WorldWideScience

Sample records for angiogenic gene expression

  1. Protein kinase D1 signaling in angiogenic gene expression and VEGF-mediated angiogenesis

    Directory of Open Access Journals (Sweden)

    Bin eRen MD, Phd, FAHA

    2016-05-01

    Full Text Available Protein kinase D 1 (PKD-1 is a signaling kinase important in fundamental cell functions including migration, proliferation and differentiation. PKD-1 is also a key regulator of gene expression and angiogenesis that is essential for cardiovascular development and tumor progression. Further understanding molecular aspects of PKD-1 signaling in the regulation of angiogenesis may have translational implications in obesity, cardiovascular disease and cancer. The author will summarize and provide the insights into molecular mechanisms by which PKD-1 regulates transcriptional expression of angiogenic genes, focusing on the transcriptional regulation of CD36 by PKD-1-FoxO1 signaling axis along with the potential implications of this axis in arterial differentiation and morphogenesis. He will also discuss a new concept of dynamic balance between proangiogenic and antiangiogenic signaling in determining angiogenic switch, and stress how PKD-1 signaling regulates VEGF signaling-mediated angiogenesis.

  2. Differential expression of anti-angiogenic factors and guidance genes in the developing macula.

    Science.gov (United States)

    Kozulin, Peter; Natoli, Riccardo; O'Brien, Keely M Bumsted; Madigan, Michele C; Provis, Jan M

    2009-01-01

    The primate retina contains a specialized, cone-rich macula, which mediates high acuity and color vision. The spatial resolution provided by the neural retina at the macula is optimized by stereotyped retinal blood vessel and ganglion cell axon patterning, which radiate away from the macula and reduce shadowing of macular photoreceptors. However, the genes that mediate these specializations, and the reasons for the vulnerability of the macula to degenerative disease, remain obscure. The aim of this study was to identify novel genes that may influence retinal vascular patterning and definition of the foveal avascular area. We used RNA from human fetal retinas at 19-20 weeks of gestation (WG; n=4) to measure differential gene expression in the macula, a region nasal to disc (nasal) and in the surrounding retina (surround) by hybridization to 12 GeneChip microarrays (HG-U133 Plus 2.0). The raw data was subjected to quality control assessment and preprocessing, using GC-RMA. We then used ANOVA analysis (Partek) Genomic Suite 6.3) and clustering (DAVID website) to identify the most highly represented genes clustered according to "biological process." The neural retina is fully differentiated at the macula at 19-20 WG, while neuronal progenitor cells are present throughout the rest of the retina. We therefore excluded genes associated with the cell cycle, and markers of differentiated neurons, from further analyses. Significantly regulated genes (pmacula versus surround" and "macula versus nasal." KEGG pathway clustering of the filtered gene lists identified 25 axon guidance-related genes that are differentially regulated in the macula. Furthermore, we found significant upregulation of three anti-angiogenic factors in the macula: pigment epithelium derived factor (PEDF), natriuretic peptide precurusor B (NPPB), and collagen type IValpha2. Differential expression of several members of the ephrin and semaphorin axon guidance gene families, PEDF, and NPPB was verified by

  3. Gene expression profile and angiogenic marker correlates with response to neoadjuvant bevacizumab followed by bevacizumab plus chemotherapy in breast cancer.

    Science.gov (United States)

    Yang, Sherry X; Steinberg, Seth M; Nguyen, Dat; Wu, Thomas D; Modrusan, Zora; Swain, Sandra M

    2008-09-15

    To identify biomarkers and gene expression profile signatures to distinguish patients with partial response (PR) from those with stable disease (SD) and progressive disease (PD). Twenty patients with inflammatory breast cancer and one patient with locally advanced breast cancer received one cycle of bevacizumab followed by six cycles of bevacizumab plus docetaxel-doxorubicin before surgery. Baseline angiogenic/tumor markers were examined by immunohistochemistry and gene expression profiles were measured by Agilent Whole Human Genome arrays. All were assessed for clinical response. Fourteen patients (67%, 95% confidence interval, 43-85.4%) had PR, five had SD, and two had PD. Expression of CD31 and platelet-derived growth factor receptor-beta (PDGFR-beta) in the tumor vasculature by immunohistochemistry was significantly associated with response (PR versus SD/PD; CD31 median, 33.5 versus 13.2; P = 0.0004; PDGFR-beta median, 5.9 versus 0.6; P = 0.01). Tumor VEGF-A showed a trend towards association with response (2.65 versus 0.25; P = 0.04). pVEGFR2(Y996), pVEGFR2(Y951), MVD, Ki67, apoptosis, grade, ER, HER-2/neu, and p53 were not associated with response. Twenty-six of 1,339 Gene Ontology (GO) classes at the gene transcriptional level were differentially expressed between patients with PR and SD/PD (P < 0.005). Representative significant GO classes include spindle (11 genes; P = 0.001), vascular endothelial growth factor receptor activity including PDGFR-beta (5 genes; P = 0.002), and cell motility including CD31 (80 genes; P = 0.005). Baseline CD31, PDGFR-beta, and GO classes for vascular endothelial growth factor receptor activity and mitosis were significantly associated with response to bevacizumab followed by bevacizumab plus chemotherapy.

  4. Stress fracture healing: fatigue loading of the rat ulna induces upregulation in expression of osteogenic and angiogenic genes that mimic the intramembranous portion of fracture repair.

    Science.gov (United States)

    Wohl, Gregory R; Towler, Dwight A; Silva, Matthew J

    2009-02-01

    Woven bone is formed in response to fatigue-induced stress fractures and is associated with increased local angiogenesis. The molecular mechanisms that regulate this woven bone formation are unknown. Our objective was to measure the temporal and spatial expression of osteo- and angiogenic genes in woven bone formation in response to increasing levels of fatigue-induced damage. We used the rat forelimb compression model to produce four discrete levels of fatigue damage in the right ulna of 115 male Fischer rats. Rats were killed at 0 (1 h), 1, 3 and 7 days after loading. Using qRT-PCR, we quantified gene expression associated with osteogenesis (BMP2, Msx2, Runx2, Osx, BSP, Osc), cell proliferation (Hist4), and angiogenesis (VEGF, PECAM-1) from the central half of the ulna. The spatial distribution of BMP2, BSP and PCNA was assessed by immunohistochemistry or in situ hybridization in transverse histological sections 1, 4, and 7 mm distal to the ulnar mid-diaphysis. One hour after loading, BMP2 was significantly upregulated in neurovascular structures in the medial ulnar periosteum. Expression of angiogenic markers (VEGF, PECAM-1) increased significantly between Day 0 and 1 and, as with BMP2 expression, remained upregulated through Day 7. While Osx and BSP were upregulated on Day 1, the other osteogenic genes (Msx2, Runx2, Osx, BSP and Osc) were induced on Day 3 in association with the initiation of periosteal woven bone formation and continued through Day 7. The magnitude of osteogenic gene expression, particularly matrix genes (BSP, Osc) was significantly proportional the level of fatigue damage. The woven bone response to fatigue injury is remarkably similar to the "intramembranous" portion of fracture repair - rapid formation of periosteal woven bone characterized by early BMP2 expression, cell proliferation, and upregulation of osteogenic genes. We speculate that woven bone repair of fatigue damage may be an abbreviated fracture response without the requirement

  5. Alterations in expression of elastogenic and angiogenic genes by different conditions of mechanical ventilation in newborn rat lung.

    Science.gov (United States)

    Kroon, Andreas A; Wang, Jinxia; Post, Martin

    2015-04-01

    Mechanical ventilation is an important risk factor for development of bronchopulmonary dysplasia. Here we investigated the effects of different tidal volumes (VT) and duration of ventilation on expression of genes involved in alveolarization [tropoelastin (Eln), lysyloxidase-like 1 (Loxl1), fibulin5 (Fbln5), and tenascin-C (Tnc)] and angiogenesis [platelet derived growth factors (Pdgf) and vascular endothelial growth factors (Vegf) and their receptors] in 8-day-old rats. First, pups were ventilated for 8 h with low (LVT: 3.5 ml/kg), moderate (MVT: 8.5 ml/kg), or high (HVT: 25 ml/kg) tidal volumes. LVT and MVT decreased Tnc expression, whereas HVT increased expression of all three elastogenic genes and Tnc. PDGF α-receptor mRNA was increased in all ventilation groups, while Pdgfb expression was decreased after MVT and HVT ventilation. Only HVT ventilation upregulated Vegf expression. Independent of VT, ventilation upregulated Vegfr1 expression, while MVT and HVT downregulated Vegfr2 expression. Next, we evaluated duration (0-24 h) of MVT ventilation on gene expression. Although expression of all elastogenic genes peaked at 12 h of ventilation, only Fbln5 was negatively affected at 24 h. Tnc expression decreased with duration of ventilation. Changes in expression of Pdgfr and Vegfr were maximal at 8 h of ventilation. Disturbed elastin fiber deposition and decrease in small vessel density was only observed after 24 h. Thus, an imbalance between Fbln5 and Eln expression may trigger dysregulated elastin fiber deposition during the first 24 h of mechanical ventilation. Furthermore, ventilation-induced alterations in Pdgf and Vegf receptor expression are tidal volume dependent and may affect pulmonary vessel formation. Copyright © 2015 the American Physiological Society.

  6. Maternal vitamin D sufficiency and reduced placental gene expression in angiogenic biomarkers related to comorbidities of pregnancy.

    Science.gov (United States)

    Schulz, Elizabeth V; Cruze, Lori; Wei, Wei; Gehris, John; Wagner, Carol L

    2017-10-01

    Maternal circulating 25-hydroxyvitamin D [25(OH)D] has been shown to optimize production of 1,25-dihydroxyvitamin D [1,25(OH) 2 D] during pregnancy at approximately 100nmoles/L, which has pronounced effects on fetal health outcomes. Additionally, associations are noted between low maternal 25(OH)D concentrations and vascular pregnancy complications, such as preeclampsia. To further elucidate the effects of vitamin D activity in pregnancy, we investigated the role of maternal 25(OH)D, the nutritional indicator of vitamin D status, in relation to placental maintenance and, specifically, expression of placental gene targets related to angiogenesis and vitamin D metabolism. A focused analysis of placental mRNA expression related to angiogenesis, pregnancy maintenance, and vitamin D metabolism was conducted in placentas from 43 subjects enrolled in a randomized controlled trial supplementing 400IU or 4400IU of vitamin D 3 per day during pregnancy. Placental mRNA was isolated from biopsies within one hour of delivery, followed by quantitative PCR. We classified pregnant women with circulating concentrations of D concentrations D ≥100ng/mL compared to the subgroup vitamin D status and the expression of sFlt-1 and VEGF at the mRNA level. Achieving maternal circulating 25(OH)D ≥100nmoles/L suggests the impact of maternal vitamin D 3 supplementation on gene transcription in the placenta, thereby potentially decreasing antiangiogenic factors that may contribute to vascular pregnancy complications. Published by Elsevier Ltd.

  7. [The diagnostic value of microsatellite LOH analysis and the prognostic relevance of angiogenic gene expression in urinary bladder cancer].

    Science.gov (United States)

    Szarvas, Tibor

    2009-12-01

    Bladder cancer is the second most common malignancy affecting the urinary system. Currently, histology is the only tool that determines therapy and patients' prognosis. As the treatment of non-invasive (Ta/T1) and muscle invasive (T2-T4) bladder tumors are completely different, correct staging is important, although it is often hampered by disturbing factors. Molecular methods offer new prospects for early disease detection, confirmation of unclear histological findings and prognostication. Applying molecular biological methods, the present study is searching for answers to current diagnostic and prognostic problems in bladder carcinoma. We analyzed tumor, blood and/or urine samples of 334 bladder cancer patients and 117 control individuals. Genetic alterations were analyzed in urine samples of patients and controls, both by PCR-based microsatellite loss of heterozigosity (LOH) analysis using 12 fluorescently labeled primers and by DNA hybridization based UroVysion FISH technique using 4 probes, to assess the diagnostic values of these methods. Whole genome microsatellite analysis (with 400 markers) was performed in tumor and blood specimens of bladder cancer patients to find chromosomal regions, the loss of which may be associated with tumor stage. Furthermore, we assessed the prognostic value of Tie2, VEGF, Angiopoietin-1 and -2. We concluded that DNA analysis of voided urine samples by microsatellite analysis and FISH are sensitive and non-invasive methods to detect bladder cancer. Furthermore, we established a panel of microsatellite markers that could differentiate between non-invasive and invasive bladder cancer. However, further analyses in a larger cohort of patients are needed to assess their specificity and sensitivity. Finally, we identified high Ang-2 and low Tie2 gene expression as significant and independent risk factors of tumor recurrence and cancer related survival.

  8. Angiogenic and anti-angiogenic factor gene transcript level quantitation by quantitative real time PCR in patients with hepatocellular carcinoma.

    Science.gov (United States)

    Sharma, Bal Krishan; Srinivasan, Radhika; Kapil, Shweta; Singla, Bhupesh; Chawla, Yogesh Kumar; Chakraborti, Anuradha; Saini, Nitin; Duseja, Ajay; Das, Ashim; Kalra, Naveen; Dhiman, Radha Krishan

    2013-10-01

    Tumor angiogenesis, a major requirement for tumor growth and metastasis, is regulated by pro- and anti-angiogenic factors. The aim of this study was to quantify the expression of angiogenic (VEGF, HIF-1α, Angiopiotein-2) and anti-angiogenic (endostatin, angiostatin and Thrombospondin-1) factors and to discern their clinical relevance. A total 90 patients (67 HCC, 9 cirrhosis and 14 chronic hepatitis) were enrolled in the study. Tissue transcript levels of angiogenic (VEGF, HIF-1α, Ang-2) and anti-angiogenic (endostatin, angiostatin and TSP-1) factors were analyzed by quantitative real time-polymerase chain reaction (qRT-PCR) in the tissue samples. The tissue transcript levels of VEGF, HIF-1α and endostatin were found to be significantly higher in HCC in comparison to cirrhosis and chronic hepatitis. Although Ang-2, angiostatin and TSP-1 tissue transcript levels were higher in HCC group than the others groups but the difference was not statistically significant. In univariate analysis both VEGF and HIF-1α were found to be associated with poor survival of HCC patients. Multivariate analysis by the cox proportional hazard model revealed only VEGF as an independent factor predicting poor survival of the HCC patients. Angiogenic and anti-angiogenic factors are all highly expressed in HCC patients. Upregulation of tissue anti-angiogenic factors indicates the urgency for the alternative of anti-angiogenic therapies.

  9. Insulin-Like Growth Factor-1 Inscribes a Gene Expression Profile for Angiogenic Factors and Cancer Progression in Breast Epithelial Cells

    Directory of Open Access Journals (Sweden)

    J.S. Oh

    2002-01-01

    Full Text Available Activation of the insulin-like growth factor-1 receptor (IGF-11R by IGF-1 is associated with the risk and progression of many types of cancer, although despite this it remains unclear how activated IGF-1 R contributes to cancer progression. In this study, gene expression changes elicited by IGF-1 were profiled in breast epithelial cells. We noted that many genes are functionally linked to cancer progression and angiogenesis. To validate some of the changes observed, the RNA and/or protein was confirmed for c-fos, cytochrome P4501Al, cytochrome P450 1131, interleukin-1 beta, fas ligand, vascular endothelial growth factor, and urokinase plasminogen activator. Nuclear proteins were also temporally monitored to address how gene expression changes were regulated. We found that IGF-1 stimulated the nuclear translocation of phosphorylated AKT, hypoxic-inducible factor-1 alpha, and phosphorylated cAMP-responsive element-binding protein, which correlated with temporal changes in gene expression. Next, the promoter regions of IGF-1-regulated genes were searched in silico. The promoters of genes that clustered together had similar regulatory regions. In summary, IGF-1 inscribes a gene expression profile relevant to cancer progression, and this study provides insight into the mechanism(s whereby some of these changes occur.

  10. Angiogenic sprouting is regulated by endothelial cell expression of Slug.

    Science.gov (United States)

    Welch-Reardon, Katrina M; Ehsan, Seema M; Wang, Kehui; Wu, Nan; Newman, Andrew C; Romero-Lopez, Monica; Fong, Ashley H; George, Steven C; Edwards, Robert A; Hughes, Christopher C W

    2014-05-01

    The Snail family of zinc-finger transcription factors are evolutionarily conserved proteins that control processes requiring cell movement. Specifically, they regulate epithelial-to-mesenchymal transitions (EMT) where an epithelial cell severs intercellular junctions, degrades basement membrane and becomes a migratory, mesenchymal-like cell. Interestingly, Slug expression has been observed in angiogenic endothelial cells (EC) in vivo, suggesting that angiogenic sprouting may share common attributes with EMT. Here, we demonstrate that sprouting EC in vitro express both Slug and Snail, and that siRNA-mediated knockdown of either inhibits sprouting and migration in multiple in vitro angiogenesis assays. We find that expression of MT1-MMP, but not of VE-Cadherin, is regulated by Slug and that loss of sprouting as a consequence of reduced Slug expression can be reversed by lentiviral-mediated re-expression of MT1-MMP. Activity of MMP2 and MMP9 are also affected by Slug expression, likely through MT1-MMP. Importantly, we find enhanced expression of Slug in EC in human colorectal cancer samples compared with normal colon tissue, suggesting a role for Slug in pathological angiogenesis. In summary, these data implicate Slug as an important regulator of sprouting angiogenesis, particularly in pathological settings.

  11. The imbalance in expression of angiogenic and anti-angiogenic factors as candidate predictive biomarker in preeclampsia

    Directory of Open Access Journals (Sweden)

    Pooneh Nikuei

    2015-07-01

    Full Text Available Preeclampsia is an important pregnancy disorder with serious maternal and fetal complications which its etiology has not been completely understood yet. Early diagnosis and management of disease could reduce its potential side effects. The vascular endothelial growth factor (VEGF family including VEGF-A is the most potent endothelial growth factor which induces angiogenesis and endothelial cell proliferation and has basic role in vasculogenesis. VEGF and its tyrosine kinase receptors (Flt1 and KDR are major factors for fetal and placental angiogenic development. Finding mechanisms involved in expression of angiogenic factors may lead to new prognostic and therapeutic points in management of preeclampsia. Recent researches, has shown capability of some anti-angiogenic factors as potential candidate to be used as early predictors for preeclampsia. Soluble fms-like tyrosin kinase-1 (sFlt1 is a truncated splice variant of the membrane-bound VEGF receptor Flt1, that is produced by the placenta and it can bind to angiogenic growth factors and neutraliz, their effects. It is also observed that the ratio of sFlt1 to placental growth factor is valuable as prognostic marker. In this review, VEGF family member’s role in angiogenesis is evaluated as biomarkers to be used for prediction of preeclampsia.

  12. Expression of Angiogenic Factors in Invasive Retinoblastoma Tumors Is Associated With Increase in Tumor Cells Expressing Stem Cell Marker Sox2.

    Science.gov (United States)

    Garcia, Jesús R; Gombos, Dan S; Prospero, Claudia M; Ganapathy, Aravindh; Penland, Rebecca L; Chévez-Barrios, Patricia

    2015-12-01

    Progression of retinoblastoma is associated with increased tumor angiogenesis. However, a clear relationship between the expression of angiogenic markers in specific regions of the tumor and tumor progression has not been established. This study investigates the association between angiogenic factors in retinoblastomas with choroidal and/or optic nerve invasion (high-risk/invasive retinoblastoma) and expression of Sox2, a stem cell marker. To investigate the association between the expression of angiogenic factors and markers of tumor invasiveness, such as the stem cell marker Sox2, in retinoblastoma tissues. Immunohistochemistry was used to evaluate coexpression of the angiogenic growth factors vascular endothelial growth factor A (VEGF-A), VEGF receptor 2 (VEGFR-2), and endoglin (CD105); markers of glial differentiation (vimentin and glial fibrillary acidic protein); and a neural stem cell marker (Sox2). Expression was assessed in nonneoplastic and neoplastic ocular tissues collected from enucleated eyes of patients with retinoblastoma. During qualitative data interpretation, evaluating pathologists were masked to patient grouping. Expression of VEGF-A and VEGFR-2 in noninvasive (non-high-risk feature) retinoblastoma tumors was lower than in the invasive, or high-risk feature tumors. Moreover, our data indicate that the tumor cells, and not the surrounding stroma, secrete VEGF-A and that angiogenesis is mostly localized to the iris. Finally, our data showed that the expression of the neural stem cell marker Sox2 is associated with eyes with increased VEGF-A expression and tumor invasiveness. Increased expression of angiogenic factors, with a concomitant increase in expression of the stem cell marker Sox2 observed in retinoblastoma tissues, may partially explain the aggressiveness of these tumors. The complex interaction of angiogenic and stem cell-related pathways in these tumors, especially in high-risk feature retinoblastoma, suggests that targeting tumor cells

  13. Comparative Analysis of Angiogenic Gene Expression in Normal and Impaired Wound Healing in Diabetic Mice: Effects of Extracorporeal Shock Wave Therapy

    Science.gov (United States)

    2010-01-01

    accelerating wound healing in difficult-to-heal/chronic pressure, dia- betic and venous ulcers [25, 28, 30]. In a clinical feasibility study we...of the TGF alpha gene have abnormal skin architecture, wavy hair, and curly whiskers and often develop corneal inflammation. Cell 73(2):249-261 41...pressure ulcers contain ~Springer Angiogenesis (2010) 13:293-304 elevated matrix metalloproteinase levels and activity compared to surgical wound

  14. Gene expression

    International Nuclear Information System (INIS)

    Hildebrand, C.E.; Crawford, B.D.; Walters, R.A.; Enger, M.D.

    1983-01-01

    We prepared probes for isolating functional pieces of the metallothionein locus. The probes enabled a variety of experiments, eventually revealing two mechanisms for metallothionein gene expression, the order of the DNA coding units at the locus, and the location of the gene site in its chromosome. Once the switch regulating metallothionein synthesis was located, it could be joined by recombinant DNA methods to other, unrelated genes, then reintroduced into cells by gene-transfer techniques. The expression of these recombinant genes could then be induced by exposing the cells to Zn 2+ or Cd 2+ . We would thus take advantage of the clearly defined switching properties of the metallothionein gene to manipulate the expression of other, perhaps normally constitutive, genes. Already, despite an incomplete understanding of how the regulatory switch of the metallothionein locus operates, such experiments have been performed successfully

  15. gene structure, gene expression

    Indian Academy of Sciences (India)

    and seedling leaves were sampled at 6 h after the treatment. For cold stress, the seedlings were transferred to 4◦C growth chamber for 30 min. Control seedlings were exposed to none of these treatments. To examine the expression patterns of these predicted genes in Poplar and to further confirm their stress responsive-.

  16. Glycer-AGEs-RAGE signaling enhances the angiogenic potential of hepatocellular carcinoma by upregulating VEGF expression.

    Science.gov (United States)

    Takino, Junichi; Yamagishi, Shoichi; Takeuchi, Masayoshi

    2012-04-21

    To investigate the effect of glyceraldehyde-derived advanced glycation end-products (Glycer-AGEs) on hepatocellular carcinoma (HCC) cells. Two HCC cell lines (Hep3B and HepG2 cells) and human umbilical vein endothelial cells (HUVEC) were used. Cell viability was determined using the WST-8 assay. Western blotting, enzyme linked immunosorbent assay, and real-time reverse transcription-polymerase chain reactions were used to detect protein and mRNA. Angiogenesis was evaluated by assessing the proliferation, migration, and tube formation of HUVEC. The receptor for AGEs (RAGE) protein was detected in Hep3B and HepG2 cells. HepG2 cells were not affected by the addition of Glycer-AGEs. Glycer-AGEs markedly increased vascular endothelial growth factor (VEGF) mRNA and protein expression, which is one of the most potent angiogenic factors. Compared with the control unglycated bovine serum albumin (BSA) treatment, VEGF mRNA expression levels induced by the Glycer-AGEs treatment were 1.00 ± 0.10 vs 1.92 ± 0.09 (P RAGE signaling enhances the angiogenic potential of HCC cells by upregulating VEGF expression.

  17. NO-synthase expression and functional response to NO are both important modulators of circulating angiogenic cell response to angiogenic stimuli

    Science.gov (United States)

    Heiss, Christian; Schanz, Andrea; Amabile, Nicolas; Jahn, Sarah; Chen, Qiumei; Wong, Maelene L.; Rassaf, Tienush; Heinen, Yvonne; Cortese-Krott, Miriam; Grossman, William; Yeghiazarians, Yerem; Springer, Matthew L.

    2010-01-01

    Objective Circulating angiogenic cells (CACs), also termed endothelial progenitor cells, play an integral role in vascular repair and are functionally impaired in coronary artery disease (CAD). The role of nitric oxide (NO) in CAC function is poorly understood. We hypothesized that CAC migration toward angiogenic signals is modulated by both NO synthase (NOS) expression and functional response to NO. Methods and Results Similar to endothelial cells, CAC chemotaxis to VEGF was blocked by inhibition of NOS, phosphoinositide-3 kinase, or guanylyl cyclase, or by treatment with an NO scavenger. Addition of a NO donor (SNAP) and the NOS-substrate L-arginine increased random cell migration (chemokinesis) and enhanced VEGF-dependent chemotaxis. Healthy CACs expressed eNOS, but eNOS was not detected in CAD patient CACs. Both chemokinesis and chemotaxis to VEGF of patient CACs were decreased compared to healthy CACs, but were restored to healthy values by SNAP. In parallel, CAD patients exhibited lower flow-mediated vasodilation and plasma NO source nitrite than young healthy subjects, indicating endothelial dysfunction with reduced NO bioavailability. Conclusions NOS activity is required for CAC chemotaxis. In CAD patients, impairment of NOS expression and NO bioavailability, rather than response to NO, may contribute to CAC dysfunction and limit their regenerative capacity. PMID:20705916

  18. Dual expression of hTERT and VEGF prolongs life span and enhances angiogenic ability of aged BMSCs

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Hao [Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou (China); Department of Neurosurgery, Affiliated Bayi Brain Hospital, The Military General Hospital of Beijing PLA, Beijing (China); Xiang, Yongsheng [Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou (China); Department of Neurosurgery, First Affiliated Hospital of Jinan University, Guangzhou (China); Jiang, Xiaodan; Ke, Yiquan; Xiao, Zongyu; Guo, Yang; Wang, Qiujing; Du, Mouxuan; Qin, Linsha; Zou, Yuxi; Cai, Yingqian [Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou (China); Chen, Zhenzhou, E-mail: czz1020@163.com [Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou (China); Xu, Ruxiang, E-mail: zjxuruxiang@163.com [Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou (China); Department of Neurosurgery, Affiliated Bayi Brain Hospital, The Military General Hospital of Beijing PLA, Beijing (China)

    2013-11-01

    Highlights: •Expression of hTERT and VEGF changed the lifespan and morphology of hBMSCs. •The expression of VEGF and hTRET promoted angiogenesis in vitro and in vivo. •The expression of VEGF and hTRET in hBMSCs had few effects on tumorigenicity. -- Abstract: Previous studies have confirmed the therapeutic effects of bone marrow stromal cells (BMSCs) transplantation on cerebral ischemia. However, the proliferative, differentiative, and homing capacity of BMSC from the elderly are significantly reduced, especially after several passages expansion in vitro. In this study, by introducing lentivirus-mediated hTERT and VEGF genes to modify human BMSCs from aged donors, we observed extended lifespan, promoted angiogenic capacity while less enhanced tumorigenicity of the genetically engineering BMSCs. These results therefore suggest that the modification of aged BMSCs by dual expression of hTERT and VEGF may be used for autologous cell replacement for ischemic cerebrovascular disease in elderly patients.

  19. Dual expression of hTERT and VEGF prolongs life span and enhances angiogenic ability of aged BMSCs

    International Nuclear Information System (INIS)

    Tang, Hao; Xiang, Yongsheng; Jiang, Xiaodan; Ke, Yiquan; Xiao, Zongyu; Guo, Yang; Wang, Qiujing; Du, Mouxuan; Qin, Linsha; Zou, Yuxi; Cai, Yingqian; Chen, Zhenzhou; Xu, Ruxiang

    2013-01-01

    Highlights: •Expression of hTERT and VEGF changed the lifespan and morphology of hBMSCs. •The expression of VEGF and hTRET promoted angiogenesis in vitro and in vivo. •The expression of VEGF and hTRET in hBMSCs had few effects on tumorigenicity. -- Abstract: Previous studies have confirmed the therapeutic effects of bone marrow stromal cells (BMSCs) transplantation on cerebral ischemia. However, the proliferative, differentiative, and homing capacity of BMSC from the elderly are significantly reduced, especially after several passages expansion in vitro. In this study, by introducing lentivirus-mediated hTERT and VEGF genes to modify human BMSCs from aged donors, we observed extended lifespan, promoted angiogenic capacity while less enhanced tumorigenicity of the genetically engineering BMSCs. These results therefore suggest that the modification of aged BMSCs by dual expression of hTERT and VEGF may be used for autologous cell replacement for ischemic cerebrovascular disease in elderly patients

  20. Angiogenic properties of adult human thymus fat.

    Science.gov (United States)

    Salas, Julián; Montiel, Mercedes; Jiménez, Eugenio; Valenzuela, Miguel; Valderrama, José Francisco; Castillo, Rafael; González, Sergio; El Bekay, Rajaa

    2009-11-01

    The endogenous proangiogenic properties of adipose tissue are well recognized. Although the adult human thymus has long been known to degenerate into fat tissue, it has never been considered as a potential source of angiogenic factors. We have investigated the expression of diverse angiogenic factors, including vascular endothelial growth factor A and B, angiopoietin 1, and tyrosine-protein kinase receptor-2 (an angiopoietin receptor), and then analyzed their physiological role on endothelial cell migration and proliferation, two relevant events in angiogenesis. The detection of the gene and protein expression of the various proteins has been performed by immunohistochemistry, Western blotting, and quantitative real-time polymerase chain reaction. We show, for the first time, that adult thymus fat produces a variety of angiogenic factors and induces the proliferation and migration of human umbilical cord endothelial cells. Based on these findings, we suggest that this fat has a potential angiogenic function that might affect thymic function and ongoing adipogenesis within the thymus.

  1. The Anti-Inflammatory Cytokine Interleukin-19 Is Expressed in and Angiogenic for Human Endothelial Cells

    Science.gov (United States)

    Jain, Surbhi; Gabunia, Khatuna; Kelemen, Sheri E.; Panetti, Tracee S.; Autieri, Michael V.

    2010-01-01

    OBJECTIVE The expression and effects of anti-inflammatory interleukins on endothelial cell (EC) activation and development of angiogenesis is uncharacterized. The purpose of this study is to characterize the expression and function of Interleukin-19 (IL-19), a recently described Th2 anti-inflammatory interleukin on EC pathophysiology. METHODS and RESULTS We demonstrate by immunohistochemistry and immunoblot that IL-19 is expressed in inflamed, but not normal human coronary endothelium, and can be induced in cultured human EC by serum and bFGF. IL-19 is mitogenic, chemotactic, and promotes cell EC spreading. IL-19 activates the signaling proteins STAT3, p44/42, and Rac1. In functional ex vivo studies, IL-19 promotes cord-like structure formation of cultured EC and also enhances microvessel sprouting in the mouse aortic ring assay. IL-19 induces tube formation in matrigel plugs in vivo. CONCLUSIONS These data are the first to report expression of the anti-inflammatory interleukin IL-19 in EC, and the first to indicate that IL-19 is mitogenic and chemotactic for EC, and can induce the angiogenic potential of EC. PMID:20966397

  2. METHOXYCHLOR-INDUCED ALTERATIONS IN THE HISTOLOGICAL EXPRESSION OF ANGIOGENIC FACTORS IN PITUITARY AND UTERUS

    Science.gov (United States)

    Within the reproductive system, estrogenic stimulation of uterine and pituitary tissue typically causes a proliferative response accompanied by an angiogenic induction of new blood vessels from existing ones, thereby providing nutrients and oxygen to the growing tissue. The proes...

  3. Angiogenic CXC chemokine expression during differentiation of human mesenchymal stem cells towards the osteoblastic lineage.

    Science.gov (United States)

    Bischoff, D S; Zhu, J H; Makhijani, N S; Kumar, A; Yamaguchi, D T

    2008-02-15

    The potential role of ELR(+) CXC chemokines in early events in bone repair was studied using human mesenchymal stem cells (hMSCs). Inflammation, which occurs in the initial phase of tissue healing in general, is critical to bone repair. Release of cytokines from infiltrating immune cells and injured bone can lead to recruitment of MSCs to the region of repair. CXC chemokines bearing the Glu-Leu-Arg (ELR) motif are also released by inflammatory cells and serve as angiogenic factors stimulating chemotaxis and proliferation of endothelial cells. hMSCs, induced to differentiate with osteogenic medium (OGM) containing ascorbate, beta-glycerophosphate (beta-GP), and dexamethasone (DEX), showed an increase in mRNA and protein secretion of the ELR(+) CXC chemokines CXCL8 and CXCL1. CXCL8 mRNA half-life studies reveal an increase in mRNA stability upon OGM stimulation. Increased expression and secretion is a result of DEX in OGM and is dose-dependent. Inhibition of the glucocorticoid receptor with mifepristone only partially inhibits DEX-stimulated CXCL8 expression indicating both glucocorticoid receptor dependent and independent pathways. Treatment with signal transduction inhibitors demonstrate that this expression is due to activation of the ERK and p38 mitogen-activated protein kinase (MAPK) pathways and is mediated through the G(alphai)-coupled receptors. Angiogenesis assays demonstrate that OGM-stimulated conditioned media containing secreted CXCL8 and CXCL1 can induce angiogenesis of human microvascular endothelial cells in an in vitro Matrigel assay. Copyright 2007 Wiley-Liss, Inc.

  4. Date syrup-derived polyphenols attenuate angiogenic responses and exhibits anti-inflammatory activity mediated by vascular endothelial growth factor and cyclooxygenase-2 expression in endothelial cells.

    Science.gov (United States)

    Taleb, Hajer; Morris, R Keith; Withycombe, Cathryn E; Maddocks, Sarah E; Kanekanian, Ara D

    2016-07-01

    Bioactive components such as polyphenols, present in many plants, are purported to have anti-inflammatory and antiangiogenic properties. Date syrup, produced from date fruit of the date palm tree, has traditionally been used to treat a wide range of diseases with etiologies involving angiogenesis and inflammation. It was hypothesized that polyphenols in date syrup reduce angiogenic responses such as cell migration, tube formation, and matrix metalloproteinase activity in an inflammatory model by exhibiting anti-inflammatory activity mediated by vascular endothelial growth factor (VEGF) and the prostaglandin enzyme cyclooxygenase-2 (COX-2) in endothelial cells. Date syrup polyphenols at 60 and 600μg/mL reduced inflammation and suppressed several stages of angiogenesis, including endothelial cell migration, invasion, matrix metalloproteinase activity, and tube formation, without evidence of cytotoxicity. VEGF and COX-2 expression induced by tumor necrosis factor-alpha at both gene expression and protein level was significantly reduced by date syrup polyphenols in comparison to untreated cells. In conclusion, polyphenols in date syrup attenuated angiogenic responses and exhibited anti-inflammatory activity mediated by VEGF and COX-2 expression in endothelial cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Recombinant gene expression protocols

    National Research Council Canada - National Science Library

    Tuan, Rocky S

    1997-01-01

    .... A fundamental requirement for successful recombinant gene expression is the design of the cloning vector and the choice of the host organism for expression. Recombinant Gene Expression Protocols grows out of the need for a laboratory manual that provides the reader the background and rationale, as well as the practical protocols for the preparation of...

  6. In vitro anti-angiogenic properties of LGD1069, a selective retinoid X-receptor agonist through down-regulating Runx2 expression on Human endothelial cells

    International Nuclear Information System (INIS)

    Fu, Jianjiang; Wang, Wei; Liu, Yu-Hui; Lu, Hong; Luo, Yongming

    2011-01-01

    LGD1069 (Targretin ® ) is a selective retinoid X receptor (RXR) ligand, which is used in patients for cutaneous T-cell lymphoma. Our published study reported that LGD1069 inhibited tumor-induced angiogenesis in non-small cell lung cancer. In present study, we found that LGD1069 suppressed the proliferation, adhesion, invasion and migration of endothelial cells directly, and affected the expression of vegf and some matrix genes. Human umbilical vein endothelial cells (HUVECs) were used for in vitro study. MTT assay and Sulforhodamine B assay were used for cell viability assay; the tube formation assay was used to investigate the effect of LGD1069 on angiogenesis in vitro. In vitro adhesion, migration and invasion of HUVEC cells were analyzed by Matrigel adhesion, migration and invasion assay. Gene expressions were measured by RT-PCR and Western blot analysis. Our data showed here that LGD1069 inhibited the activation of TGF-β/Smad pathway significantly. Furthermore, it was demonstrated that expression of Runx2 was suppressed pronouncedly during incubation with LGD1069. Runx2 is a DNA-binding transcription factor which plays a master role in tumor-induced angiogenesis and cancer cells metastasis by interaction with the TGF-β/Smad pathway of transcriptional modulators. Our results suggested that LGD1069 may impair angiogenic and metastatic potential induced by tumor cells through suppressing expression of Runx2 directly on human endothelial cells, which may point out new pathway through which LGD1069 display anti-angiogenic properties, and provide new molecular evidence to support LGD1069 as a potent anti-metastatic agent in cancer therapy

  7. Tasquinimod (ABR-215050, a quinoline-3-carboxamide anti-angiogenic agent, modulates the expression of thrombospondin-1 in human prostate tumors

    Directory of Open Access Journals (Sweden)

    Isaacs John T

    2010-05-01

    Full Text Available Abstract Background The orally active quinoline-3-carboxamide tasquinimod [ABR-215050; CAS number 254964-60-8, which currently is in a phase II-clinical trial in patients against metastatic prostate cancer, exhibits anti-tumor activity via inhibition of tumor angiogenesis in human and rodent tumors. To further explore the mode of action of tasquinimod, in vitro and in vivo experiments with gene microarray analysis were performed using LNCaP prostate tumor cells. The array data were validated by real-time semiquantitative reversed transcriptase polymerase chain reaction (sqRT-PCR and protein expression techniques. Results One of the most significant differentially expressed genes both in vitro and in vivo after exposure to tasquinimod, was thrombospondin-1 (TSP1. The up-regulation of TSP1 mRNA in LNCaP tumor cells both in vitro and in vivo correlated with an increased expression and extra cellular secretion of TSP1 protein. When nude mice bearing CWR-22RH human prostate tumors were treated with oral tasquinimod, there was a profound growth inhibition, associated with an up-regulation of TSP1 and a down- regulation of HIF-1 alpha protein, androgen receptor protein (AR and glucose transporter-1 protein within the tumor tissue. Changes in TSP1 expression were paralleled by an anti-angiogenic response, as documented by decreased or unchanged tumor tissue levels of VEGF (a HIF-1 alpha down stream target in the tumors from tasquinimod treated mice. Conclusions We conclude that tasquinimod-induced up-regulation of TSP1 is part of a mechanism involving down-regulation of HIF1α and VEGF, which in turn leads to reduced angiogenesis via inhibition of the "angiogenic switch", that could explain tasquinimods therapeutic potential.

  8. Expression of the angiogenic mediator, angiopoietin-like 4, in the eyes of patients with proliferative sickle retinopathy.

    Directory of Open Access Journals (Sweden)

    Kathleen Jee

    Full Text Available The recent success of therapies directly targeting the angiogenic mediator, vascular endothelial growth factor (VEGF, for the treatment of proliferative diabetic retinopathy has encouraged clinicians to extend the use of anti-VEGF therapies for the treatment of another ischemic retinal vascular disease, proliferative sickle cell retinopathy (PSR, the most common cause of irreversible blindness in patients with sickle cell disease. However, results from case reports evaluating anti-VEGF therapies for PSR have been mixed. This highlights the need to identify alternative therapeutic targets for the treatment of retinal neovascularization in sickle cell patients. In this regard, angiopoietin-like 4 (ANGPTL4 is a novel angiogenic factor regulated by the transcription factor, hypoxia-inducible factor 1, the master regulator of angiogenic mediators (including VEGF in ischemic retinal disease. In an effort to identify alternative targets for the treatment of sickle cell retinopathy, we have explored the expression of ANGPTL4 in the eyes of patients with PSR. To this end, we examined expression and localization of ANGPTL4 by immunohistochemistry in autopsy eyes from patients with known PSR (n = 5 patients. Complementary studies were performed using enzyme-linked immunosorbent assays in aqueous (n = 8; 7 patients, 2 samples from one eye of same patient and vitreous (n = 3 patients samples from a second group of patients with active PSR. We detected expression of ANGPTL4 in neovascular tissue and in the ischemic inner retina in PSR, but not control, eyes. We further observed elevated expression of ANGPTL4 in the aqueous and vitreous of PSR patients compared to controls. These results suggest that ANGPTL4 could contribute to the development of retinal neovascularization in sickle cell patients and could therefore be a therapeutic target for the treatment of PSR.

  9. Increased expression of fibronectin and the α5β1 integrin in angiogenic cerebral blood vessels of mice subject to hypobaric hypoxia

    Science.gov (United States)

    Milner, Richard; Hung, Stephanie; Erokwu, Bernadette; Dore-Duffy, Paula; LaManna, Joseph C.; del Zoppo, Gregory J.

    2008-01-01

    The extracellular matrix (ECM) is an important regulator of angiogenesis and vascular remodeling. We showed previously that angiogenic capillaries in the developing CNS express high levels of fibronectin and its receptor α5β1 integrin, and that this expression is developmentally downregulated. As cerebral hypoxia leads to an angiogenic response, we sought to determine whether angiogenic vessels in the adult CNS re-express fibronectin and the α5β1 integrin. Ten-week old mice were subject to hypobaric hypoxia for 0, 4, 7 and 14 days, and fibronectin/integrin expression examined. Fibronectin and the α5 integrin subunit were strongly upregulated on capillaries in the hypoxic CNS, with the effect maximal at the earliest time point examined (4 days). Immunofluorescent studies demonstrated that the α5 integrin was expressed by angiogenic endothelial cells. In light of the defined angiogenic role for fibronectin in other systems, this work suggests that induction of fibronectin-α5β1 integrin expression may be an important molecular switch driving angiogenesis in the hypoxic CNS. PMID:18343155

  10. Seasonal Changes in Testes Vascularisation in the Domestic Cat (Felis domesticus: Evaluation of Microvasculature, Angiogenic Activity, and Endothelial Cell Expression

    Directory of Open Access Journals (Sweden)

    Graça Alexandre-Pires

    2012-01-01

    Full Text Available Some male seasonal breeders undergo testicular growth and regression throughout the year. The objective of this study was to understand the effect of seasonality on: (i microvasculature of cat testes; (ii angiogenic activity in testicular tissue in vitro; and (iii testicular endothelial cells expression throughout the year. Testicular vascular areas increased in March and April, June and July, being the highest in November and December. Testes tissue differently stimulated in vitro angiogenic activity, according to seasonality, being more evident in February, and November and December. Even though CD143 expression was higher in December, smaller peaks were present in April and July. As changes in angiogenesis may play a role on testes vascular growth and regression during the breeding and non-breeding seasons, data suggest that testicular vascularisation in cats is increased in three photoperiod windows of time, November/December, March/April and June/July. This increase in testicular vascularisation might be related to higher seasonal sexual activity in cats, which is in agreement with the fact that most queens give birth at the beginning of the year, between May and July, and in September.

  11. Gene Expression Omnibus (GEO)

    Data.gov (United States)

    U.S. Department of Health & Human Services — Gene Expression Omnibus is a public functional genomics data repository supporting MIAME-compliant submissions of array- and sequence-based data. Tools are provided...

  12. Gene expression analysis in human breast cancer associated blood vessels.

    Directory of Open Access Journals (Sweden)

    Dylan T Jones

    Full Text Available Angiogenesis is essential for solid tumour growth, whilst the molecular profiles of tumour blood vessels have been reported to be different between cancer types. Although presently available anti-angiogenic strategies are providing some promise for the treatment of some cancers it is perhaps not surprisingly that, none of the anti-angiogenic agents available work on all tumours. Thus, the discovery of novel anti-angiogenic targets, relevant to individual cancer types, is required. Using Affymetrix microarray analysis of laser-captured, CD31-positive blood vessels we have identified 63 genes that are upregulated significantly (5-72 fold in angiogenic blood vessels associated with human invasive ductal carcinoma (IDC of the breast as compared with blood vessels in normal human breast. We tested the angiogenic capacity of a subset of these genes. Genes were selected based on either their known cellular functions, their enriched expression in endothelial cells and/or their sensitivity to anti-VEGF treatment; all features implicating their involvement in angiogenesis. For example, RRM2, a ribonucleotide reductase involved in DNA synthesis, was upregulated 32-fold in IDC-associated blood vessels; ATF1, a nuclear activating transcription factor involved in cellular growth and survival was upregulated 23-fold in IDC-associated blood vessels and HEX-B, a hexosaminidase involved in the breakdown of GM2 gangliosides, was upregulated 8-fold in IDC-associated blood vessels. Furthermore, in silico analysis confirmed that AFT1 and HEX-B also were enriched in endothelial cells when compared with non-endothelial cells. None of these genes have been reported previously to be involved in neovascularisation. However, our data establish that siRNA depletion of Rrm2, Atf1 or Hex-B had significant anti-angiogenic effects in VEGF-stimulated ex vivo mouse aortic ring assays. Overall, our results provide proof-of-principle that our approach can identify a cohort of

  13. A ternary-complex of a suicide gene, a RAGE-binding peptide, and polyethylenimine as a gene delivery system with anti-tumor and anti-angiogenic dual effects in glioblastoma.

    Science.gov (United States)

    Choi, Eunji; Oh, Jungju; Lee, Dahee; Lee, Jaewon; Tan, Xiaonan; Kim, Minkyung; Kim, Gyeungyun; Piao, Chunxian; Lee, Minhyung

    2018-04-13

    The receptor for advanced glycation end-products (RAGE) is involved in tumor angiogenesis. Inhibition of RAGE might be an effective anti-angiogenic therapy for cancer. In this study, a cationic RAGE-binding peptide (RBP) was produced as an antagonist of RAGE, and a ternary-complex consisting of RBP, polyethylenimine (2 kDa, PEI2k), and a suicide gene (pHSVtk) was developed as a gene delivery system with dual functions: the anti-tumor effect of pHSVtk and anti-angiogenic effect of RBP. As an antagonist of RAGE, RBP decreased the secretion of vascular-endothelial growth factor (VEGF) in activated macrophages and reduced the tube-formation of endothelial cells in vitro. In in vitro transfection assays, the RBP/PEI2k/plasmid DNA (pDNA) ternary-complex had higher transfection efficiency than the PEI2k/pDNA binary-complex. In an intracranial glioblastoma animal model, the RBP/PEI2k/pHSVtk ternary-complex reduced α-smooth muscle actin expression, suggesting that the complex has an anti-angiogenic effect. In addition, the ternary-complex had higher pHSVtk delivery efficiency than the PEI2k/pHSVtk and PEI25k/pHSVtk binary-complexes in an animal model. As a result, the ternary-complex induced apoptosis and reduced tumor volume more effectively than the PEI2k/pHSVtk and PEI25k/pHSVtk binary-complexes. In conclusion, due to its dual anti-tumor and anti-angiogenesis effects, the RBP/PEI2k/pHSVtk ternary-complex might be an efficient gene delivery system for the treatment of glioblastoma. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Combination of HIF-1α gene transfection and HIF-1-activated bone marrow-derived angiogenic cell infusion improves burn wound healing in aged mice.

    Science.gov (United States)

    Du, J; Liu, L; Lay, F; Wang, Q; Dou, C; Zhang, X; Hosseini, S M; Simon, A; Rees, D J; Ahmed, A K; Sebastian, R; Sarkar, K; Milner, S; Marti, G P; Semenza, G L; Harmon, J W

    2013-11-01

    Impaired burn wound healing in the elderly represents a major clinical problem. Hypoxia-inducible factor-1 (HIF-1) is a transcriptional activator that orchestrates the cellular response to hypoxia. Its actions in dermal wounds promote angiogenesis and improve healing. In a murine burn wound model, aged mice had impaired wound healing associated with reduced levels of HIF-1. When gene therapy with HIF-1 alone did not correct these deficits, we explored the potential benefit of HIF-1 gene therapy combined with the intravenous infusion of bone marrow-derived angiogenic cells (BMDACs) cultured with dimethyloxalylglycine (DMOG). DMOG is known to reduce oxidative degradation of HIF-1. The mice treated with a plasmid DNA construct expressing a stabilized mutant form of HIF-1α (CA5-HIF-1α)+BMDACs had more rapid wound closure. By day 17, there were more mice with completely closed wounds in the treated group (χ(2), P=0.05). The dermal blood flow measured by laser Doppler showed significantly increased wound perfusion on day 11. Homing of BMDACs to the burn wound was dramatically enhanced by CA5-HIF-1α gene therapy. HIF-1α mRNA expression in the burn wound was increased after transfection with CA5-HIF-1α plasmid. Our findings offer insight into the pathophysiology of burns in the elderly and point to potential targets for developing new therapeutic strategies.

  15. THE ABERRANT PROMOTER HYPERMETHYLATION PATTERN OF THE ANTI - ANGIOGENIC TSP1 GENE IN EPITHELIAL OVARIAN CARCINOMA: AN INDIAN STUDY

    Directory of Open Access Journals (Sweden)

    Ramesh

    2015-06-01

    Full Text Available PURPOSE: The promoter hypermethylation patterns of Thrombospodin - 1 gene in 50 EOC patients were studied and the methylation pattern was correlated with various clinic pathological parameters. METHODS: The promoter hypermethylation pattern of the TSP - 1 gene was assessed using nested PCR and Methylation specific PCR. STATISTICAL ANALYSIS: All the available data was statistically analyzed using the Chi square test or Fisher Exact Test on the SPSS software version 22.0 and a value <0.0 5 was considered statistically significant. RESULTS: Forty of the fifty ovarian carcinoma samples reported positive for methylation corresponding to a methylation frequency of 80%. A methylation frequency of 89.2%, 83.3% and 42.8% was observed in malignant , Low malignant potential (borderline and benign sample cohorts. CONCLUSION: From the results drawn from this study, it clearly shows that the anti angiogenic protein TSP - 1 is extensively hypermethylated in ovarian carcinoma and that it accumulates over t he progression of the disease from benign to malignant. As previous reports suggest that there is no evidence of mutation of this gene, promoter hypermethylation may be a crucial factor for the down regulation of the gene. Further by clubbing together the promoter hypermethylation pattern of TSP - 1 gene with hypermethylation patterns of other TSG may provide a better insight into the application of using methylation profiles of TSG as a biomarker in the detection of ovarian carcinoma.

  16. Gene expression and gene therapy imaging

    International Nuclear Information System (INIS)

    Rome, Claire; Couillaud, Franck; Moonen, Chrit T.W.

    2007-01-01

    The fast growing field of molecular imaging has achieved major advances in imaging gene expression, an important element of gene therapy. Gene expression imaging is based on specific probes or contrast agents that allow either direct or indirect spatio-temporal evaluation of gene expression. Direct evaluation is possible with, for example, contrast agents that bind directly to a specific target (e.g., receptor). Indirect evaluation may be achieved by using specific substrate probes for a target enzyme. The use of marker genes, also called reporter genes, is an essential element of MI approaches for gene expression in gene therapy. The marker gene may not have a therapeutic role itself, but by coupling the marker gene to a therapeutic gene, expression of the marker gene reports on the expression of the therapeutic gene. Nuclear medicine and optical approaches are highly sensitive (detection of probes in the picomolar range), whereas MRI and ultrasound imaging are less sensitive and require amplification techniques and/or accumulation of contrast agents in enlarged contrast particles. Recently developed MI techniques are particularly relevant for gene therapy. Amongst these are the possibility to track gene therapy vectors such as stem cells, and the techniques that allow spatiotemporal control of gene expression by non-invasive heating (with MRI guided focused ultrasound) and the use of temperature sensitive promoters. (orig.)

  17. Expression and production of cardiac angiogenic mediators depend on the Trypanosoma cruzi-genetic population in experimental C57BL/6 mice infection.

    Science.gov (United States)

    Shrestha, Deena; Bajracharya, Bijay; Paula-Costa, Guilherme; Salles, Beatriz C; Leite, Ana Luísa J; Menezes, Ana Paula J; Souza, Débora Ms; Oliveira, Laser Am; Talvani, André

    2017-03-01

    Mammalian cardiac cells are important targets to the protozoan Trypanosoma cruzi. The inflammatory reaction in the host aims at eliminating this parasite, can lead to cell destruction, fibrosis and hypoxia. Local hypoxia is well-defined stimulus to the production of angiogenesis mediators. Assuming that different genetic T. cruzi populations induce distinct inflammation and disease patterns, the current study aims to investigate whether the production of inflammatory and angiogenic mediators is a parasite strain-dependent condition. C57BL/6 mice were infected with the Y and Colombian strains of T. cruzi and euthanized at the 12th and 32nd days, respectively. The blood and heart tissue were processed in immune assays and/or qPCR (TNF, IL-17, IL-10, CCL2, CCL3, CCL5, CCR2, CCR5 and angiogenic factors VEGF, Ang-1, Ang-2) and in histological assays. The T. cruzi increased the inflammatory and angiogenic mediators in the infected mice when they were compared to non-infected animals. However, the Colombian strain has led to higher (i) leukocyte infiltration, (ii) cardiac TNF and CCL5 production/expression, (iii) cardiac tissue parasitism, and to higher (iv) ratio between heart/body weights. On the other hand, the Colombian strain has caused lower production and expression VEGF, Ang-1 and Ang-2, when it was compared to the Y strain of the parasite. The present study highlights that the T. cruzi-genetic population defines the pattern of angiogenic/inflammatory mediators in the heart tissue, and that it may contribute to the magnitude of the cardiac pathogenesis. Besides, such assumption opens windows to the understanding of the angiogenic mediator's role in association with the experimental T. cruzi infection. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Gene Expression in Bone

    Science.gov (United States)

    D'Ambrogio, A.

    Skeletal system has two main functions, to provide mechanical integrity for both locomotion and protection and to play an important role in mineral homeostasis. There is extensive evidence showing loss of bone mass during long-term Space-Flights. The loss is due to a break in the equilibrium between the activity of osteoblasts (the cells that forms bone) and the activity of osteoclasts (the cells that resorbs bone). Surprisingly, there is scanty information about the possible altered gene expression occurring in cells that form bone in microgravity.(Just 69 articles result from a "gene expression in microgravity" MedLine query.) Gene-chip or microarray technology allows to screen thousands of genes at the same time: the use of this technology on samples coming from cells exposed to microgravity could provide us with many important informations. For example, the identification of the molecules or structures which are the first sensors of the mechanical stress derived from lack of gravity, could help in understanding which is the first event leading to bone loss due to long-term exposure to microgravity. Consequently, this structure could become a target for a custom-designed drug. It is evident that bone mass loss, observed during long-time stay in Space, represents an accelerated model of what happens in aging osteoporosis. Therefore, the discovery and design of drugs able to interfere with the bone-loss process, could help also in preventing negative physiological processes normally observed on Earth. Considering the aims stated above, my research is designed to:

  19. Targeting Metabolic Symbiosis to Overcome Resistance to Anti-angiogenic Therapy

    OpenAIRE

    Pisarsky Laura; Bill Ruben; Fagiani Ernesta; Dimeloe Sarah; Goosen Ryan William; Hagmann Jorg; Hess Christoph; Christofori Gerhard

    2016-01-01

    Summary Despite the approval of several anti-angiogenic therapies, clinical results remain unsatisfactory, and transient benefits are followed by rapid tumor recurrence. Here, we demonstrate potent anti-angiogenic efficacy of the multi-kinase inhibitors nintedanib and?sunitinib in a mouse model of breast cancer. However, after an initial regression, tumors resume growth in the absence of active tumor angiogenesis. Gene expression profiling of tumor cells reveals metabolic reprogramming toward...

  20. Targeting Metabolic Symbiosis to Overcome Resistance to Anti-angiogenic Therapy

    Directory of Open Access Journals (Sweden)

    Laura Pisarsky

    2016-05-01

    Full Text Available Despite the approval of several anti-angiogenic therapies, clinical results remain unsatisfactory, and transient benefits are followed by rapid tumor recurrence. Here, we demonstrate potent anti-angiogenic efficacy of the multi-kinase inhibitors nintedanib and sunitinib in a mouse model of breast cancer. However, after an initial regression, tumors resume growth in the absence of active tumor angiogenesis. Gene expression profiling of tumor cells reveals metabolic reprogramming toward anaerobic glycolysis. Indeed, combinatorial treatment with a glycolysis inhibitor (3PO efficiently inhibits tumor growth. Moreover, tumors establish metabolic symbiosis, illustrated by the differential expression of MCT1 and MCT4, monocarboxylate transporters active in lactate exchange in glycolytic tumors. Accordingly, genetic ablation of MCT4 expression overcomes adaptive resistance against anti-angiogenic therapy. Hence, targeting metabolic symbiosis may be an attractive avenue to avoid resistance development to anti-angiogenic therapy in patients.

  1. Effects of Synergistic Massage and Physical Exercise on the Expression of Angiogenic Markers in Rat Tendons

    Directory of Open Access Journals (Sweden)

    Waldemar Andrzejewski

    2014-01-01

    Full Text Available Physical exercise and massage are regarded as key factors in regulating tendon structure. However, information on the mechanism through which massage influences the structure and biology of a tendon is scarce. In this study, we attempted to define the impact of these two activities on rat tendons by using morphological and molecular techniques, determining the expression of VEGF-A, FGF-2, and CD34 in the tendons of rats subjected to 10 weeks of physical exercise (running with massage of varied duration. The group of rats that was trained and massaged during the entire study was characterized by the highest expression of these markers, compared to the rats subjected to massage before training and to the control group subjected to physical exercises only. The greatest significant differences, compared to the control, were noted in the expression of all the studied markers at mRNA level, and in the case of VEGF-A, at protein level, in the third and fifth weeks of the experiment. The results of this study could point to the synergistic impact of simultaneous massage and physical exercise on the expression of angiogenesis markers in rat tendons.

  2. Analysis of angiogenic factors and cyclooxygenase-2 expression in cartilaginous tumors: clinical and histological correlation

    Directory of Open Access Journals (Sweden)

    Francisco Fontes Cintra

    2011-01-01

    Full Text Available OBJECTIVES: To study the role of angiogenesis and cyclooxygenase-2 expression in cartilaginous tumors and correlate these factors with prognosis. INTRODUCTION: For chondrosarcoma, the histological grade is the current standard for predicting tumor outcome. However, a low-grade chondrosarcoma can follow an aggressive course-as monitored by sequential imaging techniques-even when it is histologically indistinguishable from an enchondroma. Therefore, additional tools are needed to help identify the biological potential of these tumors. The degree of angiogenesis that is induced by the tumor could assist in this task. Angiogenesis can be quantified by measuring the expression of vascular endothelial growth factor and CD34, and cyclooxygenase-2 can induce angiogenesis by stimulating the production of proangiogenic factors. METHODS: In total, 21 enchondromas and 58 conventional chondrosarcomas were studied by examining the clinical and histopathological findings in conjunction with the immunostaining markers of angiogenesis and cyclooxygenase- 2 expression. RESULTS: The significant variables that were associated with poor outcome were 1 higher-grade chondrosarcomas, 2 tumors that developed in flat bones, and 3 over-expression of CD34 (with a median count that was higher than 5.9 vessels in 5 high power fields. Moreover, CD34 expression (measured using the Chalkley method revealed significantly higher microvessel density in flat bone chondrosarcomas. DISCUSSION: Previous studies have shown a positive correlation between Chalkley microvessel density and histological grade; however, in our sample, we found that the former is predictive of the outcome. Chondrosarcomas in flat bones have been shown to correlate with a poor prognosis. We also found that CD34 microvessel density values were significantly higher in flat-bone chondrosarcomas. This could explain-at least in part-the more aggressive biological course that is taken by these tumors. CONCLUSIONS

  3. The Effect of Turmeric Decoctum to the Angiogenic Molecules Expression on Chicken Embryo

    OpenAIRE

    Zahariah, Sultanah; Winarsih, Sri; Baktiyani, Siti Candra Windu; Rahardjo, Bambang; Kalsum, Umi

    2017-01-01

    Turmeric (Curcuma longa) is widely used as herbal medicine, not an exception by pregnant women. Turmeric consumption by expectant mothers requires standard dose, because of its antiangiogenic effect could be harmful on placentation process and embryonic development. This experiment was undertaken to determine the effect of different concentrations of turmeric decoctum to the expression of Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2) and Angiopoietin 1 (Ang-1) on the 48-hours-old ch...

  4. Imaging gene expression in gene therapy

    International Nuclear Information System (INIS)

    Wiebe, Leonard I.

    1997-01-01

    Full text. Gene therapy can be used to introduce new genes, or to supplement the function of indigenous genes. At the present time, however, there is non-invasive test to demonstrate efficacy of the gene transfer and expression processes. It has been postulated that scintigraphic imaging can offer unique information on both the site at which the transferred gene is expressed, and the degree of expression, both of which are critical issue for safety and clinical efficacy. Many current studies are based on 'suicide gene therapy' of cancer. Cells modified to express these genes commit metabolic suicide in the presence of an enzyme encoded by the transferred gene and a specifically-convertible pro drug. Pro drug metabolism can lead to selective metabolic trapping, required for scintigraphy. Herpes simplex virus type-1 thymidine kinase (H S V-1 t k + ) has been use for 'suicide' in vivo tumor gene therapy. It has been proposed that radiolabelled nucleosides can be used as radiopharmaceuticals to detect H S V-1 t k + gene expression where the H S V-1 t k + gene serves a reporter or therapeutic function. Animal gene therapy models have been studied using purine-([ 18 F]F H P G; [ 18 F]-A C V), and pyrimidine- ([ 123 / 131 I]I V R F U; [ 124 / 131I ]) antiviral nucleosides. Principles of gene therapy and gene therapy imaging will be reviewed and experimental data for [ 123 / 131I ]I V R F U imaging with the H S V-1 t k + reporter gene will be presented

  5. Evolution of gene expression after gene amplification.

    Science.gov (United States)

    Garcia, Nelson; Zhang, Wei; Wu, Yongrui; Messing, Joachim

    2015-04-24

    We took a rather unique approach to investigate the conservation of gene expression of prolamin storage protein genes across two different subfamilies of the Poaceae. We took advantage of oat plants carrying single maize chromosomes in different cultivars, called oat-maize addition (OMA) lines, which permitted us to determine whether regulation of gene expression was conserved between the two species. We found that γ-zeins are expressed in OMA7.06, which carries maize chromosome 7 even in the absence of the trans-acting maize prolamin-box-binding factor (PBF), which regulates their expression. This is likely because oat PBF can substitute for the function of maize PBF as shown in our transient expression data, using a γ-zein promoter fused to green fluorescent protein (GFP). Despite this conservation, the younger, recently amplified prolamin genes in maize, absent in oat, are not expressed in the corresponding OMAs. However, maize can express the oldest prolamin gene, the wheat high-molecular weight glutenin Dx5 gene, even when maize Pbf is knocked down (through PbfRNAi), and/or another maize transcription factor, Opaque-2 (O2) is knocked out (in maize o2 mutant). Therefore, older genes are conserved in their regulation, whereas younger ones diverged during evolution and eventually acquired a new repertoire of suitable transcriptional activators. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  6. Microtumor growth initiates angiogenic sprouting with simultaneous expression of VEGF, VEGF receptor-2, and angiopoietin-2.

    Science.gov (United States)

    Vajkoczy, Peter; Farhadi, Mohammad; Gaumann, Andreas; Heidenreich, Regina; Erber, Ralf; Wunder, Andreas; Tonn, Jörg C; Menger, Michael D; Breier, Georg

    2002-03-01

    Tumors have been thought to initiate as avascular aggregates of malignant cells that only later induce vascularization. Recently, this classic concept of tumor angiogenesis has been challenged by the suggestion that tumor cells grow by co-opting preexisting host vessels and thus initiate as well-vascularized tumors without triggering angiogenesis. To discriminate between these two mechanisms, we have used intravital epifluorescence microscopy and multi-photon laser scanning confocal microscopy to visualize C6 microglioma vascularization and tumor cell behavior. To address the mechanisms underlying tumor initiation, we assessed the expression of VEGF, VEGF receptor-2 (VEGFR-2), and angiopoietin-2 (Ang-2), as well as endothelial cell proliferation. We show that multicellular aggregates (new concept of vascular tumor initiation that may have important implications for the clinical application of antiangiogenic strategies.

  7. Regulation of eucaryotic gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Brent, R.; Ptashne, M.S

    1989-05-23

    This patent describes a method of regulating the expression of a gene in a eucaryotic cell. The method consists of: providing in the eucaryotic cell, a peptide, derived from or substantially similar to a peptide of a procaryotic cell able to bind to DNA upstream from or within the gene, the amount of the peptide being sufficient to bind to the gene and thereby control expression of the gene.

  8. Integrating Molecular Imaging Approaches to Monitor Prostate Targeted Suicide and Anti-angiogenic Gene Therapy

    Science.gov (United States)

    2005-02-01

    Bruno , M. D., Korfhagen, T. R., Liu, C., Morrisey, E. E., and Whitsett, J. A. (2000). GATA-6 activates transcription of surfactant protein A. J. Biol...the tail vein (for in- travenous administration), peritoneum, prostate, or forepaw. Before imaging, mice were anesthetized with ketamine–xy- lazine...DOTAP:cholesterol DNA complexes [Iyer et al., 2002]. In- travenous delivery of transferin-targeted DNA-PEI poly- plexes results in specific fluc gene

  9. [HPV DNA vaccines expressing recombinant CRT/HPV6bE7 fusion protein inhibit tumor growth and angiogenic activity].

    Science.gov (United States)

    Xu, Yan; Cheng, Hao; Zhao, Ke-Jia; Zhu, Ke-Jian; Zhang, Xing

    2007-11-01

    This paper was to study the angiogenic inhibitory effect and the potential antitumor effect of the constructed recombinant DNA vaccine CRT/HPV6bE7 in vivo. The C57BL/6 mice were vaccinated respectively with recombinant CRT/HPV6bE7 DNA plamids. The inhibitory effects on angiogenesis of generated vaccines in vivo were evaluated by a bFGF-induced angiogenesis assay using the Matrigel kit. To investigate the potential antitumor effect, the mean tumor weights, sizes and tumor appearing times were measured in C57BL/6 mice treated with HPV6bE7-expressing B16 cells. The results indicated that the recombinants CRT180/HPV6bE7 and CRT180 showed strong anti-angiogenic effects in bFGF-induced angiogenesis in vivo. Moreover, CRT180/HPV6bE7 and CRT180 DNA vaccines could significantly inhibit the tumor growth in tumor challenge experiment, and CRT180/HPV6bE7 was superior to other vaccines in delaying tumor formation time, limiting tumor size and weight in tumor protection experiment. In conclusion, recombinant CRT180/HPV6bE7 DNA could elicit a most efficient anti-angiogenic effect and inhibit tumor growth in mice inoculated with DNA vaccines. The antiangiogenic activity of CRT were suggested residing in a domain between CRT 120-180 aa.

  10. Differential Gene Expression and Aging

    Directory of Open Access Journals (Sweden)

    Laurent Seroude

    2002-01-01

    Full Text Available It has been established that an intricate program of gene expression controls progression through the different stages in development. The equally complex biological phenomenon known as aging is genetically determined and environmentally modulated. This review focuses on the genetic component of aging, with a special emphasis on differential gene expression. At least two genetic pathways regulating organism longevity act by modifying gene expression. Many genes are also subjected to age-dependent transcriptional regulation. Some age-related gene expression changes are prevented by caloric restriction, the most robust intervention that slows down the aging process. Manipulating the expression of some age-regulated genes can extend an organism's life span. Remarkably, the activity of many transcription regulatory elements is linked to physiological age as opposed to chronological age, indicating that orderly and tightly controlled regulatory pathways are active during aging.

  11. Angiopoietin-like-4 is a potential angiogenic mediator in arthritis

    NARCIS (Netherlands)

    Hermann, L.M.; Pinkerton, M.; Jennings, K.; Yang, L.; Grom, A.; Sowders, D.; Kersten, A.H.; Witte, D.P.; Hirsch, R.; Thornton, S.

    2005-01-01

    Our previous studies of gene expression profiling during collagen-induced arthritis (CIA) indicated that the putative angiogenic factor Angptl4 was one of the most highly expressed mRNAs early in disease. To investigate the potential involvement of Angptl4 in CIA pathogenesis, Angptl4 protein levels

  12. The Effect of Quercetin on the Osteogenesic Differentiation and Angiogenic Factor Expression of Bone Marrow-Derived Mesenchymal Stem Cells.

    Directory of Open Access Journals (Sweden)

    Yuning Zhou

    Full Text Available Bone marrow-derived mesenchymal stem cells (BMSCs are widely used in regenerative medicine in light of their ability to differentiate along the chondrogenic and osteogenic lineages. As a type of traditional Chinese medicine, quercetin has been preliminarily reported to promote osteogenic differentiation in osteoblasts. In the present study, the effects of quercetin on the proliferation, viability, cellular morphology, osteogenic differentiation and angiogenic factor secretion of rat BMSCs (rBMSCs were examined by MTT assay, fluorescence activated cell sorter (FACS analysis, real-time quantitative PCR (RT-PCR analysis, alkaline phosphatase (ALP activity and calcium deposition assays, and Enzyme-linked immunosorbent assay (ELISA. Moreover, whether mitogen-activated protein kinase (MAPK signaling pathways were involved in these processes was also explored. The results showed that quercetin significantly enhanced the cell proliferation, osteogenic differentiation and angiogenic factor secretion of rBMSCs in a dose-dependent manner, with a concentration of 2 μM achieving the greatest stimulatory effect. Moreover, the activation of the extracellular signal-regulated protein kinases (ERK and p38 pathways was observed in quercetin-treated rBMSCs. Furthermore, these induction effects could be repressed by either the ERK inhibitor PD98059 or the p38 inhibitor SB202190, respectively. These data indicated that quercetin could promote the proliferation, osteogenic differentiation and angiogenic factor secretion of rBMSCs in vitro, partially through the ERK and p38 signaling pathways.

  13. Gene expression in colorectal cancer

    DEFF Research Database (Denmark)

    Birkenkamp-Demtroder, Karin; Christensen, Lise Lotte; Olesen, Sanne Harder

    2002-01-01

    Understanding molecular alterations in colorectal cancer (CRC) is needed to define new biomarkers and treatment targets. We used oligonucleotide microarrays to monitor gene expression of about 6,800 known genes and 35,000 expressed sequence tags (ESTs) on five pools (four to six samples in each......' C, and clustered Dukes' D separately. Real-time PCR of 10 known genes and 5 ESTs demonstrated excellent reproducibility of the array-based findings. The most frequently altered genes belonged to functional categories of metabolism (22%), transcription and translation (11%), and cellular processes (9...

  14. Angiogenic profile of uveal melanoma.

    NARCIS (Netherlands)

    Notting, I.C.; Missotten, G.S.; Sijmons, B.; Boonman, Z.F.; Keunen, J.E.E.; Pluijm, G. van der

    2006-01-01

    Uveal melanoma develops in one of the most capillary-rich tissues of the body and is disseminated hematogenously. Knowledge of the nature and the spatiotemporal expression of angiogenic factors in uveal melanoma is essential to the development of new treatment strategies, especially with regard to

  15. Human Lacrimal Gland Gene Expression.

    Directory of Open Access Journals (Sweden)

    Vinay Kumar Aakalu

    Full Text Available The study of human lacrimal gland biology and development is limited. Lacrimal gland tissue is damaged or poorly functional in a number of disease states including dry eye disease. Development of cell based therapies for lacrimal gland diseases requires a better understanding of the gene expression and signaling pathways in lacrimal gland. Differential gene expression analysis between lacrimal gland and other embryologically similar tissues may be helpful in furthering our understanding of lacrimal gland development.We performed global gene expression analysis of human lacrimal gland tissue using Affymetrix ® gene expression arrays. Primary data from our laboratory was compared with datasets available in the NLM GEO database for other surface ectodermal tissues including salivary gland, skin, conjunctiva and corneal epithelium.The analysis revealed statistically significant difference in the gene expression of lacrimal gland tissue compared to other ectodermal tissues. The lacrimal gland specific, cell surface secretory protein encoding genes and critical signaling pathways which distinguish lacrimal gland from other ectodermal tissues are described.Differential gene expression in human lacrimal gland compared with other ectodermal tissue types revealed interesting patterns which may serve as the basis for future studies in directed differentiation among other areas.

  16. Cardioprotective effect of valsartan in mice with short-term high-salt diet by regulating cardiac aquaporin 1 and angiogenic factor expression.

    Science.gov (United States)

    Jiang, Yong; Wang, Hui-Yan; Zheng, Sheng; Mu, Shang-Qiang; Ma, Meng-Ni; Xie, Xin; Zhang, Yang-Yang; Zhang, Chun-Xue; Cai, Jian-Hui

    2015-01-01

    Hypertension is the most common risk factor for various cardiovascular and cerebrovascular diseases that affects approximately 61 million, or 25% of the population in United States. The dietary salt intake is one of the most important but modifiable factors for hypertension. In the current study, we aim to elucidate the role of aquaporin 1 in high-salt-induced hypertension and cardiac injuries and whether angiotensin II receptor blocker valsartan could ameliorate the effect of high salt on blood pressure. Mice were fed with normal diet, high-salt diet in the presence or absence of valsartan for 4 weeks. The body weight gain, feeding behavior, blood pressure, and cardiac pathology changes were monitored after 4 weeks. The expression of aquaporin 1, vascular endothelial growth factor, transforming growth factor β1, and basic fibroblast growth factor were analyzed using quantitative real-time polymerase chain reaction, Western blot, and immunohistochemical staining. Valsartan partially reversed the effects of high-salt diet on hypertension, cardiac injuries such as fibrosis and inflammatory cell infiltration, and inhibition of aquaporin 1 and angiogenic factors; valsartan alone did not exert such effects. The current data demonstrated that the reduction of cardiac aquaporin 1 and angiogenic factor expression level might be associated with high-salt-induced hypertension and cardiac injuries in mice, which could be ameliorated by angiotensin II receptor blocker treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Gene expression in colorectal cancer

    DEFF Research Database (Denmark)

    Birkenkamp-Demtroder, Karin; Christensen, Lise Lotte; Olesen, Sanne Harder

    2002-01-01

    Understanding molecular alterations in colorectal cancer (CRC) is needed to define new biomarkers and treatment targets. We used oligonucleotide microarrays to monitor gene expression of about 6,800 known genes and 35,000 expressed sequence tags (ESTs) on five pools (four to six samples in each...... pool) of total RNA from left-sided sporadic colorectal carcinomas. We compared normal tissue to carcinoma tissue from Dukes' stages A-D (noninvasive to distant metastasis) and identified 908 known genes and 4,155 ESTs that changed remarkably from normal to tumor tissue. Based on intensive filtering 226...

  18. Remote control of gene expression.

    Science.gov (United States)

    Long, Xiaochun; Miano, Joseph M

    2007-06-01

    The elucidation of a growing number of species' genomes heralds an unprecedented opportunity to ascertain functional attributes of non-coding sequences. In particular, cis regulatory modules (CRMs) controlling gene expression constitute a rich treasure trove of data to be defined and experimentally validated. Such information will provide insight into cell lineage determination and differentiation and the genetic basis of heritable diseases as well as the development of novel tools for restricting the inactivation of genes to specific cell types or conditions. Historically, the study of CRMs and their individual transcription factor binding sites has been limited to proximal regions around gene loci. Two important by-products of the genomics revolution, artificial chromosome vectors and comparative genomics, have fueled efforts to define an increasing number of CRMs acting remotely to control gene expression. Such regulation from a distance has challenged our perspectives of gene expression control and perhaps the very definition of a gene. This review summarizes current approaches to characterize remote control of gene expression in transgenic mice and inherent limitations for accurately interpreting the essential nature of CRM activity.

  19. Snake venom VEGF Vammin induces a highly efficient angiogenic response in skeletal muscle via VEGFR-2/NRP specific signaling.

    Science.gov (United States)

    Toivanen, Pyry I; Nieminen, Tiina; Laakkonen, Johanna P; Heikura, Tommi; Kaikkonen, Minna U; Ylä-Herttuala, Seppo

    2017-07-17

    Vascular Endothelial Growth Factors (VEGFs) are promising molecules for the treatment of ischemic diseases by pro-angiogenic therapy. Snake venom VEGFs are a novel subgroup with unique receptor binding profiles and as such are potential new therapeutic agents. We determined the ligand-receptor interactions, gene regulation and angiogenic properties of Vipera ammodytes venom VEGF, Vammin, and compared it to the canonical angiogenic factor VEGF-A to evaluate the use of Vammin for therapeutic angiogenesis. Vammin efficiently induced VEGFR-2 mediated proliferation and expression of genes associated with proliferation, migration and angiogenesis. VEGF-A 165 and especially VEGF-A 109 induced less pronounced effects. Vammin regulates a number of signaling pathways by inducing the expression of NR4A family nuclear receptors and regulators of calcium signaling and MAP kinase pathways. Interestingly, MARC1, which encodes an enzyme discovered to catalyze reduction of nitrate to NO, was identified as a novel VEGFR-2 regulated gene. In rabbit skeletal muscle adenoviral delivery of Vammin induced prominent angiogenic responses. Both the vector dose and the co-receptor binding of the ligand were critical parameters controlling the type of angiogenic response from sprouting angiogenesis to vessel enlargement. Vammin induced VEGFR-2/NRP-1 mediated signaling more effectively than VEGF-A, consequently it is a promising candidate for development of pro-angiogenic therapies.

  20. Metabolic and hypoxic adaptation to anti-angiogenic therapy: a target for induced essentiality.

    Science.gov (United States)

    McIntyre, Alan; Harris, Adrian L

    2015-04-01

    Anti-angiogenic therapy has increased the progression-free survival of many cancer patients but has had little effect on overall survival, even in colon cancer (average 6-8 weeks) due to resistance. The current licensed targeted therapies all inhibit VEGF signalling (Table 1). Many mechanisms of resistance to anti-VEGF therapy have been identified that enable cancers to bypass the angiogenic blockade. In addition, over the last decade, there has been increasing evidence for the role that the hypoxic and metabolic responses play in tumour adaptation to anti-angiogenic therapy. The hypoxic tumour response, through the transcription factor hypoxia-inducible factors (HIFs), induces major gene expression, metabolic and phenotypic changes, including increased invasion and metastasis. Pre-clinical studies combining anti-angiogenics with inhibitors of tumour hypoxic and metabolic adaptation have shown great promise, and combination clinical trials have been instigated. Understanding individual patient response and the response timing, given the opposing effects of vascular normalisation versus reduced perfusion seen with anti-angiogenics, provides a further hurdle in the paradigm of personalised therapeutic intervention. Additional approaches for targeting the hypoxic tumour microenvironment are being investigated in pre-clinical and clinical studies that have potential for producing synthetic lethality in combination with anti-angiogenic therapy as a future therapeutic strategy. © 2015 The Authors. Published under the terms of the CC BY 4.0 license.

  1. Transgenic Arabidopsis Gene Expression System

    Science.gov (United States)

    Ferl, Robert; Paul, Anna-Lisa

    2009-01-01

    The Transgenic Arabidopsis Gene Expression System (TAGES) investigation is one in a pair of investigations that use the Advanced Biological Research System (ABRS) facility. TAGES uses Arabidopsis thaliana, thale cress, with sensor promoter-reporter gene constructs that render the plants as biomonitors (an organism used to determine the quality of the surrounding environment) of their environment using real-time nondestructive Green Fluorescent Protein (GFP) imagery and traditional postflight analyses.

  2. Human papillomavirus gene expression

    International Nuclear Information System (INIS)

    Chow, L.T.; Hirochika, H.; Nasseri, M.; Stoler, M.H.; Wolinsky, S.M.; Chin, M.T.; Hirochika, R.; Arvan, D.S.; Broker, T.R.

    1987-01-01

    To determine the role of tissue differentiation on expression of each of the papillomavirus mRNA species identified by electron microscopy, the authors prepared exon-specific RNA probes that could distinguish the alternatively spliced mRNA species. Radioactively labeled single-stranded RNA probes were generated from a dual promoter vector system and individually hybridized to adjacent serial sections of formalin-fixed, paraffin-embedded biopsies of condylomata. Autoradiography showed that each of the message species had a characteristic tissue distribution and relative abundance. The authors have characterized a portion of the regulatory network of the HPVs by showing that the E2 ORF encodes a trans-acting enhancer-stimulating protein, as it does in BPV-1 (Spalholz et al. 1985). The HPV-11 enhancer was mapped to a 150-bp tract near the 3' end of the URR. Portions of this region are duplicated in some aggressive strains of HPV-6 (Boshart and zur Hausen 1986; Rando et al. 1986). To test the possible biological relevance of these duplications, they cloned tandem arrays of the enhancer and demonstrated, using a chloramphenicol acetyltransferase (CAT) assay, that they led to dramatically increased transcription proportional to copy number. Using the CAT assays, the authors found that the E2 proteins of several papillomavirus types can cross-stimulate the enhancers of most other types. This suggests that prior infection of a tissue with one papillomavirus type may provide a helper effect for superinfection and might account fo the HPV-6/HPV-16 coinfections in condylomata that they have observed

  3. Different angiogenic phenotypes in primary and secondary glioblastomas.

    Science.gov (United States)

    Karcher, Sibylle; Steiner, Hans-Herbert; Ahmadi, Rezvan; Zoubaa, Saida; Vasvari, Gergely; Bauer, Harry; Unterberg, Andreas; Herold-Mende, Christel

    2006-05-01

    Primary and secondary glioblastomas (pGBM, sGBM) are supposed to evolve through different genetic pathways, including EGF receptor and PDGF and its receptor and thus genes that are involved in tumor-induced angiogenesis. However, whether other angiogenic cytokines are also differentially expressed in these glioblastoma subtypes is not known so far, but this knowledge might be important to optimize an antiangiogenic therapy. Therefore, we studied the expression of several angiogenic cytokines, including VEGF-A, HGF, bFGF, PDGF-AB, PDGF-BB, G-CSF and GM-CSF in pGBMs and sGBMs as well as in gliomas WHO III, the precursor lesions of sGBMs. In tumor tissues, expression of all cytokines was observed albeit with marked differences concerning intensity and distribution pattern. Quantification of the cytokines in the supernatant of 30 tissue-corresponding glioma cultures revealed a predominant expression of VEGF-A in pGBMs and significantly higher expression levels of PDGF-AB in sGBMs. HGF and bFGF were determined in nearly all tumor cultures but with no GBM subtype or malignancy-related differences. Interestingly, GM-CSF and especially G-CSF were produced less frequently by tumor cells. However, GM-CSF secretion occurred together with an increased number of simultaneously secreted cytokines and correlated with a worse patient prognosis and may thus represent a more aggressive angiogenic phenotype. Finally, we confirmed an independent contribution of each tumor-derived cytokine analyzed to tumor-induced vascularization. Our data indicate that an optimal antiangiogenic therapy may require targeting of multiple angiogenic pathways that seem to differ markedly in pGBMs and sGBMs. 2005 Wiley-Liss, Inc.

  4. Homeobox gene expression in Brachiopoda

    DEFF Research Database (Denmark)

    Altenburger, Andreas; Martinez, Pedro; Wanninger, Andreas

    2011-01-01

    The molecular control that underlies brachiopod ontogeny is largely unknown. In order to contribute to this issue we analyzed the expression pattern of two homeobox containing genes, Not and Cdx, during development of the rhynchonelliform (i.e., articulate) brachiopod Terebratalia transversa. Not...

  5. Correction of gene expression data

    DEFF Research Database (Denmark)

    Darbani Shirvanehdeh, Behrooz; Stewart, C. Neal, Jr.; Noeparvar, Shahin

    2014-01-01

    an analytical approach to examine the suitability of correction methods by considering the inter-treatment bias as well as the inter-replicate variance, which allows use of the best correction method with minimum residual bias. Analyses of RNA sequencing and microarray data showed that the efficiencies......This report investigates for the first time the potential inter-treatment bias source of cell number for gene expression studies. Cell-number bias can affect gene expression analysis when comparing samples with unequal total cellular RNA content or with different RNA extraction efficiencies....... For maximal reliability of analysis, therefore, comparisons should be performed at the cellular level. This could be accomplished using an appropriate correction method that can detect and remove the inter-treatment bias for cell-number. Based on inter-treatment variations of reference genes, we introduce...

  6. Vascular Gene Expression: A Hypothesis

    Directory of Open Access Journals (Sweden)

    Angélica Concepción eMartínez-Navarro

    2013-07-01

    Full Text Available The phloem is the conduit through which photoassimilates are distributed from autotrophic to heterotrophic tissues and is involved in the distribution of signaling molecules that coordinate plant growth and responses to the environment. Phloem function depends on the coordinate expression of a large array of genes. We have previously identified conserved motifs in upstream regions of the Arabidopsis genes, encoding the homologs of pumpkin phloem sap mRNAs, displaying expression in vascular tissues. This tissue-specific expression in Arabidopsis is predicted by the overrepresentation of GA/CT-rich motifs in gene promoters. In this work we have searched for common motifs in upstream regions of the homologous genes from plants considered to possess a primitive vascular tissue (a lycophyte, as well as from others that lack a true vascular tissue (a bryophyte, and finally from chlorophytes. Both lycophyte and bryophyte display motifs similar to those found in Arabidopsis with a significantly low E-value, while the chlorophytes showed either a different conserved motif or no conserved motif at all. These results suggest that these same genes are expressed coordinately in non- vascular plants; this coordinate expression may have been one of the prerequisites for the development of conducting tissues in plants. We have also analyzed the phylogeny of conserved proteins that may be involved in phloem function and development. The presence of CmPP16, APL, FT and YDA in chlorophytes suggests the recruitment of ancient regulatory networks for the development of the vascular tissue during evolution while OPS is a novel protein specific to vascular plants.

  7. Duration of chronic inflammation alters gene expression in muscle from untreated girls with juvenile dermatomyositis

    Directory of Open Access Journals (Sweden)

    Gordish-Dressman Heather

    2008-07-01

    Full Text Available Abstract Background To evaluate the impact of the duration of chronic inflammation on gene expression in skeletal muscle biopsies (MBx from untreated children with juvenile dermatomyositis (JDM and identify genes and biological processes associated with the disease progression, expression profiling data from 16 girls with active symptoms of JDM greater than or equal to 2 months were compared with 3 girls with active symptoms less than 2 months. Results Seventy-nine genes were differentially expressed between the groups with long or short duration of untreated disease. Genes involved in immune responses and vasculature remodelling were expressed at a higher level in muscle biopsies from children with greater or equal to 2 months of symptoms, while genes involved in stress responses and protein turnover were expressed at a lower level. Among the 79 genes, expression of 9 genes showed a significant linear regression relationship with the duration of untreated disease. Five differentially expressed genes – HLA-DQA1, smooth muscle myosin heavy chain, clusterin, plexin D1 and tenomodulin – were verified by quantitative RT-PCR. The chronic inflammation of longer disease duration was also associated with increased DC-LAMP+ and BDCA2+ mature dendritic cells, identified by immunohistochemistry. Conclusion We conclude that chronic inflammation alters the gene expression patterns in muscle of untreated children with JDM. Symptoms lasting greater or equal to 2 months were associated with dendritic cell maturation and anti-angiogenic vascular remodelling, directly contributing to disease pathophysiology.

  8. Neighboring Genes Show Correlated Evolution in Gene Expression

    Science.gov (United States)

    Ghanbarian, Avazeh T.; Hurst, Laurence D.

    2015-01-01

    When considering the evolution of a gene’s expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking. PMID:25743543

  9. Establishment of canine hemangiosarcoma xenograft models expressing endothelial growth factors, their receptors, and angiogenesis-associated homeobox genes

    International Nuclear Information System (INIS)

    Kodama, Atsushi; Yanai, Tokuma; Sakai, Hiroki; Matsuura, Satoko; Murakami, Mami; Murai, Atsuko; Mori, Takashi; Maruo, Kouji; Kimura, Tohru; Masegi, Toshiaki

    2009-01-01

    Human hemangiosarcoma (HSA) tends to have a poor prognosis; its tumorigenesis has not been elucidated, as there is a dearth of HSA clinical specimens and no experimental model for HSA. However, the incidence of spontaneous HSA is relatively high in canines; therefore, canine HSA has been useful in the study of human HSA. Recently, the production of angiogenic growth factors and their receptors in human and canine HSA has been reported. Moreover, the growth-factor environment of HSA is very similar to that of pathophysiological angiogenesis, which some homeobox genes regulate in the transcription of angiogenic molecules. In the present study, we established 6 xenograft canine HSA tumors and detected the expression of growth factors, their receptors, and angiogenic homeobox genes. Six primary canine HSAs were xenografted to nude mice subcutaneously and serially transplanted. Subsequently, the expressions of vascular endothelial growth factor (VEGF)-A, basic fibroblast growth factors (bFGF), flt-1 and flk-1 (receptors of VEGF-A), FGFR-1, and angiogenic homeobox genes HoxA9, HoxB3, HoxB7, HoxD3, Pbx1, and Meis1 were investigated in original and xenograft tumors by histopathology, immunostaining, and reverse transcription polymerase chain reaction (RT-PCR), using canine-specific primer sets. Histopathologically, xenograft tumors comprised a proliferation of neoplastic cells that were varied in shape, from spindle-shaped and polygonal to ovoid; some vascular-like structures and vascular clefts of channels were observed, similar to those in the original tumors. The expression of endothelial markers (CD31 and vWF) was detected in xenograft tumors by immunohistochemistry and RT-PCR. Moreover, the expression of VEGF-A, bFGF, flt-1, flk-1, FGFR-1, HoxA9, HoxB3, HoxB7, HoxD3, Pbx1, and Meis1 was detected in xenograft tumors. Interestingly, expressions of bFGF tended to be higher in 3 of the xenograft HSA tumors than in the other tumors. We established 6 xenograft canine HSA

  10. Establishment of canine hemangiosarcoma xenograft models expressing endothelial growth factors, their receptors, and angiogenesis-associated homeobox genes

    Directory of Open Access Journals (Sweden)

    Maruo Kouji

    2009-10-01

    Full Text Available Abstract Background Human hemangiosarcoma (HSA tends to have a poor prognosis; its tumorigenesis has not been elucidated, as there is a dearth of HSA clinical specimens and no experimental model for HSA. However, the incidence of spontaneous HSA is relatively high in canines; therefore, canine HSA has been useful in the study of human HSA. Recently, the production of angiogenic growth factors and their receptors in human and canine HSA has been reported. Moreover, the growth-factor environment of HSA is very similar to that of pathophysiological angiogenesis, which some homeobox genes regulate in the transcription of angiogenic molecules. In the present study, we established 6 xenograft canine HSA tumors and detected the expression of growth factors, their receptors, and angiogenic homeobox genes. Methods Six primary canine HSAs were xenografted to nude mice subcutaneously and serially transplanted. Subsequently, the expressions of vascular endothelial growth factor (VEGF-A, basic fibroblast growth factors (bFGF, flt-1 and flk-1 (receptors of VEGF-A, FGFR-1, and angiogenic homeobox genes HoxA9, HoxB3, HoxB7, HoxD3, Pbx1, and Meis1 were investigated in original and xenograft tumors by histopathology, immunostaining, and reverse transcription polymerase chain reaction (RT-PCR, using canine-specific primer sets. Results Histopathologically, xenograft tumors comprised a proliferation of neoplastic cells that were varied in shape, from spindle-shaped and polygonal to ovoid; some vascular-like structures and vascular clefts of channels were observed, similar to those in the original tumors. The expression of endothelial markers (CD31 and vWF was detected in xenograft tumors by immunohistochemistry and RT-PCR. Moreover, the expression of VEGF-A, bFGF, flt-1, flk-1, FGFR-1, HoxA9, HoxB3, HoxB7, HoxD3, Pbx1, and Meis1 was detected in xenograft tumors. Interestingly, expressions of bFGF tended to be higher in 3 of the xenograft HSA tumors than in the

  11. Establishment of canine hemangiosarcoma xenograft models expressing endothelial growth factors, their receptors, and angiogenesis-associated homeobox genes

    Science.gov (United States)

    2009-01-01

    Background Human hemangiosarcoma (HSA) tends to have a poor prognosis; its tumorigenesis has not been elucidated, as there is a dearth of HSA clinical specimens and no experimental model for HSA. However, the incidence of spontaneous HSA is relatively high in canines; therefore, canine HSA has been useful in the study of human HSA. Recently, the production of angiogenic growth factors and their receptors in human and canine HSA has been reported. Moreover, the growth-factor environment of HSA is very similar to that of pathophysiological angiogenesis, which some homeobox genes regulate in the transcription of angiogenic molecules. In the present study, we established 6 xenograft canine HSA tumors and detected the expression of growth factors, their receptors, and angiogenic homeobox genes. Methods Six primary canine HSAs were xenografted to nude mice subcutaneously and serially transplanted. Subsequently, the expressions of vascular endothelial growth factor (VEGF)-A, basic fibroblast growth factors (bFGF), flt-1 and flk-1 (receptors of VEGF-A), FGFR-1, and angiogenic homeobox genes HoxA9, HoxB3, HoxB7, HoxD3, Pbx1, and Meis1 were investigated in original and xenograft tumors by histopathology, immunostaining, and reverse transcription polymerase chain reaction (RT-PCR), using canine-specific primer sets. Results Histopathologically, xenograft tumors comprised a proliferation of neoplastic cells that were varied in shape, from spindle-shaped and polygonal to ovoid; some vascular-like structures and vascular clefts of channels were observed, similar to those in the original tumors. The expression of endothelial markers (CD31 and vWF) was detected in xenograft tumors by immunohistochemistry and RT-PCR. Moreover, the expression of VEGF-A, bFGF, flt-1, flk-1, FGFR-1, HoxA9, HoxB3, HoxB7, HoxD3, Pbx1, and Meis1 was detected in xenograft tumors. Interestingly, expressions of bFGF tended to be higher in 3 of the xenograft HSA tumors than in the other tumors. Conclusion We

  12. Gene expression profile of pulpitis

    Science.gov (United States)

    Galicia, Johnah C.; Henson, Brett R.; Parker, Joel S.; Khan, Asma A.

    2016-01-01

    The cost, prevalence and pain associated with endodontic disease necessitate an understanding of the fundamental molecular aspects of its pathogenesis. This study was aimed to identify the genetic contributors to pulpal pain and inflammation. Inflamed pulps were collected from patients diagnosed with irreversible pulpitis (n=20). Normal pulps from teeth extracted for various reasons served as controls (n=20). Pain level was assessed using a visual analog scale (VAS). Genome-wide microarray analysis was performed using Affymetrix GeneTitan Multichannel Instrument. The difference in gene expression levels were determined by the Significance Analysis of Microarray program using a false discovery rate (q-value) of 5%. Genes involved in immune response, cytokine-cytokine receptor interaction and signaling, integrin cell surface interactions, and others were expressed at relatively higher levels in the in the pulpitis group. Moreover, several genes known to modulate pain and inflammation showed differential expression in asymptomatic and mild pain patients (≥30mm on VAS) compared to those with moderate to severe pain. This exploratory study provides a molecular basis for the clinical diagnosis of pulpitis. With an enhanced understanding of pulpal inflammation, future studies on treatment and management of pulpitis and on pain associated with it can have a biological reference to bridge treatment strategies with pulpal biology. PMID:27052691

  13. Gene expression profile of pulpitis.

    Science.gov (United States)

    Galicia, J C; Henson, B R; Parker, J S; Khan, A A

    2016-06-01

    The cost, prevalence and pain associated with endodontic disease necessitate an understanding of the fundamental molecular aspects of its pathogenesis. This study was aimed to identify the genetic contributors to pulpal pain and inflammation. Inflamed pulps were collected from patients diagnosed with irreversible pulpitis (n=20). Normal pulps from teeth extracted for various reasons served as controls (n=20). Pain level was assessed using a visual analog scale (VAS). Genome-wide microarray analysis was performed using Affymetrix GeneTitan Multichannel Instrument. The difference in gene expression levels were determined by the significance analysis of microarray program using a false discovery rate (q-value) of 5%. Genes involved in immune response, cytokine-cytokine receptor interaction and signaling, integrin cell surface interactions, and others were expressed at relatively higher levels in the pulpitis group. Moreover, several genes known to modulate pain and inflammation showed differential expression in asymptomatic and mild pain patients (⩾30 mm on VAS) compared with those with moderate to severe pain. This exploratory study provides a molecular basis for the clinical diagnosis of pulpitis. With an enhanced understanding of pulpal inflammation, future studies on treatment and management of pulpitis and on pain associated with it can have a biological reference to bridge treatment strategies with pulpal biology.

  14. Gene Expression in Trypanosomatid Parasites

    Directory of Open Access Journals (Sweden)

    Santiago Martínez-Calvillo

    2010-01-01

    Full Text Available The parasites Leishmania spp., Trypanosoma brucei, and Trypanosoma cruzi are the trypanosomatid protozoa that cause the deadly human diseases leishmaniasis, African sleeping sickness, and Chagas disease, respectively. These organisms possess unique mechanisms for gene expression such as constitutive polycistronic transcription of protein-coding genes and trans-splicing. Little is known about either the DNA sequences or the proteins that are involved in the initiation and termination of transcription in trypanosomatids. In silico analyses of the genome databases of these parasites led to the identification of a small number of proteins involved in gene expression. However, functional studies have revealed that trypanosomatids have more general transcription factors than originally estimated. Many posttranslational histone modifications, histone variants, and chromatin modifying enzymes have been identified in trypanosomatids, and recent genome-wide studies showed that epigenetic regulation might play a very important role in gene expression in this group of parasites. Here, we review and comment on the most recent findings related to transcription initiation and termination in trypanosomatid protozoa.

  15. Harnessing gene expression networks to prioritize candidate epileptic encephalopathy genes.

    Science.gov (United States)

    Oliver, Karen L; Lukic, Vesna; Thorne, Natalie P; Berkovic, Samuel F; Scheffer, Ingrid E; Bahlo, Melanie

    2014-01-01

    We apply a novel gene expression network analysis to a cohort of 182 recently reported candidate Epileptic Encephalopathy genes to identify those most likely to be true Epileptic Encephalopathy genes. These candidate genes were identified as having single variants of likely pathogenic significance discovered in a large-scale massively parallel sequencing study. Candidate Epileptic Encephalopathy genes were prioritized according to their co-expression with 29 known Epileptic Encephalopathy genes. We utilized developing brain and adult brain gene expression data from the Allen Human Brain Atlas (AHBA) and compared this to data from Celsius: a large, heterogeneous gene expression data warehouse. We show replicable prioritization results using these three independent gene expression resources, two of which are brain-specific, with small sample size, and the third derived from a heterogeneous collection of tissues with large sample size. Of the nineteen genes that we predicted with the highest likelihood to be true Epileptic Encephalopathy genes, two (GNAO1 and GRIN2B) have recently been independently reported and confirmed. We compare our results to those produced by an established in silico prioritization approach called Endeavour, and finally present gene expression networks for the known and candidate Epileptic Encephalopathy genes. This highlights sub-networks of gene expression, particularly in the network derived from the adult AHBA gene expression dataset. These networks give clues to the likely biological interactions between Epileptic Encephalopathy genes, potentially highlighting underlying mechanisms and avenues for therapeutic targets.

  16. Angiogenic biomarkers in pregnancy

    DEFF Research Database (Denmark)

    Rasmussen, Lene G; Lykke, Jacob A; Staff, Anne C

    2015-01-01

    We review diagnostic and predictive roles of the angiogenic proteins placental growth factor, soluble fms-like tyrosine kinase 1, and soluble endoglin in preeclampsia, and their association with future cardiovascular disease, diabetes, and breast cancer. Specific patterns of these proteins repres...... are correlated to HbA1c and fasting glucose. Hence dysregulation in angiogenic proteins may link preeclampsia and cardiovascular diseases, targeting women who could in future benefit from prophylactic programs to possibly prevent, delay or reduce cardiovascular disease....

  17. Modulation of gene expression made easy

    DEFF Research Database (Denmark)

    Solem, Christian; Jensen, Peter Ruhdal

    2002-01-01

    A new approach for modulating gene expression, based on randomization of promoter (spacer) sequences, was developed. The method was applied to chromosomal genes in Lactococcus lactis and shown to generate libraries of clones with broad ranges of expression levels of target genes. In one example...... that the method can be applied to modulating the expression of native genes on the chromosome. We constructed a series of strains in which the expression of the las operon, containing the genes pfk, pyk, and ldh, was modulated by integrating a truncated copy of the pfk gene. Importantly, the modulation affected...

  18. Cerebrovascular gene expression in spontaneously hypertensive rats

    DEFF Research Database (Denmark)

    Grell, Anne-Sofie; Frederiksen, Simona Denise; Edvinsson, Lars

    2017-01-01

    in the middle cerebral arteries from hypertensive compared to normotensive rats. The gene expression of 72 genes was decreased and the gene expression of 97 genes was increased. The following genes with a fold difference ≥1.40 were verified by quantitative PCR; Postn, Olr1, Fas, Vldlr, Mmp2, Timp1, Serpine1......, Mmp11, Cd34, Ptgs1 and Ptgs2. The gene expression of Postn, Olr1, Fas, Vldlr, Mmp2, Timp1 and Serpine1 and the protein expression of LOX1 (also known as OLR1) were significantly increased in the middle cerebral arteries from spontaneously hypertensive rats compared to Wistar-Kyoto rats. In conclusion...

  19. Adaptive Evolution of Gene Expression in Drosophila

    Directory of Open Access Journals (Sweden)

    Armita Nourmohammad

    2017-08-01

    Full Text Available Gene expression levels are important quantitative traits that link genotypes to molecular functions and fitness. In Drosophila, population-genetic studies have revealed substantial adaptive evolution at the genomic level, but the evolutionary modes of gene expression remain controversial. Here, we present evidence that adaptation dominates the evolution of gene expression levels in flies. We show that 64% of the observed expression divergence across seven Drosophila species are adaptive changes driven by directional selection. Our results are derived from time-resolved data of gene expression divergence across a family of related species, using a probabilistic inference method for gene-specific selection. Adaptive gene expression is stronger in specific functional classes, including regulation, sensory perception, sexual behavior, and morphology. Moreover, we identify a large group of genes with sex-specific adaptation of expression, which predominantly occurs in males. Our analysis opens an avenue to map system-wide selection on molecular quantitative traits independently of their genetic basis.

  20. Nonlinear dimensionality reduction of gene expression data

    OpenAIRE

    Nilsson, Jens

    2006-01-01

    Using microarray measurements techniques, it is possible to measure the activity of genes simultaneously across the whole genome. Since genes influence each others activity levels through complex regulatory networks, such gene expression measurements are state samples of a dynamical system. Gene expression data has proven useful for diagnosis and definition of disease subgroups, for inference of the functional role of a given gene or for the deciphering of complex disease mechanisms. However,...

  1. mAngiogenin-3, a target gene of oncoprotein E2a-Pbx1, encodes a new angiogenic member of the angiogenin family.

    Science.gov (United States)

    Fu, X; Roberts, W G; Nobile, V; Shapiro, R; Kamps, M P

    1999-01-01

    Angiogenins are proteins in the pancreatic ribonuclease superfamily that utilize their ribonuclease activity to induce formation of new blood vessels. Recently we identified a new member of the angiogenin gene family, mouse angiogenin-3, by virtue of its transcriptional activation in NIH3T3 fibroblasts coincident with transformation by the chimeric leukemia oncogene, E2a-Pbx1. Here we have isolated the cDNA encoding mouse angiogenin-3 and used it to produce the protein in E. coli. We demonstrate that mouse angiogenin-3 is a ribonuclease whose activity and specificity towards tRNA and dinucleotide substrates differ from those of mouse angiogenin or of mouse angiogenin-related protein, a non-angiogenic factor. Mouse angiogenin-3 induced angiogenesis in both the chicken embryo chorioallantoic membrane assay and the rat cremaster muscle. Electron microscopy revealed that endothelial cells within vessels induced by both mouse angiogenin-3 and mouse angiogenin contain fenestrations similar to those observed in endothelial cells from neovasculature induced by vascular endothelial growth factor and basic fibroblast growth factor. Mouse angiogenin-3 also induced other molecular events typical of rapidly proliferating endothelial cells, such as increases in rough endoplasmic reticulum, polysomes, and mitochondria.

  2. Tumor cells secrete an angiogenic factor that stimulates basic fibroblast growth factor and urokinase expression in vascular endothelial cells

    NARCIS (Netherlands)

    Peverali, F.A.; Mandriota, S.J.; Ciana, P.; Marelli, R.; Quax, P.; Rifkin, D.B.; Della Valle, G.; Mignatti, P.

    1994-01-01

    Culture medium conditioned by human SK-Hep1 hepatoma cells or mouse S180 sarcoma cells rapidly up-regulates endothelial cell expression of basic fibroblast growth factor (bFGF) and induces formation of capillary-like structures by vascular endothelial cells grown on three-dimensional fibrin gels (in

  3. Prediction of the gene expression in normal lung tissue by the gene expression in blood.

    Science.gov (United States)

    Halloran, Justin W; Zhu, Dakai; Qian, David C; Byun, Jinyoung; Gorlova, Olga Y; Amos, Christopher I; Gorlov, Ivan P

    2015-11-17

    Comparative analysis of gene expression in human tissues is important for understanding the molecular mechanisms underlying tissue-specific control of gene expression. It can also open an avenue for using gene expression in blood (which is the most easily accessible human tissue) to predict gene expression in other (less accessible) tissues, which would facilitate the development of novel gene expression based models for assessing disease risk and progression. Until recently, direct comparative analysis across different tissues was not possible due to the scarcity of paired tissue samples from the same individuals. In this study we used paired whole blood/lung gene expression data from the Genotype-Tissue Expression (GTEx) project. We built a generalized linear regression model for each gene using gene expression in lung as the outcome and gene expression in blood, age and gender as predictors. For ~18 % of the genes, gene expression in blood was a significant predictor of gene expression in lung. We found that the number of single nucleotide polymorphisms (SNPs) influencing expression of a given gene in either blood or lung, also known as the number of quantitative trait loci (eQTLs), was positively associated with efficacy of blood-based prediction of that gene's expression in lung. This association was strongest for shared eQTLs: those influencing gene expression in both blood and lung. In conclusion, for a considerable number of human genes, their expression levels in lung can be predicted using observable gene expression in blood. An abundance of shared eQTLs may explain the strong blood/lung correlations in the gene expression.

  4. Synthetic promoter libraries- tuning of gene expression

    DEFF Research Database (Denmark)

    Hammer, Karin; Mijakovic, Ivan; Jensen, Peter Ruhdal

    2006-01-01

    The study of gene function often requires changing the expression of a gene and evaluating the consequences. In principle, the expression of any given gene can be modulated in a quasi-continuum of discrete expression levels but the traditional approaches are usually limited to two extremes: gene...... be met by using promoter libraries. This approach generally consists of inserting a library of promoters in front of the gene to be studied, whereby the individual promoters might deviate either in their spacer sequences or bear slight deviations from the consensus sequence of a vegetative promoter. Here......, we describe the two different methods for obtaining promoter libraries and compare their applicability....

  5. Inhibition of phosphoinositide 3-kinase is associated with reduced angiogenesis and an altered expression of angiogenic markers in endothelioma cells.

    Science.gov (United States)

    Mabeta, P

    2014-06-01

    The phosphoinositide 3-kinase (PI3k) signaling pathway is involved in the regulation of numerous cellular activities. The pathway has also been implicated in the development of various tumors. In the context of vascular tumors, the role of the PI3k signaling still needs to be established. In the present study, the effects of blocking PI3k activation on endothelioma cells derived from mice with vascular tumors were investigated using the crystal violet assay, real-time cell analysis, light microscopy, the aorta ring assay and antibody arrays. The suppression of PI3k led to the inhibition of cell growth, cell migration, as well as angiogenesis. The inhibition of these processes correlated with low Akt activity. Antibody array analysis revealed that there was a suppression of several proangiogenic molecules, including Eotaxin-1 and basic fibroblast growth factor (bFGF) in cultures treated with LY294,002, an inhibitor of PI3k. At the same time, LY294,002 increased the expression of platelet factor 4 (PF4) and the Fas ligand (FasL), molecules which have antiangiogenic properties. The results suggest that PI3k may play a role in the expression of some of the key regulatory molecules involved in angiogenesis, and perhaps in the growth of endotheliomas. As such, it is plausible that the PI3k/Akt pathway may be a target for therapeutic molecules designed for the treatment of endothelial tumors. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. Macrophage colony-stimulating factor augments Tie2-expressing monocyte differentiation, angiogenic function, and recruitment in a mouse model of breast cancer.

    Directory of Open Access Journals (Sweden)

    Mary A Forget

    Full Text Available Reports demonstrate the role of M-CSF (CSF1 in tumor progression in mouse models as well as the prognostic value of macrophage numbers in breast cancer patients. Recently, a subset of CD14+ monocytes expressing the Tie2 receptor, once thought to be predominantly expressed on endothelial cells, has been characterized. We hypothesized that increased levels of CSF1 in breast tumors can regulate differentiation of Tie2- monocytes to a Tie2+ phenotype. We treated CD14+ human monocytes with CSF1 and found a significant increase in CD14+/Tie2+ positivity. To understand if CSF1-induced Tie2 expression on these cells improved their migratory ability, we pre-treated CD14+ monocytes with CSF1 and used Boyden chemotaxis chambers to observe enhanced response to angiopoietin-2 (ANG2, the chemotactic ligand for the Tie2 receptor. We found that CSF1 pre-treatment significantly augmented chemotaxis and that Tie2 receptor upregulation was responsible as siRNA targeting Tie2 receptor abrogated this effect. To understand any augmented angiogenic effect produced by treating these cells with CSF1, we cultured human umbilical vein endothelial cells (HUVECs with conditioned supernatants from CSF1-pre-treated CD14+ monocytes for a tube formation assay. While supernatants from CSF1-pre-treated TEMs increased HUVEC branching, a neutralizing antibody against the CSF1R abrogated this activity, as did siRNA against the Tie2 receptor. To test our hypothesis in vivo, we treated PyMT tumor-bearing mice with CSF1 and observed an expansion in the TEM population relative to total F4/80+ cells, which resulted in increased angiogenesis. Investigation into the mechanism of Tie2 receptor upregulation on CD14+ monocytes by CSF1 revealed a synergistic contribution from the PI3 kinase and HIF pathways as the PI3 kinase inhibitor LY294002, as well as HIF-1α-deficient macrophages differentiated from the bone marrow of HIF-1αfl/fl/LysMcre mice, diminished CSF1-stimulated Tie2 receptor

  7. Profiling Gene Expression in Germinating Brassica Roots.

    Science.gov (United States)

    Park, Myoung Ryoul; Wang, Yi-Hong; Hasenstein, Karl H

    2014-01-01

    Based on previously developed solid-phase gene extraction (SPGE) we examined the mRNA profile in primary roots of Brassica rapa seedlings for highly expressed genes like ACT7 (actin7), TUB (tubulin1), UBQ (ubiquitin), and low expressed GLK (glucokinase) during the first day post-germination. The assessment was based on the mRNA load of the SPGE probe of about 2.1 ng. The number of copies of the investigated genes changed spatially along the length of primary roots. The expression level of all genes differed significantly at each sample position. Among the examined genes ACT7 expression was most even along the root. UBQ was highest at the tip and root-shoot junction (RS). TUB and GLK showed a basipetal gradient. The temporal expression of UBQ was highest in the MZ 9 h after primary root emergence and higher than at any other sample position. Expressions of GLK in EZ and RS increased gradually over time. SPGE extraction is the result of oligo-dT and oligo-dA hybridization and the results illustrate that SPGE can be used for gene expression profiling at high spatial and temporal resolution. SPGE needles can be used within two weeks when stored at 4 °C. Our data indicate that gene expression studies that are based on the entire root miss important differences in gene expression that SPGE is able to resolve for example growth adjustments during gravitropism.

  8. Polycistronic gene expression in Aspergillus niger.

    Science.gov (United States)

    Schuetze, Tabea; Meyer, Vera

    2017-09-25

    Genome mining approaches predict dozens of biosynthetic gene clusters in each of the filamentous fungal genomes sequenced so far. However, the majority of these gene clusters still remain cryptic because they are not expressed in their natural host. Simultaneous expression of all genes belonging to a biosynthetic pathway in a heterologous host is one approach to activate biosynthetic gene clusters and to screen the metabolites produced for bioactivities. Polycistronic expression of all pathway genes under control of a single and tunable promoter would be the method of choice, as this does not only simplify cloning procedures, but also offers control on timing and strength of expression. However, polycistronic gene expression is a feature not commonly found in eukaryotic host systems, such as Aspergillus niger. In this study, we tested the suitability of the viral P2A peptide for co-expression of three genes in A. niger. Two genes descend from Fusarium oxysporum and are essential to produce the secondary metabolite enniatin (esyn1, ekivR). The third gene (luc) encodes the reporter luciferase which was included to study position effects. Expression of the polycistronic gene cassette was put under control of the Tet-On system to ensure tunable gene expression in A. niger. In total, three polycistronic expression cassettes which differed in the position of luc were constructed and targeted to the pyrG locus in A. niger. This allowed direct comparison of the luciferase activity based on the position of the luciferase gene. Doxycycline-mediated induction of the Tet-On expression cassettes resulted in the production of one long polycistronic mRNA as proven by Northern analyses, and ensured comparable production of enniatin in all three strains. Notably, gene position within the polycistronic expression cassette matters, as, luciferase activity was lowest at position one and had a comparable activity at positions two and three. The P2A peptide can be used to express at

  9. Vascular endothelial growth factor A protein level and gene expression in intracranial meningiomas with brain edema

    DEFF Research Database (Denmark)

    Nassehi, Damoun; Dyrbye, Henrik; Andresen, Morten

    2011-01-01

    Meningiomas are the second most common primary intracranial tumors in adults. Although meningiomas are mostly benign, more than 50% of patients with meningioma develop peritumoral brain edema (PTBE), which may be fatal because of increased intracranial pressure. Vascular endothelial growth factor...... (VEGF) is an endothelial cell-specific mitogen and angiogen. VEGF-A protein, which is identical to vascular permeability factor, is a regulator of angiogenesis. In this study, 101 patients with meningiomas, and possible co-factors to PTBE, such as meningioma subtypes and tumor location, were examined....... Forty-three patients had primary, solitary, supratentorial meningiomas with PTBE. In these, correlations in PTBE, edema index, VEGF-A protein, VEGF gene expression, capillary length, and tumor water content were investigated. DNA-branched hybridization was used for measuring VEGF gene expression...

  10. Gene Expression and Microarray Investigation of Dendrobium ...

    African Journals Online (AJOL)

    Result: Between the diabetic rat group and the wild-type group, 1339 functional genes showed differences in expression levels (p < 0.05). ... Genes whose expression normalized were mainly those affected by the disease state and associated with glucose and lipid metabolism, cell growth, apoptosis, biosynthesis, olfactory ...

  11. Expression of conserved signalling pathway genes during

    Indian Academy of Sciences (India)

    Hence, we analysed the expression of Notch, Wnt and Sonic Hedgehog (Shh) pathway genes during differentiation of R1 cells into early vascular lineages. Notch-, Wnt-and Shh-mediated signalling is important during embryonic development. Regulation of gene expression through these signalling molecules is a frequently ...

  12. Serial analysis of gene expression (SAGE)

    NARCIS (Netherlands)

    van Ruissen, Fred; Baas, Frank

    2007-01-01

    In 1995, serial analysis of gene expression (SAGE) was developed as a versatile tool for gene expression studies. SAGE technology does not require pre-existing knowledge of the genome that is being examined and therefore SAGE can be applied to many different model systems. In this chapter, the SAGE

  13. hCG stimulates angiogenic signals in lymphatic endothelial and circulating angiogenic cells.

    Science.gov (United States)

    Schanz, Andrea; Lukosz, Margarete; Hess, Alexandra P; Baston-Büst, Dunja M; Krüssel, Jan S; Heiss, Christian

    2015-08-01

    Human chorionic gonadotropin (hCG) has long been associated with the initiation and maintenance of pregnancy, where angiogenesis plays an important role. However, the function of hCG in angiogenesis and the recruitment of vascular active cells are not fully understood. In this study, the role of hCG and its receptor in circulating angiogenic and human endothelial cells, including lymphatic, uterine microvascular, and umbilical vein endothelial cells, was examined. Immunohistochemistry and immunoblot analysis were used to detect LH/hCG receptor expression and the expression of hCG-induced angiogenic molecules. HIF-1α was determined via ELISA and downstream molecules, such as CXCL12 and CXCR4, via real-time PCR. Chemotaxis was analyzed using Boyden chambers. Our results show that the LH/hCG receptor was present in all tested cells. Furthermore, hCG was able to stimulate LH/hCG-receptor-specific migration in a dose-dependent fashion and induce key angiogenic molecules, including HIF-1α, CXCL12, and CXCR4. In conclusion, our findings underscore the importance of hCG as one of the first angiogenic molecules produced by the conceptus. hCG itself alters endothelial motility, recruitment, and expression of pro-angiogenic molecules and may therefore play an important role in vascular adaption during implantation and early placental formation. Copyright © 2015. Published by Elsevier Ireland Ltd.

  14. Arabidopsis gene expression patterns during spaceflight

    Science.gov (United States)

    Paul, A.-L.; Ferl, R. J.

    The exposure of Arabidopsis thaliana (Arabidopsis) plants to spaceflight environments resulted in the differential expression of hundreds of genes. A 5 day mission on orbiter Columbia in 1999 (STS-93) carried transgenic Arabidopsis plants engineered with a transgene composed of the alcohol dehydrogenase (Adh) gene promoter linked to the β -Glucuronidase (GUS) reporter gene. The plants were used to evaluate the effects of spaceflight on two fronts. First, expression patterns visualized with the Adh/GUS transgene were used to address specifically the possibility that spaceflight induces a hypoxic stress response, and to assess whether any spaceflight response was similar to control terrestrial hypoxia-induced gene expression patterns. (Paul et al., Plant Physiol. 2001, 126:613). Second, genome-wide patterns of native gene expression were evaluated utilizing the Affymetrix ATH1 GeneChip? array of 8,000 Arabidopsis genes. As a control for the veracity of the array analyses, a selection of genes identified with the arrays was further characterized with quantitative Real-Time RT PCR (ABI - TaqmanTM). Comparison of the patterns of expression for arrays of hybridized with RNA isolated from plants exposed to spaceflight compared to the control arrays revealed hundreds of genes that were differentially expressed in response to spaceflight, yet most genes that are hallmarks of hypoxic stress were unaffected. These results will be discussed in light of current models for plant responses to the spaceflight environment, and with regard to potential future flight opportunities.

  15. Expression of Sox genes in tooth development.

    Science.gov (United States)

    Kawasaki, Katsushige; Kawasaki, Maiko; Watanabe, Momoko; Idrus, Erik; Nagai, Takahiro; Oommen, Shelly; Maeda, Takeyasu; Hagiwara, Nobuko; Que, Jianwen; Sharpe, Paul T; Ohazama, Atsushi

    2015-01-01

    Members of the Sox gene family play roles in many biological processes including organogenesis. We carried out comparative in situ hybridization analysis of seventeen sox genes (Sox1-14, 17, 18, 21) during murine odontogenesis from the epithelial thickening to the cytodifferentiation stages. Localized expression of five Sox genes (Sox6, 9, 13, 14 and 21) was observed in tooth bud epithelium. Sox13 showed restricted expression in the primary enamel knots. At the early bell stage, three Sox genes (Sox8, 11, 17 and 21) were expressed in pre-ameloblasts, whereas two others (Sox5 and 18) showed expression in odontoblasts. Sox genes thus showed a dynamic spatio-temporal expression during tooth development.

  16. Determinants of human adipose tissue gene expression

    DEFF Research Database (Denmark)

    Viguerie, Nathalie; Montastier, Emilie; Maoret, Jean-José

    2012-01-01

    of environmental and individual factors controlling AT adaptation is therefore essential. Here, expression of 271 transcripts, selected for regulation according to obesity and weight changes, was determined in 515 individuals before, after 8-week low-calorie diet-induced weight loss, and after 26-week ad libitum...... interconnection between expression of genes involved in de novo lipogenesis and components of the metabolic syndrome. Sex had a marked influence on AT expression of 88 transcripts, which persisted during the entire dietary intervention and after control for fat mass. In women, the influence of body mass index...... on expression of a subset of genes persisted during the dietary intervention. Twenty-two genes revealed a metabolic syndrome signature common to men and women. Genetic control of AT gene expression by cis signals was observed for 46 genes. Dietary intervention, sex, and cis genetic variants independently...

  17. Gene set analysis for longitudinal gene expression data

    Directory of Open Access Journals (Sweden)

    Piepho Hans-Peter

    2011-07-01

    Full Text Available Abstract Background Gene set analysis (GSA has become a successful tool to interpret gene expression profiles in terms of biological functions, molecular pathways, or genomic locations. GSA performs statistical tests for independent microarray samples at the level of gene sets rather than individual genes. Nowadays, an increasing number of microarray studies are conducted to explore the dynamic changes of gene expression in a variety of species and biological scenarios. In these longitudinal studies, gene expression is repeatedly measured over time such that a GSA needs to take into account the within-gene correlations in addition to possible between-gene correlations. Results We provide a robust nonparametric approach to compare the expressions of longitudinally measured sets of genes under multiple treatments or experimental conditions. The limiting distributions of our statistics are derived when the number of genes goes to infinity while the number of replications can be small. When the number of genes in a gene set is small, we recommend permutation tests based on our nonparametric test statistics to achieve reliable type I error and better power while incorporating unknown correlations between and within-genes. Simulation results demonstrate that the proposed method has a greater power than other methods for various data distributions and heteroscedastic correlation structures. This method was used for an IL-2 stimulation study and significantly altered gene sets were identified. Conclusions The simulation study and the real data application showed that the proposed gene set analysis provides a promising tool for longitudinal microarray analysis. R scripts for simulating longitudinal data and calculating the nonparametric statistics are posted on the North Dakota INBRE website http://ndinbre.org/programs/bioinformatics.php. Raw microarray data is available in Gene Expression Omnibus (National Center for Biotechnology Information with

  18. Positron emission tomography imaging of gene expression

    International Nuclear Information System (INIS)

    Tang Ganghua

    2001-01-01

    The merging of molecular biology and nuclear medicine is developed into molecular nuclear medicine. Positron emission tomography (PET) of gene expression in molecular nuclear medicine has become an attractive area. Positron emission tomography imaging gene expression includes the antisense PET imaging and the reporter gene PET imaging. It is likely that the antisense PET imaging will lag behind the reporter gene PET imaging because of the numerous issues that have not yet to be resolved with this approach. The reporter gene PET imaging has wide application into animal experimental research and human applications of this approach will likely be reported soon

  19. Photosynthetic gene expression in higher plants.

    Science.gov (United States)

    Berry, James O; Yerramsetty, Pradeep; Zielinski, Amy M; Mure, Christopher M

    2013-11-01

    Within the chloroplasts of higher plants and algae, photosynthesis converts light into biological energy, fueling the assimilation of atmospheric carbon dioxide into biologically useful molecules. Two major steps, photosynthetic electron transport and the Calvin-Benson cycle, require many gene products encoded from chloroplast as well as nuclear genomes. The expression of genes in both cellular compartments is highly dynamic and influenced by a diverse range of factors. Light is the primary environmental determinant of photosynthetic gene expression. Working through photoreceptors such as phytochrome, light regulates photosynthetic genes at transcriptional and posttranscriptional levels. Other processes that affect photosynthetic gene expression include photosynthetic activity, development, and biotic and abiotic stress. Anterograde (from nucleus to chloroplast) and retrograde (from chloroplast to nucleus) signaling insures the highly coordinated expression of the many photosynthetic genes between these different compartments. Anterograde signaling incorporates nuclear-encoded transcriptional and posttranscriptional regulators, such as sigma factors and RNA-binding proteins, respectively. Retrograde signaling utilizes photosynthetic processes such as photosynthetic electron transport and redox signaling to influence the expression of photosynthetic genes in the nucleus. The basic C3 photosynthetic pathway serves as the default form used by most of the plant species on earth. High temperature and water stress associated with arid environments have led to the development of specialized C4 and CAM photosynthesis, which evolved as modifications of the basic default expression program. The goal of this article is to explain and summarize the many gene expression and regulatory processes that work together to support photosynthetic function in plants.

  20. Development of gene expression assays measuring immune ...

    African Journals Online (AJOL)

    Using qPCR, the relative expression stability of the reference genes ACTB, GAPDH, YWHAZ and TBP in these samples was determined as well as the mean fold change in the expression of IFNG, CXCL8, CXCL9, CXCL10 and CXCL11 in M. bovis-antigen stimulated blood. The expression of YWHAZ and TBP showed ...

  1. Caleydo: connecting pathways and gene expression.

    Science.gov (United States)

    Streit, Marc; Lex, Alexander; Kalkusch, Michael; Zatloukal, Kurt; Schmalstieg, Dieter

    2009-10-15

    Understanding the relationships between pathways and the altered expression of their components in disease conditions can be addressed in a visual data analysis process. Caleydo uses novel visualization techniques to support life science experts in their analysis of gene expression data in the context of pathways and functions of individual genes. Pathways and gene expression visualizations are placed in a 3D scene where selected entities (i.e. genes) are visually connected. This allows Caleydo to seamlessly integrate interactive gene expression visualization with cross-database pathway exploration. The Caleydo visualization framework is freely available on www.caleydo.org for non-commercial use. It runs on Windows and Linux and requires a 3D capable graphics card.

  2. Adaptive Evolution of Gene Expression in Drosophila.

    Science.gov (United States)

    Nourmohammad, Armita; Rambeau, Joachim; Held, Torsten; Kovacova, Viera; Berg, Johannes; Lässig, Michael

    2017-08-08

    Gene expression levels are important quantitative traits that link genotypes to molecular functions and fitness. In Drosophila, population-genetic studies have revealed substantial adaptive evolution at the genomic level, but the evolutionary modes of gene expression remain controversial. Here, we present evidence that adaptation dominates the evolution of gene expression levels in flies. We show that 64% of the observed expression divergence across seven Drosophila species are adaptive changes driven by directional selection. Our results are derived from time-resolved data of gene expression divergence across a family of related species, using a probabilistic inference method for gene-specific selection. Adaptive gene expression is stronger in specific functional classes, including regulation, sensory perception, sexual behavior, and morphology. Moreover, we identify a large group of genes with sex-specific adaptation of expression, which predominantly occurs in males. Our analysis opens an avenue to map system-wide selection on molecular quantitative traits independently of their genetic basis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Differential gene expression during Trypanosoma cruzi metacyclogenesis

    Directory of Open Access Journals (Sweden)

    Marco Aurelio Krieger

    1999-09-01

    Full Text Available The transformation of epimastigotes into metacyclic trypomastigotes involves changes in the pattern of expressed genes, resulting in important morphological and functional differences between these developmental forms of Trypanosoma cruzi. In order to identify and characterize genes involved in triggering the metacyclogenesis process and in conferring to metacyclic trypomastigotes their stage specific biological properties, we have developed a method allowing the isolation of genes specifically expressed when comparing two close related cell populations (representation of differential expression or RDE. The method is based on the PCR amplification of gene sequences selected by hybridizing and subtracting the populations in such a way that after some cycles of hybridization-amplification genes specific to a given population are highly enriched. The use of this method in the analysis of differential gene expression during T. cruzi metacyclogenesis (6 hr and 24 hr of differentiation and metacyclic trypomastigotes resulted in the isolation of several clones from each time point. Northern blot analysis showed that some genes are transiently expressed (6 hr and 24 hr differentiating cells, while others are present in differentiating cells and in metacyclic trypomastigotes. Nucleotide sequencing of six clones characterized so far showed that they do not display any homology to gene sequences available in the GeneBank.

  4. Anti-vascular agent Combretastatin A-4-P modulates Hypoxia Inducible Factor-1 and gene expression

    Directory of Open Access Journals (Sweden)

    Currie Margaret J

    2006-12-01

    Full Text Available Abstract Background A functional vascular network is essential for the survival, growth and spread of solid tumours, making blood vessels a key target for therapeutic strategies. Combretastatin A-4 phosphate (CA-4-P is a tubulin-depolymerising agent in Phase II clinical trials as a vascular disrupting agent. Not much is known of the molecular effect of CA-4-P under tumour conditions. The tumour microenvironment differs markedly from that in normal tissue, specifically with respect to oxygenation (hypoxia. Gene regulation under tumour conditions is governed by hypoxia inducible factor 1 (HIF-1, controlling angiogenic and metastatic pathways. Methods We investigated the effect of CA-4-P on factors of the upstream and downstream signalling pathway of HIF-1 in vitro. Results CA-4-P treatment under hypoxia tended to reduce HIF-1 accumulation in a concentration-dependent manner, an effect which was more prominent in endothelial cells than in cancer cell lines. Conversely, CA-4-P increased HIF-1 accumulation under aerobic conditions in vitro. At these concentrations of CA-4-P under aerobic conditions, nuclear factor κB was activated via the small GTPase RhoA, and expression of the HIF-1 downstream angiogenic effector gene, vascular endothelial growth factor (VEGF-A, was increased. Conclusion Our findings advance the understanding of signal transduction pathways involved in the actions of the anti-vascular agent CA-4-P.

  5. Gene expression profiles of sporadic canine hemangiosarcoma are uniquely associated with breed.

    Directory of Open Access Journals (Sweden)

    Beth A Tamburini

    2009-05-01

    Full Text Available The role an individual's genetic background plays on phenotype and biological behavior of sporadic tumors remains incompletely understood. We showed previously that lymphomas from Golden Retrievers harbor defined, recurrent chromosomal aberrations that occur less frequently in lymphomas from other dog breeds, suggesting spontaneous canine tumors provide suitable models to define how heritable traits influence cancer genotypes. Here, we report a complementary approach using gene expression profiling in a naturally occurring endothelial sarcoma of dogs (hemangiosarcoma. Naturally occurring hemangiosarcomas of Golden Retrievers clustered separately from those of non-Golden Retrievers, with contributions from transcription factors, survival factors, and from pro-inflammatory and angiogenic genes, and which were exclusively present in hemangiosarcoma and not in other tumors or normal cells (i.e., they were not due simply to variation in these genes among breeds. Vascular Endothelial Growth Factor Receptor 1 (VEGFR1 was among genes preferentially enriched within known pathways derived from gene set enrichment analysis when characterizing tumors from Golden Retrievers versus other breeds. Heightened VEGFR1 expression in these tumors also was apparent at the protein level and targeted inhibition of VEGFR1 increased proliferation of hemangiosarcoma cells derived from tumors of Golden Retrievers, but not from other breeds. Our results suggest heritable factors mold gene expression phenotypes, and consequently biological behavior in sporadic, naturally occurring tumors.

  6. Gene Expression Profiles of Sporadic Canine Hemangiosarcoma Are Uniquely Associated with Breed

    Science.gov (United States)

    Tamburini, Beth A.; Trapp, Susan; Phang, Tzu Lip; Schappa, Jill T.; Hunter, Lawrence E.; Modiano, Jaime F.

    2009-01-01

    The role an individual's genetic background plays on phenotype and biological behavior of sporadic tumors remains incompletely understood. We showed previously that lymphomas from Golden Retrievers harbor defined, recurrent chromosomal aberrations that occur less frequently in lymphomas from other dog breeds, suggesting spontaneous canine tumors provide suitable models to define how heritable traits influence cancer genotypes. Here, we report a complementary approach using gene expression profiling in a naturally occurring endothelial sarcoma of dogs (hemangiosarcoma). Naturally occurring hemangiosarcomas of Golden Retrievers clustered separately from those of non-Golden Retrievers, with contributions from transcription factors, survival factors, and from pro-inflammatory and angiogenic genes, and which were exclusively present in hemangiosarcoma and not in other tumors or normal cells (i.e., they were not due simply to variation in these genes among breeds). Vascular Endothelial Growth Factor Receptor 1 (VEGFR1) was among genes preferentially enriched within known pathways derived from gene set enrichment analysis when characterizing tumors from Golden Retrievers versus other breeds. Heightened VEGFR1 expression in these tumors also was apparent at the protein level and targeted inhibition of VEGFR1 increased proliferation of hemangiosarcoma cells derived from tumors of Golden Retrievers, but not from other breeds. Our results suggest heritable factors mold gene expression phenotypes, and consequently biological behavior in sporadic, naturally occurring tumors. PMID:19461996

  7. EXPRESSION OF BACTERIOOPSIN GENES IN ESCHERICHIA COLI

    OpenAIRE

    TSUJIUCHI, Yutaka; IWASA, Tatsuo; TOKUNAGA, Fumio

    1994-01-01

    An inducible expression vector pUBO was constructed with native codons in order to express the gene of Bacteriorhodopsin (BOP) in Escherichia coli (E. coli). Vector pUBO contains lac-promoter followed by the partial structural gene of lacZ and the structural gene of BOP. The expression of this fusion protein was detected by ELISA with anti-BOP antiserum. The fusion protein obtained from E. coli trnsformed with pUBO formed approximately 0.1% of the total protein of the E. coli membrane fraction.

  8. Differential expression of cell adhesion genes

    DEFF Research Database (Denmark)

    Stein, Wilfred D; Litman, Thomas; Fojo, Tito

    2005-01-01

    that compare cells grown in suspension to similar cells grown attached to one another as aggregates have suggested that it is adhesion to the extracellular matrix of the basal membrane that confers resistance to apoptosis and, hence, resistance to cytotoxins. The genes whose expression correlates with poor...... survival might, therefore, act through such a matrix-to-cell suppression of apoptosis. Indeed, correlative mining of gene expression and patient survival databases suggests that poor survival in patients with metastatic cancer correlates highly with tumor expression of a common theme: the genes involved...

  9. Cyr61/CCN1 and CTGF/CCN2 mediate the pro-angiogenic activity of VHL mutant renal carcinoma cells

    Science.gov (United States)

    Chintalapudi, Mastan R.; Markiewicz, Margaret; Kose, Nurgun; Dammai, Vincent; Champion, Kristen J.; Hoda, Rana S.; Trojanowska, Maria; Hsu, Tien

    2008-01-01

    The von Hippel-Lindau (VHL) protein serves as a negative regulator of hypoxia inducible factor-alpha subunit (HIF-α). Since HIF regulates critical angiogenic factors such as vascular endothelial growth factor (VEGF) and lesions in VHL gene are present in a majority of the highly vascularized renal cell carcinoma (RCC), it is believed that deregulation of the VHL-HIF pathway is crucial for the pro-angiogenic activity of RCC. Although VEGF has been confirmed as a critical angiogenic factor up-regulated in VHL mutant cells, the efficacy of anti-angiogenic therapy specifically targeting VEGF signaling remains modest. In this study we developed a three-dimensional in vitro assay to evaluate the ability of RCC cells to promote cord formation by the primary human dermal microvascular endothelial cells (HDMECs). Compared to VHL wild-type cells, VHL mutant RCC cells demonstrated a significantly increased pro-angiogenic activity, which correlated with increased secretion of Cyr61/CCN1, CTGF/CCN2 and VEGF in conditioned culture medium. Both CCN proteins are required for HDMEC cord formation as shown by RNAi knock-down experiments. Importantly, the pro-angiogenic activities conferred by the CCN proteins and VEGF are additive, suggesting non-overlapping functions. Expression of the CCN proteins is at least partly dependent on the HIF-2α function, the dominant HIF-α isoform expressed in RCC. Finally, immunohistochemical staining of Cyr61/CCN1 and CTGF/CCN2 in renal cell carcinoma tissue samples showed that increased expression of these proteins correlates with loss of VHL protein expression. These findings strengthened the notion that the hypervascularized phenotype of RCC is afforded by multiple pro-angiogenic factors that function in parallel pathways. PMID:18212329

  10. Evaluation of anti-HIF and anti-angiogenic properties of honokiol for the treatment of ocular neovascular diseases.

    Directory of Open Access Journals (Sweden)

    Divya Teja Vavilala

    Full Text Available Pathological activation of the hypoxia-inducible-factor (HIF pathway leading to expression of pro-angiogenic genes, such as vascular endothelial growth factor (VEGF, is the fundamental cause of neovascularization in ocular ischemic diseases and cancers. We have shown that pure honokiol inhibits the HIF pathway and hypoxia-mediated expression of pro-angiogenic genes in a number of cancer and retinal pigment epithelial (RPE cell lines. The crude extracts, containing honokiol, from Magnolia plants have been used for thousands of years in the traditional oriental medicine for a number of health benefits. We have recently demonstrated that daily intraperitoneal injection of honokiol starting at postnatal day (P 12 in an oxygen induced retinopathy mouse model significantly reduced retinal neovascularization at P17. Here, we evaluate the mechanism of HIF inhibition by honokiol in RPE cells. Using chromatin immunoprecipitation experiments, we demonstrate that honokiol inhibits binding of HIF to hypoxia-response elements present on VEGF promoter. We further show using a number of in vitro angiogenesis assays that, in addition to anti-HIF effect, honokiol manifests potent anti-angiogenic effect on human retinal micro vascular endothelial cells. Our results suggest that honokiol possesses potent anti-HIF and anti-angiogenic properties. These properties of honokiol make it an ideal therapeutic agent for the treatment of ocular neovascular diseases and solid tumors.

  11. Drosophila melanogaster gene expression changes after spaceflight.

    Data.gov (United States)

    National Aeronautics and Space Administration — Gene expression levels were determined in 3rd instar and adult Drosophila melanogaster reared during spaceflight to elucidate the genetic and molecular mechanisms...

  12. PRAME gene expression profile in medulloblastoma

    Directory of Open Access Journals (Sweden)

    Tânia Maria Vulcani-Freitas

    2011-02-01

    Full Text Available Medulloblastoma is the most common malignant tumors of central nervous system in the childhood. The treatment is severe, harmful and, thus, has a dismal prognosis. As PRAME is present in various cancers, including meduloblastoma, and has limited expression in normal tissues, this antigen can be an ideal vaccine target for tumor immunotherapy. In order to find a potential molecular target, we investigated PRAME expression in medulloblastoma fragments and we compare the results with the clinical features of each patient. Analysis of gene expression was performed by real-time quantitative PCR from 37 tumor samples. The Mann-Whitney test was used to analysis the relationship between gene expression and clinical characteristics. Kaplan-Meier curves were used to evaluate survival. PRAME was overexpressed in 84% samples. But no statistical association was found between clinical features and PRAME overexpression. Despite that PRAME gene could be a strong candidate for immunotherapy since it is highly expressed in medulloblastomas.

  13. Homeobox genes expressed during echinoderm arm regeneration.

    Science.gov (United States)

    Ben Khadra, Yousra; Said, Khaled; Thorndyke, Michael; Martinez, Pedro

    2014-04-01

    Regeneration in echinoderms has proved to be more amenable to study in the laboratory than the more classical vertebrate models, since the smaller genome size and the absence of multiple orthologs for different genes in echinoderms simplify the analysis of gene function during regeneration. In order to understand the role of homeobox-containing genes during arm regeneration in echinoderms, we isolated the complement of genes belonging to the Hox class that are expressed during this process in two major echinoderm groups: asteroids (Echinaster sepositus and Asterias rubens) and ophiuroids (Amphiura filiformis), both of which show an extraordinary capacity for regeneration. By exploiting the sequence conservation of the homeobox, putative orthologs of several Hox genes belonging to the anterior, medial, and posterior groups were isolated. We also report the isolation of a few Hox-like genes expressed in the same systems.

  14. Evaluation of suitable reference genes for gene expression studies ...

    Indian Academy of Sciences (India)

    2011-12-14

    Dec 14, 2011 ... MADS family of TFs control floral organ identity within each whorl of the flower by activating downstream genes. Measuring gene expression in different tissue types and developmental stages is of fundamental importance in TFs functional research. In last few years, quantitative real-time. PCR (qRT-PCR) ...

  15. Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis.

    Science.gov (United States)

    dos Santos, Odelta; de Vargas Rigo, Graziela; Frasson, Amanda Piccoli; Macedo, Alexandre José; Tasca, Tiana

    2015-01-01

    Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR), one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis.

  16. Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis.

    Directory of Open Access Journals (Sweden)

    Odelta dos Santos

    Full Text Available Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR, one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis.

  17. RNA Sequencing Reveals that Kaposi Sarcoma-Associated Herpesvirus Infection Mimics Hypoxia Gene Expression Signature

    Science.gov (United States)

    Viollet, Coralie; Davis, David A.; Tekeste, Shewit S.; Reczko, Martin; Pezzella, Francesco; Ragoussis, Jiannis

    2017-01-01

    Kaposi sarcoma-associated herpesvirus (KSHV) causes several tumors and hyperproliferative disorders. Hypoxia and hypoxia-inducible factors (HIFs) activate latent and lytic KSHV genes, and several KSHV proteins increase the cellular levels of HIF. Here, we used RNA sequencing, qRT-PCR, Taqman assays, and pathway analysis to explore the miRNA and mRNA response of uninfected and KSHV-infected cells to hypoxia, to compare this with the genetic changes seen in chronic latent KSHV infection, and to explore the degree to which hypoxia and KSHV infection interact in modulating mRNA and miRNA expression. We found that the gene expression signatures for KSHV infection and hypoxia have a 34% overlap. Moreover, there were considerable similarities between the genes up-regulated by hypoxia in uninfected (SLK) and in KSHV-infected (SLKK) cells. hsa-miR-210, a HIF-target known to have pro-angiogenic and anti-apoptotic properties, was significantly up-regulated by both KSHV infection and hypoxia using Taqman assays. Interestingly, expression of KSHV-encoded miRNAs was not affected by hypoxia. These results demonstrate that KSHV harnesses a part of the hypoxic cellular response and that a substantial portion of hypoxia-induced changes in cellular gene expression are induced by KSHV infection. Therefore, targeting hypoxic pathways may be a useful way to develop therapeutic strategies for KSHV-related diseases. PMID:28046107

  18. Inferring gene networks from discrete expression data

    KAUST Repository

    Zhang, L.

    2013-07-18

    The modeling of gene networks from transcriptional expression data is an important tool in biomedical research to reveal signaling pathways and to identify treatment targets. Current gene network modeling is primarily based on the use of Gaussian graphical models applied to continuous data, which give a closedformmarginal likelihood. In this paper,we extend network modeling to discrete data, specifically data from serial analysis of gene expression, and RNA-sequencing experiments, both of which generate counts of mRNAtranscripts in cell samples.We propose a generalized linear model to fit the discrete gene expression data and assume that the log ratios of the mean expression levels follow a Gaussian distribution.We restrict the gene network structures to decomposable graphs and derive the graphs by selecting the covariance matrix of the Gaussian distribution with the hyper-inverse Wishart priors. Furthermore, we incorporate prior network models based on gene ontology information, which avails existing biological information on the genes of interest. We conduct simulation studies to examine the performance of our discrete graphical model and apply the method to two real datasets for gene network inference. © The Author 2013. Published by Oxford University Press. All rights reserved.

  19. Perspectives: Gene Expression in Fisheries Management

    Science.gov (United States)

    Nielsen, Jennifer L.; Pavey, Scott A.

    2010-01-01

    Functional genes and gene expression have been connected to physiological traits linked to effective production and broodstock selection in aquaculture, selective implications of commercial fish harvest, and adaptive changes reflected in non-commercial fish populations subject to human disturbance and climate change. Gene mapping using single nucleotide polymorphisms (SNPs) to identify functional genes, gene expression (analogue microarrays and real-time PCR), and digital sequencing technologies looking at RNA transcripts present new concepts and opportunities in support of effective and sustainable fisheries. Genomic tools have been rapidly growing in aquaculture research addressing aspects of fish health, toxicology, and early development. Genomic technologies linking effects in functional genes involved in growth, maturation and life history development have been tied to selection resulting from harvest practices. Incorporating new and ever-increasing knowledge of fish genomes is opening a different perspective on local adaptation that will prove invaluable in wild fish conservation and management. Conservation of fish stocks is rapidly incorporating research on critical adaptive responses directed at the effects of human disturbance and climate change through gene expression studies. Genomic studies of fish populations can be generally grouped into three broad categories: 1) evolutionary genomics and biodiversity; 2) adaptive physiological responses to a changing environment; and 3) adaptive behavioral genomics and life history diversity. We review current genomic research in fisheries focusing on those that use microarrays to explore differences in gene expression among phenotypes and within or across populations, information that is critically important to the conservation of fish and their relationship to humans.

  20. Expression of Deinococcus geothermalis trehalose synthase gene ...

    African Journals Online (AJOL)

    A novel trehalose synthase gene from Deinococcus geothermalis (DSMZ 11300) containing 1692 bp reading-frame encoding 564 amino acids was amplified using polymerase chain reaction (PCR). The gene was ligated into pET30Ek/LIC vector and expressed after isopropyl β-D-thiogalactopyranoside induction in ...

  1. Angiogenic activity of Calendula officinalis flowers L. in rats.

    Science.gov (United States)

    Parente, Leila Maria Leal; Andrade, Maria Auxiliadora; Brito, Luiz Augusto Batista; Moura, Veridiana Maria Brianezi Dignani de; Miguel, Marina Pacheco; Lino-Júnior, Ruy de Souza; Tresvenzol, Leonice Faustino Manrique; Paula, José Realino de; Paulo, Neusa Margarida

    2011-02-01

    In this work, angiogenic activity of Calendula officinalis L. (Asteraceae) ethanolic extract and dichloromethane and hexanic fractions were evaluated, considering medicinal properties, especially healing activity, are attributed to this plant. Models using 36 rats and 90 embryonated eggs were used to evaluate healing and angiogenic activities of extracts and fractions of the plant, through the induction of skin wounds and the chorioallantoic membrane, respectively. The effect of vascular proliferation was also tested from the study to verify the intensity of expression of vascular endothelial growth factor (VEGF) in cutaneous wounds in rats. The angiogenic activity of the extract and the fractions was evidenced in both experimental models. It was verified that this effect is not directly related to the expression of VEGF and it could be associated to other pro-angiogenic factors. The healing activity referred to C. officinalis is related, among other factors, to its positive effect on angiogenesis, characterized by the induction of neovascularization.

  2. Bayesian assignment of gene ontology terms to gene expression experiments.

    Science.gov (United States)

    Sykacek, P

    2012-09-15

    Gene expression assays allow for genome scale analyses of molecular biological mechanisms. State-of-the-art data analysis provides lists of involved genes, either by calculating significance levels of mRNA abundance or by Bayesian assessments of gene activity. A common problem of such approaches is the difficulty of interpreting the biological implication of the resulting gene lists. This lead to an increased interest in methods for inferring high-level biological information. A common approach for representing high level information is by inferring gene ontology (GO) terms which may be attributed to the expression data experiment. This article proposes a probabilistic model for GO term inference. Modelling assumes that gene annotations to GO terms are available and gene involvement in an experiment is represented by a posterior probabilities over gene-specific indicator variables. Such probability measures result from many Bayesian approaches for expression data analysis. The proposed model combines these indicator probabilities in a probabilistic fashion and provides a probabilistic GO term assignment as a result. Experiments on synthetic and microarray data suggest that advantages of the proposed probabilistic GO term inference over statistical test-based approaches are in particular evident for sparsely annotated GO terms and in situations of large uncertainty about gene activity. Provided that appropriate annotations exist, the proposed approach is easily applied to inferring other high level assignments like pathways. Source code under GPL license is available from the author. peter.sykacek@boku.ac.at.

  3. Bayesian assignment of gene ontology terms to gene expression experiments

    Science.gov (United States)

    Sykacek, P.

    2012-01-01

    Motivation: Gene expression assays allow for genome scale analyses of molecular biological mechanisms. State-of-the-art data analysis provides lists of involved genes, either by calculating significance levels of mRNA abundance or by Bayesian assessments of gene activity. A common problem of such approaches is the difficulty of interpreting the biological implication of the resulting gene lists. This lead to an increased interest in methods for inferring high-level biological information. A common approach for representing high level information is by inferring gene ontology (GO) terms which may be attributed to the expression data experiment. Results: This article proposes a probabilistic model for GO term inference. Modelling assumes that gene annotations to GO terms are available and gene involvement in an experiment is represented by a posterior probabilities over gene-specific indicator variables. Such probability measures result from many Bayesian approaches for expression data analysis. The proposed model combines these indicator probabilities in a probabilistic fashion and provides a probabilistic GO term assignment as a result. Experiments on synthetic and microarray data suggest that advantages of the proposed probabilistic GO term inference over statistical test-based approaches are in particular evident for sparsely annotated GO terms and in situations of large uncertainty about gene activity. Provided that appropriate annotations exist, the proposed approach is easily applied to inferring other high level assignments like pathways. Availability: Source code under GPL license is available from the author. Contact: peter.sykacek@boku.ac.at PMID:22962488

  4. Mismatch repair gene expression in gastroesophageal cancers.

    Science.gov (United States)

    Dracea, Amelia; Angelescu, Cristina; Danciulescu, Mihaela; Ciurea, Marius; Ioana, Mihai; Burada, Florin

    2015-09-01

    Mismatch repair (MMR) genes play a critical role in maintaining genomic stability, and the impairment of MMR machinery is associated with different human cancers, mainly colorectal cancer. The purpose of our study was to analyze gene expression patterns of three MMR genes (MSH2, MHS6, and EXO1) in gastroesophageal cancers, a pathology in which the contribution of DNA repair genes remains essentially unclear. A total of 45 Romanian patients diagnosed with sporadic gastroesophageal cancers were included in this study. For each patient, MMR mRNA levels were measured in biopsied tumoral (T) and peritumoral (PT) tissues obtained by upper endoscopy. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) with specific TaqMan probes was used to measure gene expression levels for MSH2, MSH6, and EXO1 genes. A significant association was observed for the investigated MMR genes, all of which were detected to be upregulated in gastroesophageal tumor samples when compared with paired normal samples. In the stratified analysis, the association was limited to gastric adenocarcinoma samples. We found no statistically significant associations between MMR gene expression and tumor site or histological grade. In our study, MSH2, MSH6, and EXO1 genes were overexpressed in gastroesophageal cancers. Further investigations based on more samples are necessary to validate our findings.

  5. Microarray analysis for delineating the gene expression in biopsies of gastrocnemius muscle of patients with chronic critical limb ischaemia compared with non-ischaemic controls.

    Science.gov (United States)

    Freund, Daniel; Brilloff, Silke; Ghazy, Tamer; Kirschner, Stephan; Gäbel, Gabor; Hinterseher, Irene; Weiss, Norbert; Mahlmann, Adrian

    2018-03-20

    Microarray analysis has been carried out in this pilot study to compare delineated gene expression profiles in the biopsies of skeletal muscle taken from patients with chronic critical limb ischaemia (CLI) and non-ischaemic control subjects. Biopsy of gastrocnemius muscle was obtained from six patients with unreconstructed CLI referred for surgical major amputation. As control, biopsies of six patients undergoing elective knee arthroplasty without evidence of peripheral arterial occlusive disease were taken. The differences in gene expression associated with angiogenic processes in specimens obtained from ischaemic and non-ischaemic skeletal muscle were confirmed by quantitative real-time polymerase chain reaction (PCR) analysis. Compared with non-ischaemic skeletal muscle biopsy of chronic-ischaemic skeletal muscle contained 55 significantly up-regulated and 45 down-regulated genes, out of which 64 genes had a known genetic product ((Author, please revise sentence)). Tissue samples of ischaemic muscle were characterized by increased expression of cell survival factors (e. g. tissue factor pathway inhibitor 2) in combination with reduced expression of cell proliferation effectors (e. g. microfibrillar-associated protein 5 and transferrin receptor). The expression of growth factors (e. g. early growth response 3 and chemokine receptor chemokine C-X-C motif ligand 4) which play a central role in arterial and angiogenic processes and anti-angiogenetic factors (e. g. pentraxin 3) were increased in chronic ischaemic skeletal muscle. An increased expression of extracellular matrix proteins (e. g. cysteine-rich angiogenic inducer 61) was also observed. Gene expression profiles in biopsies of gastrocnemius muscle in patients with chronic critical limb ischaemia showed an increase in pro-survival factors, extracellular matrix protein deposition, and impaired proliferation, compared with non-ischaemic controls. Further studies are required to analyse the endogenous repair

  6. Identification of genes showing differential expression profile ...

    Indian Academy of Sciences (India)

    in pig with genetic propensity for higher growth rate were identified by sequence analysis of 12 differentially expressed clones selected by differential screening following the generation of the subtracted cDNA population. Real-time PCR analysis con- firmed difference in expression profiles of the identified genes in ...

  7. Gene expression profiling identifies inflammation and angiogenesis as distinguishing features of canine hemangiosarcoma

    Directory of Open Access Journals (Sweden)

    Slansky Jill E

    2010-11-01

    Full Text Available Abstract Background The etiology of hemangiosarcoma remains incompletely understood. Its common occurrence in dogs suggests predisposing factors favor its development in this species. These factors could represent a constellation of heritable characteristics that promote transformation events and/or facilitate the establishment of a microenvironment that is conducive for survival of malignant blood vessel-forming cells. The hypothesis for this study was that characteristic molecular features distinguish hemangiosarcoma from non-malignant endothelial cells, and that such features are informative for the etiology of this disease. Methods We first investigated mutations of VHL and Ras family genes that might drive hemangiosarcoma by sequencing tumor DNA and mRNA (cDNA. Protein expression was examined using immunostaining. Next, we evaluated genome-wide gene expression profiling using the Affymetrix Canine 2.0 platform as a global approach to test the hypothesis. Data were evaluated using routine bioinformatics and validation was done using quantitative real time RT-PCR. Results Each of 10 tumor and four non-tumor samples analyzed had wild type sequences for these genes. At the genome wide level, hemangiosarcoma cells clustered separately from non-malignant endothelial cells based on a robust signature that included genes involved in inflammation, angiogenesis, adhesion, invasion, metabolism, cell cycle, signaling, and patterning. This signature did not simply reflect a cancer-associated angiogenic phenotype, as it also distinguished hemangiosarcoma from non-endothelial, moderately to highly angiogenic bone marrow-derived tumors (lymphoma, leukemia, osteosarcoma. Conclusions The data show that inflammation and angiogenesis are important processes in the pathogenesis of vascular tumors, but a definitive ontogeny of the cells that give rise to these tumors remains to be established. The data do not yet distinguish whether functional or ontogenetic

  8. Gene expression profiling identifies inflammation and angiogenesis as distinguishing features of canine hemangiosarcoma

    International Nuclear Information System (INIS)

    Tamburini, Beth A; Cutter, Gary R; Wojcieszyn, John W; Bellgrau, Donald; Gemmill, Robert M; Hunter, Lawrence E; Modiano, Jaime F; Phang, Tzu L; Fosmire, Susan P; Scott, Milcah C; Trapp, Susan C; Duckett, Megan M; Robinson, Sally R; Slansky, Jill E; Sharkey, Leslie C

    2010-01-01

    The etiology of hemangiosarcoma remains incompletely understood. Its common occurrence in dogs suggests predisposing factors favor its development in this species. These factors could represent a constellation of heritable characteristics that promote transformation events and/or facilitate the establishment of a microenvironment that is conducive for survival of malignant blood vessel-forming cells. The hypothesis for this study was that characteristic molecular features distinguish hemangiosarcoma from non-malignant endothelial cells, and that such features are informative for the etiology of this disease. We first investigated mutations of VHL and Ras family genes that might drive hemangiosarcoma by sequencing tumor DNA and mRNA (cDNA). Protein expression was examined using immunostaining. Next, we evaluated genome-wide gene expression profiling using the Affymetrix Canine 2.0 platform as a global approach to test the hypothesis. Data were evaluated using routine bioinformatics and validation was done using quantitative real time RT-PCR. Each of 10 tumor and four non-tumor samples analyzed had wild type sequences for these genes. At the genome wide level, hemangiosarcoma cells clustered separately from non-malignant endothelial cells based on a robust signature that included genes involved in inflammation, angiogenesis, adhesion, invasion, metabolism, cell cycle, signaling, and patterning. This signature did not simply reflect a cancer-associated angiogenic phenotype, as it also distinguished hemangiosarcoma from non-endothelial, moderately to highly angiogenic bone marrow-derived tumors (lymphoma, leukemia, osteosarcoma). The data show that inflammation and angiogenesis are important processes in the pathogenesis of vascular tumors, but a definitive ontogeny of the cells that give rise to these tumors remains to be established. The data do not yet distinguish whether functional or ontogenetic plasticity creates this phenotype, although they suggest that cells

  9. Gene expression profiling identifies inflammation and angiogenesis as distinguishing features of canine hemangiosarcoma.

    Science.gov (United States)

    Tamburini, Beth A; Phang, Tzu L; Fosmire, Susan P; Scott, Milcah C; Trapp, Susan C; Duckett, Megan M; Robinson, Sally R; Slansky, Jill E; Sharkey, Leslie C; Cutter, Gary R; Wojcieszyn, John W; Bellgrau, Donald; Gemmill, Robert M; Hunter, Lawrence E; Modiano, Jaime F

    2010-11-09

    The etiology of hemangiosarcoma remains incompletely understood. Its common occurrence in dogs suggests predisposing factors favor its development in this species. These factors could represent a constellation of heritable characteristics that promote transformation events and/or facilitate the establishment of a microenvironment that is conducive for survival of malignant blood vessel-forming cells. The hypothesis for this study was that characteristic molecular features distinguish hemangiosarcoma from non-malignant endothelial cells, and that such features are informative for the etiology of this disease. We first investigated mutations of VHL and Ras family genes that might drive hemangiosarcoma by sequencing tumor DNA and mRNA (cDNA). Protein expression was examined using immunostaining. Next, we evaluated genome-wide gene expression profiling using the Affymetrix Canine 2.0 platform as a global approach to test the hypothesis. Data were evaluated using routine bioinformatics and validation was done using quantitative real time RT-PCR. Each of 10 tumor and four non-tumor samples analyzed had wild type sequences for these genes. At the genome wide level, hemangiosarcoma cells clustered separately from non-malignant endothelial cells based on a robust signature that included genes involved in inflammation, angiogenesis, adhesion, invasion, metabolism, cell cycle, signaling, and patterning. This signature did not simply reflect a cancer-associated angiogenic phenotype, as it also distinguished hemangiosarcoma from non-endothelial, moderately to highly angiogenic bone marrow-derived tumors (lymphoma, leukemia, osteosarcoma). The data show that inflammation and angiogenesis are important processes in the pathogenesis of vascular tumors, but a definitive ontogeny of the cells that give rise to these tumors remains to be established. The data do not yet distinguish whether functional or ontogenetic plasticity creates this phenotype, although they suggest that cells

  10. Regulation of gene expression in human tendinopathy

    Directory of Open Access Journals (Sweden)

    Archambault Joanne M

    2011-05-01

    Full Text Available Abstract Background Chronic tendon injuries, also known as tendinopathies, are common among professional and recreational athletes. These injuries result in a significant amount of morbidity and health care expenditure, yet little is known about the molecular mechanisms leading to tendinopathy. Methods We have used histological evaluation and molecular profiling to determine gene expression changes in 23 human patients undergoing surgical procedures for the treatment of chronic tendinopathy. Results Diseased tendons exhibit altered extracellular matrix, fiber disorientation, increased cellular content and vasculature, and the absence of inflammatory cells. Global gene expression profiling identified 983 transcripts with significantly different expression patterns in the diseased tendons. Global pathway analysis further suggested altered expression of extracellular matrix proteins and the lack of an appreciable inflammatory response. Conclusions Identification of the pathways and genes that are differentially regulated in tendinopathy samples will contribute to our understanding of the disease and the development of novel therapeutics.

  11. Noise minimization in eukaryotic gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, Hunter B.; Hirsh, Aaron E.; Giaever, Guri; Kumm, Jochen; Eisen, Michael B.

    2004-01-15

    All organisms have elaborate mechanisms to control rates of protein production. However, protein production is also subject to stochastic fluctuations, or noise. Several recent studies in Saccharomyces cerevisiae and Escherichia coli have investigated the relationship between transcription and translation rates and stochastic fluctuations in protein levels, or more generally, how such randomness is a function of intrinsic and extrinsic factors. However, the fundamental question of whether stochasticity in protein expression is generally biologically relevant has not been addressed, and it remains unknown whether random noise in the protein production rate of most genes significantly affects the fitness of any organism. We propose that organisms should be particularly sensitive to variation in the protein levels of two classes of genes: genes whose deletion is lethal to the organism and genes that encode subunits of multiprotein complexes. Using an experimentally verified model of stochastic gene expression in S. cerevisiae, we estimate the noise in protein production for nearly every yeast gene, and confirm our prediction that the production of essential and complex-forming proteins involves lower levels of noise than does the production of most other genes. Our results support the hypothesis that noise in gene expression is a biologically important variable, is generally detrimental to organismal fitness, and is subject to natural selection.

  12. Global gene expression in Escherichia coli biofilms

    DEFF Research Database (Denmark)

    Schembri, Mark; Kjærgaard, K.; Klemm, Per

    2003-01-01

    It is now apparent that microorganisms undergo significant changes during the transition from planktonic to biofilm growth. These changes result in phenotypic adaptations that allow the formation of highly organized and structured sessile communities, which possess enhanced resistance...... to antimicrobial treatments and host immune defence responses. Escherichia coli has been used as a model organism to study the mechanisms of growth within adhered communities. In this study, we use DNA microarray technology to examine the global gene expression profile of E. coli during sessile growth compared...... the transition to biofilm growth, and these included genes expressed under oxygen-limiting conditions, genes encoding (putative) transport proteins, putative oxidoreductases and genes associated with enhanced heavy metal resistance. Of particular interest was the observation that many of the genes altered...

  13. Characterization and Angiogenic Potential of Human Neonatal and Infant Thymus Mesenchymal Stromal Cells

    Science.gov (United States)

    Wang, Shuyun; Mundada, Lakshmi; Johnson, Sean; Wong, Joshua; Witt, Russell; Ohye, Richard G.

    2015-01-01

    Resident mesenchymal stromal cells (MSCs) are involved in angiogenesis during thymus regeneration. We have previously shown that MSCs can be isolated from enzymatically digested human neonatal and infant thymus tissue that is normally discarded during pediatric cardiac surgical procedures. In this paper, we demonstrate that thymus MSCs can also be isolated by explant culture of discarded thymus tissue and that these cells share many of the characteristics of bone marrow MSCs. Human neonatal thymus MSCs are clonogenic, demonstrate exponential growth in nearly 30 population doublings, have a characteristic surface marker profile, and express pluripotency genes. Furthermore, thymus MSCs have potent proangiogenic behavior in vitro with sprout formation and angiogenic growth factor production. Thymus MSCs promote neoangiogenesis and cooperate with endothelial cells to form functional human blood vessels in vivo. These characteristics make thymus MSCs a potential candidate for use as an angiogenic cell therapeutic agent and for vascularizing engineered tissues in vitro. PMID:25713463

  14. Characterization and angiogenic potential of human neonatal and infant thymus mesenchymal stromal cells.

    Science.gov (United States)

    Wang, Shuyun; Mundada, Lakshmi; Johnson, Sean; Wong, Joshua; Witt, Russell; Ohye, Richard G; Si, Ming-Sing

    2015-04-01

    Resident mesenchymal stromal cells (MSCs) are involved in angiogenesis during thymus regeneration. We have previously shown that MSCs can be isolated from enzymatically digested human neonatal and infant thymus tissue that is normally discarded during pediatric cardiac surgical procedures. In this paper, we demonstrate that thymus MSCs can also be isolated by explant culture of discarded thymus tissue and that these cells share many of the characteristics of bone marrow MSCs. Human neonatal thymus MSCs are clonogenic, demonstrate exponential growth in nearly 30 population doublings, have a characteristic surface marker profile, and express pluripotency genes. Furthermore, thymus MSCs have potent proangiogenic behavior in vitro with sprout formation and angiogenic growth factor production. Thymus MSCs promote neoangiogenesis and cooperate with endothelial cells to form functional human blood vessels in vivo. These characteristics make thymus MSCs a potential candidate for use as an angiogenic cell therapeutic agent and for vascularizing engineered tissues in vitro. ©AlphaMed Press.

  15. Immuno-Expression of Endoglin and Smooth Muscle Actin in the Vessels of Brain Metastases. Is There a Rational for Anti-Angiogenic Therapy?

    Directory of Open Access Journals (Sweden)

    Valeria Barresi

    2014-04-01

    Full Text Available Despite ongoing clinical trials, the efficacy of anti-angiogenic drugs for the treatment of brain metastases (BM is still questionable. The lower response rate to anti-angiogenic therapy in the presence of BM than in metastatic disease involving other sites suggests that BM may be insensitive to these drugs, although the biological reasons underlining this phenomenon are still to be clarified. With the aim of assessing whether the targets of anti-angiogenic therapies are actually present in BM, in the present study, we analyzed the microvessel density (MVD, a measure of neo-angiogenesis, and the vascular phenotype (mature vs. immature in the tumor tissue of a series of BM derived from different primary tumors. By using immunohistochemistry against endoglin, a specific marker for newly formed vessels, we found that neo-angiogenesis widely varies in BM depending on the site of the primary tumor, as well as on its histotype. According to our results, BM from lung cancer displayed the highest MVD counts, while those from renal carcinoma had the lowest. Then, among BM from lung cancer, those from large cell and adenocarcinoma histotypes had significantly higher MVD counts than those originating from squamous cell carcinoma (p = 0.0043; p = 0.0063. Of note, MVD counts were inversely correlated with the maturation index of the endoglin-stained vessels, reflected by the coverage of smooth muscle actin (SMA positive pericytes (r = −0.693; p < 0.0001. Accordingly, all the endoglin-positive vessels in BM from pulmonary squamous cell carcinoma and renal carcinoma, displayed a mature phenotype, while vessels with an immature phenotype were found in highly vascularized BM from pulmonary large cell and adenocarcinoma. The low MVD and mature phenotype observed in BM from some primary tumors may account for their low sensitivity to anti-angiogenic therapies. Although our findings need to be validated in correlative studies with a clinical response, this should

  16. Human AZU-1 gene, variants thereof and expressed gene products

    Science.gov (United States)

    Chen, Huei-Mei; Bissell, Mina

    2004-06-22

    A human AZU-1 gene, mutants, variants and fragments thereof. Protein products encoded by the AZU-1 gene and homologs encoded by the variants of AZU-1 gene acting as tumor suppressors or markers of malignancy progression and tumorigenicity reversion. Identification, isolation and characterization of AZU-1 and AZU-2 genes localized to a tumor suppressive locus at chromosome 10q26, highly expressed in nonmalignant and premalignant cells derived from a human breast tumor progression model. A recombinant full length protein sequences encoded by the AZU-1 gene and nucleotide sequences of AZU-1 and AZU-2 genes and variant and fragments thereof. Monoclonal or polyclonal antibodies specific to AZU-1, AZU-2 encoded protein and to AZU-1, or AZU-2 encoded protein homologs.

  17. Molecular mechanisms of anti-angiogenic effect of curcumin.

    Science.gov (United States)

    Gururaj, Anupama E; Belakavadi, Madesh; Venkatesh, Deepak A; Marmé, Dieter; Salimath, Bharathi P

    2002-10-04

    Modulation of pathological angiogenesis by curcumin (diferuloylmethane), the active principle of turmeric, seems to be an important possibility meriting mechanistic investigations. In this report, we have studied the effect of curcumin on the growth of Ehrlich ascites tumor cells and endothelial cells in vitro. Further, regulation of tumor angiogenesis by modulation of angiogenic ligands and their receptor gene expression in tumor and endothelial cells, respectively, by curcumin was investigated. Curcumin, when injected intraperitoneally (i.p) into mice, effectively decreased the formation of ascites fluid by 66% in EAT bearing mice in vivo. Reduction in the number of EAT cells and human umbelical vein endothelial cells (HUVECs) in vitro by curcumin, without being cytotoxic to these cells, is attributed to induction of apoptosis by curcumin, as is evident by an increase in cells with fractional DNA content seen in our results on FACS analysis. However, curcumin had no effect on the growth of NIH3T3 cells. Curcumin proved to be a potent angioinhibitory compound, as demonstrated by inhibition of angiogenesis in two in vivo angiogenesis assay systems, viz. peritoneal angiogenesis and chorioallantoic membrane assay. The angioinhibitory effect of curcumin in vivo was corroborated by the results on down-regulation of the expression of proangiogenic genes, in EAT, NIH3T3, and endothelial cells by curcumin. Our results on Northern blot analysis clearly indicated a time-dependent (0-24h) inhibition by curcumin of VEGF, angiopoietin 1 and 2 gene expression in EAT cells, VEGF and angiopoietin 1 gene expression in NIH3T3 cells, and KDR gene expression in HUVECs. Further, decreased VEGF levels in conditioned media from cells treated with various doses of curcumin (1 microM-1mM) for various time periods (0-24h) confirm its angioinhibitory action at the level of gene expression. Because of its non-toxic nature, curcumin could be further developed to treat chronic diseases that

  18. Expression Study of Banana Pathogenic Resistance Genes

    Directory of Open Access Journals (Sweden)

    Fenny M. Dwivany

    2016-10-01

    Full Text Available Banana is one of the world's most important trade commodities. However, infection of banana pathogenic fungi (Fusarium oxysporum race 4 is one of the major causes of decreasing production in Indonesia. Genetic engineering has become an alternative way to control this problem by isolating genes that involved in plant defense mechanism against pathogens. Two of the important genes are API5 and ChiI1, each gene encodes apoptosis inhibitory protein and chitinase enzymes. The purpose of this study was to study the expression of API5 and ChiI1 genes as candidate pathogenic resistance genes. The amplified fragments were then cloned, sequenced, and confirmed with in silico studies. Based on sequence analysis, it is showed that partial API5 gene has putative transactivation domain and ChiI1 has 9 chitinase family GH19 protein motifs. Data obtained from this study will contribute in banana genetic improvement.

  19. Biomimetic composite scaffold SIS/MBG exhibits high osteogenic and angiogenic capacity.

    Science.gov (United States)

    Sun, Tingfang; Liu, Man; Yao, Sheng; Ji, Yanhui; Xiong, Zekang; Tang, Kai; Chen, Kaifang; Yang, Hu; Guo, Xiao-Dong

    2018-01-19

    Biomaterials with excellent osteogenic and angiogenic activities are desirable to repair massive bone defects. Decellularized matrix from porcine small intestinal submucosa (SIS) has attracted particular attention for tissue regeneration because it has strong angiogenic effects and retains plentiful bioactive components. However, it has inferior osteoinductivity and osteoconductivity. In this study, we developed porous composite of SIS combined with mesoporous bioactive glass (SIS/MBG) with the goal of improving the mechanical and biological properties. SIS/MBG scaffolds showed uniform interconnected macropores (~150 μm), high porosity (~76%) and enhanced compressive strength (~0.87 MPa). The proliferation and osteogenic gene expression (Runx2, ALP, Ocn and Col-Iα) of rat bone marrow stromal cells (rBMSCs) as well as the proliferation, angiogenic gene expression (VEGF, bFGF, and KDR) and tube formation capacity of human umbilical vein endothelial cells (HUVECs) in SIS/MBG scaffolds were significantly upregulated compared with non-mesoporous bioactive glass (BG)-modified SIS (SIS/BG) and SIS-only scaffolds. Western blot analysis revealed that SIS/MBG induced rBMSCs to osteogenic differentiation via the activation of Wnt/β-Catenin signaling pathway, and SIS/MBG enhanced angiogenic activity of HUVEC via the activation of PI3k/Akt pathways. The in vivo results demonstrated that SIS/MBG scaffolds significantly enhanced new bone formation and neovascularization simultaneously in critical-sized rat calvarial defects as compared to SIS/BG and SIS. Collectively, the osteostimulative and angiostimulative biomimetic composite scaffold SIS/MBG represents an exciting biomaterial option for bone regeneration.

  20. Gene expression analysis of flax seed development

    Directory of Open Access Journals (Sweden)

    Sharpe Andrew

    2011-04-01

    Full Text Available Abstract Background Flax, Linum usitatissimum L., is an important crop whose seed oil and stem fiber have multiple industrial applications. Flax seeds are also well-known for their nutritional attributes, viz., omega-3 fatty acids in the oil and lignans and mucilage from the seed coat. In spite of the importance of this crop, there are few molecular resources that can be utilized toward improving seed traits. Here, we describe flax embryo and seed development and generation of comprehensive genomic resources for the flax seed. Results We describe a large-scale generation and analysis of expressed sequences in various tissues. Collectively, the 13 libraries we have used provide a broad representation of genes active in developing embryos (globular, heart, torpedo, cotyledon and mature stages seed coats (globular and torpedo stages and endosperm (pooled globular to torpedo stages and genes expressed in flowers, etiolated seedlings, leaves, and stem tissue. A total of 261,272 expressed sequence tags (EST (GenBank accessions LIBEST_026995 to LIBEST_027011 were generated. These EST libraries included transcription factor genes that are typically expressed at low levels, indicating that the depth is adequate for in silico expression analysis. Assembly of the ESTs resulted in 30,640 unigenes and 82% of these could be identified on the basis of homology to known and hypothetical genes from other plants. When compared with fully sequenced plant genomes, the flax unigenes resembled poplar and castor bean more than grape, sorghum, rice or Arabidopsis. Nearly one-fifth of these (5,152 had no homologs in sequences reported for any organism, suggesting that this category represents genes that are likely unique to flax. Digital analyses revealed gene expression dynamics for the biosynthesis of a number of important seed constituents during seed development. Conclusions We have developed a foundational database of expressed sequences and collection of plasmid

  1. Gene expression analysis of flax seed development.

    Science.gov (United States)

    Venglat, Prakash; Xiang, Daoquan; Qiu, Shuqing; Stone, Sandra L; Tibiche, Chabane; Cram, Dustin; Alting-Mees, Michelle; Nowak, Jacek; Cloutier, Sylvie; Deyholos, Michael; Bekkaoui, Faouzi; Sharpe, Andrew; Wang, Edwin; Rowland, Gordon; Selvaraj, Gopalan; Datla, Raju

    2011-04-29

    Flax, Linum usitatissimum L., is an important crop whose seed oil and stem fiber have multiple industrial applications. Flax seeds are also well-known for their nutritional attributes, viz., omega-3 fatty acids in the oil and lignans and mucilage from the seed coat. In spite of the importance of this crop, there are few molecular resources that can be utilized toward improving seed traits. Here, we describe flax embryo and seed development and generation of comprehensive genomic resources for the flax seed. We describe a large-scale generation and analysis of expressed sequences in various tissues. Collectively, the 13 libraries we have used provide a broad representation of genes active in developing embryos (globular, heart, torpedo, cotyledon and mature stages) seed coats (globular and torpedo stages) and endosperm (pooled globular to torpedo stages) and genes expressed in flowers, etiolated seedlings, leaves, and stem tissue. A total of 261,272 expressed sequence tags (EST) (GenBank accessions LIBEST_026995 to LIBEST_027011) were generated. These EST libraries included transcription factor genes that are typically expressed at low levels, indicating that the depth is adequate for in silico expression analysis. Assembly of the ESTs resulted in 30,640 unigenes and 82% of these could be identified on the basis of homology to known and hypothetical genes from other plants. When compared with fully sequenced plant genomes, the flax unigenes resembled poplar and castor bean more than grape, sorghum, rice or Arabidopsis. Nearly one-fifth of these (5,152) had no homologs in sequences reported for any organism, suggesting that this category represents genes that are likely unique to flax. Digital analyses revealed gene expression dynamics for the biosynthesis of a number of important seed constituents during seed development. We have developed a foundational database of expressed sequences and collection of plasmid clones that comprise even low-expressed genes such as

  2. Gene expression profiles in skeletal muscle after gene electrotransfer

    DEFF Research Database (Denmark)

    Hojman, Pernille; Zibert, John R; Gissel, Hanne

    2007-01-01

    ) followed by a long low voltage pulse (LV, 100 V/cm, 400 ms); a pulse combination optimised for efficient and safe gene transfer. Muscles were transfected with green fluorescent protein (GFP) and excised at 4 hours, 48 hours or 3 weeks after treatment. RESULTS: Differentially expressed genes were...... with the control muscles. Most interestingly, no changes in the expression of proteins involved in inflammatory responses or muscle regeneration was detected, indicating limited muscle damage and regeneration. Histological analysis revealed structural changes with loss of cell integrity and striation pattern......BACKGROUND: Gene transfer by electroporation (DNA electrotransfer) to muscle results in high level long term transgenic expression, showing great promise for treatment of e.g. protein deficiency syndromes. However little is known about the effects of DNA electrotransfer on muscle fibres. We have...

  3. Visualizing Gene Expression In Situ

    Energy Technology Data Exchange (ETDEWEB)

    Burlage, R.S.

    1998-11-02

    Visualizing bacterial cells and describing their responses to the environment are difficult tasks. Their small size is the chief reason for the difficulty, which means that we must often use many millions of cells in a sample in order to determine what the average response of the bacteria is. However, an average response can sometimes mask important events in bacterial physiology, which means that our understanding of these organisms will suffer. We have used a variety of instruments to visualize bacterial cells, all of which tell us something different about the sample. We use a fluorescence activated cell sorter to sort cells based on the fluorescence provided by bioreporter genes, and these can be used to select for particular genetic mutations. Cells can be visualized by epifluorescent microscopy, and sensitive photodetectors can be added that allow us to find a single bacterial cell that is fluorescent or bioluminescent. We have also used standard photomultipliers to examine cell aggregates as field bioreporter microorganisms. Examples of each of these instruments show how our understanding of bacterial physiology has changed with the technology.

  4. Comparison of anti-angiogenic properties of pristine carbon nanoparticles

    DEFF Research Database (Denmark)

    Wierzbicki, Mateusz; Sawosz, Ewa; Grodzik, Marta

    2013-01-01

    nanoparticles decreased the expression of vascular endothelial growth factor receptor. These results provide new insights into the biological activity of carbon nanomaterials and emphasise the potential use of multi-wall nanotubes and diamond nanoparticles in anti-angiogenic tumour therapy.......Angiogenesis is vital for tumour formation, development and metastasis. Recent reports show that carbon nanomaterials inhibit various angiogenic signalling pathways and, therefore, can be potentially used in anti-angiogenic therapy. In the present study, we compared the effect of different carbon...... nanomaterials on blood vessel development. Diamond nanoparticles, graphite nanoparticles, graphene nanosheets, multi-wall nanotubes and C60 fullerenes were evaluated for their angiogenic activities using the in ovo chick embryo chorioallantoic membrane model. Diamond nanoparticles and multi-wall nanotubes...

  5. Angiogenic potential of 3-nitro-4-hydroxy benzene arsonic acid (roxarsone).

    Science.gov (United States)

    Basu, Partha; Ghosh, Richik N; Grove, Linnette E; Klei, Linda; Barchowsky, Aaron

    2008-04-01

    Roxarsone (3-nitro-4-hydroxy benzene arsonic acid) is an arsenic compound widely used in the poultry industry as a feed additive to prevent coccidiosis, stimulate growth, and to improve tissue pigmentation. Little is known about the potential human health effects from roxarsone released into the environment from chicken waste or from residual compound in chicken products. The growth potentiation and enhanced tissue pigmentation suggest that low levels of roxarsone exposure may have an angiogenic potential similar to that of inorganic arsenite (As(III)). The goal of this investigation was to test the hypothesis described above using cultured human aortic and lung microvascular endothelial cells in high-content imaging tube-forming assays and begin developing a molecular level understanding of the process. We used a three-dimensional Matrigel assay for probing angiogenesis in cultured human endothelial cells, and a polymerase chain reaction (PCR) array to probe the gene changes as a function of roxarsone or As(III) treatment. In addition, we used Western blot analysis for changes in protein concentration and activation. Roxarsone was found to exhibit a higher angiogenic index than As(III) at lower concentrations. Increased endothelial nitric oxide synthase (eNOS) activity was observed for roxarsone but not for As(III)-induced angiogenesis. However, As(III) caused more rapid and pronounced phosphorylation of eNOS. Quantitative PCR array on select genes revealed that the two compounds have different and often opposite effects on angiogenic gene expression. The results demonstrate that roxarsone and As(III) promote angiogenic phenotype in human endothelial cells through distinctly different signaling mechanisms.

  6. Renal Gene Expression Database (RGED): a relational database of gene expression profiles in kidney disease

    Science.gov (United States)

    Zhang, Qingzhou; Yang, Bo; Chen, Xujiao; Xu, Jing; Mei, Changlin; Mao, Zhiguo

    2014-01-01

    We present a bioinformatics database named Renal Gene Expression Database (RGED), which contains comprehensive gene expression data sets from renal disease research. The web-based interface of RGED allows users to query the gene expression profiles in various kidney-related samples, including renal cell lines, human kidney tissues and murine model kidneys. Researchers can explore certain gene profiles, the relationships between genes of interests and identify biomarkers or even drug targets in kidney diseases. The aim of this work is to provide a user-friendly utility for the renal disease research community to query expression profiles of genes of their own interest without the requirement of advanced computational skills. Availability and implementation: Website is implemented in PHP, R, MySQL and Nginx and freely available from http://rged.wall-eva.net. Database URL: http://rged.wall-eva.net PMID:25252782

  7. Sequencing and Gene Expression Analysis of Leishmania tropica LACK Gene.

    Science.gov (United States)

    Hammoudeh, Nour; Kweider, Mahmoud; Abbady, Abdul-Qader; Soukkarieh, Chadi

    2014-01-01

    Leishmania Homologue of receptors for Activated C Kinase (LACK) antigen is a 36-kDa protein, which provokes a very early immune response against Leishmania infection. There are several reports on the expression of LACK through different life-cycle stages of genus Leishmania, but only a few of them have focused on L.tropica. The present study provides details of the cloning, DNA sequencing and gene expression of LACK in this parasite species. First, several local isolates of Leishmania parasites were typed in our laboratory using PCR technique to verify of Leishmania parasite species. After that, LACK gene was amplified and cloned into a vector for sequencing. Finally, the expression of this molecule in logarithmic and stationary growth phase promastigotes, as well as in amastigotes, was evaluated by Reverse Transcription-PCR (RT-PCR) technique. The typing result confirmed that all our local isolates belong to L.tropica. LACK gene sequence was determined and high similarity was observed with the sequences of other Leishmania species. Furthermore, the expression of LACK gene in both promastigotes and amastigotes forms was confirmed. Overall, the data set the stage for future studies of the properties and immune role of LACK gene products.

  8. [Imprinting genes and it's expression in Arabidopsis].

    Science.gov (United States)

    Zhang, Hong-Yu; Xu, Pei-Zhou; Yang, Hua; Wu, Xian-Jun

    2010-07-01

    Genomic imprinting refers to the phenomenon that the expression of a gene copy depends on its parent of origin. The Arabidopsis imprinted FIS (Fertilisation-independent seed) genes, mea, fis2, and fie, play essential roles in the repression of central cell and the regulation of early endosperm development. fis mutants display two phenotypes: autonomous diploid endosperm development when fertilization is absent and un-cellularised endosperm formation when fertilization occurs. The FIS Polycomb protein complex including the above three FIS proteins catalyzes histone H3 K27 tri-methylation on target loci. DME (DEMETER), a DNA glycosylase, and AtMET1 (Methyltransferase1), a DNA methyltransferase, are involved in the regulation of imprinted expression of both mea and fis2. This review summarizes the studies on the Arabidopsis imprinted FIS genes and other related genes. Recent works have shown that the insertion of transposons may affect nearby gene expression, which may be the main driving force behind the evolution of genomic imprinting. This summary covers the achievements on Arabidopsis imprinted genes will provide important information for studies on genomic imprinting in the important crops such as rice and maize.

  9. Gene expression profiling for pharmaceutical toxicology screening.

    Science.gov (United States)

    Bugelski, Peter J

    2002-01-01

    Advances in medicinal chemistry and high-throughput pharmacological screening are creating a multitude of potential lead compounds. There is also heightened concern about drug-induced toxicity, which is all too often uncovered late in development or at the post marketing stage. Together, these factors have created a need for novel approaches to screen for toxicity. There have been technological advances that enable study of changes in the gene expression profile caused by toxic insults and important steps made toward unraveling target organ toxicity at the molecular level. Thus, gene expression profile-based screens hold the promise to revolutionize the way in which compounds are selected for development. For screens focused on specific mechanisms of toxicity, reporter gene systems have proven utility, albeit modest because of our limited knowledge of which genes are true surrogate markers for toxicity. For broader forecasts of toxicity, DNA microarrays hold great promise for delivering practical gene expression profile screens (GEPS). For this promise to be realized, however, a number of technological hurdles must be cleared: (i) cost; (ii) reproducibility; (iii) throughput; and (iv) data analysis. Of equal if not greater importance, issues relating to the test systems used, the requisite number of genes to be studied and the size and scope of the database upon which forecasts will be based must be addressed. At present, the proof-of-concept for GEPS for toxicity is in hand, and we are poised to realize the goal of creating practical GEPS for application in compound prioritization.

  10. Differential testicular gene expression in seasonal fertility

    Science.gov (United States)

    Maywood, Elizabeth S.; Chahad-Ehlers, Samira; Garabette, Martine L.; Pritchard, Claire; Underhill, Phillip; Greenfield, Andrew; Ebling, Francis J. P.; Kyriacou, Charalambos P.; Hastings, Michael H.; Reddy, Akhilesh B.

    2012-01-01

    Spermatogenesis is an essential precursor for successful sexual reproduction. Recently, there has been an expansion in our knowledge of the genes associated with particular stages of normal, physiological testicular development and pubertal activation. What has been lacking, however, is an understanding of those genes that are involved in specifically regulating sperm production, rather than in maturation and elaboration of the testis as an organ. By utilising the reversible (seasonal) fertility of the Syrian hamster as a model system, we sought to discover genes which are specifically involved in turning off sperm production and not in tissue specification and/or maturation. Using gene expression microarrays and in situ hybridisation in hamsters and genetically infertile mice, we have identified a variety of known and novel factors involved in reversible, transcriptional, translational and post-translational control of testicular function, as well those involved in cell division and macromolecular metabolism. The novel genes uncovered could be potential targets for therapies against fertility disorders. PMID:19346449

  11. Gene expression during normal and FSHD myogenesis

    Directory of Open Access Journals (Sweden)

    Sowden Janet

    2011-09-01

    Full Text Available Abstract Background Facioscapulohumeral muscular dystrophy (FSHD is a dominant disease linked to contraction of an array of tandem 3.3-kb repeats (D4Z4 at 4q35. Within each repeat unit is a gene, DUX4, that can encode a protein containing two homeodomains. A DUX4 transcript derived from the last repeat unit in a contracted array is associated with pathogenesis but it is unclear how. Methods Using exon-based microarrays, the expression profiles of myogenic precursor cells were determined. Both undifferentiated myoblasts and myoblasts differentiated to myotubes derived from FSHD patients and controls were studied after immunocytochemical verification of the quality of the cultures. To further our understanding of FSHD and normal myogenesis, the expression profiles obtained were compared to those of 19 non-muscle cell types analyzed by identical methods. Results Many of the ~17,000 examined genes were differentially expressed (> 2-fold, p DUX4 RNA isoform was detected by RT-PCR in FSHD myoblast and myotube preparations only at extremely low levels. Unique insights into myogenesis-specific gene expression were also obtained. For example, all four Argonaute genes involved in RNA-silencing were significantly upregulated during normal (but not FSHD myogenesis relative to non-muscle cell types. Conclusions DUX4's pathogenic effect in FSHD may occur transiently at or before the stage of myoblast formation to establish a cascade of gene dysregulation. This contrasts with the current emphasis on toxic effects of experimentally upregulated DUX4 expression at the myoblast or myotube stages. Our model could explain why DUX4's inappropriate expression was barely detectable in myoblasts and myotubes but nonetheless linked to FSHD.

  12. Gene expression analysis identifies global gene dosage sensitivity in cancer

    DEFF Research Database (Denmark)

    Fehrmann, Rudolf S. N.; Karjalainen, Juha M.; Krajewska, Malgorzata

    2015-01-01

    Many cancer-associated somatic copy number alterations (SCNAs) are known. Currently, one of the challenges is to identify the molecular downstream effects of these variants. Although several SCNAs are known to change gene expression levels, it is not clear whether each individual SCNA affects gen...

  13. Gene expression analysis of zebrafish heart regeneration.

    Directory of Open Access Journals (Sweden)

    Ching-Ling Lien

    2006-08-01

    Full Text Available Mammalian hearts cannot regenerate. In contrast, zebrafish hearts regenerate even when up to 20% of the ventricle is amputated. The mechanism of zebrafish heart regeneration is not understood. To systematically characterize this process at the molecular level, we generated transcriptional profiles of zebrafish cardiac regeneration by microarray analyses. Distinct gene clusters were identified based on temporal expression patterns. Genes coding for wound response/inflammatory factors, secreted molecules, and matrix metalloproteinases are expressed in regenerating heart in sequential patterns. Comparisons of gene expression profiles between heart and fin regeneration revealed a set of regeneration core molecules as well as tissue-specific factors. The expression patterns of several secreted molecules around the wound suggest that they play important roles in heart regeneration. We found that both platelet-derived growth factor-a and -b (pdgf-a and pdgf-b are upregulated in regenerating zebrafish hearts. PDGF-B homodimers induce DNA synthesis in adult zebrafish cardiomyocytes. In addition, we demonstrate that a chemical inhibitor of PDGF receptor decreases DNA synthesis of cardiomyocytes both in vitro and in vivo during regeneration. Our data indicate that zebrafish heart regeneration is associated with sequentially upregulated wound healing genes and growth factors and suggest that PDGF signaling is required.

  14. Gene expression in early stage cervical cancer

    NARCIS (Netherlands)

    Biewenga, Petra; Buist, Marrije R.; Moerland, Perry D.; van Thernaat, Emiel Ver Loren; van Kampen, Antoine H. C.; ten Kate, Fiebo J. W.; Baas, Frank

    2008-01-01

    Objective. Pelvic lymph node metastases are the main prognostic factor for survival in early stage cervical cancer, yet accurate detection methods before surgery are lacking. In this study, we examined whether gene expression profiling can predict the presence of lymph node metastasis in early stage

  15. Identification of genes showing differential expression profile

    Indian Academy of Sciences (India)

    Suppression subtractive hybridization was used to identify genes showing differential expression profile associated withgrowth rate in skeletal muscle tissue of Landrace weanling pig. Two subtracted cDNA populations were generated from mus-culus longissimus muscle tissues of selected pigs with extreme expected ...

  16. Identification of genes showing differential expression profile ...

    Indian Academy of Sciences (India)

    Abstract. Suppression subtractive hybridization was used to identify genes showing differential expression profile associated with growth rate in skeletal muscle tissue of Landrace weanling pig. Two subtracted cDNA populations were generated from mus- culus longissimus muscle tissues of selected pigs with extreme ...

  17. Gene Expression and Microarray Investigation of Dendrobium ...

    African Journals Online (AJOL)

    diet. The rats were continuously fed for 16 months, and blood glucose monitored by a glucose meter. One wild-type rat and 4 high- fat/high-glucose rats died during ..... therapy not only changed gene expression patterns in type 2 diabetes but also improved immune activity and reduced the likelihood of cancer development.

  18. Genomics analysis of genes expressed reveals differential ...

    African Journals Online (AJOL)

    Genomics analysis of genes expressed reveals differential responses to low chronic nitrogen stress in maize. ... Most induced clones were largely involved in various metabolism processes including physiological process, organelle regulation of biological process, nutrient reservoir activity, transcription regulator activity and ...

  19. Global gene expression in Escherichia coli biofilms

    DEFF Research Database (Denmark)

    Schembri, Mark; Kjærgaard, K.; Klemm, Per

    2003-01-01

    to antimicrobial treatments and host immune defence responses. Escherichia coli has been used as a model organism to study the mechanisms of growth within adhered communities. In this study, we use DNA microarray technology to examine the global gene expression profile of E. coli during sessile growth compared...

  20. Identification of genes showing differential expression profile ...

    Indian Academy of Sciences (India)

    Suppression subtractive hybridization was used to identify genes showing differential expression profile associated withgrowth rate in skeletal muscle tissue of Landrace weanling pig. Two subtracted cDNA populations were generated from mus-culus longissimus muscle tissues of selected pigs with extreme expected ...

  1. Differentially expressed genes in pancreatic ductal adenocarcinomas identified through serial analysis of gene expression

    DEFF Research Database (Denmark)

    Hustinx, Steven R; Cao, Dengfeng; Maitra, Anirban

    2004-01-01

    genome and better biocomputational techniques have substantially improved the assignment of differentially expressed SAGE "tags" to human genes. These improvements have provided us with an opportunity to re-evaluate global gene expression in pancreatic cancer using existing SAGE libraries. SAGE libraries...... generated from six pancreatic cancers were compared to SAGE libraries generated from 11 non-neoplastic tissues. Compared to normal tissue libraries, we identified 453 SAGE tags as differentially expressed in pancreatic cancer, including 395 that mapped to known genes and 58 "uncharacterized" tags....... Of the 395 SAGE tags assigned to known genes, 223 were overexpressed in pancreatic cancer, and 172 were underexpressed. In order to map the 58 uncharacterized differentially expressed SAGE tags to genes, we used a newly developed resource called TAGmapper (http://tagmapper.ibioinformatics.org), to identify...

  2. Regulation of methane genes and genome expression

    Energy Technology Data Exchange (ETDEWEB)

    John N. Reeve

    2009-09-09

    At the start of this project, it was known that methanogens were Archaeabacteria (now Archaea) and were therefore predicted to have gene expression and regulatory systems different from Bacteria, but few of the molecular biology details were established. The goals were then to establish the structures and organizations of genes in methanogens, and to develop the genetic technologies needed to investigate and dissect methanogen gene expression and regulation in vivo. By cloning and sequencing, we established the gene and operon structures of all of the “methane” genes that encode the enzymes that catalyze methane biosynthesis from carbon dioxide and hydrogen. This work identified unique sequences in the methane gene that we designated mcrA, that encodes the largest subunit of methyl-coenzyme M reductase, that could be used to identify methanogen DNA and establish methanogen phylogenetic relationships. McrA sequences are now the accepted standard and used extensively as hybridization probes to identify and quantify methanogens in environmental research. With the methane genes in hand, we used northern blot and then later whole-genome microarray hybridization analyses to establish how growth phase and substrate availability regulated methane gene expression in Methanobacterium thermautotrophicus ΔH (now Methanothermobacter thermautotrophicus). Isoenzymes or pairs of functionally equivalent enzymes catalyze several steps in the hydrogen-dependent reduction of carbon dioxide to methane. We established that hydrogen availability determine which of these pairs of methane genes is expressed and therefore which of the alternative enzymes is employed to catalyze methane biosynthesis under different environmental conditions. As were unable to establish a reliable genetic system for M. thermautotrophicus, we developed in vitro transcription as an alternative system to investigate methanogen gene expression and regulation. This led to the discovery that an archaeal protein

  3. Aberrant Gene Expression in Acute Myeloid Leukaemia

    DEFF Research Database (Denmark)

    Bagger, Frederik Otzen

    genes and genetic signatures and for reducing dimensionally of gene expression data. Next, we have used machine-learning methods to predict survival and to assess important predictors based on these results. General application of a number of these methods has been implemented into two public query......Summary Acute Myeloid Leukaemia (AML) is an aggressive cancer of the bone marrow, affecting formation of blood cells during haematopoiesis. This thesis presents investigation of AML using mRNA gene expression profiles (GEP) of samples extracted from the bone marrow of healthy and diseased subjects....... Here GEPs from purified healthy haematopoietic populations, with different levels of differentiation, form the basis for comparison with diseased samples. We present a mathematical transformation of mRNA microarray data to make it possible to compare AML samples, carrying expanded aberrant...

  4. Gene Expression Commons: an open platform for absolute gene expression profiling.

    Directory of Open Access Journals (Sweden)

    Jun Seita

    Full Text Available Gene expression profiling using microarrays has been limited to comparisons of gene expression between small numbers of samples within individual experiments. However, the unknown and variable sensitivities of each probeset have rendered the absolute expression of any given gene nearly impossible to estimate. We have overcome this limitation by using a very large number (>10,000 of varied microarray data as a common reference, so that statistical attributes of each probeset, such as the dynamic range and threshold between low and high expression, can be reliably discovered through meta-analysis. This strategy is implemented in a web-based platform named "Gene Expression Commons" (https://gexc.stanford.edu/ which contains data of 39 distinct highly purified mouse hematopoietic stem/progenitor/differentiated cell populations covering almost the entire hematopoietic system. Since the Gene Expression Commons is designed as an open platform, investigators can explore the expression level of any gene, search by expression patterns of interest, submit their own microarray data, and design their own working models representing biological relationship among samples.

  5. Comparative gene expression of intestinal metabolizing enzymes.

    Science.gov (United States)

    Shin, Ho-Chul; Kim, Hye-Ryoung; Cho, Hee-Jung; Yi, Hee; Cho, Soo-Min; Lee, Dong-Goo; Abd El-Aty, A M; Kim, Jin-Suk; Sun, Duxin; Amidon, Gordon L

    2009-11-01

    The purpose of this study was to compare the expression profiles of drug-metabolizing enzymes in the intestine of mouse, rat and human. Total RNA was isolated from the duodenum and the mRNA expression was measured using Affymetrix GeneChip oligonucleotide arrays. Detected genes from the intestine of mouse, rat and human were ca. 60% of 22690 sequences, 40% of 8739 and 47% of 12559, respectively. Total genes of metabolizing enzymes subjected in this study were 95, 33 and 68 genes in mouse, rat and human, respectively. Of phase I enzymes, the mouse exhibited abundant gene expressions for Cyp3a25, Cyp4v3, Cyp2d26, followed by Cyp2b20, Cyp2c65 and Cyp4f14, whereas, the rat showed higher expression profiles of Cyp3a9, Cyp2b19, Cyp4f1, Cyp17a1, Cyp2d18, Cyp27a1 and Cyp4f6. However, the highly expressed P450 enzymes were CYP3A4, CYP3A5, CYP4F3, CYP2C18, CYP2C9, CYP2D6, CYP3A7, CYP11B1 and CYP2B6 in the human. For phase II enzymes, glucuronosyltransferase Ugt1a6, glutathione S-transferases Gstp1, Gstm3 and Gsta2, sulfotransferase Sult1b1 and acyltransferase Dgat1 were highly expressed in the mouse. The rat revealed predominant expression of glucuronosyltransferases Ugt1a1 and Ugt1a7, sulfotransferase Sult1b1, acetyltransferase Dlat and acyltransferase Dgat1. On the other hand, in human, glucuronosyltransferases UGT2B15 and UGT2B17, glutathione S-transferases MGST3, GSTP1, GSTA2 and GSTM4, sulfotransferases ST1A3 and SULT1A2, acetyltransferases SAT1 and CRAT, and acyltransferase AGPAT2 were dominantly detected. Therefore, current data indicated substantial interspecies differences in the pattern of intestinal gene expression both for P450 enzymes and phase II drug-metabolizing enzymes. This genomic database is expected to improve our understanding of interspecies variations in estimating intestinal prehepatic clearance of oral drugs.

  6. Effect of Ficus carica leaf extract on the gene expression of selected factors in HaCaT cells.

    Science.gov (United States)

    Turkoglu, Murat; Pekmezci, Erkin; Kilic, Songul; Dundar, Cihat; Sevinc, Hakan

    2017-12-01

    Ficus carica Linn. (Fc), common fig, has been traditionally used for many metabolic, cardiovasculary, respiratory, gastrointestinal, and skin disorders. Several studies were performed showing its anti-inflammatory, anti-angiogenic, anticancerogenic, and tissue-protective effects. In all of those studies, the positive effects of Fc were concluded as the result of its antioxidant and anti-inflammatory features due to the polyphenols it contains. To study the phenolic compounds of Fc extract and to investigate the molecular basis of anti-inflammatory, anti-angiogenic, antimitotic, and anti-androgenic effects of Fc leaf extract in vitro. The gene expression levels of vascular endothelial growth factor (VEGF), tumor necrosis factor-alpha (TNF-a), interleukin 1-alpha (IL-1a), and 5 alpha-reductase type II (SRD5A2) were tested in human keratinocyte cells (HaCaT) by RT-qPCR. The gene expression analysis showed that the plant extract caused statistically significant downregulation of VEGF, TNF-a, IL-1a, and SRD5A2 compared to the untreated cells. These preliminary results of this in vitro study may partially explain the clinical success of Fc in the traditional medicine. Topical Fc leaf extract may be beneficial for some inflammatory disorders and androgen-dependent disorders of the skin such as androgenetic alopecia. © 2017 Wiley Periodicals, Inc.

  7. Gene expression profiling of laterally spreading tumors.

    Science.gov (United States)

    Minemura, Shoko; Tanaka, Takeshi; Arai, Makoto; Okimoto, Kenichiro; Oyamada, Arata; Saito, Keiko; Maruoka, Daisuke; Matsumura, Tomoaki; Nakagawa, Tomoo; Katsuno, Tatsuro; Kishimoto, Takashi; Yokosuka, Osamu

    2015-06-06

    Laterally spreading tumors (LSTs) are generally defined as lesions >10 mm in diameter, are characterized by lateral expansion along the luminal wall with a low vertical axis. In contrast to other forms of tumor, LSTs are generally considered to have a superficial growth pattern and the potential for malignancy. We focused on this morphological character of LSTs, and analyzed the gene expression profile of LSTs. The expression of 168 genes in 41 colorectal tumor samples (17 LST-adenoma, 12 LST-carcinoma, 12 Ip [pedunculated type of the Paris classification)-adenoma, all of which were 10 mm or more in diameter] was analyzed by PCR array. Based on the results, we investigated the expression levels of genes up-regulated in LST-adenoma, compared to Ip-adenoma, by hierarchical and K-means clustering. To confirm the results of the array analysis, using an additional 60 samples (38 LST-adenoma, 22 Ip-adenoma), we determined the localization of the gene product by immunohistochemical staining. The expression of 129 genes differed in colorectal tumors from normal mucosa by PCR array analysis. As a result of K-means clustering, the expression levels of five genes, AKT1, BCL2L1, ERBB2, MTA2 and TNFRSF25, were found to be significantly up-regulated (p < 0.05) in LST-adenoma, compared to Ip-adenoma. Immunohistochemical analysis showed that the BCL2L1 protein was significantly and meaningfully up-regulated in LST-adenoma compared to Ip-adenoma (p = 0.010). With respect to apoptosis status in LST-Adenoma, it assumes that BCL2L1 is anti-apoptotic protein, the samples such as BCL2L1 positive and TUNEL negative, or BCL2L1 negative and TUNEL positive are consistent with the assumption. 63.2 % LST-adenoma samples were consistent with the assumption. LSTs have an unusual profile of gene expression compared to other tumors and BCL2L1 might be concerned in the organization of LSTs.

  8. Gene expression profiling in autoimmune diseases

    DEFF Research Database (Denmark)

    Bovin, Lone Frier; Brynskov, Jørn; Hegedüs, Laszlo

    2007-01-01

    ) patients and healthy individuals were specific for the arthritic process or likewise altered in other chronic inflammatory diseases such as chronic autoimmune thyroiditis (Hashimoto's thyroiditis, HT) and inflammatory bowel disease (IBD). Using qPCR for 18 RA-discriminative genes, there were no significant......A central issue in autoimmune disease is whether the underlying inflammation is a repeated stereotypical process or whether disease specific gene expression is involved. To shed light on this, we analysed whether genes previously found to be differentially regulated in rheumatoid arthritis (RA...... immunoinflammatory diseases, but only if accompanied by pronounced systemic manifestations. This suggests that at least some of the genes activated in RA are predominantly or solely related to general and disease-nonspecific autoimmune processes...

  9. Coevolution of gene expression among interacting proteins

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, Hunter B.; Hirsh, Aaron E.; Wall, Dennis P.; Eisen,Michael B.

    2004-03-01

    Physically interacting proteins or parts of proteins are expected to evolve in a coordinated manner that preserves proper interactions. Such coevolution at the amino acid-sequence level is well documented and has been used to predict interacting proteins, domains, and amino acids. Interacting proteins are also often precisely coexpressed with one another, presumably to maintain proper stoichiometry among interacting components. Here, we show that the expression levels of physically interacting proteins coevolve. We estimate average expression levels of genes from four closely related fungi of the genus Saccharomyces using the codon adaptation index and show that expression levels of interacting proteins exhibit coordinated changes in these different species. We find that this coevolution of expression is a more powerful predictor of physical interaction than is coevolution of amino acid sequence. These results demonstrate previously uncharacterized coevolution of gene expression, adding a different dimension to the study of the coevolution of interacting proteins and underscoring the importance of maintaining coexpression of interacting proteins over evolutionary time. Our results also suggest that expression coevolution can be used for computational prediction of protein protein interactions.

  10. Digital gene expression analysis of gene expression differences within Brassica diploids and allopolyploids.

    Science.gov (United States)

    Jiang, Jinjin; Wang, Yue; Zhu, Bao; Fang, Tingting; Fang, Yujie; Wang, Youping

    2015-01-27

    Brassica includes many successfully cultivated crop species of polyploid origin, either by ancestral genome triplication or by hybridization between two diploid progenitors, displaying complex repetitive sequences and transposons. The U's triangle, which consists of three diploids and three amphidiploids, is optimal for the analysis of complicated genomes after polyploidization. Next-generation sequencing enables the transcriptome profiling of polyploids on a global scale. We examined the gene expression patterns of three diploids (Brassica rapa, B. nigra, and B. oleracea) and three amphidiploids (B. napus, B. juncea, and B. carinata) via digital gene expression analysis. In total, the libraries generated between 5.7 and 6.1 million raw reads, and the clean tags of each library were mapped to 18547-21995 genes of B. rapa genome. The unambiguous tag-mapped genes in the libraries were compared. Moreover, the majority of differentially expressed genes (DEGs) were explored among diploids as well as between diploids and amphidiploids. Gene ontological analysis was performed to functionally categorize these DEGs into different classes. The Kyoto Encyclopedia of Genes and Genomes analysis was performed to assign these DEGs into approximately 120 pathways, among which the metabolic pathway, biosynthesis of secondary metabolites, and peroxisomal pathway were enriched. The non-additive genes in Brassica amphidiploids were analyzed, and the results indicated that orthologous genes in polyploids are frequently expressed in a non-additive pattern. Methyltransferase genes showed differential expression pattern in Brassica species. Our results provided an understanding of the transcriptome complexity of natural Brassica species. The gene expression changes in diploids and allopolyploids may help elucidate the morphological and physiological differences among Brassica species.

  11. Predicting gene expression from sequence: a reexamination.

    Directory of Open Access Journals (Sweden)

    Yuan Yuan

    2007-11-01

    Full Text Available Although much of the information regarding genes' expressions is encoded in the genome, deciphering such information has been very challenging. We reexamined Beer and Tavazoie's (BT approach to predict mRNA expression patterns of 2,587 genes in Saccharomyces cerevisiae from the information in their respective promoter sequences. Instead of fitting complex Bayesian network models, we trained naïve Bayes classifiers using only the sequence-motif matching scores provided by BT. Our simple models correctly predict expression patterns for 79% of the genes, based on the same criterion and the same cross-validation (CV procedure as BT, which compares favorably to the 73% accuracy of BT. The fact that our approach did not use position and orientation information of the predicted binding sites but achieved a higher prediction accuracy, motivated us to investigate a few biological predictions made by BT. We found that some of their predictions, especially those related to motif orientations and positions, are at best circumstantial. For example, the combinatorial rules suggested by BT for the PAC and RRPE motifs are not unique to the cluster of genes from which the predictive model was inferred, and there are simpler rules that are statistically more significant than BT's ones. We also show that CV procedure used by BT to estimate their method's prediction accuracy is inappropriate and may have overestimated the prediction accuracy by about 10%.

  12. Gene expression regulation in roots under drought.

    Science.gov (United States)

    Janiak, Agnieszka; Kwaśniewski, Mirosław; Szarejko, Iwona

    2016-02-01

    Stress signalling and regulatory networks controlling expression of target genes are the basis of plant response to drought. Roots are the first organs exposed to water deficiency in the soil and are the place of drought sensing. Signalling cascades transfer chemical signals toward the shoot and initiate molecular responses that lead to the biochemical and morphological changes that allow plants to be protected against water loss and to tolerate stress conditions. Here, we present an overview of signalling network and gene expression regulation pathways that are actively induced in roots under drought stress. In particular, the role of several transcription factor (TF) families, including DREB, AP2/ERF, NAC, bZIP, MYC, CAMTA, Alfin-like and Q-type ZFP, in the regulation of root response to drought are highlighted. The information provided includes available data on mutual interactions between these TFs together with their regulation by plant hormones and other signalling molecules. The most significant downstream target genes and molecular processes that are controlled by the regulatory factors are given. These data are also coupled with information about the influence of the described regulatory networks on root traits and root development which may translate to enhanced drought tolerance. This is the first literature survey demonstrating the gene expression regulatory machinery that is induced by drought stress, presented from the perspective of roots. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Gene expression profiles in skeletal muscle after gene electrotransfer

    Directory of Open Access Journals (Sweden)

    Eriksen Jens

    2007-06-01

    Full Text Available Abstract Background Gene transfer by electroporation (DNA electrotransfer to muscle results in high level long term transgenic expression, showing great promise for treatment of e.g. protein deficiency syndromes. However little is known about the effects of DNA electrotransfer on muscle fibres. We have therefore investigated transcriptional changes through gene expression profile analyses, morphological changes by histological analysis, and physiological changes by force generation measurements. DNA electrotransfer was obtained using a combination of a short high voltage pulse (HV, 1000 V/cm, 100 μs followed by a long low voltage pulse (LV, 100 V/cm, 400 ms; a pulse combination optimised for efficient and safe gene transfer. Muscles were transfected with green fluorescent protein (GFP and excised at 4 hours, 48 hours or 3 weeks after treatment. Results Differentially expressed genes were investigated by microarray analysis, and descriptive statistics were performed to evaluate the effects of 1 electroporation, 2 DNA injection, and 3 time after treatment. The biological significance of the results was assessed by gene annotation and supervised cluster analysis. Generally, electroporation caused down-regulation of structural proteins e.g. sarcospan and catalytic enzymes. Injection of DNA induced down-regulation of intracellular transport proteins e.g. sentrin. The effects on muscle fibres were transient as the expression profiles 3 weeks after treatment were closely related with the control muscles. Most interestingly, no changes in the expression of proteins involved in inflammatory responses or muscle regeneration was detected, indicating limited muscle damage and regeneration. Histological analysis revealed structural changes with loss of cell integrity and striation pattern in some fibres after DNA+HV+LV treatment, while HV+LV pulses alone showed preservation of cell integrity. No difference in the force generation capacity was observed in

  14. Monitoring the Efficacy of Oncolytic Viruses via Gene Expression

    Directory of Open Access Journals (Sweden)

    Ashley Ansel

    2017-11-01

    Full Text Available With the recent success of oncolytic viruses in clinical trials, efforts toward improved monitoring of the viruses and their mechanism have intensified. Four main gene expression strategies have been employed to date including: analyzing overall gene expression in tumor cells, looking at gene expression of a few specific genes in the tumor cells, focusing on gene expression of specific transgenes introduced into the virus, and following gene expression of certain viral genes. Each strategy presents certain advantages and disadvantages over the others. Various methods to organize the dysregulated genes into clusters have provided a window into the mechanism of action for these viruses. Methodologically, the combined approach of looking at both overall gene expression, the tumor cells and gene expression of viral genes, enables researchers to assess correlation between the introduction of the virus and the changes in the tumor. This would seem to be the most productive approach for future studies, providing much information on mechanism and timing.

  15. Enhanced gene expression from retroviral vectors

    Directory of Open Access Journals (Sweden)

    Micklem David R

    2008-02-01

    Full Text Available Abstract Background Retroviruses are widely used to transfer genes to mammalian cells efficiently and stably. However, genetic elements required for high-level gene expression are incompatible with standard systems. The retroviral RNA genome is produced by cellular transcription and post-transcriptional processing within packaging cells: Introns present in the retroviral genomic transcript are removed by splicing, while polyadenylation signals lead to the production of ineffective truncated genomes. Furthermore strong enhancer/promoters within the retroviral payload lead to detrimental competition with the retroviral enhancer/promoter. Results By exploiting a new method of producing the retroviral genome in vitro it is possible to produce infectious retroviral particles carrying a high-level expression cassette that completely prohibits production of infectious retroviral particles by conventional methods. We produced an expression cassette comprising a strong enhancer/promoter, an optimised intron, the GFP open reading frame and a strong polyadenylation signal. This cassette was cloned into both a conventional MMLV retroviral vector and a vector designed to allow in vitro transcription of the retroviral genome by T7 RNA polymerase. When the conventional retroviral vector was transfected into packaging cells, the expression cassette drove strong GFP expression, but no infectious retrovirus was produced. Introduction of the in vitro produced uncapped retroviral genomic transcript into the packaging cells did not lead to any detectable GFP expression. However, infectious retrovirus was easily recovered, and when used to infect target primary human cells led to very high GFP expression – up to 3.5 times greater than conventional retroviral LTR-driven expression. Conclusion Retroviral vectors carrying an optimized high-level expression cassette do not produce infectious virions when introduced into packaging cells by transfection of DNA

  16. Gene expression in Pseudomonas aeruginosa swarming motility

    Directory of Open Access Journals (Sweden)

    Déziel Eric

    2010-10-01

    Full Text Available Abstract Background The bacterium Pseudomonas aeruginosa is capable of three types of motilities: swimming, twitching and swarming. The latter is characterized by a fast and coordinated group movement over a semi-solid surface resulting from intercellular interactions and morphological differentiation. A striking feature of swarming motility is the complex fractal-like patterns displayed by migrating bacteria while they move away from their inoculation point. This type of group behaviour is still poorly understood and its characterization provides important information on bacterial structured communities such as biofilms. Using GeneChip® Affymetrix microarrays, we obtained the transcriptomic profiles of both bacterial populations located at the tip of migrating tendrils and swarm center of swarming colonies and compared these profiles to that of a bacterial control population grown on the same media but solidified to not allow swarming motility. Results Microarray raw data were corrected for background noise with the RMA algorithm and quantile normalized. Differentially expressed genes between the three conditions were selected using a threshold of 1.5 log2-fold, which gave a total of 378 selected genes (6.3% of the predicted open reading frames of strain PA14. Major shifts in gene expression patterns are observed in each growth conditions, highlighting the presence of distinct bacterial subpopulations within a swarming colony (tendril tips vs. swarm center. Unexpectedly, microarrays expression data reveal that a minority of genes are up-regulated in tendril tip populations. Among them, we found energy metabolism, ribosomal protein and transport of small molecules related genes. On the other hand, many well-known virulence factors genes were globally repressed in tendril tip cells. Swarm center cells are distinct and appear to be under oxidative and copper stress responses. Conclusions Results reported in this study show that, as opposed to

  17. Tenascin-C Orchestrates Glioblastoma Angiogenesis by Modulation of Pro- and Anti-angiogenic Signaling.

    Science.gov (United States)

    Rupp, Tristan; Langlois, Benoit; Koczorowska, Maria M; Radwanska, Agata; Sun, Zhen; Hussenet, Thomas; Lefebvre, Olivier; Murdamoothoo, Devadarssen; Arnold, Christiane; Klein, Annick; Biniossek, Martin L; Hyenne, Vincent; Naudin, Elise; Velazquez-Quesada, Ines; Schilling, Oliver; Van Obberghen-Schilling, Ellen; Orend, Gertraud

    2016-12-06

    High expression of the extracellular matrix component tenascin-C in the tumor microenvironment correlates with decreased patient survival. Tenascin-C promotes cancer progression and a disrupted tumor vasculature through an unclear mechanism. Here, we examine the angiomodulatory role of tenascin-C. We find that direct contact of endothelial cells with tenascin-C disrupts actin polymerization, resulting in cytoplasmic retention of the transcriptional coactivator YAP. Tenascin-C also downregulates YAP pro-angiogenic target genes, thus reducing endothelial cell survival, proliferation, and tubulogenesis. Glioblastoma cells exposed to tenascin-C secrete pro-angiogenic factors that promote endothelial cell survival and tubulogenesis. Proteomic analysis of their secretome reveals a signature, including ephrin-B2, that predicts decreased survival of glioma patients. We find that ephrin-B2 is an important pro-angiogenic tenascin-C effector. Thus, we demonstrate dual activities for tenascin-C in glioblastoma angiogenesis and uncover potential targeting and prediction opportunities. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. Gene expression in Streptococcus mutans biofilms

    OpenAIRE

    Banu, L D

    2010-01-01

    Streptococcus mutans is considered the major aetiological agent of human dental caries. It is an obligate biofilm-forming bacterium, which resides on teeth and forms, together with other species, an oral biofilm that is often designated as supragingival plaque. This thesis consists of three distinct parts. The first part describes, using microarray analysis, how S. mutans modulates gene expression when grown under different conditions in biofilms. The goal of this analysis was to identify gen...

  19. Gene expression: RNA interference in adult mice

    Science.gov (United States)

    McCaffrey, Anton P.; Meuse, Leonard; Pham, Thu-Thao T.; Conklin, Douglas S.; Hannon, Gregory J.; Kay, Mark A.

    2002-07-01

    RNA interference is an evolutionarily conserved surveillance mechanism that responds to double-stranded RNA by sequence-specific silencing of homologous genes. Here we show that transgene expression can be suppressed in adult mice by synthetic small interfering RNAs and by small-hairpin RNAs transcribed in vivo from DNA templates. We also show the therapeutic potential of this technique by demonstrating effective targeting of a sequence from hepatitis C virus by RNA interference in vivo.

  20. Blood Gene Expression Predicts Bronchiolitis Obliterans Syndrome

    Directory of Open Access Journals (Sweden)

    Richard Danger

    2018-01-01

    Full Text Available Bronchiolitis obliterans syndrome (BOS, the main manifestation of chronic lung allograft dysfunction, leads to poor long-term survival after lung transplantation. Identifying predictors of BOS is essential to prevent the progression of dysfunction before irreversible damage occurs. By using a large set of 107 samples from lung recipients, we performed microarray gene expression profiling of whole blood to identify early biomarkers of BOS, including samples from 49 patients with stable function for at least 3 years, 32 samples collected at least 6 months before BOS diagnosis (prediction group, and 26 samples at or after BOS diagnosis (diagnosis group. An independent set from 25 lung recipients was used for validation by quantitative PCR (13 stables, 11 in the prediction group, and 8 in the diagnosis group. We identified 50 transcripts differentially expressed between stable and BOS recipients. Three genes, namely POU class 2 associating factor 1 (POU2AF1, T-cell leukemia/lymphoma protein 1A (TCL1A, and B cell lymphocyte kinase, were validated as predictive biomarkers of BOS more than 6 months before diagnosis, with areas under the curve of 0.83, 0.77, and 0.78 respectively. These genes allow stratification based on BOS risk (log-rank test p < 0.01 and are not associated with time posttransplantation. This is the first published large-scale gene expression analysis of blood after lung transplantation. The three-gene blood signature could provide clinicians with new tools to improve follow-up and adapt treatment of patients likely to develop BOS.

  1. Proteomic and gene expression patterns of keratoconus

    Directory of Open Access Journals (Sweden)

    Arkasubhra Ghosh

    2013-01-01

    Full Text Available Keratoconus is a progressive corneal thinning disease associated with significant tissue remodeling activities and activation of a variety of signaling networks. However, it is not understood how differential gene and protein expression direct function in keratoconus corneas to drive the underlying pathology, ectasia. Research in the field has focused on discovering differentially expressed genes and proteins and quantifying their levels and activities in keratoconus patient samples. In this study, both microarray analysis of total ribonucleic acid (RNA and whole proteome analyses are carried out using corneal epithelium and tears from keratoconus patients and compared to healthy controls. A number of structural proteins, signaling molecules, cytokines, proteases, and enzymes have been found to be deregulated in keratoconus corneas. Together, the data provide clues to the complex process of corneal degradation which suggest novel ways to clinically diagnose and manage the disease. This review will focus on discussing these recent advances in the knowledge of keratoconus biology from a gene expression and function point-of-view.

  2. A framework to identify gene expression profiles in a model of inflammation induced by lipopolysaccharide after treatment with thalidomide

    Directory of Open Access Journals (Sweden)

    Paiva Renata T

    2012-06-01

    Full Text Available Abstract Background Thalidomide is an anti-inflammatory and anti-angiogenic drug currently used for the treatment of several diseases, including erythema nodosum leprosum, which occurs in patients with lepromatous leprosy. In this research, we use DNA microarray analysis to identify the impact of thalidomide on gene expression responses in human cells after lipopolysaccharide (LPS stimulation. We employed a two-stage framework. Initially, we identified 1584 altered genes in response to LPS. Modulation of this set of genes was then analyzed in the LPS stimulated cells treated with thalidomide. Results We identified 64 genes with altered expression induced by thalidomide using the rank product method. In addition, the lists of up-regulated and down-regulated genes were investigated by means of bioinformatics functional analysis, which allowed for the identification of biological processes affected by thalidomide. Confirmatory analysis was done in five of the identified genes using real time PCR. Conclusions The results showed some genes that can further our understanding of the biological mechanisms in the action of thalidomide. Of the five genes evaluated with real time PCR, three were down regulated and two were up regulated confirming the initial results of the microarray analysis.

  3. Analysis of gene expression in rabbit muscle

    Directory of Open Access Journals (Sweden)

    Alena Gálová

    2014-02-01

    Full Text Available Increasing consumer knowledge of the link between diet and health has raised the demand for high quality food. Meat and meat products may be considered as irreplaceable in human nutrition. Breeding livestock to higher content of lean meat and the use of modern hybrids entails problems with the quality of meat. Analysing of livestock genomes could get us a great deal of important information, which may significantly affect the improvement process. Domestic animals are invaluable resources for study of the molecular architecture of complex traits. Although the mapping of quantitative trait loci (QTL responsible for economically important traits in domestic animals has achieved remarkable results in recent decades, not all of the genetic variation in the complex traits has been captured because of the low density of markers used in QTL mapping studies. The genome wide association study (GWAS, which utilizes high-density single-nucleotide polymorphism (SNP, provides a new way to tackle this issue. New technologies now allow producing microarrays containing thousands of hybridization probes on a single membrane or other solid support. We used microarray analysis to study gene expression in rabbit muscle during different developmental age stages. The outputs from GeneSpring GX sotware are presented in this work. After the evaluation of gene expression in rabbits, will be selected genes of interest in relation to meat quality parameters and will be further analyzed by the available methods of molecular biology and genetics.

  4. Moving Toward Integrating Gene Expression Profiling into ...

    Science.gov (United States)

    Microarray profiling of chemical-induced effects is being increasingly used in medium and high-throughput formats. In this study, we describe computational methods to identify molecular targets from whole-genome microarray data using as an example the estrogen receptor α (ERα), often modulated by potential endocrine disrupting chemicals. ERα biomarker genes were identified by their consistent expression after exposure to 7 structurally-diverse ERα agonists and 3 ERα antagonists in ERα-positive MCF-7 cells. Most of the biomarker genes were shown to be directly regulated by ERα as determined by ESR1 gene knockdown using siRNA as well as through ChIP-Seq analysis of ERα-DNA interactions. The biomarker was evaluated as a predictive tool using the fold-change rank-based Running Fisher algorithm by comparison to annotated gene expression data sets from experiments using MCF-7 cells, including those evaluating the transcriptional effects of hormones and chemicals. Using 141 comparisons from chemical- and hormone-treated cells, the biomarker gave a balanced accuracy for prediction of ERα activation or suppression of 94% and 93%, respectively. The biomarker was able to correctly classify 18 out of 21 (86%) ER reference chemicals including “very weak” agonists. Importantly, the biomarker predictions accurately replicated predictions based on 18 in vitro high-throughput screening assays that queried different steps in ERα signaling. For 114 chemicals,

  5. Differentially expressed genes in pancreatic ductal adenocarcinomas identified through serial analysis of gene expression

    DEFF Research Database (Denmark)

    Hustinx, Steven R; Cao, Dengfeng; Maitra, Anirban

    2004-01-01

    generated from six pancreatic cancers were compared to SAGE libraries generated from 11 non-neoplastic tissues. Compared to normal tissue libraries, we identified 453 SAGE tags as differentially expressed in pancreatic cancer, including 395 that mapped to known genes and 58 "uncharacterized" tags....... Of the 395 SAGE tags assigned to known genes, 223 were overexpressed in pancreatic cancer, and 172 were underexpressed. In order to map the 58 uncharacterized differentially expressed SAGE tags to genes, we used a newly developed resource called TAGmapper (http://tagmapper.ibioinformatics.org), to identify...

  6. Reduced expression of Autographa californica nucleopolyhedrovirus ORF34, an essential gene, enhances heterologous gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Salem, Tamer Z. [Department of Entomology, Michigan State University, East Lansing, MI 48824 (United States); Department of Microbial Molecular Biology, AGERI, Agricultural Research Center, Giza 12619 (Egypt); Division of Biomedical Sciences, Zewail University, Zewail City of Science and Technology, Giza 12588 (Egypt); Zhang, Fengrui [Department of Entomology, Michigan State University, East Lansing, MI 48824 (United States); Thiem, Suzanne M., E-mail: smthiem@msu.edu [Department of Entomology, Michigan State University, East Lansing, MI 48824 (United States); Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824 (United States)

    2013-01-20

    Autographa californica multiple nucleopolyhedrovirus ORF34 is part of a transcriptional unit that includes ORF32, encoding a viral fibroblast growth factor (FGF) and ORF33. We identified ORF34 as a candidate for deletion to improve protein expression in the baculovirus expression system based on enhanced reporter gene expression in an RNAi screen of virus genes. However, ORF34 was shown to be an essential gene. To explore ORF34 function, deletion (KO34) and rescue bacmids were constructed and characterized. Infection did not spread from primary KO34 transfected cells and supernatants from KO34 transfected cells could not infect fresh Sf21 cells whereas the supernatant from the rescue bacmids transfection could recover the infection. In addition, budded viruses were not observed in KO34 transfected cells by electron microscopy, nor were viral proteins detected from the transfection supernatants by western blots. These demonstrate that ORF34 is an essential gene with a possible role in infectious virus production.

  7. Three gene expression vector sets for concurrently expressing multiple genes in Saccharomyces cerevisiae.

    Science.gov (United States)

    Ishii, Jun; Kondo, Takashi; Makino, Harumi; Ogura, Akira; Matsuda, Fumio; Kondo, Akihiko

    2014-05-01

    Yeast has the potential to be used in bulk-scale fermentative production of fuels and chemicals due to its tolerance for low pH and robustness for autolysis. However, expression of multiple external genes in one host yeast strain is considerably labor-intensive due to the lack of polycistronic transcription. To promote the metabolic engineering of yeast, we generated systematic and convenient genetic engineering tools to express multiple genes in Saccharomyces cerevisiae. We constructed a series of multi-copy and integration vector sets for concurrently expressing two or three genes in S. cerevisiae by embedding three classical promoters. The comparative expression capabilities of the constructed vectors were monitored with green fluorescent protein, and the concurrent expression of genes was monitored with three different fluorescent proteins. Our multiple gene expression tool will be helpful to the advanced construction of genetically engineered yeast strains in a variety of research fields other than metabolic engineering. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  8. Gene expression analyses of primary melanomas reveal CTHRC1 as an important player in melanoma progression

    Science.gov (United States)

    Eriksson, Johanna; Le Joncour, Vadim; Nummela, Pirjo; Jahkola, Tiina; Virolainen, Susanna; Laakkonen, Pirjo; Saksela, Olli; Hölttä, Erkki

    2016-01-01

    Melanoma is notorious for its high tendency to metastasize and its refractoriness to conventional treatments after metastasis, and the responses to most targeted therapies are short-lived. A better understanding of the molecular mechanisms behind melanoma development and progression is needed to develop more effective therapies and to identify new markers to predict disease behavior. Here, we compared the gene expression profiles of benign nevi, and non-metastatic and metastatic primary melanomas to identify any common changes in disease progression. We identified several genes associated with inflammation, angiogenesis, and extracellular matrix modification to be upregulated in metastatic melanomas. We selected one of these genes, collagen triple helix repeat containing 1 (CTHRC1), for detailed analysis, and found that CTHRC1 was expressed in both melanoma cells and the associated fibroblasts, as well as in the endothelium of tumor blood vessels. Knockdown of CTHRC1 expression by shRNAs in melanoma cells inhibited their migration in Transwell assays and their invasion in three-dimensional collagen and Matrigel matrices. We also elucidated the possible down-stream effectors of CTHRC1 by gene expression profiling of the CTHRC1-knockdown cells. Our analyses showed that CTHRC1 is regulated coordinately with fibronectin and integrin β3 by the pro-invasive and -angiogenic transcription factor NFATC2. We also found CTHRC1 to be a target of TFGβ and BRAF. These data highlight the importance of tumor stroma in melanoma progression. Furthermore, CTHRC1 was recognized as an important mediator of melanoma cell migration and invasion, providing together with its regulators—NFATC2, TGFβ, and BRAF—attractive therapeutic targets against metastatic melanomas. PMID:26918341

  9. The homeodomain transcription factor PITX2 is required for specifying correct cell fates and establishing angiogenic privilege in the developing cornea.

    Science.gov (United States)

    Gage, Philip J; Kuang, Chen; Zacharias, Amanda L

    2014-11-01

    Correct specification of cell lineages and establishing angiogenic privilege within the developing cornea are essential for normal vision but the mechanisms controlling these processes are poorly understood. We show that the homeodomain transcription factor PItX2 is expressed in mesenchymal cells of the developing and mature cornea and use a temporal gene knockout approach to demonstrate that PITX2 is required for corneal morphogenesis and the specification of cell fates within the surface ectoderm and mesenchymal primordia. PITX2 is also required to establish angiogenic privilege in the developing cornea. Further, the expression of Dkk2 and suppression of canonical Wnt signaling activity levels are key mechanisms by which PITX2 specifies ocular surface ectoderm as cornea. In contrast, specifying the underlying mesenchyme to corneal fates and establishing angiogenic privilege in the cornea are less sensitive to DKK2 activity. Finally, the cellular expression patterns of FOXC2, PITX1, and BARX2 in Pitx2 and Dkk2 mutants suggest that these transcription factors may be involved in specifying cell fate and establishing angiogenic privilege within the corneal mesenchyme. However, they are unlikely to play a role in specifying cell fate within the corneal ectoderm. Together, these data provide important insights into the mechanisms regulating cornea development. Copyright © 2014 Wiley Periodicals, Inc.

  10. Gene Expression Profiling of Xeroderma Pigmentosum

    Directory of Open Access Journals (Sweden)

    Bowden Nikola A

    2006-05-01

    Full Text Available Abstract Xeroderma pigmentosum (XP is a rare recessive disorder that is characterized by extreme sensitivity to UV light. UV light exposure results in the formation of DNA damage such as cyclobutane dimers and (6-4 photoproducts. Nucleotide excision repair (NER orchestrates the removal of cyclobutane dimers and (6-4 photoproducts as well as some forms of bulky chemical DNA adducts. The disease XP is comprised of 7 complementation groups (XP-A to XP-G, which represent functional deficiencies in seven different genes, all of which are believed to be involved in NER. The main clinical feature of XP is various forms of skin cancers; however, neurological degeneration is present in XPA, XPB, XPD and XPG complementation groups. The relationship between NER and other types of DNA repair processes is now becoming evident but the exact relationships between the different complementation groups remains to be precisely determined. Using gene expression analysis we have identified similarities and differences after UV light exposure between the complementation groups XP-A, XP-C, XP-D, XP-E, XP-F, XP-G and an unaffected control. The results reveal that there is a graded change in gene expression patterns between the mildest, most similar to the control response (XP-E and the severest form (XP-A of the disease, with the exception of XP-D. Distinct differences between the complementation groups with neurological symptoms (XP-A, XP-D and XP-G and without (XP-C, XP-E and XP-F were also identified. Therefore, this analysis has revealed distinct gene expression profiles for the XP complementation groups and the first step towards understanding the neurological symptoms of XP.

  11. Cholinergic regulation of VIP gene expression in human neuroblastoma cells

    DEFF Research Database (Denmark)

    Kristensen, Bo; Georg, Birgitte; Fahrenkrug, Jan

    1997-01-01

    Vasoactive intestinal polypeptide, muscarinic receptor, neuroblastoma cell, mRNA, gene expression, peptide processing......Vasoactive intestinal polypeptide, muscarinic receptor, neuroblastoma cell, mRNA, gene expression, peptide processing...

  12. Gene expression in developing watermelon fruit

    Directory of Open Access Journals (Sweden)

    Hernandez Alvaro

    2008-06-01

    Full Text Available Abstract Background Cultivated watermelon form large fruits that are highly variable in size, shape, color, and content, yet have extremely narrow genetic diversity. Whereas a plethora of genes involved in cell wall metabolism, ethylene biosynthesis, fruit softening, and secondary metabolism during fruit development and ripening have been identified in other plant species, little is known of the genes involved in these processes in watermelon. A microarray and quantitative Real-Time PCR-based study was conducted in watermelon [Citrullus lanatus (Thunb. Matsum. & Nakai var. lanatus] in order to elucidate the flow of events associated with fruit development and ripening in this species. RNA from three different maturation stages of watermelon fruits, as well as leaf, were collected from field grown plants during three consecutive years, and analyzed for gene expression using high-density photolithography microarrays and quantitative PCR. Results High-density photolithography arrays, composed of probes of 832 EST-unigenes from a subtracted, fruit development, cDNA library of watermelon were utilized to examine gene expression at three distinct time-points in watermelon fruit development. Analysis was performed with field-grown fruits over three consecutive growing seasons. Microarray analysis identified three hundred and thirty-five unique ESTs that are differentially regulated by at least two-fold in watermelon fruits during the early, ripening, or mature stage when compared to leaf. Of the 335 ESTs identified, 211 share significant homology with known gene products and 96 had no significant matches with any database accession. Of the modulated watermelon ESTs related to annotated genes, a significant number were found to be associated with or involved in the vascular system, carotenoid biosynthesis, transcriptional regulation, pathogen and stress response, and ethylene biosynthesis. Ethylene bioassays, performed with a closely related watermelon

  13. Gene expression in first trimester preeclampsia placenta.

    Science.gov (United States)

    Founds, Sandra A; Terhorst, Lauren A; Conrad, Kirk P; Hogge, W Allen; Jeyabalan, Arun; Conley, Yvette P

    2011-04-01

    The goal of this study was to further validate eight candidate genes identified in a microarray analysis of first trimester placentas in preeclampsia. Surplus chorionic villus sampling (CVS) specimens of 4 women subsequently diagnosed with preeclampsia (PE) and 8 control women (C) without preeclampsia analyzed previously by microarray and 24 independent additional control samples (AS) were submitted for confirmatory studies by quantitative real-time polymerase chain reaction (qRT-PCR). Downregulation was significant in FSTL3 in PE as compared to C and AS (p = .04). PAEP was downregulated, but the difference was only significant between C and AS (p = .002) rather than between PE and either of the control groups. Expression levels for CFH, EPAS1, IGFBP1, MMP12, and SEMA3C were not statistically different among groups, but trends were consistent with microarray results; there was no anti-correlation. S100A8 was not measurable in all samples, probably because different probes and primers were needed. This study corroborates reduced FSTL3 expression in the first trimester of preeclampsia. Nonsignificant trends in the other genes may require follow-up in studies powered for medium or medium/large effect sizes. qRT-PCR verification of the prior microarray of CVS may support the placental origins of preeclampsia hypothesis. Replication is needed for the candidate genes as potential biomarkers of susceptibility, early detection, and/or individualized care of maternal-infant preeclampsia.

  14. Nuclear AXIN2 represses MYC gene expression

    International Nuclear Information System (INIS)

    Rennoll, Sherri A.; Konsavage, Wesley M.; Yochum, Gregory S.

    2014-01-01

    Highlights: •AXIN2 localizes to cytoplasmic and nuclear compartments in colorectal cancer cells. •Nuclear AXIN2 represses the activity of Wnt-responsive luciferase reporters. •β-Catenin bridges AXIN2 to TCF transcription factors. •AXIN2 binds the MYC promoter and represses MYC gene expression. -- Abstract: The β-catenin transcriptional coactivator is the key mediator of the canonical Wnt signaling pathway. In the absence of Wnt, β-catenin associates with a cytosolic and multi-protein destruction complex where it is phosphorylated and targeted for proteasomal degradation. In the presence of Wnt, the destruction complex is inactivated and β-catenin translocates into the nucleus. In the nucleus, β-catenin binds T-cell factor (TCF) transcription factors to activate expression of c-MYC (MYC) and Axis inhibition protein 2 (AXIN2). AXIN2 is a member of the destruction complex and, thus, serves in a negative feedback loop to control Wnt/β-catenin signaling. AXIN2 is also present in the nucleus, but its function within this compartment is unknown. Here, we demonstrate that AXIN2 localizes to the nuclei of epithelial cells within normal and colonic tumor tissues as well as colorectal cancer cell lines. In the nucleus, AXIN2 represses expression of Wnt/β-catenin-responsive luciferase reporters and forms a complex with β-catenin and TCF. We demonstrate that AXIN2 co-occupies β-catenin/TCF complexes at the MYC promoter region. When constitutively localized to the nucleus, AXIN2 alters the chromatin structure at the MYC promoter and directly represses MYC gene expression. These findings suggest that nuclear AXIN2 functions as a rheostat to control MYC expression in response to Wnt/β-catenin signaling

  15. Nuclear AXIN2 represses MYC gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Rennoll, Sherri A.; Konsavage, Wesley M.; Yochum, Gregory S., E-mail: gsy3@psu.edu

    2014-01-03

    Highlights: •AXIN2 localizes to cytoplasmic and nuclear compartments in colorectal cancer cells. •Nuclear AXIN2 represses the activity of Wnt-responsive luciferase reporters. •β-Catenin bridges AXIN2 to TCF transcription factors. •AXIN2 binds the MYC promoter and represses MYC gene expression. -- Abstract: The β-catenin transcriptional coactivator is the key mediator of the canonical Wnt signaling pathway. In the absence of Wnt, β-catenin associates with a cytosolic and multi-protein destruction complex where it is phosphorylated and targeted for proteasomal degradation. In the presence of Wnt, the destruction complex is inactivated and β-catenin translocates into the nucleus. In the nucleus, β-catenin binds T-cell factor (TCF) transcription factors to activate expression of c-MYC (MYC) and Axis inhibition protein 2 (AXIN2). AXIN2 is a member of the destruction complex and, thus, serves in a negative feedback loop to control Wnt/β-catenin signaling. AXIN2 is also present in the nucleus, but its function within this compartment is unknown. Here, we demonstrate that AXIN2 localizes to the nuclei of epithelial cells within normal and colonic tumor tissues as well as colorectal cancer cell lines. In the nucleus, AXIN2 represses expression of Wnt/β-catenin-responsive luciferase reporters and forms a complex with β-catenin and TCF. We demonstrate that AXIN2 co-occupies β-catenin/TCF complexes at the MYC promoter region. When constitutively localized to the nucleus, AXIN2 alters the chromatin structure at the MYC promoter and directly represses MYC gene expression. These findings suggest that nuclear AXIN2 functions as a rheostat to control MYC expression in response to Wnt/β-catenin signaling.

  16. Inhibitory effect of pironetin analogue/colchicine hybrids on the expression of the VEGF, hTERT and c-Myc genes.

    Science.gov (United States)

    Vilanova, Concepción; Díaz-Oltra, Santiago; Murga, Juan; Falomir, Eva; Carda, Miguel; Marco, J Alberto

    2015-08-15

    A small group of hybrid molecules composed of a colchicine moiety and a pironetin analogue fragment have been investigated for their ability to inhibit the expression of the VEGF, hTERT and c-Myc genes. The VEGF gene is involved in the generation of the vascular endothelial growth factor (VEGF) and thus in the angiogenic process whereas the two latter ones are related to the activation of telomerase. All three genes therefore may be of paramount importance in the cancer generation process. It has been found that colchicine and some of its derivatives display a measurable ability to inhibit the expression of the VEGF and the two other telomerase-related genes. In the case of some of the hybrids, the available data point to the colchicine fragment being responsible for the observed biological activities. It is the first time that the last biological feature has been reported for colchicine or derivatives thereof. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Molecular mechanisms of curcumin action: gene expression.

    Science.gov (United States)

    Shishodia, Shishir

    2013-01-01

    Curcumin derived from the tropical plant Curcuma longa has a long history of use as a dietary agent, food preservative, and in traditional Asian medicine. It has been used for centuries to treat biliary disorders, anorexia, cough, diabetic wounds, hepatic disorders, rheumatism, and sinusitis. The preventive and therapeutic properties of curcumin are associated with its antioxidant, anti-inflammatory, and anticancer properties. Extensive research over several decades has attempted to identify the molecular mechanisms of curcumin action. Curcumin modulates numerous molecular targets by altering their gene expression, signaling pathways, or through direct interaction. Curcumin regulates the expression of inflammatory cytokines (e.g., TNF, IL-1), growth factors (e.g., VEGF, EGF, FGF), growth factor receptors (e.g., EGFR, HER-2, AR), enzymes (e.g., COX-2, LOX, MMP9, MAPK, mTOR, Akt), adhesion molecules (e.g., ELAM-1, ICAM-1, VCAM-1), apoptosis related proteins (e.g., Bcl-2, caspases, DR, Fas), and cell cycle proteins (e.g., cyclin D1). Curcumin modulates the activity of several transcription factors (e.g., NF-κB, AP-1, STAT) and their signaling pathways. Based on its ability to affect multiple targets, curcumin has the potential for the prevention and treatment of various diseases including cancers, arthritis, allergies, atherosclerosis, aging, neurodegenerative disease, hepatic disorders, obesity, diabetes, psoriasis, and autoimmune diseases. This review summarizes the molecular mechanisms of modulation of gene expression by curcumin. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  18. Studying the Complex Expression Dependences between Sets of Coexpressed Genes

    Directory of Open Access Journals (Sweden)

    Mario Huerta

    2014-01-01

    Full Text Available Organisms simplify the orchestration of gene expression by coregulating genes whose products function together in the cell. The use of clustering methods to obtain sets of coexpressed genes from expression arrays is very common; nevertheless there are no appropriate tools to study the expression networks among these sets of coexpressed genes. The aim of the developed tools is to allow studying the complex expression dependences that exist between sets of coexpressed genes. For this purpose, we start detecting the nonlinear expression relationships between pairs of genes, plus the coexpressed genes. Next, we form networks among sets of coexpressed genes that maintain nonlinear expression dependences between all of them. The expression relationship between the sets of coexpressed genes is defined by the expression relationship between the skeletons of these sets, where this skeleton represents the coexpressed genes with a well-defined nonlinear expression relationship with the skeleton of the other sets. As a result, we can study the nonlinear expression relationships between a target gene and other sets of coexpressed genes, or start the study from the skeleton of the sets, to study the complex relationships of activation and deactivation between the sets of coexpressed genes that carry out the different cellular processes present in the expression experiments.

  19. Changes in gene expression following androgen receptor blockade ...

    Indian Academy of Sciences (India)

    Madhu urs

    Involution of the rat ventral prostate and concomitant modulation of gene expression post-castration is a well- documented phenomenon. While the rat castration model has been extensively used to study androgen regulation of gene expression in the ventral prostate, it is not clear whether all the gene expression changes ...

  20. Asthenoteratozoospermia in mice lacking testis expressed gene 18 (Tex18)

    NARCIS (Netherlands)

    Jaroszynski, L.; dev, A.; Li, M.; Meinhardt, A.; de rooij, D. G.; Mueller, Christian; Böhm, Detlef; Wolf, S.; Adham, I. M.; Wulf, G.; Engel, W.; Nayernia, K.

    2007-01-01

    Testis expressed gene 18 (Tex18) is a small gene with one exon of 240 bp, which is specifically expressed in male germ cells. The gene encodes for a protein of 80 amino acids with unknown domain. To investigate the function of (Tex18) gene, we generated mice with targeted disruption of the (Tex18)

  1. Effects of Emdogain on osteoblast gene expression.

    Science.gov (United States)

    Carinci, F; Piattelli, A; Guida, L; Perrotti, V; Laino, G; Oliva, A; Annunziata, M; Palmieri, A; Pezzetti, F

    2006-05-01

    Emdogain (EMD) is a protein extract purified from porcine enamel and has been introduced in clinical practice to obtain periodontal regeneration. EMD is composed mainly of amelogenins (90%), while the remaining 10% is composed of non-amelogenin enamel matrix proteins such as enamelins, tuftelin, amelin and ameloblastin. Enamel matrix proteins seem to be involved in root formation. EMD has been reported to promote proliferation, migration, adhesion and differentiation of cells associated with healing periodontal tissues in vivo. How this protein acts on osteoblasts is poorly understood. We therefore attempted to address this question by using a microarray technique to identify genes that are differently regulated in osteoblasts exposed to enamel matrix proteins. By using DNA microarrays containing 20,000 genes, we identified several upregulated and downregulated genes in the osteoblast-like cell line (MG-63) cultured with enamel matrix proteins (Emd). The differentially expressed genes cover a broad range of functional activities: (i) signaling transduction, (ii) transcription, (iii) translation, (iv) cell cycle regulation, proliferation and apoptosis, (v) immune system, (vi) vesicular transport and lysosome activity, and (vii) cytoskeleton, cell adhesion and extracellular matrix production. The data reported are the first genome-wide scan of the effect of enamel matrix proteins on osteoblast-like cells. These results can contribute to our understanding of the molecular mechanisms of bone regeneration and as a model for comparing other materials with similar clinical effects.

  2. Longitudinal analysis of osteogenic and angiogenic signaling factors in healing models mimicking atrophic and hypertrophic non-unions in rats.

    Science.gov (United States)

    Minkwitz, Susann; Faßbender, Mirja; Kronbach, Zienab; Wildemann, Britt

    2015-01-01

    Impaired bone healing can have devastating consequences for the patient. Clinically relevant animal models are necessary to understand the pathology of impaired bone healing. In this study, two impaired healing models, a hypertrophic and an atrophic non-union, were compared to physiological bone healing in rats. The aim was to provide detailed information about differences in gene expression, vascularization and histology during the healing process. The change from a closed fracture (healing control group) to an open osteotomy (hypertrophy group) led to prolonged healing with reduced mineralized bridging after 42 days. RT-PCR data revealed higher gene expression of most tested osteogenic and angiogenic factors in the hypertrophy group at day 14. After 42 days a significant reduction of gene expression was seen for Bmp4 and Bambi in this group. The inhibition of angiogenesis by Fumagillin (atrophy group) decreased the formation of new blood vessels and led to a non-healing situation with diminished chondrogenesis. RT-PCR results showed an attempt towards overcoming the early perturbance by significant up regulation of the angiogenic regulators Vegfa, Angiopoietin 2 and Fgf1 at day 7 and a further continuous increase of Fgf1, -2 and Angiopoietin 2 over time. However µCT angiograms showed incomplete recovery after 42 days. Furthermore, lower expression values were detected for the Bmps at day 14 and 21. The Bmp antagonists Dan and Twsg1 tended to be higher expressed in the atrophy group at day 42. In conclusion, the investigated animal models are suitable models to mimic human fracture healing complications and can be used for longitudinal studies. Analyzing osteogenic and angiogenic signaling patterns, clear changes in expression were identified between these three healing models, revealing the importance of a coordinated interplay of different factors to allow successful bone healing.

  3. Longitudinal analysis of osteogenic and angiogenic signaling factors in healing models mimicking atrophic and hypertrophic non-unions in rats.

    Directory of Open Access Journals (Sweden)

    Susann Minkwitz

    Full Text Available Impaired bone healing can have devastating consequences for the patient. Clinically relevant animal models are necessary to understand the pathology of impaired bone healing. In this study, two impaired healing models, a hypertrophic and an atrophic non-union, were compared to physiological bone healing in rats. The aim was to provide detailed information about differences in gene expression, vascularization and histology during the healing process. The change from a closed fracture (healing control group to an open osteotomy (hypertrophy group led to prolonged healing with reduced mineralized bridging after 42 days. RT-PCR data revealed higher gene expression of most tested osteogenic and angiogenic factors in the hypertrophy group at day 14. After 42 days a significant reduction of gene expression was seen for Bmp4 and Bambi in this group. The inhibition of angiogenesis by Fumagillin (atrophy group decreased the formation of new blood vessels and led to a non-healing situation with diminished chondrogenesis. RT-PCR results showed an attempt towards overcoming the early perturbance by significant up regulation of the angiogenic regulators Vegfa, Angiopoietin 2 and Fgf1 at day 7 and a further continuous increase of Fgf1, -2 and Angiopoietin 2 over time. However µCT angiograms showed incomplete recovery after 42 days. Furthermore, lower expression values were detected for the Bmps at day 14 and 21. The Bmp antagonists Dan and Twsg1 tended to be higher expressed in the atrophy group at day 42. In conclusion, the investigated animal models are suitable models to mimic human fracture healing complications and can be used for longitudinal studies. Analyzing osteogenic and angiogenic signaling patterns, clear changes in expression were identified between these three healing models, revealing the importance of a coordinated interplay of different factors to allow successful bone healing.

  4. Leptin’s Pro-Angiogenic Signature in Breast Cancer

    International Nuclear Information System (INIS)

    Gonzalez-Perez, Ruben Rene; Lanier, Viola; Newman, Gale

    2013-01-01

    Obesity is linked to increased incidence of breast cancer. The precise causes and mechanisms of these morbid relationships are unknown. Contradictory data on leptin angiogenic actions have been published. However, accumulating evidence would suggest that leptin’s pro-angiogenic effects in cancer play an essential role in the disease. Leptin, the main adipokine secreted by adipose tissue, is also abnormally expressed together with its receptor (OB-R) by breast cancer cells. Leptin induces proliferation and angiogenic differentiation of endothelial cells upregulates VEGF/VEGFR2 and transactivates VEGFR2 independent of VEGF. Leptin induces two angiogenic factors: IL-1 and Notch that can increase VEGF expression. Additionally, leptin induces the secretion and synthesis of proteases and adhesion molecules needed for the development of angiogenesis. Leptin’s paracrine actions can further affect stromal cells and tumor associated macrophages, which express OB-R and secrete VEGF and IL-1, respectively. A complex crosstalk between leptin, Notch and IL-1 (NILCO) that induces VEGF/VEGFR2 is found in breast cancer. Leptin actions in tumor angiogenesis could amplify, be redundant and/or compensatory to VEGF signaling. Current failure of breast cancer anti-angiogenic therapies emphasizes the necessity of targeting the contribution of other pro-angiogenic factors in breast cancer. Leptin’s impact on tumor angiogenesis could be a novel target for breast cancer, especially in obese patients. However, more research is needed to establish the importance of leptin in tumor angiogenesis. This review is focused on updated information on how leptin could contribute to tumor angiogenesis

  5. Leptin’s Pro-Angiogenic Signature in Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Perez, Ruben Rene, E-mail: rgonzalez@msm.edu; Lanier, Viola; Newman, Gale [Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, 720 Westview Dr. SW., Atlanta, GA 30310 (United States)

    2013-09-06

    Obesity is linked to increased incidence of breast cancer. The precise causes and mechanisms of these morbid relationships are unknown. Contradictory data on leptin angiogenic actions have been published. However, accumulating evidence would suggest that leptin’s pro-angiogenic effects in cancer play an essential role in the disease. Leptin, the main adipokine secreted by adipose tissue, is also abnormally expressed together with its receptor (OB-R) by breast cancer cells. Leptin induces proliferation and angiogenic differentiation of endothelial cells upregulates VEGF/VEGFR2 and transactivates VEGFR2 independent of VEGF. Leptin induces two angiogenic factors: IL-1 and Notch that can increase VEGF expression. Additionally, leptin induces the secretion and synthesis of proteases and adhesion molecules needed for the development of angiogenesis. Leptin’s paracrine actions can further affect stromal cells and tumor associated macrophages, which express OB-R and secrete VEGF and IL-1, respectively. A complex crosstalk between leptin, Notch and IL-1 (NILCO) that induces VEGF/VEGFR2 is found in breast cancer. Leptin actions in tumor angiogenesis could amplify, be redundant and/or compensatory to VEGF signaling. Current failure of breast cancer anti-angiogenic therapies emphasizes the necessity of targeting the contribution of other pro-angiogenic factors in breast cancer. Leptin’s impact on tumor angiogenesis could be a novel target for breast cancer, especially in obese patients. However, more research is needed to establish the importance of leptin in tumor angiogenesis. This review is focused on updated information on how leptin could contribute to tumor angiogenesis.

  6. The relationship among gene expression, the evolution of gene dosage, and the rate of protein evolution.

    Directory of Open Access Journals (Sweden)

    Jean-François Gout

    2010-05-01

    Full Text Available The understanding of selective constraints affecting genes is a major issue in biology. It is well established that gene expression level is a major determinant of the rate of protein evolution, but the reasons for this relationship remain highly debated. Here we demonstrate that gene expression is also a major determinant of the evolution of gene dosage: the rate of gene losses after whole genome duplications in the Paramecium lineage is negatively correlated to the level of gene expression, and this relationship is not a byproduct of other factors known to affect the fate of gene duplicates. This indicates that changes in gene dosage are generally more deleterious for highly expressed genes. This rule also holds for other taxa: in yeast, we find a clear relationship between gene expression level and the fitness impact of reduction in gene dosage. To explain these observations, we propose a model based on the fact that the optimal expression level of a gene corresponds to a trade-off between the benefit and cost of its expression. This COSTEX model predicts that selective pressure against mutations changing gene expression level or affecting the encoded protein should on average be stronger in highly expressed genes and hence that both the frequency of gene loss and the rate of protein evolution should correlate negatively with gene expression. Thus, the COSTEX model provides a simple and common explanation for the general relationship observed between the level of gene expression and the different facets of gene evolution.

  7. Gene expression profiling of cutaneous wound healing

    Directory of Open Access Journals (Sweden)

    Wang Ena

    2007-02-01

    Full Text Available Abstract Background Although the sequence of events leading to wound repair has been described at the cellular and, to a limited extent, at the protein level this process has yet to be fully elucidated. Genome wide transcriptional analysis tools promise to further define the global picture of this complex progression of events. Study Design This study was part of a placebo-controlled double-blind clinical trial in which basal cell carcinomas were treated topically with an immunomodifier – toll-like receptor 7 agonist: imiquimod. The fourteen patients with basal cell carcinoma in the placebo arm of the trial received placebo treatment consisting solely of vehicle cream. A skin punch biopsy was obtained immediately before treatment and at the end of the placebo treatment (after 2, 4 or 8 days. 17.5K cDNA microarrays were utilized to profile the biopsy material. Results Four gene signatures whose expression changed relative to baseline (before wound induction by the pre-treatment biopsy were identified. The largest group was comprised predominantly of inflammatory genes whose expression was increased throughout the study. Two additional signatures were observed which included preferentially pro-inflammatory genes in the early post-treatment biopsies (2 days after pre-treatment biopsies and repair and angiogenesis genes in the later (4 to 8 days biopsies. The fourth and smallest set of genes was down-regulated throughout the study. Early in wound healing the expression of markers of both M1 and M2 macrophages were increased, but later M2 markers predominated. Conclusion The initial response to a cutaneous wound induces powerful transcriptional activation of pro-inflammatory stimuli which may alert the host defense. Subsequently and in the absence of infection, inflammation subsides and it is replaced by angiogenesis and remodeling. Understanding this transition which may be driven by a change from a mixed macrophage population to predominately M2

  8. Network Completion for Static Gene Expression Data

    Directory of Open Access Journals (Sweden)

    Natsu Nakajima

    2014-01-01

    Full Text Available We tackle the problem of completing and inferring genetic networks under stationary conditions from static data, where network completion is to make the minimum amount of modifications to an initial network so that the completed network is most consistent with the expression data in which addition of edges and deletion of edges are basic modification operations. For this problem, we present a new method for network completion using dynamic programming and least-squares fitting. This method can find an optimal solution in polynomial time if the maximum indegree of the network is bounded by a constant. We evaluate the effectiveness of our method through computational experiments using synthetic data. Furthermore, we demonstrate that our proposed method can distinguish the differences between two types of genetic networks under stationary conditions from lung cancer and normal gene expression data.

  9. Inferring gene expression dynamics via functional regression analysis

    Directory of Open Access Journals (Sweden)

    Leng Xiaoyan

    2008-01-01

    Full Text Available Abstract Background Temporal gene expression profiles characterize the time-dynamics of expression of specific genes and are increasingly collected in current gene expression experiments. In the analysis of experiments where gene expression is obtained over the life cycle, it is of interest to relate temporal patterns of gene expression associated with different developmental stages to each other to study patterns of long-term developmental gene regulation. We use tools from functional data analysis to study dynamic changes by relating temporal gene expression profiles of different developmental stages to each other. Results We demonstrate that functional regression methodology can pinpoint relationships that exist between temporary gene expression profiles for different life cycle phases and incorporates dimension reduction as needed for these high-dimensional data. By applying these tools, gene expression profiles for pupa and adult phases are found to be strongly related to the profiles of the same genes obtained during the embryo phase. Moreover, one can distinguish between gene groups that exhibit relationships with positive and others with negative associations between later life and embryonal expression profiles. Specifically, we find a positive relationship in expression for muscle development related genes, and a negative relationship for strictly maternal genes for Drosophila, using temporal gene expression profiles. Conclusion Our findings point to specific reactivation patterns of gene expression during the Drosophila life cycle which differ in characteristic ways between various gene groups. Functional regression emerges as a useful tool for relating gene expression patterns from different developmental stages, and avoids the problems with large numbers of parameters and multiple testing that affect alternative approaches.

  10. Expression regulation of design process gene in product design

    DEFF Research Database (Denmark)

    Li, Bo; Fang, Lusheng; Li, Bo

    2011-01-01

    is proposed and analyzed, as well as its three categories i.e., the operator gene, the structural gene and the regulator gene. Second, the trigger mechanism that design objectives and constraints trigger the operator gene is constructed. Third, the expression principle of structural gene is analyzed...... with the example of design management gene. Last, the regulation mode that the regulator gene regulates the expression of the structural gene is established and it is illustrated by taking the design process management gene as an example. © (2011) Trans Tech Publications....

  11. Global expression differences and tissue specific expression differences in rice evolution result in two contrasting types of differentially expressed genes

    KAUST Repository

    Horiuchi, Youko

    2015-12-23

    Background Since the development of transcriptome analysis systems, many expression evolution studies characterized evolutionary forces acting on gene expression, without explicit discrimination between global expression differences and tissue specific expression differences. However, different types of gene expression alteration should have different effects on an organism, the evolutionary forces that act on them might be different, and different types of genes might show different types of differential expression between species. To confirm this, we studied differentially expressed (DE) genes among closely related groups that have extensive gene expression atlases, and clarified characteristics of different types of DE genes including the identification of regulating loci for differential expression using expression quantitative loci (eQTL) analysis data. Results We detected differentially expressed (DE) genes between rice subspecies in five homologous tissues that were verified using japonica and indica transcriptome atlases in public databases. Using the transcriptome atlases, we classified DE genes into two types, global DE genes and changed-tissues DE genes. Global type DE genes were not expressed in any tissues in the atlas of one subspecies, however changed-tissues type DE genes were expressed in both subspecies with different tissue specificity. For the five tissues in the two japonica-indica combinations, 4.6 ± 0.8 and 5.9 ± 1.5 % of highly expressed genes were global and changed-tissues DE genes, respectively. Changed-tissues DE genes varied in number between tissues, increasing linearly with the abundance of tissue specifically expressed genes in the tissue. Molecular evolution of global DE genes was rapid, unlike that of changed-tissues DE genes. Based on gene ontology, global and changed-tissues DE genes were different, having no common GO terms. Expression differences of most global DE genes were regulated by cis-eQTLs. Expression

  12. Short-term hypoxia/reoxygenation activates the angiogenic pathway ...

    Indian Academy of Sciences (India)

    2013-04-20

    Apr 20, 2013 ... Adult Wistar rats were submitted to acute hypoxia and analysed after 0 h, 24 h and 5 days of reoxygenation. Expression ... angiogenic pathway in the rat caudate putamen as a neuroprotective mechanism to hypoxia that seeks to maintain a ... ical, cardiovascular, and respiratory disorders (Mathur et al. 1999 ...

  13. Differential regulation of angiogenic cellular processes and claudin-5 by histamine and VEGF via PI3K-signaling, transcription factor SNAI2 and interleukin-8.

    Science.gov (United States)

    Laakkonen, Johanna P; Lappalainen, Jari P; Theelen, Thomas L; Toivanen, Pyry I; Nieminen, Tiina; Jauhiainen, Suvi; Kaikkonen, Minna U; Sluimer, Judith C; Ylä-Herttuala, Seppo

    2017-02-01

    Histamine and vascular endothelial growth factor A (VEGF) are central regulators in vascular pathologies. Their gene regulation leading to vascular remodeling has remained obscure. In this study, EC regulation mechanisms of histamine and VEGF were compared by RNA sequencing of primary endothelial cells (ECs), functional in vitro assays and in vivo permeability mice model. By RNA sequencing, similar transcriptional alterations of genes involved in activation of primary ECs, cell proliferation and adhesion were observed between histamine and VEGF. Seventy-six commonly regulated genes were found, representing ~53% of all VEGF-regulated transcripts and ~26% of all histamine-regulated transcripts. Both factors regulated tight junction formation and expression of pro-angiogenic transcription factors (TFs) affecting EC survival, migration and tube formation. Novel claudin-5 upstream regulatory genes were identified. VEGF was demonstrated to regulate expression of SNAI2, whereas pro-angiogenic TFs NR4A1, MYCN and RCAN1 were regulated by both histamine and VEGF. Claudin-5 was shown to be regulated VEGFR2/PI3K-Akt dependently by VEGF and PI3K-Akt independently by histamine. Interleukin-8 was shown to downregulate claudin-5 by histamine. Additionally, SNAI2, NR4A1 and MYCN were shown to mediate EC survival, migration and tube formation and to regulate expression of claudin-5. Further systemic delivery of VEGF and histamine was shown to induce a fast vascular hyperpermeability response in intact vasculature of C57/Bl6 mice followed by regulation of NR4A1 and MYCN. Our study identifies novel claudin-5 upstream regulatory genes of histamine and VEGF that induce cellular angiogenic processes. Our results increase knowledge of angiogenic EC phenotype and provide novel treatment targets for vascular pathologies.

  14. Comprehensive study of angiogenic factors in women with endometriosis compared to women without endometriosis.

    Science.gov (United States)

    Yerlikaya, Gülen; Balendran, Sukirthini; Pröstling, Katharina; Reischer, Theresa; Birner, Peter; Wenzl, Rene; Kuessel, Lorenz; Streubel, Berthold; Husslein, Heinrich

    2016-09-01

    Endometriosis is a benign gynaecological disease, affecting women during their reproductive years. Angiogenesis represents a crucial step in the pathogenesis of endometriosis, because endometriotic lesions require neovascularization. In this study several angiogenesis-related genes have been studied in the context of endometriosis. Some of the analyzed angiogenic factors as well as their interactions were studied the first time regarding a possible association with endometriosis. This case-control study consisted of 205 biopsies of 114 patients comprising 61 endometriosis patients and 53 control patients. Among them in 29 cases paired samples were obtained. VEGFA, VEGFR2, HIF1A, HGF, NRP1, PDGFB, FGF18, TNFα, TGFB2, EPHB4, EPO and ANG mRNA expression was analyzed by qRT-PCR in ectopic tissue samples, in eutopic endometrium of women with and without endometriosis, and in unaffected peritoneum of women with and without endometriosis. VEGFR2, HIF1A, HGF, PDGFB, NRP1 and EPHB4 are overexpressed in ectopic lesions compared to eutopic tissues. VEGFR2, HGF, PDGFB, NRP1, and EPHB4 showed highest mRNA levels in peritoneal implants, in contrast HIF1A showed the highest expression in ovarian endometriomas. Correlation analyses of angiogenic factors in ectopic lesions revealed the strongest associations between VEGFR2, PDGFB, and EPHB4. We further showed a significant upregulation of VEGFR2, HIF1A and EPHB4 in eutopic endometrium of women with endometriosis compared to that of controls and a trend towards upregulation of HGF. Additionally, a significant downregulation for HIF1A, HGF and EPHB4 was observed in unaffected peritoneal tissues of women with endometriosis compared to controls. We identified new genes (EPHB4 and NRP1) that may contribute to angiogenesis in endometriosis beside known factors (VEGFA, VEGFR2, HIF1A, HGF, and PDGFB). Correlation studies revealed the putative importance of EBHB4 in association with endometriosis. Our analyses support preliminary reports

  15. Prognostic Gene Expression Profiles in Breast Cancer

    DEFF Research Database (Denmark)

    Sørensen, Kristina Pilekær

    Each year approximately 4,800 Danish women are diagnosed with breast cancer. Several clinical and pathological factors are used as prognostic and predictive markers to categorize the patients into groups of high or low risk. Around 90% of all patients are allocated to the high risk group and offe......Each year approximately 4,800 Danish women are diagnosed with breast cancer. Several clinical and pathological factors are used as prognostic and predictive markers to categorize the patients into groups of high or low risk. Around 90% of all patients are allocated to the high risk group...... clinical courses, and they may be useful as novel prognostic biomarkers in breast cancer. The aim of the present project was to predict the development of metastasis in lymph node negative breast cancer patients by RNA profiling. We collected and analyzed 82 primary breast tumors from patients who...... developed metastasis and 82 primary breast tumors from patients who remained metastasis-free, by microarray gene expression profiling. We employed a nested case-control design, where samples were matched, in this study one-to-one, to exclude differences in gene expression based on tumor type, tumor size...

  16. The Effects of Hallucinogens on Gene Expression.

    Science.gov (United States)

    Martin, David A; Nichols, Charles D

    2018-01-01

    The classic serotonergic hallucinogens, or psychedelics, have the ability to profoundly alter perception and behavior. These can include visual distortions, hallucinations, detachment from reality, and mystical experiences. Some psychedelics, like LSD, are able to produce these effects with remarkably low doses of drug. Others, like psilocybin, have recently been demonstrated to have significant clinical efficacy in the treatment of depression, anxiety, and addiction that persist for at least several months after only a single therapeutic session. How does this occur? Much work has recently been published from imaging studies showing that psychedelics alter brain network connectivity. They facilitate a disintegration of the default mode network, producing a hyperconnectivity between brain regions that allow centers that do not normally communicate with each other to do so. The immediate and acute effects on both behaviors and network connectivity are likely mediated by effector pathways downstream of serotonin 5-HT2A receptor activation. These acute molecular processes also influence gene expression changes, which likely influence synaptic plasticity and facilitate more long-term changes in brain neurochemistry ultimately underlying the therapeutic efficacy of a single administration to achieve long-lasting effects. In this review, we summarize what is currently known about the molecular genetic responses to psychedelics within the brain and discuss how gene expression changes may contribute to altered cellular physiology and behaviors.

  17. Interactive visualization of gene regulatory networks with associated gene expression time series data

    NARCIS (Netherlands)

    Westenberg, Michel A.; Hijum, Sacha A.F.T. van; Lulko, Andrzej T.; Kuipers, Oscar P.; Roerdink, Jos B.T.M.; Linsen, L; Hagen, H; Hamann, B

    2008-01-01

    We present GENeVis, an application to visualize gene expression time series data in a gene regulatory network context. This is a network of regulator proteins that regulate the expression of their respective target genes. The networks are represented as graphs, in which the nodes represent genes,

  18. Positive selection on gene expression in the human brain

    DEFF Research Database (Denmark)

    Khaitovich, Philipp; Tang, Kun; Franz, Henriette

    2006-01-01

    Recent work has shown that the expression levels of genes transcribed in the brains of humans and chimpanzees have changed less than those of genes transcribed in other tissues [1] . However, when gene expression changes are mapped onto the evolutionary lineage in which they occurred, the brain...... shows more changes than other tissues in the human lineage compared to the chimpanzee lineage [1] , [2] and [3] . There are two possible explanations for this: either positive selection drove more gene expression changes to fixation in the human brain than in the chimpanzee brain, or genes expressed...... in the brain experienced less purifying selection in humans than in chimpanzees, i.e. gene expression in the human brain is functionally less constrained. The first scenario would be supported if genes that changed their expression in the brain in the human lineage showed more selective sweeps than other genes...

  19. Identification of Human HK Genes and Gene Expression Regulation Study in Cancer from Transcriptomics Data Analysis

    Science.gov (United States)

    Zhang, Zhang; Liu, Jingxing; Wu, Jiayan; Yu, Jun

    2013-01-01

    The regulation of gene expression is essential for eukaryotes, as it drives the processes of cellular differentiation and morphogenesis, leading to the creation of different cell types in multicellular organisms. RNA-Sequencing (RNA-Seq) provides researchers with a powerful toolbox for characterization and quantification of transcriptome. Many different human tissue/cell transcriptome datasets coming from RNA-Seq technology are available on public data resource. The fundamental issue here is how to develop an effective analysis method to estimate expression pattern similarities between different tumor tissues and their corresponding normal tissues. We define the gene expression pattern from three directions: 1) expression breadth, which reflects gene expression on/off status, and mainly concerns ubiquitously expressed genes; 2) low/high or constant/variable expression genes, based on gene expression level and variation; and 3) the regulation of gene expression at the gene structure level. The cluster analysis indicates that gene expression pattern is higher related to physiological condition rather than tissue spatial distance. Two sets of human housekeeping (HK) genes are defined according to cell/tissue types, respectively. To characterize the gene expression pattern in gene expression level and variation, we firstly apply improved K-means algorithm and a gene expression variance model. We find that cancer-associated HK genes (a HK gene is specific in cancer group, while not in normal group) are expressed higher and more variable in cancer condition than in normal condition. Cancer-associated HK genes prefer to AT-rich genes, and they are enriched in cell cycle regulation related functions and constitute some cancer signatures. The expression of large genes is also avoided in cancer group. These studies will help us understand which cell type-specific patterns of gene expression differ among different cell types, and particularly for cancer. PMID:23382867

  20. FlyTED: the Drosophila Testis Gene Expression Database

    OpenAIRE

    Zhao, Jun; Klyne, Graham; Benson, Elizabeth; Gudmannsdottir, Elin; White-Cooper, Helen; Shotton, David

    2009-01-01

    FlyTED, the Drosophila Testis Gene Expression Database, is a biological research database for gene expression images from the testis of the fruit fly Drosophila melanogaster. It currently contains 2762 mRNA in situ hybridization images and ancillary metadata revealing the patterns of gene expression of 817 Drosophila genes in testes of wild type flies and of seven meiotic arrest mutant strains in which spermatogenesis is defective. This database has been built by adapting a widely used digita...

  1. Sequence biases in large scale gene expression profiling data

    OpenAIRE

    Siddiqui, Asim S.; Delaney, Allen D.; Schnerch, Angelique; Griffith, Obi L.; Jones, Steven J. M.; Marra, Marco A.

    2006-01-01

    We present the results of a simple, statistical assay that measures the G+C content sensitivity bias of gene expression experiments without the requirement of a duplicate experiment. We analyse five gene expression profiling methods: Affymetrix GeneChip, Long Serial Analysis of Gene Expression (LongSAGE), LongSAGELite, ‘Classic’ Massively Parallel Signature Sequencing (MPSS) and ‘Signature’ MPSS. We demonstrate the methods have systematic and random errors leading to a different G+C content s...

  2. Analysis of multiplex gene expression maps obtained by voxelation

    Directory of Open Access Journals (Sweden)

    Smith Desmond J

    2009-04-01

    Full Text Available Abstract Background Gene expression signatures in the mammalian brain hold the key to understanding neural development and neurological disease. Researchers have previously used voxelation in combination with microarrays for acquisition of genome-wide atlases of expression patterns in the mouse brain. On the other hand, some work has been performed on studying gene functions, without taking into account the location information of a gene's expression in a mouse brain. In this paper, we present an approach for identifying the relation between gene expression maps obtained by voxelation and gene functions. Results To analyze the dataset, we chose typical genes as queries and aimed at discovering similar gene groups. Gene similarity was determined by using the wavelet features extracted from the left and right hemispheres averaged gene expression maps, and by the Euclidean distance between each pair of feature vectors. We also performed a multiple clustering approach on the gene expression maps, combined with hierarchical clustering. Among each group of similar genes and clusters, the gene function similarity was measured by calculating the average gene function distances in the gene ontology structure. By applying our methodology to find similar genes to certain target genes we were able to improve our understanding of gene expression patterns and gene functions. By applying the clustering analysis method, we obtained significant clusters, which have both very similar gene expression maps and very similar gene functions respectively to their corresponding gene ontologies. The cellular component ontology resulted in prominent clusters expressed in cortex and corpus callosum. The molecular function ontology gave prominent clusters in cortex, corpus callosum and hypothalamus. The biological process ontology resulted in clusters in cortex, hypothalamus and choroid plexus. Clusters from all three ontologies combined were most prominently expressed in

  3. Effect of gene order in DNA constructs on gene expression upon integration into plant genome.

    Science.gov (United States)

    Aydın Akbudak, M; Srivastava, Vibha

    2017-06-01

    Several plant biotechnology applications are based on the expression of multiple genes located on a single transformation vector. The principles of stable expression of foreign genes in plant cells include integration of full-length gene fragments consisting of promoter and transcription terminator sequences, and avoiding converging orientation of the gene transcriptional direction. Therefore, investigators usually generate constructs in which genes are assembled in the same orientation. However, no specific information is available on the effect of the order in which genes should be assembled in the construct to support optimum expression of each gene upon integration in the genome. While many factors, including genomic position and the integration structure, could affect gene expression, the investigators judiciously design DNA constructs to avoid glitches. However, the gene order in a multigene assembly remains an open question. This study addressed the effect of gene order in the DNA construct on gene expression in rice using a simple design of two genes placed in two possible orders with respect to the genomic context. Transgenic rice lines containing green fluorescent protein (GFP) and β-glucuronidase (GUS) genes in two distinct orders were developed by Cre-lox-mediated site-specific integration. Gene expression analysis of transgenic lines showed that both genes were expressed at similar levels in either orientation, and different transgenic lines expressed each gene within 1-2× range. Thus, no significant effect of the gene order on gene expression was found in the transformed rice lines containing precise site-specific integrations and stable gene expression in plant cells could be obtained with altered gene orders. Therefore, gene orientation and integration structures are more important factors governing gene expression than gene orders in the genomic context.

  4. Classification across gene expression microarray studies

    Directory of Open Access Journals (Sweden)

    Kuner Ruprecht

    2009-12-01

    Full Text Available Abstract Background The increasing number of gene expression microarray studies represents an important resource in biomedical research. As a result, gene expression based diagnosis has entered clinical practice for patient stratification in breast cancer. However, the integration and combined analysis of microarray studies remains still a challenge. We assessed the potential benefit of data integration on the classification accuracy and systematically evaluated the generalization performance of selected methods on four breast cancer studies comprising almost 1000 independent samples. To this end, we introduced an evaluation framework which aims to establish good statistical practice and a graphical way to monitor differences. The classification goal was to correctly predict estrogen receptor status (negative/positive and histological grade (low/high of each tumor sample in an independent study which was not used for the training. For the classification we chose support vector machines (SVM, predictive analysis of microarrays (PAM, random forest (RF and k-top scoring pairs (kTSP. Guided by considerations relevant for classification across studies we developed a generalization of kTSP which we evaluated in addition. Our derived version (DV aims to improve the robustness of the intrinsic invariance of kTSP with respect to technologies and preprocessing. Results For each individual study the generalization error was benchmarked via complete cross-validation and was found to be similar for all classification methods. The misclassification rates were substantially higher in classification across studies, when each single study was used as an independent test set while all remaining studies were combined for the training of the classifier. However, with increasing number of independent microarray studies used in the training, the overall classification performance improved. DV performed better than the average and showed slightly less variance. In

  5. Consensus micro RNAs governing the switch of dormant tumors to the fast-growing angiogenic phenotype.

    Directory of Open Access Journals (Sweden)

    Nava Almog

    Full Text Available Tumor dormancy refers to a critical stage in cancer development in which tumor cells remain occult for a prolonged period of time until they eventually progress and become clinically apparent. We previously showed that the switch of dormant tumors to fast-growth is angiogenesis dependent and requires a stable transcriptional reprogramming in tumor cells. Considering microRNAs (miRs as master regulators of transcriptome, we sought to investigate their role in the control of tumor dormancy. We report here the identification of a consensus set of 19 miRs that govern the phenotypic switch of human dormant breast carcinoma, glioblastoma, osteosarcoma, and liposarcoma tumors to fast-growth. Loss of expression of dormancy-associated miRs (DmiRs, 16/19 was the prevailing regulation pattern correlating with the switch of dormant tumors to fast-growth. The expression pattern of two DmiRs (miR-580 and 190 was confirmed to correlate with disease stage in human glioma specimens. Reconstitution of a single DmiR (miR-580, 588 or 190 led to phenotypic reversal of fast-growing angiogenic tumors towards prolonged tumor dormancy. Of note, 60% of angiogenic glioblastoma and 100% of angiogenic osteosarcoma over-expressing miR190 remained dormant during the entire observation period of ∼ 120 days. Next, the ability of DmiRs to regulate angiogenesis and dormancy-associated genes was evaluated. Transcriptional reprogramming of tumors via DmiR-580, 588 or 190 over-expression resulted in downregulation of pro-angiogenic factors such as TIMP-3, bFGF and TGFalpha. In addition, a G-CSF independent downregulation of Bv8 was found as a common target of all three DmiRs and correlated with decreased tumor recruitment of bone marrow-derived CD11b+ Gr-1+ myeloid cells. In contrast, antiangiogenic and dormancy promoting pathways such as EphA5 and Angiomotin were upregulated in DmiR over-expressing tumors. This work suggests novel means to reverse the malignant tumor phenotype

  6. Differential gene expression from microarray analysis distinguishes woven and lamellar bone formation in the rat ulna following mechanical loading.

    Directory of Open Access Journals (Sweden)

    Jennifer A McKenzie

    Full Text Available Formation of woven and lamellar bone in the adult skeleton can be induced through mechanical loading. Although much is known about the morphological appearance and structural properties of the newly formed bone, the molecular responses to loading are still not well understood. The objective of our study was to use a microarray to distinguish the molecular responses between woven and lamellar bone formation induced through mechanical loading. Rat forelimb loading was completed in a single bout to induce the formation of woven bone (WBF loading or lamellar bone (LBF loading. A set of normal (non-loaded rats were used as controls. Microarrays were performed at three timepoints after loading: 1 hr, 1 day and 3 days. Confirmation of microarray results was done for a select group of genes using quantitative real-time PCR (qRT-PCR. The micorarray identified numerous genes and pathways that were differentially regulated for woven, but not lamellar bone formation. Few changes in gene expression were evident comparing lamellar bone formation to normal controls. A total of 395 genes were differentially expressed between formation of woven and lamellar bone 1 hr after loading, while 5883 and 5974 genes were differentially expressed on days 1 and 3, respectively. Results suggest that not only are the levels of expression different for each type of bone formation, but that distinct pathways are activated only for woven bone formation. A strong early inflammatory response preceded an increase in angiogenic and osteogenic gene expression for woven bone formation. Furthermore, at later timepoints there was evidence of bone resorption after WBF loading. In summary, the vast coverage of the microarray offers a comprehensive characterization of the early differences in expression between woven and lamellar bone formation.

  7. Pro-Angiogenic Effects of Chalcone Derivatives in Zebrafish Embryos in Vivo

    Directory of Open Access Journals (Sweden)

    Yau-Hung Chen

    2015-07-01

    Full Text Available The aim of this study was to investigate novel chalcones with potent angiogenic activities in vivo. Chalcone-based derivatives were evaluated using a transgenic zebrafish line with fluorescent vessels to real-time monitor the effect on angiogenesis. Results showed that the chalcone analogues did not possess anti-angiogenic effect on zebrafish vasculatures; instead, some of them displayed potent pro-angiogenic effects on the formation of the sub-intestinal vein. Similar pro-angiogenic effects can also be seen on wild type zebrafish embryos. Moreover, the expression of vegfa, the major regulator for angiogenesis, was also upregulated in their treatment. Taken together, we have synthesized and identified a series of novel chalcone-based derivatives as potent in vivo pro-angiogenic compounds. These novel compounds hold potential for therapeutic angiogenesis.

  8. Prolonged hypoxic culture and trypsinization increase the pro-angiogenic potential of human adipose tissue-derived stem cells

    DEFF Research Database (Denmark)

    Rasmussen, Jeppe Grøndahl; Frøbert, Ole; Pilgaard, Linda

    2011-01-01

    Transplantation of mesenchymal stromal cells (MSC), including adipose tissue-derived stem cells (ASC), is a promising option in the treatment of vascular disease. Short-term hypoxic culture of MSC augments secretion of anti-apoptotic and angiogenic cytokines. We hypothesized that prolonged hypoxic...... (1% and 5% oxygen) culture and trypsinization would augment ASC expression of anti-apoptotic and angiogenic cytokines and increase the angiogenic potential of ASC-conditioned media....

  9. Codon usage and amino acid usage influence genes expression level.

    Science.gov (United States)

    Paul, Prosenjit; Malakar, Arup Kumar; Chakraborty, Supriyo

    2018-02-01

    Highly expressed genes in any species differ in the usage frequency of synonymous codons. The relative recurrence of an event of the favored codon pair (amino acid pairs) varies between gene and genomes due to varying gene expression and different base composition. Here we propose a new measure for predicting the gene expression level, i.e., codon plus amino bias index (CABI). Our approach is based on the relative bias of the favored codon pair inclination among the genes, illustrated by analyzing the CABI score of the Medicago truncatula genes. CABI showed strong correlation with all other widely used measures (CAI, RCBS, SCUO) for gene expression analysis. Surprisingly, CABI outperforms all other measures by showing better correlation with the wet-lab data. This emphasizes the importance of the neighboring codons of the favored codon in a synonymous group while estimating the expression level of a gene.

  10. Comparative Analysis of Predicted Gene Expression among Crenarchaeal Genomes

    Directory of Open Access Journals (Sweden)

    Shibsankar Das

    2017-03-01

    Full Text Available Research into new methods for identifying highly expressed genes in anonymous genome sequences has been going on for more than 15 years. We presented here an alternative approach based on modified score of relative codon usage bias to identify highly expressed genes in crenarchaeal genomes. The proposed algorithm relies exclusively on sequence features for identifying the highly expressed genes. In this study, a comparative analysis of predicted highly expressed genes in five crenarchaeal genomes was performed using the score of Modified Relative Codon Bias Strength (MRCBS as a numerical estimator of gene expression level. We found a systematic strong correlation between Codon Adaptation Index and MRCBS. Additionally, MRCBS correlated well with other expression measures. Our study indicates that MRCBS can consistently capture the highly expressed genes.

  11. Functional and gene expression analysis of hTERT overexpressed endothelial cells

    Directory of Open Access Journals (Sweden)

    Haruna Takano

    2008-09-01

    Full Text Available Haruna Takano1, Satoshi Murasawa1,2, Takayuki Asahara1,2,31Institute of Biomedical Research and Innovation, Kobe, Japan; 2RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; 3Tokai University of School of Medicine, Tokai, JapanAbstract: Telomerase dysfunction contributes to cellular senescence. Recent advances indicate the importance of senescence in maintaining vascular cell function in vitro. Human telomerase reverse transcriptase (hTERT overexpression is thought to lead to resistance to apoptosis and oxidative stress. However, the mechanism in endothelial lineage cells is unclear. We tried to generate an immortal endothelial cell line from human umbilical vein endothelial cells using a no-virus system and examine the functional mechanisms of hTERT overexpressed endothelial cell senescence in vitro. High levels of hTERT genes and endothelial cell-specific markers were expressed during long-term culture. Also, angiogenic responses were observed in hTERT overexpressed endothelial cell. These cells showed a delay in senescence and appeared more resistant to stressed conditions. PI3K/Akt-related gene levels were enhanced in hTERT overexpressed endothelial cells. An up-regulated PI3K/Akt pathway caused by hTERT overexpression might contribute to anti-apoptosis and survival effects in endothelial lineage cells.Keywords: endothelial, telomerase, senescence, oxidative stress, anti-apoptosis, PI3K/Akt pathway

  12. Genome polymorphism markers and stress genes expression for ...

    African Journals Online (AJOL)

    SAM

    2014-06-11

    Jun 11, 2014 ... peroxide (H2O2) and molecular oxygen in the cell (Luna et al., 2008). In this study, we investigated the levels of expression of two genes in eight turf species. The levels of expression of PAL and SOD genes varied with the type of turf. Based on the differences in band intensity as a measure of gene.

  13. Understanding gene expression in coronary artery disease through ...

    Indian Academy of Sciences (India)

    The most significant differentially expressed genes from microarray were independently validated by real time PCR in 97 cases and 97 controls. A total of 190 gene transcripts showed significant differential expression (fold change > 2, P < 0.05) between the cases and the controls of which 142 genes were upregulated and ...

  14. Gene expressions changes in bronchial epithelial cells

    DEFF Research Database (Denmark)

    Remy, S.; Verstraelen, S.; Van Den Heuvel, R.

    2014-01-01

    For the classification of respiratory sensitizing chemicals, no validated in vivo nor in vitro tests are currently available. In this study, we evaluated whether respiratory sensitizers trigger specific signals in human bronchial epithelial (BEAS-2B) cells at the level of the transcriptome...... oligonucleotide arrays. A limited number of 11 transcripts could be identified as potential biomarkers to identify respiratory sensitizers. Three of these transcripts are associated to immune system processes (HSPA5, UPP1, and SEPRINEI). In addition, the transcriptome was screened for transcripts....... The cells were exposed during 6, 10, and 24 h to 4 respiratory sensitizers and 6 non-respiratory sensitizers (3 skin sensitizers and 3 respiratory irritants) at a concentration inducing 20% cell viability loss after 24 h. Changes in gene expression were evaluated using Agilent Whole Human Genome 4 x 44 K...

  15. Genetic Variants Contribute to Gene Expression Variability in Humans

    Science.gov (United States)

    Hulse, Amanda M.; Cai, James J.

    2013-01-01

    Expression quantitative trait loci (eQTL) studies have established convincing relationships between genetic variants and gene expression. Most of these studies focused on the mean of gene expression level, but not the variance of gene expression level (i.e., gene expression variability). In the present study, we systematically explore genome-wide association between genetic variants and gene expression variability in humans. We adapt the double generalized linear model (dglm) to simultaneously fit the means and the variances of gene expression among the three possible genotypes of a biallelic SNP. The genomic loci showing significant association between the variances of gene expression and the genotypes are termed expression variability QTL (evQTL). Using a data set of gene expression in lymphoblastoid cell lines (LCLs) derived from 210 HapMap individuals, we identify cis-acting evQTL involving 218 distinct genes, among which 8 genes, ADCY1, CTNNA2, DAAM2, FERMT2, IL6, PLOD2, SNX7, and TNFRSF11B, are cross-validated using an extra expression data set of the same LCLs. We also identify ∼300 trans-acting evQTL between >13,000 common SNPs and 500 randomly selected representative genes. We employ two distinct scenarios, emphasizing single-SNP and multiple-SNP effects on expression variability, to explain the formation of evQTL. We argue that detecting evQTL may represent a novel method for effectively screening for genetic interactions, especially when the multiple-SNP influence on expression variability is implied. The implication of our results for revealing genetic mechanisms of gene expression variability is discussed. PMID:23150607

  16. Dissecting specific and global transcriptional regulation of bacterial gene expression

    NARCIS (Netherlands)

    Gerosa, Luca; Kochanowski, Karl; Heinemann, Matthias; Sauer, Uwe

    Gene expression is regulated by specific transcriptional circuits but also by the global expression machinery as a function of growth. Simultaneous specific and global regulation thus constitutes an additional-but often neglected-layer of complexity in gene expression. Here, we develop an

  17. Cloning and expression analysis of an anthocyanidin synthase gene ...

    Indian Academy of Sciences (India)

    Expression of ANS in leaves, embryo and seed coat was analysed, which provided a ... taneously amplify the 666-bp fragment of actin gene. The. ANS gene expression in leaves, 15 days after pollination ... ANS expression with shading treatment was evaluated by semiquantitive RT-PCR using B. carinata variety 3H008-6.

  18. Monoallelic expression of the human FOXP2 speech gene.

    Science.gov (United States)

    Adegbola, Abidemi A; Cox, Gerald F; Bradshaw, Elizabeth M; Hafler, David A; Gimelbrant, Alexander; Chess, Andrew

    2015-06-02

    The recent descriptions of widespread random monoallelic expression (RMAE) of genes distributed throughout the autosomal genome indicate that there are more genes subject to RMAE on autosomes than the number of genes on the X chromosome where X-inactivation dictates RMAE of X-linked genes. Several of the autosomal genes that undergo RMAE have independently been implicated in human Mendelian disorders. Thus, parsing the relationship between allele-specific expression of these genes and disease is of interest. Mutations in the human forkhead box P2 gene, FOXP2, cause developmental verbal dyspraxia with profound speech and language deficits. Here, we show that the human FOXP2 gene undergoes RMAE. Studying an individual with developmental verbal dyspraxia, we identify a deletion 3 Mb away from the FOXP2 gene, which impacts FOXP2 gene expression in cis. Together these data suggest the intriguing possibility that RMAE impacts the haploinsufficiency phenotypes observed for FOXP2 mutations.

  19. Downregulation of Securin by the variant RNF213 R4810K (rs112735431, G>A) reduces angiogenic activity of induced pluripotent stem cell-derived vascular endothelial cells from moyamoya patients

    Energy Technology Data Exchange (ETDEWEB)

    Hitomi, Toshiaki [Department of Health and Environmental Sciences, Kyoto University, Kyoto (Japan); Habu, Toshiyuki [Radiation Biology Center, Kyoto University, Kyoto (Japan); Kobayashi, Hatasu; Okuda, Hiroko; Harada, Kouji H. [Department of Health and Environmental Sciences, Kyoto University, Kyoto (Japan); Osafune, Kenji [Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto (Japan); Taura, Daisuke; Sone, Masakatsu [Department of Medicine and Clinical Science, Kyoto University, Kyoto (Japan); Asaka, Isao; Ameku, Tomonaga; Watanabe, Akira; Kasahara, Tomoko; Sudo, Tomomi; Shiota, Fumihiko [Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto (Japan); Hashikata, Hirokuni; Takagi, Yasushi [Department of Neurosurgery, Kyoto University,Kyoto (Japan); Morito, Daisuke [Faculty of Life Sciences, Kyoto Sangyo University, Kyoto (Japan); Miyamoto, Susumu [Department of Neurosurgery, Kyoto University,Kyoto (Japan); Nakao, Kazuwa [Department of Medicine and Clinical Science, Kyoto University, Kyoto (Japan); Koizumi, Akio, E-mail: koizumi.akio.5v@kyoto-u.ac.jp [Department of Health and Environmental Sciences, Kyoto University, Kyoto (Japan)

    2013-08-16

    Highlights: •Angiogenic activities were reduced in iPSECs from MMD patients. •Many mitosis-regulated genes were downregulated in iPSECs from MMD patients. •RNF213 R4810K downregulated Securin and inhibited angiogenic activity. •Securin suppression by siRNA reduced angiogenic activities of iPSECs and HUVECs. -- Abstract: Moyamoya disease (MMD) is a cerebrovascular disease characterized by occlusive lesions in the circle of Willis. The RNF213 R4810K polymorphism increases susceptibility to MMD. Induced pluripotent stem cells (iPSCs) were established from unaffected fibroblast donors with wild-type RNF213 alleles, and from carriers/patients with one or two RNF213 R4810K alleles. Angiogenic activities of iPSC-derived vascular endothelial cells (iPSECs) from patients and carriers were lower (49.0 ± 19.4%) than from wild-type subjects (p < 0.01). Gene expression profiles in iPSECs showed that Securin was down-regulated (p < 0.01) in carriers and patients. Overexpression of RNF213 R4810K downregulated Securin, inhibited angiogenic activity (36.0 ± 16.9%) and proliferation of humanumbilical vein endothelial cells (HUVECs) while overexpression of RNF213 wild type did not. Securin expression was downregulated using RNA interference techniques, which reduced the level of tube formation in iPSECs and HUVECs without inhibition of proliferation. RNF213 R4810K reduced angiogenic activities of iPSECs from patients with MMD, suggesting that it is a promising in vitro model for MMD.

  20. Using RNA-Seq data to select refence genes for normalizing gene expression in apple roots

    Science.gov (United States)

    Gene expression in apple roots in response to various stress conditions is a less-explored research subject. Reliable reference genes for normalizing quantitative gene expression data have not been carefully investigated. In this study, the suitability of a set of 15 apple genes were evaluated for t...

  1. CDX2 gene expression in acute lymphoblastic leukemia

    International Nuclear Information System (INIS)

    Arnaoaut, H.H.; Mokhtar, D.A.; Samy, R.M.; Omar, Sh.A.; Khames, S.A.

    2014-01-01

    CDX genes are classically known as regulators of axial elongation during early embryogenesis. An unsuspected role for CDX genes has been revealed during hematopoietic development. The CDX gene family member CDX2 belongs to the most frequent aberrantly expressed proto-oncogenes in human acute leukemias and is highly leukemogenic in experimental models. We used reversed transcriptase polymerase chain reaction (RT-PCR) to determine the expression level of CDX2 gene in 30 pediatric patients with acute lymphoblastic leukemia (ALL) at diagnosis and 30 healthy volunteers. ALL patients were followed up to detect minimal residual disease (MRD) on days 15 and 42 of induction. We found that CDX2 gene was expressed in 50% of patients and not expressed in controls. Associations between gene expression and different clinical and laboratory data of patients revealed no impact on different findings. With follow up, we could not confirm that CDX2 expression had a prognostic significance.

  2. Some statistical properties of gene expression clustering for array data

    DEFF Research Database (Denmark)

    Abreu, G C G; Pinheiro, A; Drummond, R D

    2010-01-01

    DNA arrays have been a rich source of data for the study of genomic expression of a wide variety of biological systems. Gene clustering is one of the paradigms quite used to assess the significance of a gene (or group of genes). However, most of the gene clustering techniques are applied to cDNA...

  3. Automated discovery of functional generality of human gene expression programs.

    Directory of Open Access Journals (Sweden)

    Georg K Gerber

    2007-08-01

    Full Text Available An important research problem in computational biology is the identification of expression programs, sets of co-expressed genes orchestrating normal or pathological processes, and the characterization of the functional breadth of these programs. The use of human expression data compendia for discovery of such programs presents several challenges including cellular inhomogeneity within samples, genetic and environmental variation across samples, uncertainty in the numbers of programs and sample populations, and temporal behavior. We developed GeneProgram, a new unsupervised computational framework based on Hierarchical Dirichlet Processes that addresses each of the above challenges. GeneProgram uses expression data to simultaneously organize tissues into groups and genes into overlapping programs with consistent temporal behavior, to produce maps of expression programs, which are sorted by generality scores that exploit the automatically learned groupings. Using synthetic and real gene expression data, we showed that GeneProgram outperformed several popular expression analysis methods. We applied GeneProgram to a compendium of 62 short time-series gene expression datasets exploring the responses of human cells to infectious agents and immune-modulating molecules. GeneProgram produced a map of 104 expression programs, a substantial number of which were significantly enriched for genes involved in key signaling pathways and/or bound by NF-kappaB transcription factors in genome-wide experiments. Further, GeneProgram discovered expression programs that appear to implicate surprising signaling pathways or receptor types in the response to infection, including Wnt signaling and neurotransmitter receptors. We believe the discovered map of expression programs involved in the response to infection will be useful for guiding future biological experiments; genes from programs with low generality scores might serve as new drug targets that exhibit minimal

  4. Gene expression profiling of breast tumours from New Zealand patients.

    Science.gov (United States)

    Muthukaruppan, Anita; Lasham, Annette; Blenkiron, Cherie; Woad, Kathryn J; Black, Michael A; Knowlton, Nicholas; McCarthy, Nicole; Findlay, Michael P; Print, Cristin G; Shelling, Andrew N

    2017-10-27

    New Zealand has one of the highest rates of breast cancer incidence in the world. We investigated the gene expression profiles of breast tumours from New Zealand patients, compared them to gene expression profiles of international breast cancer cohorts and identified any associations between altered gene expression and the clinicopathological features of the tumours. Affymetrix microarrays were used to measure the gene expression profiles of 106 breast tumours from New Zealand patients. Gene expression data from six international breast cancer cohorts were collated, and all the gene expression data were analysed using standard bioinformatic and statistical tools. Gene expression profiles associated with tumour ER and ERBB2 status, molecular subtype and selected gene expression signatures within the New Zealand cohort were consistent with those found in international cohorts. Significant differences in clinicopathological features such as tumour grade, tumour size and lymph node status were also observed between the New Zealand and international cohorts. Gene expression profiles, which are a sensitive indicator of tumour biology, showed no clear difference between breast tumours from New Zealand patients and those from non-New Zealand patients. This suggests that other factors may contribute to the high and increasing breast cancer incidence in New Zealand compared to international populations.

  5. The Effect of Statins on Blood Gene Expression in COPD.

    Directory of Open Access Journals (Sweden)

    Ma'en Obeidat

    Full Text Available COPD is currently the fourth leading cause of death worldwide. Statins are lipid lowering agents with documented cardiovascular benefits. Observational studies have shown that statins may have a beneficial role in COPD. The impact of statins on blood gene expression from COPD patients is largely unknown.Identify blood gene signature associated with statin use in COPD patients, and the pathways underpinning this signature that could explain any potential benefits in COPD.Whole blood gene expression was measured on 168 statin users and 451 non-users from the ECLIPSE study using the Affymetrix Human Gene 1.1 ST microarray chips. Factor Analysis for Robust Microarray Summarization (FARMS was used to process the expression data. Differential gene expression analysis was undertaken using the Linear Models for Microarray data (Limma package adjusting for propensity score and surrogate variables. Similarity of the expression signal with published gene expression profiles was performed in ProfileChaser.25 genes were differentially expressed between statin users and non-users at an FDR of 10%, including LDLR, CXCR2, SC4MOL, FAM108A1, IFI35, FRYL, ABCG1, MYLIP, and DHCR24. The 25 genes were significantly enriched in cholesterol homeostasis and metabolism pathways. The resulting gene signature showed correlation with Huntington's disease, Parkinson's disease and acute myeloid leukemia gene signatures.The blood gene signature of statins' use in COPD patients was enriched in cholesterol homeostasis pathways. Further studies are needed to delineate the role of these pathways in lung biology.

  6. Identification of pro-angiogenic markers in blood vessels from stroked-affected brain tissue using laser-capture microdissection

    Directory of Open Access Journals (Sweden)

    Baldellou Maribel

    2009-03-01

    Full Text Available Abstract Background Angiogenesis correlates with patient survival following acute ischaemic stroke, and survival of neurons is greatest in tissue undergoing angiogenesis. Angiogenesis is critical for the development of new microvessels and leads to re-formation of collateral circulation, reperfusion, enhanced neuronal survival and improved recovery. Results Here, we have isolated active (CD105/Flt-1 positive and inactive (CD105/Flt-1 minus (n=5 micro-vessel rich-regions from stroke-affected and contralateral tissue of patients using laser-capture micro-dissection. Areas were compared for pro- and anti-angiogenic gene expression using targeted TaqMan microfluidity cards containing 46 genes and real-time PCR. Further analysis of key gene de-regulation was performed by immunohistochemistry to define localization and expression patterns of identified markers and de novo synthesis by human brain microvessel endothelial cells (HBMEC was examined following oxygen-glucose deprivation (OGD. Our data revealed that seven pro-angiogenic genes were notably up-regulated in CD105 positive microvessel rich regions. These were, beta-catenin, neural cell adhesion molecule (NRCAM, matrix metalloproteinase-2 (MMP-2, tissue inhibitor of matrix metalloproteinase-1 (TIMP-1, hepatocyte growth factor-alpha (HGF-alpha, monocyte chemottractant protein-1 (MCP-1 and and Tie-2 as well as c-kit. Immunohistochemistry demonstrated strong staining of MMP-2, HGF-alpha, MCP-1 and Tie-2 in stroke-associated regions of active remodeling in association with CD105 positive staining. In vitro, OGD stimulated production of Tie-2, MCP-1 and MMP-2 in HBMEC, demonstrated a de novo response to hypoxia. Conclusion In this work we have identified concurrent activation of key angiogenic molecules associated with endothelial cell migration, differentiation and tube-formation, vessel stabilization and stem cell homing mechanisms in areas of revascularization. Therapeutic stimulation of these

  7. Heterologous gene expression in filamentous fungi.

    Science.gov (United States)

    Su, Xiaoyun; Schmitz, George; Zhang, Meiling; Mackie, Roderick I; Cann, Isaac K O

    2012-01-01

    Filamentous fungi are critical to production of many commercial enzymes and organic compounds. Fungal-based systems have several advantages over bacterial-based systems for protein production because high-level secretion of enzymes is a common trait of their decomposer lifestyle. Furthermore, in the large-scale production of recombinant proteins of eukaryotic origin, the filamentous fungi become the vehicle of choice due to critical processes shared in gene expression with other eukaryotic organisms. The complexity and relative dearth of understanding of the physiology of filamentous fungi, compared to bacteria, have hindered rapid development of these organisms as highly efficient factories for the production of heterologous proteins. In this review, we highlight several of the known benefits and challenges in using filamentous fungi (particularly Aspergillus spp., Trichoderma reesei, and Neurospora crassa) for the production of proteins, especially heterologous, nonfungal enzymes. We review various techniques commonly employed in recombinant protein production in the filamentous fungi, including transformation methods, selection of gene regulatory elements such as promoters, protein secretion factors such as the signal peptide, and optimization of coding sequence. We provide insights into current models of host genomic defenses such as repeat-induced point mutation and quelling. Furthermore, we examine the regulatory effects of transcript sequences, including introns and untranslated regions, pre-mRNA (messenger RNA) processing, transcript transport, and mRNA stability. We anticipate that this review will become a resource for researchers who aim at advancing the use of these fascinating organisms as protein production factories, for both academic and industrial purposes, and also for scientists with general interest in the biology of the filamentous fungi. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. FARO server: Meta-analysis of gene expression by matching gene expression signatures to a compendium of public gene expression data

    DEFF Research Database (Denmark)

    Manijak, Mieszko P.; Nielsen, Henrik Bjørn

    2011-01-01

    circumvented by instead matching gene expression signatures to signatures of other experiments. FINDINGS: To facilitate this we present the Functional Association Response by Overlap (FARO) server, that match input signatures to a compendium of 242 gene expression signatures, extracted from more than 1700...... Arabidopsis microarray experiments. CONCLUSIONS: Hereby we present a publicly available tool for robust characterization of Arabidopsis gene expression experiments which can point to similar experimental factors in other experiments. The server is available at http://www.cbs.dtu.dk/services/faro/....

  9. Rhythmic diel pattern of gene expression in juvenile maize leaf.

    Directory of Open Access Journals (Sweden)

    Maciej Jończyk

    Full Text Available BACKGROUND: Numerous biochemical and physiological parameters of living organisms follow a circadian rhythm. Although such rhythmic behavior is particularly pronounced in plants, which are strictly dependent on the daily photoperiod, data on the molecular aspects of the diurnal cycle in plants is scarce and mostly concerns the model species Arabidopsis thaliana. Here we studied the leaf transcriptome in seedlings of maize, an important C4 crop only distantly related to A. thaliana, throughout a cycle of 10 h darkness and 14 h light to look for rhythmic patterns of gene expression. RESULTS: Using DNA microarrays comprising ca. 43,000 maize-specific probes we found that ca. 12% of all genes showed clear-cut diel rhythms of expression. Cluster analysis identified 35 groups containing from four to ca. 1,000 genes, each comprising genes of similar expression patterns. Perhaps unexpectedly, the most pronounced and most common (concerning the highest number of genes expression maxima were observed towards and during the dark phase. Using Gene Ontology classification several meaningful functional associations were found among genes showing similar diel expression patterns, including massive induction of expression of genes related to gene expression, translation, protein modification and folding at dusk and night. Additionally, we found a clear-cut tendency among genes belonging to individual clusters to share defined transcription factor-binding sequences. CONCLUSIONS: Co-expressed genes belonging to individual clusters are likely to be regulated by common mechanisms. The nocturnal phase of the diurnal cycle involves gross induction of fundamental biochemical processes and should be studied more thoroughly than was appreciated in most earlier physiological studies. Although some general mechanisms responsible for the diel regulation of gene expression might be shared among plants, details of the diurnal regulation of gene expression seem to differ

  10. Growth hormone receptor gene expression in puberty.

    Science.gov (United States)

    Pagani, S; Meazza, C; Gertosio, C; Bozzola, E; Bozzola, M

    2015-07-01

    The mechanisms regulating the synergic effect of growth hormone and other hormones during pubertal spurt are not completely clarified. We enrolled 64 females of Caucasian origin and normal height including 22 prepubertal girls, 26 pubertal girls, and 16 adults to evaluate the role of Growth Hormone/Insulin-like growth factor-I axis (GH/IGF-I) during the pubertal period. In these subjects both serum IGF-I and growth hormone binding protein levels, as well as quantitative growth hormone receptor (GHR) gene expression were evaluated in peripheral lymphocytes of all individuals by real-time PCR. Our results showed significantly lower IGF-I levels in women (148±10 ng/ml) and prepubertal girls (166.34±18.85 ng/ml) compared to pubertal girls (441.95±29.42 ng/ml; p<0.0001). Serum GHBP levels were significantly higher in prepubertal (127.02±20.76 ng/ml) compared to pubertal girls (16.63±2.97 ng/ml; p=0.0001) and adult women (19.95±6.65 ng/ml; p=0.0003). We also found higher GHR gene expression levels in pubertal girls [174.73±80.22 ag (growth hormone receptor)/5×10(5) ag (glyceraldehyde 3-phosphate dehydrogenase)] compared with other groups of subjects [women: 42.52±7.66 ag (growth hormone receptor)/5×10(5) ag (glyceraldehyde 3-phosphate dehydrogenase); prepubertal girls: 58.45±0.18.12 ag (growth hormone receptor)/5×10(5) ag (glyceraldehyde 3-phosphate dehydrogenase)], but the difference did not reach statistical significance. These results suggest that sexual hormones could positively influence GHR action, during the pubertal period, in a dual mode, that is, increasing GHR mRNA production and reducing GHR cleavage leading to GHBP variations. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Global gene expression analysis for evaluation and design of biomaterials

    Directory of Open Access Journals (Sweden)

    Nobutaka Hanagata, Taro Takemura and Takashi Minowa

    2010-01-01

    Full Text Available Comprehensive gene expression analysis using DNA microarrays has become a widespread technique in molecular biological research. In the biomaterials field, it is used to evaluate the biocompatibility or cellular toxicity of metals, polymers and ceramics. Studies in this field have extracted differentially expressed genes in the context of differences in cellular responses among multiple materials. Based on these genes, the effects of materials on cells at the molecular level have been examined. Expression data ranging from several to tens of thousands of genes can be obtained from DNA microarrays. For this reason, several tens or hundreds of differentially expressed genes are often present in different materials. In this review, we outline the principles of DNA microarrays, and provide an introduction to methods of extracting information which is useful for evaluating and designing biomaterials from comprehensive gene expression data.

  12. Genetic architecture of gene expression in ovine skeletal muscle

    DEFF Research Database (Denmark)

    Kogelman, Lisette Johanna Antonia; Byrne, Keren; Vuocolo, Tony

    2011-01-01

    weighted gene co-expression network analysis and a differential gene co-expression network analysis. The modules of genes revealed by these analyses were enriched for a number of functional terms summarised as muscle sarcomere organisation and development, protein catabolism (proteosome), RNA processing...... has potential, amongst other mechanisms, to alter gene expression via cis- or trans-acting mechanisms in a manner that impacts the functional activities of specific pathways that contribute to muscling traits. By integrating sire-based genetic merit information for a muscling trait with progeny......-based gene expression data we directly tested the hypothesis that there is genetic structure in the gene expression program in ovine skeletal muscle.Results: The genetic performance of six sires for a well defined muscling trait, longissimus lumborum muscle depth, was measured using extensive progeny testing...

  13. Gene and enhancer trap tagging of vascular-expressed genes in poplar trees

    Science.gov (United States)

    Andrew Groover; Joseph R. Fontana; Gayle Dupper; Caiping Ma; Robert Martienssen; Steven Strauss; Richard Meilan

    2004-01-01

    We report a gene discovery system for poplar trees based on gene and enhancer traps. Gene and enhancer trap vectors carrying the β-glucuronidase (GUS) reporter gene were inserted into the poplar genome via Agrobacterium tumefaciens transformation, where they reveal the expression pattern of genes at or near the insertion sites. Because GUS...

  14. Radionuclide reporter gene imaging for cardiac gene therapy

    International Nuclear Information System (INIS)

    Inubushi, Masayuki; Tamaki, Nagara

    2007-01-01

    In the field of cardiac gene therapy, angiogenic gene therapy has been most extensively investigated. The first clinical trial of cardiac angiogenic gene therapy was reported in 1998, and at the peak, more than 20 clinical trial protocols were under evaluation. However, most trials have ceased owing to the lack of decisive proof of therapeutic effects and the potential risks of viral vectors. In order to further advance cardiac angiogenic gene therapy, remaining open issues need to be resolved: there needs to be improvement of gene transfer methods, regulation of gene expression, development of much safer vectors and optimisation of therapeutic genes. For these purposes, imaging of gene expression in living organisms is of great importance. In radionuclide reporter gene imaging, ''reporter genes'' transferred into cell nuclei encode for a protein that retains a complementary ''reporter probe'' of a positron or single-photon emitter; thus expression of the reporter genes can be imaged with positron emission tomography or single-photon emission computed tomography. Accordingly, in the setting of gene therapy, the location, magnitude and duration of the therapeutic gene co-expression with the reporter genes can be monitored non-invasively. In the near future, gene therapy may evolve into combination therapy with stem/progenitor cell transplantation, so-called cell-based gene therapy or gene-modified cell therapy. Radionuclide reporter gene imaging is now expected to contribute in providing evidence on the usefulness of this novel therapeutic approach, as well as in investigating the molecular mechanisms underlying neovascularisation and safety issues relevant to further progress in conventional gene therapy. (orig.)

  15. Transcriptomic analysis of gene expression in mice treated with troxerutin.

    Directory of Open Access Journals (Sweden)

    Yuerong Wang

    Full Text Available Troxerutin, a semi-synthetic derivative of the natural bioflavanoid rutin, has been reported to possess many beneficial effects in human bodies, such as vasoprotection, immune support, anti-inflammation and anti-aging. However, the effects of troxerutin on genome-wide transcription in blood cells are still unknown. In order to find out effects of troxerutin on gene transcription, a high-throughput RNA sequencing was employed to analysis differential gene expression in blood cells consisting of leucocytes, erythrocytes and platelets isolated from the mice received subcutaneous injection of troxerutin. Transcriptome analysis demonstrated that the expression of only fifteen genes was significantly changed by the treatment with troxerutin, among which 5 genes were up-regulated and 10 genes were down-regulated. Bioinformatic analysis of the fifteen differentially expressed genes was made by utilizing the Gene Ontology (GO, and the differential expression induced by troxerutin was further evaluated by real-time quantitative PCR (Q-PCR.

  16. Optimization of transient gene expression system in Gerbera jemosonii petals.

    Science.gov (United States)

    Hussein, Gihan M; Abu El-Heba, Ghada A; Abdou, Sara M; Abdallah, Naglaa A

    2013-01-01

    Low transformation efficiency and long generation time for production of transgenic Gerbera jemosonii plants leads to vulnerable gene function studies. Thus, transient expression of genes would be an efficient alternative. In this investigation, a transient expression system for gerbera petals based on the Agrobacterium infiltration protocol was developed using the reporter genes β-glucuronidase (gus) and green florescence protein (gfp). Results revealed the incapability of using the gfp gene as a reporter gene for transient expression study in gerbera flowers due to the detection of green fluorescent color in the non-infiltrated gerbera flower petals. However, the gus reporter gene was successfully utilized for optimizing and obtaining the suitable agroinfiltration system in gerbera flowers. The expression of GUS was detectable after three days of agroinfiltration in gerbera cultivars "Express" and "White Grizzly" with dark pink and white flower colors, respectively. The vacuum agroinfiltration protocol has been applied on the cultivar "Express" for evaluating the transient expression of the two genes involved in the anthocyanin pathway (iris-dfr and petunia-f3' 5'h), which is responsible for the color in flowers. In comparison to the control, transient expression results showed change in the anthocyanin pigment in all infiltrated flowers with color genes. Additionally, blue color was detected in the stigma and pollen grains in the infiltrated flowers. Moreover, blue colors with variant intensities were observed in produced calli during the routine work of stable transformation with f3' 5'h gene.

  17. Redox regulation of photosynthetic gene expression.

    Science.gov (United States)

    Queval, Guillaume; Foyer, Christine H

    2012-12-19

    Redox chemistry and redox regulation are central to the operation of photosynthesis and respiration. However, the roles of different oxidants and antioxidants in the regulation of photosynthetic or respiratory gene expression remain poorly understood. Leaf transcriptome profiles of a range of Arabidopsis thaliana genotypes that are deficient in either hydrogen peroxide processing enzymes or in low molecular weight antioxidant were therefore compared to determine how different antioxidant systems that process hydrogen peroxide influence transcripts encoding proteins targeted to the chloroplasts or mitochondria. Less than 10 per cent overlap was observed in the transcriptome patterns of leaves that are deficient in either photorespiratory (catalase (cat)2) or chloroplastic (thylakoid ascorbate peroxidase (tapx)) hydrogen peroxide processing. Transcripts encoding photosystem II (PSII) repair cycle components were lower in glutathione-deficient leaves, as were the thylakoid NAD(P)H (nicotinamide adenine dinucleotide (phosphate)) dehydrogenases (NDH) mRNAs. Some thylakoid NDH mRNAs were also less abundant in tAPX-deficient and ascorbate-deficient leaves. Transcripts encoding the external and internal respiratory NDHs were increased by low glutathione and low ascorbate. Regulation of transcripts encoding specific components of the photosynthetic and respiratory electron transport chains by hydrogen peroxide, ascorbate and glutathione may serve to balance non-cyclic and cyclic electron flow pathways in relation to oxidant production and reductant availability.

  18. Large Scale Gene Expression Meta-Analysis Reveals Tissue-Specific, Sex-Biased Gene Expression in Humans

    Science.gov (United States)

    Mayne, Benjamin T.; Bianco-Miotto, Tina; Buckberry, Sam; Breen, James; Clifton, Vicki; Shoubridge, Cheryl; Roberts, Claire T.

    2016-01-01

    The severity and prevalence of many diseases are known to differ between the sexes. Organ specific sex-biased gene expression may underpin these and other sexually dimorphic traits. To further our understanding of sex differences in transcriptional regulation, we performed meta-analyses of sex biased gene expression in multiple human tissues. We analyzed 22 publicly available human gene expression microarray data sets including over 2500 samples from 15 different tissues and 9 different organs. Briefly, by using an inverse-variance method we determined the effect size difference of gene expression between males and females. We found the greatest sex differences in gene expression in the brain, specifically in the anterior cingulate cortex, (1818 genes), followed by the heart (375 genes), kidney (224 genes), colon (218 genes), and thyroid (163 genes). More interestingly, we found different parts of the brain with varying numbers and identity of sex-biased genes, indicating that specific cortical regions may influence sexually dimorphic traits. The majority of sex-biased genes in other tissues such as the bladder, liver, lungs, and pancreas were on the sex chromosomes or involved in sex hormone production. On average in each tissue, 32% of autosomal genes that were expressed in a sex-biased fashion contained androgen or estrogen hormone response elements. Interestingly, across all tissues, we found approximately two-thirds of autosomal genes that were sex-biased were not under direct influence of sex hormones. To our knowledge this is the largest analysis of sex-biased gene expression in human tissues to date. We identified many sex-biased genes that were not under the direct influence of sex chromosome genes or sex hormones. These may provide targets for future development of sex-specific treatments for diseases. PMID:27790248

  19. Large scale gene expression meta-analysis reveals tissue-specific, sex-biased gene expression in humans

    Directory of Open Access Journals (Sweden)

    Benjamin Mayne

    2016-10-01

    Full Text Available The severity and prevalence of many diseases are known to differ between the sexes. Organ specific sex-biased gene expression may underpin these and other sexually dimorphic traits. To further our understanding of sex differences in transcriptional regulation, we performed meta-analyses of sex biased gene expression in multiple human tissues. We analysed 22 publicly available human gene expression microarray data sets including over 2500 samples from 15 different tissues and 9 different organs. Briefly, by using an inverse-variance method we determined the effect size difference of gene expression between males and females. We found the greatest sex differences in gene expression in the brain, specifically in the anterior cingulate cortex, (1818 genes, followed by the heart (375 genes, kidney (224 genes, colon (218 genes and thyroid (163 genes. More interestingly, we found different parts of the brain with varying numbers and identity of sex-biased genes, indicating that specific cortical regions may influence sexually dimorphic traits. The majority of sex-biased genes in other tissues such as the bladder, liver, lungs and pancreas were on the sex chromosomes or involved in sex hormone production. On average in each tissue, 32% of autosomal genes that were expressed in a sex-biased fashion contained androgen or estrogen hormone response elements. Interestingly, across all tissues, we found approximately two-thirds of autosomal genes that were sex-biased were not under direct influence of sex hormones. To our knowledge this is the largest analysis of sex-biased gene expression in human tissues to date. We identified many sex-biased genes that were not under the direct influence of sex chromosome genes or sex hormones. These may provide targets for future development of sex-specific treatments for diseases.

  20. Microarray gene expression profiling and analysis in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Sadhukhan Provash

    2004-06-01

    Full Text Available Abstract Background Renal cell carcinoma (RCC is the most common cancer in adult kidney. The accuracy of current diagnosis and prognosis of the disease and the effectiveness of the treatment for the disease are limited by the poor understanding of the disease at the molecular level. To better understand the genetics and biology of RCC, we profiled the expression of 7,129 genes in both clear cell RCC tissue and cell lines using oligonucleotide arrays. Methods Total RNAs isolated from renal cell tumors, adjacent normal tissue and metastatic RCC cell lines were hybridized to affymatrix HuFL oligonucleotide arrays. Genes were categorized into different functional groups based on the description of the Gene Ontology Consortium and analyzed based on the gene expression levels. Gene expression profiles of the tissue and cell line samples were visualized and classified by singular value decomposition. Reverse transcription polymerase chain reaction was performed to confirm the expression alterations of selected genes in RCC. Results Selected genes were annotated based on biological processes and clustered into functional groups. The expression levels of genes in each group were also analyzed. Seventy-four commonly differentially expressed genes with more than five-fold changes in RCC tissues were identified. The expression alterations of selected genes from these seventy-four genes were further verified using reverse transcription polymerase chain reaction (RT-PCR. Detailed comparison of gene expression patterns in RCC tissue and RCC cell lines shows significant differences between the two types of samples, but many important expression patterns were preserved. Conclusions This is one of the initial studies that examine the functional ontology of a large number of genes in RCC. Extensive annotation, clustering and analysis of a large number of genes based on the gene functional ontology revealed many interesting gene expression patterns in RCC. Most

  1. Mining Association Rules among Gene Functions in Clusters of Similar Gene Expression Maps.

    Science.gov (United States)

    An, Li; Obradovic, Zoran; Smith, Desmond; Bodenreider, Olivier; Megalooikonomou, Vasileios

    2009-11-01

    Association rules mining methods have been recently applied to gene expression data analysis to reveal relationships between genes and different conditions and features. However, not much effort has focused on detecting the relation between gene expression maps and related gene functions. Here we describe such an approach to mine association rules among gene functions in clusters of similar gene expression maps on mouse brain. The experimental results show that the detected association rules make sense biologically. By inspecting the obtained clusters and the genes having the gene functions of frequent itemsets, interesting clues were discovered that provide valuable insight to biological scientists. Moreover, discovered association rules can be potentially used to predict gene functions based on similarity of gene expression maps.

  2. A stochastic approach to multi-gene expression dynamics

    International Nuclear Information System (INIS)

    Ochiai, T.; Nacher, J.C.; Akutsu, T.

    2005-01-01

    In the last years, tens of thousands gene expression profiles for cells of several organisms have been monitored. Gene expression is a complex transcriptional process where mRNA molecules are translated into proteins, which control most of the cell functions. In this process, the correlation among genes is crucial to determine the specific functions of genes. Here, we propose a novel multi-dimensional stochastic approach to deal with the gene correlation phenomena. Interestingly, our stochastic framework suggests that the study of the gene correlation requires only one theoretical assumption-Markov property-and the experimental transition probability, which characterizes the gene correlation system. Finally, a gene expression experiment is proposed for future applications of the model

  3. Angiogenic factors stimulate growth of adult neural stem cells.

    Directory of Open Access Journals (Sweden)

    Andreas Androutsellis-Theotokis

    2010-02-01

    Full Text Available The ability to grow a uniform cell type from the adult central nervous system (CNS is valuable for developing cell therapies and new strategies for drug discovery. The adult mammalian brain is a source of neural stem cells (NSC found in both neurogenic and non-neurogenic zones but difficulties in culturing these hinders their use as research tools.Here we show that NSCs can be efficiently grown in adherent cell cultures when angiogenic signals are included in the medium. These signals include both anti-angiogenic factors (the soluble form of the Notch receptor ligand, Dll4 and pro-angiogenic factors (the Tie-2 receptor ligand, Angiopoietin 2. These treatments support the self renewal state of cultured NSCs and expression of the transcription factor Hes3, which also identifies the cancer stem cell population in human tumors. In an organotypic slice model, angiogenic factors maintain vascular structure and increase the density of dopamine neuron processes.We demonstrate new properties of adult NSCs and a method to generate efficient adult NSC cultures from various central nervous system areas. These findings will help establish cellular models relevant to cancer and regeneration.

  4. Characterization of differentially expressed genes using high-dimensional co-expression networks

    DEFF Research Database (Denmark)

    Coelho Goncalves de Abreu, Gabriel; Labouriau, Rodrigo S.

    2010-01-01

    We present a technique to characterize differentially expressed genes in terms of their position in a high-dimensional co-expression network. The set-up of Gaussian graphical models is used to construct representations of the co-expression network in such a way that redundancy and the propagation...... that allow to make effective inference in problems with high degree of complexity (e.g. several thousands of genes) and small number of observations (e.g. 10-100) as typically occurs in high throughput gene expression studies. Taking advantage of the internal structure of decomposable graphical models, we...... construct a compact representation of the co-expression network that allows to identify the regions with high concentration of differentially expressed genes. It is argued that differentially expressed genes located in highly interconnected regions of the co-expression network are less informative than...

  5. Expression profiles for six zebrafish genes during gonadal sex differentiation

    Directory of Open Access Journals (Sweden)

    Rasmussen Lene J

    2008-06-01

    Full Text Available Abstract Background The mechanism of sex determination in zebrafish is largely unknown and neither sex chromosomes nor a sex-determining gene have been identified. This indicates that sex determination in zebrafish is mediated by genetic signals from autosomal genes. The aim of this study was to determine the precise timing of expression of six genes previously suggested to be associated with sex differentiation in zebrafish. The current study investigates the expression of all six genes in the same individual fish with extensive sampling dates during sex determination and -differentiation. Results In the present study, we have used quantitative real-time PCR to investigate the expression of ar, sox9a, dmrt1, fig alpha, cyp19a1a and cyp19a1b during the expected sex determination and gonadal sex differentiation period. The expression of the genes expected to be high in males (ar, sox9a and dmrt1a and high in females (fig alpha and cyp19a1a was segregated in two groups with more than 10 times difference in expression levels. All of the investigated genes showed peaks in expression levels during the time of sex determination and gonadal sex differentiation. Expression of all genes was investigated on cDNA from the same fish allowing comparison of the high and low expressers of genes that are expected to be highest expressed in either males or females. There were 78% high or low expressers of all three "male" genes (ar, sox9a and dmrt1 in the investigated period and 81% were high or low expressers of both "female" genes (fig alpha and cyp19a1a. When comparing all five genes with expected sex related expression 56% show expression expected for either male or female. Furthermore, the expression of all genes was investigated in different tissue of adult male and female zebrafish. Conclusion In zebrafish, the first significant peak in gene expression during the investigated period (2–40 dph was dmrt1 at 10 dph which indicates involvement of this gene

  6. Gene Expression Measurement Module (GEMM) - a fully automated, miniaturized instrument for measuring gene expression in space

    Science.gov (United States)

    Karouia, Fathi; Ricco, Antonio; Pohorille, Andrew; Peyvan, Kianoosh

    2012-07-01

    The capability to measure gene expression on board spacecrafts opens the doors to a large number of experiments on the influence of space environment on biological systems that will profoundly impact our ability to conduct safe and effective space travel, and might also shed light on terrestrial physiology or biological function and human disease and aging processes. Measurements of gene expression will help us to understand adaptation of terrestrial life to conditions beyond the planet of origin, identify deleterious effects of the space environment on a wide range of organisms from microbes to humans, develop effective countermeasures against these effects, determine metabolic basis of microbial pathogenicity and drug resistance, test our ability to sustain and grow in space organisms that can be used for life support and in situ resource utilization during long-duration space exploration, and monitor both the spacecraft environment and crew health. These and other applications hold significant potential for discoveries in space biology, biotechnology and medicine. Accordingly, supported by funding from the NASA Astrobiology Science and Technology Instrument Development Program, we are developing a fully automated, miniaturized, integrated fluidic system for small spacecraft capable of in-situ measuring microbial expression of thousands of genes from multiple samples. The instrument will be capable of (1) lysing bacterial cell walls, (2) extracting and purifying RNA released from cells, (3) hybridizing it on a microarray and (4) providing electrochemical readout, all in a microfluidics cartridge. The prototype under development is suitable for deployment on nanosatellite platforms developed by the NASA Small Spacecraft Office. The first target application is to cultivate and measure gene expression of the photosynthetic bacterium Synechococcus elongatus, i.e. a cyanobacterium known to exhibit remarkable metabolic diversity and resilience to adverse conditions

  7. Identification and validation of suitable endogenous reference genes for gene expression studies in human peripheral blood.

    Science.gov (United States)

    Stamova, Boryana S; Apperson, Michelle; Walker, Wynn L; Tian, Yingfang; Xu, Huichun; Adamczy, Peter; Zhan, Xinhua; Liu, Da-Zhi; Ander, Bradley P; Liao, Isaac H; Gregg, Jeffrey P; Turner, Renee J; Jickling, Glen; Lit, Lisa; Sharp, Frank R

    2009-08-05

    Gene expression studies require appropriate normalization methods. One such method uses stably expressed reference genes. Since suitable reference genes appear to be unique for each tissue, we have identified an optimal set of the most stably expressed genes in human blood that can be used for normalization. Whole-genome Affymetrix Human 2.0 Plus arrays were examined from 526 samples of males and females ages 2 to 78, including control subjects and patients with Tourette syndrome, stroke, migraine, muscular dystrophy, and autism. The top 100 most stably expressed genes with a broad range of expression levels were identified. To validate the best candidate genes, we performed quantitative RT-PCR on a subset of 10 genes (TRAP1, DECR1, FPGS, FARP1, MAPRE2, PEX16, GINS2, CRY2, CSNK1G2 and A4GALT), 4 commonly employed reference genes (GAPDH, ACTB, B2M and HMBS) and PPIB, previously reported to be stably expressed in blood. Expression stability and ranking analysis were performed using GeNorm and NormFinder algorithms. Reference genes were ranked based on their expression stability and the minimum number of genes needed for nomalization as calculated using GeNorm showed that the fewest, most stably expressed genes needed for acurate normalization in RNA expression studies of human whole blood is a combination of TRAP1, FPGS, DECR1 and PPIB. We confirmed the ranking of the best candidate control genes by using an alternative algorithm (NormFinder). The reference genes identified in this study are stably expressed in whole blood of humans of both genders with multiple disease conditions and ages 2 to 78. Importantly, they also have different functions within cells and thus should be expressed independently of each other. These genes should be useful as normalization genes for microarray and RT-PCR whole blood studies of human physiology, metabolism and disease.

  8. Identification and validation of suitable endogenous reference genes for gene expression studies in human peripheral blood

    Directory of Open Access Journals (Sweden)

    Turner Renee J

    2009-08-01

    Full Text Available Abstract Background Gene expression studies require appropriate normalization methods. One such method uses stably expressed reference genes. Since suitable reference genes appear to be unique for each tissue, we have identified an optimal set of the most stably expressed genes in human blood that can be used for normalization. Methods Whole-genome Affymetrix Human 2.0 Plus arrays were examined from 526 samples of males and females ages 2 to 78, including control subjects and patients with Tourette syndrome, stroke, migraine, muscular dystrophy, and autism. The top 100 most stably expressed genes with a broad range of expression levels were identified. To validate the best candidate genes, we performed quantitative RT-PCR on a subset of 10 genes (TRAP1, DECR1, FPGS, FARP1, MAPRE2, PEX16, GINS2, CRY2, CSNK1G2 and A4GALT, 4 commonly employed reference genes (GAPDH, ACTB, B2M and HMBS and PPIB, previously reported to be stably expressed in blood. Expression stability and ranking analysis were performed using GeNorm and NormFinder algorithms. Results Reference genes were ranked based on their expression stability and the minimum number of genes needed for nomalization as calculated using GeNorm showed that the fewest, most stably expressed genes needed for acurate normalization in RNA expression studies of human whole blood is a combination of TRAP1, FPGS, DECR1 and PPIB. We confirmed the ranking of the best candidate control genes by using an alternative algorithm (NormFinder. Conclusion The reference genes identified in this study are stably expressed in whole blood of humans of both genders with multiple disease conditions and ages 2 to 78. Importantly, they also have different functions within cells and thus should be expressed independently of each other. These genes should be useful as normalization genes for microarray and RT-PCR whole blood studies of human physiology, metabolism and disease.

  9. Stably Expressed Genes Involved in Basic Cellular Functions.

    Directory of Open Access Journals (Sweden)

    Kejian Wang

    Full Text Available Stably Expressed Genes (SEGs whose expression varies within a narrow range may be involved in core cellular processes necessary for basic functions. To identify such genes, we re-analyzed existing RNA-Seq gene expression profiles across 11 organs at 4 developmental stages (from immature to old age in both sexes of F344 rats (n = 4/group; 320 samples. Expression changes (calculated as the maximum expression / minimum expression for each gene of >19000 genes across organs, ages, and sexes ranged from 2.35 to >109-fold, with a median of 165-fold. The expression of 278 SEGs was found to vary ≤4-fold and these genes were significantly involved in protein catabolism (proteasome and ubiquitination, RNA transport, protein processing, and the spliceosome. Such stability of expression was further validated in human samples where the expression variability of the homologous human SEGs was significantly lower than that of other genes in the human genome. It was also found that the homologous human SEGs were generally less subject to non-synonymous mutation than other genes, as would be expected of stably expressed genes. We also found that knockout of SEG homologs in mouse models was more likely to cause complete preweaning lethality than non-SEG homologs, corroborating the fundamental roles played by SEGs in biological development. Such stably expressed genes and pathways across life-stages suggest that tight control of these processes is important in basic cellular functions and that perturbation by endogenous (e.g., genetics or exogenous agents (e.g., drugs, environmental factors may cause serious adverse effects.

  10. Effects of heat stress on gene expression in eggplant ( Solanum ...

    African Journals Online (AJOL)

    In order to identify differentially expressed genes involved in heat shock response, cDNA amplified fragment length polymorphism (cDNA-AFLP) and quantitative real-time polymerase chain reaction (QPCR) were used to study gene expression of eggplant seedlings subjected to 0, 6 and 12 h at 43°C. A total of 53 of over ...

  11. Long SAGE analysis of genes differentially expressed in the midgut ...

    African Journals Online (AJOL)

    There are great differences in silk production efficiency and quality between the male and female domestic silkworm (Bombyx mori). Many genes act together but are differentially expressed between the sexes during silk biosynthesis. Two long serial analyses of gene expression (SAGE) libraries were constructed from the ...

  12. Regulation of mitochondrial gene expression, the epigenetic enigma

    NARCIS (Netherlands)

    Mposhi, Archibold; van der Wijst, Monique G. P.; Faber, Klaas Nico; Rots, Marianne G.

    2017-01-01

    Epigenetics provides an important layer of information on top of the DNA sequence and is essential for establishing gene expression profiles. Extensive studies have shown that nuclear DNA methylation and histone modifications influence nuclear gene expression. However, it remains unclear whether

  13. The gene expressions of DNA methylation/demethylation enzymes ...

    African Journals Online (AJOL)

    A decrease in mRNA levels for cytochrome c oxidase (COX) subunits was observed in skeletal muscle of hypothyroid rats. However, the precise expression mechanisms of the related genes in hypothyroid state still remain unclear. This study investigated gene expressions of DNA methyltransferases (Dnmts), DNA ...

  14. Comparative genomics of the relationship between gene structure and expression

    NARCIS (Netherlands)

    Ren, X.

    2006-01-01

    The relationship between the structure of genes and their expression is a relatively new aspect of genome organization and regulation. With more genome sequences and expression data becoming available, bioinformatics approaches can help the further elucidation of the relationships between gene

  15. Gene expression profiles in adenosine-treated human mast cells ...

    African Journals Online (AJOL)

    The role of mast cells in allergic diseases and innate immunity has been widely researched and much is known about the expression profiles of immune-related genes in mast cells after bacterial challenges. However, little is known about the gene expression profiles of mast cells in response to adenosine. Herein, we ...

  16. Microarray analysis of the gene expression profile in triethylene ...

    African Journals Online (AJOL)

    Microarray analysis of the gene expression profile in triethylene glycol dimethacrylate-treated human dental pulp cells. ... Conclusions: Our results suggest that TEGDMA can change the many functions of hDPCs through large changes in gene expression levels and complex interactions with different signaling pathways.

  17. The gene expressions of DNA methylation/demethylation enzymes ...

    African Journals Online (AJOL)

    user

    2011-01-31

    Jan 31, 2011 ... A decrease in mRNA levels for cytochrome c oxidase (COX) subunits was observed in skeletal muscle of hypothyroid rats. However, the precise expression mechanisms of the related genes in hypothyroid state still remain unclear. This study investigated gene expressions of DNA methyltransferases.

  18. Genome organization and expression of the rat ACBP gene family

    DEFF Research Database (Denmark)

    Mandrup, S; Andreasen, P H; Knudsen, J

    1993-01-01

    pool former. We have molecularly cloned and characterized the rat ACBP gene family which comprises one expressed and four processed pseudogenes. One of these was shown to exist in two allelic forms. A comprehensive computer-aided analysis of the promoter region of the expressed ACBP gene revealed...

  19. Expression of KLK2 gene in prostate cancer

    Directory of Open Access Journals (Sweden)

    Sajad Shafai

    2018-01-01

    Conclusion: The expression of KLK2 gene in people with prostate cancer is the higher than the healthy person; finally, according to the results, it could be mentioned that the KLK2 gene considered as a useful factor in prostate cancer, whose expression is associated with progression and development of the prostate cancer.

  20. Differential expressed genes in ECV304 Endothelial-like Cells ...

    African Journals Online (AJOL)

    Background: Human cytomegalovirus (HCMV) is a virus which has the potential to alter cellular gene expression through multiple mechanisms. Objective: With the application of DNA microarrays, we could monitor the effects of pathogens on host-cell gene expression programmes in great depth and on a broad scale.

  1. RNA preparation and characterization for gene expression studies

    DEFF Research Database (Denmark)

    Stangegaard, Michael

    2009-01-01

    Much information can be obtained from knowledge of the relative expression level of each gene in the transcriptome. With the current advances in technology as little as a single cell is required as starting material for gene expression experiments. The mRNA from a single cell may be linearly...

  2. Meta-analysis of differentially expressed genes in ankylosing spondylitis.

    Science.gov (United States)

    Lee, Y H; Song, G G

    2015-05-18

    The purpose of this study was to identify differentially expressed (DE) genes and biological processes associated with changes in gene expression in ankylosing spondylitis (AS). We performed a meta-analysis using the integrative meta-analysis of expression data program on publicly available microarray AS Gene Expression Omnibus (GEO) datasets. We performed Gene Ontology (GO) enrichment analyses and pathway analysis using the Kyoto Encyclopedia of Genes and Genomes. Four GEO datasets, including 31 patients with AS and 39 controls, were available for the meta-analysis. We identified 65 genes across the studies that were consistently DE in patients with AS vs controls (23 upregulated and 42 downregulated). The upregulated gene with the largest effect size (ES; -1.2628, P = 0.020951) was integral membrane protein 2A (ITM2A), which is expressed by CD4+ T cells and plays a role in activation of T cells. The downregulated gene with the largest ES (1.2299, P = 0.040075) was mitochondrial ribosomal protein S11 (MRPS11). The most significant GO enrichment was in the respiratory electron transport chain category (P = 1.67 x 10-9). Therefore, our meta-analysis identified genes that were consistently DE as well as biological pathways associated with gene expression changes in AS.

  3. Expression and clinical significance of Pax6 gene in retinoblastoma

    Directory of Open Access Journals (Sweden)

    Hai-Dong Huang

    2013-07-01

    Full Text Available AIM: To discuss the expression and clinical significance of Pax6 gene in retinoblastoma(Rb. METHODS: Totally 15 cases of fresh Rb organizations were selected as observation group and 15 normal retinal organizations as control group. Western-Blot and reverse transcriptase polymerase chain reaction(RT-PCRmethods were used to detect Pax6 protein and Pax6 mRNA expressions of the normal retina organizations and Rb organizations. At the same time, Western Blot method was used to detect the Pax6 gene downstream MATH5 and BRN3b differentiation gene protein level expression. After the comparison between two groups, the expression and clinical significance of Pax6 gene in Rb were discussed. RESULTS: In the observation group, average value of mRNA expression of Pax6 gene was 0.99±0.03; average value of Pax6 gene protein expression was 2.07±0.15; average value of BRN3b protein expression was 0.195±0.016; average value of MATH5 protein expression was 0.190±0.031. They were significantly higher than the control group, and the differences were statistically significant(PCONCLUSION: Abnormal expression of Pax6 gene is likely to accelerate the occurrence of Rb.

  4. Fungal and plant gene expression in arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Balestrini, Raffaella; Lanfranco, Luisa

    2006-11-01

    Arbuscular mycorrhizas (AMs) are a unique example of symbiosis between two eukaryotes, soil fungi and plants. This association induces important physiological changes in each partner that lead to reciprocal benefits, mainly in nutrient supply. The symbiosis results from modifications in plant and fungal cell organization caused by specific changes in gene expression. Recently, much effort has gone into studying these gene expression patterns to identify a wider spectrum of genes involved. We aim in this review to describe AM symbiosis in terms of current knowledge on plant and fungal gene expression profiles.

  5. Decoupling Linear and Nonlinear Associations of Gene Expression

    KAUST Repository

    Itakura, Alan

    2013-05-01

    The FANTOM consortium has generated a large gene expression dataset of different cell lines and tissue cultures using the single-molecule sequencing technology of HeliscopeCAGE. This provides a unique opportunity to investigate novel associations between gene expression over time and different cell types. Here, we create a MatLab wrapper for a powerful and computationally intensive set of statistics known as Maximal Information Coefficient, and then calculate this statistic for a large, comprehensive dataset containing gene expression of a variety of differentiating tissues. We then distinguish between linear and nonlinear associations, and then create gene association networks. Following this analysis, we are then able to identify clusters of linear gene associations that then associate nonlinearly with other clusters of linearity, providing insight to much more complex connections between gene expression patterns than previously anticipated.

  6. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR

    Science.gov (United States)

    Silver, Nicholas; Best, Steve; Jiang, Jie; Thein, Swee Lay

    2006-01-01

    Background Control genes, which are often referred to as housekeeping genes, are frequently used to normalise mRNA levels between different samples. However, the expression level of these genes may vary among tissues or cells and may change under certain circumstances. Thus, the selection of housekeeping genes is critical for gene expression studies. To address this issue, 7 candidate housekeeping genes including several commonly used ones were investigated in isolated human reticulocytes. For this, a simple ΔCt approach was employed by comparing relative expression of 'pairs of genes' within each sample. On this basis, stability of the candidate housekeeping genes was ranked according to repeatability of the gene expression differences among 31 samples. Results Initial screening of the expression pattern demonstrated that 1 of the 7 genes was expressed at very low levels in reticulocytes and was excluded from further analysis. The range of expression stability of the other 6 genes was (from most stable to least stable): GAPDH (glyceraldehyde 3-phosphate dehydrogenase), SDHA (succinate dehydrogenase), HPRT1 (hypoxanthine phosphoribosyl transferase 1), HBS1L (HBS1-like protein) and AHSP (alpha haemoglobin stabilising protein), followed by B2M (beta-2-microglobulin). Conclusion Using this simple approach, GAPDH was found to be the most suitable housekeeping gene for expression studies in reticulocytes while the commonly used B2M should be avoided. PMID:17026756

  7. Local gene expression in nerve endings.

    Science.gov (United States)

    Crispino, Marianna; Chun, Jong Tai; Cefaliello, Carolina; Perrone Capano, Carla; Giuditta, Antonio

    2014-03-01

    At the Nobel lecture for physiology in 1906, Ramón y Cajal famously stated that "the nerve elements possess reciprocal relationships in contiguity but not in continuity," summing up the neuron doctrine. Sixty years later, by the time the central dogma of molecular biology formulated the axis of genetic information flow from DNA to mRNA, and then to protein, it became obvious that neurons with extensive ramifications and long axons inevitably incur an innate problem: how can the effect of gene expression be extended from the nucleus to the remote and specific sites of the cell periphery? The most straightforward solution would be to deliver soma-produced proteins to the target sites. The influential discovery of axoplasmic flow has supported this scheme of protein supply. Alternatively, mRNAs can be dispatched instead of protein, and translated locally at the strategic target sites. Over the past decades, such a local system of protein synthesis has been demonstrated in dendrites, axons, and presynaptic terminals. Moreover, the local protein synthesis in neurons might even involve intercellular trafficking of molecules. The innovative concept of glia-neuron unit suggests that the local protein synthesis in the axonal and presynaptic domain of mature neurons is sustained by a local supply of RNAs synthesized in the surrounding glial cells and transferred to these domains. Here, we have reviewed some of the evidence indicating the presence of a local system of protein synthesis in axon terminals, and have examined its regulation in various model systems. Copyright © 2013 Wiley Periodicals, Inc.

  8. Gene ordering in partitive clustering using microarray expressions

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    fibroblast data and showed that our approach improves the result quality of partitive clustering solution, by identifying subclusters within big clusters, grouping functionally correlated genes within clusters, minimization of summation of gene expression distances, and the maximization of biological gene ordering using MIPS ...

  9. Differentially expressed genes in white egg 2 mutant of silkworm ...

    African Journals Online (AJOL)

    In order to obtain an overall view on gene expression profiles at early embryo development stages, the white egg 2 near-isogenic line was constructed and the whole-genome of silkworm microarray system containing 21375 predicted genes from the silkworm whole genome sequence was employed to investigate gene ...

  10. Gene expression profile study on osteoinductive effect of natural hydroxyapatite.

    Science.gov (United States)

    Lü, Xiaoying; Wang, Jiandan; Li, Bin; Zhang, Zhiwei; Zhao, Lifeng

    2014-08-01

    The aim of this study was to investigate the osteoinductive effect of natural hydroxyapatite (NHA). NHA was extracted from pig bones and prepared into disk-like samples. Then, proliferation of mouse bone mesenchymal stem cells (MSCs) cultured on NHA was assessed by the methylthiazoltetrazolium (MTT) assay. Furthermore, microarray technology was applied to obtain the gene expression profiles of MSCs cultured on NHA at 24, 48, and 72 h. The gene expression profile was then comprehensively analyzed by clustering, Gene Ontology (GO), Gene Microarray Pathway Profiler (GenMAPP) and Ingenuity Pathway Analysis (IPA). According to the results of microarray experiment, 8992 differentially expressed genes were obtained. 90 differential expressed genes related to HA osteogenic differentiation were determined by GO analysis. These genes included not only 6 genes related to HA osteogenic differentiation as mentioned in the literatures but also newly discovered 84 genes. Some important signaling pathways (TGF-β, MAPK, Wnt, etc.) were influenced by these genes. Gene interaction networks were obtained by IPA software, in which the scoring values of two networks were highest, and their main functions were related to cell development. The comprehensive analysis of these results indicate that NHA regulate some crucial genes (e.g., Bmp2, Spp1) and then activate some pathways such as TGF-β signaling pathway, and ultimately osteogenic differentiation was induced. © 2013 Wiley Periodicals, Inc.

  11. DNA microarray analysis of genes differentially expressed in ...

    Indian Academy of Sciences (India)

    These genes may play a major role in promoting excessive proliferation and accumulation of lipid droplets, which contribute to the development of obesity. By using microarray-based technology, we examined differential gene expression in early differentiated adipocytes and late differentiated adipocytes. Validated genes ...

  12. Differentially expressed genes in the midgut of Silkworm infected ...

    African Journals Online (AJOL)

    In this report, we employed suppression subtractive hybridization to compare differentially expressed genes in the midguts of CPV-infected and normal silkworm larvae. 36 genes and 20 novel ESTs were obtained from 2 reciprocal subtractive libraries. Three up-regulated genes (ferritin, rpL11 and alkaline nuclease) and 3 ...

  13. Expression profiles of genes involved in tanshinone biosynthesis of ...

    Indian Academy of Sciences (India)

    Expression profiles of genes involved in tanshinone biosynthesis of two. Salvia miltiorrhiza genotypes with different tanshinone contents. Zhenqiao Song, Jianhua Wang and Xingfeng Li. J. Genet. 95, 433–439. Table 1. S. miltiorrhiza genes and primer pairs used for qRT-PCR. Gene. GenBank accession. Primer name.

  14. Identification of differentially expressed genes in seeds of two ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... the differentially expressed genes are related to metabolism and regulation. The possible role of these genes in seeds ..... genes are regulated by hormones such as insulin. (Moustaid et al., 1994), by dietary fatty .... Physiol. 99: 197-202. Heppard EP, Kinney AJ, Stecca KL, Miao GH (1996). Developmental.

  15. Molecular characterization, expression profile of the FSHR gene and ...

    Indian Academy of Sciences (India)

    JIGUO XU

    2017-06-17

    Jun 17, 2017 ... the expression pattern of FSHR mRNA in various mus- covy duck tissues, besides, identified the polymorphism of this gene and evaluated its association with muscovy duck egg production traits, by using methods of reverse transcription, gene cloning, PCR amplification, qPCR and gene sequencing.

  16. MASISH: a database for gene expression in maize seeds.

    Science.gov (United States)

    Miquel, M; López-Ribera, I; Ràmia, M; Casillas, S; Barbadilla, A; Vicient, C M

    2011-02-01

    Grass seeds are complex organs composed by multiple tissues and cell types that develop coordinately to produce a viable embryo. The identification of genes involved in seed development is of great interest, but systematic spatial analyses of gene expression on maize seeds at the cell level have not yet been performed. MASISH is an online database holding information for gene expression spatial patterns in maize seeds based on in situ hybridization experiments. The web-based query interface allows the execution of gene queries and provides hybridization images, published references and information of the analyzed genes. http://masish.uab.cat/.

  17. Adaptive differences in gene expression in European flounder ( Platichthys flesus )

    DEFF Research Database (Denmark)

    Larsen, Peter Foged; Eg Nielsen, Einar; Williams, T.D.

    2007-01-01

    levels of neutral genetic divergence, a high number of genes were significantly differentially expressed between North Sea and Baltic Sea flounders maintained in a long-term reciprocal transplantation experiment mimicking natural salinities. Several of the differentially regulated genes could be directly...... linked to fitness traits. These findings demonstrate that flounders, despite little neutral genetic divergence between populations, are differently adapted to local environmental conditions and imply that adaptation in gene expression could be common in other marine organisms with similar low levels...

  18. Gene Expression and the Diversity of Identified Neurons

    OpenAIRE

    Buck, L.; Stein, R.; Palazzolo, M.; Anderson, D. J.; Axel, R.

    1983-01-01

    Nervous systems consist of diverse populations of neurons that are anatomically and functionally distinct. The diversity of neurons and the precision with which they are interconnected suggest that specific genes or sets of genes are activated in some neurons but not expressed in others. Experimentally, this problem may be considered at two levels. First, what is the total number of genes expressed in the brain, and how are they distributed among the different populations of neurons? Second, ...

  19. Binary gene induction and protein expression in individual cells

    Directory of Open Access Journals (Sweden)

    Conolly Rory B

    2006-04-01

    Full Text Available Abstract Background Eukaryotic gene transcription is believed to occur in either a binary or a graded fashion. With binary induction, a transcription activator (TA regulates the probability with which a gene template is switched from the inactive to the active state without affecting the rate at which RNA molecules are produced from the template. With graded, also called rheostat-like, induction the gene template has continuously varying levels of transcriptional activity, and the TA regulates the rate of RNA production. Support for each of these two mechanisms arises primarily from experimental studies measuring reporter proteins in individual cells, rather than from direct measurement of induction events at the gene template. Methods and results In this paper, using a computational model of stochastic gene expression, we have studied the biological and experimental conditions under which a binary induction mode operating at the gene template can give rise to differentially expressed "phenotypes" (i.e., binary, hybrid or graded at the protein level. We have also investigated whether the choice of reporter genes plays a significant role in determining the observed protein expression patterns in individual cells, given the diverse properties of commonly-used reporter genes. Our simulation confirmed early findings that the lifetimes of active/inactive promoters and half-lives of downstream mRNA/protein products are important determinants of various protein expression patterns, but showed that the induction time and the sensitivity with which the expressed genes are detected are also important experimental variables. Using parameter conditions representative of reporter genes including green fluorescence protein (GFP and β-galactosidase, we also demonstrated that graded gene expression is more likely to be observed with GFP, a longer-lived protein with low detection sensitivity. Conclusion The choice of reporter genes may determine whether protein

  20. Evaluating the consistency of gene sets used in the analysis of bacterial gene expression data

    Directory of Open Access Journals (Sweden)

    Tintle Nathan L

    2012-08-01

    Full Text Available Abstract Background Statistical analyses of whole genome expression data require functional information about genes in order to yield meaningful biological conclusions. The Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG are common sources of functionally grouped gene sets. For bacteria, the SEED and MicrobesOnline provide alternative, complementary sources of gene sets. To date, no comprehensive evaluation of the data obtained from these resources has been performed. Results We define a series of gene set consistency metrics directly related to the most common classes of statistical analyses for gene expression data, and then perform a comprehensive analysis of 3581 Affymetrix® gene expression arrays across 17 diverse bacteria. We find that gene sets obtained from GO and KEGG demonstrate lower consistency than those obtained from the SEED and MicrobesOnline, regardless of gene set size. Conclusions Despite the widespread use of GO and KEGG gene sets in bacterial gene expression data analysis, the SEED and MicrobesOnline provide more consistent sets for a wide variety of statistical analyses. Increased use of the SEED and MicrobesOnline gene sets in the analysis of bacterial gene expression data may improve statistical power and utility of expression data.

  1. Radiolabeled PNAs for imaging gene expression

    Directory of Open Access Journals (Sweden)

    Eric Wickstrom

    2002-09-01

    Full Text Available Scintigraphic imaging of gene expression in vivo by non-invasive means could precisely direct physicians to appropriate intervention at the onset of disease and could contribute extensively to the management of patients. However, no method is currently available to image specific overexpressed oncogene mRNAs in vivo by scintigraphic imaging. Nevertheless, we have observed that Tc-99m-peptides can delineate tumors, and that PNA-peptides are specific for receptors on malignant cells and are taken up specifically and concentrated in nuclei. We hypothesize that antisense Tc-99m-PNA-peptides will be taken up by human breast cancer cells, hybridize to complementary mRNA targets, and permit imaging of oncogene mRNAs in human breast cancer xenografts in a mouse model, providing a proof-of-principle for non-invasive detection of precancerous and invasive breast cancer. Oncogenes cyclin D1, erbB-2, c-MYC, and tumor suppressor p53 will be probed. If successful, this technique will be useful for diagnostic imaging of other solid tumors as well.Imagens cintigráficas da expressão genética in vivo por metódos não invasivos poderiam orientar mais precisamente as intervenções médicas para o local definido da doença e poderia contribuir para melhor tratamento dos pacientes. Entretanto, nenhum método está atualmente disponível para a imagem específica da intensa expressão de um oncogene de RNAm (s in vivo por imagem cintigráfica. Contudo, nós temos observado que peptídeos marcados Tc-99m podem delinear tumores, e que peptídeos PNA são específicos para receptores em células malignas e são captados e concentrados no núcleo. Nós sugerimos que peptideos PNA nonsense marcados com Tc-99m serão capturados pelas células neoplásicas de mama humana, hibridizarão com sequências complementares de alvos de RNAm e permitirão imagen de oncogenes de RNAm em câncer de mama humana com enxerto em modelo animal, provendo um prova do princípio de detec

  2. Expression of MAGE and BAGE genes in Japanese breast cancers.

    Science.gov (United States)

    Fujie, T; Mori, M; Ueo, H; Sugimachi, K; Akiyoshi, T

    1997-04-01

    The MAGE and BAGE genes code for distinct antigens, which are recognized on melanoma cells as well as on other various tumor cells by autologous cytolytic T lymphocytes. These antigens may thus constitute useful targets for specific immunotherapy, since no expression of MAGE or BAGE genes has been recognized in normal tissue except for the testis. We studied the MAGE-1, MAGE-3, and BAGE gene expression observed in 49 Japanese breast cancers. Gene expression was evaluated by reverse transcription polymerase chain reaction. Out of 49 tumor tissue specimens of primary breast cancers, the expression of MAGE-1, -3 and BAGE was recognized in 15 (31%), 12 (24%), and 4 (8%) tumors, respectively. The expression of MAGE and BAGE genes is not recognized in normal breast tissue. The expression of the MAGE-3 gene was frequently recognized in tumors with lymphatic and/or vascular vessel permeations. Either MAGE-1 or -3 gene expressions were induced in 1 of 3 MAGE-1 negative breast cell lines or 1 of 3 MAGE-3 negative breast cell lines by the treatment with 5-aza-2'-deoxycytidine. These findings suggest that: 1) the identification of such antigens coded by MAGE or BAGE genes may thus offer the possibility of using specific immunotherapy, and 2) the use of a demethylating agent may increase the number of patients who might be candidates for MAGE specific immunotherapy.

  3. Clustering Algorithms: Their Application to Gene Expression Data.

    Science.gov (United States)

    Oyelade, Jelili; Isewon, Itunuoluwa; Oladipupo, Funke; Aromolaran, Olufemi; Uwoghiren, Efosa; Ameh, Faridah; Achas, Moses; Adebiyi, Ezekiel

    2016-01-01

    Gene expression data hide vital information required to understand the biological process that takes place in a particular organism in relation to its environment. Deciphering the hidden patterns in gene expression data proffers a prodigious preference to strengthen the understanding of functional genomics. The complexity of biological networks and the volume of genes present increase the challenges of comprehending and interpretation of the resulting mass of data, which consists of millions of measurements; these data also inhibit vagueness, imprecision, and noise. Therefore, the use of clustering techniques is a first step toward addressing these challenges, which is essential in the data mining process to reveal natural structures and identify interesting patterns in the underlying data. The clustering of gene expression data has been proven to be useful in making known the natural structure inherent in gene expression data, understanding gene functions, cellular processes, and subtypes of cells, mining useful information from noisy data, and understanding gene regulation. The other benefit of clustering gene expression data is the identification of homology, which is very important in vaccine design. This review examines the various clustering algorithms applicable to the gene expression data in order to discover and provide useful knowledge of the appropriate clustering technique that will guarantee stability and high degree of accuracy in its analysis procedure.

  4. MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia.

    Directory of Open Access Journals (Sweden)

    Zhong Hua

    Full Text Available MicroRNAs (miRNAs are a class of 20-24 nt non-coding RNAs that regulate gene expression primarily through post-transcriptional repression or mRNA degradation in a sequence-specific manner. The roles of miRNAs are just beginning to be understood, but the study of miRNA function has been limited by poor understanding of the general principles of gene regulation by miRNAs. Here we used CNE cells from a human nasopharyngeal carcinoma cell line as a cellular system to investigate miRNA-directed regulation of VEGF and other angiogenic factors under hypoxia, and to explore the principles of gene regulation by miRNAs. Through computational analysis, 96 miRNAs were predicted as putative regulators of VEGF. But when we analyzed the miRNA expression profile of CNE and four other VEGF-expressing cell lines, we found that only some of these miRNAs could be involved in VEGF regulation, and that VEGF may be regulated by different miRNAs that were differentially chosen from 96 putative regulatory miRNAs of VEGF in different cells. Some of these miRNAs also co-regulate other angiogenic factors (differential regulation and co-regulation principle. We also found that VEGF was regulated by multiple miRNAs using different combinations, including both coordinate and competitive interactions. The coordinate principle states that miRNAs with independent binding sites in a gene can produce coordinate action to increase the repressive effect of miRNAs on this gene. By contrast, the competitive principle states when multiple miRNAs compete with each other for a common binding site, or when a functional miRNA competes with a false positive miRNA for the same binding site, the repressive effects of miRNAs may be decreased. Through the competitive principle, false positive miRNAs, which cannot directly repress gene expression, can sometimes play a role in miRNA-mediated gene regulation. The competitive principle, differential regulation, multi-miRNA binding sites, and false

  5. Validation of reference genes for quantifying changes in gene expression in virus-infected tobacco.

    Science.gov (United States)

    Baek, Eseul; Yoon, Ju-Yeon; Palukaitis, Peter

    2017-10-01

    To facilitate quantification of gene expression changes in virus-infected tobacco plants, eight housekeeping genes were evaluated for their stability of expression during infection by one of three systemically-infecting viruses (cucumber mosaic virus, potato virus X, potato virus Y) or a hypersensitive-response-inducing virus (tobacco mosaic virus; TMV) limited to the inoculated leaf. Five reference-gene validation programs were used to establish the order of the most stable genes for the systemically-infecting viruses as ribosomal protein L25 > β-Tubulin > Actin, and the least stable genes Ubiquitin-conjugating enzyme (UCE) genes were EF1α > Cysteine protease > Actin, and the least stable genes were GAPDH genes, three defense responsive genes were examined to compare their relative changes in gene expression caused by each virus. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Salicin regulates the expression of functional 'youth gene clusters' to reflect a more youthful gene expression profile.

    Science.gov (United States)

    Gopaul, R; Knaggs, H E; Lephart, J

    2011-10-01

    There are a variety of biological mechanisms that contribute to specific characteristics of ageing skin; for example, the loss of skin structure proteins, increased susceptibility to UV-induced pigmentation and/or loss of hydration. Each of these biological processes is influenced by specific groups of genes. In this research, we have identified groups of genes associated with specific clinical signs of skin ageing and refer to these as functional 'youth gene clusters'. In this study, quantitative real-time polymerase chain reaction (qPCR) was used to investigate the effects of topical application of salicin in regulating the expression of functional 'youth gene clusters' to reflect a more youthful skin profile and reduce the appearance of attributes associated with skin ageing. Results showed that salicin significantly influences the gene expression profiles of treated human equivalent full-thickness skin, by regulating the expression of genes associated with various biological processes involving skin structure, skin hydration, pigmentation and cellular differentiation. Based on the findings from this experiment, salicin was identified as a key ingredient that may regulate functional 'youth gene clusters' to reflect a more youthful gene expression profile by increasing the expression of genes responsible for youthful skin and decreasing the expression of genes responsible for the appearance of aged skin. © 2011 The Authors. ICS © 2011 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  7. With Reference to Reference Genes: A Systematic Review of Endogenous Controls in Gene Expression Studies.

    Science.gov (United States)

    Chapman, Joanne R; Waldenström, Jonas

    2015-01-01

    The choice of reference genes that are stably expressed amongst treatment groups is a crucial step in real-time quantitative PCR gene expression studies. Recent guidelines have specified that a minimum of two validated reference genes should be used for normalisation. However, a quantitative review of the literature showed that the average number of reference genes used across all studies was 1.2. Thus, the vast majority of studies continue to use a single gene, with β-actin (ACTB) and/or glyceraldehyde 3-phosphate dehydrogenase (GAPDH) being commonly selected in studies of vertebrate gene expression. Few studies (15%) tested a panel of potential reference genes for stability of expression before using them to normalise data. Amongst studies specifically testing reference gene stability, few found ACTB or GAPDH to be optimal, whereby these genes were significantly less likely to be chosen when larger panels of potential reference genes were screened. Fewer reference genes were tested for stability in non-model organisms, presumably owing to a dearth of available primers in less well characterised species. Furthermore, the experimental conditions under which real-time quantitative PCR analyses were conducted had a large influence on the choice of reference genes, whereby different studies of rat brain tissue showed different reference genes to be the most stable. These results highlight the importance of validating the choice of normalising reference genes before conducting gene expression studies.

  8. Using PCR to Target Misconceptions about Gene Expression

    Directory of Open Access Journals (Sweden)

    Leslie K. Wright

    2013-02-01

    Full Text Available We present a PCR-based laboratory exercise that can be used with first- or second-year biology students to help overcome common misconceptions about gene expression. Biology students typically do not have a clear understanding of the difference between genes (DNA and gene expression (mRNA/protein and often believe that genes exist in an organism or cell only when they are expressed. This laboratory exercise allows students to carry out a PCR-based experiment designed to challenge their misunderstanding of the difference between genes and gene expression. Students first transform E. coli with an inducible GFP gene containing plasmid and observe induced and un-induced colonies. The following exercise creates cognitive dissonance when actual PCR results contradict their initial (incorrect predictions of the presence of the GFP gene in transformed cells. Field testing of this laboratory exercise resulted in learning gains on both knowledge and application questions on concepts related to genes and gene expression.

  9. Sequence biases in large scale gene expression profiling data.

    Science.gov (United States)

    Siddiqui, Asim S; Delaney, Allen D; Schnerch, Angelique; Griffith, Obi L; Jones, Steven J M; Marra, Marco A

    2006-07-13

    We present the results of a simple, statistical assay that measures the G+C content sensitivity bias of gene expression experiments without the requirement of a duplicate experiment. We analyse five gene expression profiling methods: Affymetrix GeneChip, Long Serial Analysis of Gene Expression (LongSAGE), LongSAGELite, 'Classic' Massively Parallel Signature Sequencing (MPSS) and 'Signature' MPSS. We demonstrate the methods have systematic and random errors leading to a different G+C content sensitivity. The relationship between this experimental error and the G+C content of the probe set or tag that identifies each gene influences whether the gene is detected and, if detected, the level of gene expression measured. LongSAGE has the least bias, while Signature MPSS shows a strong bias to G+C rich tags and Affymetrix data show different bias depending on the data processing method (MAS 5.0, RMA or GC-RMA). The bias in the Affymetrix data primarily impacts genes expressed at lower levels. Despite the larger sampling of the MPSS library, SAGE identifies significantly more genes (60% more RefSeq genes in a single comparison).

  10. Validation of housekeeping genes for studying differential gene expression in the bovine myometrium.

    Science.gov (United States)

    Rekawiecki, Robert; Kowalik, Magdalena K; Kotwica, Jan

    2013-12-01

    The aim of this study was to determine the steady-state expression of 13 selected housekeeping genes in the myometrium of cyclic and pregnant cows. Cells taken from bovine myometrium on days 1-5, 6-10, 11-16 and 17-20 of the oestrous cycle and in weeks 3-5, 6-8 and 9-12 of pregnancy were used. Reverse transcribed RNA was amplified in real-time PCR using designed primers. Reaction efficiency was determined with the Linreg programme. The geNorm and NormFinder programmes were used to select the best housekeeping genes. They calculate the expression stability factor for each used housekeeping gene with the smallest value for most stably expressed genes. According to geNorm, the most stable housekeeping genes in the myometrium were C2orf29, TPB and TUBB2B, while the least stably expressed genes were 18S RNA, HPRT1 and GAPDH. NormFinder identified the best genes in the myometrium as C2orf29, MRPL12 and TBP, while the worst genes were 18S RNA, B2M and SF3A1. Differences in stability factors between the two programmes may also indicate that the physiological status of the female, e.g. pregnancy, affects the stability of expression of housekeeping genes. The different expression stability of housekeeping genes did not affect progesterone receptor expression but it could be important if small differences in gene expression were measured between studies.

  11. Dynamic association rules for gene expression data analysis.

    Science.gov (United States)

    Chen, Shu-Chuan; Tsai, Tsung-Hsien; Chung, Cheng-Han; Li, Wen-Hsiung

    2015-10-14

    The purpose of gene expression analysis is to look for the association between regulation of gene expression levels and phenotypic variations. This association based on gene expression profile has been used to determine whether the induction/repression of genes correspond to phenotypic variations including cell regulations, clinical diagnoses and drug development. Statistical analyses on microarray data have been developed to resolve gene selection issue. However, these methods do not inform us of causality between genes and phenotypes. In this paper, we propose the dynamic association rule algorithm (DAR algorithm) which helps ones to efficiently select a subset of significant genes for subsequent analysis. The DAR algorithm is based on association rules from market basket analysis in marketing. We first propose a statistical way, based on constructing a one-sided confidence interval and hypothesis testing, to determine if an association rule is meaningful. Based on the proposed statistical method, we then developed the DAR algorithm for gene expression data analysis. The method was applied to analyze four microarray datasets and one Next Generation Sequencing (NGS) dataset: the Mice Apo A1 dataset, the whole genome expression dataset of mouse embryonic stem cells, expression profiling of the bone marrow of Leukemia patients, Microarray Quality Control (MAQC) data set and the RNA-seq dataset of a mouse genomic imprinting study. A comparison of the proposed method with the t-test on the expression profiling of the bone marrow of Leukemia patients was conducted. We developed a statistical way, based on the concept of confidence interval, to determine the minimum support and minimum confidence for mining association relationships among items. With the minimum support and minimum confidence, one can find significant rules in one single step. The DAR algorithm was then developed for gene expression data analysis. Four gene expression datasets showed that the proposed

  12. Epigenetic regulation on the gene expression signature in esophagus adenocarcinoma.

    Science.gov (United States)

    Xi, Ting; Zhang, Guizhi

    2017-02-01

    Understanding the molecular mechanisms represents an important step in the development of diagnostic and therapeutic measures of esophagus adenocarcinoma (NOS). The objective of this study is to identify the epigenetic regulation on gene expression in NOS, shedding light on the molecular mechanisms of NOS. In this study, 78 patients with NOS were included and the data of mRNA, miRNA and DNA methylation of were downloaded from The Cancer Genome Atlas (TCGA). Differential analysis between NOS and controls was performed in terms of gene expression, miRNA expression, and DNA methylation. Bioinformatic analysis was followed to explore the regulation mechanisms of miRNA and DNA methylationon gene expression. Totally, up to 1320 differentially expressed genes (DEGs) and 32 differentially expressed miRNAs were identified. 240 DEGs that were not only the target genes but also negatively correlated with the screened differentially expressed miRNAs. 101 DEGs were found to be highlymethylated in CpG islands. Then, 8 differentially methylated genes (DMGs) were selected, which showed down-regulated expression in NOS. Among of these genes, 6 genes including ADHFE1, DPP6, GRIA4, CNKSR2, RPS6KA6 and ZNF135 were target genes of differentially expressed miRNAs (hsa-mir-335, hsa-mir-18a, hsa-mir-93, hsa-mir-106b and hsa-mir-21). The identified altered miRNA, genes and DNA methylation site may be applied as biomarkers for diagnosis and prognosis of NOS. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. Green Fluorescent Protein as a Marker for Gene Expression

    Science.gov (United States)

    Chalfie, Martin; Tu, Yuan; Euskirchen, Ghia; Ward, William W.; Prasher, Douglas C.

    1994-02-01

    A complementary DNA for the Aequorea victoria green fluorescent protein (GFP) produces a fluorescent product when expressed in prokaryotic (Escherichia coli) or eukaryotic (Caenorhabditis elegans) cells. Because exogenous substrates and cofactors are not required for this fluorescence, GFP expression can be used to monitor gene expression and protein localization in living organisms.

  14. Paralogous Genes as a Tool to Study the Regulation of Gene Expression

    DEFF Research Database (Denmark)

    Hoffmann, Robert D

    their duplicate were found to be under less purifying selection. A gene ontology (GO) term enrichment analysis showed that paralogs with similar expression levels were enriched in GO terms related to macromolecular complexes, whereas paralogs with different expression levels were enriched in terms associated...... new functions, or their gene products are in a dosage balance. Regulatory DNA elements - some of which are conserved across species and hence called conserved non-coding sequences (CNSs) - that control expression of duplicated genes are thus under similar purifying selection. In the present study, I...... have performed in-depth analyses of paralogous genes in Arabidopsis thaliana, their expression profile, their sequence conservation, and their functions, in order to investigate the relationship between gene expression and retention of paralogous genes. Paralogs with lower expression than...

  15. Identifying the optimal gene and gene set in hepatocellular carcinoma based on differential expression and differential co-expression algorithm.

    Science.gov (United States)

    Dong, Li-Yang; Zhou, Wei-Zhong; Ni, Jun-Wei; Xiang, Wei; Hu, Wen-Hao; Yu, Chang; Li, Hai-Yan

    2017-02-01

    The objective of this study was to identify the optimal gene and gene set for hepatocellular carcinoma (HCC) utilizing differential expression and differential co-expression (DEDC) algorithm. The DEDC algorithm consisted of four parts: calculating differential expression (DE) by absolute t-value in t-statistics; computing differential co-expression (DC) based on Z-test; determining optimal thresholds on the basis of Chi-squared (χ2) maximization and the corresponding gene was the optimal gene; and evaluating functional relevance of genes categorized into different partitions to determine the optimal gene set with highest mean minimum functional information (FI) gain (Δ*G). The optimal thresholds divided genes into four partitions, high DE and high DC (HDE-HDC), high DE and low DC (HDE-LDC), low DE and high DC (LDE‑HDC), and low DE and low DC (LDE-LDC). In addition, the optimal gene was validated by conducting reverse transcription-polymerase chain reaction (RT-PCR) assay. The optimal threshold for DC and DE were 1.032 and 1.911, respectively. Using the optimal gene, the genes were divided into four partitions including: HDE-HDC (2,053 genes), HED-LDC (2,822 genes), LDE-HDC (2,622 genes), and LDE-LDC (6,169 genes). The optimal gene was microtubule‑associated protein RP/EB family member 1 (MAPRE1), and RT-PCR assay validated the significant difference between the HCC and normal state. The optimal gene set was nucleoside metabolic process (GO\\GO:0009116) with Δ*G = 18.681 and 24 HDE-HDC partitions in total. In conclusion, we successfully investigated the optimal gene, MAPRE1, and gene set, nucleoside metabolic process, which may be potential biomarkers for targeted therapy and provide significant insight for revealing the pathological mechanism underlying HCC.

  16. Utilizing evolutionary information and gene expression data for estimating gene networks with bayesian network models.

    Science.gov (United States)

    Tamada, Yoshinori; Bannai, Hideo; Imoto, Seiya; Katayama, Toshiaki; Kanehisa, Minoru; Miyano, Satoru

    2005-12-01

    Since microarray gene expression data do not contain sufficient information for estimating accurate gene networks, other biological information has been considered to improve the estimated networks. Recent studies have revealed that highly conserved proteins that exhibit similar expression patterns in different organisms, have almost the same function in each organism. Such conserved proteins are also known to play similar roles in terms of the regulation of genes. Therefore, this evolutionary information can be used to refine regulatory relationships among genes, which are estimated from gene expression data. We propose a statistical method for estimating gene networks from gene expression data by utilizing evolutionarily conserved relationships between genes. Our method simultaneously estimates two gene networks of two distinct organisms, with a Bayesian network model utilizing the evolutionary information so that gene expression data of one organism helps to estimate the gene network of the other. We show the effectiveness of the method through the analysis on Saccharomyces cerevisiae and Homo sapiens cell cycle gene expression data. Our method was successful in estimating gene networks that capture many known relationships as well as several unknown relationships which are likely to be novel. Supplementary information is available at http://bonsai.ims.u-tokyo.ac.jp/~tamada/bayesnet/.

  17. Using RNA-seq data to select reference genes for normalizing gene expression in apple roots.

    Directory of Open Access Journals (Sweden)

    Zhe Zhou

    Full Text Available Gene expression in apple roots in response to various stress conditions is a less-explored research subject. Reliable reference genes for normalizing quantitative gene expression data have not been carefully investigated. In this study, the suitability of a set of 15 apple genes were evaluated for their potential use as reliable reference genes. These genes were selected based on their low variance of gene expression in apple root tissues from a recent RNA-seq data set, and a few previously reported apple reference genes for other tissue types. Four methods, Delta Ct, geNorm, NormFinder and BestKeeper, were used to evaluate their stability in apple root tissues of various genotypes and under different experimental conditions. A small panel of stably expressed genes, MDP0000095375, MDP0000147424, MDP0000233640, MDP0000326399 and MDP0000173025 were recommended for normalizing quantitative gene expression data in apple roots under various abiotic or biotic stresses. When the most stable and least stable reference genes were used for data normalization, significant differences were observed on the expression patterns of two target genes, MdLecRLK5 (MDP0000228426, a gene encoding a lectin receptor like kinase and MdMAPK3 (MDP0000187103, a gene encoding a mitogen-activated protein kinase. Our data also indicated that for those carefully validated reference genes, a single reference gene is sufficient for reliable normalization of the quantitative gene expression. Depending on the experimental conditions, the most suitable reference genes can be specific to the sample of interest for more reliable RT-qPCR data normalization.

  18. Insert sequence length determines transfection efficiency and gene expression levels in bicistronic mammalian expression vectors

    OpenAIRE

    Payne, Andrew J; Gerdes, Bryan C; Kaja, Simon; Koulen, Peter

    2013-01-01

    Bicistronic expression vectors have been widely used for co-expression studies since the initial discovery of the internal ribosome entry site (IRES) about 25 years ago. IRES sequences allow the 5’ cap-independent initiation of translation of multiple genes on a single messenger RNA strand. Using a commercially available mammalian expression vector containing an IRES sequence with a 3’ green fluorescent protein fluorescent marker, we found that sequence length of the gene of interest expresse...

  19. Noise in gene expression is coupled to growth rate.

    Science.gov (United States)

    Keren, Leeat; van Dijk, David; Weingarten-Gabbay, Shira; Davidi, Dan; Jona, Ghil; Weinberger, Adina; Milo, Ron; Segal, Eran

    2015-12-01

    Genetically identical cells exposed to the same environment display variability in gene expression (noise), with important consequences for the fidelity of cellular regulation and biological function. Although population average gene expression is tightly coupled to growth rate, the effects of changes in environmental conditions on expression variability are not known. Here, we measure the single-cell expression distributions of approximately 900 Saccharomyces cerevisiae promoters across four environmental conditions using flow cytometry, and find that gene expression noise is tightly coupled to the environment and is generally higher at lower growth rates. Nutrient-poor conditions, which support lower growth rates, display elevated levels of noise for most promoters, regardless of their specific expression values. We present a simple model of noise in expression that results from having an asynchronous population, with cells at different cell-cycle stages, and with different partitioning of the cells between the stages at different growth rates. This model predicts non-monotonic global changes in noise at different growth rates as well as overall higher variability in expression for cell-cycle-regulated genes in all conditions. The consistency between this model and our data, as well as with noise measurements of cells growing in a chemostat at well-defined growth rates, suggests that cell-cycle heterogeneity is a major contributor to gene expression noise. Finally, we identify gene and promoter features that play a role in gene expression noise across conditions. Our results show the existence of growth-related global changes in gene expression noise and suggest their potential phenotypic implications. © 2015 Keren et al.; Published by Cold Spring Harbor Laboratory Press.

  20. Characterization of the global profile of genes expressed in cervical epithelium by Serial Analysis of Gene Expression (SAGE)

    OpenAIRE

    P?rez-Plasencia, Carlos; Riggins, Gregory; V?zquez-Ortiz, Guelaguetza; Moreno, Jos?; Arreola, Hugo; Hidalgo, Alfredo; Pi?a-Sanchez, Patricia; Salcedo, Mauricio

    2005-01-01

    Abstract Background Serial Analysis of Gene Expression (SAGE) is a new technique that allows a detailed and profound quantitative and qualitative knowledge of gene expression profile, without previous knowledge of sequence of analyzed genes. We carried out a modification of SAGE methodology (microSAGE), useful for the analysis of limited quantities of tissue samples, on normal human cervical tissue obtained from a donor without histopathological lesions. Cervical epithelium is constituted mai...

  1. Anti-angiogenic effect of triptolide in rheumatoid arthritis by targeting angiogenic cascade.

    Directory of Open Access Journals (Sweden)

    Xiangying Kong

    Full Text Available Rheumatoid arthritis (RA is characterized by a pre-vascular seriously inflammatory phase, followed by a vascular phase with high increase in vessel growth. Since angiogenesis has been considered as an essential event in perpetuating inflammatory and immune responses, as well as supporting pannus growth and development of RA, inhibition of angiogenesis has been proposed as a novel therapeutic strategy for RA. Triptolide, a diterpenoid triepoxide from Tripterygium wilfordii Hook F, has been extensively used in treatment of RA patients. It also acts as a small molecule inhibitor of tumor angiogenesis in several cancer types. However, it is unclear whether triptolide possesses an anti-angiogenic effect in RA. To address this problem, we constructed collagen-induced arthritis (CIA model using DA rats by the injection of bovine type II collagen. Then, CIA rats were treated with triptolide (11-45 µg/kg/day starting on the day 1 after first immunization. The arthritis scores (P<0.05 and the arthritis incidence (P<0.05 of inflamed joints were both significantly decreased in triptolide-treated CIA rats compared to vehicle CIA rats. More interestingly, doses of 11~45 µg/kg triptolide could markedly reduce the capillaries, small, medium and large vessel density in synovial membrane tissues of inflamed joints (all P<0.05. Moreover, triptolide inhibited matrigel-induced cell adhesion of HFLS-RA and HUVEC. It also disrupted tube formation of HUVEC on matrigel and suppressed the VEGF-induced chemotactic migration of HFLS-RA and HUVEC, respectively. Furthermore, triptolide significantly reduced the expression of angiogenic activators including TNF-α, IL-17, VEGF, VEGFR, Ang-1, Ang-2 and Tie2, as well as suppressed the IL1-β-induced phosphorylated of ERK, p38 and JNK at protein levels. In conclusion, our data suggest for the first time that triptolide may possess anti-angiogenic effect in RA both in vivo and in vitro assay systems by downregulating the

  2. Mutation of the miaA gene of Agrobacterium tumefaciens results in reduced vir gene expression.

    OpenAIRE

    Gray, J; Wang, J; Gelvin, S B

    1992-01-01

    vir regulon expression in Agrobacterium tumefaciens involves both chromosome- and Ti-plasmid-encoded gene products. We have isolated and characterized a new chromosomal gene that when mutated results in a 2- to 10-fold reduction in the induced expression of vir genes by acetosyringone. This reduced expression occurs in AB minimal medium (pH 5.5) containing either sucrose or glucose and containing phosphate at high or low concentrations. The locus was cloned and used to complement A. tumefacie...

  3. Expression profiles for six zebrafish genes during gonadal sex differentiation

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Morthorst, Jane E.; Andersen, Ole

    2008-01-01

    the precise timing of expression of six genes previously suggested to be associated with sex differentiation in zebrafish. The current study investigates the expression of all six genes in the same individual fish with extensive sampling dates during sex determination and -differentiation. RESULTS......BACKGROUND: The mechanism of sex determination in zebrafish is largely unknown and neither sex chromosomes nor a sex-determining gene have been identified. This indicates that sex determination in zebrafish is mediated by genetic signals from autosomal genes. The aim of this study was to determine......: In the present study, we have used quantitative real-time PCR to investigate the expression of ar, sox9a, dmrt1, fig alpha, cyp19a1a and cyp19a1b during the expected sex determination and gonadal sex differentiation period. The expression of the genes expected to be high in males (ar, sox9a and dmrt1a) and high...

  4. Gene expression profiles of Nitrosomonas europaea, an obligate chemolitotroph

    Energy Technology Data Exchange (ETDEWEB)

    Daniel J Arp

    2005-06-15

    Nitrosomonas europaea is an aerobic lithoautotrophic bacterium that uses ammonia (NH3) as its energy source. As a nitrifier, it is an important participant in the nitrogen cycle, which can also influence the carbon cycle. The focus of this work was to explore the genetic structure and mechanisms underlying the lithoautotrophic growth style of N. europaea. Whole genome gene expression. The gene expression profile of cells in exponential growth and during starvation was analyzed using microarrays. During growth, 98% of the genes increased in expression at least two fold compared to starvation conditions. In growing cells, approximately 30% of the genes were expressed eight fold higher, Approximately 10% were expressed more than 15 fold higher. Approximately 3% (91 genes) were expressed to more than 20 fold of their levels in starved cells. Carbon fixation gene expression. N. europaea fixes carbon via the Calvin-Benson-Bassham (CBB) cycle via a type I ribulose bisphosphate carboxylase/oxygenase (RubisCO). This study showed that transcription of cbb genes was up-regulated when the carbon source was limited, while amo, hao and other energy harvesting related genes were down-regulated. Iron related gene expression. Because N. europaea has a relatively high content of hemes, sufficient Fe must be available in the medium for it to grow. The genome revealed that approximately 5% of the coding genes in N. europaea are dedicated to Fe transport and assimilation. Nonetheless, with the exception of citrate biosynthesis genes, N. europaea lacks genes for siderophore production. The Fe requirements for growth and the expression of the putative membrane siderophore receptors were determined. The N. europaea genome has over 100 putative genes ({approx}5% of the coding genes) related to Fe uptake and its siderophore receptors could be grouped phylogenetically in four clusters. Fe related genes, such as a number of TonB-dependent Fe-siderophore receptors for ferrichrome and

  5. Gene expression profiles of Nitrosomonas europaea, an obligate chemolitotroph

    Energy Technology Data Exchange (ETDEWEB)

    Daniel J. Arp

    2005-05-25

    Nitrosomonas europaea is an aerobic lithoautotrophic bacterium that uses ammonia (NH3) as its energy source. As a nitrifier, it is an important participant in the nitrogen cycle, which can also influence the carbon cycle. The focus of this work was to explore the genetic structure and mechanisms underlying the lithoautotrophic growth style of N. europaea. Whole genome gene expression: The gene expression profile of cells in exponential growth and during starvation was analyzed using microarrays. During growth, 98% of the genes increased in expression at least two fold compared to starvation conditions. In growing cells, approximately 30% of the genes were expressed eight fold higher, Approximately 10% were expressed more than 15 fold higher. Approximately 3% (91 genes) were expressed to more than 20 fold of their levels in starved cells. Carbon fixation gene expression: N. europaea fixes carbon via the Calvin-Benson-Bassham (CBB) cycle via a type I ribulose bisphosphate carboxylase/oxygenase (RubisCO). This study showed that transcription of cbb genes was up-regulated when the carbon source was limited, while amo, hao and other energy harvesting related genes were down-regulated. Iron related gene expression: Because N. europaea has a relatively high content of hemes, sufficient Fe must be available in the medium for it to grow. The genome revealed that approximately 5% of the coding genes in N. europaea are dedicated to Fe transport and assimilation. Nonetheless, with the exception of citrate biosynthesis genes, N. europaea lacks genes for siderophore production. The Fe requirements for growth and the expression of the putative membrane siderophore receptors were determined. The N. europaea genome has over 100 putative genes ({approx}5% of the coding genes) related to Fe uptake and its siderophore receptors could be grouped phylogenetically in four clusters. Fe related genes, such as a number of TonB-dependent Fe-siderophore receptors for ferrichrome and

  6. Mechanistic Insights into the Anti-angiogenic Activity of Trypanosoma cruzi Protein 21 and its Potential Impact on the Onset of Chagasic Cardiomyopathy.

    Science.gov (United States)

    Teixeira, Samuel Cota; Lopes, Daiana Silva; Gimenes, Sarah Natalie Cirilo; Teixeira, Thaise Lara; da Silva, Marcelo Santos; Brígido, Rebecca Tavares E Silva; da Luz, Felipe Andrés Cordero; da Silva, Aline Alves; Silva, Makswell Almeida; Florentino, Pilar Veras; Tavares, Paula Cristina Brígido; Dos Santos, Marlus Alves; Ávila, Veridiana de Melo Rodrigues; Silva, Marcelo José Barbosa; Elias, Maria Carolina; Mortara, Renato Arruda; da Silva, Claudio Vieira

    2017-03-21

    Chronic chagasic cardiomyopathy (CCC) is arguably the most important form of the Chagas Disease, caused by the intracellular protozoan Trypanosoma cruzi; it is estimated that 10-30% of chronic patients develop this clinical manifestation. The most common and severe form of CCC can be related to ventricular abnormalities, such as heart failure, arrhythmias, heart blocks, thromboembolic events and sudden death. Therefore, in this study, we proposed to evaluate the anti-angiogenic activity of a recombinant protein from T. cruzi named P21 (rP21) and the potential impact of the native protein on CCC. Our data suggest that the anti-angiogenic activity of rP21 depends on the protein's direct interaction with the CXCR4 receptor. This capacity is likely related to the modulation of the expression of actin and angiogenesis-associated genes. Thus, our results indicate that T. cruzi P21 is an attractive target for the development of innovative therapeutic agents against CCC.

  7. An Interactive Database of Cocaine-Responsive Gene Expression

    Directory of Open Access Journals (Sweden)

    Willard M. Freeman

    2002-01-01

    Full Text Available The postgenomic era of large-scale gene expression studies is inundating drug abuse researchers and many other scientists with findings related to gene expression. This information is distributed across many different journals, and requires laborious literature searches. Here, we present an interactive database that combines existing information related to cocaine-mediated changes in gene expression in an easy-to-use format. The database is limited to statistically significant changes in mRNA or protein expression after cocaine administration. The Flash-based program is integrated into a Web page, and organizes changes in gene expression based on neuroanatomical region, general function, and gene name. Accompanying each gene is a description of the gene, links to the original publications, and a link to the appropriate OMIM (Online Mendelian Inheritance in Man entry. The nature of this review allows for timely modifications and rapid inclusion of new publications, and should help researchers build second-generation hypotheses on the role of gene expression changes in the physiology and behavior of cocaine abuse. Furthermore, this method of organizing large volumes of scientific information can easily be adapted to assist researchers in fields outside of drug abuse.

  8. Detecting microRNA activity from gene expression data.

    LENUS (Irish Health Repository)

    Madden, Stephen F

    2010-01-01

    BACKGROUND: MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression by binding to the messenger RNA (mRNA) of protein coding genes. They control gene expression by either inhibiting translation or inducing mRNA degradation. A number of computational techniques have been developed to identify the targets of miRNAs. In this study we used predicted miRNA-gene interactions to analyse mRNA gene expression microarray data to predict miRNAs associated with particular diseases or conditions. RESULTS: Here we combine correspondence analysis, between group analysis and co-inertia analysis (CIA) to determine which miRNAs are associated with differences in gene expression levels in microarray data sets. Using a database of miRNA target predictions from TargetScan, TargetScanS, PicTar4way PicTar5way, and miRanda and combining these data with gene expression levels from sets of microarrays, this method produces a ranked list of miRNAs associated with a specified split in samples. We applied this to three different microarray datasets, a papillary thyroid carcinoma dataset, an in-house dataset of lipopolysaccharide treated mouse macrophages, and a multi-tissue dataset. In each case we were able to identified miRNAs of biological importance. CONCLUSIONS: We describe a technique to integrate gene expression data and miRNA target predictions from multiple sources.

  9. Detecting microRNA activity from gene expression data

    LENUS (Irish Health Repository)

    Madden, Stephen F

    2010-05-18

    Abstract Background MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression by binding to the messenger RNA (mRNA) of protein coding genes. They control gene expression by either inhibiting translation or inducing mRNA degradation. A number of computational techniques have been developed to identify the targets of miRNAs. In this study we used predicted miRNA-gene interactions to analyse mRNA gene expression microarray data to predict miRNAs associated with particular diseases or conditions. Results Here we combine correspondence analysis, between group analysis and co-inertia analysis (CIA) to determine which miRNAs are associated with differences in gene expression levels in microarray data sets. Using a database of miRNA target predictions from TargetScan, TargetScanS, PicTar4way PicTar5way, and miRanda and combining these data with gene expression levels from sets of microarrays, this method produces a ranked list of miRNAs associated with a specified split in samples. We applied this to three different microarray datasets, a papillary thyroid carcinoma dataset, an in-house dataset of lipopolysaccharide treated mouse macrophages, and a multi-tissue dataset. In each case we were able to identified miRNAs of biological importance. Conclusions We describe a technique to integrate gene expression data and miRNA target predictions from multiple sources.

  10. MAGE, BAGE and GAGE gene expression in human rhabdomyosarcomas.

    Science.gov (United States)

    Dalerba, P; Frascella, E; Macino, B; Mandruzzato, S; Zambon, A; Rosolen, A; Carli, M; Ninfo, V; Zanovello, P

    2001-07-01

    MAGE, BAGE and GAGE genes encode tumor-associated antigens that are presented by HLA class I molecules and recognized by CD8(+) cytolytic T lymphocytes. These antigens are currently regarded as promising targets for active, specific tumor immunotherapy because MAGE, BAGE and GAGE genes are expressed in many human cancers of different histotype and are silent in normal tissues, with the exception of spermatogonia and placental cells. MAGE, BAGE and GAGE gene expression has been extensively studied in different tumors of adults but is largely unknown in many forms of pediatric solid cancer. Using RT-PCR, we analyzed MAGE-1, MAGE-2, MAGE-3, MAGE-4, MAGE-6, BAGE, GAGE-1,-2 or -8 and GAGE-3,-4,-5,-6 or -7b gene expression in 31 samples of pediatric rhabdomyosarcoma, the most frequent form of malignant soft tissue tumor in children. MAGE genes were expressed in a substantial proportion of patients (MAGE-1, 38%; MAGE-2, 51%; MAGE-3, 35%; MAGE-4, 22%; MAGE-6, 35%), while expression of BAGE (6%); GAGE-1, GAGE-2 and GAGE-8 (9%); and GAGE-3, GAGE-4, GAGE-5, GAGE-6 and GAGE-7B (16%) was less frequent. Overall, 58% of tumors expressed at least 1 gene, and 35% expressed 3 or more genes simultaneously. Our data suggest that a subset of rhabdomyosarcoma patients could be eligible for active, specific immunotherapy directed against MAGE, BAGE and GAGE antigens. Copyright 2001 Wiley-Liss, Inc.

  11. A Marfan syndrome gene expression phenotype in cultured skin fibroblasts

    Directory of Open Access Journals (Sweden)

    Emond Mary

    2007-09-01

    Full Text Available Abstract Background Marfan syndrome (MFS is a heritable connective tissue disorder caused by mutations in the fibrillin-1 gene. This syndrome constitutes a significant identifiable subtype of aortic aneurysmal disease, accounting for over 5% of ascending and thoracic aortic aneurysms. Results We used spotted membrane DNA macroarrays to identify genes whose altered expression levels may contribute to the phenotype of the disease. Our analysis of 4132 genes identified a subset with significant expression differences between skin fibroblast cultures from unaffected controls versus cultures from affected individuals with known fibrillin-1 mutations. Subsequently, 10 genes were chosen for validation by quantitative RT-PCR. Conclusion Differential expression of many of the validated genes was associated with MFS samples when an additional group of unaffected and MFS affected subjects were analyzed (p-value -6 under the null hypothesis that expression levels in cultured fibroblasts are unaffected by MFS status. An unexpected observation was the range of individual gene expression. In unaffected control subjects, expression ranges exceeding 10 fold were seen in many of the genes selected for qRT-PCR validation. The variation in expression in the MFS affected subjects was even greater.

  12. Interplay of bistable kinetics of gene expression during cellular growth

    International Nuclear Information System (INIS)

    Zhdanov, Vladimir P

    2009-01-01

    In cells, the bistable kinetics of gene expression can be observed on the level of (i) one gene with positive feedback between protein and mRNA production, (ii) two genes with negative mutual feedback between protein and mRNA production, or (iii) in more complex cases. We analyse the interplay of two genes of type (ii) governed by a gene of type (i) during cellular growth. In particular, using kinetic Monte Carlo simulations, we show that in the case where gene 1, operating in the bistable regime, regulates mutually inhibiting genes 2 and 3, also operating in the bistable regime, the latter genes may eventually be trapped either to the state with high transcriptional activity of gene 2 and low activity of gene 3 or to the state with high transcriptional activity of gene 3 and low activity of gene 2. The probability to get to one of these states depends on the values of the model parameters. If genes 2 and 3 are kinetically equivalent, the probability is equal to 0.5. Thus, our model illustrates how different intracellular states can be chosen at random with predetermined probabilities. This type of kinetics of gene expression may be behind complex processes occurring in cells, e.g., behind the choice of the fate by stem cells

  13. Novel redox nanomedicine improves gene expression of polyion complex vector

    Directory of Open Access Journals (Sweden)

    Kazuko Toh, Toru Yoshitomi, Yutaka Ikeda and Yukio Nagasaki

    2011-01-01

    Full Text Available Gene therapy has generated worldwide attention as a new medical technology. While non-viral gene vectors are promising candidates as gene carriers, they have several issues such as toxicity and low transfection efficiency. We have hypothesized that the generation of reactive oxygen species (ROS affects gene expression in polyplex supported gene delivery systems. The effect of ROS on the gene expression of polyplex was evaluated using a nitroxide radical-containing nanoparticle (RNP as an ROS scavenger. When polyethyleneimine (PEI/pGL3 or PEI alone was added to the HeLa cells, ROS levels increased significantly. In contrast, when (PEI/pGL3 or PEI was added with RNP, the ROS levels were suppressed. The luciferase expression was increased by the treatment with RNP in a dose-dependent manner and the cellular uptake of pDNA was also increased. Inflammatory cytokines play an important role in ROS generation in vivo. In particular, tumor necrosis factor (TNF-α caused intracellular ROS generation in HeLa cells and decreased gene expression. RNP treatment suppressed ROS production even in the presence of TNF-α and increased gene expression. This anti-inflammatory property of RNP suggests that it may be used as an effective adjuvant for non-viral gene delivery systems.

  14. Biasogram: visualization of confounding technical bias in gene expression data

    DEFF Research Database (Denmark)

    Krzystanek, Marcin; Szallasi, Zoltan Imre; Eklund, Aron Charles

    2013-01-01

    Gene expression profiles of clinical cohorts can be used to identify genes that are correlated with a clinical variable of interest such as patient outcome or response to a particular drug. However, expression measurements are susceptible to technical bias caused by variation in extraneous factors...... such as RNA quality and array hybridization conditions. If such technical bias is correlated with the clinical variable of interest, the likelihood of identifying false positive genes is increased. Here we describe a method to visualize an expression matrix as a projection of all genes onto a plane defined...... by a clinical variable and a technical nuisance variable. The resulting plot indicates the extent to which each gene is correlated with the clinical variable or the technical variable. We demonstrate this method by applying it to three clinical trial microarray data sets, one of which identified genes that may...

  15. Identification of reference genes in human myelomonocytic cells for gene expression studies in altered gravity.

    Science.gov (United States)

    Thiel, Cora S; Hauschild, Swantje; Tauber, Svantje; Paulsen, Katrin; Raig, Christiane; Raem, Arnold; Biskup, Josefine; Gutewort, Annett; Hürlimann, Eva; Unverdorben, Felix; Buttron, Isabell; Lauber, Beatrice; Philpot, Claudia; Lier, Hartwin; Engelmann, Frank; Layer, Liliana E; Ullrich, Oliver

    2015-01-01

    Gene expression studies are indispensable for investigation and elucidation of molecular mechanisms. For the process of normalization, reference genes ("housekeeping genes") are essential to verify gene expression analysis. Thus, it is assumed that these reference genes demonstrate similar expression levels over all experimental conditions. However, common recommendations about reference genes were established during 1 g conditions and therefore their applicability in studies with altered gravity has not been demonstrated yet. The microarray technology is frequently used to generate expression profiles under defined conditions and to determine the relative difference in expression levels between two or more different states. In our study, we searched for potential reference genes with stable expression during different gravitational conditions (microgravity, normogravity, and hypergravity) which are additionally not altered in different hardware systems. We were able to identify eight genes (ALB, B4GALT6, GAPDH, HMBS, YWHAZ, ABCA5, ABCA9, and ABCC1) which demonstrated no altered gene expression levels in all tested conditions and therefore represent good candidates for the standardization of gene expression studies in altered gravity.

  16. Bioluminescence Imaging of Period1 Gene Expression in Utero

    Directory of Open Access Journals (Sweden)

    Meera T. Saxena

    2007-01-01

    Full Text Available The use of real-time reporters has accelerated our understanding of gene expression in vivo. This study examined the feasibility of a luciferase-based reporter to image spatiotemporal changes in fetal gene expression in utero. We chose to monitor Period1 (Per1 because it is expressed broadly in the body and plays a role in circadian rhythmicity. Using rats carrying a Per1::luc transgene, we repetitively imaged fetuses in utero throughout gestation. We found that bioluminescence was specific to transgenic pups, increased dramatically on embryonic day 10 (10 days after successful mating, and continued to increase logarithmically until birth. Diurnal fluctuations in Per1 expression were apparent several days prior to birth. These results demonstrate the feasibility of in utero imaging of mammalian gene expression, tracking of fetal gene expression from the same litter, and early detection of mammalian clock gene expression. We conclude that luciferase-based reporters can provide a sensitive, noninvasive measure of in utero gene expression.

  17. Gene expression profiling reveals multiple toxicity endpoints induced by hepatotoxicants

    Energy Technology Data Exchange (ETDEWEB)

    Huang Qihong; Jin Xidong; Gaillard, Elias T.; Knight, Brian L.; Pack, Franklin D.; Stoltz, James H.; Jayadev, Supriya; Blanchard, Kerry T

    2004-05-18

    Microarray technology continues to gain increased acceptance in the drug development process, particularly at the stage of toxicology and safety assessment. In the current study, microarrays were used to investigate gene expression changes associated with hepatotoxicity, the most commonly reported clinical liability with pharmaceutical agents. Acetaminophen, methotrexate, methapyrilene, furan and phenytoin were used as benchmark compounds capable of inducing specific but different types of hepatotoxicity. The goal of the work was to define gene expression profiles capable of distinguishing the different subtypes of hepatotoxicity. Sprague-Dawley rats were orally dosed with acetaminophen (single dose, 4500 mg/kg for 6, 24 and 72 h), methotrexate (1 mg/kg per day for 1, 7 and 14 days), methapyrilene (100 mg/kg per day for 3 and 7 days), furan (40 mg/kg per day for 1, 3, 7 and 14 days) or phenytoin (300 mg/kg per day for 14 days). Hepatic gene expression was assessed using toxicology-specific gene arrays containing 684 target genes or expressed sequence tags (ESTs). Principal component analysis (PCA) of gene expression data was able to provide a clear distinction of each compound, suggesting that gene expression data can be used to discern different hepatotoxic agents and toxicity endpoints. Gene expression data were applied to the multiplicity-adjusted permutation test and significantly changed genes were categorized and correlated to hepatotoxic endpoints. Repression of enzymes involved in lipid oxidation (acyl-CoA dehydrogenase, medium chain, enoyl CoA hydratase, very long-chain acyl-CoA synthetase) were associated with microvesicular lipidosis. Likewise, subsets of genes associated with hepatotocellular necrosis, inflammation, hepatitis, bile duct hyperplasia and fibrosis have been identified. The current study illustrates that expression profiling can be used to: (1) distinguish different hepatotoxic endpoints; (2) predict the development of toxic endpoints; and

  18. Gene expression profiling reveals multiple toxicity endpoints induced by hepatotoxicants

    International Nuclear Information System (INIS)

    Huang Qihong; Jin Xidong; Gaillard, Elias T.; Knight, Brian L.; Pack, Franklin D.; Stoltz, James H.; Jayadev, Supriya; Blanchard, Kerry T.

    2004-01-01

    Microarray technology continues to gain increased acceptance in the drug development process, particularly at the stage of toxicology and safety assessment. In the current study, microarrays were used to investigate gene expression changes associated with hepatotoxicity, the most commonly reported clinical liability with pharmaceutical agents. Acetaminophen, methotrexate, methapyrilene, furan and phenytoin were used as benchmark compounds capable of inducing specific but different types of hepatotoxicity. The goal of the work was to define gene expression profiles capable of distinguishing the different subtypes of hepatotoxicity. Sprague-Dawley rats were orally dosed with acetaminophen (single dose, 4500 mg/kg for 6, 24 and 72 h), methotrexate (1 mg/kg per day for 1, 7 and 14 days), methapyrilene (100 mg/kg per day for 3 and 7 days), furan (40 mg/kg per day for 1, 3, 7 and 14 days) or phenytoin (300 mg/kg per day for 14 days). Hepatic gene expression was assessed using toxicology-specific gene arrays containing 684 target genes or expressed sequence tags (ESTs). Principal component analysis (PCA) of gene expression data was able to provide a clear distinction of each compound, suggesting that gene expression data can be used to discern different hepatotoxic agents and toxicity endpoints. Gene expression data were applied to the multiplicity-adjusted permutation test and significantly changed genes were categorized and correlated to hepatotoxic endpoints. Repression of enzymes involved in lipid oxidation (acyl-CoA dehydrogenase, medium chain, enoyl CoA hydratase, very long-chain acyl-CoA synthetase) were associated with microvesicular lipidosis. Likewise, subsets of genes associated with hepatotocellular necrosis, inflammation, hepatitis, bile duct hyperplasia and fibrosis have been identified. The current study illustrates that expression profiling can be used to: (1) distinguish different hepatotoxic endpoints; (2) predict the development of toxic endpoints; and

  19. Plasticity-Related Gene Expression During Eszopiclone-Induced Sleep.

    Science.gov (United States)

    Gerashchenko, Dmitry; Pasumarthi, Ravi K; Kilduff, Thomas S

    2017-07-01

    Experimental evidence suggests that restorative processes depend on synaptic plasticity changes in the brain during sleep. We used the expression of plasticity-related genes to assess synaptic plasticity changes during drug-induced sleep. We first characterized sleep induced by eszopiclone in mice during baseline conditions and during the recovery from sleep deprivation. We then compared the expression of 18 genes and two miRNAs critically involved in synaptic plasticity in these mice. Gene expression was assessed in the cerebral cortex and hippocampus by the TaqMan reverse transcription polymerase chain reaction and correlated with sleep parameters. Eszopiclone reduced the latency to nonrapid eye movement (NREM) sleep and increased NREM sleep amounts. Eszopiclone had no effect on slow wave activity (SWA) during baseline conditions but reduced the SWA increase during recovery sleep (RS) after sleep deprivation. Gene expression analyses revealed three distinct patterns: (1) four genes had higher expression either in the cortex or hippocampus in the group of mice with increased amounts of wakefulness; (2) a large proportion of plasticity-related genes (7 out of 18 genes) had higher expression during RS in the cortex but not in the hippocampus; and (3) six genes and the two miRNAs showed no significant changes across conditions. Even at a relatively high dose (20 mg/kg), eszopiclone did not reduce the expression of plasticity-related genes during RS period in the cortex. These results indicate that gene expression associated with synaptic plasticity occurs in the cortex in the presence of a hypnotic medication. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  20. Molecular subsets in the gene expression signatures of scleroderma skin.

    Directory of Open Access Journals (Sweden)

    Ausra Milano

    2008-07-01

    Full Text Available Scleroderma is a clinically heterogeneous disease with a complex phenotype. The disease is characterized by vascular dysfunction, tissue fibrosis, internal organ dysfunction, and immune dysfunction resulting in autoantibody production.We analyzed the genome-wide patterns of gene expression with DNA microarrays in skin biopsies from distinct scleroderma subsets including 17 patients with systemic sclerosis (SSc with diffuse scleroderma (dSSc, 7 patients with SSc with limited scleroderma (lSSc, 3 patients with morphea, and 6 healthy controls. 61 skin biopsies were analyzed in a total of 75 microarray hybridizations. Analysis by hierarchical clustering demonstrates nearly identical patterns of gene expression in 17 out of 22 of the forearm and back skin pairs of SSc patients. Using this property of the gene expression, we selected a set of 'intrinsic' genes and analyzed the inherent data-driven groupings. Distinct patterns of gene expression separate patients with dSSc from those with lSSc and both are easily distinguished from normal controls. Our data show three distinct patient groups among the patients with dSSc and two groups among patients with lSSc. Each group can be distinguished by unique gene expression signatures indicative of proliferating cells, immune infiltrates and a fibrotic program. The intrinsic groups are statistically significant (p<0.001 and each has been mapped to clinical covariates of modified Rodnan skin score, interstitial lung disease, gastrointestinal involvement, digital ulcers, Raynaud's phenomenon and disease duration. We report a 177-gene signature that is associated with severity of skin disease in dSSc.Genome-wide gene expression profiling of skin biopsies demonstrates that the heterogeneity in scleroderma can be measured quantitatively with DNA microarrays. The diversity in gene expression demonstrates multiple distinct gene expression programs in the skin of patients with scleroderma.

  1. Blood cell gene expression profiling in rheumatoid arthritis. Discriminative genes and effect of rheumatoid factor

    DEFF Research Database (Denmark)

    Bovin, Lone Frier; Rieneck, Klaus; Workman, Christopher

    2004-01-01

    To study the pathogenic importance of the rheumatoid factor (RF) in rheumatoid arthritis (RA) and to identify genes differentially expressed in patients and healthy individuals, total RNA was isolated from peripheral blood mononuclear cells (PBMC) from eight RF-positive and six RF-negative RA...... patients, and seven healthy controls. Gene expression of about 10,000 genes were examined using oligonucleotide-based DNA chip microarrays. The analyses showed no significant differences in PBMC expression patterns from RF-positive and RF-negative patients. However, comparisons of gene expression patterns...

  2. Simple Comparative Analyses of Differentially Expressed Gene Lists May Overestimate Gene Overlap.

    Science.gov (United States)

    Lawhorn, Chelsea M; Schomaker, Rachel; Rowell, Jonathan T; Rueppell, Olav

    2018-04-16

    Comparing the overlap between sets of differentially expressed genes (DEGs) within or between transcriptome studies is regularly used to infer similarities between biological processes. Significant overlap between two sets of DEGs is usually determined by a simple test. The number of potentially overlapping genes is compared to the number of genes that actually occur in both lists, treating every gene as equal. However, gene expression is controlled by transcription factors that bind to a variable number of transcription factor binding sites, leading to variation among genes in general variability of their expression. Neglecting this variability could therefore lead to inflated estimates of significant overlap between DEG lists. With computer simulations, we demonstrate that such biases arise from variation in the control of gene expression. Significant overlap commonly arises between two lists of DEGs that are randomly generated, assuming that the control of gene expression is variable among genes but consistent between corresponding experiments. More overlap is observed when transcription factors are specific to their binding sites and when the number of genes is considerably higher than the number of different transcription factors. In contrast, overlap between two DEG lists is always lower than expected when the genetic architecture of expression is independent between the two experiments. Thus, the current methods for determining significant overlap between DEGs are potentially confounding biologically meaningful overlap with overlap that arises due to variability in control of expression among genes, and more sophisticated approaches are needed.

  3. Gene expression profiling predicts survival in conventional renal cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Hongjuan Zhao

    2006-01-01

    Full Text Available BACKGROUND: Conventional renal cell carcinoma (cRCC accounts for most of the deaths due to kidney cancer. Tumor stage, grade, and patient performance status are used currently to predict survival after surgery. Our goal was to identify gene expression features, using comprehensive gene expression profiling, that correlate with survival. METHODS AND FINDINGS: Gene expression profiles were determined in 177 primary cRCCs using DNA microarrays. Unsupervised hierarchical clustering analysis segregated cRCC into five gene expression subgroups. Expression subgroup was correlated with survival in long-term follow-up and was independent of grade, stage, and performance status. The tumors were then divided evenly into training and test sets that were balanced for grade, stage, performance status, and length of follow-up. A semisupervised learning algorithm (supervised principal components analysis was applied to identify transcripts whose expression was associated with survival in the training set, and the performance of this gene expression-based survival predictor was assessed using the test set. With this method, we identified 259 genes that accurately predicted disease-specific survival among patients in the independent validation group (p < 0.001. In multivariate analysis, the gene expression predictor was a strong predictor of survival independent of tumor stage, grade, and performance status (p < 0.001. CONCLUSIONS: cRCC displays molecular heterogeneity and can be separated into gene expression subgroups that correlate with survival after surgery. We have identified a set of 259 genes that predict survival after surgery independent of clinical prognostic factors.

  4. Gene Expression Profiling Predicts Survival in Conventional Renal Cell Carcinoma.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available BACKGROUND: Conventional renal cell carcinoma (cRCC accounts for most of the deaths due to kidney cancer. Tumor stage, grade, and patient performance status are used currently to predict survival after surgery. Our goal was to identify gene expression features, using comprehensive gene expression profiling, that correlate with survival. METHODS AND FINDINGS: Gene expression profiles were determined in 177 primary cRCCs using DNA microarrays. Unsupervised hierarchical clustering analysis segregated cRCC into five gene expression subgroups. Expression subgroup was correlated with survival in long-term follow-up and was independent of grade, stage, and performance status. The tumors were then divided evenly into training and test sets that were balanced for grade, stage, performance status, and length of follow-up. A semisupervised learning algorithm (supervised principal components analysis was applied to identify transcripts whose expression was associated with survival in the training set, and the performance of this gene expression-based survival predictor was assessed using the test set. With this method, we identified 259 genes that accurately predicted disease-specific survival among patients in the independent validation group (p < 0.001. In multivariate analysis, the gene expression predictor was a strong predictor of survival independent of tumor stage, grade, and performance status (p < 0.001. CONCLUSIONS: cRCC displays molecular heterogeneity and can be separated into gene expression subgroups that correlate with survival after surgery. We have identified a set of 259 genes that predict survival after surgery independent of clinical prognostic factors.

  5. Os odontoideum in identical twins: Comparative gene expression analysis.

    Science.gov (United States)

    Straus, David; Xu, Shunbin; Traynelis, Vincent C

    2014-01-01

    Os odontoideum is a well identified anomaly of the craniovertebral junction. Since its initial description, there has been a continuous debate regarding the nature of its etiology: Whether congenital or traumatic. We sought to compare the gene expression profiles in patients with congenital os odontoideum, those with traumatic os odontoideum and controls. We have evaluated a pair of identical twins both with os odontoideum. We identified two additional patients with and four subjects without os odontoideum. We analyzed the gene expression profiles in these patients using a custom TaqMan microarray and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). The relative gene expression profiles in the two identical twins, the two nontwin patients with os odontoideum and the controls were assessed. A total of 213 genes with significantly different expression between the twin os odontoideum patients and the subjects without os odontoideum were detected. CACNG6, PHEX, CACNAD3, IL2, FAS, TUFT1, KIT, TGFBR2, and IGF2 were expressed at levels greater than 100-fold more in the twins. There were six genes with significantly different expression profiles in the twins as compared with the nontwin os odontoideum patients: CMK4, ATF1, PLCG1, TAB1, E2F3, and ATF4. There were no statistically significant differences in gene expression in the four patients with os odontoideum and the subjects without. Trends, however, were noted in MMP8, KIT, HIF1A, CREB3, PWHAZ, TGFBR1, NFKB2, FGFR1, IPO8, STAT1, COL1A1, and BMP3. Os odontoideum has multiple etiologies, both traumatic and congenital and perhaps some represent a combination of the two. This work has identified a number of genes that show increased expression in a pair of twins with congenital os odontoideum and also demonstrates trends in gene expression profiles between a larger group of os odontoideum patients and non-os patients. A number of these genes are related to bone morphogenesis and maintenance.

  6. A deep auto-encoder model for gene expression prediction.

    Science.gov (United States)

    Xie, Rui; Wen, Jia; Quitadamo, Andrew; Cheng, Jianlin; Shi, Xinghua

    2017-11-17

    Gene expression is a key intermediate level that genotypes lead to a particular trait. Gene expression is affected by various factors including genotypes of genetic variants. With an aim of delineating the genetic impact on gene expression, we build a deep auto-encoder model to assess how good genetic variants will contribute to gene expression changes. This new deep learning model is a regression-based predictive model based on the MultiLayer Perceptron and Stacked Denoising Auto-encoder (MLP-SAE). The model is trained using a stacked denoising auto-encoder for feature selection and a multilayer perceptron framework for backpropagation. We further improve the model by introducing dropout to prevent overfitting and improve performance. To demonstrate the usage of this model, we apply MLP-SAE to a real genomic datasets with genotypes and gene expression profiles measured in yeast. Our results show that the MLP-SAE model with dropout outperforms other models including Lasso, Random Forests and the MLP-SAE model without dropout. Using the MLP-SAE model with dropout, we show that gene expression quantifications predicted by the model solely based on genotypes, align well with true gene expression patterns. We provide a deep auto-encoder model for predicting gene expression from SNP genotypes. This study demonstrates that deep learning is appropriate for tackling another genomic problem, i.e., building predictive models to understand genotypes' contribution to gene expression. With the emerging availability of richer genomic data, we anticipate that deep learning models play a bigger role in modeling and interpreting genomics.

  7. Bovine Mammary Gene Expression Profiling during the Onset of Lactation

    Science.gov (United States)

    Gao, Yuanyuan; Lin, Xueyan; Shi, Kerong; Yan, Zhengui; Wang, Zhonghua

    2013-01-01

    Background Lactogenesis includes two stages. Stage I begins a few weeks before parturition. Stage II is initiated around the time of parturition and extends for several days afterwards. Methodology/Principal Findings To better understand the molecular events underlying these changes, genome-wide gene expression profiling was conducted using digital gene expression (DGE) on bovine mammary tissue at three time points (on approximately day 35 before parturition (−35 d), day 7 before parturition (−7 d) and day 3 after parturition (+3 d)). Approximately 6.2 million (M), 5.8 million (M) and 6.1 million (M) 21-nt cDNA tags were sequenced in the three cDNA libraries (−35 d, −7 d and +3 d), respectively. After aligning to the reference sequences, the three cDNA libraries included 8,662, 8,363 and 8,359 genes, respectively. With a fold change cutoff criteria of ≥2 or ≤−2 and a false discovery rate (FDR) of ≤0.001, a total of 812 genes were significantly differentially expressed at −7 d compared with −35 d (stage I). Gene ontology analysis showed that those significantly differentially expressed genes were mainly associated with cell cycle, lipid metabolism, immune response and biological adhesion. A total of 1,189 genes were significantly differentially expressed at +3 d compared with −7 d (stage II), and these genes were mainly associated with the immune response and cell cycle. Moreover, there were 1,672 genes significantly differentially expressed at +3 d compared with −35 d. Gene ontology analysis showed that the main differentially expressed genes were those associated with metabolic processes. Conclusions The results suggest that the mammary gland begins to lactate not only by a gain of function but also by a broad suppression of function to effectively push most of the cell's resources towards lactation. PMID:23990904

  8. Bovine mammary gene expression profiling during the onset of lactation.

    Directory of Open Access Journals (Sweden)

    Yuanyuan Gao

    Full Text Available BACKGROUND: Lactogenesis includes two stages. Stage I begins a few weeks before parturition. Stage II is initiated around the time of parturition and extends for several days afterwards. METHODOLOGY/PRINCIPAL FINDINGS: To better understand the molecular events underlying these changes, genome-wide gene expression profiling was conducted using digital gene expression (DGE on bovine mammary tissue at three time points (on approximately day 35 before parturition (-35 d, day 7 before parturition (-7 d and day 3 after parturition (+3 d. Approximately 6.2 million (M, 5.8 million (M and 6.1 million (M 21-nt cDNA tags were sequenced in the three cDNA libraries (-35 d, -7 d and +3 d, respectively. After aligning to the reference sequences, the three cDNA libraries included 8,662, 8,363 and 8,359 genes, respectively. With a fold change cutoff criteria of ≥ 2 or ≤-2 and a false discovery rate (FDR of ≤ 0.001, a total of 812 genes were significantly differentially expressed at -7 d compared with -35 d (stage I. Gene ontology analysis showed that those significantly differentially expressed genes were mainly associated with cell cycle, lipid metabolism, immune response and biological adhesion. A total of 1,189 genes were significantly differentially expressed at +3 d compared with -7 d (stage II, and these genes were mainly associated with the immune response and cell cycle. Moreover, there were 1,672 genes significantly differentially expressed at +3 d compared with -35 d. Gene ontology analysis showed that the main differentially expressed genes were those associated with metabolic processes. CONCLUSIONS: The results suggest that the mammary gland begins to lactate not only by a gain of function but also by a broad suppression of function to effectively push most of the cell's resources towards lactation.

  9. Modification of heparanase gene expression in response to conditioning and LPS treatment: strong correlation to rs4693608 SNP.

    Science.gov (United States)

    Ostrovsky, Olga; Shimoni, Avichai; Baryakh, Polina; Morgulis, Yan; Mayorov, Margarita; Beider, Katia; Shteingauz, Anna; Ilan, Neta; Vlodavsky, Israel; Nagler, Arnon

    2014-04-01

    Heparanase is an endo-β-glucuronidase that specifically cleaves the saccharide chains of HSPGs, important structural and functional components of the ECM. Cleavage of HS leads to loss of the structural integrity of the ECM and release of HS-bound cytokines, chemokines, and bioactive angiogenic- and growth-promoting factors. Our previous study revealed a highly significant correlation of HPSE gene SNPs rs4693608 and rs4364254 and their combination with the risk of developing GVHD. We now demonstrate that HPSE is up-regulated in response to pretransplantation conditioning, followed by a gradual decrease thereafter. Expression of heparanase correlated with the rs4693608 HPSE SNP before and after conditioning. Moreover, a positive correlation was found between recipient and donor rs4693608 SNP discrepancy and the time of neutrophil and platelet recovery. Similarly, the discrepancy in rs4693608 HPSE SNP between recipients and donors was found to be a more significant factor for the risk of aGVHD than patient genotype. The rs4693608 SNP also affected HPSE gene expression in LPS-treated MNCs from PB and CB. Possessors of the AA genotype exhibited up-regulation of heparanase with a high ratio in the LPS-treated MNCs, whereas individuals with genotype GG showed down-regulation or no effect on HPSE gene expression. HPSE up-regulation was mediated by TLR4. The study emphasizes the importance of rs4693608 SNP for HPSE gene expression in activated MNCs, indicating a role in allogeneic stem cell transplantation, including postconditioning, engraftment, and GVHD.

  10. Assays for noninvasive imaging of reporter gene expression

    International Nuclear Information System (INIS)

    Gambhir, S.S.; Barrio, J.R.; Herschman, H.R.; Phelps, M.E.

    1999-01-01

    Repeated, noninvasive imaging of reporter gene expression is emerging as a valuable tool for monitoring the expression of genes in animals and humans. Monitoring of organ/cell transplantation in living animals and humans, and the assessment of environmental, behavioral, and pharmacologic modulation of gene expression in transgenic animals should soon be possible. The earliest clinical application is likely to be monitoring human gene therapy in tumors transduced with the herpes simplex virus type 1 thymidine kinase (HSV1-tk) suicide gene. Several candidate assays for imaging reporter gene expression have been studied, utilizing cytosine deaminase (CD), HSV1-tk, and dopamine 2 receptor (D2R) as reporter genes. For the HSV1-tk reporter gene, both uracil nucleoside derivatives (e.g., 5-iodo-2'-fluoro-2'-deoxy-1-β-D-arabinofuranosyl-5-iodouracil [FIAU] labeled with 124 I, 131 I ) and acycloguanosine derivatives {e.g., 8-[ 18 F]fluoro-9-[[2-hydroxy-1-(hydroxymethyl)ethoxy]methyl]guanine (8-[ 18 F]-fluoroganciclovir) ([ 18 F]FGCV), 9-[(3-[ 18 F]fluoro-1-hydroxy-2-propoxy)methyl]guanine ([ 18 F]FHPG)} have been investigated as reporter probes. For the D2R reporter gene, a derivative of spiperone {3-(2'-[ 18 F]-Fluoroethyl)spiperone ([ 18 F]FESP)} has been used with positron emission tomography (PET) imaging. In this review, the principles and specific assays for imaging reporter gene expression are presented and discussed. Specific examples utilizing adenoviral-mediated delivery of a reporter gene as well as tumors expressing reporter genes are discussed

  11. Gene expression profiling by DNA microarray analysis in mouse embryonic fibroblasts transformed by rasV12 mutated protein and the E1A oncogene

    Directory of Open Access Journals (Sweden)

    Berthezene Patrice

    2003-03-01

    Full Text Available Abstract Background Ras is an area of intensive biochemical and genetic studies and characterizing downstream components that relay ras-induced signals is clearly important. We used a systematic approach, based on DNA microarray technology to establish a first catalog of genes whose expression is altered by ras and, as such, potentially involved in the regulation of cell growth and transformation. Results We used DNA microarrays to analyze gene expression profiles of rasV12/E1A-transformed mouse embryonic fibroblasts. Among the ~12,000 genes and ESTs analyzed, 815 showed altered expression in rasV12/E1A-transformed fibroblasts, compared to control fibroblasts, of which 203 corresponded to ESTs. Among known genes, 202 were up-regulated and 410 were down-regulated. About one half of genes encoding transcription factors, signaling proteins, membrane proteins, channels or apoptosis-related proteins was up-regulated whereas the other half was down-regulated. Interestingly, most of the genes encoding structural proteins, secretory proteins, receptors, extracellular matrix components, and cytosolic proteins were down-regulated whereas genes encoding DNA-associated proteins (involved in DNA replication and reparation and cell growth-related proteins were up-regulated. These data may explain, at least in part, the behavior of transformed cells in that down-regulation of structural proteins, extracellular matrix components, secretory proteins and receptors is consistent with reversion of the phenotype of transformed cells towards a less differentiated phenotype, and up-regulation of cell growth-related proteins and DNA-associated proteins is consistent with their accelerated growth. Yet, we also found very unexpected results. For example, proteases and inhibitors of proteases as well as all 8 angiogenic factors present on the array were down-regulated in transformed fibroblasts although they are generally up-regulated in cancers. This observation suggests

  12. In plants, expression breadth and expression level distinctly and non-linearly correlate with gene structure

    Directory of Open Access Journals (Sweden)

    Yang Hangxing

    2009-11-01

    Full Text Available Abstract Background Compactness of highly/broadly expressed genes in human has been explained as selection for efficiency, regional mutation biases or genomic design. However, highly expressed genes in flowering plants were shown to be less compact than lowly expressed ones. On the other hand, opposite facts have also been documented that pollen-expressed Arabidopsis genes tend to contain shorter introns and highly expressed moss genes are compact. This issue is important because it provides a chance to compare the selectionism and the neutralism views about genome evolution. Furthermore, this issue also helps to understand the fates of introns, from the angle of gene expression. Results In this study, I used expression data covering more tissues and employ new analytical methods to reexamine the correlations between gene expression and gene structure for two flowering plants, Arabidopsis thaliana and Oryza sativa. It is shown that, different aspects of expression pattern correlate with different parts of gene sequences in distinct ways. In detail, expression level is significantly negatively correlated with gene size, especially the size of non-coding regions, whereas expression breadth correlates with non-coding structural parameters positively and with coding region parameters negatively. Furthermore, the relationships between expression level and structural parameters seem to be non-linear, with the extremes of structural parameters possibly scale as power-laws or logrithmic functions of expression levels. Conclusion In plants, highly expressed genes are compact, especially in the non-coding regions. Broadly expressed genes tend to contain longer non-coding sequences, which may be necessary for complex regulations. In combination with previous studies about other plants and about animals, some common scenarios about the correlation between gene expression and gene structure begin to emerge. Based on the functional relationships between

  13. Oxidative stress, gene expression, and protein changes induced in the human placenta during labor.

    Science.gov (United States)

    Cindrova-Davies, Tereza; Yung, Hong-Wa; Johns, Jemma; Spasic-Boskovic, Olivera; Korolchuk, Svitlana; Jauniaux, Eric; Burton, Graham J; Charnock-Jones, D Stephen

    2007-10-01

    Malperfusion of the placenta has been implicated as a cause of oxidative stress in complications of human pregnancy, leading to release of proinflammatory cytokines and anti-angiogenic factors into the maternal circulation. Uterine contractions during labor are known to be associated with intermittent utero-placental perfusion. We therefore tested whether oxidative stress, proinflammatory cytokines, and angiogenic regulators were increased in placentas subjected to short (15 hours) labor compared with nonlabored controls delivered by cesarean section. In addition, broader changes in gene transcripts were assessed by microarray analysis. Oxidative stress, activation of the nuclear factor-kappaB pathway, tumor necrosis factor-alpha and interleukin 1beta all increased in placental tissues after labor. Stabilization of hypoxia-inducible factor-1alpha and increased vascular endothelial growth factor soluble receptor-1 were also observed. By contrast, tissue levels of placenta growth factor decreased. Apoptosis was also activated in labored placentas. The magnitude of these changes related to the duration of labor. After labor, 55 gene transcripts were up-regulated and 35 down-regulated, and many of these changes were reflected at the protein level. In conclusion, labor is a powerful inducer of placental oxidative stress, inflammatory cytokines, and angiogenic regulators. Our findings are consistent with intermittent perfusion being the initiating cause. Placentas subjected to labor do not reflect the normal in vivo state at the molecular level.

  14. A longitudinal study of gene expression in healthy individuals

    Directory of Open Access Journals (Sweden)

    Tessier Michel

    2009-06-01

    Full Text Available Abstract Background The use of gene expression in venous blood either as a pharmacodynamic marker in clinical trials of drugs or as a diagnostic test requires knowledge of the variability in expression over time in healthy volunteers. Here we defined a normal range of gene expression over 6 months in the blood of four cohorts of healthy men and women who were stratified by age (22–55 years and > 55 years and gender. Methods Eleven immunomodulatory genes likely to play important roles in inflammatory conditions such as rheumatoid arthritis and infection in addition to four genes typically used as reference genes were examined by quantitative reverse transcription-polymerase chain reaction (qRT-PCR, as well as the full genome as represented by Affymetrix HG U133 Plus 2.0 microarrays. Results Gene expression levels as assessed by qRT-PCR and microarray were relatively stable over time with ~2% of genes as measured by microarray showing intra-subject differences over time periods longer than one month. Fifteen genes varied by gender. The eleven genes examined by qRT-PCR remained within a limited dynamic range for all individuals. Specifically, for the seven most stably expressed genes (CXCL1, HMOX1, IL1RN, IL1B, IL6R, PTGS2, and TNF, 95% of all samples profiled fell within 1.5–2.5 Ct, the equivalent of a 4- to 6-fold dynamic range. Two subjects who experienced severe adverse events of cancer and anemia, had microarray gene expression profiles that were distinct from normal while subjects who experienced an infection had only slightly elevated levels of inflammatory markers. Conclusion This study defines the range and variability of gene expression in healthy men and women over a six-month period. These parameters can be used to estimate the number of subjects needed to observe significant differences from normal gene expression in clinical studies. A set of genes that varied by gender was also identified as were a set of genes with elevated

  15. Selection and validation of reference genes for gene expression analysis in apomictic and sexual Cenchrus ciliaris

    Science.gov (United States)

    2013-01-01

    Background Apomixis is a naturally occurring asexual mode of seed reproduction resulting in offspring genetically identical to the maternal plant. Identifying differential gene expression patterns between apomictic and sexual plants is valuable to help deconstruct the trait. Quantitative RT-PCR (qRT-PCR) is a popular method for analyzing gene expression. Normalizing gene expression data using proper reference genes which show stable expression under investigated conditions is critical in qRT-PCR analysis. We used qRT-PCR to validate expression and stability of six potential reference genes (EF1alpha, EIF4A, UBCE, GAPDH, ACT2 and TUBA) in vegetative and reproductive tissues of B-2S and B-12-9 accessions of C. ciliaris. Findings Among tissue types evaluated, EF1alpha showed the highest level of expression while TUBA showed the lowest. When all tissue types were evaluated and compared between genotypes, EIF4A was the most stable reference gene. Gene expression stability for specific ovary stages of B-2S and B-12-9 was also determined. Except for TUBA, all other tested reference genes could be used for any stage-specific ovary tissue normalization, irrespective of the mode of reproduction. Conclusion Our gene expression stability assay using six reference genes, in sexual and apomictic accessions of C. ciliaris, suggests that EIF4A is the most stable gene across all tissue types analyzed. All other tested reference genes, with the exception of TUBA, could be used for gene expression comparison studies between sexual and apomictic ovaries over multiple developmental stages. This reference gene validation data in C. ciliaris will serve as an important base for future apomixis-related transcriptome data validation. PMID:24083672

  16. Scaling of gene expression with transcription-factor fugacity.

    Science.gov (United States)

    Weinert, Franz M; Brewster, Robert C; Rydenfelt, Mattias; Phillips, Rob; Kegel, Willem K

    2014-12-19

    The proteins associated with gene regulation are often shared between multiple pathways simultaneously. By way of contrast, models in regulatory biology often assume these pathways act independently. We demonstrate a framework for calculating the change in gene expression for the interacting case by decoupling repressor occupancy across the cell from the gene of interest by way of a chemical potential. The details of the interacting regulatory architecture are encompassed in an effective concentration, and thus, a single scaling function describes a collection of gene expression data from diverse regulatory situations and collapses it onto a single master curve.

  17. The Role of Nuclear Bodies in Gene Expression and Disease

    Science.gov (United States)

    Morimoto, Marie; Boerkoel, Cornelius F.

    2013-01-01

    This review summarizes the current understanding of the role of nuclear bodies in regulating gene expression. The compartmentalization of cellular processes, such as ribosome biogenesis, RNA processing, cellular response to stress, transcription, modification and assembly of spliceosomal snRNPs, histone gene synthesis and nuclear RNA retention, has significant implications for gene regulation. These functional nuclear domains include the nucleolus, nuclear speckle, nuclear stress body, transcription factory, Cajal body, Gemini of Cajal body, histone locus body and paraspeckle. We herein review the roles of nuclear bodies in regulating gene expression and their relation to human health and disease. PMID:24040563

  18. Dihydrotestostenone increase the gene expression of androgen ...

    African Journals Online (AJOL)

    HNTEP cells were grown in basal medium and treated with DHT in different conditions. HNTEP cells under treatment with DHT (10-13 M) induced an increase in FHL-2 expression. In turn, high DHT concentrations (10-8 M) induced an increase in the expression SHP-1. The present data suggest that the SHP-1 and FHL-2 ...

  19. Cloning and selection of reference genes for gene expression ...

    African Journals Online (AJOL)

    Full length mRNA sequences of Ac-β-actin and Ac-gapdh, and partial mRNA sequences of Ac-18SrRNA and Ac-ubiquitin were cloned from pineapple in this study. The four genes were tested as housekeeping genes in three experimental sets. GeNorm and NormFinder analysis revealed that β-actin was the most ...

  20. Differentially Expressed Genes in Human Prostatic Carcinoma

    National Research Council Canada - National Science Library

    Dong, Jin-Tang

    2001-01-01

    Unlike other major common cancers, no major tumor genes have been reported in prostate cancer, although this disease is the most frequently diagnosed cancer and the second leading cause of cancer death in American men...

  1. Reference genes for gene expression studies in wheat flag leaves grown under different farming conditions

    Directory of Open Access Journals (Sweden)

    Cordeiro Raposo Fernando

    2011-09-01

    Full Text Available Abstract Background Internal control genes with highly uniform expression throughout the experimental conditions are required for accurate gene expression analysis as no universal reference genes exists. In this study, the expression stability of 24 candidate genes from Triticum aestivum cv. Cubus flag leaves grown under organic and conventional farming systems was evaluated in two locations in order to select suitable genes that can be used for normalization of real-time quantitative reverse-transcription PCR (RT-qPCR reactions. The genes were selected among the most common used reference genes as well as genes encoding proteins involved in several metabolic pathways. Findings Individual genes displayed different expression rates across all samples assayed. Applying geNorm, a set of three potential reference genes were suitable for normalization of RT-qPCR reactions in winter wheat flag leaves cv. Cubus: TaFNRII (ferredoxin-NADP(H oxidoreductase; AJ457980.1, ACT2 (actin 2; TC234027, and rrn26 (a putative homologue to RNA 26S gene; AL827977.1. In addition of these three genes that were also top-ranked by NormFinder, two extra genes: CYP18-2 (Cyclophilin A, AY456122.1 and TaWIN1 (14-3-3 like protein, AB042193 were most consistently stably expressed. Furthermore, we showed that TaFNRII, ACT2, and CYP18-2 are suitable for gene expression normalization in other two winter wheat varieties (Tommi and Centenaire grown under three treatments (organic, conventional and no nitrogen and a different environment than the one tested with cv. Cubus. Conclusions This study provides a new set of reference genes which should improve the accuracy of gene expression analyses when using wheat flag leaves as those related to the improvement of nitrogen use efficiency for cereal production.

  2. Differential testicular gene expression in seasonal fertility

    OpenAIRE

    Maywood, Elizabeth S.; Chahad-Ehlers, Samira; Garabette, Martine L.; Pritchard, Claire; Underhill, Phillip; Greenfield, Andrew; Ebling, Francis J. P.; Kyriacou, Charalambos P.; Hastings, Michael H.; Reddy, Akhilesh B.

    2009-01-01

    Spermatogenesis is an essential precursor for successful sexual reproduction. Recently, there has been an expansion in our knowledge of the genes associated with particular stages of normal, physiological testicular development and pubertal activation. What has been lacking, however, is an understanding of those genes that are involved in specifically regulating sperm production, rather than in maturation and elaboration of the testis as an organ. By utilising the reversible (seasonal) fertil...

  3. Gene expression profiling of Drosophila tracheal fusion cells.

    Science.gov (United States)

    Chandran, Rachana R; Iordanou, Ekaterini; Ajja, Crystal; Wille, Michael; Jiang, Lan

    2014-07-01

    The Drosophila trachea is a premier genetic system to investigate the fundamental mechanisms of tubular organ formation. Tracheal fusion cells lead the branch fusion process to form an interconnected tubular network. Therefore, fusion cells in the Drosophila trachea will be an excellent model to study branch fusion in mammalian tubular organs, such as kidneys and blood vessels. The fusion process is a dynamic cellular process involving cell migration, adhesion, vesicle trafficking, cytoskeleton rearrangement, and membrane fusion. To understand how these cellular events are coordinated, we initiated the critical step to assemble a gene expression profile of fusion cells. For this study, we analyzed the expression of 234 potential tracheal-expressed genes in fusion cells during fusion cell development. 143 Tracheal genes were found to encode transcription factors, signal proteins, cytoskeleton and matrix proteins, transporters, and proteins with unknown function. These genes were divided into four subgroups based on their levels of expression in fusion cells compared to neighboring non-fusion cells revealed by in situ hybridization: (1) genes that have relative high abundance in fusion cells, (2) genes that are dynamically expressed in fusion cells, (3) genes that have relative low abundance in fusion cells, and (4) genes that are expressed at similar levels in fusion cells and non-fusion tracheal cells. This study identifies the expression profile of fusion cells and hypothetically suggests genes which are necessary for the fusion process and which play roles in distinct stages of fusion, as indicated by the location and timing of expression. These data will provide the basis for a comprehensive understanding of the molecular and cellular mechanisms of branch fusion. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Do anti-angiogenic VEGF (VEGFxxxb isoforms exist? A cautionary tale.

    Directory of Open Access Journals (Sweden)

    Sheila Harris

    Full Text Available Splicing of the human vascular endothelial growth factor-A (VEGF-A gene has been reported to generate angiogenic (VEGFxxx and anti-angiogenic (VEGFxxxb isoforms. Corresponding VEGFxxxb isoforms have also been reported in rat and mouse. We examined VEGFxxxb expression in mouse fibrosarcoma cell lines expressing all or individual VEGF isoforms (VEGF120, 164 or 188, grown in vitro and in vivo, and compared results with those from normal mouse and human tissues. Importantly, genetic construction of VEGF164 and VEGF188 expressing fibrosarcomas, in which exon 7 is fused to the conventional exon 8, precludes VEGFxxxb splicing from occurring. Thus, these two fibrosarcoma cell lines provided endogenous negative controls. Using RT-PCR we show that primers designed to simultaneously amplify VEGFxxx and VEGFxxxb isoforms amplified only VEGFxxx variants in both species. Moreover, only VEGFxxx species were generated when mouse podocytes were treated with TGFβ-1, a reported activator of VEGFxxxb splice selection in human podocytes. A VEGF164/120 heteroduplex species was identified as a PCR artefact, specifically in mouse. VEGFxxxb isoform-specific PCR did amplify putative VEGFxxxb species in mouse and human tissues, but unexpectedly also in VEGF188 and VEGF164 fibrosarcoma cells and tumours, where splicing to produce true VEGFxxxb isoforms cannot occur. Moreover, these products were only consistently generated using reverse primers spanning more than 5 bases across the 8b/7 or 8b/5 splice junctions. Primer annealing to VEGFxxx transcripts and amplification of exon 8b primer 'tails' explained the artefactual generation of VEGFxxxb products, since the same products were generated when the PCR reactions were performed with cDNA from VEGF164/VEGF188 'knock-in' vectors used in the generation of single VEGF isoform-expressing transgenic mice from which the fibrosarcoma lines were developed. Collectively, our results highlight important pitfalls in data

  5. The CK1 gene family: expression patterning in zebrafish development

    Directory of Open Access Journals (Sweden)

    AMELINA ALBORNOZ

    2007-01-01

    Full Text Available Protein kinase CK1 is a ser/thr protein kinase family which has been identified in the cytosol cell fraction, associated with membranes as well as in the nucleus. Several isoforms of this gene family have been described in various organisms: CK1á, CK1ß, CK1δ, CK1å and CK1γ. Over the last decade, several members of this family have been involved in development processes related to wnt and sonic hedgehog signalling pathways. However, there is no detailed temporal information on the CK1 family in embryonic stages, even though orthologous genes have been described in several different vertebrate species. In this study, we describe for the first time the cloning and detailed expression pattern of five CK1 zebrafish genes. Sequence analysis revealed that zebrafish CK1 proteins are highly homologous to other vertebrate orthologues. Zebrafish CK1 genes are expressed throughout development in common and different territories. All the genes studied in development show maternal and zygotic expression with the exception of CK1å. This last gene presents only a zygotic component of expression. In early stages of development CK1 genes are ubiquitously expressed with the exception of CK1å. In later stages the five CK1 genes are expressed in the brain but not in the same way. This observation probably implicates the CK1 family genes in different and also in redundant functions. This is the first time that a detailed comparison of the expression of CK1 family genes is directly assessed in a vertebrate system throughout development

  6. Integrated olfactory receptor and microarray gene expression databases

    Directory of Open Access Journals (Sweden)

    Crasto Chiquito J

    2007-06-01

    Full Text Available Abstract Background Gene expression patterns of olfactory receptors (ORs are an important component of the signal encoding mechanism in the olfactory system since they determine the interactions between odorant ligands and sensory neurons. We have developed the Olfactory Receptor Microarray Database (ORMD to house OR gene expression data. ORMD is integrated with the Olfactory Receptor Database (ORDB, which is a key repository of OR gene information. Both databases aim to aid experimental research related to olfaction. Description ORMD is a Web-accessible database that provides a secure data repository for OR microarray experiments. It contains both publicly available and private data; accessing the latter requires authenticated login. The ORMD is designed to allow users to not only deposit gene expression data but also manage their projects/experiments. For example, contributors can choose whether to make their datasets public. For each experiment, users can download the raw data files and view and export the gene expression data. For each OR gene being probed in a microarray experiment, a hyperlink to that gene in ORDB provides access to genomic and proteomic information related to the corresponding olfactory receptor. Individual ORs archived in ORDB are also linked to ORMD, allowing users access to the related microarray gene expression data. Conclusion ORMD serves as a data repository and project management system. It facilitates the study of microarray experiments of gene expression in the olfactory system. In conjunction with ORDB, ORMD integrates gene expression data with the genomic and functional data of ORs, and is thus a useful resource for both olfactory researchers and the public.

  7. Global Gene Expression Analysis for the Assessment of Nanobiomaterials.

    Science.gov (United States)

    Hanagata, Nobutaka

    2015-01-01

    Using global gene expression analysis, the effects of biomaterials and nanomaterials can be analyzed at the genetic level. Even though information obtained from global gene expression analysis can be useful for the evaluation and design of biomaterials and nanomaterials, its use for these purposes is not widespread. This is due to the difficulties involved in data analysis. Because the expression data of about 20,000 genes can be obtained at once with global gene expression analysis, the data must be analyzed using bioinformatics. A method of bioinformatic analysis called gene ontology can estimate the kinds of changes on cell functions caused by genes whose expression level is changed by biomaterials and nanomaterials. Also, by applying a statistical analysis technique called hierarchical clustering to global gene expression data between a variety of biomaterials, the effects of the properties of materials on cell functions can be estimated. In this chapter, these theories of analysis and examples of applications to nanomaterials and biomaterials are described. Furthermore, global microRNA analysis, a method that has gained attention in recent years, and its application to nanomaterials are introduced. © 2015 S. Karger AG, Basel.

  8. Gene expression for carbonic anhydrase isoenzymes in human nasal mucosa.

    Science.gov (United States)

    Tarun, Alice S; Bryant, Bruce; Zhai, Wenwu; Solomon, Colin; Shusterman, Dennis

    2003-09-01

    Carbonic anhydrase (CA) is physiologically important in the reversible hydration reaction of CO(2); it is expressed in a number of isoforms (CA I-XIV) with varying degrees of enzymatic activity. In nasal chemesthesis, CA inhibition decreases the electrophysiologic response to CO(2), a common irritant test compound. CA enzymatic activity has been demonstrated in the human nasal mucosa using enzyme histochemical methods, but no systematic study of nasal mucosal CA isoenzyme gene expression has been published. We examined CA gene expression in superficial nasal mucosal scrapings from 15 subjects (6 females; 6 allergic rhinitics; age range, 21-56 years). Both non-quantitative and quantitative reverse transcription polymerase chain reaction (RT-PCR) were performed using primers for each gene coding for the 11 catalytically active CA isoenzymes and the housekeeping gene GADPH. Amplification products of GADPH and 10 of the 11 CA genes were detected in the specimens (CA VA was not detected). Relative expression of the CA genes was quantified using real-time PCR. Averaged across subjects, the relative abundance of the CA isoenzyme transcripts is as follows: CA XII > CA II > CA VB > CA IV > CA IX > CA III > CA XIV > CA I > CA VI > CA VII. Limited qualitative validation of gene expression was obtained by immunohistochemistry for CA I, CA II and CA IV. We also observed inter-individual variability in the expression of CA isoenzymes in human nasal mucosa, potentially contributing to differences in nasal chemosensitivity to CO(2) between individuals

  9. Carbon Catabolite Repression Regulates Glyoxylate Cycle Gene Expression in Cucumber.

    Science.gov (United States)

    Graham, I. A.; Denby, K. J.; Leaver, C. J.

    1994-01-01

    We have previously proposed that metabolic status is important in the regulation of cucumber malate synthase (MS) and isocitrate lyase (ICL) gene expression during plant development. In this article, we used a cell culture system to demonstrate that intracellular metabolic status does influence expression of both of these genes. Starvation of cucumber cell cultures resulted in the coordinate induction of the expression of MS and ICL genes, and this effect was reversed when sucrose was returned to the culture media. The induction of gene expression was closely correlated with a drop in intracellular sucrose, glucose, and fructose below threshold concentrations, but it was not correlated with a decrease in respiration rate. Glucose, fructose, or raffinose in the culture media also resulted in repression of MS and ICL. Both 2-deoxyglucose and mannose, which are phosphorylated by hexokinase but not further metabolized, specifically repressed MS and ICL gene expression relative to a third glyoxylate cycle gene, malate dehydrogenase. However, the addition of 3-methylglucose, an analog of glucose that is not phosphorylated, did not result in repression of either MS or ICL. It is proposed that the signal giving rise to a change in gene expression originates from the intracellular concentration of hexose sugars or the flux of hexose sugars into glycolysis. PMID:12244257

  10. A comparative study of three different gene expression analysis methods.

    Science.gov (United States)

    Choe, Jae Young; Han, Hyung Soo; Lee, Seon Duk; Lee, Hanna; Lee, Dong Eun; Ahn, Jae Yun; Ryoo, Hyun Wook; Seo, Kang Suk; Kim, Jong Kun

    2017-12-04

    TNF-α regulates immune cells and acts as an endogenous pyrogen. Reverse transcription polymerase chain reaction (RT-PCR) is one of the most commonly used methods for gene expression analysis. Among the alternatives to PCR, loop-mediated isothermal amplification (LAMP) shows good potential in terms of specificity and sensitivity. However, few studies have compared RT-PCR and LAMP for human gene expression analysis. Therefore, in the present study, we compared one-step RT-PCR, two-step RT-LAMP and one-step RT-LAMP for human gene expression analysis. We compared three gene expression analysis methods using the human TNF-α gene as a biomarker from peripheral blood cells. Total RNA from the three selected febrile patients were subjected to the three different methods of gene expression analysis. In the comparison of three gene expression analysis methods, the detection limit of both one-step RT-PCR and one-step RT-LAMP were the same, while that of two-step RT-LAMP was inferior. One-step RT-LAMP takes less time, and the experimental result is easy to determine. One-step RT-LAMP is a potentially useful and complementary tool that is fast and reasonably sensitive. In addition, one-step RT-LAMP could be useful in environments lacking specialized equipment or expertise.

  11. SIGNATURE: A workbench for gene expression signature analysis

    Directory of Open Access Journals (Sweden)

    Chang Jeffrey T

    2011-11-01

    Full Text Available Abstract Background The biological phenotype of a cell, such as a characteristic visual image or behavior, reflects activities derived from the expression of collections of genes. As such, an ability to measure the expression of these genes provides an opportunity to develop more precise and varied sets of phenotypes. However, to use this approach requires computational methods that are difficult to implement and apply, and thus there is a critical need for intelligent software tools that can reduce the technical burden of the analysis. Tools for gene expression analyses are unusually difficult to implement in a user-friendly way because their application requires a combination of biological data curation, statistical computational methods, and database expertise. Results We have developed SIGNATURE, a web-based resource that simplifies gene expression signature analysis by providing software, data, and protocols to perform the analysis successfully. This resource uses Bayesian methods for processing gene expression data coupled with a curated database of gene expression signatures, all carried out within a GenePattern web interface for easy use and access. Conclusions SIGNATURE is available for public use at http://genepattern.genome.duke.edu/signature/.

  12. Gene Expression in Human Accessory Lacrimal Glands of Wolfring

    Science.gov (United States)

    Ubels, John L.; Gipson, Ilene K.; Spurr-Michaud, Sandra J.; Tisdale, Ann S.; Van Dyken, Rachel E.; Hatton, Mark P.

    2012-01-01

    Purpose. The accessory lacrimal glands are assumed to contribute to the production of tear fluid, but little is known about their function. The goal of this study was to conduct an analysis of gene expression by glands of Wolfring that would provide a more complete picture of the function of these glands. Methods. Glands of Wolfring were isolated from frozen sections of human eyelids by laser microdissection. RNA was extracted from the cells and hybridized to gene expression arrays. The expression of several of the major genes was confirmed by immunohistochemistry. Results. Of the 24 most highly expressed genes, 9 were of direct relevance to lacrimal function. These included lysozyme, lactoferrin, tear lipocalin, and lacritin. The glands of Wolfring are enriched in genes related to protein synthesis, targeting, and secretion, and a large number of genes for proteins with antimicrobial activity were detected. Ion channels and transporters, carbonic anhydrase, and aquaporins were abundantly expressed. Genes for control of lacrimal function, including cholinergic, adrenergic, vasoactive intestinal polypeptide, purinergic, androgen, and prolactin receptors were also expressed in gland of Wolfring. Conclusions. The data suggest that the function of glands of Wolfring is similar to that of main lacrimal glands and are consistent with secretion electrolytes, fluid, and protein under nervous and hormonal control. Since these glands secrete directly onto the ocular surface, their location may allow rapid response to exogenous stimuli and makes them readily accessible to topical drugs. PMID:22956620

  13. Changes in gene expression during male meiosis in Petunia hybrida.

    Science.gov (United States)

    Cnudde, Filip; Hedatale, Veena; de Jong, Hans; Pierson, Elisabeth S; Rainey, Daphne Y; Zabeau, Marc; Weterings, Koen; Gerats, Tom; Peters, Janny L

    2006-01-01

    We analyzed changes in gene expression during male meiosis in Petunia by combining the meiotic staging of pollen mother cells from a single anther with cDNA-AFLP transcript profiling of mRNA from the synchronously developing sister anthers. The transcript profiling experiments focused on the identification of genes with a modulated expression profile during meiosis, while premeiotic archesporial cells and postmeiotic microspores served as a reference. About 8000 transcript tags, estimated at 30% of the total transcriptome, were generated, of which around 6% exhibited a modulated gene expression pattern at meiosis. Cluster analysis revealed a transcriptional cascade that coincides with the initiation and progression through all stages of the two meiotic divisions. Fragments that exhibited high expression specifically during meiosis I were characterized further by sequencing; 90 out of the 293 sequenced fragments showed homology with known genes, belonging to a wide range of gene classes, including previously characterized meiotic genes. In-situ hybridization experiments were performed to determine the spatial expression pattern for five selected transcript tags. Its concurrence with cDNA-AFLP transcript profiles indicates that this is an excellent approach to study genes involved in specialized processes such as meiosis. Our data set provides the potential to unravel unique meiotic genes that are as yet elusive to reverse genetics approaches.

  14. GESearch: An Interactive GUI Tool for Identifying Gene Expression Signature

    Directory of Open Access Journals (Sweden)

    Ning Ye

    2015-01-01

    Full Text Available The huge amount of gene expression data generated by microarray and next-generation sequencing technologies present challenges to exploit their biological meanings. When searching for the coexpression genes, the data mining process is largely affected by selection of algorithms. Thus, it is highly desirable to provide multiple options of algorithms in the user-friendly analytical toolkit to explore the gene expression signatures. For this purpose, we developed GESearch, an interactive graphical user interface (GUI toolkit, which is written in MATLAB and supports a variety of gene expression data files. This analytical toolkit provides four models, including the mean, the regression, the delegate, and the ensemble models, to identify the coexpression genes, and enables the users to filter data and to select gene expression patterns by browsing the display window or by importing knowledge-based genes. Subsequently, the utility of this analytical toolkit is demonstrated by analyzing two sets of real-life microarray datasets from cell-cycle experiments. Overall, we have developed an interactive GUI toolkit that allows for choosing multiple algorithms for analyzing the gene expression signatures.

  15. GESearch: An Interactive GUI Tool for Identifying Gene Expression Signature.

    Science.gov (United States)

    Ye, Ning; Yin, Hengfu; Liu, Jingjing; Dai, Xiaogang; Yin, Tongming

    2015-01-01

    The huge amount of gene expression data generated by microarray and next-generation sequencing technologies present challenges to exploit their biological meanings. When searching for the coexpression genes, the data mining process is largely affected by selection of algorithms. Thus, it is highly desirable to provide multiple options of algorithms in the user-friendly analytical toolkit to explore the gene expression signatures. For this purpose, we developed GESearch, an interactive graphical user interface (GUI) toolkit, which is written in MATLAB and supports a variety of gene expression data files. This analytical toolkit provides four models, including the mean, the regression, the delegate, and the ensemble models, to identify the coexpression genes, and enables the users to filter data and to select gene expression patterns by browsing the display window or by importing knowledge-based genes. Subsequently, the utility of this analytical toolkit is demonstrated by analyzing two sets of real-life microarray datasets from cell-cycle experiments. Overall, we have developed an interactive GUI toolkit that allows for choosing multiple algorithms for analyzing the gene expression signatures.

  16. Differential gene-expression profiles associated with gastric adenoma.

    Science.gov (United States)

    Takenawa, H; Kurosaki, M; Enomoto, N; Miyasaka, Y; Kanazawa, N; Sakamoto, N; Ikeda, T; Izumi, N; Sato, C; Watanabe, M

    2004-01-12

    Gastric adenomas may eventually progress to adenocarcinomas at varying rates. The purpose of the present study was to identify gene-expression profiles linked to the heterogeneous nature of gastric adenoma as compared to adenocarcinoma. Suppression subtractive hybridisation analysis was performed to extract relevant genes from two cases of low- and high-grade gastric adenomas. The identified genes were quantified by RT-PCR in 14 low-grade adenoma, nine high-grade adenoma and nine adenocarcinoma samples, followed by hierarchical clustering analysis to separate tumours into groups according to their gene-expression profiles. Nine genes previously implicated in carcinogenesis in a variety of organs, including three genes related to gastric adenocarcinoma, were identified. The overexpression of these genes in gastric adenoma has not been reported previously. The clustering analysis of these nine genes across 32 cases identified three groups, one of which consisted primarily of adenocarcinomas, whereas the other two groups consisted of adenomas. One group of adenomas, characterised by larger tumour size, exhibited gene-expression profiles of an intestinal cell lineage implicated in the pathogenesis of an intestinal-type gastric adenocarcinoma. Another adenoma group consisting of low-grade adenomas with smaller tumour size exhibited a unique expression profile. In conclusion, clustering analysis of expression profiles using a limited number of genes may serve as molecular markers for gastric adenoma with different biological properties. Although the prognostic values of these gene-expression profiles need to be evaluated in further follow-up study of adenoma cases, these findings add new insights to (a) our understanding of the pathogenesis of gastric tumours, (b) the development of specific tumour markers for clinical practice, and (c) the design of novel therapeutic targets.

  17. Estradiol-induced gene expression in largemouth bass (Micropterus salmoides)

    Science.gov (United States)

    Bowman, C.J.; Kroll, K.J.; Gross, T.G.; Denslow, N.D.

    2002-01-01

    Vitellogenin (Vtg) and estrogen receptor (ER) gene expression levels were measured in largemouth bass to evaluate the activation of the ER-mediated pathway by estradiol (E2). Single injections of E2 ranging from 0.0005 to 5 mg/kg up-regulated plasma Vtg in a dose-dependent manner. Vtg and ER mRNAs were measured using partial cDNA sequences corresponding to the C-terminal domain for Vtg and the ligand-binding domain of ER?? sequences. After acute E2-exposures (2 mg/kg), Vtg and ER mRNAs and plasma Vtg levels peaked after 2 days. The rate of ER mRNA accumulation peaked 36-42 h earlier than Vtg mRNA. The expression window for ER defines the primary response to E2 in largemouth bass and that for Vtg a delayed primary response. The specific effect of E2 on other estrogen-regulated genes was tested during these same time windows using differential display RT-PCR. Specific up-regulated genes that are expressed in the same time window as Vtg were ERp72 (a membrane-bound disulfide isomerase) and a gene with homology to an expressed gene identified in zebrafish. Genes that were expressed in a pattern that mimics the ER include the gene for zona radiata protein ZP2, and a gene with homology to an expressed gene found in winter flounder. One gene for fibrinogen ?? was down-regulated and an unidentified gene was transiently up-regulated after 12 h of exposure and returned to basal levels by 48 h. Taken together these studies indicate that the acute molecular response to E2 involves a complex network of responses over time. ?? 2002 Elsevier Science Ireland Ltd. All rights reserved.

  18. Domestication rewired gene expression and nucleotide diversity patterns in tomato.

    Science.gov (United States)

    Sauvage, Christopher; Rau, Andrea; Aichholz, Charlotte; Chadoeuf, Joël; Sarah, Gautier; Ruiz, Manuel; Santoni, Sylvain; Causse, Mathilde; David, Jacques; Glémin, Sylvain

    2017-08-01

    Plant domestication has led to considerable phenotypic modifications from wild species to modern varieties. However, although changes in key traits have been well documented, less is known about the underlying molecular mechanisms, such as the reduction of molecular diversity or global gene co-expression patterns. In this study, we used a combination of gene expression and population genetics in wild and crop tomato to decipher the footprints of domestication. We found a set of 1729 differentially expressed genes (DEG) between the two genetic groups, belonging to 17 clusters of co-expressed DEG, suggesting that domestication affected not only individual genes but also regulatory networks. Five co-expression clusters were enriched in functional terms involving carbohydrate metabolism or epigenetic regulation of gene expression. We detected differences in nucleotide diversity between the crop and wild groups specific to DEG. Our study provides an extensive profiling of the rewiring of gene co-expression induced by the domestication syndrome in one of the main crop species. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  19. Prolactin Upregulates Female-Predominant P450 Gene Expressions and Downregulates Male-Predominant Gene Expressions in Mouse Liver.

    Science.gov (United States)

    Sato, Yuya; Kaneko, Yoshikatsu; Cho, Takamasa; Goto, Kei; Otsuka, Tadashi; Yamamoto, Suguru; Goto, Shin; Maruyama, Hiroki; Narita, Ichiei

    2017-06-01

    Prolactin is a polypeptide hormone with over 300 separate biologic activities. Its serum level is increased during pregnancy and lactation, and it has been reported that pregnancy and lactation affect drug and steroid metabolism in mice and humans. Several studies reported that pregnancy or lactation influences liver cytochrome P450 (P450) expression and its activity, affecting the biosynthesis of steroids and xenobiotics through growth hormone or sex hormones; however, the role of prolactin as the regulator of liver P450 expression has not been elucidated so far. In the present study, we focused on prolactin as the regulator of expression of liver sex-predominant genes, including P450s. To investigate the role of prolactin in the hepatic gene expressions, pCAGGS expression vector containing mouse prolactin cDNA was transfected by hydrodynamic injection into both male and female mice. Hyperprolactinemia phosphorylated signal transducer and activator of transcription 5 in the liver and augmented female mouse liver mRNA expression of Cyp3a16 , Cyp3a41 , Cyp3a44 , Cyp2b9 , and prolactin receptor genes, whose expressions were female-predominant in hepatocytes. Moreover, liver expression of male-predominant genes such as Cyp2d9 , Cyp7b1 , Mup1 , and Alas2 were reduced in male mice with hyperprolactinemia. The serum levels of conventional regulators of hepatic gene expressions, growth hormone, and testosterone were not affected by hyperprolactinemia. We demonstrated that prolactin upregulated female-predominant genes in female mice and downregulated male-predominant genes in male mice. We conjecture that higher concentration of prolactin would alter steroid and xenobiotic metabolisms by modulating hepatic P450 gene expressions during pregnancy and lactation. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  20. Development of a surrogate potency assay to determine the angiogenic activity of Stempeucel®, a pooled, ex-vivo expanded, allogeneic human bone marrow mesenchymal stromal cell product.

    Science.gov (United States)

    Thej, Charan; Ramadasse, Balamurugan; Walvekar, Ankita; Majumdar, Anish S; Balasubramanian, Sudha

    2017-02-28

    Mesenchymal stromal cells (MSCs) have emerged as a more beneficial alternative to conventional therapy and may offer a potential cure for unmet medical needs. MSCs are known to possess strong immunomodulatory and anti-inflammatory properties. Moreover, they promote angiogenesis and tissue regeneration through the secretion of trophic factors. For these reasons, the past decade witnessed a sharp increase in the number of clinical trials conducted with stem cells for various vascular diseases requiring angiogenesis. In this study, we evaluated the in vitro angiogenic potency of Stempeucel®, which is an allogeneic pooled human bone marrow-derived mesenchymal stromal cell (phBMMSC) product. We previously established the safety of Stempeucel® in our pre-clinical studies, and clinical trials conducted for critical limb ischaemia and acute myocardial infarction. Because the proposed mechanism of action of phBMMSCs is mainly through the secretion of pro-angiogenic cytokines, we developed a surrogate potency assay by screening various batches of large-scale expanded phBMMSCs for the expression of angiogenic factors and cytokines through gene expression and growth factor analyses, followed by in vitro functional assays. The well characterized angiogenic vascular endothelial growth factor (VEGF) was selected and quantified in twenty six manufactured batches of phBMMSCs to establish consistency following the United States Food and Drug Administration recommendations. According to recommendations 21 CFR 211.165(e) and 211.194(a)(2), we also established and documented the specificity and reproducibility of the test methods employed through validation. Moreover, we also attempted to elucidate the mechanism of action of the cell population to ensure appropriate biological activity. The functional role of VEGF has been established through in vitro angiogenic assays and a dose-dependent correlation was observed with in vitro functional results. The data generated from this study

  1. Multiscale Embedded Gene Co-expression Network Analysis.

    Directory of Open Access Journals (Sweden)

    Won-Min Song

    2015-11-01

    Full Text Available Gene co-expression network analysis has been shown effective in identifying functional co-expressed gene modules associated with complex human diseases. However, existing techniques to construct co-expression networks require some critical prior information such as predefined number of clusters, numerical thresholds for defining co-expression/interaction, or do not naturally reproduce the hallmarks of complex systems such as the scale-free degree distribution of small-worldness. Previously, a graph filtering technique called Planar Maximally Filtered Graph (PMFG has been applied to many real-world data sets such as financial stock prices and gene expression to extract meaningful and relevant interactions. However, PMFG is not suitable for large-scale genomic data due to several drawbacks, such as the high computation complexity O(|V|3, the presence of false-positives due to the maximal planarity constraint, and the inadequacy of the clustering framework. Here, we developed a new co-expression network analysis framework called Multiscale Embedded Gene Co-expression Network Analysis (MEGENA by: i introducing quality control of co-expression similarities, ii parallelizing embedded network construction, and iii developing a novel clustering technique to identify multi-scale clustering structures in Planar Filtered Networks (PFNs. We applied MEGENA to a series of simulated data and the gene expression data in breast carcinoma and lung adenocarcinoma from The Cancer Genome Atlas (TCGA. MEGENA showed improved performance over well-established clustering methods and co-expression network construction approaches. MEGENA revealed not only meaningful multi-scale organizations of co-expressed gene clusters but also novel targets in breast carcinoma and lung adenocarcinoma.

  2. Multiscale Embedded Gene Co-expression Network Analysis.

    Science.gov (United States)

    Song, Won-Min; Zhang, Bin

    2015-11-01

    Gene co-expression network analysis has been shown effective in identifying functional co-expressed gene modules associated with complex human diseases. However, existing techniques to construct co-expression networks require some critical prior information such as predefined number of clusters, numerical thresholds for defining co-expression/interaction, or do not naturally reproduce the hallmarks of complex systems such as the scale-free degree distribution of small-worldness. Previously, a graph filtering technique called Planar Maximally Filtered Graph (PMFG) has been applied to many real-world data sets such as financial stock prices and gene expression to extract meaningful and relevant interactions. However, PMFG is not suitable for large-scale genomic data due to several drawbacks, such as the high computation complexity O(|V|3), the presence of false-positives due to the maximal planarity constraint, and the inadequacy of the clustering framework. Here, we developed a new co-expression network analysis framework called Multiscale Embedded Gene Co-expression Network Analysis (MEGENA) by: i) introducing quality control of co-expression similarities, ii) parallelizing embedded network construction, and iii) developing a novel clustering technique to identify multi-scale clustering structures in Planar Filtered Networks (PFNs). We applied MEGENA to a series of simulated data and the gene expression data in breast carcinoma and lung adenocarcinoma from The Cancer Genome Atlas (TCGA). MEGENA showed improved performance over well-established clustering methods and co-expression network construction approaches. MEGENA revealed not only meaningful multi-scale organizations of co-expressed gene clusters but also novel targets in breast carcinoma and lung adenocarcinoma.

  3. Gene expression in the urinary bladder: a common carcinoma in situ gene expression signature exists disregarding histopathological classification

    DEFF Research Database (Denmark)

    Andersen, Lars Dyrskjøt; Kruhøffer, Mogens; Andersen, Thomas Thykjær

    2004-01-01

    The presence of carcinoma in situ (CIS) lesions in the urinary bladder is associated with a high risk of disease progression to a muscle invasive stage. In this study, we used microarray expression profiling to examine the gene expression patterns in superficial transitional cell carcinoma (s...... in mTCC samples. We used a supervised learning approach to build a 16-gene molecular CIS classifier. The classifier was able to classify sTCC samples according to the presence or absence of surrounding CIS with a high accuracy. This study demonstrates that a CIS gene expression signature is present...

  4. The evolution of gene expression levels in mammalian organs

    DEFF Research Database (Denmark)

    Brawand, David; Soumillon, Magali; Necsulea, Anamaria

    2011-01-01

    Changes in gene expression are thought to underlie many of the phenotypic differences between species. However, large-scale analyses of gene expression evolution were until recently prevented by technological limitations. Here we report the sequencing of polyadenylated RNA from six organs across...... ten species that represent all major mammalian lineages (placentals, marsupials and monotremes) and birds (the evolutionary outgroup), with the goal of understanding the dynamics of mammalian transcriptome evolution. We show that the rate of gene expression evolution varies among organs, lineages...... and chromosomes, owing to differences in selective pressures: transcriptome change was slow in nervous tissues and rapid in testes, slower in rodents than in apes and monotremes, and rapid for the X chromosome right after its formation. Although gene expression evolution in mammals was strongly shaped...

  5. Enhancement of plasmid-mediated stable gene expression by ...

    African Journals Online (AJOL)

    WPRE) is a possible enhancer of gene expression in mammalian cells that promotes efficient export of unspliced (RNA) into the cytoplasm, as has been proved in transient transfection. In this study, WPRE was evaluated for enhancing stable ...

  6. State-related alterations of gene expression in bipolar disorder

    DEFF Research Database (Denmark)

    Munkholm, Klaus; Vinberg, Maj; Berk, Michael

    2012-01-01

    on comprehensive database searches for studies on gene expression in patients with bipolar disorder in specific mood states, was conducted. We searched Medline, Embase, PsycINFO, and The Cochrane Library, supplemented by manually searching reference lists from retrieved publications. Results:  A total of 17......Munkholm K, Vinberg M, Berk M, Kessing LV. State-related alterations of gene expression in bipolar disorder: a systematic review. Bipolar Disord 2012: 14: 684-696. © 2012 The Authors. Journal compilation © 2012 John Wiley & Sons A/S. Objective:  Alterations in gene expression in bipolar disorder...... have been found in numerous studies. It is unclear whether such alterations are related to specific mood states. As a biphasic disorder, mood state-related alterations in gene expression have the potential to point to markers of disease activity, and trait-related alterations might indicate...

  7. Gene expression, neurogenesis, and healing: psychosocial genomics of therapeutic hypnosis.

    Science.gov (United States)

    Rossi, Ernest L

    2003-01-01

    The historical lineage of therapeutic hypnosis in James Braid's "psychophysiology", Pierre Janet's "physiological modification", and Milton Erickson's "neuro-psycho-physiology" is extended to include current neuroscience research on activity-dependent gene expression, neurogenesis, and stem cells in memory, learning, behavior change, and healing. Three conditions that optimize gene expression and neurogenesis--novelty, environmental enrichment, and exercise--could integrate fundamentals of the theory, research, and practice of therapeutic hypnosis. Continuing research on immediate-early, activity-dependent, behavior state-related, and clock gene expression could enhance our understanding of how relaxation, sleep, dreaming, consciousness, arousal, stress and trauma are modulated by therapeutic hypnosis. It is speculated that therapeutic and post-hypnotic suggestion could be focused more precisely with the time parameters of gene expression and neurogenesis that range from minutes and hours for synthesizing new synapses to weeks and months for the generation and maturation of new, functioning neurons in the adult brain.

  8. Visually Relating Gene Expression and in vivo DNA Binding Data

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Min-Yu; Mackey, Lester; Ker?,; nen, Soile V. E.; Weber, Gunther H.; Jordan, Michael I.; Knowles, David W.; Biggin, Mark D.; Hamann, Bernd

    2011-09-20

    Gene expression and in vivo DNA binding data provide important information for understanding gene regulatory networks: in vivo DNA binding data indicate genomic regions where transcription factors are bound, and expression data show the output resulting from this binding. Thus, there must be functional relationships between these two types of data. While visualization and data analysis tools exist for each data type alone, there is a lack of tools that can easily explore the relationship between them. We propose an approach that uses the average expression driven by multiple of ciscontrol regions to visually relate gene expression and in vivo DNA binding data. We demonstrate the utility of this tool with examples from the network controlling early Drosophila development. The results obtained support the idea that the level of occupancy of a transcription factor on DNA strongly determines the degree to which the factor regulates a target gene, and in some cases also controls whether the regulation is positive or negative.

  9. Cloning, expression and characterisation of a novel gene encoding ...

    African Journals Online (AJOL)

    微软用户

    2012-01-12

    families. The recombinant BtabCSP was successfully expressed in Escherichia coli cells. This is the first report on the existence of chemosensory protein-coding gene in whiteflies. It will help us to elucidate the molecular.

  10. A role for gene duplication and natural variation of gene expression in the evolution of metabolism.

    Directory of Open Access Journals (Sweden)

    Daniel J Kliebenstein

    Full Text Available BACKGROUND: Most eukaryotic genomes have undergone whole genome duplications during their evolutionary history. Recent studies have shown that the function of these duplicated genes can diverge from the ancestral gene via neo- or sub-functionalization within single genotypes. An additional possibility is that gene duplicates may also undergo partitioning of function among different genotypes of a species leading to genetic differentiation. Finally, the ability of gene duplicates to diverge may be limited by their biological function. METHODOLOGY/PRINCIPAL FINDINGS: To test these hypotheses, I estimated the impact of gene duplication and metabolic function upon intraspecific gene expression variation of segmental and tandem duplicated genes within Arabidopsis thaliana. In all instances, the younger tandem duplicated genes showed higher intraspecific gene expression variation than the average Arabidopsis gene. Surprisingly, the older segmental duplicates also showed evidence of elevated intraspecific gene expression variation albeit typically lower than for the tandem duplicates. The specific biological function of the gene as defined by metabolic pathway also modulated the level of intraspecific gene expression variation. The major energy metabolism and biosynthetic pathways showed decreased variation, suggesting that they are constrained in their ability to accumulate gene expression variation. In contrast, a major herbivory defense pathway showed significantly elevated intraspecific variation suggesting that it may be under pressure to maintain and/or generate diversity in response to fluctuating insect herbivory pressures. CONCLUSION: These data show that intraspecific variation in gene expression is facilitated by an interaction of gene duplication and biological activity. Further, this plays a role in controlling diversity of plant metabolism.

  11. Visual sensitivities tuned by heterochronic shifts in opsin gene expression

    Directory of Open Access Journals (Sweden)

    McFarland William N

    2008-05-01

    Full Text Available Abstract Background Cichlid fishes have radiated into hundreds of species in the Great Lakes of Africa. Brightly colored males display on leks and vie to be chosen by females as mates. Strong discrimination by females causes differential male mating success, rapid evolution of male color patterns and, possibly, speciation. In addition to differences in color pattern, Lake Malawi cichlids also show some of the largest known shifts in visual sensitivity among closely related species. These shifts result from modulated expression of seven cone opsin genes. However, the mechanisms for this modulated expression are unknown. Results In this work, we ask whether these differences might result from changes in developmental patterning of cone opsin genes. To test this, we compared the developmental pattern of cone opsin gene expression of the Nile tilapia, Oreochromis niloticus, with that of several cichlid species from Lake Malawi. In tilapia, quantitative polymerase chain reaction showed that opsin gene expression changes dynamically from a larval gene set through a juvenile set to a final adult set. In contrast, Lake Malawi species showed one of two developmental patterns. In some species, the expressed gene set changes slowly, either retaining the larval pattern or progressing only from larval to juvenile gene sets (neoteny. In the other species, the same genes are expressed in both larvae and adults but correspond to the tilapia adult genes (direct development. Conclusion Differences in visual sensitivities among species of Lake Malawi cichlids arise through heterochronic shifts relative to the ontogenetic pattern of the tilapia outgroup. Heterochrony has previously been shown to be a powerful mechanism for change in morphological evolution. We found that altering developmental expression patterns is also an important mechanism for altering sensory systems. These resulting sensory shifts will have major impacts on visual communication and could help

  12. Semi-supervised consensus clustering for gene expression data analysis

    OpenAIRE

    Wang, Yunli; Pan, Youlian

    2014-01-01

    Background Simple clustering methods such as hierarchical clustering and k-means are widely used for gene expression data analysis; but they are unable to deal with noise and high dimensionality associated with the microarray gene expression data. Consensus clustering appears to improve the robustness and quality of clustering results. Incorporating prior knowledge in clustering process (semi-supervised clustering) has been shown to improve the consistency between the data partitioning and do...

  13. Microarray analysis of gene expression during bacteriophage T4 infection.

    Science.gov (United States)

    Luke, Kimberly; Radek, Agnes; Liu, XiuPing; Campbell, John; Uzan, Marc; Haselkorn, Robert; Kogan, Yakov

    2002-08-01

    Genomic microarrays were used to examine the complex temporal program of gene expression exhibited by bacteriophage T4 during the course of development. The microarray data confirm the existence of distinct early, middle, and late transcriptional classes during the bacteriophage replicative cycle. This approach allows assignment of previously uncharacterized genes to specific temporal classes. The genomic expression data verify many promoter assignments and predict the existence of previously unidentified promoters.

  14. Gene structure, phylogeny and expression profile of the sucrose ...

    Indian Academy of Sciences (India)

    The Sus genes exhibited distinct but partially redundant expression profiles in cacao, with TcSus1, TcSus5 and TcSus6, being the predominant genes in the bark with phloem, TcSus2 predominantly expressing in the seed during the stereotype stage. TcSus3 and TcSus4 were significantly detected more in the pod husk and ...

  15. Caffeine exposure alters cardiac gene expression in embryonic cardiomyocytes

    Science.gov (United States)

    Fang, Xiefan; Mei, Wenbin; Barbazuk, William B.; Rivkees, Scott A.

    2014-01-01

    Previous studies demonstrated that in utero caffeine treatment at embryonic day (E) 8.5 alters DNA methylation patterns, gene expression, and cardiac function in adult mice. To provide insight into the mechanisms, we examined cardiac gene and microRNA (miRNA) expression in cardiomyocytes shortly after exposure to physiologically relevant doses of caffeine. In HL-1 and primary embryonic cardiomyocytes, caffeine treatment for 48 h significantly altered the expression of cardiac structural genes (Myh6, Myh7, Myh7b, Tnni3), hormonal genes (Anp and BnP), cardiac transcription factors (Gata4, Mef2c, Mef2d, Nfatc1), and microRNAs (miRNAs; miR208a, miR208b, miR499). In addition, expressions of these genes were significantly altered in embryonic hearts exposed to in utero caffeine. For in utero experiments, pregnant CD-1 dams were treated with 20–60 mg/kg of caffeine, which resulted in maternal circulation levels of 37.3–65.3 μM 2 h after treatment. RNA sequencing was performed on embryonic ventricles treated with vehicle or 20 mg/kg of caffeine daily from E6.5-9.5. Differential expression (DE) analysis revealed that 124 genes and 849 transcripts were significantly altered, and differential exon usage (DEU) analysis identified 597 exons that were changed in response to prenatal caffeine exposure. Among the DE genes identified by RNA sequencing were several cardiac structural genes and genes that control DNA methylation and histone modification. Pathway analysis revealed that pathways related to cardiovascular development and diseases were significantly affected by caffeine. In addition, global cardiac DNA methylation was reduced in caffeine-treated cardiomyocytes. Collectively, these data demonstrate that caffeine exposure alters gene expression and DNA methylation in embryonic cardiomyocytes. PMID:25354728

  16. Caffeine exposure alters cardiac gene expression in embryonic cardiomyocytes.

    Science.gov (United States)

    Fang, Xiefan; Mei, Wenbin; Barbazuk, William B; Rivkees, Scott A; Wendler, Christopher C

    2014-12-15

    Previous studies demonstrated that in utero caffeine treatment at embryonic day (E) 8.5 alters DNA methylation patterns, gene expression, and cardiac function in adult mice. To provide insight into the mechanisms, we examined cardiac gene and microRNA (miRNA) expression in cardiomyocytes shortly after exposure to physiologically relevant doses of caffeine. In HL-1 and primary embryonic cardiomyocytes, caffeine treatment for 48 h significantly altered the expression of cardiac structural genes (Myh6, Myh7, Myh7b, Tnni3), hormonal genes (Anp and BnP), cardiac transcription factors (Gata4, Mef2c, Mef2d, Nfatc1), and microRNAs (miRNAs; miR208a, miR208b, miR499). In addition, expressions of these genes were significantly altered in embryonic hearts exposed to in utero caffeine. For in utero experiments, pregnant CD-1 dams were treated with 20-60 mg/kg of caffeine, which resulted in maternal circulation levels of 37.3-65.3 μM 2 h after treatment. RNA sequencing was performed on embryonic ventricles treated with vehicle or 20 mg/kg of caffeine daily from E6.5-9.5. Differential expression (DE) analysis revealed that 124 genes and 849 transcripts were significantly altered, and differential exon usage (DEU) analysis identified 597 exons that were changed in response to prenatal caffeine exposure. Among the DE genes identified by RNA sequencing were several cardiac structural genes and genes that control DNA methylation and histone modification. Pathway analysis revealed that pathways related to cardiovascular development and diseases were significantly affected by caffeine. In addition, global cardiac DNA methylation was reduced in caffeine-treated cardiomyocytes. Collectively, these data demonstrate that caffeine exposure alters gene expression and DNA methylation in embryonic cardiomyocytes. Copyright © 2014 the American Physiological Society.

  17. Gene Expression Profiling during Pregnancy in Rat Brain Tissue

    Directory of Open Access Journals (Sweden)

    Phyllis E. Mann

    2014-03-01

    Full Text Available The neurophysiological changes that occur during pregnancy in the female mammal have led to the coining of the phrases “expectant brain” and “maternal brain”. Although much is known of the hormonal changes during pregnancy, alterations in neurotransmitter gene expression have not been well-studied. We examined gene expression in the ventromedial nucleus of the hypothalamus (VMH during pregnancy based on the fact that this nucleus not only modulates the physiological changes that occur during pregnancy but is also involved in the development of maternal behavior. This study was designed to identify genes that are differentially expressed between mid- and late-pregnancy in order to determine which genes may be associated with the onset and display of maternal behavior and the development of the maternal brain. A commercially available PCR array containing 84 neurotransmitter receptor and regulator genes (RT2 Profiler PCR array was used. Brains were harvested from rats on days 12 and 21 of gestation, frozen, and micropunched to obtain the VMH. Total RNA was extracted, cDNA prepared, and SYBR Green qPCR was performed. In the VMH, expression of five genes were reduced on day 21 of gestation compared to day 12 (Chrna6, Drd5, Gabrr2, Prokr2, and Ppyr1 whereas Chat, Chrm5, Drd4, Gabra5, Gabrg2, LOC289606, Nmu5r2, and Npy5r expression was elevated. Five genes were chosen to be validated in an additional experiment based on their known involvement in maternal behavior onset. This experiment confirmed that gene expression for both the CCK-A receptor and the GABAAR γ2 receptor increases at the end of pregnancy. In general, these results identify genes possibly involved in the establishment of the maternal brain in rats and indicate possible new genes to be investigated.

  18. [Gene expression profile of spinal ventral horn in ALS].

    Science.gov (United States)

    Yamamoto, Masahiko; Tanaka, Fumiaki; Sobue, Gen

    2007-10-01

    The causative pathomechanism of sporadic amyotrophic lateral sclerosis (ALS) is not clearly understood. Using microarray technology combined with laser-captured microdissection, gene expression profiles of degenerating spinal motor neurons as well as spinal ventral horn from autopsied patients with sporadic ALS were examined. Spinal motor neurons showed a distinct gene expression profile from the whole spinal ventral horn. Three percent of genes examined were significantly downregulated, and 1% were upregulated in motor neurons. In contrast with motor neurons, the total spinal ventral horn homogenates demonstrated 0.7% and 0.2% significant upregulation and downregulation of gene expression, respectively. Downregulated genes in motor neurons included those associated with cytoskeleton/axonal transport, transcription and cell surface antigens/receptors, such as dynactin 1 (DCTN1) and early growth response 3 (EGR3). In particular, DCTN1 was markedly downregulated in most residual motor neurons prior to the accumulation of pNF-H and ubiquitylated protein. Promoters for cell death pathway, death receptor 5 (DR5), cyclins C (CCNC) and A1 (CCNA), and caspases were upregulated, whereas cell death inhibitors, acetyl-CoA transporter (ACATN) and NF-kappaB (NFKB) were also upregulated. In terms of spinal ventral horn, the expression of genes related to cell surface antigens/receptors, transcription and cell adhesion/ECM were increased. The gene expression resulting in neurodegenerative and neuroprotective changes were both present in spinal motor neurons and ventral horn. Moreover, Inflammation-related genes, such as belonging to the cytokine family were not, however, significantly upregulated in either motor neurons or ventral horn. The sequence of motor neuron-specific gene expression changes from early DCTN1 downregulation to late CCNC upregulation in sporadic ALS can provide direct information on the genes leading to neurodegeneration and neuronal death, and are helpful

  19. Normalization of gene expression measurements in tumor tissues: comparison of 13 endogenous control genes.

    NARCIS (Netherlands)

    Kok, J.B. de; Roelofs, R.W.; Giesendorf, B.A.J.; Pennings, J.L.; Waas, E.T.; Feuth, A.B.; Swinkels, D.W.; Span, P.N.

    2005-01-01

    For interpretation of quantitative gene expression measurements in clinical tumor samples, a normalizer is necessary to correct expression data for differences in cellular input, RNA quality, and RT efficiency between samples. In many studies, a single housekeeping gene is used for normalization.

  20. Changes in skeletal muscle gene expression following clenbuterol administration

    Science.gov (United States)

    Spurlock, Diane M; McDaneld, Tara G; McIntyre, Lauren M

    2006-01-01

    Background Beta-adrenergic receptor agonists (BA) induce skeletal muscle hypertrophy, yet specific mechanisms that lead to this effect are not well understood. The objective of this research was to identify novel genes and physiological pathways that potentially facilitate BA induced skeletal muscle growth. The Affymetrix platform was utilized to identify gene expression changes in mouse skeletal muscle 24 hours and 10 days after administration of the BA clenbuterol. Results Administration of clenbuterol stimulated anabolic activity, as indicated by decreased blood urea nitrogen (BUN; P clenbuterol treatment. A total of 22,605 probesets were evaluated with 52 probesets defined as differentially expressed based on a false discovery rate of 10%. Differential mRNA abundance of four of these genes was validated in an independent experiment by quantitative PCR. Functional characterization of differentially expressed genes revealed several categories that participate in biological processes important to skeletal muscle growth, including regulators of transcription and translation, mediators of cell-signalling pathways, and genes involved in polyamine metabolism. Conclusion Global evaluation of gene expression after administration of clenbuterol identified changes in gene expression and overrepresented functional categories of genes that may regulate BA-induced muscle hypertrophy. Changes in mRNA abundance of multiple genes associated with myogenic differentiation may indicate an important effect of BA on proliferation, differentiation, and/or recruitment of satellite cells into muscle fibers to promote muscle hypertrophy. Increased mRNA abundance of genes involved in the initiation of translation suggests that increased levels of protein synthesis often associated with BA administration may result from a general up-regulation of translational initiators. Additionally, numerous other genes and physiological pathways were identified that will be important targets for

  1. Digital Gene Expression Profiling to Explore Differentially Expressed Genes Associated with Terpenoid Biosynthesis during Fruit Development in Litsea cubeba

    Directory of Open Access Journals (Sweden)

    Ming Gao

    2016-09-01

    Full Text Available Mountain pepper (Litsea cubeba (Lour. Pers. (Lauraceae is an important industrial crop as an ingredient in cosmetics, pesticides, food additives and potential biofuels. These properties are attributed to monoterpenes and sesquiterpenes. However, there is still no integrated model describing differentially expressed genes (DEGs involved in terpenoid biosynthesis during the fruit development of L. cubeba. Here, we performed digital gene expression (DGE using the Illumina NGS platform to evaluated changes in gene expression during fruit development in L. cubeba. DGE generated expression data for approximately 19354 genes. Fruit at 60 days after flowering (DAF served as the control, and a total of 415, 1255, 449 and 811 up-regulated genes and 505, 1351, 1823 and 1850 down-regulated genes were identified at 75, 90, 105 and 135 DAF, respectively. Pathway analysis revealed 26 genes involved in terpenoid biosynthesis pathways. Three DEGs had continued increasing or declining trends during the fruit development. The quantitative real-time PCR (qRT-PCR results of five differentially expressed genes were consistent with those obtained from Illumina sequencing. These results provide a comprehensive molecular biology background for research on fruit development, and information that should aid in metabolic engineering to increase the yields of L. cubeba essential oil.

  2. Microspatial gene expression patterns in the Amazon River Plume.

    Science.gov (United States)

    Satinsky, Brandon M; Crump, Byron C; Smith, Christa B; Sharma, Shalabh; Zielinski, Brian L; Doherty, Mary; Meng, Jun; Sun, Shulei; Medeiros, Patricia M; Paul, John H; Coles, Victoria J; Yager, Patricia L; Moran, Mary Ann

    2014-07-29

    We investigated expression of genes mediating elemental cycling at the microspatial scale in the ocean's largest river plume using, to our knowledge, the first fully quantitative inventory of genes and transcripts. The bacterial and archaeal communities associated with a phytoplankton bloom in Amazon River Plume waters at the outer continental shelf in June 2010 harbored ∼ 1.0 × 10(13) genes and 4.7 × 10(11) transcripts per liter that mapped to several thousand microbial genomes. Genomes from free-living cells were more abundant than those from particle-associated cells, and they generated more transcripts per liter for carbon fixation, heterotrophy, nitrogen and phosphorus uptake, and iron acquisition, although they had lower expression ratios (transcripts ⋅ gene(-1)) overall. Genomes from particle-associated cells contributed more transcripts for sulfur cycling, aromatic compound degradation, and the synthesis of biologically essential vitamins, with an overall twofold up-regulation of expression compared with free-living cells. Quantitatively, gene regulation differences were more important than genome abundance differences in explaining why microenvironment transcriptomes differed. Taxa contributing genomes to both free-living and particle-associated communities had up to 65% of their expressed genes regulated differently between the two, quantifying the extent of transcriptional plasticity in marine microbes in situ. In response to patchiness in carbon, nutrients, and light at the micrometer scale, Amazon Plume microbes regulated the expression of genes relevant to biogeochemical processes at the ecosystem scale.

  3. Random Subspace Aggregation for Cancer Prediction with Gene Expression Profiles

    Directory of Open Access Journals (Sweden)

    Liying Yang

    2016-01-01

    Full Text Available Background. Precisely predicting cancer is crucial for cancer treatment. Gene expression profiles make it possible to analyze patterns between genes and cancers on the genome-wide scale. Gene expression data analysis, however, is confronted with enormous challenges for its characteristics, such as high dimensionality, small sample size, and low Signal-to-Noise Ratio. Results. This paper proposes a method, termed RS_SVM, to predict gene expression profiles via aggregating SVM trained on random subspaces. After choosing gene features through statistical analysis, RS_SVM randomly selects feature subsets to yield random subspaces and training SVM classifiers accordingly and then aggregates SVM classifiers to capture the advantage of ensemble learning. Experiments on eight real gene expression datasets are performed to validate the RS_SVM method. Experimental results show that RS_SVM achieved better classification accuracy and generalization performance in contrast with single SVM, K-nearest neighbor, decision tree, Bagging, AdaBoost, and the state-of-the-art methods. Experiments also explored the effect of subspace size on prediction performance. Conclusions. The proposed RS_SVM method yielded superior performance in analyzing gene expression profiles, which demonstrates that RS_SVM provides a good channel for such biological data.

  4. Blood gene expression profiling of an early acetaminophen response.

    Science.gov (United States)

    Bushel, P R; Fannin, R D; Gerrish, K; Watkins, P B; Paules, R S

    2017-06-01

    Acetaminophen can adversely affect the liver especially when overdosed. We used whole blood as a surrogate to identify genes as potential early indicators of an acetaminophen-induced response. In a clinical study, healthy human subjects were dosed daily with 4 g of either acetaminophen or placebo pills for 7 days and evaluated over the course of 14 days. Alanine aminotransferase (ALT) levels for responders to acetaminophen increased between days 4 and 9 after dosing, and 12 genes were detected with expression profiles significantly altered within 24 h. The early responsive genes separated the subjects by class and dose period. In addition, the genes clustered patients who overdosed on acetaminophen apart from controls and also predicted the exposure classifications with 100% accuracy. The responsive genes serve as early indicators of an acetaminophen exposure, and their gene expression profiles can potentially be evaluated as molecular indicators for further consideration.

  5. Differential endometrial gene expression in pregnant and nonpregnant sows

    DEFF Research Database (Denmark)

    Østrup, Esben; Bauersachs, Stefan; Blum, Helmut

    2010-01-01

    obtained from the endometrium of pregnant sows and sows inseminated with inactivated semen. Analysis of the microarray data revealed 263 genes to be significantly differentially expressed between the pregnant and nonpregnant sows. Most gene ontology terms significantly enriched at pregnancy had allocated......In an attempt to unveil molecular processes controlling the porcine placentation, we have investigated the pregnancy-induced gene expression in the endometrium using the Affymetrix GeneChip Porcine Genome Array. At Day 14 after insemination, at the time of initial placentation, samples were...... more up-regulated genes than down-regulated genes. These terms included developmental process, transporter activity, calcium ion binding, apoptosis, cell motility, enzyme-linked receptor protein signaling pathway, positive regulation of cell proliferation, ion homeostasis, and hormone activity. Only...

  6. Drosophila Myc is required for normal DREF gene expression

    International Nuclear Information System (INIS)

    Dang Thi Phuong Thao; Seto, Hirokazu; Yamaguchi, Masamitsu

    2008-01-01

    The Drosophila DNA replication-related element-binding factor (dDREF) is required for the expression of many proliferation-related genes carrying the DRE sequence, 5'-TATCGATA. Finding a canonical E-box, 5'-CACGTG, in the dDREF gene promoter prompted us to explore the possibility that the dDREF gene is a target of Drosophila Myc (dMyc). Luciferase transient expression assays combined with RNA interference in Drosophila S2 cells revealed that knockdown of dmyc reduced dDREF gene promoter activity by 35% to 82%, an effect at least partly mediated by the E-box in the promoter. dm 4 /Y hemizygous mutant larvae demonstrated no maternal dMyc and severe impairment of dDREF mRNA transcription. dMyc loss of function in dm 2 /dm 2 homozygous mutant follicle cell clones also resulted in loss of anti-dDREF immunostaining in nuclei. In contrast, co-expression of dMyc-dMax up-regulated dDREF promoter activity in S2 cells. Furthermore, dMyc over-expressing clones exhibited a high level of dDREF gene expression in wing and eye discs. These results taken together indicate that dMyc is indeed required for dDREF gene expression

  7. Evaluation of suitable reference genes for gene expression studies in bovine muscular tissue

    Directory of Open Access Journals (Sweden)

    Dunner Susana

    2008-09-01

    Full Text Available Abstract Background Real-time reverse transcriptase quantitative polymerase chain reaction (real-time RTqPCR is a technique used to measure mRNA species copy number as a way to determine key genes involved in different biological processes. However, the expression level of these key genes may vary among tissues or cells not only as a consequence of differential expression but also due to different factors, including choice of reference genes to normalize the expression levels of the target genes; thus the selection of reference genes is critical for expression studies. For this purpose, ten candidate reference genes were investigated in bovine muscular tissue. Results The value of stability of ten candidate reference genes included in three groups was estimated: the so called 'classical housekeeping' genes (18S, GAPDH and ACTB, a second set of genes used in expression studies conducted on other tissues (B2M, RPII, UBC and HMBS and a third set of novel genes (SF3A1, EEF1A2 and CASC3. Three different statistical algorithms were used to rank the genes by their stability measures as produced by geNorm, NormFinder and Bestkeeper. The three methods tend to agree on the most stably expressed genes and the least in muscular tissue. EEF1A2 and HMBS followed by SF3A1, ACTB, and CASC3 can be considered as stable reference genes, and B2M, RPII, UBC and GAPDH would not be appropriate. Although the rRNA-18S stability measure seems to be within the range of acceptance, its use is not recommended because its synthesis regulation is not representative of mRNA levels. Conclusion Based on geNorm algorithm, we propose the use of three genes SF3A1, EEF1A2 and HMBS as references for normalization of real-time RTqPCR in muscle expression studies.

  8. Expression of conserved signalling pathway genes during ...

    Indian Academy of Sciences (India)

    However, though ES cells of different origins are regarded as equally pluripotent, their in vitro differentiation potential varies, suggesting that their response to developmental signals is different. The R1 cell line is widely used for gene manipulation due to its good growth characteristics and highly efficient germline ...

  9. Plant gene transfer and expression protocols

    National Research Council Canada - National Science Library

    Jones, Heddwyn

    1995-01-01

    ... proteins in plants can often lead to a better understanding of biochemical and physiological processes. Fourth, gene transfer technology has allowed the improvement of plant agricultural productivity. For example, plants have been engineered with improved viral resistance or the ability to withstand herbicide attack, therefore allowing a more eff...

  10. Aberrant Gene Expression in Acute Myeloid Leukaemia

    DEFF Research Database (Denmark)

    Bagger, Frederik Otzen

    -based gene-lookup webservices, called HemaExplorer and BloodSpot. These web-services support the aim of making data and analysis of haematopoietic cells from mouse and human accessible for researchers without bioinformatics expertise. Finally, in order to aid the analysis of the very limited number...

  11. Classification and expression analyses of homeobox genes

    Indian Academy of Sciences (India)

    We present here the first genome-wide classification and comparative genomic analysis of the 14 homeobox genes present in D. discoideum. Based on the structural alignment of the homeodomains, they ... Himanshu Mishra1 Shweta Saran1. School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India ...

  12. Molecular characterization, expression profile of the FSHR gene and ...

    Indian Academy of Sciences (India)

    JIGUO XU

    2017-06-17

    Jun 17, 2017 ... Quantitative real-time PCR (RT-qPCR) results showed that the FSHR gene was expressed in all the 14 tested tissues, and the ... and could be potential markers that can be used for marker-assisted selection programmes to increase egg production ... ancestors of protein kinase gene (B and C could also be.

  13. Research Article Gene expression profiling for coronary artery ...

    Indian Academy of Sciences (India)

    Shiridhar Kashyap

    Keywords. 19. Coronary artery disease; atherosclerosis; severity of lesion; gene expression; candidate genes; biological processes; north Indian population ..... to distinguish distinct two severities of CAD, thereby overcoming the skewed effect transition between control subjects to less severe CAD and to. 11 higher CAD.

  14. Gene ordering in partitive clustering using microarray expressions

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    the new hybrid approach, finds comparable or sometimes superior biological gene order in less computation time than those obtained by optimal leaf ordering in hierarchical clustering solution. Ray S S, Bandyopadhyay S and Pal S K 2007 Gene ordering in partitive clustering using microarray expressions; J. Biosci.

  15. Genomewide identification and expression analysis of the ARF gene ...

    Indian Academy of Sciences (India)

    Genomewide identification and expression analysis of the ARF gene family in apple. Xiao-Cui Luo, Mei-Hong Sun, Rui-Rui Xu, Huai-Rui Shu, Jia-Wei Wang and Shi-Zhong Zhang. J. Genet. 93, 785–797. Figure 1. Phylogenetic relation of apple ARF genes. The phylogenetic tree was constructed based on a complete protein ...

  16. Gene expression profiling of chicken intestinal host responses

    NARCIS (Netherlands)

    Hemert, van S.

    2007-01-01

    Chicken lines differ in genetic disease susceptibility. The scope of the research described in this thesis was to identify genes involved in genetic disease resistance in the chicken intestine. Therefore gene expression in the jejunum was investigated using a microarray approach. An intestine

  17. Different patterns of gene expression in rice varieties undergoing a ...

    African Journals Online (AJOL)

    Jane

    2011-10-24

    Oct 24, 2011 ... The rice line carrying the nonhost gene Rxo1, which was cloned from maize, exhibits a rapid hypersensitive response (HR) to Xanthomonas oryzae pv. oryzicola (Xoc). In this study, a microarray experiment was carried out to analyze the genome-wide gene expression responses to Xoc at the early stage in ...

  18. Scaling of gene expression with transcription-factor fugacity

    NARCIS (Netherlands)

    Weinert, Franz M; Brewster, Robert C; Rydenfelt, Mattias; Phillips, Rob; Kegel, Willem K

    2014-01-01

    The proteins associated with gene regulation are often shared between multiple pathways simultaneously. By way of contrast, models in regulatory biology often assume these pathways act independently. We demonstrate a framework for calculating the change in gene expression for the interacting case by

  19. Microarray analysis of adipose tissue gene expression profiles ...

    Indian Academy of Sciences (India)

    Excessive accumulation of lipids in the adipose tissue is one of the main problems faced by the broiler industry nowadays. In order to visualize the mechanisms involved in the gene expression and regulation of lipid metabolism in adipose tissue, cDNA microarray containing 9 024 cDNA was used to construct gene ...

  20. A Critical Perspective On Microarray Breast Cancer Gene Expression Profiling

    NARCIS (Netherlands)

    Sontrop, H.M.J.

    2015-01-01

    Microarrays offer biologists an exciting tool that allows the simultaneous assessment of gene expression levels for thousands of genes at once. At the time of their inception, microarrays were hailed as the new dawn in cancer biology and oncology practice with the hope that within a decade diseases

  1. Diet induced gene expression in rat peripheral blood mononuclear cells

    NARCIS (Netherlands)

    Caimari, A.; Oliver, P.; Rodenburg, W.; Keijer, Jaap; Palou, A.

    2009-01-01

    Gene expression of rat peripheral blood mononuclear cells was analyzed by microarray analysis in normoweight and in diet-induced obese rats (cafeteria rats). The aim of this study was to identify genes involved in energy homeostasis that are altered in the obese state.

  2. Importance of globin gene order for correct developmental expression.

    NARCIS (Netherlands)

    O. Hanscombe (Olivia); D. Whyatt (David); P.J. Fraser (Peter); N. Yannoutsos (Nikos); D.R. Greaves (David); N.O. Dillon (Niall); F.G. Grosveld (Frank)

    1991-01-01

    textabstractWe have used transgenic mice to study the influence of position of the human globin genes relative to the locus control region (LCR) on their expression pattern during development. The LCR, which is located 5' of the globin gene cluster, is normally required for the activation of all the

  3. Comparison of gene expression profiles in Bacillus megaterium ...

    African Journals Online (AJOL)

    Abstract. The MP agent, prepared from Bacillus megaterium isolated from the soil near tobacco fields, can improve metabolic products, and hence the aroma, of tobacco (Nicotiana tabacum) leaf. To explore genes regulating metabolic responses in tobacco leaf, we used microarrays to analyze differentially expressed genes ...

  4. Differential expressions of putative genes in various floral organs of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... Full Length Research Paper. Differential expressions of putative genes in various floral organs of the Pigeon orchid (Dendrobium crumenatum) using GeneFishing. Faridah, Q. Z.1, 2, Ng, B. Z.3, Raha, A. R.4, Umi, K. A. B.5 and Khosravi, A. R.2*. 1Department of Biology, Faculty Science, University Putra ...

  5. Identification of salt-stress induced differentially expressed genes in ...

    African Journals Online (AJOL)

    Identification of salt-stress induced differentially expressed genes in barley leaves using the annealingcontrol- primer-based GeneFishing technique. S Lee, K Lee, K Kim, GJ Choi, SH Yoon, HC Ji, S Seo, YC Lim, N Ahsan ...

  6. Genes differentially expressed in medulloblastoma and fetal brain

    NARCIS (Netherlands)

    Michiels, E. M.; Oussoren, E.; van Groenigen, M.; Pauws, E.; Bossuyt, P. M.; Voûte, P. A.; Baas, F.

    1999-01-01

    Serial analysis of gene expression (SAGE) was used to identify genes that might be involved in the development or growth of medulloblastoma, a childhood brain tumor. Sequence tags from medulloblastoma (10229) and fetal brain (10692) were determined. The distributions of sequence tags in each

  7. Different patterns of gene expression in rice varieties undergoing a ...

    African Journals Online (AJOL)

    Different patterns of gene expression in rice varieties undergoing a resistant or susceptible interaction with the bacterial leaf streak pathogen. ... rice line and its wild type were distinctly different: 92.00% of the DRGs were up-regulated in inoculated 9804-Rxo1 and 48.22% of the DRGs were sorted as defense-related genes.

  8. Evaluation of Appropriate Reference Genes for Gene Expression Normalization during Watermelon Fruit Development.

    Directory of Open Access Journals (Sweden)

    Qiusheng Kong

    Full Text Available Gene expression analysis in watermelon (Citrullus lanatus fruit has drawn considerable attention with the availability of genome sequences to understand the regulatory mechanism of fruit development and to improve its quality. Real-time quantitative reverse-transcription PCR (qRT-PCR is a routine technique for gene expression analysis. However, appropriate reference genes for transcript normalization in watermelon fruits have not been well characterized. The aim of this study was to evaluate the appropriateness of 12 genes for their potential use as reference genes in watermelon fruits. Expression variations of these genes were measured in 48 samples obtained from 12 successive developmental stages of parthenocarpic and fertilized fruits of two watermelon genotypes by using qRT-PCR analysis. Considering the effects of genotype, fruit setting method, and developmental stage, geNorm determined clathrin adaptor complex subunit (ClCAC, β-actin (ClACT, and alpha tubulin 5 (ClTUA5 as the multiple reference genes in watermelon fruit. Furthermore, ClCAC alone or together with SAND family protein (ClSAND was ranked as the single or two best reference genes by NormFinder. By using the top-ranked reference genes to normalize the transcript abundance of phytoene synthase (ClPSY1, a good correlation between lycopene accumulation and ClPSY1 expression pattern was observed in ripening watermelon fruit. These validated reference genes will facilitate the accurate measurement of gene expression in the studies on watermelon fruit biology.

  9. Evaluation of Appropriate Reference Genes for Gene Expression Normalization during Watermelon Fruit Development.

    Science.gov (United States)

    Kong, Qiusheng; Yuan, Jingxian; Gao, Lingyun; Zhao, Liqiang; Cheng, Fei; Huang, Yuan; Bie, Zhilong

    2015-01-01

    Gene expression analysis in watermelon (Citrullus lanatus) fruit has drawn considerable attention with the availability of genome sequences to understand the regulatory mechanism of fruit development and to improve its quality. Real-time quantitative reverse-transcription PCR (qRT-PCR) is a routine technique for gene expression analysis. However, appropriate reference genes for transcript normalization in watermelon fruits have not been well characterized. The aim of this study was to evaluate the appropriateness of 12 genes for their potential use as reference genes in watermelon fruits. Expression variations of these genes were measured in 48 samples obtained from 12 successive developmental stages of parthenocarpic and fertilized fruits of two watermelon genotypes by using qRT-PCR analysis. Considering the effects of genotype, fruit setting method, and developmental stage, geNorm determined clathrin adaptor complex subunit (ClCAC), β-actin (ClACT), and alpha tubulin 5 (ClTUA5) as the multiple reference genes in watermelon fruit. Furthermore, ClCAC alone or together with SAND family protein (ClSAND) was ranked as the single or two best reference genes by NormFinder. By using the top-ranked reference genes to normalize the transcript abundance of phytoene synthase (ClPSY1), a good correlation between lycopene accumulation and ClPSY1 expression pattern was observed in ripening watermelon fruit. These validated reference genes will facilitate the accurate measurement of gene expression in the studies on watermelon fruit biology.

  10. Probabilistic estimation of microarray data reliability and underlying gene expression

    Directory of Open Access Journals (Sweden)

    Sigvardsson Mikael

    2003-09-01

    Full Text Available Abstract Background The availability of high throughput methods for measurement of mRNA concentrations makes the reliability of conclusions drawn from the data and global quality control of samples and hybridization important issues. We address these issues by an information theoretic approach, applied to discretized expression values in replicated gene expression data. Results Our approach yields a quantitative measure of two important parameter classes: First, the probability P(σ|S that a gene is in the biological state σ in a certain variety, given its observed expression S in the samples of that variety. Second, sample specific error probabilities which serve as consistency indicators of the measured samples of each variety. The method and its limitations are tested on gene expression data for developing murine B-cells and a t-test is used as reference. On a set of known genes it performs better than the t-test despite the crude discretization into only two expression levels. The consistency indicators, i.e. the error probabilities, correlate well with variations in the biological material and thus prove efficient. Conclusions The proposed method is effective in determining differential gene expression and sample reliability in replicated microarray data. Already at two discrete expression levels in each sample, it gives a good explanation of the data and is comparable to standard techniques.

  11. Norepinephrine transport-mediated gene expression in noradrenergic neurogenesis.

    Science.gov (United States)

    Hu, Yao Fei; Caron, Marc G; Sieber-Blum, Maya

    2009-04-08

    We have identified a differential gene expression profile in neural crest stem cells that is due to deletion of the norepinephrine transporter (NET) gene. NET is the target of psychotropic substances, such as tricyclic antidepressants and the drug of abuse, cocaine. NET mutations have been implicated in depression, anxiety, orthostatic intolerance and attention deficit hyperactivity disorder (ADHD). NET function in adult noradrenergic neurons of the peripheral and central nervous systems is to internalize norepinephrine from the synaptic cleft. By contrast, during embryogenesis norepinephrine (NE) transport promotes differentiation of neural crest stem cells and locus ceruleus progenitors into noradrenergic neurons, whereas NET inhibitors block noradrenergic differentiation. While the structure of NET und the regulation of NET function are well described, little is known about downstream target genes of norepinephrine (NE) transport. We have prepared gene expression profiles of in vitro differentiating wild type and norepinephrine transporter-deficient (NETKO) mouse neural crest cells using long serial analysis of gene expression (LongSAGE). Comparison analyses have identified a number of important differentially expressed genes, including genes relevant to neural crest formation, noradrenergic neuron differentiation and the phenotype of NETKO mice. Examples of differentially expressed genes that affect noradrenergic cell differentiation include genes in the bone morphogenetic protein (BMP) signaling pathway, the Phox2b binding partner Tlx2, the ubiquitin ligase Praja2, and the inhibitor of Notch signaling, Numbl. Differentially expressed genes that are likely to contribute to the NETKO phenotype include dopamine-beta-hydroxylase (Dbh), tyrosine hydroxylase (Th), the peptide transmitter 'cocaine and amphetamine regulated transcript' (Cart), and the serotonin receptor subunit Htr3a. Real-time PCR confirmed differential expression of key genes not only in neural

  12. Norepinephrine transport-mediated gene expression in noradrenergic neurogenesis

    Directory of Open Access Journals (Sweden)

    Sieber-Blum Maya

    2009-04-01

    Full Text Available Abstract Background We have identified a differential gene expression profile in neural crest stem cells that is due to deletion of the norepinephrine transporter (NET gene. NET is the target of psychotropic substances, such as tricyclic antidepressants and the drug of abuse, cocaine. NET mutations have been implicated in depression, anxiety, orthostatic intolerance and attention deficit hyperactivity disorder (ADHD. NET function in adult noradrenergic neurons of the peripheral and central nervous systems is to internalize norepinephrine from the synaptic cleft. By contrast, during embryogenesis norepinephrine (NE transport promotes differentiation of neural crest stem cells and locus ceruleus progenitors into noradrenergic neurons, whereas NET inhibitors block noradrenergic differentiation. While the structure of NET und the regulation of NET function are well described, little is known about downstream target genes of norepinephrine (NE transport. Results We have prepared gene expression profiles of in vitro differentiating wild type and norepinephrine transporter-deficient (NETKO mouse neural crest cells using long serial analysis of gene expression (LongSAGE. Comparison analyses have identified a number of important differentially expressed genes, including genes relevant to neural crest formation, noradrenergic neuron differentiation and the phenotype of NETKO mice. Examples of differentially expressed genes that affect noradrenergic cell differentiation include genes in the bone morphogenetic protein (BMP signaling pathway, the Phox2b binding partner Tlx2, the ubiquitin ligase Praja2, and the inhibitor of Notch signaling, Numbl. Differentially expressed genes that are likely to contribute to the NETKO phenotype include dopamine-β-hydroxylase (Dbh, tyrosine hydroxylase (Th, the peptide transmitter 'cocaine and amphetamine regulated transcript' (Cart, and the serotonin receptor subunit Htr3a. Real-time PCR confirmed differential expression

  13. Gene expression of the mismatch repair gene MSH2 in primary colorectal cancer

    DEFF Research Database (Denmark)

    Jensen, Lars Henrik; Kuramochi, Hidekazu; Crüger, Dorthe Gylling

    2011-01-01

    Microsatellite instability (MSI) is caused by defective mismatch repair (MMR) and is one of the very few molecular markers with proven clinical importance in colorectal cancer with respect to heredity, prognosis, and treatment effect. The gene expression of the MMR gene MSH2 may be a quantitative...... marker for the level of MMR and a potential molecular marker with clinical relevance. The aim was to investigate the gene expression of MSH2 in primary operable colorectal cancer in correlation with MSI, protein expression, and promoter hypermethylation. In a cohort of 210 patients, the primary tumor...... and lymphnode metastases were analyzed with immunohistochemistry, methylation and MSI analyses, and quantitative polymerase chain reaction (PCR). The median gene expression of MSH2 was 1.00 (range 0.16-11.2, quartiles 0.70-1.51) and there was good agreement between the gene expression in primary tumor and lymph...

  14. The Medicago truncatula gene expression atlas web server

    Directory of Open Access Journals (Sweden)

    Tang Yuhong

    2009-12-01

    Full Text Available Abstract Background Legumes (Leguminosae or Fabaceae play a major role in agriculture. Transcriptomics studies in the model legume species, Medicago truncatula, are instrumental in helping to formulate hypotheses about the role of legume genes. With the rapid growth of publically available Affymetrix GeneChip Medicago Genome Array GeneChip data from a great range of tissues, cell types, growth conditions, and stress treatments, the legume research community desires an effective bioinformatics system to aid efforts to interpret the Medicago genome through functional genomics. We developed the Medicago truncatula Gene Expression Atlas (MtGEA web server for this purpose. Description The Medicago truncatula Gene Expression Atlas (MtGEA web server is a centralized platform for analyzing the Medicago transcriptome. Currently, the web server hosts gene expression data from 156 Affymetrix GeneChip® Medicago genome arrays in 64 different experiments, covering a broad range of developmental and environmental conditions. The server enables flexible, multifaceted analyses of transcript data and provides a range of additional information about genes, including different types of annotation and links to the genome sequence, which help users formulate hypotheses about gene function. Transcript data can be accessed using Affymetrix probe identification number, DNA sequence, gene name, functional description in natural language, GO and KEGG annotation terms, and InterPro domain number. Transcripts can also be discovered through co-expression or differential expression analysis. Flexible tools to select a subset of experiments and to visualize and compare expression profiles of multiple genes have been implemented. Data can be downloaded, in part or full, in a tabular form compatible with common analytical and visualization software. The web server will be updated on a regular basis to incorporate new gene expression data and genome annotation, and is accessible

  15. Analysis of gene expression during neurite outgrowth and regeneration

    Directory of Open Access Journals (Sweden)

    Tai Yu

    2007-11-01

    Full Text Available Abstract Background The ability of a neuron to regenerate functional connections after injury is influenced by both its intrinsic state and also by extrinsic cues in its surroundings. Investigations of the transcriptional changes undergone by neurons during in vivo models of injury and regeneration have revealed many transcripts associated with these processes. Because of the complex milieu of interactions in vivo, these results include not only expression changes directly related to regenerative outgrowth and but also unrelated responses to surrounding cells and signals. In vitro models of neurite outgrowth provide a means to study the intrinsic transcriptional patterns of neurite outgrowth in the absence of extensive extrinsic cues from nearby cells and tissues. Results We have undertaken a genome-wide study of transcriptional activity in embryonic superior cervical ganglia (SCG and dorsal root ganglia (DRG during a time course of neurite outgrowth in vitro. Gene expression observed in these models likely includes both developmental gene expression patterns and regenerative responses to axotomy, which occurs as the result of tissue dissection. Comparison across both models revealed many genes with similar gene expression patterns during neurite outgrowth. These patterns were minimally affected by exposure to the potent inhibitory cue Semaphorin3A, indicating that this extrinsic cue does not exert major effects at the level of nuclear transcription. We also compared our data to several published studies of DRG and SCG gene expression in animal models of regeneration, and found the expression of a large number of genes in common between neurite outgrowth in vitro and regeneration in vivo. Conclusion Many gene expression changes undergone by SCG and DRG during in vitro outgrowth are shared between these two tissue types and in common with in vivo regeneration models. This suggests that the genes identified in this in vitro study may represent new

  16. Expression of T4 Lysozyme Gene (gene e) in Streptococcus ...

    African Journals Online (AJOL)

    GREGO

    2007-04-16

    Apr 16, 2007 ... cloning and inserting Streptococcal replication origin of pTRW10 vector into pL1. pL2 plasmid isolated from E. coli was introduced into S. salivarius subsp. thermophilus and Lactococcus lactis cells by electro-transformation. The lysozyme enzymes expressing by these bacteria were found to be active on.

  17. Expression of T4 Lysozyme Gene (gene e) in Streptococcus ...

    African Journals Online (AJOL)

    pL2 plasmid isolated from E. coli was introduced into S. salivarius subsp. thermophilus and Lactococcus lactis cells by electro-transformation. The lysozyme enzymes expressing by these bacteria were found to be active on Micrococcus luteus cells and thereby preventing their growth on assay plates. Thermostability of ...

  18. pH but not hypoxia affects neonatal gene expression: relevance for housekeeping gene selection.

    Science.gov (United States)

    Maron, Jill L; Arya, Michelle A; Seefeld, Kimberly J; Peter, Inga; Bianchi, Diana W; Johnson, Kirby L

    2008-07-01

    To identify a candidate neonatal housekeeping gene and to determine the effects of pH and PaO(2) on the stability of newborn gene expression in physiologically hypoxic and acidotic newborn blood. Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) amplification was performed for four commonly used housekeeping genes (GAPDH, beta-actin, cyclophilin, 28S rRNA) on extracted RNA. Blood gas analyses determined pH and PaO(2) levels. Beta-Actin was the least variable and GAPDH the most variable housekeeping gene studied. pH negatively correlated with gene expression levels. PaO(2) levels did not significantly affect gene expression. These results inform selection of housekeeping genes for neonatal mRNA research.

  19. Relative expression of genes related with cold tolerance in ...

    African Journals Online (AJOL)

    Low temperature is one of the main abiotic stresses affecting rice yield in Chile. Alterations in phenology and physiology of the crop are observed after a cold event. The objective of this work was to study the relative expression of genes related with cold stress in Chilean cultivars of rice. For this, we analyzed the expression ...

  20. Gene-expression Classifier in Papillary Thyroid Carcinoma

    DEFF Research Database (Denmark)

    Londero, Stefano Christian; Jespersen, Marie Louise; Krogdahl, Annelise

    2016-01-01

    BACKGROUND: No reliable biomarker for metastatic potential in the risk stratification of papillary thyroid carcinoma exists. We aimed to develop a gene-expression classifier for metastatic potential. MATERIALS AND METHODS: Genome-wide expression analyses were used. Development cohort: freshly...

  1. Ferritin reporter used for gene expression imaging by magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Kenji; Fuma, Kazuya; Tabata, Kaori [Department of Brain Functions, Division of Stress Adaptation and Protection, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi 464-8601 (Japan); Sawada, Makoto, E-mail: msawada@riem.nagoya-u.ac.jp [Department of Brain Functions, Division of Stress Adaptation and Protection, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi 464-8601 (Japan)

    2009-10-23

    Magnetic resonance imaging (MRI) is a minimally invasive way to provide high spatial resolution tomograms. However, MRI has been considered to be useless for gene expression imaging compared to optical imaging. In this study, we used a ferritin reporter, binding with biogenic iron, to make it a powerful tool for gene expression imaging in MRI studies. GL261 mouse glioma cells were over-expressed with dual-reporter ferritin-DsRed under {beta}-actin promoter, then gene expression was observed by optical imaging and MRI in a brain tumor model. GL261 cells expressing ferritin-DsRed fusion protein showed enhanced visualizing effect by reducing T2-weighted signal intensity for in vitro and in vivo MRI studies, as well as DsRed fluorescence for optical imaging. Furthermore, a higher contrast was achieved on T2-weighted images when permeating the plasma membrane of ferritin-DsRed-expressing GL261. Thus, a ferritin expression vector can be used as an MRI reporter to monitor in vivo gene expression.

  2. VESPUCCI: exploring patterns of gene expression in grapevine

    Directory of Open Access Journals (Sweden)

    Marco eMoretto

    2016-05-01

    Full Text Available Large-scale transcriptional studies aim to decipher the dynamic cellular responses to a stimulus, like different environmental conditions. In the era of high-throughput omics biology, the most used technologies for these purposes are microarray and RNA-Seq, whose data are usually required to be deposited in public repositories upon publication. Such repositories have the enormous potential to provide a comprehensive view of how different experimental conditions lead to expression changes, by comparing gene expression across all possible measured conditions. Unfortunately, this task is greatly impaired by differences among experimental platforms that make direct comparisons difficult.In this paper we present the Vitis Expression Studies Platform Using COLOMBOS Compendia Instances (VESPUCCI, a gene expression compendium for grapevine which was built by adapting an approach originally developed for bacteria, and show how it can be used to investigate complex gene expression patterns. We integrated nearly all publicly available microarray and RNA-Seq expression data: 1608 gene expression samples from 10 different technological platforms. Each sample has been manually annotated using a controlled vocabulary developed ad hoc to ensure both human readability and computational tractability. Expression data in the compendium can be visually explored using several tools provided by the web interface or can be programmatically accessed using the REST interface. VESPUCCI is freely accessible at http://vespucci.colombos.fmach.it.

  3. Subcloning and expression of human alpha-fetoprotein gene in ...

    African Journals Online (AJOL)

    Subcloning and expression of human alpha-fetoprotein gene in Pichia pastoris. ... in inducing protein production in auxotrophic media lacking histidine. This protein could be useful in monoclonal antibody production and in diagnostic kit preparations. Keywords: Alpha-fetoprotein, Pichia pastoris, cloning, expression ...

  4. Genetic effects on gene expression across human tissues

    NARCIS (Netherlands)

    Battle, Alexis; Brown, Christopher D.; Engelhardt, Barbara E.; Montgomery, Stephen B.; Aguet, François; Ardlie, Kristin G.; Cummings, Beryl B.; Gelfand, Ellen T.; Getz, Gad; Hadley, Kane; Handsaker, Robert E.; Huang, Katherine H.; Kashin, Seva; Karczewski, Konrad J.; Lek, Monkol; Li, Xiao; MacArthur, Daniel G.; Nedzel, Jared L.; Nguyen, Duyen T.; Noble, Michael S.; Segrè, Ayellet V.; Trowbridge, Casandra A.; Tukiainen, Taru; Abell, Nathan S.; Balliu, Brunilda; Barshir, Ruth; Basha, Omer; Bogu, Gireesh K.; Brown, Andrew; Castel, Stephane E.; Chen, Lin S.; Chiang, Colby; Conrad, Donald F.; Cox, Nancy J.; Damani, Farhan N.; Davis, Joe R.; Delaneau, Olivier; Dermitzakis, Emmanouil T.; Eskin, Eleazar; Ferreira, Pedro G.; Frésard, Laure; Gamazon, Eric R.; Garrido-Martín, Diego; Gewirtz, Ariel D. H.; Gliner, Genna; Gloudemans, Michael J.; Guigo, Roderic; Hall, Ira M.; Han, Buhm; He, Yuan; Hormozdiari, Farhad; Howald, Cedric; Kyung Im, Hae; Jo, Brian; Yong Kang, Eun; Kim, Yungil; Kim-Hellmuth, Sarah; Lappalainen, Tuuli; Li, Gen; Li, Xin; Liu, Boxiang; Mangul, Serghei; McCarthy, Mark I.; McDowell, Ian C.; Mohammadi, Pejman; Monlong, Jean; Muñoz-Aguirre, Manuel; Ndungu, Anne W.; Nicolae, Dan L.; Nobel, Andrew B.; Oliva, Meritxell; Ongen, Halit; Palowitch, John J.; Panousis, Nikolaos; Papasaikas, Panagiotis; Park, Yoson; Parsana, Princy; Payne, Anthony J.; Peterson, Christine B.; Quan, Jie; Reverter, Ferran; Sabatti, Chiara; Saha, Ashis; Sammeth, Michael; Scott, Alexandra J.; Shabalin, Andrey A.; Sodaei, Reza; Stephens, Matthew; Stranger, Barbara E.; Strober, Benjamin J.; Sul, Jae Hoon; Tsang, Emily K.; Urbut, Sarah; van de Bunt, Martijn; Wang, Gao; Wen, Xiaoquan; Wright, Fred A.; Xi, Hualin S.; Yeger-Lotem, Esti; Zappala, Zachary; Zaugg, Judith B.; Zhou, Yi-Hui; Akey, Joshua M.; Bates, Daniel; Chan, Joanne; Claussnitzer, Melina; Demanelis, Kathryn; Diegel, Morgan; Doherty, Jennifer A.; Feinberg, Andrew P.; Fernando, Marian S.; Halow, Jessica; Hansen, Kasper D.; Haugen, Eric; Hickey, Peter F.; Hou, Lei; Jasmine, Farzana; Jian, Ruiqi; Jiang, Lihua; Johnson, Audra; Kaul, Rajinder; Kellis, Manolis; Kibriya, Muhammad G.; Lee, Kristen; Billy Li, Jin; Li, Qin; Lin, Jessica; Lin, Shin; Linder, Sandra; Linke, Caroline; Liu, Yaping; Maurano, Matthew T.; Molinie, Benoit; Nelson, Jemma; Neri, Fidencio J.; Park, Yongjin; Pierce, Brandon L.; Rinaldi, Nicola J.; Rizzardi, Lindsay F.; Sandstrom, Richard; Skol, Andrew; Smith, Kevin S.; Snyder, Michael P.; Stamatoyannopoulos, John; Tang, Hua; Wang, Li; Wang, Meng; van Wittenberghe, Nicholas; Wu, Fan; Zhang, Rui; Nierras, Concepcion R.; Branton, Philip A.; Carithers, Latarsha J.; Guan, Ping; Moore, Helen M.; Rao, Abhi; Vaught, Jimmie B.; Gould, Sarah E.; Lockart, Nicole C.; Martin, Casey; Struewing, Jeffery P.; Volpi, Simona; Addington, Anjene M.; Koester, Susan E.; Little, A. Roger; Brigham, Lori E.; Hasz, Richard; Hunter, Marcus; Johns, Christopher; Johnson, Mark; Kopen, Gene; Leinweber, William F.; Lonsdale, John T.; McDonald, Alisa; Mestichelli, Bernadette; Myer, Kevin; Roe, Brian; Salvatore, Michael; Shad, Saboor; Thomas, Jeffrey A.; Walters, Gary; Washington, Michael; Wheeler, Joseph; Bridge, Jason; Foster, Barbara A.; Gillard, Bryan M.; Karasik, Ellen; Kumar, Rachna; Miklos, Mark; Moser, Michael T.; Jewell, Scott D.; Montroy, Robert G.; Rohrer, Daniel C.; Valley, Dana R.; Davis, David A.; Mash, Deborah C.; Undale, Anita H.; Smith, Anna M.; Tabor, David E.; Roche, Nancy V.; McLean, Jeffrey A.; Vatanian, Negin; Robinson, Karna L.; Sobin, Leslie; Barcus, Mary E.; Valentino, Kimberly M.; Qi, Liqun; Hunter, Steven; Hariharan, Pushpa; Singh, Shilpi; Um, Ki Sung; Matose, Takunda; Tomaszewski, Maria M.; Barker, Laura K.; Mosavel, Maghboeba; Siminoff, Laura A.; Traino, Heather M.; Flicek, Paul; Juettemann, Thomas; Ruffier, Magali; Sheppard, Dan; Taylor, Kieron; Trevanion, Stephen J.; Zerbino, Daniel R.; Craft, Brian; Goldman, Mary; Haeussler, Maximilian; Kent, W. James; Lee, Christopher M.; Paten, Benedict; Rosenbloom, Kate R.; Vivian, John; Zhu, Jingchun; Brown, Andrew A.; Nguyen, Duyen Y.; Sullivan, Timothy J.; Addington, Anjene; Koester, Susan; Lockhart, Nicole C.; Roe, Bryan; Valley, Dana; He, Amy Z.; Kang, Eun Yong; Quon, Gerald; Ripke, Stephan; Shimko, Tyler C.; Teran, Nicole A.; Zhang, Hailei; Bustamante, Carlos D.; Guigó, Roderic

    2017-01-01

    Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression

  5. Comparison of gene expression patterns between porcine cumulus ...

    African Journals Online (AJOL)

    These results suggest that the aberrant of gene expression patterns detected in the oocytes of NOs compared with COCs explains their reduced quality in terms of development and maturation. In conclusion, these differentially expressed mRNAs may be involved in cellular interactions between oocytes and cumulus cells ...

  6. Expression of bgt gene in transgenic birch (Betula platyphylla Suk ...

    African Journals Online (AJOL)

    Study on the characteristics of integration and expression is the basis of genetic stability of foreign genes in transgenic trees. To obtain insight into the relationship of transgene copy number and expression level, we screened 22 transgenic birch lines. Southern blot analysis of the transgenic birch plants indicated that the ...

  7. A fuzzy network module extraction technique for gene expression data

    Indian Academy of Sciences (India)

    2014-05-01

    May 1, 2014 ... tion. Therefore, in this study, the structural properties of the co-expression network inferred from gene expression microarray data were compared with the topological prop- erties of the known, well-established network data of the same organism. We use a Web application called. topoGSA (Glaab et al.

  8. Expression of bgt gene in transgenic birch (Betula platyphylla Suk.)

    African Journals Online (AJOL)

    STORAGESEVER

    2009-08-04

    Aug 4, 2009 ... Study on the characteristics of integration and expression is the basis of genetic stability of foreign genes in transgenic trees. To obtain insight into the relationship of transgene copy number and expression level, we screened 22 transgenic birch lines. Southern blot analysis of the transgenic birch.

  9. Induction of gene expression in bacteria at optimal growth temperatures.

    Science.gov (United States)

    Jiang, Xinglin; Zhang, Haibo; Yang, Jianming; Liu, Min; Feng, Hongru; Liu, Xiaobin; Cao, Yujin; Feng, Dexin; Xian, Mo

    2013-06-01

    Traditional temperature-sensitive systems use either heat shock (40-42 °C) or cold shock (15-23 °C) to induce gene expression at temperatures that are not the optimal temperature for host cell growth (37 °C). This impacts the overall productivity and yield by disturbing cell growth and cellular metabolism. Here, we have developed a new system which controls gene expression in Escherichia coli at more permissive temperatures. The temperature-sensitive cI857-P L system and the classic lacI-P lacO system were connected in series to control the gene of interest. When the culture temperature was lowered, the thermolabile cI857 repressor was activated and blocked the expression of lacI from P L. Subsequently, the decrease of LacI derepressed the expression of gene of interest from P lacO . Using a green fluorescent protein marker, we demonstrated that (1) gene expression was tightly regulated at 42 °C and strongly induced by lowering temperature to 25-37 °C; (2) different levels of gene expression can be induced by varying culture temperature; and (3) gene expression after induction was sustained until the end of the log phase. We then applied this system in the biosynthesis of acetoin and demonstrated that high yield and production could be achieved using temperature induction. The ability to express proteins at optimal growth temperatures without chemical inducers is advantageous for large-scale and industrial fermentations.

  10. Cytokine gene expression of peripheral blood lymphocytes ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-03-20

    Mar 20, 2009 ... Key words: Lipopolysaccharide, lymphocytes, TLRs, cytokines. INTRODUCTION. Lipopolysaccharide (LPS), a predominant glycolipid in the outer membranes of Gam-negative bacteria, stimulates monocyte, macrophages, and neutrophils and increase expression of cell adhesion molecules (Trent et al., ...

  11. Novel gene expression tools for rice biotechnology

    Science.gov (United States)

    Biotechnology is an effective and important method of improving both quality and agronomic traits in rice. We are developing novel molecular tools for genetic engineering, with a focus on developing novel transgene expression control elements (i.e. promoters) for rice. A suite of monocot grass promo...

  12. Gene Expression in the Human Endolymphatic Sac

    DEFF Research Database (Denmark)

    Møller, Martin Nue; Kirkeby, Svend; Vikeså, Jonas

    2015-01-01

    a1 sodium-bicarbonate transporter, SLC9a2 sodium-hydrogen transporter, SLC12a3 thiazide-sensitive Na-Cl transporter, and SLC34a2 sodium-phosphate transporter. CONCLUSIONS: Several important ion transporters of the SLC family are expressed in the human endolymphatic sac, including Pendrin...

  13. Real-time PCR gene expression profiling

    Czech Academy of Sciences Publication Activity Database

    Kubista, Mikael; Sjögreen, B.; Forootan, A.; Šindelka, Radek; Jonák, Jiří; Andrade, J.M.

    2007-01-01

    Roč. 1, - (2007), s. 56-60 ISSN 1360-8606 R&D Projects: GA AV ČR KJB500520601 Institutional research plan: CEZ:AV0Z50520514 Keywords : real - time PCR, * expression profiling * statistical analysis Subject RIV: EB - Genetics ; Molecular Biology

  14. Cytokine gene expression of peripheral blood lymphocytes ...

    African Journals Online (AJOL)

    Lipopolysaccharide (LPS) is a predominant glycolipid in the outer membranes of gam-negative bacteria that stimulates monocytes, macrophages, and neutrophils to produce cytokines. The aim was to study the expression profile of TLRs and cytokines and determine the role of LPS in the peripheral blood lymphocytes.

  15. 4 gene expression in hepatocellular carcinoma (HCC)

    African Journals Online (AJOL)

    Gamalat El Gedawy

    2016-06-06

    Jun 6, 2016 ... showed that overexpression of miRNA-21 was associated with advanced clinical stage and lymph node metastasis in breast cancer, colorectal cancer, laryngeal squamous cell carcinoma and HCC respectively. Furthermore, they indicated that patients with high miRNA-21 expression had poor prognosis.

  16. Patterns of expression of cell wall related genes in sugarcane

    Directory of Open Access Journals (Sweden)

    Lima D.U.

    2001-01-01

    Full Text Available Our search for genes related to cell wall metabolism in the sugarcane expressed sequence tag (SUCEST database (http://sucest.lbi.dcc.unicamp.br resulted in 3,283 reads (1% of the total reads which were grouped into 459 clusters (potential genes with an average of 7.1 reads per cluster. To more clearly display our correlation coefficients, we constructed surface maps which we used to investigate the relationship between cell wall genes and the sugarcane tissues libraries from which they came. The only significant correlations that we found between cell wall genes and/or their expression within particular libraries were neutral or synergetic. Genes related to cellulose biosynthesis were from the CesA family, and were found to be the most abundant cell wall related genes in the SUCEST database. We found that the highest number of CesA reads came from the root and stem libraries. The genes with the greatest number of reads were those involved in cell wall hydrolases (e.g. beta-1,3-glucanases, xyloglucan endo-beta-transglycosylase, beta-glucosidase and endo-beta-mannanase. Correlation analyses by surface mapping revealed that the expression of genes related to biosynthesis seems to be associated with the hydrolysis of hemicelluloses, pectin hydrolases being mainly associated with xyloglucan hydrolases. The patterns of cell wall related gene expression in sugarcane based on the number of reads per cluster reflected quite well the expected physiological characteristics of the tissues. This is the first work to provide a general view on plant cell wall metabolism through the expression of related genes in almost all the tissues of a plant at the same time. For example, developing flowers behaved similarly to both meristematic tissues and leaf-root transition zone tissues. Besides providing a basis for future research on the mechanisms of plant development which involve the cell wall, our findings will provide valuable tools for plant engineering in the

  17. Repressor-mediated tissue-specific gene expression in plants

    Science.gov (United States)

    Meagher, Richard B [Athens, GA; Balish, Rebecca S [Oxford, OH; Tehryung, Kim [Athens, GA; McKinney, Elizabeth C [Athens, GA

    2009-02-17

    Plant tissue specific gene expression by way of repressor-operator complexes, has enabled outcomes including, without limitation, male sterility and engineered plants having root-specific gene expression of relevant proteins to clean environmental pollutants from soil and water. A mercury hyperaccumulation strategy requires that mercuric ion reductase coding sequence is strongly expressed. The actin promoter vector, A2pot, engineered to contain bacterial lac operator sequences, directed strong expression in all plant vegetative organs and tissues. In contrast, the expression from the A2pot construct was restricted primarily to root tissues when a modified bacterial repressor (LacIn) was coexpressed from the light-regulated rubisco small subunit promoter in above-ground tissues. Also provided are analogous repressor operator complexes for selective expression in other plant tissues, for example, to produce male sterile plants.

  18. Delivery of gene-expressing fragments using quantum dot

    Science.gov (United States)

    Hoshino, Akiyoshi; Manabe, Noriyoshi; Hanada, Sanshiro; Fujioka, Kouki; Yasuhara, Masato; Kondo, Akihiko; Yamamoto, Kenji

    2009-02-01

    Gene therapy is an attractive approach to supplement a deficient gene function. Although there has been some success with specific gene delivery using various methods including viral vectors and liposomes, most of these methods have a limited efficiency or also carry a risk for oncogenesis. Fluorescent nanoparticles, such as nanocrystal quantum dots (QDs), have potential to be applied to molecular biology and bioimaging, since some nanocrystals emit higher and longer lasting fluorescence than conventional organic probes do. We herein report that quantum dots (QDs) conjugated with nuclear localizing signal peptides (NLSP) successfully introduced the gene-fragments with promoter elements, which promoted the expression of the enhanced green fluorescent protein (eGFP) gene in mammalian cells. The expression of eGFP protein was observed when the QD/geneconstruct was added to the culture media. The gene-expression efficiency varied depending on multiple factors around QDs, such as 1) the reading direction of gene fragments, 2) the quantity of gene fragments attached on the surface of QD-constructs, 3) the surface electronic charges varied according to the structure of QD/gene-constructs, and 4) the particle size of QD/gene complex varied according to the structure and amounts of gene fragments. Using this QD/geneconstruct system, eGFP protein could be detected 28 days after the gene-introduction whereas the fluorescence of QDs was disappeared. This system therefore provides another method for the intracellular delivery of gene-fragments without using either viral vectors or specific liposomes. These results suggest that inappropriate treatment and disposal of QDs may still have risks to the environmental pollution including human health under certain conditions. Here we propose the further research for the immune and physiological responses in not only immune cells but also other cells, in order to clear the effect of all other nanoscale products as well as nanocrystal

  19. Conditional gene expression in the mouse using a Sleeping Beauty gene-trap transposon

    Directory of Open Access Journals (Sweden)

    Hackett Perry B

    2006-06-01

    Full Text Available Abstract Background Insertional mutagenesis techniques with transposable elements have been popular among geneticists studying model organisms from E. coli to Drosophila and, more recently, the mouse. One such element is the Sleeping Beauty (SB transposon that has been shown in several studies to be an effective insertional mutagen in the mouse germline. SB transposon vector studies have employed different functional elements and reporter molecules to disrupt and report the expression of endogenous mouse genes. We sought to generate a transposon system that would be capable of reporting the expression pattern of a mouse gene while allowing for conditional expression of a gene of interest in a tissue- or temporal-specific pattern. Results Here we report the systematic development and testing of a transposon-based gene-trap system incorporating the doxycycline-repressible Tet-Off (tTA system that is capable of activating the expression of genes under control of a Tet response element (TRE promoter. We demonstrate that the gene trap system is fully functional in vitro by introducing the "gene-trap tTA" vector into human cells by transposition and identifying clones that activate expression of a TRE-luciferase transgene in a doxycycline-dependent manner. In transgenic mice, we mobilize gene-trap tTA vectors, discover parameters that can affect germline mobilization rates, and identify candidate gene insertions to demonstrate the in vivo functionality of the vector system. We further demonstrate that the gene-trap can act as a reporter of endogenous gene expression and it can be coupled with bioluminescent imaging to identify genes with tissue-specific expression patterns. Conclusion Akin to the GAL4/UAS system used in the fly, we have made progress developing a tool for mutating and revealing the expression of mouse genes by generating the tTA transactivator in the presence of a secondary TRE-regulated reporter molecule. A vector like the gene

  20. URG4/URGCP enhances the angiogenic capacity of human hepatocellular carcinoma cells in vitro via activation of the NF-κB signaling pathway

    International Nuclear Information System (INIS)

    Xing, Sizhong; Zhang, Bing; Hua, Ruixi; Tai, William Chi-shing; Zeng, Zhirong; Xie, Binhui; Huang, Chenghui; Xue, Jisu; Xiong, Shiqiu; Yang, Jianyong; Liu, Side; Li, Heping

    2015-01-01

    Angiogenesis is essential for tumor growth. Hepatocellular carcinoma (HCC) is characterized by hypervascularity; high levels of angiogenesis are associated with poor prognosis and a highly invasive phenotype in HCC. Up-regulated gene-4 (URG4), also known as upregulator of cell proliferation (URGCP), is overexpressed in multiple tumor types and has been suggested to act as an oncogene. This study aimed to elucidate the effect of URG4/URGCP on the angiogenic capacity of HCC cells in vitro. Expression of URG4/URGCP in HCC cell lines and normal liver epithelial cell lines was examined by Western blotting and quantitative real-time PCR. URG4/URGCP was stably overexpressed or transiently knocked down using a shRNA in two HCC cell lines. The human umbilical vein endothelial cell (HUVEC) tubule formation and Transwell migration assays and chicken chorioallantoic membrane (CAM) assay were used to examine the angiogenic capacity of conditioned media from URG4/URGCP-overexpressing and knockdown cells. A luciferase reporter assay was used to examine the transcriptional activity of nuclear factor kappa – light – chain - enhancer of activated B cells (NF-κB). NF-κB was inhibited by overexpressing degradation-resistant mutant inhibitor of κB (IκB)-α. Expression of vascular endothelial growth factor C (VEGFC), tumor necrosis factor-α (TNFα), interleukin (IL)-6, IL-8 and v-myc avian myelocytomatosis viral oncogene homolog (MYC) were examined by quantitative real-time PCR; VEGFC protein expression was analyzed using an ELISA. URG4/URGCP protein and mRNA expression were significantly upregulated in HCC cell lines. Overexpressing URG4/URGCP enhanced - while silencing URG4/URGCP decreased - the capacity of HCC cell conditioned media to induce HUVEC tubule formation and migration and neovascularization in the CAM assay. Furthermore, overexpressing URG4/URGCP increased - whereas knockdown of URG4/URGCP decreased - VEGFC expression, NF-κB transcriptional activity, the levels

  1. The rules of gene expression in plants: Organ identity and gene body methylation are key factors for regulation of gene expression in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Gutiérrez Rodrigo A

    2008-09-01

    Full Text Available Abstract Background Microarray technology is a widely used approach for monitoring genome-wide gene expression. For Arabidopsis, there are over 1,800 microarray hybridizations representing many different experimental conditions on Affymetrix™ ATH1 gene chips alone. This huge amount of data offers a unique opportunity to infer the principles that govern the regulation of gene expression in plants. Results We used bioinformatics methods to analyze publicly available data obtained using the ATH1 chip from Affymetrix. A total of 1887 ATH1 hybridizations were normalized and filtered to eliminate low-quality hybridizations. We classified and compared control and treatment hybridizations and determined differential gene expression. The largest differences in gene expression were observed when comparing samples obtained from different organs. On average, ten-fold more genes were differentially expressed between organs as compared to any other experimental variable. We defined "gene responsiveness" as the number of comparisons in which a gene changed its expression significantly. We defined genes with the highest and lowest responsiveness levels as hypervariable and housekeeping genes, respectively. Remarkably, housekeeping genes were best distinguished from hypervariable genes by differences in methylation status in their transcribed regions. Moreover, methylation in the transcribed region was inversely correlated (R2 = 0.8 with gene responsiveness on a genome-wide scale. We provide an example of this negative relationship using genes encoding TCA cycle enzymes, by contrasting their regulatory responsiveness to nitrate and methylation status in their transcribed regions. Conclusion Our results indicate that the Arabidopsis transcriptome is largely established during development and is comparatively stable when faced with external perturbations. We suggest a novel functional role for DNA methylation in the transcribed region as a key determinant

  2. Regulation of bacterial gene expression by ribosome stalling and rescuing.

    Science.gov (United States)

    Jin, Yongxin; Jin, Shouguang; Wu, Weihui

    2016-05-01

    Ribosome is responsible for protein synthesis and is able to monitor the sequence and structure of the nascent peptide. Such ability plays an important role in determining overall gene expression profile of the bacteria through ribosome stalling and rescuing. In this review, we briefly summarize our current understanding of the regulation of gene expression through ribosome stalling and rescuing in bacteria, as well as mechanisms that modulate ribosome activity. Understanding the mechanisms of how bacteria modulate ribosome activity will provide not only fundamental insights into bacterial gene regulation, but also new candidate targets for the development of novel antimicrobial agents.

  3. Complexity, Post-genomic Biology and Gene Expression Programs

    Science.gov (United States)

    Williams, Rohan B. H.; Luo, Oscar Junhong

    Gene expression represents the fundamental phenomenon by which information encoded in a genome is utilised for the overall biological objectives of the organism. Understanding this level of information transfer is therefore essential for dissecting the mechanistic basis of form and function of organisms. We survey recent developments in the methodology of the life sciences that is relevant for understanding the organisation and function of the genome and review our current understanding of the regulation of gene expression, and finally, outline some new approaches that may be useful in understanding the organisation of gene regulatory systems.

  4. Differential neutrophil gene expression in early bovine pregnancy

    Directory of Open Access Journals (Sweden)

    Kizaki Keiichiro

    2013-02-01

    Full Text Available Abstract Background In food production animals, especially cattle, the diagnosis of gestation is important because the timing of gestation directly affects the running of farms. Various methods have been used to detect gestation, but none of them are ideal because of problems with the timing of detection or the accuracy, simplicity, or cost of the method. A new method for detecting gestation, which involves assessing interferon-tau (IFNT-stimulated gene expression in peripheral blood leukocytes (PBL, was recently proposed. PBL fractionation methods were used to examine whether the expression profiles of various PBL populations could be used as reliable diagnostic markers of bovine gestation. Methods PBL were collected on days 0 (just before artificial insemination, 7, 14, 17, 21, and 28 of gestation. The gene expression levels of the PBL were assessed with microarray analysis and/or quantitative real-time reverse transcription (q PCR. PBL fractions were collected by flow cytometry or density gradient cell separation using Histopaque 1083 or Ficoll-Conray solutions. The expression levels of four IFNT-stimulated genes, interferon-stimulated protein 15 kDa (ISG15, myxovirus-resistance (MX 1 and 2, and 2′-5′-oligoadenylate synthetase (OAS1, were then analyzed in each fraction through day 28 of gestation using qPCR. Results Microarray analysis detected 72 and 28 genes in whole PBL that were significantly higher on days 14 and 21 of gestation, respectively, than on day 0. The upregulated genes included IFNT-stimulated genes. The expression levels of these genes increased with the progression of gestation until day 21. In flow cytometry experiments, on day 14 the expression levels of all of the genes were significantly higher in the granulocyte fraction than in the other fractions. Their expression gradually decreased through day 28 of gestation. Strong correlations were observed between the expression levels of the four genes in the granulocyte

  5. Whole-body gene expression pattern registration in Platynereis larvae.

    Science.gov (United States)

    Asadulina, Albina; Panzera, Aurora; Verasztó, Csaba; Liebig, Christian; Jékely, Gáspár

    2012-12-03

    Digital anatomical atlases are increasingly used in order to depict different gene expression patterns and neuronal morphologies within a standardized reference template. In evo-devo, a discipline in which the comparison of gene expression patterns is a widely used approach, such standardized anatomical atlases would allow a more rigorous assessment of the conservation of and changes in gene expression patterns during micro- and macroevolutionary time scales. Due to its small size and invariant early development, the annelid Platynereis dumerilii is particularly well suited for such studies. Recently a reference template with registered gene expression patterns has been generated for the anterior part (episphere) of the Platynereis trochophore larva and used for the detailed study of neuronal development. Here we introduce and evaluate a method for whole-body gene expression pattern registration for Platynereis trochophore and nectochaete larvae based on whole-mount in situ hybridization, confocal microscopy, and image registration. We achieved high-resolution whole-body scanning using the mounting medium 2,2'-thiodiethanol (TDE), which allows the matching of the refractive index of the sample to that of glass and immersion oil thereby reducing spherical aberration and improving depth penetration. This approach allowed us to scan entire whole-mount larvae stained with nitroblue tetrazolium/5-bromo-4-chloro-3-indolyl phosphate (NBT/BCIP) in situ hybridization and counterstained fluorescently with an acetylated-tubulin antibody and the nuclear stain 4'6-diamidino-2-phenylindole (DAPI). Due to the submicron isotropic voxel size whole-mount larvae could be scanned in any orientation. Based on the whole-body scans, we generated four different reference templates by the iterative registration and averaging of 40 individual image stacks using either the acetylated-tubulin or the nuclear-stain signal for each developmental stage. We then registered to these templates the

  6. Whole-body gene expression pattern registration in Platynereis larvae

    Directory of Open Access Journals (Sweden)

    Asadulina Albina

    2012-12-01

    Full Text Available Abstract Background Digital anatomical atlases are increasingly used in order to depict different gene expression patterns and neuronal morphologies within a standardized reference template. In evo-devo, a discipline in which the comparison of gene expression patterns is a widely used approach, such standardized anatomical atlases would allow a more rigorous assessment of the conservation of and changes in gene expression patterns during micro- and macroevolutionary time scales. Due to its small size and invariant early development, the annelid Platynereis dumerilii is particularly well suited for such studies. Recently a reference template with registered gene expression patterns has been generated for the anterior part (episphere of the Platynereis trochophore larva and used for the detailed study of neuronal development. Results Here we introduce and evaluate a method for whole-body gene expression pattern registration for Platynereis trochophore and nectochaete larvae based on whole-mount in situ hybridization, confocal microscopy, and image registration. We achieved high-resolution whole-body scanning using the mounting medium 2,2’-thiodiethanol (TDE, which allows the matching of the refractive index of the sample to that of glass and immersion oil thereby reducing spherical aberration and improving depth penetration. This approach allowed us to scan entire whole-mount larvae stained with nitroblue tetrazolium/5-bromo-4-chloro-3-indolyl phosphate (NBT/BCIP in situ hybridization and counterstained fluorescently with an acetylated-tubulin antibody and the nuclear stain 4’6-diamidino-2-phenylindole (DAPI. Due to the submicron isotropic voxel size whole-mount larvae could be scanned in any orientation. Based on the whole-body scans, we generated four different reference templates by the iterative registration and averaging of 40 individual image stacks using either the acetylated-tubulin or the nuclear-stain signal for each developmental

  7. Differential neutrophil gene expression in early bovine pregnancy

    Science.gov (United States)

    2013-01-01

    Background In food production animals, especially cattle, the diagnosis of gestation is important because the timing of gestation directly affects the running of farms. Various methods have been used to detect gestation, but none of them are ideal because of problems with the timing of detection or the accuracy, simplicity, or cost of the method. A new method for detecting gestation, which involves assessing interferon-tau (IFNT)-stimulated gene expression in peripheral blood leukocytes (PBL), was recently proposed. PBL fractionation methods were used to examine whether the expression profiles of various PBL populations could be used as reliable diagnostic markers of bovine gestation. Methods PBL were collected on days 0 (just before artificial insemination), 7, 14, 17, 21, and 28 of gestation. The gene expression levels of the PBL were assessed with microarray analysis and/or quantitative real-time reverse transcription (q) PCR. PBL fractions were collected by flow cytometry or density gradient cell separation using Histopaque 1083 or Ficoll-Conray solutions. The expression levels of four IFNT-stimulated genes, interferon-stimulated protein 15 kDa (ISG15), myxovirus-resistance (MX) 1 and 2, and 2′-5′-oligoadenylate synthetase (OAS1), were then analyzed in each fraction through day 28 of gestation using qPCR. Results Microarray analysis detected 72 and 28 genes in whole PBL that were significantly higher on days 14 and 21 of gestation, respectively, than on day 0. The upregulated genes included IFNT-stimulated genes. The expression levels of these genes increased with the progression of gestation until day 21. In flow cytometry experiments, on day 14 the expression levels of all of the genes were significantly higher in the granulocyte fraction than in the other fractions. Their expression gradually decreased through day 28 of gestation. Strong correlations were observed between the expression levels of the four genes in the granulocyte fractions obtained with

  8. Angiogenic potential of early and late outgrowth endothelial progenitor cells is dependent on the time of emergence.

    Science.gov (United States)

    Minami, Yoshiyasu; Naka