WorldWideScience

Sample records for angiogenic molecule expression

  1. Expression and function of anew angiogenic factor AA98 target molecule at the maternal-embryonic boundary ofrhesus monkey

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The target molecule of monoclonal antibody AA98 (AA for short) is a new vascular endothelial cell related factor and plays a role in angiogenesis as indicated by the previous data. To investigate its role in angiogenesis and placentation in primate, we examined its expression in the implantation sites on D17, 19, 28 and 34 of gestation in rhesus monkey by immunohistochemistry and Western immunoblot. Western blot analysis showed that the primary antibody used in this study was specific for its epitope. AA protein was mainly expressed in small blood vessels and in some cytotrophoblast cells. The AA staining was found mainly in the endothelial cells and vascular small muscle.This observation supported the AA's role in angiogenesis. AA was spatio-temporarily expressed in cytotrophoblasts: weak in proliferating trophoblast within cell column and endovascular trophoblast, strong in trophoblastic subpopulation within the basal plate and vascular trophoblast; AA staining within the basal plate was down-regulated during early placentation. The shift of AA98 expression in extravillous trophoblasts suggestes a role of this new factor during the course of cytotrophoblast metastasis and spiral artery remodeling. The spatio-temporarily expression indicats that AA98 could be also used as a trophoblast cellular marker to characterize the acquisition of a vascular endothelial and invasive phenotype.

  2. Angiogenic Effect of Intercellular Adhesion Molecule-1

    Institute of Scientific and Technical Information of China (English)

    DENG Chenguo; ZHANG Duanlian; SHAN Shengguo; WU Jingwen; YANG Hong; YU Ying

    2007-01-01

    In order to investigate the angiogenic effect of intercellular adhesion molecule-1 (ICAM-1), two parts of experiment were performed. Chick embryo chorioallantoic membrane (CAM) assay was used for in vivo angiogenic research. The chick embryos were divided into 4 groups: ICAM-1 group (divided into 3 subgroups, Ⅰ, Ⅱ and Ⅲ) for screening the angiogenic effect of ICAM-1 by adding different concentrations of ICAM-1 (0.1, 0.2 and 0.3 μg/μL) 5 μL into the chick embryo CAMs on the day 10 after incubation for every subgroup; Anti-ICAM-1 group A (divided into 2 subgroups, Ⅰ and Ⅱ) by adding different concentrations of Anti-ICAM-1 (1:100, 1:50) 5 μL into the chick embryo CAMs on the day 10 after incubation for every subgroup to evaluate the effect of ICAM-1 on the survival of microvessels through observing whether Anti-ICAM-1 could induce involution of the microvessels on CAMs; Anti-ICAM-1 group B (divided into 2 subgroups, Ⅰ and Ⅱ ) by adding different concentrations of Anti-ICAM-1 (1:100, 1:50) 5 μL into the chick embryo CAMs on the day 6 after incubation for every subgroup to evaluate whether ICAM-1 involved in embryonic angiogenesis through observing the growth of microvessels on CAMs; Control group: ICAM-1 or Anti-ICAM-1 was substituted by PBS 5 μL on the day 10 or day 6 after incubation. Three days later, the CAMs were photographed in vivo, excised, sectioned and the number of microvessels was counted. In ICAM-1 group, there was increased number of microvessels arranged radially with "spoked-wheel" pattern around the gelatin sponges. The new microvessels growing perpendicularly to gelatin sponges were observed. The number of the microvessels growing in the CAM mesenchymes around the sponges in 3 subgroups was higher than that in control group (P<0.01), however, there was no significant difference among the 3 subgroups (P>0.05). In anti-ICAM-1 group A, the radially arranged microvessels were very unclear around the sponges contrast to that of ICAM

  3. Expression of angiogenic factors in cerebral arteriovenous malformations

    Institute of Scientific and Technical Information of China (English)

    Mingguang Zhao; Youli Chen; Zhenquan Song; Yongzhong Gao; Peiyu Pu; Xuezhong Wei

    2007-01-01

    BACKGROUND: In the process of vascularization, vascular endothelial growth factor (VEGF),angiopoietin-2 and Tie2 are involved in the migration, differentiation and proliferation of vascular endothelial cells, and stimulate the rapid angiogenesis; Tie1 and angiopoietin-1 play important roles in facilitating the formation of vascular lumen and maintaining the integrity of vascular wall. Thus the distributions and expressions may be associated with the occurrence of cerebral arteriovenous malformation.OBJECTIVE: To observe the biological effects of angiogenic factors in the occurrence and development of cerebral arteriovenous malformation.DESIGN: An observational comparative experiment.SETTINGS: Department of Neurosurgery, General Hospital of Shenyang Military Area Command of Chinese PLA; Department of Neurosurgery, General Hospital of Tianjin Medical University.PARTICIPANTS: Fresh samples of complete cerebral arteriovenous malformations resected in 47 patients were collected from the Department of Neurosurgery, General Hospital of Tianjin Medical University from August 1999 to May 2001, including 22 males and 25 females, the mean age was 34.5 years. Informed consents were obtained from all the patients or their relatives. The initial symptom was hemorrhage in 28 cases. All the patients were classified according to the clinical imaging data and Spetzler-Martin grading standard, including 11 cases of grade Ⅰ , 17 cases of grade Ⅱ, 11 cases of grade Ⅲ, and 8 cases of grade Ⅳ - Ⅴ. Normal brain tissues resected by decompression due to trauma were taken from 8 patients as controls, including 5 males and 3 females, aging 12 - 65 years.METHODS: ① The expressions of VEGF, Tie receptors, angiopoietin-1, angiopoietin-2, proto-oncogene c-myc and proliferating cell nuclear antigen(PCNA) in the samples of cerebral arteriovenous malformation were detected with immunohistochemical method. Under light microscope, the positively stained rat-anti-human factor

  4. Type 5 phosphodiesterase expression is a critical determinant of the endothelial cell angiogenic phenotype

    OpenAIRE

    Zhu, Bing; Zhang, Li; Alexeyev, Mikhail; Alvarez, Diego F.; Strada, Samuel J.; Stevens, Troy

    2008-01-01

    Type 5 phosphodiesterase (PDE5) inhibitors increase endothelial cell cGMP and promote angiogenesis. However, not all endothelial cell phenotypes express PDE5. Indeed, whereas conduit endothelial cells express PDE5, microvascular endothelial cells do not express this enzyme, and they are rapidly angiogenic. These findings bring into question whether PDE5 activity is a critical determinant of the endothelial cell angiogenic potential. To address this question, human full-length PDE5A1 was stabl...

  5. Single Molecule Detection of H2O2 Mediating Angiogenic Redox Signaling on Fluorescent Single-Walled Carbon Nanotube Array

    OpenAIRE

    Kim, Jong-Ho; Arkalgud, Jyoti R.; Boghossian, Ardemis A; Zhang, Jingqing; Han, Jae-Hee; Reuel, Nigel F.; Ahn, Jin-Ho; Mukhopadhyay, Debabrata; Strano, Michael S.

    2011-01-01

    Reactive oxygen species, specifically hydrogen peroxide (H2O2), activate signal transduction pathways during angiogenesis, and therefore play an important role in physiological development as well as various pathophysiologies. Herein, we utilize a near infrared fluorescent single-walled carbon nanotube (SWNT) sensor array to measure the single molecule efflux of H2O2 from human umbilical vein endothelial cells (HUVEC) in response to angiogenic stimulation. Two angiogenic agents were investiga...

  6. Differential angiogenic gene expression in TP53 wild-type and mutant ovarian cancer cell lines

    Directory of Open Access Journals (Sweden)

    BrittanyAnneDavidson

    2014-06-01

    Full Text Available Objectives: Underlying mechanisms regulating angiogenesis in ovarian cancer have not been completely elucidated. Evidence suggests that the TP53 tumor suppressor pathway and tumor microenvironment play integral roles. We utilized microarray technology to study the interaction between TP53 mutational status & hypoxia on angiogenic gene expression. Methods: Affymetrix U133A arrays were analyzed for angiogenic gene expression in 19 ovarian cancer cell lines stratified both by TP53 mutation status and A2780 wild-type (wt TP53 vs. mutated (m TP53 cell lines after treatment under hypoxic conditions or with ionizing radiation. Results: Twenty-eight differentially expressed angiogenic genes were identified in the mTP53 cell lines compared to wtTP53 lines. Five genes were upregulated in mTP53 cells: 40% involved in extracellular matrix (ECM degradation (MMP10/15 and 60% in angiogenesis (FGFR3/VEGFA/EPHB4. Twenty-three genes were upregulated in wtTP53: nearly 22% were ECM constituents or involved in ECM degradation; over 40% were growth factors or mediators of angiogenesis. Five genes were upregulated in the A2780mTP53 cells: 40% involved in ECM remodeling (MMP10, ADAMTS1, 40% with pro-angiogenic activity (EFNB2, F2R, and 20% with anti-angiogenic properties (ADAMTS1. Three genes were upregulated in hypoxia treated cells compared to controls: 1 with anti-angiogenic activity (ANGPTL4 and 2 with pro-angiogenic activity (VEGFA, EFNA3. No significant gene fold changes were noted after exposure to radiation. Four genes continued to demonstrate significant differential expression (p≤0.05 after adjusting for multiple comparisons. These genes included ENG upregulation in wild-type lines and upregulation of FGF-20, ADAMTS1 & MMP10 in mTP53 lines. Conclusions: Our exploratory findings indicate that non-overlapping angiogenic pathways may be altered by TP53 mutations and hypoxic conditions in ththe tumor microenvironment. Further evaluation is needed for

  7. Pro-angiogenic cellular and genomic expression patterns within glioblastoma influences dynamic susceptibility weighted perfusion MRI

    International Nuclear Information System (INIS)

    Aim: To investigate whether quantitative dynamic susceptibility-weighted contrast-enhanced (DSC) perfusion magnetic resonance imaging (MRI) metrics are influenced by cellular and genomic expression patterns of glioblastoma angiogenesis. Materials and methods: Twenty-five stereotactic neurosurgical tissue samples were prospectively obtained from enhancing and non-enhancing tumour regions from 10 patients with treatment-naïve glioblastoma. Using monoclonal antibodies, histopathological features of angiogenesis were examined: total microvascular density, vascular morphology, and hypoxia. Angiogenic expression patterns of tissue samples were investigated using RNA microarrays. DSC perfusion MRI metrics were measured from the tissue sampling sites. MRI and histopathological variables were compared using Pearson's correlations. Microarray analysis was performed using false discovery rate (FDR) statistics. Results: Thirteen enhancing and 12 non-enhancing MR image-guided tissue specimens were prospectively obtained. Enhancing tumour regions demonstrated a significant difference in DSC perfusion and histopathological metrics of angiogenesis when compared to non-enhancing regions. Four angiogenic pathways (vascular endothelial growth factor [VEGF], hypoxia inducible factor [HIF], platelet-derived growth factor [PDGF], fibroblast growth factor [FGF]; 25 individual genes) were significantly up-regulated within enhancing regions when compared to non-enhancing regions (adjusted p<0.05, FDR <0.05). A statistically significant correlation was observed between VEGF-A expression, microvascular density, microvascular morphology, and DSC perfusion MRI metrics (p<0.05). Conclusion: Pro-angiogenic genomic and cellular expression patterns of treatment-naïve primary glioblastoma significantly influences morphological and physiological DSC perfusion metrics suggesting that expression levels of therapeutically relevant genetic signatures can be quantified using MRI. -- Highlights:

  8. Protein kinase D1 signaling in angiogenic gene expression and VEGF-mediated angiogenesis

    Directory of Open Access Journals (Sweden)

    Bin eRen MD, Phd, FAHA

    2016-05-01

    Full Text Available Protein kinase D 1 (PKD-1 is a signaling kinase important in fundamental cell functions including migration, proliferation and differentiation. PKD-1 is also a key regulator of gene expression and angiogenesis that is essential for cardiovascular development and tumor progression. Further understanding molecular aspects of PKD-1 signaling in the regulation of angiogenesis may have translational implications in obesity, cardiovascular disease and cancer. The author will summarize and provide the insights into molecular mechanisms by which PKD-1 regulates transcriptional expression of angiogenic genes, focusing on the transcriptional regulation of CD36 by PKD-1-FoxO1 signaling axis along with the potential implications of this axis in arterial differentiation and morphogenesis. He will also discuss a new concept of dynamic balance between proangiogenic and antiangiogenic signaling in determining angiogenic switch, and stress how PKD-1 signaling regulates VEGF signaling-mediated angiogenesis.

  9. Protein Kinase D1 Signaling in Angiogenic Gene Expression and VEGF-Mediated Angiogenesis.

    Science.gov (United States)

    Ren, Bin

    2016-01-01

    Protein kinase D 1 (PKD-1) is a signaling kinase important in fundamental cell functions including migration, proliferation, and differentiation. PKD-1 is also a key regulator of gene expression and angiogenesis that is essential for cardiovascular development and tumor progression. Further understanding molecular aspects of PKD-1 signaling in the regulation of angiogenesis may have translational implications in obesity, cardiovascular disease, and cancer. The author will summarize and provide the insights into molecular mechanisms by which PKD-1 regulates transcriptional expression of angiogenic genes, focusing on the transcriptional regulation of CD36 by PKD-1-FoxO1 signaling axis along with the potential implications of this axis in arterial differentiation and morphogenesis. He will also discuss a new concept of dynamic balance between proangiogenic and antiangiogenic signaling in determining angiogenic switch, and stress how PKD-1 signaling regulates VEGF signaling-mediated angiogenesis. PMID:27200349

  10. The effect of gestational age on angiogenic gene expression in the rat placenta.

    Directory of Open Access Journals (Sweden)

    Kanchan Vaswani

    Full Text Available The placenta plays a central role in determining the outcome of pregnancy. It undergoes changes during gestation as the fetus develops and as demands for energy substrate transfer and gas exchange increase. The molecular mechanisms that coordinate these changes have yet to be fully elucidated. The study performed a large scale screen of the transcriptome of the rat placenta throughout mid-late gestation (E14.25-E20 with emphasis on characterizing gestational age associated changes in the expression of genes involved in angiogenic pathways. Sprague Dawley dams were sacrificed at E14.25, E15.25, E17.25 and E20 (n = 6 per group and RNA was isolated from one placenta per dam. Changes in placental gene expression were identified using Illumina Rat Ref-12 Expression BeadChip Microarrays. Differentially expressed genes (>2-fold change, <1% false discovery rate, FDR were functionally categorised by gene ontology pathway analysis. A subset of differentially expressed genes identified by microarrays were confirmed using Real-Time qPCR. The expression of thirty one genes involved in the angiogenic pathway was shown to change over time, using microarray analysis (22 genes displayed increased and 9 gene decreased expression. Five genes (4 up regulated: Cd36, Mmp14, Rhob and Angpt4 and 1 down regulated: Foxm1 involved in angiogenesis and blood vessel morphogenesis were subjected to further validation. qPCR confirmed late gestational increased expression of Cd36, Mmp14, Rhob and Angpt4 and a decrease in expression of Foxm1 before labour onset (P<0.0001. The observed acute, pre-labour changes in the expression of the 31 genes during gestation warrant further investigation to elucidate their role in pregnancy.

  11. Target Therapy Using a Small Molecule Inhibitor against Angiogenic Receptors in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Peter Büchler

    2007-02-01

    Full Text Available PURPOSE: PD173074, a small molecule inhibitor of VEGF-RII and FGF-RI, targets neoangiogenesis and mitogenesis. This study aimed to analyze a singlecompound-driven inhibition of FGF and VEGF receptors in pancreatic cancer. EXPERIMENTAL DESIGN: RT-PCR and Western blots were performed to quantify protein expression and phosphorylation. Anchorage dependent and independent growth assays were used to study cell growth. With flow cytometry, cell cycle analysis and apoptosis were studied. In vivo HPAF-II and MIA PaCa-2 cells were xenografted. Animals were treated daily for 10 weeks. Immunohistochemistry was used to quantify microvessel density and apoptosis. RESULTS: Highest levels of FGF-RI were detectable in MIA PaCa-2 cells, lowest in HPAF-II cells. PD173074 inhibited cell growth most prominently in cells expressing high levels of FGF-RI. Cell cycle progression was inhibited by blocking transition in the G0/G1 phase, and consequently, apoptosis was increased. In vivo significant inhibition of orthotopic tumor growth was achieved by a combination effect of inhibition of mitogenesis, induction of apoptosis, and reduction of angiogenesis in PD173074-treated animals. CONCLUSIONS: These data highlight VEGF-RII and FGF-RI as therapeutic targets and suggest a potential role for the combined use of tyrosine kinase inhibitors in the management of inoperable pancreatic cancer patients.

  12. A mechanism for abnormal angiogenesis in human radiation proctitis. Analysis of expression profile for angiogenic factors

    International Nuclear Information System (INIS)

    Radiation proctitis is an increasingly prevalent problem, with many patients being treated with radiotherapy for pelvic cancers. However, the mechanisms by which radiation proctitis develops in humans are not well understood. In this study, the expression profiles of angiogenic factors were analyzed to clarify their role in the etiology of radiation proctitis. Rectal biopsies were taken from 8 patients with radiation proctitis and 8 normal subjects. Protein lysates of the tissues were applied to an antibody array for angiogenesis-related factors. The mRNA level of each factor was evaluated by Taqman real-time polymerase chain reaction (PCR). Immunohistochemistry was performed using the labeled streptavidin biotin method. Antibody array analysis revealed 2.12- to 7.31-fold higher expression levels of angiogenin, fibroblast growth factor 1 (FGF1), endoglin, matrix metalloproteinase (MMP)-8, urokinase-type plasminogen activator (uPA) and maspin in radiation proctitis tissues compared with normal rectal mucosa. The mRNA level of each factor in radiation proctitis tissue was significantly higher than in normal rectal mucosa, suggesting their transcriptional activation. Immunohistochemical staining showed strong expression of angiogenin and maspin in rectal epithelia, MMP-8 and uPA in infiltrating lymphocytes, FGF1 in fibroblasts and endoglin in endothelial cells. The expression of vascular endothelial growth factor (VEGF) was not evident. Our results suggest that in radiation proctitis, MMP-8 and uPA cooperatively degrade the extracellular matrix and basement membrane to provide space for angiogenesis. Simultaneously, angiogenin and FGF1 promote endothelial cell proliferation, and endoglin induces vessel formation, culminating in angiogenesis. Inhibitors of angiogenic factors such as angiogenin and FGF1 may be effective for treating radiation proctitis. (author)

  13. Glycer-AGEs-RAGE signaling enhances the angiogenic potential of hepatocellular carcinoma by upregulating VEGF expression

    Institute of Scientific and Technical Information of China (English)

    Junichi Takino; Shoichi Yamagishi; Masayoshi Takeuchi

    2012-01-01

    AIM:To investigate the effect of glyceraldehyde-derived advanced glycation end-products (Glycer-AGEs)on hepatocellular carcinoma (HCC) cells.METHODS:Two HCC cell lines (Hep3B and HepG2cells) and human umbilical vein endothelial cells (HUVEC) were used.Cell viability was determined using the WST-8 assay.Western blotting,enzyme linked immunosorbent assay,and real-time reverse transcriptionpolymerase chain reactions were used to detect protein and mRNA.Angiogenesis was evaluated by assessing the proliferation,migration,and tube formation of HUVEC.RESULTS:The receptor for AGEs (RAGE) protein was detected in Hep3B and HepG2 cells.HepG2 cells were not affected by the addition of Glycer-AGEs.GlycerAGEs markedly increased vascular endothelial growth factor (VEGF) mRNA and protein expression,which is one of the most potent angiogenic factors.Compared with the control unglycated bovine serum albumin (BSA)treatment,VEGF mRNA expression levels induced by the Glycer-AGEs treatment were 1.00 ± 0.10 vs 1.92± 0.09 (P < 0.01).Similarly,protein expression levels induced by the Glycer-AGEs treatment were 1.63 ± 0.04ng/mL vs 2.28 ± 0.17 ng/mL for the 24 h treatment and 3.36 ± 0.10 ng/mL vs 4.79 ± 0.31 ng/mL for the 48 h treatment,respectively (P < 0.01).Furthermore,compared with the effect of the control unglycated BSA-treated conditioned medium,the Glycer-AGEstreated conditioned medium significantly increased the proliferation,migration,and tube formation of HUVEC,with values of 122.4% ± 9.0% vs 144.5% ± 11.3% for cell viability,4.29 ± 1.53 vs 6.78 ± 1.84 for migration indices,and 71.0 ± 7.5 vs 112.4 ± 8.0 for the number of branching points,respectively (P < 0.01).CONCLUSION:These results suggest that Glycer-AGEs-RAGE signaling enhances the angiogenic potential of HCC cells by upregulating VEGF expression.

  14. A new anti-angiogenic small molecule, G0811, inhibits angiogenesis via targeting hypoxia inducible factor (HIF)-1α signal transduction

    International Nuclear Information System (INIS)

    Highlights: •G0811 suppresses HIF-1α expression without cell toxicity. •G0811 exhibits anti-angiogenic activity both in vitro and in vivo. •G0811 provides a new molecular scaffold for the development of therapeutics targeting angiogenesis. -- Abstract: Regulation of hypoxia inducible factor (HIF)-1α stabilization, which in turn contributes to adaptation of tumor cells to hypoxia has been highlighted as a promising therapeutic target in angiogenesis-related diseases. We have identified a new small molecule, G0811, as a potent angiogenesis inhibitor that targets HIF-1α signal transduction. G0811 suppressed HIF-1α stability in cancer cells and inhibited in vitro and in vivo angiogenesis, as validated by tube formation, chemoinvasion, and chorioallantoic membrane (CAM) assays. In addition, G0811 effectively decreased the expression of vascular endothelial growth factor (VEGF), which is one of target genes of HIF-1α. However, G0811 did not exhibit anti-proliferative activities or toxicity in human umbilical vein endothelial cells (HUVECs) at effective doses. These results demonstrate that G0811 could be a new angiogenesis inhibitor that acts by targeting HIF-1α signal transduction pathway

  15. A new anti-angiogenic small molecule, G0811, inhibits angiogenesis via targeting hypoxia inducible factor (HIF)-1α signal transduction

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Hyun; Jung, Hye Jin; Kwon, Ho Jeong, E-mail: kwonhj@yonsei.ac.kr

    2013-11-15

    Highlights: •G0811 suppresses HIF-1α expression without cell toxicity. •G0811 exhibits anti-angiogenic activity both in vitro and in vivo. •G0811 provides a new molecular scaffold for the development of therapeutics targeting angiogenesis. -- Abstract: Regulation of hypoxia inducible factor (HIF)-1α stabilization, which in turn contributes to adaptation of tumor cells to hypoxia has been highlighted as a promising therapeutic target in angiogenesis-related diseases. We have identified a new small molecule, G0811, as a potent angiogenesis inhibitor that targets HIF-1α signal transduction. G0811 suppressed HIF-1α stability in cancer cells and inhibited in vitro and in vivo angiogenesis, as validated by tube formation, chemoinvasion, and chorioallantoic membrane (CAM) assays. In addition, G0811 effectively decreased the expression of vascular endothelial growth factor (VEGF), which is one of target genes of HIF-1α. However, G0811 did not exhibit anti-proliferative activities or toxicity in human umbilical vein endothelial cells (HUVECs) at effective doses. These results demonstrate that G0811 could be a new angiogenesis inhibitor that acts by targeting HIF-1α signal transduction pathway.

  16. Osmotic Induction of Angiogenic Growth Factor Expression in Human Retinal Pigment Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Moritz Veltmann

    Full Text Available Although systemic hypertension is a risk factor of age-related macular degeneration, antihypertensive medications do not affect the risk of the disease. One condition that induces hypertension is high intake of dietary salt resulting in increased blood osmolarity. In order to prove the assumption that, in addition to hypertension, high osmolarity may aggravate neovascular retinal diseases, we determined the effect of extracellular hyperosmolarity on the expression of angiogenic cytokines in cultured human retinal pigment epithelial (RPE cells.Hyperosmolarity was induced by the addition of 100 mM NaCl or sucrose to the culture medium. Hypoxia and oxidative stress were induced by the addition of the hypoxia mimetic CoCl2 and H2O2, respectively. Alterations in gene expression were determined with real-time RT-PCR. Secretion of bFGF was evaluated by ELISA. Cell viability was determined by trypan blue exclusion. Nuclear factor of activated T cell 5 (NFAT5 expression was knocked down with siRNA. Hyperosmolarity induced transcriptional activation of bFGF, HB-EGF, and VEGF genes, while the expression of other cytokines such as EGF, PDGF-A, TGF-β1, HGF, and PEDF was not or moderately altered. Hypoxia induced increased expression of the HB-EGF, EGF, PDGF-A, TGF-β1, and VEGF genes, but not of the bFGF gene. Oxidative stress induced gene expression of HB-EGF, but not of bFGF. The hyperosmotic expression of the bFGF gene was dependent on the activation of p38α/β MAPK, JNK, PI3K, and the transcriptional activity of NFAT5. The hyperosmotic expression of the HB-EGF gene was dependent on the activation of p38α/β MAPK, ERK1/2, and JNK. The hyperosmotic expression of bFGF, HB-EGF, and VEGF genes was reduced by inhibitors of TGF-β1 superfamily activin receptor-like kinase receptors and the FGF receptor kinase, respectively. Hyperosmolarity induced secretion of bFGF that was reduced by inhibition of autocrine/paracrine TGF-β1 signaling and by NFAT5 si

  17. Analysis of angiogenic factors and cyclooxygenase-2 expression in cartilaginous tumors – clinical and histological correlation

    Science.gov (United States)

    Cintra, Francisco Fontes; Etchebehere, Mauricio; Gonçalves, José Carlos Barbi; Cassone, Alejandro Enzo; Amstalden, Eliane Maria Ingrid

    2011-01-01

    OBJECTIVES: To study the role of angiogenesis and cyclooxygenase-2 expression in cartilaginous tumors and correlate these factors with prognosis. INTRODUCTION: For chondrosarcoma, the histological grade is the current standard for predicting tumor outcome. However, a low-grade chondrosarcoma can follow an aggressive course—as monitored by sequential imaging techniques—even when it is histologically indistinguishable from an enchondroma. Therefore, additional tools are needed to help identify the biological potential of these tumors. The degree of angiogenesis that is induced by the tumor could assist in this task. Angiogenesis can be quantified by measuring the expression of vascular endothelial growth factor and CD34, and cyclooxygenase-2 can induce angiogenesis by stimulating the production of pro-angiogenic factors. METHODS: In total, 21 enchondromas and 58 conventional chondrosarcomas were studied by examining the clinical and histopathological findings in conjunction with the immunostaining markers of angiogenesis and cyclooxygenase-2 expression. RESULTS: The significant variables that were associated with poor outcome were 1) higher-grade chondrosarcomas, 2) tumors that developed in flat bones, and 3) over-expression of CD34 (with a median count that was higher than 5.9 vessels in 5 high power fields). Moreover, CD34 expression (measured using the Chalkley method) revealed significantly higher microvessel density in flat bone chondrosarcomas. DISCUSSION: Previous studies have shown a positive correlation between Chalkley microvessel density and histological grade; however, in our sample, we found that the former is predictive of the outcome. Chondrosarcomas in flat bones have been shown to correlate with a poor prognosis. We also found that CD34 microvessel density values were significantly higher in flat-bone chondrosarcomas. This could explain—at least in part—the more aggressive biological course that is taken by these tumors. CONCLUSIONS: These

  18. Soluble melanoma cell adhesion molecule (sMCAM/sCD146) promotes angiogenic effects on endothelial progenitor cells through angiomotin.

    Science.gov (United States)

    Stalin, Jimmy; Harhouri, Karim; Hubert, Lucas; Subrini, Caroline; Lafitte, Daniel; Lissitzky, Jean-Claude; Elganfoud, Nadia; Robert, Stéphane; Foucault-Bertaud, Alexandrine; Kaspi, Elise; Sabatier, Florence; Aurrand-Lions, Michel; Bardin, Nathalie; Holmgren, Lars; Dignat-George, Françoise; Blot-Chabaud, Marcel

    2013-03-29

    The melanoma cell adhesion molecule (CD146) contains a circulating proteolytic variant (sCD146), which is involved in inflammation and angiogenesis. Its circulating level is modulated in different pathologies, but its intracellular transduction pathways are still largely unknown. Using peptide pulldown and mass spectrometry, we identified angiomotin as a sCD146-associated protein in endothelial progenitor cells (EPC). Interaction between angiomotin and sCD146 was confirmed by enzyme-linked immunosorbent assay (ELISA), homogeneous time-resolved fluorescence, and binding of sCD146 on both immobilized recombinant angiomotin and angiomotin-transfected cells. Silencing angiomotin in EPC inhibited sCD146 angiogenic effects, i.e. EPC migration, proliferation, and capacity to form capillary-like structures in Matrigel. In addition, sCD146 effects were inhibited by the angiomotin inhibitor angiostatin and competition with recombinant angiomotin. Finally, binding of sCD146 on angiomotin triggered the activation of several transduction pathways that were identified by antibody array. These results delineate a novel signaling pathway where sCD146 binds to angiomotin to stimulate a proangiogenic response. This result is important to find novel target cells of sCD146 and for the development of therapeutic strategies based on EPC in the treatment of ischemic diseases. PMID:23389031

  19. Angiogenic CXC chemokine expression during differentiation of human mesenchymal stem cells towards the osteoblastic lineage.

    Science.gov (United States)

    Bischoff, D S; Zhu, J H; Makhijani, N S; Kumar, A; Yamaguchi, D T

    2008-02-15

    The potential role of ELR(+) CXC chemokines in early events in bone repair was studied using human mesenchymal stem cells (hMSCs). Inflammation, which occurs in the initial phase of tissue healing in general, is critical to bone repair. Release of cytokines from infiltrating immune cells and injured bone can lead to recruitment of MSCs to the region of repair. CXC chemokines bearing the Glu-Leu-Arg (ELR) motif are also released by inflammatory cells and serve as angiogenic factors stimulating chemotaxis and proliferation of endothelial cells. hMSCs, induced to differentiate with osteogenic medium (OGM) containing ascorbate, beta-glycerophosphate (beta-GP), and dexamethasone (DEX), showed an increase in mRNA and protein secretion of the ELR(+) CXC chemokines CXCL8 and CXCL1. CXCL8 mRNA half-life studies reveal an increase in mRNA stability upon OGM stimulation. Increased expression and secretion is a result of DEX in OGM and is dose-dependent. Inhibition of the glucocorticoid receptor with mifepristone only partially inhibits DEX-stimulated CXCL8 expression indicating both glucocorticoid receptor dependent and independent pathways. Treatment with signal transduction inhibitors demonstrate that this expression is due to activation of the ERK and p38 mitogen-activated protein kinase (MAPK) pathways and is mediated through the G(alphai)-coupled receptors. Angiogenesis assays demonstrate that OGM-stimulated conditioned media containing secreted CXCL8 and CXCL1 can induce angiogenesis of human microvascular endothelial cells in an in vitro Matrigel assay. PMID:17583554

  20. Nasal administration of interleukin-33 induces airways angiogenesis and expression of multiple angiogenic factors in a murine asthma surrogate.

    Science.gov (United States)

    Shan, Shan; Li, Yan; Wang, Jingjing; Lv, Zhe; Yi, Dawei; Huang, Qiong; Corrigan, Chris J; Wang, Wei; Quangeng, Zhang; Ying, Sun

    2016-05-01

    The T-helper cell type 2-promoting cytokine interleukin-33 (IL-33) has been implicated in asthma pathogenesis. Angiogenesis is a feature of airways remodelling in asthma. We hypothesized that IL-33 induces airways angiogenesis and expression of angiogenic factors in an established murine surrogate of asthma. In the present study, BALB/c mice were subjected to serial intranasal challenge with IL-33 alone for up to 70 days. In parallel, ovalbumin (OVA) -sensitized mice were subjected to serial intranasal challenge with OVA or normal saline to serve as positive and negative controls, respectively. Immunohistochemical analysis of expression of von Willebrand factor and erythroblast transformation-specific-related gene, both blood vessel markers, and angiogenic factors angiogenin, insulin-like growth factor-1, endothelin-1, epidermal growth factor and amphiregulin was performed in lung sections ex vivo. An established in-house assay was used to test whether IL-33 was able to induce microvessel formation by human vascular endothelial cells. Results showed that serial intranasal challenge of mice with IL-33 or OVA resulted in proliferation of peribronchial von Willebrand factor-positive blood vessels to a degree closely related to the total expression of the angiogenic factors amphiregulin, angiogenin, endothelin-1, epidermal growth factor and insulin-like growth factor-1. IL-33 also induced microvessel formation by human endothelial cells in a concentration-dependent fashion in vitro. Our data are consistent with the hypothesis that IL-33 has the capacity to induce angiogenesis at least partly by increasing local expression of multiple angiogenic factors in an allergen-independent murine asthma surrogate, and consequently that IL-33 or its receptor is a potential novel molecular target for asthma therapy. PMID:27035894

  1. Extra virgin olive oil rich in polyphenols modulates VEGF-induced angiogenic responses by preventing NADPH oxidase activity and expression.

    Science.gov (United States)

    Calabriso, Nadia; Massaro, Marika; Scoditti, Egeria; D'Amore, Simona; Gnoni, Antonio; Pellegrino, Mariangela; Storelli, Carlo; De Caterina, Raffaele; Palasciano, Giuseppe; Carluccio, Maria Annunziata

    2016-02-01

    Previous studies have shown the antiinflammatory, antioxidant and antiangiogenic properties by pure olive oil polyphenols; however, the effects of olive oil phenolic fraction on the inflammatory angiogenesis are unknown. In this study, we investigated the effects of the phenolic fraction (olive oil polyphenolic extract, OOPE) from extra virgin olive oil and related circulating metabolites on the VEGF-induced angiogenic responses and NADPH oxidase activity and expression in human cultured endothelial cells. We found that OOPE (1-10 μg/ml), at concentrations achievable nutritionally, significantly reduced, in a concentration-dependent manner, the VEGF-induced cell migration, invasiveness and tube-like structure formation through the inhibition of MMP-2 and MMP-9. OOPE significantly (Poxidase activity, p47phox membrane translocation and the expression of Nox2 and Nox4. Moreover, the treatment of endothelial cells with serum obtained 4 h after acute intake of extra virgin olive oil, with high polyphenol content, decreased VEGF-induced NADPH oxidase activity and Nox4 expression, as well as, MMP-9 expression, as compared with fasting control serum. Overall, native polyphenols and serum metabolites of extra virgin olive oil rich in polyphenols are able to lower the VEGF-induced angiogenic responses by preventing endothelial NADPH oxidase activity and decreasing the expression of selective NADPH oxidase subunits. Our results provide an alternative mechanism by which the consumption of olive oil rich in polyphenols may account for a reduction of oxidative stress inflammatory-related sequelae associated with chronic degenerative diseases. PMID:26878779

  2. Effects of resistin-like molecule β over-expression on gastric cancer cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Li-Duan Zheng; Chun-Lei Yang; Teng Qi; Meng Qi; Ling Tong; Qiang-Song Tong

    2012-01-01

    AIM:To investigate the effects of resistin-like molecule β (RELMβ) over-expression on the invasion,metastasis and angiogenesis of gastric cancer cells.METHODS:Human RELMβ encoding expression vector was constructed and transfected into the RELMβ lowly-expressed gastric cancer cell lines SGC-7901 and MKN-45.Gene expression was measured by Western blotting,reverse transcription polymerase chain reaction (PCR) and real-time quantitative PCR.Cell proliferation was measured by 2-(4,5-dimethyltriazol-2-yl)-2,5-diphenyl tetrazolium bromide colorimetry,colony formation and 5-ethynyl-20-deoxyuridine incorporation assays.The in vitro migration,invasion and metastasis of cancer cells were measured by cell adhesion assay,scratch assay and matrigel invasion assay.The angiogenic capabilities of cancer cells were measured by tube formation of endothelial cells.RESULTS:Transfection of RELMβ vector into SGC-7901 and MKN-45 cells resulted in over-expression of RELMβ,which did not influence the cellular proliferation.However,over-expression of RELMβ suppressed the in vitro adhesion,invasion and metastasis of cancer cells,accompanied by decreased expression of matrix metalloproteinase-2 (MMP-2) and MMP-9.Moreover,transfection of RELMβ attenuated the expression of vascular endothelial growth factor and in vitro angiogenic capabilities of cancer cells.CONCLUSION:Over-expression of RELMβ abolishes the invasion,metastasis and angiogenesis of gastric cancer cells in vitro,suggesting its potentials as a novel therapeutic target for gastric cancer.

  3. A preliminary study of pamidronic acid downregulation of angiogenic factors IGF-1/PECAM-1 expression in circulating level in bone metastatic breast cancer patients

    Directory of Open Access Journals (Sweden)

    Wang Z

    2016-05-01

    Full Text Available Zeng Wang,1,2 Lei Lei,2,3 Xin-jun Cai,4 Ling Ya Chen,1,2 Meiqin Yuan,2,3 Guonong Yang,1,2 Ping Huang,1,2 Xiaojia Wang2,3 1Department of Pharmacy, 2Zhejiang Key Lab of Diagnosis & Treatment Technology on Thoracic Oncology, 3Department of Chemotherapy Center, Zhejiang Cancer Hospital, 4Department of Pharmacy, Integrated Chinese and Western Medicine Hospital of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China Objective: To evaluate the expressions of circulating angiogenic factors affected by pamidronic acid (PA intravenous infusion in bone metastatic breast cancer patients and the impact on their prognosis.Methods: Peripheral blood of ten bone metastatic breast cancer patients was collected for serum insulin-like growth factor-1 (IGF-1 and platelet endothelial cell adhesion molecule-1 expression detection just before and 2 days after PA infusion.Results: Both IGF-1 and platelet endothelial cell adhesion molecule-1 concentrations decreased after PA treatment for 48 hours (P<0.05. Modification was defined as >20% decrease recorded 2 days after PA administration. The decrease of IGF-1 was more significant in breast cancer patients who had received previous hormonotherapy. Moreover, the progression-free survival of first-line chemotherapy treatment of IGF-1 modified patients was longer than that of IGF-1 unmodified patients (P=0.009.Conclusion: PA treatment could suppress circulating serum IGF-1 and platelet endothelial cell adhesion molecule-1 concentrations; moreover, the prognosis of patients in IGF-1 unmodified group was relatively poor. Keywords: pamidronic acid, insulin-like growth factor-1, platelet endothelial cell adhesion molecule-1, bone metastatic breast cancer, prognosis

  4. T-Cadherin Expression in Melanoma Cells Stimulates Stromal Cell Recruitment and Invasion by Regulating the Expression of Chemokines, Integrins and Adhesion Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Rubina, Kseniya A., E-mail: rkseniya@mail.ru; Surkova, Ekaterina I.; Semina, Ekaterina V.; Sysoeva, Veronika Y.; Kalinina, Natalia I. [Department of Biochemistry and Molecular Medicine, Faculty of Medicine, M.V. Lomonosov Moscow State University, Lomonosovsky av., 31/5, Moscow 119192 (Russian Federation); Poliakov, Alexei A. [Division of Developmental Neurobiology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA (United Kingdom); Treshalina, Helena M. [Federal State Budgetary Scietific Institution «N.N. Blokhin Russian Cancer Research Center» (FSBSI “N.N.Blokhin RCRC”), Kashirskoe Shosse 24, Moscow 115478 (Russian Federation); Tkachuk, Vsevolod A. [Department of Biochemistry and Molecular Medicine, Faculty of Medicine, M.V. Lomonosov Moscow State University, Lomonosovsky av., 31/5, Moscow 119192 (Russian Federation)

    2015-07-21

    T-cadherin is a glycosyl-phosphatidylinositol (GPI) anchored member of the cadherin superfamily involved in the guidance of migrating cells. We have previously shown that in vivo T-cadherin overexpression leads to increased melanoma primary tumor growth due to the recruitment of mesenchymal stromal cells as well as the enhanced metastasis. Since tumor progression is highly dependent upon cell migration and invasion, the aim of the present study was to elucidate the mechanisms of T-cadherin participation in these processes. Herein we show that T-cadherin expression results in the increased invasive potential due to the upregulated expression of pro-oncogenic integrins, chemokines, adhesion molecules and extracellular matrix components. The detected increase in chemokine expression could be responsible for the stromal cell recruitment. At the same time our previous data demonstrated that T-cadherin expression inhibited neoangiogenesis in the primary tumors. We demonstrate that T-cadherin overexpression leads to the increase in the expression of anti-angiogenic molecules and reduction in pro-angiogenic factors. Thus, T-cadherin plays a dual role in melanoma growth and progression: T-cadherin expression results in anti-angiogenic effects in melanoma, however, this also stimulates transcription of genes responsible for migration and invasion of melanoma cells.

  5. T-Cadherin Expression in Melanoma Cells Stimulates Stromal Cell Recruitment and Invasion by Regulating the Expression of Chemokines, Integrins and Adhesion Molecules

    International Nuclear Information System (INIS)

    T-cadherin is a glycosyl-phosphatidylinositol (GPI) anchored member of the cadherin superfamily involved in the guidance of migrating cells. We have previously shown that in vivo T-cadherin overexpression leads to increased melanoma primary tumor growth due to the recruitment of mesenchymal stromal cells as well as the enhanced metastasis. Since tumor progression is highly dependent upon cell migration and invasion, the aim of the present study was to elucidate the mechanisms of T-cadherin participation in these processes. Herein we show that T-cadherin expression results in the increased invasive potential due to the upregulated expression of pro-oncogenic integrins, chemokines, adhesion molecules and extracellular matrix components. The detected increase in chemokine expression could be responsible for the stromal cell recruitment. At the same time our previous data demonstrated that T-cadherin expression inhibited neoangiogenesis in the primary tumors. We demonstrate that T-cadherin overexpression leads to the increase in the expression of anti-angiogenic molecules and reduction in pro-angiogenic factors. Thus, T-cadherin plays a dual role in melanoma growth and progression: T-cadherin expression results in anti-angiogenic effects in melanoma, however, this also stimulates transcription of genes responsible for migration and invasion of melanoma cells

  6. Lysophosphatidic acid alters the expression profiles of angiogenic factors, cytokines, and chemokines in mouse liver sinusoidal endothelial cells.

    Directory of Open Access Journals (Sweden)

    Chia-Hung Chou

    Full Text Available Lysophosphatidic acid (LPA is a multi-function glycerophospholipid. LPA affects the proliferation of hepatocytes and stellate cells in vitro, and in a partial hepatectomy induced liver regeneration model, the circulating LPA levels and LPA receptor (LPAR expression levels in liver tissue are significantly changed. Liver sinusoidal endothelial cells (Lsecs play an important role during liver regeneration. However, the effects of LPA on Lsecs are not well known. Thus, we investigated the effects of LPA on the expression profiles of angiogenic factors, cytokines, and chemokines in Lsecs.Mouse Lsecs were isolated using CD31-coated magnetic beads. The mRNA expression levels of LPAR's and other target genes were determined by quantitative RT-PCR. The protein levels of angiogenesis factors, cytokines, and chemokines were determined using protein arrays and enzyme immunoassay (EIA. Critical LPAR related signal transduction was verified by using an appropriate chemical inhibitor.LPAR1 and LPAR3 mRNA's were expressed in mouse LPA-treated Lsecs. Treating Lsecs with a physiological level of LPA significantly enhanced the protein levels of angiogenesis related proteins (cyr61 and TIMP-1, cytokines (C5/C5a, M-CSF, and SDF-1, and chemokines (MCP-5, gp130, CCL28, and CXCL16. The LPAR1 and LPAR3 antagonist ki16425 significantly inhibited the LPA-enhanced expression of cyr61, TIMP-1, SDF-1, MCP-5, gp130, CCL28, and CXCL16, but not that of C5/C5a or M-CSF. LPA-induced C5/C5a and M-CSF expression may have been through an indirect regulation mechanism.LPA regulated the expression profiles of angiogenic factors, cytokines, and chemokines in Lsecs that was mediated via LPAR1 and LPAR3 signaling. Most of the factors that were enhanced by LPA have been found to play critical roles during liver regeneration. Thus, these results may prove useful for manipulating LPA effects on liver regeneration.

  7. Lysophosphatidic Acid Alters the Expression Profiles of Angiogenic Factors, Cytokines, and Chemokines in Mouse Liver Sinusoidal Endothelial Cells

    Science.gov (United States)

    Chou, Chia-Hung; Lai, Shou-Lun; Ho, Cheng-Maw; Lin, Wen-Hsi; Chen, Chiung-Nien; Lee, Po-Huang; Peng, Fu-Chuo; Kuo, Sung-Hsin; Wu, Szu-Yuan; Lai, Hong-Shiee

    2015-01-01

    Background and Aims Lysophosphatidic acid (LPA) is a multi-function glycerophospholipid. LPA affects the proliferation of hepatocytes and stellate cells in vitro, and in a partial hepatectomy induced liver regeneration model, the circulating LPA levels and LPA receptor (LPAR) expression levels in liver tissue are significantly changed. Liver sinusoidal endothelial cells (Lsecs) play an important role during liver regeneration. However, the effects of LPA on Lsecs are not well known. Thus, we investigated the effects of LPA on the expression profiles of angiogenic factors, cytokines, and chemokines in Lsecs. Methods Mouse Lsecs were isolated using CD31-coated magnetic beads. The mRNA expression levels of LPAR’s and other target genes were determined by quantitative RT-PCR. The protein levels of angiogenesis factors, cytokines, and chemokines were determined using protein arrays and enzyme immunoassay (EIA). Critical LPAR related signal transduction was verified by using an appropriate chemical inhibitor. Results LPAR1 and LPAR3 mRNA’s were expressed in mouse LPA-treated Lsecs. Treating Lsecs with a physiological level of LPA significantly enhanced the protein levels of angiogenesis related proteins (cyr61 and TIMP-1), cytokines (C5/C5a, M-CSF, and SDF-1), and chemokines (MCP-5, gp130, CCL28, and CXCL16). The LPAR1 and LPAR3 antagonist ki16425 significantly inhibited the LPA-enhanced expression of cyr61, TIMP-1, SDF-1, MCP-5, gp130, CCL28, and CXCL16, but not that of C5/C5a or M-CSF. LPA-induced C5/C5a and M-CSF expression may have been through an indirect regulation mechanism. Conclusion LPA regulated the expression profiles of angiogenic factors, cytokines, and chemokines in Lsecs that was mediated via LPAR1 and LPAR3 signaling. Most of the factors that were enhanced by LPA have been found to play critical roles during liver regeneration. Thus, these results may prove useful for manipulating LPA effects on liver regeneration. PMID:25822713

  8. Dual expression of hTERT and VEGF prolongs life span and enhances angiogenic ability of aged BMSCs

    International Nuclear Information System (INIS)

    Highlights: •Expression of hTERT and VEGF changed the lifespan and morphology of hBMSCs. •The expression of VEGF and hTRET promoted angiogenesis in vitro and in vivo. •The expression of VEGF and hTRET in hBMSCs had few effects on tumorigenicity. -- Abstract: Previous studies have confirmed the therapeutic effects of bone marrow stromal cells (BMSCs) transplantation on cerebral ischemia. However, the proliferative, differentiative, and homing capacity of BMSC from the elderly are significantly reduced, especially after several passages expansion in vitro. In this study, by introducing lentivirus-mediated hTERT and VEGF genes to modify human BMSCs from aged donors, we observed extended lifespan, promoted angiogenic capacity while less enhanced tumorigenicity of the genetically engineering BMSCs. These results therefore suggest that the modification of aged BMSCs by dual expression of hTERT and VEGF may be used for autologous cell replacement for ischemic cerebrovascular disease in elderly patients

  9. C-reactive protein exerts angiogenic effects on vascular endothelial cells and modulates associated signalling pathways and gene expression

    Directory of Open Access Journals (Sweden)

    Luque Ana

    2008-09-01

    Full Text Available Abstract Background Formation of haemorrhagic neovessels in the intima of developing atherosclerotic plaques is thought to significantly contribute to plaque instability resulting in thrombosis. C-reactive protein (CRP is an acute phase reactant whose expression in the vascular wall, in particular, in reactive plaque regions, and circulating levels increase in patients at high risk of cardiovascular events. Although CRP is known to induce a pro-inflammatory phenotype in endothelial cells (EC a direct role on modulation of angiogenesis has not been established. Results Here, we show that CRP is a powerful inducer of angiogenesis in bovine aortic EC (BAEC and human coronary artery EC (HCAEC. CRP, at concentrations corresponding to moderate/high risk (1–5 μg/ml, induced a significant increase in proliferation, migration and tube-like structure formation in vitro and stimulated blood vessel formation in the chick chorioallantoic membrane assay (CAM. CRP treated with detoxi-gel columns retained such effects. Western blotting showed that CRP increased activation of early response kinase-1/2 (ERK1/2, a key protein involved in EC mitogenesis. Furthermore, using TaqMan Low-density Arrays we identified key pro-angiogenic genes induced by CRP among them were vascular endothelial cell growth factor receptor-2 (VEGFR2/KDR, platelet-derived growth factor (PDGF-BB, notch family transcription factors (Notch1 and Notch3, cysteine-rich angiogenic inducer 61 (CYR61/CCN1 and inhibitor of DNA binding/differentiation-1 (ID1. Conclusion This data suggests a role for CRP in direct stimulation of angiogenesis and therefore may be a mediator of neovessel formation in the intima of vulnerable plaques.

  10. Expression of angiogenic factors and luteinizing hormone receptors in the corpus luteum of mares induced to ovulate with deslorelin acetate.

    Science.gov (United States)

    Maia, Victor N; Batista, André M; Cunha Neto, Sylvio; Silva, Diogo M F; Adrião, Manoel; Wischral, Aurea

    2016-02-01

    The effects of deslorelin acetate use in inducing ovulation need to be clarified to improve the results of equine embryo transfer. The mRNA abundance for angiogenic factors and LH receptor (LHR) in corpus luteum (CL) was studied in mares with natural (control group [CG]) and induced ovulation with deslorelin acetate (treatment group [TG]; follicles: ≥ 35 mm). Transrectal ultrasonography was used to verify the ovulation day, and on Days 4, 8, and 12 after ovulation (Day 0), CL samples were obtained through ultrasound-guided biopsy. The messenger RNA expression of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and LHR genes were analyzed by real-time polymerase chain reaction. A positive correlation was observed between VEGF and LHR (P mares, resulting in higher expression of LHR, especially on the fourth day after ovulation. In addition, VEGF expression was influenced by induced ovulation, with a lower level on Day 12, which is expected in nonpregnant mares. PMID:26476595

  11. Maternal testosterone and placental function: Effect of electroacupuncture on placental expression of angiogenic markers and fetal growth.

    Science.gov (United States)

    Fornes, Romina; Hu, Min; Maliqueo, Manuel; Kokosar, Milana; Benrick, Anna; Carr, David; Billig, Håkan; Jansson, Thomas; Manni, Luigi; Stener-Victorin, Elisabet

    2016-09-15

    Women with polycystic ovary syndrome (PCOS) have elevated circulating androgens during pregnancy and are at an increased risk of adverse pregnancy outcomes. Here we tested the hypotheses that maternal androgen excess decrease placental and fetal growth, and placental expression of markers of steroidogenesis, angiogenesis and sympathetic activity, and that acupuncture with low-frequency electrical stimulation prevents these changes. Pregnant rats were exposed to vehicle or testosterone on gestational day (GD)15-19. Low-frequency electroacupuncture (EA) or handling, as a control for the EA procedure, was given to control or testosterone exposed dams on GD16-20. On GD21, blood pressure was measured and maternal blood, fetuses and placentas collected. Placental steroid receptor expression and proteins involved in angiogenic, neurotrophic and adrenergic signaling were analyzed. EA did not affect any variables in control rats except maternal serum corticosterone, which was reduced. EA in testosterone exposed dams compared with controls increased systolic pressure by 30%, decreased circulating norepinephrine and corticosterone, fetal and placental weight and placental VEGFR1 and proNGF protein expression, and increased the VEGFA/VEGFR1 ratio, mature NGF (mNGF) and the mNGF/proNGF ratio. In conclusion, low-frequency EA in control animals did not have any negative influence on any of the studied variables. In contrast, EA in pregnant dams exposed to testosterone increased blood pressure and impaired placental growth and function, leading to decreased fetal growth. PMID:27208621

  12. Subchronic inhalation of soluble manganese induces expression of hypoxia-associated angiogenic genes in adult mouse lungs

    International Nuclear Information System (INIS)

    Although the lung constitutes the major exposure route for airborne manganese (Mn), little is known about the potential pulmonary effects and the underlying molecular mechanisms. Transition metals can mimic a hypoxia-like response, activating the hypoxia inducible factor-1 (HIF-1) transcription factor family. Through binding to the hypoxia-response element (HRE), these factors regulate expression of many genes, including vascular endothelial growth factor (VEGF). Increases in VEGF, an important biomarker of angiogenesis, have been linked to respiratory diseases, including pulmonary hypertension. The objective of this study was to evaluate pulmonary hypoxia-associated angiogenic gene expression in response to exposure of soluble Mn(II) and to assess the genes' role as intermediaries of potential pulmonary Mn toxicity. In vitro, 0.25 mM Mn(II) altered morphology and slowed the growth of human pulmonary epithelial cell lines. Acute doses between 0.05 and 1 mM stimulated VEGF promoter activity up to 3.7-fold in transient transfection assays. Deletion of the HRE within the promoter had no effect on Mn(II)-induced VEGF expression but decreased cobalt [Co(II)]-induced activity 2-fold, suggesting that HIF-1 may not be involved in Mn(II)-induced VEGF gene transcription. Nose-only inhalation to 2 mg Mn(II)/m3 for 5 days at 6 h/day produced no significant pulmonary inflammation but induced a 2-fold increase in pulmonary VEGF mRNA levels in adult mice and significantly altered expression of genes associated with murine angiogenesis. These findings suggest that even short-term exposures to soluble, occupationally relevant Mn(II) concentrations may alter pulmonary gene expression in pathways that ultimately could affect the lungs' susceptibility to respiratory disease

  13. Stress Fracture Healing: Fatigue Loading of the Rat Ulna Induces Upregulation in Expression of Osteogenic and Angiogenic Genes that Mimic the Intramembranous Portion of Fracture Repair

    OpenAIRE

    Wohl, Gregory R.; Towler, Dwight A.; Silva, Matthew J.

    2008-01-01

    Woven bone is formed in response to fatigue-induced stress fractures and is associated with increased local angiogenesis. The molecular mechanisms that regulate this woven bone formation are unknown. Our objective was to measure the temporal and spatial expression of osteo- and angiogenic genes in woven bone formation in response to increasing levels of fatigue-induced damage. We used the rat forelimb compression model to produce four discrete levels of fatigue damage in the right ulna of 115...

  14. Leptin’s Pro-Angiogenic Signature in Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Perez, Ruben Rene, E-mail: rgonzalez@msm.edu; Lanier, Viola; Newman, Gale [Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, 720 Westview Dr. SW., Atlanta, GA 30310 (United States)

    2013-09-06

    Obesity is linked to increased incidence of breast cancer. The precise causes and mechanisms of these morbid relationships are unknown. Contradictory data on leptin angiogenic actions have been published. However, accumulating evidence would suggest that leptin’s pro-angiogenic effects in cancer play an essential role in the disease. Leptin, the main adipokine secreted by adipose tissue, is also abnormally expressed together with its receptor (OB-R) by breast cancer cells. Leptin induces proliferation and angiogenic differentiation of endothelial cells upregulates VEGF/VEGFR2 and transactivates VEGFR2 independent of VEGF. Leptin induces two angiogenic factors: IL-1 and Notch that can increase VEGF expression. Additionally, leptin induces the secretion and synthesis of proteases and adhesion molecules needed for the development of angiogenesis. Leptin’s paracrine actions can further affect stromal cells and tumor associated macrophages, which express OB-R and secrete VEGF and IL-1, respectively. A complex crosstalk between leptin, Notch and IL-1 (NILCO) that induces VEGF/VEGFR2 is found in breast cancer. Leptin actions in tumor angiogenesis could amplify, be redundant and/or compensatory to VEGF signaling. Current failure of breast cancer anti-angiogenic therapies emphasizes the necessity of targeting the contribution of other pro-angiogenic factors in breast cancer. Leptin’s impact on tumor angiogenesis could be a novel target for breast cancer, especially in obese patients. However, more research is needed to establish the importance of leptin in tumor angiogenesis. This review is focused on updated information on how leptin could contribute to tumor angiogenesis.

  15. Leptin’s Pro-Angiogenic Signature in Breast Cancer

    International Nuclear Information System (INIS)

    Obesity is linked to increased incidence of breast cancer. The precise causes and mechanisms of these morbid relationships are unknown. Contradictory data on leptin angiogenic actions have been published. However, accumulating evidence would suggest that leptin’s pro-angiogenic effects in cancer play an essential role in the disease. Leptin, the main adipokine secreted by adipose tissue, is also abnormally expressed together with its receptor (OB-R) by breast cancer cells. Leptin induces proliferation and angiogenic differentiation of endothelial cells upregulates VEGF/VEGFR2 and transactivates VEGFR2 independent of VEGF. Leptin induces two angiogenic factors: IL-1 and Notch that can increase VEGF expression. Additionally, leptin induces the secretion and synthesis of proteases and adhesion molecules needed for the development of angiogenesis. Leptin’s paracrine actions can further affect stromal cells and tumor associated macrophages, which express OB-R and secrete VEGF and IL-1, respectively. A complex crosstalk between leptin, Notch and IL-1 (NILCO) that induces VEGF/VEGFR2 is found in breast cancer. Leptin actions in tumor angiogenesis could amplify, be redundant and/or compensatory to VEGF signaling. Current failure of breast cancer anti-angiogenic therapies emphasizes the necessity of targeting the contribution of other pro-angiogenic factors in breast cancer. Leptin’s impact on tumor angiogenesis could be a novel target for breast cancer, especially in obese patients. However, more research is needed to establish the importance of leptin in tumor angiogenesis. This review is focused on updated information on how leptin could contribute to tumor angiogenesis

  16. Leptin’s Pro-Angiogenic Signature in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Gale Newman

    2013-09-01

    Full Text Available Obesity is linked to increased incidence of breast cancer. The precise causes and mechanisms of these morbid relationships are unknown. Contradictory data on leptin angiogenic actions have been published. However, accumulating evidence would suggest that leptin’s pro-angiogenic effects in cancer play an essential role in the disease. Leptin, the main adipokine secreted by adipose tissue, is also abnormally expressed together with its receptor (OB-R by breast cancer cells. Leptin induces proliferation and angiogenic differentiation of endothelial cells upregulates VEGF/VEGFR2 and transactivates VEGFR2 independent of VEGF. Leptin induces two angiogenic factors: IL-1 and Notch that can increase VEGF expression. Additionally, leptin induces the secretion and synthesis of proteases and adhesion molecules needed for the development of angiogenesis. Leptin’s paracrine actions can further affect stromal cells and tumor associated macrophages, which express OB-R and secrete VEGF and IL-1, respectively. A complex crosstalk between leptin, Notch and IL-1 (NILCO that induces VEGF/VEGFR2 is found in breast cancer. Leptin actions in tumor angiogenesis could amplify, be redundant and/or compensatory to VEGF signaling. Current failure of breast cancer anti-angiogenic therapies emphasizes the necessity of targeting the contribution of other pro-angiogenic factors in breast cancer. Leptin’s impact on tumor angiogenesis could be a novel target for breast cancer, especially in obese patients. However, more research is needed to establish the importance of leptin in tumor angiogenesis. This review is focused on updated information on how leptin could contribute to tumor angiogenesis.

  17. ADAMTS-2 functions as anti-angiogenic and anti-tumoral molecule independently of its catalytic activity.

    OpenAIRE

    Dubail, Johanne; Kesteloot, F.; Deroanne, Christophe; Motte, Patrick; Lambert, Vincent; Rakic, Jean-Marie; Lapiere, C.; Nusgens, Betty; Colige, Alain

    2010-01-01

    ADAMTS-2 is a metalloproteinase that plays a key role in the processing of fibrillar procollagen precursors into mature collagen molecules by excising the amino-propeptide. We demonstrate that recombinant ADAMTS-2 is also able to reduce proliferation of endothelial cells, and to induce their retraction and detachment from the substrate resulting in apoptosis. Dephosphorylation of Erk1/2 and MLC largely precedes the ADAMTS-2 induced morphological alterations. In 3-D culture models, ADAMTS-2 st...

  18. Expression patterns of angiogenic and lymphangiogenic factors in ductal breast carcinoma in situ

    OpenAIRE

    Wülfing, P; Kersting, C; Buerger, H.; Mattsson, B; Mesters, R; Gustmann, C; Hinrichs, B; Tio, J; Böcker, W; L. Kiesel

    2005-01-01

    The objective of this study was to investigate expression of various growth factors associated with angiogenesis and lymphangiogenesis and of their receptors in ductal carcinomas in situ of the breast (DCIS). We studied protein expression of basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF)-A, endothelin (ET)-1, and VEGF-C, and their receptors bFGF-R1, Flt-1, KDR, ETAR, ETBR, and Flt-4 immunohistochemically in 200 DCIS (pure DCIS: n=96; DCIS adjacent to an invas...

  19. Analysis of angiogenic factors and cyclooxygenase-2 expression in cartilaginous tumors: clinical and histological correlation

    Directory of Open Access Journals (Sweden)

    Francisco Fontes Cintra

    2011-01-01

    Full Text Available OBJECTIVES: To study the role of angiogenesis and cyclooxygenase-2 expression in cartilaginous tumors and correlate these factors with prognosis. INTRODUCTION: For chondrosarcoma, the histological grade is the current standard for predicting tumor outcome. However, a low-grade chondrosarcoma can follow an aggressive course-as monitored by sequential imaging techniques-even when it is histologically indistinguishable from an enchondroma. Therefore, additional tools are needed to help identify the biological potential of these tumors. The degree of angiogenesis that is induced by the tumor could assist in this task. Angiogenesis can be quantified by measuring the expression of vascular endothelial growth factor and CD34, and cyclooxygenase-2 can induce angiogenesis by stimulating the production of proangiogenic factors. METHODS: In total, 21 enchondromas and 58 conventional chondrosarcomas were studied by examining the clinical and histopathological findings in conjunction with the immunostaining markers of angiogenesis and cyclooxygenase- 2 expression. RESULTS: The significant variables that were associated with poor outcome were 1 higher-grade chondrosarcomas, 2 tumors that developed in flat bones, and 3 over-expression of CD34 (with a median count that was higher than 5.9 vessels in 5 high power fields. Moreover, CD34 expression (measured using the Chalkley method revealed significantly higher microvessel density in flat bone chondrosarcomas. DISCUSSION: Previous studies have shown a positive correlation between Chalkley microvessel density and histological grade; however, in our sample, we found that the former is predictive of the outcome. Chondrosarcomas in flat bones have been shown to correlate with a poor prognosis. We also found that CD34 microvessel density values were significantly higher in flat-bone chondrosarcomas. This could explain-at least in part-the more aggressive biological course that is taken by these tumors. CONCLUSIONS

  20. The cytoprotective drug amifostine modifies both expression and activity of the pro-angiogenic factor VEGF-A

    Directory of Open Access Journals (Sweden)

    Bouchecareilh M

    2010-03-01

    Full Text Available Abstract Background Amifostine (WR-2721, delivered as Ethyol® is a phosphorylated aminothiol compound clinically used in addition to cis-platinum to reduce the toxic side effects of therapeutic treatment on normal cells without reducing their efficacy on tumour cells. Its mechanism of action is attributed to the free radical scavenging properties of its active dephosphorylated metabolite WR-1065. However, amifostine has also been described as a potent hypoxia-mimetic compound and as a strong p53 inducer; both effects are known to potently modulate vascular endothelial growth factor (VEGF-A expression. The angiogenic properties of this drug have not been clearly defined. Methods Cancer cell lines and endothelial cells were used in culture and treated with Amifostine in order to study (i the expression of angiogenesis related genes and proteins and (ii the effects of the drug on VEGF-A induced in vitro angiogenesis. Results We demonstrated that the treatment of several human cancer cell lines with therapeutical doses of WR-1065 led to a strong induction of different VEGF-A mRNA isoforms independently of HIF-1α. VEGF-A induction by WR-1065 depends on the activation of the eIF2alpha/ATF4 pathway. This up-regulation of VEGF-A mRNA was accompanied by an increased secretion of VEGF-A proteins fully active in stimulating vascular endothelial cells (EC. Nevertheless, direct treatment of EC with amifostine impaired their ability to respond to exogenous VEGF-A, an effect that correlated to the down-regulation of VEGFR-2 expression, to the reduction in cell surface binding of VEGF-A and to the decreased phosphorylation of the downstream p42/44 kinases. Conclusions Taken together, our results indicate that amifostine treatment modulates tumour angiogenesis by two apparently opposite mechanisms - the increased VEGF-A expression by tumour cells and the inhibition of EC capacity to respond to VEGF-A stimulation.

  1. Differential expression of steroid 5alpha-reductase isozymes and association with disease severity and angiogenic genes predict their biological role in prostate cancer.

    Science.gov (United States)

    Das, Kakoli; Lorena, Pia D N; Ng, Lai Kuan; Lim, Diana; Shen, Liang; Siow, Woei Yun; Teh, Ming; Reichardt, Juergen K V; Salto-Tellez, Manuel

    2010-09-01

    The biological role of steroid 5alpha-reductase isozymes (encoded by the SRD5A1 and SRD5A2 genes) and angiogenic factors that play important roles in the pathogenesis and vascularization of prostate cancer (PC) is poorly understood. The sub-cellular expression of these isozymes and vascular endothelial growth factor (VEGF) in PC tissue microarrays (n=62) was examined using immunohistochemistry. The effect of SRD5A inhibition on the angiogenesis pathway genes in PC was also examined in prostate cell lines, LNCaP, PC3, and RWPE-1, by treating them with the SRD5A inhibitors finasteride and dutasteride, followed by western blot, quantitative PCR, and ELISA chip array techniques. In PC tissues, nuclear SRD5A1 expression was strongly associated with higher cancer Gleason scores (P=0.02), higher cancer stage (P=0.01), and higher serum prostate specific antigen (PSA) levels (P=0.01), whereas nuclear SRD5A2 expression was correlated with VEGF expression (P=0.01). Prostate tumor cell viability was significantly reduced in dutasteride-treated PC3 and RWPE-1 cells compared with finasteride-treated groups. Expression of the angiogenesis pathway genes transforming growth factor beta 1 (TGFB1), endothelin (EDN1), TGFalpha (TGFA), and VEGFR1 was upregulated in LNCaP cells, and at least 7 out of 21 genes were upregulated in PC3 cells treated with finasteride (25 muM). Our findings suggest that SRD5A1 expression predominates in advanced PC, and that inhibition of SRD5A1 and SRD5A2 together was more effective in reducing cell numbers than inhibition of SRD5A2 alone. However, these inhibitors did not show any significant difference in prostate cell angiogenic response. Interestingly, some angiogenic genes remained activated after treatment, possibly due to the duration of treatment and tumor resistance to inhibitors. PMID:20519274

  2. Human thymic epithelial cells express functional HLA-DP molecules

    DEFF Research Database (Denmark)

    Jørgensen, A; Röpke, C; Nielsen, M;

    1996-01-01

    HLA-DP molecules function as restriction elements in the presentation of foreign antigens to T cells by antigen presenting cells and certain HLA-DP molecules confer susceptibility to autoimmune disease. Because HLA molecules play an essential role in thymic selection and elimination of autoreactive...... T lymphocytes, we examined whether human thymic epithelial cells (TEC) expressed HLA-DP molecules. We present evidence that TEC obtained from short time culture express low but significant levels of HLA-DP molecules. The expression of HLA-DP molecules was comparable to or higher than the expression...... of HLA-DQ but lower than that of HLA-DR. Upon IFN-gamma treatment, HLA-DP expression was strongly upregulated. Since HLA-DQ and DR expression was upregulated in parallel, the hierarchy between MHC class II isotypes remained unchanged following interferon treatment. TEC elicited significant...

  3. Date syrup-derived polyphenols attenuate angiogenic responses and exhibits anti-inflammatory activity mediated by vascular endothelial growth factor and cyclooxygenase-2 expression in endothelial cells.

    Science.gov (United States)

    Taleb, Hajer; Morris, R Keith; Withycombe, Cathryn E; Maddocks, Sarah E; Kanekanian, Ara D

    2016-07-01

    Bioactive components such as polyphenols, present in many plants, are purported to have anti-inflammatory and antiangiogenic properties. Date syrup, produced from date fruit of the date palm tree, has traditionally been used to treat a wide range of diseases with etiologies involving angiogenesis and inflammation. It was hypothesized that polyphenols in date syrup reduce angiogenic responses such as cell migration, tube formation, and matrix metalloproteinase activity in an inflammatory model by exhibiting anti-inflammatory activity mediated by vascular endothelial growth factor (VEGF) and the prostaglandin enzyme cyclooxygenase-2 (COX-2) in endothelial cells. Date syrup polyphenols at 60 and 600μg/mL reduced inflammation and suppressed several stages of angiogenesis, including endothelial cell migration, invasion, matrix metalloproteinase activity, and tube formation, without evidence of cytotoxicity. VEGF and COX-2 expression induced by tumor necrosis factor-alpha at both gene expression and protein level was significantly reduced by date syrup polyphenols in comparison to untreated cells. In conclusion, polyphenols in date syrup attenuated angiogenic responses and exhibited anti-inflammatory activity mediated by VEGF and COX-2 expression in endothelial cells. PMID:27333954

  4. Morphological and immunohistochemical characterization of angiogenic and apoptotic factors and the expression of thyroid receptors in the ovary of tilapia Oreochromis niloticus in captivity

    Directory of Open Access Journals (Sweden)

    Fernanda C. Santos

    2015-04-01

    Full Text Available Morphological and immunohistochemical characterization of angiogenic and apoptotic factors and the expression of thyroid receptors in the ovary of tilapia Oreochromis niloticus in captivity were studied. The morphological evaluation of the ovaries was performed by histological paraffin embedded and stained with HE. The immunohistochemical expressions of CDC47, VEGF, Flk-1, angiopoietin, Tie-2 and thyroid receptor (TRα were performed by the technique of streptavidein-biotin-peroxidase. Apoptosis was assessed using the TUNEL kit. The relative expression of thyroid hormone receptors (TRα and TRβ was assessed by RT-PCR real time. The nuclear expression of CDC47 increased with the stage of maturation of the oocyte and was observed in the follicle cells. Apoptotic bodies were observed in the follicular cells of atretic follicles and postovulatory follicles from the ovaries of 150g and 350g fish. Expression of VEGF and its receptor Flk-1 was also observed in the follicular cells, and the expression of both increased with the maturity of the oocyte, with a higher intensity observed in the full-grown follicle. The expression of angiopoietin and of its receptor (Tie 2 was discrete and moderate respectively. TRα expression was independent of follicular development. However, the 350 g tilapia exhibited higher expression of TRβ compared with the 50 g tilapia. We conclude that the proliferative activity and the expression of VEGF and its receptor increase with follicular maturation and that the TRs expression increases with ovarian maturity in tilapia (Oreochromis niloticus.

  5. Ischemia reperfusion of the hepatic artery induces the functional damage of large bile ducts by changes in the expression of angiogenic factors.

    Science.gov (United States)

    Mancinelli, Romina; Glaser, Shannon; Francis, Heather; Carpino, Guido; Franchitto, Antonio; Vetuschi, Antonella; Sferra, Roberta; Pannarale, Luigi; Venter, Julie; Meng, Fanyin; Alpini, Gianfranco; Onori, Paolo; Gaudio, Eugenio

    2015-12-01

    Liver transplantation and cholangiocarcinoma induce biliary dysfunction following ischemia reperfusion (IR). The function of the intrahepatic biliary tree is regulated by both autocrine and paracrine factors. The aim of the study was to demonstrate that IR-induced damage of cholangiocytes is associated with altered expression of biliary angiogenic factors. Normal and bile duct ligation rats underwent 24-h sham or hepatic reperfusion after 30 min of transient occlusion of the hepatic artery (HAIR) or portal vein (PVIR) before collecting liver blocks and cholangiocyte RNA or protein. We evaluated liver histology, biliary apoptosis, proliferation and expression of VEGF-A/C, VEGFR-2/3, Ang-1/2, and Tie-1/2 in liver sections and isolated small and large cholangiocytes. Normal rat intrahepatic cholangiocyte cultures (NRICC) were maintained under standard conditions in normoxic or under a hypoxic atmosphere for 4 h and then transferred to normal conditions for selected times. Subsequently, we measured changes in biliary proliferation and apoptosis and the expression of VEGF-A/C and VEGFR-2/3. In vivo, HAIR (but not PVIR) induced damage of large bile ducts and decreased proliferation and secretin-stimulated cAMP levels. HAIR-induced damage of large bile ducts was associated with increased expression of VEGF-A/C, VEGFR-2/3, Ang-1/2, and Tie-1/2. In vitro, under hypoxic conditions, there was increased apoptosis and reduced proliferation of NRICC concomitant with enhanced expression of VEGF-A/C and VEGFR-2/3. The functional damage of large bile ducts by HAIR and hypoxia is associated with increased expression of angiogenic factors in small cholangiocytes, presumably due to a compensatory mechanism in response to biliary damage. PMID:26451003

  6. Tasquinimod (ABR-215050, a quinoline-3-carboxamide anti-angiogenic agent, modulates the expression of thrombospondin-1 in human prostate tumors

    Directory of Open Access Journals (Sweden)

    Isaacs John T

    2010-05-01

    Full Text Available Abstract Background The orally active quinoline-3-carboxamide tasquinimod [ABR-215050; CAS number 254964-60-8, which currently is in a phase II-clinical trial in patients against metastatic prostate cancer, exhibits anti-tumor activity via inhibition of tumor angiogenesis in human and rodent tumors. To further explore the mode of action of tasquinimod, in vitro and in vivo experiments with gene microarray analysis were performed using LNCaP prostate tumor cells. The array data were validated by real-time semiquantitative reversed transcriptase polymerase chain reaction (sqRT-PCR and protein expression techniques. Results One of the most significant differentially expressed genes both in vitro and in vivo after exposure to tasquinimod, was thrombospondin-1 (TSP1. The up-regulation of TSP1 mRNA in LNCaP tumor cells both in vitro and in vivo correlated with an increased expression and extra cellular secretion of TSP1 protein. When nude mice bearing CWR-22RH human prostate tumors were treated with oral tasquinimod, there was a profound growth inhibition, associated with an up-regulation of TSP1 and a down- regulation of HIF-1 alpha protein, androgen receptor protein (AR and glucose transporter-1 protein within the tumor tissue. Changes in TSP1 expression were paralleled by an anti-angiogenic response, as documented by decreased or unchanged tumor tissue levels of VEGF (a HIF-1 alpha down stream target in the tumors from tasquinimod treated mice. Conclusions We conclude that tasquinimod-induced up-regulation of TSP1 is part of a mechanism involving down-regulation of HIF1α and VEGF, which in turn leads to reduced angiogenesis via inhibition of the "angiogenic switch", that could explain tasquinimods therapeutic potential.

  7. Human lung-resident macrophages express CB1 and CB2 receptors whose activation inhibits the release of angiogenic and lymphangiogenic factors.

    Science.gov (United States)

    Staiano, Rosaria I; Loffredo, Stefania; Borriello, Francesco; Iannotti, Fabio Arturo; Piscitelli, Fabiana; Orlando, Pierangelo; Secondo, Agnese; Granata, Francescopaolo; Lepore, Maria Teresa; Fiorelli, Alfonso; Varricchi, Gilda; Santini, Mario; Triggiani, Massimo; Di Marzo, Vincenzo; Marone, Gianni

    2016-04-01

    Macrophages are pivotal effector cells in immune responses and tissue remodeling by producing a wide spectrum of mediators, including angiogenic and lymphangiogenic factors. Activation of cannabinoid receptor types 1 and 2 has been suggested as a new strategy to modulate angiogenesis in vitro and in vivo. We investigated whether human lung-resident macrophages express a complete endocannabinoid system by assessing their production of endocannabinoids and expression of cannabinoid receptors. Unstimulated human lung macrophage produce 2-arachidonoylglycerol,N-arachidonoyl-ethanolamine,N-palmitoyl-ethanolamine, andN-oleoyl-ethanolamine. On LPS stimulation, human lung macrophages selectively synthesize 2-arachidonoylglycerol in a calcium-dependent manner. Human lung macrophages express cannabinoid receptor types 1 and 2, and their activation induces ERK1/2 phosphorylation and reactive oxygen species generation. Cannabinoid receptor activation by the specific synthetic agonists ACEA and JWH-133 (but not the endogenous agonist 2-arachidonoylglycerol) markedly inhibits LPS-induced production of vascular endothelial growth factor-A, vascular endothelial growth factor-C, and angiopoietins and modestly affects IL-6 secretion. No significant modulation of TNF-α or IL-8/CXCL8 release was observed. The production of vascular endothelial growth factor-A by human monocyte-derived macrophages is not modulated by activation of cannabinoid receptor types 1 and 2. Given the prominent role of macrophage-assisted vascular remodeling in many tumors, we identified the expression of cannabinoid receptors in lung cancer-associated macrophages. Our results demonstrate that cannabinoid receptor activation selectively inhibits the release of angiogenic and lymphangiogenic factors from human lung macrophage but not from monocyte-derived macrophages. Activation of cannabinoid receptors on tissue-resident macrophages might be a novel strategy to modulate macrophage-assisted vascular remodeling

  8. Ascorbic Acid and Gene Expression: Another Example of Regulation of Gene Expression by Small Molecules?

    OpenAIRE

    Belin, Sophie; Kaya, Ferdinand; Burtey, Stéphane; Fontes, Michel

    2010-01-01

    Ascorbic acid (vitamin C, AA) has long been considered a food supplement necessary for life and for preventing scurvy. However, it has been reported that other small molecules such as retinoic acid (vitamin A) and different forms of calciferol (vitamin D) are directly involved in regulating the expression of numerous genes. These molecules bind to receptors that are differentially expressed in the embryo and are therefore crucial signalling molecules in vertebrate development. The question is...

  9. Anti-angiogenic effect of triptolide in rheumatoid arthritis by targeting angiogenic cascade.

    Directory of Open Access Journals (Sweden)

    Xiangying Kong

    Full Text Available Rheumatoid arthritis (RA is characterized by a pre-vascular seriously inflammatory phase, followed by a vascular phase with high increase in vessel growth. Since angiogenesis has been considered as an essential event in perpetuating inflammatory and immune responses, as well as supporting pannus growth and development of RA, inhibition of angiogenesis has been proposed as a novel therapeutic strategy for RA. Triptolide, a diterpenoid triepoxide from Tripterygium wilfordii Hook F, has been extensively used in treatment of RA patients. It also acts as a small molecule inhibitor of tumor angiogenesis in several cancer types. However, it is unclear whether triptolide possesses an anti-angiogenic effect in RA. To address this problem, we constructed collagen-induced arthritis (CIA model using DA rats by the injection of bovine type II collagen. Then, CIA rats were treated with triptolide (11-45 µg/kg/day starting on the day 1 after first immunization. The arthritis scores (P<0.05 and the arthritis incidence (P<0.05 of inflamed joints were both significantly decreased in triptolide-treated CIA rats compared to vehicle CIA rats. More interestingly, doses of 11~45 µg/kg triptolide could markedly reduce the capillaries, small, medium and large vessel density in synovial membrane tissues of inflamed joints (all P<0.05. Moreover, triptolide inhibited matrigel-induced cell adhesion of HFLS-RA and HUVEC. It also disrupted tube formation of HUVEC on matrigel and suppressed the VEGF-induced chemotactic migration of HFLS-RA and HUVEC, respectively. Furthermore, triptolide significantly reduced the expression of angiogenic activators including TNF-α, IL-17, VEGF, VEGFR, Ang-1, Ang-2 and Tie2, as well as suppressed the IL1-β-induced phosphorylated of ERK, p38 and JNK at protein levels. In conclusion, our data suggest for the first time that triptolide may possess anti-angiogenic effect in RA both in vivo and in vitro assay systems by downregulating the

  10. Constitutive phosphorylation of the FOXO1 transcription factor in gastric cancer cells correlates with microvessel area and the expressions of angiogenesis-related molecules

    International Nuclear Information System (INIS)

    Although FOXO transcription factors may have an anti-angiogenic role, little is known about their role in tumor angiogenesis. The present study was performed to investigate the correlation between the constitutive expression of phosphorylated FOXO1 (pFOXO1) and angiogenesis in gastric cancer. Immunohistochemistry was performed on tissue array slides containing 272 gastric carcinoma specimens, and the correlations between the cytoplasmic pFOXO1 expression in gastric cancer cells and CD34-immunopositive microvessel area (MVA) or the expressions of angiogenesis-related molecules were analyzed. In vitro analyses with Western blotting and semiquantitative reverse transcription-polymerase chain reaction were performed using the stable SNU-638 gastric cancer cell line transfected with lentivirus-delivered FOXO1 short hairpin RNA. The cytoplasmic expression of pFOXO1 in tumor cells was observed in 85% of gastric carcinoma cases, and was found to be positively associated with higher MVA (P = 0.048). Moreover, pFOXO1 expression was positively correlated with the expressions of several angiogenesis-related proteins, including hypoxia inducible factor-1α (HIF-1α, P = 0.003), vessel endothelial growth factor (P = 0.004), phosphorylated protein kinase B (P < 0.001), and nuclear factor-κB (P = 0.040). In contrast, the expression of pFOXO1 was not correlated with that of phosphorylated signal transducer and activator of transcription 3 or β-catenin. In addition, cell culture experiments showed that FOXO1 suppression increased the mRNA and protein expressions of HIF-1α. Our results suggest that pFOXO1 expression in cancer cells plays a role in gastric cancer angiogenesis via mechanisms involving various angiogenesis-related molecules. Animal experiments are needed to confirm the anti-angiogenic role of FOXO1 in human gastric cancer

  11. Changes in glucose metabolism and gene expression after transfer of anti-angiogenic genes in rat hepatoma

    International Nuclear Information System (INIS)

    Human troponin I (TROP), the soluble receptor for vascular endothelial growth factor (sFLT) and angiostatin (ASTAT) are potent inhibitors of endothelial cell proliferation, angiogenesis and tumour growth in vivo. Transfer of these genes into tumours may induce changes not only in perfusion, but also more general ones such as changes in metabolism. The aim of this study was to assess these reactions using FDG-PET and high-throughput methods such as gene profiling. We established Morris hepatoma (MH3924A) cell lines expressing TROP, sFLT or ASTAT and quantified 18F-fluorodeoxyglucose (18FDG) uptake by dynamic positron emission tomography (PET) after tumour inoculation in ACI rats. Furthermore, expression of glucose transporter-1 and -3 (GLUT-1 and GLUT-3) as well as hexokinase-1 and -2 were investigated by RT-PCR and immunohistomorphometry. In addition, gene array analyses were performed. 18FDG uptake, vascular fraction and distribution volume were significantly higher in all genetically modified tumours. Immunohistomorphometry showed an increased percentage of hexokinase-1 and -2 as well as GLUT-1 and -3 immunoreactive (ir) cells. Using gene arrays and comparing all three groups of genetically modified tumours, we found upregulated expression of 36 genes related to apoptosis, signal transduction, stress or metabolism. TROP-, sFLT- or ASTAT-expressing MH3924A tumours show enhanced influx of 18FDG, which seems to be caused by several factors: enhanced exchange of nutrients between blood and tumour, increased amounts of glucose transporters and hexokinases, and increased expression of genes related to apoptosis, matrix and stress, which induce an increased demand for glucose. (orig.)

  12. Lysophosphatidic Acid Alters the Expression Profiles of Angiogenic Factors, Cytokines, and Chemokines in Mouse Liver Sinusoidal Endothelial Cells

    OpenAIRE

    Chia-Hung Chou; Shou-Lun Lai; Cheng-Maw Ho; Wen-Hsi Lin; Chiung-Nien Chen; Po-Huang Lee; Fu-Chuo Peng; Sung-Hsin Kuo; Szu-Yuan Wu; Hong-Shiee Lai

    2015-01-01

    Background and Aims Lysophosphatidic acid (LPA) is a multi-function glycerophospholipid. LPA affects the proliferation of hepatocytes and stellate cells in vitro, and in a partial hepatectomy induced liver regeneration model, the circulating LPA levels and LPA receptor (LPAR) expression levels in liver tissue are significantly changed. Liver sinusoidal endothelial cells (Lsecs) play an important role during liver regeneration. However, the effects of LPA on Lsecs are not well known. Thus, we ...

  13. Growth hormone increases vascular cell adhesion molecule 1 expression

    DEFF Research Database (Denmark)

    Hansen, Troels Krarup; Fisker, Sanne; Dall, Rolf;

    2004-01-01

    We investigated the impact of GH administration on endothelial adhesion molecules, vascular cell adhesion molecule-1 (VCAM-1) and E-selectin, in vivo and in vitro. Soluble VCAM-1, E-selectin, and C-reactive protein concentrations were measured before and after treatment in 25 healthy subjects and...... 25 adult GH-deficient (GHD) patients randomized to GH treatment or placebo. Furthermore, we studied the direct effect of GH and IGF-I and serum from GH-treated subjects on basal and TNF alpha-stimulated expression of VCAM-1 and E-selectin on cultured human umbilical vein endothelial cells. Baseline...... levels of VCAM-1, but not E-selectin, were significantly lower in GHD patients than in healthy subjects (362 +/- 15 microg/liter vs. 516 +/- 21 microg/liter, P < 0.001) and increased in GHD patients during GH treatment, compared with placebo [net difference between groups 151.8 microg/liter (95...

  14. Collagen/Wollastonite nanowire hybrid scaffolds promoting osteogenic differentiation and angiogenic factor expression of mesenchymal stem cells.

    Science.gov (United States)

    Zhang, Qin; Nakamoto, Tomoko; Chen, Shangwu; Kawazoe, Naoki; Lin, Kaili; Chang, Jiang; Chen, Guoping

    2014-04-01

    Porous materials and scaffolds have wide applications in biomedical and biological fields. They can provide biological and physical cues to promote cell adhesion, proliferation, differentiation and extracellular matrix secretion to guide new tissue formation. Hybrid scaffolds of collagen and wollastonite nanowires with well controlled pore structures were prepared by using ice particulates as a porogen material. The hybrid scaffolds had interconnected large spherical pores with wollastonite nanowires embedded in the walls of the pores. The wollastonite nanowires reinforced the hybrid scaffolds and showed some stimulatory effects on cell functions. Human bone marrow-derived mesenchymal stem cells showed higher proliferation and osteogenic differentiation and expressed higher level of genes encoding angiogenesis-related genes in the hybrid scaffolds than did in the collagen scaf-. fold. The results suggest the hybrid scaffolds could facilitate osteogenic differentiation and induce angiogenesis and will be useful for bone tissue engineering. PMID:24734758

  15. Angiogenic biomarkers in pregnancy

    DEFF Research Database (Denmark)

    Rasmussen, Lene G; Lykke, Jacob A; Staff, Anne C

    2015-01-01

    We review diagnostic and predictive roles of the angiogenic proteins placental growth factor, soluble fms-like tyrosine kinase 1, and soluble endoglin in preeclampsia, and their association with future cardiovascular disease, diabetes, and breast cancer. Specific patterns of these proteins repres...

  16. Role of chrysin on expression of insulin signaling molecules

    Directory of Open Access Journals (Sweden)

    Kottireddy Satyanarayana

    2015-01-01

    Full Text Available Background: Currently available drugs are unsuccessful for the treatment of tye-2 diabetes due to their adverseside-effects. Hence, a search for novel drugs, especially ofplant origin, continues. Chrysin (5,7-dihydroxyflavone is a flavonoid, natural component of traditional medicinal herbs, present in honey, propolis and many plant extracts that hasbeen used in traditional medicine around the world to treat numerous ailments. Objective: The present study was aimed to identify the protective role of chrysin on the expression of insulin-signaling molecules in the skeletal muscle of high fat and sucrose-induced type-2 diabetic adult male rats. Materials and Methods: The oral effective dose of chrysin (100 mg/kg body weight was given once a day until the end of the study (30 days post-induction of diabetes to high fat diet-induced diabetic rats.At the end of the experimental period, fasting blood glucose, oral glucose tolerance, serum lipid profile, lipid peroxidation (LPO and free radical generation, as well as the levels of insulin signaling molecules and tissue glycogen in the gastrocnemius muscle were assessed. Results: Diabetic rats showed impaired glucose tolerance and impairment in insulin signaling molecules (IR, IRS-1, p-IRS-1Tyr 632 , p- Akt Thr308 , glucose transporter subtype 4 [GLUT4] proteins and glycogen concentration. Serum insulin, lipid profile, LPO and free radical generation were found to be increased in diabetic control rats.The treatment with chrysin normalized the altered levels of blood glucose, serum insulin, lipid profile, LPO and insulin signaling molecules as well as GLUT4 proteins. Conclusion: Our present findings indicate that chrysin improves glycemic control through activation of insulin signal transduction in the gastrocnemius muscle of high fat and sucrose-induced type-2 diabetic male rats.

  17. In ovo administration of human recombinant leptin shows dose dependent angiogenic effect on chicken chorioallantoic membrane

    Directory of Open Access Journals (Sweden)

    Reji Manjunathan

    2015-01-01

    Full Text Available BACKGROUND: Leptin, the cytokine produced by white adipose tissue is known to regulate food energy homeostasis through its hypothalamic receptor. In vitro studies have demonstrated that leptin plays a major role in angiogenesis through binding to the receptor Ob-R present on ECs by stimulating and initiating new capillary like structures from ECs. Various in vivo studies indicate that leptin has diverse effect on angiogenesis. A few reports have showed that leptin exerts pro angiogenic effects while some suggested that it has antiangiogenic potential. It is theoretically highly important to understand the effect of leptin on angiogenesis to use as a therapeutic molecule in various angiogenesis related pathological conditions. Chicken chorio allantoic membrane (CAM on 9th day of incubation was incubated with 1, 3 and 5 μg concentration of HRL for 72 h using gelatin sponge. Images where taken after every 24 h of incubation and analysed with Angioguant software. The treated area was observed under microscope and histological evaluation was performed for the same. Tissue thickness was calculated morphometrically from haematoxylin and eosin stained cross sections. Reverse transcriptase PCR and immunohistochemistry were also performed to study the gene and protein level expression of angiogenic molecules. RESULTS: HRL has the ability to induce new vessel formation at the treated area and growth of the newly formed vessels and cellular morphological changes occur in a dose dependent manner. Increase in the tissue thickness at the treated area is suggestive of initiation of new capillary like structures. Elevated mRNA and protein level expression of VEGF165 and MMP2 along with the activation of ECs as demonstrated by the presence of CD34 expression supports the neovascularization potential of HRL. CONCLUSION: Angiogenic potential of HRL depends on the concentration and time of incubation and is involved in the activation of ECs along with the major

  18. Angiogenic factors in relation to embryo implantation

    Directory of Open Access Journals (Sweden)

    Azadeh Bagheri

    2014-08-01

    Full Text Available Disturbances in uterine blood supply are associated with higher perinatal morbidity and mortality caused by preterm delivery, preeclampsia or intrauterine growth restriction. Adaptation of the uterine vasculature to the rising needs of the fetus occurs through both vasodilation and development of new vessels. Angiogenesis is the process of neovascularization from pre-existing blood vessels in response to hypoxic condition of tissues. The endometrium, decidua and placenta are rich sources of angiogenic growth factors. In general, the angiogenic process is initiated by growth factors such as VEGF, placental growth factor (PlGF or bFGF. Through a complex signal transduction machinery mediated by respective receptor-tyrosine kinases, an increase in the permeability of the maternal vessels is achieved to permit growth and invasion of endothelial cells. Their chemotactic migration, formation of a vessel lumen, and functional maturation of new capillaries complete the angiogenic process that involves the expression of specific adhesion receptors and extracellular matrix-degrading proteases. During vasculogenesis, endothelial progenitor cells--angioblasts--form a primitive vascular network. This process occurs mainly during fetal development, although recruitment of angioblasts from bone marrow and peripheral blood in response to ischemic insult have been described in adults. In this review article we have described a recent complication related to angiogenic involvement in embryo implantation. [Int J Reprod Contracept Obstet Gynecol 2014; 3(4.000: 872-879

  19. Role of angiogenic factors in recurrent pregnancy loss

    OpenAIRE

    Azadeh Bagheri; Yousef Rezaei Chianeh; Pragna Rao

    2013-01-01

    Women with recurrent miscarriage (RM) often have abnormal NK cell activity. Uterine NK cells produce angiogenic factors and various interleukins. Human endometrium that expresses a variety of angiogenic growth factors and cytokines (NK-cell) may play a critical role in the abnormal endometrial angiogenesis which affect both conception and fetal development. Women with RM also have intrauterine growth restriction (IUGR) after conception. It has been shown 12-15% of women in their initial stage...

  20. Immuno-Expression of Endoglin and Smooth Muscle Actin in the Vessels of Brain Metastases. Is There a Rational for Anti-Angiogenic Therapy?

    Directory of Open Access Journals (Sweden)

    Valeria Barresi

    2014-04-01

    Full Text Available Despite ongoing clinical trials, the efficacy of anti-angiogenic drugs for the treatment of brain metastases (BM is still questionable. The lower response rate to anti-angiogenic therapy in the presence of BM than in metastatic disease involving other sites suggests that BM may be insensitive to these drugs, although the biological reasons underlining this phenomenon are still to be clarified. With the aim of assessing whether the targets of anti-angiogenic therapies are actually present in BM, in the present study, we analyzed the microvessel density (MVD, a measure of neo-angiogenesis, and the vascular phenotype (mature vs. immature in the tumor tissue of a series of BM derived from different primary tumors. By using immunohistochemistry against endoglin, a specific marker for newly formed vessels, we found that neo-angiogenesis widely varies in BM depending on the site of the primary tumor, as well as on its histotype. According to our results, BM from lung cancer displayed the highest MVD counts, while those from renal carcinoma had the lowest. Then, among BM from lung cancer, those from large cell and adenocarcinoma histotypes had significantly higher MVD counts than those originating from squamous cell carcinoma (p = 0.0043; p = 0.0063. Of note, MVD counts were inversely correlated with the maturation index of the endoglin-stained vessels, reflected by the coverage of smooth muscle actin (SMA positive pericytes (r = −0.693; p < 0.0001. Accordingly, all the endoglin-positive vessels in BM from pulmonary squamous cell carcinoma and renal carcinoma, displayed a mature phenotype, while vessels with an immature phenotype were found in highly vascularized BM from pulmonary large cell and adenocarcinoma. The low MVD and mature phenotype observed in BM from some primary tumors may account for their low sensitivity to anti-angiogenic therapies. Although our findings need to be validated in correlative studies with a clinical response, this should

  1. Differential expression of axon-sorting molecules in mouse olfactory sensory neurons.

    Science.gov (United States)

    Ihara, Naoki; Nakashima, Ai; Hoshina, Naosuke; Ikegaya, Yuji; Takeuchi, Haruki

    2016-08-01

    In the mouse olfactory system, the axons of olfactory sensory neurons that express the same type of odorant receptor (OR) converge to a specific set of glomeruli in the olfactory bulb (OB). It is widely accepted that expressed OR molecules instruct glomerular segregation by regulating the expression of axon-sorting molecules. Although the relationship between the expression of axon-sorting molecules and OR types has been analyzed in detail, those between the expressions of axon-sorting molecules remain to be elucidated. Here we collected the expression profiles of four axon-sorting molecules from a large number of glomeruli in the OB. These molecules demonstrated position-independent mosaic expressions, but their patterns were not identical in the OB. Comparing their expressions identified positive and negative correlations between several pairs of genes even though they showed various expressions. Furthermore, the principal component analysis revealed that the factor loadings in the principal component 1, which explain the largest amount of variation, were most likely to reflect the degree of the cyclic nucleotide-gated (CNG) channel dependence on the expression of axon-sorting molecules. Thus, neural activity generated through the CNG channel is a major component in the generation of a wide variety of expressions of axon-sorting molecules in glomerular segregation. PMID:27207328

  2. Vascular Endothelial Growth Factor A Regulates the Secretion of Different Angiogenic Factors in Lung Cancer Cells.

    Science.gov (United States)

    Frezzetti, Daniela; Gallo, Marianna; Roma, Cristin; D'Alessio, Amelia; Maiello, Monica R; Bevilacqua, Simona; Normanno, Nicola; De Luca, Antonella

    2016-07-01

    Vascular endothelial growth factor A (VEGFA) is one of the main mediators of angiogenesis in non-small cell lung cancer (NSCLC). Recently, it has been described an autocrine feed-forward loop in NSCLC cells in which tumor-derived VEGFA promoted the secretion of VEGFA itself, amplifying the proangiogenic signal. In order to investigate the role of VEGFA in lung cancer progression, we assessed the effects of recombinant VEGFA on proliferation, migration, and secretion of other angiogenic factors in A549, H1975, and HCC827 NSCLC cell lines. We found that VEGFA did not affect NSCLC cell proliferation and migration. On the other hand, we demonstrated that VEGFA not only produced a strong and persistent increase of VEGFA itself but also significantly induced the secretion of a variety of angiogenic factors, including follistatin (FST), hepatocyte growth factor (HGF), angiopoietin-2 (ANGPT2), granulocyte-colony stimulating factor (G-CSF), interleukin (IL)-8, leptin (LEP), platelet/endothelial cell adhesion molecule 1 (PECAM-1), and platelet-derived growth factor bb (PDGF-BB). PI3K/AKT, RAS/ERK, and STAT3 signalling pathways were found to mediate the effects of VEGFA in NSCLC cell lines. We also observed that VEGFA regulation mainly occurred at post-transcriptional level and that NSCLC cells expressed different isoforms of VEGFA. Collectively, our data suggested that VEGFA contributes to lung cancer progression by inducing a network of angiogenic factors, which might offer potential for therapeutic intervention. PMID:26542886

  3. Differential expression of neural cell adhesion molecule and cadherins in pancreatic islets, glucagonomas, and insulinomas

    DEFF Research Database (Denmark)

    Møller, C J; Christgau, S; Williamson, M R; Madsen, O D; Niu, Z P; Bock, E; Baekkeskov, S

    1992-01-01

    a process where cell adhesion molecules are involved. In this study we have analyzed the expression of neural cell adhesion molecule (NCAM) and cadherin molecules in neonatal, young, and adult rat islet cells as well as in glucagonomas and insulinomas derived from a pluripotent rat islet cell tumor...

  4. Silibinin attenuates ionizing radiation-induced pro-angiogenic response and EMT in prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Nambiar, Dhanya K. [Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi (India); School of Environmental Sciences, Jawaharlal Nehru University, New Delhi (India); Rajamani, Paulraj [School of Environmental Sciences, Jawaharlal Nehru University, New Delhi (India); Singh, Rana P., E-mail: rana_singh@mail.jnu.ac.in [Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi (India); School of Life Sciences, Central University of Gujarat, Gandhinagar (India)

    2015-01-02

    Graphical abstract: Potential model showing mechanism of silibinin-mediated attenuation of IR-induced angiogenic phenotype and EMT in tumor cells. Silibinin counters radiation induced invasive and migratory phenotype of cancer cells by down-regulating mitogenic pathways activated by IR, leading to inhibition of molecules including VEGF, iNOS, MMPs and N-cadherin. Silibinin also reverses IR mediated E-cadherin down-regulation, inhibiting EMT in tumor cells. Silibinin also radiosensitizes endothelial cells, reduces capillary tube formation by targeting various pro-angiogenic molecules. Further, silibinin may inhibit autocrine and paracrine signaling between tumor and endothelial cells by decreasing the levels of VEGF and other signaling molecules activated in response to IR. - Highlights: • Silibinin radiosensitizes endothelial cells. • Silibinin targets ionization radiation (IR)-induced EMT in PCa cells. • Silibinin is in phase II clinical trial in PCa patients, hence clinically relevant. - Abstract: Radiotherapy of is well established and frequently utilized in prostate cancer (PCa) patients. However, recurrence following therapy and distant metastases are commonly encountered problems. Previous studies underline that, in addition to its therapeutic effects, ionizing radiation (IR) increases the vascularity and invasiveness of surviving radioresistant cancer cells. This invasive phenotype of radioresistant cells is an upshot of IR-induced pro-survival and mitogenic signaling in cancer as well as endothelial cells. Here, we demonstrate that a plant flavonoid, silibinin can radiosensitize endothelial cells by inhibiting expression of pro-angiogenic factors. Combining silibinin with IR not only strongly down-regulated endothelial cell proliferation, clonogenicity and tube formation ability rather it strongly (p < 0.001) reduced migratory and invasive properties of PCa cells which were otherwise marginally affected by IR treatment alone. Most of the pro-angiogenic

  5. Silibinin attenuates ionizing radiation-induced pro-angiogenic response and EMT in prostate cancer cells

    International Nuclear Information System (INIS)

    Graphical abstract: Potential model showing mechanism of silibinin-mediated attenuation of IR-induced angiogenic phenotype and EMT in tumor cells. Silibinin counters radiation induced invasive and migratory phenotype of cancer cells by down-regulating mitogenic pathways activated by IR, leading to inhibition of molecules including VEGF, iNOS, MMPs and N-cadherin. Silibinin also reverses IR mediated E-cadherin down-regulation, inhibiting EMT in tumor cells. Silibinin also radiosensitizes endothelial cells, reduces capillary tube formation by targeting various pro-angiogenic molecules. Further, silibinin may inhibit autocrine and paracrine signaling between tumor and endothelial cells by decreasing the levels of VEGF and other signaling molecules activated in response to IR. - Highlights: • Silibinin radiosensitizes endothelial cells. • Silibinin targets ionization radiation (IR)-induced EMT in PCa cells. • Silibinin is in phase II clinical trial in PCa patients, hence clinically relevant. - Abstract: Radiotherapy of is well established and frequently utilized in prostate cancer (PCa) patients. However, recurrence following therapy and distant metastases are commonly encountered problems. Previous studies underline that, in addition to its therapeutic effects, ionizing radiation (IR) increases the vascularity and invasiveness of surviving radioresistant cancer cells. This invasive phenotype of radioresistant cells is an upshot of IR-induced pro-survival and mitogenic signaling in cancer as well as endothelial cells. Here, we demonstrate that a plant flavonoid, silibinin can radiosensitize endothelial cells by inhibiting expression of pro-angiogenic factors. Combining silibinin with IR not only strongly down-regulated endothelial cell proliferation, clonogenicity and tube formation ability rather it strongly (p < 0.001) reduced migratory and invasive properties of PCa cells which were otherwise marginally affected by IR treatment alone. Most of the pro-angiogenic

  6. [The expression level of adhesion molecules on neutrophils depending at segmentation of their nuclei].

    Science.gov (United States)

    Kashutin, S L; Danilov, S I; Vereshchagina, E N; Kluchareva, S V

    2013-11-01

    The article deals with results of detection of expression level of adhesion molecules on neutrophils and segmentation of their nuclei. It is established that in conditions of absence of antigen stimulation neutrophils of circulating pool express molecules of L-selectin in 53.34%, LFA-1 molecules in 65.64%, ICAM-1 in 40.51%, LE4-3 in 58.72% and PECAM-1 in 59.74%. The full readiness to realization of phase of sliding, strong adhesion and immediately transmigration itselfis detected in neutrophils with five segments in nucleus. PMID:24640111

  7. Combinatorial expressions of the solutions to initial value problems of the discrete and ultradiscrete Toda molecules

    International Nuclear Information System (INIS)

    Combinatorial expressions are presented of the solutions to initial value problems of the discrete and ultradiscrete Toda molecules. For the discrete Toda molecule, a subtraction-free expression of the solution is derived in terms of non-intersecting paths, for which two results in combinatorics, Flajolet’s interpretation of continued fractions and Gessel–Viennot’s lemma on determinants, are applied. By ultradiscretizing the subtraction-free expression, the solution to the ultradiscrete Toda molecule is obtained. It is finally shown that the initial value problem of the ultradiscrete Toda molecule is exactly solved in terms of shortest paths on a specific graph. The behavior of the solution is also investigated in comparison with the box–ball system. (paper)

  8. Effects of protein tyrosine kinase inhibitors on cytokine-induced adhesion molecule expression by human umbilical vein endothelial cells.

    OpenAIRE

    May, M. J.; Wheeler-Jones, C. P.; Pearson, J. D.

    1996-01-01

    1. Endothelial cells can be stimulated by the pro-inflammatory cytokines interleukin (IL)-1 alpha and tumour necrosis factor (TNF) alpha to express the leukocyte adhesion molecules E-selectin, vascular cell adhesion molecule (VCAM)-1 and intercellular adhesion molecule (ICAM)-1 but the intracellular signalling mechanisms leading to this expression are incompletely understood. We have investigated the role of protein tyrosine kinases (PTK) in adhesion molecule expression by cytokine-activated ...

  9. INFLUENCE OF SOLUBLE PLACENTAL TISSUE-DERIVED MOLECULES UPON EXPRESSION OF ADHESION MOLECULES BY EA.HY926 ENDOTHELIAL CELLS

    Directory of Open Access Journals (Sweden)

    O. I. Stepanova

    2014-07-01

    Full Text Available Abstract.  Leukocyte  recruitment  to  placental  tissue  is  an  important  factor  of  its  development.  In  this respect, adhesion molecules at the endothelial cell surface represent a key determining factor of leukocyte adhesion and their trans-endothelial migration. The goal of investigation was to evaluate changed expression of adhesion molecules on the endothelial cells induced by supernates of placental tissue cultures. Placental tissue supernatants produced by the first- and third-trimester placental tissue from normal pregnancy, as well as from women with gestosis, induced higher expression of CD31, CD9, CD62E, CD62P, CD34, CD54, CD51/61, CD49d  and  integrin  β7  expression  by  endothelial  cells,  as  compared  with  their  baseline  levels.  However, the  supernates  from  pre-eclamptic  placental  tissue (3rd  trimester  caused  an  increased  CD9  expression by  endothelial  cells,  as  compared  with  effects  of placental  supernates  from  eclampsia-free  cases.  Our data  contribute  to  understanding  a  possible  role  of endothelial cell adhesion molecules in recruitment of leukocytes to placental tissue and possible participation of adhesion molecules in pathogenesis of pre-eclampsia. The work was supported by a grant from Russian Ministry of Education and Science ГК №02.740.11.0711 and Presidential grant № НШ-3594.2010.7 and МД-150.2011.7. (Med. Immunol., 2011, vol. 13, N 6, pp 589-596

  10. Rhodamine-RCA in vivo labeling guided laser capture microdissection of cancer functional angiogenic vessels in a murine squamous cell carcinoma mouse model

    Directory of Open Access Journals (Sweden)

    Bur Monica

    2006-02-01

    Full Text Available Abstract Background Cancer growth, invasion and metastasis are highly related to tumor-associated neovasculature. The presence and progression of endothelial cells in cancer is chaotic, unorganized, and angiogenic vessels are less functional. Therefore, not all markers appearing on the chaotic endothelial cells are accessible if a drug is given through the vascular route. Identifying endothelial cell markers from functional cancer angiogenic vessels will indicate the accessibility and potential efficacy of vascular targeted therapies. Results In order to quickly and effectively identify endothelial cell markers on the functional and accessible tumor vessels, we developed a novel technique by which tumor angiogenic vessels are labeled in vivo followed by Laser Capture Microdissection of microscopically isolated endothelial cells for genomic screening. Female C3H mice (N = 5 with established SCCVII tumors were treated with Rhodamine-RCA lectin by tail vein injection, and after fluorescence microscopy showed a successful vasculature staining, LCM was then performed on frozen section tissue using the PixCell II instrument with CapSure HS caps under the Rhodamine filter. By this approach, the fluorescent angiogenic endothelial cells were successfully picked up. As a result, the total RNA concentration increased from an average of 33.4 ng/ul +/- 24.3 (mean +/- S.D. to 1913.4 ng/ul +/- 164. Relatively pure RNA was retrieved from both endothelial and epithelial cells as indicated by the 260/280 ratios (range 2.22–2.47. RT-PCR and gene electrophoresis successfully detected CD31 and Beta-Actin molecules with minimal Keratin 19 expression, which served as the negative control. Conclusion Our present study demonstrates that in vivo Rhodamine RCA angiogenic vessel labeling provided a practical approach to effectively guide functional endothelial cell isolation by laser capture microdissection with fluorescent microscopy, resulting in high quality RNA and

  11. Prolonged hypoxic culture and trypsinization increase the pro-angiogenic potential of human adipose tissue-derived stem cells

    DEFF Research Database (Denmark)

    Rasmussen, Jeppe Grøndahl; Frøbert, Ole; Pilgaard, Linda; Kastrup, Jens; Simonsen, Ulf; Zachar, Vladimir; Fink, Trine

    2011-01-01

    Transplantation of mesenchymal stromal cells (MSC), including adipose tissue-derived stem cells (ASC), is a promising option in the treatment of vascular disease. Short-term hypoxic culture of MSC augments secretion of anti-apoptotic and angiogenic cytokines. We hypothesized that prolonged hypoxi...... (1% and 5% oxygen) culture and trypsinization would augment ASC expression of anti-apoptotic and angiogenic cytokines and increase the angiogenic potential of ASC-conditioned media....

  12. Study of miR-155 expression in villus tissue of patients with recurrent spontaneous abortion and its relationship with apoptosis molecules and angiogenesis molecules

    Institute of Scientific and Technical Information of China (English)

    Hong-Ying Du; Man-Zhen Zuo; Qiao-Ling Wang; Xiao-Juan Xie

    2016-01-01

    Objective:To study miR-155 expression in villus tissue of patients with recurrent spontaneous abortion and its relationship with apoptosis molecules and angiogenesis molecules.Methods:40 cases of patients with unexplained recurrent spontaneous abortion were selected as URSA group, 30 cases of normal early pregnant women receiving artificial abortion were selected as control group, and villus tissue was collected to detect expression levels of miR-155, apoptosis molecules (Bcl-2, Bcl-xl, Bax, Bad, Fas and FasL) and angiogenesis molecules (HIF-1α, VEGF and sFlt-1).Results: MiR-155 expression level in villus tissue of URSA group was significantly lower than that of control group and the more the times of abortion, the lower the miR-155 expression level; pro-apoptosis molecules Bax, Bad, Fas and FasL expression levels in villus tissue of URSA group were higher than those of control group and negatively correlated with miR-155 expression level, and anti-apoptosis genes Bcl-2 and Bcl-xl expression levels were lower than those of control group and positively correlated with miR-155 expression level; HIF-1α and VEGF expression levels in villus tissue of URSA group were lower than those of control group and positively correlated with miR-155 expression level, and sFlt-1 expression level was higher than that of control group and negatively correlated with miR-155 expression level.Conclusions:MiR-155 is lowly expressed in villus tissue of patients with recurrent spontaneous abortion, and miR-155 may be involved in the occurrence and development of the disease through regulating the expression of apoptosis molecules and angiogenesis molecules.

  13. Expression and function of neural cell adhesion molecule during limb regeneration.

    OpenAIRE

    Maier, C E; Watanabe, M.(Niigata University, 950-2181, Niigata, Japan); Singer, M.; McQuarrie, I G; Sunshine, J.; Rutishauser, U.

    1986-01-01

    The neural cell adhesion molecule (NCAM) has been detected in regenerating limb bud of adult newts in addition to brain and peripheral nerves. In the regenerating tissue, NCAM was found primarily on mesenchymal cells and also in wound epidermis. Infusion of Fab fragments of antibodies to NCAM into limb buds at the early blastema stage delayed the regenerative process. Previous studies have indicated that NCAM serves as a homophilic ligand for adhesion among cells that express this molecule an...

  14. Expression of Adhesion Molecules in Synovia of Patients with Treatment-Resistant Lyme Arthritis

    OpenAIRE

    Akin, Evren; Aversa, John; Steere, Allen C.

    2001-01-01

    The expression of adhesion molecules in synovium in patients with Lyme arthritis is surely critical in the control of Borrelia burgdorferi infection but may also have pathologic consequences. For example, molecular mimicry between a dominant T-cell epitope of B. burgdorferi outer surface protein A and an adhesion molecule, human lymphocyte function-associated antigen 1 (LFA-1), has been implicated in the pathogenesis of treatment-resistant Lyme arthritis. Using immunohistochemical methods, we...

  15. Expression and Function of the Homeostatic Molecule Del-1 in Endothelial Cells and the Periodontal Tissue

    Directory of Open Access Journals (Sweden)

    Jieun Shin

    2013-01-01

    Full Text Available Developmental endothelial locus-1 (Del-1 is an endothelial cell-secreted protein that limits the recruitment of neutrophils by antagonizing the interaction between the LFA-1 integrin on neutrophils and the intercellular adhesion molecule (ICAM-1 on endothelial cells. Mice with genetic or age-associated Del-1 deficiency exhibit increased neutrophil infiltration in the periodontium resulting in inflammatory bone loss. Here we investigated additional novel mechanisms whereby Del-1 could interfere with neutrophil recruitment and inflammation. Treatment of human endothelial cells with Del-1 did not affect the expression of endothelial molecules involved in the leukocyte adhesion cascade (ICAM-1, VCAM-1, and E-selectin. Moreover, genetic or age-associated Del-1 deficiency did not significantly alter the expression of these adhesion molecules in the murine periodontium, further ruling out altered adhesion molecule expression as a mechanism whereby Del-1 regulates leukocyte recruitment. Strikingly, Del-1 inhibited ICAM-1-dependent chemokine release (CXCL2, CCL3 by neutrophils. Therefore, Del-1 could potentially suppress the amplification of inflammatory cell recruitment mediated through chemokine release by infiltrating neutrophils. Interestingly, Del-1 was itself regulated by inflammatory stimuli, which generally exerted opposite effects on adhesion molecule expression. The reciprocal regulation between Del-1 and inflammation may contribute to optimally balance the protective and the potentially harmful effects of inflammatory cell recruitment.

  16. Effect of Crocus sativus L. on Expression of VEGF-A and VEGFR-2 Genes (Angiogenic Biomarkers in MCF-7 Cell Line

    Directory of Open Access Journals (Sweden)

    Marzeih Mousavi

    2014-12-01

    Full Text Available Background: Both in vivo and in vitro studies focused on anticancer effects of saffron. Angiogenesis, which is required for embryonic development and many physiological events play crucial role in many pathological conditions such as tumor growth. Two principal genes which involved in this process are VEGF-A and its main receptor VEGFR-2. Effects of saffron on VEGF-A and VEGFR-2 gene expression were examined. Materials and Methods: In this experimental study, saffron aqueous extract obtained by Soxhlet and lyophilized using freeze dryer. MCF-7 cells were grown in RPMI1640 medium supplemented with 10 fetal bovine serum and incubated at 37ºC with 5% CO2. After 24 h of cell culture, their adhesion to the flasks investigated, then cells were treated by saffron extract at concentration of 100, 200, 400 and 800 µg/mL. Forty eight hours after treatment, total RNA extracted and cDNA was synthesized using sequence of target gene. Finally synthesized products analyzed by real time PCR to determine and compare expression level of VEGF-A and VEGFR-2. Results: Data analysis shows inhibitory effect of saffron extract in concentration 100, 200, 400 and 800 µg/mL on VEGF-A and VEGFR-2 gene expression in MCF-7 cell line in compare with control group. For VEGF-A, most reduction can be seen in the highest concentration of saffron extract (800 µg/mL with 17% reduction on gene expression, while critical inhibitory effects on gene expression of VEGFR-2 was 20% in 400 µg/mL concentration. Conclusion: Results indicate a decrease in the expression of VEGF-A and VEGFR-2 as specific biomarkers of angiogenesis in the treated samples compared to controls.

  17. Insulin-Like Growth Factor-1 Inscribes a Gene Expression Profile for Angiogenic Factors and Cancer Progression in Breast Epithelial Cells

    Directory of Open Access Journals (Sweden)

    J.S. Oh

    2002-01-01

    Full Text Available Activation of the insulin-like growth factor-1 receptor (IGF-11R by IGF-1 is associated with the risk and progression of many types of cancer, although despite this it remains unclear how activated IGF-1 R contributes to cancer progression. In this study, gene expression changes elicited by IGF-1 were profiled in breast epithelial cells. We noted that many genes are functionally linked to cancer progression and angiogenesis. To validate some of the changes observed, the RNA and/or protein was confirmed for c-fos, cytochrome P4501Al, cytochrome P450 1131, interleukin-1 beta, fas ligand, vascular endothelial growth factor, and urokinase plasminogen activator. Nuclear proteins were also temporally monitored to address how gene expression changes were regulated. We found that IGF-1 stimulated the nuclear translocation of phosphorylated AKT, hypoxic-inducible factor-1 alpha, and phosphorylated cAMP-responsive element-binding protein, which correlated with temporal changes in gene expression. Next, the promoter regions of IGF-1-regulated genes were searched in silico. The promoters of genes that clustered together had similar regulatory regions. In summary, IGF-1 inscribes a gene expression profile relevant to cancer progression, and this study provides insight into the mechanism(s whereby some of these changes occur.

  18. The candidate tumor suppressor CST6 alters the gene expression profile of human breast carcinoma cells: Down-regulation of the potent mitogenic, motogenic, and angiogenic factor autotaxin

    International Nuclear Information System (INIS)

    We recently coined CST6 as a novel candidate tumor suppressor gene for breast cancer. CST6 indeed is expressed in the normal human breast epithelium, but little or not at all in breast carcinomas and breast cancer cell lines. Moreover, ectopic expression of CST6 in human breast cancer cells suppressed cell proliferation, migration, invasion, and orthotopic tumor growth. To obtain insights into the molecular mechanism by which CST6 exhibits its pleiotropic effects on tumor cells, we compared global gene expression profiles in mock- and CST6-transfected human MDA-MB-435S cells. Out of 12,625 transcript species, 61 showed altered expression. These included genes for extracellular matrix components, cytokines, kinases, and phosphatases, as well as several key transcription factors. TaqMan PCR assays were used to confirm the microarray data for 7 out of 11 genes. One down-regulated gene product, secreted autotaxin/lyso-phospholipase D, was of particular interest because its down-regulation by CST6 could explain most of CST6's effect on the breast cancer cells. This study thus provides First evidence that CST6 plays a role in the modulation of genes, particularly, genes that are highly relevant to breast cancer progression

  19. Identification of pro-angiogenic markers in blood vessels from stroked-affected brain tissue using laser-capture microdissection

    Directory of Open Access Journals (Sweden)

    Baldellou Maribel

    2009-03-01

    Full Text Available Abstract Background Angiogenesis correlates with patient survival following acute ischaemic stroke, and survival of neurons is greatest in tissue undergoing angiogenesis. Angiogenesis is critical for the development of new microvessels and leads to re-formation of collateral circulation, reperfusion, enhanced neuronal survival and improved recovery. Results Here, we have isolated active (CD105/Flt-1 positive and inactive (CD105/Flt-1 minus (n=5 micro-vessel rich-regions from stroke-affected and contralateral tissue of patients using laser-capture micro-dissection. Areas were compared for pro- and anti-angiogenic gene expression using targeted TaqMan microfluidity cards containing 46 genes and real-time PCR. Further analysis of key gene de-regulation was performed by immunohistochemistry to define localization and expression patterns of identified markers and de novo synthesis by human brain microvessel endothelial cells (HBMEC was examined following oxygen-glucose deprivation (OGD. Our data revealed that seven pro-angiogenic genes were notably up-regulated in CD105 positive microvessel rich regions. These were, beta-catenin, neural cell adhesion molecule (NRCAM, matrix metalloproteinase-2 (MMP-2, tissue inhibitor of matrix metalloproteinase-1 (TIMP-1, hepatocyte growth factor-alpha (HGF-alpha, monocyte chemottractant protein-1 (MCP-1 and and Tie-2 as well as c-kit. Immunohistochemistry demonstrated strong staining of MMP-2, HGF-alpha, MCP-1 and Tie-2 in stroke-associated regions of active remodeling in association with CD105 positive staining. In vitro, OGD stimulated production of Tie-2, MCP-1 and MMP-2 in HBMEC, demonstrated a de novo response to hypoxia. Conclusion In this work we have identified concurrent activation of key angiogenic molecules associated with endothelial cell migration, differentiation and tube-formation, vessel stabilization and stem cell homing mechanisms in areas of revascularization. Therapeutic stimulation of these

  20. Expression of SHH signaling molecules in the developing human primary dentition

    OpenAIRE

    Hu, Xuefeng; Zhang, Shuo; Chen, Guimiao; Lin, Chensheng; Huang, Zhen; Chen, Yiping; Zhang, Yanding

    2013-01-01

    Background Our current knowledge on tooth development derives primarily from studies in mice. Very little is known about gene expression and function during human odontogenesis. Sonic Hedgehog (SHH) signaling has been demonstrated to play crucial roles in the development of multiple organs in mice, including the tooth. However, if SHH signaling molecules are expressed and function in the developing human embryonic tooth remain unknown. Results We conducted microarray assay to reveal the expre...

  1. Design principles for therapeutic angiogenic materials

    Science.gov (United States)

    Briquez, Priscilla S.; Clegg, Lindsay E.; Martino, Mikaël M.; Gabhann, Feilim Mac; Hubbell, Jeffrey A.

    2016-01-01

    Despite extensive research, pro-angiogenic drugs have failed to translate clinically, and therapeutic angiogenesis, which has potential in the treatment of various cardiovascular diseases, remains a major challenge. Physiologically, angiogenesis — the process of blood-vessel growth from existing vasculature — is regulated by a complex interplay of biophysical and biochemical cues from the extracellular matrix (ECM), angiogenic factors and multiple cell types. The ECM can be regarded as the natural 3D material that regulates angiogenesis. Here, we leverage knowledge of ECM properties to derive design rules for engineering pro-angiogenic materials. We propose that pro-angiogenic materials should be biomimetic, incorporate angiogenic factors and mimic cooperative interactions between growth factors and the ECM. We highlight examples of material designs that demonstrate these principles and considerations for designing better angiogenic materials.

  2. Angiogenic potential of endothelial progenitor cells and embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Rae Peter C

    2011-05-01

    Full Text Available Abstract Background Endothelial progenitor cells (EPCs are implicated in a range of pathological conditions, suggesting a natural therapeutic role for EPCs in angiogenesis. However, current angiogenic therapies involving EPC transplantation are inefficient due to rejection of donor EPCs. One solution is to derive an expanded population of EPCs from stem cells in vitro, to be re-introduced as a therapeutic transplant. To demonstrate the therapeutic potential of EPCs we performed in vitro transplantation of EPCs into endothelial cell (EC tubules using a gel-based tubule formation assay. We also described the production of highly angiogenic EPC-comparable cells from pluripotent embryonic stem cells (ESCs by direct differentiation using EC-conditioned medium (ECCM. Results The effect on tubule complexity and longevity varied with transplantation quantity: significant effects were observed when tubules were transplanted with a quantity of EPCs equivalent to 50% of the number of ECs originally seeded on to the assay gel but not with 10% EPC transplantation. Gene expression of the endothelial markers VEGFR2, VE-cadherin and CD31, determined by qPCR, also changed dynamically during transplantation. ECCM-treated ESC-derived progenitor cells exhibited angiogenic potential, demonstrated by in vitro tubule formation, and endothelial-specific gene expression equivalent to natural EPCs. Conclusions We concluded the effect of EPCs is cumulative and beneficial, relying on upregulation of the angiogenic activity of transplanted cells combined with an increase in proliferative cell number to produce significant effects upon transplantation. Furthermore, EPCs derived from ESCs may be developed for use as a rapidly-expandable alternative for angiogenic transplantation therapy.

  3. Small molecule screen for inhibitors of expression from canonical CREB response element-containing promoters

    Science.gov (United States)

    Mitton, Bryan; Hsu, Katie; Dutta, Ritika; Tiu, Bruce C.; Cox, Nick; McLure, Kevin G.; Chae, Hee-Don; Smith, Mark; Eklund, Elizabeth A.; Solow-Cordero, David E.; Sakamoto, Kathleen M.

    2016-01-01

    The transcription factor CREB (cAMP Response Element Binding Protein) is an important determinant in the growth of Acute Myeloid Leukemia (AML) cells. CREB overexpression increases AML cell growth by driving the expression of key regulators of apoptosis and the cell cycle. Conversely, CREB knockdown inhibits proliferation and survival of AML cells but not normal hematopoietic cells. Thus, CREB represents a promising drug target for the treatment of AML, which carries a poor prognosis. In this study, we performed a high-throughput small molecule screen to identify compounds that disrupt CREB function in AML cells. We screened ∼114,000 candidate compounds from Stanford University's small molecule library, and identified 5 molecules that inhibit CREB function at micromolar concentrations, but are non-toxic to normal hematopoietic cells. This study suggests that targeting CREB function using small molecules could provide alternative approaches to treat AML. PMID:26840025

  4. Contrast enhancement in 1p/19q-codeleted anaplastic oligodendrogliomas is associated with 9p loss, genomic instability, and angiogenic gene expression

    Science.gov (United States)

    Reyes-Botero, German; Dehais, Caroline; Idbaih, Ahmed; Martin-Duverneuil, Nadine; Lahutte, Marion; Carpentier, Catherine; Letouzé, Eric; Chinot, Olivier; Loiseau, Hugues; Honnorat, Jerome; Ramirez, Carole; Moyal, Elisabeth; Figarella-Branger, Dominique; Ducray, François; Desenclos, Christine; Sevestre, Henri; Menei, Philippe; Michalak, Sophie; Al Nader, Edmond; Godard, Joel; Viennet, Gabriel; Carpentier, Antoine; Eimer, Sandrine; Dam-Hieu, Phong; Quintin-Roué, Isabelle; Guillamo, Jean-Sebastien; Lechapt-Zalcman, Emmanuelle; Kemeny, Jean-Louis; Verrelle, Pierre; Faillot, Thierry; Gaultier, Claude; Tortel, Marie Christine; Christov, Christo; Le Guerinel, Caroline; Aubriot-Lorton, Marie-Hélène; Ghiringhelli, Francois; Berger, François; Lacroix, Catherine; Parker, Fabrice; Dubois, François; Maurage, Claude-Alain; Gueye, Edouard-Marcel; Labrousse, Francois; Jouvet, Anne; Bauchet, Luc; Rigau, Valérie; Beauchesne, Patrick; Vignaud, Jean-Michel; Campone, Mario; Loussouarn, Delphine; Fontaine, Denys; Vandenbos, Fanny; Campello, Chantal; Roger, Pascal; Fesneau, Melanie; Heitzmann, Anne; Delattre, Jean-Yves; Elouadhani, Selma; Mokhtari, Karima; Polivka, Marc; Ricard, Damien; Levillain, Pierre-Marie; Wager, Michel; Colin, Philippe; Diebold, Marie-Danièle; Chiforeanu, Dan; Vauleon, Elodie; Langlois, Olivier; Laquerriere, Annie; Motsuo Fotso, Marie Janette; Peoc'h, Michel; Andraud, Marie; Mouton, Servane; Chenard, Marie-Pierre; Noel, Georges; Desse, Nicolas; Soulard, Raoulin; Amiel-Benouaich, Alexandra; Uro-Coste, Emmanuelle; Dhermain, Frederic

    2014-01-01

    Background The aim of this study was to correlate MRI features and molecular characteristics in anaplastic oligodendrogliomas (AOs). Methods The MRI characteristics of 50 AO patients enrolled in the French national network for high-grade oligodendroglial tumors were analyzed. The genomic profiles and IDH mutational statuses were assessed using high-resolution single-nucleotide polymorphism arrays and direct sequencing, respectively. The gene expression profiles of 25 1p/19q-codeleted AOs were studied on Affymetrix expression arrays. Results Most of the cases were frontal lobe contrast-enhanced tumors (52%), but the radiological presentations of these cases were heterogeneous, ranging from low-grade glioma-like aspects (26%) to glioblastoma-like aspects (22%). The 1p/19q codeletion (n = 39) was associated with locations in the frontal lobe (P = .001), with heterogeneous intratumoral signal intensities (P = .003) and with no or nonmeasurable contrast enhancements (P = .01). The IDH wild-type AOs (n = 7) more frequently displayed ringlike contrast enhancements (P = .03) and were more frequently located outside of the frontal lobe (P = .01). However, no specific imaging pattern could be identified for the 1p/19q-codeleted AO or the IDH-mutated AO. Within the 1p/19q-codeleted AO, the contrast enhancement was associated with larger tumor volumes (P = .001), chromosome 9p loss and CDKN2A loss (P = .006), genomic instability (P = .03), and angiogenesis-related gene expression (P < .001), particularly for vascular endothelial growth factor A and angiopoietin 2. Conclusion In AOs, the 1p/19q codeletion and the IDH mutation are associated with preferential (but not with specific) imaging characteristics. Within 1p/19q-codeleted AO, imaging heterogeneity is related to additional molecular alterations, especially chromosome 9p loss, which is associated with contrast enhancement and larger tumor volume. PMID:24353325

  5. A preliminary study of pamidronic acid downregulation of angiogenic factors IGF-1/PECAM-1 expression in circulating level in bone metastatic breast cancer patients

    OpenAIRE

    WANG, ZENG

    2016-01-01

    Zeng Wang,1,2 Lei Lei,2,3 Xin-jun Cai,4 Ling Ya Chen,1,2 Meiqin Yuan,2,3 Guonong Yang,1,2 Ping Huang,1,2 Xiaojia Wang2,3 1Department of Pharmacy, 2Zhejiang Key Lab of Diagnosis & Treatment Technology on Thoracic Oncology, 3Department of Chemotherapy Center, Zhejiang Cancer Hospital, 4Department of Pharmacy, Integrated Chinese and Western Medicine Hospital of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China Objective: To evaluate the expressions of circulat...

  6. A preliminary study of pamidronic acid downregulation of angiogenic factors IGF-1/PECAM-1 expression in circulating level in bone metastatic breast cancer patients

    OpenAIRE

    Wang Z; Lei L; Cai X; Chen LY; Yuan M; Yang G; Huang P; Wang X

    2016-01-01

    Zeng Wang,1,2 Lei Lei,2,3 Xin-jun Cai,4 Ling Ya Chen,1,2 Meiqin Yuan,2,3 Guonong Yang,1,2 Ping Huang,1,2 Xiaojia Wang2,3 1Department of Pharmacy, 2Zhejiang Key Lab of Diagnosis & Treatment Technology on Thoracic Oncology, 3Department of Chemotherapy Center, Zhejiang Cancer Hospital, 4Department of Pharmacy, Integrated Chinese and Western Medicine Hospital of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China Objective: To evaluate the expressions of circulating angi...

  7. Angiogenic factors stimulate growth of adult neural stem cells.

    Directory of Open Access Journals (Sweden)

    Andreas Androutsellis-Theotokis

    Full Text Available BACKGROUND: The ability to grow a uniform cell type from the adult central nervous system (CNS is valuable for developing cell therapies and new strategies for drug discovery. The adult mammalian brain is a source of neural stem cells (NSC found in both neurogenic and non-neurogenic zones but difficulties in culturing these hinders their use as research tools. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that NSCs can be efficiently grown in adherent cell cultures when angiogenic signals are included in the medium. These signals include both anti-angiogenic factors (the soluble form of the Notch receptor ligand, Dll4 and pro-angiogenic factors (the Tie-2 receptor ligand, Angiopoietin 2. These treatments support the self renewal state of cultured NSCs and expression of the transcription factor Hes3, which also identifies the cancer stem cell population in human tumors. In an organotypic slice model, angiogenic factors maintain vascular structure and increase the density of dopamine neuron processes. CONCLUSIONS/SIGNIFICANCE: We demonstrate new properties of adult NSCs and a method to generate efficient adult NSC cultures from various central nervous system areas. These findings will help establish cellular models relevant to cancer and regeneration.

  8. Curcumin attenuates adhesion molecules and matrix metalloproteinase expression in hypercholesterolemic rabbits.

    Science.gov (United States)

    Um, Min Young; Hwang, Kwang Hyun; Choi, Won Hee; Ahn, Jiyun; Jung, Chang Hwa; Ha, Tae Youl

    2014-10-01

    Curcumin, the yellow substance found in turmeric, possesses antioxidant, anti-inflammation, anticancer, and lipid-lowering properties. Because we hypothesized that curcumin could ameliorate the development of atherosclerosis, the present study focused on the effects and potential mechanisms of curcumin consumption on high-cholesterol diet-induced atherosclerosis in rabbits. During our study, New Zealand white rabbits were fed 1 of 3 experimental diets: a normal diet, a normal diet enriched with 1% cholesterol (HCD), or an HCD supplemented with 0.2% curcumin. At the end of 8 weeks, blood samples were collected to determine the levels of serum lipids, cytokines, and soluble adhesion molecule levels. Gene expression of adhesion molecules and matrix metalloproteinases (MMPs) in aortas were measured by quantitative real-time polymerase chain reaction and Western blot. Compared with the HCD group, rabbits fed an HCD supplemented with 0.2% curcumin had significantly less aortic lesion areas and neointima thickening. Curcumin reduced the levels of total cholesterol, triglyceride, low-density lipoprotein cholesterol, and oxidized low-density lipoprotein cholesterol in serum by 30.7%, 41.3%, 30.4%, and 66.9% (all P curcumin attenuated HCD-induced CD36 expression, circulating inflammatory cytokines, and soluble adhesive molecule levels. Curcumin reduced the mRNA and protein expression of intracellular adhesion molecule-1, vascular cell adhesion molecule-1, P-selectin, and monocyte chemotactic protein-1, and it inhibited HCD-induced up-regulation of MMP-1, MMP-2, and MMP-9. Our results demonstrate that curcumin exerts an antiatherosclerotic effect, which is mediated by multiple mechanisms that include lowering serum lipids and oxidized low-density lipoprotein, thus modulating the proinflammatory cytokine levels and altering adhesion molecules and MMP gene expression. PMID:25282128

  9. Proteomic analysis of exosomes from nasopharyngeal carcinoma cell identifies intercellular transfer of angiogenic proteins

    KAUST Repository

    Chan, Yuk-kit

    2015-04-01

    Exosomes, a group of secreted extracellular nanovesicles containing genetic materials and signaling molecules, play a critical role in intercellular communication. During tumorigenesis, exosomes have been demonstrated to promote tumor angiogenesis and metastasis while their biological functions in nasopharyngeal carcinoma (NPC) are poorly understood. In this study, we focused on the role of NPC-derived exosomes on angiogenesis. Exosomes derived from the NPC C666-1 cells and immortalized nasopharyngeal epithelial cells (NP69 and NP460) were isolated using ultracentrifugation. The molecular profile and biophysical characteristics of exosomes were verified by Western blotting, sucrose density gradient, and electron microscopy. We showed that the C666-1 exosomes (10 and 20 μg/ml) could significantly increase the tubulogenesis, migration and invasion of human umbilical vein endothelial cells (HUVECs) in a dose-dependent manner. Subsequently, an iTRAQ-based quantitative proteomics was used to identify the differentially expressed proteins in C666-1 exosomes. Among the 640 identified proteins, 51 and 89 proteins were considered as up- and down-regulated (≥ 1.5-fold variations) in C666-1 exosomes compared to the normal counterparts, respectively. As expected, pro-angiogenic proteins including intercellular adhesion molecule-1 (ICAM-1) and CD44 variant isoform 5 (CD44v5) are among the up-regulated proteins, whereas angio-suppressive protein, thrombospondin-1 (TSP-1) was down-regulated in C666-1 exosomes. Further confocal microscopic study and Western blotting clearly demonstrated that the alteration of ICAM-1, and TSP-1 expressions in recipient HUVECs are due to internalization of exosomes. Taken together, these data strongly indicated the critical roles of identified angiogenic proteins in the involvement of exosomes-induced angiogenesis, which could potentially be developed as therapeutic targets in future. This article is protected by copyright. All rights reserved.

  10. The anti-angiogenic factor PEDF is present in the human heart and is regulated by anoxia in cardiac myocytes and fibroblasts

    OpenAIRE

    Rychli, Kathrin; Kaun, Christoph; Hohensinner, Philipp J.; Dorfner, Adrian J; Pfaffenberger, Stefan; Niessner, Alexander; Bauer, Michael; Dietl, Wolfgang; Podesser, Bruno K.; Maurer, Gerald; Huber, Kurt; Wojta, Johann

    2009-01-01

    Abstract Cardiac diseases such as myocardial infarction and heart failure are among the leading causes of death in western societies. Therapeutic angiogenesis has been suggested as a concept to combat these diseases. The biology of angiogenic factors expressed in the heart such as vascular endothelial growth factor (VEGF) is well studied, whereas data on anti-angiogenic mediators in the heart are scarce. Here we study the expression of the anti-angiogenic factor pigment epithelium-derived fac...

  11. Elafin in human endometrium: an antiprotease and antimicrobial molecule expressed during menstruation.

    Science.gov (United States)

    King, Anne E; Critchley, Hilary O D; Sallenave, Jean-Michel; Kelly, Rodney W

    2003-09-01

    Elafin is an antiproteinase and antimicrobial molecule that is expressed at epithelial sites (for example, cervix). This study details the expression and regulation of elafin in the human endometrium. Elafin mRNA and protein expression were examined in endometrium throughout the menstrual cycle and in first-trimester decidua. Real-time quantitative PCR showed that expression of elafin mRNA peaked during menstruation. Elafin protein was localized to leukocytes scattered in the endometrial stroma during the late secretory and menstrual phases. Faint immunostaining was also present in glandular epithelium at these cycle stages. Immunofluorescent colocalization of elafin with neutrophil elastase confirmed that elafin was expressed by endometrial neutrophils around the time of menstruation. This is consistent with the expression profile observed from immunohistochemical studies. Primary endometrial epithelial cells were treated with proinflammatory molecules, and elafin mRNA was studied. A combination of the proinflammatory mediators, IL-1 beta and TNFalpha, increased elafin mRNA levels by 4.6-fold. These results show that endometrium expresses elafin in a menstruation-dependent manner. This is attributable to the presence of infiltrating leukocytes and increased inflammatory signaling. Elafin will regulate proteolytic enzymes during menstruation and will contribute to the innate defense against uterine infection. PMID:12970320

  12. Intercellular Cell Adhesion Molecule-1, Vascular Cell Adhesion Molecule-1, and Regulated on Activation Normal T Cell Expressed and Secreted Are Expressed by Human Breast Carcinoma Cells and Support Eosinophil Adhesion and Activation

    OpenAIRE

    Ali, Shahina; Kaur, Jaswinder; Patel, Kamala D.

    2000-01-01

    Eosinophils are usually associated with parasitic and allergic diseases; however, eosinophilia is also observed in several types of human tumors, including breast carcinomas. In this study we examined several human breast carcinoma cell lines for adhesion molecule expression and the ability to bind and activate eosinophils. MDA-MB-435S and MDA-MB-468 cells constitutively expressed both intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) and this expressio...

  13. Atorvastatin Affects Several Angiogenic Mediators in Human Endothelial Cells

    OpenAIRE

    Dulak, Jozef; Loboda, Agnieszka; Jazwa, Agnieszka; Zagorska, Anna; Dörler, Jacob; Alber, Hannes; Dichtl, Wolfgang; Weidinger, Franz; Frick, Matthias; Jozkowicz, Alicja

    2005-01-01

    The pleiotropic effects of statins, inhibitors of 3-hydroxy-3-methylglutaryl–coenzyme A (HMG-CoA) reductase, have been recently extended to the modulation of angiogenesis. Here, to get more insight into the statins action, the authors have investigated the effect of atorvastatin on the expression of several angiogenic and inflammatory genes in human umbilical endothelial cells (HUVECs). Atorvastatin was proangiogenic at the dose of 10 nM, and antiangiogenic at the concentrations of 1 to 10 μM...

  14. Hypertonic saline impedes tumor cell-endothelial cell interaction by reducing adhesion molecule and laminin expression.

    LENUS (Irish Health Repository)

    Shields, Conor J

    2012-02-03

    BACKGROUND: Hypertonic saline infusion dampens inflammatory responses and suppresses neutrophil-endothelial interaction by reducing adhesion molecule expression. This study tested the hypothesis that hypertonic saline attenuates tumor cell adhesion to the endothelium through a similar mechanism. METHODS: Human colon cancer cells (LS174T) were transfected with green fluorescent protein and exposed to lipopolysaccharide, tumor necrosis factor-alpha, and interleukin-6 under hypertonic and isotonic conditions for 1 and 4 hours. Confluent human umbilical vein endothelial cells were similarly exposed. Cellular apoptosis and expression of adhesion molecules and laminin were measured by flow cytometry. Tumor cell adhesion to endothelium and laminin was assessed with fluorescence microscopy. Data are represented as mean +\\/- standard error of mean, and an ANOVA test was performed to gauge statistical significance, with P <.05 considered significant. RESULTS: Hypertonic exposure significantly reduced tumor cell adhesion despite the presence of the perioperative cell stressors (42 +\\/- 2.9 vs 172.5 +\\/- 12.4, P <.05), attenuated tumor cell beta-1 integrin (14.43 vs 23.84, P <.05), and endothelial cell laminin expression (22.78 +\\/- 2.2 vs 33.74 +\\/- 2.4, P <.05), but did not significantly alter cell viability. CONCLUSION: Hypertonic saline significantly attenuates tumor cell adhesion to endothelium by inhibiting adhesion molecule and laminin expression. This may halt the metastatic behavior of tumor cells shed at surgery.

  15. Highly sensitivity adhesion molecules detection in hereditary haemochromatosis patients reveals altered expression.

    LENUS (Irish Health Repository)

    Norris, S

    2012-02-01

    Several abnormalities in the immune status of patients with hereditary haemochromatosis (HH) have been reported, suggesting an imbalance in their immune function. This may include persistent production of, or exposure to, altered immune signalling contributing to the pathogenesis of this disorder. Adhesion molecules L-, E- and P-Selectin, intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) are some of the major regulators of the immune processes and altered levels of these proteins have been found in pathological states including cardiovascular diseases, arthritis and liver cancer. The aim of this study was to assess L-, E- and P-Selectin, ICAM-1 and VCAM-1 expression in patients with HH and correlate these results with HFE mutation status and iron indexes. A total of 139 subjects were diagnosed with HH (C282Y homozygotes = 87, C282Y\\/H63D = 26 heterozygotes, H63D homozygotes = 26), 27 healthy control subjects with no HFE mutation (N\\/N), 18 normal subjects heterozygous for the H63D mutation served as age-sex-matched controls. We observed a significant decrease in L-selectin (P = 0.0002) and increased E-selectin and ICAM-1 (P = 0.0006 and P = 0.0059) expression in HH patients compared with healthy controls. This study observes for the first time that an altered adhesion molecules profile occurs in patients with HH that is associated with specific HFE genetic component for iron overload, suggesting that differential expression of adhesion molecules may play a role in the pathogenesis of HH.

  16. Interference with virus and bacteria replication by the tissue specific expression of antibodies and interfering molecules.

    Science.gov (United States)

    Enjuanes, L; Sola, I; Izeta, A; Sánchez-Morgado, J M; González, J M; Alonso, S; Escors, D; Sánchez, C M

    1999-01-01

    Historically, protection against virus infections has relied on the use of vaccines, but the induction of an immune response requires several days and in certain situations, like in newborn animals that may be infected at birth and die in a few days, there is not sufficient time to elicit a protective immune response. Immediate protection in new born could be provided either by vectors that express virus-interfering molecules in a tissue specific form, or by the production of animals expressing resistance to virus replication. The mucosal surface is the largest body surface susceptible to virus infection that can serve for virus entry. Then, it is of high interest to develop strategies to prevent infections of these areas. Virus growth can be interfered intracellularly, extracellularly or both. The antibodies neutralize virus intra- and extracellularly and their molecular biology is well known. In addition, antibodies efficiently neutralize viruses in the mucosal areas. The autonomy of antibody molecules in virus neutralization makes them functional in cells different from those that produce the antibodies and in the extracellular medium. These properties have identified antibodies as very useful molecules to be expressed by vectors or in transgenic animals to provide resistance to virus infection. A similar role could be played by antimicrobial peptides in the case of bacteria. Intracellular interference with virus growth (intracellular immunity) can be mediated by molecules of very different nature: (i) full length or single chain antibodies; (ii) mutant viral proteins that strongly interfere with the replication of the wild type virus (dominant-negative mutants); (iii) antisense RNA and ribozyme sequences; and (iv) the product of antiviral genes such as the Mx proteins. All these molecules inhibiting virus replication may be used to obtain transgenic animals with resistance to viral infection built in their genomes. We have developed two strategies to target

  17. Semaphorin7A promotes tumor growth and exerts a pro-angiogenic effect in macrophages of mammary tumor-bearing mice

    Directory of Open Access Journals (Sweden)

    VijayaIragavarapu-Charyulu

    2014-02-01

    Full Text Available Semaphorins, a large family of molecules involved in the axonal guidance and development of the nervous system, have been recently shown to have both angiogenic and anti-angiogenic properties. Specifically, semaphorin 7A (SEMA7A has been reported to have a chemotactic activity in neurogenesis, and to be an immune modulator via it binding to α1β1integrins. Additionally, SEMA7A has been shown to promote chemotaxis of monocytes, inducing them to produce proinflammatory mediators. In this study we explored the role of SEMA7A in the tumoral context. We show that SEMA7A is highly expressed by DA-3 murine mammary tumor cells in comparison to normal mammary cells (EpH4, and that peritoneal macrophages from mammary tumor-bearing mice also express SEMA7A at higher levels compared to peritoneal macrophages derived from normal control mice. We also show that murine macrophages treated with recombinant murine SEMA7A significantly increased their expression of proangiogenic molecules, such as CXCL2/MIP-2. Gene silencing of SEMA7A in peritoneal elicited macrophages from DA-3 tumor-bearing mice resulted in decreased CXCL2 expression. Mice implanted with SEMA7A silenced tumor cells showed decreased angiogenesis in the tumors compared to the wild type tumors. Furthermore, peritoneal elicited macrophages from mice bearing SEMA7A-silenced tumors produce significantly (p< 0.01 lower levels of angiogenic proteins, such as MIP-2, CXCL1 and MMP-9, compared to macrophages from control DA-3 mammary tumors. We postulate that SEMA7A derived from mammary carcinomas may serve as a monocyte chemoattractant and skew monocytes into a pro-tumorigenic phenotype. A putative relationship between tumor-derived SEMA7A and monocytes could prove valuable in establishing new research avenues towards unraveling important tumor-host immune interactions in breast cancer patients.

  18. Transporter Molecules influence the Gene Expression in HeLa Cells

    Directory of Open Access Journals (Sweden)

    Waldemar Waldeck, Ruediger Pipkorn, Bernhard Korn, Gabriele Mueller, Matthias Schick, Katalin Tóth, Manfred Wiessler, Bernd Didinger, Klaus Braun

    2009-01-01

    Full Text Available Progresses in biology and pharmacology led to highly specific bioactive substances, but their poor bioavailability at the site of action is a result of their physico-chemical properties. Various design approaches for transport carrier molecules facilitating the cellular entry of bioactive substances could help to reach their molecular target in cells and tissues. The transfer efficacy and the subsequent pharmacological effects of the cargo molecules are well investigated, but the investigations of effects of the carrier molecules themselves on the target cells or tissues remain necessary. A special attention should be paid to the differential gene expression, particularly in the interpretation of the data achieved by highly specific active pharmaceutical products. After application of transmembrane transport peptides, particularly the pAnt and also the HIV-1 Tat, cells respond with a conspicuous altered gene expression of at least three genes. The PKN1 gene was induced and two genes (ZCD1 and BSG were slightly repressed. The genes and the chromosomes are described, the moderate differential gene expression graphed, and the ontology is listed.

  19. Transporter Molecules influence the Gene Expression in HeLa Cells

    Science.gov (United States)

    Waldeck, Waldemar; Pipkorn, Ruediger; Korn, Bernhard; Mueller, Gabriele; Schick, Matthias; Tóth, Katalin; Wiessler, Manfred; Didinger, Bernd; Braun, Klaus

    2009-01-01

    Progresses in biology and pharmacology led to highly specific bioactive substances, but their poor bioavailability at the site of action is a result of their physico-chemical properties. Various design approaches for transport carrier molecules facilitating the cellular entry of bioactive substances could help to reach their molecular target in cells and tissues. The transfer efficacy and the subsequent pharmacological effects of the cargo molecules are well investigated, but the investigations of effects of the carrier molecules themselves on the target cells or tissues remain necessary. A special attention should be paid to the differential gene expression, particularly in the interpretation of the data achieved by highly specific active pharmaceutical products. After application of transmembrane transport peptides, particularly the pAnt and also the HIV-1 Tat, cells respond with a conspicuous altered gene expression of at least three genes. The PKN1 gene was induced and two genes (ZCD1 and BSG) were slightly repressed. The genes and the chromosomes are described, the moderate differential gene expression graphed, and the ontology is listed. PMID:19214198

  20. Systemic Sclerosis Patients Present Alterations in the Expression of Molecules Involved in B-Cell Regulation

    Science.gov (United States)

    Soto, Lilian; Ferrier, Ashley; Aravena, Octavio; Fonseca, Elianet; Berendsen, Jorge; Biere, Andrea; Bueno, Daniel; Ramos, Verónica; Aguillón, Juan Carlos; Catalán, Diego

    2015-01-01

    The activation threshold of B cells is tightly regulated by an array of inhibitory and activator receptors in such a way that disturbances in their expression can lead to the appearance of autoimmunity. The aim of this study was to evaluate the expression of activating and inhibitory molecules involved in the modulation of B cell functions in transitional, naive, and memory B-cell subpopulations from systemic sclerosis patients. To achieve this, blood samples were drawn from 31 systemic sclerosis patients and 53 healthy individuals. Surface expression of CD86, MHC II, CD19, CD21, CD40, CD22, Siglec 10, CD35, and FcγRIIB was determined by flow cytometry. IL-10 production was evaluated by intracellular flow cytometry from isolated B cells. Soluble IL-6 and IL-10 levels were measured by ELISA from supernatants of stimulated B cells. Systemic sclerosis patients exhibit an increased frequency of transitional and naive B cells related to memory B cells compared with healthy controls. Transitional and naive B cells from patients express higher levels of CD86 and FcγRIIB than healthy donors. Also, B cells from patients show high expression of CD19 and CD40, whereas memory cells from systemic sclerosis patients show reduced expression of CD35. CD19 and CD35 expression levels associate with different autoantibody profiles. IL-10+ B cells and secreted levels of IL-10 were markedly reduced in patients. In conclusion, systemic sclerosis patients show alterations in the expression of molecules involved in B-cell regulation. These abnormalities may be determinant in the B-cell hyperactivation observed in systemic sclerosis. PMID:26483788

  1. Influence of platelet activating factor on expression of adhesion molecules in experimental pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Hua Zhao; Ji-Wei Chen; Ya-Kui Zhou; Xue-Feng Zhou; Pei-Yun Li

    2003-01-01

    AIM: To determine whether Platelet activating factor (PAF)has a regulation role in the expression of adhesion moleculesand accumulation of neutrophils in a murine model of acutepancreatitis.METHODS: One hundred twenty-eight Kunming mice weredivided into four groups. Group 1 received 0.1 mi saline s.c.every hour for three hours (sham). Group 2 received cerulein(50 μg/kg dose s.c.) every hour for three hours. Group 3received AP and additional challenge of PAF (50 rg/kg inabsolute ethanol) (AP/PAF). Group 4 received AP, plustherapeutic treatment with GAB (25 mg dose i.p.) immediatelyafter the first challenge of cerulein (AP/GAB). Animals weresacrificed at 12 h after the first challenge of saline or cerulein.Adhesion molecules of pancreas were semi-quantified bySP methods. Standard assays were performed for serumamylase and myeloperoxidase activity (MPO) of pancreas.Histology of pancreas was scored in a blind manner. Watercontent of pancreas was also measured at the same time.RESULTS: Control pancreata showed negligible adhesionmolecule expression and neutrophil accumulation. Therewere evident adhesion molecules expression and neutrophilaccumulation in AP and AP/PAF compared with sham (P<0.05).AP/GAB had a lower level of adhesion molecules, neutrophils,and water content versus AP and AP/PAF (P<0.05). Histologyshowed a trend toward improvement in AP/GAB, but didnot reach statistical significance.CONCLUSION: PAF can induce the expression of adhesionmolecules that mediate neutrophil accumulation. The PAFantagonist reduces the expression of adhesion moleculesand the severity of inflammation when given immediatelyafter the induction of mild AP in mice. These results suggestthat PAF antagonism may be useful in the treatment of mildpancreatitis after its clinical onset.

  2. Expression of intercellular adhesion molecule-1 in rat heart with ischemia/reperfusion and limitation of infarct size by treatment with antibodies against cell adhesion molecules.

    OpenAIRE

    Yamazaki, T; Seko, Y; Tamatani, T; Miyasaka, M.; Yagita, H; Okumura, K.; R. Nagai; Yazaki, Y

    1993-01-01

    To elucidate the mechanism(s) of myocardial reperfusion injury, we investigated the roles of cell adhesion molecules on both leukocytes and vascular endothelial cells in the reperfused myocardia. We found that within 2 hours after reperfusion leukocytes began to infiltrate into the rat myocardia subjected to 30 minutes of ischemia and clarified, for the first time, that the expression of intercellular adhesion molecule-1 was enhanced on the capillary and venous endothelial cells from 8 to 96 ...

  3. Dual blockade of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (FGF-2) exhibits potent anti-angiogenic effects.

    Science.gov (United States)

    Li, Dong; Xie, Kun; Zhang, Longzhen; Yao, Xuejing; Li, Hongwen; Xu, Qiaoyu; Wang, Xin; Jiang, Jing; Fang, Jianmin

    2016-07-28

    Both vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF or FGF-2) are potent pro-angiogenic factors and play a critical role in cancer development and progression. Clinical anti-VEGF therapy trials had a major challenge due to upregulated expression of other pro-angiogenic factor, like FGF-2. This study developed a novel chimeric decoy receptor VF-Trap fusion protein to simultaneously block activity of both VEGF and FGF pathways in order to achieve an additive or synergistic anti-tumor effect. Our in vitro data showed that VF-Trap potently blocked proliferation and migration of both VEGF- and FGF-2-induced vascular endothelial cells. In animal models, treatment of xenograft tumors with VF-Trap resulted in significant inhibition of tumor growth compared to blockage of the single molecule, like VEGF or FGF blocker. In addition, VF-Trap was also more potent in inhibition of ocular angiogenesis in a mouse oxygen-induced retinopathy (OIR) model. These data demonstrated the potent anti-angiogenic effects of this novel VF-Trap fusion protein on blockage of VEGF and FGF-2 activity in vitro and in animal models. Further study will assess its effects in clinic as a therapeutic agent for angiogenesis-related disorders, such as cancer and ocular vascular diseases. PMID:27130666

  4. MONOCYTE ADHESION MOLECULES EXPRESSION IN PATIENTS WITH CHRONIC HEPATITIS C AND LIVER CIRRHOSIS

    Directory of Open Access Journals (Sweden)

    Nora E.I. El-Bassiouni

    2013-09-01

    Full Text Available Abstract: Introduction: Chronic viral hepatitis is histologically characterized by predominantly periportal infiltration of mononuclear cells, including monocytes/macrophages. Intralobular infiltration of these inflammatory cells is an ominous sign of deterioration and a criterion for disease activity. We aimed to study the expression of monocytes adhesion molecules and their endothelial ligands in patients with chronic hepatitis C (CHC and liver cirrhosis (LC. The influence of cytokines and chemokine on monocyte adhesion was also taken into account. Material and Methods: The current study included 30 cases of CHC, 30 cases of LC and 15 normal healthy controls. Flow cytometric quantification of CD11a, CD11b and CD49d monocyte surface antigen expression was performed. Circulating sE-selectin, sICAM-1, sVCAM-1, TNF-α, IL-1 and MCP-1 were measured by ELISA kits. Results: The expression of CD11b, CD49d, and the serum level of sICAM-1, sVCAM-1, TNF-α showed progressive increase from non-cirrhotic to cirrhotic patients. correlation was found between monocyte adhesion molecules CD11a, CD11b and CD49d and each of sICAM-1 and sVCAM-1 Conclusions: These findings suggest that the modulation of monocyte-subset recruitment into the liver via adhesion molecules or cytokines/cytokine receptors may represent promising approaches for therapeutic interventions in human liver fibrosis. Measurement of serum soluble adhesion molecules may be useful for monitoring progression of liver inflammation and fibrosis during CHC.

  5. Inhibitors of 5-lipoxygenase inhibit expression of intercellular adhesion molecule-1 in human melanoma cells

    Institute of Scientific and Technical Information of China (English)

    Yin WANG; Bin ZHOU; Ji LI; Yong-bing CAO; Xin-sheng CHEN; Ming-he CHENG; Ming YIN

    2004-01-01

    AIM: To study the effect of 5-lipoxygenase inhibitors on the expression of intercellular adhesion molecule-1 (ICAM-1) in melanoma cells. METHODS: ICAM-1 protein of human melanoma cell a375 was detected by enzyme-linked immunosorbent, flow cytometry and Western blot analysis. Level of ICAM-1 mRNA in a375 was evaluated by Northern blot analysis. Adhesion of a375 to endothelial cell EC304 was analyzed by isotopic tracing. RESULTS:5-Lipoxygenase inhibitors nordihydroguaiaretic acid, AA861 and MK886, could suppress the expression of ICAM-1 protein as well as of its mRNA in a375 cells and reduce the adhesion of a375 to EC304. CONCLUSION:5-Lipoxygenase inhibitors can inhibit the expression of ICAM-1 in human melanoma cells and may be valuable for treatment of melanoma metastasis.

  6. Gene expression of adhesion molecules in pulmonary and hepatic microvascular endothelial cells during sepsis

    Institute of Scientific and Technical Information of China (English)

    吴荣谦; 徐迎新; 宋旭华; 孟宪钧

    2002-01-01

    To study the gene expression of adhesion molecules in pulmonary and hepatic microvascular endothelial cells during sepsis in mice. Methods: Male mice were subjected to cecal ligation and puncture (CLP) and microvascular endothelial cells in pulmonary and hepatic tissues were harvested at 3 hours (early sepsis) and 12 hours (late sepsis) after CLP, respectively. Gene expression of the adhesion molecules was assessed by reverse transcription-polymerase chain reaction (RT-PCR). Simultaneously, the alterations of myeloperoxidase (MPO) activity in pulmonary and hepatic tissues were also examined. Results: E-selectin mRNA levels markedly increased at 3 hours after CLP in both pulmonary and hepatic microvascular endothelial cells, then they returned to the normal level at 12 hours after CLP. Increases in intercellular adhesion molecule-1 (ICAM-1) mRNA levels were found at 3 hours after CLP in both pulmonary and hepatic microvascular endothelial cells, and these levels became higher at 12 hours after CLP. Adhesion molecule-1 (VCAM-1) mRNA expression of vascular cells also increased significantly at 3 hours and 12 hours after CLP in both pulmonary and hepatic microvascular endothelial cells. The level of VCAM-1 mRNA in hepatic microvascular endothelial cells was higher at 3 hours than that at 12 hours after CLP, while the level of VCAM-1 mRNA in pulmonary microvascular endothelial cells was higher at 12 hours than that at 3 hours after CLP. The MPO activity in pulmonary and hepatic tissues increased at 3 hours after CLP, compared with that of the sham group. They both declined significantly at 12 hours after CLP, but they were still higher than that of the sham group. Conclusions: The up-regulation of the gene expression of adhesion molecules in pulmonary and hepatic microvascular endothelial cells is an important step for the migration and accumulation of leukocytes at the site of inflammation, which plays a critical role in organ damage during sepsis. And the contribution

  7. Sequential expression of germ-layer specific molecules in the sea urchin embryo.

    Science.gov (United States)

    Wessel, G M; McClay, D R

    1985-10-01

    Described are two germ-layer specific molecules that appear coincident with the formation of two germ layer cell lineages in the sea urchin embryo. Meso1 is a molecule of 380 kDa that is first detected at the time of primary mesenchyme cell delamination from the wall of the blastula. Endo1 is a molecule of 320 kDa that appears on endoderm cells at the time of archenteron formation a few hours after Meso1 appears. Both antigens are identified by monoclonal antibodies. The appearance of these antigens is described by immunofluorescence microscopy, and quantitative data on their localization has been obtained by ultrastructural immunoelectron microscopy. The synthesis of the molecules has been followed by pulse-chase immunoprecipitation. Meso1 is first expressed in trans Golgi-like saccules, is concentrated in peripheral low electron-dense vesicles, and is found throughout the plasma membrane of the mesenchymal cells and their filopodial extensions. Newly translated Meso1 can first be immunoprecipitated upon differentiation of the mesoderm cell lineage, and pulse-chase studies suggest that the determinant is the result of a post-translational modification. [35S]Methionine pulses early in development followed by a chase to the mesenchyme blastula or prism stage show that at least a portion of the molecule is translated well in advance of the mesenchyme blastula stage. Endo1, in contrast, does not appear to be translated until the onset of gastrulation, just preceding the post-translational expression of the Endo1 determinant. Endo1 is localized to the apical and basolateral cell surfaces of the midgut and hindgut. No label is detected in foregut cells, demonstrating a heterogeneity of cell populations within the endoderm cell lineage corresponding to a difference in morphology. In addition, Endo1 is shown to be the result of new transcription by the embryonic genome. Even though the function of neither molecule is known, together they show the spatial and temporal

  8. Intercellular adhesion molecule-1 expression by skeletal muscle cells augments myogenesis

    International Nuclear Information System (INIS)

    We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast–myoblast adhesion, myotube formation, myonuclear number, myotube alignment, myotube–myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube–myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. - Highlights: • We examined mechanisms through which skeletal muscle cell expression of ICAM-1 facilitates events of in vitro myogenesis. • Expression of ICAM-1 by cultured myoblasts did not influence their ability to proliferate or differentiate. • Skeletal muscle cell expression of ICAM-1 augmented myoblast fusion, myotube alignment, myotube–myotube fusion, and myotube size. • ICAM-1 augmented myogenic processes through

  9. Intercellular adhesion molecule-1 expression by skeletal muscle cells augments myogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Goh, Qingnian; Dearth, Christopher L.; Corbett, Jacob T. [Department of Kinesiology, The University of Toledo, Toledo, OH (United States); Pierre, Philippe [Centre d’Immunologie de Marseille-Luminy U2M, Aix-Marseille Université, Marseille (France); INSERM U631, Institut National de la Santé et Recherche Médicale, Marseille (France); CNRS UMR6102, Centre National de la Recherche Scientifique, Marseille (France); Chadee, Deborah N. [Department of Biological Sciences, The University of Toledo, Toledo, OH (United States); Pizza, Francis X., E-mail: Francis.Pizza@utoledo.edu [Department of Kinesiology, The University of Toledo, Toledo, OH (United States)

    2015-02-15

    We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast–myoblast adhesion, myotube formation, myonuclear number, myotube alignment, myotube–myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube–myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. - Highlights: • We examined mechanisms through which skeletal muscle cell expression of ICAM-1 facilitates events of in vitro myogenesis. • Expression of ICAM-1 by cultured myoblasts did not influence their ability to proliferate or differentiate. • Skeletal muscle cell expression of ICAM-1 augmented myoblast fusion, myotube alignment, myotube–myotube fusion, and myotube size. • ICAM-1 augmented myogenic processes through

  10. Preeclampsia and the Anti-Angiogenic State

    OpenAIRE

    Agarwal, Isha; Karumanchi, S. Ananth

    2011-01-01

    Preeclampsia is a major cause of maternal and fetal morbidity and mortality worldwide, however, its etiology remains unclear. Abnormal placental angiogenesis during pregnancy resulting from high levels of anti-angiogenic factors, soluble Flt1 (sFlt1) and soluble endoglin (sEng), has been implicated in preeclampsia pathogenesis. Accumulating evidence also points to a role for these anti-angiogenic proteins as serum biomarkers for the clinical diagnosis and prediction of preeclampsia. Uncoverin...

  11. Age-related changes in expression of the neural cell adhesion molecule in skeletal muscle

    DEFF Research Database (Denmark)

    1993-01-01

    Neural cell adhesion molecule (NCAM) is expressed by muscle and involved in muscle-neuron and muscle-muscle cell interactions. The expression in muscle is regulated during myogenesis and by the state of innervation. In aged muscle, both neurogenic and myogenic degenerative processes occur. We here...... virtually unchanged at all ages examined. However, changes in the extent of sialylation of NCAM were demonstrated. Even though the relative amounts of the various NCAM polypeptides were unchanged during aging, distinct changes in NCAM mRNA classes were observed. Three NCAM mRNA classes of 6.7, 5.2 and 2.......9 kb were present in perinatal and young adult skeletal muscle, whereas only the 5.2 and 2.9 kb mRNA classes could be demonstrated in aged muscle. This indicates that metabolism of the various NCAM polypeptides is individually regulated during aging. Alternative splicing of NCAM mRNA in skeletal muscle...

  12. ANGIOGENES: knowledge database for protein-coding and noncoding RNA genes in endothelial cells.

    Science.gov (United States)

    Müller, Raphael; Weirick, Tyler; John, David; Militello, Giuseppe; Chen, Wei; Dimmeler, Stefanie; Uchida, Shizuka

    2016-01-01

    Increasing evidence indicates the presence of long noncoding RNAs (lncRNAs) is specific to various cell types. Although lncRNAs are speculated to be more numerous than protein-coding genes, the annotations of lncRNAs remain primitive due to the lack of well-structured schemes for their identification and description. Here, we introduce a new knowledge database "ANGIOGENES" (http://angiogenes.uni-frankfurt.de) to allow for in silico screening of protein-coding genes and lncRNAs expressed in various types of endothelial cells, which are present in all tissues. Using the latest annotations of protein-coding genes and lncRNAs, publicly-available RNA-seq data was analyzed to identify transcripts that are expressed in endothelial cells of human, mouse and zebrafish. The analyzed data were incorporated into ANGIOGENES to provide a one-stop-shop for transcriptomics data to facilitate further biological validation. ANGIOGENES is an intuitive and easy-to-use database to allow in silico screening of expressed, enriched and/or specific endothelial transcripts under various conditions. We anticipate that ANGIOGENES serves as a starting point for functional studies to elucidate the roles of protein-coding genes and lncRNAs in angiogenesis. PMID:27582018

  13. Spatiotemporal expression of repulsive guidance molecules (RGMs and their receptor neogenin in the mouse brain.

    Directory of Open Access Journals (Sweden)

    Dianne M A van den Heuvel

    Full Text Available Neogenin has been implicated in a variety of developmental processes such as neurogenesis, neuronal differentiation, apoptosis, migration and axon guidance. Binding of repulsive guidance molecules (RGMs to Neogenin inhibits axon outgrowth of different neuronal populations. This effect requires Neogenin to interact with co-receptors of the uncoordinated locomotion-5 (Unc5 family to activate downstream Rho signaling. Although previous studies have reported RGM, Neogenin, and/or Unc5 expression, a systematic comparison of RGM and Neogenin expression in the developing nervous system is lacking, especially at later developmental stages. Furthermore, information on RGM and Neogenin expression at the protein level is limited. To fill this void and to gain further insight into the role of RGM-Neogenin signaling during mouse neural development, we studied the expression of RGMa, RGMb, Neogenin and Unc5A-D using in situ hybridization, immunohistochemistry and RGMa section binding. Expression patterns in the primary olfactory system, cortex, hippocampus, habenula, and cerebellum were studied in more detail. Characteristic cell layer-specific expression patterns were detected for RGMa, RGMb, Neogenin and Unc5A-D. Furthermore, strong expression of RGMa, RGMb and Neogenin protein was found on several major axon tracts such as the primary olfactory projections, anterior commissure and fasciculus retroflexus. These data not only hint at a role for RGM-Neogenin signaling during the development of different neuronal systems, but also suggest that Neogenin partners with different Unc5 family members in different systems. Overall, the results presented here will serve as a framework for further dissection of the role of RGM-Neogenin signaling during neural development.

  14. Expression of cell adhesion molecule CD44 in gastric adenocarcinoma and its prognostic importance

    Institute of Scientific and Technical Information of China (English)

    Kamran Ghaffarzadehgan; Mostafa Jafarzadeh; Hamid Reza Raziee; Harold Reza Sima; Ehsan Esmaili-Shandiz; Hanieh Hosseinnezhad; Ail Taghizadeh Kermani; Omeed Moaven; Maryam Bahrani

    2008-01-01

    AIM: To evaluate the relation of cluster of differentiation 44 (CD44) expression with clinicopathological features of gastric adenocarcinoma, and also its effect on prognosis with an emphasis on the differences between intestinal and diffuse types. METHODS: From 2000 to 2006, 100 patients with gastric adenocarcinoma, who had undergone total or subtotal gastrectomy without any prior treatment, were studied. Haematoxylin & eosin (HE) staining was used for histological evaluation, including the type (Lauren's classification) and grading of the tumor. The expression of CD44 in the gastric adenocarcinoma mucosa and the adjacent mucosa were determined by immunohistochemistry. The survival analysis was obtained using the Kaplan-Meier test. RESULTS: Of 100 patients, 74 (74%) patients were male. The tumors were categorized as intestinal type (78%) or diffuse type (22%). Sixty-five percent of patients were CD44-positive. CD44 expression was not detected in normal gastric mucosa. Rather, CD44 was more commonly expressed in the intestinal subtype (P = 0.002). A significant relation was seen between the grade of tumor and the expression of CD44 (P=0.014). The survival analysis showed a poor prognosis of patients with CD44-positive tumors (P = 0.008); and this was more prominent in the intestinal (P = 0.001) rather than diffuse type. CONCLUSION: Cell adhesion molecule CD44 is highly expressed in gastric adenocarcinoma. CD44 expression is correlated with a poor prognosis in patients with the intestinal type of gastric adenocarcinoma. CD44 can, therefore, be utilized as a prognostic marker for this group of patients.

  15. Imbalanced expression of functional surface molecules in regulatory and effector T cells in systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    D. Mesquita Júnior

    2014-08-01

    Full Text Available Regulatory T (TREG cells play an important role in maintaining immune tolerance and avoiding autoimmunity. We analyzed the expression of membrane molecules in TREG and effector T cells in systemic lupus erythematosus (SLE. TREG and effector T cells were analyzed for the expression of CTLA-4, PD1, CD28, CD95, GITR, HLA-DR, OX40, CD40L, and CD45RO in 26 patients with active disease, 31 with inactive disease, and 26 healthy controls. TREG cells were defined as CD25+/highCD127Ø/lowFoxP3+, and effector T cells were defined as CD25+CD127+FoxP3Ø. The ratio of TREG to effector T cells expressing GITR, PD1, HLA-DR, OX40, CD40L, and CD45RO was determined in the three groups. The frequency of TREG cells was similar in patients with SLE and controls. However, SLE patients had a decreased frequency of CTLA-4+TREG and CD28+TREG cells and an increased frequency of CD40L+TREG cells. There was a decrease in the TREG/effector-T ratio for GITR+, HLA-DR+, OX40+, and CD45RO+ cells, and an increased ratio of TREG/effector-T CD40L+ cells in patients with SLE. In addition, CD40L+TREG cell frequency correlated with the SLE disease activity index (P=0.0163. In conclusion, our findings showed several abnormalities in the expression of functionally critical surface molecules in TREG and effector T cells in SLE that may be relevant to the pathogenesis of this disease.

  16. Imbalanced expression of functional surface molecules in regulatory and effector T cells in systemic lupus erythematosus

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita Júnior, D. [Disciplina de Reumatologia, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Cruvinel, W.M. [Disciplina de Reumatologia, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Departamento de Biomedicina, Universidade Católica de Goiás, Goiânia, GO (Brazil); Araujo, J.A.P. [Disciplina de Reumatologia, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Salmazi, K.C.; Kallas, E.G. [Disciplina de Imunologia Clínica e Alergia, Departamento de Clínica Médica, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Andrade, L.E.C. [Disciplina de Reumatologia, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil)

    2014-08-22

    Regulatory T (TREG) cells play an important role in maintaining immune tolerance and avoiding autoimmunity. We analyzed the expression of membrane molecules in TREG and effector T cells in systemic lupus erythematosus (SLE). TREG and effector T cells were analyzed for the expression of CTLA-4, PD1, CD28, CD95, GITR, HLA-DR, OX40, CD40L, and CD45RO in 26 patients with active disease, 31 with inactive disease, and 26 healthy controls. TREG cells were defined as CD25{sup +/high}CD127{sup Ø/low}FoxP3{sup +}, and effector T cells were defined as CD25{sup +}CD127{sup +}FoxP3{sup Ø}. The ratio of TREG to effector T cells expressing GITR, PD1, HLA-DR, OX40, CD40L, and CD45RO was determined in the three groups. The frequency of TREG cells was similar in patients with SLE and controls. However, SLE patients had a decreased frequency of CTLA-4{sup +}TREG and CD28{sup +}TREG cells and an increased frequency of CD40L{sup +}TREG cells. There was a decrease in the TREG/effector-T ratio for GITR{sup +}, HLA-DR{sup +}, OX40{sup +}, and CD45RO{sup +} cells, and an increased ratio of TREG/effector-T CD40L{sup +} cells in patients with SLE. In addition, CD40L{sup +}TREG cell frequency correlated with the SLE disease activity index (P=0.0163). In conclusion, our findings showed several abnormalities in the expression of functionally critical surface molecules in TREG and effector T cells in SLE that may be relevant to the pathogenesis of this disease.

  17. Imbalanced expression of functional surface molecules in regulatory and effector T cells in systemic lupus erythematosus

    International Nuclear Information System (INIS)

    Regulatory T (TREG) cells play an important role in maintaining immune tolerance and avoiding autoimmunity. We analyzed the expression of membrane molecules in TREG and effector T cells in systemic lupus erythematosus (SLE). TREG and effector T cells were analyzed for the expression of CTLA-4, PD1, CD28, CD95, GITR, HLA-DR, OX40, CD40L, and CD45RO in 26 patients with active disease, 31 with inactive disease, and 26 healthy controls. TREG cells were defined as CD25+/highCD127Ø/lowFoxP3+, and effector T cells were defined as CD25+CD127+FoxP3Ø. The ratio of TREG to effector T cells expressing GITR, PD1, HLA-DR, OX40, CD40L, and CD45RO was determined in the three groups. The frequency of TREG cells was similar in patients with SLE and controls. However, SLE patients had a decreased frequency of CTLA-4+TREG and CD28+TREG cells and an increased frequency of CD40L+TREG cells. There was a decrease in the TREG/effector-T ratio for GITR+, HLA-DR+, OX40+, and CD45RO+ cells, and an increased ratio of TREG/effector-T CD40L+ cells in patients with SLE. In addition, CD40L+TREG cell frequency correlated with the SLE disease activity index (P=0.0163). In conclusion, our findings showed several abnormalities in the expression of functionally critical surface molecules in TREG and effector T cells in SLE that may be relevant to the pathogenesis of this disease

  18. Long-Duration Three-Dimensional Spheroid Culture Promotes Angiogenic Activities of Adipose-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Lee, Jun Hee; Han, Yong-Seok; Lee, Sang Hun

    2016-05-01

    Mesenchymal stem cells (MSCs) offer significant therapeutic promise for various regenerative therapies. However, MSC-based therapy for injury exhibits low efficacy due to the pathological environment in target tissues and the differences between in vitro and in vivo conditions. To address this issue, we developed adipose-derived MSC spheroids as a novel delivery method to preserve the stem cell microenvironment. MSC spheroids were generated by suspension culture for 3 days, and their sizes increased in a time-dependent manner. After re-attachment of MSC spheroids to the plastic dish, their adhesion capacity and morphology were not altered. MSC spheroids showed enhanced production of hypoxia-induced angiogenic cytokines such as vascular endothelial growth factor (VEGF), stromal cell derived factor (SDF), and hepatocyte growth factor (HGF). In addition, spheroid culture promoted the preservation of extracellular matrix (ECM) components, such as laminin and fibronectin, in a culture time- and spheroid size-dependent manner. Furthermore, phosphorylation of AKT, a cell survival signal, was significantly higher and the expression of pro-apoptotic molecules, poly (ADP ribose) polymerase-1 (PARP-1) and cleaved caspase-3, was markedly lower in the spheroids than in MSCs in monolayers. In the murine hindlimb ischemia model, transplanted MSC spheroids showed better proliferation than MSCs in monolayer. These findings suggest that MSC spheroids promote MSC bioactivities via secretion of angiogenic cytokines, preservation of ECM components, and regulation of apoptotic signals. Therefore, MSC spheroid-based cell therapy may serve as a simple and effective strategy for regenerative medicine. PMID:26869524

  19. Effect of Cell Adhesion Molecule 1 Expression on Intracellular Granule Movement in Pancreatic α Cells.

    Science.gov (United States)

    Yokawa, Satoru; Furuno, Tadahide; Suzuki, Takahiro; Inoh, Yoshikazu; Suzuki, Ryo; Hirashima, Naohide

    2016-09-01

    Although glucagon secreted from pancreatic α cells plays a role in increasing glucose concentrations in serum, the mechanism regulating glucagon secretion from α cells remains unclear. Cell adhesion molecule 1 (CADM1), identified as an adhesion molecule in α cells, has been reported not only to communicate among α cells and between nerve fibers, but also to prevent excessive glucagon secretion from α cells. Here, we investigated the effect of CADM1 expression on the movement of intracellular secretory granules in α cells because the granule transport is an important step in secretion. Spinning disk microscopic analysis showed that granules moved at a mean velocity of 0.236 ± 0.010 μm/s in the mouse α cell line αTC6 that expressed CADM1 endogenously. The mean velocity was significantly decreased in CADM1-knockdown (KD) cells (mean velocity: 0.190 ± 0.016 μm/s). The velocity of granule movement decreased greatly in αTC6 cells treated with the microtubule-depolymerizing reagent nocodazole, but not in αTC6 cells treated with the actin-depolymerizing reagent cytochalasin D. No difference in the mean velocity was observed between αTC6 and CADM1-KD cells treated with nocodazole. These results suggest that intracellular granules in pancreatic α cells move along the microtubule network, and that CADM1 influences their velocity. PMID:27262873

  20. Expression of activated molecules on CD5(+)B lymphocytes in autoimmune hemolytic anemia.

    Science.gov (United States)

    Zhu, Hongli; Xu, Wenyan; Liu, Hong; Wang, Huaquan; Fu, Rong; Wu, Yuhong; Qu, Wen; Wang, Guojin; Guan, Jing; Song, Jia; Xing, Limin; Shao, Zonghong

    2016-05-01

    To investigate the expression of activation molecules on CD5(+)B lymphocytes in peripheral blood of autoimmune hemolytic anemia (AIHA)/Evans patients. The expression of CD80, CD86, and CD69 on CD5(+)B lymphocytes was detected using flow cytometry in 30 AIHA/Evans patients, 18 normal controls (NC) and nine chronic lymphocytic leukemia (CLL) patients. CD80 on CD5(+)B lymphocytes in untreated patients was higher than that in remission patients (P  0.05), but lower than those of CD5(-)B lymphocytes in remission patients and NC (P  0.05). CD80 and CD86 on CD5(+)B lymphocytes was negatively correlated with hemoglobin (HB), C3, C4 (P < 0.05) and positively correlated with reticulocyte (Ret) (P < 0.05). CD69 on CD5(+) and CD5(-)B lymphocytes of CLL was higher than those of AIHA/Evans patients and NC (P < 0.05). The active molecules on CD5(+)B lymphocytes in peripheral blood of AIHA/Evans patients differ from those on CD5(-) and clonal CD5(+)B lymphocytes. PMID:26968550

  1. Abrogation of junctional adhesion molecule-A expression induces cell apoptosis and reduces breast cancer progression.

    Directory of Open Access Journals (Sweden)

    Masato Murakami

    Full Text Available Intercellular junctions promote homotypic cell to cell adhesion and transfer intracellular signals which control cell growth and apoptosis. Junctional adhesion molecule-A (JAM-A is a transmembrane immunoglobulin located at tight junctions of normal epithelial cells of mammary ducts and glands. In the present paper we show that JAM-A acts as a survival factor for mammary carcinoma cells. JAM-A null mice expressing Polyoma Middle T under MMTV promoter develop significantly smaller mammary tumors than JAM-A positive mice. Angiogenesis and inflammatory or immune infiltrate were not statistically modified in absence of JAM-A but tumor cell apoptosis was significantly increased. Tumor cells isolated from JAM-A null mice or 4T1 cells incubated with JAM-A blocking antibodies showed reduced growth and increased apoptosis which paralleled altered junctional architecture and adhesive function. In a breast cancer clinical data set, tissue microarray data show that JAM-A expression correlates with poor prognosis. Gene expression analysis of mouse tumor samples showed a correlation between genes enriched in human G3 tumors and genes over expressed in JAM-A +/+ mammary tumors. Conversely, genes enriched in G1 human tumors correlate with genes overexpressed in JAM-A-/- tumors. We conclude that down regulation of JAM-A reduces tumor aggressive behavior by increasing cell susceptibility to apoptosis. JAM-A may be considered a negative prognostic factor and a potential therapeutic target.

  2. Exploration of FoxM1 and downstream related target molecule expression in cervical cancer tissue

    Institute of Scientific and Technical Information of China (English)

    Yi-Chong Yuan; QiongYang

    2016-01-01

    Objective:To study the expression of FoxM1 and downstream related target molecules in cervical cancer tissue.Methods:Cervical cancer tissue and normal cervical tissue were collected to detect the expression of FoxM1, proliferation-related genes (CDK6 and CDK8) and angiogenesis-related genes (VEGFA, VEGFB and VEGFC); Hela cells were cultured and transfected with FoxM1 siRNA, and then expression of CDK6, CDK8, VEGFA, VEGFB and VEGFC were detected.Results:mRNA contents of FoxM1, CDK6, CDK8, VEGFA, VEGFB and VEGFC in cervical cancer tissue were significantly higher than those in normal cervical tissue; mRNA content of FoxM1 was positively correlated with mRNA contents of CDK6, CDK8, VEGFA, VEGFB and VEGFC; mRNA contents of CDK6, CDK8, VEGFA, VEGFB and VEGFC of FoxM1-siRNA group were significantly lower than those of negative control-siRNA group.Conclusion:FoxM1 expression abnormally increases in cervical cancer tissue, and its downstream target genes include CDK6, CDK8, VEGFA, VEGFB and VEGFC.

  3. The carbon monoxide releasing molecule (CORM-3) inhibits expression of vascular cell adhesion molecule-1 and E-selectin independently of haem oxygenase-1 expression

    NARCIS (Netherlands)

    Song, H.; Bergstrasser, C.; Rafat, N.; Hoeger, S.; Schmidt, M.; Endres, N.; Goebeler, M.; Hillebrands, J. L.; Brigelius-Flohe, R.; Banning, A.; Beck, G.; Loesel, R.; Yard, B. A.

    2009-01-01

    Background and purpose: Although carbon monoxide (CO) can modulate inflammatory processes, the influence of CO on adhesion molecules is less clear. This might be due to the limited amount of CO generated by haem degradation. We therefore tested the ability of a CO releasing molecule (CORM-3), used i

  4. Nitric oxide modulates lipopolysaccharide-induced endothelial platelet endothelial cell adhesion molecule expression via interleukin-10.

    Science.gov (United States)

    Hebeda, C B; Teixeira, S A; Tamura, E K; Muscará, M N; de Mello, S B V; Markus, R P; Farsky, S H P

    2011-08-01

    We have shown previously that nitric oxide (NO) controls platelet endothelial cell adhesion molecule (PECAM-1) expression on both neutrophils and endothelial cells under physiological conditions. Here, the molecular mechanism by which NO regulates lipopolysaccharide (LPS)-induced endothelial PECAM-1 expression and the role of interleukin (IL)-10 on this control was investigated. For this purpose, N-(G)-nitro-L-arginine methyl ester (L-NAME; 20 mg/kg/day for 14 days dissolved in drinking water) was used to inhibit both constitutive (cNOS) and inducible nitric oxide (iNOS) synthase activities in LPS-stimulated Wistar rats (5 mg/kg, intraperitoneally). This treatment resulted in reduced levels of serum NO. Under this condition, circulating levels of IL-10 was enhanced, secreted mainly by circulating lymphocytes, dependent on transcriptional activation, and endothelial PECAM-1 expression was reduced independently on reduced gene synthesis. The connection between NO, IL-10 and PECAM-1 expression was examined by incubating LPS-stimulated (1 µg/ml) cultured endothelial cells obtained from naive rats with supernatant of LPS-stimulated lymphocytes, which were obtained from blood of control or L-NAME-treated rats. Supernatant of LPS-stimulated lymphocytes obtained from L-NAME-treated rats, which contained higher levels of IL-10, reduced LPS-induced PECAM-1 expression by endothelial cells, and this reduction was reversed by adding the anti-IL-10 monoclonal antibody. Therefore, an association between NO, IL-10 and PECAM-1 was found and may represent a novel mechanism by which NO controls endothelial cell functions. PMID:21564091

  5. Beyond differential expression: the quest for causal mutations and effector molecules

    Directory of Open Access Journals (Sweden)

    Hudson Nicholas J

    2012-07-01

    Full Text Available Abstract High throughput gene expression technologies are a popular choice for researchers seeking molecular or systems-level explanations of biological phenomena. Nevertheless, there has been a groundswell of opinion that these approaches have not lived up to the hype because the interpretation of the data has lagged behind its generation. In our view a major problem has been an over-reliance on isolated lists of differentially expressed (DE genes which – by simply comparing genes to themselves – have the pitfall of taking molecular information out of context. Numerous scientists have emphasised the need for better context. This can be achieved through holistic measurements of differential connectivity in addition to, or in replacement, of DE. However, many scientists continue to use isolated lists of DE genes as the major source of input data for common readily available analytical tools. Focussing this opinion article on our own research in skeletal muscle, we outline our resolutions to these problems – particularly a universally powerful way of quantifying differential connectivity. With a well designed experiment, it is now possible to use gene expression to identify causal mutations and the other major effector molecules with whom they cooperate, irrespective of whether they themselves are DE. We explain why, for various reasons, no other currently available experimental techniques or quantitative analyses are capable of reaching these conclusions.

  6. Is human fracture hematoma inherently angiogenic?

    LENUS (Irish Health Repository)

    Street, J

    2012-02-03

    This study attempts to explain the cellular events characterizing the changes seen in the medullary callus adjacent to the interfragmentary hematoma during the early stages of fracture healing. It also shows that human fracture hematoma contains the angiogenic cytokine vascular endothelial growth factor and has the inherent capability to induce angiogenesis and thus promote revascularization during bone repair. Patients undergoing emergency surgery for isolated bony injury were studied. Raised circulating levels of vascular endothelial growth factor were seen in all injured patients, whereas the fracture hematoma contained significantly higher levels of vascular endothelial growth factor than did plasma from these injured patients. However, incubation of endothelial cells in fracture hematoma supernatant significantly inhibited the in vitro angiogenic parameters of endothelial cell proliferation and microtubule formation. These phenomena are dependent on a local biochemical milieu that does not support cytokinesis. The hematoma potassium concentration is cytotoxic to endothelial cells and osteoblasts. Subcutaneous transplantation of the fracture hematoma into a murine wound model resulted in new blood vessel formation after hematoma resorption. This angiogenic effect is mediated by the significant concentrations of vascular endothelial growth factor found in the hematoma. This study identifies an angiogenic cytokine involved in human fracture healing and shows that fracture hematoma is inherently angiogenic. The differences between the in vitro and in vivo findings may explain the phenomenon of interfragmentary hematoma organization and resorption that precedes fracture revascularization.

  7. Human papillomavirus up-regulates MMP-2 and MMP-9 expression and activity by inducing interleukin-8 in lung adenocarcinomas.

    Directory of Open Access Journals (Sweden)

    Ming-Yuh Shiau

    Full Text Available Human papillomavirus (HPV infection is associated with non-smoking female lung cancer. Our previous report demonstrated that HPV 16 promotes lung tumor cell progression by up-regulating interleukin-17 (IL-17. IL-17 and its downstream signaling mediator, interleukin-8 (IL-8, have been implicated to modulate a variety of pro-angiogenic factors and play important roles in tumor angiogenesis and metastasis. Accordingly, we hypothesized that HPV infection may potentiate tumorigenic and metastatic characteristics of the infected cells through IL-8. The goal of the present study was to determine whether HPV infection in lung adenocarcinoma cells can promote the expression of IL-8 and metalloproteinases (MMPs to make the transformed cells equipped with angiogenic and metastatic characteristics. The expression of IL-8 and MMPs in HPV 16 E6-transfected H1299 cells was analyzed to examine the hypothesis. HPV 16 E6 up-regulates pro-angiogenic MMP-2 and MMP-9 through inducing IL-8 expression in lung cancer cells. The results indicate that, in addition to cell proliferation-related machinery, HPV infection promotes the expression and activities of angiogenic and metastatic molecules in lung adenocarcinoma cells. The cytokines induced by HPV infection may work together to confer the malignant and tumorigenic potentials on the infected cells by promoting machineries of growth, angiogenic and metastatic characteristics.

  8. Differential Expression of Osteo-Modulatory Molecules in Periodontal Ligament Stem Cells in Response to Modified Titanium Surfaces

    Directory of Open Access Journals (Sweden)

    So Yeon Kim

    2014-01-01

    Full Text Available This study assessed differential gene expression of signaling molecules involved in osteogenic differentiation of periodontal ligament stem cells (PDLSCs subjected to different titanium (Ti surface types. PDLSCs were cultured on tissue culture polystyrene (TCPS, and four types of Ti discs (PT, SLA, hydrophilic PT (pmodPT, and hydrophilic SLA (modSLA with no osteoinductive factor and then osteogenic activity, including alkaline phosphatase (ALP activity, mRNA expression of runt-related gene 2, osterix, FOSB, FRA1, and protein levels of osteopontin and collagen type IA, were examined. The highest osteogenic activity appeared in PDLSCs cultured on SLA, compared with the TCPS and other Ti surfaces. The role of surface properties in affecting signaling molecules to modulate PDLSC behavior was determined by examining the regulation of Wnt pathways. mRNA expression of the canonical Wnt signaling molecules, Wnt3a and β-catenin, was higher on SLA and modSLA than on smooth surfaces, but gene expression of the calcium-dependent Wnt signaling molecules Wnt5a, calmodulin, and NFATc1 was increased significantly on PT and pmodPT. Moreover, integrin α2/β1, sonic hedgehog, and Notch signaling molecules were affected differently by each surface modification. In conclusion, surface roughness and hydrophilicity can affect differential Wnt pathways and signaling molecules, targeting the osteogenic differentiation of PDLSCs.

  9. Effect of gliadin and other food peptides on expression of MHC class II molecules by HT-29 cells.

    OpenAIRE

    Mothes, T; Bendix, U; Pfannschmidt, C; Lehmann, I

    1995-01-01

    Expression of major histocompatibility (MHC) class II molecules by enterocytes is known to be enhanced in coeliac disease and other disorders characterised by intestinal inflammation--an effect thought to be mediated via intestinal lymphocytes. To investigate if food peptides can exert direct effects on class II expression, the influence of gliadins, casein, and beta lactoglobulin on an intestinal epithelial cell line (HT-29) was examined in the absence of immune cells. Class II expression wa...

  10. Propofol protects against high glucose-induced endothelial adhesion molecules expression in human umbilical vein endothelial cells

    Directory of Open Access Journals (Sweden)

    Zhu Minmin

    2013-01-01

    Full Text Available Abstract Background Hyperglycemia could induce oxidative stress, activate transcription factor nuclear factor kappa B (NF-κB, up-regulate expression of endothelial adhesion molecules, and lead to endothelial injury. Studies have indicated that propofol could attenuate oxidative stress and suppress NF-κB activation in some situations. In the present study, we examined whether and how propofol improved high glucose-induced up-regulation of endothelial adhesion molecules in human umbilical vein endothelial cells (HUVECs. Methods Protein expression of endothelial adhesion molecules, NF-κB, inhibitory subunit of NF-κBα (IκBα, protein kinase Cβ2 (PKCβ2, and phosphorylation of PKCβ2 (Ser660 were measured by Western blot. NF-κB activity was measured by electrophoretic mobility shift assay. PKC activity was measured with SignaTECT PKC assay system. Superoxide anion (O2.- accumulation was measured with the reduction of ferricytochrome c assay. Human peripheral mononuclear cells were prepared with Histopaque-1077 solution. Results High glucose induced the expression of endothelial selectin (E-selectin, intercellular adhesion molecule 1 (ICAM-1, vascular cell adhesion molecule 1 (VCAM-1, and increased mononuclear-endothelial adhesion. High glucose induced O2.- accumulation, PKCβ2 phosphorylation and PKC activation. Further, high glucose decreased IκBα expression in cytoplasm, increased the translocation of NF-κB from cytoplasm to nuclear, and induced NF-κB activation. Importantly, we found these high glucose-mediated effects were attenuated by propofol pretreatment. Moreover, CGP53353, a selective PKCβ2 inhibitor, decreased high glucose-induced NF-κB activation, adhesion molecules expression, and mononuclear-endothelial adhesion. Conclusion Propofol, via decreasing O2.- accumulation, down-regulating PKCβ2 Ser660 phosphorylation and PKC as well as NF-κB activity, attenuated high glucose-induced endothelial adhesion molecules expression

  11. Kinetics of expression of costimulatory molecules and their ligands in murine relapsing experimental autoimmune encephalomyelitis in vivo

    DEFF Research Database (Denmark)

    Issazadeh-Navikas, Shohreh; Navikas, V; Schaub, M; Sayegh, M; Khoury, S

    1998-01-01

    -2, had distinct expression patterns in the CNS; CD28 was highly expressed and correlated with B7-2 expression on APCs (macrophages/microglia as well as astrocytes) and with the clinical signs of EAE. CTLA4, on the other hand, was expressed by substantially fewer cells during the effector phase of disease...... autoimmune disease model characterized by remissions and relapses. Our data suggest that the targeting of costimulatory molecules to block an immune response must take into account the expression patterns in the target organ....

  12. Anticoagulation inhibits tumor cell-mediated release of platelet angiogenic proteins and diminishes platelet angiogenic response.

    Science.gov (United States)

    Battinelli, Elisabeth M; Markens, Beth A; Kulenthirarajan, Rajesh A; Machlus, Kellie R; Flaumenhaft, Robert; Italiano, Joseph E

    2014-01-01

    Platelets are a reservoir for angiogenic proteins that are secreted in a differentially regulated process. Because of the propensity for clotting, patients with malignancy are often anticoagulated with heparin products, which paradoxically offer a survival benefit by an unknown mechanism. We hypothesized that antithrombotic agents alter the release of angiogenesis regulatory proteins from platelets. Our data revealed that platelets exposed to heparins released significantly decreased vascular endothelial growth factor (VEGF) in response to adenosine 5'-diphosphate or tumor cells (MCF-7 cells) and exhibited a decreased angiogenic potential. The releasate from these platelets contained decreased proangiogenic proteins. The novel anticoagulant fondaparinux (Xa inhibitor) demonstrated a similar impact on the platelet angiogenic potential. Because these anticoagulants decrease thrombin generation, we hypothesized that they disrupt signaling through the platelet protease-activated receptor 1 (PAR1) receptor. Addition of PAR1 antagonists to platelets decreased VEGF release and angiogenic potential. Exposure to a PAR1 agonist in the presence of anticoagulants rescued the angiogenic potential. In vivo studies demonstrated that platelets from anticoagulated patients had decreased VEGF release and angiogenic potential. Our data suggest that the mechanism by which antithrombotic agents increase survival and decrease metastasis in cancer patients is through attenuation of platelet angiogenic potential. PMID:24065244

  13. Netrin-4 Acts as a Pro-angiogenic Factor during Zebrafish Development*

    Science.gov (United States)

    Lambert, Elise; Coissieux, Marie-May; Laudet, Vincent; Mehlen, Patrick

    2012-01-01

    Netrins form a heterogeneous family of laminin-related molecules with multifunctional activities. Netrin-4, the most distant member of this family, is related to the laminin β chain and has recently been proposed to play an important role in embryonic and pathological angiogenesis. However, the data reported so far lead to the apparently contradictory conclusions supporting Netrin-4 as either a pro- or an anti-angiogenic factor. To elucidate this controversy, Netrin-4 was analyzed for a vascular activity in both cell-based models (human umbilical vein endothelial cells and human umbilical artery endothelial cells) and two zebrafish models: the wild-type AB/Tü strain and the transgenic Tg(fli1a:EGFP)y1 strain. We show that Netrin-4 is expressed in endothelial cells and in the zebrafish vascular system. We also show evidence that Netrin-4 activates various kinases and induces various biological effects directly linked to angiogenesis in vitro. Using a morpholinos strategy, we demonstrate that Netrin-4 expression is crucial for zebrafish vessel formation and that a blood vessel formation defect induced by netrin-4 morpholinos can be partially rescued through drug delivery leading to protein kinase activation. Together these data underscore the crucial role of Netrin-4 in blood vessel formation and the involvement of protein kinases activation in Netrin-4-induced biological effects related to vascular development. PMID:22179604

  14. Netrin-4 acts as a pro-angiogenic factor during zebrafish development.

    Science.gov (United States)

    Lambert, Elise; Coissieux, Marie-May; Laudet, Vincent; Mehlen, Patrick

    2012-02-01

    Netrins form a heterogeneous family of laminin-related molecules with multifunctional activities. Netrin-4, the most distant member of this family, is related to the laminin β chain and has recently been proposed to play an important role in embryonic and pathological angiogenesis. However, the data reported so far lead to the apparently contradictory conclusions supporting Netrin-4 as either a pro- or an anti-angiogenic factor. To elucidate this controversy, Netrin-4 was analyzed for a vascular activity in both cell-based models (human umbilical vein endothelial cells and human umbilical artery endothelial cells) and two zebrafish models: the wild-type AB/Tü strain and the transgenic Tg(fli1a:EGFP)(y1) strain. We show that Netrin-4 is expressed in endothelial cells and in the zebrafish vascular system. We also show evidence that Netrin-4 activates various kinases and induces various biological effects directly linked to angiogenesis in vitro. Using a morpholinos strategy, we demonstrate that Netrin-4 expression is crucial for zebrafish vessel formation and that a blood vessel formation defect induced by netrin-4 morpholinos can be partially rescued through drug delivery leading to protein kinase activation. Together these data underscore the crucial role of Netrin-4 in blood vessel formation and the involvement of protein kinases activation in Netrin-4-induced biological effects related to vascular development. PMID:22179604

  15. Future options ofanti-angiogenic cancer therapy

    Institute of Scientific and Technical Information of China (English)

    Yihai Cao

    2016-01-01

    In human patients, drugs that block tumor vessel growth are widely used to treat a variety of cancer types. Many rigorous phase 3 clinical trials have demonstrated signiifcant survival beneifts; however, the addition of an anti-angio-genic component to conventional therapeutic modalities has generally produced modest survival beneifts for cancer patients. Currently, it is unclear why these clinically available drugs targeting the same angiogenic pathways produce dissimilar effects in preclinical models and human patients. In this article, we discuss possible mechanisms of various anti-angiogenic drugs and the future development of optimized treatment regimens.

  16. Stable isotope labeling of glycoprotein expressed in silkworms using immunoglobulin G as a test molecule

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, Hirokazu [Nagoya City University, Faculty and Graduate School of Pharmaceutical Sciences (Japan); Nakamura, Masatoshi [National Institute of Agrobiological Sciences, Genetic Resources Conservation Research Unit, Genetic Resources Center (Japan); Yokoyama, Jun [Taiyo Nippon Sanso Corporation, Tsukuba Laboratories (Japan); Zhang, Ying; Yamaguchi, Takumi [National Institutes of Natural Sciences, Institute for Molecular Science and Okazaki Institute for Integrative Bioscience (Japan); Kondo, Sachiko [Nagoya City University, Faculty and Graduate School of Pharmaceutical Sciences (Japan); Kobayashi, Jun [Yamaguchi University, Department of Biological and Environmental Sciences, Faculty of Agriculture (Japan); Kato, Tatsuya; Park, Enoch Y. [Shizuoka University, Laboratory of Biotechnology, Research Institute of Green Science and Technology (Japan); Nakazawa, Shiori [Nagoya University, Sugashima Marine Biological Laboratory, Graduate School of Science (Japan); Hashii, Noritaka; Kawasaki, Nana [National Institute of Health Sciences, Division of Biological Chemistry and Biologicals (Japan); Kato, Koichi, E-mail: kkato@phar.nagoya-cu.ac.jp [Nagoya City University, Faculty and Graduate School of Pharmaceutical Sciences (Japan)

    2015-06-15

    Silkworms serve as promising bioreactors for the production of recombinant proteins, including glycoproteins and membrane proteins, for structural and functional protein analyses. However, lack of methodology for stable isotope labeling has been a major deterrent to using this expression system for nuclear magnetic resonance (NMR) structural biology. Here we developed a metabolic isotope labeling technique using commercially available silkworm larvae. The fifth instar larvae were infected with baculoviruses for co-expression of recombinant human immunoglobulin G (IgG) as a test molecule, with calnexin as a chaperone. They were subsequently reared on an artificial diet containing {sup 15}N-labeled yeast crude protein extract. We harvested 0.1 mg of IgG from larva with a {sup 15}N-enrichment ratio of approximately 80 %. This allowed us to compare NMR spectral data of the Fc fragment cleaved from the silkworm-produced IgG with those of an authentic Fc glycoprotein derived from mammalian cells. Therefore, we successfully demonstrated that our method enables production of isotopically labeled glycoproteins for NMR studies.

  17. Stable isotope labeling of glycoprotein expressed in silkworms using immunoglobulin G as a test molecule

    International Nuclear Information System (INIS)

    Silkworms serve as promising bioreactors for the production of recombinant proteins, including glycoproteins and membrane proteins, for structural and functional protein analyses. However, lack of methodology for stable isotope labeling has been a major deterrent to using this expression system for nuclear magnetic resonance (NMR) structural biology. Here we developed a metabolic isotope labeling technique using commercially available silkworm larvae. The fifth instar larvae were infected with baculoviruses for co-expression of recombinant human immunoglobulin G (IgG) as a test molecule, with calnexin as a chaperone. They were subsequently reared on an artificial diet containing 15N-labeled yeast crude protein extract. We harvested 0.1 mg of IgG from larva with a 15N-enrichment ratio of approximately 80 %. This allowed us to compare NMR spectral data of the Fc fragment cleaved from the silkworm-produced IgG with those of an authentic Fc glycoprotein derived from mammalian cells. Therefore, we successfully demonstrated that our method enables production of isotopically labeled glycoproteins for NMR studies

  18. Small round blue cell tumours: diagnostic and prognostic usefulness of the expression of B7-H3 surface molecule

    OpenAIRE

    Gregorio, A.; Corrias, M V; R. Castriconi; Dondero, A; Mosconi, M.; Gambini, C; Moretta, A; Moretta, L; Bottino, C

    2008-01-01

    Aims: To assess whether the expression of B7-H3 surface molecule could improve differential diagnosis of small cell round tumours. Methods and results: One hundred and one well-characterized paraffin-embedded small round cell tumours, stored in the pathology archive of the Gaslini Institute, were immunohistochemically analysed with the 5B14 monoclonal antibody, which recognizes the surface molecule B7-H3. All lymphoblastic lymphomas and the blastematous component of Wilms’ tumours were comple...

  19. Expression of intercellular adhesion molecule-1and HLA-DR antigens in uveitis

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    目的:研究细胞间粘附分子-1(intellular adhesion molecule-1,ICAM-1)和人体组织相关抗原(human leudocyte antigen,HLA-DR)在萄萄膜炎免疫反应中的作用.方法:应用免疫组织化学染色检查20只正常眼和54例葡萄糖膜炎眼球摘除眼(其中外源性33例和内源性21例)的脉络膜和视网膜组织中ICAM-1和HLA-DR的表达.结果:正常眼的脉络膜和视网膜组织没有ICAM-1的阳性染色,没有或较少有HLA-DR的表达,葡萄膜炎眼中二者有增高表达(P<0.01),而外源性和内源性葡萄膜炎眼组间表达统计学上无显著差异(P>0.05).结论:ICAM-1、HLA-DR分子能够介导白细胞和炎症部位组织细胞的识别和粘附,二者的共同表达说明它们在葡萄糖膜炎脉络膜视网膜组织的免疫性损伤中具有重要意义.%Objective :To study the effects of intercellular adhesion molecule-1 (ICAM-1) and human leukocyte antigen (HAL-DR) on the immunopathologic process of uveitis. Methods:Imn- munohistochemical techniques were applied to detect their expression in eyes of both the health (20 cases from eye bank) and patients with uveitis (54 cases with 54 eyes which included 33 ex- ogenous uveitis and 21 endogenous one). Results:Both the two ant igens were detectable in the choroidal and retinal tissues in eyes of uveitis while all the normal eyes showed negative expres- sion of ICAM-1 and negative or little expression of HLA-DR (P<0. 01). However,there was no statistically significant difference between exogenous and endogenous types (P>0. 05). Conclu- sion: Both ICAM-1 and HLA-DR may be responsible for cell recognition and binding in the in- flarnmatory tissues. The co-expression of ICAM-1 and HAL-DR showed that these two factors might play an important role in the immunologic damage of the choroid and retina in uveitis.

  20. Regulation of cellular adhesion molecule expression in murine oocytes,peri-implantation and post-implantation embryos

    Institute of Scientific and Technical Information of China (English)

    DAVID; P; LU; LINA; TIAN; CHRIS; O'; NEILL; NICHOLAS; JC; KING

    2002-01-01

    Expression of the adhesion molecules, ICAM-1, VCAM-1, NCAM, CD44, CD49d (VLA-4, α chain),and CD11a (LFA-1, α chain) on mouse oocytes, and pre- and peri-implantation stage embryos was exam-ined by quantitative indirect immunofluorescence microscopy. ICAM-1 was most strongly expressed at theoocyte stage, gradually declining almost to undetectable levels by the expanded blastocyst stage. NCAM,also expressed maximally on the oocyte, declined to undetectable levels beyond the morula stage. On theother hand, CD44 declined from highest expression at the oocyte stage to show a second maximum at thecompacted 8-cell/morula. This molecule exhibited high expression around contact areas between trophecto-derm and zona pellucida during blastocyst hatching. CD49d was highly expressed in the oocyte, remainedsignificantly expressed throughout and after blastocyst hatching was expressed on the polar trophecto-derm. Like CD44, CD49d declined to undetectable levels at the blastocyst outgrowth stage. Expression ofboth VCAM-1 and CD11a was undetectable throughout. The diametrical temporal expression pattern ofICAM-1 and NCAM compared to CD44 and CD49d suggest that dynamic changes in expression of adhesionmolecules may be important for interaction of the embryo with the maternal cellular environment as wellas for continuing development and survival of the early embryo.

  1. Expression pattern of epithelial cell adhesion molecule on normal and malignant colon tissues

    Institute of Scientific and Technical Information of China (English)

    Xin Xie; Chun-Yan Wang; Yun-Xin Cao; Wei Wang; Ran Zhuang; Li-Hua Chen; Na-Na Dang; Liang Fang; Bo-Quan Jin

    2005-01-01

    AIM: To investigate the expression pattern of epithelial cell adhesion molecule (Ep-CAM) on normal and malignant colon tissues to evaluate its diagnostic and therapeutic significance.METHODS: cDNA encoding Ep-CAv extracellular domain was cloned by reverse transcription-polymerase chain reaction (RT-PCR) from excised malignant colon tissues and inserted into a glutathione S-transferase (GST)-tagged vector. EpCAM-GST fusion protein was induced by isopropyl-β-D-thiogalactopyranoside (IPTG) and purified with glutathionesepharose. The Ep-CAM-GST fusion protein was mixed with Freund's adjuvant and Balb/c mice were immunized with it. Sp2/0 myeloma cells were fused with the spleen cells of the immunized mice. After having selected by indirect ELISA, the anti-Ep-CAM monoclonal antibodies (NAbs) were generated and the corresponding ascites were obtained.Finally, the human colon carcinoma tissue array prepared from seventy individual patients was stained with the antiEp-CAM NAbs.RESULTS: The isolated Ep-CAM cDNA sequence was identical to the data in GenBank. The expressed fusion protein was almost soluble and had a molecular weight (NW) of 53 ku.Four NAbs against Ep-CAM were obtained and designated as FMU-Ep1, FMU-Ep2, FMU-Ep3 and FMU-Ep4 respectively.Among them, FMU-Ep4 could recognize the natural EpCAM on Colo205 and SW480 cells, and all of them could be used for immunohistochemical staining of tissue sections.It was found that Ep-CAM was distributed differently in normal and various malignant colon tissues, including squamous cell carcinoma, signet-ring cell carcinoma and adenocarcinoma.In normal colon gland epithelia, Ep-CAM antigen was mainly distributed on the basolateral membrane and in the region between the basolateral membrane and the cytoplastic part near the nuclei, whereas the expression pattern of colon malignancies was mainly on the whole surface of epithelia and the expression was much higher than the normal colon tissues. The staining pattern of tissue array

  2. Role of angiogenic factors in recurrent pregnancy loss

    Directory of Open Access Journals (Sweden)

    Azadeh Bagheri

    2013-08-01

    Full Text Available Women with recurrent miscarriage (RM often have abnormal NK cell activity. Uterine NK cells produce angiogenic factors and various interleukins. Human endometrium that expresses a variety of angiogenic growth factors and cytokines (NK-cell may play a critical role in the abnormal endometrial angiogenesis which affect both conception and fetal development. Women with RM also have intrauterine growth restriction (IUGR after conception. It has been shown 12-15% of women in their initial stage of pregnancies miscarry. The occurrence of miscarriage is known as having three or more continues miscarriage. This percentage is from 0.3 to 0.8% of all diagnosed pregnancies. Recurrent miscarriages have multiple aetiology. In this review article we will discuss a number of factors that may link to pregnancy complication. We focus on endometrial angiogenesis, vascular endothelial growth factor A (VEGF-A, human endothelium expresses messenger ribonucleic acids (mRNA encoding VEGF-C, placenta growth factor (PlGF. The angiopoietins 1,2 and receptor for VEGF-A, VEGF-C, PIGF. The role of NK-cell, Interleukin-2 (IL-2 and IL-15 that may lead to up-regulation of VEGF-C and Ang-2 in secretory endometrium. [Int J Reprod Contracept Obstet Gynecol 2013; 2(4.000: 497-502

  3. Identification of a potent endothelium-derived angiogenic factor

    DEFF Research Database (Denmark)

    Jankowski, Vera; Tölle, Markus; Tran, Thi Nguyet Anh;

    2013-01-01

    The secretion of angiogenic factors by vascular endothelial cells is one of the key mechanisms of angiogenesis. Here we report on the isolation of a new potent angiogenic factor, diuridine tetraphosphate (Up4U) from the secretome of human endothelial cells. The angiogenic effect of the endothelia...

  4. [Pathogenetic and clinical significance of the adhesion molecule expression on T cells of the lung in sarcoid alveolitis].

    Science.gov (United States)

    Gerli, R; Galandrini, R; Agea, E; Bini, P; Tognellini, R

    1990-01-01

    A double immunofluorescence analysis of CD4+ cell population from bronchoalveolar lavage (BAL) fluid samples of patients with active pulmonary sarcoidosis was carried out. The results showed that, unlike BAL and peripheral blood CD4+ cells of healthy subjects, almost all BAL CD4+ cells of the patients highly express, besides CDw29 antigen, LFA-1 and ICAM-1 adhesion molecules. The co-expression of these molecules on BAL CD4+ cells during high intensity sarcoid alveolitis could represent a marker of immunological memory. The relevant pathogenetic and clinical implications of this observation are discussed. PMID:2199744

  5. Angiogenic efficacy of Heparin on chick chorioallantoic membrane

    Directory of Open Access Journals (Sweden)

    Rema Reji

    2012-04-01

    Full Text Available Abstract Heparin is an anticoagulant agent known to have diverse effects on angiogenesis with some reports suggesting that it can induce angiogenesis while a few have indicated of its inhibitory property. Cancer patients treated for venous thromboembolism with low molecular heparin had a better survival than the unfractionated heparin (UFH. Heparin is known to interact with various angiogenic growth factors based on its sulfation modifications within the glycosaminoglycan chains. Therefore it is important to study the mechanism of action of heparin of different molecular weight to understand its angiogenic property. In this concern, we examined the angiogenic response of higher molecular weight Heparin (15 kDa of different concentrations using late CAM assay. Growth of blood vessels in terms of their length and size was measured and thickness of the CAM was calculated morphometrically. The observed increase in the thickness of the CAM is suggestive of the formation of capillary like structures at the treated region. Analysis of the diffusion pattern showed internalized action of heparin that could affect gene expression leading to proliferation of endothelial cells. Angiogenesis refers to formation of new blood vessels from the existing ones and occurrence of new blood vessels at the treated area strongly confirms that heparin of 15 kDa molecular weight has the ability to induce angiogenesis on CAM vascular bed in a dose dependent manner. The results demonstrate the affinity of heparin to induce angiogenesis and provide a novel mechanism by which heparin could be used in therapeutics such as in wound healing process.

  6. Angiogenic Factors and Renal Disease in Pregnancy

    Directory of Open Access Journals (Sweden)

    Julie S. Rhee

    2011-01-01

    Full Text Available Background. Preeclampsia is difficult to diagnose in patients with underlying renal disease and proteinuria. Prior studies show that there is an angiogenic factor imbalance with elevated levels of antiangiogenic proteins soluble fms-like tyrosine kinase 1 (sFlt1 and soluble endoglin (sEng and reduced levels of the proangiogenic protein, placental growth factor (PlGF in women with preeclampsia. These angiogenic biomarkers may be useful in distinguishing preeclampsia from other conditions of pregnancy, which may present with overlapping clinical characteristics. Cases. Case 1: A multiparous woman at 18 weeks gestation with nephrotic syndrome presented with hypertensive emergency and worsening renal insufficiency. She underwent induction of labor for severe preeclampsia. Her sFlt1 and sEng levels were at the 97 percentile while her PlGF level was undetectable (less than the 1st percentile. Case 2: A nulliparous woman with lupus nephritis at 22 weeks gestation presented with fetal demise and heart failure. Three weeks previously, the patient had developed thrombocytopenia and hypertensive urgency. She underwent dilation and evacuation. Her angiogenic profile was consistent with severe preeclampsia. Conclusion. Angiogenic factors may provide evidence to support a diagnosis of preeclampsia in patients with preexisting renal disease and proteinuria, conditions in which the classical definition of hypertension and proteinuria cannot be used.

  7. Partial N-terminal sequence analysis of human class II molecules expressing the DQw3 determinant.

    Science.gov (United States)

    Obata, F; Endo, T; Yoshii, M; Otani, F; Igarashi, M; Takenouchi, T; Ikeda, H; Ogasawara, K; Kasahara, M; Wakisaka, A

    1985-09-01

    HLA-DQ molecules were isolated from DRw9-homozygous and DR4-homozygous cell lines by using a monoclonal antibody HU-18, which recognizes class II molecules carrying the conventional DQw3 determinant. The partial N-terminal sequence analysis of the DQw3 molecules revealed that they have sequences homologous to those of murine I-A molecules. Within the limits of our sequence analysis, the DQw3 molecules from the two cell lines are identical to each other in both the alpha and beta chains. The DQ alpha as well as DQ beta chains were found to have amino acid substitutions when compared to other I-A-like molecules whose sequences have been reported. These differences may contribute to the DQw supertypic specificity. The polymorphic nature of DQ molecules is in marked contrast to that of DR molecules where DR alpha chains are highly conserved while DR beta chains have easily detectable amino acid substitutions. PMID:2411700

  8. Suppressive activity of a macrolide antibiotic, roxithromycin on co-stimulatory molecule expression on mouse splenocytes in vivo

    Directory of Open Access Journals (Sweden)

    K. Kawazu

    2000-01-01

    Full Text Available The influence of roxithromycin (RXM on the expression of co-stimulatory molecules, CD40, CD80 and CD86, was examined in vivo. When BALB/c mice were immunized intraperitoneally with two doses of dinitrophenylated ovalbumin (DNP-OVA at 1 week intervals, intraperitoneal administration of RXM at 250 μg/kg once a day for 14 days strongly suppressed IgE contents in sera obtained from mice 22 days after the first immunization. In addition, RXM treatment of mice suppressed endogenous IL–4 contents in aqueous spleen extracts, which were enhanced by DNP-OVA immunization. We next examined the influence of RXM on co-stimulatory molecule expression on splenic lymphocytes. RXM treatment of the immunized mice caused suppression of CD40 expression, but this treatment did not affect CD80 and CD86 expression.

  9. Effect of spironolactone on renal and intercellular adhesion molecule-1 expression in Type 2 diabetic rats

    International Nuclear Information System (INIS)

    Objective: To observe the influence of spironolactone on the serum and urine intercellular adhesion molecule-1 (ICAM-1) level, and the change of renal structure and function of type 2 diabetic rats. Methods: 30 healthy male SD rats were chosen 10 of them were randomly selected as normal controls (group NC) n=10; Then these rats were randomly divided into type 2 diabetes group (group DM) n=10 and type 2 diabetes + spironolactone treated group (group SPI) n=10. After 8 weeks, the levels of blood glucose, serum lipids, urine biochemical, renal pathological changes were examined; while the serum and urine ICAM-1 levels changes were also detected. Results: 1. Compared with group NC, the levels of fBG and HbA1c were significantly increased in group DM and group SPI (P0.05). 2. After 8 weeks,the levels of ACR, URBP, UICAM-1, SICAM-1 and kidney/body weight ratio in group DM and group SPI were higher than group NC (P<0.05); the five indexes were significantly lower in group SPI compared with group DM (P<0.05). In addition, UICAM-1 excretion rate and SICAM-1 level showed positive correlations with ACR, URBP excretion rate and kidney/body weight ratio (P<0.01). 3. Pathology showed that the extent of glomerular lesions in rats in group SPI apparently reduced, ICAM-1 expression was decreased compared with that in group DM (P<0.01). Conclusion: Spironolactone can definitely protect type 2 diabetic kidney,and this protective effect was independent on the hypoglycemic effect. The mechanisms might be associated with its inhibition effect on ICAM-1 expression and its excretion. (authors)

  10. Effect of low dose irradiation on expression of membrane molecules of T lymphocytes in cord blood

    International Nuclear Information System (INIS)

    The membrane molecules expression of T lymphocytes of cord blood after low dose irradiation (LDI) was investigated. Freshly isolated lymphocytes from cord blood were irradiated with 62 mGy γ-ray. At different time (4 h, 12 h, 24 h) after irradiation the changes of TCR+ , CD3+ , CD4+ , CD8+ cells were examined by flow cytometry with direct immunofluorescence, respectively. The experimental results showed that the proportion of CD3+ , TCR+/CD3+ , CD4+ , CD8+ cells increased significantly after LDI, with the most obvious enhancement noted in the 24 h experimental group. The ratio of CD4 to CD8 showed no significant changes. It is suggested that expedition of the maturation, activation and signal transduction of T lymphocytes from cord blood can be induced by irradiation of 62 mGy γ-ray. So the reconstruction of immune functions after cord blood transplantation can be accelerated, enhancing the graft versus leukemia (GVL) effect and preventing the tumor from relapsing

  11. Effect of irradiation on gene expression of rat liver adhesion molecules. In vivo and in vitro studies

    Energy Technology Data Exchange (ETDEWEB)

    Moriconi, Federico; Malik, Ihtzaz; Ahmad, Ghayyor; Dudas, Joszef; Ramadori, Giuliano [Dept. of Gastroenterology and Endocrinology, Goettingen Univ. (Germany); Rave-Fraenk, Margret; Vorwerk, Hilke; Hille, Andrea; Hess, Clemens Friedrich; Christiansen, Hans [Dept. of Radiotherapy, Goettingen Univ. (Germany)

    2009-07-15

    Background and purpose: Migration of leukocytes into tissue is a key element of innate and adaptive immunity. An animal study showed that liver irradiation, in spite of induction of chemokine gene expression, does not lead to recruitment of leukocytes into the parenchyma. The aim of this study was to analyze gene expression of adhesion molecules, which mediate leukocyte recruitment into organs, in irradiated rat liver in vivo and rat hepatocytes in vitro. Material and methods: Rat livers in vivo were irradiated selectively at 25 Gy. Isolated hepatocytes in vitro were irradiated at 8 Gy. RNA extracted within 48 h after irradiation in vivo and in vitro was analyzed by real-time PCR (polymerase chain reaction) and Northern blot. Adhesion molecule concentration in serum was measured by ELISA (enzyme-linked immunosorbent assay). Cryostat sections of livers were used for immunohistology. Results: Significant radiation-induced increase of ICAM-1 (intercellular adhesion molecule-1), VCAM-1 (vascular cell adhesion molecule-1), JAM-1 (junctional adhesion molecule-1), {beta}{sub 1}-integrin, {beta}{sub 2}-integrin, E-cadherin, and P-selectin gene expression could be detected in vivo, while PECAM-1 (platelet-endothelial cell adhesion molecule-1) gene expression remained unchanged. In vitro, {beta}{sub 1}-integrin, JAM-1, and ICAM-2 showed a radiation-induced increased expression, whereas the levels of P-selectin, ICAM-1, PECAM-1, VCAM-1, Madcam-1 (mucosal addressin cell adhesion molecule-1), {beta}{sub 2}-integrin, and E-cadherin were downregulated. However, incubation of irradiated hepatocytes with either tumor necrosis factor-(TNF-){alpha}, interleukin-(IL-)1{beta}, or IL-6 plus TNF-{alpha} led to an upregulation of P-selectin, ICAM-1 and VCAM-1. Conclusion: The findings suggest that liver irradiation modulates gene expression of the main adhesion molecules in vivo and in cytokine-activated hepatocytes, with the exception of PECAM-1. This may be one reason for the lack of

  12. Suppressive effects of co-stimulatory molecule expressions on mouse splenocytes by anti-allergic agents in vitro

    Directory of Open Access Journals (Sweden)

    Jun-ichi Ito

    2000-01-01

    Full Text Available The influence of anti-allergic drugs, epinastine hydrochloride (EP and disodium cromoglycate (DSCG, on the co-stimulatory molecule expression was examined using in vitro cell culture technique. Spleen cells obtained from BALB/c mice 10 days after immunization with haemocyanin absorbed to aluminium hydroxide were cultured in the presence of 100.0 μg/ml haemocyanin and various concentrations of the agents. Low concentrations (< 1.5 2 10-4 M of EP and DSCG did not influence spleen cell blastic activity induced by antigenic stimulation, whereas these agents caused significant inhibition of spleen cell activation when 2 × 10-4 M of the agents were added to cell cultures. EP and DSCG also did not affect blastic activity of sensitized splenic T cells by anti-CD3 monoclonal antibody stimulation even when these cells were cultured in the presence of 2 × 10-4 M of the agents. We next examined the influence of EP and DSCG on the expression of co-stimulatory molecules on spleen cells in response to antigenic stimulation. Sensitized spleen cells were cultured in the presence of 2 × 10-4 M of the agents and the expression of molecules were examined by flow cytometer 24 h later. EP and DSCG suppressed the expression of costimulatory molecules, CD40 and CD80, but not CD86, on splenic B cells which were enhanced by antigenic stimulation in vitro.

  13. Suppressive effects of co-stimulatory molecule expressions on mouse splenocytes by anti-allergic agents in vitro.

    Science.gov (United States)

    Ito, J; Asano, K; Tryka, E; Kanai, K; Yamamoto, S; Hisamitsu, T; Suzaki, H

    2000-01-01

    The influence of anti-allergic drugs, epinastine hydrochloride (EP) and disodium cromoglycate (DSCG), on the co-stimulatory molecule expression was examined using in vitro cell culture technique. Spleen cells obtained from BALB/c mice 10 days after immunization with haemocyanin absorbed to aluminium hydroxide were cultured in the presence of 100.0 microg/ml haemocyanin and various concentrations of the agents. Low concentrations (DSCG did not influence spleen cell blastic activity induced by antigenic stimulation, whereas these agents caused significant inhibition of spleen cell activation when 2 x 10(-4) M of the agents were added to cell cultures. EP and DSCG also did not affect blastic activity of sensitized splenic T cells by anti-CD3 monoclonal antibody stimulation even when these cells were cultured in the presence of 2 x 10(-4) M of the agents. We next examined the influence of EP and DSCG on the expression of co-stimulatory molecules on spleen cells in response to antigenic stimulation. Sensitized spleen cells were cultured in the presence of 2 x 10(-4)M of the agents and the expression of molecules were examined by flow cytometer 24h later. EP and DSCG suppressed the expression of costimulatory molecules, CD40 and CD80, but not CD86, on splenic B cells which were enhanced by antigenic stimulation in vitro. PMID:10958379

  14. Anti-Oxidant, Anti-Inflammatory and Anti-Angiogenic Properties of Resveratrol in Ocular Diseases

    Directory of Open Access Journals (Sweden)

    Allan Lançon

    2016-03-01

    Full Text Available Resveratrol (3,4′,5 trihydroxy-trans-stilbene is one of the best known phytophenols with pleiotropic properties. It is a phytoalexin produced by vine and it leads to the stimulation of natural plant defenses but also exhibits many beneficial effects in animals and humans by acting on a wide range of organs and tissues. These include the prevention of cardiovascular diseases, anti-cancer potential, neuroprotective effects, homeostasia maintenance, aging delay and a decrease in inflammation. Age-related macular degeneration (AMD is one of the main causes of deterioration of vision in adults in developed countries This review deals with resveratrol and ophthalmology by focusing on the antioxidant, anti-inflammatory, and anti-angiogenic effects of this molecule. The literature reports that resveratrol is able to act on various cell types of the eye by increasing the level of natural antioxidant enzymatic and molecular defenses. Resveratrol anti-inflammatory effects are due to its capacity to limit the expression of pro-inflammatory factors, such as interleukins and prostaglandins, and also to decrease the chemo-attraction and recruitment of immune cells to the inflammatory site. In addition to this, resveratrol was shown to possess anti-VEGF effects and to inhibit the proliferation and migration of vascular endothelial cells. Resveratrol has the potential to be used in a range of human ocular diseases and conditions, based on animal models and in vitro experiments.

  15. Neuropeptide Y is an angiogenic factor in cardiovascular regeneration.

    Science.gov (United States)

    Saraf, Rabya; Mahmood, Feroze; Amir, Rabia; Matyal, Robina

    2016-04-01

    In diabetic cardiomyopathy, there is altered angiogenic signaling and increased oxidative stress. As a result, anti-angiogenic and pro-inflammatory pathways are activated. These disrupt cellular metabolism and cause fibrosis and apoptosis, leading to pathological remodeling. The autonomic nervous system and neurotransmitters play an important role in angiogenesis. Therapies that promote angiogenesis may be able to relieve the pathology in these disease states. Neuropeptide Y (NPY) is the most abundantly produced and expressed neuropeptide in the central and peripheral nervous systems in mammals and plays an important role in promoting angiogenesis and cardiomyocyte remodeling. It produces effects through G-protein-coupled Y receptors that are widely distributed and also present on the myocardium. Some of these receptors are also involved in diseased states of the heart. NPY has been implicated as a potent growth factor, causing cell proliferation in multiple systems while the NPY3-36 fragment is selective in stimulating angiogenesis and cardiomyocyte remodeling. Current research is focusing on developing a drug delivery mechanism for NPY to prolong therapy without having significant systemic consequences. This could be a promising innovation in the treatment of diabetic cardiomyopathy and ischemic heart disease. PMID:26875634

  16. Changes in some Blood Micronutrients, Leukocytes and Neutrophil Expression of Adhesion Molecules in Periparturient Dairy Cows

    Directory of Open Access Journals (Sweden)

    Petersson L

    2001-03-01

    Full Text Available Dairy cows are highly susceptible to infectious diseases, like mastitis, during the period around calving. Although factors contributing to increased susceptibility to infection have not been fully elucidated, impaired neutrophil recruitment to the site of infection and changes in the concentrations of some micronutrients related with the function of the immune defence has been implicated. Most of the current information is based on studies outside the Nordic countries where the conditions for dairy cows are different. Therefore, the aim of the study was to evaluate changes in blood concentrations of the vitamins A and E, the minerals calcium (Ca, phosphorous (P, and magnesium (Mg, the electrolytes potassium (K and sodium (Na and the trace elements selenium (Se, copper (Cu and zinc (Zn, as well as changes in total and differential white blood cell counts (WBC and expression of the adhesion molecules CD62L and CD18 on blood neutrophils in Swedish dairy cows during the period around calving. Blood samples were taken from 10 cows one month before expected calving, at calving and one month after calving. The results were mainly in line with reports from other countries. The concentrations of vitamins A and E, and of Zn, Ca and P decreased significantly at calving, while Se, Cu, and Na increased. Leukocytosis was detected at calving, mainly explained by neutrophilia, but also by monocytosis. The numbers of lymphocytes tended to decrease at the same time. The mean fluorescent intensity (MFI of CD62L and CD18 molecules on blood neutrophils remained constant over time. The proportion of CD62L+ neutrophils decreased significantly at calving. The animals were fed according to, or above, their requirements. Therefore, changes in blood levels of vitamins, minerals and trace elements were mainly in response to colostrum formation, changes in dry matter intake, and ruminal metabolism around calving. Decreased levels of vitamins A and E, and of Zn at calving

  17. Cryptotanshinone inhibits oxidized LDL-induced adhesion molecule expression via ROS dependent NF-κB pathways.

    Science.gov (United States)

    Zhao, Wenwen; Wu, Chuanhong; Chen, Xiuping

    2016-05-01

    Adhesion molecules, such as intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin, play important roles in the initial stage of atherosclerosis. Cryptotanshinone (CPT), a natural compound isolated from Salvia miltiorrhiza Bunge, exhibits anti-atherosclerotic activity although the underlying mechanisms remain elusive. In this study, the protective effect of CPT against oxidized low-density lipoprotein (ox-LDL)-induced adhesion molecule expression was investigated in human umbilical vein endothelial cells. Ox-LDL significantly induced ICAM-1, VCAM-1, and E-selectin expression at the mRNA and protein levels but reduced eNOS phosphorylation and NO generation, which were reversed by CPT pretreatment. Sodium nitroprusside, a NO donor, N-acetyl-L-cysteine (NAC), a reactive oxygen species (ROS) scavenger, and BAY117082, a NF-κB inhibitor, inhibited ox-LDL-induced ICAM-1, VCAM-1, and E-selectin expression. Ox-LDL-induced ROS production was significantly inhibited by CPT and NAC. Furthermore, ox-LDL activated the NF-κB signaling pathway by inducing phosphorylation of IKKβ and IκBα, promoting the interaction of IKKβ and IκBα, and increasing p65 nuclear translocation, which were significantly inhibited by CPT. In addition, CPT, NAC, and BAY117082 inhibited ox-LDL-induced membrane expression of ICAM-1, VCAM-1, E-selectin, and endothelial-monocyte adhesion and restored eNOS phosphorylation and NO generation. Results suggested that CPT inhibited ox-LDL-induced adhesion molecule expression by decreasing ROS and inhibiting the NF-κB pathways, which provides new insight into the anti-atherosclerotic mechanism of CPT. PMID:26647279

  18. Inefficient assembly limits transport and cell surface expression of HLA-Cw4 molecules in C1R.

    Science.gov (United States)

    Zemmour, J

    1996-12-01

    HLA-C antigens are expressed to the cell surface at roughly 10% the level of HLA-B or -A, and their serological definition remains persistently difficult. To characterize the factors limiting surface expression, the processes of assembly and intracellular transport of HLA-Cw4 molecules were investigated in the C1R cell line. When appropriate peptides were added to cultured cells or in cell lysates significant amounts of conformed HLA-C molecules that associate with beta 2-microglobulin (beta 2 m) are detected, but are indeed not sufficient to restore expression to the level observed for HLA-A or -B molecules. Furthermore, a precursor/product relationship exists between the free class I heavy chain and the mature conformation of HLA-Cw4 molecules. Thus, HLA-C assembly promotes the conversion of HC-10-reactive molecules (weakly-beta 2m-associated non-ligand associated free HC form) into the beta 2m-associated class I molecules recognized by W6/32. To further investigate the factors that regulate cell surface expression, intracellular transport of HLA-Cw4 was studied in pulse chase analysis. In contrast to some HLA-A and B, maturation of HLA-Cw4 heavy chains and their export to the medial and trans-Golgi compartments are quite inefficient. After 4 h of chase period, roughly half of the pulse-labeled HLA-Cw4 molecules have transited to the medial-Golgi and acquired complex oligosaccharides characteristic of mature form. In addition, treatment with gamma-interferon does not appear to improve maturation of HLA-Cw4 heavy chains, suggesting that increased supply of peptides does not influence intracellular transport. Moreover, only a small fraction in the pool of HLA-Cw4 molecules was subsequently transported through the trans-Golgi network, as indicated by their acquisition of sialic acids. Taken together these studies show that HLA-Cw4 molecules are inefficiently transported through the Golgi apparatus and presumably retained in the endoplasmic reticulum or cis

  19. Impaired Circulating Angiogenic Cells Mobilization and Metalloproteinase-9 Activity after Dynamic Exercise in Early Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Natalia G. Rocha

    2015-01-01

    Full Text Available Increased levels of adhesion molecules or metalloproteinases (MMPs may indicate endothelial dysfunction. Exercise mobilizes circulating angiogenic cells (CACs from bone marrow in healthy subjects, improving vascular function. However, it is unclear whether this mechanism is preserved in the early stages of metabolic syndrome (early MetS. We aimed to evaluate the acute effects of exercise on adhesion molecules, angiogenic factors, MMPs, and CACs in early MetS. Fifteen subjects with early MetS and nine healthy controls underwent an exercise session and a nonexercise session, randomly. Adhesion molecules, angiogenic factors, CACs, and MMPs were evaluated before and after exercise or nonexercise sessions. At baseline, levels of sE-selectin, sICAM-1, and MMP-9 were higher in early MetS than in controls (P≤0.03. After exercise, sE-selectin, sICAM-1, and MMP-9 levels were still higher in early MetS (P0.05. In conclusion, subjects with early MetS already presented impaired endothelial function at rest along with a decrease in CACs and an increase in MMP-9 activity in response to exercise.

  20. In vitro anti-proliferative and anti-angiogenic activities of thalidomide dithiocarbamate analogs.

    Science.gov (United States)

    El-Aarag, Bishoy Y A; Kasai, Tomonari; Zahran, Magdy A H; Zakhary, Nadia I; Shigehiro, Tsukasa; Sekhar, Sreeja C; Agwa, Hussein S; Mizutani, Akifumi; Murakami, Hiroshi; Kakuta, Hiroki; Seno, Masaharu

    2014-08-01

    Inhibition of angiogenesis is currently perceived as a promising strategy in the treatment of cancer. The anti-angiogenicity of thalidomide has inspired a second wave of research on this teratogenic drug. The present study aimed to investigate the anti-proliferative and anti-angiogenic activities of two thalidomide dithiocarbamate analogs by studying their anti-proliferative effects on human umbilical vein endothelial cells (HUVECs) and MDA-MB-231 human breast cancer cell lines. Their action on the expression levels of IL-6, IL-8, TNF-α, VEGF165, and MMP-2 was also assessed. Furthermore, their effect on angiogenesis was evaluated through wound healing, migration, tube formation, and nitric oxide (NO) assays. Results illustrated that the proliferation of HUVECs and MDA-MB-231 cells was not significantly affected by thalidomide at 6.25-100μM. Thalidomide failed to block angiogenesis at similar concentrations. By contrast, thalidomide dithiocarbamate analogs exhibited significant anti-proliferative action on HUVECs and MDA-MB-231 cells without causing cytotoxicity and also showed powerful anti-angiogenicity in wound healing, migration, tube formation, and NO assays. Thalidomide analogs 1 and 2 demonstrated more potent activity to suppress expression levels of IL-6, IL-8, TNF-α, VEGF165, and MMP-2 than thalidomide. Analog 1 consistently, showed the highest potency and efficacy in all the assays. Taken together, our results support further development and evaluation of novel thalidomide analogs as anti-tumor and anti-angiogenic agents. PMID:24859059

  1. Intramuscular Injection of Angiogenic Gene with Bubble Liposomes Followed by Ultrasound Exposure to Improve Angiogenesis

    Science.gov (United States)

    Negishi, Yoichi; Matsuo, Keiko; Endo-Takahashi, Yoko; Suzuki, Kentaro; Matsuki, Yuuki; Takagi, Norio; Suzuki, Ryo; Maruyama, Kazuo; Aramaki, Yukihiko

    2011-09-01

    Ultrasound (US) in combination with microbubbles has recently engendered much attention as a safe method of gene delivery. Previously, we have developed polyethyleneglycol (PEG)-modified liposomes entrapping echo-contrast gas. We have called the liposomes "Bubble liposomes" (BLs). In this study, to assess the feasibility and the effectiveness of BLs for angiogenic gene delivery in clinical use, we tried to deliver bFGF (an angiogenic factor) expressing plasmid DNA into a mouse hindlimb ischemia model by the combination of BLs and US exposure. After femoral artery ligation, the hindlimb of ischemic mice were treated with BLs and US-mediated intramuscular gene transfer of bFGF expressing plasmid DNA. After the treatment, blood flow was determined over 2 weeks using laser doppler blood flow meter. As a result, the blood flow in the treated groups with BLs and US-mediated the gene transfer was quickly measured, and compared to other treatment groups (non-treated, bFGF alone, or bFGF+US). Furthermore, the number of CD31 positive cells was higher in the treatment groups with BLs and US-mediated the gene transfer than in other treatment groups. These results suggest that intramuscular injection of bFGF as an angiogenic gene with Bubble liposomes followed by ultrasound exposure improved angiogenesis in the ischemic muscle. Thus, gene transfer into the ischemic muscle by the combination of BLs and US exposure is an effective means of angiogenic gene therapy.

  2. Angiogenic activity of sesamin through the activation of multiple signal pathways

    International Nuclear Information System (INIS)

    The natural product sesamin has been known to act as a potent antioxidant and prevent endothelial dysfunction. We here found that sesamin increased in vitro angiogenic processes, such as endothelial cell proliferation, migration, and tube formation, as well as neovascularization in an animal model. This compound elicited the activation of multiple angiogenic signal modulators, such as ERK, Akt, endothelial nitric oxide synthase (eNOS), NO production, FAK, and p38 MAPK, but not Src. The MEK inhibitor PD98059 and the PI3K inhibitor Wortmannin specifically inhibited sesamin-induced activation of the ERK and Akt/eNOS pathways. These inhibitors reduced angiogenic events, with high specificity for MEK/ERK-dependent cell proliferation and migration and PI3K/Akt-mediated tube formation. Moreover, inhibition of p38 MAPK effectively inhibited sesamin-induced cell migration. The angiogenic activity of sesamin was not associated with VEGF expression. Furthermore, this compound did not induce vascular permeability and upregulated ICAM-1 and VCAM-1 expression, which are hallmarks of vascular inflammation. These results suggest that sesamin stimulates angiogenesis in vitro and in vivo through the activation of MEK/ERK-, PI3K/Akt/eNOS-, p125FAK-, and p38 MAPK-dependent pathways, without increasing vascular inflammation, and may be used for treating ischemic diseases and tissue regeneration.

  3. CD13/APN is activated by angiogenic signals and is essential for capillary tube formation

    OpenAIRE

    Bhagwat, Shripad V.; Lahdenranta, Johanna; Giordano, Ricardo J.; Arap, Wadih; Pasqualini, Renata; Shapiro, Linda H.

    2001-01-01

    In the hematopoietic compartment, the CD13/APN metalloprotease is one of the earliest markers of cells committed to the myeloid lineage where it is expressed exclusively on the surface of myeloid progenitors and their differentiated progeny. CD13/APN is also found in nonhematopoietic tissues, and its novel expression on the endothelial cells of angiogenic, but not normal, vasculature was recently described. Treatment of animals with CD13/APN inhibitors significantly impaired retinal neovascul...

  4. Orthodenticle Is Required for the Expression of Principal Recognition Molecules That Control Axon Targeting in the Drosophila Retina.

    Directory of Open Access Journals (Sweden)

    Chiara Mencarelli

    2015-06-01

    Full Text Available Parallel processing of neuronal inputs relies on assembling neural circuits into distinct synaptic-columns and layers. This is orchestrated by matching recognition molecules between afferent growth cones and target areas. Controlling the expression of these molecules during development is crucial but not well understood. The developing Drosophila visual system is a powerful genetic model for addressing this question. In this model system, the achromatic R1-6 photoreceptors project their axons in the lamina while the R7 and R8 photoreceptors, which are involved in colour detection, project their axons to two distinct synaptic-layers in the medulla. Here we show that the conserved homeodomain transcription factor Orthodenticle (Otd, which in the eye is a main regulator of rhodopsin expression, is also required for R1-6 photoreceptor synaptic-column specific innervation of the lamina. Our data indicate that otd function in these photoreceptors is largely mediated by the recognition molecules flamingo (fmi and golden goal (gogo. In addition, we find that otd regulates synaptic-layer targeting of R8. We demonstrate that during this process, otd and the R8-specific transcription factor senseless/Gfi1 (sens function as independent transcriptional inputs that are required for the expression of fmi, gogo and the adhesion molecule capricious (caps, which govern R8 synaptic-layer targeting. Our work therefore demonstrates that otd is a main component of the gene regulatory network that regulates synaptic-column and layer targeting in the fly visual system.

  5. Angiogenesis and Anti-Angiogenic Treatments

    Directory of Open Access Journals (Sweden)

    Ersin Demirer

    2013-10-01

    Full Text Available Blood vessels in our body is developed by vasculogenesis and angiogenesis. There have been new advances in molecular pathology and tumor biology areas in recent years. Angiogenesis is modulated by the balance between angiogenic and anti-angiogenic factors. Angiogenesis plays a key role in tumor growth. Drugs inhibiting angiogenesis have been in use in various malign or non-malign diseases. Inhibition of angiogenesis in malign diseases is a very attractive subject in medicine and studies are going on about long term affects and toxicities. Inhibition of angiogenesis is not an only treatment choice alone. It is a supplemental treatment option applied with conventional chemotherapy, radiotherapy, surgery, immunotherapy and hormonal therapy. It has been used in colorectal carcinoma, renal cell carcinoma, non-small cell lung cancer, glioblastoma, heoatocellular carcinoma, pancreatic neuroendocrine tumor, tyroid medullary cancer.

  6. Statistical mechanics model of angiogenic tumor growth.

    Science.gov (United States)

    Ferreira, António Luis; Lipowska, Dorota; Lipowski, Adam

    2012-01-01

    We examine a lattice model of tumor growth where the survival of tumor cells depends on the supplied nutrients. When such a supply is random, the extinction of tumors belongs to the directed percolation universality class. However, when the supply is correlated with the distribution of tumor cells, which as we suggest might mimic the angiogenic growth, the extinction shows different critical behavior. Such a correlation affects also the morphology of the growing tumors and drastically raises tumor-survival probability. PMID:22400505

  7. Influence of dose-rate on inflammatory damage and adhesion molecule expression after abdominal radiation in the rat

    International Nuclear Information System (INIS)

    Purpose: The goal of this study was to assess the effects of two clinically relevant radiation dose-rates on endothelial adhesion molecule expression, inflammatory response, and microvascular dysfunction. Methods and Materials: Rats were irradiated with 10 Gy at low (0.9 Gy/min) or high (3 Gy/min) dose-rates. Control animals received sham irradiation. Leukocyte rolling, adhesion, emigration, and microvascular permeability were assessed in mesenteric venules by intravital microscopy 6 hours after irradiation. P-selectin and intercellular adhesion molecule-1 (ICAM-1) expression were measured using radiolabeled monoclonal antibodies. Results: Low dose-rate (LDR) abdominal irradiation increased leukocyte adhesion compared with sham-irradiated animals, whereas high dose-rate (HDR) irradiation resulted in enhanced leukocyte rolling, adhesion, and emigration, compared with the LDR or with sham-irradiated rats. Both dose-rates increased microvascular permeability, although this effect was significantly greater after radiation with the high (8-fold) than the low (5-fold) dose-rate. HDR radiation induced significantly larger increments in P-selectin expression in splanchnic organs than LDR, whereas in most organs ICAM-1 expression was only upregulated by the HDR. Blockade of ICAM-1, but not P-selectin, abrogated leukocyte adhesion at both dose-rates. Conclusions: The magnitude of upregulation of endothelial adhesion molecules, leukocyte recruitment, and endothelial barrier dysfunction elicited by radiation therapy is dependent on the dose-rate at which the radiation is delivered

  8. Glutamine Supplementation Attenuates Expressions of Adhesion Molecules and Chemokine Receptors on T Cells in a Murine Model of Acute Colitis

    Directory of Open Access Journals (Sweden)

    Yu-Chen Hou

    2014-01-01

    Full Text Available Background. Migration of T cells into the colon plays a major role in the pathogenesis in inflammatory bowel disease. This study investigated the effects of glutamine (Gln supplementation on chemokine receptors and adhesion molecules expressed by T cells in mice with dextran sulfate sodium- (DSS- induced colitis. Methods. C57BL/6 mice were fed either a standard diet or a Gln diet replacing 25% of the total nitrogen. After being fed the diets for 5 days, half of the mice from both groups were given 1.5% DSS in drinking water to induce colitis. Mice were killed after 5 days of DSS exposure. Results. DSS colitis resulted in higher expression levels of P-selectin glycoprotein ligand- (PSGL- 1, leukocyte function-associated antigen- (LFA- 1, and C-C chemokine receptor type 9 (CCR9 by T helper (Th and cytotoxic T (Tc cells, and mRNA levels of endothelial adhesion molecules in colons were upregulated. Gln supplementation decreased expressions of PSGL-1, LFA-1, and CCR9 by Th cells. Colonic gene expressions of endothelial adhesion molecules were also lower in Gln-colitis mice. Histological finding showed that colon infiltrating Th cells were less in the DSS group with Gln administration. Conclusions. Gln supplementation may ameliorate the inflammation of colitis possibly via suppression of T cell migration.

  9. Biochemical and toxicological evaluation of nano-heparins in cell functional properties, proteasome activation and expression of key matrix molecules.

    Science.gov (United States)

    Piperigkou, Zoi; Karamanou, Konstantina; Afratis, Nikolaos A; Bouris, Panagiotis; Gialeli, Chrysostomi; Belmiro, Celso L R; Pavão, Mauro S G; Vynios, Dimitrios H; Tsatsakis, Aristidis M

    2016-01-01

    The glycosaminoglycan heparin and its derivatives act strongly on blood coagulation, controlling the activity of serine protease inhibitors in plasma. Nonetheless, there is accumulating evidence highlighting different anticancer activities of these molecules in numerous types of cancer. Nano-heparins may have great biological significance since they can inhibit cell proliferation and invasion as well as inhibiting proteasome activation. Moreover, they can cause alterations in the expression of major modulators of the tumor microenvironment, regulating cancer cell behavior. In the present study, we evaluated the effects of two nano-heparin formulations: one isolated from porcine intestine and the other from the sea squirt Styela plicata, on a breast cancer cell model. We determined whether these nano-heparins are able to affect cell proliferation, apoptosis and invasion, as well as proteasome activity and the expression of extracellular matrix molecules. Specifically, we observed that nano-Styela compared to nano-Mammalian analogue has higher inhibitory role on cell proliferation, invasion and proteasome activity. Moreover, nano-Styela regulates cell apoptosis, expression of inflammatory molecules, such as IL-6 and IL-8 and reduces the expression levels of extracellular matrix macromolecules, such as the proteolytic enzymes MT1-MMP, uPA and the cell surface proteoglycans syndecan-1 and -2, but not on syndecan-4. The observations reported in the present article indicate that nano-heparins and especially ascidian heparin are effective agents for heparin-induced effects in critical cancer cell functions, providing an important possibility in pharmacological targeting. PMID:26476401

  10. Small-molecule inhibitors suppress the expression of both type III secretion and amylovoran biosynthesis genes in Erwinia amylovora.

    Science.gov (United States)

    Yang, Fan; Korban, Schuyler S; Pusey, P Lawrence; Elofsson, Michael; Sundin, George W; Zhao, Youfu

    2014-01-01

    The type III secretion system (T3SS) and exopolysaccharide (EPS) amylovoran are two essential pathogenicity factors in Erwinia amylovora, the causal agent of the serious bacterial disease fire blight. In this study, small molecules that inhibit T3SS gene expression in E. amylovora under hrp (hypersensitive response and pathogenicity)-inducing conditions were identified and characterized using green fluorescent protein (GFP) as a reporter. These compounds belong to salicylidene acylhydrazides and also inhibit amylovoran production. Microarray analysis of E. amylovora treated with compounds 3 and 9 identified a total of 588 significantly differentially expressed genes. Among them, 95 and 78 genes were activated and suppressed by both compounds, respectively, when compared with the dimethylsulphoxide (DMSO) control. The expression of the majority of T3SS genes in E. amylovora, including hrpL and the avrRpt2 effector gene, was suppressed by both compounds. Compound 3 also suppressed the expression of amylovoran precursor and biosynthesis genes. However, both compounds induced significantly the expression of glycogen biosynthesis genes and siderophore biosynthesis, regulatory and transport genes. Furthermore, many membrane, lipoprotein and exported protein-encoding genes were also activated by both compounds. Similar expression patterns were observed for compounds 1, 2 and 4. Using crab apple flower as a model, compound 3 was capable of reducing disease development in pistils. These results suggest a common inhibition mechanism shared by salicylidene acylhydrazides and indicate that small-molecule inhibitors that disable T3SS function could be explored to control fire blight disease. PMID:23915008

  11. Angiogenic effect induced by mineral fibres

    International Nuclear Information System (INIS)

    Highlights: → In this study we described the angiogenetic effect of some mineral fibres. → Wollastonite fibres induce blood vessel formation. → The size and shape of the fibres were important factors for the cell signalling. → Wollastonite induce ROS-NFκB activation and EGFR signalling. → Involvement of wollastonite exposure in the development of pathological conditions. -- Abstract: Due to the toxic effect of asbestos, other materials with similar chemical-physical characteristics have been introduced to substitute it. We evaluate the angiogenic effect of certain asbestos substitute fibres such as glass fibres (GFs), ceramic fibres (CFs) and wollastonite fibres (WFs) and then compare angiogenic responses to those induced by crocidolite asbestos fibres (AFs). An in vitro model using human endothelial cells in small islands within a culture matrix of fibroblasts (Angio-Kit) was used to evaluate vessel formation. The release of IL-6, sIL-R6, IL-8, VEGF-A and their soluble receptors, sVEGFR-1, sVEGFR-2, was determined in the conditioning medium of Angio-Kit system after fibre treatment. ROS formation and cell viability were evaluated in cultured endothelial cells (HUVEC). To evaluate the involvement of intracellular mechanisms, EGFR signalling, ROS formation and nuclear factor-κB (NFκB) pathway were then inhibited by incubating HUVEC cells with AG1478, NAC and PDTC respectively, and the cytokine and growth factor release was analyzed in the culture medium after 7 days of fibre incubation. Among the mineral fibres tested, WFs markedly induced blood vessel formation which was associated with release of IL-6 and IL-8, VEGF-A and their soluble receptors. ROS production was observed in HUVEC after WFs treatment which was associated with cell cytotoxicity. The EGFR-induced ERK phosphorylation and ROS-mediated NFκB activation were involved in the cytokine and angiogenic factor release. However, only the EGFR activation was able to induce angiogenesis. The WFs

  12. Adenovirus viral interleukin-10 inhibits adhesion molecule expressions induced by hypoxia/reoxygenation in cerebrovascular endothelial cells1

    Institute of Scientific and Technical Information of China (English)

    Hui KANG; Peng-yuan YANG; Yao-cheng RUI

    2008-01-01

    Aim: To investigate the effects of recombinant adenovirus encoding viral interleukin-10 (vIL-10), a potent anti-inflammatory cytokine, on adhesion mol-ecule expressions and the adhesion rates of leukocytes to endothelial cells in cerebrovascular endothelial cells injured by hypoxia/reoxygenation (H/R). Methods: A recombinant adenovirus expressing vIL-10 (Ad/vIL-10 (or the green fluorescent protein (Ad/GFP) gene was constructed. A cerebrovascular endothe-lial cell line bend.3 was pretreated with a different multiplicity of infection (MOI) of Ad/vIL-10 or Ad/GFP and then exposed to hypoxia for 9 h followed by reoxygenation for 12 h. The culture supernatants were tested for the expression of vIL-10 and endogenous murine IL-10 (mIL-10) by ELISA. The effects of Ad/vIL-10 on monocyte-endothelial cell adhesion were represented as the adhesion rate. Subsequently, the expressions of intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1(VCAM-1) in the endothelial cells after treat-ment with Ad/vIL-10 and H/R were analyzed by Western blotting and real-time PCR. Results: vIL-10 was expressed in cultured bEnd.3 after Ad/vIL-10 transfec-tion and was significantly increased by H/R. Ad/vIL-10 or Ad/GFP did not affect the mlL-10 level. H/R increased the mIL-10 expression, but insignificantly. Mono-cyte-endothelial cell adhesion induced by H/R was significantly inhibited by pretreatment with Ad/vIL-10 (MOI: 80). ICAM-I, and VCAM-1 in bEnd.3 and were significantly increased after H/R, while pretreatment with Ad/vIL-10 (MOI: 80) significantly inhibited their expressions. Ad/GFP did not markedly affect mono-cyte-endothelial adhesion and the expressions of ICAM-1 and VCAM-1 induced by H/R. Conclusion: Ad/vIL-10 significantly inhibits the upregulation of endot-helial adhesion molecule expressions and the increase of adhesion of monocytes-endothelial cells induced by H/R, indicating that vIL-10 gene transfer is of far-reaching significance in the therapy of

  13. Expression of triggering receptor on myeloid cell 1 and histocompatibility complex molecules in sepsis and major abdominal surgery

    Institute of Scientific and Technical Information of China (English)

    Nestor González-Roldán; Constantino López-Macías; Armando Isibasi; Eduardo Ferat-Osorio; Rosalía Aduna-Vicente; Isabel Wong-Baeza; Noemí Esquivel-Callejas; Horacio Astudillo-de la Vega; Patricio Sánchez-Fernández; Lourdes Arriaga-Pizano; Miguel Angel Villasís Keever

    2005-01-01

    AIM: To evaluate the surface expression of triggering receptor on myeloid cell 1 (TREM-1), class Ⅱ major histocompatibility complex molecules (HLA-DR), andthe expression of the splicing variant (svTREM-1) ofTREM-1 in septic patients and those subjected to major abdominal surgery.METHODS: Using flow cytometry, we examined the surface expression of TREM-1 and HLA-DR in peripheral blood monocytes from 11 septic patients, 7 elective gastrointestinal surgical patients, and 10 healthy volunteers. svTREM-1 levels were analyzed by RT-PCR. RESULTS: Basal expression of TREM-1 and HLA-DR in healthy volunteers was 35.91±14.75 MFI and75.8±18.3%, respectively. In septic patients, TREM-1 expression was 59.9±23.9 MFI and HLA-DR expression was 44.39±20.25%, with a significant differencebetween healthy and septic groups (P<0.05) for bothmolecules. In the surgical patients, TREM-1 and HLA-DR expressions were 56.8±20.85 MFI and 71±13.8% before surgery and 72.65±29.92 MlFI and 72.82±22.55% after surgery. TREM-1 expression was significantly different(P = 0.0087) between the samples before and aftersurgery and svTREM-1 expression was 0.8590±0.1451 MF1, 0.8820±0.1460 MF1, and 2.210±0.7873MF1 in the healthy, surgical (after surgery) and septic groups, respectively. There was a significant difference (P = 0.048) in svTREM-1 expression between the healthy and surgical groups and the septic group.CONCLUSION: TREM-1 expression is increased during systemic inflammatory conditions such as sepsis and the postoperative phase. Simultaneous low expression of HLA-DR molecules correlates with the severity of illness and increases susceptibility to infection. Additionally, TREM-1 expression is distinctly different in surgical patients at different stages of the inflammatory response before and after surgery. Thus, surface TREM-1 appears to be an endogenous signal during the course of the inflammatory response. svTREM-1 expression is significantly increased during sepsis, appearing to be

  14. Comparative effect of genistein and daidzein on the expression of MCP-1, eNOS, and cell adhesion molecules in TNF-α-stimulated HUVECs

    OpenAIRE

    Cho, Hye Yeon; Park, Chung Mu; Kim, Mi Jeong; Chinzorig, Radnaabazar; Cho, Chung Won; Song, Young Sun

    2011-01-01

    We compared the effects of genistein and daidzein on the expression of chemokines, cell adhesion molecules (CAMs), and endothelial nitric oxide synthase (eNOS) in tumor necrosis factor (TNF)-α-stimulated human umbilical vascular endothelial cells (HUVECs). TNF-α exposure significantly increased expression of monocyte chemoattractant protein (MCP)-1, vascular adhesion molecule (VCAM)-1, and intercellular adhesion molecule-1. Genistein significantly decreased MCP-1 and VCAM-1 production in a do...

  15. Angiogenic potential of human macrophages on electrospun bioresorbable vascular grafts

    Energy Technology Data Exchange (ETDEWEB)

    Garg, K; Sell, S A; Madurantakam, P; Bowlin, G L, E-mail: glbowlin@vcu.ed [Virginia Commonwealth University, Richmond, VA 23284 (United States)

    2009-06-15

    The aim of this study was to investigate macrophage interactions with electrospun scaffolds and quantify the expression of key angiogenic growth factors in vitro. This study will further help in evaluating the potential of these electrospun constructs as vascular grafts for tissue repair and regeneration in situ. Human peripheral blood macrophages were seeded in serum free media on electrospun (10 mm) discs of polydioxanone (PDO), elastin and PDO:elastin blends (50:50, 70:30 and 90:10). The growth factor secretion was analyzed by ELISA. Macrophages produced high levels of vascular endothelial growth factor and acidic fibroblast growth factor. Transforming growth factor beta-1 (TGF-beta1) secretion was relatively low and there was negligible production of basic fibroblast growth factor. Therefore, it can be anticipated that these scaffolds will support tissue regeneration and angiogenesis. (communication)

  16. In Vitro and In Vivo Investigation of the Angiogenic Effects of Liraglutide during Islet Transplantation.

    Directory of Open Access Journals (Sweden)

    Allan Langlois

    Full Text Available This study investigated the angiogenic properties of liraglutide in vitro and in vivo and the mechanisms involved, with a focus on Hypoxia Inducible Factor-1α (HIF-1α and mammalian target of rapamycin (mTOR.Rat pancreatic islets were incubated in vitro with 10 μmol/L of liraglutide (Lira for 12, 24 and 48 h. Islet viability was studied by fluorescein diacetate/propidium iodide staining and their function was assessed by glucose stimulation. The angiogenic effect of liraglutide was determined in vitro by the measure of vascular endothelial growth factor (VEGF secretion using enzyme-linked immunosorbent assay and by the evaluation of VEGF and platelet-derived growth factor-α (PDGFα expression with quantitative polymerase chain reaction technic. Then, in vitro and in vivo, angiogenic property of Lira was evaluated using immunofluorescence staining targeting the cluster of differentiation 31 (CD31. To understand angiogenic mechanisms involved by Lira, HIF-1α and mTOR activation were studied using western blotting. In vivo, islets (1000/kg body-weight were transplanted into diabetic (streptozotocin Lewis rats. Metabolic control was assessed for 1 month by measuring body-weight gain and fasting blood glucose.Islet viability and function were respectively preserved and enhanced (p<0.05 with Lira, versus control. Lira increased CD31-positive cells, expression of VEGF and PDGFα (p<0.05 after 24 h in culture. Increased VEGF secretion versus control was also observed at 48 h (p<0.05. Moreover, Lira activated mTOR (p<0.05 signalling pathway. In vivo, Lira improved vascular density (p<0.01, body-weight gain (p<0.01 and reduced fasting blood glucose in transplanted rats (p<0.001.The beneficial effects of liraglutide on islets appeared to be linked to its angiogenic properties. These findings indicated that glucagon-like peptide-1 analogues could be used to improve transplanted islet revascularisation.

  17. Expression of accessory molecules and cytokines in acute EAE in marmoset monkeys (Callithrix jacchus)

    NARCIS (Netherlands)

    Laman, J.D.; Meurs, M. van; Schellekens, M.M.; Boer, M. de; Melchers, B.; Massacesi, L.; Lassmann, H.; Claassen, E.; Hart, B.A. 't

    1998-01-01

    Accessory molecules and cytokines are involved in the immunopathogenesis of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) in rodent models, and are potential targets for immunotherapy. Evaluation of such experimental therapies requires appropriate animal models. Therefo

  18. Enhanced B7 costimulatory molecule expression in inflammatory human sural nerve biopsies

    OpenAIRE

    Kiefer, R.; Dangond, F; M. Mueller; TOYKA, K.; Hafler, D; Hartung, H

    2000-01-01

    OBJECTIVES—To define the role of the costimulatory molecules B7-1 and B7-2 in inflammatory disorders of the peripheral nervous system. B7 molecules are essential for effective antigen presentation and may determine the differentiation of T cells into a Th-1 or Th-2 phenotype, thus modulating immune response and disease course.
METHODS—Forty nine sural nerve biopsies from patients with neuroborreliosis, Guillain-Barré syndrome (GBS), chronic inflammatory demyelinating poly...

  19. Transporter Molecules influence the Gene Expression in HeLa Cells

    OpenAIRE

    Waldeck, Waldemar; Pipkorn, Ruediger; Korn, Bernhard; Mueller, Gabriele; Schick, Matthias; Tóth, Katalin; Wiessler, Manfred; Didinger, Bernd; Braun, Klaus

    2008-01-01

    Progresses in biology and pharmacology led to highly specific bioactive substances, but their poor bioavailability at the site of action is a result of their physico-chemical properties. Various design approaches for transport carrier molecules facilitating the cellular entry of bioactive substances could help to reach their molecular target in cells and tissues. The transfer efficacy and the subsequent pharmacological effects of the cargo molecules are well investigated, but the investigatio...

  20. Transporter Molecules influence the Gene Expression in HeLa Cells

    OpenAIRE

    Waldemar Waldeck, Ruediger Pipkorn, Bernhard Korn, Gabriele Mueller, Matthias Schick, Katalin Tóth, Manfred Wiessler, Bernd Didinger, Klaus Braun

    2009-01-01

    Progresses in biology and pharmacology led to highly specific bioactive substances, but their poor bioavailability at the site of action is a result of their physico-chemical properties. Various design approaches for transport carrier molecules facilitating the cellular entry of bioactive substances could help to reach their molecular target in cells and tissues. The transfer efficacy and the subsequent pharmacological effects of the cargo molecules are well investigated, but the investigatio...

  1. Cyclosporine A affects the in vitro expression of T cell activation-related molecules and cytokines in dogs.

    Science.gov (United States)

    Fellman, C L; Stokes, J V; Archer, T M; Pinchuk, L M; Lunsford, K V; Mackin, A J

    2011-04-15

    Cyclosporine is a powerful immunosuppressive drug that is being used with increasing frequency to treat a wide range of immune-mediated diseases in the dog. To date, ideal dosing protocols that will achieve immunosuppression with cyclosporine in dogs remain unclear, and standard methods that can measure effectiveness of immunosuppression have not been established. The aim of our study was to evaluate the effects of in vitro cyclosporine exposure on a panel of molecules expressed by activated T cells to ascertain their potential as biomarkers of immunosuppression in dogs. Blood was drawn from six healthy dogs, and peripheral blood mononuclear cells (PBMC) were isolated and activated. Half of the cells were incubated with 200 ng/mL cyclosporine prior to activation, and the other half were not exposed to cyclosporine. Samples were analyzed using flow cytometry, and the expression of intracellular cytokines IL-2, IL-4, and IFN-γ was evaluated after 6, 12, and 24h of drug exposure. Each cytokine exhibited a time-dependent suppression profile, and all but two samples activated in the presence of cyclosporine showed lower cytokine expression than untreated controls. We also evaluated the expression of the surface T cell activation molecules CD25 and CD95 by flow cytometry after 36 h of drug exposure. Expression of these surface molecules decreased significantly when activated in the presence of cyclosporine. Our results suggest that suppressed expression of the markers related to T cell activation could potentially be utilized as an indicator of the efficacy of cyclosporine therapy in dogs. PMID:21227512

  2. Research of the degradation products of chitosan's angiogenic function

    International Nuclear Information System (INIS)

    Angiogenesis is of great importance in tissue engineering and has gained large attention in the past decade. But how it will be influenced by the biodegradable materials, especially their degradation products, remains unknown. Chitosan (CS) is a kind of naturally occurred polysaccharide which can be degraded in physiological environment. In order to gain some knowledge of the influences of CS degradation products on angiogenesis, the interaction of vascular endothelial cells with the degradation products was investigated in the present study. The CS degradation products were prepared by keeping CS sample in physiological saline aseptically at 37 deg. C for 120 days. Endothelial cells were co-cultured with the degradation products and the angiogenic cell behaviors, including cell proliferation, migration and tube-like structure (TLS) formation, were tested by MTT assay, cell migration quantification method (CMQM), and tube-like structure quantification method (TLSQM) respectively. Furthermore, mRNA expressions of vascular endothelial growth factor (VEGF) and matrix metallo proteinase (MMP-2) were determined by real-time reverse transcriptional polymerase chain reaction (RT-PCR). Physiological saline served as a negative control. As the results showed, the degradation products obtained from 20th to 60th day significantly inhibited the proliferation, migration, and TLS formation of endothelial cells. However, degradation products of the first 14 days and the last 30 days were found to be proangiogenic. At the molecular level, the initial results indicated that the mRNA expressions of VEGF and MMP-2 were increased by the degradation products of 7th day, but were decreased by the ones of 60th day. According to all the results, it could be concluded that the angiogenic behaviors of endothelial cells at both cellular and molecular level could be significantly stimulated or suppressed by the degradation products of CS and the influences are quite time-dependent

  3. Research of the degradation products of chitosan's angiogenic function

    Science.gov (United States)

    Wang, Jianyun; Chen, Yuanwei; Ding, Yulong; Shi, Guoqi; Wan, Changxiu

    2008-11-01

    Angiogenesis is of great importance in tissue engineering and has gained large attention in the past decade. But how it will be influenced by the biodegradable materials, especially their degradation products, remains unknown. Chitosan (CS) is a kind of naturally occurred polysaccharide which can be degraded in physiological environment. In order to gain some knowledge of the influences of CS degradation products on angiogenesis, the interaction of vascular endothelial cells with the degradation products was investigated in the present study. The CS degradation products were prepared by keeping CS sample in physiological saline aseptically at 37 °C for 120 days. Endothelial cells were co-cultured with the degradation products and the angiogenic cell behaviors, including cell proliferation, migration and tube-like structure (TLS) formation, were tested by MTT assay, cell migration quantification method (CMQM), and tube-like structure quantification method (TLSQM) respectively. Furthermore, mRNA expressions of vascular endothelial growth factor (VEGF) and matrix metallo proteinase (MMP-2) were determined by real-time reverse transcriptional polymerase chain reaction (RT-PCR). Physiological saline served as a negative control. As the results showed, the degradation products obtained from 20th to 60th day significantly inhibited the proliferation, migration, and TLS formation of endothelial cells. However, degradation products of the first 14 days and the last 30 days were found to be proangiogenic. At the molecular level, the initial results indicated that the mRNA expressions of VEGF and MMP-2 were increased by the degradation products of 7th day, but were decreased by the ones of 60th day. According to all the results, it could be concluded that the angiogenic behaviors of endothelial cells at both cellular and molecular level could be significantly stimulated or suppressed by the degradation products of CS and the influences are quite time-dependent.

  4. Suppressive effects of co-stimulatory molecule expressions on mouse splenocytes by anti-allergic agents in vitro.

    OpenAIRE

    Jun-ichi Ito; Kazuhito Asano; Elzbieta Tryka; Ken-ichi Kanai; Sumiko Yamamoto; Tadashi Hisamitsu; Harumi Suzaki

    2000-01-01

    The influence of anti-allergic drugs, epinastine hydrochloride (EP) and disodium cromoglycate (DSCG), on the co-stimulatory molecule expression was examined using in vitro cell culture technique. Spleen cells obtained from BALB/c mice 10 days after immunization with haemocyanin absorbed to aluminium hydroxide were cultured in the presence of 100.0 microg/ml haemocyanin and various concentrations of the agents. Low concentrations (

  5. Clustering High-Dimensional Data: The Expression of E-cadherin, CD44 and p53 Molecules in Lip Cancer

    OpenAIRE

    KITIKIDOU, Kyriaki; Aris NTOMOUCHTSIS; Chrisoula TSOMPANIDOU; Konstantinos VAHTSEVANOS

    2010-01-01

    Objective: Clustering techniques can determine which expression patterns are important and which genes contribute to such patterns. We evaluate performance on data from a lip carcinoma study in Greece. Lip carcinoma is one of the most common malignant oral and maxillofacial tumours and in advanced clinical stages has a poor prognosis. E-cadherin, CD44 and p53 molecules are associated with cellular adhesion. Material and Methods: To prepare for clustering, we divided each of the median normali...

  6. Expression Analysis of Taste Signal Transduction Molecules in the Fungiform and Circumvallate Papillae of the Rhesus Macaque, Macaca mulatta

    OpenAIRE

    Ishimaru, Yoshiro; Abe, Miki; Asakura, Tomiko; IMAI, HIROO; Abe, Keiko

    2012-01-01

    The molecular mechanisms of the mammalian gustatory system have been examined in many studies using rodents as model organisms. In this study, we examined the mRNA expression of molecules involved in taste signal transduction in the fungiform papillae (FuP) and circumvallate papillae (CvP) of the rhesus macaque, Macaca mulatta, using in situ hybridization. TAS1R1, TAS1R2, TAS2Rs, and PKD1L3 were exclusively expressed in different subsets of taste receptor cells (TRCs) in the FuP and CvP. This...

  7. IGF binding protein-6 expression in vascular endothelial cells is induced by hypoxia and plays a negative role in tumor angiogenesis

    OpenAIRE

    ZHANG, CHUNYANG; Lu, Ling; Li, Yun; Wang, Xianlei; Zhou, Jianfeng; Liu, Yunzhang; Fu, Ping; Gallicchio, Marisa A; Bach, Leon A.; Duan, Cunming

    2011-01-01

    Hypoxia stimulates tumor angiogenesis by inducing the expression of angiogenic molecules. The negative regulators of this process, however, are not well understood. Here we report that hypoxia induced the expression of insulin-like growth factor binding protein-6 (IGFBP-6), a tumor repressor, in human and rodent vascular endothelial cells (VECs) via a HIF-mediated mechanism. Addition of human IGFBP-6 to cultured human VECs inhibited angiogenesis in vitro. An IGFBP-6 mutant with at least 10,00...

  8. Differential expression of cruzipain- and gp63-like molecules in the phytoflagellate trypanosomatid Phytomonas serpens induced by exogenous proteins.

    Science.gov (United States)

    Elias, Camila G R; Chagas, Michel G; Souza-Gonçalves, Ana Luiza; Pascarelli, Bernardo M O; d'Avila-Levy, Claudia M; Branquinha, Marta H; Santos, André L S

    2012-01-01

    Phytomonas serpens synthesizes metallo- and cysteine-proteases that are related to gp63 and cruzipain, respectively, two virulence factors produced by pathogenic trypanosomatids. Here, we described the cellular distribution of gp63- and cruzipain-like molecules in P. serpens through immunocytochemistry and confocal fluorescence microscopy. Both proteases were detected in distinct cellular compartments, presenting co-localization in membrane domains and intracellular regions. Subsequently, we showed that exogenous proteins modulated the production of both protease classes, but in different ways. Regarding the metalloprotease, only fetal bovine serum (FBS) influenced the gp63 expression, reducing its surface exposition (≈30%). Conversely, the cruzipain-like molecule was differentially modulated according to the proteins: human and bovine albumins reduced its expression around 50% and 35%, respectively; mucin and FBS did not alter its production, while IgG and hemoglobin drastically enhanced its surface exposition around 7- and 11-fold, respectively. Additionally, hemoglobin induced an augmentation in the cell-associated cruzipain-like activity in a dose-dependent manner. A twofold increase of the secreted cruzipain-like protein was detected after parasite incubation with 1% hemoglobin compared to the parasites incubated in PBS-glucose. The results showed the ability of P. serpens in modulating the expression and the activity of proteolytic enzymes after exposition to exogenous proteins, with emphasis in its cruzipain-like molecules. PMID:22033075

  9. Increased fluidity and oxidation of malarial lipoproteins: relation with severity and induction of endothelial expression of adhesion molecules

    Directory of Open Access Journals (Sweden)

    Looareesuwan Sornchai

    2004-06-01

    Full Text Available Abstract Introduction Oxidative stress has been demonstrated in malaria. The potential oxidative modification of lipoproteins derived from malaria patients was studied. These oxidized lipids may have role in pathogenesis of malaria. Method The plasma lipid profile and existence of oxidized forms of very low density lipoprotein (VLDL, low density lipoprotein (LDL and high density lipoprotein (HDL were investigated in malaria (17 mild and 24 severe patients and 37 control subjects. Thiobarbituric acid reactive substances (TBARs, conjugated dienes, tryptophan fluorescence and fluidity of lipoproteins were determined as markers of oxidation. The biological effect of malarial lipoproteins was assessed by the expression of adhesion molecules on endothelial cells. Results Malarial lipoproteins had decreased cholesterol (except in VLDL and phospholipid. The triglyceride levels were unchanged. The cholesterol/phospholipid ratio of LDL was decreased in malaria, but increased in VLDL and HDL. TBARs and conjugate dienes were increased in malarial lipoproteins, while the tryptophan fluorescence was decreased. The fluidity of lipoproteins was increased in malaria. These indicated the presence of oxidized lipoproteins in malaria by which the degree of oxidation was correlated with severity. Of three lipoproteins from malarial patients, LDL displayed the most pronounced oxidative modification. In addition, oxidized LDL from malaria patients increased endothelial expression of adhesion molecules. Conclusion In malaria, the lipoproteins are oxidatively modified, and the degree of oxidation is related with severity. Oxidized LDL from malarial patients increases the endothelial expression of adhesion molecules. These suggest the role of oxidized lipoproteins, especially LDL, on the pathogenesis of disease.

  10. Babesia bovis: expression of adhesion molecules in bovine umbilical endothelial cells stimulated with plasma from infected cattle

    Directory of Open Access Journals (Sweden)

    Marlene I. Vargas

    2014-10-01

    Full Text Available Ten male, 12-month-old Jersey with intact spleens, serologically and parasitologically free from Babesia were housed individually in an arthropod-free isolation system from birth and throughout entire experiment. The animals were randomly divided into two groups. Five animals (group A were intravenously inoculated with 6.6 X10(7 red blood cells parasitized with pathogenic sample of Babesia bovis (passage 7 BboUFV-1, for the subsequent "ex vivo" determination of the expression of adhesion molecules. Five non-inoculated animals (group B were used as the negative control. The expression of the adhesion molecules ICAM-1, VCAM, PECAM-1 E-selectin and thrombospondin (TSP was measured in bovine umbilical vein endothelial cells (BUVECs. The endothelial cells stimulated with a pool of plasma from animals infected with the BboUFV-1 7th passage sample had a much more intense immunostaining of ICAM-1, VCAM, PECAM-1 E-selectin and TSP, compared to the cells which did not received the stimulus. The results suggest that proinflammatory cytokines released in the acute phase of babesiosis may be involved in the expression of adhesion molecules thereby implicating them in the pathophysiology of babesiosis caused by B. bovis.

  11. Synergy between sphingosine 1-phosphate and lipopolysaccharide signaling promotes an inflammatory, angiogenic and osteogenic response in human aortic valve interstitial cells.

    Directory of Open Access Journals (Sweden)

    Isabel Fernández-Pisonero

    Full Text Available Given that the bioactive lipid sphingosine 1-phosphate is involved in cardiovascular pathophysiology, and since lipid accumulation and inflammation are hallmarks of calcific aortic stenosis, the role of sphingosine 1-phosphate on the pro-inflammatory/pro-osteogenic pathways in human interstitial cells from aortic and pulmonary valves was investigated. Real-time PCR showed sphingosine 1-phosphate receptor expression in aortic valve interstitial cells. Exposure of cells to sphingosine 1-phosphate induced pro-inflammatory responses characterized by interleukin-6, interleukin-8, and cyclooxygenase-2 up-regulations, as observed by ELISA and Western blot. Strikingly, cell treatment with sphingosine 1-phosphate plus lipopolysaccharide resulted in the synergistic induction of cyclooxygenase-2, and intercellular adhesion molecule 1, as well as the secretion of prostaglandin E2, the soluble form of the intercellular adhesion molecule 1, and the pro-angiogenic factor vascular endothelial growth factor-A. Remarkably, the synergistic effect was significantly higher in aortic valve interstitial cells from stenotic than control valves, and was drastically lower in cells from pulmonary valves, which rarely undergo stenosis. siRNA and pharmacological analysis revealed the involvement of sphingosine 1-phosphate receptors 1/3 and Toll-like receptor-4, and downstream signaling through p38/MAPK, protein kinase C, and NF-κB. As regards pro-osteogenic pathways, sphingosine 1-phosphate induced calcium deposition and the expression of the calcification markers bone morphogenetic protein-2 and alkaline phosphatase, and enhanced the effect of lipopolysaccharide, an effect that was partially blocked by inhibition of sphingosine 1-phosphate receptors 3/2 signaling. In conclusion, the interplay between sphingosine 1-phosphate receptors and Toll-like receptor 4 signaling leads to a cooperative up-regulation of inflammatory, angiogenic, and osteogenic pathways in aortic valve

  12. Omentin inhibits TNF-α-induced expression of adhesion molecules in endothelial cells via ERK/NF-κB pathway

    International Nuclear Information System (INIS)

    Highlights: ► Omentin inhibited TNF-α-induced adhesion of THP-1 cells to HUVECs. ► Omentin reduces expression of ICAM-1 and VCAM-1 induced by TNF-α in HUVECs. ► Omentin inhibits TNF-α-induced ERK and NF-κB activation in HUVECs. ► Omentin supreeses TNF-α-induced expression of ICAM-1 and VCAM-1 via ERK/NF-κB pathway. -- Abstract: In the present study, we investigated whether omentin affected the expression of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in tumor necrosis factor-α (TNF-α) induced human umbilical vein endothelial cells (HUVECs). Our data showed that omentin decreased TNF-α-induced expression of ICAM-1 and VCAM-1 in HUVECs. In addition, omentin inhibited TNF-α-induced adhesion of THP-1 cells to HUVECs. Further, we found that omentin inhibited TNF-α-activated signal pathway of nuclear factor-κB (NF-κB) by preventing NF-κB inhibitory protein (IκBα) degradation and NF-κB/DNA binding activity. Omentin pretreatment significantly inhibited TNF-α-induced ERK activity and ERK phosphorylation in HUVECs. Pretreatment with PD98059 suppressed TNF-α-induced NF-κB activity. Omentin, NF-kB inhibitor (BAY11-7082) and ERK inhibitor (PD98059) reduced the up-regulation of ICAM-1 and VCAM-1 induced by TNF-α. These results suggest that omentin may inhibit TNF-α-induced expression of adhesion molecules in endothelial cells via blocking ERK/NF-κB pathway.

  13. Using bacteria to express and display anti-Plasmodium molecules in the mosquito midgut.

    Science.gov (United States)

    Riehle, Michael A; Moreira, Cristina K; Lampe, David; Lauzon, Carol; Jacobs-Lorena, Marcelo

    2007-05-01

    Bacteria capable of colonizing mosquito midguts are attractive vehicles for delivering anti-malaria molecules. We genetically engineered Escherichia coli to display two anti-Plasmodium effector molecules, SM1 and phospholipase-A(2), on their outer membrane. Both molecules significantly inhibited Plasmodium berghei development when engineered bacteria were fed to mosquitoes 24h prior to an infective bloodmeal (SM1=41%, PLA2=23%). Furthermore, prevalence and numbers of engineered bacteria increased dramatically following a bloodmeal. However, E. coli survived poorly in mosquitoes. Therefore, Enterobacter agglomerans was isolated from mosquitoes and selected for midgut survival by multiple passages through mosquitoes. After four passages, E. agglomerans survivorship increased from 2 days to 2 weeks. Since E. agglomerans is non-pathogenic and widespread, it is an excellent candidate for paratransgenic control strategies. PMID:17224154

  14. Productive infection of HUVEC by HHV-8 is associated with changes compatible with angiogenic transformation

    Directory of Open Access Journals (Sweden)

    C Foglieni

    2009-06-01

    Full Text Available Kaposi’s Sarcoma (KS is an angioproliferative disease associated with human herpesvirus 8 (HHV-8 infection.We have characterized the morphologic and phenotypic modifications of HUVEC in a model of productive HHV-8 infection. HHV-8 replication was associated with ultra-structural changes, flattened soma and a loss of marginal folds and intercellular contacts, and morphologic features, spindle cell conversion and cordon-like structures formation. Phenotypic changes observed on cordon-like structures included partial loss and redistribution of CD31/PECAM-1 and VE-cadherin, uPAR upregulation and de novo expression of CD13/APN. Such changes demonstrate the induction, in HUVEC, of an angiogenic profile. Most of these findings are directly linked to HHV-8-encoded proteins expression, suggesting that HHV-8 itself may participate to the initial steps of the angiogenic transformation in KS.

  15. Regulation by gut commensal bacteria of carcinoembryonic antigen-related cell adhesion molecule expression in the intestinal epithelium.

    Science.gov (United States)

    Kitamura, Yasuaki; Murata, Yoji; Park, Jung-Ha; Kotani, Takenori; Imada, Shinya; Saito, Yasuyuki; Okazawa, Hideki; Azuma, Takeshi; Matozaki, Takashi

    2015-07-01

    Carcinoembryonic antigen-related cell adhesion molecule (CEACAM) 1 and CEACAM20, immunoglobulin superfamily members, are predominantly expressed in intestinal epithelial cells (IECs) and co-localized at the apical surface of these cells. We here showed that the expression of mouse CEACAM1 and CEACAM20 at both mRNA and protein levels was markedly reduced in IECs of the small intestine by the treatment of mice with antibiotics against Gram-positive bacteria. The expression of both proteins was also decreased in IECs of the small intestine from germ-free mice, compared with that from control specific-pathogen-free mice. Exposure of intestinal organoids to IFN-γ markedly increased the expression of either CEACAM1 or CEACAM20, whereas the exposure to TNF-α increased the expression of the former protein, but not that of the latter. In contrast, the expression of CEACAM20, but not of CEACAM1, in intestinal organoids was markedly increased by exposure to butyrate, a short-chain fatty acid produced by bacterial fermentation in the intestine. Collectively, our results suggest that Gram-positive bacteria promote the mRNA expression of CEACAM1 or CEACAM20 in the small intestine. Inflammatory cytokines or butyrate likely participates in such effects of commensal bacteria. PMID:25908210

  16. Relationship between co-stimulatory molecule B7-H3 expression and gastric carcinoma histology and prognosis

    Institute of Scientific and Technical Information of China (English)

    Chang-Ping Wu; Jing-Ting Jiang; Min Tan; Yi-Bei Zhu; Mei Ji; Kuan-Feng Xu; Jie-Min Zhao; Guang-Bo Zhang; Xue-Guang Zhang

    2006-01-01

    AIM: To investigate the expression of co-stimulatory molecule B7-H3 in gastric carcinoma and adenoma tissue as well as normal gastric tissue and to explore the relationship between B7-H3 expression and pathological features and prognosis of gastric carcinoma.METHODS: B7-H3 expression was detected in 102samples of human gastric carcinoma and 10 samples of gastric adenoma and 10 samples of normal gastric tissue by immunohistochemical assay. Correlation between the expression of B7-H3 and the patients'age, sex,gastric carcinoma locus, tumor size, tissue type, tumor infiltration depth, differentiation degree, lymph node metastasis, and survival time was analyzed.RESULTS: B7-H3 was expressed in all gastric adenoma samples and in 58.8% samples of gastric carcinoma.B7-H3 expression in gastric carcinoma samples was not related with the patients' age, sex, lymph node metastasis, and tumor size (P>0.05), but with the survival time, infiltration depth of tumor and tissue type.CONCLUSION: Detection of B7-H3 expression in gastric carcinoma tissue is beneficial to the judgment of the prognosis of gastric carcinoma patients and the choice of treatment.

  17. Zearalenone mycotoxin affects immune mediators, MAPK signalling molecules, nuclear receptors and genome-wide gene expression in pig spleen.

    Science.gov (United States)

    Pistol, Gina Cecilia; Braicu, Cornelia; Motiu, Monica; Gras, Mihail Alexandru; Marin, Daniela Eliza; Stancu, Mariana; Calin, Loredana; Israel-Roming, Florentina; Berindan-Neagoe, Ioana; Taranu, Ionelia

    2015-01-01

    The toxicity of zearalenone (ZEA) was evaluated in swine spleen, a key organ for the innate and adaptative immune response. Weaned pigs were fed for 18 days with a control or a ZEA contaminated diet. The effect of ZEA was assessed on wide genome expression, pro- (TNF-α, IL-8, IL-6, IL-1β, IFN-γ) and anti-inflammatory (IL-10, IL-4) cytokines, other molecules involved in inflammatory processes (MMPs/TIMPs), as well as signaling molecules, (p38/JNK1/JNK2-MAPKs) and nuclear receptors (PPARγ/NFkB/AP-1/STAT3/c-JUN). Microarray analysis showed that 46% of total number of differentially expressed genes was involved in cellular signaling pathway, 13% in cytokine network and 10% in the inflammatory response. ZEA increased expression and synthesis of pro- inflammatory (TNF-α, IL-8, IL-6, IL-1β) and had no effect on IFN-γ, IL-4 and IL-10 cytokines in spleen. The inflammatory stimulation might be a consequence of JNK pathway activation rather than of p-38MAPK and NF-kB involvement whose gene and protein expression were suppressed by ZEA action. In summary, our findings indicated the role of ZEA as an immune disruptor at spleen level. PMID:26011631

  18. Zearalenone Mycotoxin Affects Immune Mediators, MAPK Signalling Molecules, Nuclear Receptors and Genome-Wide Gene Expression in Pig Spleen

    Science.gov (United States)

    Pistol, Gina Cecilia; Braicu, Cornelia; Motiu, Monica; Gras, Mihail Alexandru; Marin, Daniela Eliza; Stancu, Mariana; Calin, Loredana; Israel-Roming, Florentina; Berindan-Neagoe, Ioana; Taranu, Ionelia

    2015-01-01

    The toxicity of zearalenone (ZEA) was evaluated in swine spleen, a key organ for the innate and adaptative immune response. Weaned pigs were fed for 18 days with a control or a ZEA contaminated diet. The effect of ZEA was assessed on wide genome expression, pro- (TNF-α, IL-8, IL-6, IL-1β, IFN-γ) and anti-inflammatory (IL-10, IL-4) cytokines, other molecules involved in inflammatory processes (MMPs/TIMPs), as well as signaling molecules, (p38/JNK1/JNK2-MAPKs) and nuclear receptors (PPARγ/NFkB/AP-1/STAT3/c-JUN). Microarray analysis showed that 46% of total number of differentially expressed genes was involved in cellular signaling pathway, 13% in cytokine network and 10% in the inflammatory response. ZEA increased expression and synthesis of pro- inflammatory (TNF-α, IL-8, IL-6, IL-1β) and had no effect on IFN-γ, IL-4 and IL-10 cytokines in spleen. The inflammatory stimulation might be a consequence of JNK pathway activation rather than of p-38MAPK and NF-kB involvement whose gene and protein expression were suppressed by ZEA action. In summary, our findings indicated the role of ZEA as an immune disruptor at spleen level. PMID:26011631

  19. Zearalenone mycotoxin affects immune mediators, MAPK signalling molecules, nuclear receptors and genome-wide gene expression in pig spleen.

    Directory of Open Access Journals (Sweden)

    Gina Cecilia Pistol

    Full Text Available The toxicity of zearalenone (ZEA was evaluated in swine spleen, a key organ for the innate and adaptative immune response. Weaned pigs were fed for 18 days with a control or a ZEA contaminated diet. The effect of ZEA was assessed on wide genome expression, pro- (TNF-α, IL-8, IL-6, IL-1β, IFN-γ and anti-inflammatory (IL-10, IL-4 cytokines, other molecules involved in inflammatory processes (MMPs/TIMPs, as well as signaling molecules, (p38/JNK1/JNK2-MAPKs and nuclear receptors (PPARγ/NFkB/AP-1/STAT3/c-JUN. Microarray analysis showed that 46% of total number of differentially expressed genes was involved in cellular signaling pathway, 13% in cytokine network and 10% in the inflammatory response. ZEA increased expression and synthesis of pro- inflammatory (TNF-α, IL-8, IL-6, IL-1β and had no effect on IFN-γ, IL-4 and IL-10 cytokines in spleen. The inflammatory stimulation might be a consequence of JNK pathway activation rather than of p-38MAPK and NF-kB involvement whose gene and protein expression were suppressed by ZEA action. In summary, our findings indicated the role of ZEA as an immune disruptor at spleen level.

  20. Expression of intercellular adhesion molecule-1 in UVA-irradiated human skin cells in vitro and in vivo

    International Nuclear Information System (INIS)

    Ultraviolet A (UVA) radiation represents an important oxidative stress to human skin and certain forms of oxidative stress have been shown to modulate intercellular adhesion molecule-1 (ICAM-1) expression. ICAM-1 has been shown to play an important part in many immune reactions and the perturbations of this molecule by ultraviolet radiation could have implications in many inflammatory responses. An enhancement immunohistochemical method with avidin/biotin was used for analysing the early effects of UVA radiation on human cell cultures and human skin (340-400 nm). Both in vitro and in vivo data show that ICAM-1 staining in epidermal keratinocytes, which was expressed constitutively, decreased in a UVA dose-dependent manner. The decrease was most noted at 3-6 h following UVA radiation with some ICAM-1 staining returning by 48 h post-UVA. ICAM-1 positive staining in the dermis was specific for vascular structures and was increased 24 h after UVA radiation. Cultured dermal fibroblasts exhibited ICAM-1 staining which increased slightly within 6-48 h post-UVA radiation. As epidermal ICAM-1 expression is depleted following UVA radiation and dermal expression increases due to an increase in the vascular structures, ICAM-1 provides a valuable marker following UVA radiation in human skin that can be readily measured in situ. (author)

  1. The transcription factor SOX18 regulates the expression of matrix metalloproteinase 7 and guidance molecules in human endothelial cells.

    Directory of Open Access Journals (Sweden)

    Martina Hoeth

    Full Text Available Mutations in the transcription factor SOX18 are responsible for specific cardiovascular defects in humans and mice. In order to gain insight into the molecular basis of its action, we identified target genes of SOX18 and analyzed one, MMP7, in detail.SOX18 was expressed in HUVEC using a recombinant adenoviral vector and the altered gene expression profile was analyzed using microarrays. Expression of several regulated candidate SOX18 target genes was verified by real-time PCR. Knock-down of SOX18 using RNA interference was then used to confirm the effect of the transcription factor on selected genes that included the guidance molecules ephrin B2 and semaphorin 3G. One gene, MMP7, was chosen for further analysis, including detailed promoter studies using reporter gene assays, electrophoretic mobility shift analysis and chromatin-immunoprecipitation, revealing that it responds directly to SOX18. Immunohistochemical analysis demonstrated the co-expression of SOX18 and MMP7 in blood vessels of human skin.The identification of MMP7 as a direct SOX18 target gene as well as other potential candidates including guidance molecules provides a molecular basis for the proposed function of this transcription factor in the regulation of vessel formation.

  2. Activated leukocyte cell adhesion molecule expression predicts lymph node metastasis in oral squamous cell carcinoma.

    NARCIS (Netherlands)

    Brand, M. van den; Takes, R.P.; Blokpoel-deRuyter, M.; Slootweg, P.J.; Kempen, L.C.L.T. van

    2010-01-01

    Lymphatic metastasis of oral squamous cell carcinoma (SCC) is important for prognosis and clinical decision making concerning the treatment of the neck but may be difficult to detect. Activated leukocyte cell adhesion molecule (ALCAM), has been shown to correlate with prognosis or tumor grade in dif

  3. Effect of Batroxobin on Expression of Neural Cell Adhesion Molecule in Temporal Infarction Rats and Spatial Learning and Memory Disorder

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effect of Batroxobin expression of neural cell adhesion molecule (NCAM) in left temporal ischemic rats with spatial memory disorder was investigated by means of Morri's water maze and immunohistochemical methods. The results showed that the mean reaction time and distance of temporal ischemic rats for searching a goal were significantly longer than those of sham-operated rats and at the same time NCAM expression of left temporal ischemic region was significantly increased. However, the mean reaction time and distance of Batroxobin-treated rats were shorter and they used normal strategies more often and earlier than those of ischemic rats. The number of NCAM immune reactive cells of Batroxobin-treated rats was more than that of ischemic group. In conclusion, Batroxobin can improve spatial memory disorder of temporal ischemic rats and the regulation of the expression of NCAM is probably related to the neuroprotective mechanism.

  4. Synthesis of pro-inflammatory cytokines and adhesion molecules expression by the irradiated human monocyte/macrophage

    International Nuclear Information System (INIS)

    As lesions induced by ionizing radiations are essentially noticed in organs the functional and structural organisation of which depend on the highly proliferative stem cell pool, the author reports an in-vivo investigation of the effect of a gamma irradiation on the expression and secretion of pro-inflammatory cytokines par human monocytes/macrophages. In order to study the role of the cell environment in the radiation-induced inflammation, the author studied whether a co-stimulation of monocytes/macrophages by gamma irradiation, or the exposure of co-cultures of monocytes/macrophages and lymphocytes, could modulate the regulation of inflammatory cytokines. The author also studied the modulation of the expression of adhesion molecules mainly expressed by the monocyte/macrophage, and the membrane density of the CD14 receptor after irradiation of monocytes/macrophages during 24 hours, and of totally differentiated macrophages after seven days of culture

  5. Circulating angiogenic factors in patients with thromboangiitis obliterans.

    Directory of Open Access Journals (Sweden)

    Bernd Hewing

    Full Text Available BACKGROUND: Thromboangiitis obliterans (TAO, also known as Buerger's disease is a non-atherosclerotic inflammatory vascular disease that primarily affects arteries in the extremities of young adult smokers. Since the etiology of TAO is still unknown, therapeutic options are limited. Recent attempts in therapeutic angiogenesis have been promising. Therefore, the aim of our study was to evaluate angiogenic processes and factors including circulating progenitor cells in TAO. METHODOLOGY/PRINCIPAL FINDINGS: TAO patients with critical limb ischemia and age- and gender-matched nonsmokers and smokers without cardiovascular disease (n = 12 in each group were enrolled in the study. Flow cytometric analysis of peripheral blood showed significantly decreased levels of circulating CD45(dimCD34(+ progenitor cells in TAO patients and in smokers compared to nonsmokers. In contrast to both control groups, the proportion of CD45(dimCD34(+ progenitor cells co-expressing VEGF receptor-2 (VEGFR2 was significantly elevated in TAO patients. Enzyme-linked immunosorbent assay (ELISA of common angiogenic factors (such as VEGF did not clearly point to pro- or antiangiogenic conditions in serum or plasma of TAO patients. Serum of TAO patients and controls was evaluated in proliferation, migration (scratch assay and spheroid sprouting assays using human umbilical vein endothelial cells (HUVECs. Serum of TAO patients exhibited a diminished sprouting capacity of HUVECs compared to both control groups. Proliferation and migration of endothelial cells were impaired after treatment with serum of TAO patients. CONCLUSION: Levels of circulating progenitor cells were altered in TAO patients compared to healthy nonsmokers and smokers. Furthermore, serum of TAO patients exhibited an antiangiogenic activity (impaired endothelial cell sprouting, migration and proliferation on endothelial cells, which may contribute to vascular pathology in this patient population.

  6. {sup 68}Ga-DOTA-affibody molecule for in vivo assessment of HER2/neu expression with PET

    Energy Technology Data Exchange (ETDEWEB)

    Kramer-Marek, Gabriela; Capala, Jacek [National Institutes of Health, National Cancer Institute, Bethesda, MD (United States); Shenoy, Nalini; Griffiths, Gary L. [National Institutes of Health, Imaging Probe Development Center, National Heart, Lung, and Blood Institute, Rockville, MD (United States); Seidel, Jurgen; Choyke, Peter [National Institutes of Health, Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD (United States)

    2011-11-15

    Overexpression of HER2/neu in breast cancer is correlated with a poor prognosis. It may vary between primary tumors and metastatic lesions and change during the treatment. Therefore, there is a need for a new means to assess HER2/neu expression in vivo. In this work, we used {sup 68}Ga-labeled DOTA-Z{sub HER2:2891}-Affibody to monitor HER2/neu expression in a panel of breast cancer xenografts. DOTA-Z{sub HER2:2891}-Affibody molecules were labeled with {sup 68}Ga. In vitro binding was characterized by a receptor saturation assay. Biodistribution and PET imaging studies were conducted in athymic nude mice bearing subcutaneous human breast cancer tumors with three different levels of HER2/neu expression. Nonspecific uptake was analyzed using non-HER2-specific Affibody molecules. Signal detected by PET was compared with ex vivo assessment of the tracer uptake and HER2/neu expression. The {sup 68}Ga-DOTA-Z{sub HER2:2891}-Affibody probe showed high binding affinity to MDA-MB-361 cells (K{sub D} = 1.4 {+-} 0.19 nM). In vivo biodistribution and PET imaging studies demonstrated high radioactivity uptake in HER2/neu-positive tumors. Tracer was eliminated quickly from the blood and normal tissues, resulting in high tumor-to-blood ratios. The highest concentration of radioactivity in normal tissue was seen in the kidneys (227 {+-} 14%ID/g). High-contrast PET images of HER2/neu-overexpressing tumors were recorded as soon as 1 h after tracer injection. A good correlation was observed between PET imaging, biodistribution estimates of tumor tracer concentration, and the receptor expression. These results suggest that PET imaging using {sup 68}Ga-DOTA-Z{sub HER2:2891}-Affibody is sensitive enough to detect different levels of HER2/neu expression in vivo. (orig.)

  7. Inhibition of PAI-1 Limits Tumor Angiogenesis Regardless of Angiogenic Stimuli in Malignant Pleural Mesothelioma.

    Science.gov (United States)

    Takayama, Yusuke; Hattori, Noboru; Hamada, Hironobu; Masuda, Takeshi; Omori, Keitaro; Akita, Shin; Iwamoto, Hiroshi; Fujitaka, Kazunori; Kohno, Nobuoki

    2016-06-01

    Malignant pleural mesothelioma (MPM) is an aggressive malignant tumor that secretes various angiogenic factors. The main inhibitor of plasminogen activators, PAI-1 (SERPINE1), has been implicated in tumor progression and angiogenesis, and high PAI-1 expression has been associated with poor prognosis in MPM patients. In this study, we examined the antiangiogenic effects of PAI-1 inhibition in MPM. We administered the PAI-1 inhibitor, SK-216, to orthotopic mouse models in which MPM cells expressing high levels of VEGF (VEGFA) or bFGF (FGF2) were intrapleurally transplanted. SK-216 administration reduced tumor weights and the degree of angiogenesis in intrapleural tumors, irrespective of their angiogenic expression profiles. In addition, a combination of SK-216 and the chemotherapeutic agent cisplatin significantly reduced tumor weights compared with monotherapy, prolonging the survival of animals compared with cisplatin treatment alone. Furthermore, SK-216 inhibited migration and tube formation of cultured human umbilical vein endothelial cells induced by various angiogenic factors known to be secreted by MPM. These findings suggest that PAI-1 inactivation by SK-216 may represent a general strategy for inhibiting angiogenesis, including for the treatment of MPM. Cancer Res; 76(11); 3285-94. ©2016 AACR. PMID:27197170

  8. Pro-angiogenic properties of orosomucoid (ORM)

    International Nuclear Information System (INIS)

    The acute phase protein orosomucoid (ORM), also known as alpha1-acid glycoprotein (AGP), is found to be increased in infection, inflammation and cancer. Recently, we demonstrated that ORM is produced by endothelial cells and detectable in urine samples of patients with bladder cancer. However, it was not clarified yet whether ORM plays a role in new vessel formation. To this aim we performed overexpression and gene silencing for ORM in human microvascular endothelial cells (HDMECs). ORM purified from human plasma was used individually or in combination with VEGF-A in endothelial tube formation, migration and proliferation assay. The in vivo effect of ORM in angiogenesis was studied using the chicken chorionallantois membrane (CAM) with subsequent counting of blood vessels on histological sections from the stimulated areas of CAM tissue. Our data show that ORM alone enhances migration but not proliferation of HDMECs. ORM alone does not induce endothelial tubes in vitro but simultaneous application of ORM with VEGF-A increases the number and the network of VEGF-A-induced endothelial tubes. Remarkably, ORM alone induces new vessel formation in vivo using CAM assay and supports the VEGF-A-induced new vessel formation in this assay. Taken together, our results let assume that ORM has pro-angiogenic properties and supports the angiogenic effect of VEGF-A. Thus, ORM seems to be involved in the regulation of angiogenesis.

  9. Expression and Function of the Homeostatic Molecule Del-1 in Endothelial Cells and the Periodontal Tissue

    OpenAIRE

    Jieun Shin; Hosur, Kavita B.; Kalyani Pyaram; Ravi Jotwani; Shuang Liang; Triantafyllos Chavakis; George Hajishengallis

    2013-01-01

    Developmental endothelial locus-1 (Del-1) is an endothelial cell-secreted protein that limits the recruitment of neutrophils by antagonizing the interaction between the LFA-1 integrin on neutrophils and the intercellular adhesion molecule (ICAM)-1 on endothelial cells. Mice with genetic or age-associated Del-1 deficiency exhibit increased neutrophil infiltration in the periodontium resulting in inflammatory bone loss. Here we investigated additional novel mechanisms whereby Del-1 could interf...

  10. Integrative Gene Cloning and Expression System for Streptomyces sp. US 24 and Streptomyces sp. TN 58 Bioactive Molecule Producing Strains

    Directory of Open Access Journals (Sweden)

    Samiha Sioud

    2009-01-01

    Full Text Available Streptomyces sp. US 24 and Streptomyces sp. TN 58, two strains producing interesting bioactive molecules, were successfully transformed using E. coli ET12567 (pUZ8002, as a conjugal donor, carrying the integrative plasmid pSET152. For the Streptomyces sp. US 24 strain, two copies of this plasmid were tandemly integrated in the chromosome, whereas for Streptomyces sp. TN 58, the integration was in single copy at the attB site. Plasmid pSET152 was inherited every time for all analysed Streptomyces sp. US 24 and Streptomyces sp. TN 58 exconjugants under nonselective conditions. The growth, morphological differentiation, and active molecules production of all studied pSET152 integrated exconjugants were identical to those of wild type strains. Consequently, conjugal transfer using pSET152 integration system is a suitable means of genes transfer and expression for both studied strains. To validate the above gene transfer system, the glucose isomerase gene (xylA from Streptomyces sp. SK was expressed in strain Streptomyces sp. TN 58. Obtained results indicated that heterologous glucose isomerase could be expressed and folded effectively. Glucose isomerase activity of the constructed TN 58 recombinant strain is of about eighteenfold higher than that of the Streptomyces sp. SK strain. Such results are certainly of importance due to the potential use of improved strains in biotechnological process for the production of high-fructose syrup from starch.

  11. Adhesion molecules in Wilms tumor (part II : beta-catenin expression and significance

    Directory of Open Access Journals (Sweden)

    Basta-Jovanović Gordana M.

    2003-01-01

    Full Text Available Beta-catenin is a glicoprotein which has an important role in cell-cell adhesion, as well as in cell signal transmition, in u regulation of gen expression and in interaction with axin and APC (adenomatous poliposis coli. Its oncogenic role in several types of carcinomas in human population is well known. It is very likely that b-catenin as an protooncogen plays an importante role in genesis of Wilms tumor. It is well known that in 15% Wilms tumors there are b-catenin mutations, which indicates that there is a disorder in Wnt signal paththat plays an important role in Wilms tumor genesis. The aim of our study was to investigate b-catenin expression in Wilms tumor, to compaire it with the expression in normal renal tissue as well as to see if there is a positive correlation between b-catenin expression in Wilms tumor with tumor stage, histologic type and/ or prognostic group.

  12. EXPRESSION OF INTERCELLULAR ADHESION MOLECULE IN LUNG TISSUES OF EXPERIMENTAL ACUTE LUNG INJURY AND THE AFFECT OF RHUBARB ON IT

    Institute of Scientific and Technical Information of China (English)

    李春盛; 桂培春; 何新华

    2000-01-01

    Objeaive. To approach the relation and the possible mechanism between the expression of intercellular adhesion molecule (ICAM-1) mRNA and acute lung injury (ALI) and the mechanisms of rhubarb in the prevention and treatment of the lung injury. Methods. Lipopolysaeeharide (LPS) was injected into the sublingual vein of male Wistar rats to perform ALI animal model. The rats were divided into 4 groups: LPS group, control group, rhubarb group and dexamethasoue group.Macroscopic and histopathological e~aminatiom were performed and biological markers were measured for the lung specimem. The markers included lung wet/dry weight, the rate of neutrophils and protein content in the pulmonary alveolar lavage fluid, pulmonary vascular permeability and pulmonary alveolar permeability index. Molecular hybridization method was used to determine the expression of ICAM-1 mRNA. Results. In the lung tissues, the ICAM-1 mRNA expression was increased in the endothelial cells of pulmonary veins and capillaries, rhubarb and dexamethasone had the action of decreasing the expression. The light reflex value in the gray scale scanning showed that in the comparison between the LPS and the control group, the gray scale value of the lung tissues in ALI was significantly increased, thus the light reflex value was markedly decreased (P < 0.01),demonstrating the expression of ICAM-1 mRNA was increased. In comparison with the LPS group, dexamethasoue and rhubarb emfld decrease the gray scale value of the lung tissue significantly, thus the light reflex value was elevated (P< 0.01, P < 0.05) ; the correslxmding pathologic changes of lung tissues and the biological markers of the lung injury were simifieantlv decreased or ameliorated. Conclusions. The increase of the expression d ICAM-1 mRNA in the lung tissues of ALI plays the roles in ALI.The application of rhubarb and dexamethasone can decrease the expression and ameliorate the lung damage; its mechanism is possibly via the inhibition of ICAM-1 m

  13. EXPRESSION OF INTERCELLULAR ADHESION MOLECULE IN LUNG TISSUES OF EXPERIMENTAL ACUTE LUNG INJURY AND THE AFFECT OF RHUBARB ON IT

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective. To approach the relation and the possible mechanism between the expression of intercellular adhesion molecule (ICAM-1) mRNA and acute lung injury (ALI) and the mechanisms of rhubarb in the prevention and treatment of the lung injury.Methods. Lipopolysaccharide (LPS) was injected into the sublingual vein of male Wistar rats to perform ALI animal model. The rats were divided into 4 groups: LPS group, control group, rhubarb group and dexamethasone group. Macroscopic and histopathological examinations were performed and biological markers were measured for the lung specimens. The markers included lung wet/dry weight, the rate of neutrophils and protein content in the pulmonary alveolar lavage fluid, pulmonary vascular permeability and pulmonary alveolar permeability index. Molecular hybridization method was used to determine the expression of ICAM-1 mRNA.Results. In the lung tissues, the ICAM-1 mRNA expression was increased in the endothelial cells of pulmonary veins and capillaries, rhubarb and dexamethasone had the action of decreasing the expression. The light reflex value in the gray scale scanning showed that in the comparison between the LPS and the control group, the gray scale value of the lung tissues in ALI was significantly increased, thus the light reflex value was markedly decreased (P<0.01), demonstrating the expression of ICAM-1 mRNA was increased. In comparison with the LPS group, dexamethasone and rhubarb could decrease the gray scale value of the lung tissue significantly, thus the light reflex value was elevated (P<0.01, P<0.05); the corresponding pathologic changes of lung tissues and the biological markers of the lung injury were significantly decreased or ameliorated.Conclusions. The increase of the expression of ICAM-1 mRNA in the lung tissues of ALI plays the roles in ALI. The application of rhubarb and dexamethasone can decrease the expression and ameliorate the lung damage; its mechanism is possibly via the inhibition of ICAM

  14. Allelic imbalance modulates surface expression of the tolerance-inducing HLA-G molecule on primary trophoblast cells

    DEFF Research Database (Denmark)

    Djurisic, S; Teiblum, S; Tolstrup, Cæcilie Krogsgaard;

    2015-01-01

    The HLA-G molecule is expressed on trophoblast cells at the feto-maternal interface, where it interacts with local immune cells, and upholds tolerance against the semi-allogeneic fetus. Aberrant HLA-G expression in the placenta and reduced soluble HLA-G levels are observed in pregnancy...... complications, partly explained by HLA-G polymorphisms which are associated with differences in the alternative splicing pattern and of the stability of HLA-G mRNA. Of special importance is a 14 bp insertion/deletion polymorphism located in the 3'-untranslated region of the HLA-G gene. In the current study, we......RNA transcripts, which was further associated with low levels of HLA-G surface expression on primary trophoblast cells. Full gene sequencing of HLA-G allowed us to study correlations between HLA-G extended haplotypes and single-nucleotide polymorphisms and HLA-G surface expression. We found that a 1:1 expression...

  15. Exosomes derived from endometriotic stromal cells have enhanced angiogenic effects in vitro.

    Science.gov (United States)

    Harp, Djana; Driss, Adel; Mehrabi, Sharifeh; Chowdhury, Indrajit; Xu, Wei; Liu, Dong; Garcia-Barrio, Minerva; Taylor, Robert N; Gold, Bert; Jefferson, Samantha; Sidell, Neil; Thompson, Winston

    2016-07-01

    Our objective has been to establish a pro-angiogenic role for exosomes in endometriosis and to determine whether a differential expression profile of cellular and exosomal microRNAs (miRNAs) exists in endometriosis. We performed an in vitro study of human primary endometrial stromal cells (ESCs) and human umbilical vein endothelial cells (HUVECs). We isolated and characterized exosomes from ESCs from five endometriosis patients and five phase-matched controls. Exosomes were characterized by transmission electron microscopy and NanoSight technology. MiRNA was assessed by deep sequencing and reverse transcription with quantitative polymerase chain reaction. Exosome uptake studies were achieved by means of confocal microscopy. The pro-angiogenic experiments were executed by treating HUVECs with ESC-derived exosomes. We observed differential profiles of exosomal miRNA expression between exosomes derived from endometriosis lesion cells and diseased eutopic stromal cells compared with exosomes derived from control ESCs. We also demonstrated autocrine cellular uptake of exosomes and paracrine functional angiogenic effects of exosomes on HUVECs. The results of this study support the hypothesis that exosomes derived from ESCs play autocrine/paracrine roles in the development of endometriosis, potentially modulating angiogenesis. The broader clinical implications are that Sampson's theory of retrograde menstruation possibly encompasses the finding that exosomes work as intercellular communication modulators in endometriosis. PMID:26841879

  16. EXPRESSION LEVELS OF SOME ADHESION MOLECULES IN THE INTACT AND UV-IRRADIATED Т-LYMPHOCYTES FROM HUMAN BLOOD

    Directory of Open Access Journals (Sweden)

    V. G. Artyukhov

    2009-01-01

    Full Text Available Abstract. While employing an enzyme linked immunosorbent assay, it was shown that UV-sensitivity is different for various adhesion molecules (CD2, CD11a and CD29 at the membranes of T-lymphocytes. Relative photoresistance of CD2 and CD11a antigens to UV irradiation was established at the doses range of 151 to 906 J/m2, a large dose of UV-iradiation (1359 J/m2 exerted a suppressive effect upon their expression level. An immunomodulatory action of UV-radiation was revealed upon expression of CD29 transmembrane protein by T-cells. A dependence between amino acid structure and photosensitivity of CD2, CD11a and CD29 antigens of T lymphocytes is analyzed and discussed.

  17. Regulation of CD1d expression by murine tumor cells: escape from immunosurveillance or alternate target molecules?

    Science.gov (United States)

    Fiedler, Tim; Walter, Wolfgang; Reichert, Torsten E; Maeurer, Markus J

    2002-03-20

    alpha beta+ TCR T cells recognize peptide fragments displayed by MHC-class I or -class II molecules. Recently, additional mechanisms of antigen recognition by T cells have been identified, including CD1-mediated presentation of nonpeptide antigens. Only a limited number of CD1 antigens is retained in the mouse, i.e., the group II CD1 antigens, which are split into CD1D1 and CD1d2. Several T cell subsets have been shown to interact with murine CD1 antigens, including NK cells or "natural T cells" with the invariant V alpha 14 J alpha 281 TCR chain. Even if TAP defects may prevent classical endogenous antigen presentation in tumor cell lines, antigen presentation via CD1 is still functional. Therefore, CD1-mediated recognition of transformed cells by NK cells or "natural T cells" may represent an alternative way for immune surveillance. CD1 cell surface expression in murine tumor cell lines of different histology, including the B cell lymphoma A20, macrophage cell lines J774 and P388D1, mastocytoma P815, thymoma EL-4, melanoma B16, colon adenocarcinoma MC-38 and renal carcinoma Renca is regulated by Th1- (IFN-gamma), Th2- (IL-4, IL-10 and vIL-10) or GM-CSF (Th1/Th2) cytokines, depending on the tumor histology. In order to distinguish between CD1D1 and CD1d2 molecules, we examined differential expression of these CD1 isoforms by ratio RT-PCR: A20, EL-4, P815 and MC-38 cells exclusively express CD1D1 transcripts but not CD1D2 mRNA independent of cytokine treatment. Decreased CD1d expression leads to reduced immune recognition of CD1d+ tumor cells by freshly isolated NK1.1(+) effector cells as defined by cytolysis and IFN-gamma release. Thus, modulation of CD1 expression on tumor cells by cytokines may be advantageous to drive cellular anti-tumor antigen directed immune responses directed against TAP-independent, non-classical MHC restricting molecules. PMID:11920590

  18. Effects of anisodamine on the expressions of vascular endothelial growth factor and intercellular adhesion molecule 1 in experimental infusion phlebitis

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhen-xiang; WANG Peng; ZHANG Qiu-shi; PAN Xue; ZHAO Qing-xia; WANG Xiao-kai

    2012-01-01

    Background Infusion phlebitis is the most common side effect of clinical intravenous drug therapy and several clinical studies have demonstrated that anisodamine can effectively prevent the occurrence of infusion phlebitis.This study was designed to investigate effects of anisodamine on the expressions of vascular endothelial growth factor (VEGF) and intercellular adhesion molecule 1 (ICAM-1) in a rabbit model of infusion phlebitis and to analyze the mechanisms of anisodamine effect on the prevention and treatment of experimental infusion phlebitis.Methods Twenty-four specific pathogen-free male Japanese white rabbits were randomly assigned to the control group,the model group,the magnesium sulfate group and the anisodamine group.The rabbit model of infusion phlebitis,induced by intravenous administration,was established and expressions of VEGF and ICAM-1 were determined and contrasted with the control group treated with normal saline.We evaluated expression by histopathology,immunohistochemistry,reverse transcription-polymerase chain reaction,and Western blotting assay.Results Pathohistological changes of the model group were observed,such as loss of venous endothelial cells,inflammatory cell infiltration,edema and thrombus.The magnesium sulfate group and the anisodamine group showed significant protective effects on vascular congestion,inflammatory cell infiltration,proliferation,swelling of endothelium and perivascular hemorrhage.The model group showed the highest expressions of VEGF and ICAM-1 of the four groups (P<0.01).On the contrary,anisodamine alleviated the inflammatory damage by significantly reducing the expressions of VEGF and ICAM-1 compared with the model group (P <0.01).There was no significant difference in the expressions of VEGF and ICAM-1 between the magnesium sulfate group and the anisodamine group (P >0.05).Conclusion Anisodamine alleviates inflammatory damage by significantly reducing the expressions of VEGF and ICAM-1,and shows

  19. Altered Matrix Metalloproteinase-2 and -9 Expression/Activity Links Placental Ischemia and Anti-angiogenic sFlt-1 to Uteroplacental and Vascular Remodeling and Collagen Deposition in Hypertensive Pregnancy

    OpenAIRE

    Li, Wei; Mata, Karina M.; Mazzuca, Marc Q.; Khalil, Raouf A.

    2014-01-01

    Preeclampsia is a complication of pregnancy manifested as maternal hypertension and often fetal growth restriction. Placental ischemia could be an initiating event, but the linking mechanisms leading to hypertension and growth restriction are unclear. We have shown an upregulation of matrix metalloproteinases (MMPs) during normal pregnancy (Norm-Preg). To test the role of MMPs in hypertensive-pregnancy (HTN-Preg), maternal and fetal parameters, MMPs expression, activity and distribution, and ...

  20. [Adhesion molecules in Wilm's tumor: expression and significance of beta-catenin (part II)].

    Science.gov (United States)

    Basta-Jovanović, Gordana; Radojević, Sanja; Djuricić, Slavisa; Savin, Marina; Skodrić, Stevo; Bunjevacki, Gordana; Hadzi-Djokić, Jovan; Nesić, Vida

    2003-01-01

    Beta-catenin is a glicoprotein which has an important role in cell-cell adhesion, as well as in cell signal transmission, in u regulation of gen expression and in interaction with axin and APC (adenomatous poliposis coli). Its oncogenic role in several types of carcinomas in human population is well known. It is very likely that beta-catenin as an protooncogen plays an important role in genesis of Wilms tumor. It is well known that in 15% Wilms tumors there are beta-catenin mutations, which indicates that there is a disorder in Wnt signal path that plays an important role in Wilms tumor genesis. The aim of our study was to investigate b-catenin expression in Wilms tumor, to compare it with the expression in normal renal tissue as well as to see if there is a positive correlation between b-catenin expression in Wilms tumor with tumor stage, histologic type and/or prognostic group. PMID:14608868

  1. Lentil root protoplasts: a transient expression system suitable for coelectroporation of monoclonal antibodies and plasmid molecules

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Maccarrone, M.; Veldink, G.A.; Finazzi Agrò, A.

    1995-01-01

    Protoplasts were isolated from lentil (Lens culinaris) roots and their suitability as a transient expression system was investigated. After transfecting the protoplasts with the -glucuronidase (GUS) gene by either electroporation or polyethylene glycol (PEG), the specific activity of the reporter en

  2. Single-cell multiple gene expression analysis based on single-molecule-detection microarray assay for multi-DNA determination

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lu [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Wang, Xianwei [School of Life Sciences, Shandong University, Jinan 250100 (China); Zhang, Xiaoli [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Wang, Jinxing [School of Life Sciences, Shandong University, Jinan 250100 (China); Jin, Wenrui, E-mail: jwr@sdu.edu.cn [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2015-01-07

    Highlights: • A single-molecule-detection (SMD) microarray for 10 samples is fabricated. • The based-SMD microarray assay (SMA) can determine 8 DNAs for each sample. • The limit of detection of SMA is as low as 1.3 × 10{sup −16} mol L{sup −1}. • The SMA can be applied in single-cell multiple gene expression analysis. - Abstract: We report a novel ultra-sensitive and high-selective single-molecule-detection microarray assay (SMA) for multiple DNA determination. In the SMA, a capture DNA (DNAc) microarray consisting of 10 subarrays with 9 spots for each subarray is fabricated on a silanized glass coverslip as the substrate. On the subarrays, the spot-to-spot spacing is 500 μm and each spot has a diameter of ∼300 μm. The sequence of the DNAcs on the 9 spots of a subarray is different, to determine 8 types of target DNAs (DNAts). Thus, 8 types of DNAts are captured to their complementary DNAcs at 8 spots of a subarray, respectively, and then labeled with quantum dots (QDs) attached to 8 types of detection DNAs (DNAds) with different sequences. The ninth spot is used to detect the blank value. In order to determine the same 8 types of DNAts in 10 samples, the 10 DNAc-modified subarrays on the microarray are identical. Fluorescence single-molecule images of the QD-labeled DNAts on each spot of the subarray are acquired using a home-made single-molecule microarray reader. The amounts of the DNAts are quantified by counting the bright dots from the QDs. For a microarray, 8 types of DNAts in 10 samples can be quantified in parallel. The limit of detection of the SMA for DNA determination is as low as 1.3 × 10{sup −16} mol L{sup −1}. The SMA for multi-DNA determination can also be applied in single-cell multiple gene expression analysis through quantification of complementary DNAs (cDNAs) corresponding to multiple messenger RNAs (mRNAs) in single cells. To do so, total RNA in single cells is extracted and reversely transcribed into their cDNAs. Three

  3. Single-cell multiple gene expression analysis based on single-molecule-detection microarray assay for multi-DNA determination

    International Nuclear Information System (INIS)

    Highlights: • A single-molecule-detection (SMD) microarray for 10 samples is fabricated. • The based-SMD microarray assay (SMA) can determine 8 DNAs for each sample. • The limit of detection of SMA is as low as 1.3 × 10−16 mol L−1. • The SMA can be applied in single-cell multiple gene expression analysis. - Abstract: We report a novel ultra-sensitive and high-selective single-molecule-detection microarray assay (SMA) for multiple DNA determination. In the SMA, a capture DNA (DNAc) microarray consisting of 10 subarrays with 9 spots for each subarray is fabricated on a silanized glass coverslip as the substrate. On the subarrays, the spot-to-spot spacing is 500 μm and each spot has a diameter of ∼300 μm. The sequence of the DNAcs on the 9 spots of a subarray is different, to determine 8 types of target DNAs (DNAts). Thus, 8 types of DNAts are captured to their complementary DNAcs at 8 spots of a subarray, respectively, and then labeled with quantum dots (QDs) attached to 8 types of detection DNAs (DNAds) with different sequences. The ninth spot is used to detect the blank value. In order to determine the same 8 types of DNAts in 10 samples, the 10 DNAc-modified subarrays on the microarray are identical. Fluorescence single-molecule images of the QD-labeled DNAts on each spot of the subarray are acquired using a home-made single-molecule microarray reader. The amounts of the DNAts are quantified by counting the bright dots from the QDs. For a microarray, 8 types of DNAts in 10 samples can be quantified in parallel. The limit of detection of the SMA for DNA determination is as low as 1.3 × 10−16 mol L−1. The SMA for multi-DNA determination can also be applied in single-cell multiple gene expression analysis through quantification of complementary DNAs (cDNAs) corresponding to multiple messenger RNAs (mRNAs) in single cells. To do so, total RNA in single cells is extracted and reversely transcribed into their cDNAs. Three types of c

  4. Controlling the angiogenic switch in developing atherosclerotic plaques: Possible targets for therapeutic intervention

    Directory of Open Access Journals (Sweden)

    Slevin Mark

    2009-09-01

    Full Text Available Abstract Plaque angiogenesis may have an important role in the development of atherosclerosis. Vasa vasorum angiogenesis and medial infiltration provides nutrients to the developing and expanding intima and therefore, may prevent cellular death and contribute to plaque growth and stabilization in early lesions. However in more advanced plaques, inflammatory cell infiltration, and concomitant production of numerous pro-angiogenic cytokines may be responsible for induction of uncontrolled neointimal microvessel proliferation resulting in production of immature and fragile neovessels similar to that seen in tumour development. These could contribute to development of an unstable haemorrhagic rupture-prone environment. Increasing evidence has suggested that the expression of intimal neovessels is directly related to the stage of plaque development, the risk of plaque rupture, and subsequently, the presence of symptomatic disease, the timing of ischemic neurological events and myocardial/cerebral infarction. Despite this, there is conflicting evidence regarding the causal relationship between neovessel expression and plaque thrombosis with some in vivo experimental models suggesting the contrary and as yet, few direct mediators of angiogenesis have been identified and associated with plaque instability in vivo. In recent years, an increasing number of angiogenic therapeutic targets have been proposed in order to facilitate modulation of neovascularization and its consequences in diseases such as cancer and macular degeneration. A complete knowledge of the mechanisms responsible for initiation of adventitial vessel proliferation, their extension into the intimal regions and possible de-novo synthesis of neovessels following differentiation of bone-marrow-derived stem cells is required in order to contemplate potential single or combinational anti-angiogenic therapies. In this review, we will examine the importance of angiogenesis in complicated plaque

  5. Early Exercise Promotes Angiogenic Response in Mice Model of Myocardial Infarction

    Institute of Scientific and Technical Information of China (English)

    Wu Guifu; Du Zhimin; Hu Chenghen; Roger J. Laham

    2005-01-01

    Objectives Little is known about the mechanism of exercise-induced angiogenic response in ischemic myocardium. This study was designed to investigate the effects of exercise training on expression of vascular endothelial growth factor and angiogenesis in infarcted heart. Methods Fifty male FVB mice were divided into three subgroups to test various responses to exercise, including timedependent response of angiogenic factors to exercise training in intact heart (n=10) and infarcted heart (n=10), as well as exercise-induced angiogenic response in heart with myocardial infarction (MI) (n=30). The mice in the exercise-training groups were allowed to exercise daily at 1 hour per day for 7 days. Results VEGF protein expression was up-regulated by exercise training in time dependent fashion in mice with MI.Angiogenesis was evident by increased myocardial microvessels observed by PECAM-1 immunohistoc-hemical staining in post-MI exercise group (16.5±3.4)/0.4 mm2 versus post-MI sedentary mice ( 10±2.1 )/0.4 mm2 (P < 0.05). Cell proliferation assessment showed significantly higher (P < 0.05) number of BrdU positive cells in post MI mice in exercise group as opposed to sedentary post MI mice. 2%TTC staining disclosed a profound difference in the size of MI (18.25±2.93)% in exercise group vs sedentary group (29.26±7.64)% (P<0.05). Conclusions Activation and up-regulation of VEGF in infarcted mice heart may contributes the angiogenic response to exercise training at the early stage of myocardial infarction. This underscores the impact of exercise on angiogenesis in post myocardial infarction setting.

  6. Irradiation induces increase of adhesion molecules and accumulation of β2-integrin-expressing cells in humans

    International Nuclear Information System (INIS)

    Purpose: The purpose of our investigation was to describe the dose- and time-dependent histomorphologic alterations of the irradiated tissue, the composition of the infiltrate, and the expression patterns of various adhesion molecules. Methods and Materials: We analyzed immunohistochemically alterations in oral mucosa in 13 head and neck cancer patients before radiotherapy and with 30 Gy and 60 Gy. All had oral mucosa irradiation, with a final dose of 60 Gy using conventional fractionation. Snap-frozen specimens were stained using the indirect immunoperoxidase technique. Histomorphology was studied in paraffin-embedded sections. In addition, we determined the clinical degree of oral mucositis. Results: Histomorphologic evaluation showed no vascular damage. Irradiation caused a steep increase of β2-integrin-bearing cells (p 1-integrin-positive cells remained at low levels. Additionally we found an increase in the expression of endothelial intercellular adhesion molecule-1 (ICAM-1) (p 2 is more involved than β1. Pharmaceuticals that block leukocyte adhesion to E-selectin or ICAM-1 may prevent radiation-mediated inflammation in oral mucosa

  7. Cigarette Smoke Enhances the Expression of Profibrotic Molecules in Alveolar Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Marco Checa

    Full Text Available Idiopathic pulmonary fibrosis (IPF is a progressive and lethal disease of unknown etiology. A growing body of evidence indicates that it may result from an aberrant activation of alveolar epithelium, which induces the expansion of the fibroblast population, their differentiation to myofibroblasts and the excessive accumulation of extracellular matrix. The mechanisms that activate the alveolar epithelium are unknown, but several studies indicate that smoking is the main environmental risk factor for the development of IPF. In this study we explored the effect of cigarette smoke on the gene expression profile and signaling pathways in alveolar epithelial cells. Lung epithelial cell line from human (A549, was exposed to cigarette smoke extract (CSE for 1, 3, and 5 weeks at 1, 5 and 10% and gene expression was evaluated by complete transcriptome microarrays. Signaling networks were analyzed with the Ingenuity Pathway Analysis software. At 5 weeks of exposure, alveolar epithelial cells acquired a fibroblast-like phenotype. At this time, gene expression profile revealed a significant increase of more than 1000 genes and deregulation of canonical signaling pathways such as TGF-β and Wnt. Several profibrotic genes involved in EMT were over-expressed, and incomplete EMT was observed in these cells, and corroborated in mouse (MLE-12 and rat (RLE-6TN epithelial cells. The secretion of activated TGF-β1 increased in cells exposed to cigarette smoke, which decreased when the integrin alpha v gene was silenced. These findings suggest that the exposure of alveolar epithelial cells to CSE induces the expression and release of a variety of profibrotic genes, and the activation of TGF-β1, which may explain at least partially, the increased risk of developing IPF in smokers.

  8. Thyroid Transcription Factor 1 Reprograms Angiogenic Activities of Secretome.

    Science.gov (United States)

    Wood, Lauren W; Cox, Nicole I; Phelps, Cody A; Lai, Shao-Chiang; Poddar, Arjun; Talbot, Conover; Mu, David

    2016-01-01

    Through both gain- and loss-of-TTF-1 expression strategies, we show that TTF-1 positively regulates vascular endothelial growth factor (VEGF) and that the VEGF promoter element contains multiple TTF-1-responsive sequences. The major signaling receptor for VEGF, i.e VEGFR2, also appears to be under a direct and positive regulation of TTF-1. The TTF-1-dependent upregulation of VEGF was moderately sensitive to rapamycin, implicating a partial involvement of mammalian target of rapamycin (mTOR). However, hypoxia did not further increase the secreted VEGF level of the TTF-1(+) lung cancer cells. The TTF-1-induced VEGF upregulation occurs in both compartments (exosomes and exosome-depleted media (EDM)) of the conditioned media. Surprisingly, the EDM of TTF-1(+) lung cancer cells (designated EDM-TTF-1(+)) displayed an anti-angiogenic activity in the endothelial cell tube formation assay. Mechanistic studies suggest that the increased granulocyte-macrophage colony-stimulating factor (GM-CSF) level in the EDM-TTF-1(+) conferred the antiangiogenic activities. In human lung cancer, the expression of TTF-1 and GM-CSF exhibits a statistically significant and positive correlation. In summary, this study provides evidence that TTF-1 may reprogram lung cancer secreted proteome into an antiangiogenic state, offering a novel basis to account for the long-standing observation of favorable prognosis associated with TTF-1(+) lung adenocarcinomas. PMID:26912193

  9. Clustering High-Dimensional Data: The Expression of E-cadherin, CD44 and p53 Molecules in Lip Cancer

    Directory of Open Access Journals (Sweden)

    Kyriaki KITIKIDOU

    2010-01-01

    Full Text Available Objective: Clustering techniques can determine which expression patterns are important and which genes contribute to such patterns. We evaluate performance on data from a lip carcinoma study in Greece. Lip carcinoma is one of the most common malignant oral and maxillofacial tumours and in advanced clinical stages has a poor prognosis. E-cadherin, CD44 and p53 molecules are associated with cellular adhesion. Material and Methods: To prepare for clustering, we divided each of the median normalized gene expression values by the range of that gene. Next, we set our prior parameters and we performed the final inference using pooled sets of Markov chain Monte Carlo (MCMC runs. After pooling the chains, we grouped the data into clusters and selected E-cadherin, CD44 and p53 molecules using the marginal median model as cut off. The selection of a small set of genes is advantageous here. A small number of selected genes is appealing to biologists because they constitute a manageable set of candidates on which further studies can be performed. Results: E-cadherin, CD44 and p53 molecules were selected as discriminatory. Results highlight the fact that clustering method has successfully selected genes that are biologically consistent with current research and that provide strong biological validation of the cluster configuration suggested. Conclusion: A clustering method that takes advantage of known substructure in the data when simultaneously clustering high-dimensional data with an unknown number of clusters, and selecting the best discriminating variables for those clusters implies the opportunity to handle bigger datasets. When analyzing real data, clustering has found three genes that agree with current biological research and literature and that provide biological validation of the cluster configuration. Overall, clustering can provide biologists with both useful and manageable information for further experimental research.

  10. Natural phenolic metabolites with anti-angiogenic properties - a review from the chemical point of view.

    Science.gov (United States)

    Sun, Qiu; Heilmann, Jörg; König, Burkhard

    2015-01-01

    Considering the many secondary natural metabolites available from plants, phenolic compounds play a particularly important role in human health as they occur in significant amounts in many fruits, vegetables and medicinal plants. In this review natural phenolic compounds of plant origin with significant anti-angiogenic properties are discussed. Thirteen representatives from eight different natural or natural-like phenolic subclasses are presented with an emphasis on their synthesis and methods to modify the parent compounds. When available, the consequence of structural variation on the pharmacological activity of the molecules is described. PMID:25815077

  11. Expression of polysialylated neural cell adhesion molecules on adult stem cells after neuronal differentiation of inner ear spiral ganglion neurons

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyoung Ho [Department of Otolaryngology Head and Neck Surgery, College of Medicine, Catholic University, Seoul (Korea, Republic of); Yeo, Sang Won, E-mail: swyeo@catholic.ac.kr [Department of Otolaryngology Head and Neck Surgery, College of Medicine, Catholic University, Seoul (Korea, Republic of); Troy, Frederic A., E-mail: fatroy@ucdavis.edu [Department of Biochemistry and Molecular Medicine, University of California, School of Medicine, Davis, CA 95616 (United States); Xiamen University, School of Medicine, Xiamen City (China)

    2014-10-17

    Highlights: • PolySia expressed on neurons primarily during early stages of neuronal development. • PolySia–NCAM is expressed on neural stem cells from adult guinea pig spiral ganglion. • PolySia is a biomarker that modulates neuronal differentiation in inner ear stem cells. - Abstract: During brain development, polysialylated (polySia) neural cell adhesion molecules (polySia–NCAMs) modulate cell–cell adhesive interactions involved in synaptogenesis, neural plasticity, myelination, and neural stem cell (NSC) proliferation and differentiation. Our findings show that polySia–NCAM is expressed on NSC isolated from adult guinea pig spiral ganglion (GPSG), and in neurons and Schwann cells after differentiation of the NSC with epidermal, glia, fibroblast growth factors (GFs) and neurotrophins. These differentiated cells were immunoreactive with mAb’s to polySia, NCAM, β-III tubulin, nestin, S-100 and stained with BrdU. NSC could regenerate and be differentiated into neurons and Schwann cells. We conclude: (1) polySia is expressed on NSC isolated from adult GPSG and on neurons and Schwann cells differentiated from these NSC; (2) polySia is expressed on neurons primarily during the early stage of neuronal development and is expressed on Schwann cells at points of cell–cell contact; (3) polySia is a functional biomarker that modulates neuronal differentiation in inner ear stem cells. These new findings suggest that replacement of defective cells in the inner ear of hearing impaired patients using adult spiral ganglion neurons may offer potential hope to improve the quality of life for patients with auditory dysfunction and impaired hearing disorders.

  12. Expression of polysialylated neural cell adhesion molecules on adult stem cells after neuronal differentiation of inner ear spiral ganglion neurons

    International Nuclear Information System (INIS)

    Highlights: • PolySia expressed on neurons primarily during early stages of neuronal development. • PolySia–NCAM is expressed on neural stem cells from adult guinea pig spiral ganglion. • PolySia is a biomarker that modulates neuronal differentiation in inner ear stem cells. - Abstract: During brain development, polysialylated (polySia) neural cell adhesion molecules (polySia–NCAMs) modulate cell–cell adhesive interactions involved in synaptogenesis, neural plasticity, myelination, and neural stem cell (NSC) proliferation and differentiation. Our findings show that polySia–NCAM is expressed on NSC isolated from adult guinea pig spiral ganglion (GPSG), and in neurons and Schwann cells after differentiation of the NSC with epidermal, glia, fibroblast growth factors (GFs) and neurotrophins. These differentiated cells were immunoreactive with mAb’s to polySia, NCAM, β-III tubulin, nestin, S-100 and stained with BrdU. NSC could regenerate and be differentiated into neurons and Schwann cells. We conclude: (1) polySia is expressed on NSC isolated from adult GPSG and on neurons and Schwann cells differentiated from these NSC; (2) polySia is expressed on neurons primarily during the early stage of neuronal development and is expressed on Schwann cells at points of cell–cell contact; (3) polySia is a functional biomarker that modulates neuronal differentiation in inner ear stem cells. These new findings suggest that replacement of defective cells in the inner ear of hearing impaired patients using adult spiral ganglion neurons may offer potential hope to improve the quality of life for patients with auditory dysfunction and impaired hearing disorders

  13. Differential expression of the costimulatory molecules CD86, CD28, CD152 and PD-1 correlates with the host-parasite outcome in leprosy

    Directory of Open Access Journals (Sweden)

    Maria de Lourdes Palermo

    2012-12-01

    Full Text Available Leprosy is a spectral disease exhibiting two polar sides, namely, lepromatous leprosy (LL characterised by impaired T-cell responses and tuberculoid leprosy in which T-cell responses are strong. Proper T-cell activation requires signalling through costimulatory molecules expressed by antigen presenting cells and their ligands on T-cells. We studied the influence of costimulatory molecules on the immune responses of subjects along the leprosy spectrum. The expression of the costimulatory molecules was evaluated in in vitro-stimulated peripheral blood mononuclear cells of lepromatous and tuberculoid patients and healthy exposed individuals (contacts. We show that LL patients have defective monocyte CD86 expression, which likely contributes to the impairment of the antigen presentation process and to patients anergy. Accordingly, CD86 but not CD80 blockade inhibited the lymphoproliferative response to Mycobacterium leprae. Consistent with the LL anergy, there was reduced expression of the positive signalling costimulatory molecules CD28 and CD86 on the T-cells in these patients. In contrast, tuberculoid leprosy patients displayed increased expression of the negative signalling molecules CD152 and programmed death-1 (PD-1, which represents a probable means of modulating an exacerbated immune response and avoiding immunopathology. Notably, the contacts exhibited proper CD86 and CD28 expression but not exacerbated CD152 or PD-1 expression, suggesting that they tend to develop a balanced immunity without requiring immunosuppressive costimulatory signalling.

  14. Visualization of angiogenic vessels by synchrotron radiation microangiography

    International Nuclear Information System (INIS)

    The usefulness of synchrotron radiation microangiography for evaluating angiogenic vessels in regenerative therapy is illustrated. In a rabbit model of microvascular myocardial ischemia, angiogenic vessels in the heart were well visualized. In a rabbit model of hindlimb ischemia, vessel-regenerative therapy with fibroblast growth factor 4-gene incorporated to gelatin hydrogel well ameliorated muscle necrosis. Synchrotron radiation microangiography confirmed significant blood flow increase to adenosine administration in these treated rabbits (vascular responsiveness), but not in the control. Thus, synchrotron radiation microangiography is shown to be useful for the depiction, quantification and evaluation of angiogenic vessels in reproductive therapy. (author)

  15. Ganoderma lucidum (Reishi) inhibits cancer cell growth and expression of key molecules in inflammatory breast cancer.

    Science.gov (United States)

    Martínez-Montemayor, Michelle M; Acevedo, Raysa Rosario; Otero-Franqui, Elisa; Cubano, Luis A; Dharmawardhane, Suranganie F

    2011-01-01

    Inflammatory breast cancer (IBC) is the most lethal and least understood form of advanced breast cancer. Its lethality originates from its nature of invading the lymphatic system and absence of a palpable tumor mass. Different from other metastatic breast cancer cells, IBC cells invade by forming tumor spheroids that retain E-cadherin-based cell-cell adhesions. Herein we describe the potential of the medicinal mushroom Ganoderma lucidum (Reishi) as an attractive candidate for anti-IBC therapy. Reishi contains biological compounds that are cytotoxic against cancer cells. We report the effects of Reishi on viability, apoptosis, invasion, and its mechanism of action in IBC cells (SUM-149). Results show that Reishi selectively inhibits cancer cell viability although it does not affect the viability of noncancerous mammary epithelial cells. Apoptosis induction is consistent with decreased cell viability. Reishi inhibits cell invasion and disrupts the cell spheroids that are characteristic of the IBC invasive pathology. Reishi decreases the expression of genes involved in cancer cell survival and proliferation (BCL-2, TERT, PDGFB), and invasion and metastasis (MMP-9), whereas it increases the expression of IL8. Reishi reduces BCL-2, BCL-XL, E-cadherin, eIF4G, p120-catenin, and c-Myc protein expression and gelatinase activity. These findings suggest that Reishi is an effective anti-IBC therapeutic. PMID:21888505

  16. Expression of adhesion molecules, chemokines and matrix metallo- proteinases (MMPs) in viable and degenerating stage of Taenia solium metacestode in swine neurocysticercosis.

    Science.gov (United States)

    Singh, Satyendra K; Singh, Aloukick K; Prasad, Kashi N; Singh, Amrita; Singh, Avinash; Rai, Ravi P; Tripathi, Mukesh; Gupta, Rakesh K; Husain, Nuzhat

    2015-11-30

    Neurocysticercosis (NCC) is a parasitic infection of central nervous system (CNS). Expression of adhesion molecules, chemokines and matrix metalloproteinases (MMPs) were investigated on brain tissues surrounding viable (n=15) and degenerating cysticerci (n=15) of Taenia solium in swine by real-time RT-PCR and ELISA. Gelatin gel zymography was performed for MMPs activity. ICAM-1 (intercellular adhesion molecule-1), E-selectin, MIP-1α (macrophage inflammatory protein-1α), Eotaxin-1 and RANTES (regulated on activation, normal T cell expressed and secreted) were associated with degenerating cysticerci (cysts). However, VCAM-1 (vascular cell adhesion molecule-1), MCP-1 (monocyte chemotactic protein-1), MMP-2 and MMP-9 were associated with both viable and degenerating cysts. In conclusion, viable and degenerating cysticerci have different immune molecule profiles and role of these molecules in disease pathogenesis needs to be investigated. PMID:26412140

  17. Net Platelet Angiogenic Activity (NPAA) Correlates with Progression and Prognosis of Non-Small Cell Lung Cancer

    OpenAIRE

    Lijuan Yao; Hang Dong; Yiqin Luo; Jianping Du; Wen Hu

    2014-01-01

    Circulating platelets are abundant sources of angiogensis molecules for the tumor vasculature affecting tumor growth and metastasis. The relationship between non-small cell lung cancer (NSCLC) and intra-platelet levels of VEGF, TSP-1 and net platelet angiogenic activity (NPAA) is unclear. The aim of this study was to better understand the role of these factors in the progression of NSCLC cancer and to assess its clinical significance. Platelet VEGF and TSP-1 and NPAA were measured preoperativ...

  18. Effects of Estrogen Level on the Function of Vascular Endothelial Cells and Expression of Vascular Cell Adhesion Molecule - 1φ

    Institute of Scientific and Technical Information of China (English)

    WU Saizhu(吴赛珠); LIU Jiangguo(刘建国); TAN Jiayu(谭家余); ZHoU Kexiang(周可祥); Gorge D Webb; WEI Heming(隗和明); GUO Zhiguang(郭志刚)

    2002-01-01

    Objectives To ob- serve the effect of different estrogen levels on the se- cretory function of vascular endothelial cells of female rats, and study the effect of modulation of estrogen level on the expression of vascular cell adhesion molecule - 1 and the concentration of estrogen receptorin vascular endothelial cells. Methods Radioim-munology was used to measure the serum concentrationof endothelin and PGI2, and copper-cadmium re-duction was employed to measure the serum content ofnitrogen monoxide. Radioligand binding and flowcy-tometry were used to measure the expression of estrogenreceptor and vascular cell adhesion molecule (VCAM-1 ) of vascular endothelial cells respectively. Re-sults 1. The serum concentration of nitric oxide andPGI2 decreased when the ovaries of female rats wereremoved. In ovariectomized rats, given estrogen, theconcentration rose ( P < 0.05), but the plasma con-centration of endothelin was adverse to it. 2. Theconcentration of estrogen receptor of vascular endothe-lial cells decreased remarkably when the ovaries of fe-male rats were removed. When given estrogen, it in-creased. 3. The percent of expressed VCAM - 1 in-creased siguificantly after interleukin- lβoperated onthe cells, but 17 - βestradiol at 3 × 10-8 ~ 10-6 mol/lall decreased the percent. Conclusions Estrogenlevel can influence the secretion of nitrogen monoxide,PGI2 and endothlin of vascular endothelial cells, andalso influence the concentration of estrogen receptor ofvascular endothelial cells. 17 -β Estradiol at 3 × 10-8~ 10-6 M can decrease the elevation of VCAM - 1 ofvascular endothelial cells induced by interleukin - 1 β.

  19. Small-molecule inhibitors of ERK-mediated immediate early gene expression and proliferation of melanoma cells expressing mutated BRaf.

    Science.gov (United States)

    Samadani, Ramin; Zhang, Jun; Brophy, Amanda; Oashi, Taiji; Priyakumar, U Deva; Raman, E Prabhu; St John, Franz J; Jung, Kwan-Young; Fletcher, Steven; Pozharski, Edwin; MacKerell, Alexander D; Shapiro, Paul

    2015-05-01

    Constitutive activation of the extracellular-signal-regulated kinases 1 and 2 (ERK1/2) are central to regulating the proliferation and survival of many cancer cells. The current inhibitors of ERK1/2 target ATP binding or the catalytic site and are therefore limited in their utility for elucidating the complex biological roles of ERK1/2 through its phosphorylation and regulation of over 100 substrate proteins. To overcome this limitation, a combination of computational and experimental methods was used to identify low-molecular-mass inhibitors that are intended to target ERK1/2 substrate-docking domains and selectively interfere with ERK1/2 regulation of substrate proteins. In the present study, we report the identification and characterization of compounds with a thienyl benzenesulfonate scaffold that were designed to inhibit ERK1/2 substrates containing an F-site or DEF (docking site for ERK, FXF) motif. Experimental evidence shows the compounds inhibit the expression of F-site containing immediate early genes (IEGs) of the Fos family, including c-Fos and Fra1, and transcriptional regulation of the activator protein-1 (AP-1) complex. Moreover, this class of compounds selectively induces apoptosis in melanoma cells containing mutated BRaf and constitutively active ERK1/2 signalling, including melanoma cells that are inherently resistant to clinically relevant kinase inhibitors. These findings represent the identification and initial characterization of a novel class of compounds that inhibit ERK1/2 signalling functions and their potential utility for elucidating ERK1/2 and other signalling events that control the growth and survival of cancer cells containing elevated ERK1/2 activity. PMID:25695333

  20. Differential epithelial expression of the putative innate immune molecule SPLUNC1 in Cystic Fibrosis

    Directory of Open Access Journals (Sweden)

    Wallace William A

    2007-11-01

    Full Text Available Abstract Introduction Short PLUNC1 (SPLUNC1 is the founding member of a family of proteins (PLUNCS expressed in the upper respiratory tract and oral cavity, which may function in host defence. It is one of the most highly expressed genes in the upper airways and the protein has been detected in sputum and nasal secretions. The biology of the PLUNC family is poorly understood but in keeping with the putative function of the protein as an immune defence protein, a number of RNA and protein studies have indicated that SPLUNC1 is increased in inflammatory/infectious conditions such as Cystic Fibrosis (CF, COPD and allergic rhinitis. Methods We used immunohistochemistry to localise SPLUNC1 in lung tissue from patients with CF and a range of other lung diseases. We used a range of additional markers for distinct cell types to try to establish the exact site of secretion of SPLUNC1. We have complemented these studies with a molecular analysis of SPLUNC1 gene expression in primary human lung cell cultures and isolated inflammatory cell populations. Results In CF, expression of SPLUNC1 is significantly elevated in diseased airways and positive staining was noted in some of the inflammatory infiltrates. The epithelium of small airways of CF lung exhibit significantly increased SPLUNC1 staining compared to similar sized airways in non-CF lungs where staining is absent. Strong staining was also seen in mucous plugs in the airways, these included many inflammatory cells. No alveolar epithelial staining was noted in CF tissue. Airway epithelial staining did not co-localise with MUC5AC suggesting that the protein was not produced by goblet cells. Using serial sections stained with neutrophil elastase and CD68 we could not demonstrate co-localisation of SPLUNC1 with either neutrophils or macrophages/monocytes, indicating that these cells were not a source of SPLUNC1 in the airways of CF lungs. No change in staining pattern was noted in the small airways or lung

  1. Increased expression of FGF1-mediated signaling molecules in adipose tissue of obese mice.

    Science.gov (United States)

    Choi, Youngshim; Jang, Suhyeon; Choi, Myung-Sook; Ryoo, Zae Young; Park, Taesun

    2016-06-01

    Fibroblast growth factors (FGFs) are pleiotropic growth factors that control cell proliferation, migration, and differentiation. Herein, we evaluated whether visceral adiposity of mice is accompanied by the alteration of signaling molecules mediated by fibroblast growth factor receptor 1 (FGFR1) induced by using two different male C57BL/6J mice models of obesity namely high-fat diet (HFD)-induced obesity for 12 weeks or mice with genetic deletion of leptin (ob/ob). Both HFD-fed and ob/ob mice exhibited significantly higher messenger RNA (mRNA) levels of FGF1, cyclin D (cycD), transcription factor E2F1, peroxisome proliferator-activated receptor-gamma 2 (PPAR-γ2), CCAAT-enhancer-binding protein alpha (C/EBPα), and adipocyte protein 2 (aP2) genes in their epididymal adipose tissues compared to those of the normal diet (ND)-fed and lean control mice, respectively. In addition, immunoblot analyses of the epididymal adipose tissues revealed that both mice exposed to HFD and ob/ob mice exhibited elevated phosphorylation of FGFR1, extracellular-signal-regulated kinase (ERK), and retinoblastoma (Rb) proteins. These data support the notion that FGF1-mediated signaling represents an important signaling cascade related to adipogenesis, at least partially, among other known signaling pathways. These new findings regarding the molecular mechanisms controlling adipose tissue plasticity provide a novel insight about the functional network with potential therapeutic application against obesity. PMID:26847131

  2. T cells expressing CD19-specific Engager Molecules for the Immunotherapy of CD19-positive Malignancies

    OpenAIRE

    Mireya Paulina Velasquez; David Torres; Kota Iwahori; Sunitha Kakarla; Caroline Arber; Tania Rodriguez-Cruz; Arpad Szoor; Bonifant, Challice L.; Claudia Gerken; Cooper, Laurence J.N.; Xiao-Tong Song; Stephen Gottschalk

    2016-01-01

    T cells expressing chimeric antigen receptors (CARs) or the infusion of bispecific T-cell engagers (BITEs) have shown antitumor activity in humans for CD19-positive malignancies. While BITEs redirect the large reservoir of resident T cells to tumors, CAR T cells rely on significant in vivo expansion to exert antitumor activity. We have shown that it is feasible to modify T cells to secrete solid tumor antigen-specific BITEs, enabling T cells to redirect resident T cells to tumor cells. To ada...

  3. Adhesion molecules in Wilms tumor (part II) : beta-catenin expression and significance

    OpenAIRE

    Basta-Jovanović Gordana M.; Radojević Sanja M.; Đuričić Slaviša M.; Savin Marina; Škodrić Stevo; Bunjevački Gordana; Hadži-Đokić Jovan B.; Nešić Vidosava B.

    2003-01-01

    Beta-catenin is a glicoprotein which has an important role in cell-cell adhesion, as well as in cell signal transmition, in u regulation of gen expression and in interaction with axin and APC (adenomatous poliposis coli). Its oncogenic role in several types of carcinomas in human population is well known. It is very likely that b-catenin as an protooncogen plays an importante role in genesis of Wilms tumor. It is well known that in 15% Wilms tumors there are b-catenin mutations, which indicat...

  4. Interleukin 20 regulates dendritic cell migration and expression of co-stimulatory molecules

    DEFF Research Database (Denmark)

    Bech, Rikke; Jalilian, Babak; Agger, Ralf; Iversen, Lars; Erlandsen, Mogens; Otkjaer, Kristian; Johansen, Claus; Paludan, Søren R; Rosenberg, Carina A; Kragballe, Knud; Vorup-Jensen, Thomas

    2016-01-01

    BACKGROUND: Psoriasis is an inflammatory disease characterized by leukocyte skin infiltration. Interestingly, recent works suggest that the migration of dendritic cells (DCs) is abnormal in psoriatic skin. DCs have significant role in regulating the function of T lymphocytes, at least in part...... influenced by the local environment of cytokines. In psoriatic skin lesions the expression of IL-20 is highly up-regulated. It is unclear if this cytokine has any influence on DCs. METHODS: Here, we investigated the influence of IL-20 in monocyte-derived dendritic cell (MDDCs) in vitro. This work addressed...

  5. Effect of ionizing radiation on expressions of regulatory T cells and related molecules in mice spleen

    International Nuclear Information System (INIS)

    Objective: To observe the changes in expressions of spleen regulatory T cells (Tregs) and the related factor forkhead box protein-3 (Foxp3) after irradiation with different doses of X-ray in mice at different times, and to elaborate the effects of X-rays on regulatory T cells and Foxp3. Methods: 112 male ICR mice were randomly divided into 2 groups and irradiated by X-rays at the doses of 0.075 and 2 Gy, respectively. The mice were killed at 0, 4, 8, 16, 24, 48, and 72 h post-irradiation and the spleens removed. Flow cytometry was used to detect the percentage of CD4 + CD25 + Treg and protein expression of (Foxp3), and RT-PCR was used to exmiamine the mRNA expression of Fox3. Results: Compared with those before irradiation, the CD4 + CD25 + Treg positive rates began to increase and peaked at 8 h post-irradiation with 0.075 Gy at 8, 16, 24, 72 h (t=8.73, 10.55, 4.21, 4.65, P<0.05) and 2 Gy at 8, 16, 48, 72 h (t=4.65, 4.28, 3.71, 2.88, P<0.05), and then slightly decreased, but still remained at high levels. The mRNA protein levels of Fox3 did not change significantly after exposure to the dose of 0.075 Gy, but began to significantly increase at 8 h after exposure to the dose of 2 Gy. However, the Fox3 protein level began to increase 4 h post-irradiation, peaked at 16 h, and then slightly decreased, but still remained at high levels (t=2.59, 3.37, 3.70, 3.20, P<0.05). Conclusions: The changes in expressions of Tregs and Foxp3 after high- and low-dose X-ray irradiation may be used to explain the differences in immune effects induced ionizing radiation at different doses. (authors)

  6. Curcumin modulates chronic myelogenous leukemia exosomes composition and affects angiogenic phenotype via exosomal miR-21.

    Science.gov (United States)

    Taverna, Simona; Fontana, Simona; Monteleone, Francesca; Pucci, Marzia; Saieva, Laura; De Caro, Viviana; Cardinale, Valeria Giunta; Giallombardo, Marco; Vicario, Emanuela; Rolfo, Christian; Leo, Giacomo De; Alessandro, Riccardo

    2016-05-24

    Tumor derived exosomes are vesicles which contain proteins and microRNAs that mediate cell-cell communication and are involved in angiogenesis and tumor progression. Curcumin derived from the plant Curcuma longa, shows anticancer effects. Exosomes released by CML cells treated with Curcumin contain a high amount of miR-21 that is shuttled into the endothelial cells in a biologically active form. The treatment of HUVECs with CML Curcu-exosomes reduced RhoB expression and negatively modulated endothelial cells motility. We showed that the addition of CML control exosomes to HUVECs caused an increase in IL8 and VCAM1 levels, but Curcu-exosomes reversed these effects thus attenuating their angiogenic properties. This antiangiogenic effect was confirmed with in vitro and in vivo vascular network formation assays. SWATH analysis of the proteomic profile of Curcu-exosomes revealed that Curcumin treatment deeply changes their molecular properties, in particular, Curcumin induces a release of exosomes depleted in pro-angiogenic proteins and enriched in proteins endowed with anti-angiogenic activity. Among the proteins differential expressed we focused on MARCKS, since it was the most modulated protein and a target of miR-21. Taken together our data indicated that also Curcumin attenuates the exosome's ability to promote the angiogenic phenotype and to modulate the endothelial barrier organization. PMID:27050372

  7. Angiogenic Potency of Bone Marrow Stromal Cells Improved by ex Vivo Hypoxia Prestimulation

    Institute of Scientific and Technical Information of China (English)

    毛晓波; 曾秋棠; 王祥; 曹林生; 白智峰

    2004-01-01

    To study the angiogenic potency of hypoxia-prestimulated bone marrow stromal cells (BMSCs) when transplanted into acute myocardial infarction models of rats. BMSCs were cultured under hypoxia condition for 24 h. Their expression of VEGF was investigated. The rat acute myocardial infarction models were made by coronary artery ligation and divided into 3 groups at random.In normoxia group, twice-passaged BMSCs were labeled with Bromodeoxyuridine (BrdU) and then implanted into the infarction regions and ischemic border of the recipients in 4 weeks. The rats in hypoxia group were implanted with hypoxia-prestimulated BMSCs. In control group, the model rats received only DMEM medium injection. Six-weeks after AMI, the infarction regions were examined to identify the angiogenesis and the expression of the VEGF. Our results showed that viable cells labeled with BrdU could be identified in the host hearts. The infarction regions in normoxia and hypoxia groups had a greater capillary density and increased VEGF expression than the regions in control group. The capillary density and VEGF expression in hypoxia group were higher than in normoxia group. It is concluded that the enhanced expression of VEGF in BMSCs could be induced by ex vivo hypoxia stimulation. BMSCs implantation promoted the angiogenesis in myocardial infarction tissue via supplying exogenic VEGF. Angiogenic potency of bone marrow stromal cells was improved by ex vivo hypoxia prestimulation though the enhanced VEGF expression.

  8. Modulators of hepatic lipoprotein metabolism identified in a search for small-molecule inducers of tribbles pseudokinase 1 expression.

    Directory of Open Access Journals (Sweden)

    Marek M Nagiec

    Full Text Available Recent genome wide association studies have linked tribbles pseudokinase 1 (TRIB1 to the risk of coronary artery disease (CAD. Based on the observations that increased expression of TRIB1 reduces secretion of VLDL and is associated with lower plasma levels of LDL cholesterol and triglycerides, higher plasma levels of HDL cholesterol and reduced risk for myocardial infarction, we carried out a high throughput phenotypic screen based on quantitative RT-PCR assay to identify compounds that induce TRIB1 expression in human HepG2 hepatoma cells. In a screen of a collection of diversity-oriented synthesis (DOS-derived compounds, we identified a series of benzofuran-based compounds that upregulate TRIB1 expression and phenocopy the effects of TRIB1 cDNA overexpression, as they inhibit triglyceride synthesis and apoB secretion in cells. In addition, the compounds downregulate expression of MTTP and APOC3, key components of the lipoprotein assembly pathway. However, CRISPR-Cas9 induced chromosomal disruption of the TRIB1 locus in HepG2 cells, while confirming its regulatory role in lipoprotein metabolism, demonstrated that the effects of benzofurans persist in TRIB1-null cells indicating that TRIB1 is sufficient but not necessary to transmit the effects of the drug. Remarkably, active benzofurans, as well as natural products capable of TRIB1 upregulation, also modulate hepatic cell cholesterol metabolism by elevating the expression of LDLR transcript and LDL receptor protein, while reducing the levels of PCSK9 transcript and secreted PCSK9 protein and stimulating LDL uptake. The effects of benzofurans are not masked by cholesterol depletion and are independent of the SREBP-2 regulatory circuit, indicating that these compounds represent a novel class of chemically tractable small-molecule modulators that shift cellular lipoprotein metabolism in HepG2 cells from lipogenesis to scavenging.

  9. Age-related changes in expression of neural cell adhesion molecule (NCAM) in heart

    DEFF Research Database (Denmark)

    1993-01-01

    ). Alternative splicing of NCAM mRNA was analyzed by Northern blotting using DNA oligonucleotide probes designed for demonstration of certain exons or exon combinations. Total NCAM mRNA was downregulated during postnatal development followed by upregulation in the aging heart. Three major NCAM mRNA classes of 6.......7, 5.2 and 2.9 kb were expressed in newborn heart in approximately equal proportions. At all other ages, the mRNAs of 5.2 and 2.9 kb were more predominant than the 6.7 kb mRNA. During postnatal development and aging, expression of exon VASE was selectively downregulated in the 6.7 kb NCAM mRNA class......, whereas it was clearly detectable in NCAM mRNA classes of 5.2 and 2.9 kb. Insertion of exons a and AAG between exons 12 and 13 was more pronounced in the 5.2 and 2.9 kb NCAM mRNAs than in the 6.7 kb mRNA at all ages. Insertions at the 12/13 junctions decreased in the 6.7 kb mRNA as compared to the 5.2 and...

  10. Inhibiting the expression of CD28 costimulatory molecule on human lymphocytes by special siRNA

    Institute of Scientific and Technical Information of China (English)

    XU Kai-lin; ZHANG Ying; PAN Xiu-ying; LU Qun-xian

    2005-01-01

    Background The B7/CD28 pathway provides critical costimulatory signals for complete T cell activation, and members of this pathway have served as useful targets for immunotherapeutic strategies. In this study, we investigated the RNA interference (RNAi) effect induced by small interfering RNA (siRNA) targeting CD28 mRNA on human lymphocytes and its specificity.Methods According to CD28 gene sequence, we designed and synthysized three different siRNAs (siRNA-1, siRNA-2, siRNA-3) containing 21 bases using SilencerTM siRNA construction kit. These siRNAs were transfected into freshly isolated human lymphocytes with Lipofectamine 2000 reagent. At 24-hour, 48-hour and 72-hour post transfection, these cells were collected and analyzed. The changes of surface expression of CD28 gene were detected by flow cytometry, and the changes of CD28 mRNA levels were determined by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR). The cell viability of transfected lymphocytes was determined by methyl thiazolyl tetrazolium (MTT) assay and trypan blue dye exclusion assay. Results Three siRNAs (siRNA-1, siRNA-2, siRNA-3) specifically targeting CD28 mRNA were successfully designed and constructed. Flow cytometry analysis showed that a decrease in CD28 expression was detectable at 24-hour post transfection. Different siRNA showed different inhibition effects on CD28 expression. At 48-hour post transfection, the degrees of reduction with siRNA-1, siRNA-2 and siRNA-3 were 22.10%±1.63%, 73.50%±1.02% and 42.90%±0.89% respectively compared with the control (P0.05). Moreover, lymphocytes treated with siRNA-co showed no marked reduction in CD28 expression (5.07%±0.96%) (P>0.05). The results of semi-quantitative RT-PCR assay indicated CD28 mRNA level was inhibited after transfection of specific siRNAs. At least 4-fold of reduction in siRNA-2 group occurred at 48-hour post transfection compared with the control (P0.05). Conclusions Three different siRNAs were

  11. Intrinsic pro-angiogenic status of cystic fibrosis airway epithelial cells

    International Nuclear Information System (INIS)

    Cystic fibrosis is a common genetic disorder characterized by a severe lung inflammation and fibrosis leading to the patient's death. Enhanced angiogenesis in cystic fibrosis (CF) tissue has been suggested, probably caused by the process of inflammation, as similarly described in asthma and chronic bronchitis. The present study demonstrates an intrinsic pro-angiogenic status of cystic fibrosis airway epithelial cells. Microarray experiments showed that CF airway epithelial cells expressed several angiogenic factors such as VEGF-A, VEGF-C, bFGF, and PLGF at higher levels than control cells. These data were confirmed by real-time quantitative PCR and, at the protein level, by ELISA. Conditioned media of these cystic fibrosis cells were able to induce proliferation, migration and sprouting of cultured primary endothelial cells. This report describes for the first time that cystic fibrosis epithelial cells have an intrinsic angiogenic activity. Since excess of angiogenesis is correlated with more severe pulmonary disease, our results could lead to the development of new therapeutic applications

  12. Anti-angiogenic action of plasma hyaluronan binding protein in human umbilical vein endothelial cells.

    Science.gov (United States)

    Jeon, Ji Won; Song, Hyun Seok; Moon, Eun-Joung; Park, Shi-Young; Son, Myung Jin; Jung, Seung Youn; Kim, Ji Tae; Nam, Do-Hyun; Choi-Miura, Nam-Ho; Kim, Kyu-Won; Kim, Yung-Jin

    2006-07-01

    The kringle domain is a triple loop structure present in angiostatin and endostatin. The disulfide bond-linked kringle architectures have been known to be essential for anti-angiogenic activity. Plasma hyaluronan binding protein (PHBP) is a novel serine protease which consists of three epidermal growth factor (EGF) domains, a kringle domain, and a serine protease domain. PHBP can be cleaved autocatalytically to generate activity and is highly expressed in the human blood and liver. To determine the anti-angiogenic activities of PHBP, we purified recombinant mouse PHBP from stable cell line overexpressing PHBP and used protein in vivo and in vitro angiogenesis assays. We found that recombinant PHBP inhibits not only angiogenesis in vivo in chorioallantoic membrane (CAM) assay but also the basic fibroblast growth factor (bFGF)-induced proliferation, invasion and tube formation of human umbilical vein endothelial cells (HUVECs) in a dose-dependant manner. Moreover, we found that the kringle domain of PHBP was essential for the anti-angiogenic action of PHBP by the deletion mutants. These findings unravel a new function of PHBP as an inhibitor of the proangiogenic phenotype of vascular endothelial cells and demonstrate that the kringle domain of PHBP might be a potent novel inhibitor of activated endothelial cells in vitro and in vivo. PMID:16773202

  13. TIPE2 Inhibits Lung Cancer Growth Attributing to Promotion of Apoptosis by Regulating Some Apoptotic Molecules Expression.

    Directory of Open Access Journals (Sweden)

    Qing-Qing Liu

    Full Text Available Recent studies found that TIPE2 was involved in cancer development. However, little is known about TIPE2 in lung cancer. Our study aims to clarify the role of TIPE2 in lung carcinogenesis. We examined the expression of TIPE2 in lung squamous cancer (LSC, small cell lung cancer and lung adenocarcinoma (AdC tissues and found that TIPE2 expression was lost in small cell lung cancer, compared with adjacent non-tumor tissues. Overexpression of TIPE2 significantly inhibited the growth of lung cancer cell H446 in vitro and even suppressed tumor formation in vivo. Flow cytometry analysis found TIPE2 overexpression promoted apoptosis of H446. In TIPE2 over-expression cells, caspase-3, caspase-9, and Bax were significantly up-regulated while Bcl-2 was down-regulated. Moreover, coincident results were shown by immunohistochemistry in tumors from nude mice. TIPE2 inhibited the phosphorylation of Akt, while promoting the phosphorylation of P38, but had no effect on IκBα and ERK pathway. Taken together, TIPE2 promoted lung cancer cell apoptosis through affecting apoptosis-related molecules caspase-3, caspase-9, Bcl-2 and Bax, possibly via regulating P38 and Akt pathways, indicating that TIPE2 might be a novel marker for lung cancer diagnosis and therapy.

  14. Characterization and expression analysis of B Cell receptor accessory molecule CD79 gene in humphead snapper ( Lutjanus sanguineus)

    Science.gov (United States)

    Huang, Yucong; Yan, Xiuying; Cai, Shuanghu; Cai, Jia; Jian, Jichang; Lu, Yishan; Tang, Jufen; Wu, Zaohe

    2016-04-01

    CD79, a key component of the B cell antigen receptor complex, is composed of CD79α(Igα) and CD79β(Igβ) encoded by mb-1 and B29 respectively, and plays an important role in B cell signaling. In this study, we isolated and characterized mb-1 and B29 from humphead snapper ( Lutjanus sanguineus). Their tissue distribution and expression profiles after stimulations in vitro and in vivo were also investigated. The humphead snapper mb-1 and B29 contain open reading frames of 684 bp and 606 bp, encoding 227 amino acids and 201 amino acids, respectively. Both CD79α and CD79β possess signal peptide, extracellular Ig domain, transmembrane region and immunoreceptor tyrosine kinase activation motif (ITAM). Mb-1 is highly expressed in lymphoid organs (thymus, posterior kidney and spleen) and mucosal-associated lymphoid tissues (gill and intestine), while B29 is mainly detected in posterior kidney, spleen, gill and skin. Furthermore, transcription of mb-1 and B29 in head kidney leucocytes was up-regulated following lipopolysaccharide (LPS), pokeweed mitogen (PWM), and polyinosinic-polycytidylic acid (PolyI:C) stimulation, respectively, and their expression level in anterior kidney and spleen was also increased after challenged with formalin-inactived Vibrio harveyi. These results indicated that humphead snapper CD79 molecule might play an important role in immune response to pathogen infection.

  15. Expression of costimulatory molecules in antigen-activated peritoneal macrophages treated with either ovalbumin or palmitoyl-ova conjugates

    Directory of Open Access Journals (Sweden)

    Flávia Márcia Oliveira

    2013-12-01

    Full Text Available One of the mechanisms by which adjuvants are believed to promote T-cell activation and prevent induction of oral tolerance is by up-regulating the expression of co-stimulatory molecules on antigen presenting cells. Mice treated orally with palmitoyl-ovalbumin conjugates become immunized, while those treated with native ovalbumin (Ova become tolerant. Cells from the peritoneal cavity of B6D2F1 mice were cultured in the presence of 0.01, or 0.1 mg/100ml of either Ova, or palmitoyl-Ova and tested for the presence of cell markers. PE-conjugated anti-mouse CD80, CD86, and CD11b antibodies as well as biotin-PE were used to stain the antigen-activated peritoneal cells. A significant increase in the expression of CD86 and CD80 was observed following in vitro stimulation with palmitoyl-Ova; additionally, both Ova and palmitoyl-Ova induced the basal expression of CD11b. These findings could be related with the strong T-cell proliferative response induced by palmitoyl-Ova.

  16. Smad Molecules Expression Pattern in Human Bronchial Airway Induced by Sulfur Mustard

    Directory of Open Access Journals (Sweden)

    Maryam Adelipour

    2011-09-01

    Full Text Available Airway remodelling is characterized by the thickening and reorganization of the airways seen in mustard  lung patients. Mustard lung is the  general description  for  the  chronic obstructive  pulmonary  disease induced  by  sulfur  mustard(SM. Pulmonary  disease was diagnosed as the most important  disorder in individuals that had been exposed to sulfur mustard. Sulfur mustard is a chemical warfare agent developed during Wars. Iraqi forces frequently used it against Iranian during Iran –Iraq in the 1980–1988. Peribronchial fibrosis result  from  airway remodeling  that  include  excess  of  collagen of  extracellular matrix deposition  in  the  airway wall. Some of  Smads families in  association with TGF-β  are involved in airway remodeling due to lung fibrosis. In the present study we compared the mRNA expression of Smad2, Smad3, and Smad4 and Smad7 genes in airway wall biopsies of chemical-injured patients with non-injured patients as control.We used airway wall biopsies of ten unexposed patients and fifteen SM-induced patients. Smads expression was evaluated by RT-PCR followed by bands densitometry.Expression levels of Smad3 and Smad4 in SM exposed patients were upregulated but Smad2 and Smad7 was not significantly altered.Our results revealed that Smad3, and 4 may be involved in airway remodeling process in SM induced  patients  by  activation of  TGF-β.  Smad pathway is  the  most  represented signaling mechanism for  airway remodeling and  peribronchial fibrosis. The  complex of Smads in the nucleus affects a series of genes that results in peribronchial fibrosis in SM- induced patients.

  17. Changes in cell adhesion molecule expression on T cells associated with systemic virus infection

    DEFF Research Database (Denmark)

    Andersson, E C; Christensen, Jan Pravsgaard; Marker, O;

    1994-01-01

    -4, LFA-1, and ICAM-1, are up-regulated on CD8+ cells, whereas the lymph node homing receptor MEL-14 is down-regulated during the infection; only marginal changes were observed for CD4+ cells. Basically similar but less marked results were obtained in mice infected with Pichinde virus. Further......, it was found that up-regulation of VLA-4 expression on splenic T cells correlated with influx of inflammatory cells into the cerebrospinal fluid of intracerebrally infected animals, and that the number of CD8+VLA-4hi cells increased from lymph nodes and spleen to blood and cerebrospinal fluid. These...... results support the hypothesis that up-regulation of VLA-4 is important for effector T cell homing to sites of inflammation....

  18. Simple expressions of the nuclear relaxation rate enhancement due to quadrupole nuclei in slowly tumbling molecules

    International Nuclear Information System (INIS)

    For slowly tumbling entities or quasi-rigid lattices, we derive very simple analytical expressions of the quadrupole relaxation enhancement (QRE) of the longitudinal relaxation rate R1 of nuclear spins I due to their intramolecular magnetic dipolar coupling with quadrupole nuclei of arbitrary spins S ≥ 1. These expressions are obtained by using the adiabatic approximation for evaluating the time evolution operator of the quantum states of the quadrupole nuclei S. They are valid when the gyromagnetic ratio of the spin S is much smaller than that of the spin I. The theory predicts quadrupole resonant peaks in the dispersion curve of R1 vs magnetic field. The number, positions, relative intensities, Lorentzian shapes, and widths of these peaks are explained in terms of the following properties: the magnitude of the quadrupole Hamiltonian and the asymmetry parameter of the electric field gradient (EFG) acting on the spin S, the S-I inter-spin orientation with respect to the EFG principal axes, the rotational correlation time of the entity carrying the S–I pair, and/or the proper relaxation time of the spin S. The theory is first applied to protein amide protons undergoing dipolar coupling with fast-relaxing quadrupole 14N nuclei and mediating the QRE to the observed bulk water protons. The theoretical QRE agrees well with its experimental counterpart for various systems such as bovine pancreatic trypsin inhibitor and cartilages. The anomalous behaviour of the relaxation rate of protons in synthetic aluminium silicate imogolite nano-tubes due to the QRE of 27Al (S = 5/2) nuclei is also explained

  19. Simple expressions of the nuclear relaxation rate enhancement due to quadrupole nuclei in slowly tumbling molecules

    Energy Technology Data Exchange (ETDEWEB)

    Fries, Pascal H., E-mail: pascal-h.fries@cea.fr [Université Grenoble Alpes, INAC-SCIB, RICC, F-38000 Grenoble (France); CEA, INAC-SCIB, RICC, F-38000 Grenoble (France); Belorizky, Elie [Université Grenoble Alpes, LIPHY, F-38000 Grenoble (France); CEA, Leti-Clinatec, F-38000 Grenoble (France)

    2015-07-28

    For slowly tumbling entities or quasi-rigid lattices, we derive very simple analytical expressions of the quadrupole relaxation enhancement (QRE) of the longitudinal relaxation rate R{sub 1} of nuclear spins I due to their intramolecular magnetic dipolar coupling with quadrupole nuclei of arbitrary spins S ≥ 1. These expressions are obtained by using the adiabatic approximation for evaluating the time evolution operator of the quantum states of the quadrupole nuclei S. They are valid when the gyromagnetic ratio of the spin S is much smaller than that of the spin I. The theory predicts quadrupole resonant peaks in the dispersion curve of R{sub 1} vs magnetic field. The number, positions, relative intensities, Lorentzian shapes, and widths of these peaks are explained in terms of the following properties: the magnitude of the quadrupole Hamiltonian and the asymmetry parameter of the electric field gradient (EFG) acting on the spin S, the S-I inter-spin orientation with respect to the EFG principal axes, the rotational correlation time of the entity carrying the S–I pair, and/or the proper relaxation time of the spin S. The theory is first applied to protein amide protons undergoing dipolar coupling with fast-relaxing quadrupole {sup 14}N nuclei and mediating the QRE to the observed bulk water protons. The theoretical QRE agrees well with its experimental counterpart for various systems such as bovine pancreatic trypsin inhibitor and cartilages. The anomalous behaviour of the relaxation rate of protons in synthetic aluminium silicate imogolite nano-tubes due to the QRE of {sup 27}Al (S = 5/2) nuclei is also explained.

  20. Circulating angiogenic cell dysfunction in patients with hereditary hemorrhagic telangiectasia.

    Directory of Open Access Journals (Sweden)

    Liana Zucco

    Full Text Available Hereditary hemorrhagic telangiectasia (HHT is an autosomal dominant vascular disorder. Circulating angiogenic cells (CACs play an important role in vascular repair and regeneration. This study was designed to examine the function of CACs derived from patients with HHT. Peripheral blood mononuclear cells (PBMNCs isolated from patients with HHT and age- and gender-matched healthy volunteers were assessed for expression of CD34, CD133 and VEGF receptor 2 by flow cytometry. PBMNCs were cultured to procure early outgrowth CACs. Development of endothelial cell (EC phenotype in CACs was analyzed by fluorescence microscopy. CAC apoptosis was assayed with Annexin V staining, and CAC migration assessed by a modified Boyden chamber assay. mRNA expression of endoglin (ENG, activin receptor-like kinase-1 (ACVLR1 or ALK1 and endothelial nitric oxide synthase (eNOS in CACs was measured by real time RT-PCR. The percentage of CD34+ cells in PBMNCs from HHT patients was significantly higher than in PBMNCs of healthy controls. CACs derived from patients with HHT not only showed a significant reduction in EC-selective surface markers following 7-day culture, but also a significant increase in the rate of basal apoptosis and blunted migration in response to vascular endothelial growth factor and stromal cell-derived factor-1. CACs from HHT patients expressed significantly lower levels of ENG, ALK1 and eNOS mRNAs. In conclusion, CACs from patients with HHT exhibited various functional impairments, suggesting a reduced regenerative capacity of CACs to repair the vascular lesions seen in HHT patients.

  1. Activated endothelial interleukin-1beta, -6, and -8 concentrations and intercellular adhesion molecule-1 expression are attenuated by lidocaine.

    LENUS (Irish Health Repository)

    Lan, Wei

    2012-02-03

    Endothelial cells play a key role in ischemia reperfusion injury. We investigated the effects of lidocaine on activated human umbilical vein endothelial cell (HUVEC) interleukin (IL)-1beta, IL-6, and IL-8 concentrations and intercellular adhesion molecule-1 (ICAM-1) expression. HUVECs were pretreated with different concentrations of lidocaine (0 to 0.5 mg\\/mL) for 60 min, thereafter tumor necrosis factor-alpha was added at a concentration of 2.5 ng\\/mL and the cells incubated for 4 h. Supernatants were harvested, and cytokine concentrations were analyzed by enzyme-linked immunosorbent assay. Endothelial ICAM-1 expression was analyzed by using flow cytometry. Differences were assessed using analysis of variance and post hoc unpaired Student\\'s t-test where appropriate. Lidocaine (0.5 mg\\/mL) decreased IL-1beta (1.89 +\\/- 0.11 versus 4.16 +\\/- 1.27 pg\\/mL; P = 0.009), IL-6 (65.5 +\\/- 5.14 versus 162 +\\/- 11.5 pg\\/mL; P < 0.001), and IL-8 (3869 +\\/- 785 versus 14,961 +\\/- 406 pg\\/mL; P < 0.001) concentrations compared with the control. IL-1beta, IL-6, and IL-8 concentrations in HUVECs treated with clinically relevant plasma concentrations of lidocaine (0.005 mg\\/mL) were similar to control. ICAM-1 expression on lidocaine-treated (0.05 mg\\/mL) HUVECs was less than on controls (198 +\\/- 52.7 versus 298 +\\/- 50.3; Mean Channel Fluorescence; P < 0.001). Activated endothelial IL-1beta, IL-6, and IL-8 concentrations and ICAM-1 expression are attenuated only by lidocaine at concentrations larger than clinically relevant concentrations.

  2. Expression of mucosal addressin cell adhesion molecule 1 on vascular endothelium of gastric mucosa in patients with nodular gastritis

    Institute of Scientific and Technical Information of China (English)

    Hiroshi Ohara; Takehiko Koji; Hiroshi Nagura; Shigeru Kohno; Hajime Isomoto; Chun-Yang Wen; Chieko Ejima; Masahiro Murata; Masanobu Miyazaki; Fuminao Takeshima; Yohei Mizuta; Ikuo Murata

    2003-01-01

    AIM: The interaction of mucosal addressin cell adhesion molecule 1 (MAdCAM-1) with integrin α4β7 mediates lymphocyte recruitment into mucosa-associated lymphoid tissue (MALT). Nodular gastritis is characterized by a unique military pattern on endoscopy representing increased numbers of lymphoid follicles with germinal center, strongly associated with H pylori infection. The purpose of this study was to address the implication of the MAdCAM-1/integrin β7 pathway in NG.METHODS: We studied 17 patients with NG and H pylori infection and 19 H pylori-positive and 14 H pylori-negative controls. A biopsy sample was taken from the antrum and snap-frozen for immunohistochemical analysis of MAdCAM1 and integrin β7. In simultaneous viewing of serial sections,the percentage of MAdCAM-1-positive to von Willebrand factor-positive vessels was calculated. We also performed immunostaining with anti-CD20, CD4, CD8 and CD68 antibodies to determine the lymphocyte subsets coexpressing integrin β7.RESULTS: Vascular endothelial MAdCAM-1 expression was more enhanced in gastric mucosa with than without H pylori infection. Of note, the percentages of MAdCAM-1-positive vessels were significantly higher in the lamina propria of NG patients than in H pylori-positive controls. Strong expression of MAdCAM-1 was identified adjacent to lymphoid follicles and dense lymphoid aggregates. Integrin β7-expressing mononuclear cells, mainly composed of CD20 and CD4 lymphocytes, were associated with vessels lined with MAdCAM-1-expressing endothelium.CONCLUSION: Our results suggest that the MAdCAM-1/integrin α4β7 homing system may participate in gastric inflammation in response to H pylori-infection and contributes to MALT formation, typically leading to the development of NG.

  3. A novel apoptosis correlated molecule: expression and characterization of protein Latcripin-1 from Lentinula edodes C(91-3).

    Science.gov (United States)

    Liu, Ben; Zhong, Mintao; Lun, Yongzhi; Wang, Xiaoli; Sun, Wenchang; Li, Xingyun; Ning, Anhong; Cao, Jing; Zhang, Wei; Liu, Lei; Huang, Min

    2012-01-01

    An apoptosis correlated molecule-protein Latcripin-1 of Lentinula edodes C(91-3)-was expressed and characterized in Pichia pastoris GS115. The total RNA was obtained from Lentinula edodes C(91-3). According to the transcriptome, the full-length gene of Latcripin-1 was isolated with 3'-Full Rapid Amplification of cDNA Ends (RACE) and 5'-Full RACE methods. The full-length gene was inserted into the secretory expression vector pPIC9K. The protein Latcripin-1 was expressed in Pichia pastoris GS115 and analyzed by Sodium Dodecylsulfonate Polyacrylate Gel Electrophoresis (SDS-PAGE) and Western blot. The Western blot showed that the protein was expressed successfully. The biological function of protein Latcripin-1 on A549 cells was studied with flow cytometry and the 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyl-tetrazolium Bromide (MTT) method. The toxic effect of protein Latcripin-1 was detected with the MTT method by co-culturing the characterized protein with chick embryo fibroblasts. The MTT assay results showed that there was a great difference between protein Latcripin-1 groups and the control group (p < 0.05). There was no toxic effect of the characterized protein on chick embryo fibroblasts. The flow cytometry showed that there was a significant difference between the protein groups of interest and the control group according to apoptosis function (p < 0.05). At the same time, cell ultrastructure observed by transmission electron microscopy supported the results of flow cytometry. The work demonstrates that protein Latcripin-1 can induce apoptosis of human lung cancer cells A549 and brings new insights into and advantages to finding anti-tumor proteins. PMID:22754362

  4. Sjogren's Syndrome Antigen B Acts as an Endogenous Danger Molecule to Induce Interleukin-8 Gene Expression in Polymorphonuclear Neutrophils.

    Directory of Open Access Journals (Sweden)

    Cheng-Han Wu

    Full Text Available Sjögren's syndrome antigen B is expressed in the nucleus and surface membrane of human polymorphonuclear neutrophils and is released after cell death. However, its biological role is not clear. This study is aimed to investigate the effect of Sjögren's syndrome antigen B on human polymorphonuclear neutrophils.Human recombinant Sjögren's syndrome antigen B (rSSB purified from E. coli was incubated with human polymorphonuclear neutrophils as well as retinoid acid-induced granulocytic differentiated HL-60 cells, HL-60 (RA. Interleukin (IL-8 protein production and mRNA expressions were measured by enzyme-linked immunosorbent assay and quantitative-polymerase chain reaction, respectively. Uptake of fluorescein isothiocyanate (FITC-rSSB was assessed by flow cytometry and fluorescence microscopy. Moreover, mitogen-activated protein kinase (MAPK pathways and nuclear factor-kappaB activation were investigated.Human rSSB stimulated IL-8 production from normal human neutrophils and HL-60 (RA cells in a time- and dose-dependent manner. This IL-8-stimulated activity was blocked by chloroquine and NH4Cl, indicating that endosomal acidification is important for this effect. We found rSSB activated both MAPK pathway and nuclear factor-kappaB signaling to transcribe the IL-8 gene expression of cells. Furthermore, tumor necrosis factor-α exerted an additive effect and rSSB-anti-SSB immune complex exhibited a synergistic effect on rSSB-induced IL-8 production.Sjögren's syndrome antigen B might act as an endogenous danger molecule to enhance IL-8 gene expression in human polymorphonuclear neutrophils.

  5. Activation of cord T lymphocytes. IV. Analysis of surface expression and functional role of 1F7 (CD26) molecule.

    Science.gov (United States)

    Gerli, R; Agea, E; Muscat, C; Ercolani, R; Bistoni, O; Tognellini, R; Mariggió, M A; Spinozzi, F; Bertotto, A

    1994-04-15

    A role for CD26 surface antigen (Ag) in both CD3- and CD2-mediated T cell activation has been previously demonstrated. To analyze the functional role of CD26 in the CD3- and CD2-induced activation pathways of cord T cells, which represent the most reliable source of Ag-unprimed T cells, we employed a newly developed anti-CD26 monoclonal antibody, termed anti-1F7, anti-CD3 and anti-CD2 in activating T lymphocytes. The results showed that CD26 Ag is expressed on the surface of almost all resting cord T cells and that its fluorescence intensity is enhanced by activation. The binding of anti-1F7 induced a decrease in CD26 membrane expression, with no detectable effect on the surface expression of other cord T cell-related molecules. Moreover, the modulation of CD26 resulted in an increase in anti-CD3-mediated cord T cell activation through an enhancement in intracellular calcium levels, IL-2 receptor expression, and IL-2 synthesis, whereas it had no effect on cord T cell activation induced by anti-CD2 or anti-CD2 plus exogenous IL-2. The fact that the selective involvement of CD26 in the activation pathway triggered by anti-CD3, but not anti-CD2, could be reversed by prior stimulation of cord T cells with anti-CD3 suggests that this functional feature, which resembles that of mature thymocytes, may be linked to the Ag-unprimed cell phenotype of cord T lymphocytes. PMID:7909498

  6. Anti-angiogenic activity in metastasis of human breast cancer cells irradiated by a proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyu-Shik; Shin, Jin-Sun; Nam, Kyung-Soo [Dongguk University, Gyeongju (Korea, Republic of); Shon, Yun-Hee [Kyungpook National University Hospital, Daegu (Korea, Republic of)

    2012-07-15

    Angiogenesis is an essential process of metastasis in human breast cancer. We investigated the effects of proton beam irradiation on angiogenic enzyme activities and their expressions in MCF-7 human breast cancer cells. The regulation of angiogenic regulating factors, of transforming growth factor-β (TGF-β) and of vesicular endothelial growth factor (VEGF) expression in breast cancer cells irradiated with a proton beam was studied. Aromatase activity and mRNA expression, which is correlated with metastasis, were significantly decreased by irradiation with a proton beam in a dose-dependent manner. TGF-β and VEGF transcriptions were also diminished by proton beam irradiation. In contrast, transcription of tissue inhibitors of matrix metalloproteinases (TIMPs), also known as biological inhibitors of matrix metalloproteinases (MMPs), was dose-dependently enhanced. Furthermore, an increase in the expression of TIMPs caused the MMP-9 activity to be diminished and the MMP-9 and the MMP-2 expressions to be decreased. These results suggest that inhibition of angiogenesis by proton beam irradiation in breast cancer cells is closely related to inhibitions of aromatase activity and transcription and to down-regulation of TGF-β and VEGF transcription.

  7. Anti-angiogenic activity in metastasis of human breast cancer cells irradiated by a proton beam

    Science.gov (United States)

    Lee, Kyu-Shik; Shin, Jin-Sun; Nam, Kyung-Soo; Shon, Yun-Hee

    2012-07-01

    Angiogenesis is an essential process of metastasis in human breast cancer. We investigated the effects of proton beam irradiation on angiogenic enzyme activities and their expressions in MCF-7 human breast cancer cells. The regulation of angiogenic regulating factors, of transforming growth factor- β (TGF- β) and of vesicular endothelial growth factor (VEGF) expression in breast cancer cells irradiated with a proton beam was studied. Aromatase activity and mRNA expression, which is correlated with metastasis, were significantly decreased by irradiation with a proton beam in a dose-dependent manner. TGF- β and VEGF transcriptions were also diminished by proton beam irradiation. In contrast, transcription of tissue inhibitors of matrix metalloproteinases (TIMPs), also known as biological inhibitors of matrix metalloproteinases (MMPs), was dose-dependently enhanced. Furthermore, an increase in the expression of TIMPs caused th MMP-9 activity to be diminished and the MMP-9 and the MMP-2 expressions to be decreased. These results suggest that inhibition of angiogenesis by proton beam irradiation in breast cancer cells is closely related to inhibitions of aromatase activity and transcription and to down-regulation of TGF- β and VEGF transcription.

  8. Anti-angiogenic activity in metastasis of human breast cancer cells irradiated by a proton beam

    International Nuclear Information System (INIS)

    Angiogenesis is an essential process of metastasis in human breast cancer. We investigated the effects of proton beam irradiation on angiogenic enzyme activities and their expressions in MCF-7 human breast cancer cells. The regulation of angiogenic regulating factors, of transforming growth factor-β (TGF-β) and of vesicular endothelial growth factor (VEGF) expression in breast cancer cells irradiated with a proton beam was studied. Aromatase activity and mRNA expression, which is correlated with metastasis, were significantly decreased by irradiation with a proton beam in a dose-dependent manner. TGF-β and VEGF transcriptions were also diminished by proton beam irradiation. In contrast, transcription of tissue inhibitors of matrix metalloproteinases (TIMPs), also known as biological inhibitors of matrix metalloproteinases (MMPs), was dose-dependently enhanced. Furthermore, an increase in the expression of TIMPs caused the MMP-9 activity to be diminished and the MMP-9 and the MMP-2 expressions to be decreased. These results suggest that inhibition of angiogenesis by proton beam irradiation in breast cancer cells is closely related to inhibitions of aromatase activity and transcription and to down-regulation of TGF-β and VEGF transcription.

  9. Therapeutic application of anti-angiogenic nanomaterials in cancers

    Science.gov (United States)

    Mukherjee, Sudip; Patra, Chitta Ranjan

    2016-06-01

    Angiogenesis, the formation of new blood vessels from pre-existing vasculature, plays a vital role in physiological and pathological processes (embryonic development, wound healing, tumor growth and metastasis). The overall balance of angiogenesis inside the human body is maintained by pro- and anti-angiogenic signals. The processes by which drugs inhibit angiogenesis as well as tumor growth are called the anti-angiogenesis technique, a most promising cancer treatment strategy. Over the last couple of decades, scientists have been developing angiogenesis inhibitors for the treatment of cancers. However, conventional anti-angiogenic therapy has several limitations including drug resistance that can create problems for a successful therapeutic strategy. Therefore, a new comprehensive treatment strategy using antiangiogenic agents for the treatment of cancer is urgently needed. Recently researchers have been developing and designing several nanoparticles that show anti-angiogenic properties. These nanomedicines could be useful as an alternative strategy for the treatment of various cancers using anti-angiogenic therapy. In this review article, we critically focus on the potential application of anti-angiogenic nanomaterial and nanoparticle based drug/siRNA/peptide delivery systems in cancer therapeutics. We also discuss the basic and clinical perspectives of anti-angiogenesis therapy, highlighting its importance in tumor angiogenesis, current status and future prospects and challenges.Angiogenesis, the formation of new blood vessels from pre-existing vasculature, plays a vital role in physiological and pathological processes (embryonic development, wound healing, tumor growth and metastasis). The overall balance of angiogenesis inside the human body is maintained by pro- and anti-angiogenic signals. The processes by which drugs inhibit angiogenesis as well as tumor growth are called the anti-angiogenesis technique, a most promising cancer treatment strategy. Over the

  10. Stroke Status Evoked Adhesion Molecule Genetic Alterations in Astrocytes Isolated from Stroke-Prone Spontaneously Hypertensive Rats and the Apigenin Inhibition of Their Expression

    Directory of Open Access Journals (Sweden)

    Kazuo Yamagata

    2010-01-01

    Full Text Available We examined the possibility that the expression of adhesion molecules is regulated differently in cultured astrocytes from stroke-prone spontaneously hypertensive rats (SHRSP/IZM rats than in those from Wistar Kyoto rats (WKY/IZM by tumor necrosis factor-alpha (TNF- or hypoxia and reoxygenation (H/R and the inhibitory effects of apigenin. It was found that the expression of vascular cell adhesion molecule-1 (VCAM-1 by TNF- in astrocytes isolated from SHRSP/IZM was increased compared with that in WKY/IZM. The expression of monocyte chemotactic protein-1 (MCP-1 mRNA induced by H/R in SHRSP/IZM astrocytes was increased compared with that in normal oxygen concentrations. Apigenin strongly attenuated TNF--induced VCAM-1 mRNA and protein expression and suppressed the adhesion of U937 cells and SHRSP/IZM astrocytes. These results suggest that the expression levels of adhesion molecules during H/R affect disease outcome and can drive SHRSP/IZM to stroke. It is suggested that apigenin regulates adhesion molecule expression in reactive astrocytes during ischemia.

  11. Inhibition of Rho-Associated Protein Kinase Increases the Angiogenic Potential of Mesenchymal Stem Cell Aggregates via Paracrine Effects.

    Science.gov (United States)

    Hong, Soyoung; Lee, Jae Yeon; Hwang, Changmo; Shin, Jennifer H; Park, Yongdoo

    2016-02-01

    The aggregation of multiple cells, such as mesenchymal condensation, is an important biological process in skeletal muscle development, osteogenesis, and adipogenesis. Due to limited in vivo study model systems, a simple and effective in vitro three-dimensional (3D) aggregation system is required to study the mechanisms of multicellular aggregation and its applications. We first generated controlled mesenchymal stem cell (MSC) aggregates using a bioprinting technique to monitor their aggregation and sprouting. We induced the angiogenic potential of the MSCs through chemical inhibition of the Rho/Rho-associated protein kinase (ROCK) pathway, which led to hairy sprouting in the aggregates. The angiogenic potential of this 3D construct was then tested by subcutaneously implanting the Matrigel with 3D MSC aggregates in a rat. Treatment of 3D MSCs with the ROCK inhibitor, Y27632, increased their angiogenic activity in vivo. The gene expressions and histological staining indicated that angiogenesis and neovascularization were mainly regulated by the paracrine factors secreted from human 3D MSC constructs. Our results demonstrate the enhancement of the angiogenic potential of the MSC constructs through the secretion of vascular endothelial growth factor (VEGF) and epidermal growth factor (EGF) by the inhibition of the Rho/ROCK pathway. PMID:26592750

  12. Cytotoxicity, oxidative stress and expression of adhesion molecules in human umbilical vein endothelial cells exposed to dust from paints with or without nanoparticles

    DEFF Research Database (Denmark)

    Mikkelsen, Lone; Jensen, Keld A; Koponen, Ismo K;

    2013-01-01

    were exposed to primary nanoparticles (fine, photocatalytic or nanosized TiO(2), aluminium silicate, carbon black, nano-silicasol or axilate) and dust from sanding reference- or nanoparticle-containing paints. Most of the samples increased cell surface expressions of vascular cell adhesion molecule-1......Abstract Nanoparticles in primary form and nanoproducts might elicit different toxicological responses. We compared paint-related nanoparticles with respect to effects on endothelial oxidative stress, cytotoxicity and cell adhesion molecule expression. Primary human umbilical vein endothelial cells...... conclusion, sanding dust from nanoparticle-containing paint did not generate more oxidative stress or expression of cell adhesion molecules than sanding dust from paint without nanoparticles, whereas the primary particles had the largest effect on mass basis....

  13. Re-evaluation of the PBAN receptor (PBANR molecule: characterization of PBANR variants expressed in the pheromone glands of moths

    Directory of Open Access Journals (Sweden)

    Jae Min Lee

    2012-01-01

    Full Text Available Sex pheromone production in most moths is initiated following pheromone biosynthesis activating neuropeptide receptor (PBANR activation. PBANR was initially cloned from pheromone glands (PGs of Helicoverpa zea and Bombyx mori. The B. mori PBANR is characterized by a relatively long C-terminus that is essential for ligand-induced internalization, whereas the H. zea PBANR has a shorter C-terminus that lacks features present in the B. mori PBANR critical for internalization. Multiple PBANRs have been reported to be concurrently expressed in the larval CNS of Heliothis virescens. In the current study, we sought to examine the prevalence of multiple PBANRs in the PGs of three moths and to ascertain their potential functional relevance. Multiple PBANR variants (As, A, B, and C were cloned from the PGs of all species examined with PBANR-C the most highly expressed. Alternative splicing of the C-terminal coding sequence of the PBAN gene gives rise to the variants, which are distinguishable only by the length and composition of their respective C-terminal tails. Transient expression of fluorescent PBANR chimeras in insect cells revealed that PBANR-B and PBANR-C localized exclusively to the cell surface while PBANR-As and PBANR-A exhibited varying degrees of cytosolic localization. Similarly, only the PBANR-B and PBANR-C variants underwent ligand-induced internalization. Taken together, our results suggest that PBANR-C is the principal receptor molecule involved in PBAN signaling regardless of moth species. The high GC content of the C-terminal coding sequence in the B and C variants, which makes amplification using conventional polymerases difficult, likely accounts for previous preferential amplification of PBANR-A like receptors from other species.

  14. Short-term hypoxia/reoxygenation activates the angiogenic pathway in rat caudate putamen

    Indian Academy of Sciences (India)

    F Molina; A Rus; Ma Peinado; ML del Moral

    2013-06-01

    In response to hypoxia, tissues have to implement numerous mechanisms to enhance oxygen delivery, including the activation of angiogenesis. This work investigates the angiogenic response of the hypoxic caudate putamen after several recovery times. Adult Wistar rats were submitted to acute hypoxia and analysed after 0 h, 24 h and 5 days of reoxygenation. Expression of hypoxia-inducible factor-1 alfa (HIF-1) and angiogenesis-related genes including vascular endothelial growth factor (VEGF), adrenomedullin (ADM) and transforming growth factor-beta 1 (TGF-1) was determined by both RT-PCR and ELISA. For vessel labelling, lectin location and expression were analysed using histochemical and image processing techniques (fractal dimension). Expression of Hif-1, Vegf, Adm and Tgf- 1 mRNA rose immediately after hypoxia and this increase persisted in some cases after 5 days post-hypoxia. While VEGF and TGF-1 protein levels increased parallel to mRNA expression, ADM remained unaltered. The quantification of the striatal vessel network showed a significant augmentation at 24 h of reoxygenation. These results reveal that not only short-term hypoxia, but also the subsequent reoxygenation period, up-regulate the angiogenic pathway in the rat caudate putamen as a neuroprotective mechanism to hypoxia that seeks to maintain a proper blood supply to the hypoxic tissue, thereby minimizing the adverse effects of oxygen deprivation.

  15. Investigation of molecular mechanisms and regulatory pathways of pro-angiogenic nanorods

    Science.gov (United States)

    Nethi, Susheel Kumar; Veeriah, Vimal; Barui, Ayan Kumar; Rajendran, Saranya; Mattapally, Saidulu; Misra, Sanjay; Chatterjee, Suvro; Patra, Chitta Ranjan

    2015-05-01

    Angiogenesis, a process involving the growth of new blood vessels from the pre-existing vasculature, plays a crucial role in various pathophysiological conditions. We have previously demonstrated that europium hydroxide [EuIII(OH)3] nanorods (EHNs) exhibit pro-angiogenic properties through the generation of reactive oxygen species (ROS) and mitogen activated protein kinase (MAPK) activation. Considering the enormous implication of angiogenesis in cardiovascular diseases (CVDs) and cancer, it is essential to understand in-depth molecular mechanisms and signaling pathways in order to develop the most efficient and effective alternative treatment strategy for CVDs. However, the exact underlying mechanism and cascade signaling pathways behind the pro-angiogenic properties exhibited by EHNs still remain unclear. Herein, we report for the first time that the hydrogen peroxide (H2O2), a redox signaling molecule, generated by these EHNs activates the endothelial nitric oxide synthase (eNOS) that promotes the nitric oxide (NO) production in a PI3K (phosphoinositide 3-kinase)/Akt dependent manner, eventually triggering angiogenesis. We intensely believe that the investigation and understanding of the in-depth molecular mechanism and signaling pathways of EHNs induced angiogenesis will help us in developing an effective alternative treatment strategy for cardiovascular related and ischemic diseases where angiogenesis plays an important role.Angiogenesis, a process involving the growth of new blood vessels from the pre-existing vasculature, plays a crucial role in various pathophysiological conditions. We have previously demonstrated that europium hydroxide [EuIII(OH)3] nanorods (EHNs) exhibit pro-angiogenic properties through the generation of reactive oxygen species (ROS) and mitogen activated protein kinase (MAPK) activation. Considering the enormous implication of angiogenesis in cardiovascular diseases (CVDs) and cancer, it is essential to understand in-depth molecular

  16. Impairment of Angiogenic Sphingosine Kinase-1/Sphingosine-1-Phosphate Receptors Pathway in Preeclampsia

    Science.gov (United States)

    Dobierzewska, Aneta; Palominos, Macarena; Sanchez, Marianela; Dyhr, Michael; Helgert, Katja; Venegas-Araneda, Pia; Tong, Stephen; Illanes, Sebastian E.

    2016-01-01

    Preeclampsia (PE), is a serious pregnancy disorder characterized in the early gestation by shallow trophoblast invasion, impaired placental neo-angiogenesis, placental hypoxia and ischemia, which leads to maternal and fetal morbidity and mortality. Here we hypothesized that angiogenic sphingosine kinase-1 (SPHK1)/sphingosine-1-phosphate (S1P) receptors pathway is impaired in PE. We found that SPHK1 mRNA and protein expression are down-regulated in term placentae and term chorionic villous explants from patients with PE or severe PE (PES), compared with controls. Moreover, mRNA expression of angiogenic S1PR1 and S1PR3 receptors were decreased in placental samples of PE and PES patients, whereas anti-angiogenic S1PR2 was up-regulated in chorionic villous tissue of PES subjects, pointing to its potential atherogenic and inflammatory properties. Furthermore, in in vitro (JAR cells) and ex vivo (chorionic villous explants) models of placental hypoxia, SPHK1 mRNA and protein were strongly up-regulated under low oxygen tension (1% 02). In contrast, there was no change in SPHK1 expression under the conditions of placental physiological hypoxia (8% 02). In both models, nuclear protein levels of HIF1A were increased at 1% 02 during the time course, but there was no up-regulation at 8% 02, suggesting that SPHK1 and HIF1A might be the part of the same canonical pathway during hypoxia and that both contribute to placental neovascularization during early gestation. Taken together, this study suggest the SPHK1 pathway may play a role in the human early placentation process and may be involved in the pathogenesis of PE. PMID:27284992

  17. The effect of lidocaine on in vitro neutrophil and endothelial adhesion molecule expression induced by plasma obtained during tourniquet-induced ischaemia and reperfusion.

    LENUS (Irish Health Repository)

    Lan, W

    2012-02-03

    BACKGROUND: Changes in neutrophil and endothelial adhesion molecule expression occur during perioperative ischaemia and reperfusion (I\\/R) injury. We investigated the effects of lidocaine on neutrophil-independent changes in neutrophil and endothelial adhesion molecule expression associated with tourniquet-induced I\\/R. METHODS: Plasma was obtained from venous blood samples (tourniquet arm) taken before (baseline), during, 15 min, 2 and 24 h following tourniquet release in seven patients undergoing elective upper limb surgery with tourniquet application. Isolated neutrophils from healthy volunteers (n = 7) were pretreated in the presence or absence of lidocaine (0.005, 0.05 and 0.5 mg mL(-1) for 1 h, and then incubated with I\\/R plasma for 2 h. Human umbilical vein endothelial cells (HUVECs) were pretreated in the presence or absence of lidocaine (0.005, 0.05 and 0.5 mg mL(-1)) for 1 h, and then incubated with the plasma for 4 h. Adhesion molecule expression was estimated using flow cytometry. Data were analysed using ANOVA and post hoc Student-Newman-Keuls tests. RESULTS: I\\/R plasma (withdrawn 15 min following tourniquet release) increased isolated neutrophil CD11b (P = 0.03), CD18 (P = 0.01) and endothelial intercellular adhesion molecule-1 (ICAM-1) (P = 0.008) expression compared to baseline. CD11b, CD18 and ICAM-1 expression on lidocaine (0.005 mg mL(-1)) treated neutrophils was similar to control. CD11b (P < 0.001), CD18 (P = 0.03) and ICAM-1 (P = 0.002) expression on lidocaine (0.05 mg mL(-1)) treated neutrophils and HUVECs was less than that on controls. CONCLUSION: Increased in vitro neutrophil and endothelial cell adhesion molecule expression on exposure to plasma obtained during the early reperfusion phase is diminished by lidocaine at greater than clinically relevant plasma concentrations.

  18. Anti-angiogenic and anti-inflammatory effects of SERPINA3K on corneal injury.

    Directory of Open Access Journals (Sweden)

    Xiaochen Liu

    Full Text Available SERPINA3K is a member of the serine proteinase inhibitor (SERPIN family. Here we evaluated the therapeutic effects of SERPINA3K on neovascularization and inflammation in a rat cornea alkali burn model that is commonly employed to study corneal wounding. Topical treatment of the injured rat cornea with SERPINA3K (20 µg/eye/day for 7 days significantly decreased the neovascular area, compared with the groups treated with BSA or PBS. The SERPINA3K treatment also ameliorated the corneal inflammation as evaluated by the inflammatory index. Furthermore, SERPINA3K enhanced the recovery of corneal epithelium after the alkali injury. Toward the mechanism of action, SERPINA3K down-regulated the expression of the pro-angiogenic and pro-inflammatory factors, vascular endothelial growth factor and tumor necrosis factor-α and up-regulated the expression of the anti-angiogenic factor, pigment epithelium-derived factor. SERPINA3K specifically inhibited growth of vascular endothelial cells. Meanwhile, SERPINA3K significantly up-regulated the expression of EGFR in the corneal epithelium. These findings suggest that SERPINA3K has therapeutic potential for corneal inflammation and NV.

  19. Differential Expression of Extracellular Matrix and Adhesion Molecules in Fetal-Origin Amniotic Epithelial Cells of Preeclamptic Pregnancy.

    Science.gov (United States)

    Kim, Myung-Sun; Yu, Ji Hea; Lee, Min-Young; Kim, Ah Leum; Jo, Mi Hyun; Kim, MinGi; Cho, Sung-Rae; Kim, Young-Han

    2016-01-01

    Preeclampsia is a common disease that can occur during human pregnancy and is a leading cause of both maternal and neonatal morbidity and mortality. Inadequate trophoblast invasion and deficient remodeling of uterine spiral arteries are associated with preeclampsia (PE). The development of this syndrome is thought to be related to multiple factors. Recently, we isolated patient-specific human amniotic epithelial cells (AECs) from the placentas of 3 women with normal pregnancy and 3 with preeclamptic pregnancy. Since the characteristics of human AECs in PE are different from those in normal pregnancy, we sought to confirm the genes differentially expressed between preeclamptic pregnancy and normal pregnancy. Therefore, we performed transcriptome analysis to investigate the candidate genes associated with the possible pathophysiology of preeclampsia. Pathway analysis was performed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) and Kyoto Encyclopedia of Genes and Genomes (KEGG) online resource. In this study, we selected a total of 12 pathways and focused on extracellular matrix-related and biological adhesion molecules. Using RT-PCR array and real-time PCR, we confirmed that COL16A1, ITGB2, and LAMA3 were significantly up-regulated, but ITGA1, ITGA3, ITGA6, MMP1, MMP3, MMP10 and MMP11 were significantly down-regulated in preeclamptic fetal origin cells. Taken together, we suggest that the genes and pathways identified here may be responsible for the occurrence and development of PE, and controlling their expression may play a role in communication with fetal-maternal placenta to keep normal pregnancy. PMID:27218821

  20. Differential Expression of Extracellular Matrix and Adhesion Molecules in Fetal-Origin Amniotic Epithelial Cells of Preeclamptic Pregnancy.

    Directory of Open Access Journals (Sweden)

    Myung-Sun Kim

    Full Text Available Preeclampsia is a common disease that can occur during human pregnancy and is a leading cause of both maternal and neonatal morbidity and mortality. Inadequate trophoblast invasion and deficient remodeling of uterine spiral arteries are associated with preeclampsia (PE. The development of this syndrome is thought to be related to multiple factors. Recently, we isolated patient-specific human amniotic epithelial cells (AECs from the placentas of 3 women with normal pregnancy and 3 with preeclamptic pregnancy. Since the characteristics of human AECs in PE are different from those in normal pregnancy, we sought to confirm the genes differentially expressed between preeclamptic pregnancy and normal pregnancy. Therefore, we performed transcriptome analysis to investigate the candidate genes associated with the possible pathophysiology of preeclampsia. Pathway analysis was performed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID and Kyoto Encyclopedia of Genes and Genomes (KEGG online resource. In this study, we selected a total of 12 pathways and focused on extracellular matrix-related and biological adhesion molecules. Using RT-PCR array and real-time PCR, we confirmed that COL16A1, ITGB2, and LAMA3 were significantly up-regulated, but ITGA1, ITGA3, ITGA6, MMP1, MMP3, MMP10 and MMP11 were significantly down-regulated in preeclamptic fetal origin cells. Taken together, we suggest that the genes and pathways identified here may be responsible for the occurrence and development of PE, and controlling their expression may play a role in communication with fetal-maternal placenta to keep normal pregnancy.

  1. Evaluation of a collagen-chitosan hydrogel for potential use as a pro-angiogenic site for islet transplantation.

    Directory of Open Access Journals (Sweden)

    Joanne E McBane

    Full Text Available Islet transplantation to treat type 1 diabetes (T1D has shown varied long-term success, due in part to insufficient blood supply to maintain the islets. In the current study, collagen and collagen:chitosan (10:1 hydrogels, +/- circulating angiogenic cells (CACs, were compared for their ability to produce a pro-angiogenic environment in a streptozotocin-induced mouse model of T1D. Initial characterization showed that collagen-chitosan gels were mechanically stronger than the collagen gels (0.7 kPa vs. 0.4 kPa elastic modulus, respectively, had more cross-links (9.2 vs. 7.4/µm(2, and were degraded more slowly by collagenase. After gelation with CACs, live/dead staining showed greater CAC viability in the collagen-chitosan gels after 18 h compared to collagen (79% vs. 69%. In vivo, collagen-chitosan gels, subcutaneously implanted for up to 6 weeks in a T1D mouse, showed increased levels of pro-angiogenic cytokines over time. By 6 weeks, anti-islet cytokine levels were decreased in all matrix formulations ± CACs. The 6-week implants demonstrated increased expression of VCAM-1 in collagen-chitosan implants. Despite this, infiltrating vWF(+ and CXCR4(+ angiogenic cell numbers were not different between the implant types, which may be due to a delayed and reduced cytokine response in a T1D versus non-diabetic setting. The mechanical, degradation and cytokine data all suggest that the collagen-chitosan gel may be a suitable candidate for use as a pro-angiogenic ectopic islet transplant site.

  2. Imaging of platelet-derived growth factor receptor β expression in glioblastoma xenografts using affibody molecule 111In-DOTA-Z09591

    OpenAIRE

    TOLMACHEV, VLADIMIR; Varasteh, Zohreh; HONARVAR, HADIS; Hosseinimehr, Seyed Jalal; Eriksson, Olof; Jonasson, Per; Frejd, Fredrik Y.; Abrahmsen, Lars; ORLOVA, ANNA

    2014-01-01

    The overexpression and excessive signaling of platelet-derived growth factor receptor β (PDGFRβ) has been detected in cancers, atherosclerosis, and a variety of fibrotic diseases. Radionuclide in vivo visualization of PDGFRβ expression might help to select PDGFRβ targeting treatment for these diseases. The goal of this study was to evaluate the feasibility of in vivo radionuclide imaging of PDGFRβ expression using an Affibody molecule, a small nonimmunoglobulin affinity protein. Methods The P...

  3. The influence of propofol on the expression of intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) in reoxygenated human umbilical vein endothelial cells.

    LENUS (Irish Health Repository)

    Corcoran, T B

    2012-02-03

    BACKGROUND: Leucocytes are a pivotal component of the inflammatory cascade that results in tissue injury in a large group of disorders. Free radical production and endothelial activation promote leucocyte-endothelium interactions via endothelial expression of vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) which augment these processes, particularly in the setting of reperfusion injury. Propofol has antioxidant properties which may attenuate the increased expression of these molecules that is observed. METHODS: Cultured human umbilical vein endothelial cells were exposed to 20 h of hypoxia, then returned to normoxic conditions. Cells were treated with saline, Diprivan 5 microg mL(-1) or propofol 5 microg mL(-1), for 4 h after reoxygenation and were examined for ICAM-1 and VCAM-1 expression. RESULTS: Hypoxia did not increase the expression of ICAM-1\\/VCAM-1. ICAM-1 expression peaked 12 h after reoxygenation (21.75(0.6) vs. 9.6(1.3), P = 0.02). Propofol, but not Diprivan, prevented this increase (8.2(2.9) vs. 21.75(0.6), P = 0.009). VCAM-1 expression peaked 24 h after reoxygenation (9.8(0.9) vs. 6.6(0.6), P = 0.03). Propofol and Diprivan prevented this increase, with no difference between the two treatments observed (4.3(0.3) and 6.4(0.5) vs. 9.8(0.9), P = 0.001, 0.02, respectively). CONCLUSION: These effects are likely to be attributable to the antioxidant properties of propofol, and suggest that propofol may have a protective role in disorders where free radical mediated injury promotes leucocyte-endothelium adhesive interactions.

  4. MiR-29a modulates the angiogenic properties of human endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zeran [Department of Pathology, Zhejiang University School of Medicine, Hangzhou 310058,China (China); Wu, Lingjiao [State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou (China); Zhu, Xiuming [Department of Chemotherapy, Zhejiang Provincial People’s Hospital, Hangzhou (China); Xu, Jie [Department of Surgical Oncology, Anqing Municipal Hospital, Anqing (China); Jin, Rong; Li, Guohong [Department of Neurosurgery and Physiology, LSU Health Science Center, Shreveport, LA, United States of America (United States); Wu, Fusheng, E-mail: wufusheng@zju.edu.cn [Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University, Hangzhou (China)

    2013-04-26

    Highlights: •miR-29a may be stimulated by hypoxia in HUVEC. •miR-29a regulates cell cycle, proliferation and tube network formation of HUVEC. •HMG box-containing protein-1(HBP1) is a direct target of miR-29a. •miR-29a has a potential value for treating angiogenesis-associated diseases. -- Abstract: Although extensive investigation has been made on miR-29a in relation to malignancies, only a little information has been provided about the angiogenic property of this miRNA so far. Herein, we sought to investigate the role of miR-29a in regulating cell cycle and angiogenic phenotype of endothelial cells. The results showed that miR-29a is highly expressed and upregulated by hypoxia-mimicking reagents in human umbilical vein endothelial cells (HUVEC). Consistent with this preliminary finding, introduction of exogenous agomiR-29a, or Antagomir-29a altered cell cycle progression and promoted, or repressed the proliferation and tube formation of HUVEC, respectively. Furthermore, by using luciferase reporter assay, the expression of HBP1, a suppressor transcription factor was directly regulated by miR-29a through 3′-UTR. Increased or decreased HBP1 protein level was associated with the inhibition or overexpression of miR-29a, respectively. We conclude that miR-29a has a significant role in regulating cell cycle, proliferation and angiogenic properties of HUVEC, and this function is likely mediated through HBP1 protein at the post-transcriptional level. As a novel molecular target, miR-29a may have a potential value for the treatment of angiogenesis-associated diseases such as cardiovascular diseases and cancers.

  5. Latest Results for Anti-Angiogenic Drugs in Cancer Treatment

    DEFF Research Database (Denmark)

    Frandsen, Sofie; Kopp, Sascha; Wehland, Markus;

    2016-01-01

    and gastrointestinal cancers. Furthermore, there will be a discussion of unsolved problems, such as lack of biomarkers, drug resistance, and adverse events, for which a solution is necessary in order to improve the benefit of anti-angiogenic drugs in the future. RESULTS: Anti-angiogenic therapy is extensively used...... in the treatment of cancer. There is evidence that drug-induced hypertension serves as a biomarker for a good response to therapy. Currently several possible anti-angiogenic biomarkers are under discussion. Further examples are changes in VEGF or interleukin [IL]-8 polymorphisms, changed plasma levels of VEGF......, or tumor microvessel density. To overcome therapy-associated problems, more research for valid biomarkers is necessary. In addition, a strategy to overcome resistance problems and severe adverse events is desirable. CONCLUSIONS: Clinical trials evaluating targeted therapies with specificity for resistance...

  6. Psychological stress increases expression of aortic plaque intercellular adhesion molecule-1 and serum inflammatory cytokines in atherosclerotic rabbit model

    Institute of Scientific and Technical Information of China (English)

    Muwei Li; Xianpei Wang; Lei Yang; Chuanyu Gao; Yexin Ma

    2008-01-01

    Plaque rupture,platelet aggregation,and thrombogenesis are the main mechanisms of acute coronary syndrome (ACS),and inflammation factors play key roles in plaque unstability.Psychological stress promotes acute inflammatory response,leading to increased circulating levels of C-reactive protein (CRP),IL-6,and serum intercellular adhesion molecule (sICAM)-1.But it is not clear that whether psychological stress has a direct effect on atherosclerotic plaque stability.The purpose of this study was to investigate effects of chronic psychological stress on inflammatory marker (ICAM-1 ) in atherosclerotic plaque,and inflammatory markers in peripheral blood.Materials and methods Sixty male rabbits were randomized into 2 groups:the control group (n =10) and the atherosclerotic group (n =50).The latter were fed on high fatty diet and were given a large dose of vitamin D3 (3 600 000IU/kg) via intraperitoneal injection.After 8 weeks,the atherosclerotic model was estaslished.Then the 50 atherosclerotic model rabbits were divided into 3 subgroups:no-stress subgroup (n = 16),physiological stress subgroup (n = 16) and psychological stress subgroup (n =18).In physiological stress subgroup and psychological stress subgroup,drinking was cut from twice a day to once a day.At the same time,psychological stress subgroup was given empty bottle stress,and this process lasted for 2 weeks.One hour after the last stress,the blood samples were collected and the serum levels of CRP,IL-6 amd ICAM-1 were tested by radioimmunoassay or enzyme linked immunosorbent assay.The aorta and heart were extracted for pathology examination,and the express of ICAM-1 was tested by immunohistochemical examination.Results (1) After effective atherosclerotic animal model construction,the expression of ICAM-1 in aorta was higher in atherosclerotic group than that in control group (P<0.01),and was notably higher in psychological stress subgroup than that in no-stress subgroup or in physiological stress subgroup (2

  7. Establishment of canine hemangiosarcoma xenograft models expressing endothelial growth factors, their receptors, and angiogenesis-associated homeobox genes

    International Nuclear Information System (INIS)

    Human hemangiosarcoma (HSA) tends to have a poor prognosis; its tumorigenesis has not been elucidated, as there is a dearth of HSA clinical specimens and no experimental model for HSA. However, the incidence of spontaneous HSA is relatively high in canines; therefore, canine HSA has been useful in the study of human HSA. Recently, the production of angiogenic growth factors and their receptors in human and canine HSA has been reported. Moreover, the growth-factor environment of HSA is very similar to that of pathophysiological angiogenesis, which some homeobox genes regulate in the transcription of angiogenic molecules. In the present study, we established 6 xenograft canine HSA tumors and detected the expression of growth factors, their receptors, and angiogenic homeobox genes. Six primary canine HSAs were xenografted to nude mice subcutaneously and serially transplanted. Subsequently, the expressions of vascular endothelial growth factor (VEGF)-A, basic fibroblast growth factors (bFGF), flt-1 and flk-1 (receptors of VEGF-A), FGFR-1, and angiogenic homeobox genes HoxA9, HoxB3, HoxB7, HoxD3, Pbx1, and Meis1 were investigated in original and xenograft tumors by histopathology, immunostaining, and reverse transcription polymerase chain reaction (RT-PCR), using canine-specific primer sets. Histopathologically, xenograft tumors comprised a proliferation of neoplastic cells that were varied in shape, from spindle-shaped and polygonal to ovoid; some vascular-like structures and vascular clefts of channels were observed, similar to those in the original tumors. The expression of endothelial markers (CD31 and vWF) was detected in xenograft tumors by immunohistochemistry and RT-PCR. Moreover, the expression of VEGF-A, bFGF, flt-1, flk-1, FGFR-1, HoxA9, HoxB3, HoxB7, HoxD3, Pbx1, and Meis1 was detected in xenograft tumors. Interestingly, expressions of bFGF tended to be higher in 3 of the xenograft HSA tumors than in the other tumors. We established 6 xenograft canine HSA

  8. Peptide motifs of the single dominantly expressed class I molecule explain the striking MHC-determined response to Rous sarcoma virus in chickens

    DEFF Research Database (Denmark)

    Wallny, Hans-Joachim; Avila, David; Hunt, Lawrence G.;

    2006-01-01

    Compared with the MHC of typical mammals, the chicken MHC is smaller and simpler, with only two class I genes found in the B12 haplotype. We make five points to show that there is a single-dominantly expressed class I molecule that can have a strong effect on MHC function. First, we find only one...

  9. Expression of deleted in malignant brain tumor-1 (DMBT1) molecule in biliary epithelium is augmented in hepatolithiasis: possible participation in lithogenesis

    DEFF Research Database (Denmark)

    Sasaki, Motoko; Huang, Shiu-Feng; Chen, Miin-Fu;

    2003-01-01

    Deleted in malignant brain tumor-1 (DMBT1) is a mucin-like molecule participating in mucosal immune defense. Given that bovine gallbladder mucin, which accelerates cholesterol crystallization, is a DMBT1 homolog, DMBT1 expression was examined immunohistochemically in biliary epithelial cells in l...

  10. Spatial and temporal expression patterns of the epithelial cell adhesion molecule (EpCAM/EGP-2) in developing and adult kidneys

    NARCIS (Netherlands)

    Trzpis, Monika; Popa, Eliane R.; McLaughlin, Pamela M. J.; Van Goor, Harry; Timmer, Albertus; Bosman, Gerrit W.; De Leij, Lou M. F. H.; Harmsen, Martin C.

    2007-01-01

    Background: The epithelial cell adhesion molecule (EpCAM) is expressed by most epithelia and is involved in processes fundamental for morphogenesis, including cell-cell adhesion, proliferation, differentiation, and migration. Previously, a role for EpCAM in pancreatic morphogenesis was confirmed in

  11. Injectable osteogenic and angiogenic nanocomposite hydrogels for irregular bone defects.

    Science.gov (United States)

    Vishnu Priya, M; Sivshanmugam, A; Boccaccini, A R; Goudouri, O M; Sun, Wook; Hwang, Nathaniel; Deepthi, S; Nair, Shantikumar V; Jayakumar, R

    2016-01-01

    Injectable hydrogels with their 3D structure and good moldability serve as excellent scaffolding material for regenerating irregular non load-bearing bone defects. Most of the bone defects do not heal completely due to the lack of vasculature required for the transport of nutrients and oxygen to the regenerating tissues. To enhance vasculature, we developed an injectable hydrogel system made of chitin and poly (butylene succinate) (PBSu) loaded with 250  ±  20 nm sized fibrin nanoparticles (FNPs) and magnesium-doped bioglass (MBG). FNPs were expected to enhance vascularisation and MBG was expected to help induce early osteogenesis. Composite hydrogels were analysed using Fourier transform infra-red spectroscopy, scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy, and rheology. Hydrogels with MBG showed a slightly rougher morphology upon SEM analysis. Composites containing 5% MBG and 2% FNPs showed good rheological properties, injectability, temperature stability, biomineralization and protein adsorption. Human umbilical vein endothelial cells (HUVECs) and rabbit-adipose derived mesenchymal stem cells (rASCs) were used for cyto-compatibility studies. Composite gels with 2% FNPs and 2% MBG (composite 1) were considered to be non-toxic to both the cells and were taken for further in vitro studies. Aortic ring assay was carried out to study the angiogenic potential of the hydrogels. The aorta placed with composite hydrogels showed enhanced sprouting of blood vessels. rASCs too showed good spreading on the composite hydrogels. Hydrogels containing MBG showed early initiation of differentiation and higher expression of alkaline phosphatase and osteocalcin confirming the osteoinductive property of MBG. These studies indicate that this composite hydrogel can be used for regenerating irregular bone defects. PMID:27305426

  12. Apoptotic Versus Angiogenic Factors in Gastric and Colorectal Cancers

    Directory of Open Access Journals (Sweden)

    Enas A Hamed

    2012-04-01

    Conclusions. Gastric-colon malignancy patients exhibited decreased apoptosis, as evident by an increase in antiapoptotic indices, i.e. sFas and bcl-2, and increased angiogenic activity, as evident by enhanced proteolytic activity of cathepsin-D and calpain I and II. These parameters were higher in gastric than colorectal cancers reflecting aggressive behavior of the earlier. Thus, decreased apoptosis and enhanced angiogenesis give growth priority in gastric-colon cancers, and the angiogenic factors and #8217; blockage may delay the tumor and #8217;s spread. [Arch Clin Exp Surg 2012; 1(2.000: 71-84

  13. Glossogyne tenuifolia Extract Inhibits TNF-α-Induced Expression of Adhesion Molecules in Human Umbilical Vein Endothelial Cells via Blocking the NF-kB Signaling Pathway.

    Science.gov (United States)

    Hsuan, Chin-Feng; Hsu, Hsia-Fen; Tseng, Wei-Kung; Lee, Thung-Lip; Wei, Yu-Feng; Hsu, Kwan-Lih; Wu, Chau-Chung; Houng, Jer-Yiing

    2015-01-01

    Chronic inflammation plays a pivotal role in the development of atherosclerosis, where the pro-inflammatory cytokine-induced expression of endothelial adhesion molecules and the recruitment of monocytes are the crucial events leading to its pathogenesis. Glossogyne tenuifolia ethanol extract (GTE) is shown to have potent anti-inflammatory and antioxidant activities. We evaluated the effects of GTE and its major components, luteolin (lut), luteolin-7-glucoside (lut-7-g), and oleanolic acid (OA) on TNF-α-induced expression of adhesion molecules in human umbilical vein endothelial cells (HUVECs). The results demonstrated that GTE, lut, and lut-7-g attenuated the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in TNF-α-activated HUVECs, and inhibited the adhesion of monocytes to TNF-α-activated HUVECs. The TNF-α-induced mRNA expression of ICAM-1 and VCAM-1 was also suppressed, revealing their inhibitory effects at the transcriptional level. Furthermore, GTE, lut, and lut-7-g blocked the TNF-α-induced degradation of nuclear factor-kB inhibitor (IkB), an indicator of the activation of nuclear factor-kB (NF-kB). In summary, GTE and its bioactive components were effective in preventing the adhesion of monocytes to cytokine-activated endothelium by the inhibition of expression of adhesion molecules, which in turn is mediated through blocking the activation and nuclear translocation of NF-kB. The current results reveal the therapeutic potential of GTE in atherosclerosis. PMID:26393541

  14. Curcumin cross-linked collagen aerogels with controlled anti-proteolytic and pro-angiogenic efficacy.

    Science.gov (United States)

    Dharunya, G; Duraipandy, N; Lakra, Rachita; Korapatti, Purna Sai; Jayavel, R; Kiran, Manikantan Syamala

    2016-01-01

    This paper elucidates the development of a curcumin cross-linked collagen aerogel system with controlled anti-proteolytic activity and pro-angiogenic efficacy. The results of this study showed that in situ cross-linking of curcumin with collagen leads to the development of aerogels with enhanced physical and mechanical properties. The integrity of collagen after cross-linking with curcumin was studied via FTIR spectroscopy. The results confirmed that the cross-linking with curcumin did not induce any structural changes in the collagen. The curcumin cross-linked collagen aerogels exhibited potent anti-proteolytic and anti-microbial activity. Scanning electron and atomic force microscopic analysis of curcumin cross-linked collagen aerogels showed a 3D microstructure that enhanced the adhesion and proliferation of cells. The highly organized geometry of collagen-curcumin aerogels enhanced the permeability and water-retaining ability required for the diffusion of nutrients that aid cellular growth. The pro-angiogenic properties of collagen-curcumin aerogels were ascribed to the cumulative effect of the nutraceutical and the collagen molecule, which augmented the restoration of damaged tissue. Further, these aerogels exhibited controlled anti-proteolytic activity, which makes them suitable 3D scaffolds for biomedical applications. This study provides scope for the development of biocompatible and bioresorbable collagen aerogel systems that use a nutraceutical as a cross-linker for biomedical applications. PMID:27509047

  15. Reciprocal interactions between endothelial cells and macrophages in angiogenic vascular niches

    International Nuclear Information System (INIS)

    The ability of macrophages to promote vascular growth has been associated with the secretion and local delivery of classic proangiogenic factors (e.g., VEGF-A and proteases). More recently, a series of studies have also revealed that physical contact of macrophages with growing blood vessels coordinates vascular fusion of emerging sprouts. Interestingly, the interactions between macrophages and vascular endothelial cells (ECs) appear to be bidirectional, such that activated ECs also support the expansion and differentiation of proangiogenic macrophages from myeloid progenitors. Here, we discuss recent findings suggesting that dynamic angiogenic vascular niches might also exist in vivo, e.g. in tumors, where sprouting blood vessels and immature myeloid cells like monocytes engage in heterotypic interactions that are required for angiogenesis. Finally, we provide an account of emerging mechanisms of cell-to-cell communication that rely on secreted microvesicles, such as exosomes, which can offer a vehicle for the rapid exchange of molecules and genetic information between macrophages and ECs engaged in angiogenesis. -- Highlights: • Macrophages promote angiogenesis by secreting proangiogenic factors. • Macrophages modulate angiogenesis via cell-to-cell contacts with endothelial cells. • Endothelial cells promote the differentiation of proangiogenic macrophages. • Macrophages and endothelial cells may cooperate to form angiogenic vascular niches

  16. Reciprocal interactions between endothelial cells and macrophages in angiogenic vascular niches

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Caroline; Squadrito, Mario Leonardo [The Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne (Switzerland); Iruela-Arispe, M. Luisa, E-mail: arispe@mcdb.ucla.edu [The Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne (Switzerland); Department of Molecular, Cell and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles 90095, CA (United States); De Palma, Michele, E-mail: michele.depalma@epfl.ch [The Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne (Switzerland)

    2013-07-01

    The ability of macrophages to promote vascular growth has been associated with the secretion and local delivery of classic proangiogenic factors (e.g., VEGF-A and proteases). More recently, a series of studies have also revealed that physical contact of macrophages with growing blood vessels coordinates vascular fusion of emerging sprouts. Interestingly, the interactions between macrophages and vascular endothelial cells (ECs) appear to be bidirectional, such that activated ECs also support the expansion and differentiation of proangiogenic macrophages from myeloid progenitors. Here, we discuss recent findings suggesting that dynamic angiogenic vascular niches might also exist in vivo, e.g. in tumors, where sprouting blood vessels and immature myeloid cells like monocytes engage in heterotypic interactions that are required for angiogenesis. Finally, we provide an account of emerging mechanisms of cell-to-cell communication that rely on secreted microvesicles, such as exosomes, which can offer a vehicle for the rapid exchange of molecules and genetic information between macrophages and ECs engaged in angiogenesis. -- Highlights: • Macrophages promote angiogenesis by secreting proangiogenic factors. • Macrophages modulate angiogenesis via cell-to-cell contacts with endothelial cells. • Endothelial cells promote the differentiation of proangiogenic macrophages. • Macrophages and endothelial cells may cooperate to form angiogenic vascular niches.

  17. Exercise training attenuates placental ischemia induced hypertension and angiogenic imbalance in the rat

    OpenAIRE

    Gilbert, Jeffrey S; Banek, Christopher T; Bauer, Ashley J.; Gingery, Anne; Needham, Karen

    2012-01-01

    An imbalance between pro-angiogenic (vascular endothelial growth factor, VEGF) and anti-angiogenic (soluble fms-like tyrosine kinase-1, sFlt-1) factors plays an important role in hypertension associated with reduced utero-placental perfusion (RUPP). Exercise has been shown to stimulate pro-angiogenic factors such as VEGF in both the pregnant and non-pregnant state, thus we hypothesized exercise training would attenuate both angiogenic imbalance and hypertension due to RUPP. Four groups of ani...

  18. Effects of sodium β-aescin on expression of adhesion molecules and migration of neutrophils after middle cerebral artery occlusion in rats

    Institute of Scientific and Technical Information of China (English)

    Xia-min HU; Yan ZHANG; Fan-dian ZENG

    2004-01-01

    AIM: To investigate the effects of sodium β-aescin on neutrophil migration and expression of adhesion molecules (ICAM-1 and E-selectin) after middle cerebral artery occlusion (MCAO) in rats. METHODS: Rats were pretreated with sodium β-aescin for 7 d and then subjected to cerebral ischemia/reperfusion (I/R) injury induced by an MCAO. After a 2-h ischemia and a 24-h reperfusion, the infarct volume and neurological deficit were determined by the method of TTC staining and the Longa's score. The effect of sodium β-aescin on the migration of neutrophils was evaluated by measuring the activity of myeloperoxidase (MPO) enzyme. The expressions of adhesion molecules were determined by immunohistochemistry and Western blot. RESULTS: Sodium β-aescin significantly reduced the cerebral infarct volume and ameliorated the neurological deficit (P<0.05 or P<0.01). The MPO activity and the expressions of ICAM-1 and E-selectin in the vehicle-treated rats were increased significantly (P<0.01) after cerebral I/R. After treatment with sodium β-aescin, the enzymatic activity of MPO and the expressions of these adhesion molecules were significantly reduced compared with the vehicle-treated group (P<0.05 or P<0.01).CONCLUSION: Sodium β-aescin can attenuate brain injury, down-regulate the protein expressions of ICAM-1and E-selectin, and reduce the migration of neutrophils after cerebral I/R.

  19. VEGF121b and VEGF165b are weakly angiogenic isoforms of VEGF-A

    Directory of Open Access Journals (Sweden)

    Pio Ruben

    2010-12-01

    Full Text Available Abstract Background Different isoforms of VEGF-A (mainly VEGF121, VEGF165 and VEGF189 have been shown to display particular angiogenic properties in the generation of a functional tumor vasculature. Recently, a novel class of VEGF-A isoforms, designated as VEGFxxxb, generated through alternative splicing, have been described. Previous studies have suggested that these isoforms may inhibit angiogenesis. In the present work we have produced recombinant VEGF121/165b proteins in the yeast Pichia pastoris and constructed vectors to overexpress these isoforms and assess their angiogenic potential. Results Recombinant VEGF121/165b proteins generated either in yeasts or mammalian cells activated VEGFR2 and its downstream effector ERK1/2, although to a lesser extent than VEGF165. Furthermore, treatment of endothelial cells with VEGF121/165b increased cell proliferation compared to untreated cells, although such stimulation was lower than that induced by VEGF165. Moreover, in vivo angiogenesis assays confirmed angiogenesis stimulation by VEGF121/165b isoforms. A549 and PC-3 cells overexpressing VEGF121b or VEGF165b (or carrying the PCDNA3.1 empty vector, as control and xenotransplanted into nude mice showed increased tumor volume and angiogenesis compared to controls. To assess whether the VEGFxxxb isoforms are differentially expressed in tumors compared to healthy tissues, immunohistochemical analysis was conducted on a breast cancer tissue microarray. A significant increase (p xxxb and total VEGF-A protein expression in infiltrating ductal carcinomas compared to normal breasts was observed. A positive significant correlation (r = 0.404, p = 0.033 between VEGFxxxb and total VEGF-A was found. Conclusions Our results demonstrate that VEGF121/165b are not anti-angiogenic, but weakly angiogenic isoforms of VEGF-A. In addition, VEGFxxxb isoforms are up-regulated in breast cancer in comparison with non malignant breast tissues. These results are to be taken

  20. PET imaging of insulin-like growth factor type 1 receptor expression with a 64Cu-labeled Affibody molecule.

    Science.gov (United States)

    Su, Xinhui; Cheng, Kai; Liu, Yang; Hu, Xiang; Meng, Shuxian; Cheng, Zhen

    2015-07-01

    The insulin-like growth factor 1 receptor (IGF-1R) serves as an attractive target for cancer molecular imaging and therapy. Previous single photon emission computerized tomography (SPECT) studies showed that the IGF-1R-targeting Affibody molecules (99m)Tc-ZIGF1R:4551-GGGC, [(99m)Tc(CO)3](+)-(HE)3-ZIGF1R:4551 and (111)In-DOTA-ZIGF1R:4551 can discriminate between high and low IGF-1R-expression tumors and have the potential for patient selection for IGF-1R-targeted therapy. Compared with SPECT, positron emission tomography (PET) may improve imaging of IGF-1R-expression, because of its high sensitivity, high spatial resolution, strong quantification ability. The aim of the present study was to develop the (64)Cu-labeled NOTA-conjugated Affibody molecule ZIGF-1R:4:40 as a PET probe for imaging of IGF-1R-positive tumor. An Affibody analogue (Ac-Cys-ZIGF-1R:4:40) binding to IGF-1R was site-specifically conjugated with NOTA and labeled with (64)Cu. Binding affinity and specificity of (64)Cu-NOTA-ZIGF-1R:4:40 to IGF-1R were evaluated using human glioblastoma U87MG cells. Small-animal PET, biodistribution, and metabolic stability studies were conducted on mice bearing U87MG xenografts after the injection of (64)Cu-NOTA-ZIGF-1R:4:40 with or without co-injection of unlabeled Affibody proteins. The radiosynthesis of (64)Cu-NOTA-ZIGF-1R:4:40 was completed successfully within 60 min with a decay-corrected yield of 75 %. (64)Cu-NOTA-ZIGF-1R:4:40 bound to IGF-1R with low nanomolar affinity (K D = 28.55 ± 3.95 nM) in U87MG cells. (64)Cu-NOTA-ZIGF-1R:4:40 also displayed excellent in vitro and in vivo stability. In vivo biodistribution and PET studies demonstrated targeting of U87MG gliomas xenografts was IGF-1R specific. The tumor uptake was 5.08 ± 1.07 %ID/g, and the tumor to muscle ratio was 11.89 ± 2.16 at 24 h after injection. Small animal PET imaging studies revealed that (64)Cu-NOTA-ZIGF-1R:4:40 could clearly identify U87MG tumors with good contrast at 1-24

  1. Interferon-α and angiogenic dysregulation in pregnant lupus patients destined for preeclampsia

    Science.gov (United States)

    Andrade, Danieli; Kim, Mimi; Blanco, Luz P.; Karumanchi, S. Ananth; Koo, Gloria C.; Redecha, Patricia; Kirou, Kyriakos; Alvarez, Angela M.; Mulla, Melissa J.; Crow, Mary K.; Abrahams, Vikki M.; Kaplan, Mariana J.; Salmon, Jane E.

    2015-01-01

    Objective To investigate whether elevated IFN-α early in pregnancy is associated with poor pregnancy outcomes and examine its relationship to angiogenic imbalance. Methods Women were enrolled in a case-control longitudinal study of lupus pregnancies. Serum samples obtained monthly through pregnancy were assayed for IFN-α and for antiangiogenic factor, sFlt1, and proangiogenic factor, (PlGF). Each of 28 SLE patients with poor pregnancy outcome was matched to an SLE patient with an uncomplicated pregnancy and to a pregnant healthy control. The effects of IFN-α and/or sFlt1 on-human endothelial cells and endothelial-trophoblast interactions was assessed. Results Compared to SLE patients with uncomplicated pregnancies, patients with preeclampsia had increased IFN-α before clinical symptoms. Non-autoimmune patients destined for preeclampsia did not have increased IFN-α. In SLE patients with low IFN-α, marked angiogenic imbalance (higher sFlt1, lower PlGF and higher sFlt1/PlGF ratios) precedes maternal manifestations of preeclampsia, whereas in SLE with high IFN-α, preeclampsia occurs without evidence of systemic angiogenic imbalance. Treatment of human endothelial cells with sFlt1 induced expression of sFlt1 mRNA, and IFN-α dramatically amplified responses to sFlt1. In a model of spiral artery transformation, only IFN-α and sFlt1 together disrupted the ability of trophoblast cells to remodel endothelial tube structures. Conclusions Our studies identify a new mechanism by which IFN-α induces an antiangiogenic milieu, increases the sensitivity of endothelial cells to sFlt1, and suggest that elevated IFN-α may contribute to pathogenesis of preeclampsia in some SLE pregnancies. PMID:25603823

  2. Opiates Upregulate Adhesion Molecule Expression in Brain MicroVascular Endothelial Cells (BMVEC: Implications for Altered Blood Brain Barrier (BBB Permeability

    Directory of Open Access Journals (Sweden)

    Madhavan P.N. Nair

    2006-01-01

    Full Text Available The blood-brain barrier (BBB is an intricate cellular system composed of vascular endothelial cells and perivascular astrocytes that restrict the passage of immunocompetent cells into the central nervous system (CNS. Expression of the adhesion molecules, intercellular adhesion molecule 1 (ICAM-1 and vascular cell adhesion molecule-1 (VCAM-1 on brain microvascular endothelial cells (BMVEC and their interaction with human immunodeficiency virus (HIV-1 viral proteins may help enhance viral adhesion and virus-cell fusion resulting in increased infectivity. Additionally, transmigration through the BBB is facilitated by both endothelial and monocyte/macrophage-derived nitric oxide (NO. Dysregulated production of NO by BMVEC due to opiates and HIV-1 viral protein interactions play a pivotal role in brain endothelial injury, resulting in the irreversible loss of BBB integrity, which may lead to enhanced infiltration of virus-carrying cells across the BBB. Opioids act as co-factors in the neuropathogenesis of HIV-1 by facilitating BBB dysfunction however, no studies have been done to investigate the role of opiates alone or in combination with HIV-1 viral proteins on adhesion molecule expression in BMVEC. We hypothesize that opiates such as heroin and morphine in conjunction with the HIV-1 viral protein gp120 increase the expression of adhesion molecules ICAM-1 and VCAM-1 and these effects are mediated via the modulation of NO. Results show that opiates alone and in synergy with gp120 increase both the genotypic and phenotypic expression of ICAM-1 and VCAM-1 by BMVEC, additionally, these opiate induced effects may be the result of increased NO production. These studies will provide a better understanding of how opiate abuse in conjunction with HIV-1 infection facilitates the breakdown of the BBB and exacerbates the neuropathogenesis of HIV-1. Elucidation of the mechanisms of BBB modulation will provide new therapeutic approaches to maintain BBB integrity

  3. Anti-angiogenic peptides identified in thrombospondin type I domains

    International Nuclear Information System (INIS)

    Thrombospondin 1, the prototypical protein of the thrombospondin protein family, is a potent endogenous inhibitor of angiogenesis. Although the effects of the thrombospondin 1 on neovascularization have been well studied, little is known about the anti-angiogenic potency of other proteins or peptide fragments derived from the proteins in this family. Here we identify a set of 18 novel, anti-angiogenic 17- to 20-amino acid peptides that are derived from proteins containing type I thrombospondin motifs. We have named these peptides adamtsostatin-4, adamtsostatin-16, adamtsostatin-18, cartilostatin-1, cartilostatin-2, fibulostatin-6.2, fibulostatin-6.3, papilostatin-1, papilostatin-2, properdistatin, scospondistatin, semastatin-5A.1, semastatin-5A.2, semastatin-5B, thrombostatin containing-1, thrombostatin contaning-3, thrombostatin contaning-6, and wispostatin-1 to reflect their origin. We further demonstrate that these peptides inhibit the proliferation and migration of human umbilical vein endothelial cells in vitro. The anti-proliferative and anti-migratory properties of the identified peptides may be important in maintaining angiogenic homeostasis in vivo and make these peptides suitable candidates for use as anti-angiogenic pharmaceutical agents in numerous therapeutic applications

  4. Enhanced in vitro angiogenic behaviour of human umbilical vein endothelial cells on thermally oxidized TiO2 nanofibrous surfaces

    Science.gov (United States)

    Tan, Ai Wen; Liau, Ling Ling; Chua, Kien Hui; Ahmad, Roslina; Akbar, Sheikh Ali; Pingguan-Murphy, Belinda

    2016-02-01

    One of the major challenges in bone grafting is the lack of sufficient bone vascularization. A rapid and stable bone vascularization at an early stage of implantation is essential for optimal functioning of the bone graft. To address this, the ability of in situ TiO2 nanofibrous surfaces fabricated via thermal oxidation method to enhance the angiogenic potential of human umbilical vein endothelial cells (HUVECs) was investigated. The cellular responses of HUVECs on TiO2 nanofibrous surfaces were studied through cell adhesion, cell proliferation, capillary-like tube formation, growth factors secretion (VEGF and BFGF), and angiogenic-endogenic-associated gene (VEGF, VEGFR2, BFGF, PGF, HGF, Ang-1, VWF, PECAM-1 and ENOS) expression analysis after 2 weeks of cell seeding. Our results show that TiO2 nanofibrous surfaces significantly enhanced adhesion, proliferation, formation of capillary-like tube networks and growth factors secretion of HUVECs, as well as leading to higher expression level of all angiogenic-endogenic-associated genes, in comparison to unmodified control surfaces. These beneficial effects suggest the potential use of such surface nanostructures to be utilized as an advantageous interface for bone grafts as they can promote angiogenesis, which improves bone vascularization.

  5. Abrus agglutinin is a potent anti-proliferative and anti-angiogenic agent in human breast cancer.

    Science.gov (United States)

    Bhutia, Sujit K; Behera, Birendra; Nandini Das, Durgesh; Mukhopadhyay, Subhadip; Sinha, Niharika; Panda, Prashanta Kumar; Naik, Prajna Paramita; Patra, Samir K; Mandal, Mahitosh; Sarkar, Siddik; Menezes, Mitchell E; Talukdar, Sarmistha; Maiti, Tapas K; Das, Swadesh K; Sarkar, Devanand; Fisher, Paul B

    2016-07-15

    Abrus agglutinin (AGG), a plant lectin isolated from the seeds of Abrus precatorius, has documented antitumor and immunostimulatory effects in murine models. To examine possible antitumor activity against breast cancer, we established human breast tumor xenografts in athymic nude mice and intraperitoneally administered AGG. AGG inhibited tumor growth and angiogenesis as confirmed by monitoring the expression of Ki-67 and CD-31, respectively. In addition, TUNEL positive cells increased in breast tumors treated with AGG suggesting that AGG mediates anti-tumorigenic activity through induction of apoptosis and inhibition of angiogenesis. On a molecular level, AGG caused extrinsic apoptosis through ROS generation that was AKT-dependent in breast cancer cells, without affecting primary mammary epithelial cells, suggesting potential cancer specificity of this natural compound. In addition, using HUVECs, AGG inhibited expression of the pro-angiogenic factor IGFBP-2 in an AKT-dependent manner, reducing angiogenic phenotypes both in vitro and in vivo. Overall, the present results establish that AGG promotes both apoptosis and anti-angiogenic activities in human breast tumor cells, which might be exploited for treatment of breast and other cancers. PMID:26914517

  6. Role of erythropoietin in the angiogenic activity of bone marrow endothelial cells of MGUS and multiple myeloma patients.

    Science.gov (United States)

    Lamanuzzi, Aurelia; Saltarella, Ilaria; Ferrucci, Arianna; Ria, Roberto; Ruggieri, Simona; Racanelli, Vito; Rao, Luigia; Annese, Tiziana; Nico, Beatrice; Vacca, Angelo; Ribatti, Domenico

    2016-03-22

    Increasing evidences suggest several biological roles for erythropoietin and its receptor (Epo and EpoR), unrelated to erythropoiesis, including angiogenesis. Here, we detected the expression of EpoR in bone marrow-derived endothelial cells from monoclonal gammopathy of undetermined significance (MGUS) and multiple myeloma (MM) patients (MGECs and MMECs, respectively) and assessed whether Epo plays a role in MGECs- and MMECs-mediated angiogenesis. We show that EpoR is expressed by both MGECs and MMECs even though at a higher level in the first ones. Both EC types respond to rHuEpo in terms of cell proliferation, whereas other responses, including activation of JAK2/STAT5 and PI3K/Akt pathways, cell migration and capillarogenesis are enhanced by Epo in MGECs, but not in MMECs. In addition, the conditioned media of both Epo-treated cells induce a strong angiogenic response in vivo in the chorioallantoic membrane assay, comparable to that of vascular endothelial growth factor (VEGF). Overall, these data highlight the effect of Epo on MGECs- and MMECs-mediated angiogenesis: MGECs are more responsive to Epo treatment than MMECs, probably because over-angiogenic phenotype of MMECs is already activated by their autocrine/paracrine loops occurring in the "angiogenic switch" from MGUS. PMID:26919105

  7. Role of erythropoietin in the angiogenic activity of bone marrow endothelial cells of MGUS and multiple myeloma patients

    Science.gov (United States)

    Ferrucci, Arianna; Ria, Roberto; Ruggieri, Simona; Racanelli, Vito; Rao, Luigia; Annese, Tiziana; Nico, Beatrice; Vacca, Angelo; Ribatti, Domenico

    2016-01-01

    Increasing evidences suggest several biological roles for erythropoietin and its receptor (Epo and EpoR), unrelated to erythropoiesis, including angiogenesis. Here, we detected the expression of EpoR in bone marrow-derived endothelial cells from monoclonal gammopathy of undetermined significance (MGUS) and multiple myeloma (MM) patients (MGECs and MMECs, respectively) and assessed whether Epo plays a role in MGECs- and MMECs-mediated angiogenesis. We show that EpoR is expressed by both MGECs and MMECs even though at a higher level in the first ones. Both EC types respond to rHuEpo in terms of cell proliferation, whereas other responses, including activation of JAK2/STAT5 and PI3K/Akt pathways, cell migration and capillarogenesis are enhanced by Epo in MGECs, but not in MMECs. In addition, the conditioned media of both Epo-treated cells induce a strong angiogenic response in vivo in the chorioallantoic membrane assay, comparable to that of vascular endothelial growth factor (VEGF). Overall, these data highlight the effect of Epo on MGECs- and MMECs-mediated angiogenesis: MGECs are more responsive to Epo treatment than MMECs, probably because over-angiogenic phenotype of MMECs is already activated by their autocrine/paracrine loops occurring in the “angiogenic switch” from MGUS. PMID:26919105

  8. Differential expression of Toll-like receptor (TLR) and B cell receptor (BCR) signaling molecules in primary diffuse large B-cell lymphoma of the central nervous system.

    Science.gov (United States)

    Akhter, Ariz; Masir, Noraidah; Elyamany, Ghaleb; Phang, Kean-Chang; Mahe, Etienne; Al-Zahrani, Ali Matar; Shabani-Rad, Meer-Taher; Stewart, Douglas Allan; Mansoor, Adnan

    2015-01-01

    Primary diffuse large B-cell lymphoma of the central nervous system (CNS DLBCL) is a distinct and aggressive lymphoma that is confined to CNS. Since, central nervous system is barrier-protected and immunologically silent; role of TLR/BCR signaling in pathogenesis and biology of CNS DLBCL is intriguing. Genomic mutations in key regulators of TLR/BCR signaling pathway (MYD88/CD79B/CARD11) have recently been reported in this disease. These observations raised possible implications in novel targeted therapies; however, expression pattern of molecules related to TLR/BCR pathways in this lymphoma remains unknown. We have analyzed the expression of 19 genes encoding TLR/BCR pathways and targets in CNS DLBCLs (n = 20) by Nanostring nCounter™ analysis and compared it with expression patterns in purified reactive B-lymphocytes and systemic diffuse large B cell lymphoma (DLBCL) (n = 20). Relative expression of TLR4, TLR5, TLR9, CD79B and BLNK was higher in CNS DLBCLs than in control B-lymphocytes; where as TLR7, MALT1, BCL10, CD79A and LYN was lower in CNS DLBCLs (P 1.5 fold change; P < 0.01). The B cell receptor molecules like BLNK and CD79B were also associated with higher expression of MYD88 dependent TLRs (TLR4/5/9). In conclusion, we have shown over expression of TLR/BCR related genes or their targets, where genomic mutations have commonly been identified in CNS DLBCL. We have also demonstrated that TLR over expression closely relate with up regulation of genes associated with BCR pathway like CD79B/BLNK and CARD11, which play an important role in NF-kB pathway activation. Our results provide an important insight into the possibility of TLR and/or B-cell receptor signaling molecules as possible therapeutic targets in CNS DLBCL. PMID:25391967

  9. Decreased Expression of T-Cell Costimulatory Molecule CD28 on CD4 and CD8 T Cells of Mexican Patients with Pulmonary Tuberculosis

    Directory of Open Access Journals (Sweden)

    German Bernal-Fernandez

    2010-01-01

    Full Text Available Patients with tuberculosis frequently develop anergy, a state of T-cell hyporesponsiveness in which defective T-cell costimulation could be a factor. To know if the expression of T-cell costimulatory molecules was altered in tuberculosis, we analyzed the peripheral blood T-cell phenotype of 23 Mexican patients with pulmonary tuberculosis. There was severe CD4 (P<.001 and CD8 (P<.01 lymphopenia and upregulation of costimulatory molecule CD30 on CD4 and CD8 T cells (P<.05; this increase was higher in relapsing tuberculosis. The main finding was severe downregulation of the major costimulatory molecule CD28 on both CD8 and CD4 T cells (P<.001. Depletion of the CD4/CD28 subset, a hitherto undescribed finding, is relevant because CD4 T cells constitute the main arm of the cell-mediated antimycobacterial immune response.

  10. Natural phenolic metabolites with anti-angiogenic properties – a review from the chemical point of view

    Directory of Open Access Journals (Sweden)

    Qiu Sun

    2015-02-01

    Full Text Available Considering the many secondary natural metabolites available from plants, phenolic compounds play a particularly important role in human health as they occur in significant amounts in many fruits, vegetables and medicinal plants. In this review natural phenolic compounds of plant origin with significant anti-angiogenic properties are discussed. Thirteen representatives from eight different natural or natural-like phenolic subclasses are presented with an emphasis on their synthesis and methods to modify the parent compounds. When available, the consequence of structural variation on the pharmacological activity of the molecules is described.

  11. Cloning and expression of the receptor for human urokinase plasminogen activator, a central molecule in cell surface, plasmin dependent proteolysis

    DEFF Research Database (Denmark)

    Roldan, A L; Cubellis, M V; Masucci, M T;

    1990-01-01

    The surface receptor for urokinase plasminogen activator (uPAR) has been recognized in recent years as a key molecule in regulating plasminogen mediated extracellular proteolysis. Surface plasminogen activation controls the connections between cells, basement membrane and extracellular matrix, an...

  12. Infusion of hypertonic saline (7.5%) does not change neutrophil oxidative burst or expression of endothelial adhesion molecules after abdominal hysterectomy

    DEFF Research Database (Denmark)

    Kølsen-Petersen, Jens Aage; Rasmussen, Torsten Bøgh; Krog, Jan; Hokland, Marianne; Tønnesen, Else Kirstine

    2006-01-01

    surgery. METHODS: Fifteen women scheduled for open abdominal hysterectomy were randomized double-blindly to infusion of 4 mL/kg 7.5% NaCl, 4 mL/kg 0.9% NaCl, or 32 mL/kg 0.9% NaCl over 20 minutes. Blood was collected at baseline, after infusion, 1, 4, and 24 hours postoperatively for the determination of...... the expression of adhesion molecules, and halved the superoxide production unrelated to the tonicity or volume of the infused fluids. CONCLUSION: Infusion of a clinically relevant dose of hypertonic saline has no detectable effect on the membrane expression of endothelial adhesion molecules or O2...

  13. High levels of the soluble form of CD30 molecule in rheumatoid arthritis (RA) are expression of CD30+ T cell involvement in the inflamed joints.

    Science.gov (United States)

    Gerli, R; Muscat, C; Bistoni, O; Falini, B; Tomassini, C; Agea, E; Tognellini, R; Biagini, P; Bertotto, A

    1995-12-01

    The CD30 is a surface molecule expressed by Th2-type lymphokine-producing T cells upon activation. CD30-expressing activated T cells release a soluble form of the molecule, which can be detectable both in vitro and in vivo. In the present study, high levels of soluble CD30 were found in peripheral blood and synovial fluid from patients with RA. However, CD30+ CD3+ cells, either CD4+ or CD8+, were significantly present in synovial fluid, but not in peripheral blood, of RA patients. Serum values of soluble CD30 were higher in active than inactive RA patients and directly correlated with rheumatoid factor serum titres. These data strongly support an involvement of CD30+ T cells in the immune processes of rheumatoid synovitis, and may suggest a relationship between Th2-type cytokine-secreting T cells and the pathological response in RA. PMID:8536371

  14. Inhibition of tumor necrosis factor-α-induced expression of adhesion molecules in human endothelial cells by the saponins derived from roots of Platycodon grandiflorum

    International Nuclear Information System (INIS)

    Adhesion molecules play an important role in the development of atherogenesis and are produced by endothelial cells after being stimulated with various inflammatory cytokines. This study examined the effect of saponins that were isolated from the roots of Platycodon grandiflorum A. DC (Campanulaceae), Changkil saponins (CKS), on the cytokine-induced monocyte/human endothelial cell interaction, which is a crucial early event in atherogenesis. CKS significantly inhibited the TNFα-induced increase in monocyte adhesion to endothelial cells as well as decreased the protein and mRNA expression levels of vascular adhesion molecule-1 and intercellular cell adhesion molecule-1 on endothelial cells. Furthermore, CKS significantly inhibited the TNFα-induced production of intracellular reactive oxygen species (ROS) and activation of NF-κB by preventing IκB degradation and inhibiting IκB kinase activity. Overall, CKS has anti-atherosclerotic and anti-inflammatory activity, which is least in part the result of it reducing the cytokine-induced endothelial adhesion to monocytes by inhibiting intracellular ROS production, NF-κB activation, and cell adhesion molecule expression in endothelial cells

  15. Longitudinal analysis of osteogenic and angiogenic signaling factors in healing models mimicking atrophic and hypertrophic non-unions in rats.

    Directory of Open Access Journals (Sweden)

    Susann Minkwitz

    Full Text Available Impaired bone healing can have devastating consequences for the patient. Clinically relevant animal models are necessary to understand the pathology of impaired bone healing. In this study, two impaired healing models, a hypertrophic and an atrophic non-union, were compared to physiological bone healing in rats. The aim was to provide detailed information about differences in gene expression, vascularization and histology during the healing process. The change from a closed fracture (healing control group to an open osteotomy (hypertrophy group led to prolonged healing with reduced mineralized bridging after 42 days. RT-PCR data revealed higher gene expression of most tested osteogenic and angiogenic factors in the hypertrophy group at day 14. After 42 days a significant reduction of gene expression was seen for Bmp4 and Bambi in this group. The inhibition of angiogenesis by Fumagillin (atrophy group decreased the formation of new blood vessels and led to a non-healing situation with diminished chondrogenesis. RT-PCR results showed an attempt towards overcoming the early perturbance by significant up regulation of the angiogenic regulators Vegfa, Angiopoietin 2 and Fgf1 at day 7 and a further continuous increase of Fgf1, -2 and Angiopoietin 2 over time. However µCT angiograms showed incomplete recovery after 42 days. Furthermore, lower expression values were detected for the Bmps at day 14 and 21. The Bmp antagonists Dan and Twsg1 tended to be higher expressed in the atrophy group at day 42. In conclusion, the investigated animal models are suitable models to mimic human fracture healing complications and can be used for longitudinal studies. Analyzing osteogenic and angiogenic signaling patterns, clear changes in expression were identified between these three healing models, revealing the importance of a coordinated interplay of different factors to allow successful bone healing.

  16. The transcription factor MEF2C negatively controls angiogenic sprouting of endothelial cells depending on oxygen.

    Directory of Open Access Journals (Sweden)

    Caterina Sturtzel

    Full Text Available The MADS box transcription factor MEF2C has been detected by us to be upregulated by the angiogenic factors VEGF-A and bFGF in endothelial cells. We have here investigated its potential role for angiogenesis. MEF2C was surprisingly found to strongly inhibit angiogenic sprouting, whereas a dominant negative mutant rather induced sprouting. The factor mainly affected migratory processes of endothelial cells, but not proliferation. In gene profiling experiments we delineated the alpha-2-macroglobulin gene to be highly upregulated by MEF2C. Further data confirmed that MEF2C in endothelial cells indeed induces alpha-2-macroglobulin mRNA as well as the secretion of alpha-2-macroglobulin and that conditioned supernatants of cells overexpressing MEF2C inhibit sprouting. Alpha-2-macroglobulin mediates, at least to a large extent, the inhibitory effects of MEF2C as is shown by knockdown of alpha-2-macroglobulin mRNA by lentiviral shRNA expression which reduces the inhibitory effect. However, under hypoxic conditions the VEGF-A/bFGF-mediated upregulation of MEF2C is reduced and the production of alpha-2-macroglobulin largely abolished. Taken together, this suggests that the MEF2C/alpha-2-macroglobulin axis functions in endothelial cells as a negative feed-back mechanism that adapts sprouting activity to the oxygen concentration thus diminishing inappropriate and excess angiogenesis.

  17. Quercetin mediated reduction of angiogenic markers and chaperones in DLA-induced solid tumours.

    Science.gov (United States)

    Anand, Kushi; Asthana, Pallavi; Kumar, Anup; Ambasta, Rashmi K; Kumar, Pravir

    2011-01-01

    Diet-derived flavonoids, in particular quercetin, may play advantageous roles by preventing or/and inhibiting oncogenesis. Evidence suggests that quercetin can elicit various properties depending on the cell type. The aim of this study was to evaluate its effects on Dalton's lymphoma ascites (DLA) induced solid tumours and to identify the target(s) of action. We addressed this question by inducing subcutaneous solid tumours in Swiss albino mice and investigated whether the quercetin affects essential biological processes that are responsible for tumour growth, morphology, angiogenesis and apoptosis. We also studied influence on several heat shock proteins (HSPs). Our findings demonstrate that intra-tumour administration of quercetin results in decreased volume/weight. Furthermore, we demonstrate that quercetin promotes apoptosis of cancer cells by down-regulating the levels of Hsp90 and Hsp70. Depletion of these two chaperones by quercetin might result in triggering of caspase-3 in treated tumours. Moreover, it also down-regulated the expression of major key angiogenic or pro-angiogenic factors, like HIF-1α and VEGF In addition, H and E staining together with immunofluorescence of fixed tumour tissue provided evidence in support of increased cell death in quercetin-treated mice. PMID:22393949

  18. Retinal Vascular Endothelial Growth Factor Induces Intercellular Adhesion Molecule-1 and Endothelial Nitric Oxide Synthase Expression and Initiates Early Diabetic Retinal Leukocyte Adhesion in Vivo

    OpenAIRE

    Joussen, Antonia M; Poulaki, Vassiliki; Qin, Wenying; Kirchhof, Bernd; Mitsiades, Nicholas; Wiegand, Stanley J; Rudge, John; George D. Yancopoulos; Adamis, Anthony P.

    2002-01-01

    Leukocyte adhesion to the diabetic retinal vasculature results in early blood-retinal barrier breakdown, capillary nonperfusion, and endothelial cell injury and death. Previous work has shown that intercellular adhesion molecule-1 (ICAM-1) and CD18 are required for these processes. However the relevant in vivo stimuli for ICAM-1 and CD18 expression in diabetes remain unknown. The current study investigated the causal role of endogenous vascular endothelial growth factor (VEGF) and nitric oxid...

  19. The Anti-Atherosclerotic Effect of Naringin Is Associated with Reduced Expressions of Cell Adhesion Molecules and Chemokines through NF-κB Pathway

    OpenAIRE

    Tun-Pin Hsueh; Jer-Ming Sheen; Pang, Jong-Hwei S.; Kuo-Wei Bi; Chao-Chun Huang; Hsiao-Ting Wu; Sheng-Teng Huang

    2016-01-01

    Naringin has been reported to have an anti-atherosclerosis effect but the underlying mechanism is not fully understood. The aim of this study is to investigate the impact of naringin on the TNF-α-induced expressions of cell adhesion molecules, chemokines and NF-κB signaling pathway in human umbilical vein endothelial cells (HUVECs). The experiments revealed that naringin, at concentrations without cytotoxicity, dose-dependently inhibited the adhesion of THP-1 monocytes to the TNF-α-stimulated...

  20. Role of cloned carotenoid genes expressed in Escherichia coli in protecting against inactivation by near-UV light and specific phototoxic molecules.

    OpenAIRE

    Tuveson, R W; Larson, R A; Kagan, J.

    1988-01-01

    Genes controlling carotenoid synthesis were cloned from Erwinia herbicola and expressed in an Escherichia coli strain. Carotenoids protect against high fluences of near-UV (NUV; 320 to 400 nm) but not against far-UV (200-300 nm). Protection of E. coli cells was not observed following treatment with either psoralen or 8-methoxypsoralen plus NUV. However, significant protection of cells producing carotenoids was observed with three photosensitizing molecules activated by NUV (alpha-terthienyl, ...

  1. Treg cells expressing the co-inhibitory molecule TIGIT selectively inhibit pro-inflammatory Th1 and Th17 cell responses

    OpenAIRE

    Joller, Nicole; Lozano, Ester; Burkett, Patrick R.; Patel, Bonny; Xiao, Sheng; Zhu, Chen; Xia, Junrong; Tan, Tze G.; Sefik, Esen; Yajnik, Vijay; Sharpe, Arlene H.; Quintana, Francisco J.; Mathis, Diane; Benoist, Christophe; Hafler, David A.

    2014-01-01

    Foxp3+ T regulatory (Treg) cells regulate immune responses and maintain self-tolerance. Recent work shows that Treg cells are comprised of many subpopulations with specialized regulatory functions. Here we identified Foxp3+ T cells expressing the co-inhibitory molecule TIGIT as a distinct Treg cell subset that specifically suppresses pro-inflammatory T helper 1 (Th1) and Th17 cell, but not Th2 cell responses. Transcriptional profiling characterized TIGIT+ Treg cells as an activated Treg subse...

  2. Muscarinic receptors participation in angiogenic response induced by macrophages from mammary adenocarcinoma-bearing mice

    International Nuclear Information System (INIS)

    The role of macrophages in tumor progression has generated contradictory evidence. We had previously demonstrated the ability of peritoneal macrophages from LMM3 murine mammary adenocarcinoma-bearing mice (TMps) to increase the angiogenicity of LMM3 tumor cells, mainly through polyamine synthesis. Here we investigate the ability of the parasympathetic nervous system to modulate angiogenesis induced by TMps through the activation of the muscarinic acetylcholine receptor (mAchR). Peritoneal macrophages from female BALB/c mice bearing a 7-day LMM3 tumor were inoculated intradermally (3 × 105 cells per site) into syngeneic mice. Before inoculation, TMps were stimulated with the muscarinic agonist carbachol in the absence or presence of different muscarinic antagonists or enzyme inhibitors. Angiogenesis was evaluated by counting vessels per square millimeter of skin. The expression of mAchR, arginase and cyclo-oxygenase (COX) isoforms was analyzed by Western blotting. Arginase and COX activities were evaluated by urea and prostaglandin E2 (PGE2) production, respectively. TMps, which stimulate neovascularization, express functional mAchR, because carbachol-treated TMps potently increased new blood vessels formation. This response was completely blocked by preincubating TMps with pirenzepine and 4-diphenylacetoxy-N-methylpiperidine (4-DAMP), M1 and M3 receptor antagonists, and partly by the M2 receptor antagonist methoctramine. M1 receptor activation by carbachol in TMps triggers neovascularization through arginase products because Nω-hydroxy-L-arginine reversed the agonist action. Preincubation of TMps with methoctramine partly prevented carbachol-stimulated urea formation. In addition, COX-derived liberation of PGE2 is responsible for the promotion of TMps angiogenic activity by M3 receptor. We also detected a higher expression of vascular endothelial growth factor (VEGF) in TMps than in macrophages from normal mice. Carbachol significantly increased VEGF expression

  3. miR-9 modulates the expression of interferon-regulated genes and MHC class I molecules in human nasopharyngeal carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Fei; Zhao, Zun-Lan; Zhao, Wen-Tao; Fan, Quan-Rong; Wang, Sheng-Chun; Li, Jing; Zhang, Yu-Qing; Shi, Jun-Wen; Lin, Xiao-Lin; Yang, Sheng; Xie, Rao-Ying [Cancer Research Institute, Southern Medical University, Guangzhou 510515 (China); Liu, Wei [Institute of Comparative Medicine and Laboratory Animal Center, Southern Medical University, Guangzhou 510515 (China); Zhang, Ting-Ting; Sun, Yong-Liang [Cancer Research Institute, Southern Medical University, Guangzhou 510515 (China); Xu, Kang, E-mail: xukang1995@yahoo.com [Department of General Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120 (China); Yao, Kai-Tai, E-mail: Yaokaitai@yahoo.com.cn [Cancer Research Institute, Southern Medical University, Guangzhou 510515 (China); Xiao, Dong, E-mail: Xiao_d@hotmail.com [Cancer Research Institute, Southern Medical University, Guangzhou 510515 (China); Institute of Comparative Medicine and Laboratory Animal Center, Southern Medical University, Guangzhou 510515 (China)

    2013-02-15

    Highlights: ► miR-9 can negatively or positively modulate interferon-induced gene expression. ► miR-9 can up-regulate major histocompatibility complex class I molecule expression. ► miR-9 can down-regulate the expression of interleukin-related genes. -- Abstract: The functions of miR-9 in some cancers are recently implicated in regulating proliferation, epithelial–mesenchymal transition (EMT), invasion and metastasis, apoptosis, and tumor angiogenesis, etc. miR-9 is commonly down-regulated in nasopharyngeal carcinoma (NPC), but the exact roles of miR-9 dysregulation in the pathogenesis of NPC remains unclear. Therefore, we firstly used miR-9-expressing CNE2 cells to determine the effects of miR-9 overexpression on global gene expression profile by microarray analysis. Microarray-based gene expression data unexpectedly demonstrated a significant number of up- or down-regulated immune- and inflammation-related genes, including many well-known interferon (IFN)-induced genes (e.g., IFI44L, PSMB8, IRF5, PSMB10, IFI27, PSB9{sub H}UMAN, IFIT2, TRAIL, IFIT1, PSB8{sub H}UMAN, IRF1, B2M and GBP1), major histocompatibility complex (MHC) class I molecules (e.g., HLA-B, HLA-C, HLA-F and HLA-H) and interleukin (IL)-related genes (e.g., IL20RB, GALT, IL7, IL1B, IL11, IL1F8, IL1A, IL6 and IL7R), which was confirmed by qRT-PCR. Moreover, the overexpression of miR-9 with the miRNA mimics significantly up- or down-regulated the expression of above-mentioned IFN-inducible genes, MHC class I molecules and IL-related genes; on the contrary, miR-9 inhibition by anti-miR-9 inhibitor in CNE2 and 5–8F cells correspondingly decreased or increased the aforementioned immune- and inflammation-related genes. Taken together, these findings demonstrate, for the first time, that miR-9 can modulate the expression of IFN-induced genes and MHC class I molecules in human cancer cells, suggesting a novel role of miR-9 in linking inflammation and cancer, which remains to be fully characterized.

  4. Combination of interferon-alpha and 5-fluorouracil inhibits endothelial cell growth directly and by regulation of angiogenic factors released by tumor cells

    International Nuclear Information System (INIS)

    The combination therapy of interferon (IFN)-alpha and 5-fluorouracil (5-FU) improved the prognosis of the patients with hepatocellular carcinoma (HCC). To determine the molecular mechanisms of the anti-tumor and anti-angiogenic effects, we examined the direct anti-proliferative effects on human umbilical vein endothelial cells (HUVEC) and indirect effects by regulating secretion of angiogenic factors from HCC cells. The direct effects on HUVEC were examined by TUNEL, Annexin-V assays and cell cycles analysis. For analysis of the indirect effects, the apoptosis induced by the conditioned medium from HCC cell treated by IFN-alpha/5-FU and expression of angiogenic factors was examined. IFN-alpha and 5-FU alone had anti-proliferative properties on HUVEC and their combination significantly inhibited the growth (compared with control, 5-FU or IFN alone). TUNEL and Annexin-V assays showed no apoptosis. Cell cycle analysis revealed that IFN-alpha and 5-FU delayed cell cycle progression in HUVEC with S-phase accumulation. The conditioned medium from HuH-7 cells after treatment with IFN/5-FU significantly inhibited HUVEC growth and induced apoptosis, and contained high levels of angiopoietin (Ang)-1 and low levels of vascular endothelial growth factor (VEGF) and Ang-2. Knockdown of Ang-1 in HuH-7 cells abrogated the anti-proliferative effects on HUVEC while knockdown of Ang-2 partially rescue the cells. These results suggested that IFN-alpha and 5-FU had direct growth inhibitory effects on endothelial cells, as well as anti-angiogenic effects through regulation of angiogenic factors released from HCC cells. Modulation of VEGF and Angs secretion by IFN-alpha and 5-FU may contribute to their anti-angiogenic and anti-tumor effects on HCC

  5. Pseudomonas aeruginosa Quorum Sensing Molecule N-(3-Oxododecanoyl)-L-Homoserine-Lactone Induces HLA-G Expression in Human Immune Cells.

    Science.gov (United States)

    Bortolotti, Daria; LeMaoult, Joel; Trapella, Claudio; Di Luca, Dario; Carosella, Edgardo D; Rizzo, Roberta

    2015-10-01

    HLA-G is a nonclassical class I human leukocyte antigen (HLA) involved in mechanisms of immune tolerance. The objective of this study was to determine whether N-(3-oxododecanoyl)-l-homoserine lactone (3O-C12-HSL), a quorum sensing molecule produced by Pseudomonas aeruginosa, could modify HLA-G expression to control the host immune response. We evaluated the ability of 3O-C12-HSL to induce HLA-G expression in primary immune cells, monocytes (U937 and THP1), and T-cell lines (Jurkat) in vitro and analyzed the cellular pathway responsible for HLA-G expression. We studied the HLA-G promoter with a luciferase assay and interleukin-10 (IL-10) and p38/CREB signaling with enzyme-linked immunosorbent assay and immunofluorescence, respectively. We observed that 3O-C12-HSL is able to induce HLA-G expression in human monocytes and T cells. We showed that the induction of HLA-G by 3O-C12-HSL is p38/CREB and IL-10 dependent. 3O-C12-HSL treatment is able to arrest only the U937 cell cycle, possibly due to the peculiar expression of the ILT2 receptor in the U937 cell line. Our observations suggest HLA-G as a mechanism to create a protected niche for the bacterial reservoir, similar to the role of HLA-G molecules during viral infections. PMID:26195547

  6. Depletion of the surface CD4 molecule by the envelope protein of human immunodeficiency virus expressed in a human CD4+ monocytoid cell line

    International Nuclear Information System (INIS)

    A CD4+ human monocytoid cell line, U937, was transfected with a constructed plasmid which has the envelope gene of human immunodeficiency virus under the transcriptional control of the human metallothionein IIA promoter and was cloned thereafter. These cloned cell lines (EH and EL cells) expressed the viral gp160 in the cytoplasm. The expression of surface CD4 antigen examined by Leu3a and OKT4 monoclonal antibodies, however, disappeared completely in EH cells, which produce a larger amount of gp160, while diminishing only partly in EL cells, which produce a smaller amount of gp160. These results indicate that the level of expression of surface CD4 antigen correlates inversely with the amount of intracellular gp160. Moreover, immunoprecipitation studies using lysate from EH cells showed that OKT4 monoclonal antibody precipitated a significant number of CD4 molecules even after surface CD4 disappeared. However, Leu3a monoclonal antibody, which recognizes the binding site for envelope protein, could not precipitate any CD4 molecules in the same cell lysate. Taken together, these results suggested that CD4 molecules are still synthesized normally after the augmented production of gp160 in the cells but form a complex with the envelope protein in the cytoplasm and become unable to be transported to the cell surface, resulting in the observed depletion of surface CD4 antigen. This mechanism may explain the decrease or absence of surface CD4 antigens in human lymphocytes infected with human immunodeficiency virus

  7. The Anti-Atherosclerotic Effect of Naringin Is Associated with Reduced Expressions of Cell Adhesion Molecules and Chemokines through NF-κB Pathway.

    Science.gov (United States)

    Hsueh, Tun-Pin; Sheen, Jer-Ming; Pang, Jong-Hwei S; Bi, Kuo-Wei; Huang, Chao-Chun; Wu, Hsiao-Ting; Huang, Sheng-Teng

    2016-01-01

    Naringin has been reported to have an anti-atherosclerosis effect but the underlying mechanism is not fully understood. The aim of this study is to investigate the impact of naringin on the TNF-α-induced expressions of cell adhesion molecules, chemokines and NF-κB signaling pathway in human umbilical vein endothelial cells (HUVECs). The experiments revealed that naringin, at concentrations without cytotoxicity, dose-dependently inhibited the adhesion of THP-1 monocytes to the TNF-α-stimulated HUVECs. The TNF-α-induced expressions of cell adhesion molecules, including VCAM-1, ICAM-1 and E-selectin, at both the mRNA and protein levels, were significantly suppressed by naringin in a dose dependent manner. In addition, the TNF-α-induced mRNA and protein levels of chemokines, including fractalkine/CX3CL1, MCP-1 and RANTES, were also reduced by naringin. Naringin significantly inhibited TNF-α-induced nuclear translocation of NF-κB, which resulted from the inhibited phosphorylation of IKKα/β, IκB-α and NF-κB. Altogether, we proposed that naringin modulated TNF-α-induced expressions of cell adhesion molecules and chemokines through the inhibition of TNF-α-induced activation of IKK/NF-κB signaling pathway to exert the anti-atherosclerotic effect. PMID:26861272

  8. The Anti-Atherosclerotic Effect of Naringin Is Associated with Reduced Expressions of Cell Adhesion Molecules and Chemokines through NF-κB Pathway

    Directory of Open Access Journals (Sweden)

    Tun-Pin Hsueh

    2016-02-01

    Full Text Available Naringin has been reported to have an anti-atherosclerosis effect but the underlying mechanism is not fully understood. The aim of this study is to investigate the impact of naringin on the TNF-α-induced expressions of cell adhesion molecules, chemokines and NF-κB signaling pathway in human umbilical vein endothelial cells (HUVECs. The experiments revealed that naringin, at concentrations without cytotoxicity, dose-dependently inhibited the adhesion of THP-1 monocytes to the TNF-α-stimulated HUVECs. The TNF-α-induced expressions of cell adhesion molecules, including VCAM-1, ICAM-1 and E-selectin, at both the mRNA and protein levels, were significantly suppressed by naringin in a dose dependent manner. In addition, the TNF-α-induced mRNA and protein levels of chemokines, including fractalkine/CX3CL1, MCP-1 and RANTES, were also reduced by naringin. Naringin significantly inhibited TNF-α-induced nuclear translocation of NF-κB, which resulted from the inhibited phosphorylation of IKKα/β, IκB-α and NF-κB. Altogether, we proposed that naringin modulated TNF-α-induced expressions of cell adhesion molecules and chemokines through the inhibition of TNF-α-induced activation of IKK/NF-κB signaling pathway to exert the anti-atherosclerotic effect.

  9. Antithrombin can modulate coagulation, cytokine production, and expression of adhesion molecules in abdominal aortic aneurysm repair surgery.

    Science.gov (United States)

    Nishiyama, Tomoki

    2006-04-01

    We investigated the effects of antithrombin on coagulation, fibrinolysis, and production of cytokines and adhesion molecules in abdominal aortic aneurysm repair surgery. Sixteen patients for Y-shaped graft replacement of abdominal aortic aneurysm were divided into an antithrombin group and a control group. In the antithrombin group, 3000 U antithrombin was infused over 30 min before heparin administration and 24 h later. White blood cell counts, platelet counts, prothrombin time ratio, and serum concentrations of antithrombin, polymorphonuclear leukocyte elastase, interleukin (IL)-1beta, IL-6, IL-8, tumor necrosis factor-alpha, and adhesion molecules, and variables of coagulation and fibrinolysis were measured before surgery, at the end of surgery, and 1 and 2 days after surgery. The antithrombin concentration decreased in the control group, whereas it increased in the antithrombin group with significant differences between the groups. Prothrombin time ratio, concentrations of d-dimer, thrombin-antithrombin complex, and intercellular adhesion molecule-1 increased only in the control group and polymorphonuclear leukocyte elastase, IL-6, tumor necrosis factor-alpha, and vascular cell adhesion molecule-1 increased in both groups. They were significantly less in the antithrombin group except for intercellular adhesion molecule-1. In conclusion, antithrombin could decrease hypercoagulation and inflammatory activation during abdominal aortic aneurysm surgery, which may decrease adverse events. PMID:16551889

  10. The Development of an Angiogenic Protein "Signature" in Ovarian Cancer Ascites as a Tool for Biologic and Prognostic Profiling.

    Science.gov (United States)

    Trachana, Sofia-Paraskevi; Pilalis, Eleftherios; Gavalas, Nikos G; Tzannis, Kimon; Papadodima, Olga; Liontos, Michalis; Rodolakis, Alexandros; Vlachos, Georgios; Thomakos, Nikolaos; Haidopoulos, Dimitrios; Lykka, Maria; Koutsoukos, Konstantinos; Kostouros, Efthimios; Terpos, Evagelos; Chatziioannou, Aristotelis; Dimopoulos, Meletios-Athanasios; Bamias, Aristotelis

    2016-01-01

    Advanced ovarian cancer (AOC) is one of the leading lethal gynecological cancers in developed countries. Based on the important role of angiogenesis in ovarian cancer oncogenesis and expansion, we hypothesized that the development of an "angiogenic signature" might be helpful in prediction of prognosis and efficacy of anti-angiogenic therapies in this disease. Sixty-nine samples of ascitic fluid- 35 from platinum sensitive and 34 from platinum resistant patients managed with cytoreductive surgery and 1st-line carboplatin-based chemotherapy- were analyzed using the Proteome ProfilerTM Human Angiogenesis Array Kit, screening for the presence of 55 soluble angiogenesis-related factors. A protein profile based on the expression of a subset of 25 factors could accurately separate resistant from sensitive patients with a success rate of approximately 90%. The protein profile corresponding to the "sensitive" subset was associated with significantly longer PFS (8 [95% Confidence Interval {CI}: 8-9] vs. 20 months [95% CI: 15-28]; Hazard ratio {HR}: 8.3, pAOC, which can be used, after appropriate validation, as a prognostic marker and a tool for selection for anti-angiogenic therapies. PMID:27258020

  11. Multifunction Sr, Co and F co-doped microporous coating on titanium of antibacterial, angiogenic and osteogenic activities

    Science.gov (United States)

    Zhou, Jianhong; Zhao, Lingzhou

    2016-01-01

    Advanced multifunction titanium (Ti) based bone implant with antibacterial, angiogenic and osteogenic activities is stringently needed in clinic, which may be accomplished via incorporation of proper inorganic bioactive elements. In this work, microporous TiO2/calcium-phosphate coating on Ti doped with strontium, cobalt and fluorine (SCF-TiCP) was developed, which had a hierarchical micro/nano-structure with a microporous structure evenly covered with nano-grains. SCF-TiCP greatly inhibited the colonization and growth of both gram-positive and gram-negative bacteria. No cytotoxicity appeared for SCF-TiCP. Furthermore, SCF-TiCP stimulated the expression of key angiogenic factors in rat bone marrow stem cells (MSCs) and dramatically enhanced MSC osteogenic differentiation. The in vivo animal test displayed that SCF-TiCP induced more new bone and tighter implant/bone bonding. In conclusion, multifunction SCF-TiCP of antibacterial, angiogenic and osteogenic activities is a promising orthopedic and dental Ti implant coating for improved clinical performance. PMID:27353337

  12. Tuberculosis Therapy Modifies the Cytokine Profile, Maturation State, and Expression of Inhibitory Molecules on Mycobacterium tuberculosis-Specific CD4+ T-Cells.

    Directory of Open Access Journals (Sweden)

    Kapil K Saharia

    Full Text Available Little is known about the expression of inhibitory molecules cytotoxic T-lymphocyte antigen-4 (CTLA-4 and programmed-death-1 (PD-1 on Mycobacterium tuberculosis (Mtb-specific CD4 T-cells and how their expression is impacted by TB treatment.Cryopreserved PBMCs from HIV-TB co-infected and TB mono-infected patients with untreated and treated tuberculosis (TB disease were stimulated for six hours with PPD and stained. Using polychromatic flow cytometry, we characterized the differentiation state, cytokine profile, and inhibitory molecule expression on PPD-specific CD4 T-cells.In our HIV-TB co-infected cohort, TB treatment increased the proportion of PPD-specific CD4 T-cells co-producing IFN-γ+IL-2+TNF-α+ and IFN-γ+IL-2+ (p = 0.0004 and p = 0.0002, respectively while decreasing the proportion of PPD-specific CD4 T-cells co-producing IFN-γ+MIP1-β+TNF-α+ and IFN-γ+MIP1-β+. The proportion of PPD-specific CD4 T-cells expressing an effector memory phenotype decreased (63.6% vs 51.6%, p = 0.0015 while the proportion expressing a central memory phenotype increased (7.8% vs. 21.7%, p = 0.001 following TB treatment. TB treatment reduced the proportion of PPD-specific CD4 T-cells expressing CTLA-4 (72.4% vs. 44.3%, p = 0.0005 and PD-1 (34.5% vs. 29.2%, p = 0.03. Similar trends were noted in our TB mono-infected cohort.TB treatment alters the functional profile of Mtb-specific CD4 T-cells reflecting shifts towards a less differentiated maturational profile and decreases PD-1 and CTLA-4 expression. These could serve as markers of reduced mycobacterial burden. Further study is warranted.

  13. Mild hypothermia effects on intercellular adhesion molecule-1 and serum interleukin-6 expression in brain tissues of a rat focal ischemia model

    Institute of Scientific and Technical Information of China (English)

    Shengqi Fu; Lei Yang; Shuling Zhang; Shilong Sun; Xingai Mao

    2008-01-01

    BACKGROUND: Previous studies have confirmed the neuroprotective effect of mild hypothermia on ischemic brain injury.OBJECTIVE: To investigate the effects of mild hypothermia on intercellular adhesion molecule-1 expression and serum interleukin-6 levels in ischemic brain tissues of focal brain ischemia rats, and to explore the neuroprotective effects of mild hypothermia on ischemic brain injury.DESIGN, TIME AND SETTING: A randomized, controlled, neurobiological experiment was performed at the Central Laboratory, First Affiliated Hospital, Xinxiang Medical College, China from February to July 2006.MATERIALS: Thirty healthy, adult, Sprague Dawley rats were used to establish middle cerebral artery occlusion models using the suture method. The immunohistochemistry (streptavidin-biotin-peroxidase complex method) kit was purchased from Boster, China. Interleukin-6 radioimmunoassay was supplied by Institute of Radioimmunity, Technology Development Center, General Hospital of Chinese PLA. METHODS: The rats were equally and randomly assigned into mild hypothermia and control groups, and middle cerebral artery occlusion models were established. The rectal temperature was maintained at (37 ± 0.5)℃ in the control group. In the mild hypothermia group, the rectal temperature was maintained at (33±1)℃.MAIN OUTCOME MEASURES: At 12 hours after model establishment, the ischemic brain hemispheres were coronally sliced at the level of the optic chiasm. The number of intercellular adhesion molecule- 1 -positive vessels per high-power field was observed with an optical microscope. Serum interleukin-6 levels were measured by radioimmunoassay.RESULTS: Compared with the control group, intercellular adhesion molecule-I and serum interleukin-6 expressions were significantly decreased in ischemic brain tissues of the mild hypothermia group (P < 0.01).CONCLUSION: Mild hypothermia exhibits a neuroprotective effect by reducing serum interleukin-6 and intercellular adhesion molecule- 1

  14. Expression Profile of Human Fc Receptor-Like 1, 2, and 4 Molecules in Peripheral Blood Mononuclear Cells of Patients with Hashimoto's Thyroiditis and Graves' Disease.

    Science.gov (United States)

    Rostamzadeh, D; Dabbaghmanesh, M H; Shabani, M; Hosseini, A; Amirghofran, Z

    2015-08-01

    Recently identified Fc receptor-like (FCRL) molecules are new members of the immunoglobulin superfamily dominantly expressed by B cells. Although FCRL expression patterns have been studied in normal and malignant cells, their biological functions and roles remain to be clearly identified in humans. Research has particularly focused on FCRL gene polymorphisms in autoimmune diseases, however, their involvement in the pathogenesis of autoimmune diseases is an interesting field for investigation. In the present study, we have investigated the gene expression profiles of FCRL1, 2, and 4 in 2 common thyroid diseases, Hashimoto's thyroiditis (HT) and Graves' disease (GD). FCRL1, 2, and 4 expressions were determined in peripheral blood samples of 55 HT patients, 40 GD patients and equal numbers of normal subjects by quantitative real-time PCR. Our results showed downregulation of FCRL1 and upregulation of FCRL2 transcripts in both HT and GD groups compared to healthy counterparts. Overexpression of FCRL4 was observed only in GD patients compared to controls. A significant correlation was observed between all FCRL gene expression levels in HT patients. Only FCRL2 and 4 had a correlation in GD patients. In addition, FCRL1, 2, and 4 gene expressions showed no correlations with the level of anti-thyroid peroxidase antibody (anti-TPO) or anti-thyroglobulin (anti-Tg) antibody from patients' sera. In conclusion, expressions of activating or inhibitory FCRL1, 2, and 4 showed significant alterations in HT and GD patients compared to healthy subjects. PMID:25738996

  15. Suppressive effects of anti-allergic agent suplatast tosilate (IPD-1151T on the expression of co-stimulatory molecules on mouse splenocytes in vivo

    Directory of Open Access Journals (Sweden)

    Masatsugu Kurokawa

    2001-01-01

    Full Text Available The effects of IPD-1151T on the expression of costimulatory molecules, CD40, CD80 and CD86, were investigated in vivo using mice with allergic disorders. BALB/c mice were immunized intraperitoneally with two doses of dinitrophenylated ovalbumin (DNP-OVA at 1-week intervals. These mice then were treated intraperitoneally with 100μg/kg of IPD1151T once a day for 14 days, starting 7 days after the first immunization. On day 21, some mice were challenged intraperitoneally with DNP-OVA and the other mice were not challenged. All mice were autopsied on day 22 and assayed for immunoglobulin E, interleuken (IL-4 and IL-5 productions following DNP-OVA immunization. The intraperitoneal treatment with IPD-1151T strongly suppressed immunoglobulin E contents in serum, which were enhanced by DNA-OVA immunization. IPD-1151T also caused a decrease in both IL-4 and IL-5 levels in splenic lymphocytes. We next examined the influence of IPD1151T on co-stimulatory molecule expression on splenic lymphocytes. IPD-1151T caused suppression of CD40 and CD86 expression; however, the treatments did not affect CD80 expression.

  16. Targeting JNK by a New Curcumin Analog to Inhibit NF-kB-Mediated Expression of Cell Adhesion Molecules Attenuates Renal Macrophage Infiltration and Injury in Diabetic Mice

    Science.gov (United States)

    Cai, Lu; Ren, Luqing; Tang, Longguang; Wang, Jingying; Zhao, Yunjie; Wang, Yonggang; Liu, Quan; Li, Xiaokun; Liang, Guang

    2013-01-01

    Macrophage infiltration contributes to the pathogenesis of diabetic renal injury. However, the regulatory mechanisms between macrophage infiltration and epithelial cell activation are still unclear. Our previous study found that C66, a novel curcumin analog, was able to inhibit inflammatory cytokine expression in vitro and in vivo. This study further elucidated whether C66 can prevent glucose-induced renal epithelial activation and inflammatory macrophage infiltration by a MAPK/NF-κB medicated mechanism. Our data show that pretreatment with C66 not only significantly reduced high glucose (HG)-induced over-expressions of VCAM-1, ICAM-1 and MCP-1, but also remarkably inhibited NF-κB activation, MAPKs phosphorylation, and subsequently macrophage adhesion in renal epithelial NRK-52E cells. Furthermore, we find that MAPKs, especially JNK, play important roles in HG-induced NF-κB activation, which regulates the over-expression of adhesion molecules in HG-stimulated NRK-52E cells. A molecular docking predicted that C66 may target JNK2, which leads to its anti-inflammatory actions. In vivo, administration of C66 or JNK special inhibitor SP600125 at 5 mg/kg markedly decreased diabetes-induced renal adhesion molecule expression, NF-κB activation, inflammatory cell infiltration, and pathological indexes in the kidneys of diabetic mice. These findings provide a perspective on the renoprotective effects of C66 in diabetes, and outline a novel therapeutic strategy of JNK inhibition for the treatment of diabetic nephropathy. PMID:24260158

  17. Anti-angiogenic effect of high doses of ascorbic acid

    OpenAIRE

    Ichim Thomas E; Mikirova Nina A; Riordan Neil H

    2008-01-01

    Abstract Pharmaceutical doses of ascorbic acid (AA, vitamin C, or its salts) have been reported to exert anticancer activity in vitro and in vivo. One proposed mechanism involves direct cytotoxicity mediated by accumulation of ascorbic acid radicals and hydrogen peroxide in the extracellular environment of tumor cells. However, therapeutic effects have been reported at concentrations insufficient to induce direct tumor cell death. We hypothesized that AA may exert anti-angiogenic effects. To ...

  18. CXC and CC Chemokines as Angiogenic Modulators in Nonhaematological Tumors

    Science.gov (United States)

    Bracarda, Sergio; Nabissi, Massimo; Massari, Francesco; Bria, Emilio; Tortora, Giampaolo; Santoni, Giorgio; Cascinu, Stefano

    2014-01-01

    Chemokines are a superfamily of structurally homologous heparin-binding proteins that includes potent inducers and inhibitors of angiogenesis. The imbalance between angiogenic and angiostatic chemokine activities can lead to abnormalities, such as chronic inflammation, dysplastic transformation, and even tumor development and spreading. In this review, we summarize the current literature regarding the role of chemokines as modulators of tumor angiogenesis and their potential role as therapeutic targets in patients with nonhaematological tumors. PMID:24971349

  19. CXC and CC Chemokines as Angiogenic Modulators in Nonhaematological Tumors

    Directory of Open Access Journals (Sweden)

    Matteo Santoni

    2014-01-01

    Full Text Available Chemokines are a superfamily of structurally homologous heparin-binding proteins that includes potent inducers and inhibitors of angiogenesis. The imbalance between angiogenic and angiostatic chemokine activities can lead to abnormalities, such as chronic inflammation, dysplastic transformation, and even tumor development and spreading. In this review, we summarize the current literature regarding the role of chemokines as modulators of tumor angiogenesis and their potential role as therapeutic targets in patients with nonhaematological tumors.

  20. The classical pink-eyed dilution mutation affects angiogenic responsiveness.

    Science.gov (United States)

    Rogers, Michael S; Boyartchuk, Victor; Rohan, Richard M; Birsner, Amy E; Dietrich, William F; D'Amato, Robert J

    2012-01-01

    Angiogenesis is the process by which new blood vessels are formed from existing vessels. Mammalian populations, including humans and mice, harbor genetic variations that alter angiogenesis. Angiogenesis-regulating gene variants can result in increased susceptibility to multiple angiogenesis-dependent diseases in humans. Our efforts to dissect the complexity of the genetic diversity that regulates angiogenesis have used laboratory animals due to the availability of genome sequence for many species and the ability to perform high volume controlled breeding. Using the murine corneal micropocket assay, we have observed more than ten-fold difference in angiogenic responsiveness among various mouse strains. This degree of difference is observed with either bFGF or VEGF induced corneal neovascularization. Ongoing mapping studies have identified multiple loci that affect angiogenic responsiveness in several mouse models. In this study, we used F2 intercrosses between C57BL/6J and the 129 substrains 129P1/ReJ and 129P3/J, as well as the SJL/J strain, where we have identified new QTLs that affect angiogenic responsiveness. In the case of AngFq5, on chromosome 7, congenic animals were used to confirm the existence of this locus and subcongenic animals, combined with a haplotype-based mapping approach that identified the pink-eyed dilution mutation as a candidate polymorphism to explain AngFq5. The ability of mutations in the pink-eyed dilution gene to affect angiogenic response was demonstrated using the p-J allele at the same locus. Using this allele, we demonstrate that pink-eyed dilution mutations in Oca2 can affect both bFGF and VEGF-induced corneal angiogenesis. PMID:22615734

  1. Exercise and angiogenic growth factors in human skeletal muscle

    OpenAIRE

    Gustafsson, Thomas

    2005-01-01

    Long-term electrical stimulation and endurance exercise increase the amount of capillaries in skeletal muscle. VEGF-A is a well-characterized stimulatory angiogenic growth factor and has shown to play an important role in angiogenesis in pathological conditions in humans and in physiological conditions in animal models. A close relationship has recently been observed between VEGF-A and another group of endothelial specific growth factors, angiopoietins, during development an...

  2. Circulating Angiogenic Factors in Patients with Thromboangiitis Obliterans

    OpenAIRE

    Hewing, Bernd; Stangl, Verena; Stangl, Karl; Enke-Melzer, Kathrin; Baumann, Gert; Ludwig, Antje

    2012-01-01

    Background Thromboangiitis obliterans (TAO, also known as Buerger's disease) is a non-atherosclerotic inflammatory vascular disease that primarily affects arteries in the extremities of young adult smokers. Since the etiology of TAO is still unknown, therapeutic options are limited. Recent attempts in therapeutic angiogenesis have been promising. Therefore, the aim of our study was to evaluate angiogenic processes and factors including circulating progenitor cells in TAO. Methodology/Principa...

  3. Fractalkine: A Novel Angiogenic Chemokine in Rheumatoid Arthritis

    OpenAIRE

    Volin, Michael V.; Woods, James M; Amin, M. Asif; Connors, Matthew A; Harlow, Lisa A.; Koch, Alisa E

    2001-01-01

    Angiogenesis is an important aspect of the vasculoproliferation found in the rheumatoid arthritic (RA) pannus. We have previously implicated members of the CXC chemokine family as potent angiogenic mediators in RA. We investigated the possibility that the sole member of the CX3C chemokine family, fractalkine (fkn), induces angiogenesis and that fkn might mediate angiogenesis in RA. Recombinant human fkn significantly induced migration of human dermal microvascular endothelial cells (HMVECs), ...

  4. Developmentally regulated expression by Trypanosoma cruzi of molecules that accelerate the decay of complement C3 convertases

    International Nuclear Information System (INIS)

    The authors recently showed that culture-derived metacyclic trypomastigotes (CMT), but not epimastigotes (Epi), of the Miranda 99 strain of Trypanosoma cruzi evade lysis by the human alternative complement pathway because of inefficient binding of factor B to complement component C3b on the parasite surface. These results suggested that CMT and tissue-culture-derived trypomastigotes (TCT), which also activate the alternative pathway poorly, might produce a molecule capable of interfering with factor B binding to C3b. They now demonstrate that CMT and TCT lysates, as well as molecules spontaneously shed from CMT and TCT but not Epi, accelerate decay of 125I-labeled factor Bb from the alternative-pathway C3 convertase (C3bBb) assembled on zymosan or Epi and also accelerate decay of the classical-pathway C3 convertase (C4b2a) on sheep erythrocytes. Parasites metabolically labeled with [35S]methionine spontaneously shed a limited number of radioactive components, ranging in molecular mass from 86 to 155 kDa for trypomastigotes and 25 to 80 kDa for Epi. Decay-accelerating activity within supernatants is inactivated by papain and is coeluted with 35S-containing polypeptides on FPLC anion-exchange chromatography, suggesting that the active constituents are protein molecules. Molecules with decay-accelerating activity may explain the developmentally regulated resistance to complement-mediated lysis in infective and vertebrate stages for T. cruzi life cycle

  5. Expression of the costimulatory molecule B7-H3 is associated with prolonged survival in human pancreatic cancer

    International Nuclear Information System (INIS)

    Costimulatory signaling has been implicated as a potential regulator of antitumor immunity in various human cancers. In contrast to the negative prognostic value of aberrant B7-H1 expression by pancreatic cancer cells, the role of B7-H3 is still unknown. Therefore, we investigated the expression pattern and clinical significance of B7-H3 expression in human pancreatic cancer. B7-H3 expression was evaluated by immunohistochemistry in 68 patients with pancreatic cancer who underwent surgical tumor resection. Expression data was correlated with clinicopathologic features and with the number of tumor-infiltrating T cells. B7-H3 expression was significantly upregulated in pancreatic cancer compared to normal pancreas (p < 0.05). In 60 of 68 examined tumors B7-H3 protein was detectable in pancreatic cancer cells. Patients with high tumor B7-H3 levels had a significantly better postoperative prognosis than patients with low tumor B7-H3 levels (p = 0.0067). Furthermore, tumor B7-H3 expression significantly correlated with the number of tumor-infiltrating CD8+ T cells (p = 0.018). We demonstrate for the first time that B7-H3 is abundantly expressed in pancreatic cancer and that tumor-associated B7-H3 expression significantly correlates with prolonged postoperative survival. Our findings suggest that B7-H3 might play an important role as a potential stimulator of antitumor immune response in pancreatic cancer

  6. Expression of the bitter receptor T2R38 in pancreatic cancer: localization in lipid droplets and activation by a bacteria-derived quorum-sensing molecule

    Science.gov (United States)

    Gaida, Matthias M.; Mayer, Christine; Dapunt, Ulrike; Stegmaier, Sabine; Schirmacher, Peter; Wabnitz, Guido H.; Hänsch, G. Maria

    2016-01-01

    T2R38 belongs to the family of bitter receptors and was initially detected in cells of the oral cavity. We now describe expression of T2R38 in tumor cells in patients with pancreatic cancer and in tumor-derived cell lines. T2R38 is localized predominantly intracellular in association with lipid droplets, particularly with the lipid droplet membrane. The receptor can be activated by the bona fide ligand for T2R38, phenylthiourea (PTU), and by N-acetyl-dodecanoyl homoserine (AHL-12), a quorum sensing molecule of Pseudomonas aeruginosa, the latter is the only known natural ligand for T2R38. In response to PTU or AHL-12, key transcription factors are activated including phosphorylation of the MAP kinases p38 and ERK1/2, and upregulation of NFATc1. Moreover, we found increased expression of the multi-drug resistance protein 1 (also known as ABCB1), a transmembrane transporter molecule, participating in shuttling of a plethora of drugs, such as chemotherapeutics or antibiotics. In conclusion, our data indicate a new, additional function of the taste receptor T2R38 beyond sensing ‘bitter’. Moreover, because T2R38 can be stimulated by a bacteria-derived signaling molecule the receptor could link microbiota and cancer. PMID:26862855

  7. Induction of antitumor immunity ex vivo using dendritic cells transduced with fowl pox vector expressing MUC1, CEA, and a triad of costimulatory molecules (rF-PANVAC).

    Science.gov (United States)

    Vasir, Baldev; Zarwan, Corrine; Ahmad, Rehan; Crawford, Keith D; Rajabi, Hassan; Matsuoka, Ken-Ichi; Rosenblatt, Jacalyn; Wu, Zekui; Mills, Heidi; Kufe, Donald; Avigan, David

    2012-09-01

    The fowl pox vector expressing the tumor-associated antigens, mucin-1 and carcinoembryonic antigen in the context of costimulatory molecules (rF-PANVAC) has shown promise as a tumor vaccine. However, vaccine-mediated expansion of suppressor T-cell populations may blunt clinical efficacy. We characterized the cellular immune response induced by ex vivo dendritic cells (DCs) transduced with (rF)-PANVAC. Consistent with the functional characteristics of potent antigen-presenting cells, rF-PANVAC-DCs demonstrated strong expression of mucin-1 and carcinoembryonic antigen and costimulatory molecules, CD80, CD86, and CD83; decreased levels of phosphorylated STAT3, and increased levels of Tyk2, Janus kinase 2, and STAT1. rF-PANVAC-DCs stimulated expansion of tumor antigen-specific T cells with potent cytolytic capacity. However, rF-PANVAC-transduced DCs also induced the concurrent expansion of FOXP3 expressing CD4CD25 regulatory T cells (Tregs) that inhibited T-cell activation. Moreover, Tregs expressed high levels of Th2 cytokines [interleukin (IL)-10, IL-4, IL-5, and IL-13] together with phosphorylated STAT3 and STAT6. In contrast, the vaccine-expanded Treg population expressed high levels of Th1 cytokines IL-2 and interferon-γ and the proinflammatory receptor-related orphan receptor γt (RORγt) and IL-17A suggesting that these cells may share effector functions with conventional TH17 T cells. These data suggest that Tregs expanded by rF-PANVAC-DCs, exhibit immunosuppressive properties potentially mediated by Th2 cytokines, but simultaneous expression of Th1 and Th17-associated factors suggests a high degree of plasticity. PMID:22892452

  8. Co-expression of Apoptosis-Related Molecules on Activated CD8+ CD38+ T-cells is Associated with HIV-1 Disease Progression

    Directory of Open Access Journals (Sweden)

    José W. Rodríguez

    2007-01-01

    Full Text Available CD8+ T cells play a major role in controlling HIV-1 infection through the release of soluble lytic and non-lytic antiviral factors. Their decrease or defective function contributes to the HIV-1 disease progression. HIV-1 disease progression has been associated with a remarkable increase of CD38 expression on CD8+ T-cells. It has been also documented that a significant distribution of HIV-specific CD8+T-cells resides in the CD8+CD38+ T-cell sub-population. The failure of HIV-specific CD8+CD38+ T-cells to control HIV-1 infection has been attributed to several mechanisms including apoptosis. However, the relationship between the CD38 expression and molecular events involved in CD8+ T-cell apoptosis is not well understood. Using four-color flow cytometric analysis, the present cross-sectional study we evaluated the expression of four membrane-associated apoptosis-related molecules (TNFR-1, Annexin-V, CXCR4, and CD95 and two cytoplasm-associated apoptosis-related molecules (Bcl-2 and the active form caspase-3 in 41 HIV-1 positive patients and 15 HIV-1 negative individuals. Flow cytometric analysis made on freshly isolated PBMC showed that HIV-1 infection alters the level of expression of CD38, CD95, CXCR4, Bcl-2 and active caspase-3. No significant change in the expression of Annexin V or TNFR-1 was found. A positive correlation was established between CD95, CXCR4, and active caspase-3 expression with low CD4 count and high plasma viremia and CD38 expression. Data suggest that the majority of activated CD8+CD38+ T-cells were apoptotic because they expressed active caspase-3 and the rest of these cells were highly susceptible to become apoptotic since they co-expressed CD95 and CXCR4. Results also suggest that one of the most likely HIV-mediated apoptosis mechanisms is via CD95 and CXCR4 induction through the caspase cascade despite the expression of Bcl-2. All these observations may provide an additional explanation of why HIV-1 infection is not

  9. Toll-Like Receptor and Accessory Molecule mRNA Expression in Humans and Mice as Well as in Murine Autoimmunity, Transient Inflammation, and Progressive Fibrosis

    Directory of Open Access Journals (Sweden)

    Hans-Joachim Anders

    2013-06-01

    Full Text Available The cell type-, organ-, and species-specific expression of the Toll-like receptors (TLRs are well described, but little is known about the respective expression profiles of their accessory molecules. We therefore determined the mRNA expression levels of LBP, MD2, CD36, CD14, granulin, HMGB1, LL37, GRP94, UNC93b1, TRIL, PRAT4A, AP3B1, AEP and the respective TLRs in human and mouse solid organs. Humans and mice displayed significant differences between their respective mRNA expression patterns of these factors. In addition, the expression profiles in transient tissue inflammation upon renal ischemia-reperfusion injury, in spleens and kidneys from mice with lupus-like systemic autoimmunity, and in progressive tissue fibrosis upon unilateral ureteral obstruction were studied. Several TLR co-factors were specifically regulated during the different phases of these disease entities, suggesting a functional involvement in the disease process. Thus, the organ- and species-specific expression patterns need to be considered in the design and interpretation of studies related to TLR-mediated innate immunity, which seems to be involved in the tissue injury phase, in the phase of tissue regeneration, and in progressive tissue remodelling.

  10. Expression of co-stimulator 4-1BB molecule in hepatocellular carcinoma and adjacent non-tumor liver tissue, and its possible role in tumor immunity

    Institute of Scientific and Technical Information of China (English)

    Yun-Le Wan; Shu-Sen Zheng; Zhi-Cheng Zhao; Min-Wei Li; Chang-Ku Jia; Hao Zhang

    2004-01-01

    AIM: To investigate the expression of 4-1BB molecule in hepatocellular carcinoma (HCC) and its adjacent tissues.METHODS: Reverse transcription-polymerase chain reaction (RT-PCR) was used to determine the gene expression of 4-1BB in hepatocarcinoma and its adjacent tissues, and peripheral blood mononuclear cells (PBMCs) from both HCC and health control groups. Flow cytometry was used to analyse the phenotypes of T cell subsets from the blood of HCC patients and healthy volunteers, and further to determine whether 4-1BB molecules were also expressed on the surfaceof CD4+ and CD8+ T cells. The localization of 4-1BB proteins on tumor infiltrating T cells was determined by direct immunofluorescence cytochemical staining and detected by confocal microscopy.RESULTS: 4-1BB mRNA, which was not detectable in normal liver, was found in L9 liver tissues adjacent to tumor edge (<1.0 cm). Low expression of 4-1BB mRNA was shown in 8 tumor tissues and 6 liver tissues located within 1 to 5 cmaway from tumor edge. In PBMCs, 4-1BB mRNA was almost not detected. Percentage of CD4+, CD8+ and CD3+/CD25+ T cells, as well as ratio of CD4 to CD8 revealed no difference between groups (P>0.05, respectively), while a significant lower percentage of CD3+ T cell was found in HCC group as compared to healthy control group (P<0.05). However, 4-1BB molecules were almost not found on the surface of CD4+ and CD8+ T cells in HCC and healthy control group. Double-staining of 4-1BB+/CD4+ and 4-1BB+/CD8+ immunofluorescence on tumor infiltrating T cells was detected in 13 liver tissues adjacent to tumor edge (<1.0 cm) by confocal microscopy.CONCLUSION: Although HCC may escape from immune attack by weak immunogenicity or downregulated expression of MHC-1 molecules on the tumor cell surface, tumor infiltrating T cells can be activated via other costimulatory signal pathways to exert a limited antitumor effect on local microenvironment. The present study also implicates that modulating 4-1BB/4-1BBL

  11. CX-4945, an orally bioavailable selective inhibitor of protein kinase CK2, inhibits prosurvival and angiogenic signaling and exhibits antitumor efficacy.

    Science.gov (United States)

    Siddiqui-Jain, Adam; Drygin, Denis; Streiner, Nicole; Chua, Peter; Pierre, Fabrice; O'Brien, Sean E; Bliesath, Josh; Omori, Mayuko; Huser, Nanni; Ho, Caroline; Proffitt, Chris; Schwaebe, Michael K; Ryckman, David M; Rice, William G; Anderes, Kenna

    2010-12-15

    Malignant transformation and maintenance of the malignant phenotype depends on oncogenic and non-oncogenic proteins that are essential to mediate oncogene signaling and to support the altered physiologic demands induced by transformation. Protein kinase CK2 supports key prosurvival signaling pathways and represents a prototypical non-oncogene. In this study, we describe CX-4945, a potent and selective orally bioavailable small molecule inhibitor of CK2. The antiproliferative activity of CX-4945 against cancer cells correlated with expression levels of the CK2α catalytic subunit. Attenuation of PI3K/Akt signaling by CX-4945 was evidenced by dephosphorylation of Akt on the CK2-specific S129 site and the canonical S473 and T308 regulatory sites. CX-4945 caused cell-cycle arrest and selectively induced apoptosis in cancer cells relative to normal cells. In models of angiogenesis, CX-4945 inhibited human umbilical vein endothelial cell migration, tube formation, and blocked CK2-dependent hypoxia-induced factor 1 alpha (HIF-1α) transcription in cancer cells. When administered orally in murine xenograft models, CX-4945 was well tolerated and demonstrated robust antitumor activity with concomitant reductions of the mechanism-based biomarker phospho-p21 (T145). The observed antiproliferative and anti-angiogenic responses to CX-4945 in tumor cells and endothelial cells collectively illustrate that this compound exerts its antitumor effects through inhibition of CK2-dependent signaling in multiple pathways. Finally, CX-4945 is the first orally bioavailable small molecule inhibitor of CK2 to advance into human clinical trials, thereby paving the way for an entirely new class of targeted treatment for cancer. PMID:21159648

  12. Clinical and experimental studies regarding the expression and diagnostic value of carcinoembryonic antigen-related cell adhesion molecule 1 in non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is a multifunctional Ig-like cell adhesion molecule that has a wide range of biological functions. According to previous reports, serum CEACAM1 is dysregulated in different malignant tumours and associated with tumour progression. However, the serum CEACAM1 expression in non-small-cell lung carcinomas (NSCLC) is unclear. The different expression ratio of CEACAM1-S and CEACAM1-L isoform has seldom been investigated in NSCLC. This research is intended to study the serum CEACAM1 and the ratio of CEACAM1-S/L isoforms in NSCLC. The expression of the serum CEACAM1 was determined by enzyme-linked immunosorbent assay. The protein expression and the location of CEACAM1 in tumours were observed by immunohistochemical staining. The CEACAM1 mRNA levels in tumour and normal adjacent tissues were measured using quantitative real-time PCR, and the expression patterns and the rate of CEACAM1-S and CEACAM1-L were analysed by reverse transcription-PCR. Serum CEACAM1 levels were significantly higher in NSCLC patients compared with that from normal healthy controls (P <0.0001). 17 patients (81%) among 21 showed high expression of CEACAM1 by immunohistochemical staining. Although no significant differences were found between tumour and normal tissues on mRNA expression levels of CEACAM1 (P >0.05), the CEACAM1-S and the CEACAM1-S/L (S: L) ratios were significantly higher in tumour than normal tissues (P <0.05). Our data indicated that the serum levels of CEACAM1 could discriminate lung cancer patients from health donors and that CEACAM1 might be a useful marker in early diagnosis of NSCLC. Moreover, our results showed that the expression patterns of CEACAM1 isoforms could be changed during oncogenesis, even when total CEACAM1 in tumour tissues did not show significant changes. Our study suggested that the expression ratios of CEACAM1-S/CEACAM1-L might be a better diagnostic indicator in NSCLC than the quantitative

  13. Angiogenic factor AGGF1 promotes therapeutic angiogenesis in a mouse limb ischemia model.

    Directory of Open Access Journals (Sweden)

    Qiulun Lu

    Full Text Available BACKGROUND: Peripheral arterial disease (PAD is a common disease accounting for about 12% of the adult population, and causes significant morbidity and mortality. Therapeutic angiogenesis using angiogenic factors has been considered to be a potential treatment option for PAD patients. In this study, we assessed the potential of a new angiogenic factor AGGF1 for therapeutic angiogenesis in a critical limb ischemia model in mice for PAD. METHODS AND RESULTS: We generated a unilateral hindlimb ischemia model in mice by ligation of the right common iliac artery and femoral artery. Ischemic mice with intrasmuscular administration of DNA for an expression plasmid for human AGGF1 (AGGF1 group resulted in increased expression of both AGGF1 mRNA and protein after the administration compared with control mice with injection of the empty vector (control group. Color PW Doppler echocardiography showed that the blood flow in ischemic hindlimbs was significantly increased in the AGGF1 group compared to control mice at time points of 7, 14, and 28 days after DNA administration (n = 9/group, P = 0.049, 0.001, and 0.001, respectively. Increased blood flow in the AGGF1 group was correlated to increased density of CD31-positive vessels and decreased necrosis in muscle tissues injected with AGGF1 DNA compared with the control tissue injected with the empty vector. Ambulatory impairment was significantly reduced in the AGGF1 group compared to the control group (P = 0.004. The effect of AGGF1 was dose-dependent. At day 28 after gene transfer, AGGF1 was significantly better in increasing blood flow than FGF-2 (P = 0.034, although no difference was found for tissue necrosis and ambulatory impairment. CONCLUSIONS: These data establish AGGF1 as a candidate therapeutic agent for therapeutic angiogenesis to treat PAD.

  14. Imaging of HER3-expressing xenografts in mice using a {sup 99m}Tc(CO){sub 3}-HEHEHE-Z{sub HER3:08699} affibody molecule

    Energy Technology Data Exchange (ETDEWEB)

    Orlova, Anna; Rosestedt, Maria; Varasteh, Zohreh; Selvaraju, Ram Kumar [Uppsala University, Preclinical PET Platform, Department of Medicinal Chemistry, Uppsala (Sweden); Malm, Magdalena; Andersson, Ken; Staahl, Stefan; Loefblom, John [KTH Royal Institute of Technology, Division of Protein Technology, School of Biotechnology, Stockholm (Sweden); Altai, Mohamed; Honarvar, Hadis; Strand, Joanna; Tolmachev, Vladimir [Uppsala University, Division of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala (Sweden)

    2014-07-15

    Human epidermal growth factor receptor type 3 (HER3) is a transmembrane receptor tyrosine kinase belonging to the HER (ErbB) receptor family. Membranous expression of HER3 is associated with trastuzumab resistance in breast cancer and the transition to androgen independence in prostate cancer. Imaging of HER3 expression in malignant tumors may provide important diagnostic information that can influence patient management. Affibody molecules with low picomolar affinity to HER3 were recently selected. The aim of this study was to investigate the feasibility of HER3 imaging using radiolabeled Affibody molecules. A HER3-binding Affibody molecule, Z{sub 08699}, with a HEHEHE-tag on N-terminus was labeled with {sup 99m}Tc(CO){sub 3} using an IsoLink kit. In vitro and in vivo binding specificity and the cellular processing of the labeled binder were evaluated. Biodistribution of {sup 99m}Tc(CO){sub 3}-HEHEHE-Z{sub 08699} was studied over time in mice bearing HER3-expressing xenografts. HEHEHE-Z{sub 08699} was labeled with {sup 99m}Tc(CO){sub 3} with an isolated yield of >80 % and a purity of >99 %. Binding of {sup 99m}Tc(CO){sub 3}-HEHEHE-Z{sub 08699} was specific to BT474 and MCF7 (breast cancer), and LS174T (colon cancer) cells. Cellular processing showed rapid binding and relatively quick internalization of the receptor/Affibody molecule complex (70 % of cell-associated radioactivity was internalized after 24 h). The tumor targeting was receptor mediated and the excretion was predominantly renal. Receptor-mediated uptake was also found in the liver, lung, stomach, intestine, and salivary glands. At 4 h pi, tumor-to-blood ratios were 7 ± 3 for BT474, and 6 ± 2 for LS174T xenografts. LS174T tumors were visualized by microSPECT 4 h pi. The results of this study suggest the feasibility of HER3-imaging in malignant tumors using Affibody molecules. (orig.)

  15. Relationship of angiogenic and apoptotic activities in soft-tissue sarcoma

    Directory of Open Access Journals (Sweden)

    Thin Thin Win

    2014-01-01

    Full Text Available Introduction: Angiogenesis and apoptosis play an essential role in tumor development and progression. Previous studies on apoptosis and angiogenesis of soft-tissue sarcoma (STS were done separately. This is the first study of the relationship between apoptotic and angiogenic activity. Correlation of expression of anti-apoptotic protein (Bcl-2 and pro-apoptotic protein (Bax in the tumor cells (TCs with their expression in endothelial cell (EC of the tumor blood vessels in STS were also carried out. Materials and Methods: 101 cases of STS; consisting liposarcoma, malignant fibrous histiocytoma, synovial sarcoma, fibrosarcoma, leiomyosarcoma, rhabdomyosarcoma and malignant peripheral nerve sheath tumor; were collected and immunohistochemical reaction of vascular endothelial growth factor (VEGF, Bcl-2 and Bax were examined. Results: Higher Bax expression in TCs (54.5% was seen compared to Bcl-2 expression (44.6%. There was a significant association between Bcl-2 and Bax in TCs with ECs. Significant association was also seen between histological types of STS with Bcl-2 expression; however not with Bax expression. There was an association between VEGF and Bax with high VEGF expression and weak Bax expression. However, VEGF expression was not associated with Bcl-2 expression and histological types. Conclusion: This study supports the role of ECs of tumor blood vessels and apoptosis of TCs in tumor management. Increased angiogenesis may inhibit apoptosis of TCs and lead to tumor growth. Therefore, inhibition of ECs survival or activation of ECs death is promising prospect for tumor therapy. Immunohistochemical antibodies in this study might be potential useful marker for the prognosis of STS.

  16. Peptide motifs of the single dominantly expressed class I molecule explain the striking MHC-determined response to Rous sarcoma virus in chickens

    OpenAIRE

    Wallny, Hans-Joachim; Avila, David; Hunt, Lawrence G.; Powell, Timothy J.; Riegert, Patricia; Salomonsen, Jan; Skjødt, Karsten; Vainio, Olli; Vilbois, Francis; Wiles, Michael V.; Kaufman, Jim

    2006-01-01

    Compared with the MHC of typical mammals, the chicken MHC is smaller and simpler, with only two class I genes found in the B12 haplotype. We make five points to show that there is a single-dominantly expressed class I molecule that can have a strong effect on MHC function. First, we find only one cDNA for two MHC haplotypes (B14 and B15) and cDNAs corresponding to two genes for the other six (B2, B4, B6, B12, B19, and B21). Second, we find, for the B4, B12, and B15 haplotypes, that one cDNA i...

  17. Impact of exogenous lipase supplementation on growth, intestinal function, mucosal immune and physical barrier, and related signaling molecules mRNA expression of young grass carp (Ctenopharyngodon idella).

    Science.gov (United States)

    Liu, Sen; Feng, Lin; Jiang, Wei-Dan; Liu, Yang; Jiang, Jun; Wu, Pei; Zeng, Yun-Yun; Xu, Shu-De; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu

    2016-08-01

    This study investigated the effects of exogenous lipase supplementation on the growth performance, intestinal growth and function, immune response and physical barrier function, and related signaling molecules mRNA expression of young grass carp (Ctenopharyngodon idella). A total of 450 grass carp (255.02 ± 0.34 g) were fed five diets for 60 days. There were 5 dietary treatments that included a normal protein and lipid diet containing 30% crude protein (CP) with 5% ether extract (EE), and the low-protein and high-lipid diets (28% CP, 6% EE) supplemented with graded levels of exogenous lipase supplementation activity at 0, 1193, 2560 and 3730 U/kg diet. The results indicated that compared with a normal protein and lipid diet (30% CP, 5% EE), a low-protein and high-lipid diet (28% CP, 6% EE) (un-supplemented lipase) improved lysozyme activities and complement component 3 contents in the distal intestine (DI), interleukin 10 mRNA expression in the proximal intestine (PI), and glutathione S-transferases activity and glutathione content in the intestine of young grass carp. In addition, in low-protein and high-lipid diets, optimal exogenous lipase supplementation significantly increased acid phosphatase (ACP) activities and complement component 3 (C3) contents (P < 0.05), up-regulated the relative mRNA levels of antimicrobial peptides (liver expressed antimicrobial peptide 2 and hepcidin) and anti-inflammatory cytokines (interleukin 10 and transforming growth factor β1) and signaling molecules inhibitor protein-κBα (IκBα) and target of rapamycin (TOR) (P < 0.05), down-regulated the mRNA levels of pro-inflammatory cytokines (tumor necrosis factor α, interleukin 8, interferon γ2, and interleukin 1β), and signaling molecules (nuclear factor kappa B p65, IκB kinase β, IκB kinase γ) (P < 0.05) in the intestine of young grass carp. Moreover, optimal exogenous lipase supplementation significantly decreased reactive oxygen species (ROS), malondialdehyde

  18. Rabies Virus Expressing Dendritic Cell-Activating Molecules Enhances the Innate and Adaptive Immune Response to Vaccination ▿

    OpenAIRE

    Wen, Yongjun; Wang, Hualei; Wu, Hua; Yang, Fuhe; Tripp, Ralph A.; Hogan, Robert J.; Fu, Zhen F.

    2010-01-01

    Our previous studies indicated that recruitment and/or activation of dendritic cells (DCs) is important in enhancing the protective immune responses against rabies virus (RABV) (L. Zhao, H. Toriumi, H. Wang, Y. Kuang, X. Guo, K. Morimoto, and Z. F. Fu, J. Virol. 84:9642-9648). To address the importance of DC activation for RABV vaccine efficacy, the genes for several DC recruitment and/or activation molecules, e.g., granulocyte-macrophage colony-stimulating factor (GM-CSF), macrophage-derived...

  19. High expression of carcinoembryonic antigen-related cell adhesion molecule (CEACAM) 6 and 8 in primary myelofibrosis

    DEFF Research Database (Denmark)

    Hasselbalch, Hans Carl; Skov, Vibe; Larsen, Thomas Stauffer; Thomassen, Mads; Riley, Caroline Hasselbalch; Jensen, Morten; Bjerrum, Ole Weis; Kruse, Torben A

    2011-01-01

    Primary myelofibrosis (PMF) is characterized by leukoerythroblastic anemia with circulating immature myeloid cells, including CD34+ cells, progressive splenomegaly and accumulation of connective tissue and neoangiogenesis in the bone marrow. Altered bone marrow stroma and cell adherence account for...... the egress of CD34+ cells from the bone marrow. Carcinoembryonic antigen-related cell adhesion molecule (CEACAM) 6 has been implicated in cell adhesion, cellular invasiveness, angiogenesis, and inflammation, which are all key processes in the pathophysiology of PMF. Accordingly, CEACAMs may play an...

  20. Secreted Toxoplasma gondii molecules interfere with expression of MHC-II in interferon gamma-activated macrophages.

    Science.gov (United States)

    Leroux, Louis-Philippe; Dasanayake, Dayal; Rommereim, Leah M; Fox, Barbara A; Bzik, David J; Jardim, Armando; Dzierszinski, Florence S

    2015-04-01

    The obligate intracellular protozoan parasite Toxoplasma gondii interferes with major histocompatibility complex class II antigen presentation to dampen host CD4(+) T cell responses. While it is known that T. gondii inhibits major histocompatibility complex class II gene transcription and expression in infected host cells, the mechanism of this host manipulation is unknown. Here, we show that soluble parasite proteins inhibit IFNγ-induced expression of major histocompatibility complex class II on the surface of the infected cell in a dose-dependent response that was abolished by protease treatment. Subcellular fractionation of T. gondii tachyzoites revealed that the major histocompatibility complex class II inhibitory activity co-partitioned with rhoptries and/or dense granules. However, parasite mutants deleted for single rhoptries or dense granules genes (ROP1, 4/7, 14, 16 and 18 or GRA 2-9 and 12 knock-out strains) retained the ability to inhibit expression of major histocompatibility complex class II. In addition, excreted/secreted antigens released by extracellular tachyzoites displayed immunomodulatory activity characterized by an inhibition of major histocompatibility complex class II expression, and reduced expression and release of TNFα by macrophages. Tandem MS analysis of parasite excreted/secreted antigens generated a list of T. gondii secreted proteins that may participate in major histocompatibility complex class II inhibition and the modulation of host immune functions. PMID:25720921

  1. Age-related changes in expression of the neural cell adhesion molecule in skeletal muscle: a comparative study of newborn, adult and aged rats

    DEFF Research Database (Denmark)

    Andersson, A M; Olsen, M; Zhernosekov, D;

    1993-01-01

    Neural cell adhesion molecule (NCAM) is expressed by muscle and involved in muscle-neuron and muscle-muscle cell interactions. The expression in muscle is regulated during myogenesis and by the state of innervation. In aged muscle, both neurogenic and myogenic degenerative processes occur. We here...... virtually unchanged at all ages examined. However, changes in the extent of sialylation of NCAM were demonstrated. Even though the relative amounts of the various NCAM polypeptides were unchanged during aging, distinct changes in NCAM mRNA classes were observed. Three NCAM mRNA classes of 6.7, 5.2 and 2.......9 kb were present in perinatal and young adult skeletal muscle, whereas only the 5.2 and 2.9 kb mRNA classes could be demonstrated in aged muscle. This indicates that metabolism of the various NCAM polypeptides is individually regulated during aging. Alternative splicing of NCAM mRNA in skeletal muscle...

  2. Effects of Latanoprost and Bimatoprost on the Expression of Molecules Relevant to Ocular Inflow and Outflow Pathways.

    Directory of Open Access Journals (Sweden)

    Xiaohong Li

    Full Text Available The intraocular pressure (IOP-lowering and side effects in response to different prostaglandin F2α analogues can be variable, but, the underlying basis for this difference remains unknown. This study investigated the differential changes of cellular proteins relevant to IOP-lowering effects of latanoprost and bimatoprost.The human T lymphoblast (MOLT-3 cell line and immortalized human trabecular meshwork (iHTM cells were studied by quantitative PCR and by immunofluorescence after treatment with either latanoprost or bimatoprost. New Zealand white rabbit eyes were treated topically with each agent and, following euthanasia, anterior segment tissues were studied with immunostaining.In cultured MOLT-3 cells, mRNA expression of both c-fos and matrix metalloproteinase 9 increased significantly in response to each agent. In addition, there was little change in tissue inhibitor of metalloproteinase (TIMP-3 mRNA, but a significant decrease in TIMP-4. Fibronectin mRNA in MOLT-3 cells was down-regulated with bimatoprost, but was up-regulated with latanoprost. Immunofluorescence analysis of iHTM cells showed that intracellular fibronectin was significantly decreased by bimatoprost, but was increased by latanoprost. Both latanoprost and bimatoprost increased mRNA expression of NF-кB p65 and decreased that of IкBα. Aquaporin-1 mRNA expression was significantly down-regulated by bimatoprost. Immunostaining also revealed a significant decrease of aquaporin-1 in the ciliary epithelium of New Zealand white rabbits after bimatoprost treatment.Similarities in protein expression produced by latanoprost and bimatoprost in vitro may be relevant to the mechanism for their IOP-lowering effects in vivo. Differences in fibronectin expression and in aquaporin-1 expression in response to each agent may contribute to variability in the IOP-lowering efficacy in some studies.

  3. Expression of human carcinoembryonic antigen-related cell adhesion molecule 6 and alveolar progenitor cells in normal and injured lungs of transgenic mice.

    Science.gov (United States)

    Lin, Shin-E; Barrette, Anne Marie; Chapin, Cheryl; Gonzales, Linda W; Gonzalez, Robert F; Dobbs, Leland G; Ballard, Philip L

    2015-12-01

    Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) is expressed in the epithelium of various primate tissues, including lung airway and alveoli. In human lung, CEACAM6 is developmentally and hormonally regulated, protects surfactant function, has anti-apoptotic activity and is dysregulated in cancers. We hypothesized that alveolar CEACAM6 expression increases in lung injury and promotes cell proliferation during repair. Studies were performed in CEABAC transgenic mice-containing human CEACAM genes. The level of CEACAM6 in adult CEABAC lung was comparable to that in human infants; expression occurred in epithelium of airways and of some alveoli but rarely co-localized with markers of type I or type II cells. Ten days after bleomycin instillation, both the number of CEACAM6(+) cells and immunostaining intensity were elevated in injured lung areas, and there was increased co-localization with type I and II cell markers. To specifically address type II cells, we crossed CEABAC mice with animals expressing EGFP driven by the SP-C promoter. After bleomycin injury, partially flattened, elongated epithelial cells were observed that expressed type I cell markers and were primarily either EGFP(+) or CEACAM6(+). In cell cycle studies, mitosis was greater in CEACAM6(+) non-type II cells versus CEACAM6(+)/EGFP(+) cells. CEACAM6 epithelial expression was also increased after hyperoxic exposure and LPS instillation, suggesting a generalized response to acute lung injuries. We conclude that CEACAM6 expression is comparable in human lung and the CEABAC mouse. CEACAM6 in this model appears to be a marker of a progenitor cell population that contributes to alveolar epithelial cell replenishment after lung injury. PMID:26702074

  4. TIPE2 Inhibits Lung Cancer Growth Attributing to Promotion of Apoptosis by Regulating Some Apoptotic Molecules Expression

    OpenAIRE

    Qing-Qing Liu; Feng-Feng Zhang; Fang Wang; Jing-Hua Qiu; Chun-Hua Luo; Guo-Yong Zhu; Ying-Fu Liu

    2015-01-01

    Recent studies found that TIPE2 was involved in cancer development. However, little is known about TIPE2 in lung cancer. Our study aims to clarify the role of TIPE2 in lung carcinogenesis. We examined the expression of TIPE2 in lung squamous cancer (LSC), small cell lung cancer and lung adenocarcinoma (AdC) tissues and found that TIPE2 expression was lost in small cell lung cancer, compared with adjacent non-tumor tissues. Overexpression of TIPE2 significantly inhibited the growth of lung can...

  5. The Pseudomonas aeruginosa quorum sensing signal molecule N-(3-oxododecanoyl) homoserine lactone enhances keratinocyte migration and induces Mmp13 gene expression in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Paes, Camila, E-mail: camilaquinetti@gmail.com [University of Tokyo, Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Nakagami, Gojiro, E-mail: gojiron-tky@umin.ac.jp [University of Tokyo, Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Minematsu, Takeo, E-mail: tminematsu-tky@umin.ac.jp [University of Tokyo, Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Nagase, Takashi, E-mail: tnagase@fb3.so-net.ne.jp [University of Tokyo, Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Huang, Lijuan, E-mail: koureikenhlj@gmail.com [University of Tokyo, Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Sari, Yunita, E-mail: yunita-tky@umin.ac.jp [University of Tokyo, Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Sanada, Hiromi, E-mail: hsanada-tky@umin.ac.jp [University of Tokyo, Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer An evidence of the positive effect of AHL on epithelialization process is provided. Black-Right-Pointing-Pointer AHL enhances keratinocyte's ability to migrate in an in vitro scratch wound model. Black-Right-Pointing-Pointer AHL induces the expression of Mmp13. Black-Right-Pointing-Pointer Topical application of AHL represents a possible strategy to treat chronic wounds. -- Abstract: Re-epithelialization is an essential step of wound healing involving three overlapping keratinocyte functions: migration, proliferation and differentiation. While quorum sensing (QS) is a cell density-dependent signaling system that enables bacteria to regulate the expression of certain genes, the QS molecule N-(3-oxododecanoyl) homoserine lactone (AHL) exerts effects also on mammalian cells in a process called inter-kingdom signaling. Recent studies have shown that AHL improves epithelialization in in vivo wound healing models but detailed understanding of the molecular and cellular mechanisms are needed. The present study focused on the AHL as a candidate reagent to improve wound healing through direct modulation of keratinocyte's activity in the re-epithelialization process. Results indicated that AHL enhances the keratinocyte's ability to migrate in an in vitro scratch wound healing model probably due to the high Mmp13 gene expression analysis after AHL treatment that was revealed by real-time RT-PCR. Inhibition of activator protein 1 (AP-1) signaling pathway completely prevented the migration of keratinocytes, and also resulted in a diminished Mmp13 gene expression, suggesting that AP-1 might be essential in the AHL-induced migration. Taken together, these results imply that AHL is a promising candidate molecule to improve re-epithelialization through the induction of migration of keratinocytes. Further investigation is needed to clarify the mechanism of action and molecular pathway of AHL on the keratinocyte migration

  6. The Pseudomonas aeruginosa quorum sensing signal molecule N-(3-oxododecanoyl) homoserine lactone enhances keratinocyte migration and induces Mmp13 gene expression in vitro

    International Nuclear Information System (INIS)

    Highlights: ► An evidence of the positive effect of AHL on epithelialization process is provided. ► AHL enhances keratinocyte’s ability to migrate in an in vitro scratch wound model. ► AHL induces the expression of Mmp13. ► Topical application of AHL represents a possible strategy to treat chronic wounds. -- Abstract: Re-epithelialization is an essential step of wound healing involving three overlapping keratinocyte functions: migration, proliferation and differentiation. While quorum sensing (QS) is a cell density-dependent signaling system that enables bacteria to regulate the expression of certain genes, the QS molecule N-(3-oxododecanoyl) homoserine lactone (AHL) exerts effects also on mammalian cells in a process called inter-kingdom signaling. Recent studies have shown that AHL improves epithelialization in in vivo wound healing models but detailed understanding of the molecular and cellular mechanisms are needed. The present study focused on the AHL as a candidate reagent to improve wound healing through direct modulation of keratinocyte’s activity in the re-epithelialization process. Results indicated that AHL enhances the keratinocyte’s ability to migrate in an in vitro scratch wound healing model probably due to the high Mmp13 gene expression analysis after AHL treatment that was revealed by real-time RT-PCR. Inhibition of activator protein 1 (AP-1) signaling pathway completely prevented the migration of keratinocytes, and also resulted in a diminished Mmp13 gene expression, suggesting that AP-1 might be essential in the AHL-induced migration. Taken together, these results imply that AHL is a promising candidate molecule to improve re-epithelialization through the induction of migration of keratinocytes. Further investigation is needed to clarify the mechanism of action and molecular pathway of AHL on the keratinocyte migration process.

  7. Effect of propane-2-sulfonic acid octadec-9-enyl-amide on the expression of adhesion molecules in human umbilical vein endothelial cells.

    Science.gov (United States)

    Chen, Cai-Xia; Yang, Li-Chao; Xu, Xu-Dong; Wei, Xiao; Gai, Ya-Ting; Peng, Lu; Guo, Han; Hao-Zhou; Wang, Yi-Qing; Jin, Xin

    2015-06-01

    Oleoylethanolamide (OEA), an endogenous agonist of PPARα, has been reported to have anti-atherosclerotic properties. However, OEA can be enzymatically hydrolyzed to oleic acid and ethanolamine and, thus, is not expected to be orally active. In the present study, we designed and synthesized an OEA analog, propane-2-sulfonic acid octadec-9-enyl-amide (N15), which is resistant to enzymatic hydrolysis. The purpose of this study was to investigate the effects of N15 on the expression of adhesion molecules in human umbilical vein endothelial cells (HUVECs). The results showed that N15 inhibited TNFα-induced production of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 and the adhesion of monocytes to TNFα-induced HUVECs. Furthermore, the protective effect of N15 on inflammation is dependent upon a PPAR-α/γ-mediated mechanism. In conclusion, N15 protects against TNFα-induced vascular endothelial inflammation. This anti-inflammatory effect of N15 is dependent on PPAR-α/γ dual targets. PMID:25797284

  8. Tuberculosis Therapy Modifies the Cytokine Profile, Maturation State, and Expression of Inhibitory Molecules on Mycobacterium tuberculosis-Specific CD4+ T-Cells

    Science.gov (United States)

    Saharia, Kapil K.; Petrovas, Constantinos; Ferrando-Martinez, Sara; Leal, Manuel; Luque, Rafael; Ive, Prudence; Luetkemeyer, Anne; Havlir, Diane; Koup, Richard A.

    2016-01-01

    Background Little is known about the expression of inhibitory molecules cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed-death-1 (PD-1) on Mycobacterium tuberculosis (Mtb)-specific CD4 T-cells and how their expression is impacted by TB treatment. Methods Cryopreserved PBMCs from HIV-TB co-infected and TB mono-infected patients with untreated and treated tuberculosis (TB) disease were stimulated for six hours with PPD and stained. Using polychromatic flow cytometry, we characterized the differentiation state, cytokine profile, and inhibitory molecule expression on PPD-specific CD4 T-cells. Results In our HIV-TB co-infected cohort, TB treatment increased the proportion of PPD-specific CD4 T-cells co-producing IFN-γ+IL-2+TNF-α+ and IFN-γ+IL-2+ (p = 0.0004 and p = 0.0002, respectively) while decreasing the proportion of PPD-specific CD4 T-cells co-producing IFN-γ+MIP1-β+TNF-α+ and IFN-γ+MIP1-β+. The proportion of PPD-specific CD4 T-cells expressing an effector memory phenotype decreased (63.6% vs 51.6%, p = 0.0015) while the proportion expressing a central memory phenotype increased (7.8% vs. 21.7%, p = 0.001) following TB treatment. TB treatment reduced the proportion of PPD-specific CD4 T-cells expressing CTLA-4 (72.4% vs. 44.3%, p = 0.0005) and PD-1 (34.5% vs. 29.2%, p = 0.03). Similar trends were noted in our TB mono-infected cohort. Conclusion TB treatment alters the functional profile of Mtb-specific CD4 T-cells reflecting shifts towards a less differentiated maturational profile and decreases PD-1 and CTLA-4 expression. These could serve as markers of reduced mycobacterial burden. Further study is warranted. PMID:27367521

  9. Virus-activated T cells regulate expression of adhesion molecules on endothelial cells in sites of infection

    DEFF Research Database (Denmark)

    Marker, O; Scheynius, A; Christensen, Jan Pravsgaard; Thomsen, Allan Randrup

    1995-01-01

    inflammatory cells were strongly positive for LFA-1, VLA-4, Pgp-1 and ICAM-1. Expression of ICAM-1 and VCAM-1 was upregulated on the endothelial cells in immunocompetent mice, but not in T-cell deficient nude mice. Analysis of mice deficient in either CD4+ or CD8+ T cells, revealed that not only was the...

  10. Expression of PD-1 Molecule on Regulatory T Lymphocytes in Patients with Insulin-Dependent Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Valentina Perri

    2015-09-01

    Full Text Available Type 1 diabetes is caused by autoreactive T cells that destroy pancreatic beta cells. Animal models suggested that a CD4+CD25+ population has a regulatory function capable of preventing activation and effector functions of autoreactive T cells. However, the role of CD4+CD25high T cells in autoimmunity and their molecular mechanisms remain the subject of investigation. We therefore evaluated T regulatory cell frequencies and their PD-1 expression in the peripheral blood of long-standing diabetics under basal conditions and after CD3/CD28 stimulation. Under basal conditions, the percentages of T regulatory cells were significantly higher while that of T effector cells were significantly lower in patients than in controls. The ratio of regulatory to effector T cells was higher in patients than that in controls, suggesting that T regulatory cells were functional in patients. Percentages of total PD-1+, PD-1low and PD-1high expressing T regulatory cells did not change in patients and in controls. After stimulation, a defect in T regulatory cell proliferation was observed in diabetics and the percentages of total PD-1+, PD-1low and PD-1high expressing cells were lower in patients. Our data suggest a defective activation of T regulatory cells in long-standing diabetics due to a lower expression of PD-1 on their surface.

  11. Activated platelet supernatant can augment the angiogenic potential of human peripheral blood stem cells mobilized from bone marrow by G-CSF.

    Science.gov (United States)

    Kang, Jeehoon; Hur, Jin; Kang, Jin-A; Yun, Ji-Yeon; Choi, Jae-Il; Ko, Seung Bum; Lee, Choon-Soo; Lee, Jaewon; Han, Jung-Kyu; Kim, Hyun Kyung; Kim, Hyo-Soo

    2014-10-01

    Platelets not only play a role in hemostasis, but they also promote angiogenesis and tissue recovery by releasing various cytokines and making an angiogenic milieu. Here, we examined autologous 'activated platelet supernatant (APS)' as a priming agent for stem cells; thereby enhance their pro-angiogenic potential and efficacy of stem cell-based therapy for ischemic diseases. The mobilized peripheral blood stem cells ((mob)PBSCs) were isolated from healthy volunteers after subcutaneous injection of granulocyte-colony stimulating factor. APS was collected separately from the platelet rich plasma after activation by thrombin. (mob)PBSCs were primed for 6h before analysis. Compared to naive platelet supernatants, APS had a higher level of various cytokines, such as IL8, IL17, PDGF and VEGF. APS-priming for 6h induced (mob)PBSCs to express key angiogenic factors, surface markers (i.e. CD34, CD31, and CXCR4) and integrins (integrins α5, β1 and β2). Also (mob)PBSCs were polarized toward CD14(++)/CD16(+) pro-angiogenic monocytes. The priming effect was reproduced by an in vitro reconstruction of APS. Through this phenotype, APS-priming increased cell-cell adhesion and cell-extracellular matrix adhesion. The culture supernatant of APS-primed (mob)PBSCs contained high levels of IL8, IL10, IL17 and TNFα, and augmented proliferation and capillary network formation of human umbilical vein endothelial cells. In vivo transplantation of APS-primed (mob)PBSCs into athymic mice ischemic hindlimbs and Matrigel plugs elicited vessel differentiation and tissue repair. In safety analysis, platelet activity increased after mixing with (mob)PBSCs regardless of priming, which was normalized by aspirin treatment. Collectively, our data identify that APS-priming can enhance the angiogenic potential of (mob)PBSCs, which can be used as an adjunctive strategy to improve the efficacy of cell therapy for ischemic diseases. PMID:25016235

  12. Pulsed ultrasound associated with gold nanoparticle gel reduces oxidative stress parameters and expression of pro-inflammatory molecules in an animal model of muscle injury

    Directory of Open Access Journals (Sweden)

    Victor Eduardo G

    2012-03-01

    Full Text Available Abstract Background Nanogold has been investigated in a wide variety of biomedical applications because of the anti-inflammatory properties. The purpose of this study was to evaluate the effects of TPU (Therapeutic Pulsed Ultrasound with gold nanoparticles (GNP on oxidative stress parameters and the expression of pro-inflammatory molecules after traumatic muscle injury. Materials and methods Animals were divided in nine groups: sham (uninjured muscle; muscle injury without treatment; muscle injury + DMSO; muscle injury + GNP; muscle injury + DMSO + GNP; muscle injury + TPU; muscle injury + TPU + DMSO; muscle injury + TPU + GNP; muscle injury + TPU + DMSO + GNP. The ROS production was determined by concentration of superoxide anion, modulation of antioxidant defenses was determined by the activity of superoxide dismutase, catalase and glutathione peroxidase enzymes, oxidative damage determined by formation of thiobarbituric acid-reactive substance and protein carbonyls. The levels of interleukin-1β (IL-1β and tumor necrosis factor-α (TNF-α were measured as inflammatory parameters. Results Compared to muscle injury without treatment group, the muscle injury + TPU + DMSO + GNP gel group promoted a significant decrease in superoxide anion production and lipid peroxidation levels (p Conclusions Our results suggest that TPU + DMSO + GNP gel presents beneficial effects on the muscular healing process, inducing a reduction in the production of ROS and also the expression of pro-inflammatory molecules.

  13. Biocatalytic synthesis of flavones and hydroxyl-small molecules by recombinant Escherichia coli cells expressing the cyanobacterial CYP110E1 gene

    Directory of Open Access Journals (Sweden)

    Makino Takuya

    2012-07-01

    Full Text Available Abstract Background Cyanobacteria possess several cytochrome P450s, but very little is known about their catalytic functions. CYP110 genes unique to cyanaobacteria are widely distributed in heterocyst-forming cyanobacteria including nitrogen-fixing genera Nostoc and Anabaena. We screened the biocatalytic functions of all P450s from three cyanobacterial strains of genus Nostoc or Anabaena using a series of small molecules that contain flavonoids, sesquiterpenes, low-molecular-weight drugs, and other aromatic compounds. Results Escherichia coli cells carrying each P450 gene that was inserted into the pRED vector, containing the RhFRed reductase domain sequence from Rhodococcus sp. NCIMB 9784 P450RhF (CYP116B2, were co-cultured with substrates and products were identified when bioconversion reactions proceeded. Consequently, CYP110E1 of Nostoc sp. strain PCC 7120, located in close proximity to the first branch point in the phylogenetic tree of the CYP110 family, was found to be promiscuous for the substrate range mediating the biotransformation of various small molecules. Naringenin and (hydroxyl flavanones were respectively converted to apigenin and (hydroxyl flavones, by functioning as a flavone synthase. Such an activity is reported for the first time in prokaryotic P450s. Additionally, CYP110E1 biotransformed the notable sesquiterpene zerumbone, anti-inflammatory drugs ibuprofen and flurbiprofen (methylester forms, and some aryl compounds such as 1-methoxy and 1-ethoxy naphthalene to produce hydroxylated compounds that are difficult to synthesize chemically, including novel compounds. Conclusion We elucidated that the CYP110E1 gene, C-terminally fused to the P450RhF RhFRed reductase domain sequence, is functionally expressed in E. coli to synthesize a robust monooxygenase, which shows promiscuous substrate specificity (affinity for various small molecules, allowing the biosynthesis of not only flavones (from flavanones but also a variety of

  14. Novel PI3K/AKT targeting anti-angiogenic activities of 4-vinylphenol, a new therapeutic potential of a well-known styrene metabolite

    OpenAIRE

    Yue, Grace Gar-Lee; Lee, Julia Kin-Ming; Kwok, Hin-Fai; Cheng, Ling; Wong, Eric Chun-Wai; Jiang, Lei; Yu, Hua; Leung, Hoi-Wing; Wong, Yuk-Lau; Leung, Ping-Chung; Fung, Kwok-Pui; Lau, Clara Bik-San

    2015-01-01

    The pneumo- and hepato-toxicity of 4-vinylphenol (4VP), a styrene metabolite, has been previously reported. Nevertheless, the present study reported the novel anti-angiogenic activities of 4VP which was firstly isolated from the aqueous extract of a Chinese medicinal herb Hedyotis diffusa. Our results showed that 4VP at non-toxic dose effectively suppressed migration, tube formation, adhesion to extracellular matrix proteins, as well as protein and mRNA expressions of metalloproteinase-2 of h...

  15. Cocaine-associated retiform purpura: a C5b-9-mediated microangiopathy syndrome associated with enhanced apoptosis and high levels of intercellular adhesion molecule-1 expression.

    Science.gov (United States)

    Magro, Cynthia M; Wang, Xuan

    2013-10-01

    Cocaine-associated retiform purpura is a recently described entity characterized by striking hemorrhagic necrosis involving areas of skin associated with administration of cocaine. Levamisole, an adulterant in cocaine, has been suggested as the main culprit pathogenetically. Four cases of cocaine-associated retiform purpura were encountered in the dermatopathology practice of C. M. Magro. The light microscopic findings were correlated with immunohistochemical and immunofluorescence studies. All 4 cases showed a very striking thrombotic diathesis associated with intravascular macrophage accumulation. Necrotizing vasculitis was noted in 1 case. Striking intercellular adhesion molecule-1 (ICAM-1)/CD54 expression in vessel wall along with endothelial expression of caspase 3 and extensive vascular C5b-9 deposition was observed in all biopsies examined. Cocaine-induced retiform purpura is a C5b-9-mediated microvascular injury associated with enhanced apoptosis and prominent vascular expression of ICAM-1, all of which have been shown in prior in vitro and in vivo murine models to be a direct effect of cocaine metabolic products. Antineutrophilic cytoplasmic antibody and antiphospholipid antibodies are likely the direct sequelae of the proapoptotic microenvironment. The inflammatory vasculitic lesion could reflect the downstream end point reflective of enhanced ICAM-1 expression and the development of antineutrophilic cytoplasmic antibody. Levamisole likely works synergistically with cocaine in the propagation of this syndromic complex. PMID:23392134

  16. Anti-angiogenic activities of CRBGP from buccal glands of lampreys (Lampetra japonica).

    Science.gov (United States)

    Jiang, Qi; Liu, Yu; Duan, Dandan; Gou, Meng; Wang, Hao; Wang, Jihong; Li, Qingwei; Xiao, Rong

    2016-04-01

    Cysteine-rich secretory proteins (CRISPs), characterized by 16 conserved cysteines, are distributed in a wide range of organisms, such as secernenteas, amphibians, reptiles and mammals. In the previous studies, a novel CRISP family member (cysteine-rich buccal gland protein, CRBGP) was separated from the buccal gland of lampreys (Lampetra japonica, L. japonica). Lamprey CRBGP could not only suppress depolarization-induced contraction of rat tail arterial smooth muscle, but also block voltage-gated sodium channels (VGSCs). In the present study, the anti-angiogenic activities of lamprey CRBGP were investigated using endothelial cells and chick chorioallantoic membrane (CAM) models. In vitro assays, lamprey CRBGP is able to induce human umbilical vein endothelial cells (HUVECs) apoptosis by disturbing the calcium homeostasis and mitochondria functions. In addition, lamprey CRBGP could inhibit proliferation, adhesion, migration, invasion and tube formation of HUVECs by affecting the organization of F-actin and expression level of matrix metallo-proteinase 2 (MMP-2), matrix metallo-proteinase 9 (MMP-9) and vascular endothelial growth factor A (VEGFA) which are related to angiogenesis. In vivo assays, lamprey CRBGP could suppress the blood vessel formation in CAM models. Therefore, lamprey CRBGP is an important protein present in the buccal gland of lampreys and might help lampreys suppress the contraction of blood vessels, nociceptive responses and wound healing of host fishes during their feeding time. In addition, lamprey CRBGP might have the potential to act as an effective anti-angiogenic factor for the treatment of abnormal angiogenesis induced diseases. PMID:26616010

  17. Chronic inflammation and angiogenic signaling axis impairs differentiation of dental-pulp stem cells.

    Directory of Open Access Journals (Sweden)

    Michael Boyle

    Full Text Available Dental-pulp tissue is often exposed to inflammatory injury. Sequested growth factors or angiogenic signaling proteins that are released following inflammatory injury play a pivotal role in the formation of reparative dentin. While limited or moderate angiogenesis may be helpful for dental pulp maintenance, the induction of significant level of angiogenesis is probably highly detrimental. Hitherto, several studies have addressed the effects of proinflammatory stimuli on the survival and differentiation of dental-pulp stem cells (DPSC, in vitro. However, the mechanisms communal to the inflammatory and angiogenic signaling involved in DPSC survival and differentiation remain unknown. Our studies observed that short-term exposure to TNF-α (6 and 12 hours [hrs] induced apoptosis with an upregulation of VEGF expression and NF-κB signaling. However, long-term (chronic exposure (14 days to TNF-α resulted in an increased proliferation with a concomitant shortening of the telomere length. Interestingly, DPSC pretreated with Nemo binding domain (NBD peptide (a cell permeable NF-κB inhibitor significantly ameliorated TNF-α- and/or VEGF-induced proliferation and the shortening of telomere length. NBD peptide pretreatment significantly improved TNF-α-induced downregulation of proteins essential for differentiation, such as bone morphogenic proteins (BMP-1 & 2, BMP receptor isoforms-1&2, trasnforming growth factor (TGF, osteoactivin and osteocalcin. Additionally, inhibition of NF-κB signaling markedly increased the mineralization potential, a process abrogated by chronic exposure to TNF-α. Thus, our studies demonstrated that chronic inflammation mediates telomere shortening via NF-κB signaling in human DPSC. Resultant chromosomal instability leads to an emergence of increased proliferation of DPSC, while negatively regulating the differentiation of DPSC, in vitro.

  18. Perioperative steroid administration inhibits angiogenic host tissue response to porous polyethylene (medpor® implants

    Directory of Open Access Journals (Sweden)

    S Ehrmantraut

    2010-02-01

    Full Text Available Porous polyethylene (Medpor® is an alloplastic biomaterial, which is commonly used in plastic and reconstructive surgery. In the present study, we analyzed the effect of perioperative steroid administration on the inflammatory and angiogenic host tissue response to implanted Medpor®. For this purpose, Medpor® was implanted into the dorsal skinfold chamber of prednisolone-treated and vehicle-treated (control balb/c mice and analyzed by means of intravital fluorescence microscopy over a 14-day period. Incorporation of the implants was evaluated by histology. An aortic ring assay and Western blot analyses were performed to determine in vitro the effect of prednisolone on angiogenesis. Implantation of Medpor® did not induce a leukocytic inflammatory host tissue response. However, in prednisolone-treated and control animals giant cells could be detected at the interface between the implants and the surrounding granulation tissue as a typical indicator for a chronic foreign body reaction. Interestingly, perioperative prednisolone administration inhibited vascularisation of the implants, as indicated by a significantly decreased functional density of newly developing capillary blood vessels. Accordingly, prednisolone suppressed in vitro endothelial sprouting and tube formation in the aortic ring assay and reduced proliferating cell nuclear antigen (PCNA, Tie2, vascular endothelial growth factor (VEGF and matrix metalloproteinase (MMP-9 expression of murine endothelioma cells. In conclusion, prednisolone treatment inhibits the early vascularisation of Medpor® implants due to direct inhibition of distinct angiogenic mechanisms. Therefore, perioperative steroid therapy should be avoided in case of Medpor® implantation to achieve a rapid incorporation of the biomaterial at the implantation site.

  19. Angiogenic Potential and Secretome of Human Apical Papilla Mesenchymal Stem Cells in Various Stress Microenvironments.

    Science.gov (United States)

    Bakopoulou, Athina; Kritis, Aristeidis; Andreadis, Dimitrios; Papachristou, Eleni; Leyhausen, Gabriele; Koidis, Petros; Geurtsen, Werner; Tsiftsoglou, Asterios

    2015-11-01

    Stem cells from the apical papilla (SCAP) of human adult teeth are considered an accessible source of cells with angiogenic properties. The aims of this study were to investigate the endothelial transdifferentiation of SCAP, the secretion of pro- and antiangiogenic factors from SCAP, and the paracrine effects of SCAP when exposed to environmental stress to stimulate tissue damage. SCAP were exposed to serum deprivation (SD), glucose deprivation (GD), and oxygen deprivation/hypoxia (OD) conditions, individually or in combination. Endothelial transdifferentiation was evaluated by in vitro capillary-like formation assays, real-time polymerase chain reaction, western blot, and flow cytometric analyses of angiogenesis-related markers; secretome by antibody arrays and enzyme-linked immunosorbent assays (ELISA); and paracrine impact on human umbilical vein endothelial cells (HUVECs) by in vitro transwell migration and capillary-like formation assays. The short-term exposure of SCAP to glucose/oxygen deprivation (GOD) in the presence, but mainly in deprivation, of serum (SGOD) elicited a proangiogenesis effect indicated by expression of angiogenesis-related genes involved in vascular endothelial growth factor (VEGF)/VEGFR and angiopoietins/Tie pathways. This effect was unachievable under SD in normoxia, suggesting that the critical microenvironmental condition inducing rapid endothelial shift of SCAP is the combination of SGOD. Interestingly, SCAP showed high adaptability to these adverse conditions, retaining cell viability and acquiring a capillary-forming phenotype. SCAP secreted higher numbers and amounts of pro- (angiogenin, IGFBP-3, VEGF) and lower amounts of antiangiogenic factors (serpin-E1, TIMP-1, TSP-1) under SGOD compared with SOD or SD alone. Finally, secretome obtained under SGOD was most effective in inducing migration and capillary-like formation by HUVECs. These data provide new evidence on the microenvironmental factors favoring endothelial

  20. Expression of DNA Damage Response Molecules PARP1, γH2AX, BRCA1, and BRCA2 Predicts Poor Survival of Breast Carcinoma Patients

    Directory of Open Access Journals (Sweden)

    See-Hyoung Park

    2015-08-01

    Full Text Available BACKGROUND: Poly(ADP-ribose polymerase 1 (PARP1, γH2AX, BRCA1, and BRCA2 are conventional molecular indicators of DNA damage in cells and are often overexpressed in various cancers. In this study, we aimed, using immunohistochemical detection, whether the co-expression of PARP1, γH2AX, BRCA1, and BRCA2 in breast carcinoma (BCA tissue can provide more reliable prediction of survival of BCA patients. MATERIALS AND METHODS: We investigated immunohistochemical expression and prognostic significance of the expression of PARP1, γH2AX, BRCA1, and BRCA2 in 192 cases of BCAs. RESULTS: The expression of these four molecules predicted earlier distant metastatic relapse, shorter overall survival (OS, and relapse-free survival (RFS by univariate analysis. Multivariate analysis revealed the expression of PARP1, γH2AX, and BRCA2 as independent poor prognostic indicators of OS and RFS. In addition, the combined expressional pattern of BRCA1, BRCA2, PARP1, and γH2AX (CSbbph was an additional independent prognostic predictor for OS (P < .001 and RFS (P < .001. The 10-year OS rate was 95% in the CSbbph-low (CSbbph scores 0 and 1 subgroup, but that was only 35% in the CSbbph-high (CSbbph score 4 subgroup. CONCLUSION: This study has demonstrated that the individual and combined expression patterns of PARP1, γH2AX, BRCA1, and BRCA2 could be helpful in determining an accurate prognosis for BCA patients and for the selection of BCA patients who could potentially benefit from anti-PARP1 therapy with a combination of genotoxic chemotherapeutic agents.

  1. Engineering a therapeutic IgG molecule to address cysteinylation, aggregation and enhance thermal stability and expression

    OpenAIRE

    Buchanan, Andrew; Clementel, Veronica; Woods, Rob; Harn, Nicholas; Bowen, Michael A.; Mo, Wenjun; Popovic, Bojana; Bishop, Steven M.; Dall’Acqua, William; Minter, Ralph; Jermutus, Lutz; Bedian, Vahe

    2013-01-01

    Antibodies can undergo a variety of covalent and non-covalent degradation reactions that have adverse effects on efficacy, safety, manufacture and storage. We had identified an antibody to Angiopoietin 2 (Ang2 mAb) that neutralizes Ang2 binding to its receptor in vitro and inhibits tumor growth in vivo. Despite favorable pharmacological activity, the Ang2 mAb preparations were heterogeneous, aggregated rapidly and were poorly expressed. Here, we report the engineering of the antibody variable...

  2. Triglyceride-rich lipoprotein modulates endothelial vascular cell adhesion molecule (VCAM-1 expression via differential regulation of endoplasmic reticulum stress.

    Directory of Open Access Journals (Sweden)

    Ying I Wang

    Full Text Available Circulating triglyceride-rich lipoproteins (TGRL from hypertriglyceridemic subjects exacerbate endothelial inflammation and promote monocyte infiltration into the arterial wall. We have recently reported that TGRL isolated from human blood after a high-fat meal can elicit a pro- or anti-atherogenic state in human aortic endothelial cells (HAEC, defined as up- or down-regulation of VCAM-1 expression in response to tumor necrosis factor alpha (TNFα stimulation, respectively. A direct correlation was found between subjects categorized at higher risk for cardiovascular disease based upon serum triglycerides and postprandial production of TGRL particles that increased VCAM-1-dependent monocyte adhesion to inflamed endothelium. To establish how TGRL metabolism is linked to VCAM-1 regulation, we examined endoplasmic reticulum (ER stress and the unfolded protein response (UPR pathways. Regardless of its atherogenicity, the rate and extent of TGRL internalization and lipid droplet formation by HAEC were uniform. However, pro-atherogenic TGRL exacerbated ER membrane expansion and stress following TNFα stimulation, whereas anti-atherogenic TGRL ameliorated such effects. Inhibition of ER stress with a chemical chaperone 4-phenylbutyric acid decreased TNFα-induced VCAM-1 expression and abrogated TGRL's atherogenic effect. Activation of ER stress sensors PKR-like ER-regulated kinase (PERK and inositol requiring protein 1α (IRE1α, and downstream effectors including eukaryotic initiation factor-2α (eIF2α, spliced X-box-binding protein 1 (sXBP1 and C/EBP homologous protein (CHOP, directly correlated with the atherogenic activity of an individual's TGRL. Modulation of ER stress sensors also correlated with changes in expression of interferon regulatory factor 1 (IRF-1, a transcription factor of Vcam-1 responsible for regulation of its expression. Moreover, knockdown studies using siRNA defined a causal relationship between the PERK/eIF2α/CHOP pathway and

  3. Comparison of effects of anti-angiogenic agents in the zebrafish efficacy–toxicity model for translational anti-angiogenic drug discovery

    Directory of Open Access Journals (Sweden)

    Chimote G

    2014-08-01

    Full Text Available Geetanjali Chimote,1 Jayasree Sreenivasan,1 Nilambari Pawar,1 Jyothi Subramanian,2 Hariharan Sivaramakrishnan,3 Somesh Sharma1,3 1Department of Pharmacology, 2Department of Modeling and Simulation, 3Department of Medicinal Chemistry, Piramal Life Sciences Limited, Mumbai, India Background: Anti-angiogenic therapy in certain cancers has been associated with improved control of tumor growth and metastasis. Development of anti-angiogenic agents has, however, been saddled with higher attrition rate due to suboptimal efficacy, narrow therapeutic windows, or development of organ-specific toxicities. The aim of this study was to evaluate the translational ability of the zebrafish efficacy–toxicity model to stratify anti-angiogenic agents based on efficacy, therapeutic windows, and off-target effects to streamline the compound selection process in anti-angiogenic discovery. Methods: The embryonic model of zebrafish was employed for studying angiogenesis and toxicity. The zebrafish were treated with anti-angiogenic compounds to evaluate their effects on angiogenesis and zebrafish-toxicity parameters. Angiogenesis was measured by scoring the development of subintestinal vessels. Toxicity was evaluated by calculating the median lethal concentration, the lowest observed effect concentration, and gross morphological changes. Results of efficacy and toxicity were used to predict the therapeutic window. Results: In alignment with the clinical outcomes, the zebrafish assays demonstrated that vascular endothelial growth factor receptor (VEGFR inhibitors are the most potent anti-angiogenic agents, followed by multikinase inhibitors and inhibitors of endothelial cell proliferation. The toxicity assays reported cardiac phenotype in zebrafish treated with VEGFR inhibitors and multikinase inhibitors with VEGFR activity suggestive of cardiotoxic potential of these compounds. Several other pathological features were reported for multikinase inhibitors suggestive of

  4. A review on pro- and anti-angiogenic factors as targets of clinical intervention

    NARCIS (Netherlands)

    Bouis, D; Kusumanto, Y; Meijer, C; Mulder, NH; Hospers, GAP

    2006-01-01

    Angiogenesis plays an important role in physiology and pathology. It is a tightly regulated process, influenced by the microenvironment and modulated by a multitude of pro- and anti-angiogenic factors. A thorough understanding of the angiogenic process may lead to novel therapies to target ischemic

  5. Tumour vasculature and angiogenic profile of paediatric pilocytic astrocytoma; is it much different from glioblastoma?

    NARCIS (Netherlands)

    Sie, M.; de Bont, E. S. J. M.; Scherpen, F. J. G.; Hoving, E. W.; den Dunnen, W. F. A.

    2010-01-01

    Aims: Pilocytic astrocytomas are the most frequent brain tumours in children. Because of their high vascularity, this study aimed to obtain insights into potential angiogenic related therapeutic targets in these tumours by characterization of the vasculature and the angiogenic profile. In this study

  6. Anti-angiogenic therapies for advanced esophago-gastric cancer

    Directory of Open Access Journals (Sweden)

    Elisa Fontana

    2014-01-01

    Full Text Available Neo-vascularization is a vital process for tumor growth and development which involves the interaction between tumor cells and stromal endothelial cells through several growth factors and membranous receptors which ultimately activate pro-angiogenic intracellular signaling pathways. Inhibition of angiogenesis has become a standard treatment option for several tumor types including colorectal cancer, glioblastoma and ovarian cancer. In gastric cancer, the therapeutic role of anti-angiogenic agents is more controversial. Bevacizumab and ramucirumab, two monoclonal antibodies, which target vascular endothelial growth factor-A and vascular endothelial growth factor receptor-2, respectively, have been demonstrated antitumor activity in patients with tumors of the stomach or esophagogastric junction. However, especially for bevacizumab, this antitumor activity has not consistently translated into a survival advantage over standard treatment in randomized trials. In this article, we provide an overview of the role of angiogenesis in gastric cancer and discuss the results of clinical trials that investigated safety and effectiveness of antiangiogenic therapies in this disease. A review of the literature has been done using PubMed, ClinicalTrials.gov website and the ASCO Annual Meeting Library.

  7. Radiosensitivity of angiogenic and mitogenic factors in human amniotic membrane

    International Nuclear Information System (INIS)

    Amniotic membrane as a temporary biological dressing remains as a beneficial and cost-effective means of treating burns in developing countries. This medical application is attributed mainly to placental structural and biochemical features that are important for maintaining proper embryonic development. Since fresh amnions are nevertheless for straightforward clinical use and for preservation, radiation-sterilization is been performed to improve the safety of this placental material. However, like any other sterilization method, gamma-radiation may induce physical and chemical changes that may influence the biological property of the material. Thus, the aim of this study is to compare the effects of various levels of radiation-sterilization protocols for human amnions on angiogenic (neovascularization) and epithelial-mitogenic activities, both of which are physiological processes fundamental to wound healing. Water-soluble extract of non-irradiated amnions demonstrates a strong stimulatory effect on both cell proliferation and angiogenesis. No change in biological activity is seen in amnions irradiated at 25 kGy, the sterilization dose used by the Philippine Nuclear Research Institute (PNRI) for the production of radiation-sterilized human amniotic membranes (RSHAM). However, it appears that amniotic angiogenic factors are more radiosensitive than its mitogenic components, evident from the depressed vascularization of the chorioallantoic membrane (CAM) exposed to 35 kGy-irradiated amnions. The dose of 35 kGy is at present the medical sterilization dose used at the Central Tissue Bank in Warsaw (Poland) for the preparation of their amnion allografts. (Authors)

  8. Expression of TLR4/iNOS pathway molecules in high-risk HPV-positive cervical cancer tissue and cell lines and its significance

    Institute of Scientific and Technical Information of China (English)

    Ding Wang; Zhi-Ying Li; Jiao Lu

    2016-01-01

    Objective:To study the expression of TLR4/iNOS pathway molecules in high-risk HPV-positive cervical cancer tissue and cell lines and its significance.Methods: 35 cases of patients with high-risk HPV-positive cervical cancer and 35 cases of healthy subjects receiving cervical biopsy were enrolled for study, and mRNA contents of TLRs and NOS in cervical tissue were analyzed. CaSki cell lines (HPV16-positive), Hela cell lines (HPV18-positive) and C33a cell lines (HPV-negative) were cultured, siRNA was transfected and contents of TLR4, NF-kB, iNOS and NO were detected.Results:mRNA contents of TLR4 and iNOS in high-risk HPV-positive cervical cancer tissue were significantly higher than those in normal cervical biopsy tissue, and comparison of mRNA contents of TLR3, TLR7, TLR8, TLR9, eNOS and nNOS with normal cervical biopsy tissue showed no significant differences; mRNA contents of TLR4, NF-kB and iNOS as well as NO levels in CaSki cell lines and Hela cell lines were higher than those in C33a cell lines; after transfection of TLR4 siRNA, mRNA contents of NF-kB and iNOS as well as NO levels in CaSki cell lines and Hela cell lines were lower than those transfected with negative control siRNA.Conclusions: Expression of TLR4/iNOS pathway molecules in high-risk HPV-positive cervical cancer tissue and cell lines increases, and TLR4 can increase iNOS expression and NO generation through NF-kB, thus participating in pathological process of cervical cancer caused by high-risk HPV.

  9. A Novel Apoptosis Correlated Molecule: Expression and Characterization of Protein Latcripin-1 from Lentinula edodes C91–3

    OpenAIRE

    Min Huang; Wei Zhang; Lei Liu; Jing Cao; Anhong Ning; Yongzhi Lun; Xiaoli Wang; Wenchang Sun; Xingyun Li; Mintao Zhong; Ben Liu

    2012-01-01

    An apoptosis correlated molecule—protein Latcripin-1 of Lentinula edodes C91-3—was expressed and characterized in Pichia pastoris GS115. The total RNA was obtained from Lentinula edodes C91–3. According to the transcriptome, the full-length gene of Latcripin-1 was isolated with 3'-Full Rapid Amplification of cDNA E...

  10. Microgenomics profile the endogenous angiogenic phenotype in subpopulations of aggressive melanoma.

    Science.gov (United States)

    Demou, Zoe N; Hendrix, Mary J C

    2008-10-01

    Beyond the elemental role of blood vessels in tumor growth, fluid conducting networks lacking endothelium (termed vasculogenic mimicry) were identified previously in metastatic melanoma and other cancer types. The etiology remains unclear, though it appears to involve dysregulation of the tumor-specific phenotype and transdifferentiation. Instigating the molecular deciphering of this phenomenon, we established a novel technique for microdissecting the spontaneously formed vascular-like networks and the randomly arranged cells (nests) from living 3D cultures of melanoma and performed microgenomics analysis. For the first time we show that despite the shared genotype, transcription was differentially regulated among the phenotypically distinct melanoma structures in vasculogenic mimicry. Several angiogenesis-specific genes were differentially expressed in higher levels in network cells of both uveal and cutaneous melanoma with intriguing representation of the ephrin family of angiogenesis factors, which was confirmed with immunocytochemistry. Interestingly, the adjacent nest-cells over-expressed ECM-related genes. Moreover, expression of angiogenesis-specific genes in melanoma resembled that of normal microvascular cells and was enhanced in melanoma disseminating hematogenously. The findings suggest that melanoma plasticity could enable autopoiesis of vascular-mimicking elements within the tumor infrastructure with significant clinical implications, such as response to anti-angiogenic treatments. Identifying factors regulating tumor plasticity and heterogeneity at the molecular level is essential in designing effective anti-cancer therapies. PMID:18655191

  11. MiR-492 impairs the angiogenic potential of endothelial cells

    DEFF Research Database (Denmark)

    Patella, Francesca; Leucci, Eleonora; Evangelista, Monica; Parker, Brian; Wen, Jiayu; Mercatanti, Alberto; Rizzo, Milena; Chiavacci, Elena; Lund, Anders H.; Rainaldi, Giuseppe

    2013-01-01

    identify the microRNAs and their targeted genes involved in the glucose responses, we performed the miRNA signature of Human Umbelical Vein Endothelial Cells (HUVECs) exposed and unexposed to high glucose. Among differentially expressed microRNAs, we analysed miR-492 and showed that its overexpression was...... able to reduce proliferation, migration and tube formation of HUVEC. These effects were accompanied by the down-regulation of eNOS, a key regulator of the endothelial cell function. We showed that eNOS was indirectly down-regulated by miR-492 and we discovered that miR-492 was able to bind m......RNAs involved in proliferation, migration, tube formation and regulation of eNOS activity and expression. Moreover, we found that miR-492 decreased VEGF expression in HUVEC and impaired in vivo angiogenesis in a tumour xenograft model, suggesting a role also in modulating the secretion of pro-angiogenic factors...

  12. Effect of androgen withdrawal on activation of ERKs and expression of cell cycle regulation molecules in human prostate carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    YE Ding-wei; LI Hui; TSENG Jane; CHAUVIN Priscilla; QIAN Song-xi; ZHENG Jia-fu; SUN Ying-hao; MA Yong-jiang

    2002-01-01

    Objective: To explore the possible mechanisms of growth regression of human androgen dependentprostate carcinoma cells caused by androgen withdrawal. Methods: After 24 h of treatment with 1×10-9mol/L dihydrotestosterone (DHT), the expression of phosphorylated ERK proteins and cell cycle regulationmolecules including CDK2, CDK4, CDK6 and P27kip1 in human androgen dependent prostate carcinoma cellline LNCaP was measured by Western blot analysis 0 h, 8 h and 24 h of after androgen withdrawal. Humanandrogen independent prostate carcinoma cell line PC-3 was also examined as control. Results: Down-regula-tion of phosphorylated ERK, CDK2, CDK4 and CDK6 and up-regulation of P27kip1 were found initially inLNCaP cell line 8 h after androgen withdrawal. The levels of phosphorylated ERK and CDKs decreased con-tinuously and reached the lowest after 24 h, while continuous elevation of P27kip1 was detected thereafter to 24h. No expression change of phosphorylated ERK, CDKs and P27kip1 were detected in PC-3 cell line. Conclu-sion: The androgen withdrawal can cause ERKs activation decrease and cell cycle regulation moleculeschanges, which may be one of the mechanisms for inhibited growth of androgen dependent prostate carcinomaafter androgen ablation by either operative or medicine methods.

  13. Combined Effects of Rosuvastatin and Exercise on Gene Expression of Key Molecules Involved in Cholesterol Metabolism in Ovariectomized Rats

    Science.gov (United States)

    Ngo Sock, Emilienne Tudor; Mayer, Gaétan; Lavoie, Jean-Marc

    2016-01-01

    The purpose of this study was to investigate the effects of three weeks of rosuvastatin (Ros) treatment alone and in combination with voluntary training (Tr) on expression of genes involved in cholesterol metabolism (LDLR, PCSK9, LRP-1, SREBP-2, IDOL, ACAT-2 and HMGCR) in the liver of eight week-old ovariectomized (Ovx) rats. Sprague Dawley rats were Ovx or sham-operated (Sham) and kept sedentary for 8 weeks under a standard diet. Thereafter, rats were transferred for three weeks in running wheel cages for Tr or kept sedentary (Sed) with or without Ros treatment (5mg/kg/day). Six groups were formed: Sham-Sed treated with saline (Sal) or Ros (Sham-Sed-Sal; Sham-Sed-Ros), Ovx-Sed treated with Sal or Ros (Ovx-Sed-Sal; Ovx-Sed-Ros), Ovx trained treated with Sal or Ros (Ovx-Tr-Sal; Ovx-Tr-Ros). Ovx-Sed-Sal rats depicted higher (P < 0.05) body weight, plasma total cholesterol (TC) and LDL-C, and liver TC content compared to Sham-Sed-Sal rats. In contrast, mRNA levels of liver PCSK9, LDLR, LRP-1 as well as plasma PCSK9 concentrations and protein levels of LRP-1 were reduced (P < 0.01) in Ovx-Sed-Sal compared to Sham-Sed-Sal rats. However, protein levels of LDLR increased (P < 0.05) in Ovx-Sed-Sal compared to Sham-Sed-Sal rats. Treatment of Ovx rats with Ros increased (P < 0.05) mRNA and protein levels of LRP-1 and PCSK9 but not mRNA levels of LDLR, while its protein abundance was reduced at the level of Sham rats. As a result, plasma LDL-C was not reduced. Exercise alone did not affect the expression of any of these markers in Ovx rats. Overall, Ros treatment corrected Ovx-induced decrease in gene expression of markers of cholesterol metabolism in liver of Ovx rats, but without reducing plasma LDL-C concentrations. Increased plasma PCSK9 levels could be responsible for the reduction of liver LDLR protein abundance and the absence of reduction of plasma LDL-C after Ros treatment. PMID:27442011

  14. Downregulation of Securin by the variant RNF213 R4810K (rs112735431, G>A) reduces angiogenic activity of induced pluripotent stem cell-derived vascular endothelial cells from moyamoya patients

    Energy Technology Data Exchange (ETDEWEB)

    Hitomi, Toshiaki [Department of Health and Environmental Sciences, Kyoto University, Kyoto (Japan); Habu, Toshiyuki [Radiation Biology Center, Kyoto University, Kyoto (Japan); Kobayashi, Hatasu; Okuda, Hiroko; Harada, Kouji H. [Department of Health and Environmental Sciences, Kyoto University, Kyoto (Japan); Osafune, Kenji [Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto (Japan); Taura, Daisuke; Sone, Masakatsu [Department of Medicine and Clinical Science, Kyoto University, Kyoto (Japan); Asaka, Isao; Ameku, Tomonaga; Watanabe, Akira; Kasahara, Tomoko; Sudo, Tomomi; Shiota, Fumihiko [Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto (Japan); Hashikata, Hirokuni; Takagi, Yasushi [Department of Neurosurgery, Kyoto University,Kyoto (Japan); Morito, Daisuke [Faculty of Life Sciences, Kyoto Sangyo University, Kyoto (Japan); Miyamoto, Susumu [Department of Neurosurgery, Kyoto University,Kyoto (Japan); Nakao, Kazuwa [Department of Medicine and Clinical Science, Kyoto University, Kyoto (Japan); Koizumi, Akio, E-mail: koizumi.akio.5v@kyoto-u.ac.jp [Department of Health and Environmental Sciences, Kyoto University, Kyoto (Japan)

    2013-08-16

    Highlights: •Angiogenic activities were reduced in iPSECs from MMD patients. •Many mitosis-regulated genes were downregulated in iPSECs from MMD patients. •RNF213 R4810K downregulated Securin and inhibited angiogenic activity. •Securin suppression by siRNA reduced angiogenic activities of iPSECs and HUVECs. -- Abstract: Moyamoya disease (MMD) is a cerebrovascular disease characterized by occlusive lesions in the circle of Willis. The RNF213 R4810K polymorphism increases susceptibility to MMD. Induced pluripotent stem cells (iPSCs) were established from unaffected fibroblast donors with wild-type RNF213 alleles, and from carriers/patients with one or two RNF213 R4810K alleles. Angiogenic activities of iPSC-derived vascular endothelial cells (iPSECs) from patients and carriers were lower (49.0 ± 19.4%) than from wild-type subjects (p < 0.01). Gene expression profiles in iPSECs showed that Securin was down-regulated (p < 0.01) in carriers and patients. Overexpression of RNF213 R4810K downregulated Securin, inhibited angiogenic activity (36.0 ± 16.9%) and proliferation of humanumbilical vein endothelial cells (HUVECs) while overexpression of RNF213 wild type did not. Securin expression was downregulated using RNA interference techniques, which reduced the level of tube formation in iPSECs and HUVECs without inhibition of proliferation. RNF213 R4810K reduced angiogenic activities of iPSECs from patients with MMD, suggesting that it is a promising in vitro model for MMD.

  15. Downregulation of Securin by the variant RNF213 R4810K (rs112735431, G>A) reduces angiogenic activity of induced pluripotent stem cell-derived vascular endothelial cells from moyamoya patients

    International Nuclear Information System (INIS)

    Highlights: •Angiogenic activities were reduced in iPSECs from MMD patients. •Many mitosis-regulated genes were downregulated in iPSECs from MMD patients. •RNF213 R4810K downregulated Securin and inhibited angiogenic activity. •Securin suppression by siRNA reduced angiogenic activities of iPSECs and HUVECs. -- Abstract: Moyamoya disease (MMD) is a cerebrovascular disease characterized by occlusive lesions in the circle of Willis. The RNF213 R4810K polymorphism increases susceptibility to MMD. Induced pluripotent stem cells (iPSCs) were established from unaffected fibroblast donors with wild-type RNF213 alleles, and from carriers/patients with one or two RNF213 R4810K alleles. Angiogenic activities of iPSC-derived vascular endothelial cells (iPSECs) from patients and carriers were lower (49.0 ± 19.4%) than from wild-type subjects (p < 0.01). Gene expression profiles in iPSECs showed that Securin was down-regulated (p < 0.01) in carriers and patients. Overexpression of RNF213 R4810K downregulated Securin, inhibited angiogenic activity (36.0 ± 16.9%) and proliferation of humanumbilical vein endothelial cells (HUVECs) while overexpression of RNF213 wild type did not. Securin expression was downregulated using RNA interference techniques, which reduced the level of tube formation in iPSECs and HUVECs without inhibition of proliferation. RNF213 R4810K reduced angiogenic activities of iPSECs from patients with MMD, suggesting that it is a promising in vitro model for MMD

  16. Anti-cancer and anti-angiogenic effects of curcumin and tetrahydrocurcumin on implanted hepatocellular carcinoma in nude mice

    Institute of Scientific and Technical Information of China (English)

    Pornprom Yoysungnoen; Ponthip Wirachwong; Chatchawan Changtam; Apichart Suksamrarn; Suthiluk Patumraj

    2008-01-01

    AIM: To determine the effect of tetrahydrocurcumin (THC) on tumor angiogenesis compared with curcumin (CUR) by using both in vitro and in vivo models of human hepatocellular carcinoma cell line (HepG2).METHODS: The 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium bromide (MTT) assay was used for testing the anti-proliferating activities of CUR and THC. In male BALB/c nude mice, 2 x 106 human HepG2 cells were inoculated onto a dorsal skin-fold chamber. One day after HepG2 inoculation, the experimental groups were fed oral daily with CUR or THC (300 mg/kg or 3000 mg/kg). On d 7, 14 and 21, the tumor microvasculature was observed using fluorescence videomicroscopy and capillary vascularity (CV) was measured.RESULTS: Pathological angiogenic features including microvascular dilatation, tortuosity, and hyper-permeability were observed. CUR and THC could attenuate these pathologic features. In HepG2-groups, the CV were significantly increased on d 7 (52.43%), 14 (69.17%), and 21 (74.08%), as compared to controls (33.04%,P < 0.001). Treatment with CUR and THC resulted in significant decrease in the CV (P < 0.005 and P < 0.001, respectively). In particular, the anti-angiogenic effects of CUR and THC were dose-dependent manner. However, the beneficial effect of THC treatment than CUR was observed, in particular, from the 21 d CV (44.96% and 52.86%, P < 0.05).CONCLUSION: THC expressed its anti-angiogenesis without any cytotoxic activities to HepG2 cells even at the highest doses. It is suggested that anti-angiogenic properties of CUR and THC represent a common potential mechanism for their anti-cancer actions.

  17. CD54/intercellular adhesion molecule 1 and major histocompatibility complex II signaling induces B cells to express interleukin 2 receptors and complements help provided through CD40 ligation

    DEFF Research Database (Denmark)

    Poudrier, J; Owens, T

    1994-01-01

    We have examined signaling roles for CD54 intercellular adhesion molecule 1 and major histocompatibility complex (MHC) II as contact ligands during T help for B cell activation. We used a T helper 1 (Th1)-dependent helper system that was previously shown to be contact as well as interleukin 2 (IL-2......) dependent to demonstrate the relative roles of CD54, MHC II, and CD40 signaling in the events leading to the induction of B cell proliferation and responsiveness to IL-2. Paraformaldehyde-fixed activated Th1-induced expression of IL-2R alpha, IL-2R beta, and B7, and upregulated MHC II and CD54 on B cells...

  18. Role of cloned carotenoid genes expressed in Escherichia coli in protecting against inactivation by near-UV light and specific phototoxic molecules

    International Nuclear Information System (INIS)

    Genes controlling carotenoid synthesis were cloned from Erwinia herbicola and expressed in an Escherichia coli strain. Carotenoids protect against high fluences of near-UV (NUV; 320 to 400 nm) but not against far-UV (200-300 nm). Protection of E. coli cells was not observed following treatment with either psoralen or 8-methoxypsoralen plus NUV. However, significant protection of cells producing carotenoids was observed with three photosensitizing molecules activated by NUV (alpha-terthienyl, harmine, and phenylheptatriyne) which are thought to have the membrane as an important lethal target. Protection of carotenoid-producing cells against inactivation was not observed with acridine orange plus visible light but was seen with toluidine blue O plus visible light

  19. Role of cloned carotenoid genes expressed in Escherichia coli in protecting against inactivation by near-UV light and specific phototoxic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Tuveson, R.W.; Larson, R.A.; Kagan, J.

    1988-10-01

    Genes controlling carotenoid synthesis were cloned from Erwinia herbicola and expressed in an Escherichia coli strain. Carotenoids protect against high fluences of near-UV (NUV; 320 to 400 nm) but not against far-UV (200-300 nm). Protection of E. coli cells was not observed following treatment with either psoralen or 8-methoxypsoralen plus NUV. However, significant protection of cells producing carotenoids was observed with three photosensitizing molecules activated by NUV (alpha-terthienyl, harmine, and phenylheptatriyne) which are thought to have the membrane as an important lethal target. Protection of carotenoid-producing cells against inactivation was not observed with acridine orange plus visible light but was seen with toluidine blue O plus visible light.

  20. Both common and specialty mushrooms inhibit adhesion molecule expression and in vitro binding of monocytes to human aortic endothelial cells in a pro-inflammatory environment

    Directory of Open Access Journals (Sweden)

    Martin Keith R

    2010-07-01

    Full Text Available Abstract Background Cardiovascular disease (CVD is a leading cause of mortality in the United States as well as globally. Epidemiological studies show that regular fruit and vegetable consumption reduces CVD risk, in part, due to antioxidant activity and immunomodulation since oxidative stress and inflammation are features of atherogenesis. Accumulating evidence also shows that dietary fungi, viz., mushrooms, can protect against chronic disease by altering inflammatory environments such as those associated with CVD although most research has focused on specialty mushrooms. In this study, we tested the ability of both common and specialty mushrooms to inhibit cellular processes associated with CVD. Methods Human aortic endothelial cells (HAEC were incubated overnight with control media with dimethylsulfoxide (DMSO vehicle (1% v/v or containing DMSO extracts of whole dehydrated mushrooms (0.1 mg/mL, which included Agaricus bisporus (white button and crimini, Lentinula edodes (shiitake, Pleurotus ostreatus (oyster, and Grifola frondosa (maitake. Monolayers were subsequently washed and incubated with medium alone or containing the pro-inflammatory cytokine IL-1β (5 ng/mL for 6 h to upregulate pro-atherosclerotic adhesion molecules (AM. AM expression was assayed by ELISA and binding of U937 human monocytes pre-loaded with fluorescent dye was determined. Results White button mushrooms consistently reduced (p Conclusion These data provide evidence that dietary mushrooms can inhibit cellular processes such as adhesion molecule expression and ultimate binding of monocytes to the endothelium under pro-inflammatory conditions, which are associated with CVD. As a result, these findings support the notion that dietary mushrooms can be protective against CVD.

  1. Aspirin and pravastatin reduce lectin-like oxidized low density lipoprotein receptor-1 expression, adhesion molecules and oxidative stress in human coronary artery endothelial cells

    Institute of Scientific and Technical Information of China (English)

    CHEN Jia-wei; ZHOU Shi-bei; TAN Zhi-ming

    2010-01-01

    Background Oxidative stress and inflammation are important steps in the pathogenesis of atherosclerosis. We postulated that therapeutic concentrations of aspirin and pravastatin, especially in combination, may suppress oxidative stress and inflammation in endothelial cells, and this concept was examined in human coronary artery endothelial cells (HCAECs).Methods Human coronary artery endothelial cells were cultured and treated with oxidized-low density iipoprotein (ox-LDL, 60 μg/ml for 24 hours) alone, or pre-treated with aspirin (1, 2 or 5 mmol/L), pravastatin (1, 5 or 10 μmol/L) or their combination (1 mmol/L aspirin and 5 μmol/L pravastatin), followed by ox-LDL treatment. After respective treatment,superoxide anion production, p38 mitogen activated protein kinase and transcription factor NF-κB activation, protein expression of lectin-like ox-LDL receptor-1 (LOX-1) and adhesion molecules, and monocyte adhesion were measured.Results Ox-LDL treatment greatly elicited its receptor LOX-1 expression, superoxide anion production and inflammatory response, which were minimally affected by low concentration of aspidn (1 mmol/L) or pravastatin (5 μmol/L), but were markedly decreased by their combination. Activation of p38 mitogen activated protein kinase and NF-κB, the expression of intercellular adhesion molecule-1 and monocyte chemotactic protein-1, which were only mildly affected by aspirin or pravastatin alone, were significantly attenuated by their combination. As a consequence, monocyte adhesion to endothelial cells was markedly attenuated by the combination of the two agents. Well-known anti-oxidants α-tocopherol and γ-tocopherol had similar inhibitory effects on ox-LDL-mediated oxidative stress and LOX-1 expression as well as monocyte adhesion as did the combination of aspirin and pravastatin.Conclusions These studies point to a positive interaction between aspidn and pravastatin with regard to endothelial biology. Anti-oxidant and subsequent anti

  2. Polysialic Acid Neural Cell Adhesion Molecule (PSA-NCAM) is an adverse prognosis factor in glioblastoma, and regulates olig2 expression in glioma cell lines

    International Nuclear Information System (INIS)

    Glioblastoma multiforme (GBM) is the most aggressive and frequent brain tumor, albeit without cure. Although patient survival is limited to one year on average, significant variability in outcome is observed. The assessment of biomarkers is needed to gain better knowledge of this type of tumor, help prognosis, design and evaluate therapies. The neurodevelopmental polysialic acid neural cell adhesion molecule (PSA-NCAM) protein is overexpressed in various cancers. Here, we studied its expression in GBM and evaluated its prognosis value for overall survival (OS) and disease free survival (DFS). We set up a specific and sensitive enzyme linked immunosorbent assay (ELISA) test for PSA-NCAM quantification, which correlated well with PSA-NCAM semi quantitative analysis by immunohistochemistry, and thus provides an accurate quantitative measurement of PSA-NCAM content for the 56 GBM biopsies analyzed. For statistics, the Spearman correlation coefficient was used to evaluate the consistency between the immunohistochemistry and ELISA data. Patients' survival was estimated by using the Kaplan-Meier method, and curves were compared using the log-rank test. On multivariate analysis, the effect of potential risk factors on the DFS and OS were evaluated using the cox regression proportional hazard models. The threshold for statistical significance was p = 0.05. We showed that PSA-NCAM was expressed by approximately two thirds of the GBM at variable levels. On univariate analysis, PSA-NCAM content was an adverse prognosis factor for both OS (p = 0.04) and DFS (p = 0.0017). On multivariate analysis, PSA-NCAM expression was an independent negative predictor of OS (p = 0.046) and DFS (p = 0.007). Furthermore, in glioma cell lines, PSA-NCAM level expression was correlated to the one of olig2, a transcription factor required for gliomagenesis. PSA-NCAM represents a valuable biomarker for the prognosis of GBM patients

  3. The Mechanism of Radiosensitization by YM155, a Novel Small Molecule Inhibitor of Survivin Expression, is Associated with DNA Damage Repair

    Directory of Open Access Journals (Sweden)

    Songliu Hu

    2015-09-01

    Full Text Available Background/Aims: Survivin, a member of the inhibitor of apoptosis protein family, is an attractive target for cancer therapy. We investigated the effects of YM155, a small molecule inhibitor of survivin expression, on the radiosensitivity of human non-small cell lung cancer (NSCLC cell lines and elucidated a relationship between the cellular localization of survivin and DNA double-strand break repair. Methods: The cellular distribution of survivin was determined by Western blotting of subcellular fractions and by immunofluorescent staining in A549 NSCLC cells. Radiation-induced DNA damage was evaluated based on histone H2AX phosphorylation and foci formation. The relationship between the cellular localization of survivin and DNA double-strand break repair was analyzed by Western blotting and co-immunoprecipitations. Results: YM155 down-regulated survivin expression in NSCLC cells in a concentration- and time-dependent manner. An in vitro clonogenic survival assay revealed that YM155 increased the sensitivity of NSCLC cells to radiation. After irradiation, we observed a rapid accumulation of survivin in the nucleus. An immunofluorescent analysis of histone γ-H2AX demonstrated that the inhibition of survivin expression by YM155 resulted in impaired DNA double-strand break repair. Co-immunoprecipitation assays using nuclear extracts revealed an interaction between survivin, Ku70, γ-H2AX, and DNA-PKcs. Furthermore, S2056 autophosphorylation of DNA-PKcs was reduced in survivin-depleted cells. Conclusions: These results suggested that YM155 sensitized NSCLC cells to radiation, at least in part by inhibiting DNA repair and enhancing apoptosis via the down-regulation of survivin expression. YM155 pretreatment inhibited DNA-PKcs autophosphorylation at S2056. Nuclear survivin was involved in DNA double-strand break repair via interactions with members of the DNA double-strand break repair machinery.

  4. Anti-angiogenic agents in metastatic colorectal cancer

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Colorectal cancer (CRC) is a major public health concernbeing the third leading cause of cancer mortality inthe United States. The availability of better therapeuticoptions has led to a decline in cancer mortality in thesepatients. Surgical resection should be considered in allstages of the disease. The use of conversion therapyhas made surgery a potentially curative option even inpatients with initially unresectable metastatic disease.In this review we discuss the role of various antiangiogenicagents in patients with metastatic CRC(mCRC). We describe the mechanism of action of theseagents, and the rationale for their use in combinationwith chemotherapy. We also review important clinicalstudies that have evaluated the safety and efficacy ofthese agents in mCRC patients. Despite the discoveryof several promising anti-angiogenic agents, mCRCremains an incurable disease with a median overallsurvival of just over 2 years in patients exposed to allavailable treatment regimens. Further insights intotumor biology and tumor microenvironment may helpimprove outcomes in these patients.

  5. How do CD4+ T cells detect and eliminate tumor cells that either lack or express MHC class II molecules?

    Directory of Open Access Journals (Sweden)

    Ole Audun Werner Haabeth

    2014-04-01

    Full Text Available CD4+ T cells contribute to tumor eradication, even in the absence of CD8+ T cells. Cytotoxic CD4+ T cells can directly kill MHC class II positive tumor cells. More surprisingly, CD4+ T cells can indirectly eliminate tumor cells that lack MHC class II expression. Here, we review the mechanisms of direct and indirect CD4+ T cell-mediated elimination of tumor cells. An emphasis is put on T cell receptor (TCR transgenic models, where anti-tumor responses of naïve CD4+ T cells of defined specificity can be tracked. Some generalizations can tentatively be made. For both MHCIIPOS and MHCIINEG tumors, presentation of tumor specific antigen by host antigen presenting cells (APCs appears to be required for CD4+ T cell priming. This has been extensively studied in a myeloma model (MOPC315, where host APCs in tumor-draining lymph nodes are primed with secreted tumor antigen. Upon antigen recognition, naïve CD4+ T cells differentiate into Th1 cells and migrate to the tumor. At the tumor site, the mechanisms for elimination of MHCIIPOS and MHCIINEG tumor cells differ. In a TCR transgenic B16 melanoma model, MHCIIPOS melanoma cells are directly killed by cytotoxic CD4+ T cells in a perforin/granzyme B-dependent manner. By contrast, MHCIINEG myeloma cells are killed by IFN-g stimulated M1-like macrophages. In summary, while the priming phase of CD4+ T cells appears similar for MHCIIPOS and MHCIINEG tumors, the killing mechanisms are different. Unresolved issues and directions for future research are addressed.

  6. High efficient mammalian expression and secretion of a functional humanized single-chain Fv/human interleukin-2 molecules

    Institute of Scientific and Technical Information of China (English)

    Yue-Chun Shen; Xue-Hao Wang; Xiao-Ming Wang; Zao-Lai Chen; Xi-Ping Shen; Chao-Chen Zhao; Jun Li

    2006-01-01

    AIM: To construct and produce a recombinant bispecific humanized single-chain Fv (sFv) /Interleukin-2 (IL-2)fusion protein by using mammalian cells.METHODS: The sFv/IL-2 protein was genetically engineered, and transfected to mammalian cells to determine whether the mammalian protein folding machinery can produce and secrete active sFv/IL-2 with high efficiency.RESULTS: The fusion protein was constructed and high efficiently expressed with yields up to 102 ± 4.2 mg/L in culture supernatant of the stably transfected 293cell line. This recombinant fusion protein consisted of humanized variable heavy (VH) and light (VL) domains of monoclonal antibody (mAb) 520C9 directed against the human HER-2/neu (c-erbB2) proto-oncogene product p185, and human IL-2 connected by polypeptide linker. The fusion protein was shown to retain the immunostimulatory activities of IL-2 as measured by IL-2-dependent cell proliferation and cytotoxicity assays.In addition to its IL-2 activities, this fusion protein also possessed antigen-binding specificity against p185, as determined by indirect ELISA using p185 positive SKOV 3ip1 cells.CONCLUSION: The large-scale preparation of the recombinant humanized sFv antibody/IL-2 fusion protein is performed with 293 cells. The recombinant humanized sFv antibody/IL-2 fusion protein may provide an effective meansof targeting therapeutic doses of IL-2 to p185 positive tumors without increasing systemic toxicity or immunogenicity.

  7. Anti-angiogenic and cytotoxicity studies of some medicinal plants.

    Science.gov (United States)

    Ng, Kwok-Wen; Salhimi, Salizawati Muhamad; Majid, Amin Malik; Chan, Kit-Lam

    2010-06-01

    Angiogenesis plays an important role in tumor formation and proliferation. The development of anti-angiogenic agents to block new blood vessel growth will inhibit metastasis and induce apoptosis of the cancer cells. Nine medicinal plants, Strobilanthes crispus, Phyllanthus niruri, Phyllanthus pulcher, Phyllanthus urinaria, Ailanthus malabarica, Irvingia malayana, Smilax myosotiflora, Tinospora crispa and blumea balsamifera were screened for anti-angiogenic properties using the rat aortic ring assay. Of these, the methanol extracts of Phyllanthus species and Irvingia malayana exhibited the highest activity. At 100 microg/mL, P. pulcher, P. niruri, P. urinaria and I. malayana recorded an inhibition of 78.8 %, 59.5 %, 56.7 % and 46.4 %, respectively, against rat aortic vascular growth. Their activities were further investigated by the tube formation assay involving human umbilical vein endothelial cells (HUVEC) on Matrigel. I. malayana, P. niruri and P. urinaria showed a significant decrease of 45.5, 37.9 and 35.6 %, respectively, whilst P. pulcher showed a much lower decrease of 15.5 % when compared with that of the rat aortic ring assay. All the plant extracts were evaluated for cytotoxicity on a panel of human cancer cell lines using the MTT assay. None of them displayed acute cytotoxicity. The HPLC of P. niruri, P. urinaria and P. pulcher indicated the extracts contained some identical chromatographic peaks of lignans. Further fractionation of I. malayana yielded betulinic acid reported in this plant for the first time and at 100 microg/mL it exhibited a 67.3 % inhibition of vessel outgrowth and 46.5 % inhibition of tube formation. PMID:20112179

  8. Assessment of CD-105 as an Angiogenic Modulator in Odontogenic Myxomas and Dental Follicles.

    Science.gov (United States)

    Del Carmen González-Galván, María; Aguirre-Urizar, José Manuel; Bologna-Molina, Ronell; Farfán-Morales, J Eduardo; Gainza-Cirauqui, Maria Luisa; Marichalar-Mendia, Xabier; Mosqueda-Taylor, Adalberto

    2016-06-01

    Aim Odontogenic myxoma is a benign intraosseous neoplasm of the jaws, with a locally aggressive behavior and a high recurrence rate. CD-105 is a homodimeric cell membrane glycoprotein and is a component of the TGF-β1 growth factor receptor complex that modulates angiogenesis by regulating the proliferation, differentiation and cellular migration. The aim of this study is to quantify the microvascular density of the odontogenic myxoma based on the expression of CD-105. Materials and Methods The analysis included 18 odontogenic myxoma and 18 dental follicles as controls. A standard immunohistochemical procedure was performed with the CD-105 antibody. Five representative fields (40×) of the odontogenic myxoma and the dental follicles were selected to determine the microvascular density, which was then followed by a descriptive and comparative statistical analysis. Results Dental follicles presented a significantly higher microvascular density compared with odontogenic myxoma (P = .001). The odontogenic myxoma smaller than 3 cm showed a greater microvascular density than those larger than 3 cm in size (P > .05), and the microvascular density was lower in large odontogenic myxomas as compared with the dental follicles (P = .003). Conclusion A weaker expression of CD-105 in odontogenic myxoma might indicate a lower angiogenic activity, suggesting that vascular proliferation has a limited role in the growth mechanisms and in the aggressive behavior of this neoplasm. PMID:26888956

  9. Vascular endothelial growth factor up-regulates the expression of intracellular adhesion molecule-1 in retinal endothelial cells via reactive oxygen species, but not nitric oxide

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-ling; WEN Liang; CHEN Yan-jiong; ZHU Yi

    2009-01-01

    Background The vascular endothelial growth factor (VEGF) is involved in the initiation of retinal vascular leakage and nonperfusion in diabetes. The intracellular adhesion molecule-1 (ICAM-1) is the key mediator of the effect of VEGFs on retinal leukostasis. Although the VEGF is expressed in an early-stage diabetic retina, whether it directly up-regulates ICAM-1 in retinal endothelial cells (ECs) is unknown. In this study, we provided a new mechanism to explain that VEGF does up-regulate the expression of ICAM-1 in retinal ECs.Methods Bovine retinal ECs (BRECs) were isolated and cultured. Immunohistochemical staining was performed to identify BRECs. The cultured cells were divided into corresponding groups. Then, VEGF (100 ng/ml) and other inhibitors were used to treat the cells. Cell lysate and the cultured supernatant were collected, and then, the protein level of ICAM-1 and phosphorylation of the endothelial nitric oxide synthase (eNOS) were detected using Western blotting. Griess reaction was used to detect nitric oxide (NO).Results Western blotting showed that the VEGF up-regulated the expression of ICAM-1 protein and increased phosphorylation of the eNOS in retinal ECs. Neither the block of NO nor protein kinase C (PKC) altered the expression of ICAM-1 or the phosphorylation of eNOS. The result of the Western blotting also showed that inhibition of phosphatidylinositol 3-kinase (PI3K) or reactive oxygen species (ROS) significantly reduced the expression of ICAM-1. Inhibition of PI3K also reduced phosphorylation of eNOS. Griess reaction showed that VEGF significantly increased during NO production. When eNOS was blocked by L-NAME or PI3K was blocked by LY294002, the basal level of NO production and the increment of NO caused by VEGF could be significantly decreased.Conclusion ROS-NO coupling in the retinal endothelium may be a new mechanism that could help to explain why VEGF induces ICAM-1 expression and the resulting leukostasis in diabetic retinopathy.

  10. Expression of the amino-terminal half-molecule of human serum transferrin in cultured cells and characterization of the recombinant protein

    International Nuclear Information System (INIS)

    A human liver cDNA library was screened with a synthetic oligonucleotide, complementary to the 5' region of human transferrin mRNA, as a hybridization probe. The full-length human cDNA clone isolated from this screen contained part of the 5' untranslated region, the complete coding region for the signal peptide and the two lobes of transferrin, the 3' untranslated region, and a poly(A) tail. By use of oligonucleotide-directed mutagenesis in vitro, two translational stop codons and a HindIII site were introduced after the codon for Asp-337. This fragment was inserted into two different expression vectors that were then introduced into Escherichia coli. As judged by NaDodSO4-polyacrylamide gel electrophoresis and Western blot analysis, however, recombinant hTF/2N was undetectable in bacteria transformed by these plasmids. Concurrently, the authors developed a plasmid vector for the expression of recombinant hTF/2N in eukaryotic cells. The recombinant hTF/2N appeared to behave identically with the proteolytically derived half-molecule, but to show a higher degree of monodispersity than the latter protein. Addition of m-fluorotyrosine to the culture medium resulted in random incorporation of this amino acid into cellular protein in lieu of tyrosine. Purified recombinant 19F-Tyr hTF/2N gave four well-resolved 19F NMR resonances of 20-40 Hz line width, two with suggestions of shoulders

  11. Irradiation-induced angiosarcoma and anti-angiogenic therapy: A therapeutic hope?

    International Nuclear Information System (INIS)

    Angiosarcomas are rare soft-tissue sarcomas of endothelial cell origin. They can be sporadic or caused by therapeutic radiation, hence secondary breast angiosarcomas are an important subgroup of patients. Assessing the molecular biology of angiosarcomas and identify specific targets for treatment is challenging. There is currently great interest in the role of angiogenesis and of angiogenic factors associated with tumor pathogenesis and as targets for treatment of angiosarcomas. A primary cell line derived from a skin fragment of a irradiation-induced angiosarcoma patient was obtained and utilized to evaluate cell biomarkers CD31, CD34, HIF-1alpha and VEGFRs expression by immunocytochemistry and immunofluorescence, drugs cytotoxicity by cell counting and VEGF release by ELISA immunoassay. In addition to previous biomarkers, FVIII and VEGF were also evaluated on tumor specimens by immunohistochemistry to further confirm the diagnosis. We targeted the VEGF–VEGFR-2 axis of tumor angiogenesis with two different class of vascular targeted drugs; caprelsa, the VEGFR-2/EGFR/RET inhibitor and bevacizumab the anti-VEGF monoclonal antibody. We found the same biomarkers expression either in tumor specimens and in the cell line derived from tumor. In vitro experiments demonstrated that angiogenesis plays a pivotal role in the progression of this tumor as cells displayed high level of VEGFR-2, HIF-1 alpha strongly accumulated into the nucleus and the pro-angiogenic factor VEGF was released by cells in culture medium. The evaluation of caprelsa and bevacizumab cytotoxicity demonstrated that both drugs were effective in inhibiting tumor proliferation. Due to these results, we started to treat the patient with pazopanib, which was the unique tyrosine kinase inhibitor available in Italy through a compassionate supply program, obtaining a long lasting partial response. Our data suggest that the study of the primary cell line could help physicians in choosing a therapeutic approach

  12. Irradiation-induced angiosarcoma and anti-angiogenic therapy: A therapeutic hope?

    Energy Technology Data Exchange (ETDEWEB)

    Azzariti, Amalia, E-mail: a.azzariti@oncologico.bari.it [Clinical and Preclinical Pharmacology Laboratory, National Cancer Research Centre, Istituto Tumori Giovanni Paolo II, Viale O. Flacco, 65, 70124 Bari (Italy); Porcelli, Letizia [Clinical and Preclinical Pharmacology Laboratory, National Cancer Research Centre, Istituto Tumori Giovanni Paolo II, Viale O. Flacco, 65, 70124 Bari (Italy); Mangia, Anita; Saponaro, Concetta [Functional Biomorphology Laboratory, National Cancer Research Centre, Istituto Tumori Giovanni Paolo II, Viale O. Flacco, 65, 70124 Bari (Italy); Quatrale, Anna E. [Clinical and Preclinical Pharmacology Laboratory, National Cancer Research Centre, Istituto Tumori Giovanni Paolo II, Viale O. Flacco, 65, 70124 Bari (Italy); Popescu, Ondina S. [Department of Pathology, National Cancer Research Centre, Istituto Tumori Giovanni Paolo II, Viale O. Flacco, 65, 70124 Bari (Italy); Strippoli, Sabino [Medical Oncology Unit, National Cancer Research Centre, Istituto Tumori Giovanni Paolo II, Viale O. Flacco, 65, 70124 Bari (Italy); Simone, Gianni [Department of Pathology, National Cancer Research Centre, Istituto Tumori Giovanni Paolo II, Viale O. Flacco, 65, 70124 Bari (Italy); Paradiso, Angelo [Experimental Medical Oncology, National Cancer Research Centre, Istituto Tumori Giovanni Paolo II, Viale O. Flacco, 65, 70124 Bari (Italy); Guida, Michele [Medical Oncology Unit, National Cancer Research Centre, Istituto Tumori Giovanni Paolo II, Viale O. Flacco, 65, 70124 Bari (Italy)

    2014-02-15

    Angiosarcomas are rare soft-tissue sarcomas of endothelial cell origin. They can be sporadic or caused by therapeutic radiation, hence secondary breast angiosarcomas are an important subgroup of patients. Assessing the molecular biology of angiosarcomas and identify specific targets for treatment is challenging. There is currently great interest in the role of angiogenesis and of angiogenic factors associated with tumor pathogenesis and as targets for treatment of angiosarcomas. A primary cell line derived from a skin fragment of a irradiation-induced angiosarcoma patient was obtained and utilized to evaluate cell biomarkers CD31, CD34, HIF-1alpha and VEGFRs expression by immunocytochemistry and immunofluorescence, drugs cytotoxicity by cell counting and VEGF release by ELISA immunoassay. In addition to previous biomarkers, FVIII and VEGF were also evaluated on tumor specimens by immunohistochemistry to further confirm the diagnosis. We targeted the VEGF–VEGFR-2 axis of tumor angiogenesis with two different class of vascular targeted drugs; caprelsa, the VEGFR-2/EGFR/RET inhibitor and bevacizumab the anti-VEGF monoclonal antibody. We found the same biomarkers expression either in tumor specimens and in the cell line derived from tumor. In vitro experiments demonstrated that angiogenesis plays a pivotal role in the progression of this tumor as cells displayed high level of VEGFR-2, HIF-1 alpha strongly accumulated into the nucleus and the pro-angiogenic factor VEGF was released by cells in culture medium. The evaluation of caprelsa and bevacizumab cytotoxicity demonstrated that both drugs were effective in inhibiting tumor proliferation. Due to these results, we started to treat the patient with pazopanib, which was the unique tyrosine kinase inhibitor available in Italy through a compassionate supply program, obtaining a long lasting partial response. Our data suggest that the study of the primary cell line could help physicians in choosing a therapeutic approach

  13. Immune function and illness molecule expression in focus tissue after ALA-PDT combined with CO2 laser treatment of condyloma acuminatum

    Institute of Scientific and Technical Information of China (English)

    Min Li; Heng-An Yi; Yu-Fen Qiu

    2016-01-01

    Objective:To study the immune function and illness molecule expression in focus tissue after ALA-PDT combined with CO2 laser treatment of condyloma acuminatum.Methods:A total of 62 cases of patients with condyloma acuminatum were selected for study and divided into combined treatment group (n=29) and laser treatment group (n=33) according to different treatment methods. The changes of condyloma acuminatum focus tissue were observed, and immune indexes in peripheral blood as well as the expression levels of apoptosis-related genes and proliferation-related genes in focus tissue were detected.Results:Condyloma acuminatum lesion area of combined treatment group was significantly smaller than that of laser treatment group, and the lesion healing was more ideal; CD3+CD4+T lymphocyte proportion as well as TLR1, TLR3 and TLR9 expression levels on T cell surface in peripheral blood of combined treatment group were higher than those of laser treatment group while CD3+CD8+T lymphocyte and CD4+CD25+Foxp3+Treg cell proportion was lower than that of laser treatment group; p16INK4, CyclinD1, CDK4, CDK6, pRb and E2F as well as Livin and XIAP contents in focus tissue of combined treatment group were significantly lower than those of laser treatment group while Fas, FasL, SHP-1, PDCD4, TRAIL and Caspase-3 contents were significantly higher than those of laser treatment group.Conclusions:ALA-PDT combined with CO2 laser treatment can more effectively clear condyloma acuminatum focus, improve cellular immune function as well as inhibit cell proliferation and promote cell apoptosis in focus tissue.

  14. Expression of platelet-endothelial cell adhesion molecule-1 in human umbilical vein endothelial cells by exposure to advanced glycosylation end products and inflammatory mediators

    Institute of Scientific and Technical Information of China (English)

    孟丹; 刘乃丰

    2003-01-01

    Objective To determine whether advanced glycosylation end products modified bovine serum albumin (AGEs-BSA) affects endothelial cell lateral junction protein, platelet-endothelial cell adhesion molecule-1 (PECAM-1) in the presence or absence of inflammatory mediators.Methods Cultured human umbilical vein endothelial cells (HUVECs) were exposed to AGEs-BSA for 6, 12, 24, and 36 hours, and exposed to AGEs-BSA glycosylated with different concentrations of glucose, tumor necrosis factord-α (TNF-α), interferon (IFN-γ), TNF-α+IFN-γ and AGEs-BSA+TNF-α for 24 hours, respectively. Expression of PECAM-1 mRNA was measured by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) with β-actin as an internal standard, and sequencing of RT-PCR products was performed to confirm the specificity of amplification for PECAM-1 gene. The endothelial cell surface expression of PECAM-1 was determined by flow cytometry (FCM).Results There were no significant changes in the expression of PECAM-1 mRNA and protein when the cells were exposed to AGEs-BSA with different concentrations or periods (P> 0.05). However, PECAM-1 expression was reduced in the cells treated with TNF-α, IFN-γ, TNF-α+IFN-γ and AGEs-BSA+TNF-α. The level of PECAM-1 treated with AGEs-BSA+TNF-α was lower than that of TNF-α treated alone (P<0.01).Conclusions AGEs-BSA had no effect on the expression of PECAM-1 mRNA and protein in cultured HUVEC. With the presence of inflammatory mediator TNF-α, AGEs-BSA decreased the level of PECAM-1, which might reduce the adhesion interaction between adjacent endothelial cells, enhance the permeability of endothelial cells, and might be implicated in the endothelial dysfunction and pathogenesis of atherosclerosis in patients with diabetes mellitus. The significance of this phenomenon in intracellular signal transduction remains to be determined.

  15. Anti-angiogenic properties of coenzyme Q0 through downregulation of MMP-9/NF-κB and upregulation of HO-1 signaling in TNF-α-activated human endothelial cells.

    Science.gov (United States)

    Yang, Hsin-Ling; Korivi, Mallikarjuna; Lin, Ming-Wei; Chen, Ssu-Ching; Chou, Chih-Wei; Hseu, You-Cheng

    2015-11-01

    Various coenzyme Q (CoQ) analogs have been reported as anti-inflammatory and antioxidant substances. However, coenzyme Q0 (CoQ0, 2,3-dimethoxy-5-methyl-1,4-benzoquinone), a novel quinone derivative, has not been well studied for its pharmacological efficacies, and its response to cytokine stimulation remains unclear. Therefore, we investigated the potential anti-angiogenic properties of CoQ0 in human endothelial (EA.hy 926) cells against tumor necrosis factor-α (TNF-α) stimulation. We found that the non-cytotoxic concentrations of CoQ0 (2.5-10μM) significantly suppressed the TNF-α-induced migration/invasion and tube formation abilities of endothelial cells. CoQ0 suppressed TNF-α-induced activity and protein expressions of matrix metalloproteinase-9 (MMP-9) and intercellular adhesion molecule-1 (ICAM-1) followed by an abridged adhesion of U937 leukocytes to endothelial cells. CoQ0 treatment remarkably downregulated TNF-α-induced nuclear translocation and transcriptional activation of nuclear factor-κB (NF-κB) possibly through suppressed I-κBα degradation. Furthermore, CoQ0 triggered the expressions of heme oxygenase-1 (HO-1) and γ-glutamylcysteine synthetase (γ-GCLC), followed by an increased nuclear accumulation of NF-E2 related factor-2 (Nrf2)/antioxidant response element (ARE) activity. In agreement with these, intracellular glutathione levels were significantly increased in CoQ0 treated cells. More interestingly, knockdown of HO-1 gene by specific shRNA showed diminished anti-angiogenic effects of CoQ0 against TNF-α-induced invasion, tube formation and adhesion of leukocyte to endothelial cells. Our findings reveal that CoQ0 protective effects against cytokine-stimulation are mediated through the suppression of MMP-9/NF-κB and/or activation of HO-1 signaling cascades. This novel finding emphasizes the pharmacological efficacies of CoQ0 to treat inflammation and angiogenesis. PMID:26348871

  16. Matrix metalloproteinase-10 promotes tumor progression through regulation of angiogenic and apoptotic pathways in cervical tumors

    International Nuclear Information System (INIS)

    Cancer invasion and metastasis develops through a series of steps that involve the loss of cell to cell and cell to matrix adhesion, degradation of extracellular matrix and induction of angiogenesis. Different protease systems (e.g., matrix metalloproteinases, MMPs) are involved in these steps. MMP-10, one of the lesser studied MMPs, is limited to epithelial cells and can facilitate tumor cell invasion by targeting collagen, elastin and laminin. Enhanced MMP-10 expression has been linked to poor clinical prognosis in some cancers, however, mechanisms underlying a role for MMP-10 in tumorigenesis and progression remain largely unknown. Here, we report that MMP-10 expression is positively correlated with the invasiveness of human cervical and bladder cancers. Using commercial tissue microarray (TMA) of cervical and bladder tissues, MMP-10 immunohistochemical staining was performed. Furthermore using a panel of human cells (HeLa and UROtsa), in vitro and in vivo experiments were performed in which MMP-10 was overexpressed or silenced and we noted phenotypic and genotypic changes. Experimentally, we showed that MMP-10 can regulate tumor cell migration and invasion, and endothelial cell tube formation, and that MMP-10 effects are associated with a resistance to apoptosis. Further investigation revealed that increasing MMP-10 expression stimulates the expression of HIF-1α and MMP-2 (pro-angiogenic factors) and PAI-1 and CXCR2 (pro-metastatic factors), and accordingly, targeting MMP-10 with siRNA in vivo resulted in diminution of xenograft tumor growth with a concomitant reduction of angiogenesis and a stimulation of apoptosis. Taken together, our findings show that MMP-10 can play a significant role in tumor growth and progression, and that MMP-10 perturbation may represent a rational strategy for cancer treatment

  17. Effect of S-1 combined with cisplatin intraperitoneal circulatory hyperthermia perfusion treatment on malignant molecule expression in gastric cancer patients with ascites as well as side effect assessment

    Institute of Scientific and Technical Information of China (English)

    Shuo Jian

    2016-01-01

    Objective:To study the effect of S-1 combined with cisplatin intraperitoneal circulatory hyperthermia perfusion on malignant molecule expression in gastric cancer patients with ascites as well as the related side effect.Methods: Gastric cancer patients with ascites who were treated in our hospital from February 2012 to July 2015 were selected as research subjects and randomly divided into perfusion chemotherapy group and routine chemotherapy group, and then overall chemotherapy conditions, ascites FGF molecule content, peripheral blood immune function indexes and the degree of side effect were compared between two groups. Results:Average treatment cycles of perfusion chemotherapy group were more than those of routine chemotherapy group, and ascites drainage volume within two cycles of chemotherapy was significantly less than that of routine chemotherapy group; after two cycles of chemotherapy, bFGF, FGF-2, FGF19 and FGFR4 content in ascites of perfusion chemotherapy group were significantly lower than those of routine chemotherapy group, CD3+CD4+, CD3+CD56+ and CD3-CD56+ cell content in peripheral blood were higher than those of routine chemotherapy group, and CD3+CD8+ cell content was lower than that of routine chemotherapy group; during chemotherapy, the number of cases with decreased numeration of leukocyte, abnormal liver function, abnormal kidney function and diarrhea of perfusion chemotherapy group were significantly lower than those of routine chemotherapy group.Conclusions: S-1 combined with cisplatin intraperitoneal circulatory hyperthermia perfusion chemotherapy can more effectively improve treatment compliance, suppress ascites, kill gastric cancer cells and improve immune function. It has fewer side effect and is the ideal way to treat gastric cancer with ascites.

  18. The Development of an Angiogenic Protein “Signature” in Ovarian Cancer Ascites as a Tool for Biologic and Prognostic Profiling

    Science.gov (United States)

    Trachana, Sofia-Paraskevi; Pilalis, Eleftherios; Gavalas, Nikos G.; Tzannis, Kimon; Papadodima, Olga; Liontos, Michalis; Rodolakis, Alexandros; Vlachos, Georgios; Thomakos, Nikolaos; Haidopoulos, Dimitrios; Lykka, Maria; Koutsoukos, Konstantinos; Kostouros, Efthimios; Terpos, Evagelos; Chatziioannou, Aristotelis; Dimopoulos, Meletios-Athanasios; Bamias, Aristotelis

    2016-01-01

    Advanced ovarian cancer (AOC) is one of the leading lethal gynecological cancers in developed countries. Based on the important role of angiogenesis in ovarian cancer oncogenesis and expansion, we hypothesized that the development of an “angiogenic signature” might be helpful in prediction of prognosis and efficacy of anti-angiogenic therapies in this disease. Sixty-nine samples of ascitic fluid- 35 from platinum sensitive and 34 from platinum resistant patients managed with cytoreductive surgery and 1st-line carboplatin-based chemotherapy- were analyzed using the Proteome ProfilerTM Human Angiogenesis Array Kit, screening for the presence of 55 soluble angiogenesis-related factors. A protein profile based on the expression of a subset of 25 factors could accurately separate resistant from sensitive patients with a success rate of approximately 90%. The protein profile corresponding to the “sensitive” subset was associated with significantly longer PFS (8 [95% Confidence Interval {CI}: 8–9] vs. 20 months [95% CI: 15–28]; Hazard ratio {HR}: 8.3, p<0.001) and OS (20.5 months [95% CI: 13.5–30] vs. 74 months [95% CI: 36-not reached]; HR: 5.6 [95% CI: 2.8–11.2]; p<0.001). This prognostic performance was superior to that of stage, histology and residual disease after cytoreductive surgery and the levels of vascular endothelial growth factor (VEGF) in ascites. In conclusion, we developed an “angiogenic signature” for patients with AOC, which can be used, after appropriate validation, as a prognostic marker and a tool for selection for anti-angiogenic therapies. PMID:27258020

  19. Zinc-chelation contributes to the anti-angiogenic effect of ellagic acid on inhibiting MMP-2 activity, cell migration and tube formation.

    Directory of Open Access Journals (Sweden)

    Sheng-Teng Huang

    Full Text Available BACKGROUND: Ellagic acid (EA, a dietary polyphenolic compound, has been demonstrated to exert anti-angiogenic effect but the detailed mechanism is not yet fully understood. The aim of this study was to investigate whether the zinc chelating activity of EA contributed to its anti-angiogenic effect. METHODS AND PRINCIPAL FINDINGS: The matrix metalloproteinases-2 (MMP-2 activity, a zinc-required reaction, was directly inhibited by EA as examined by gelatin zymography, which was reversed dose-dependently by adding zinc chloride. In addition, EA was demonstrated to inhibit the secretion of MMP-2 from human umbilical vein endothelial cells (HUVECs as analyzed by Western blot method, which was also reversed by the addition of zinc chloride. Reversion-inducing cysteine-rich protein with Kazal motifs (RECK, known to down-regulate the MMP-2 activity, was induced by EA at both the mRNA and protein levels which was correlated well with the inhibition of MMP-2 activity. Interestingly, zinc chloride could also abolish the increase of EA-induced RECK expression. The anti-angiogenic effect of EA was further confirmed to inhibit matrix-induced tube formation of endothelial cells. The migration of endothelial cells as analyzed by transwell filter assay was suppressed markedly by EA dose-dependently as well. Zinc chloride could reverse these two effects of EA also in a dose-dependent manner. Since magnesium chloride or calcium chloride could not reverse the inhibitory effect of EA, zinc was found to be involved in tube formation and migration of vascular endothelial cells. CONCLUSIONS/SIGNIFICANCE: Together these results demonstrated that the zinc chelation of EA is involved in its anti-angiogenic effects by inhibiting MMP-2 activity, tube formation and cell migration of vascular endothelial cells. The role of zinc was confirmed to be important in the process of angiogenesis.

  20. Angiogenic potential modulation of human endothelial progenitor cells by vascular plasmatic biomarkers

    OpenAIRE

    d'Audigier, Clément,

    2013-01-01

    Rationale: The pro-angiogenic capacities of endothelial progenitor cells are now well established, and their involvement in neovascularization events in adults has stimulated the research in the field of angiogenic therapy based on transplant of these cells. Current data converge towards the notion of two cell types with endothelial phenotype, defined at least by their kinetics of appearance in culture: early endothelial progenitor cells (CFU-EC or CAC) and late (ECFC). Our team has shown tha...

  1. Cells and Angiogenic Cytokines in Therapeutic Angiogenesis for Ischemic Heart Disease

    DEFF Research Database (Denmark)

    Luo, Yu; Zhang, Dai-Fu; Liang, Bo

    2005-01-01

    In the past 20 to 30 years,great developments had been achieved in the applying of cells and angiogenic cytokines for ischemic heart disease.The thesis reviews latest studies of mechanism and clinic application of this novel therapy.......In the past 20 to 30 years,great developments had been achieved in the applying of cells and angiogenic cytokines for ischemic heart disease.The thesis reviews latest studies of mechanism and clinic application of this novel therapy....

  2. The discovery of angiogenic growth factors: the contribution of Italian scientists

    OpenAIRE

    Ribatti, Domenico

    2014-01-01

    Angiogenesis is regulated, under both physiological and pathological conditions, by numerous “non-classic” pro-angiogenic factors, including fibroblast growth factor-2 (FGF-2), vascular endothelial growth factor (VEGF), and placental growth factor (PlGF), and “non-classic” pro-angiogenic factors, including granulocyte colony stimulating factor (G-CSF), granulocyte macrophage colony stimulating factor (GM-CSF), and erythropoietin (EPO). In the context of the most important discoveries in this ...

  3. Cytokines, angiogenic, and antiangiogenic factors and bioactive lipids in preeclampsia.

    Science.gov (United States)

    Das, Undurti N

    2015-09-01

    Preeclampsia is a low-grade systemic inflammatory condition in which oxidative stress and endothelial dysfunction occurs. Plasma levels of soluble receptor for vascular endothelial growth factor (VEGFR)-1, also known as sFlt1 (soluble fms-like tyrosine kinase 1), an antiangiogenic factor have been reported to be elevated in preeclampsia. It was reported that pregnant mice deficient in catechol-O-methyltransferase (COMT) activity show a preeclampsia-like phenotype due to a deficiency or absence of 2-methoxyoestradiol (2-ME), a natural metabolite of estradiol that is elevated during the third trimester of normal human pregnancy. Additionally, autoantibodies (AT1-AAs) that bind and activate the angiotensin II receptor type 1 a (AT1 receptor) also have a role in preeclampsia. None of these abnormalities are consistently seen in all the patients with preeclampsia and some of them are not specific to pregnancy. Preeclampsia could occur due to an imbalance between pro- and antiangiogenic factors. VEGF, an angiogenic factor, is necessary for the transport of polyunsaturated fatty acids (PUFAs) to endothelial cells. Hence reduced VEGF levels decrease the availability of PUFAs to endothelial cells. This leads to a decrease in the formation of anti-inflammatory and angiogenic factors: lipoxins, resolvins, protectins, and maresins from PUFAs. Lipoxins, resolvins, protectins, maresins, and PUFAs suppress insulin resistance; activation of leukocytes, platelets, and macrophages; production of interleukin-6 and tumor necrosis factor-α; and oxidative stress and endothelial dysfunction; and enhance production of prostacyclin and nitric oxide (NO). Estrogen enhances the formation of lipoxin A4 and NO. PUFAs also augment the production of NO and inhibit the activity of angiotensin-converting enzyme and antagonize the actions of angiotensin II. Thus, PUFAs can prevent activation of angiotensin II receptor type 1 a (AT1 receptor). Patients with preeclampsia have decreased plasma

  4. Hypoxic Preconditioning Increases Survival and Pro-Angiogenic Capacity of Human Cord Blood Mesenchymal Stromal Cells In Vitro.

    Directory of Open Access Journals (Sweden)

    Andreas Matthäus Bader

    Full Text Available Hypoxic preconditioning was shown to improve the therapeutic efficacy of bone marrow-derived multipotent mesenchymal stromal cells (MSCs upon transplantation in ischemic tissue. Given the interest in clinical applications of umbilical cord blood-derived MSCs, we developed a specific hypoxic preconditioning protocol and investigated its anti-apoptotic and pro-angiogenic effects on cord blood MSCs undergoing simulated ischemia in vitro by subjecting them to hypoxia and nutrient deprivation with or without preceding hypoxic preconditioning. Cell number, metabolic activity, surface marker expression, chromosomal stability, apoptosis (caspases-3/7 activity and necrosis were determined, and phosphorylation, mRNA expression and protein secretion of selected apoptosis and angiogenesis-regulating factors were quantified. Then, human umbilical vein endothelial cells (HUVEC were subjected to simulated ischemia in co-culture with hypoxically preconditioned or naïve cord blood MSCs, and HUVEC proliferation was measured. Migration, proliferation and nitric oxide production of HUVECs were determined in presence of cord blood MSC-conditioned medium. Cord blood MSCs proved least sensitive to simulated ischemia when they were preconditioned for 24 h, while their basic behavior, immunophenotype and karyotype in culture remained unchanged. Here, "post-ischemic" cell number and metabolic activity were enhanced and caspase-3/7 activity and lactate dehydrogenase release were reduced as compared to non-preconditioned cells. Phosphorylation of AKT and BAD, mRNA expression of BCL-XL, BAG1 and VEGF, and VEGF protein secretion were higher in preconditioned cells. Hypoxically preconditioned cord blood MSCs enhanced HUVEC proliferation and migration, while nitric oxide production remained unchanged. We conclude that hypoxic preconditioning protects cord blood MSCs by activation of anti-apoptotic signaling mechanisms and enhances their angiogenic potential. Hence, hypoxic

  5. Enhanced activity of meprin-α, a pro-migratory and pro-angiogenic protease, in colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Daniel Lottaz

    Full Text Available Meprin-α is a metalloprotease overexpressed in cancer cells, leading to the accumulation of this protease in a subset of colorectal tumors. The impact of increased meprin-α levels on tumor progression is not known. We investigated the effect of this protease on cell migration and angiogenesis in vitro and studied the expression of meprin-α mRNA, protein and proteolytic activity in primary tumors at progressive stages and in liver metastases of patients with colorectal cancer, as well as inhibitory activity towards meprin-α in sera of cancer patient as compared to healthy controls. We found that the hepatocyte growth factor (HGF-induced migratory response of meprin-transfected epithelial cells was increased compared to wild-type cells in the presence of plasminogen, and that the angiogenic response in organ-cultured rat aortic explants was enhanced in the presence of exogenous human meprin-α. In patients, meprin-α mRNA was expressed in colonic adenomas, primary tumors UICC (International Union Against Cancer stage I, II, III and IV, as well as in liver metastases. In contrast, the corresponding protein accumulated only in primary tumors and liver metastases, but not in adenomas. However, liver metastases lacked meprin-α activity despite increased expression of the corresponding protein, which correlated with inefficient zymogen activation. Sera from cancer patients exhibited reduced meprin-α inhibition compared to healthy controls. In conclusion, meprin-α activity is regulated differently in primary tumors and metastases, leading to high proteolytic activity in primary tumors and low activity in liver metastases. By virtue of its pro-migratory and pro-angiogenic activity, meprin-α may promote tumor progression in colorectal cancer.

  6. Detection of vascular cell adhesion molecule-1 expression with USPIO-enhanced molecular MRI in a mouse model of cerebral ischemia

    International Nuclear Information System (INIS)

    Vascular damage plays a critical role after stroke, leading notably to edema, hemorrhages and stroke recurrence. Tools to characterize the vascular lesion are thus a real medical need. In this context, the specific nano-particular contrast agent P03011, an USPIO (ultra-small superparamagnetic iron oxide) conjugated to a peptide that targets VCAM-1 (vascular cell adhesion molecule-1), was developed to detect this major component of the vascular inflammatory response. This study aimed to make the proof of concept of the capacity of this targeted USPIO to detect VCAM-1 with MRI after cerebral ischemia in mouse. The time course of VCAM-1 expression was first examined by immunohistochemistry in our model of cerebral ischemia-reperfusion. Secondly, P03011 or non-targeted USPIO P03007 were injected 5 h after ischemia (100 mmol iron kg-1; i.v.) and in vivo and ex vivo MRI were performed 24 h after ischemia onset. Double labeling immunofluorescence was then performed on brain slices in order to detect both USPIO and VCAM-1. VCAM-1 expression was significantly up-regulated 24 h after ischemia in our model. In animals receiving P03011, both in vivo and ex vivo MRI performed 24 h after ischemia onset showed hypointense foci which could correspond to iron particles. Histological analysis showed a co-localization of the targeted USPIO and VCAM-1. This study demonstrates that VCAM-1 detection is possible with the USPIO P03011 in a model of cerebral ischemia. This kind of contrast agent could be an interesting clinical tool to characterize ischemic lesions in terms of vascular damage. (authors)

  7. The effect of clomethiazole on plasma concentrations of interleukin-6, -8, -1beta, tumor necrosis factor-alpha, and neutrophil adhesion molecule expression during experimental extracorporeal circulation.

    LENUS (Irish Health Repository)

    Harmon, D

    2012-02-03

    Clomethiazole (CMZ), a neuroprotective drug, has antiinflammatory actions. We investigated the effects of CMZ administration on plasma concentrations of interleukin (IL)-6, IL-8, IL-1beta, tumor necrosis factor-alpha, and neutrophil adhesion molecule expression during experimental extracorporeal circulation. Five healthy volunteers each donated 500 mL of blood, which was subsequently divided into equal portions. Identical extracorporeal circuits were simultaneously primed with donated blood (250 mL) and circulated for 2 h at 37 degrees C. CMZ was added to 1 of the circuits of each pair to achieve a total plasma concentration of 40 micro mol\\/L. Blood samples were withdrawn at (i) donation, (ii) immediately after addition of CMZ, and at (iii) 30, 60, 90, and 120 min after commencing circulation. Plasma concentrations of IL-6, IL-8, and tumor necrosis factor-alpha were less in the CMZ group compared with control after 60 min of circulation (2.2 [0.3] versus 3.2 [0.4], 14.9 [4.8] versus 21.9 [18.4], 63.3 [43.5] versus 132.2 [118.9] pg\\/mL, respectively, P < 0.05). After 120 min of circulation, neutrophils from CMZ-treated circuits showed significantly less CD18 expression compared with control (237.5 [97.4] versus 280.5 [111.5], P = 0.03). The addition of CMZ to experimental extracorporeal circuits decreases the inflammatory response. This effect may be of clinical benefit by decreasing inflammatory-mediated neurological injury during cardiopulmonary bypass. IMPLICATIONS: Enhancement of gamma-aminobutyric acid(A)-mediated effects by clomethiazole (CMZ) and associated neuroprotection has been established in animal models of cerebral ischemia. In an ex vivo study, we demonstrated antiinflammatory activity of CMZ in experimental extracorporeal circulation. This represents a potential neuroprotective mechanism of CMZ in patients undergoing coronary artery bypass surgery.

  8. Maternal serum uric acid concentration is associated with the expression of tumour necrosis factor-α and intercellular adhesion molecule-1 in patients with preeclampsia.

    Science.gov (United States)

    Zhao, J; Zheng, D-Y; Yang, J-M; Wang, M; Zhang, X-T; Sun, L; Yun, X-G

    2016-07-01

    We aimed to investigate whether there is a correlation between elevated serum uric acid (SUA) concentration and endothelial inflammatory response in women with preeclampsia (PE). On the basis of clinical and laboratory findings, patients were assigned to three groups: normal blood pressure (Control (Con)), gestational hypertension (GH) and PE (n=50 in each group). SUA concentration was measured by spectrophotometry, and serum tumour necrosis factor-α (TNF-α) and intercellular adhesion molecule-1 (ICAM-1) levels were measured by enzyme-linked immunosorbent assay. Western blotting and immunohistochemical staining were also used to detect the changes in TNF-α and ICAM-1 expression in subcutaneous fat tissue. PE patients showed significantly higher systolic and diastolic blood pressures compared with Con and GH pregnant women (P=0.02 and P=0.02, respectively). The changes of body mass index (ΔBMI) before and after pregnancy and 24-h urine protein were significantly different among the three groups (P<0.001). Maternal SUA, TNF-α and soluble ICAM-1 (sICAM-1) levels were significantly increased in the patients with PE (P<0.05) compared with the other two groups. Scatterplot analysis revealed that elevated SUA concentration positively correlated with TNF-α and sICAM-1 in pregnant women. Moreover, vessels in subcutaneous fat tissues of preeclamptic patients showed intense TNF-α and ICAM-1 staining compared with Con and GH patients. The results support that, to a certain extent, elevated SUA concentration is significantly associated with inflammation of maternal systemic vasculature as indicated by increased TNF-α and ICAM-1 expression in women with PE. PMID:26511169

  9. Analysis of global gene expression profile of rice in response to methylglyoxal indicates its possible role as a stress signal molecule

    Directory of Open Access Journals (Sweden)

    Charanpreet eKaur

    2015-09-01

    Full Text Available Methylglyoxal (MG is a toxic metabolite produced primarily as a byproduct of glycolysis. Being a potent glycating agent, it can readily bind macromolecules like DNA, RNA or proteins, modulating their expression and activity. In plants, despite the known inhibitory effects of MG on growth and development, still limited information is available about the molecular mechanisms and response pathways elicited upon elevation in MG levels. To gain insight into the molecular basis of MG response, we have investigated changes in global gene expression profiles in rice upon exposure to exogenous MG using GeneChip microarrays. Initially, growth of rice seedlings was monitored in response to increasing MG concentrations which could retard plant growth in a dose-dependent manner. Upon exposure to 10 mM concentration of MG, a total of 1685 probe sets were up- or down-regulated by more than 1.5-fold in shoot tissues within 16 h. These were classified into ten functional categories. The genes involved in signal transduction such as, protein kinases and transcription factors, were significantly over-represented in the perturbed transcriptome, of which several are known to be involved in abiotic and biotic stress response indicating a cross-talk between MG-responsive and stress-responsive signal transduction pathways. Through in silico studies, we could predict 7-8 bp long conserved motif as a possible MG-responsive element (MGRE in the 1 kb upstream region of genes that were more than ten-fold up- or down-regulated in the analysis. Since several perturbations were found in signaling cascades in response to MG, we hereby suggest that it plays an important role in signal transduction probably acting as a stress signal molecule.

  10. Simulated hypogravity impairs the angiogenic response of endothelium by up-regulating apoptotic signals

    International Nuclear Information System (INIS)

    Health hazards in astronauts are represented by cardiovascular problems and impaired bone healing. These disturbances are characterized by a common event, the loss of function by vascular endothelium, leading to impaired angiogenesis. We investigated whether the exposure of cultured endothelial cells to hypogravity condition could affect their behaviour in terms of functional activity, biochemical responses, morphology, and gene expression. Simulated hypogravity conditions for 72 h produced a reduction of cell number. Genomic analysis of endothelial cells exposed to hypogravity revealed that proapoptotic signals increased, while antiapoptotic and proliferation/survival genes were down-regulated by modelled low gravity. Activation of apoptosis was accompanied by morphological changes with mitochondrial disassembly and organelles/cytoplasmic NAD(P)H redistribution, as evidenced by autofluorescence analysis. In this condition cells were not able to respond to angiogenic stimuli in terms of migration and proliferation. Our study documents functional, morphological, and transcription alterations in vascular endothelium exposed to simulated low gravity conditions, thus providing insights on the occurrence of vascular tissue dysregulation in crewmen during prolonged space flights. Moreover, the alteration of vascular endothelium can intervene as a concause in other systemic effects, like bone remodelling, observed in weightlessness

  11. Fatty acid extracts from Lucilia sericata larvae promote murine cutaneous wound healing by angiogenic activity

    Directory of Open Access Journals (Sweden)

    Zhang Jianing

    2010-03-01

    Full Text Available Abstract Background fatty acids are considered to be effective components to promote wound healing and Lucilia sericata larvae are applied clinically to treat intractable wounds. We aimed to investigat the effect of fatty acid extracts from dried Lucilia sericata larvae on murine cutaneuous wound healing as well as angiogenesis. Results On day 7 and 10 after murine acute excision wounds creation, the percent wound contraction of fatty acid extracts group was higher than that of vaseline group. On day 3, 7 and 10 after wounds creation, the wound healing quality of fatty acid extracts group was better than that of vaseline group on terms of granulation formation and collagen organization. On day 3 after wounds creation, the micro vessel density and vascular endothelial growth factor expression of fatty acid extracts group were higher than that of vaseline group. Component analysis of the fatty acid extracts by gas chromatography-mass spectrometry showed there were 10 kinds of fatty acids in total and the ratio of saturated fatty acid, monounsaturated fatty acid and polyunsaturated fatty acid (PUFA was: 20.57%:60.32%:19.11%. Conclusions Fatty acid extracts from dried Lucilia sericata larvae, four fifths of which are unsaturated fatty acids, can promote murine cutaneous wound healing probably resulting from the powerful angiogenic activity of the extracts.

  12. Photoisomerisable molecules

    OpenAIRE

    Peris Fajarnes, Eduardo Víctor; Mata Martínez, José Antonio; Márquez Linares, Francisco Manuel; Sabater Picot, María José

    2005-01-01

    [EN] The invention relates to a molecule comprising at least one carbon-carbon double bond which is substituted by at least one cyclopentadienyl-metal-cyclopentadienyl complex, having the cis/trans isomerisation property, in a reversible manner in response to the absorption of light. Preferably, the rest of the molecule comprises a dendrimer of any generation, advantageously of the polypropylenimine octaamine type. The inventive molecule can be used as a molecular switch and in various differ...

  13. Effects of Ellagic Acid on Angiogenic Factors in Prostate Cancer Cells

    International Nuclear Information System (INIS)

    Background: Several natural antioxidants, including ellagic acid (EA), have been reported to have chemotherapeutic activity in vivo and in vitro settings. Cytochrome P450 (CYP) activity and synthesis of both epoxyeicosatrienoic acids (EETs) and 20-hydroxy-5,8,11,14-eicosatetraenoic acid (20-HETE), together with vascular endothelial growth factor (VEGF) and heme oxygenase system (HO) have emerged as important modulators of tumor growth and metastasis. Methods: The anti-angiogenic effects of EA were investigated in the human prostatic cancer cell line LnCap. HO-1, HO-2, CYP2J2 and soluble epoxyde hydrolase (sEH) expressions were evaluated by western blotting. Levels of VEGF and osteoprotegerin (OPG) were determined in the culture supernatant using an ELISA assay, while CYP mRNAs were determined by qRT-PCR. Results: EA treatment induced a significant decrease (p < 0.05) in HO-1, HO-2 and CYP2J2 expression, and in VEGF and OPG levels. Similarly CYP2J2, CYP4F2 and CYPA22 mRNAs were significantly (p < 0.05) down-regulated by EA treatment. The decrease in CYP2J2 mRNA was associated with an increase in sEH expression. Conclusions: Results reported in the present study highlighted the ability of EA to modulate a new pathway, in addition to anti-proliferative and pro-differentiation properties, via a mechanism that involves a decrease in eicosanoid synthesis and a down-regulation of the HO system in prostate cancer

  14. Single-Molecule Methods for the Large-Scale Characterization of Expression Levels and Protein-Protein Interactions in Shewanella Oneidensis MR-1

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Shimon; Michalet, Xavier

    2008-10-01

    This project has demonstrated a new approach to localize binding sites of proteins regulating gene expression (also known as transcription factors) on the genome of bacteria. Knowledge of the precise binding site(s) of a specific transcription factor helps determining its role in the cell cycle and by extension provides further understanding of the mechanisms at play in the organism. The approach entails labeling transcription factors (or any other DNA-binding protein of interest) with quantum dots, a new class of very bright fluorescent probes, which allow detection of individual molecules with a simple microscope. Detection is then followed with very accurate localization of the probe (with nanometer resolution) with respect to specific parts of the DNA or other proteins bound to the DNA. We have confirmed the precision of our measurement using another technique based on atomic force microscopy, which provides a nanometer-resolution topographic picture of a sample. Quantum dots and DNA are readily observable (and distinguishable) in the atomic force microscope, and can be simultaneously observed by fluorescence microscopy, allowing a direct comparison of the two methods. Precise nanometer-localization of protein binding sites using fluorescent quantum dots is thus a direct and visual method for physical mapping of transcription factor binding sites on whole genomes.

  15. The B7-H1 (PD-L1 T Lymphocyte-Inhibitory Molecule Is Expressed in Breast Cancer Patients with Infiltrating Ductal Carcinoma: Correlation with Important High-Risk Prognostic Factors

    Directory of Open Access Journals (Sweden)

    Hazem Ghebeh

    2006-03-01

    Full Text Available B7-H1 molecule increases the apoptosis of tumorreactive T lymphocytes and reduces their immunogenicity. Breast cancer is the second most common cause of mortality after lung cancer. Direct evidence linking B7-H1 with cancer has been shown in several malignancies; however, its expression in breast cancer has not been investigated. We used immunohistochemistry to investigate the expression of the B7-H1 molecule in 44 breast cancer specimens and to study its correlation with patients' clinicopathological parameters. The expression of B7-H1 was shown in 22 of 44 patients and was not restricted to the tumor epithelium (15 of 44, 34% in tumor cells, but was also expressed by tumor-infiltrating lymphocytes (TIL; 18 of 44, 41%. Interestingly, intratumor expression of B7-H1 was significantly associated with histologic grade IIInegative (P = .012, estrogen receptor-negative (P = .036, and progesterone receptor-negative (P = .040 patients. In addition, the expression of B7-H1 in TIL was associated with large tumor size (P = .042, histologic grade III (P=.015, positivity of Her2/neu status (P=.019, and severe tumor lymphocyte infiltration (P = .001. Taken together, these data suggest that B7-H1 may be an important risk factor in breast cancer patients and may represent a potential immunotherapeutic target using monoclonal antibody against the B7-H1 molecule.

  16. Endothelial Cell-Selective Adhesion Molecule Expression in Hematopoietic Stem/Progenitor Cells Is Essential for Erythropoiesis Recovery after Bone Marrow Injury

    Science.gov (United States)

    Sudo, Takao; Yokota, Takafumi; Okuzaki, Daisuke; Ueda, Tomoaki; Ichii, Michiko; Ishibashi, Tomohiko; Isono, Tomomi; Habuchi, Yoko; Oritani, Kenji; Kanakura, Yuzuru

    2016-01-01

    Numerous red blood cells are generated every second from proliferative progenitor cells under a homeostatic state. Increased erythropoietic activity is required after myelo-suppression as a result of chemo-radio therapies. Our previous study revealed that the endothelial cell-selective adhesion molecule (ESAM), an authentic hematopoietic stem cell marker, plays essential roles in stress-induced hematopoiesis. To determine the physiological importance of ESAM in erythroid recovery, ESAM-knockout (KO) mice were treated with the anti-cancer drug, 5-fluorouracil (5-FU). ESAM-KO mice experienced severe and prolonged anemia after 5-FU treatment compared to wild-type (WT) mice. Eight days after the 5-FU injection, compared to WT mice, ESAM-KO mice showed reduced numbers of erythroid progenitors in bone marrow (BM) and spleen, and reticulocytes in peripheral blood. Megakaryocyte-erythrocyte progenitors (MEPs) from the BM of 5-FU-treated ESAM-KO mice showed reduced burst forming unit-erythrocyte (BFU-E) capacities than those from WT mice. BM transplantation revealed that hematopoietic stem/progenitor cells from ESAM-KO donors were more sensitive to 5-FU treatment than that from WT donors in the WT host mice. However, hematopoietic cells from WT donors transplanted into ESAM-KO host mice could normally reconstitute the erythroid lineage after a BM injury. These results suggested that ESAM expression in hematopoietic cells, but not environmental cells, is critical for hematopoietic recovery. We also found that 5-FU treatment induces the up-regulation of ESAM in primitive erythroid progenitors and macrophages that do not express ESAM under homeostatic conditions. The phenotypic change seen in macrophages might be functionally involved in the interaction between erythroid progenitors and their niche components during stress-induced acute erythropoiesis. Microarray analyses of primitive erythroid progenitors from 5-FU-treated WT and ESAM-KO mice revealed that various signaling

  17. Imaging of EGFR expression in murine xenografts using site-specifically labelled anti-EGFR 111In-DOTA-ZEGFR:2377 Affibody molecule: aspect of the injected tracer amount

    International Nuclear Information System (INIS)

    Overexpression of epidermal growth factor receptor (EGFR) is a prognostic and predictive biomarker in a number of malignant tumours. Radionuclide molecular imaging of EGFR expression in cancer could influence patient management. However, EGFR expression in normal tissues might complicate in vivo imaging. The aim of this study was to evaluate if optimization of the injected protein dose might improve imaging of EGFR expression in tumours using a novel EGFR-targeting protein, the DOTA-ZEGFR:2377 Affibody molecule. An anti-EGFR Affibody molecule, ZEGFR:2377, was labelled with 111In via the DOTA chelator site-specifically conjugated to a C-terminal cysteine. The affinity of DOTA-ZEGFR:2377 for murine and human EGFR was measured by surface plasmon resonance. The cellular processing of 111In-DOTA-ZEGFR:2377 was evaluated in vitro. The biodistribution of radiolabelled Affibody molecules injected in a broad range of injected Affibody protein doses was evaluated in mice bearing EGFR-expressing A431 xenografts. Site-specific coupling of DOTA provided a uniform conjugate possessing equal affinity for human and murine EGFR. The internalization of 111In-DOTA-ZEGFR:2377 by A431 cells was slow. In vivo, the conjugate accumulated specifically in xenografts and in EGFR-expressing tissues. The curve representing the dependence of tumour uptake on the injected Affibody protein dose was bell-shaped. The highest specific radioactivity (lowest injected protein dose) provided a suboptimal tumour-to-blood ratio. The results of the biodistribution study were confirmed by γ-camera imaging. The 111In-DOTA-ZEGFR:2377 Affibody molecule is a promising tracer for radionuclide molecular imaging of EGFR expression in malignant tumours. Careful optimization of protein dose is required for high-contrast imaging of EGFR expression in vivo. (orig.)

  18. Comparison of the Effects of Carbon Ion and Photon Irradiation on the Angiogenic Response in Human Lung Adenocarcinoma Cells

    International Nuclear Information System (INIS)

    Purpose: Radiotherapy resistance is a commonly encountered problem in cancer treatment. In this regard, stabilization of endothelial cells and release of angiogenic factors by cancer cells contribute to this problem. In this study, we used human lung adenocarcinoma (A549) cells to compare the effects of carbon ion and X-ray irradiation on the cells' angiogenic response. Methods and Materials: A549 cells were irradiated with biologically equivalent doses for cell survival of either carbon ions (linear energy transfer, 170 keV/μm; energy of 9.8 MeV/u on target) or X-rays and injected with basement membrane matrix into BALB/c nu/nu mice to generate a plug, allowing quantification of angiogenesis by blood vessel enumeration. The expression of angiogenic factors (VEGF, PlGF, SDF-1, and SCF) was assessed at the mRNA and secreted protein levels by using real-time reverse transcription-PCR and enzyme-linked immunosorbent assay. Signal transduction mediated by stem cell factor (SCF) was assessed by phosphorylation of its receptor c-Kit. For inhibition of SCF/c-Kit signaling, a specific SCF/c-Kit inhibitor (ISCK03) was used. Results: Irradiation of A549 cells with X-rays (6 Gy) but not carbon ions (2 Gy) resulted in a significant increase in blood vessel density (control, 20.71 ± 1.55; X-ray, 36.44 ± 3.44; carbon ion, 16.33 ± 1.03; number per microscopic field). Concordantly, irradiation with X-rays but not with carbon ions increased the expression of SCF and subsequently caused phosphorylation of c-Kit in endothelial cells. ISCK03 treatment of A549 cells irradiated with X-rays (6 Gy) resulted in a significant decrease in blood vessel density (X-ray, 36.44 ± 3.44; X-ray and ISCK03, 4.33 ± 0.71; number of microscopic field). These data indicate that irradiation of A549 cells with X-rays but not with carbon ions promotes angiogenesis. Conclusions: The present study provides evidence that SCF is an X-ray-induced mediator of angiogenesis in A549 cells, a phenomenon that

  19. Expression of immune molecules in epileptogenic rats%实验性癫痫大鼠免疫分子的表达

    Institute of Scientific and Technical Information of China (English)

    曾常茜; 王金岩

    2006-01-01

    BACKGROUND: The relation of epilepsy to immunity has been investigated at cellular and molecular levels in recent years, and the results show many immunological changes in epileptic patients such as immunocytes,immune molecules and immune functions.OBJECTIVE: To investigate the immunologic pathogenesis of epilepsy and expression of MHC- Ⅰ, MHC- Ⅱ and C3b receptor of microglia. DESIGN: Randomized and controlled trial. SETTING: Medical College of Dalian University; University of Sanchong,Japan.MATERIALS: The experiment was conducted in the Immunology Laboratory of Jilin Beihua University from 2001 to 2002. Forty adult Wistar rats were randomized into model group and control group with 20 in each group.METHODS: 12 mg/kg kainic acid was administered subcutaneously into rats in model group, while no intervention was given to rats in control group. Seizure was observed within 6 hours following kainic acid administration. Rats were killed 3 days after medication. Neuronal degeneration was observed with crystal violet staining and the expression of MHC molecules and C3b receptor in the hippocampus of epileptogenic rats was observed immunnhistochemically.administration, spasm occurred within 3 hours after kainic acid administration and continued from the first stage to the fifth stage. More severe served in cone-like cell layer of hippocampus of rats in model group, but molecule, MHC- Ⅱ molecule and C3b receptor was (201.6±6.43), (493.8±7.92) and (362.5±3.18) cells per visual field respectively in the hippocampus of epileptogenic rats inmodel group, but no obvious expression was observed in control group. The differences were significant between the two groups (P < 0.01).pocampal sclerosis, immunological inflammation is observed combined with the complement system, which indicates immunologic inflammatory mechanism of epilepsy.%背景:近年来,许多学者对癫痫与免疫的关系从细胞和分子水平进行了研究,发现癫痫患者存在细胞、分子

  20. Mimicking nature by codelivery of stimulant and inhibitor to create temporally stable and spatially restricted angiogenic zones

    OpenAIRE

    Yuen, William W.; Du, Nan R.; Chan, Chun H.; Silva, Eduardo A.; Mooney, David J.

    2010-01-01

    Nature frequently utilizes opposing factors to create a stable activator gradient to robustly control pattern formation. This study employs a biomimicry approach, by delivery of both angiogenic and antiangiogenic factors from spatially restricted zones of a synthetic polymer to achieve temporally stable and spatially restricted angiogenic zones in vivo. The simultaneous release of the two spatially separated agents leads to a spatially sharp angiogenic region that is sustained over 3 wk. Furt...

  1. Angiogenic factor with G patch and FHA domains 1 (Aggf1) regulates liver fibrosis by modulating TGF-β signaling.

    Science.gov (United States)

    Zhou, Bisheng; Zeng, Sheng; Li, Luyuang; Fan, Zhiwen; Tian, Wenfang; Li, Min; Xu, Huihui; Wu, Xiaoyan; Fang, Mingming; Xu, Yong

    2016-06-01

    Fibrosis is a common pathophysiological process following liver injury and can lead to, if left unattended to, irreversible end-stage liver disease such as cirrhosis. Hepatic stellate cells (HSCs) are a major contributor to liver fibrosis. Here we investigated the involvement of angiogenic factor with G patch and FHA domains 1 (Aggf1) in HSC activation and the underlying mechanisms. Aggf1 expression was down-regulated in the livers in three different mouse models of liver fibrosis following injury. Aggf1 expression was also suppressed in activated HSCs when compared to quiescent HSCs. Over-expression of Aggf1 alleviated liver fibrosis in mice and in cultured HSCs. RNA-sequencing (RNA-seq) analysis performed in HSCs revealed that Aggf1-dependent transcription regulates several key fibrogenic pathways. Mechanistically, Aggf1 regulated liver fibrogenesis by forming a complex with the inhibitor SMAD protein (SMAD7) thereby leading to diminished SMAD3 binding to the pro-fibrogenic gene promoters. On the contrary, SMAD7 knockdown abrogated the effect of Aggf1 and rescued HSC activation. Aggf1 expression was silenced during HSC activation/liver fibrogenesis as a result of DNA methylation. Treatment with a DNA methyltransferase inhibitor (5-Azacytidine) restored Aggf1 expression and repressed liver fibrosis in an Aggf1-dependent manner. In conclusion, our data illustrate a previously unknown role for Aggf1 and shed light on the development of novel therapeutic solutions against liver fibrosis. PMID:26850475

  2. Expression of EPHRIN-A1, SCINDERIN and MHC class I molecules in head and neck cancers and relationship with the prognostic value of intratumoral CD8+ T cells

    International Nuclear Information System (INIS)

    Our group has previously shown that EPHRIN-A1 and SCINDERIN expression by tumor cells rendered them resistant to cytotoxic T lymphocyte-mediated lysis. Whereas the prognostic value of EPHRIN-A1 expression in cancer has already been studied, the role of SCINDERIN presence remains to be established. In the present work, we investigated the prognosis value of EPHRIN-A1 and SCINDERIN expression in head and neck carcinomas. In addition, we monitored the HLA-class I expression by tumor cells and the presence of tumor-infiltrating CD8+ T cells to evaluate a putative correlation between these factors and the survival prognosis by themselves or related to EPHRIN-A1 and SCINDERIN expression. Tumor tissue sections of 83 patients with head and neck cancer were assessed by immunohistochemistry for the expression of EPHRIN-A1, SCINDERIN, HLA class I molecules and the presence of CD8+ T cells. No significant prognosis value could be attributed to these factors independently, despite a tendency of association between EPHRIN-A1 and a worse clinical outcome. No prognostic value could be observed when CD8+ T cell tumor infiltration was analyzed combined with EPHRIN-A1, SCINDERIN or HLA class I expression. These results highlight that molecules involved in cancer cell resistance to cytotoxic T lymphocytes by themselves are not a sufficient criteria for prognosis determination in cancer patients. Other intrinsic or tumor microenvironmental features should be considered in prognostic evaluation

  3. Cold atmospheric plasma (CAP changes gene expression of key molecules of the wound healing machinery and improves wound healing in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Stephanie Arndt

    Full Text Available Cold atmospheric plasma (CAP has the potential to interact with tissue or cells leading to fast, painless and efficient disinfection and furthermore has positive effects on wound healing and tissue regeneration. For clinical implementation it is necessary to examine how CAP improves wound healing and which molecular changes occur after the CAP treatment. In the present study we used the second generation MicroPlaSter ß® in analogy to the current clinical standard (2 min treatment time in order to determine molecular changes induced by CAP using in vitro cell culture studies with human fibroblasts and an in vivo mouse skin wound healing model. Our in vitro analysis revealed that the CAP treatment induces the expression of important key genes crucial for the wound healing response like IL-6, IL-8, MCP-1, TGF-ß1, TGF-ß2, and promotes the production of collagen type I and alpha-SMA. Scratch wound healing assays showed improved cell migration, whereas cell proliferation analyzed by XTT method, and the apoptotic machinery analyzed by protein array technology, was not altered by CAP in dermal fibroblasts. An in vivo wound healing model confirmed that the CAP treatment affects above mentioned genes involved in wound healing, tissue injury and repair. Additionally, we observed that the CAP treatment improves wound healing in mice, no relevant side effects were detected. We suggest that improved wound healing might be due to the activation of a specified panel of cytokines and growth factors by CAP. In summary, our in vitro human and in vivo animal data suggest that the 2 min treatment with the MicroPlaSter ß® is an effective technique for activating wound healing relevant molecules in dermal fibroblasts leading to improved wound healing, whereas the mechanisms which contribute to these observed effects have to be further investigated.

  4. Automated quantification reveals hyperglycemia inhibits endothelial angiogenic function.

    Directory of Open Access Journals (Sweden)

    Anthony R Prisco

    Full Text Available Diabetes Mellitus (DM has reached epidemic levels globally. A contributing factor to the development of DM is high blood glucose (hyperglycemia. One complication associated with DM is a decreased angiogenesis. The Matrigel tube formation assay (TFA is the most widely utilized in vitro assay designed to assess angiogenic factors and conditions. In spite of the widespread use of Matrigel TFAs, quantification is labor-intensive and subjective, often limiting experiential design and interpretation of results. This study describes the development and validation of an open source software tool for high throughput, morphometric analysis of TFA images and the validation of an in vitro hyperglycemic model of DM.Endothelial cells mimic angiogenesis when placed onto a Matrigel coated surface by forming tube-like structures. The goal of this study was to develop an open-source software algorithm requiring minimal user input (Pipeline v1.3 to automatically quantify tubular metrics from TFA images. Using Pipeline, the ability of endothelial cells to form tubes was assessed after culture in normal or high glucose for 1 or 2 weeks. A significant decrease in the total tube length and number of branch points was found when comparing groups treated with high glucose for 2 weeks versus normal glucose or 1 week of high glucose.Using Pipeline, it was determined that hyperglycemia inhibits formation of endothelial tubes in vitro. Analysis using Pipeline was more accurate and significantly faster than manual analysis. The Pipeline algorithm was shown to have additional applications, such as detection of retinal vasculature.

  5. Angiogenic activity of Calendula officinalis flowers L. in rats Atividade angiogênica das flores da Calendula officinalis L. em ratos

    Directory of Open Access Journals (Sweden)

    Leila Maria Leal Parente

    2011-02-01

    Full Text Available Purpose: In this work, angiogenic activity of Calendula officinalis L. (Asteraceae ethanolic extract and dichloromethane and hexanic fractions were evaluated, considering medicinal properties, especially healing activity, are attributed to this plant. Methods: Models using 36 rats and 90 embryonated eggs were used to evaluate healing and angiogenic activities of extracts and fractions of the plant, through the induction of skin wounds and the chorioallantoic membrane, respectively. The effect of vascular proliferation was also tested from the study to verify the intensity of expression of vascular endothelial growth factor (VEGF in cutaneous wounds in rats. Results: The angiogenic activity of the extract and the fractions was evidenced in both experimental models. It was verified that this effect is not directly related to the expression of VEGF and it could be associated to other pro-angiogenic factors. Conclusion: The healing activity referred to C. officinalis is related, among other factors, to its positive effect on angiogenesis, characterized by the induction of neovascularization.Objetivo: Neste trabalho a atividade sobre a angiogênese do extrato etanólico (EEC e das frações diclorometano e hexânica das flores de Calendula officinalis L. (Asteraceae cultivada no Brasil foram avaliados, visto que propriedades medicinais têm sido atribuídas às flores da planta, destacando-se a atividade cicatrizante. Métodos: Modelos utilizando 36 ratos e 90 ovos embrionados foram usados para avaliar as atividades cicatrizante e angiogênica dos extratos e frações da planta, por meio da indução de feridas cutâneas e da membrana corioalantóide, respectivamente. O efeito proliferativo vascular foi também testado a partir do estudo imunoistoquímico, realizado para verificar a intensidade da expressão do fator de crescimento endotelial vascular (VEGF na derme de ratos. Resultados: A atividade angiogênica do extrato e das frações foi

  6. Enumerating molecules.

    Energy Technology Data Exchange (ETDEWEB)

    Visco, Donald Patrick, Jr. (, . Tennessee Technological University, Cookeville, TN); Faulon, Jean-Loup Michel; Roe, Diana C.

    2004-04-01

    This report is a comprehensive review of the field of molecular enumeration from early isomer counting theories to evolutionary algorithms that design molecules in silico. The core of the review is a detail account on how molecules are counted, enumerated, and sampled. The practical applications of molecular enumeration are also reviewed for chemical information, structure elucidation, molecular design, and combinatorial library design purposes. This review is to appear as a chapter in Reviews in Computational Chemistry volume 21 edited by Kenny B. Lipkowitz.

  7. Concerns about anti-angiogenic treatment in patients with glioblastoma multiforme

    International Nuclear Information System (INIS)

    The relevance of angiogenesis inhibition in the treatment of glioblastoma multiforme (GBM) should be considered in the unique context of malignant brain tumours. Although patients benefit greatly from reduced cerebral oedema and intracranial pressure, this important clinical improvement on its own may not be considered as an anti-tumour effect. GBM can be roughly separated into an angiogenic component, and an invasive or migratory component. Although this latter component seems inert to anti-angiogenic therapy, it is of major importance for disease progression and survival. We reviewed all relevant literature. Published data support that clinical symptoms are tempered by anti-angiogenic treatment, but that tumour invasion continues. Unfortunately, current imaging modalities are affected by anti-angiogenic treatment too, making it even harder to define tumour margins. To illustrate this we present MRI, biopsy and autopsy specimens from bevacizumab-treated patients. Moreover, while treatment of other tumour types may be improved by combining chemotherapy with anti-angiogenic drugs, inhibiting angiogenesis in GBM may antagonise the efficacy of chemotherapeutic drugs by normalising the blood-brain barrier function. Although angiogenesis inhibition is of considerable value for symptom reduction in GBM patients, lack of proof of a true anti-tumour effect raises concerns about the place of this type of therapy in the treatment of GBM

  8. Role Of Adhesion Molecules Vcam-1 And Ve-Cadherin In Endothelium Dysfunction Development At Hemorrhagic Fever With Renal Syndrome

    Directory of Open Access Journals (Sweden)

    А.А. Baygildina

    2009-12-01

    Full Text Available The research goal is to determine the changes in concentration of both sVCAM-1 and VE-cadherin in blood serum of patients suffered from hemorrhagic fever with renal syndrome (HFRS. 87 patients aged 15-65 were examined. Concentrations of both sVCAM-1 and VE- cadherin in blood serum by means of "Bender MedSystems" (Austria ELISA test were determined. It was shown that in both medium severe and severe forms of HFRS statistically the significant rise of sVCAM-1 concentration in blood with high indices in oliguric period took place. Complicated form was characterized by high indices of sVCAM-1 level in fever period, extremely decreasing in concentration in oliguric period and tendency to normalizing in clinical convalescence period. VE-cadherin level in blood was predominantly lower than control in all the observed groups with the exception of fever period in group with medium severe disease form. Negative correlation of normal intensity between adhesion molecules levels in blood was revealed. In conclusion it is necessary to point out that high VCAM-1 expression by endotheliocytes evidences the development of an adhesion form of endothelial dysfunction, low VE-cadherin production in a base for development of angiogenic form of endothelial dysfunction and changes in expression of these adhesion molecules that have adaptive metabolic response to macroorganism of HFRS pathogenic action

  9. Novel PI3K/AKT targeting anti-angiogenic activities of 4-vinylphenol, a new therapeutic potential of a well-known styrene metabolite.

    Science.gov (United States)

    Yue, Grace Gar-Lee; Lee, Julia Kin-Ming; Kwok, Hin-Fai; Cheng, Ling; Wong, Eric Chun-Wai; Jiang, Lei; Yu, Hua; Leung, Hoi-Wing; Wong, Yuk-Lau; Leung, Ping-Chung; Fung, Kwok-Pui; Lau, Clara Bik-San

    2015-01-01

    The pneumo- and hepato-toxicity of 4-vinylphenol (4VP), a styrene metabolite, has been previously reported. Nevertheless, the present study reported the novel anti-angiogenic activities of 4VP which was firstly isolated from the aqueous extract of a Chinese medicinal herb Hedyotis diffusa. Our results showed that 4VP at non-toxic dose effectively suppressed migration, tube formation, adhesion to extracellular matrix proteins, as well as protein and mRNA expressions of metalloproteinase-2 of human endothelial cells (HUVEC and HMEC-1). Investigation of the signal transduction revealed that 4VP down-regulated PI3K/AKT and p38 MAPK. Besides, 4VP interfered with the phosphorylation of ERK1/2, the translocation and expression of NFkappaB. In zebrafish embryo model, the new blood vessel growth was significantly blocked by 4VP (6.25-12.5 μg/mL medium). The VEGF-induced blood vessel formation in Matrigel plugs in C57BL/6 mice was suppressed by 4VP (20-100 μg/mL matrigel). In addition, the blood vessel number and tumor size were reduced by intraperitoneal 4VP (0.2-2 mg/kg) in 4T1 breast tumor-bearing BALB/c mice, with doxorubicin as positive control. Together, the in vitro and in vivo anti-angiogenic activities of 4VP were demonstrated for the first time. These findings suggest that 4VP has great potential to be further developed as an anti-angiogenic agent. PMID:26053458

  10. HL-217, a new topical anti-angiogenic agent, inhibits retinal vascular leakage and pathogenic subretinal neovascularization in Vldlr−/− mice

    International Nuclear Information System (INIS)

    Highlights: • HL-217 is a new synthetic topical anti-angiogenic agent. • HL-217 attenuated subretinal neovascularization in Vldlr−/− mice. • HL-217 blocked the binding of PDGF-BB to PDGFRβ. - Abstract: HL-217 is a new synthetic angiogenesis inhibitor. Platelet derived growth factor (PDGF) is a vasoactive factor and has been implicated in proliferative retinopathies. In this study, we examined the mechanism of action and efficacy of topical application of HL-217 on subretinal neovascularization in very low-density lipoprotein receptor knockout (Vldlr−/−) mice. In three-week-old male Vldlr−/− mice, HL-217 (1.5 or 3 mg/ml) was administered twice per day for 4 weeks by topical eye drop instillation. Neovascular areas were then measured. We used a protein array to evaluate the expression levels of angiogenic factors. The inhibitory effect of HL-217 on the PDGF-BB/PDGFRβ interaction was evaluated in vitro. The neovascular area in the Vldlr−/− mice was significantly reduced by HL-217. Additionally, HL-217 decreased the expression levels of PDGF-BB protein and VEGF mRNA. Moreover, HL-217 dose-dependently inhibited the PDGF-BB/PDGFRβ interaction (IC50 = 38.9 ± 0.7 μM). These results suggest that HL-217 is a potent inhibitor of PDGF-BB. HL-217, when applied topically, is an effective inhibitor of subretinal neovascularization due to its ability to inhibit the pro-angiogenic effects of PDGF-BB

  11. HL-217, a new topical anti-angiogenic agent, inhibits retinal vascular leakage and pathogenic subretinal neovascularization in Vldlr{sup −/−} mice

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Junghyun; Kim, Chan-Sik; Jo, Kyuhyung [Korean Medicine Based Herbal Drug Development Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon (Korea, Republic of); Cho, Yun-Seok; Kim, Hyun-Gyu; Lee, Geun-Hyeog [Research and Development Center, Hanlim Pharm. Co. Ltd., 1656-10, Seocho-dong, Seocho-gu, Seoul (Korea, Republic of); Lee, Yun Mi; Sohn, Eunjin [Korean Medicine Based Herbal Drug Development Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon (Korea, Republic of); Kim, Jin Sook, E-mail: jskim@kiom.re.kr [Korean Medicine Based Herbal Drug Development Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon (Korea, Republic of)

    2015-01-02

    Highlights: • HL-217 is a new synthetic topical anti-angiogenic agent. • HL-217 attenuated subretinal neovascularization in Vldlr{sup −/−} mice. • HL-217 blocked the binding of PDGF-BB to PDGFRβ. - Abstract: HL-217 is a new synthetic angiogenesis inhibitor. Platelet derived growth factor (PDGF) is a vasoactive factor and has been implicated in proliferative retinopathies. In this study, we examined the mechanism of action and efficacy of topical application of HL-217 on subretinal neovascularization in very low-density lipoprotein receptor knockout (Vldlr{sup −/−}) mice. In three-week-old male Vldlr{sup −/−} mice, HL-217 (1.5 or 3 mg/ml) was administered twice per day for 4 weeks by topical eye drop instillation. Neovascular areas were then measured. We used a protein array to evaluate the expression levels of angiogenic factors. The inhibitory effect of HL-217 on the PDGF-BB/PDGFRβ interaction was evaluated in vitro. The neovascular area in the Vldlr{sup −/−} mice was significantly reduced by HL-217. Additionally, HL-217 decreased the expression levels of PDGF-BB protein and VEGF mRNA. Moreover, HL-217 dose-dependently inhibited the PDGF-BB/PDGFRβ interaction (IC{sub 50} = 38.9 ± 0.7 μM). These results suggest that HL-217 is a potent inhibitor of PDGF-BB. HL-217, when applied topically, is an effective inhibitor of subretinal neovascularization due to its ability to inhibit the pro-angiogenic effects of PDGF-BB.

  12. Angiogenic activity in patients with psoriasis is significantly decreased by Goeckerman's therapy

    Energy Technology Data Exchange (ETDEWEB)

    Andrys, C.; Borska, L.; Pohl, D.; Fiala, Z.; Hamakova, K.; Krejsek, J. [Faculty Hospital, Hradec Kralove (Czech Republic). Dept. of Clinical Immunology & Allergy

    2007-03-15

    Goeckerman's therapy (GT) of psoriasis is based on daily application of pharmacy grade coal tar on affected skin with subsequent exposure to UV light. Goeckerman's therapy is still the first line therapy of psoriasis in the Czech Republic because of its low cost and long-term efficacy. Disturbances in angiogenic activity are characteristic for the immunopathogenesis of psoriasis. An abnormal spectrum of cytokines, growth factors and proangiogenic mediators is produced by keratinocytes and inflammatory cells in patients suffering from the disease. The aim of this study was to evaluate the influence of GT of psoriasis on angiogenic activities by comparing serum levels of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) in 44 patients with psoriasis in peripheral blood samples collected before and after therapy. It was found that the angiogenic potential which is abnormally increased in patients with psoriasis is significantly alleviated by GT.

  13. C5a enhances dysregulated inflammatory and angiogenic responses to malaria in vitro: potential implications for placental malaria.

    Directory of Open Access Journals (Sweden)

    Andrea Conroy

    Full Text Available BACKGROUND: Placental malaria (PM is a leading cause of maternal and infant mortality. Although the accumulation of parasitized erythrocytes (PEs and monocytes within the placenta is thought to contribute to the pathophysiology of PM, the molecular mechanisms underlying PM remain unclear. Based on the hypothesis that excessive complement activation may contribute to PM, in particular generation of the potent inflammatory peptide C5a, we investigated the role of C5a in the pathogenesis of PM in vitro and in vivo. METHODOLOGY AND PRINCIPAL FINDINGS: Using primary human monocytes, the interaction between C5a and malaria in vitro was assessed. CSA- and CD36-binding PEs induced activation of C5 in the presence of human serum. Plasmodium falciparum GPI (pfGPI enhanced C5a receptor expression (CD88 on monocytes, and the co-incubation of monocytes with C5a and pfGPI resulted in the synergistic induction of cytokines (IL-6, TNF, IL-1beta, and IL-10, chemokines (IL-8, MCP-1, MIP1alpha, MIP1beta and the anti-angiogenic factor sFlt-1 in a time and dose-dependent manner. This dysregulated response was abrogated by C5a receptor blockade. To assess the potential role of C5a in PM, C5a plasma levels were measured in malaria-exposed primigravid women in western Kenya. Compared to pregnant women without malaria, C5a levels were significantly elevated in women with PM. CONCLUSIONS AND SIGNIFICANCE: These results suggest that C5a may contribute to the pathogenesis of PM by inducing dysregulated inflammatory and angiogenic responses that impair placental function.

  14. Expression

    Directory of Open Access Journals (Sweden)

    Wang-Xia Wang

    2014-02-01

    Full Text Available The miR-15/107 family comprises a group of 10 paralogous microRNAs (miRNAs, sharing a 5′ AGCAGC sequence. These miRNAs have overlapping targets. In order to characterize the expression of miR-15/107 family miRNAs, we employed customized TaqMan Low-Density micro-fluid PCR-array to investigate the expression of miR-15/107 family members, and other selected miRNAs, in 11 human tissues obtained at autopsy including the cerebral cortex, frontal cortex, primary visual cortex, thalamus, heart, lung, liver, kidney, spleen, stomach and skeletal muscle. miR-103, miR-195 and miR-497 were expressed at similar levels across various tissues, whereas miR-107 is enriched in brain samples. We also examined the expression patterns of evolutionarily conserved miR-15/107 miRNAs in three distinct primary rat brain cell preparations (enriched for cortical neurons, astrocytes and microglia, respectively. In primary cultures of rat brain cells, several members of the miR-15/107 family are enriched in neurons compared to other cell types in the central nervous system (CNS. In addition to mature miRNAs, we also examined the expression of precursors (pri-miRNAs. Our data suggested a generally poor correlation between the expression of mature miRNAs and their precursors. In summary, we provide a detailed study of the tissue and cell type-specific expression profile of this highly expressed and phylogenetically conserved family of miRNA genes.

  15. Adenoviral transduction of human acid sphingomyelinase into neo-angiogenic endothelium radiosensitizes tumor cure.

    Directory of Open Access Journals (Sweden)

    Branka Stancevic

    Full Text Available These studies define a new mechanism-based approach to radiosensitize tumor cure by single dose radiotherapy (SDRT. Published evidence indicates that SDRT induces acute microvascular endothelial apoptosis initiated via acid sphingomyelinase (ASMase translocation to the external plasma membrane. Ensuing microvascular damage regulates radiation lethality of tumor stem cell clonogens to effect tumor cure. Based on this biology, we engineered an ASMase-producing vector consisting of a modified pre-proendothelin-1 promoter, PPE1(3x, and a hypoxia-inducible dual-binding HIF-2α-Ets-1 enhancer element upstream of the asmase gene, inserted into a replication-deficient adenovirus yielding the vector Ad5H2E-PPE1(3x-ASMase. This vector confers ASMase over-expression in cycling angiogenic endothelium in vitro and within tumors in vivo, with no detectable enhancement in endothelium of normal tissues that exhibit a minute fraction of cycling cells or in non-endothelial tumor or normal tissue cells. Intravenous pretreatment with Ad5H2E-PPE1(3x-ASMase markedly increases SDRT cure of inherently radiosensitive MCA/129 fibrosarcomas, and converts radiation-incurable B16 melanomas into biopsy-proven tumor cures. In contrast, Ad5H2E-PPE1(3x-ASMase treatment did not impact radiation damage to small intestinal crypts as non-dividing small intestinal microvessels did not overexpress ASMase and were not radiosensitized. We posit that combination of genetic up-regulation of tumor microvascular ASMase and SDRT provides therapeutic options for currently radiation-incurable human tumors.

  16. Identification of an angiogenic factor that when mutated causes susceptibility to Klippel–Trenaunay syndrome

    OpenAIRE

    Tian, Xiao-Li; Kadaba, Rajkumar; You, Sun-Ah; Liu, Mugen; TIMUR, AYSE ANIL; Yang, Lin; Chen, Qiuyun; Szafranski, Przemyslaw; Rao, Shaoqi; Wu, Ling; Housman, David E.; Dicorleto, Paul E.; Driscoll, David J.; Borrow, Julian; Wang, Qing

    2004-01-01

    Angiogenic factors are critical to the initiation of angiogenesis and maintenance of the vascular network1. Here we use human genetics as an approach to identify an angiogenic factor, VG5Q, and further define two genetic defects of VG5Q in patients with the vascular disease Klippel–Trenaunay syndrome (KTS)2,3. One mutation is chromosomal translocation t(5;11), which increases VG5Q transcription. The second is mutation E133K identified in five KTS patients, but not in 200 matched controls. VG5...

  17. Induction of Anti-Tumor Immunity Ex Vivo Using Dendritic Cells Transduced with Fowl Pox Vector Expressing MUC1, CEA, and a Triad of Costimulatory Molecules (rF-PANVAC)1

    OpenAIRE

    Vasir, Baldev; Zarwan, Corrine; Ahmad, Rehan; Crawford, Keith D; Rajabi, Hassan; Matsuoka, Ken-ichi; Rosenblatt, Jacalyn; Wu, Zekui; Mills, Heidi; Kufe, Donald; Avigan, David

    2012-01-01

    The fowl pox vector expressing the tumor associated antigens MUC1 and CEA in the context of costimulatory molecules (rF-PANVAC) has shown promise as a tumor vaccine. However, vaccine mediated expansion of suppressor T cell populations may blunt clinical efficacy. We characterized the cellular immune response induced by ex-vivo dendritic cells (DCs) transduced with (rF)-PANVAC. Consistent with the functional characteristics of potent antigen presenting cells, rF-PANVAC-DCs demonstrated strong ...

  18. Notch, IL-1 and leptin crosstalk outcome (NILCO is critical for leptin-induced proliferation, migration and VEGF/VEGFR-2