mir-145 expression while E-cadherin and FUT4 mRNA expression were significantly higher than those of control group and positively correlated with mir-29c, mir-200a and mir-145 expression. Conclusion: The highly expressed mir-29c, mir-200a and mir-145 in endometrial tissue can regulate the expression of HOXA-10 and HOXA-11 as well as downstream molecules and adhesion molecules, and influence the endometrial receptivity in infertile patients with endometriosis.

  18. Muscle ERRγ mitigates Duchenne muscular dystrophy via metabolic and angiogenic reprogramming.

    Science.gov (United States)

    Matsakas, Antonios; Yadav, Vikas; Lorca, Sabina; Narkar, Vihang

    2013-10-01

    Treatment of Duchenne muscular dystrophy (DMD) by replacing mutant dystrophin or restoring dystrophin-associated glycoprotein complex (DAG) has been clinically challenging. Instead, identifying and targeting muscle pathways deregulated in DMD will provide new therapeutic avenues. We report that the expression of nuclear receptor estrogen-related receptor-γ (ERRγ), and its metabolic and angiogenic targets are down-regulated (50-85%) in skeletal muscles of mdx mice (DMD model) vs. wild-type mice. Corelatively, oxidative myofibers, muscle vasculature, and exercise tolerance (33%) are decreased in mdx vs. wild-type mice. Overexpressing ERRγ selectively in the dystrophic muscles of the mdx mice restored metabolic and angiogenic gene expression compared with control mdx mice. Further, ERRγ enhanced muscle oxidative myofibers, vasculature, and blood flow (by 33-66%) and improved exercise tolerance (by 75%) in the dystrophic mice. Restoring muscle ERRγ pathway ameliorated muscle damage and also prevented DMD hallmarks of postexercise muscle damage, hypoxia, and fatigue in mdx mice. Notably, ERRγ did not restore sarcolemmal DAG complex, which is thus dispensable for antidystrophic effects of ERRγ. In summary, ERRγ-dependent metabolic and angiogenic gene program is defective in DMD, and we demonstrate that its restoration is a potential strategy for treating muscular dystrophy.

  19. Expression Levels of Activated Leukocyte Cell Adhesion Molecule (ALCAM/CD166 in Primary Breast Carcinoma and Distant Breast Cancer Metastases

    Directory of Open Access Journals (Sweden)

    M. Ihnen

    2010-01-01

    Full Text Available Introduction: Activated Leukocyte Cell Adhesion Molecule (ALCAM/CD166 gained increasing attention regarding tumorprogression and metastatic spread in breast cancer. The aim of this study was to examine ALCAM expression levels in primary breast cancer and distant metastases of the same patient within 29 autopsy cases to better understand the underlying mechanisms of metastases and the role of adhesion molecules in this process.

  20. Early pregnancy angiogenic markers and spontaneous abortion

    DEFF Research Database (Denmark)

    Andersen, Louise B; Dechend, Ralf; Karumanchi, S Ananth

    2016-01-01

    BACKGROUND: Spontaneous abortion is the most commonly observed adverse pregnancy outcome. The angiogenic factors soluble Fms-like kinase 1 and placental growth factor are critical for normal pregnancy and may be associated to spontaneous abortion. OBJECTIVE: We investigated the association between...... maternal serum concentrations of soluble Fms-like kinase 1 and placental growth factor, and subsequent spontaneous abortion. STUDY DESIGN: In the prospective observational Odense Child Cohort, 1676 pregnant women donated serum in early pregnancy, gestational week ..., interquartile range 71-103). Concentrations of soluble Fms-like kinase 1 and placental growth factor were determined with novel automated assays. Spontaneous abortion was defined as complete or incomplete spontaneous abortion, missed abortion, or blighted ovum

  1. Stroke Status Evoked Adhesion Molecule Genetic Alterations in Astrocytes Isolated from Stroke-Prone Spontaneously Hypertensive Rats and the Apigenin Inhibition of Their Expression

    Directory of Open Access Journals (Sweden)

    Kazuo Yamagata

    2010-01-01

    Full Text Available We examined the possibility that the expression of adhesion molecules is regulated differently in cultured astrocytes from stroke-prone spontaneously hypertensive rats (SHRSP/IZM rats than in those from Wistar Kyoto rats (WKY/IZM by tumor necrosis factor-alpha (TNF- or hypoxia and reoxygenation (H/R and the inhibitory effects of apigenin. It was found that the expression of vascular cell adhesion molecule-1 (VCAM-1 by TNF- in astrocytes isolated from SHRSP/IZM was increased compared with that in WKY/IZM. The expression of monocyte chemotactic protein-1 (MCP-1 mRNA induced by H/R in SHRSP/IZM astrocytes was increased compared with that in normal oxygen concentrations. Apigenin strongly attenuated TNF--induced VCAM-1 mRNA and protein expression and suppressed the adhesion of U937 cells and SHRSP/IZM astrocytes. These results suggest that the expression levels of adhesion molecules during H/R affect disease outcome and can drive SHRSP/IZM to stroke. It is suggested that apigenin regulates adhesion molecule expression in reactive astrocytes during ischemia.

  2. Effects of Chinese yellow wine on nitric oxide synthase and intercellular adhesion molecule-1 expressions in rat vascular endothelial cells.

    Science.gov (United States)

    Zhao, Fei; Ji, Zheng; Chi, Jufang; Tang, Weiliang; Zhai, Xiaoya; Meng, Liping; Guo, Hangyuan

    2016-02-01

    The objective of this study was to determine similarities in the effect of yellow wine as compared to statin and the possibility that yellow wine inhibits tumour necrosis factor-α (TNF-α)-induced nitric oxide (NO) synthesis, endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), and intercellular adhesion molecule-1 (ICAM-1) in cultured rat vascular endothelial cells (VECs). We isolated VECs, and cultivated and purified Sprague Dawley (SD) rat thoracic aortas in vitro. We selected the optimal wine concentration using clonogenic and MTT assays to measure cell survival. Next, we divided the cells into 9 groups: (1) control, (2) TNF-α, (3) TNF-α + rosuvastatin (10 μmol/L), (4) TNF-α + ethanol 0.5%, (5) TNF-α + yellow wine 0.5%, (6) TNF-α + ethanol 1.0%, (7) TNF-α + yellow wine 1.0%, (8) TNF-α + ethanol 1.5%, and (9) TNF-α + yellow wine 1.5% and they were given the corresponding treatment for 24 h. We determined NO production with nitrate reductase. We then measured eNOS activity, and detected eNOS, iNOS, and ICAM-1 protein levels by Western blotting. Compared with the TNF-α group, NO production, eNOS activity, and eNOS protein expression in the rosuvastatin, and yellow wine 1.0%, and 1.5% groups were significantly increased. Protein expression of iNOS and ICAM-1 in the rosuvastatin, yellow wine 1.0%, and 1.5% groups were significantly decreased. Compared with the rosuvastatin group, eNOS, iNOS, and ICAM-1 protein expression in the yellow wine (0.5% -1.5%) groups were significantly different. Treatment with yellow wine increased NO production, eNOS activity, and eNOS protein expression, which decreases iNOS and ICAM-1 protein expression. We conclude that yellow wine may have similar beneficial effects as rosuvastatin on the cardiovascular system. These effects may be attributed to their anti-atherosclerotic actions.

  3. 增殖期糖尿病视网膜病变与血清TNF-α表达的相关性研究%The study about the correlation of proliferative diabetic retinopathy and serum angiogenic factors TNF-αexpression

    Institute of Scientific and Technical Information of China (English)

    储俐; 王转丽; 李官鸿

    2016-01-01

    Objective To investigate the proliferative diabetic retinopathy and serum pro‐angiogenic factor relationship of TNF‐α .Methods 30 cases of PDR patients in the experimental group ,the control group of 30 healthy people were collected fasting serum TNF‐α expression levels detected by ELISA method .Results The serum TNF‐α levels (137 .92 ± 4 .14pg/ml) than in the control group (50 .04 ± 1 .75 pg / ml ) increased ,the difference was statistically significant ( P < 0 .05 ) .Conclusion TNF‐α is an important cytokine and proliferative diabetic retinopathy related.%目的:探讨增殖期糖尿病视网膜病变与血清促血管生成因子 TNF‐α的关系。方法将实验组30例 PDR 病人,对照组30例健康人,分别采集空腹血清通过 ELISA 方法检测 TNF‐α表达水平。结果实验组血清 TNF‐α水平(137.92±4.14pg/ml)比对照组(50.04±1.75 pg/ml)升高,差异有统计学意义(P<0.05)。结论 TNF‐α是与增殖期糖尿病视网膜病变相关的重要细胞因子。

  4. Cyr61/CCN1 and CTGF/CCN2 mediate the pro-angiogenic activity of VHL mutant renal carcinoma cells

    Science.gov (United States)

    Chintalapudi, Mastan R.; Markiewicz, Margaret; Kose, Nurgun; Dammai, Vincent; Champion, Kristen J.; Hoda, Rana S.; Trojanowska, Maria; Hsu, Tien

    2008-01-01

    The von Hippel-Lindau (VHL) protein serves as a negative regulator of hypoxia inducible factor-alpha subunit (HIF-α). Since HIF regulates critical angiogenic factors such as vascular endothelial growth factor (VEGF) and lesions in VHL gene are present in a majority of the highly vascularized renal cell carcinoma (RCC), it is believed that deregulation of the VHL-HIF pathway is crucial for the pro-angiogenic activity of RCC. Although VEGF has been confirmed as a critical angiogenic factor up-regulated in VHL mutant cells, the efficacy of anti-angiogenic therapy specifically targeting VEGF signaling remains modest. In this study we developed a three-dimensional in vitro assay to evaluate the ability of RCC cells to promote cord formation by the primary human dermal microvascular endothelial cells (HDMECs). Compared to VHL wild-type cells, VHL mutant RCC cells demonstrated a significantly increased pro-angiogenic activity, which correlated with increased secretion of Cyr61/CCN1, CTGF/CCN2 and VEGF in conditioned culture medium. Both CCN proteins are required for HDMEC cord formation as shown by RNAi knock-down experiments. Importantly, the pro-angiogenic activities conferred by the CCN proteins and VEGF are additive, suggesting non-overlapping functions. Expression of the CCN proteins is at least partly dependent on the HIF-2α function, the dominant HIF-α isoform expressed in RCC. Finally, immunohistochemical staining of Cyr61/CCN1 and CTGF/CCN2 in renal cell carcinoma tissue samples showed that increased expression of these proteins correlates with loss of VHL protein expression. These findings strengthened the notion that the hypervascularized phenotype of RCC is afforded by multiple pro-angiogenic factors that function in parallel pathways. PMID:18212329

  5. The effect of lidocaine on in vitro neutrophil and endothelial adhesion molecule expression induced by plasma obtained during tourniquet-induced ischaemia and reperfusion.

    LENUS (Irish Health Repository)

    Lan, W

    2012-02-03

    BACKGROUND: Changes in neutrophil and endothelial adhesion molecule expression occur during perioperative ischaemia and reperfusion (I\\/R) injury. We investigated the effects of lidocaine on neutrophil-independent changes in neutrophil and endothelial adhesion molecule expression associated with tourniquet-induced I\\/R. METHODS: Plasma was obtained from venous blood samples (tourniquet arm) taken before (baseline), during, 15 min, 2 and 24 h following tourniquet release in seven patients undergoing elective upper limb surgery with tourniquet application. Isolated neutrophils from healthy volunteers (n = 7) were pretreated in the presence or absence of lidocaine (0.005, 0.05 and 0.5 mg mL(-1) for 1 h, and then incubated with I\\/R plasma for 2 h. Human umbilical vein endothelial cells (HUVECs) were pretreated in the presence or absence of lidocaine (0.005, 0.05 and 0.5 mg mL(-1)) for 1 h, and then incubated with the plasma for 4 h. Adhesion molecule expression was estimated using flow cytometry. Data were analysed using ANOVA and post hoc Student-Newman-Keuls tests. RESULTS: I\\/R plasma (withdrawn 15 min following tourniquet release) increased isolated neutrophil CD11b (P = 0.03), CD18 (P = 0.01) and endothelial intercellular adhesion molecule-1 (ICAM-1) (P = 0.008) expression compared to baseline. CD11b, CD18 and ICAM-1 expression on lidocaine (0.005 mg mL(-1)) treated neutrophils was similar to control. CD11b (P < 0.001), CD18 (P = 0.03) and ICAM-1 (P = 0.002) expression on lidocaine (0.05 mg mL(-1)) treated neutrophils and HUVECs was less than that on controls. CONCLUSION: Increased in vitro neutrophil and endothelial cell adhesion molecule expression on exposure to plasma obtained during the early reperfusion phase is diminished by lidocaine at greater than clinically relevant plasma concentrations.

  6. Aberrant expression of the tight junction molecules claudin-1 and zonula occludens-1 mediates cell growth and invasion in oral squamous cell carcinoma.

    Science.gov (United States)

    Babkair, Hamzah; Yamazaki, Manabu; Uddin, Md Shihab; Maruyama, Satoshi; Abé, Tatsuya; Essa, Ahmed; Sumita, Yoshimasa; Ahsan, Md Shahidul; Swelam, Wael; Cheng, Jun; Saku, Takashi

    2016-11-01

    We reported that altered cell contact mediated by E-cadherin is an initial event in the pathogenesis of oral epithelial malignancies. To assess other effects of cell adhesion, we examined the expression levels of tight junction (TJ) molecules in oral carcinoma in situ (CIS) and squamous cell carcinoma (SCC). To identify changes in the expression of TJ molecules, we conducted an analysis of the immunohistochemical profiles of claudin-1 (CLDN-1) and zonula occludens-1 (ZO-1) in surgical specimens acquired from patients with oral SCC containing foci of epithelial dysplasia or from patients with CIS. We used immunofluorescence, Western blotting, reverse-transcription polymerase chain reaction, and RNA interference to evaluate the functions of CLDN-1 and ZO-1 in cultured oral SCC cells. TJ molecules were not detected in normal oral epithelial tissues but were expressed in SCC/CIS cells. ZO-1 was localized within the nucleus of proliferating cells. When CLDN-1 expression was inhibited by transfecting cells with specific small interference RNAs, SCC cells dissociated, and their ability to proliferate and invade Matrigel was inhibited. In contrast, although RNA interference-mediated inhibition of ZO-1 expression did not affect cell morphology, it inhibited cell proliferation and invasiveness. Our findings indicated that the detection of TJ molecules in the oral epithelia may serve as a marker for the malignant phenotype of cells in which CLDN-1 regulates proliferation and invasion. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. High-risk human papillomavirus E7 expression reduces cell-surface MHC class I molecules and increases susceptibility to natural killer cells

    DEFF Research Database (Denmark)

    Bottley, G; Watherston, O G; Hiew, Y-L

    2007-01-01

    a role for E7 in tumour immune evasion. We show that knockdown of E7 expression in HPV16- and HPV18-transformed cervical carcinoma cells by RNA interference increased expression of major histocompatibility complex (MHC) class I at the cell surface and reduced susceptibility of these cells to natural...... killer (NK) cells. Tetracycline-regulated induction of HPV16 E7 resulted in reduced expression of cell surface MHC class I molecules and increased NK cell killing. Our results suggest that, for HPV-associated malignancies, reduced MHC class I expression is the result of an active immune evasion strategy...

  8. The Effect of Altering the Mechanical Loading Environment on the Expression of Bone Regenerating Molecules in Cases of Distraction Osteogenesis

    Directory of Open Access Journals (Sweden)

    Mohammad M Alzahrani

    2014-12-01

    Full Text Available Distraction osteogenesis (DO is a surgical technique where gradual and controlled separation of two bony fragments following an osteotomy leads to the induction of new bone formation in the distracted gap. DO is used for limb lengthening, correction of bony deformities and the replacement of bone loss secondary to infection, trauma and tumors. Although DO gives satisfactory results in most cases, one major drawback of this technique is the prolonged period of time the external fixator has to be kept on until the newly formed bone consolidates thus leading to numerous complications. Numerous attempts at accelerating bone formation during DO have been reported. One specific approach is manipulation of the mechanical environment during DO by applying changes in the standard protocol of distraction. Attempts at changing this mechanical environment led to mixed results. Increasing the rate or applying acute distraction, led to poor bone formation in the distracted zone. On the other hand, the addition of compressive forces (such as weight bearing, alternating distraction with compression or by over-lengthening and then shortening has been reported to increase bone formation. It still remains unclear why these alterations may lead to changes in bone formation. While the cellular and molecular changes occurring during the standard DO protocol, specifically increased expression of transforming growth factor-β1, platelet derived growth factor, insulin-like growth factor, basic fibroblast growth factor, vascular endothelial growth factor, and bone morphogenic proteins have been extensively investigated, the literature is sparse on the changes occurring when this protocol is altered. It is the purpose of this article to review the pertinent literature on the changes in the expression of various proteins and molecules as a result of changes in the mechanical loading technique in DO and try to define potential future research directions.

  9. Anti-Angiogenic Therapeutic Indictors in Breast Cancer

    National Research Council Canada - National Science Library

    Su, Min-Ying

    2003-01-01

    This project studies the therapeutic indicators in ant-angiogenic therapy. Every animal with mammary tumor was scheduled to receive a baseline MRI, core biopsy, then followed by 4 treatments with weekly MRI follow...

  10. Short-term hypoxia/reoxygenation activates the angiogenic pathway ...

    Indian Academy of Sciences (India)

    2013-04-20

    Apr 20, 2013 ... angiogenic pathway in the rat caudate putamen as a neuroprotective mechanism to hypoxia .... (1:3 w/v) with a homogenator (Pellet Pestle Motor Cordless, ..... showing that the capillary density in the rat cerebral cortex was.

  11. Hepatoma-derived growth factor-related protein-3 is a novel angiogenic factor.

    Directory of Open Access Journals (Sweden)

    Michelle E LeBlanc

    Full Text Available Hepatoma-derived growth factor-related protein-3 (Hdgfrp3 or HRP-3 was recently reported as a neurotrophic factor and is upregulated in hepatocellular carcinoma to promote cancer cell survival. Here we identified HRP-3 as a new endothelial ligand and characterized its in vitro and in vivo functional roles and molecular signaling. We combined open reading frame phage display with multi-round in vivo binding selection to enrich retinal endothelial ligands, which were systematically identified by next generation DNA sequencing. One of the identified endothelial ligands was HRP-3. HRP-3 expression in the retina and brain was characterized by Western blot and immunohistochemistry. Cell proliferation assay showed that HRP-3 stimulated the growth of human umbilical vein endothelial cells (HUVECs. HRP-3 induced tube formation of HUVECs in culture. Wound healing assay indicated that HRP-3 promoted endothelial cell migration. HRP-3 was further confirmed for its in vitro angiogenic activity by spheroid sprouting assay. HRP-3 extrinsically activated the extracellular-signal-regulated kinase ½ (ERK1/2 pathway in endothelial cells. The angiogenic activity of HRP-3 was independently verified by mouse cornea pocket assay. Furthermore, in vivo Matrigel plug assay corroborated HRP-3 activity to promote new blood vessel formation. These results demonstrated that HRP-3 is a novel angiogenic factor.

  12. Intrinsic pro-angiogenic status of cystic fibrosis airway epithelial cells

    International Nuclear Information System (INIS)

    Verhaeghe, Catherine; Tabruyn, Sebastien P.; Oury, Cecile; Bours, Vincent; Griffioen, Arjan W.

    2007-01-01

    Cystic fibrosis is a common genetic disorder characterized by a severe lung inflammation and fibrosis leading to the patient's death. Enhanced angiogenesis in cystic fibrosis (CF) tissue has been suggested, probably caused by the process of inflammation, as similarly described in asthma and chronic bronchitis. The present study demonstrates an intrinsic pro-angiogenic status of cystic fibrosis airway epithelial cells. Microarray experiments showed that CF airway epithelial cells expressed several angiogenic factors such as VEGF-A, VEGF-C, bFGF, and PLGF at higher levels than control cells. These data were confirmed by real-time quantitative PCR and, at the protein level, by ELISA. Conditioned media of these cystic fibrosis cells were able to induce proliferation, migration and sprouting of cultured primary endothelial cells. This report describes for the first time that cystic fibrosis epithelial cells have an intrinsic angiogenic activity. Since excess of angiogenesis is correlated with more severe pulmonary disease, our results could lead to the development of new therapeutic applications

  13. L-Cysteine in vitro can restore cellular glutathione and inhibits the expression of cell adhesion molecules in G6PD-deficient monocytes.

    Science.gov (United States)

    Parsanathan, Rajesh; Jain, Sushil K

    2018-04-06

    L-Cysteine is a precursor of glutathione (GSH), a potent physiological antioxidant. Excess glucose-6-phosphate dehydrogenase (G6PD) deficiency in African Americans and low levels of L-cysteine diet in Hispanics can contributes to GSH deficiency and oxidative stress. Oxidative stress and monocyte adhesion was considered to be an initial event in the progression of vascular dysfunction and atherosclerosis. However, no previous study has investigated the contribution of GSH/G6PD deficiency to the expression of monocyte adhesion molecules. Using human U937 monocytes, this study examined the effect of GSH/G6PD deficiency and L-cysteine supplementation on monocyte adhesion molecules. G6PD/GSH deficiency induced by either siRNA or inhibitors (6AN/BSO, respectively) significantly (p adhesion molecules (ICAM-1, VCAM-1, SELL, ITGB1 and 2); NADPH oxidase (NOX), reactive oxygen species (ROS) and MCP-1 were upregulated, and decreases in levels of GSH, and nitric oxide were observed. The expression of ICAM-1 and VCAM-1 mRNA levels increased in high glucose, MCP-1 or TNF-α-treated G6PD-deficient compared to G6PD-normal cells. L-Cysteine treatment significantly (p adhesion molecules. Thus, GSH/G6PD deficiency increases susceptibility to monocyte adhesion processes, whereas L-cysteine supplementation can restore cellular GSH/G6PD and attenuates NOX activity and expression of cell adhesion molecules.

  14. The influence of propofol on the expression of intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) in reoxygenated human umbilical vein endothelial cells.

    LENUS (Irish Health Repository)

    Corcoran, T B

    2012-02-03

    BACKGROUND: Leucocytes are a pivotal component of the inflammatory cascade that results in tissue injury in a large group of disorders. Free radical production and endothelial activation promote leucocyte-endothelium interactions via endothelial expression of vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) which augment these processes, particularly in the setting of reperfusion injury. Propofol has antioxidant properties which may attenuate the increased expression of these molecules that is observed. METHODS: Cultured human umbilical vein endothelial cells were exposed to 20 h of hypoxia, then returned to normoxic conditions. Cells were treated with saline, Diprivan 5 microg mL(-1) or propofol 5 microg mL(-1), for 4 h after reoxygenation and were examined for ICAM-1 and VCAM-1 expression. RESULTS: Hypoxia did not increase the expression of ICAM-1\\/VCAM-1. ICAM-1 expression peaked 12 h after reoxygenation (21.75(0.6) vs. 9.6(1.3), P = 0.02). Propofol, but not Diprivan, prevented this increase (8.2(2.9) vs. 21.75(0.6), P = 0.009). VCAM-1 expression peaked 24 h after reoxygenation (9.8(0.9) vs. 6.6(0.6), P = 0.03). Propofol and Diprivan prevented this increase, with no difference between the two treatments observed (4.3(0.3) and 6.4(0.5) vs. 9.8(0.9), P = 0.001, 0.02, respectively). CONCLUSION: These effects are likely to be attributable to the antioxidant properties of propofol, and suggest that propofol may have a protective role in disorders where free radical mediated injury promotes leucocyte-endothelium adhesive interactions.

  15. Interaction of VLA-5 Molecule With Rheumatoid Articular Cartilage Surface : An Electron Microscopic Evidence of Expression of VLA-5 on Pannus Invading Cells

    OpenAIRE

    Ishikawa, Hitoshi; Hirata, Souichirou; Saura, Ryuuichi; Andoh, Yoshihiro; Mizuno, Kosaku

    1998-01-01

    Pannus is made up mainly of fibroblasts, macrophages and lymphocytes. VLA-5 positive cells are present in the pannus in large numbers. It is likely that the tissue distribution of infiltrated cells derived from post-capillary venules is influenced by the ECM of the pannus and the ability of these cells to interact with the ECM through surface receptor expression. VLA-5 molecules are the predominant (31 integrins expressed by synovial pannus. Since the VLA integrins function as fibronectin rec...

  16. A hot water extract of Curcuma longa inhibits adhesion molecule protein expression and monocyte adhesion to TNF-α-stimulated human endothelial cells.

    Science.gov (United States)

    Kawasaki, Kengo; Muroyama, Koutarou; Yamamoto, Norio; Murosaki, Shinji

    2015-01-01

    The recruitment of arterial leukocytes to endothelial cells is an important step in the progression of various inflammatory diseases. Therefore, its modulation is thought to be a prospective target for the prevention or treatment of such diseases. Adhesion molecules on endothelial cells are induced by proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), and contribute to the recruitment of leukocytes. In the present study, we investigated the effect of hot water extract of Curcuma longa (WEC) on the protein expression of adhesion molecules, monocyte adhesion induced by TNF-α in human umbilical vascular endothelial cells (HUVECs). Treatment of HUVECs with WEC significantly suppressed both TNF-α-induced protein expression of adhesion molecules and monocyte adhesion. WEC also suppressed phosphorylation and degradation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) induced by TNF-α in HUVECs, suggesting that WEC inhibits the NF-κB signaling pathway.

  17. Adhesion molecules

    CERN Document Server

    Preedy, Victor R

    2016-01-01

    This book covers the structure and classification of adhesion molecules in relation to signaling pathways and gene expression. It discusses immunohistochemical localization, neutrophil migration, and junctional, functional, and inflammatory adhesion molecules in pathologies such as leukocyte decompression sickness and ischemia reperfusion injury. Highlighting the medical applications of current research, chapters cover diabetes, obesity, and metabolic syndrome; hypoxia; kidney disease; smoking, atrial fibrillation, and heart disease, the brain and dementia; and tumor proliferation. Finally, it looks at molecular imaging and bioinformatics, high-throughput technologies, and chemotherapy.

  18. Identification of a potent endothelium-derived angiogenic factor.

    Directory of Open Access Journals (Sweden)

    Vera Jankowski

    Full Text Available The secretion of angiogenic factors by vascular endothelial cells is one of the key mechanisms of angiogenesis. Here we report on the isolation of a new potent angiogenic factor, diuridine tetraphosphate (Up4U from the secretome of human endothelial cells. The angiogenic effect of the endothelial secretome was partially reduced after incubation with alkaline phosphatase and abolished in the presence of suramin. In one fraction, purified to homogeneity by reversed phase and affinity chromatography, Up4U was identified by MALDI-LIFT-fragment-mass-spectrometry, enzymatic cleavage analysis and retention-time comparison. Beside a strong angiogenic effect on the yolk sac membrane and the developing rat embryo itself, Up4U increased the proliferation rate of endothelial cells and, in the presence of PDGF, of vascular smooth muscle cells. Up4U stimulated the migration rate of endothelial cells via P2Y2-receptors, increased the ability of endothelial cells to form capillary-like tubes and acts as a potent inducer of sprouting angiogenesis originating from gel-embedded EC spheroids. Endothelial cells released Up4U after stimulation with shear stress. Mean total plasma Up4U concentrations of healthy subjects (N=6 were sufficient to induce angiogenic and proliferative effects (1.34 ± 0.26 nmol L(-1. In conclusion, Up4U is a novel strong human endothelium-derived angiogenic factor.

  19. Expression of neural cell adhesion molecules and neurofilament protein isoforms in Ewing's sarcoma of bone and soft tissue sarcomas of other than rhabdomyosarcoma

    NARCIS (Netherlands)

    Molenaar, W.M.; Muntinghe, F.L.H.

    1999-01-01

    In a previous study, it was shown that rhabdomyosarcomas widely express "neural" markers, such as neural cell adhesion molecules (N-CAM) and neurofilament protein isoforms, In the current study, a series of Ewing's sarcomas of bone and soft tissue sarcomas other than rhabdomyosarcoma was probed for

  20. Peptide motifs of the single dominantly expressed class I molecule explain the striking MHC-determined response to Rous sarcoma virus in chickens

    DEFF Research Database (Denmark)

    Wallny, Hans-Joachim; Avila, David; Hunt, Lawrence G.

    2006-01-01

    Compared with the MHC of typical mammals, the chicken MHC is smaller and simpler, with only two class I genes found in the B12 haplotype. We make five points to show that there is a single-dominantly expressed class I molecule that can have a strong effect on MHC function. First, we find only one...

  1. Expression of deleted in malignant brain tumor-1 (DMBT1) molecule in biliary epithelium is augmented in hepatolithiasis: possible participation in lithogenesis

    DEFF Research Database (Denmark)

    Sasaki, Motoko; Huang, Shiu-Feng; Chen, Miin-Fu

    2003-01-01

    Deleted in malignant brain tumor-1 (DMBT1) is a mucin-like molecule participating in mucosal immune defense. Given that bovine gallbladder mucin, which accelerates cholesterol crystallization, is a DMBT1 homolog, DMBT1 expression was examined immunohistochemically in biliary epithelial cells...

  2. Optimal specific radioactivity of anti-HER2 Affibody molecules enables discrimination between xenografts with high and low HER2 expression levels

    Energy Technology Data Exchange (ETDEWEB)

    Tolmachev, Vladimir [Uppsala University, Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala (Sweden); Uppsala University, Department of Medical Sciences, Nuclear Medicine, Uppsala (Sweden); Waallberg, Helena [Royal Institute of Technology, School of Biotechnology, Stockholm (Sweden); Sandstroem, Mattias [Uppsala University Hospital, Section of Hospital Physics, Department of Oncology, Uppsala (Sweden); Hansson, Monika; Wennborg, Anders [Affibody AB, Stockholm (Sweden); Orlova, Anna [Uppsala University, Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala (Sweden)

    2011-03-15

    Overexpression of the HER2 receptor is a biomarker for predicting those patients who may benefit from trastuzumab therapy. Radiolabelled Affibody molecules can be used to visualize HER2 expression in tumour xenografts with high sensitivity. However, previous studies demonstrated that the difference in uptake in xenografts with high and low HER2 expression levels is not proportional to the difference in expression levels. We hypothesized that discrimination between tumours with high and low HER2 expression may be improved by increasing the injected dose (reducing the specific activity) of the tracer. The influence of injected dose of anti-HER2 {sup 111}In-DOTA-Z{sub HER2} {sub 342} Affibody molecule on uptake in SKOV-3 (high HER2 expression) and LS174T (low expression) xenografts was investigated. The optimal range of injected doses enabling discrimination between xenografts with high and low expression was determined. To verify this, tumour uptake was measured in mice carrying both SKOV-3 and LS174T xenografts after injection of either 1 or 15 {mu}g {sup 111}In-DOTA-Z{sub HER2:342}. An increase in the injected dose caused a linear decrease in the radioactivity accumulation in the LS174T xenografts (low HER2 expression). For SKOV-3 xenografts, the dependence of the tumour uptake on the injected dose was less dramatic. The injection of 10-30 {mu}g {sup 111}In-DOTA-Z{sub HER2:342} per mouse led to the largest difference in uptake between the two types of tumour. Experiments in mice bearing two xenografts confirmed that the optimized injected dose enabled better discrimination of expression levels. Careful optimization of the injected dose of Affibody molecules is required for maximum discrimination between xenografts with high and low levels of HER2 expression. This information has potential relevance for clinical imaging applications. (orig.)

  3. In Vitro and In Vivo Investigation of the Angiogenic Effects of Liraglutide during Islet Transplantation

    Science.gov (United States)

    Langlois, Allan; Mura, Carole; Bietiger, William; Seyfritz, Elodie; Dollinger, Camille; Peronet, Claude; Maillard, Elisa; Pinget, Michel; Jeandidier, Nathalie; Sigrist, Séverine

    2016-01-01

    Introduction This study investigated the angiogenic properties of liraglutide in vitro and in vivo and the mechanisms involved, with a focus on Hypoxia Inducible Factor-1α (HIF-1α) and mammalian target of rapamycin (mTOR). Materials and Methods Rat pancreatic islets were incubated in vitro with 10 μmol/L of liraglutide (Lira) for 12, 24 and 48 h. Islet viability was studied by fluorescein diacetate/propidium iodide staining and their function was assessed by glucose stimulation. The angiogenic effect of liraglutide was determined in vitro by the measure of vascular endothelial growth factor (VEGF) secretion using enzyme-linked immunosorbent assay and by the evaluation of VEGF and platelet-derived growth factor-α (PDGFα) expression with quantitative polymerase chain reaction technic. Then, in vitro and in vivo, angiogenic property of Lira was evaluated using immunofluorescence staining targeting the cluster of differentiation 31 (CD31). To understand angiogenic mechanisms involved by Lira, HIF-1α and mTOR activation were studied using western blotting. In vivo, islets (1000/kg body-weight) were transplanted into diabetic (streptozotocin) Lewis rats. Metabolic control was assessed for 1 month by measuring body-weight gain and fasting blood glucose. Results Islet viability and function were respectively preserved and enhanced (p<0.05) with Lira, versus control. Lira increased CD31-positive cells, expression of VEGF and PDGFα (p<0.05) after 24 h in culture. Increased VEGF secretion versus control was also observed at 48 h (p<0.05). Moreover, Lira activated mTOR (p<0.05) signalling pathway. In vivo, Lira improved vascular density (p<0.01), body-weight gain (p<0.01) and reduced fasting blood glucose in transplanted rats (p<0.001). Conclusion The beneficial effects of liraglutide on islets appeared to be linked to its angiogenic properties. These findings indicated that glucagon-like peptide-1 analogues could be used to improve transplanted islet revascularisation

  4. Anti-angiogenic activity in metastasis of human breast cancer cells irradiated by a proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyu-Shik; Shin, Jin-Sun; Nam, Kyung-Soo [Dongguk University, Gyeongju (Korea, Republic of); Shon, Yun-Hee [Kyungpook National University Hospital, Daegu (Korea, Republic of)

    2012-07-15

    Angiogenesis is an essential process of metastasis in human breast cancer. We investigated the effects of proton beam irradiation on angiogenic enzyme activities and their expressions in MCF-7 human breast cancer cells. The regulation of angiogenic regulating factors, of transforming growth factor-β (TGF-β) and of vesicular endothelial growth factor (VEGF) expression in breast cancer cells irradiated with a proton beam was studied. Aromatase activity and mRNA expression, which is correlated with metastasis, were significantly decreased by irradiation with a proton beam in a dose-dependent manner. TGF-β and VEGF transcriptions were also diminished by proton beam irradiation. In contrast, transcription of tissue inhibitors of matrix metalloproteinases (TIMPs), also known as biological inhibitors of matrix metalloproteinases (MMPs), was dose-dependently enhanced. Furthermore, an increase in the expression of TIMPs caused the MMP-9 activity to be diminished and the MMP-9 and the MMP-2 expressions to be decreased. These results suggest that inhibition of angiogenesis by proton beam irradiation in breast cancer cells is closely related to inhibitions of aromatase activity and transcription and to down-regulation of TGF-β and VEGF transcription.

  5. hCG-dependent regulation of angiogenic factors in human granulosa lutein cells.

    Science.gov (United States)

    Phan, B; Rakenius, A; Pietrowski, D; Bettendorf, H; Keck, C; Herr, D

    2006-07-01

    As prerequisite for development and maintenance of many diseases angiogenesis is of particular interest in medicine. Pathologic angiogenesis takes place in chronic arthritis, collagen diseases, arteriosclerosis, retinopathy associated with diabetes, and particularly in cancers. However, angiogenesis as a physiological process regularly occurs in the ovary. After ovulation the corpus luteum is formed by rapid vascularization of initially avascular granulosa lutein cell tissue. This process is regulated by gonadotropic hormones. In order to gain further insights in the regulatory mechanisms of angiogenesis in the ovary, we investigated these mechanisms in cell culture of human granulosa lutein cells. In particular, we determined the expression and production of several angiogenic factors including tissue inhibitor of matrix metalloproteinases-1 (TIMP-1), Leptin, connective tissue growth factor (CTGF), meningioma-associated complimentary DNA (Mac25), basic fibroblast growth factor (bFGF), and Midkine. In addition, we showed that human chorionic gonadotropin (hCG) has distinct effects on their expression and production. hCG enhances the expression and production of TIMP-1, whereas it downregulates the expression of CTGF and Mac25. Furthermore it decreases the expression of Leptin. Our results provide evidence that hCG determines growth and development of the corpus luteum by mediating angiogenic pathways in human granulosa lutein cells. Hence we describe a further approach to understand the regulation of angiogenesis in the ovary.

  6. Expression patterns of signaling lymphocytic activation molecule family members in peripheral blood mononuclear cell subsets in patients with systemic lupus erythematosus.

    Science.gov (United States)

    Karampetsou, Maria P; Comte, Denis; Kis-Toth, Katalin; Kyttaris, Vasileios C; Tsokos, George C

    2017-01-01

    Genome-wide linkage analysis studies (GWAS) studies in systemic lupus erythematosus (SLE) identified the 1q23 region on human chromosome 1, containing the Signaling Lymphocytic Activation Molecule Family (SLAMF) cluster of genes, as a lupus susceptibility locus. The SLAMF molecules (SLAMF1-7) are immunoregulatory receptors expressed predominantly on hematopoietic cells. Activation of cells of the adaptive immune system is aberrant in SLE and dysregulated expression of certain SLAMF molecules has been reported. We examined the expression of SLAMF1-7 on peripheral blood T cells, B cells, monocytes, and their respective differentiated subsets, in patients with SLE and healthy controls in a systematic manner. SLAMF1 levels were increased on both T cell and B cells and their differentiated subpopulations in patients with SLE. SLAMF2 was increased on SLE CD4+ and CD8+ T cells. The frequency of SLAMF4+ and SLAMF7+ central memory and effector memory CD8+ T cells was reduced in SLE patients. Naïve CD4+ and CD8+ SLE T cells showed a slight increase in SLAMF3 levels. No differences were seen in the expression of SLAMF5 and SLAMF6 among SLE patients and healthy controls. Overall, the expression of various SLAMF receptors is dysregulated in SLE and may contribute to the immunopathogenesis of the disease.

  7. The expression of B7-H1 and B7-H4 molecules on immature myeloid and lymphoid dendritic cells in cord blood of healthy neonates.

    Directory of Open Access Journals (Sweden)

    S Radej

    2011-04-01

    Full Text Available The aim of our study was to estimate both B7-H1 and B7-H4 molecules on immature myeloid and lymphoid dendritic cells in umbilical cord blood of healthy neonates in comparison with peripheral blood of healthy adults. Thirty nine healthy full-term neonates from physiological single pregnancies and 27 healthy adults were included in the study. The expression of B7-H1 and B7-H4 was revealed using the immunofluorescence method. Statistical analysis was performed using a non-parametric test (Mann-Whitney U-Test. The percentages of BDCA-1+ dendritic cells with B7-H1 and B7-H4 expressions were significantly higher in peripheral blood of healthy adults (p<0.00003. It was either observed that the percentage of BDCA-2+ dendritic cells with the expression of B7-H4 molecules was significantly higher in peripheral blood of healthy adults in comparison with umbilical cord blood (p<0.02. Decreased percentages of dendritic cells and co-stimulatory molecules indicate that neonates have immature immune system. Depletion of co-stimulatory B7-H1 and B7-H4 molecules enable appropriate development of immune response.

  8. 1α,25-Dihydroxyvitamin D(3) inhibits vascular cellular adhesion molecule-1 expression and interleukin-8 production in human coronary arterial endothelial cells.

    Science.gov (United States)

    Kudo, Keiko; Hasegawa, Shunji; Suzuki, Yasuo; Hirano, Reiji; Wakiguchi, Hiroyuki; Kittaka, Setsuaki; Ichiyama, Takashi

    2012-11-01

    Kawasaki disease is an acute febrile vasculitis of childhood that is associated with elevated production of inflammatory cytokines, causing damage to the coronary arteries. The production of proinflammatory cytokines and expression of adhesion molecules in human coronary arterial endothelial cells (HCAECs) is regulated by nuclear transcription factor-κB (NF-κB) activation. We have previously reported that the active form of vitamin D, 1α,25-dihydroxyvitamin D(3) (1α,25-(OH)(2)D(3)), inhibits tumor necrosis factor-α (TNF-α)-induced NF-κB activation. In this study, we examined the anti-inflammatory effects of 1α,25-(OH)(2)D(3) on TNF-α-induced adhesion molecule expression (vascular cellular adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1)) and cytokine production (interleukin-6 (IL-6) and IL-8) in HCAECs. Pretreatment with 1α,25-(OH)(2)D(3) significantly inhibited TNF-α-induced VCAM-1 expression and IL-8 production in HCAECs. Our results suggest that adjunctive 1α,25-(OH)(2)D(3) therapy may modulate the inflammatory response during Kawasaki disease vasculitis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Mechanical stretch endows mesenchymal stem cells stronger angiogenic and anti-apoptotic capacities via NFκB activation

    International Nuclear Information System (INIS)

    Zhu, Zhuoli; Gan, Xueqi; Fan, Hongyi; Yu, Haiyang

    2015-01-01

    Mesenchymal stem cells (MSCs) have been broadly used for tissue regeneration and repair due to their broad differentiation potential and potent paracrine properties such as angiogenic capacity. Strategies to increase their survival rate after transplantation and the angiogenic ability are of priority for the utility of MSCs. In this study, we found that mechanical stretch (10% extension, 30 cycles/min cyclic stretch) preconditioning increase the angiogenic capacity via VEGFA induction. In addition, mechanical stretch also increases the survival rate of mesenchymal stem cells under nutrients deprivation. Consistent with the increase VEGFA expression and resistance to apoptosis, nuclear localization of NFκB activity p65 increased upon mechanical stretch. Inhibition of NFκB activity by BAY 11-708 blocks the pro-angiogenesis and anti-apoptosis function of mechanical stretch. Taken together, our findings here raise the possibility that mechanical stretch preconditioning might enhance the therapeutic efficacy of mesenchymal stem cells. - Highlights: • Mechanical stretch increases the angiogenic capacity via VEGFA induction in MSCs. • Mechanical stretch increases the survival rate of MSCs under nutrients deprivation. • Mechanical stretch manipulates MSCs via the activation of NFκB.

  10. Mechanical stretch endows mesenchymal stem cells stronger angiogenic and anti-apoptotic capacities via NFκB activation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhuoli; Gan, Xueqi [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Fan, Hongyi [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Applied Mechanics, College of Architecture and Environment, Sichuan University, Chengdu 610065 (China); Yu, Haiyang, E-mail: yhyang6812@foxmail.com [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China)

    2015-12-25

    Mesenchymal stem cells (MSCs) have been broadly used for tissue regeneration and repair due to their broad differentiation potential and potent paracrine properties such as angiogenic capacity. Strategies to increase their survival rate after transplantation and the angiogenic ability are of priority for the utility of MSCs. In this study, we found that mechanical stretch (10% extension, 30 cycles/min cyclic stretch) preconditioning increase the angiogenic capacity via VEGFA induction. In addition, mechanical stretch also increases the survival rate of mesenchymal stem cells under nutrients deprivation. Consistent with the increase VEGFA expression and resistance to apoptosis, nuclear localization of NFκB activity p65 increased upon mechanical stretch. Inhibition of NFκB activity by BAY 11-708 blocks the pro-angiogenesis and anti-apoptosis function of mechanical stretch. Taken together, our findings here raise the possibility that mechanical stretch preconditioning might enhance the therapeutic efficacy of mesenchymal stem cells. - Highlights: • Mechanical stretch increases the angiogenic capacity via VEGFA induction in MSCs. • Mechanical stretch increases the survival rate of MSCs under nutrients deprivation. • Mechanical stretch manipulates MSCs via the activation of NFκB.

  11. MiRNA-486 regulates angiogenic activity and survival of mesenchymal stem cells under hypoxia through modulating Akt signal

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xue-Feng [High Altitude Medicine of Ministry of Chinese Education and Research Center for High Altitude Medicine, Qinghai University, Xining 810001 (China); Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Department of Respiration, Qinghai Provincial People' s Hospital, Xining (China); Wang, Hua; Xiao, Feng-Jun [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Yin, Yue [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Department of Hematology, Peking University First Hospital, Beijing (China); Xu, Qin-Qin [High Altitude Medicine of Ministry of Chinese Education and Research Center for High Altitude Medicine, Qinghai University, Xining 810001 (China); Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Ge, Ri-Li, E-mail: geriligao@hotmail.com [High Altitude Medicine of Ministry of Chinese Education and Research Center for High Altitude Medicine, Qinghai University, Xining 810001 (China); Wang, Li-Sheng, E-mail: wangls@bmi.ac.cn [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China)

    2016-02-12

    MicroRNA-486 (miR-486) was first identified from human fetal liver cDNA library and validated as a regulator of hematopoiesis. Its roles in regulating the biological function of bone marrow-derived mesnechymal stem cells (BM-MSCs) under hypoxia have not been explored yet. In this study, we demonstrated that exposure to hypoxia upregulates miR-486 expression in BM-MSCs. Lentivirus-mediated overexpression of miR-486 resulted in increase of hepatocyte growth factor (HGF) and vascular endothelial growth factor(VEGF) in both mRNA and protein levels. MiR-486 expression also promotes proliferation and reduces apoptosis of BM-MSCs. Whereas MiR-486 knockdown downregulated the secretion of HGF and VEGF and induced apoptosis of BM-MSCs. Furthermore, PTEN-PI3K/AKT signaling was validated to be involved in changes of BM-MSC biological functions regulated by miR-486. These results suggested that MiR-486 mediated the hypoxia-induced angiogenic activity and promoted the proliferation and survival of BM-MSCs through regulating PTEN-PI3K/AKT signaling. These findings might provide a novel understanding of effective therapeutic strategy for hypoxic-ischemic diseases. - Highlights: • miR-486 is a hypoxia-induced miRNA. • miR-486 regulates the secretion of HGF and VEGF, promotes proliferation, and inhibits apoptosis of BM-MSCs. • miR-486 enhances PI3K/AKT activity signaling by targeting PTEN molecule.

  12. Comprehensive study of angiogenic factors in women with endometriosis compared to women without endometriosis.

    Science.gov (United States)

    Yerlikaya, Gülen; Balendran, Sukirthini; Pröstling, Katharina; Reischer, Theresa; Birner, Peter; Wenzl, Rene; Kuessel, Lorenz; Streubel, Berthold; Husslein, Heinrich

    2016-09-01

    Endometriosis is a benign gynaecological disease, affecting women during their reproductive years. Angiogenesis represents a crucial step in the pathogenesis of endometriosis, because endometriotic lesions require neovascularization. In this study several angiogenesis-related genes have been studied in the context of endometriosis. Some of the analyzed angiogenic factors as well as their interactions were studied the first time regarding a possible association with endometriosis. This case-control study consisted of 205 biopsies of 114 patients comprising 61 endometriosis patients and 53 control patients. Among them in 29 cases paired samples were obtained. VEGFA, VEGFR2, HIF1A, HGF, NRP1, PDGFB, FGF18, TNFα, TGFB2, EPHB4, EPO and ANG mRNA expression was analyzed by qRT-PCR in ectopic tissue samples, in eutopic endometrium of women with and without endometriosis, and in unaffected peritoneum of women with and without endometriosis. VEGFR2, HIF1A, HGF, PDGFB, NRP1 and EPHB4 are overexpressed in ectopic lesions compared to eutopic tissues. VEGFR2, HGF, PDGFB, NRP1, and EPHB4 showed highest mRNA levels in peritoneal implants, in contrast HIF1A showed the highest expression in ovarian endometriomas. Correlation analyses of angiogenic factors in ectopic lesions revealed the strongest associations between VEGFR2, PDGFB, and EPHB4. We further showed a significant upregulation of VEGFR2, HIF1A and EPHB4 in eutopic endometrium of women with endometriosis compared to that of controls and a trend towards upregulation of HGF. Additionally, a significant downregulation for HIF1A, HGF and EPHB4 was observed in unaffected peritoneal tissues of women with endometriosis compared to controls. We identified new genes (EPHB4 and NRP1) that may contribute to angiogenesis in endometriosis beside known factors (VEGFA, VEGFR2, HIF1A, HGF, and PDGFB). Correlation studies revealed the putative importance of EBHB4 in association with endometriosis. Our analyses support preliminary reports

  13. Decreased Expression of T-Cell Costimulatory Molecule CD28 on CD4 and CD8 T Cells of Mexican Patients with Pulmonary Tuberculosis

    Directory of Open Access Journals (Sweden)

    German Bernal-Fernandez

    2010-01-01

    Full Text Available Patients with tuberculosis frequently develop anergy, a state of T-cell hyporesponsiveness in which defective T-cell costimulation could be a factor. To know if the expression of T-cell costimulatory molecules was altered in tuberculosis, we analyzed the peripheral blood T-cell phenotype of 23 Mexican patients with pulmonary tuberculosis. There was severe CD4 (P<.001 and CD8 (P<.01 lymphopenia and upregulation of costimulatory molecule CD30 on CD4 and CD8 T cells (P<.05; this increase was higher in relapsing tuberculosis. The main finding was severe downregulation of the major costimulatory molecule CD28 on both CD8 and CD4 T cells (P<.001. Depletion of the CD4/CD28 subset, a hitherto undescribed finding, is relevant because CD4 T cells constitute the main arm of the cell-mediated antimycobacterial immune response.

  14. Establishment of canine hemangiosarcoma xenograft models expressing endothelial growth factors, their receptors, and angiogenesis-associated homeobox genes

    International Nuclear Information System (INIS)

    Kodama, Atsushi; Yanai, Tokuma; Sakai, Hiroki; Matsuura, Satoko; Murakami, Mami; Murai, Atsuko; Mori, Takashi; Maruo, Kouji; Kimura, Tohru; Masegi, Toshiaki

    2009-01-01

    Human hemangiosarcoma (HSA) tends to have a poor prognosis; its tumorigenesis has not been elucidated, as there is a dearth of HSA clinical specimens and no experimental model for HSA. However, the incidence of spontaneous HSA is relatively high in canines; therefore, canine HSA has been useful in the study of human HSA. Recently, the production of angiogenic growth factors and their receptors in human and canine HSA has been reported. Moreover, the growth-factor environment of HSA is very similar to that of pathophysiological angiogenesis, which some homeobox genes regulate in the transcription of angiogenic molecules. In the present study, we established 6 xenograft canine HSA tumors and detected the expression of growth factors, their receptors, and angiogenic homeobox genes. Six primary canine HSAs were xenografted to nude mice subcutaneously and serially transplanted. Subsequently, the expressions of vascular endothelial growth factor (VEGF)-A, basic fibroblast growth factors (bFGF), flt-1 and flk-1 (receptors of VEGF-A), FGFR-1, and angiogenic homeobox genes HoxA9, HoxB3, HoxB7, HoxD3, Pbx1, and Meis1 were investigated in original and xenograft tumors by histopathology, immunostaining, and reverse transcription polymerase chain reaction (RT-PCR), using canine-specific primer sets. Histopathologically, xenograft tumors comprised a proliferation of neoplastic cells that were varied in shape, from spindle-shaped and polygonal to ovoid; some vascular-like structures and vascular clefts of channels were observed, similar to those in the original tumors. The expression of endothelial markers (CD31 and vWF) was detected in xenograft tumors by immunohistochemistry and RT-PCR. Moreover, the expression of VEGF-A, bFGF, flt-1, flk-1, FGFR-1, HoxA9, HoxB3, HoxB7, HoxD3, Pbx1, and Meis1 was detected in xenograft tumors. Interestingly, expressions of bFGF tended to be higher in 3 of the xenograft HSA tumors than in the other tumors. We established 6 xenograft canine HSA

  15. Imaging of HER3-expressing xenografts in mice using a 99mTc(CO)3-HEHEHE-ZHER3:08699 affibody molecule

    International Nuclear Information System (INIS)

    Orlova, Anna; Rosestedt, Maria; Varasteh, Zohreh; Selvaraju, Ram Kumar; Malm, Magdalena; Andersson, Ken; Staahl, Stefan; Loefblom, John; Altai, Mohamed; Honarvar, Hadis; Strand, Joanna; Tolmachev, Vladimir

    2014-01-01

    Human epidermal growth factor receptor type 3 (HER3) is a transmembrane receptor tyrosine kinase belonging to the HER (ErbB) receptor family. Membranous expression of HER3 is associated with trastuzumab resistance in breast cancer and the transition to androgen independence in prostate cancer. Imaging of HER3 expression in malignant tumors may provide important diagnostic information that can influence patient management. Affibody molecules with low picomolar affinity to HER3 were recently selected. The aim of this study was to investigate the feasibility of HER3 imaging using radiolabeled Affibody molecules. A HER3-binding Affibody molecule, Z 08699 , with a HEHEHE-tag on N-terminus was labeled with 99m Tc(CO) 3 using an IsoLink kit. In vitro and in vivo binding specificity and the cellular processing of the labeled binder were evaluated. Biodistribution of 99m Tc(CO) 3 -HEHEHE-Z 08699 was studied over time in mice bearing HER3-expressing xenografts. HEHEHE-Z 08699 was labeled with 99m Tc(CO) 3 with an isolated yield of >80 % and a purity of >99 %. Binding of 99m Tc(CO) 3 -HEHEHE-Z 08699 was specific to BT474 and MCF7 (breast cancer), and LS174T (colon cancer) cells. Cellular processing showed rapid binding and relatively quick internalization of the receptor/Affibody molecule complex (70 % of cell-associated radioactivity was internalized after 24 h). The tumor targeting was receptor mediated and the excretion was predominantly renal. Receptor-mediated uptake was also found in the liver, lung, stomach, intestine, and salivary glands. At 4 h pi, tumor-to-blood ratios were 7 ± 3 for BT474, and 6 ± 2 for LS174T xenografts. LS174T tumors were visualized by microSPECT 4 h pi. The results of this study suggest the feasibility of HER3-imaging in malignant tumors using Affibody molecules. (orig.)

  16. Inhibition of tumor necrosis factor-α-induced expression of adhesion molecules in human endothelial cells by the saponins derived from roots of Platycodon grandiflorum

    International Nuclear Information System (INIS)

    Kim, Ji Young; Kim, Dong Hee; Kim, Hyung Gyun; Song, Gyu-Yong; Chung, Young Chul; Roh, Seong Hwan; Jeong, Hye Gwang

    2006-01-01

    Adhesion molecules play an important role in the development of atherogenesis and are produced by endothelial cells after being stimulated with various inflammatory cytokines. This study examined the effect of saponins that were isolated from the roots of Platycodon grandiflorum A. DC (Campanulaceae), Changkil saponins (CKS), on the cytokine-induced monocyte/human endothelial cell interaction, which is a crucial early event in atherogenesis. CKS significantly inhibited the TNFα-induced increase in monocyte adhesion to endothelial cells as well as decreased the protein and mRNA expression levels of vascular adhesion molecule-1 and intercellular cell adhesion molecule-1 on endothelial cells. Furthermore, CKS significantly inhibited the TNFα-induced production of intracellular reactive oxygen species (ROS) and activation of NF-κB by preventing IκB degradation and inhibiting IκB kinase activity. Overall, CKS has anti-atherosclerotic and anti-inflammatory activity, which is least in part the result of it reducing the cytokine-induced endothelial adhesion to monocytes by inhibiting intracellular ROS production, NF-κB activation, and cell adhesion molecule expression in endothelial cells

  17. Evaluation of a collagen-chitosan hydrogel for potential use as a pro-angiogenic site for islet transplantation.

    Directory of Open Access Journals (Sweden)

    Joanne E McBane

    Full Text Available Islet transplantation to treat type 1 diabetes (T1D has shown varied long-term success, due in part to insufficient blood supply to maintain the islets. In the current study, collagen and collagen:chitosan (10:1 hydrogels, +/- circulating angiogenic cells (CACs, were compared for their ability to produce a pro-angiogenic environment in a streptozotocin-induced mouse model of T1D. Initial characterization showed that collagen-chitosan gels were mechanically stronger than the collagen gels (0.7 kPa vs. 0.4 kPa elastic modulus, respectively, had more cross-links (9.2 vs. 7.4/µm(2, and were degraded more slowly by collagenase. After gelation with CACs, live/dead staining showed greater CAC viability in the collagen-chitosan gels after 18 h compared to collagen (79% vs. 69%. In vivo, collagen-chitosan gels, subcutaneously implanted for up to 6 weeks in a T1D mouse, showed increased levels of pro-angiogenic cytokines over time. By 6 weeks, anti-islet cytokine levels were decreased in all matrix formulations ± CACs. The 6-week implants demonstrated increased expression of VCAM-1 in collagen-chitosan implants. Despite this, infiltrating vWF(+ and CXCR4(+ angiogenic cell numbers were not different between the implant types, which may be due to a delayed and reduced cytokine response in a T1D versus non-diabetic setting. The mechanical, degradation and cytokine data all suggest that the collagen-chitosan gel may be a suitable candidate for use as a pro-angiogenic ectopic islet transplant site.

  18. Interleukin-3 greatly expands non-adherent endothelial forming cells with pro-angiogenic properties

    Directory of Open Access Journals (Sweden)

    Lachlan M. Moldenhauer

    2015-05-01

    Full Text Available Circulating endothelial progenitor cells (EPCs provide revascularisation for cardiovascular disease and the expansion of these cells opens up the possibility of their use as a cell therapy. Herein we show that interleukin-3 (IL3 strongly expands a population of human non-adherent endothelial forming cells (EXnaEFCs with low immunogenicity as well as pro-angiogenic capabilities in vivo, making their therapeutic utilisation a realistic option. Non-adherent CD133+ EFCs isolated from human umbilical cord blood and cultured under different conditions were maximally expanded by day 12 in the presence of IL3 at which time a 350-fold increase in cell number was obtained. Cell surface marker phenotyping confirmed expression of the hematopoietic progenitor cell markers CD133, CD117 and CD34, vascular cell markers VEGFR2 and CD31, dim expression of CD45 and absence of myeloid markers CD14 and CD11b. Functional experiments revealed that EXnaEFCs exhibited classical properties of endothelial cells (ECs, namely binding of Ulex europaeus lectin, up-take of acetylated-low density lipoprotein and contribution to EC tube formation in vitro. These EXnaEFCs demonstrated a pro-angiogenic phenotype within two independent in vivo rodent models. Firstly, a Matrigel plug assay showed increased vascularisation in mice. Secondly, a rat model of acute myocardial infarction demonstrated reduced heart damage as determined by lower levels of serum creatinine and a modest increase in heart functionality. Taken together, these studies show IL3 as a potent growth factor for human CD133+ cell expansion with clear pro-angiogenic properties (in vitro and in vivo and thus may provide clinical utility for humans in the future.

  19. Tumor necrosis factor-α regulates expression of vascular endothelial growth factor receptor-2 and of its co-receptor neuropilin-1 in human vascular endothelial cells

    NARCIS (Netherlands)

    Giraudo, E.; Primo, L.; Audero, E.; Gerber, H.-P.; Koolwijk, P.; Soker, S.; Klagsbrun, M.; Ferrara, N.; Bussolino, F.

    1998-01-01

    Tumor necrosis factor-α (TNF-α) modulates gene expression in endothelial cells and is angiogenic in vivo. TNF-α does not activate in vitro migration and proliferation of endothelium, and its angiogenic activity is elicited by synthesis of direct angiogenic inducers or of proteases. Here, we show

  20. Reciprocal interactions between endothelial cells and macrophages in angiogenic vascular niches

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Caroline; Squadrito, Mario Leonardo [The Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne (Switzerland); Iruela-Arispe, M. Luisa, E-mail: arispe@mcdb.ucla.edu [The Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne (Switzerland); Department of Molecular, Cell and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles 90095, CA (United States); De Palma, Michele, E-mail: michele.depalma@epfl.ch [The Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne (Switzerland)

    2013-07-01

    The ability of macrophages to promote vascular growth has been associated with the secretion and local delivery of classic proangiogenic factors (e.g., VEGF-A and proteases). More recently, a series of studies have also revealed that physical contact of macrophages with growing blood vessels coordinates vascular fusion of emerging sprouts. Interestingly, the interactions between macrophages and vascular endothelial cells (ECs) appear to be bidirectional, such that activated ECs also support the expansion and differentiation of proangiogenic macrophages from myeloid progenitors. Here, we discuss recent findings suggesting that dynamic angiogenic vascular niches might also exist in vivo, e.g. in tumors, where sprouting blood vessels and immature myeloid cells like monocytes engage in heterotypic interactions that are required for angiogenesis. Finally, we provide an account of emerging mechanisms of cell-to-cell communication that rely on secreted microvesicles, such as exosomes, which can offer a vehicle for the rapid exchange of molecules and genetic information between macrophages and ECs engaged in angiogenesis. -- Highlights: • Macrophages promote angiogenesis by secreting proangiogenic factors. • Macrophages modulate angiogenesis via cell-to-cell contacts with endothelial cells. • Endothelial cells promote the differentiation of proangiogenic macrophages. • Macrophages and endothelial cells may cooperate to form angiogenic vascular niches.

  1. Reciprocal interactions between endothelial cells and macrophages in angiogenic vascular niches

    International Nuclear Information System (INIS)

    Baer, Caroline; Squadrito, Mario Leonardo; Iruela-Arispe, M. Luisa; De Palma, Michele

    2013-01-01

    The ability of macrophages to promote vascular growth has been associated with the secretion and local delivery of classic proangiogenic factors (e.g., VEGF-A and proteases). More recently, a series of studies have also revealed that physical contact of macrophages with growing blood vessels coordinates vascular fusion of emerging sprouts. Interestingly, the interactions between macrophages and vascular endothelial cells (ECs) appear to be bidirectional, such that activated ECs also support the expansion and differentiation of proangiogenic macrophages from myeloid progenitors. Here, we discuss recent findings suggesting that dynamic angiogenic vascular niches might also exist in vivo, e.g. in tumors, where sprouting blood vessels and immature myeloid cells like monocytes engage in heterotypic interactions that are required for angiogenesis. Finally, we provide an account of emerging mechanisms of cell-to-cell communication that rely on secreted microvesicles, such as exosomes, which can offer a vehicle for the rapid exchange of molecules and genetic information between macrophages and ECs engaged in angiogenesis. -- Highlights: • Macrophages promote angiogenesis by secreting proangiogenic factors. • Macrophages modulate angiogenesis via cell-to-cell contacts with endothelial cells. • Endothelial cells promote the differentiation of proangiogenic macrophages. • Macrophages and endothelial cells may cooperate to form angiogenic vascular niches

  2. Pro-angiogenic cell-based therapy for the treatment of ischemic cardiovascular diseases.

    Science.gov (United States)

    Silvestre, Jean-Sébastien

    2012-10-01

    Pro-angiogenic cell therapy has emerged as a promising option to treat patients with acute myocardial infarction or with critical limb ischemia. Exciting pre-clinical studies have prompted the initiation of numerous clinical trials based on administration of stem/progenitor cells with pro-angiogenic potential. Most of the clinical studies performed so far have used bone marrow-derived or peripheral blood-derived mononuclear cells and showed, overall, a modest but significant benefit on tissue remodeling and function in patients with ischemic diseases. These mixed results pave the way for the development of strategies to overcome the limitation of autologous cell therapy and to propose more efficient approaches. Such strategies include pretreatment of cells with activators to augment cell recruitment and survival in the ischemic target area and/or the improvement of cell functions such as their paracrine ability to release proangiogenic factors and vasoactive molecules. In addition, efforts should be directed towards stimulation of both angiogenesis and vessel maturation, the development of a composite product consisting of stem/progenitor cells encapsulated in a biomaterial and the use of additional sources of regenerative cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Nucleotide-binding oligomerization domain 1 regulates Porphyromonas gingivalis-induced vascular cell adhesion molecule 1 and intercellular adhesion molecule 1 expression in endothelial cells through NF-κB pathway.

    Science.gov (United States)

    Wan, M; Liu, J; Ouyang, X

    2015-04-01

    Porphyromonas gingivalis has been shown to actively invade endothelial cells and induce vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) overexpression. Nucleotide-binding oligomerization domain 1 (NOD1) is an intracellular pattern recognition reporter, and its involvement in this process was unknown. This study focused on endothelial cells infected with P. gingivalis, the detection of NOD1 expression and the role that NOD1 plays in the upregulation of VCAM-1 and ICAM-1. The human umbilical vein endothelial cell line (ECV-304) was intruded by P. gingivalis W83, and cells without any treatment were the control group. Expression levels of NOD1, VCAM-1, ICAM-1, phosphorylated P65 between cells with and without treatment on both mRNA and protein levels were compared. Then we examined whether mesodiaminopimelic acid (NOD1 agonist) could increase VCAM-1 and ICAM-1 expression, meanwhile, NOD1 gene silence by RNA interference could reduce VCAM-1, ICAM-1 and phosphorylated P65 release. At last, we examined whether inhibition of NF-κB by Bay117082 could reduce VCAM-1 and ICAM- 1 expression. The mRNA levels were measured by real-time polymerase chain reaction, and protein levels by western blot or electrophoretic mobility shift assays (for phosphorylated P65). P. gingivalis invasion showed significant upregulation of NOD1, VCAM-1 and ICAM-1. NOD1 activation by meso-diaminopimelic acid increased VCAM-1 and ICAM-1 expression, and NOD1 gene silence reduced VCAM-1 and ICAM-1 release markedly. The NF-κB signaling pathway was activated by P. gingivalis, while NOD1 gene silence decreased the activation of NF-κB. Moreover, inhibition of NF-κB reduced VCAM-1 and ICAM-1 expression induced by P. gingivalis in endothelial cells. The results revealed that P. gingivalis induced NOD1 overexpression in endothelial cells and that NOD1 played an important role in the process of VCAM-1 and ICAM-1 expression in endothelial cells infected with P

  4. VEGF121b and VEGF165b are weakly angiogenic isoforms of VEGF-A

    Directory of Open Access Journals (Sweden)

    Pio Ruben

    2010-12-01

    Full Text Available Abstract Background Different isoforms of VEGF-A (mainly VEGF121, VEGF165 and VEGF189 have been shown to display particular angiogenic properties in the generation of a functional tumor vasculature. Recently, a novel class of VEGF-A isoforms, designated as VEGFxxxb, generated through alternative splicing, have been described. Previous studies have suggested that these isoforms may inhibit angiogenesis. In the present work we have produced recombinant VEGF121/165b proteins in the yeast Pichia pastoris and constructed vectors to overexpress these isoforms and assess their angiogenic potential. Results Recombinant VEGF121/165b proteins generated either in yeasts or mammalian cells activated VEGFR2 and its downstream effector ERK1/2, although to a lesser extent than VEGF165. Furthermore, treatment of endothelial cells with VEGF121/165b increased cell proliferation compared to untreated cells, although such stimulation was lower than that induced by VEGF165. Moreover, in vivo angiogenesis assays confirmed angiogenesis stimulation by VEGF121/165b isoforms. A549 and PC-3 cells overexpressing VEGF121b or VEGF165b (or carrying the PCDNA3.1 empty vector, as control and xenotransplanted into nude mice showed increased tumor volume and angiogenesis compared to controls. To assess whether the VEGFxxxb isoforms are differentially expressed in tumors compared to healthy tissues, immunohistochemical analysis was conducted on a breast cancer tissue microarray. A significant increase (p xxxb and total VEGF-A protein expression in infiltrating ductal carcinomas compared to normal breasts was observed. A positive significant correlation (r = 0.404, p = 0.033 between VEGFxxxb and total VEGF-A was found. Conclusions Our results demonstrate that VEGF121/165b are not anti-angiogenic, but weakly angiogenic isoforms of VEGF-A. In addition, VEGFxxxb isoforms are up-regulated in breast cancer in comparison with non malignant breast tissues. These results are to be taken

  5. High expression of carcinoembryonic antigen-related cell adhesion molecule (CEACAM) 6 and 8 in primary myelofibrosis

    DEFF Research Database (Denmark)

    Riley, Caroline Hasselbalch; Skov, Vibe; Larsen, Thomas Stauffer

    2011-01-01

    for the egress of CD34+ cells from the bone marrow. Carcinoembryonic antigen-related cell adhesion molecule (CEACAM) 6 has been implicated in cell adhesion, cellular invasiveness, angiogenesis, and inflammation, which are all key processes in the pathophysiology of PMF. Accordingly, CEACAMs may play an important...

  6. Developmentally regulated expression by Trypanosoma cruzi of molecules that accelerate the decay of complement C3 convertases

    International Nuclear Information System (INIS)

    Rimoldi, M.T.; Sher, A.; Heiny, A.; Lituchy, A.; Hammer, C.H.; Joiner, K.

    1988-01-01

    The authors recently showed that culture-derived metacyclic trypomastigotes (CMT), but not epimastigotes (Epi), of the Miranda 99 strain of Trypanosoma cruzi evade lysis by the human alternative complement pathway because of inefficient binding of factor B to complement component C3b on the parasite surface. These results suggested that CMT and tissue-culture-derived trypomastigotes (TCT), which also activate the alternative pathway poorly, might produce a molecule capable of interfering with factor B binding to C3b. They now demonstrate that CMT and TCT lysates, as well as molecules spontaneously shed from CMT and TCT but not Epi, accelerate decay of 125 I-labeled factor Bb from the alternative-pathway C3 convertase (C3bBb) assembled on zymosan or Epi and also accelerate decay of the classical-pathway C3 convertase (C4b2a) on sheep erythrocytes. Parasites metabolically labeled with [ 35 S]methionine spontaneously shed a limited number of radioactive components, ranging in molecular mass from 86 to 155 kDa for trypomastigotes and 25 to 80 kDa for Epi. Decay-accelerating activity within supernatants is inactivated by papain and is coeluted with 35 S-containing polypeptides on FPLC anion-exchange chromatography, suggesting that the active constituents are protein molecules. Molecules with decay-accelerating activity may explain the developmentally regulated resistance to complement-mediated lysis in infective and vertebrate stages for T. cruzi life cycle

  7. Tuberculosis Therapy Modifies the Cytokine Profile, Maturation State, and Expression of Inhibitory Molecules on Mycobacterium tuberculosis-Specific CD4+ T-Cells.

    Directory of Open Access Journals (Sweden)

    Kapil K Saharia

    Full Text Available Little is known about the expression of inhibitory molecules cytotoxic T-lymphocyte antigen-4 (CTLA-4 and programmed-death-1 (PD-1 on Mycobacterium tuberculosis (Mtb-specific CD4 T-cells and how their expression is impacted by TB treatment.Cryopreserved PBMCs from HIV-TB co-infected and TB mono-infected patients with untreated and treated tuberculosis (TB disease were stimulated for six hours with PPD and stained. Using polychromatic flow cytometry, we characterized the differentiation state, cytokine profile, and inhibitory molecule expression on PPD-specific CD4 T-cells.In our HIV-TB co-infected cohort, TB treatment increased the proportion of PPD-specific CD4 T-cells co-producing IFN-γ+IL-2+TNF-α+ and IFN-γ+IL-2+ (p = 0.0004 and p = 0.0002, respectively while decreasing the proportion of PPD-specific CD4 T-cells co-producing IFN-γ+MIP1-β+TNF-α+ and IFN-γ+MIP1-β+. The proportion of PPD-specific CD4 T-cells expressing an effector memory phenotype decreased (63.6% vs 51.6%, p = 0.0015 while the proportion expressing a central memory phenotype increased (7.8% vs. 21.7%, p = 0.001 following TB treatment. TB treatment reduced the proportion of PPD-specific CD4 T-cells expressing CTLA-4 (72.4% vs. 44.3%, p = 0.0005 and PD-1 (34.5% vs. 29.2%, p = 0.03. Similar trends were noted in our TB mono-infected cohort.TB treatment alters the functional profile of Mtb-specific CD4 T-cells reflecting shifts towards a less differentiated maturational profile and decreases PD-1 and CTLA-4 expression. These could serve as markers of reduced mycobacterial burden. Further study is warranted.

  8. Lycopene inhibits NF-κB activation and adhesion molecule expression through Nrf2-mediated heme oxygenase-1 in endothelial cells.

    Science.gov (United States)

    Yang, Po-Min; Chen, Huang-Zhi; Huang, Yu-Ting; Hsieh, Chia-Wen; Wung, Being-Sun

    2017-06-01

    The endothelial expression of cell adhesion molecules plays a leading role in atherosclerosis. Lycopene, a carotenoid with 11 conjugated double bonds, has been shown to have anti-inflammatory properties. In the present study, we demonstrate a putative mechanism for the anti-inflammatory effects of lycopene. We demonstrate that lycopene inhibits the adhesion of tumor necrosis factor α (TNFα)-stimulated monocytes to endothelial cells and suppresses the expression of intercellular cell adhesion molecule-1 (ICAM-1) at the transcriptional level. Moreover, lycopene was found to exert its inhibitory effects by blocking the degradation of the inhibitory protein, IκBα, following 6 h of pre-treatment. In TNFα-stimulated endothelial cells, nuclear factor-κB (NF-κB) nuclear translocation and transcriptional activity were abolished by up to 12 h of lycopene pre-treatment. We also found that lycopene increased the intracellular glutathione (GSH) level and glutamate-cysteine ligase expression. Subsequently, lycopene induced nuclear factor-erythroid 2 related factor 2 (Nrf2) activation, leading to the increased expression of downstream of heme oxygenase-1 (HO-1). The use of siRNA targeting HO-1 blocked the inhibitory effects of lycopene on IκB degradation and ICAM-1 expression. The inhibitory effects of lycopene thus appear to be mediated through its induction of Nrf2-mediated HO-1 expression. Therefore, the findings of the present study indicate that lycopene suppresses the activation of TNFα-induced signaling pathways through the upregulation of Nrf2-mediated HO-1 expression.

  9. Inhibition of Lysyl Oxidases Impairs Migration and Angiogenic Properties of Tumor-Associated Pericytes

    Directory of Open Access Journals (Sweden)

    Aline Lopes Ribeiro

    2017-01-01

    Full Text Available Pericytes are important cellular components of the tumor microenviroment with established roles in angiogenesis and metastasis. These two cancer hallmarks are modulated by enzymes of the LOX family, but thus far, information about LOX relevance in tumor-associated pericytes is lacking. Here, we performed a comparative characterization of normal and tumoral pericytes and report for the first time the modulatory effects of LOX enzymes on activated pericyte properties. Tumoral pericytes isolated from childhood ependymoma and neuroblastoma specimens displayed angiogenic properties in vitro and expressed typical markers, including CD146, NG2, and PDGFRβ. Expression of all LOX family members could be detected in both normal and tumor-associated pericytes. In most pericyte samples, LOXL3 was the family member displaying the highest transcript levels. Inhibition of LOX/LOXL activity with the inhibitor β-aminopropionitrile (βAPN significantly reduced migration of pericytes, while proliferation rates were kept unaltered. Formation of tube-like structures in vitro by pericytes was also significantly impaired upon inhibition of LOX/LOXL activity with βAPN, which induced more prominent effects in tumor-associated pericytes. These findings reveal a novel involvement of the LOX family of enzymes in migration and angiogenic properties of pericytes, with implications in tumor development and in therapeutic targeting tumor microenvironment constituents.

  10. Suppressive effects of anti-allergic agent suplatast tosilate (IPD-1151T on the expression of co-stimulatory molecules on mouse splenocytes in vivo

    Directory of Open Access Journals (Sweden)

    Masatsugu Kurokawa

    2001-01-01

    Full Text Available The effects of IPD-1151T on the expression of costimulatory molecules, CD40, CD80 and CD86, were investigated in vivo using mice with allergic disorders. BALB/c mice were immunized intraperitoneally with two doses of dinitrophenylated ovalbumin (DNP-OVA at 1-week intervals. These mice then were treated intraperitoneally with 100μg/kg of IPD1151T once a day for 14 days, starting 7 days after the first immunization. On day 21, some mice were challenged intraperitoneally with DNP-OVA and the other mice were not challenged. All mice were autopsied on day 22 and assayed for immunoglobulin E, interleuken (IL-4 and IL-5 productions following DNP-OVA immunization. The intraperitoneal treatment with IPD-1151T strongly suppressed immunoglobulin E contents in serum, which were enhanced by DNA-OVA immunization. IPD-1151T also caused a decrease in both IL-4 and IL-5 levels in splenic lymphocytes. We next examined the influence of IPD1151T on co-stimulatory molecule expression on splenic lymphocytes. IPD-1151T caused suppression of CD40 and CD86 expression; however, the treatments did not affect CD80 expression.

  11. Downregulation of adaptor protein MyD88 compromises the angiogenic potential of B16 murine melanoma

    Science.gov (United States)

    Araya, Paula; Nuñez, Nicolás Gonzalo; Mena, Hebe Agustina; Bocco, José Luis; Negrotto, Soledad; Maccioni, Mariana

    2017-01-01

    The mechanisms that link inflammatory responses to cancer development remain a subject of intense investigation, emphasizing the need to better understand the cellular and molecular pathways that create a tumor promoting microenvironment. The myeloid differentiation primary response protein MyD88 acts as a main adaptor molecule for the signaling cascades initiated from Toll-like receptors (TLRs) and the interleukin 1 receptor (IL-1R). MyD88 has been shown to contribute to tumorigenesis in many inflammation-associated cancer models. In this study, we sought to better define the role of MyD88 in neoplastic cells using a murine melanoma model. Herein, we have demonstrated that MyD88 expression is required to maintain the angiogenic switch that supports B16 melanoma growth. By knocking down MyD88 we reduced TLR-mediated NF-κB activation with no evident effects over cell proliferation and survival. In addition, MyD88 downregulation was associated with a decrease of HIF1α levels and its target gene VEGF, in correlation with an impaired capability to induce capillary sprouting and tube formation of endothelial cells. Melanomas developed from cells lacking MyD88 showed an enhanced secretion of chemoattractant ligands such as CCL2, CXCL10 and CXCL1 and have an improved infiltration of macrophages to the tumor site. Our results imply that cell-autonomous signaling through MyD88 is required to sustain tumor growth and underscore its function as an important positive modulator of tumor angiogenesis. PMID:28662055

  12. Expression of the costimulatory molecule B7-H3 is associated with prolonged survival in human pancreatic cancer

    International Nuclear Information System (INIS)

    Loos, Martin; Hedderich, Dennis M; Ottenhausen, Malte; Giese, Nathalia A; Laschinger, Melanie; Esposito, Irene; Kleeff, Jörg; Friess, Helmut

    2009-01-01

    Costimulatory signaling has been implicated as a potential regulator of antitumor immunity in various human cancers. In contrast to the negative prognostic value of aberrant B7-H1 expression by pancreatic cancer cells, the role of B7-H3 is still unknown. Therefore, we investigated the expression pattern and clinical significance of B7-H3 expression in human pancreatic cancer. B7-H3 expression was evaluated by immunohistochemistry in 68 patients with pancreatic cancer who underwent surgical tumor resection. Expression data was correlated with clinicopathologic features and with the number of tumor-infiltrating T cells. B7-H3 expression was significantly upregulated in pancreatic cancer compared to normal pancreas (p < 0.05). In 60 of 68 examined tumors B7-H3 protein was detectable in pancreatic cancer cells. Patients with high tumor B7-H3 levels had a significantly better postoperative prognosis than patients with low tumor B7-H3 levels (p = 0.0067). Furthermore, tumor B7-H3 expression significantly correlated with the number of tumor-infiltrating CD8+ T cells (p = 0.018). We demonstrate for the first time that B7-H3 is abundantly expressed in pancreatic cancer and that tumor-associated B7-H3 expression significantly correlates with prolonged postoperative survival. Our findings suggest that B7-H3 might play an important role as a potential stimulator of antitumor immune response in pancreatic cancer

  13. Utilizing Biotinylated Proteins Expressed in Yeast to Visualize DNA–Protein Interactions at the Single-Molecule Level

    Directory of Open Access Journals (Sweden)

    Huijun Xue

    2017-10-01

    Full Text Available Much of our knowledge in conventional biochemistry has derived from bulk assays. However, many stochastic processes and transient intermediates are hidden when averaged over the ensemble. The powerful technique of single-molecule fluorescence microscopy has made great contributions to the understanding of life processes that are inaccessible when using traditional approaches. In single-molecule studies, quantum dots (Qdots have several unique advantages over other fluorescent probes, such as high brightness, extremely high photostability, and large Stokes shift, thus allowing long-time observation and improved signal-to-noise ratios. So far, however, there is no convenient way to label proteins purified from budding yeast with Qdots. Based on BirA–Avi and biotin–streptavidin systems, we have established a simple method to acquire a Qdot-labeled protein and visualize its interaction with DNA using total internal reflection fluorescence microscopy. For proof-of-concept, we chose replication protein A (RPA and origin recognition complex (ORC as the proteins of interest. Proteins were purified from budding yeast with high biotinylation efficiency and rapidly labeled with streptavidin-coated Qdots. Interactions between proteins and DNA were observed successfully at the single-molecule level.

  14. Changes in adhesion molecule expression and oxidative burst activity of granulocytes and monocytes during open-heart surgery with cardiopulmonary bypass compared with abdominal surgery

    DEFF Research Database (Denmark)

    Toft, P; Nielsen, C H; Tønnesen, Else Kirstine

    1998-01-01

    Cardiac and major abdominal surgery are associated with granulocytosis in peripheral blood. The purpose of the present study was to describe the granulocyte and monocyte oxidative burst and the expression of adhesion molecules following cardiac surgery with cardiopulmonary bypass and abdominal...... during cardiopulmonary bypass was observed. The percentage of CD11a-positive granulocytes increased from 30% pre-operatively to 75% following cardiopulmonary bypass, while CD44-positive granulocytes increased from 5% to 13%. Despite the extent of the changes, these were not significant. The oxidative...... to an increased per-operative oxidative burst activity, and the induction of adhesion molecules on granulocytes associated with the cardiopulmonary bypass and surgery. In conclusion, open-heart surgery with cardiopulmonary bypass was associated with a rapid and pronounced activation of leukocytes which may play...

  15. Expression of human FcgammaRIIIa as a GPI-linked molecule on CHO cells to enable measurement of human IgG binding.

    Science.gov (United States)

    Armour, Kathryn L; Smith, Cheryl S; Clark, Michael R

    2010-03-31

    The efficacy of a therapeutic IgG molecule may be as dependent on the optimisation of the constant region to suit its intended indication as on the selection of its variable regions. A crucial effector function to be maximised or minimised is antibody-dependent cell-mediated cytotoxicity by natural killer cells. Traditional assays of ADCC activity suffer from considerable inter-donor and intra-donor variability, which makes the measurement of antibody binding to human FcgammaRIIIa, the key receptor for ADCC, an attractive alternative method of assessment. Here, we describe the development of cell lines and assays for this purpose. The transmembrane receptor, FcgammaRIIIa, requires co-expression with signal transducing subunits to prevent its degradation, unlike the homologous receptor FcgammaRIIIb that is expressed as a GPI-anchored molecule. Therefore, to simplify the production of cell lines as reliable assay components, we expressed FcgammaRIIIa as a GPI-anchored molecule. Separate, stable CHO cell lines that express either the 158F or the higher-affinity 158V allotype of FcgammaRIIIa were isolated using fluorescence-activated cell sorting. The identities of the expressed receptors were confirmed using a panel of monoclonal antibodies that distinguish between subclasses and allotypes of FcgammaRIII and the cell lines were shown to have slightly higher levels of receptor than FcgammaRIII-positive peripheral blood mononuclear cells. Because the affinity of FcgammaRIIIa for IgG is intermediate amongst the receptors that bind IgG, we were able to use these cell lines to develop flow cytometric assays to measure the binding of both complexed and monomeric immunoglobulin. Thus, by choosing the appropriate method, weakly- or strongly-binding IgG can be efficiently compared. We have quantified the difference in the binding of wildtype IgG1 and IgG3 molecules to the two functional allotypes of the receptor and report that the FcgammaRIIIa-158V-antibody interaction is 3

  16. Toll-Like Receptor and Accessory Molecule mRNA Expression in Humans and Mice as Well as in Murine Autoimmunity, Transient Inflammation, and Progressive Fibrosis

    Science.gov (United States)

    Ramaiah, Santhosh Kumar Vankayala; Günthner, Roman; Lech, Maciej; Anders, Hans-Joachim

    2013-01-01

    The cell type-, organ-, and species-specific expression of the Toll-like receptors (TLRs) are well described, but little is known about the respective expression profiles of their accessory molecules. We therefore determined the mRNA expression levels of LBP, MD2, CD36, CD14, granulin, HMGB1, LL37, GRP94, UNC93b1, TRIL, PRAT4A, AP3B1, AEP and the respective TLRs in human and mouse solid organs. Humans and mice displayed significant differences between their respective mRNA expression patterns of these factors. In addition, the expression profiles in transient tissue inflammation upon renal ischemia-reperfusion injury, in spleens and kidneys from mice with lupus-like systemic autoimmunity, and in progressive tissue fibrosis upon unilateral ureteral obstruction were studied. Several TLR co-factors were specifically regulated during the different phases of these disease entities, suggesting a functional involvement in the disease process. Thus, the organ- and species-specific expression patterns need to be considered in the design and interpretation of studies related to TLR-mediated innate immunity, which seems to be involved in the tissue injury phase, in the phase of tissue regeneration, and in progressive tissue remodelling. PMID:23803655

  17. Maintained expression of the planar cell polarity molecule Vangl2 and reformation of hair cell orientation in the regenerating inner ear.

    Science.gov (United States)

    Warchol, Mark E; Montcouquiol, Mireille

    2010-09-01

    The avian inner ear possesses a remarkable ability to regenerate sensory hair cells after ototoxic injury. Regenerated hair cells possess phenotypes and innervation that are similar to those found in the undamaged ear, but little is known about the signaling pathways that guide hair cell differentiation during the regenerative process. The aim of the present study was to examine the factors that specify the orientation of hair cell stereocilia bundles during regeneration. Using organ cultures of the chick utricle, we show that hair cells are properly oriented after having regenerated entirely in vitro and that orientation is not affected by surgical removal of the striolar reversal zone. These results suggest that the orientation of regenerating stereocilia is not guided by the release of a diffusible morphogen from the striolar reversal zone but is specified locally within the regenerating sensory organ. In order to determine the nature of the reorientation cues, we examined the expression patterns of the core planar cell polarity molecule Vangl2 in the normal and regenerating utricle. We found that Vangl2 is asymmetrically expressed on cells within the sensory epithelium and that this expression pattern is maintained after ototoxic injury and throughout regeneration. Notably, treatment with a small molecule inhibitor of c-Jun-N-terminal kinase disrupted the orientation of regenerated hair cells. Both of these results are consistent with the hypothesis that noncanonical Wnt signaling guides hair cell orientation during regeneration.

  18. Imaging of HER3-expressing xenografts in mice using a {sup 99m}Tc(CO){sub 3}-HEHEHE-Z{sub HER3:08699} affibody molecule

    Energy Technology Data Exchange (ETDEWEB)

    Orlova, Anna; Rosestedt, Maria; Varasteh, Zohreh; Selvaraju, Ram Kumar [Uppsala University, Preclinical PET Platform, Department of Medicinal Chemistry, Uppsala (Sweden); Malm, Magdalena; Andersson, Ken; Staahl, Stefan; Loefblom, John [KTH Royal Institute of Technology, Division of Protein Technology, School of Biotechnology, Stockholm (Sweden); Altai, Mohamed; Honarvar, Hadis; Strand, Joanna; Tolmachev, Vladimir [Uppsala University, Division of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala (Sweden)

    2014-07-15

    Human epidermal growth factor receptor type 3 (HER3) is a transmembrane receptor tyrosine kinase belonging to the HER (ErbB) receptor family. Membranous expression of HER3 is associated with trastuzumab resistance in breast cancer and the transition to androgen independence in prostate cancer. Imaging of HER3 expression in malignant tumors may provide important diagnostic information that can influence patient management. Affibody molecules with low picomolar affinity to HER3 were recently selected. The aim of this study was to investigate the feasibility of HER3 imaging using radiolabeled Affibody molecules. A HER3-binding Affibody molecule, Z{sub 08699}, with a HEHEHE-tag on N-terminus was labeled with {sup 99m}Tc(CO){sub 3} using an IsoLink kit. In vitro and in vivo binding specificity and the cellular processing of the labeled binder were evaluated. Biodistribution of {sup 99m}Tc(CO){sub 3}-HEHEHE-Z{sub 08699} was studied over time in mice bearing HER3-expressing xenografts. HEHEHE-Z{sub 08699} was labeled with {sup 99m}Tc(CO){sub 3} with an isolated yield of >80 % and a purity of >99 %. Binding of {sup 99m}Tc(CO){sub 3}-HEHEHE-Z{sub 08699} was specific to BT474 and MCF7 (breast cancer), and LS174T (colon cancer) cells. Cellular processing showed rapid binding and relatively quick internalization of the receptor/Affibody molecule complex (70 % of cell-associated radioactivity was internalized after 24 h). The tumor targeting was receptor mediated and the excretion was predominantly renal. Receptor-mediated uptake was also found in the liver, lung, stomach, intestine, and salivary glands. At 4 h pi, tumor-to-blood ratios were 7 ± 3 for BT474, and 6 ± 2 for LS174T xenografts. LS174T tumors were visualized by microSPECT 4 h pi. The results of this study suggest the feasibility of HER3-imaging in malignant tumors using Affibody molecules. (orig.)

  19. Clinical and experimental studies regarding the expression and diagnostic value of carcinoembryonic antigen-related cell adhesion molecule 1 in non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Zhou, Mu-qing; Du, Yan; Liu, Yi-wen; Wang, Ying-zhi; He, Yi-qing; Yang, Cui-xia; Wang, Wen-juan; Gao, Feng

    2013-01-01

    Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is a multifunctional Ig-like cell adhesion molecule that has a wide range of biological functions. According to previous reports, serum CEACAM1 is dysregulated in different malignant tumours and associated with tumour progression. However, the serum CEACAM1 expression in non-small-cell lung carcinomas (NSCLC) is unclear. The different expression ratio of CEACAM1-S and CEACAM1-L isoform has seldom been investigated in NSCLC. This research is intended to study the serum CEACAM1 and the ratio of CEACAM1-S/L isoforms in NSCLC. The expression of the serum CEACAM1 was determined by enzyme-linked immunosorbent assay. The protein expression and the location of CEACAM1 in tumours were observed by immunohistochemical staining. The CEACAM1 mRNA levels in tumour and normal adjacent tissues were measured using quantitative real-time PCR, and the expression patterns and the rate of CEACAM1-S and CEACAM1-L were analysed by reverse transcription-PCR. Serum CEACAM1 levels were significantly higher in NSCLC patients compared with that from normal healthy controls (P <0.0001). 17 patients (81%) among 21 showed high expression of CEACAM1 by immunohistochemical staining. Although no significant differences were found between tumour and normal tissues on mRNA expression levels of CEACAM1 (P >0.05), the CEACAM1-S and the CEACAM1-S/L (S: L) ratios were significantly higher in tumour than normal tissues (P <0.05). Our data indicated that the serum levels of CEACAM1 could discriminate lung cancer patients from health donors and that CEACAM1 might be a useful marker in early diagnosis of NSCLC. Moreover, our results showed that the expression patterns of CEACAM1 isoforms could be changed during oncogenesis, even when total CEACAM1 in tumour tissues did not show significant changes. Our study suggested that the expression ratios of CEACAM1-S/CEACAM1-L might be a better diagnostic indicator in NSCLC than the quantitative

  20. Organic extract of diesel exhaust particles stimulates expression of Ia and costimulatory molecules associated with antigen presentation in rat peripheral blood monocytes but not in alveolar macrophages

    International Nuclear Information System (INIS)

    Koike, Eiko; Kobayashi, Takahiro

    2005-01-01

    We hypothesized that diesel exhaust particles (DEP) induce the activation of antigen-presenting cells (APC) in lung. The present study was designed to clarify the following about DEP: (1) whether it affects the expression of Ia and B7 molecules in alveolar macrophages (AM) as a mature cell or in peripheral blood monocytes (PBM) as an immature cell (2) if it affects the antigen-presenting (AP) activity of PBM (3) what component of DEP is responsible for the effects, and (4) whether the effect of DEP is related to oxidative stress. DEP was extracted with methylene chloride. Cells were exposed to whole DEP, organic extract, or residual particles for 24 h. Cell-surface molecules were measured by flow cytometry. AP activity was assessed by antigen-specific T cell proliferation. Whole DEP or organic extract significantly increased the expression of Ia and B7 molecules on PBM but not on AM. No significant effect of residual particles was observed. A low concentration of organic extract also increased the AP activity of PBM. When the induction of an antioxidative enzyme was assessed, heme oxygenase-1 protein was found to be significantly increased by exposure to whole DEP, and the organic extract was more effective than the residual particles. Furthermore, the organic extract-induced expression of Ia antigen on PBM was reduced by the addition of an antioxidative agent. These results suggest that DEP may act on immature APC and enhance their AP activity and that the action contributing to oxidative stress may be mediated by organic compounds of DEP

  1. Optimal expression of a Fab-effector fusion protein in Escherichia coli by removing the cysteine residues responsible for an interchain disulfide bond of a Fab molecule.

    Science.gov (United States)

    Kang, Hyeon-Ju; Kim, Hye-Jin; Jung, Mun-Sik; Han, Jae-Kyu; Cha, Sang-Hoon

    2017-04-01

    Development of novel bi-functional or even tri-functional Fab-effector fusion proteins would have a great potential in the biomedical sciences. However, the expression of Fab-effector fusion proteins in Escherichia coli is problematic especially when a eukaryotic effector moiety is genetically linked to a Fab due to the lack of proper chaperone proteins and an inappropriate physicochemical environment intrinsic to the microbial hosts. We previously reported that a human Fab molecule, referred to as SL335, reactive to human serum albumin has a prolonged in vivo serum half-life in rats. We, herein, tested six discrete SL335-human growth hormone (hGH) fusion constructs as a model system to define an optimal Fab-effector fusion format for E. coli expression. We found that one variant, referred to as HserG/Lser, outperformed the others in terms of a soluble expression yield and functionality in that HserG/Lser has a functional hGH bioactivity and possesses an serum albumin-binding affinity comparable to SL335. Our results clearly demonstrated that the genetic linkage of an effector domain to the C-terminus of Fd (V H +C H1 ) and the removal of cysteine (Cys) residues responsible for an interchain disulfide bond (IDB) ina Fab molecule optimize the periplasmic expression of a Fab-effector fusion protein in E. coli. We believe that our approach can contribute the development of diverse bi-functional Fab-effector fusion proteins by providing a simple strategy that enables the reliable expression of a functional fusion proteins in E. coli. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  2. Allergen-stimulated T lymphocytes from allergic patients induce vascular cell adhesion molecule-1 (VCAM-1) expression and IL-6 production by endothelial cells.

    Science.gov (United States)

    Delneste, Y; Jeannin, P; Gosset, P; Lassalle, P; Cardot, E; Tillie-Leblond, I; Joseph, M; Pestel, J; Tonnel, A B

    1995-01-01

    Adhesion of inflammatory cells to endothelium is a critical step for their transvascular migration to inflammatory sites. To evaluate the relationship between T lymphocytes (TL) and vascular endothelium, supernatants from allergen-stimulated TL obtained from patients sensitive to Dermatophagoides pteronyssinus (Dpt) versus healthy subjects were added to endothelial cell (EC) cultures. TL were stimulated by autologous-activated antigen-presenting cells (APC) previously fixed in paraformaldehyde to prevent monokine secretion. Two parameters were measured: the expression of adhesion molecule and the production of IL-6. Related allergen-stimulated TL supernatants from allergic patients induced an increase of VCAM-1 and intercellular adhesion molecule-1 (ICAM-1) expression when supernatants of the control groups (TL exposed to an unrelated allergen or not stimulated or TL obtained from healthy subjects) did not. E-selectin expression was not modulated whatever the supernatant added to EC culture. IL-6 production by EC was significantly enhanced after activation with related allergen-stimulated TL supernatants from allergics compared with control supernatants. Induction of VCAM-1 expression was inhibited by adding neutralizing antibodies against IL-4, whereas IL-6 production and ICAM-1 expression were inhibited by anti-interferon-gamma (IFN-gamma) antibodies. Enhanced production of IL-4 and IFN-gamma was detected in related allergen-stimulated TL supernatants from allergic subjects compared with the different supernatants. These data suggest that allergen-specific TL present in the peripheral blood of allergic patients are of Th1 and Th2 subtypes. Their stimulation in allergic patients may lead to the activation of endothelial cells and thereby participate in leucocyte recruitment towards the inflammatory site. PMID:7542574

  3. Transfected HEK293 Cells Expressing Functional Recombinant Intercellular Adhesion Molecule 1 (ICAM-1) - A Receptor Associated with Severe Plasmodium falciparum Malaria

    DEFF Research Database (Denmark)

    Bengtsson, Anja; Joergensen, Louise; Barbati, Zachary R

    2013-01-01

    Intercellular adhesion molecule 1 (ICAM-1) is a membrane-bound glycoprotein expressed on endothelial cells and cells of the immune system. Human ICAM-1 mediates adhesion and migration of leucocytes, and is implicated in inflammatory pathologies, autoimmune diseases and in many cancer processes....... Additionally, ICAM-1 acts as receptor for pathogens like human rhinovirus and Plasmodium falciparum malaria parasites. A group of related P. falciparum erythrocyte membrane protein 1 (PfEMP1) domains, the DBLβ, mediates ICAM-1 binding of P. falciparum-infected erythrocytes. This ICAM‑1-binding phenotype has...

  4. Longitudinal analysis of osteogenic and angiogenic signaling factors in healing models mimicking atrophic and hypertrophic non-unions in rats.

    Directory of Open Access Journals (Sweden)

    Susann Minkwitz

    Full Text Available Impaired bone healing can have devastating consequences for the patient. Clinically relevant animal models are necessary to understand the pathology of impaired bone healing. In this study, two impaired healing models, a hypertrophic and an atrophic non-union, were compared to physiological bone healing in rats. The aim was to provide detailed information about differences in gene expression, vascularization and histology during the healing process. The change from a closed fracture (healing control group to an open osteotomy (hypertrophy group led to prolonged healing with reduced mineralized bridging after 42 days. RT-PCR data revealed higher gene expression of most tested osteogenic and angiogenic factors in the hypertrophy group at day 14. After 42 days a significant reduction of gene expression was seen for Bmp4 and Bambi in this group. The inhibition of angiogenesis by Fumagillin (atrophy group decreased the formation of new blood vessels and led to a non-healing situation with diminished chondrogenesis. RT-PCR results showed an attempt towards overcoming the early perturbance by significant up regulation of the angiogenic regulators Vegfa, Angiopoietin 2 and Fgf1 at day 7 and a further continuous increase of Fgf1, -2 and Angiopoietin 2 over time. However µCT angiograms showed incomplete recovery after 42 days. Furthermore, lower expression values were detected for the Bmps at day 14 and 21. The Bmp antagonists Dan and Twsg1 tended to be higher expressed in the atrophy group at day 42. In conclusion, the investigated animal models are suitable models to mimic human fracture healing complications and can be used for longitudinal studies. Analyzing osteogenic and angiogenic signaling patterns, clear changes in expression were identified between these three healing models, revealing the importance of a coordinated interplay of different factors to allow successful bone healing.

  5. Chronic fluoxetine treatment in middle-aged rats induces changes in the expression of plasticity-related molecules and in neurogenesis

    Directory of Open Access Journals (Sweden)

    Guirado Ramon

    2012-01-01

    Full Text Available Abstract Background Antidepressants promote neuronal structural plasticity in young-adult rodents, but little is known of their effects on older animals. The polysialylated form of the neural cell adhesion molecule (PSA-NCAM may mediate these structural changes through its anti-adhesive properties. PSA-NCAM is expressed in immature neurons and in a subpopulation of mature interneurons and its expression is modulated by antidepressants in the telencephalon of young-adult rodents. Results We have analyzed the effects of 14 days of fluoxetine treatment on the density of puncta expressing PSA-NCAM and different presynaptic markers in the medial prefrontal cortex, hippocampus and amygdala of middle-aged (8 months old rats. The density of puncta expressing PSA-NCAM increased in the dorsal cingulate cortex, as well as in different hippocampal and amygdaloid regions. In these later regions there were also increases in the density of puncta expressing glutamic acid decarboxylase 65/67 (GAD6, synaptophysin (SYN, PSA-NCAM/SYN and PSA-NCAM/GAD6, but a decrease of those expressing vesicular glutamate transporter 1 (VGluT1. Since there is controversy on the effects of antidepressants on neurogenesis during aging, we analyzed the number of proliferating cells expressing Ki67 and that of immature neurons expressing doublecortin or PSA-NCAM. No significant changes were found in the subgranular zone, but the number of proliferating cells decreased in the subventricular zone. Conclusions These results indicate that the effects of fluoxetine in middle-aged rats are different to those previously described in young-adult animals, being more restricted in the mPFC and even following an opposite direction in the amygdala or the subventricular zone.

  6. VEGFR2 heterogeneity and response to anti-angiogenic low dose metronomic cyclophosphamide treatment

    International Nuclear Information System (INIS)

    Patten, Steven G; Adamcic, Una; Lacombe, Kristen; Minhas, Kanwal; Skowronski, Karolina; Coomber, Brenda L

    2010-01-01

    Targeting tumor vasculature is a strategy with great promise in the treatment of many cancers. However, anti-angiogenic reagents that target VEGF/VEGFR2 signaling have met with variable results clinically. Among the possible reasons for this may be heterogeneous expression of the target protein. Double immunofluorescent staining was performed on formalin-fixed paraffin embedded sections of treated and control SW480 (colorectal) and WM239 (melanoma) xenografts, and tissue microarrays of human colorectal carcinoma and melanoma. Xenografts were developed using RAG1 -/- mice by injection with WM239 or SW480 cells and mice were treated with 20 mg/kg/day of cyclophosphamide in their drinking water for up to 18 days. Treated and control tissues were characterized by double immunofluorescence using the mural cell marker α-SMA and CD31, while the ratio of desmin/CD31 was also determined by western blot. Hypoxia in treated and control tissues were quantified using both western blotting for HIF-1α and immunohistochemistry of CA-IX. VEGFR2 is heterogeneously expressed in tumor vasculature in both malignant melanoma and colorectal carcinoma. We observed a significant decrease in microvascular density (MVD) in response to low dose metronomic cyclophosphamide chemotherapy in both malignant melanoma (with higher proportion VEGFR2 positive blood vessels; 93%) and colorectal carcinoma (with lower proportion VEGFR2 positive blood vessels; 60%) xenografts. This reduction in MVD occurred in the absence of a significant anti-tumor effect. We also observed less hypoxia in treated melanoma xenografts, despite successful anti-angiogenic blockade, but no change in hypoxia of colorectal xenografts, suggesting that decreases in tumor hypoxia reflect a complex relationship with vascular density. Based on α-SMA staining and the ratio of desmin to CD31 expression as markers of tumor blood vessel functionality, we found evidence for increased stabilization of colorectal microvessels, but no

  7. VEGFR2 heterogeneity and response to anti-angiogenic low dose metronomic cyclophosphamide treatment

    Directory of Open Access Journals (Sweden)

    Skowronski Karolina

    2010-12-01

    Full Text Available Abstract Background Targeting tumor vasculature is a strategy with great promise in the treatment of many cancers. However, anti-angiogenic reagents that target VEGF/VEGFR2 signaling have met with variable results clinically. Among the possible reasons for this may be heterogeneous expression of the target protein. Methods Double immunofluorescent staining was performed on formalin-fixed paraffin embedded sections of treated and control SW480 (colorectal and WM239 (melanoma xenografts, and tissue microarrays of human colorectal carcinoma and melanoma. Xenografts were developed using RAG1-/- mice by injection with WM239 or SW480 cells and mice were treated with 20 mg/kg/day of cyclophosphamide in their drinking water for up to 18 days. Treated and control tissues were characterized by double immunofluorescence using the mural cell marker α-SMA and CD31, while the ratio of desmin/CD31 was also determined by western blot. Hypoxia in treated and control tissues were quantified using both western blotting for HIF-1α and immunohistochemistry of CA-IX. Results VEGFR2 is heterogeneously expressed in tumor vasculature in both malignant melanoma and colorectal carcinoma. We observed a significant decrease in microvascular density (MVD in response to low dose metronomic cyclophosphamide chemotherapy in both malignant melanoma (with higher proportion VEGFR2 positive blood vessels; 93% and colorectal carcinoma (with lower proportion VEGFR2 positive blood vessels; 60% xenografts. This reduction in MVD occurred in the absence of a significant anti-tumor effect. We also observed less hypoxia in treated melanoma xenografts, despite successful anti-angiogenic blockade, but no change in hypoxia of colorectal xenografts, suggesting that decreases in tumor hypoxia reflect a complex relationship with vascular density. Based on α-SMA staining and the ratio of desmin to CD31 expression as markers of tumor blood vessel functionality, we found evidence for increased

  8. Combination of interferon-alpha and 5-fluorouracil inhibits endothelial cell growth directly and by regulation of angiogenic factors released by tumor cells

    International Nuclear Information System (INIS)

    Wada, Hiroshi; Tanemura, Masahiro; Umeshita, Koji; Doki, Yuichiro; Mori, Masaki; Nagano, Hiroaki; Yamamoto, Hirofumi; Noda, Takehiro; Murakami, Masahiro; Kobayashi, Shogo; Marubashi, Shigeru; Eguchi, Hidetoshi; Takeda, Yutaka

    2009-01-01

    The combination therapy of interferon (IFN)-alpha and 5-fluorouracil (5-FU) improved the prognosis of the patients with hepatocellular carcinoma (HCC). To determine the molecular mechanisms of the anti-tumor and anti-angiogenic effects, we examined the direct anti-proliferative effects on human umbilical vein endothelial cells (HUVEC) and indirect effects by regulating secretion of angiogenic factors from HCC cells. The direct effects on HUVEC were examined by TUNEL, Annexin-V assays and cell cycles analysis. For analysis of the indirect effects, the apoptosis induced by the conditioned medium from HCC cell treated by IFN-alpha/5-FU and expression of angiogenic factors was examined. IFN-alpha and 5-FU alone had anti-proliferative properties on HUVEC and their combination significantly inhibited the growth (compared with control, 5-FU or IFN alone). TUNEL and Annexin-V assays showed no apoptosis. Cell cycle analysis revealed that IFN-alpha and 5-FU delayed cell cycle progression in HUVEC with S-phase accumulation. The conditioned medium from HuH-7 cells after treatment with IFN/5-FU significantly inhibited HUVEC growth and induced apoptosis, and contained high levels of angiopoietin (Ang)-1 and low levels of vascular endothelial growth factor (VEGF) and Ang-2. Knockdown of Ang-1 in HuH-7 cells abrogated the anti-proliferative effects on HUVEC while knockdown of Ang-2 partially rescue the cells. These results suggested that IFN-alpha and 5-FU had direct growth inhibitory effects on endothelial cells, as well as anti-angiogenic effects through regulation of angiogenic factors released from HCC cells. Modulation of VEGF and Angs secretion by IFN-alpha and 5-FU may contribute to their anti-angiogenic and anti-tumor effects on HCC

  9. Effect of preoperative neoadjuvant chemotherapy on the expression of malignant molecules in colon cancer tissue and the degree of trauma caused by radical operation

    Directory of Open Access Journals (Sweden)

    Yan-Cheng Wang

    2017-09-01

    Full Text Available Objective: To study the effect of preoperative neoadjuvant chemotherapy on the expression of malignant molecules in colon cancer tissue and the degree of trauma caused by radical operation. Methods: Patients who were diagnosed with colon cancer in Fengrun People’s Hospital between March 2014 and February 2017 were selected and randomly divided into the XELOX group who accepted XELOX neoadjuvant chemotherapy combined with radical operation for colon cancer and the control group who accepted radical operation for colon cancer alone. Surgically removed colon cancer tissue was collected to test the expression of proliferation, apoptosis and invasion genes, and serum was collected to detect the contents of liver and kidney function indicators as well as inflammatory factors. Results: Rac1, PLD2, CHD1L, Snail, Vimentin and N-cadherin mRNA expression levels in surgically removed colon cancer lesions of XELOX group were significantly lower than those of control group while MS4A12 and ASPP2 mRNA expression levels were significantly higher than those of control group; serum ALT, AST, β2-MG, Cys-C, sICAM-1, sVCAM-1, sTM and sE-selectin contents were not significantly different between the two groups of patients 1 day and 3 days after surgery. Conclusion: Preoperative neoadjuvant chemotherapy can inhibit the proliferation, apoptosis and invasion gene expression in colon cancer tissues without increasing the trauma of operation.

  10. Stimulation of nuclear receptor REV-ERBs regulates tumor necrosis factor-induced expression of proinflammatory molecules in C6 astroglial cells

    Energy Technology Data Exchange (ETDEWEB)

    Morioka, Norimitsu, E-mail: mnori@hiroshima-u.ac.jp; Tomori, Mizuki; Zhang, Fang Fang; Saeki, Munenori; Hisaoka-Nakashima, Kazue; Nakata, Yoshihiro

    2016-01-08

    Under physiological conditions, astrocytes maintain homeostasis in the CNS. Following inflammation and injury to the CNS, however, activated astrocytes produce neurotoxic molecules such as cytokines and chemokines, amplifying the initial molecular-cellular events evoked by inflammation and injury. Nuclear receptors REV-ERBα and REV-ERBβ (REV-ERBs) are crucial in the regulation of inflammation- and metabolism-related gene transcription. The current study sought to elucidate a role of REV-ERBs in rat C6 astroglial cells on the expression of inflammatory molecules following stimulation with the neuroinflammatory cytokine tumor necrosis factor (TNF). Stimulation of C6 cells with TNF (10 ng/ml) significantly increased the mRNA expression of CCL2, interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), and matrix metalloprotease (MMP)-9, but not fibroblast growth factor-2 (FGF-2), cyclooxygenase-2 (COX-2) and MMP-2. Treatment with either REV-ERB agonists GSK4112 or SR9009 significantly blocked TNF-induced upregulation of CCL2 mRNA and MMP-9 mRNA, but not IL-6 mRNA and iNOS mRNA expression. Furthermore, treatment with RGFP966, a selective histone deacetylase 3 (HDAC3) inhibitor, potently reversed the inhibitory effects of GSK4112 on TNF-induced expression of MMP-9 mRNA, but not CCL2 mRNA. Expression of Rev-erbs mRNA in C6 astroglial cells, primary cultured rat cortical and spinal astrocytes was confirmed by reverse transcription polymerase chain reaction. Together, the findings demonstrate an anti-inflammatory effect, downregulating of MMP-9 and CCL2 transcription, of astroglial REV-ERBs activation through HDAC3-dependent and HDAC3-independent mechanisms. - Highlights: • Rev-erbα mRNA and Rev-erbβ mRNA are expressed in C6 astroglial cells. • TNF increases the expression of CCL2, IL-6, MMP-9 and iNOS mRNA. • REV-ERB activation inhibits CCL2 mRNA and MMP-9 mRNA expression. • HDAC3 activity is involved in the inhibitory effect of REV-ERB on MMP-9 induction.

  11. Stimulation of nuclear receptor REV-ERBs regulates tumor necrosis factor-induced expression of proinflammatory molecules in C6 astroglial cells

    International Nuclear Information System (INIS)

    Morioka, Norimitsu; Tomori, Mizuki; Zhang, Fang Fang; Saeki, Munenori; Hisaoka-Nakashima, Kazue; Nakata, Yoshihiro

    2016-01-01

    Under physiological conditions, astrocytes maintain homeostasis in the CNS. Following inflammation and injury to the CNS, however, activated astrocytes produce neurotoxic molecules such as cytokines and chemokines, amplifying the initial molecular-cellular events evoked by inflammation and injury. Nuclear receptors REV-ERBα and REV-ERBβ (REV-ERBs) are crucial in the regulation of inflammation- and metabolism-related gene transcription. The current study sought to elucidate a role of REV-ERBs in rat C6 astroglial cells on the expression of inflammatory molecules following stimulation with the neuroinflammatory cytokine tumor necrosis factor (TNF). Stimulation of C6 cells with TNF (10 ng/ml) significantly increased the mRNA expression of CCL2, interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), and matrix metalloprotease (MMP)-9, but not fibroblast growth factor-2 (FGF-2), cyclooxygenase-2 (COX-2) and MMP-2. Treatment with either REV-ERB agonists GSK4112 or SR9009 significantly blocked TNF-induced upregulation of CCL2 mRNA and MMP-9 mRNA, but not IL-6 mRNA and iNOS mRNA expression. Furthermore, treatment with RGFP966, a selective histone deacetylase 3 (HDAC3) inhibitor, potently reversed the inhibitory effects of GSK4112 on TNF-induced expression of MMP-9 mRNA, but not CCL2 mRNA. Expression of Rev-erbs mRNA in C6 astroglial cells, primary cultured rat cortical and spinal astrocytes was confirmed by reverse transcription polymerase chain reaction. Together, the findings demonstrate an anti-inflammatory effect, downregulating of MMP-9 and CCL2 transcription, of astroglial REV-ERBs activation through HDAC3-dependent and HDAC3-independent mechanisms. - Highlights: • Rev-erbα mRNA and Rev-erbβ mRNA are expressed in C6 astroglial cells. • TNF increases the expression of CCL2, IL-6, MMP-9 and iNOS mRNA. • REV-ERB activation inhibits CCL2 mRNA and MMP-9 mRNA expression. • HDAC3 activity is involved in the inhibitory effect of REV-ERB on MMP-9 induction.

  12. Interleukin-6 and intercellular cell adhesion molecule-1 expression remains elevated in revived live endothelial cells following spaceflight.

    Science.gov (United States)

    Muid, S; Froemming, G R A; Ali, A M; Nawawi, H

    2013-12-01

    The effects of spaceflight on cardiovascular health are not necessarily seen immediately after astronauts have returned but can be delayed. It is important to investigate the long term effects of spaceflight on protein and gene expression of inflammation and endothelial activation as a predictor for the development of atherosclerosis and potential cardiovascular problems. The objectives of this study were to investigate the (a) protein and gene expression of inflammation and endothelial activation, (b) expression of nuclear factor kappa B (NFκB), signal transducer and activator of transcription-3 (STAT-3) and endothelial nitric oxide synthase (eNOS) in human umbilical vein endothelial cells (HUVEC) 3 months post-space flight travel compared to ground controls. HUVEC cultured on microcarriers in fluid processing apparatus were flown to the International Space Station (ISS) by the Soyuz TMA-11 rocket. After landing, the cells were detached from microcarriers and recultured in T-25 cm(2) culture flasks (Revived HUVEC). Soluble protein expression of IL-6, TNF-α, ICAM-1, VCAM-1 and e-selectin were measured by ELISA. Gene expression of these markers and in addition NFκB, STAT-3 and eNOS were measured. Spaceflight induced IL-6 and ICAM-1 remain elevated even after 3 months post spaceflight travel and this is mediated via STAT-3 pathway. The downregulation of eNOS expression in revived HUVEC cells suggests a reduced protection of the cells and the surrounding vessels against future insults that may lead to atherosclerosis. It would be crucial to explore preventive measures, in relation to atherosclerosis and its related complications.

  13. Effects of Latanoprost and Bimatoprost on the Expression of Molecules Relevant to Ocular Inflow and Outflow Pathways.

    Directory of Open Access Journals (Sweden)

    Xiaohong Li

    Full Text Available The intraocular pressure (IOP-lowering and side effects in response to different prostaglandin F2α analogues can be variable, but, the underlying basis for this difference remains unknown. This study investigated the differential changes of cellular proteins relevant to IOP-lowering effects of latanoprost and bimatoprost.The human T lymphoblast (MOLT-3 cell line and immortalized human trabecular meshwork (iHTM cells were studied by quantitative PCR and by immunofluorescence after treatment with either latanoprost or bimatoprost. New Zealand white rabbit eyes were treated topically with each agent and, following euthanasia, anterior segment tissues were studied with immunostaining.In cultured MOLT-3 cells, mRNA expression of both c-fos and matrix metalloproteinase 9 increased significantly in response to each agent. In addition, there was little change in tissue inhibitor of metalloproteinase (TIMP-3 mRNA, but a significant decrease in TIMP-4. Fibronectin mRNA in MOLT-3 cells was down-regulated with bimatoprost, but was up-regulated with latanoprost. Immunofluorescence analysis of iHTM cells showed that intracellular fibronectin was significantly decreased by bimatoprost, but was increased by latanoprost. Both latanoprost and bimatoprost increased mRNA expression of NF-кB p65 and decreased that of IкBα. Aquaporin-1 mRNA expression was significantly down-regulated by bimatoprost. Immunostaining also revealed a significant decrease of aquaporin-1 in the ciliary epithelium of New Zealand white rabbits after bimatoprost treatment.Similarities in protein expression produced by latanoprost and bimatoprost in vitro may be relevant to the mechanism for their IOP-lowering effects in vivo. Differences in fibronectin expression and in aquaporin-1 expression in response to each agent may contribute to variability in the IOP-lowering efficacy in some studies.

  14. The Pseudomonas aeruginosa quorum sensing signal molecule N-(3-oxododecanoyl) homoserine lactone enhances keratinocyte migration and induces Mmp13 gene expression in vitro

    International Nuclear Information System (INIS)

    Paes, Camila; Nakagami, Gojiro; Minematsu, Takeo; Nagase, Takashi; Huang, Lijuan; Sari, Yunita; Sanada, Hiromi

    2012-01-01

    Highlights: ► An evidence of the positive effect of AHL on epithelialization process is provided. ► AHL enhances keratinocyte’s ability to migrate in an in vitro scratch wound model. ► AHL induces the expression of Mmp13. ► Topical application of AHL represents a possible strategy to treat chronic wounds. -- Abstract: Re-epithelialization is an essential step of wound healing involving three overlapping keratinocyte functions: migration, proliferation and differentiation. While quorum sensing (QS) is a cell density-dependent signaling system that enables bacteria to regulate the expression of certain genes, the QS molecule N-(3-oxododecanoyl) homoserine lactone (AHL) exerts effects also on mammalian cells in a process called inter-kingdom signaling. Recent studies have shown that AHL improves epithelialization in in vivo wound healing models but detailed understanding of the molecular and cellular mechanisms are needed. The present study focused on the AHL as a candidate reagent to improve wound healing through direct modulation of keratinocyte’s activity in the re-epithelialization process. Results indicated that AHL enhances the keratinocyte’s ability to migrate in an in vitro scratch wound healing model probably due to the high Mmp13 gene expression analysis after AHL treatment that was revealed by real-time RT-PCR. Inhibition of activator protein 1 (AP-1) signaling pathway completely prevented the migration of keratinocytes, and also resulted in a diminished Mmp13 gene expression, suggesting that AP-1 might be essential in the AHL-induced migration. Taken together, these results imply that AHL is a promising candidate molecule to improve re-epithelialization through the induction of migration of keratinocytes. Further investigation is needed to clarify the mechanism of action and molecular pathway of AHL on the keratinocyte migration process.

  15. The Pseudomonas aeruginosa quorum sensing signal molecule N-(3-oxododecanoyl) homoserine lactone enhances keratinocyte migration and induces Mmp13 gene expression in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Paes, Camila, E-mail: camilaquinetti@gmail.com [University of Tokyo, Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Nakagami, Gojiro, E-mail: gojiron-tky@umin.ac.jp [University of Tokyo, Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Minematsu, Takeo, E-mail: tminematsu-tky@umin.ac.jp [University of Tokyo, Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Nagase, Takashi, E-mail: tnagase@fb3.so-net.ne.jp [University of Tokyo, Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Huang, Lijuan, E-mail: koureikenhlj@gmail.com [University of Tokyo, Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Sari, Yunita, E-mail: yunita-tky@umin.ac.jp [University of Tokyo, Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Sanada, Hiromi, E-mail: hsanada-tky@umin.ac.jp [University of Tokyo, Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer An evidence of the positive effect of AHL on epithelialization process is provided. Black-Right-Pointing-Pointer AHL enhances keratinocyte's ability to migrate in an in vitro scratch wound model. Black-Right-Pointing-Pointer AHL induces the expression of Mmp13. Black-Right-Pointing-Pointer Topical application of AHL represents a possible strategy to treat chronic wounds. -- Abstract: Re-epithelialization is an essential step of wound healing involving three overlapping keratinocyte functions: migration, proliferation and differentiation. While quorum sensing (QS) is a cell density-dependent signaling system that enables bacteria to regulate the expression of certain genes, the QS molecule N-(3-oxododecanoyl) homoserine lactone (AHL) exerts effects also on mammalian cells in a process called inter-kingdom signaling. Recent studies have shown that AHL improves epithelialization in in vivo wound healing models but detailed understanding of the molecular and cellular mechanisms are needed. The present study focused on the AHL as a candidate reagent to improve wound healing through direct modulation of keratinocyte's activity in the re-epithelialization process. Results indicated that AHL enhances the keratinocyte's ability to migrate in an in vitro scratch wound healing model probably due to the high Mmp13 gene expression analysis after AHL treatment that was revealed by real-time RT-PCR. Inhibition of activator protein 1 (AP-1) signaling pathway completely prevented the migration of keratinocytes, and also resulted in a diminished Mmp13 gene expression, suggesting that AP-1 might be essential in the AHL-induced migration. Taken together, these results imply that AHL is a promising candidate molecule to improve re-epithelialization through the induction of migration of keratinocytes. Further investigation is needed to clarify the mechanism of action and molecular pathway of AHL on the keratinocyte migration

  16. ITE Suppresses Angiogenic Responses in Human Artery and Vein Endothelial Cells: Differential Roles of AhR.

    Science.gov (United States)

    Li, Yan; Wang, Kai; Zou, Qing-Yun; Jiang, Yi-Zhou; Zhou, Chi; Zheng, Jing

    2017-12-01

    Aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor is involved in regulation of many essential biological processes including vascular development and angiogenesis. 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) is an AhR ligand, which regulates immune responses and cancer cell growth. However, the roles of the ITE/AhR pathway in mediating placental angiogenesis remains elusive. Here, we determined if ITE affected placental angiogenic responses via AhR in human umbilical vein (HUVECs) and artery endothelial (HUAECs) cells in vitro. We observed that ITE dose- and time-dependently inhibited proliferation and viability of HUAECs and HUVECs, whereas it inhibited migration of HUAECs, but not HUVECs. While AhR siRNA significantly suppressed AhR protein expression in HUVECs and HUAECs, it attenuated the ITE-inhibited angiogenic responses of HUAECs, but not HUVECs. Collectively, ITE suppressed angiogenic responses of HUAECs and HUVECs, dependent and independent of AhR, respectively. These data suggest that ITE may regulate placental angiogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Induction of HO-1 by carbon monoxide releasing molecule-2 attenuates thrombin-induced COX-2 expression and hypertrophy in primary human cardiomyocytes

    International Nuclear Information System (INIS)

    Chien, Peter Tzu-Yu; Lin, Chih-Chung; Hsiao, Li-Der; Yang, Chuen-Mao

    2015-01-01

    Carbon monoxide (CO) is one of the cytoprotective byproducts of heme oxygenase (HO)-1 and exerts anti-inflammatory action in various models. However, the detailed mechanisms underlying CO-induced HO-1 expression in primary human cardiomyocytes remain largely unidentified. We used primary left ventricle myocytes as a model and applied CO releasing molecule (CORM)-2 to investigate the relationship of CO and HO-1 expression. We herein used Western blot, real-time PCR, promoter activity and EIA to investigate the role of HO-1 expression protecting against thrombin-mediated responses. We found that thrombin-induced COX-2 expression, PGE 2 release and cardiomyocyte hypertrophy markers (increase in ANF/BNP, α-actin expression and cell surface area) was attenuated by pretreatment with CORM-2 which was partially reversed by hemoglobin (Hb) or ZnPP (an inhibitor of HO-1 activity), suggesting that HO-1/CO system may be of clinical importance to ameliorate heart failure through inhibition of inflammatory responses. CORM-2-induced HO-1 protein expression, mRNA and promoter was attenuated by pretreatment with the inhibitors of Pyk2 (PF431396), PDGFR (AG1296), PI3K (LY294002), Akt (SH-5), p38 (SB202530), JNK1/2 (SP600125), FoxO1 (AS1842856) and Sp1 (mithramycin A). The involvement of these signaling components was further confirmed by transfection with respective siRNAs, consistent with those of pharmacological inhibitors. These results suggested that CORM-2-induced HO-1 expression is mediated through a Pyk2/PDGFR/PI3K/Akt/FoxO1/Sp1-dependent manner and exerts a cytoprotective effect in human cardiomyocytes. - Graphical abstract: In summary, CORM-2 treatment induces Pyk2 transactivated PDGFR, which induces PI3K/Akt/MAPK activation, and then recruits Sp1/Foxo1 transcriptional factors to regulate HO-1 gene expression in primary human cardiomyocytes. - Highlights: • CORM-2 induces HO-1 expression. • Pyk2-dependent PDGFR activates PI3K/Akt/MAPK pathway in CORM-2-induced HO-1

  18. Induction of HO-1 by carbon monoxide releasing molecule-2 attenuates thrombin-induced COX-2 expression and hypertrophy in primary human cardiomyocytes

    Energy Technology Data Exchange (ETDEWEB)

    Chien, Peter Tzu-Yu [Department of Physiology and Pharmacology and Health Ageing Research Center, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan (China); Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan (China); Lin, Chih-Chung; Hsiao, Li-Der [Department of Anesthetics, Chang Gung Memorial Hospital at Lin-Kou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan (China); Yang, Chuen-Mao, E-mail: chuenmao@mail.cgu.edu.tw [Department of Physiology and Pharmacology and Health Ageing Research Center, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan (China); Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan (China); Research Center for Industry of Human Ecology and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan (China)

    2015-12-01

    Carbon monoxide (CO) is one of the cytoprotective byproducts of heme oxygenase (HO)-1 and exerts anti-inflammatory action in various models. However, the detailed mechanisms underlying CO-induced HO-1 expression in primary human cardiomyocytes remain largely unidentified. We used primary left ventricle myocytes as a model and applied CO releasing molecule (CORM)-2 to investigate the relationship of CO and HO-1 expression. We herein used Western blot, real-time PCR, promoter activity and EIA to investigate the role of HO-1 expression protecting against thrombin-mediated responses. We found that thrombin-induced COX-2 expression, PGE{sub 2} release and cardiomyocyte hypertrophy markers (increase in ANF/BNP, α-actin expression and cell surface area) was attenuated by pretreatment with CORM-2 which was partially reversed by hemoglobin (Hb) or ZnPP (an inhibitor of HO-1 activity), suggesting that HO-1/CO system may be of clinical importance to ameliorate heart failure through inhibition of inflammatory responses. CORM-2-induced HO-1 protein expression, mRNA and promoter was attenuated by pretreatment with the inhibitors of Pyk2 (PF431396), PDGFR (AG1296), PI3K (LY294002), Akt (SH-5), p38 (SB202530), JNK1/2 (SP600125), FoxO1 (AS1842856) and Sp1 (mithramycin A). The involvement of these signaling components was further confirmed by transfection with respective siRNAs, consistent with those of pharmacological inhibitors. These results suggested that CORM-2-induced HO-1 expression is mediated through a Pyk2/PDGFR/PI3K/Akt/FoxO1/Sp1-dependent manner and exerts a cytoprotective effect in human cardiomyocytes. - Graphical abstract: In summary, CORM-2 treatment induces Pyk2 transactivated PDGFR, which induces PI3K/Akt/MAPK activation, and then recruits Sp1/Foxo1 transcriptional factors to regulate HO-1 gene expression in primary human cardiomyocytes. - Highlights: • CORM-2 induces HO-1 expression. • Pyk2-dependent PDGFR activates PI3K/Akt/MAPK pathway in CORM-2-induced HO

  19. Effect of preoperative oral S-1 combined with regional intra-arterial chemotherapy on malignant molecule expression in locally advanced unresectable gastric cancer tissue

    Directory of Open Access Journals (Sweden)

    Lei Liu

    2016-11-01

    Full Text Available Objective: To study the effect of preoperative oral S-1 combined with regional intra-arterial chemotherapy on malignant molecule expression in locally advanced unresectable gastric cancer tissue. Methods: A total of 144 patients with locally advanced gastric cancer receiving surgical resection after neoadjuvant chemotherapy in our hospital between May 2012 and August 2015 were selected and randomly divided into experimental group who received preoperative oral S-1 combined with regional intra-arterial chemotherapy and control group who received preoperative intravenous systemic chemotherapy. The levels of serum tumor markers were determined after chemotherapy, and the expression levels of tumor suppressor genes and cell cycle-related molecules in tumor tissue were determined after surgical resection. Results: After neoadjuvant chemotherapy, the serum G-17, TK-1, CEA, CA19-9, CA12-5, CA72-4 and CK, CK-MB, ALT, AST levels of experimental group were significantly lower than those of control group; after surgical resection, the p16, p27, PTEN and TXNIP mRNA levels in tumor tissue of experimental group were significantly higher than those of control group while CyclinB2, CyclinD1, CyclinE, CDK1 and CDK2 mRNA levels were significantly lower than those of control group. Conclusions: Preoperative oral S-1 combined with regional intra-arterial chemotherapy can more effectively kill gastric cancer cells, reduce tumor load, inhibit cell cycle and promote cell apoptosis.

  20. The expression of B7-H1 and B7-H4 molecules on immature myeloid and lymphoid dendritic cells in cord blood of healthy neonates

    Directory of Open Access Journals (Sweden)

    Kludka-Sternik M

    2010-04-01

    Full Text Available The aim of our study was to estimate both B7-H1 and B7-H4 molecules on immature myeloid and lymphoid dendriticcells in umbilical cord blood of healthy neonates in comparison with peripheral blood of healthy adults. Thirty ninehealthy full-term neonates from physiological single pregnancies and 27 healthy adults were included in the study. Theexpression of B7-H1 and B7-H4 was revealed using the immunofluorescence method. Statistical analysis was performedusing a non-parametric test (Mann-Whitney U-Test. The percentages of BDCA-1+ dendritic cells with B7-H1 and B7-H4expressions were significantly higher in peripheral blood of healthy adults (p<0.00003. It was either observed that the percentageof BDCA-2+ dendritic cells with the expression of B7-H4 molecules was significantly higher in peripheral blood ofhealthy adults in comparison with umbilical cord blood (p<0.02. Decreased percentages of dendritic cells and co-stimulatorymolecules indicate that neonates have immature immune system. Depletion of co-stimulatory B7-H1 and B7-H4 moleculesenable appropriate development of immune response.

  1. Pulsed ultrasound associated with gold nanoparticle gel reduces oxidative stress parameters and expression of pro-inflammatory molecules in an animal model of muscle injury

    Directory of Open Access Journals (Sweden)

    Victor Eduardo G

    2012-03-01

    Full Text Available Abstract Background Nanogold has been investigated in a wide variety of biomedical applications because of the anti-inflammatory properties. The purpose of this study was to evaluate the effects of TPU (Therapeutic Pulsed Ultrasound with gold nanoparticles (GNP on oxidative stress parameters and the expression of pro-inflammatory molecules after traumatic muscle injury. Materials and methods Animals were divided in nine groups: sham (uninjured muscle; muscle injury without treatment; muscle injury + DMSO; muscle injury + GNP; muscle injury + DMSO + GNP; muscle injury + TPU; muscle injury + TPU + DMSO; muscle injury + TPU + GNP; muscle injury + TPU + DMSO + GNP. The ROS production was determined by concentration of superoxide anion, modulation of antioxidant defenses was determined by the activity of superoxide dismutase, catalase and glutathione peroxidase enzymes, oxidative damage determined by formation of thiobarbituric acid-reactive substance and protein carbonyls. The levels of interleukin-1β (IL-1β and tumor necrosis factor-α (TNF-α were measured as inflammatory parameters. Results Compared to muscle injury without treatment group, the muscle injury + TPU + DMSO + GNP gel group promoted a significant decrease in superoxide anion production and lipid peroxidation levels (p Conclusions Our results suggest that TPU + DMSO + GNP gel presents beneficial effects on the muscular healing process, inducing a reduction in the production of ROS and also the expression of pro-inflammatory molecules.

  2. Expression, crystallization and preliminary X-ray diffraction analysis of the CMM2 region of the Arabidopsis thaliana Morpheus’ molecule 1 protein

    International Nuclear Information System (INIS)

    Petty, Tom J.; Nishimura, Taisuke; Emamzadah, Soheila; Gabus, Caroline; Paszkowski, Jerzy; Halazonetis, Thanos D.; Thore, Stéphane

    2010-01-01

    In order to investigate its function in transcriptional gene silencing, the highly conserved motif 2 from A. thaliana Morpheus’ molecule 1 protein was expressed, purified and crystallized. X-ray diffraction analysis is reported to a resolution of 3.2 Å. Of the known epigenetic control regulators found in plants, the Morpheus’ molecule 1 (MOM1) protein is atypical in that the deletion of MOM1 does not affect the level of epigenetic marks controlling the transcriptional status of the genome. A short 197-amino-acid fragment of the MOM1 protein sequence can complement MOM1 deletion when coupled to a nuclear localization signal, suggesting that this region contains a functional domain that compensates for the loss of the full-length protein. Numerous constructs centred on the highly conserved MOM1 motif 2 (CMM2) present in these 197 residues have been generated and expressed in Escherichia coli. Following purification and crystallization screening, diamond-shaped single crystals were obtained that diffracted to ∼3.2 Å resolution. They belonged to the trigonal space group P3 1 21 (or P3 2 21), with unit-cell parameters a = 85.64, c = 292.74 Å. Structure determination is ongoing

  3. Biocatalytic synthesis of flavones and hydroxyl-small molecules by recombinant Escherichia coli cells expressing the cyanobacterial CYP110E1 gene

    Directory of Open Access Journals (Sweden)

    Makino Takuya

    2012-07-01

    Full Text Available Abstract Background Cyanobacteria possess several cytochrome P450s, but very little is known about their catalytic functions. CYP110 genes unique to cyanaobacteria are widely distributed in heterocyst-forming cyanobacteria including nitrogen-fixing genera Nostoc and Anabaena. We screened the biocatalytic functions of all P450s from three cyanobacterial strains of genus Nostoc or Anabaena using a series of small molecules that contain flavonoids, sesquiterpenes, low-molecular-weight drugs, and other aromatic compounds. Results Escherichia coli cells carrying each P450 gene that was inserted into the pRED vector, containing the RhFRed reductase domain sequence from Rhodococcus sp. NCIMB 9784 P450RhF (CYP116B2, were co-cultured with substrates and products were identified when bioconversion reactions proceeded. Consequently, CYP110E1 of Nostoc sp. strain PCC 7120, located in close proximity to the first branch point in the phylogenetic tree of the CYP110 family, was found to be promiscuous for the substrate range mediating the biotransformation of various small molecules. Naringenin and (hydroxyl flavanones were respectively converted to apigenin and (hydroxyl flavones, by functioning as a flavone synthase. Such an activity is reported for the first time in prokaryotic P450s. Additionally, CYP110E1 biotransformed the notable sesquiterpene zerumbone, anti-inflammatory drugs ibuprofen and flurbiprofen (methylester forms, and some aryl compounds such as 1-methoxy and 1-ethoxy naphthalene to produce hydroxylated compounds that are difficult to synthesize chemically, including novel compounds. Conclusion We elucidated that the CYP110E1 gene, C-terminally fused to the P450RhF RhFRed reductase domain sequence, is functionally expressed in E. coli to synthesize a robust monooxygenase, which shows promiscuous substrate specificity (affinity for various small molecules, allowing the biosynthesis of not only flavones (from flavanones but also a variety of

  4. The association between angiogenic markers and fetal sex

    DEFF Research Database (Denmark)

    Andersen, Louise Bjørkholt; Jørgensen, J S; Herse, F

    2016-01-01

    OBJECTIVE: Current research suggests sexual dimorphism between the male and female fetoplacental units, but with unknown relevance for preeclampsia. We investigated the association between fetal sex and concentrations of the angiogenic markers soluble Fms-like kinase 1 (sFlt-1), placental growth...... factor (PlGF), and sFlt-1/PlGF ratio in first and second-third trimester in women with/without preeclampsia, and the impact of fetal sex on the prognostic value of angiogenic markers for preeclampsia. STUDY DESIGN: Observational study in a prospective, population-based cohort of 2110 singleton...... (preeclampsia cases) associated with fetal sex in adjusted analyses (pfetal sex (all, p=0.028; preeclampsia, p=0.067) In receiver operating curve analysis, prediction of early-onset preeclampsia by sFlt-1/PlGF tended to be superior...

  5. Characterization of neuritin as a novel angiogenic factor

    Energy Technology Data Exchange (ETDEWEB)

    Han, Dingding; Qin, Bo; Liu, Guoqing; Liu, Tingting; Ji, Guoqing; Wu, Yanhua [State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433 (China); Yu, Long, E-mail: longyu@fudan.edu.cn [State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433 (China)

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer Neuritin protein has no effect on the endothelial cell proliferation and adhesion. Black-Right-Pointing-Pointer Neuritin protein increases endothelial cell migration. >Neuritin does not increase tumor cell proliferation in vitro. Black-Right-Pointing-Pointer Overexpression of neuritin induces tumor angiogenesis. >Overexpression of neuritin inhibits tumorigenesis. -- Abstract: Neuritin (NRN1), a neurotrophic factor, plays an important role in neurite growth and neuronal survival. In this study, we identify a new function of neuritin as a novel angiogenic factor in vitro and in vivo. Recombinant neuritin protein had no effect on the proliferation and adhesion of human umbilical vein endothelial cells (HUVEC), but it dose-dependently increased endothelial cell migration. Furthermore, overexpression of neuritin significantly promoted tumor angiogenesis, and surprisingly, it inhibited tumor growth in a xenograft tumor model. Thus, our results indicate that neuritin may act as an important angiogenic factor and serve as a potential target for cancer therapy.

  6. VEGF-independent angiogenic pathways induced by PDGF-C

    Science.gov (United States)

    Kumar, Anil; Zhang, Fan; Lee, Chunsik; Li, Yang; Tang, Zhongshu; Arjunan, Pachiappan

    2010-01-01

    VEGF is believed to be a master regulator in both developmental and pathological angiogenesis. The role of PDGF-C in angiogenesis, however, is only at the beginning of being revealed. We and others have shown that PDGF-C is a critical player in pathological angiogenesis because of its pleiotropic effects on multiple cellular targets. The angiogenic pathways induced by PDGF-C are, to a large extent, VEGF-independent. These pathways may include, but not limited to, the direct effect of PDGF-C on vascular cells, the effect of PDGF-C on tissue stroma fibroblasts, and its effect on macrophages. Taken together, the pleiotropic, versatile and VEGF-independent angiogenic nature of PDGF-C has placed it among the most important target genes for antiangiogenic therapy. PMID:20871734

  7. Adipose-derived mesenchymal stromal cells from aged patients with coronary artery disease keep mesenchymal stromal cell properties but exhibit characteristics of aging and have impaired angiogenic potential.

    Science.gov (United States)

    Efimenko, Anastasia; Dzhoyashvili, Nina; Kalinina, Natalia; Kochegura, Tatiana; Akchurin, Renat; Tkachuk, Vsevolod; Parfyonova, Yelena

    2014-01-01

    Tissue regeneration is impaired in aged individuals. Adipose-derived mesenchymal stromal cells (ADSCs), a promising source for cell therapy, were shown to secrete various angiogenic factors and improve vascularization of ischemic tissues. We analyzed how patient age affected the angiogenic properties of ADSCs. ADSCs were isolated from subcutaneous fat tissue of patients with coronary artery disease (CAD; n = 64, 43-77 years old) and without CAD (n = 31, 2-82 years old). ADSC phenotype characterized by flow cytometry was CD90(+)/CD73(+)/CD105(+)/CD45(-)/CD31(-) for all samples, and these cells were capable of adipogenic and osteogenic differentiation. ADSCs from aged patients had shorter telomeres (quantitative reverse transcription polymerase chain reaction) and a tendency to attenuated telomerase activity. ADSC-conditioned media (ADSC-CM) stimulated capillary-like tube formation by endothelial cells (EA.hy926), and this effect significantly decreased with the age of patients both with and without CAD. Angiogenic factors (vascular endothelial growth factor, placental growth factor, hepatocyte growth factor, angiopoetin-1, and angiogenin) in ADSC-CM measured by enzyme-linked immunosorbent assay significantly decreased with patient age, whereas levels of antiangiogenic factors thrombospondin-1 and endostatin did not. Expression of angiogenic factors in ADSCs did not change with patient age (real-time polymerase chain reaction); however, gene expression of factors related to extracellular proteolysis (urokinase and its receptor, plasminogen activator inhibitor-1) and urokinase-type plasminogen activator receptor surface expression increased in ADSCs from aged patients with CAD. ADSCs from aged patients both with and without CAD acquire aging characteristics, and their angiogenic potential declines because of decreasing proangiogenic factor secretion. This could restrict the effectiveness of autologous cell therapy with ADSCs in aged patients.

  8. Cocaine-associated retiform purpura: a C5b-9-mediated microangiopathy syndrome associated with enhanced apoptosis and high levels of intercellular adhesion molecule-1 expression.

    Science.gov (United States)

    Magro, Cynthia M; Wang, Xuan

    2013-10-01

    Cocaine-associated retiform purpura is a recently described entity characterized by striking hemorrhagic necrosis involving areas of skin associated with administration of cocaine. Levamisole, an adulterant in cocaine, has been suggested as the main culprit pathogenetically. Four cases of cocaine-associated retiform purpura were encountered in the dermatopathology practice of C. M. Magro. The light microscopic findings were correlated with immunohistochemical and immunofluorescence studies. All 4 cases showed a very striking thrombotic diathesis associated with intravascular macrophage accumulation. Necrotizing vasculitis was noted in 1 case. Striking intercellular adhesion molecule-1 (ICAM-1)/CD54 expression in vessel wall along with endothelial expression of caspase 3 and extensive vascular C5b-9 deposition was observed in all biopsies examined. Cocaine-induced retiform purpura is a C5b-9-mediated microvascular injury associated with enhanced apoptosis and prominent vascular expression of ICAM-1, all of which have been shown in prior in vitro and in vivo murine models to be a direct effect of cocaine metabolic products. Antineutrophilic cytoplasmic antibody and antiphospholipid antibodies are likely the direct sequelae of the proapoptotic microenvironment. The inflammatory vasculitic lesion could reflect the downstream end point reflective of enhanced ICAM-1 expression and the development of antineutrophilic cytoplasmic antibody. Levamisole likely works synergistically with cocaine in the propagation of this syndromic complex.

  9. Expression of DNA Damage Response Molecules PARP1, γH2AX, BRCA1, and BRCA2 Predicts Poor Survival of Breast Carcinoma Patients

    Directory of Open Access Journals (Sweden)

    See-Hyoung Park

    2015-08-01

    Full Text Available BACKGROUND: Poly(ADP-ribose polymerase 1 (PARP1, γH2AX, BRCA1, and BRCA2 are conventional molecular indicators of DNA damage in cells and are often overexpressed in various cancers. In this study, we aimed, using immunohistochemical detection, whether the co-expression of PARP1, γH2AX, BRCA1, and BRCA2 in breast carcinoma (BCA tissue can provide more reliable prediction of survival of BCA patients. MATERIALS AND METHODS: We investigated immunohistochemical expression and prognostic significance of the expression of PARP1, γH2AX, BRCA1, and BRCA2 in 192 cases of BCAs. RESULTS: The expression of these four molecules predicted earlier distant metastatic relapse, shorter overall survival (OS, and relapse-free survival (RFS by univariate analysis. Multivariate analysis revealed the expression of PARP1, γH2AX, and BRCA2 as independent poor prognostic indicators of OS and RFS. In addition, the combined expressional pattern of BRCA1, BRCA2, PARP1, and γH2AX (CSbbph was an additional independent prognostic predictor for OS (P < .001 and RFS (P < .001. The 10-year OS rate was 95% in the CSbbph-low (CSbbph scores 0 and 1 subgroup, but that was only 35% in the CSbbph-high (CSbbph score 4 subgroup. CONCLUSION: This study has demonstrated that the individual and combined expression patterns of PARP1, γH2AX, BRCA1, and BRCA2 could be helpful in determining an accurate prognosis for BCA patients and for the selection of BCA patients who could potentially benefit from anti-PARP1 therapy with a combination of genotoxic chemotherapeutic agents.

  10. Triglyceride-rich lipoprotein modulates endothelial vascular cell adhesion molecule (VCAM-1 expression via differential regulation of endoplasmic reticulum stress.

    Directory of Open Access Journals (Sweden)

    Ying I Wang

    Full Text Available Circulating triglyceride-rich lipoproteins (TGRL from hypertriglyceridemic subjects exacerbate endothelial inflammation and promote monocyte infiltration into the arterial wall. We have recently reported that TGRL isolated from human blood after a high-fat meal can elicit a pro- or anti-atherogenic state in human aortic endothelial cells (HAEC, defined as up- or down-regulation of VCAM-1 expression in response to tumor necrosis factor alpha (TNFα stimulation, respectively. A direct correlation was found between subjects categorized at higher risk for cardiovascular disease based upon serum triglycerides and postprandial production of TGRL particles that increased VCAM-1-dependent monocyte adhesion to inflamed endothelium. To establish how TGRL metabolism is linked to VCAM-1 regulation, we examined endoplasmic reticulum (ER stress and the unfolded protein response (UPR pathways. Regardless of its atherogenicity, the rate and extent of TGRL internalization and lipid droplet formation by HAEC were uniform. However, pro-atherogenic TGRL exacerbated ER membrane expansion and stress following TNFα stimulation, whereas anti-atherogenic TGRL ameliorated such effects. Inhibition of ER stress with a chemical chaperone 4-phenylbutyric acid decreased TNFα-induced VCAM-1 expression and abrogated TGRL's atherogenic effect. Activation of ER stress sensors PKR-like ER-regulated kinase (PERK and inositol requiring protein 1α (IRE1α, and downstream effectors including eukaryotic initiation factor-2α (eIF2α, spliced X-box-binding protein 1 (sXBP1 and C/EBP homologous protein (CHOP, directly correlated with the atherogenic activity of an individual's TGRL. Modulation of ER stress sensors also correlated with changes in expression of interferon regulatory factor 1 (IRF-1, a transcription factor of Vcam-1 responsible for regulation of its expression. Moreover, knockdown studies using siRNA defined a causal relationship between the PERK/eIF2α/CHOP pathway and

  11. Impact of exogenous lipase supplementation on growth, intestinal function, mucosal immune and physical barrier, and related signaling molecules mRNA expression of young grass carp (Ctenopharyngodon idella).

    Science.gov (United States)

    Liu, Sen; Feng, Lin; Jiang, Wei-Dan; Liu, Yang; Jiang, Jun; Wu, Pei; Zeng, Yun-Yun; Xu, Shu-De; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu

    2016-08-01

    This study investigated the effects of exogenous lipase supplementation on the growth performance, intestinal growth and function, immune response and physical barrier function, and related signaling molecules mRNA expression of young grass carp (Ctenopharyngodon idella). A total of 450 grass carp (255.02 ± 0.34 g) were fed five diets for 60 days. There were 5 dietary treatments that included a normal protein and lipid diet containing 30% crude protein (CP) with 5% ether extract (EE), and the low-protein and high-lipid diets (28% CP, 6% EE) supplemented with graded levels of exogenous lipase supplementation activity at 0, 1193, 2560 and 3730 U/kg diet. The results indicated that compared with a normal protein and lipid diet (30% CP, 5% EE), a low-protein and high-lipid diet (28% CP, 6% EE) (un-supplemented lipase) improved lysozyme activities and complement component 3 contents in the distal intestine (DI), interleukin 10 mRNA expression in the proximal intestine (PI), and glutathione S-transferases activity and glutathione content in the intestine of young grass carp. In addition, in low-protein and high-lipid diets, optimal exogenous lipase supplementation significantly increased acid phosphatase (ACP) activities and complement component 3 (C3) contents (P exogenous lipase supplementation significantly decreased reactive oxygen species (ROS), malondialdehyde (MDA) and protein carbonyl (PC) contents (P exogenous lipase supplementation significantly elevated the mRNA levels of tight junction proteins (Occludin, zonula occludens 1, Claudin b, Claudin c and Claudin 3) (P exogenous lipase supplementation improved growth, intestinal growth and function, intestinal immunity, physical barrier, and regulated the mRNA expression of related signal molecules of fish. The optimal level of exogenous lipase supplementation in young grass carp (255-771 g) was estimated to be 1193 U kg(-1) diet. Copyright © 2016. Published by Elsevier Ltd.

  12. N-Acetylglutaminoyl-S-farnesyl-L-cysteine (SIG-1191): an anti-inflammatory molecule that increases the expression of the aquaglyceroporin, aquaporin-3, in human keratinocytes.

    Science.gov (United States)

    Fernández, José R; Webb, Corey; Rouzard, Karl; Voronkov, Michael; Huber, Kristen L; Stock, Jeffry B; Stock, Maxwell; Gordon, Joel S; Perez, Eduardo

    2017-03-01

    Isoprenylcysteine (IPC) small molecules were discovered as signal transduction modulating compounds ~25 years ago. More recently, IPC molecules have demonstrated antioxidant and anti-inflammatory properties in a variety of dermal cells as well as antimicrobial activity, representing a novel class of compounds to ameliorate skin conditions and disease. Here, we demonstrate a new IPC compound, N-acetylglutaminoyl-S-farnesyl-L-cysteine (SIG-1191), which inhibits UVB-induced inflammation blocking pro-inflammatory cytokine interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) production. To investigate further the previously reported hydrating potential of IPC compounds, SIG-1191 was tested for its ability to modulate aquaporin expression. Specifically, aquaporin 3 (AQP3) the most abundant aquaporin found in skin has been reported to play a key role in skin hydration, elasticity and barrier repair. Results show here for the first time that SIG-1191 increases AQP3 expression in both cultured normal human epidermal keratinocytes as well as when applied topically in a three-dimensional (3D) reconstructed human skin equivalent. Additionally, SIG-1191 dose dependently increased AQP3 protein levels, as determined by specific antibody staining, in the epidermis of the 3D skin equivalents. To begin to elucidate which signaling pathways SIG-1191 may be modulating to increase AQP3 levels, we used several pharmacological pathway inhibitors and determined that AQP3 expression is mediated by the Mitogen-activated protein kinase/Extracellular signal-regulated kinase kinase (MEK) pathway. Altogether, these data suggest SIG-1191 represents a new IPC derivative with anti-inflammatory activity that may also promote increased skin hydration based on its ability to increase AQP3 levels.

  13. Identification of a subpopulation of marrow MSC-derived medullary adipocytes that express osteoclast-regulating molecules: marrow adipocytes express osteoclast mediators.

    Directory of Open Access Journals (Sweden)

    Vance Holt

    Full Text Available Increased marrow medullary adipogenesis and an associated decrease in bone mineral density, usually observed in elderly individuals, is a common characteristic in senile osteoporosis. In this study we investigated whether cells of the medullary adipocyte lineage have the potential to directly support the formation of osteoclasts, whose activity in bone leads to bone degradation. An in vitro mesenchymal stem cell (MSC-derived medullary adipocyte lineage culture model was used to study the expression of the important osteoclast mediators RANKL, M-CSF, SDF-1, and OPG. We further assessed whether adipocytes at a specific developmental stage were capable of supporting osteoclast-like cell formation in culture. In vitro MSC-derived medullary adipocytes showed an mRNA and protein expression profile of M-CSF, RANKL, and OPG that was dependent on its developmental/metabolic stage. Furthermore, RANKL expression was observed in MSC-derived adipocytes that were at a distinct lineage stage and these cells were also capable of supporting osteoclast-like cell formation in co-cultures with peripheral blood mononuclear cells. These results suggest a connection between medullary adipocytes and osteoclast formation in vivo and may have major significance in regards to the mechanisms of decreased bone density in senile osteoporosis.

  14. Differential expression pattern of extracellular matrix molecules during chondrogenesis of mesenchymal stem cells from bone marrow and adipose tissue

    DEFF Research Database (Denmark)

    Mehlhorn, A T; Niemeyer, P; Kaiser, S

    2006-01-01

    Adipose-derived adult stem cells (ADASCs) or bone marrow-derived mesenchymal stem cells (BMSCs) are considered as alternative cell sources for cell-based cartilage repair due to their ability to produce cartilage-specific matrix. This article addresses the differential expression pattern...... chondroinduction. TGF-beta1 induces alternative splicing of the alpha(1)-procollagen type II transcript in BMSCs, but not in ADASCs. These findings may direct the development of a cell-specific culture environment either to prevent hypertrophy in BMSCs or to promote chondrogenic maturation in ADASCs....

  15. Effect of perfluorohexane on the expression of cellular adhesion molecules and surfactant protein A in human mesothelial cells in vitro.

    Science.gov (United States)

    Haufe, Dirk; Dahmen, Klaus G; Tiebel, Oliver; Hübler, Matthias; Koch, Thea

    2011-08-01

    The intraperitoneal instillation of perfluorocarbons augmented systemic oxygenation and was protective in mesenteric ischemia-reperfusion and experimental lung injury. To study biocompatibility and potential anti-inflammatory effects of intraperitoneal perfluorocarbons, we evaluated the influence of perfluorohexane and/or inflammatory stimuli on human mesothelial cells in vitro. Perfluorohexane exposure neither impaired cell viability nor induced cellular activation. TNFα enhanced ICAM-1 expression, which was not attenuated by simultaneous perfluorohexane treatment. Concentration of intracellular surfactant protein A tended to be higher in perfluorohexane treated cells compared to controls. Our in vitro data add further evidence that intraperitoneal perfluorocarbon application is feasible without adverse local effects.

  16. YB-1 expression promotes epithelial-to-mesenchymal transition in prostate cancer that is inhibited by a small molecule fisetin

    Science.gov (United States)

    Khan, Mohammad Imran; Adhami, Vaqar Mustafa; Lall, Rahul Kumar; Sechi, Mario; Joshi, Dinesh C.; Haidar, Omar M.; Syed, Deeba Nadeem; Siddiqui, Imtiaz Ahmad; Chiu, Shing-Yan; Mukhtar, Hasan

    2014-01-01

    Epithelial-to-mesenchymal transition (EMT) plays an important role in prostate cancer (PCa) metastasis. The transcription/translation regulatory Y-box binding protein-1 (YB-1) is known to be associated with cancer metastasis. We observed that YB-1 expression increased with tumor grade and showed an inverse relationship with E-cadherin in a human PCa tissue array. Forced YB-1 expression induced a mesenchymal morphology that was associated with down regulation of epithelial markers. Silencing of YB-1 reversed mesenchymal features and decreased cell proliferation, migration and invasion in PCa cells. YB-1 is activated directly via Akt mediated phosphorylation at Ser102 within the cold shock domain (CSD). We next identified fisetin as an inhibitor of YB-1 activation. Computational docking and molecular dynamics suggested that fisetin binds on the residues from β1 - β4 strands of CSD, hindering Akt's interaction with YB-1. Calculated free binding energy ranged from −11.9845 to −9.6273 kcal/mol. Plasmon Surface Resonance studies showed that fisetin binds to YB-1 with an affinity of approximately 35 μM, with both slow association and dissociation. Fisetin also inhibited EGF induced YB-1 phosphorylation and markers of EMT both in vitro and in vivo. Collectively our data suggest that YB-1 induces EMT in PCa and identify fisetin as an inhibitor of its activation. PMID:24770864

  17. Evaluation of the skin sensitization potential of chemicals using expression of co-stimulatory molecules, CD54 and CD86, on the naive THP-1 cell line.

    Science.gov (United States)

    Yoshida, Y; Sakaguchi, H; Ito, Y; Okuda, M; Suzuki, H

    2003-04-01

    It has been known that dendritic cells (DCs) including Langerhans cells (LCs) play a critical role in the skin sensitization process. Many attempts have been made to develop in vitro sensitization tests that employ DCs derived from peripheral blood mononuclear cells (PBMC-DC) or CD34+ hematopoietic progenitor cells (CD34+ HPC) purified from cord blood or bone marrow. However, the use of the DCs in in vitro methods has been difficult due to the nature of these cells such as low levels in the source and/or donor-to-donor variability. In our studies, we employed the human monocytic leukemia cell line, THP-1, in order to avoid some of these difficulties. At the start, we examined whether treatment of the cells with various cytokines could produce DCs from THP-1. Treatment of THP-1 cells with cytokines such as GM-CSF, IL-4, TNF-alpha, and/or PMA did induce some phenotypic changes in THP-1 cells that were characteristic of DCs. Subsequently, responses to a known sensitizer, dinitrochlorobenzene (DNCB), and a non-sensitizer, dimethyl sulfoxide (DMSO) or sodium lauryl sulfate (SLS), on the expression of co-stimulatory molecules, CD54 and CD86, were examined between the naive cells and the cytokine-treated cells. Interestingly, the naive THP-1 cells responded only to DNCB and the response to the sensitizer was more distinct than cytokine-treated THP-1 cells. Similar phenomena were also observed in the human myeloid leukemia cell line, KG-1. Furthermore, with treatment of DNCB, naive THP-1 cells showed augmented expression of HLA, CD80 and secretion of IL-1 beta. The response of THP-1 cells to a sensitizer was similar to that of LCs/DCs. Upon demonstrating the differentiation of monocyte cells in our system, we then evaluated a series of chemicals, including known sensitizers and non-sensitizers, for their potential to augment CD54 and CD86 expression on naive THP-1 cells. Indeed, known sensitizers such as PPD and 2-MBT significantly augmented CD54 and CD86 expression in a

  18. Altered Expression Profile of IgLON Family of Neural Cell Adhesion Molecules in the Dorsolateral Prefrontal Cortex of Schizophrenic Patients

    Directory of Open Access Journals (Sweden)

    Karina Karis

    2018-01-01

    Full Text Available Neural adhesion proteins are crucial in the development and maintenance of functional neural connectivity. Growing evidence suggests that the IgLON family of neural adhesion molecules LSAMP, NTM, NEGR1, and OPCML are important candidates in forming the susceptibility to schizophrenia (SCZ. IgLON proteins have been shown to be involved in neurite outgrowth, synaptic plasticity and neuronal connectivity, all of which have been shown to be altered in the brains of patients with the diagnosis of schizophrenia. Here we optimized custom 5′-isoform-specific TaqMan gene-expression analysis for the transcripts of human IgLON genes to study the expression of IgLONs in the dorsolateral prefrontal cortex (DLPFC of schizophrenic patients (n = 36 and control subjects (n = 36. Uniform 5′-region and a single promoter was confirmed for the human NEGR1 gene by in silico analysis. IgLON5, a recently described family member, was also included in the study. We detected significantly elevated levels of the NEGR1 transcript (1.33-fold increase and the NTM 1b isoform transcript (1.47-fold increase in the DLPFC of schizophrenia patients compared to healthy controls. Consequent protein analysis performed in male subjects confirmed the increase in NEGR1 protein content both in patients with the paranoid subtype and in patients with other subtypes. In-group analysis of patients revealed that lower expression of certain IgLON transcripts, mostly LSAMP 1a and 1b, could be related with concurrent depressive endophenotype in schizophrenic patients. Additionally, our study cohort provides further evidence that cannabis use may be a relevant risk factor associated with suicidal behaviors in psychotic patients. In conclusion, we provide clinical evidence of increased expression levels of particular IgLON family members in the DLPFC of schizophrenic patients. We propose that alterations in the expression profile of IgLON neural adhesion molecules are associated with brain

  19. Altered expression of signalling lymphocyte activation molecule receptors in T-cells from lupus nephritis patients-a potential biomarker of disease activity.

    Science.gov (United States)

    Stratigou, Victoria; Doyle, Anne F; Carlucci, Francesco; Stephens, Lauren; Foschi, Valentina; Castelli, Marco; McKenna, Nicola; Cook, H Terence; Lightstone, Liz; Cairns, Thomas D; Pickering, Matthew C; Botto, Marina

    2017-07-01

    The aim was to investigate whether the signalling lymphocyte activation molecule (SLAM) signalling pathways contribute to LN and whether SLAM receptors could be valuable biomarkers of disease activity. Peripheral blood mononuclear cells from 30National Research Ethics Service SLE patients with biopsy-proven LN were analysed by flow cytometry. Clinical measures of disease activity were assessed. The expression of the SLAM family receptors on T-cell subpopulations [CD4, CD8 and double negative (DN) T cells] was measured and compared between lupus patients with active renal disease and those in remission. The frequency of CD8 T cells expressing SLAMF3, SLAMF5 and SLAMF7 was significantly lower in LN patients who were in remission. In contrast, these subsets were similar in patients with active renal disease and in healthy individuals. Patients with active nephritis had an increased percentage of circulating monocytes, consistent with a potential role played by these cells in glomerular inflammation. Changes in the frequency of DN T cells positive for SLAMF2, SLAMF4 and SLAMF7 were observed in lupus patients irrespective of the disease activity. We detected alterations in the cellular expression of the SLAM family receptors, but these changes were less obvious and did not reveal any specific pattern. The percentage of DN T cells expressing SLAMF6 could predict the clinical response to B-cell depletion in patients with LN. Our study demonstrates altered expression of the SLAM family receptors in SLE T lymphocytes. This is consistent with the importance of the SLAM-associated pathways in lupus pathogenesis. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Rheumatology.

  20. CD54/intercellular adhesion molecule 1 and major histocompatibility complex II signaling induces B cells to express interleukin 2 receptors and complements help provided through CD40 ligation

    DEFF Research Database (Denmark)

    Poudrier, J; Owens, T

    1994-01-01

    We have examined signaling roles for CD54 intercellular adhesion molecule 1 and major histocompatibility complex (MHC) II as contact ligands during T help for B cell activation. We used a T helper 1 (Th1)-dependent helper system that was previously shown to be contact as well as interleukin 2 (IL-2......) dependent to demonstrate the relative roles of CD54, MHC II, and CD40 signaling in the events leading to the induction of B cell proliferation and responsiveness to IL-2. Paraformaldehyde-fixed activated Th1-induced expression of IL-2R alpha, IL-2R beta, and B7, and upregulated MHC II and CD54 on B cells...... resulted in the upregulated expression of MHC II and of CD54 and B7, respectively, analogous to the effect of fixed activated Th1 cells. B7 expression was further enhanced by co-cross-linking CD54 and MHC II. Cross-linking of CD40 achieved comparable effects. Strikingly, cross-linking ligation of CD54...

  1. Activation of transcription factor AP-2 mediates UVA radiation- and singlet oxygen-induced expression of the human intercellular adhesion molecule 1 gene

    International Nuclear Information System (INIS)

    Grether-Beck, S.; Olaizola-Horn, S.; Schmitt, H.; Grewe, M.

    1996-01-01

    UVA radiation is the major component of the UV solar spectrum that reaches the earth, and the therapeutic application of UVA radiation is increasing in medicine. Analysis of the cellular effects of UVA radiation has revealed that exposure of human cells to UVA radiation at physiological doses leads to increased gene expression and that this UVA response is primarily mediated through the generation of singlet oxygen. In this study, the mechanisms by which UVA radiation induces transcriptional activation of the human intercellular adhesion molecule 1 (ICAM-1) were examined. UVA radiation was capable of inducing activation of the human ICAM-1 promoter and increasing OCAM-1 mRNA and protein expression. These UVA radiation effects were inhibited by singlet oxygen quenchers, augmented by enhancement of singlet oxygen life-time, and mimicked in unirradiated cells by a singlet oxygen-generating system. UVA radiation as well as singlet oxygen-induced ICAM-1 promoter activation required activation of the transcription factor AP-2. Accordingly, both stimuli activated AP-2, and deletion of the putative AP-2-binding site abrogated ICAM-1 promoter activation in this system. This study identified the AP-2 site as the UVA radiation- and singlet oxygen-responsive element of the human ICAM-1 gene. The capacity of UVA radiation and/or singlet oxygen to induce human gene expression through activation of AP-2 indicates a previously unrecognized role of this transcription factor in the mammalian stress response. 38 refs., 3 figs., 3 tabs

  2. Peritumoral adipose tissue as a source of inflammatory and angiogenic factors in colorectal cancer.

    Science.gov (United States)

    Amor, S; Iglesias-de la Cruz, M C; Ferrero, E; García-Villar, O; Barrios, V; Fernandez, N; Monge, L; García-Villalón, A L; Granado, M

    2016-02-01

    Obesity is a risk factor for the development of human colorectal cancer (CC). The aim of this work is to report the inflammatory and angiogenic scenario in lean (BMI  30 kg/m2) patients with and without CC and to assess the role of peritumoral adipose tissue in CC-induced inflammation. Patients were divided in four experimental groups: obese patients with CC (OB-CC), lean patients with CC (LEAN-CC), obese patients without CC (OB), and lean patients without CC (LEAN). Plasma levels of pro-inflammatory cytokines (interleukin (IL)-6, IL-4, IL-8) and granulocyte-macrophage colony-stimulating factor (GM-CSF) were increased in OB-CC patients. Peritumoral adipose tissue (TF) explants and cultured mature adipocytes secreted higher amounts of nitrites and nitrates than did control and non-tumoral (NTF) adipose tissue both alone and in response to lipopolysaccharide (LPS). Nitrite and nitrate secretion was also increased in TF explants from OB-CC patients compared with that from LEAN-CC patients. Gene expression of adiponectin, tumor necrosis factor alpha (TNF-α), insulin-like growth factor type I (IGF-I), cyclooxygenase-2 (COX-2), and peroxisome proliferator-activated receptor γ (PPAR-γ) was increased in TF explants from CC patients. LPS increased the gene expression of IL-6, IL-10, TNF-α, vascular endothelial growth factor (VEGF), and COX-2 in OB and in TF explants from OB-CC patients. COX-2 and PPAR-γ inhibition further increased LPS-induced release of nitrites and nitrates in TF explants and adipocytes from OB-CC patients. In conclusion, OB-CC patients have increased plasma levels of pro-inflammatory and angiogenic factors. TF from OB-CC patients shows an increased secretion of inflammatory markers compared with both TF from LEAN-CC and non-tumoral adipose tissue (AT) through a COX-2- and PPAR-γ-independent mechanism.

  3. Angiogenesis mediated by soluble forms of E-selectin and vascular cell adhesion molecule-1

    Science.gov (United States)

    Koch, Alisa E.; Halloran, Margaret M.; Haskell, Catherine J.; Shah, Manisha R.; Polverini, Peter J.

    1995-08-01

    ENDOTHELIAL adhesion molecules facilitate the entry of leukocytes into inflamed tissues. This in turn promotes neovascularization, a process central to the progression of rheumatoid arthritis, tumour growth and wound repair1. Here we test the hypothesis that soluble endothelial adhesion molecules promote angiogenesis2á¤-4. Human recombinant soluble E-selectin and soluble vascular cell adhesion molecule-1 induced chemotaxis of human endothelial cells in vitro and were angiogenic in rat cornea. Soluble E-selectin acted on endothelial cells in part through a sialyl Lewis-X-dependent mechanism, while soluble vascular cell adhesion molecule-1 acted on endothelial cells in part through a very late antigen (VLA)-4 dependent mechanism. The chemotactic activity of rheumatoid synovial fluid for endothelial cells, and also its angiogenic activity, were blocked by antibodies to either soluble E-selectin or soluble vascular cell adhesion molecule-1. These results suggest a novel function for soluble endothelial adhesion molecules as mediators of angiogenesis.

  4. Role of cloned carotenoid genes expressed in Escherichia coli in protecting against inactivation by near-UV light and specific phototoxic molecules

    International Nuclear Information System (INIS)

    Tuveson, R.W.; Larson, R.A.; Kagan, J.

    1988-01-01

    Genes controlling carotenoid synthesis were cloned from Erwinia herbicola and expressed in an Escherichia coli strain. Carotenoids protect against high fluences of near-UV (NUV; 320 to 400 nm) but not against far-UV (200-300 nm). Protection of E. coli cells was not observed following treatment with either psoralen or 8-methoxypsoralen plus NUV. However, significant protection of cells producing carotenoids was observed with three photosensitizing molecules activated by NUV (alpha-terthienyl, harmine, and phenylheptatriyne) which are thought to have the membrane as an important lethal target. Protection of carotenoid-producing cells against inactivation was not observed with acridine orange plus visible light but was seen with toluidine blue O plus visible light

  5. Inhibitory phenotype of HBV-specific CD4+ T-cells is characterized by high PD-1 expression but absent coregulation of multiple inhibitory molecules.

    Directory of Open Access Journals (Sweden)

    Bijan Raziorrouh

    Full Text Available T-cell exhaustion seems to play a critical role in CD8+ T-cell dysfunction during chronic viral infections. However, up to now little is known about the mechanisms underlying CD4+ T-cell dysfunction during chronic hepatitis B virus (CHB infection and the role of inhibitory molecules such as programmed death 1 (PD-1 for CD4+ T-cell failure.The expression of multiple inhibitory molecules such as PD-1, CTLA-4, TIM-3, CD244, KLRG1 and markers defining the grade of T-cell differentiation as CCR7, CD45RA, CD57 and CD127 were analyzed on virus-specific CD4+ T-cells from peripheral blood using a newly established DRB1*01-restricted MHC class II Tetramer. Effects of in vitro PD-L1/2 blockade were defined by investigating changes in CD4+ T-cell proliferation and cytokine production.CD4+ T-cell responses during chronic HBV infection was characterized by reduced Tetramer+CD4+ T-cell frequencies, effector memory phenotype, sustained PD-1 but low levels of CTLA-4, TIM-3, KLRG1 and CD244 expression. PD-1 blockade revealed individualized patterns of in vitro responsiveness with partly increased IFN-γ, IL-2 and TNF-α secretion as well as enhanced CD4+ T-cell expansion almost in treated patients with viral control.HBV-specific CD4+ T-cells are reliably detectable during different courses of HBV infection by MHC class II Tetramer technology. CD4+ T-cell dysfunction during chronic HBV is basically linked to strong PD-1 upregulation but absent coregulation of multiple inhibitory receptors. PD-L1/2 neutralization partly leads to enhanced CD4+ T-cell functionality with heterogeneous patterns of CD4+ T-cell rejunivation.

  6. Gene transfer, expression, and sarcomeric incorporation of a headless myosin molecule in cardiac myocytes: evidence for a reserve in myofilament motor function

    Science.gov (United States)

    Vandenboom, Rene; Herron, Todd; Favre, Elizabeth; Albayya, Faris P.

    2011-01-01

    The purpose of this study was to implement a living myocyte in vitro model system to test whether a motor domain-deleted headless myosin construct could be incorporated into the sarcomere and affect contractility. To this end we used gene transfer to express a “headless” myosin heavy chain (headless-MHC) in complement with the native full-length myosin motors in the cardiac sarcomere. An NH2-terminal Flag epitope was used for unique detection of the motor domain-deleted headless-MHC. Total MHC content (i.e., headless-MHC + endogenous MHC) remained constant, while expression of the headless-MHC in transduced myocytes increased from 24 to 72 h after gene transfer until values leveled off at 96 h after gene transfer, at which time the headless-MHC comprised ∼20% of total MHC. Moreover, immunofluorescence labeling and confocal imaging confirmed expression and demonstrated incorporation of the headless-MHC in the A band of the cardiac sarcomere. Functional measurements in intact myocytes showed that headless-MHC modestly reduced amplitude of dynamic twitch contractions compared with controls (P < 0.05). In chemically permeabilized myocytes, maximum steady-state isometric force and the tension-pCa relationship were unaltered by the headless-MHC. These data suggest that headless-MHC can express to 20% of total myosin and incorporate into the sarcomere yet have modest to no effects on dynamic and steady-state contractile function. This would indicate a degree of functional tolerance in the sarcomere for nonfunctional myosin molecules. PMID:21112946

  7. Polysialic Acid Neural Cell Adhesion Molecule (PSA-NCAM) is an adverse prognosis factor in glioblastoma, and regulates olig2 expression in glioma cell lines

    International Nuclear Information System (INIS)

    Amoureux, Marie-Claude; Coulibaly, Béma; Chinot, Olivier; Loundou, Anderson; Metellus, Philippe; Rougon, Geneviève; Figarella-Branger, Dominique

    2010-01-01

    Glioblastoma multiforme (GBM) is the most aggressive and frequent brain tumor, albeit without cure. Although patient survival is limited to one year on average, significant variability in outcome is observed. The assessment of biomarkers is needed to gain better knowledge of this type of tumor, help prognosis, design and evaluate therapies. The neurodevelopmental polysialic acid neural cell adhesion molecule (PSA-NCAM) protein is overexpressed in various cancers. Here, we studied its expression in GBM and evaluated its prognosis value for overall survival (OS) and disease free survival (DFS). We set up a specific and sensitive enzyme linked immunosorbent assay (ELISA) test for PSA-NCAM quantification, which correlated well with PSA-NCAM semi quantitative analysis by immunohistochemistry, and thus provides an accurate quantitative measurement of PSA-NCAM content for the 56 GBM biopsies analyzed. For statistics, the Spearman correlation coefficient was used to evaluate the consistency between the immunohistochemistry and ELISA data. Patients' survival was estimated by using the Kaplan-Meier method, and curves were compared using the log-rank test. On multivariate analysis, the effect of potential risk factors on the DFS and OS were evaluated using the cox regression proportional hazard models. The threshold for statistical significance was p = 0.05. We showed that PSA-NCAM was expressed by approximately two thirds of the GBM at variable levels. On univariate analysis, PSA-NCAM content was an adverse prognosis factor for both OS (p = 0.04) and DFS (p = 0.0017). On multivariate analysis, PSA-NCAM expression was an independent negative predictor of OS (p = 0.046) and DFS (p = 0.007). Furthermore, in glioma cell lines, PSA-NCAM level expression was correlated to the one of olig2, a transcription factor required for gliomagenesis. PSA-NCAM represents a valuable biomarker for the prognosis of GBM patients

  8. Effect of nuclear factor kappa B on intercellular adhesion molecule-1 expression and neutrophil infiltration in lung injury induced by intestinal ischemia/reperfusion in rats

    Science.gov (United States)

    Tian, Xiao-Feng; Yao, Ji-Hong; Li, Ying-Hua; Zhang, Xue-Song; Feng, Bing-An; Yang, Chun-Ming; Zheng, Shu-Sen

    2006-01-01

    AIM: To investigate the role of nuclear factor kappa B (NF-κB) in the pathogenesis of lung injury induced by intestinal ischemia/reperfusion (I/R), and its effect on intercellular adhesion molecule-1 (ICAM-1) expression and neutrophil infiltration. METHODS: Twenty-four Wistar rats were divided randomly into control, I/R and pyrrolidine dithiocarbamate (PDTC) treatment groups, n = 8 in each. I/R group and PDTC treatment group received superior mysenteric artery (SMA) occluding for 1 h and reperfusion for 2 h. PDTC group was administrated with intraperitoneal injection of 2% 100 mg/kg PDTC 1 h before surgery. Lung histology and bronchia alveolus lung fluid (BALF) protein were assayed. Serum IL-6, lung malondialdehyde (MDA) and myeloperoxidase (MPO) as well as the expression level of NF-κB and ICAM-1 were measured. RESULTS: Lung injury induced by intestinal I/R, was characterized by edema, hemorrhage and neutrophil infiltration as well as by the significant rising of BALF protein. Compared to control group, the levels of serum IL-6 and lung MDA and MPO increased significantly in I/R group (P = 0.001). Strong positive expression of NF-κB p65 and ICAM-1 was observed. After the administration of PDTC, the level of serum IL-6, lung MDA and MPO as well as NF-κB and ICAM-1 decreased significantly (P < 0.05) when compared to I/R group. CONCLUSION: The activation of NF-κB plays an important role in the pathogenesis of lung injury induced by intestinal I/R through upregulating the neutrophil infiltration and lung ICAM-1 expression. PDTC as an inhibitor of NF-κB can prevent lung injury induced by intestinal I/R through inhibiting the activity of NF-κB. PMID:16489637

  9. Effect of choline on antioxidant defenses and gene expressions of Nrf2 signaling molecule in the spleen and head kidney of juvenile Jian carp (Cyprinus carpio var. Jian).

    Science.gov (United States)

    Wu, Pei; Jiang, Wei-Dan; Liu, Yang; Chen, Gang-Fu; Jiang, Jun; Li, Shu-Hong; Feng, Lin; Zhou, Xiao-Qiu

    2014-06-01

    The present work evaluates the effects of various levels of dietary choline on antioxidant defenses and gene expressions of Nrf2 signaling molecule in spleen and head kidney of juvenile Jian carp (Cyprinus carpio var. Jian). Fish were fed with six different experimental diets containing graded levels of choline at 165 (choline-deficient control), 310, 607, 896, 1167 and 1820 mg kg(-1) diet for 65 days. At the end of the feeding trail, fish were challenged with Aeromonas hydrophila and mortalities were recorded over 17 days. Dietary choline significantly decreased malondialdehyde and protein carbonyl contents in spleen and head kidney. However, anti-superoxide anion and anti-hydroxyl radical activities in spleen and head kidney also decreased. Interestingly, activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and glutathione reductase (GR) in spleen, GPx activity in head kidney, and glutathione contents in spleen and head kidney were decreased with increase of dietary choline levels up to a certain point, whereas, activities of SOD, GST and GR in head kidney showed no significantly differences among groups. Similarly, expression levels of CuZnSOD, MnSOD, CAT, GPx1a, GPx1b and GR gene in spleen and head kidney were significantly lower in group with choline level of 607 mg kg(-1) diet than those in the choline-deficient group. The relative gene expressions of Nrf2 in head kidney and Keap1a in spleen and head kidney were decreased with increasing of dietary choline up to a certain point. However, the relative gene expression of Nrf2 in spleen were not significantly affected by dietary choline. In conclusion, dietary choline decreased the oxidant damage and regulated the antioxidant system in immune organs of juvenile Jian carp. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. How Do CD4+ T Cells Detect and Eliminate Tumor Cells That Either Lack or Express MHC Class II Molecules?

    Science.gov (United States)

    Haabeth, Ole Audun Werner; Tveita, Anders Aune; Fauskanger, Marte; Schjesvold, Fredrik; Lorvik, Kristina Berg; Hofgaard, Peter O.; Omholt, Hilde; Munthe, Ludvig A.; Dembic, Zlatko; Corthay, Alexandre; Bogen, Bjarne

    2014-01-01

    CD4+ T cells contribute to tumor eradication, even in the absence of CD8+ T cells. Cytotoxic CD4+ T cells can directly kill MHC class II positive tumor cells. More surprisingly, CD4+ T cells can indirectly eliminate tumor cells that lack MHC class II expression. Here, we review the mechanisms of direct and indirect CD4+ T cell-mediated elimination of tumor cells. An emphasis is put on T cell receptor (TCR) transgenic models, where anti-tumor responses of naïve CD4+ T cells of defined specificity can be tracked. Some generalizations can tentatively be made. For both MHCIIPOS and MHCIINEG tumors, presentation of tumor-specific antigen by host antigen-presenting cells (APCs) appears to be required for CD4+ T cell priming. This has been extensively studied in a myeloma model (MOPC315), where host APCs in tumor-draining lymph nodes are primed with secreted tumor antigen. Upon antigen recognition, naïve CD4+ T cells differentiate into Th1 cells and migrate to the tumor. At the tumor site, the mechanisms for elimination of MHCIIPOS and MHCIINEG tumor cells differ. In a TCR-transgenic B16 melanoma model, MHCIIPOS melanoma cells are directly killed by cytotoxic CD4+ T cells in a perforin/granzyme B-dependent manner. By contrast, MHCIINEG myeloma cells are killed by IFN-γ stimulated M1-like macrophages. In summary, while the priming phase of CD4+ T cells appears similar for MHCIIPOS and MHCIINEG tumors, the killing mechanisms are different. Unresolved issues and directions for future research are addressed. PMID:24782871

  11. How do CD4+ T cells detect and eliminate tumor cells that either lack or express MHC class II molecules?

    Directory of Open Access Journals (Sweden)

    Ole Audun Werner Haabeth

    2014-04-01

    Full Text Available CD4+ T cells contribute to tumor eradication, even in the absence of CD8+ T cells. Cytotoxic CD4+ T cells can directly kill MHC class II positive tumor cells. More surprisingly, CD4+ T cells can indirectly eliminate tumor cells that lack MHC class II expression. Here, we review the mechanisms of direct and indirect CD4+ T cell-mediated elimination of tumor cells. An emphasis is put on T cell receptor (TCR transgenic models, where anti-tumor responses of naïve CD4+ T cells of defined specificity can be tracked. Some generalizations can tentatively be made. For both MHCIIPOS and MHCIINEG tumors, presentation of tumor specific antigen by host antigen presenting cells (APCs appears to be required for CD4+ T cell priming. This has been extensively studied in a myeloma model (MOPC315, where host APCs in tumor-draining lymph nodes are primed with secreted tumor antigen. Upon antigen recognition, naïve CD4+ T cells differentiate into Th1 cells and migrate to the tumor. At the tumor site, the mechanisms for elimination of MHCIIPOS and MHCIINEG tumor cells differ. In a TCR transgenic B16 melanoma model, MHCIIPOS melanoma cells are directly killed by cytotoxic CD4+ T cells in a perforin/granzyme B-dependent manner. By contrast, MHCIINEG myeloma cells are killed by IFN-g stimulated M1-like macrophages. In summary, while the priming phase of CD4+ T cells appears similar for MHCIIPOS and MHCIINEG tumors, the killing mechanisms are different. Unresolved issues and directions for future research are addressed.

  12. Molecule nanoweaver

    Science.gov (United States)

    Gerald, II; Rex, E [Brookfield, IL; Klingler, Robert J [Glenview, IL; Rathke, Jerome W [Homer Glen, IL; Diaz, Rocio [Chicago, IL; Vukovic, Lela [Westchester, IL

    2009-03-10

    A method, apparatus, and system for constructing uniform macroscopic films with tailored geometric assemblies of molecules on the nanometer scale. The method, apparatus, and system include providing starting molecules of selected character, applying one or more force fields to the molecules to cause them to order and condense with NMR spectra and images being used to monitor progress in creating the desired geometrical assembly and functionality of molecules that comprise the films.

  13. Perforated Gastric Ulcer Associated with Anti-Angiogenic Therapy

    Directory of Open Access Journals (Sweden)

    Diogo Libânio

    2017-08-01

    Full Text Available Anti-angiogenic therapy with bevacizumab, an inhibitor of vascular endothelial growth factor, is commonly used in metastatic colorectal cancer and is rarely associated with gastrointestinal perforation, perforation being more frequent in the primary tumor site or at the anastomotic level. We present the case of a 64-year-old male with stage IV rectal adenocarcinoma who was on palliative chemotherapy with FOLFOX and bevacizumab. After the 4th chemotherapy cycle, our patient started fever and epigastric pain. He was hemodynamically stable, and signs of peritoneal irritation were absent. There were no alterations in the abdominal X-ray, and C-reactive protein was markedly elevated. A CT scan revealed a de novo thickness in the gastric antrum. Upper digestive endoscopy showed an ulcerated 40-mm lesion in the angulus, with a 20-mm orifice communicating with an exsudative cavity revested by the omentum. A conservative approach was decided including fasting, broad-spectrum intravenous antibiotics, and proton-pump inhibitors. Subsequent gastroduodenal series showed no contrast extravasation, allowing the resumption of oral nutrition. Esophagogastroduodenoscopy after 8 weeks showed perforation closure. Biopsies did not show neoplastic cells or Heliobacter pylori infection. Although the success in the conservative management of perforation allowing the maintenance of palliative chemotherapy (without bevacizumab, the patient died after 4 months due to liver failure. The reported case shows an uncommon endoscopic finding due to a rare complication of anti-angiogenic therapy. Additionally, it reminds clinicians that a history of gastroduodenal ulcers should be actively sought before starting anti-angiogenic treatment and that suspicion for perforation should be high in these cases.

  14. Vascular endothelial growth factor up-regulates the expression of intracellular adhesion molecule-1 in retinal endothelial cells via reactive oxygen species, but not nitric oxide

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-ling; WEN Liang; CHEN Yan-jiong; ZHU Yi

    2009-01-01

    Background The vascular endothelial growth factor (VEGF) is involved in the initiation of retinal vascular leakage and nonperfusion in diabetes. The intracellular adhesion molecule-1 (ICAM-1) is the key mediator of the effect of VEGFs on retinal leukostasis. Although the VEGF is expressed in an early-stage diabetic retina, whether it directly up-regulates ICAM-1 in retinal endothelial cells (ECs) is unknown. In this study, we provided a new mechanism to explain that VEGF does up-regulate the expression of ICAM-1 in retinal ECs.Methods Bovine retinal ECs (BRECs) were isolated and cultured. Immunohistochemical staining was performed to identify BRECs. The cultured cells were divided into corresponding groups. Then, VEGF (100 ng/ml) and other inhibitors were used to treat the cells. Cell lysate and the cultured supernatant were collected, and then, the protein level of ICAM-1 and phosphorylation of the endothelial nitric oxide synthase (eNOS) were detected using Western blotting. Griess reaction was used to detect nitric oxide (NO).Results Western blotting showed that the VEGF up-regulated the expression of ICAM-1 protein and increased phosphorylation of the eNOS in retinal ECs. Neither the block of NO nor protein kinase C (PKC) altered the expression of ICAM-1 or the phosphorylation of eNOS. The result of the Western blotting also showed that inhibition of phosphatidylinositol 3-kinase (PI3K) or reactive oxygen species (ROS) significantly reduced the expression of ICAM-1. Inhibition of PI3K also reduced phosphorylation of eNOS. Griess reaction showed that VEGF significantly increased during NO production. When eNOS was blocked by L-NAME or PI3K was blocked by LY294002, the basal level of NO production and the increment of NO caused by VEGF could be significantly decreased.Conclusion ROS-NO coupling in the retinal endothelium may be a new mechanism that could help to explain why VEGF induces ICAM-1 expression and the resulting leukostasis in diabetic retinopathy.

  15. Adipose Extracellular Matrix/Stromal Vascular Fraction Gel Secretes Angiogenic Factors and Enhances Skin Wound Healing in a Murine Model

    Directory of Open Access Journals (Sweden)

    Mingliang Sun

    2017-01-01

    Full Text Available Mesenchymal stem cells are an attractive cell type for cytotherapy in wound healing. The authors recently developed a novel, adipose-tissue-derived, injectable extracellular matrix/stromal vascular fraction gel (ECM/SVF-gel for stem cell therapy. This study was designed to assess the therapeutic effects of ECM/SVF-gel on wound healing and potential mechanisms. ECM/SVF-gel was prepared for use in nude mouse excisional wound healing model. An SVF cell suspension and phosphate-buffered saline injection served as the control. The expression levels of vascular endothelial growth factor (VEGF, basic fibroblast growth factor (bFGF, and monocyte chemotactic protein-1 (MCP-1 in ECM/SVF-gel were analyzed at different time points. Angiogenesis (tube formation assays of ECM/SVF-gel extracts were evaluated, and vessels density in skin was determined. The ECM/SVF-gel extract promoted tube formation in vitro and increased the expression of the angiogenic factors VEGF and bFGF compared with those in the control. The expression of the inflammatory chemoattractant MCP-1 was high in ECM/SVF-gel at the early stage and decreased sharply during the late stage of wound healing. The potent angiogenic effects exerted by ECM/SVF-gel may contribute to the improvement of wound healing, and these effects could be related to the enhanced inflammatory response in ECM/SVF-gel during the early stage of wound healing.

  16. Expression of the amino-terminal half-molecule of human serum transferrin in cultured cells and characterization of the recombinant protein

    International Nuclear Information System (INIS)

    Funk, W.D.; MacGillivray, R.T.A.; Mason, A.B.; Brown, S.A.; Woodworth, R.C.

    1990-01-01

    A human liver cDNA library was screened with a synthetic oligonucleotide, complementary to the 5' region of human transferrin mRNA, as a hybridization probe. The full-length human cDNA clone isolated from this screen contained part of the 5' untranslated region, the complete coding region for the signal peptide and the two lobes of transferrin, the 3' untranslated region, and a poly(A) tail. By use of oligonucleotide-directed mutagenesis in vitro, two translational stop codons and a HindIII site were introduced after the codon for Asp-337. This fragment was inserted into two different expression vectors that were then introduced into Escherichia coli. As judged by NaDodSO 4 -polyacrylamide gel electrophoresis and Western blot analysis, however, recombinant hTF/2N was undetectable in bacteria transformed by these plasmids. Concurrently, the authors developed a plasmid vector for the expression of recombinant hTF/2N in eukaryotic cells. The recombinant hTF/2N appeared to behave identically with the proteolytically derived half-molecule, but to show a higher degree of monodispersity than the latter protein. Addition of m-fluorotyrosine to the culture medium resulted in random incorporation of this amino acid into cellular protein in lieu of tyrosine. Purified recombinant 19 F-Tyr hTF/2N gave four well-resolved 19 F NMR resonances of 20-40 Hz line width, two with suggestions of shoulders

  17. The influence of propofol anesthesia exposure on nonaversive memory retrieval and expression of molecules involved in memory process in the dorsal hippocampus in peripubertal rats.

    Science.gov (United States)

    Pavković, Željko; Milanović, Desanka; Ruždijić, Sabera; Kanazir, Selma; Pešić, Vesna

    2018-06-01

    The effects of anesthetic drugs on postoperative cognitive function in children are not well defined and have not been experimentally addressed. The present study aimed to examine the influence of propofol anesthesia exposure on nonaversive hippocampus-dependent learning and biochemical changes involved in memory process in the dorsal hippocampus, in peripubertal rats as the rodent model of periadolescence. The intersession spatial habituation and the novel object recognition tasks were used to assess spatial and nonspatial, nonaversive hippocampus-dependent learning. The exposure to anesthesia was performed after comparably long acquisition phases in both tasks. Behavioral testing lasted for 2 consecutive days (24-hour retention period). Changes in the expression of molecules involved in memory retrieval/reconsolidation were examined in the dorsal hippocampus by Western blot and immunohistochemistry, at the time of behavioral testing. Exposure to propofol anesthesia resulted in inappropriate assessment of spatial novelty at the beginning of the test session and affected continuation of acquisition in the spatial habituation test. The treatment did not affect recognition of the novel object at the beginning of the test session but it attenuated overall preference to novelty, reflecting retrieval of a weak memory. The expression of phosphorylated extracellular signal-regulated kinase 2 (involved in memory retrieval) was decreased while the level of phosphorylated Ca 2+ /calmodulin-dependent protein kinase IIα and early growth response protein 1 (involved in memory reconsolidation) was increased in the dorsal hippocampus. The level of Finkel-Biskis-Jinkins murine osteosarcoma viral oncogene homolog B (neuronal activity indicator) was increased in the dorsal dentate gyrus. Enhanced exploratory activity was still evident in the propofol anesthesia exposure (PAE) group 48 hour after the treatment in both tasks. In peripubertal rats, propofol anesthesia exposure

  18. Resveratrol modulates the angiogenic response to exercise training in skeletal muscles of aged men.

    Science.gov (United States)

    Gliemann, Lasse; Olesen, Jesper; Biensø, Rasmus Sjørup; Schmidt, Jakob Friis; Akerstrom, Thorbjorn; Nyberg, Michael; Lindqvist, Anna; Bangsbo, Jens; Hellsten, Ylva

    2014-10-15

    In animal studies, the polyphenol resveratrol has been shown to influence several pathways of importance for angiogenesis in skeletal muscle. The aim of the present study was to examine the angiogenic effect of resveratrol supplementation with parallel exercise training in aged men. Forty-three healthy physically inactive aged men (65 ± 1 yr) were divided into 1) a training group that conducted 8 wk of intense exercise training where half of the subjects received a daily intake of either 250 mg trans-resveratrol (n = 14) and the other half received placebo (n = 13) and 2) a nontraining group that received either 250 mg trans-resveratrol (n = 9) or placebo (n = 7). The group that trained with placebo showed a ~20% increase in the capillary-to-fiber ratio, an increase in muscle protein expression of VEGF, VEGF receptor-2, and tissue inhibitor of matrix metalloproteinase (TIMP-1) but unaltered thrombospodin-1 levels. Muscle interstitial VEGF and thrombospodin-1 protein levels were unchanged after the training period. The group that trained with resveratrol supplementation did not show an increase in the capillary-to-fiber ratio or an increase in muscle VEGF protein. Muscle TIMP-1 protein levels were lower in the training and resveratrol group than in the training and placebo group. Both training groups showed an increase in forkhead box O1 protein. In nontraining groups, TIMP-1 protein was lower in the resveratrol-treated group than the placebo-treated group after 8 wk. In conclusion, these data show that exercise training has a strong angiogenic effect, whereas resveratrol supplementation may limit basal and training-induced angiogenesis. Copyright © 2014 the American Physiological Society.

  19. Threonine modulates immune response, antioxidant status and gene expressions of antioxidant enzymes and antioxidant-immune-cytokine-related signaling molecules in juvenile blunt snout bream (Megalobrama amblycephala).

    Science.gov (United States)

    Habte-Tsion, Habte-Michael; Ren, Mingchun; Liu, Bo; Ge, Xianping; Xie, Jun; Chen, Ruli

    2016-04-01

    A 9-week feeding trial was conducted to investigate the effects of graded dietary threonine (Thr) levels (0.58-2.58%) on the hematological parameters, immune response, antioxidant status and hepatopancreatic gene expression of antioxidant enzymes and antioxidant-immune-cytokine-related signaling molecules in juvenile blunt snout bream. For this purpose, 3 tanks were randomly arranged and assigned to each experimental diet. Fish were fed with their respective diet to apparent satiation 4 times daily. The results indicated that white blood cell, red blood cell and haemoglobin significantly responded to graded dietary Thr levels, while hematocrit didn't. Complement components (C3 and C4), total iron-binding capacity (TIBC), immunoglobulin M (IgM), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) increased with increasing dietary Thr levels up to 1.58-2.08% and thereafter tended to decrease. Dietary Thr regulated the gene expressions of Cu/Zn-SOD, Mn-SOD and CAT, GPx1, glutathione S-transferase mu (GST), nuclear factor erythroid 2-related factor 2 (Nrf2), heat shock protein-70 (Hsp70), tumor necrosis factor-alpha (TNF-α), apolipoprotein A-I (ApoA1), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and fructose-bisphosphate aldolase B (ALDOB); while the gene expression of peroxiredoxin II (PrxII) was not significantly modified by graded Thr levels. These genes are involved in different functions including antioxidant, immune, and defense responses, energy metabolism and protein synthesis. Therefore, this study could provide a new molecular tool for studies in fish immunonutrition and shed light on the regulatory mechanisms that dietary Thr improved the antioxidant and immune capacities of fish. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Microvascular function in pre-eclampsia is influenced by insulin resistance and an imbalance of angiogenic mediators.

    Science.gov (United States)

    Ghosh, Anshuman; Freestone, Nicholas S; Anim-Nyame, Nicholas; Arrigoni, Francesca I F

    2017-04-01

    In preeclampsia, maternal microvascular function is disrupted and angiogenesis is dysfunctional. Insulin resistance that occurs in some pregnancies also pathologically affects microvascular function. We wished to examine the relationship of angiogenic mediators and insulin resistance on microvascular health in pregnancy. We performed a nested, case-control study of 16 women who developed preeclampsia with 17 normal pregnant controls. We hypothesized that the impaired microvascular blood flow in preeclamptic women associated with an increased ratio of the antiangiogenic factors; (s-endoglin [sEng] and soluble fms-like tyrosine kinase-1 [sFlt-1]) and proangiogenic molecule (placental growth factor [PlGF]) could be influenced by insulin resistance. Serum samples taken after 28 weeks of gestation were measured for the angiogenic factors, insulin, and glucose alongside the inflammatory marker; tumor necrosis factor-α and endothelial activation, namely; soluble vascular cell adhesion molecule 1, intercellular adhesion molecule-1, and e-selectin. Maternal microvascular blood flow, measured by strain gauge plethysmography, correlated with ratios of pro- and antiangiogenic mediators independently of preeclampsia. Decreased microvascular function measured in preeclampsia strongly correlated with both the antiangiogenic factor (sFlt-1 + sEng): PlGF ratio and high levels of insulin resistance, and combining insulin resistance with antiangiogenic factor ratios further strengthened this relationship. In pregnancy, microvascular blood flow is strongly associated with perturbations in pro- and antiangiogenic mediators. In preeclampsia, the relationship of maternal microvascular dysfunction with antiangiogenic mediators is strengthened when combined with insulin resistance. © 2017 Kingston University. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  1. Relationship of preoperative gastric cancer CT enhancement ratio and perfusion parameters with serum tumor marker levels and proliferation molecule expression in tumor lesions

    Directory of Open Access Journals (Sweden)

    Yong-Hong Wang

    2017-06-01

    Full Text Available Objective: To study the relationship of preoperative gastric cancer CT enhancement ratio and perfusion parameters with serum tumor marker levels and proliferation molecule expression in tumor lesions. Methods: A total of 68 patients with gastric cancer treated in the Second Hospital of Yulin City between May 2012 and May 2016 were chosen as observation group and sub-divided into early and middle gastric cancer group (n=41 and advanced gastric cancer group (n=27 according to the tumor stage; 50 patients diagnosed with benign gastric diseases in our hospital during the same period were selected as benign gastric lesion group. CT enhancement rate and perfusion parameters of three groups of patients were detected by CT scan, serum tumor marker levels were evacuated by enzyme-linked immunosorbent assay (ELISA, and the proliferation gene mRNA expression levels were detected by RTPCR method. Results: CER, AF, BV and CL levels of advanced gastric cancer group were higher than those of early and middle gastric cancer group and benign gastric lesion group; serum CA72-4, CA19-9, CA125 and CEA contents of advanced gastric cancer group were higher than those of early and middle gastric cancer group and benign gastric lesion group; CADM1, miRNA-34a and Cystatin M mRNA expression in tissue of advanced gastric cancer group were lower than those of early and middle gastric cancer group and benign gastric lesion group while Survivin and I2PP2A mRNA expression were higher than those of early and middle gastric cancer group and benign gastric lesion group. The Pearson test showed that the CT enhancement rate and perfusion parameters in patients with gastric cancer are directly correlated with the serum tumor marker levels and the proliferation gene expression in tumor lesions. Conclusion: Preoperative gastric cancer CT enhancement rate and perfusion parameters are directly related to the tumor malignancy, and can be used as a reliable method for the long-term tumor

  2. Characterizing the angiogenic activity of patients with single ventricle physiology and aortopulmonary collateral vessels.

    Science.gov (United States)

    Sandeep, Nefthi; Uchida, Yutaka; Ratnayaka, Kanishka; McCarter, Robert; Hanumanthaiah, Sridhar; Bangoura, Aminata; Zhao, Zhen; Oliver-Danna, Jacqueline; Leatherbury, Linda; Kanter, Joshua; Mukouyama, Yoh-Suke

    2016-04-01

    Patients with single ventricle congenital heart disease often form aortopulmonary collateral vessels via an unclear mechanism. To gain insights into the pathogenesis of aortopulmonary collateral vessels, we correlated angiogenic factor levels with in vitro activity and angiographic aortopulmonary collateral assessment and examined whether patients with single ventricle physiology have increased angiogenic factors that can stimulate endothelial cell sprouting in vitro. In patients with single ventricle physiology (n = 27) and biventricular acyanotic control patients (n = 21), hypoxia-inducible angiogenic factor levels were measured in femoral venous and arterial plasma at cardiac catheterization. To assess plasma angiogenic activity, we used a 3-dimensional in vitro cell sprouting assay that recapitulates angiogenic sprouting. Aortopulmonary collateral angiograms were graded using a 4-point scale. Compared with controls, patients with single ventricle physiology had increased vascular endothelial growth factor (artery: 58.7 ± 1.2 pg/mL vs 35.3 ± 1.1 pg/mL, P collateral severity. We are the first to correlate plasma angiogenic factor levels with angiography and in vitro angiogenic activity in patients with single ventricle disease with aortopulmonary collaterals. Patients with single ventricle disease have increased stromal-derived factor 1-alpha and soluble fms-like tyrosine kinase-1, and their roles in aortopulmonary collateral formation require further investigation. Plasma factors and angiogenic activity correlate poorly with aortopulmonary collateral severity in patients with single ventricles, suggesting complex mechanisms of angiogenesis. Published by Elsevier Inc.

  3. Tumour vasculature and angiogenic profile of paediatric pilocytic astrocytoma; is it much different from glioblastoma?

    NARCIS (Netherlands)

    Sie, M.; de Bont, E. S. J. M.; Scherpen, F. J. G.; Hoving, E. W.; den Dunnen, W. F. A.

    2010-01-01

    Aims: Pilocytic astrocytomas are the most frequent brain tumours in children. Because of their high vascularity, this study aimed to obtain insights into potential angiogenic related therapeutic targets in these tumours by characterization of the vasculature and the angiogenic profile. In this study

  4. Anti-Angiogenics: Current Situation and Future Perspectives.

    Science.gov (United States)

    Zirlik, Katja; Duyster, Justus

    2018-01-01

    Angiogenesis, the process leading to the formation of new blood vessels, is one of the hallmarks of cancer. Extensive studies established that i) vascular endothelial growth factor (VEGF) is a key driver of sprouting angiogenesis, ii) VEGF is overexpressed in most solid cancers, and iii) inhibition of VEGF can suppress tumor growth in animal models. This has led to the development of pharmacological agents for anti-angiogenesis to disrupt the vascular supply and starve the tumor of nutrients and oxygen, primarily through the blockade of VEGF/VEGF receptor signaling. This effort has resulted in 11 anti-VEGF drugs approved for certain advanced cancers, either alone or in combination with chemotherapy and other targeted therapies. However, inhibition of VEGF signaling is not effective in all cancers, and anti-angiogenics have often only limited impact on overall survival of cancer patients. This review focuses on the current status of FDA-approved anti-angiogenic antibodies and tyrosine kinase inhibitors and summarizes the progress and future directions of VEGF-targeted therapy. © 2018 S. Karger GmbH, Freiburg.

  5. Biomarkers for Anti-Angiogenic Therapy in Cancer

    Directory of Open Access Journals (Sweden)

    Markus Wehland

    2013-04-01

    Full Text Available Angiogenesis, the development of new vessels from existing vasculature, plays a central role in tumor growth, survival, and progression. On the molecular level it is controlled by a number of pro- and anti-angiogenic cytokines, among which the vascular endothelial growth factors (VEGFs, together with their related VEGF-receptors, have an exceptional position. Therefore, the blockade of VEGF signaling in order to inhibit angiogenesis was deemed an attractive approach for cancer therapy and drugs interfering with the VEGF-ligands, the VEGF receptors, and the intracellular VEGF-mediated signal transduction were developed. Although promising in pre-clinical trials, VEGF-inhibition proved to be problematic in the clinical context. One major drawback was the generally high variability in patient response to anti-angiogenic drugs and the rapid development of therapy resistance, so that, in total, only moderate effects on progression-free and overall survival were observed. Biomarkers predicting the response to VEGF-inhibition might attenuate this problem and help to further individualize drug and dosage determination. Although up to now no definitive biomarker has been identified for this purpose, several candidates are currently under investigation. This review aims to give an overview of the recent developments in this field, focusing on the most prevalent tumor species.

  6. Radiosensitivity of angiogenic and mitogenic factors in human amniotic membrane

    International Nuclear Information System (INIS)

    Deocaris, Custer C.; De Guzman, Zenaida M.; Deocaris, Chester C.; Jacinto, Sonia D.

    2003-01-01

    Amniotic membrane as a temporary biological dressing remains as a beneficial and cost-effective means of treating burns in developing countries. This medical application is attributed mainly to placental structural and biochemical features that are important for maintaining proper embryonic development. Since fresh amnions are nevertheless for straightforward clinical use and for preservation, radiation-sterilization is been performed to improve the safety of this placental material. However, like any other sterilization method, gamma-radiation may induce physical and chemical changes that may influence the biological property of the material. Thus, the aim of this study is to compare the effects of various levels of radiation-sterilization protocols for human amnions on angiogenic (neovascularization) and epithelial-mitogenic activities, both of which are physiological processes fundamental to wound healing. Water-soluble extract of non-irradiated amnions demonstrates a strong stimulatory effect on both cell proliferation and angiogenesis. No change in biological activity is seen in amnions irradiated at 25 kGy, the sterilization dose used by the Philippine Nuclear Research Institute (PNRI) for the production of radiation-sterilized human amniotic membranes (RSHAM). However, it appears that amniotic angiogenic factors are more radiosensitive than its mitogenic components, evident from the depressed vascularization of the chorioallantoic membrane (CAM) exposed to 35 kGy-irradiated amnions. The dose of 35 kGy is at present the medical sterilization dose used at the Central Tissue Bank in Warsaw (Poland) for the preparation of their amnion allografts. (Authors)

  7. Anti-angiogenic activity and phytochemical screening of fruit fractions from Vitex agnus castus.

    Science.gov (United States)

    Certo, Giovanna; Costa, Rosaria; D'Angelo, Valeria; Russo, Marina; Albergamo, Ambrogina; Dugo, Giacomo; Germanò, Maria Paola

    2017-12-01

    Although the antitumour activity of Vitex agnus castus fruits has been already addressed, no work has yet assessed their anti-angiogenic potential. To this purpose, several extractive fractions of such fruits were tested on zebrafish embrios by EAP assay, so that only the bioactive fractions could be subsequently tested on the chick chorioallantoic membrane by CAM assay. Bioactive fractions were also phytochemically screened to identify those bioactive compounds responsible for anti-angiogenic activity. A marked inhibition of vessel formation was detected only in zebrafish embryos treated with chloroform or ethyl acetate fractions. Considering CAM assay, chloroform fraction induced a strong reduction of microvasculature and haemoglobin content; while lower anti-angiogenic effects of the ethyl acetate fraction were determined. Phytochemical analyses confirmed the presence of several bioactive anti-angiogenic compounds. Overall, obtained preliminary results highlighted a potential anti-angiogenic activity of V. agnus castus fruits.

  8. MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia.

    Directory of Open Access Journals (Sweden)

    Zhong Hua

    Full Text Available MicroRNAs (miRNAs are a class of 20-24 nt non-coding RNAs that regulate gene expression primarily through post-transcriptional repression or mRNA degradation in a sequence-specific manner. The roles of miRNAs are just beginning to be understood, but the study of miRNA function has been limited by poor understanding of the general principles of gene regulation by miRNAs. Here we used CNE cells from a human nasopharyngeal carcinoma cell line as a cellular system to investigate miRNA-directed regulation of VEGF and other angiogenic factors under hypoxia, and to explore the principles of gene regulation by miRNAs. Through computational analysis, 96 miRNAs were predicted as putative regulators of VEGF. But when we analyzed the miRNA expression profile of CNE and four other VEGF-expressing cell lines, we found that only some of these miRNAs could be involved in VEGF regulation, and that VEGF may be regulated by different miRNAs that were differentially chosen from 96 putative regulatory miRNAs of VEGF in different cells. Some of these miRNAs also co-regulate other angiogenic factors (differential regulation and co-regulation principle. We also found that VEGF was regulated by multiple miRNAs using different combinations, including both coordinate and competitive interactions. The coordinate principle states that miRNAs with independent binding sites in a gene can produce coordinate action to increase the repressive effect of miRNAs on this gene. By contrast, the competitive principle states when multiple miRNAs compete with each other for a common binding site, or when a functional miRNA competes with a false positive miRNA for the same binding site, the repressive effects of miRNAs may be decreased. Through the competitive principle, false positive miRNAs, which cannot directly repress gene expression, can sometimes play a role in miRNA-mediated gene regulation. The competitive principle, differential regulation, multi-miRNA binding sites, and false

  9. Expression of VEGF₁₆₅b, VEGFR1, VEGFR2 and CD34 in benign and malignant tumors of parotid glands.

    Science.gov (United States)

    Błochowiak, Katarzyna J; Sokalski, Jerzy; Bodnar, Magdalena B; Trzybulska, Dorota; Marszałek, Andrzej K; Witmanowski, Henryk

    2018-01-01

    Vascular endothelial growth factor (VEGF) is an angiogenic factor and could be involved in the pathogenesis of salivary gland tumors. VEGF exerts its biological function by binding to its receptors, VEGFR1 and VEGFR2. An alternative splice variant of VEGF (VEGFxxxb) is an anti-angiogenic factor. Binding VEGF165b with VEGFR2 results in an impaired angiogenic response. The imbalance of VEGFxxx and VEGFxxxb isoforms can underpin pathological angiogenesis. The purpose of this study was to evaluate and compare the expression of VEGF165b, VEGFR1, VEGFR2, and CD34 in benign and malignant parotid gland tumors and to explore the possible correlations between their expression and clinicopathological features of tumors. The study was performed on archived paraffin-embedded tissue samples derived from 70 patients with benign and malignant parotid gland tumors (25 with malignant tumors, 23 with pleomorphic adenoma and 22 with Warthin's tumor). Immunohistochemical staining of selected tissue sections was performed using monoclonal antibodies. Immunohistochemical staining of selected molecules was used for evaluation of their expression in tissue sections. There were no statistically significant differences in the expression of the selected proteins localized in the tumor and surgical margin taken from the same patient. Expression of VEGFR2 correlated with VEGF165b in mixed tumors. There was a statistically significant difference in the expression of VEGFR1 in malignant tumors between females and males, and between the expression of VEGFR1 and the score of T classification in malignant tumors. VEGF165b cannot be treated as a prognostic factor. VEGF receptors correlated with selected clinicopathological data of malignant tumors, indicating their possible role as a prognostic marker. The balance of VEGF isoforms have a limited influence on the development of parotid glands tumors. The correlation between VEGF165b and VEGFR2 in mixed tumors suggests the existence of an additional

  10. Acidic pH reduces VEGF-mediated endothelial cell responses by downregulation of VEGFR-2; relevance for anti-angiogenic therapies.

    Science.gov (United States)

    Faes, Seraina; Uldry, Emilie; Planche, Anne; Santoro, Tania; Pythoud, Catherine; Demartines, Nicolas; Dormond, Olivier

    2016-12-27

    Anti-angiogenic treatments targeting the vascular endothelial growth factor or its receptors have shown clinical benefits. However, impact on long-term survival remains limited. Solid tumors display an acidic microenvironment that profoundly influences their biology. Consequences of acidity on endothelial cells and anti-angiogenic therapies remain poorly characterized and hence are the focus of this study. We found that exposing endothelial cells to acidic extracellular pH resulted in reduced cell proliferation and migration. Also, whereas VEGF increased endothelial cell proliferation and survival at pH 7.4, it had no effect at pH 6.4. Furthermore, in acidic conditions, stimulation of endothelial cells with VEGF did not result in activation of downstream signaling pathways such as AKT. At a molecular level, acidity significantly decreased the expression of VEGFR-2 by endothelial cells. Consequently, anti-angiogenic therapies that target VEGFR-2 such as sunitinib and sorafenib failed to block endothelial cell proliferation in acidic conditions. In vivo, neutralizing tumor acidity with sodium bicarbonate increased the percentage of endothelial cells expressing VEGFR-2 in tumor xenografts. Furthermore, combining sodium bicarbonate with sunitinib provided stronger anti-cancer activity than either treatment alone. Histological analysis showed that sunitinib had a stronger anti-angiogenic effect when combined with sodium bicarbonate. Overall, our results show that endothelial cells prosper independently of VEGF in acidic conditions partly as a consequence of decreased VEGFR-2 expression. They further suggest that strategies aiming to raise intratumoral pH can improve the efficacy of anti-VEGF treatments.

  11. URG4/URGCP enhances the angiogenic capacity of human hepatocellular carcinoma cells in vitro via activation of the NF-κB signaling pathway

    International Nuclear Information System (INIS)

    Xing, Sizhong; Zhang, Bing; Hua, Ruixi; Tai, William Chi-shing; Zeng, Zhirong; Xie, Binhui; Huang, Chenghui; Xue, Jisu; Xiong, Shiqiu; Yang, Jianyong; Liu, Side; Li, Heping

    2015-01-01

    Angiogenesis is essential for tumor growth. Hepatocellular carcinoma (HCC) is characterized by hypervascularity; high levels of angiogenesis are associated with poor prognosis and a highly invasive phenotype in HCC. Up-regulated gene-4 (URG4), also known as upregulator of cell proliferation (URGCP), is overexpressed in multiple tumor types and has been suggested to act as an oncogene. This study aimed to elucidate the effect of URG4/URGCP on the angiogenic capacity of HCC cells in vitro. Expression of URG4/URGCP in HCC cell lines and normal liver epithelial cell lines was examined by Western blotting and quantitative real-time PCR. URG4/URGCP was stably overexpressed or transiently knocked down using a shRNA in two HCC cell lines. The human umbilical vein endothelial cell (HUVEC) tubule formation and Transwell migration assays and chicken chorioallantoic membrane (CAM) assay were used to examine the angiogenic capacity of conditioned media from URG4/URGCP-overexpressing and knockdown cells. A luciferase reporter assay was used to examine the transcriptional activity of nuclear factor kappa – light – chain - enhancer of activated B cells (NF-κB). NF-κB was inhibited by overexpressing degradation-resistant mutant inhibitor of κB (IκB)-α. Expression of vascular endothelial growth factor C (VEGFC), tumor necrosis factor-α (TNFα), interleukin (IL)-6, IL-8 and v-myc avian myelocytomatosis viral oncogene homolog (MYC) were examined by quantitative real-time PCR; VEGFC protein expression was analyzed using an ELISA. URG4/URGCP protein and mRNA expression were significantly upregulated in HCC cell lines. Overexpressing URG4/URGCP enhanced - while silencing URG4/URGCP decreased - the capacity of HCC cell conditioned media to induce HUVEC tubule formation and migration and neovascularization in the CAM assay. Furthermore, overexpressing URG4/URGCP increased - whereas knockdown of URG4/URGCP decreased - VEGFC expression, NF-κB transcriptional activity, the levels

  12. Platelet adhesion and degranulation induce pro-survival and pro-angiogenic signalling in ovarian cancer cells.

    Directory of Open Access Journals (Sweden)

    Karl Egan

    Full Text Available Thrombosis is common in ovarian cancer. However, the interaction of platelets with ovarian cancer cells has not been critically examined. To address this, we investigated platelet interactions in a range of ovarian cancer cell lines with different metastatic potentials [HIO-80, 59M, SK-OV-3, A2780, A2780cis]. Platelets adhered to ovarian cancer cells with the most significant adhesion to the 59M cell line. Ovarian cancer cells induced platelet activation [P-selectin expression] in a dose dependent manner, with the most significant activation seen in response to the 59M cell line. The platelet antagonists [cangrelor, MRS2179, and apyrase] inhibited 59M cell induced activation suggesting a P2Y12 and P2Y1 receptor mediated mechanism of platelet activation dependent on the release of ADP by 59M cells. A2780 and 59M cells potentiated PAR-1, PAR-4, and TxA2 receptor mediated platelet activation, but had no effect on ADP, epinephrine, or collagen induced activation. Analysis of gene expression changes in ovarian cancer cells following treatment with washed platelets or platelet releasate showed a subtle but valid upregulation of anti-apoptotic, anti-autophagy pro-angiogenic, pro-cell cycle and metabolic genes. Thus, ovarian cancer cells with different metastatic potential adhere and activate platelets differentially while both platelets and platelet releasate mediate pro-survival and pro-angiogenic signals in ovarian cancer cells.

  13. Targeting different angiogenic pathways with combination of curcumin, leflunomide and perindopril inhibits diethylnitrosamine-induced hepatocellular carcinoma in mice.

    Science.gov (United States)

    Nasr, Magda; Selima, Eman; Hamed, Omar; Kazem, Amany

    2014-01-15

    No effective chemopreventive agent has been approved against hepatocellular carcinoma (HCC) to date. Since HCC is one of the hypervascular solid tumors, blocking angiogenesis represents an intriguing approach to HCC chemoprevention. The aim of the current study was to examine the combined effect of the anti-angiogenic agents: leflunomide; a disease modifying antirheumatic drug, perindopril; an angiotensin converting enzyme inhibitor (ACEI) and curcumin; the active principle of turmeric, on diethylnitrosamine (DEN)-induced HCC in mice. Eight weeks following DEN administration, there was a significant rise in immunohistochemical staining of CD31-positive endothelial cells and consequently hepatic microvessel density (MVD) as compared to normal liver. DEN treatment was associated with elevation in hepatic vascular endothelial growth factor (VEGF) level as compared to normal controls (Pcurcumin alone abrogated the DEN-induced increased MVD as well as the elevated expression of VEGF, while only curcumin inhibited HIF-1α hepatic expression. Combination of these agents showed further inhibitory action on neovascularization and synergistic attenuation of hepatic VEGF (1954.27±115pg/ml) when compared to each single agent. Histopathological examination revealed a more beneficial chemopreventive activity in the combination group compared to each monotherapy. In conclusion, the combination treatment of leflunomide, perindopril and curcumin targeting different angiogenic pathways, resulted in synergistic inhibition of angiogenesis and consequently more effective chemoprevention of HCC. © 2013 Published by Elsevier B.V.

  14. Stimulating retinal blood vessel protection with hypoxia-inducible factor stabilization: identification of novel small-molecule hydrazones to inhibit hypoxia-inducible factor prolyl hydroxylase (an American Ophthalmological Society thesis).

    Science.gov (United States)

    Sears, Jonathan E; Hoppe, George

    2013-09-01

    To discover novel small molecules that inhibit hypoxia-inducible factor (HIF) prolyl hydroxylase (PHD), a key enzyme that regulates the posttranslational stability and hence activity of HIF. NIH3T3 cell line stably transfected with firefly luciferase under a HIF-1-inducible promoter was used to screen a Chembridge library of 34,000 small molecules of molecular weight 250 to 550 Da. Positive hits were considered at 4.5-fold higher luminescence than control. Selected compounds were validated in vitro. The most effective dose was then used to treat mice expressing firefly luciferase fused to the oxygen-dependent degradation domain (lucODD) in order to determine the location of the receptor for systemic treatment with small-molecule HIF PHD inhibitors. Twenty-three novel small molecules were discovered, the majority of which were hydrazones and hydrazines. Of the 23 compounds, each had different selectivity for expression of erythropoietin or vascular endothelial growth factor, two angiogenic, HIF-regulated gene products. In addition, each showed different selectivity for hepatocytes or kidney, or both or neither, when injected intraperitoneally in an in vivo reporter gene assay. The discovery of multiple small molecules that inhibit HIF PHD identifies new reagents to develop strategies to prevent the degradation of HIF by its selective PHD. These molecules are novel hypoxia mimetics that may provide new strategies to protect retinovasculature from hyperoxia.

  15. The effect of clomethiazole on plasma concentrations of interleukin-6, -8, -1beta, tumor necrosis factor-alpha, and neutrophil adhesion molecule expression during experimental extracorporeal circulation.

    LENUS (Irish Health Repository)

    Harmon, D

    2012-02-03

    Clomethiazole (CMZ), a neuroprotective drug, has antiinflammatory actions. We investigated the effects of CMZ administration on plasma concentrations of interleukin (IL)-6, IL-8, IL-1beta, tumor necrosis factor-alpha, and neutrophil adhesion molecule expression during experimental extracorporeal circulation. Five healthy volunteers each donated 500 mL of blood, which was subsequently divided into equal portions. Identical extracorporeal circuits were simultaneously primed with donated blood (250 mL) and circulated for 2 h at 37 degrees C. CMZ was added to 1 of the circuits of each pair to achieve a total plasma concentration of 40 micro mol\\/L. Blood samples were withdrawn at (i) donation, (ii) immediately after addition of CMZ, and at (iii) 30, 60, 90, and 120 min after commencing circulation. Plasma concentrations of IL-6, IL-8, and tumor necrosis factor-alpha were less in the CMZ group compared with control after 60 min of circulation (2.2 [0.3] versus 3.2 [0.4], 14.9 [4.8] versus 21.9 [18.4], 63.3 [43.5] versus 132.2 [118.9] pg\\/mL, respectively, P < 0.05). After 120 min of circulation, neutrophils from CMZ-treated circuits showed significantly less CD18 expression compared with control (237.5 [97.4] versus 280.5 [111.5], P = 0.03). The addition of CMZ to experimental extracorporeal circuits decreases the inflammatory response. This effect may be of clinical benefit by decreasing inflammatory-mediated neurological injury during cardiopulmonary bypass. IMPLICATIONS: Enhancement of gamma-aminobutyric acid(A)-mediated effects by clomethiazole (CMZ) and associated neuroprotection has been established in animal models of cerebral ischemia. In an ex vivo study, we demonstrated antiinflammatory activity of CMZ in experimental extracorporeal circulation. This represents a potential neuroprotective mechanism of CMZ in patients undergoing coronary artery bypass surgery.

  16. Analysis of global gene expression profile of rice in response to methylglyoxal indicates its possible role as a stress signal molecule

    Directory of Open Access Journals (Sweden)

    Charanpreet eKaur

    2015-09-01

    Full Text Available Methylglyoxal (MG is a toxic metabolite produced primarily as a byproduct of glycolysis. Being a potent glycating agent, it can readily bind macromolecules like DNA, RNA or proteins, modulating their expression and activity. In plants, despite the known inhibitory effects of MG on growth and development, still limited information is available about the molecular mechanisms and response pathways elicited upon elevation in MG levels. To gain insight into the molecular basis of MG response, we have investigated changes in global gene expression profiles in rice upon exposure to exogenous MG using GeneChip microarrays. Initially, growth of rice seedlings was monitored in response to increasing MG concentrations which could retard plant growth in a dose-dependent manner. Upon exposure to 10 mM concentration of MG, a total of 1685 probe sets were up- or down-regulated by more than 1.5-fold in shoot tissues within 16 h. These were classified into ten functional categories. The genes involved in signal transduction such as, protein kinases and transcription factors, were significantly over-represented in the perturbed transcriptome, of which several are known to be involved in abiotic and biotic stress response indicating a cross-talk between MG-responsive and stress-responsive signal transduction pathways. Through in silico studies, we could predict 7-8 bp long conserved motif as a possible MG-responsive element (MGRE in the 1 kb upstream region of genes that were more than ten-fold up- or down-regulated in the analysis. Since several perturbations were found in signaling cascades in response to MG, we hereby suggest that it plays an important role in signal transduction probably acting as a stress signal molecule.

  17. Detection of vascular cell adhesion molecule-1 expression with USPIO-enhanced molecular MRI in a mouse model of cerebral ischemia

    International Nuclear Information System (INIS)

    Frechou, M.; Beray-Berthat, V.; Plotkine, M.; Marchand-Leroux, C.; Margaill, I.; Raynaud, J.S.; Gombert, F.; Lancelot, E.; Ballet, S.; Robert, P.; Louin, G.; Meriaux, S.

    2013-01-01

    Vascular damage plays a critical role after stroke, leading notably to edema, hemorrhages and stroke recurrence. Tools to characterize the vascular lesion are thus a real medical need. In this context, the specific nano-particular contrast agent P03011, an USPIO (ultra-small superparamagnetic iron oxide) conjugated to a peptide that targets VCAM-1 (vascular cell adhesion molecule-1), was developed to detect this major component of the vascular inflammatory response. This study aimed to make the proof of concept of the capacity of this targeted USPIO to detect VCAM-1 with MRI after cerebral ischemia in mouse. The time course of VCAM-1 expression was first examined by immunohistochemistry in our model of cerebral ischemia-reperfusion. Secondly, P03011 or non-targeted USPIO P03007 were injected 5 h after ischemia (100 mmol iron kg -1 ; i.v.) and in vivo and ex vivo MRI were performed 24 h after ischemia onset. Double labeling immunofluorescence was then performed on brain slices in order to detect both USPIO and VCAM-1. VCAM-1 expression was significantly up-regulated 24 h after ischemia in our model. In animals receiving P03011, both in vivo and ex vivo MRI performed 24 h after ischemia onset showed hypointense foci which could correspond to iron particles. Histological analysis showed a co-localization of the targeted USPIO and VCAM-1. This study demonstrates that VCAM-1 detection is possible with the USPIO P03011 in a model of cerebral ischemia. This kind of contrast agent could be an interesting clinical tool to characterize ischemic lesions in terms of vascular damage. (authors)

  18. Inactivated Sendai virus particle upregulates cancer cell expression of intercellular adhesion molecule-1 and enhances natural killer cell sensitivity on cancer cells.

    Science.gov (United States)

    Li, Simin; Nishikawa, Tomoyuki; Kaneda, Yasufumi

    2017-12-01

    We have already reported that the inactivated Sendai virus (hemagglutinating virus of Japan; HVJ) envelope (HVJ-E) has multiple anticancer effects, including induction of cancer-selective cell death and activation of anticancer immunity. The HVJ-E stimulates dendritic cells to produce cytokines and chemokines such as β-interferon, interleukin-6, chemokine (C-C motif) ligand 5, and chemokine (C-X-C motif) ligand 10, which activate both CD8 + T cells and natural killer (NK) cells and recruit them to the tumor microenvironment. However, the effect of HVJ-E on modulating the sensitivity of cancer cells to immune cell attack has yet to be investigated. In this study, we found that HVJ-E induced the production of intercellular adhesion molecule-1 (ICAM-1, CD54), a ligand of lymphocyte function-associated antigen 1, in several cancer cell lines through the activation of nuclear factor-κB downstream of retinoic acid-inducible gene I and the mitochondrial antiviral signaling pathway. The upregulation of ICAM-1 on the surface of cancer cells increased the sensitivity of cancer cells to NK cells. Knocking out expression of ICAM-1 in MDA-MB-231 cells using the CRISPR/Cas9 method significantly reduced the killing effect of NK cells on ICAM-1-depleted MDA-MB-231 cells. In addition, HVJ-E suppressed tumor growth in MDA-MB-231 tumor-bearing SCID mice, and the HVJ-E antitumor effect was impaired when NK cells were depleted by treatment with the anti-asialo GM1 antibody. Our findings suggest that HVJ-E enhances NK cell sensitivity against cancer cells by increasing ICAM-1 expression on the cancer cell surface. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  19. Downregulation of Securin by the variant RNF213 R4810K (rs112735431, G>A) reduces angiogenic activity of induced pluripotent stem cell-derived vascular endothelial cells from moyamoya patients

    Energy Technology Data Exchange (ETDEWEB)

    Hitomi, Toshiaki [Department of Health and Environmental Sciences, Kyoto University, Kyoto (Japan); Habu, Toshiyuki [Radiation Biology Center, Kyoto University, Kyoto (Japan); Kobayashi, Hatasu; Okuda, Hiroko; Harada, Kouji H. [Department of Health and Environmental Sciences, Kyoto University, Kyoto (Japan); Osafune, Kenji [Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto (Japan); Taura, Daisuke; Sone, Masakatsu [Department of Medicine and Clinical Science, Kyoto University, Kyoto (Japan); Asaka, Isao; Ameku, Tomonaga; Watanabe, Akira; Kasahara, Tomoko; Sudo, Tomomi; Shiota, Fumihiko [Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto (Japan); Hashikata, Hirokuni; Takagi, Yasushi [Department of Neurosurgery, Kyoto University,Kyoto (Japan); Morito, Daisuke [Faculty of Life Sciences, Kyoto Sangyo University, Kyoto (Japan); Miyamoto, Susumu [Department of Neurosurgery, Kyoto University,Kyoto (Japan); Nakao, Kazuwa [Department of Medicine and Clinical Science, Kyoto University, Kyoto (Japan); Koizumi, Akio, E-mail: koizumi.akio.5v@kyoto-u.ac.jp [Department of Health and Environmental Sciences, Kyoto University, Kyoto (Japan)

    2013-08-16

    Highlights: •Angiogenic activities were reduced in iPSECs from MMD patients. •Many mitosis-regulated genes were downregulated in iPSECs from MMD patients. •RNF213 R4810K downregulated Securin and inhibited angiogenic activity. •Securin suppression by siRNA reduced angiogenic activities of iPSECs and HUVECs. -- Abstract: Moyamoya disease (MMD) is a cerebrovascular disease characterized by occlusive lesions in the circle of Willis. The RNF213 R4810K polymorphism increases susceptibility to MMD. Induced pluripotent stem cells (iPSCs) were established from unaffected fibroblast donors with wild-type RNF213 alleles, and from carriers/patients with one or two RNF213 R4810K alleles. Angiogenic activities of iPSC-derived vascular endothelial cells (iPSECs) from patients and carriers were lower (49.0 ± 19.4%) than from wild-type subjects (p < 0.01). Gene expression profiles in iPSECs showed that Securin was down-regulated (p < 0.01) in carriers and patients. Overexpression of RNF213 R4810K downregulated Securin, inhibited angiogenic activity (36.0 ± 16.9%) and proliferation of humanumbilical vein endothelial cells (HUVECs) while overexpression of RNF213 wild type did not. Securin expression was downregulated using RNA interference techniques, which reduced the level of tube formation in iPSECs and HUVECs without inhibition of proliferation. RNF213 R4810K reduced angiogenic activities of iPSECs from patients with MMD, suggesting that it is a promising in vitro model for MMD.

  20. Expression and clinical value of the soluble major histocompatibility complex class I-related chain A molecule in the serum of patients with renal tumors.

    Science.gov (United States)

    Zhao, Y-K; Jia, C-M; Yuan, G-J; Liu, W; Qiu, Y; Zhu, Q-G

    2015-06-29

    We investigated the expression and clinical value of the soluble major histocompatibility complex class I-related chain A (sMICA) molecule in the serum of patients with renal tumors. Sixty patients diagnosed with renal tumors were enrolled in the experimental group, whereas 20 healthy volunteers served as the control group. The sMICA levels were measured via enzyme-linked immunosorbent assay, and the results were analyzed in combination with data from pathol-ogy examination. The experimental group had a statistically significant higher sMICA level (P < 0.05) than the control group. The sMICA level was higher in patients with malignant tumors than in those with be-nign tumors. We also observed a positive relationship among different tumor-node-metastasis (TNM) pathological stages with more advanced diseases exhibiting higher sMICA levels. As a tumor-associated antigen, MICA has a close relationship with renal tumorigenesis and immune es-cape. Our results indicated that sMICA levels were related to tumor pathol-ogy, TNM stage, and metastasis. Therefore, sMICA might be a potential marker for tumor characteristics, prognosis, and recurrence prediction.

  1. Expression, crystallization and preliminary X-ray diffraction analysis of the CMM2 region of the Arabidopsis thaliana Morpheus' molecule 1 protein.

    Science.gov (United States)

    Petty, Tom J; Nishimura, Taisuke; Emamzadah, Soheila; Gabus, Caroline; Paszkowski, Jerzy; Halazonetis, Thanos D; Thore, Stéphane

    2010-08-01

    Of the known epigenetic control regulators found in plants, the Morpheus' molecule 1 (MOM1) protein is atypical in that the deletion of MOM1 does not affect the level of epigenetic marks controlling the transcriptional status of the genome. A short 197-amino-acid fragment of the MOM1 protein sequence can complement MOM1 deletion when coupled to a nuclear localization signal, suggesting that this region contains a functional domain that compensates for the loss of the full-length protein. Numerous constructs centred on the highly conserved MOM1 motif 2 (CMM2) present in these 197 residues have been generated and expressed in Escherichia coli. Following purification and crystallization screening, diamond-shaped single crystals were obtained that diffracted to approximately 3.2 A resolution. They belonged to the trigonal space group P3(1)21 (or P3(2)21), with unit-cell parameters a=85.64, c=292.74 A. Structure determination is ongoing.

  2. Expression, crystallization and preliminary X-ray diffraction analysis of the CMM2 region of the Arabidopsis thaliana Morpheus’ molecule 1 protein

    Science.gov (United States)

    Petty, Tom J.; Nishimura, Taisuke; Emamzadah, Soheila; Gabus, Caroline; Paszkowski, Jerzy; Halazonetis, Thanos D.; Thore, Stéphane

    2010-01-01

    Of the known epigenetic control regulators found in plants, the Morpheus’ molecule 1 (MOM1) protein is atypical in that the deletion of MOM1 does not affect the level of epigenetic marks controlling the transcriptional status of the genome. A short 197-amino-acid fragment of the MOM1 protein sequence can complement MOM1 deletion when coupled to a nuclear localization signal, suggesting that this region contains a functional domain that compensates for the loss of the full-length protein. Numerous constructs centred on the highly conserved MOM1 motif 2 (CMM2) present in these 197 residues have been generated and expressed in Escherichia coli. Following purification and crystallization screening, diamond-shaped single crystals were obtained that diffracted to ∼3.2 Å resolution. They belonged to the trigonal space group P3121 (or P3221), with unit-cell parameters a = 85.64, c = 292.74 Å. Structure determination is ongoing. PMID:20693667

  3. Molecule Matters

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 4. Molecule Matters – van der Waals Molecules - History and Some Perspectives on Intermolecular Forces. E Arunan. Feature Article Volume 14 Issue 4 April 2009 pp 346-356 ...

  4. Impact of the putative cancer stem cell markers and growth factor receptor expression on the sensitivity of ovarian cancer cells to treatment with various forms of small molecule tyrosine kinase inhibitors and cytotoxic drugs

    OpenAIRE

    Puvanenthiran, Soozana; Essapen, Sharadah; Seddon, Alan M.; Modjtahedi, Helmout

    2016-01-01

    Increased expression and activation of human epidermal growth factor receptor (EGFR) and HER-2 have been reported in numerous cancers. The aim of this study was to determine the sensitivity of a large panel of human ovarian cancer cell lines (OCCLs) to treatment with various forms of small molecule tyrosine kinase inhibitors (TKIs) and cytotoxic drugs. The aim was to see if there was any association between the protein expression of various biomarkers including three putative ovarian cancer s...

  5. Regulated necrosis-related molecule mRNA expression in humans and mice and in murine acute tissue injury and systemic autoimmunity leading to progressive organ damage, and progressive fibrosis.

    Science.gov (United States)

    Honarpisheh, Mohsen; Desai, Jyaysi; Marschner, Julian A; Weidenbusch, Marc; Lech, Maciej; Vielhauer, Volker; Anders, Hans-Joachim; Mulay, Shrikant R

    2016-12-01

    The species-specific, as well as organ-specific expression of regulated necrosis (RN)-related molecules, is not known. We determined the expression levels of tumour necrosis factor receptor-1 (TNFR1), receptor activated protein kinase (RIPK)1, RIPK3, mixed lineage kinase domain-like (MLKL), CASP8, Fas-associated protein with death domain (FADD), cellular inhibitor of apoptosis protein (CIAP)1, CIAP2, glutathione peroxidase-4 (GPX4), cyclophilin D (CYPD), CASP1, NLRP3 and poly(ADP-ribose) polymerase-1 (PARP1) in human and mouse solid organs. We observed significant differences in expression of these molecules between human and mice. In addition, we characterized their expression profiles in acute as well as persistent tissue injury and chronic tissue remodelling using acute and chronic kidney injury models. We observed that the degree and pattern of induction of RN-related molecules were highly dependent on the trigger and disease pathogenesis. Furthermore, we studied their expression patterns in mice with lupus-like systemic autoimmunity, which revealed that the expression of MLKL, GPX4 and PARP1 significantly increased in the spleen along disease progression and CASP1, RIPK1, RIPK3 and CYPD were higher at the earlier stages but were significantly decreased in the later stages. In contrast, in the kidney, the expression of genes involved in pyroptosis, e.g. NLRP3 and CASP1 were significantly increased and TNFR1, RIPK1, RIPK3, CIAP1/2 and GPX4 were significantly decreased along the progression of lupus nephritis (LN). Thus, the organ- and species-specific expression of RN-related molecules should be considered during designing experiments, interpreting the results as well as extrapolating the conclusions from one species or organ to another species or organ respectively. © 2016 The Author(s).

  6. Aminopeptidase A is a functional target in angiogenic blood vessels.

    Science.gov (United States)

    Marchiò, Serena; Lahdenranta, Johanna; Schlingemann, Reinier O; Valdembri, Donatella; Wesseling, Pieter; Arap, Marco A; Hajitou, Amin; Ozawa, Michael G; Trepel, Martin; Giordano, Ricardo J; Nanus, David M; Dijkman, Henri B P M; Oosterwijk, Egbert; Sidman, Richard L; Cooper, Max D; Bussolino, Federico; Pasqualini, Renata; Arap, Wadih

    2004-02-01

    We show that a membrane-associated protease, aminopeptidase A (APA), is upregulated and enzymatically active in blood vessels of human tumors. To gain mechanistic insight, we evaluated angiogenesis in APA null mice. We found that, although these mice develop normally, they fail to mount the expected angiogenic response to hypoxia or growth factors. We then isolated peptide inhibitors of APA from a peptide library and show that they specifically bind to and inhibit APA, suppress migration and proliferation of endothelial cells, inhibit angiogenesis, and home to tumor blood vessels. Finally, we successfully treated tumor-bearing mice with APA binding peptides or anti-APA blocking monoclonal antibodies. These data show that APA is a regulator of blood vessel formation, and can serve as a functional vascular target.

  7. Intra-image referencing for simplified assessment of HER2-expression in breast cancer metastases using the Affibody molecule ABY-025 with PET and SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Sandberg, Dan; Tolmachev, Vladimir; Olofsson, Helena; Carlsson, Joergen; Lindman, Henrik [Uppsala University, Department of Immunology, Genetics and Pathology, Uppsala (Sweden); Velikyan, Irina; Soerensen, Jens [Uppsala University, Section of Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala (Sweden); Wennborg, Anders; Feldwisch, Joachim [Affibody AB, Solna (Sweden)

    2017-08-15

    In phase I/II-studies radiolabelled ABY-025 Affibody molecules identified human epidermal growth factor receptor 2 (HER2) expression in breast cancer metastases using PET and SPECT imaging. Here, we wanted to investigate the utility of a simple intra-image normalization using tumour-to-reference tissue-ratio (T/R) as a HER2 status discrimination strategy to overcome potential issues related to cross-calibration of scanning devices. Twenty-three women with pre-diagnosed HER2-positive/negative metastasized breast cancer were scanned with [{sup 111}In]-ABY-025 SPECT/CT (n = 7) or [{sup 68}Ga]-ABY-025 PET/CT (n = 16). Uptake was measured in all metastases and in normal spleen, lung, liver, muscle, and blood pool. Normal tissue uptake variation and T/R-ratios were established for various time points and for two different doses of injected peptide from a total of 94 whole-body image acquisitions. Immunohistochemistry (IHC) was used to verify HER2 expression in 28 biopsied metastases. T/R-ratios were compared to IHC findings to establish the best reference tissue for each modality and each imaging time-point. The impact of shed HER2 in serum was investigated. Spleen was the best reference tissue across modalities, followed by blood pool and lung. Spleen-T/R was highly correlated to PET SUV in metastases after 2 h (r = 0.96,P < 0.001) and reached an accuracy of 100% for discriminating IHC HER2-positive and negative metastases at 4 h (PET) and 24 h (SPECT) after injection. In a single case, shed HER2 resulted in intense tracer retention in blood. In the remaining patients shed HER2 was elevated, but without significant impact on ABY-025 biodistribution. T/R-ratios using spleen as reference tissue accurately quantify HER2 expression with radiolabelled ABY-025 imaging in breast cancer metastases with SPECT and PET. Tracer binding to shed HER2 in serum might affect quantification in the extreme case. (orig.)

  8. Anti-angiogenic SPARC peptides inhibit progression of neuroblastoma tumors

    Directory of Open Access Journals (Sweden)

    Tian Yufeng

    2010-06-01

    Full Text Available Abstract Background New, more effective strategies are needed to treat highly aggressive neuroblastoma. Our laboratory has previously shown that full-length Secreted Protein Acidic and Rich in Cysteine (SPARC and a SPARC peptide corresponding to the follistatin domain of the protein (FS-E potently block angiogenesis and inhibit the growth of neuroblastoma tumors in preclinical models. Peptide FS-E is structurally complex and difficult to produce, limiting its potential as a therapeutic in the clinic. Results In this study, we synthesized two smaller and structurally more simple SPARC peptides, FSEN and FSEC, that respectively correspond to the N-and C-terminal loops of peptide FS-E. We show that both peptides FSEN and FSEC have anti-angiogenic activity in vitro and in vivo, although FSEC is more potent. Peptide FSEC also significantly inhibited the growth of neuroblastoma xenografts. Histologic examination demonstrated characteristic features of tumor angiogenesis with structurally abnormal, tortuous blood vessels in control neuroblastoma xenografts. In contrast, the blood vessels observed in tumors, treated with SPARC peptides, were thin walled and structurally more normal. Using a novel method to quantitatively assess blood vessel abnormality we demonstrated that both SPARC peptides induced changes in blood vessel architecture that are consistent with blood vessel normalization. Conclusion Our results demonstrate that SPARC peptide FSEC has potent anti-angiogenic and anti-tumorigenic effects in neuroblastoma. Its simple structure and ease of production indicate that it may have clinical utility in the treatment of high-risk neuroblastoma and other types of pediatric and adult cancers, which depend on angiogenesis.

  9. Angiogenic and inflammatory biomarkers in the differentiation of pulmonary hypertension.

    Science.gov (United States)

    Säleby, Joanna; Bouzina, Habib; Lundgren, Jakob; Rådegran, Göran

    2017-10-01

    Pulmonary hypertension (PH) is a serious condition where diagnosis often is delayed due to unspecific symptoms. New methods to diagnose and differentiate PH earlier would therefore be of great value. The aim of this study was therefore to evaluate the relationship between circulating angiogenic and inflammatory biomarkers and various hemodynamic variables in relation to different causes of PH. Plasma samples from 63 patients at diagnosis were extracted from Lund Cardio Pulmonary Register, separated into pulmonary arterial hypertension (PAH, n = 22), chronic thromboembolic pulmonary hypertension (CTEPH, n = 15) and left heart disease (LHD) with (n = 21) and without (n = 5) PH. Blood samples from eight control subjects devoid of PH were additionally evaluated. Plasma concentrations of angiogenic (PlGF, Tie2, VEGF-A, VEGF-D, bFGF, sFlt-1) and inflammatory (IL-6, IL-8, TNF-α) biomarkers were analysed and related to hemodynamic variables. SFlt-1 (p < .004) and VEGF-A (p < .035) were higher in all PH groups compared to controls. TNF-α (p < .030) were elevated in PAH patients in relation to the other PH groups as well as controls. Likewise, plasma VEGF-D (p < .008) were elevated in LHD with PH compared to the other groups with PH and controls. In PAH, higher sFlt-1 concentrations correlated to a worse state of hemodynamics. Our findings indicate that sFlt-1 and VEGF-A may be future tools when discriminating PH from non-PH. Moreover, TNF-α may differentiate PAH and VEGF- D may differentiate LHD with PH, from the other groups with PH, as well as controls. SFlt-1 may furthermore play a role as a future marker of disease severity.

  10. Anti-angiogenic and cytotoxicity studies of some medicinal plants.

    Science.gov (United States)

    Ng, Kwok-Wen; Salhimi, Salizawati Muhamad; Majid, Amin Malik; Chan, Kit-Lam

    2010-06-01

    Angiogenesis plays an important role in tumor formation and proliferation. The development of anti-angiogenic agents to block new blood vessel growth will inhibit metastasis and induce apoptosis of the cancer cells. Nine medicinal plants, Strobilanthes crispus, Phyllanthus niruri, Phyllanthus pulcher, Phyllanthus urinaria, Ailanthus malabarica, Irvingia malayana, Smilax myosotiflora, Tinospora crispa and blumea balsamifera were screened for anti-angiogenic properties using the rat aortic ring assay. Of these, the methanol extracts of Phyllanthus species and Irvingia malayana exhibited the highest activity. At 100 microg/mL, P. pulcher, P. niruri, P. urinaria and I. malayana recorded an inhibition of 78.8 %, 59.5 %, 56.7 % and 46.4 %, respectively, against rat aortic vascular growth. Their activities were further investigated by the tube formation assay involving human umbilical vein endothelial cells (HUVEC) on Matrigel. I. malayana, P. niruri and P. urinaria showed a significant decrease of 45.5, 37.9 and 35.6 %, respectively, whilst P. pulcher showed a much lower decrease of 15.5 % when compared with that of the rat aortic ring assay. All the plant extracts were evaluated for cytotoxicity on a panel of human cancer cell lines using the MTT assay. None of them displayed acute cytotoxicity. The HPLC of P. niruri, P. urinaria and P. pulcher indicated the extracts contained some identical chromatographic peaks of lignans. Further fractionation of I. malayana yielded betulinic acid reported in this plant for the first time and at 100 microg/mL it exhibited a 67.3 % inhibition of vessel outgrowth and 46.5 % inhibition of tube formation. Georg Thieme Verlag KG Stuttgart-New York.

  11. Biocomposites of copper-containing mesoporous bioactive glass and nanofibrillated cellulose: Biocompatibility and angiogenic promotion in chronic wound healing application.

    Science.gov (United States)

    Wang, Xiaoju; Cheng, Fang; Liu, Jun; Smått, Jan-Henrik; Gepperth, David; Lastusaari, Mika; Xu, Chunlin; Hupa, Leena

    2016-12-01

    Biocomposites of copper-containing mesoporous bioactive glass (Cu-MBG) and nanofibrillated cellulose (NFC) were designated as potential dressing material for chronic wound healing. The phase composition and mesoporous micro-structure of the synthesized Cu-MBGs were elaborately characterized by combining several techniques, including TEM, SEM, XRD, SXAS and N 2 physisorption. High bioactivity of the Cu-MBG was confirmed in stimulated body fluids in vitro. A controlled dissolution of Cu from the glass suggests Cu-MBG a suitable source for Cu release in wound healing dressings. Depending on the content of Cu-MBG in the composite formulation, the composites were fabricated as membranes and aerogels. In biocompatibility assessment of the composites, a dose-dependent cytotoxicity of Cu 2+ on 3T3 fibroblasts was found. Importantly, a critical biological level of Cu 2+ below 10mg/L was suggested for the survival and growth of 3T3 fibroblasts. The Cu 2+ released from the composite aerogel of NFC and Cu-MBG showed a profound angiogenic effect in the 3D spheroid culture system of human umbilical vein endothelial cells. Moreover, the angiogenic gene expression of 3T3 fibroblast was upregulated in the real-time quantitative PCR analysis, which also confirms that the incorporation of Cu-MBG into NFC matrix enhances the proangiogenic potential of the biocomposites. In addition, composites of NFC and Cu-MBG also showed an inhibiting effect on the growth of E. coli. To address an urgent need in clinics on developing a new generation of therapeutic dressings with advanced functionalities, this study has exploited the utilization of Cu-containing mesoporous bioactive glass in the nanocellulose matrix to release Cu 2+ as therapeutic ions for its angiogenic effect on promoting wound healing. This manuscript reports research work on biomaterial design, fabrication development, material characterizations and bioassessments in 2D cellular studies. To utilize nanocellulose derived from the

  12. Atkins' molecules

    CERN Document Server

    Atkins, Peters

    2003-01-01

    Originally published in 2003, this is the second edition of a title that was called 'the most beautiful chemistry book ever written'. In it, we see the molecules responsible for the experiences of our everyday life - including fabrics, drugs, plastics, explosives, detergents, fragrances, tastes, and sex. With engaging prose Peter Atkins gives a non-technical account of an incredible range of aspects of the world around us, showing unexpected connections, and giving an insight into how this amazing world can be understood in terms of the atoms and molecules from which it is built. The second edition includes dozens of extra molecules, graphical presentation, and an even more accessible and enthralling account of the molecules themselves.

  13. Interstellar Molecules

    Science.gov (United States)

    Solomon, Philip M.

    1973-01-01

    Radioastronomy reveals that clouds between the stars, once believed to consist of simple atoms, contain molecules as complex as seven atoms and may be the most massive objects in our Galaxy. (Author/DF)

  14. Counterbalancing angiogenic regulatory factors control the rate of cancer progression and survival in a stage-specific manner.

    Science.gov (United States)

    Xie, Liang; Duncan, Michael B; Pahler, Jessica; Sugimoto, Hikaru; Martino, Margot; Lively, Julie; Mundel, Thomas; Soubasakos, Mary; Rubin, Kristofer; Takeda, Takaaki; Inoue, Masahiro; Lawler, Jack; Hynes, Richard O; Hanahan, Douglas; Kalluri, Raghu

    2011-06-14

    Whereas the roles of proangiogenic factors in carcinogenesis are well established, those of endogenous angiogenesis inhibitors (EAIs) remain to be fully elaborated. We investigated the roles of three EAIs during de novo tumorigenesis to further test the angiogenic balance hypothesis, which suggests that blood vessel development in the tumor microenvironment can be governed by a net loss of negative regulators of angiogenesis in addition to the well-established principle of up-regulated angiogenesis inducers. In a mouse model of pancreatic neuroendocrine cancer, administration of endostatin, thrombospondin-1, and tumstatin peptides, as well as deletion of their genes, reveal neoplastic stage-specific effects on angiogenesis, tumor progression, and survival, correlating with endothelial expression of their receptors. Deletion of tumstatin and thrombospondin-1 in mice lacking the p53 tumor suppressor gene leads to increased incidence and reduced latency of angiogenic lymphomas associated with diminished overall survival. The results demonstrate that EAIs are part of a balance mechanism regulating tumor angiogenesis, serving as intrinsic microenvironmental barriers to tumorigenesis.

  15. Counterbalancing angiogenic regulatory factors control the rate of cancer progression and survival in a stage-specific manner

    Science.gov (United States)

    Xie, Liang; Duncan, Michael B.; Pahler, Jessica; Sugimoto, Hikaru; Martino, Margot; Lively, Julie; Mundel, Thomas; Soubasakos, Mary; Rubin, Kristofer; Takeda, Takaaki; Inoue, Masahiro; Lawler, Jack; Hynes, Richard O.; Hanahan, Douglas; Kalluri, Raghu

    2011-01-01

    Whereas the roles of proangiogenic factors in carcinogenesis are well established, those of endogenous angiogenesis inhibitors (EAIs) remain to be fully elaborated. We investigated the roles of three EAIs during de novo tumorigenesis to further test the angiogenic balance hypothesis, which suggests that blood vessel development in the tumor microenvironment can be governed by a net loss of negative regulators of angiogenesis in addition to the well-established principle of up-regulated angiogenesis inducers. In a mouse model of pancreatic neuroendocrine cancer, administration of endostatin, thrombospondin-1, and tumstatin peptides, as well as deletion of their genes, reveal neoplastic stage-specific effects on angiogenesis, tumor progression, and survival, correlating with endothelial expression of their receptors. Deletion of tumstatin and thrombospondin-1 in mice lacking the p53 tumor suppressor gene leads to increased incidence and reduced latency of angiogenic lymphomas associated with diminished overall survival. The results demonstrate that EAIs are part of a balance mechanism regulating tumor angiogenesis, serving as intrinsic microenvironmental barriers to tumorigenesis. PMID:21622854

  16. Alteration of the cell adhesion molecule L1 expression in a specific subset of primary afferent neurons contributes to neuropathic pain.

    Science.gov (United States)

    Yamanaka, Hiroki; Obata, Koichi; Kobayashi, Kimiko; Dai, Yi; Fukuoka, Tetsuo; Noguchi, Koichi

    2007-02-01

    The cell adhesion molecule L1 (L1-CAM) plays important functional roles in the developing and adult nervous systems. Here we show that peripheral nerve injury induced dynamic post-transcriptional alteration of L1-CAM in the rat dorsal root ganglia (DRGs) and spinal cord. Sciatic nerve transection (SCNT) changed the expression of L1-CAM protein but not L1-CAM mRNA. In DRGs, SCNT induced accumulation of the L1-CAM into the surface of somata, which resulted in the formation of immunoreactive ring structures in a number of unmyelinated C-fiber neurons. These neurons with L1-CAM-immunoreactive ring structures were heavily colocalized with phosphorylated p38 MAPK. Western blot analysis revealed the increase of full-length L1-CAM and decrease of fragments of L1-CAM after SCNT in DRGs. Following SCNT, L1-CAM-immunoreactive profiles in the dorsal horn showed an increase mainly in pre-synaptic areas of laminae I-II with a delayed onset and colocalized with growth-associated protein 43. In contrast to DRGs, SCNT increased the proteolytic 80-kDa fragment of L1-CAM and decreased full-length L1-CAM in the spinal cord. The intrathecal injection of L1-CAM antibody for the extracellular domain of L1-CAM inhibited activation of p38 MAPK and emergence of ring structures of L1-CAM immunoreactivity in injured DRG neurons. Moreover, inhibition of extracellular L1-CAM binding by intrathecal administration of antibody suppressed the mechanical allodynia and thermal hyperalgesia induced by partial SCNT. Collectively, these data suggest that the modification of L1-CAM in nociceptive pathways might be an important pathomechanism of neuropathic pain.

  17. Cold atmospheric plasma (CAP changes gene expression of key molecules of the wound healing machinery and improves wound healing in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Stephanie Arndt

    Full Text Available Cold atmospheric plasma (CAP has the potential to interact with tissue or cells leading to fast, painless and efficient disinfection and furthermore has positive effects on wound healing and tissue regeneration. For clinical implementation it is necessary to examine how CAP improves wound healing and which molecular changes occur after the CAP treatment. In the present study we used the second generation MicroPlaSter ß® in analogy to the current clinical standard (2 min treatment time in order to determine molecular changes induced by CAP using in vitro cell culture studies with human fibroblasts and an in vivo mouse skin wound healing model. Our in vitro analysis revealed that the CAP treatment induces the expression of important key genes crucial for the wound healing response like IL-6, IL-8, MCP-1, TGF-ß1, TGF-ß2, and promotes the production of collagen type I and alpha-SMA. Scratch wound healing assays showed improved cell migration, whereas cell proliferation analyzed by XTT method, and the apoptotic machinery analyzed by protein array technology, was not altered by CAP in dermal fibroblasts. An in vivo wound healing model confirmed that the CAP treatment affects above mentioned genes involved in wound healing, tissue injury and repair. Additionally, we observed that the CAP treatment improves wound healing in mice, no relevant side effects were detected. We suggest that improved wound healing might be due to the activation of a specified panel of cytokines and growth factors by CAP. In summary, our in vitro human and in vivo animal data suggest that the 2 min treatment with the MicroPlaSter ß® is an effective technique for activating wound healing relevant molecules in dermal fibroblasts leading to improved wound healing, whereas the mechanisms which contribute to these observed effects have to be further investigated.

  18. Protein kinase A-alpha directly phosphorylates FoxO1 in vascular endothelial cells to regulate expression of vascular cellular adhesion molecule-1 mRNA.

    Science.gov (United States)

    Lee, Ji-Won; Chen, Hui; Pullikotil, Philomena; Quon, Michael J

    2011-02-25

    FoxO1, a forkhead box O class transcription factor, is abundant in insulin-responsive tissues. Akt, downstream from phosphatidylinositol 3-kinase in insulin signaling, phosphorylates FoxO1 at Thr(24), Ser(256), and Ser(319), negatively regulating its function. We previously reported that dehydroepiandrosterone-stimulated phosphorylation of FoxO1 in endothelial cells requires cAMP-dependent protein kinase α (PKA-α). Therefore, we hypothesized that FoxO1 is a novel direct substrate for PKA-α. Using an immune complex kinase assay with [γ-(32)P]ATP, purified PKA-α directly phosphorylated wild-type FoxO1 but not FoxO1-AAA (mutant with alanine substitutions at known Akt phosphorylation sites). Phosphorylation of wild-type FoxO1 (but not FoxO1-AAA) was detectable using phospho-specific antibodies. Similar results were obtained using purified GST-FoxO1 protein as the substrate. Thus, FoxO1 is a direct substrate for PKA-α in vitro. In bovine aortic endothelial cells, interaction between endogenous PKA-α and endogenous FoxO1 was detected by co-immunoprecipitation. In human aortic endothelial cells (HAEC), pretreatment with H89 (PKA inhibitor) or siRNA knockdown of PKA-α decreased forskolin- or prostaglandin E(2)-stimulated phosphorylation of FoxO1. In HAEC transfected with a FoxO-promoter luciferase reporter, co-expression of the catalytic domain of PKA-α, catalytically inactive mutant PKA-α, or siRNA against PKA-α caused corresponding increases or decreases in transactivation of the FoxO promoter. Expression of vascular cellular adhesion molecule-1 mRNA, up-regulated by FoxO1 in endothelial cells, was enhanced by siRNA knockdown of PKA-α or treatment of HAEC with the PKA inhibitor H89. Adhesion of monocytes to endothelial cells was enhanced by H89 treatment or overexpression of FoxO1-AAA, similar to effects of TNF-α treatment. We conclude that FoxO1 is a novel physiological substrate for PKA-α in vascular endothelial cells.

  19. Ultraviolet radiation can either suppress or induce expression of intercellular adhesion molecule 1 (ICAM-1) on the surface of cultured human keratinocytes

    International Nuclear Information System (INIS)

    Norris, D.A.; Lyons, M.B.; Middleton, M.H.; Yohn, J.J.; Kashihara-Sawami, M.

    1990-01-01

    Interactions of the ligand/receptor pair LFA-1(CD11a/CD18) and ICAM-1(CD54) initiate and control the cell-cell interactions of leukocytes and interactions of leukocytes with parenchymal cells in all phases of the immune response. Induction of the intercellular adhesion molecule 1 (ICAM-1) on the surface of epidermal keratinocytes has been proposed as an important regulator of contact-dependent aspects of cutaneous inflammation. Ultraviolet radiation (UVR) also modifies cutaneous inflammation, producing both up- and down-regulation of contact hypersensitivity. We have found that UVR has a biphasic effect on the induction of keratinocyte CD54. Using immunofluorescence and FACS techniques to quantitate cell-surface CD54 staining, we have shown that UVR significantly (p less than 0.01) inhibits keratinocyte CD54 induction by gamma interferon 24 h after irradiation. However, at 48, 72, and 96 h after UVR, CD54 expression is significantly induced to levels even greater than are induced by gamma interferon (20 U/ml). In addition, at 48, 72, or 96 h following UVR (30-100 mJ/cm2), the gamma-interferon-induced CD54 expression on human keratinocytes is also strongly (p less than 0.05 to p less than 0.001) enhanced. In this cell-culture system, gamma interferon and TNF-alpha are both strong CD54 inducers and are synergistic, but GM-CSF, TFG-beta, and IL-1 have no direct CD54-inducing effects. Thus the effects of UVR on CD54 induction are biphasic, producing inhibition at 24 h and induction at 48, 72, and 96 h. This effect on CD54 may contribute to the biphasic effects of UVR on delayed hypersensitivity in vivo. The early inhibition of ICAM-1 by UVR may also contribute to the therapeutic effects of UVR. We also speculate that the late induction of ICAM-1 by UVR might be an important step in the induction of photosensitive diseases such as lupus erythematosus

  20. Social defeat promotes a reactive endothelium in a brain region-dependent manner with increased expression of key adhesion molecules, selectins and chemokines associated with the recruitment of myeloid cells to the brain.

    Science.gov (United States)

    Sawicki, C M; McKim, D B; Wohleb, E S; Jarrett, B L; Reader, B F; Norden, D M; Godbout, J P; Sheridan, J F

    2015-08-27

    Repeated social defeat (RSD) in mice causes myeloid cell trafficking to the brain that contributes to the development of prolonged anxiety-like behavior. Myeloid cell recruitment following RSD occurs in regions where neuronal and microglia activation is observed. Thus, we hypothesized that crosstalk between neurons, microglia, and endothelial cells contributes to brain myeloid cell trafficking via chemokine signaling and vascular adhesion molecules. Here we show that social defeat caused an exposure- and brain region-dependent increase in several key adhesion molecules and chemokines involved in the recruitment of myeloid cells. For example, RSD induced distinct patterns of adhesion molecule expression that may explain brain region-dependent myeloid cell trafficking. VCAM-1 and ICAM-1 mRNA expression were increased in an exposure-dependent manner. Furthermore, RSD-induced VCAM-1 and ICAM-1 protein expression were localized to the vasculature of brain regions implicated in fear and anxiety responses, which spatially corresponded to previously reported patterns of myeloid cell trafficking. Next, mRNA expression of additional adhesion molecules (E- and P-selectin, PECAM-1) and chemokines (CXCL1, CXCL2, CXCL12, CCL2) were determined in the brain. Social defeat induced an exposure-dependent increase in mRNA levels of E-selectin, CXCL1, and CXCL2 that increased with additional days of social defeat. While CXCL12 was unaffected by RSD, CCL2 expression was increased by six days of social defeat. Last, comparison between enriched CD11b(+) cells (microglia/macrophages) and enriched GLAST-1(+)/CD11b(-) cells (astrocytes) revealed RSD increased mRNA expression of IL-1β, CCL2, and CXCL2 in microglia/macrophages but not in astrocytes. Collectively, these data indicate that key mediators of leukocyte recruitment were increased in the brain vasculature following RSD in an exposure- and brain region-dependent manner. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights

  1. Expression of EPHRIN-A1, SCINDERIN and MHC class I molecules in head and neck cancers and relationship with the prognostic value of intratumoral CD8+ T cells

    International Nuclear Information System (INIS)

    Hasmim, Meriem; Oudard, Stéphane; Hans, Stéphane; Tartour, Eric; Chouaib, Salem; Badoual, Cécile; Vielh, Philippe; Drusch, Françoise; Marty, Virginie; Laplanche, Agnès; Oliveira Diniz, Mariana de; Roussel, Hélène; De Guillebon, Eléonore

    2013-01-01

    Our group has previously shown that EPHRIN-A1 and SCINDERIN expression by tumor cells rendered them resistant to cytotoxic T lymphocyte-mediated lysis. Whereas the prognostic value of EPHRIN-A1 expression in cancer has already been studied, the role of SCINDERIN presence remains to be established. In the present work, we investigated the prognosis value of EPHRIN-A1 and SCINDERIN expression in head and neck carcinomas. In addition, we monitored the HLA-class I expression by tumor cells and the presence of tumor-infiltrating CD8 + T cells to evaluate a putative correlation between these factors and the survival prognosis by themselves or related to EPHRIN-A1 and SCINDERIN expression. Tumor tissue sections of 83 patients with head and neck cancer were assessed by immunohistochemistry for the expression of EPHRIN-A1, SCINDERIN, HLA class I molecules and the presence of CD8 + T cells. No significant prognosis value could be attributed to these factors independently, despite a tendency of association between EPHRIN-A1 and a worse clinical outcome. No prognostic value could be observed when CD8 + T cell tumor infiltration was analyzed combined with EPHRIN-A1, SCINDERIN or HLA class I expression. These results highlight that molecules involved in cancer cell resistance to cytotoxic T lymphocytes by themselves are not a sufficient criteria for prognosis determination in cancer patients. Other intrinsic or tumor microenvironmental features should be considered in prognostic evaluation

  2. Matrix metalloproteinase-10 promotes tumor progression through regulation of angiogenic and apoptotic pathways in cervical tumors

    International Nuclear Information System (INIS)

    Zhang, Ge; Miyake, Makito; Lawton, Adrienne; Goodison, Steve; Rosser, Charles J

    2014-01-01

    Cancer invasion and metastasis develops through a series of steps that involve the loss of cell to cell and cell to matrix adhesion, degradation of extracellular matrix and induction of angiogenesis. Different protease systems (e.g., matrix metalloproteinases, MMPs) are involved in these steps. MMP-10, one of the lesser studied MMPs, is limited to epithelial cells and can facilitate tumor cell invasion by targeting collagen, elastin and laminin. Enhanced MMP-10 expression has been linked to poor clinical prognosis in some cancers, however, mechanisms underlying a role for MMP-10 in tumorigenesis and progression remain largely unknown. Here, we report that MMP-10 expression is positively correlated with the invasiveness of human cervical and bladder cancers. Using commercial tissue microarray (TMA) of cervical and bladder tissues, MMP-10 immunohistochemical staining was performed. Furthermore using a panel of human cells (HeLa and UROtsa), in vitro and in vivo experiments were performed in which MMP-10 was overexpressed or silenced and we noted phenotypic and genotypic changes. Experimentally, we showed that MMP-10 can regulate tumor cell migration and invasion, and endothelial cell tube formation, and that MMP-10 effects are associated with a resistance to apoptosis. Further investigation revealed that increasing MMP-10 expression stimulates the expression of HIF-1α and MMP-2 (pro-angiogenic factors) and PAI-1 and CXCR2 (pro-metastatic factors), and accordingly, targeting MMP-10 with siRNA in vivo resulted in diminution of xenograft tumor growth with a concomitant reduction of angiogenesis and a stimulation of apoptosis. Taken together, our findings show that MMP-10 can play a significant role in tumor growth and progression, and that MMP-10 perturbation may represent a rational strategy for cancer treatment

  3. Angiogenic, neurotrophic, and inflammatory system SNPs moderate the association between birth weight and ADHD symptom severity

    NARCIS (Netherlands)

    Smith, T.F.; Anastopoulos, A.D.; Garrett, M.E.; Arias Vasquez, A.; Franke, B.; Oades, R.D.; Sonuga-Barke, E.; Asherson, P.; Gill, M.; Buitelaar, J.K.; Sergeant, J.A.; Kollins, S.H.; Faraone, S.V.; Ashley-Koch, A.; Consortium, I.

    2014-01-01

    Low birth weight is associated with increased risk for Attention-Deficit/Hyperactivity Disorder (ADHD); however, the etiological underpinnings of this relationship remain unclear. This study investigated if genetic variants in angiogenic, dopaminergic, neurotrophic, kynurenine, and cytokine-related

  4. Cells and Angiogenic Cytokines in Therapeutic Angiogenesis for Ischemic Heart Disease

    DEFF Research Database (Denmark)

    Luo, Yu; Zhang, Dai-Fu; Liang, Bo

    2005-01-01

    In the past 20 to 30 years,great developments had been achieved in the applying of cells and angiogenic cytokines for ischemic heart disease.The thesis reviews latest studies of mechanism and clinic application of this novel therapy....

  5. Zinc-chelation contributes to the anti-angiogenic effect of ellagic acid on inhibiting MMP-2 activity, cell migration and tube formation.

    Directory of Open Access Journals (Sweden)

    Sheng-Teng Huang

    Full Text Available BACKGROUND: Ellagic acid (EA, a dietary polyphenolic compound, has been demonstrated to exert anti-angiogenic effect but the detailed mechanism is not yet fully understood. The aim of this study was to investigate whether the zinc chelating activity of EA contributed to its anti-angiogenic effect. METHODS AND PRINCIPAL FINDINGS: The matrix metalloproteinases-2 (MMP-2 activity, a zinc-required reaction, was directly inhibited by EA as examined by gelatin zymography, which was reversed dose-dependently by adding zinc chloride. In addition, EA was demonstrated to inhibit the secretion of MMP-2 from human umbilical vein endothelial cells (HUVECs as analyzed by Western blot method, which was also reversed by the addition of zinc chloride. Reversion-inducing cysteine-rich protein with Kazal motifs (RECK, known to down-regulate the MMP-2 activity, was induced by EA at both the mRNA and protein levels which was correlated well with the inhibition of MMP-2 activity. Interestingly, zinc chloride could also abolish the increase of EA-induced RECK expression. The anti-angiogenic effect of EA was further confirmed to inhibit matrix-induced tube formation of endothelial cells. The migration of endothelial cells as analyzed by transwell filter assay was suppressed markedly by EA dose-dependently as well. Zinc chloride could reverse these two effects of EA also in a dose-dependent manner. Since magnesium chloride or calcium chloride could not reverse the inhibitory effect of EA, zinc was found to be involved in tube formation and migration of vascular endothelial cells. CONCLUSIONS/SIGNIFICANCE: Together these results demonstrated that the zinc chelation of EA is involved in its anti-angiogenic effects by inhibiting MMP-2 activity, tube formation and cell migration of vascular endothelial cells. The role of zinc was confirmed to be important in the process of angiogenesis.

  6. Simulated hypogravity impairs the angiogenic response of endothelium by up-regulating apoptotic signals

    International Nuclear Information System (INIS)

    Morbidelli, Lucia; Monici, Monica; Marziliano, Nicola; Cogoli, Augusto; Fusi, Franco; Waltenberger, Johannes; Ziche, Marina

    2005-01-01

    Health hazards in astronauts are represented by cardiovascular problems and impaired bone healing. These disturbances are characterized by a common event, the loss of function by vascular endothelium, leading to impaired angiogenesis. We investigated whether the exposure of cultured endothelial cells to hypogravity condition could affect their behaviour in terms of functional activity, biochemical responses, morphology, and gene expression. Simulated hypogravity conditions for 72 h produced a reduction of cell number. Genomic analysis of endothelial cells exposed to hypogravity revealed that proapoptotic signals increased, while antiapoptotic and proliferation/survival genes were down-regulated by modelled low gravity. Activation of apoptosis was accompanied by morphological changes with mitochondrial disassembly and organelles/cytoplasmic NAD(P)H redistribution, as evidenced by autofluorescence analysis. In this condition cells were not able to respond to angiogenic stimuli in terms of migration and proliferation. Our study documents functional, morphological, and transcription alterations in vascular endothelium exposed to simulated low gravity conditions, thus providing insights on the occurrence of vascular tissue dysregulation in crewmen during prolonged space flights. Moreover, the alteration of vascular endothelium can intervene as a concause in other systemic effects, like bone remodelling, observed in weightlessness

  7. Thrombospondins deployed by thrombopoietic cells determine angiogenic switch and extent of revascularization

    Science.gov (United States)

    Kopp, Hans-Georg; Hooper, Andrea T.; Broekman, M. Johan; Avecilla, Scott T.; Petit, Isabelle; Luo, Min; Milde, Till; Ramos, Carlos A.; Zhang, Fan; Kopp, Tabitha; Bornstein, Paul; Jin, David K.; Marcus, Aaron J.; Rafii, Shahin

    2006-01-01

    Thrombopoietic cells may differentially promote or inhibit tissue vascularization by releasing both pro- and antiangiogenic factors. However, the molecular determinants controlling the angiogenic phenotype of thrombopoietic cells remain unknown. Here, we show that expression and release of thrombospondins (TSPs) by megakaryocytes and platelets function as a major antiangiogenic switch. TSPs inhibited thrombopoiesis, diminished bone marrow microvascular reconstruction following myelosuppression, and limited the extent of revascularization in a model of hind limb ischemia. We demonstrate that thrombopoietic recovery following myelosuppression was significantly enhanced in mice deficient in both TSP1 and TSP2 (TSP-DKO mice) in comparison with WT mice. Megakaryocyte and platelet levels in TSP-DKO mice were rapidly restored, thereby accelerating revascularization of myelosuppressed bone marrow and ischemic hind limbs. In addition, thrombopoietic cells derived from TSP-DKO mice were more effective in supporting neoangiogenesis in Matrigel plugs. The proangiogenic activity of TSP-DKO thrombopoietic cells was mediated through activation of MMP-9 and enhanced release of stromal cell–derived factor 1. Thus, TSP-deficient thrombopoietic cells function as proangiogenic agents, accelerating hemangiogenesis within the marrow and revascularization of ischemic hind limbs. As such, interference with the release of cellular stores of TSPs may be clinically effective in augmenting neoangiogenesis. PMID:17143334

  8. Enhanced activity of meprin-α, a pro-migratory and pro-angiogenic protease, in colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Daniel Lottaz

    Full Text Available Meprin-α is a metalloprotease overexpressed in cancer cells, leading to the accumulation of this protease in a subset of colorectal tumors. The impact of increased meprin-α levels on tumor progression is not known. We investigated the effect of this protease on cell migration and angiogenesis in vitro and studied the expression of meprin-α mRNA, protein and proteolytic activity in primary tumors at progressive stages and in liver metastases of patients with colorectal cancer, as well as inhibitory activity towards meprin-α in sera of cancer patient as compared to healthy controls. We found that the hepatocyte growth factor (HGF-induced migratory response of meprin-transfected epithelial cells was increased compared to wild-type cells in the presence of plasminogen, and that the angiogenic response in organ-cultured rat aortic explants was enhanced in the presence of exogenous human meprin-α. In patients, meprin-α mRNA was expressed in colonic adenomas, primary tumors UICC (International Union Against Cancer stage I, II, III and IV, as well as in liver metastases. In contrast, the corresponding protein accumulated only in primary tumors and liver metastases, but not in adenomas. However, liver metastases lacked meprin-α activity despite increased expression of the corresponding protein, which correlated with inefficient zymogen activation. Sera from cancer patients exhibited reduced meprin-α inhibition compared to healthy controls. In conclusion, meprin-α activity is regulated differently in primary tumors and metastases, leading to high proteolytic activity in primary tumors and low activity in liver metastases. By virtue of its pro-migratory and pro-angiogenic activity, meprin-α may promote tumor progression in colorectal cancer.

  9. Comparison of the crystal structures of the potent anticancer and anti-angiogenic agent regorafenib and its monohydrate.

    Science.gov (United States)

    Sun, Meng Ying; Wu, Su Xiang; Zhou, Xin Bo; Gu, Jian Ming; Hu, Xiu Rong

    2016-04-01

    Regorafenib {systematic name: 4-[4-({[4-chloro-3-(trifluoromethy)phenyl]carbamoyl}amino)-3-fluorophenoxy]-1-methylpyridine-2-carboxamide}, C21H15ClF4N4O3, is a potent anticancer and anti-angiogenic agent that possesses various activities on the VEGFR, PDGFR, raf and/or flt-3 kinase signaling molecules. The compound has been crystallized as polymorphic form I and as the monohydrate, C21H15ClF4N4O3·H2O. The regorafenib molecule consists of biarylurea and pyridine-2-carboxamide units linked by an ether group. A comparison of both forms shows that they differ in the relative orientation of the biarylurea and pyridine-2-carboxamide units, due to different rotations around the ether group, as measured by the C-O-C bond angles [119.5 (3)° in regorafenib and 116.10 (15)° in the monohydrate]. Meanwhile, the conformational differences are reflected in different hydrogen-bond networks. Polymorphic form I contains two intermolecular N-H...O hydrogen bonds, which link the regorafenib molecules into an infinite molecular chain along the b axis. In the monohydrate, the presence of the solvent water molecule results in more abundant hydrogen bonds. The water molecules act as donors and acceptors, forming N-H...O and O-H...O hydrogen-bond interactions. Thus, R4(2)(28) ring motifs are formed, which are fused to form continuous spiral ring motifs along the a axis. The (trifluoromethyl)phenyl rings protrude on the outside of these motifs and interdigitate with those of adjacent ring motifs, thereby forming columns populated by halogen atoms.

  10. Angiogenic factor imbalance precedes complement deposition in placentae of the BPH/5 model of preeclampsia.

    Science.gov (United States)

    Sones, Jennifer L; Merriam, Audrey A; Seffens, Angelina; Brown-Grant, Dex-Ann; Butler, Scott D; Zhao, Anna M; Xu, Xinjing; Shawber, Carrie J; Grenier, Jennifer K; Douglas, Nataki C

    2018-05-01

    Preeclampsia (PE), a hypertensive disorder of pregnancy, is a leading cause of maternal and fetal morbidity and mortality. Although the etiology is unknown, PE is thought to be caused by defective implantation and decidualization in pregnancy. Pregnant blood pressure high (BPH)/5 mice spontaneously develop placentopathies and maternal features of human PE. We hypothesized that BPH/5 implantation sites have transcriptomic alterations. Next-generation RNA sequencing of implantation sites at peak decidualization, embryonic day (E)7.5, revealed complement gene up-regulation in BPH/5 vs. controls. In BPH/5, expression of complement factor 3 was increased around the decidual vasculature of E7.5 implantation sites and in the trophoblast giant cell layer of E10.5 placentae. Altered expression of VEGF pathway genes in E5.5 BPH/5 implantation sites preceded complement dysregulation, which correlated with abnormal vasculature and increased placental growth factor mRNA and VEGF 164 expression at E7.5. By E10.5, proangiogenic genes were down-regulated, whereas antiangiogenic sFlt-1 was up-regulated in BPH/5 placentae. We found that early local misexpression of VEGF genes and abnormal decidual vasculature preceded sFlt-1 overexpression and increased complement deposition in BPH/5 placentae. Our findings suggest that abnormal decidual angiogenesis precedes complement activation, which in turn contributes to the aberrant trophoblast invasion and poor placentation that underlie PE.-Sones, J. L., Merriam, A. A., Seffens, A., Brown-Grant, D.-A., Butler, S. D., Zhao, A. M., Xu, X., Shawber, C. J., Grenier, J. K., Douglas, N. C. Angiogenic factor imbalance precedes complement deposition in placentae of the BPH/5 model of preeclampsia.

  11. Effects of Ellagic Acid on Angiogenic Factors in Prostate Cancer Cells

    International Nuclear Information System (INIS)

    Vanella, Luca; Di Giacomo, Claudia; Acquaviva, Rosaria; Barbagallo, Ignazio; Li Volti, Giovanni; Cardile, Venera; Abraham, Nader G.; Sorrenti, Valeria

    2013-01-01

    Background: Several natural antioxidants, including ellagic acid (EA), have been reported to have chemotherapeutic activity in vivo and in vitro settings. Cytochrome P450 (CYP) activity and synthesis of both epoxyeicosatrienoic acids (EETs) and 20-hydroxy-5,8,11,14-eicosatetraenoic acid (20-HETE), together with vascular endothelial growth factor (VEGF) and heme oxygenase system (HO) have emerged as important modulators of tumor growth and metastasis. Methods: The anti-angiogenic effects of EA were investigated in the human prostatic cancer cell line LnCap. HO-1, HO-2, CYP2J2 and soluble epoxyde hydrolase (sEH) expressions were evaluated by western blotting. Levels of VEGF and osteoprotegerin (OPG) were determined in the culture supernatant using an ELISA assay, while CYP mRNAs were determined by qRT-PCR. Results: EA treatment induced a significant decrease (p < 0.05) in HO-1, HO-2 and CYP2J2 expression, and in VEGF and OPG levels. Similarly CYP2J2, CYP4F2 and CYPA22 mRNAs were significantly (p < 0.05) down-regulated by EA treatment. The decrease in CYP2J2 mRNA was associated with an increase in sEH expression. Conclusions: Results reported in the present study highlighted the ability of EA to modulate a new pathway, in addition to anti-proliferative and pro-differentiation properties, via a mechanism that involves a decrease in eicosanoid synthesis and a down-regulation of the HO system in prostate cancer

  12. Effects of Ellagic Acid on Angiogenic Factors in Prostate Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Vanella, Luca; Di Giacomo, Claudia; Acquaviva, Rosaria; Barbagallo, Ignazio; Li Volti, Giovanni [Department of Drug Science, Section of Biochemistry, University of Catania, I-95125 Catania (Italy); Cardile, Venera [Department of Bio-Medical Sciences, Section of Physiology, University of Catania, I-95125, Catania (Italy); Abraham, Nader G. [Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701 (United States); Sorrenti, Valeria, E-mail: sorrenti@unict.it [Department of Drug Science, Section of Biochemistry, University of Catania, I-95125 Catania (Italy)

    2013-06-19

    Background: Several natural antioxidants, including ellagic acid (EA), have been reported to have chemotherapeutic activity in vivo and in vitro settings. Cytochrome P450 (CYP) activity and synthesis of both epoxyeicosatrienoic acids (EETs) and 20-hydroxy-5,8,11,14-eicosatetraenoic acid (20-HETE), together with vascular endothelial growth factor (VEGF) and heme oxygenase system (HO) have emerged as important modulators of tumor growth and metastasis. Methods: The anti-angiogenic effects of EA were investigated in the human prostatic cancer cell line LnCap. HO-1, HO-2, CYP2J2 and soluble epoxyde hydrolase (sEH) expressions were evaluated by western blotting. Levels of VEGF and osteoprotegerin (OPG) were determined in the culture supernatant using an ELISA assay, while CYP mRNAs were determined by qRT-PCR. Results: EA treatment induced a significant decrease (p < 0.05) in HO-1, HO-2 and CYP2J2 expression, and in VEGF and OPG levels. Similarly CYP2J2, CYP4F2 and CYPA22 mRNAs were significantly (p < 0.05) down-regulated by EA treatment. The decrease in CYP2J2 mRNA was associated with an increase in sEH expression. Conclusions: Results reported in the present study highlighted the ability of EA to modulate a new pathway, in addition to anti-proliferative and pro-differentiation properties, via a mechanism that involves a decrease in eicosanoid synthesis and a down-regulation of the HO system in prostate cancer.

  13. Melanocyte-secreted fibromodulin promotes an angiogenic microenvironment.

    Science.gov (United States)

    Adini, Irit; Ghosh, Kaustabh; Adini, Avner; Chi, Zai-Long; Yoshimura, Takeru; Benny, Ofra; Connor, Kip M; Rogers, Michael S; Bazinet, Lauren; Birsner, Amy E; Bielenberg, Diane R; D'Amato, Robert J

    2014-01-01

    Studies have established that pigmentation can provide strong, protective effects against certain human diseases. For example, angiogenesis-dependent diseases such as wet age-related macular degeneration and infantile hemangioma are more common in light-skinned individuals of mixed European descent than in African-Americans. Here we found that melanocytes from light-skinned humans and albino mice secrete high levels of fibromodulin (FMOD), which we determined to be a potent angiogenic factor. FMOD treatment stimulated angiogenesis in numerous in vivo systems, including laser-induced choroidal neovascularization, growth factor-induced corneal neovascularization, wound healing, and Matrigel plug assays. Additionally, FMOD enhanced vascular sprouting during normal retinal development. Deletion of Fmod in albino mice resulted in a marked reduction in the amount of neovascularization induced by retinal vein occlusion, corneal growth factor pellets, and Matrigel plugs. Our data implicate the melanocyte-secreted factor FMOD as a key regulator of angiogenesis and suggest an underlying mechanism for epidemiological differences between light-skinned individuals of mixed European descent and African-Americans. Furthermore, inhibition of FMOD in humans has potential as a therapeutic strategy for treating angiogenesis-dependent diseases.

  14. Molecule Matters

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 12. Molecule Matters - Dinitrogen. A G Samuelson J Jabadurai. Volume 16 Issue 12 ... Author Affiliations. A G Samuelson1 J Jabadurai1. Department of Inroganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India.

  15. Molecule Matters

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 9. Molecule Matters - A Chromium Compound with a Quintuple Bond. K C Kumara Swamy. Feature Article Volume 11 Issue 9 September 2006 pp 72-75. Fulltext. Click here to view fulltext PDF. Permanent link:

  16. The Biological Properties of OGI Surfaces Positively Act on Osteogenic and Angiogenic Commitment of Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Paolo Ghensi

    2017-11-01

    Full Text Available Osteogenesis process displays a fundamental role during dental implant osteointegration. In the present work, we studied the influence of Osteon Growth Induction (OGI surface properties on the angiogenic and osteogenic behaviors of Mesenchymal Stem cells (MSC. MSC derived from dental pulp and HUVEC (Human Umbilical Vein Endothelial Cells were grown in on OGI titanium surfaces, and cell proliferation and DNA synthesis were evaluated by MTT [3-(4,5-dimethylthiazol-2yl-2,5-diphenyltetrazolium bromide] test and DNA quantification. Gene expression has been performed in order to evaluate the presence of mRNA related to endothelial and osteogenesis markers. Moreover, morphological and biochemical analyses of osteogenesis commitments has been performed. On OGI surfaces, MSC and HUVEC are able to proliferate. Gene expression profiler confirms that MSC on OGI surfaces are able to express endothelial and osteogenic markers, and that these expression are higher compared the expression on control surfaces. In conclusion On OGI surfaces proliferation, expression and morphological analyses of angiogenesis-associated markers in MSC are promoted. This process induces an increasing on their osteogenesis commitment.

  17. Role Of Adhesion Molecules Vcam-1 And Ve-Cadherin In Endothelium Dysfunction Development At Hemorrhagic Fever With Renal Syndrome

    Directory of Open Access Journals (Sweden)

    А.А. Baygildina

    2009-12-01

    Full Text Available The research goal is to determine the changes in concentration of both sVCAM-1 and VE-cadherin in blood serum of patients suffered from hemorrhagic fever with renal syndrome (HFRS. 87 patients aged 15-65 were examined. Concentrations of both sVCAM-1 and VE- cadherin in blood serum by means of "Bender MedSystems" (Austria ELISA test were determined. It was shown that in both medium severe and severe forms of HFRS statistically the significant rise of sVCAM-1 concentration in blood with high indices in oliguric period took place. Complicated form was characterized by high indices of sVCAM-1 level in fever period, extremely decreasing in concentration in oliguric period and tendency to normalizing in clinical convalescence period. VE-cadherin level in blood was predominantly lower than control in all the observed groups with the exception of fever period in group with medium severe disease form. Negative correlation of normal intensity between adhesion molecules levels in blood was revealed. In conclusion it is necessary to point out that high VCAM-1 expression by endotheliocytes evidences the development of an adhesion form of endothelial dysfunction, low VE-cadherin production in a base for development of angiogenic form of endothelial dysfunction and changes in expression of these adhesion molecules that have adaptive metabolic response to macroorganism of HFRS pathogenic action

  18. Preconditioning of adipose tissue-derived mesenchymal stem cells with deferoxamine increases the production of pro-angiogenic, neuroprotective and anti-inflammatory factors: Potential application in the treatment of diabetic neuropathy.

    Science.gov (United States)

    Oses, Carolina; Olivares, Belén; Ezquer, Marcelo; Acosta, Cristian; Bosch, Paul; Donoso, Macarena; Léniz, Patricio; Ezquer, Fernando

    2017-01-01

    Diabetic neuropathy (DN) is one of the most frequent and troublesome complications of diabetes mellitus. Evidence from diabetic animal models and diabetic patients suggests that reduced availability of neuroprotective and pro-angiogenic factors in the nerves in combination with a chronic pro-inflammatory microenvironment and high level of oxidative stress, contribute to the pathogenesis of DN. Mesenchymal stem cells (MSCs) are of great interest as therapeutic agents for regenerative purposes, since they can secrete a broad range of cytoprotective and anti-inflammatory factors. Therefore, the use of the MSC secretome may represent a promising approach for DN treatment. Recent data indicate that the paracrine potential of MSCs could be boosted by preconditioning these cells with an environmental or pharmacological stimulus, enhancing their therapeutic efficacy. In the present study, we observed that the preconditioning of human adipose tissue-derived MSCs (AD-MSCs) with 150μM or 400μM of the iron chelator deferoxamine (DFX) for 48 hours, increased the abundance of the hypoxia inducible factor 1 alpha (HIF-1α) in a concentration dependent manner, without affecting MSC morphology and survival. Activation of HIF-1α led to the up-regulation of the mRNA levels of pro-angiogenic factors like vascular endothelial growth factor alpha and angiopoietin 1. Furthermore this preconditioning increased the expression of potent neuroprotective factors, including nerve growth factor, glial cell-derived neurotrophic factor and neurotrophin-3, and cytokines with anti-inflammatory activity like IL4 and IL5. Additionally, we observed that these molecules, which could also be used as therapeutics, were also increased in the secretome of MSCs preconditioned with DFX compared to the secretome obtained from non-preconditioned cells. Moreover, DFX preconditioning significantly increased the total antioxidant capacity of the MSC secretome and they showed neuroprotective effects when

  19. Pro- and anti-angiogenic factors in human skeletal muscle in response to acute exercise and training

    DEFF Research Database (Denmark)

    Høier, Birgitte; Nordsborg, Nikolai; Andersen, Søren

    2012-01-01

    This study examined the effect of acute exercise and 4 weeks of aerobic training on skeletal muscle gene and protein expression of pro- and anti-angiogenic factors in 14 young male subjects. Training consisted of 60 min of cycling (~ 60% of VO2 max), 3 times/week. Biopsies were obtained from m. v....... lateralis before and after training. Muscle interstitial fluid was collected during cycling at week 0 and 4. Training increased (P ... to acute exercise increased similarly (>6-fold; P training. Resting protein levels of soluble VEGF receptor-1 in interstitial fluid, and of VEGF, Thrombospondin-1 (TSP-1) and Tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) in muscle, were unaffected by training, whereas e...

  20. Expression

    Directory of Open Access Journals (Sweden)

    Wang-Xia Wang

    2014-02-01

    Full Text Available The miR-15/107 family comprises a group of 10 paralogous microRNAs (miRNAs, sharing a 5′ AGCAGC sequence. These miRNAs have overlapping targets. In order to characterize the expression of miR-15/107 family miRNAs, we employed customized TaqMan Low-Density micro-fluid PCR-array to investigate the expression of miR-15/107 family members, and other selected miRNAs, in 11 human tissues obtained at autopsy including the cerebral cortex, frontal cortex, primary visual cortex, thalamus, heart, lung, liver, kidney, spleen, stomach and skeletal muscle. miR-103, miR-195 and miR-497 were expressed at similar levels across various tissues, whereas miR-107 is enriched in brain samples. We also examined the expression patterns of evolutionarily conserved miR-15/107 miRNAs in three distinct primary rat brain cell preparations (enriched for cortical neurons, astrocytes and microglia, respectively. In primary cultures of rat brain cells, several members of the miR-15/107 family are enriched in neurons compared to other cell types in the central nervous system (CNS. In addition to mature miRNAs, we also examined the expression of precursors (pri-miRNAs. Our data suggested a generally poor correlation between the expression of mature miRNAs and their precursors. In summary, we provide a detailed study of the tissue and cell type-specific expression profile of this highly expressed and phylogenetically conserved family of miRNA genes.

  1. Expression, refolding and preliminary X-ray crystallographic analysis of equine MHC class I molecule complexed with an EIAV-Env CTL epitope

    International Nuclear Information System (INIS)

    Yao, Shugang; Qi, Jianxun; Liu, Jun; Chen, Rong; Pan, Xiaocheng; Li, Xiaoying; Gao, Feng; Xia, Chun

    2011-01-01

    The equine MHC class I molecule was crystallized in complex with β 2 -microglobulin and a CTL epitope and X-ray diffraction data were collected to 2.3 Å resolution. In order to clarify the structure and the peptide-presentation characteristics of the equine major histocompatibility complex (MHC) class I molecule, a complex of equine MHC class I molecule (ELA-A1 haplotype, 7-6 allele) with mouse β 2 -microglobulin and the cytotoxic T lymphocyte (CTL) epitope Env-RW12 (RVEDVTNTAEYW) derived from equine infectious anaemia virus (EIAV) envelope protein (residues 195–206) was refolded and crystallized. The crystal, which belonged to space group P2 1 , diffracted to 2.3 Å resolution and had unit-cell parameters a = 82.5, b = 71.4, c = 99.8 Å, β = 102.9°. The crystal structure contained two molecules in the asymmetric unit. These results should help to determine the first equine MHC class I molecule structure presenting an EIAV CTL epitope

  2. Lauric acid abolishes interferon-gamma (IFN-γ-induction of intercellular adhesion molecule-1 (ICAM-1 and vascular cell adhesion molecule-1 (VCAM-1 expression in human macrophages

    Directory of Open Access Journals (Sweden)

    Wei-Siong Lim

    2015-09-01

    Conclusions: This study successfully proved that lauric acid was able to antagonize the up-regulatory effect of IFN-γ on ICAM-1 and VCAM-1 expressions in THP-1 macrophages. This indicates that lauric acid may be an anti-inflammatory therapeutic and prophylaxis agent for atherosclerosis.

  3. Changes in adhesion molecule expression and oxidative burst activity of granulocytes and monocytes during open-heart surgery with cardiopulmonary bypass compared with abdominal surgery

    DEFF Research Database (Denmark)

    Toft, P; Nielsen, C H; Tønnesen, E

    1998-01-01

    surgery. The ability to respond with an oxidative burst was measured by means of flow cytometry using 123-dihydrorhodamine. The adhesion molecules CD11a/CD18, CD11c/CD18, CD44 were measured using monoclonal antibodies. Blood samples from eight patients undergoing open-heart surgery were taken before...... to an increased per-operative oxidative burst activity, and the induction of adhesion molecules on granulocytes associated with the cardiopulmonary bypass and surgery. In conclusion, open-heart surgery with cardiopulmonary bypass was associated with a rapid and pronounced activation of leukocytes which may play...

  4. Molecular mechanisms of the angiogenic effects of low-energy shock wave therapy: roles of mechanotransduction.

    Science.gov (United States)

    Hatanaka, Kazuaki; Ito, Kenta; Shindo, Tomohiko; Kagaya, Yuta; Ogata, Tsuyoshi; Eguchi, Kumiko; Kurosawa, Ryo; Shimokawa, Hiroaki

    2016-09-01

    We have previously demonstrated that low-energy extracorporeal cardiac shock wave (SW) therapy improves myocardial ischemia through enhanced myocardial angiogenesis in a porcine model of chronic myocardial ischemia and in patients with refractory angina pectoris. However, the detailed molecular mechanisms for the SW-induced angiogenesis remain unclear. In this study, we thus examined the effects of SW irradiation on intracellular signaling pathways in vitro. Cultured human umbilical vein endothelial cells (HUVECs) were treated with 800 shots of low-energy SW (1 Hz at an energy level of 0.03 mJ/mm(2)). The SW therapy significantly upregulated mRNA expression and protein levels of vascular endothelial growth factor (VEGF) and endothelial nitric oxide synthase (eNOS). The SW therapy also enhanced phosphorylation of extracellular signal-regulated kinase 1/2 (Erk1/2) and Akt. Furthermore, the SW therapy enhanced phosphorylation of caveolin-1 and the expression of HUTS-4 that represents β1-integrin activity. These results suggest that caveolin-1 and β1-integrin are involved in the SW-induced activation of angiogenic signaling pathways. To further examine the signaling pathways involved in the SW-induced angiogenesis, HUVECs were transfected with siRNA of either β1-integrin or caveolin-1. Knockdown of either caveolin-1 or β1-integrin suppressed the SW-induced phosphorylation of Erk1/2 and Akt and upregulation of VEGF and eNOS. Knockdown of either caveolin-1 or β1-integrin also suppressed SW-induced enhancement of HUVEC migration in scratch assay. These results suggest that activation of mechanosensors on cell membranes, such as caveolin-1 and β1-integrin, and subsequent phosphorylation of Erk and Akt may play pivotal roles in the SW-induced angiogenesis. Copyright © 2016 the American Physiological Society.

  5. Dimethyl sulfoxide-caused changes in pro- and anti-angiogenic factor levels could contribute to an anti-angiogenic response in HeLa cells.

    Science.gov (United States)

    Şimşek, Ece; Aydemir, Esra Arslan; İmir, Nilüfer; Koçak, Orhan; Kuruoğlu, Aykut; Fışkın, Kayahan

    2015-10-01

    Dimethyl sulfoxide (DMSO) is widely used in biological research as a general solvent. While it has been previously demonstrated that DMSO possesses a wide range of pharmacological effects, there is no published work regarding the effects of DMSO on pro-angiogenic factor levels. This study was designed to investigate the possible effects of DMSO on the levels of three pro-angiogenic factors released from HeLa cells in vitro. Cells were treated with two different and previously determined concentrations of DMSO. The cytotoxic effects of DMSO concentrations on HeLa cells were determined via MTT. Survival rates of DMSO-treated cells were determined by Invitrogen live/dead viability/cytotoxicity kit and trypan blue exclusion assay. Changes in the pro-angiogenic levels in media were evaluated by Cayman's Substance P Enzyme Immunoassay ELISA kit. Vascular endothelial growth factor ELISA kit and interferon gamma ELISA kit for substance P, VEGF and IFNγ respectively. Changes in substance P levels were corrected by standard western blotting. Changes in VEGF and IFNγ levels were corrected both by western blot and real time PCR. Treatment with 1.4 μM DMSO caused a time-dependent inhibition of cell proliferation at 24, 48 and 72 h. 1.4 μM DMSO caused a significant reduction in VEGF levels at 72 h of incubation and sharp increases in IFNγ levels at both 48 and 72 h of incubation. According to real time PCR analyses, DMSO (1.4 μM) exhibited an inhibitory effect on VEGF but acted as an augmenter of IFNγ release on HeLa cells in vitro. This is the first report showing that the general solvent DMSO suppressed HeLa cell proliferation, decreased the levels of two pro-angiogenic factors (substance P and VEGF) and increased the release of an anti-angiogenic factor IFNγ in vitro. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Vitamins K2, K3 and K5 exert in vivo antitumor effects on hepatocellular carcinoma by regulating the expression of G1 phase-related cell cycle molecules.

    Science.gov (United States)

    Kuriyama, Shigeki; Hitomi, Misuzu; Yoshiji, Hitoshi; Nonomura, Takako; Tsujimoto, Tatsuhiro; Mitoro, Akira; Akahane, Takami; Ogawa, Mutsumi; Nakai, Seiji; Deguchi, Akihiro; Masaki, Tsutomu; Uchida, Naohito

    2005-08-01

    A number of studies have shown that various vitamins K, specifically vitamin K2, possessed antitumor activity on various types of rodent- and human-derived neoplastic cell lines. However, there are only a small number of reports demonstrating in vivo antitumor effects of vitamins K. Furthermore, the mechanism of antitumor effects of vitamins K still remains to be examined. In the present study, we examined the antitumor effects of vitamins K2, K3 and K5 on PLC/PRF/5 human hepatocellular carcinoma (HCC) cells in vivo. Furthermore, to examine the mechanism of antitumor actions of these vitamins K, mRNA expression levels of various G1 phase-related cell cycle molecules were evaluated by using a real-time reverse transcription-polymerase chain reaction (RT-PCR) method. HCC-bearing animals were produced by implanting PLC/PRF/5 cells subcutaneously into athymic nude mice, and drinking water containing vitamin K2, K3 or K5 was given to the animals. Treatments with vitamins K2, K3 and K5 were shown to markedly inhibit the growth of HCC tumors. To examine the mechanism of in vivo antitumor effects of vitamins K, total RNA was extracted from HCC tumors, and the expression of G1 phase-related cell cycle molecules was quantitatively examined. Real-time RT-PCR demonstrated that the expression of the cell cycle-driving molecule, cyclin-dependent kinase 4 (Cdk4), in HCC was significantly reduced by the treatments with vitamin K2, K3 and K5. Conversely, the expression of the cell cycle-suppressing molecules, Cdk inhibitor p16INK4a and retinoblastoma, in HCC was significantly enhanced by the treatments with vitamins K2, K3 and K5. These results indicate that vitamins K2, K3 and K5 exert antitumor effects on HCC by regulating the expression of G1 phase-related cell cycle molecules. These results also indicate that vitamins K2, K3 and K5 may be useful agents for the treatment of patients with HCC.

  7. The dominantly expressed class I molecule of the chicken MHC is explained by coevolution with the polymorphic peptide transporter (TAP) genes

    DEFF Research Database (Denmark)

    Walker, Brian A; Hunt, Lawrence G; Sowa, Anna K

    2011-01-01

    In most mammals, the MHC class I molecules are polymorphic and determine the specificity of peptide presentation, whereas the transporter associated with antigen presentation (TAP) heterodimers are functionally monomorphic. In chickens, there are two classical class I genes but only one is expres...

  8. Intermitted pharmacologic pretreatment by xenon, isoflurane, nitrous oxide, and the opioid morphine prevents tumor necrosis factor alpha-induced adhesion molecule expression in human umbilical vein endothelial cells

    NARCIS (Netherlands)

    Weber, Nina C.; Kandler, Jennis; Schlack, Wolfgang; Grueber, Yvonne; Frädorf, Jan; Preckel, Benedikt

    2008-01-01

    BACKGROUND: The barrier properties of the endothelium are of critical importance during pathophysiologic processes. These barrier properties depend on an intact cytoskeleton and are regulated by cell adhesion molecules. Tumor necrosis factor alpha (TNF-alpha) is known to induce cell adhesion

  9. Anti-angiogenic activity of a new andrographolide derivative in zebrafish and HUVECs.

    Science.gov (United States)

    Li, Jingjing; Peng, Yuran; Li, Shang; Sun, Yicheng; Chan, Judy Yuet-Wa; Cui, Guozhen; Wang, Decai; Zhou, Guo-Chun; Lee, Simon Ming-Yuen

    2016-10-15

    Andrographolide is among the most promising anti-tumor and anti-angiogenic components in Andrographis paniculata but its poor bioavailability and limited efficacy pose difficulties for its therapeutic development. Therefore, improving its pharmaceutical features and potency, by modifying its chemical structure, is desirable. In the present study, a new andrographolide derivative (AGP-40) was synthesized and characterized for its anti-angiogenic properties. Human umbilical vein endothelial cells (HUVECs) and zebrafish models were used to identify the anti-angiogenic activity of AGP-40. AGP-40 significantly suppressed the formation of blood vessels in zebrafish and inhibited proliferation, migration and tube formation in vitro. The anti-angiogenic effects of AGP-40 are at least partially mediated via the PI3K/Akt and MEK/Erk(1/2) signaling pathways. Furthermore, AGP-40 exhibited stronger anti-proliferative effects than andrographolide against A549, HepG2, Hela cancer cell lines. This study is the first to demonstrate the promising anti-angiogenic activity of the new andrographolide derivative AGP-40. Our results indicate that AGP-40 could serve as a potential therapeutic agent for the treatment and prevention of diseases associated with excessive angiogenesis. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Key endothelial cell angiogenic mechanisms are stimulated by the circulating milieu in sickle cell disease and attenuated by hydroxyurea

    Science.gov (United States)

    Lopes, Flavia C. M.; Traina, Fabiola; Almeida, Camila B.; Leonardo, Flavia C.; Franco-Penteado, Carla F.; Garrido, Vanessa T.; Colella, Marina P.; Soares, Raquel; Olalla-Saad, Sara T.; Costa, Fernando F.; Conran, Nicola

    2015-01-01

    As hypoxia-induced inflammatory angiogenesis may contribute to the manifestations of sickle cell disease, we compared the angiogenic molecular profiles of plasma from sickle cell disease individuals and correlated these with in vitro endothelial cell-mediated angiogenesis-stimulating activity and in vivo neovascularization. Bioplex demonstrated that plasma from patients with steady-state sickle cell anemia contained elevated concentrations of pro-angiogenic factors (angiopoietin-1, basic fibroblast growth factor, vascular endothelial growth factor, vascular endothelial growth factor-D and placental growth factor) and displayed potent pro-angiogenic activity, significantly increasing endothelial cell proliferation, migration and capillary-like structure formation. In vivo neovascularization of Matrigel plugs was significantly greater in sickle cell disease mice than in non-sickle cell disease mice, consistent with an up-regulation of angiogenesis in the disease. In plasma from patients with hemoglobin SC disease without proliferative retinopathy, anti-angiogenic endostatin and thrombospondin-2 were significantly elevated. In contrast, plasma from hemoglobin SC individuals with proliferative retinopathy had a pro-angiogenic profile and more significant effects on endothelial cell proliferation and capillary formation than plasma from patients without retinopathy. Hydroxyurea therapy was associated with significant reductions in plasma angiogenic factors and inhibition of endothelial cell-mediated angiogenic mechanisms and neovascularization. Thus, individuals with sickle cell anemia or hemoglobin SC disease with retinopathy present a highly angiogenic circulating milieu, capable of stimulating key endothelial cell-mediated angiogenic mechanisms. Combination anti-angiogenic therapy to prevent the progression of unregulated neovascularization and associated manifestations in sickle cell disease, such as pulmonary hypertension, may be indicated; furthermore, the

  11. Angiogenic effect of the aqueous extract of Cynodon dactylon on human umbilical vein endothelial cells and granulation tissue in rat.

    Science.gov (United States)

    Soraya, Hamid; Moloudizargari, Milad; Aghajanshakeri, Shahin; Javaherypour, Soheil; Mokarizadeh, Aram; Hamedeyazdan, Sanaz; Esmaeli Gouvarchin Ghaleh, Hadi; Mikaili, Peyman; Garjani, Alireza

    2015-01-29

    Cynodon dactylon, a valuable medicinal plant, is widely used in Iranian folk medicine for the treatment of various cardiovascular diseases such as heart failure and atherosclerosis. Moreover, its anti-diabetic, anti-cancer and anti-microbial properties have been also reported. Concerning the critical role of angiogenesis in the incidence and progression of tumors and also its protective role in cardiovascular diseases, we investigated the effects of the aqueous extract prepared from the rhizomes of C. dactylon on vascular endothelial growth factor (VEGF) expressions in Human Umbilical Vein Endothelial Cells (HUVECs) and also on angiogenesis in carrageenan induced air-pouch model in rats. In the air-pouch model, carrageenan was injected into an air-pouch on the back of the rats and following an IV injection of carmine red dye on day 6, granulation tissue was processed for the assessment of the dye content. Furthermore, in an in vitro study, angiogenic property of the extract was assessed through its effect on VEGF expression in HUVECs. Oral administration of 400 mg/kg/day of the extract significantly increased angiogenesis (p<0.05) and markedly decreased neutrophil (p<0.05) and total leukocyte infiltration (p<0.001) into the granulation tissues. Moreover, the extract increased the expression of total VEGF in HUVECs at a concentration of (100 μl/ml). The present study showed that the aqueous extract of C. dactylon promotes angiogenesis probably through stimulating VEGF expression.

  12. Expression, purification and preliminary X-ray crystallographic analysis of the chicken MHC class I molecule YF1*7.1

    International Nuclear Information System (INIS)

    Hee, Chee Seng; Gao, Song; Miller, Marcia M.; Goto, Ronald M.; Ziegler, Andreas; Daumke, Oliver; Uchanska-Ziegler, Barbara

    2009-01-01

    The chicken classical MHC class I antigen YF1*7.1 was crystallized together with β 2 -microglobulin but without a peptide ligand. Crystals diffracted synchrotron radiation to 1.32 Å and belonged to the monoclinic space group P2 1 . YF1*7.1 is an allele of a polymorphic major histocompatibility complex (MHC) class I-like locus within the chicken Y gene complex. With the aim of understanding the possible role of the YF1*7.1 molecule in antigen presentation, the complex of YF1*7.1 heavy chain and β 2 -microglobulin was reconstituted and purified without a peptide. Crystals diffracted synchrotron radiation to 1.32 Å resolution and belonged to the monoclinic space group P2 1 . The phase problem was solved by molecular replacement. A detailed examination of the structure may provide insight into the type of ligand that could be bound by the YF1*7.1 molecule

  13. The CXC chemokine cCAF stimulates precocious deposition of ECM molecules by wound fibroblasts, accelerating development of granulation tissue

    Directory of Open Access Journals (Sweden)

    Li Qi-Jing

    2002-06-01

    Full Text Available Abstract Background During wound repair, fibroblasts orchestrate replacement of the provisional matrix formed during clotting with tenascin, cellular fibronectin and collagen III. These, in turn, are critical for migration of endothelial cells, keratinocytes and additional fibroblasts into the wound site. Fibroblasts are also important in the deposition of collagen I during scar formation. The CXC chemokine chicken Chemotactic and Angiogenic Factor (cCAF, is highly expressed by fibroblasts after wounding and during development of the granulation tissue, especially in areas where extracellular matrix (ECM is abundant. We hypothesized that cCAF stimulates fibroblasts to produce these matrix molecules. Results Here we show that this chemokine can stimulate precocious deposition of tenascin, fibronectin and collagen I, but not collagen III. Studies in culture and in vivo show that tenascin stimulation can also be achieved by the N-terminal 15 aas of the protein and occurs at the level of gene expression. In contrast, stimulation of fibronectin and collagen I both require the entire molecule and do not involve changes in gene expression. Fibronectin accumulation appears to be linked to tenascin production, and collagen I to decreased MMP-1 levels. In addition, cCAF is chemotactic for fibroblasts and accelerates their migration. Conclusions These previously unknown functions for chemokines suggest that cCAF, the chicken orthologue of human IL-8, enhances healing by rapidly chemoattracting fibroblasts into the wound site and stimulating them to produce ECM molecules, leading to precocious development of granulation tissue. This acceleration of the repair process may have important application to healing of impaired wounds.

  14. HL-217, a new topical anti-angiogenic agent, inhibits retinal vascular leakage and pathogenic subretinal neovascularization in Vldlr{sup −/−} mic