WorldWideScience

Sample records for angiogenic factors released

  1. Mast Cell Proteases 6 and 7 Stimulate Angiogenesis by Inducing Endothelial Cells to Release Angiogenic Factors.

    Directory of Open Access Journals (Sweden)

    Devandir Antonio de Souza Junior

    Full Text Available Mast cell proteases are thought to be involved with tumor progression and neo-vascularization. However, their exact role is still unclear. The present study was undertaken to further elucidate the function of specific subtypes of recombinant mouse mast cell proteases (rmMCP-6 and 7 in neo-vascularization. SVEC4-10 cells were cultured on Geltrex® with either rmMCP-6 or 7 and tube formation was analyzed by fluorescence microscopy and scanning electron microscopy. Additionally, the capacity of these proteases to induce the release of angiogenic factors and pro and anti-angiogenic proteins was analyzed. Both rmMCP-6 and 7 were able to stimulate tube formation. Scanning electron microscopy showed that incubation with the proteases induced SVEC4-10 cells to invade the gel matrix. However, the expression and activity of metalloproteases were not altered by incubation with the mast cell proteases. Furthermore, rmMCP-6 and rmMCP-7 were able to induce the differential release of angiogenic factors from the SVEC4-10 cells. rmMCP-7 was more efficient in stimulating tube formation and release of angiogenic factors than rmMCP-6. These results suggest that the subtypes of proteases released by mast cells may influence endothelial cells during in vivo neo-vascularization.

  2. Identification of a potent endothelium-derived angiogenic factor.

    Directory of Open Access Journals (Sweden)

    Vera Jankowski

    Full Text Available The secretion of angiogenic factors by vascular endothelial cells is one of the key mechanisms of angiogenesis. Here we report on the isolation of a new potent angiogenic factor, diuridine tetraphosphate (Up4U from the secretome of human endothelial cells. The angiogenic effect of the endothelial secretome was partially reduced after incubation with alkaline phosphatase and abolished in the presence of suramin. In one fraction, purified to homogeneity by reversed phase and affinity chromatography, Up4U was identified by MALDI-LIFT-fragment-mass-spectrometry, enzymatic cleavage analysis and retention-time comparison. Beside a strong angiogenic effect on the yolk sac membrane and the developing rat embryo itself, Up4U increased the proliferation rate of endothelial cells and, in the presence of PDGF, of vascular smooth muscle cells. Up4U stimulated the migration rate of endothelial cells via P2Y2-receptors, increased the ability of endothelial cells to form capillary-like tubes and acts as a potent inducer of sprouting angiogenesis originating from gel-embedded EC spheroids. Endothelial cells released Up4U after stimulation with shear stress. Mean total plasma Up4U concentrations of healthy subjects (N=6 were sufficient to induce angiogenic and proliferative effects (1.34 ± 0.26 nmol L(-1. In conclusion, Up4U is a novel strong human endothelium-derived angiogenic factor.

  3. Dimethyl sulfoxide-caused changes in pro- and anti-angiogenic factor levels could contribute to an anti-angiogenic response in HeLa cells.

    Science.gov (United States)

    Şimşek, Ece; Aydemir, Esra Arslan; İmir, Nilüfer; Koçak, Orhan; Kuruoğlu, Aykut; Fışkın, Kayahan

    2015-10-01

    Dimethyl sulfoxide (DMSO) is widely used in biological research as a general solvent. While it has been previously demonstrated that DMSO possesses a wide range of pharmacological effects, there is no published work regarding the effects of DMSO on pro-angiogenic factor levels. This study was designed to investigate the possible effects of DMSO on the levels of three pro-angiogenic factors released from HeLa cells in vitro. Cells were treated with two different and previously determined concentrations of DMSO. The cytotoxic effects of DMSO concentrations on HeLa cells were determined via MTT. Survival rates of DMSO-treated cells were determined by Invitrogen live/dead viability/cytotoxicity kit and trypan blue exclusion assay. Changes in the pro-angiogenic levels in media were evaluated by Cayman's Substance P Enzyme Immunoassay ELISA kit. Vascular endothelial growth factor ELISA kit and interferon gamma ELISA kit for substance P, VEGF and IFNγ respectively. Changes in substance P levels were corrected by standard western blotting. Changes in VEGF and IFNγ levels were corrected both by western blot and real time PCR. Treatment with 1.4 μM DMSO caused a time-dependent inhibition of cell proliferation at 24, 48 and 72 h. 1.4 μM DMSO caused a significant reduction in VEGF levels at 72 h of incubation and sharp increases in IFNγ levels at both 48 and 72 h of incubation. According to real time PCR analyses, DMSO (1.4 μM) exhibited an inhibitory effect on VEGF but acted as an augmenter of IFNγ release on HeLa cells in vitro. This is the first report showing that the general solvent DMSO suppressed HeLa cell proliferation, decreased the levels of two pro-angiogenic factors (substance P and VEGF) and increased the release of an anti-angiogenic factor IFNγ in vitro. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Combination of interferon-alpha and 5-fluorouracil inhibits endothelial cell growth directly and by regulation of angiogenic factors released by tumor cells

    International Nuclear Information System (INIS)

    Wada, Hiroshi; Tanemura, Masahiro; Umeshita, Koji; Doki, Yuichiro; Mori, Masaki; Nagano, Hiroaki; Yamamoto, Hirofumi; Noda, Takehiro; Murakami, Masahiro; Kobayashi, Shogo; Marubashi, Shigeru; Eguchi, Hidetoshi; Takeda, Yutaka

    2009-01-01

    The combination therapy of interferon (IFN)-alpha and 5-fluorouracil (5-FU) improved the prognosis of the patients with hepatocellular carcinoma (HCC). To determine the molecular mechanisms of the anti-tumor and anti-angiogenic effects, we examined the direct anti-proliferative effects on human umbilical vein endothelial cells (HUVEC) and indirect effects by regulating secretion of angiogenic factors from HCC cells. The direct effects on HUVEC were examined by TUNEL, Annexin-V assays and cell cycles analysis. For analysis of the indirect effects, the apoptosis induced by the conditioned medium from HCC cell treated by IFN-alpha/5-FU and expression of angiogenic factors was examined. IFN-alpha and 5-FU alone had anti-proliferative properties on HUVEC and their combination significantly inhibited the growth (compared with control, 5-FU or IFN alone). TUNEL and Annexin-V assays showed no apoptosis. Cell cycle analysis revealed that IFN-alpha and 5-FU delayed cell cycle progression in HUVEC with S-phase accumulation. The conditioned medium from HuH-7 cells after treatment with IFN/5-FU significantly inhibited HUVEC growth and induced apoptosis, and contained high levels of angiopoietin (Ang)-1 and low levels of vascular endothelial growth factor (VEGF) and Ang-2. Knockdown of Ang-1 in HuH-7 cells abrogated the anti-proliferative effects on HUVEC while knockdown of Ang-2 partially rescue the cells. These results suggested that IFN-alpha and 5-FU had direct growth inhibitory effects on endothelial cells, as well as anti-angiogenic effects through regulation of angiogenic factors released from HCC cells. Modulation of VEGF and Angs secretion by IFN-alpha and 5-FU may contribute to their anti-angiogenic and anti-tumor effects on HCC

  5. Activated human neutrophils release hepatocyte growth factor/scatter factor.

    LENUS (Irish Health Repository)

    McCourt, M

    2012-02-03

    BACKGROUND: Hepatocyte growth factor or scatter factor (HGF\\/SF) is a pleiotropic cytokine that has potent angiogenic properties. We have previously demonstrated that neutrophils (PMN) are directly angiogenic by releasing vascular endothelial growth factor (VEGF). We hypothesized that the acute inflammatory response can stimulate PMN to release HGF. AIMS: To examine the effects of inflammatory mediators on PMN HGF release and the effect of recombinant human HGF (rhHGF) on PMN adhesion receptor expression and PMN VEGF release. METHODS: In the first experiment, PMN were isolated from healthy volunteers and stimulated with tumour necrosis factor-alpha (TNF-alpha), lipopolysaccharide (LPS), interleukin-8 (IL-8), and formyl methionyl-leucyl-phenylalanine (fMLP). Culture supernatants were assayed for HGF using ELISA. In the second experiment, PMN were lysed to measure total HGF release and HGF expression in the PMN was detected by Western immunoblotting. Finally, PMN were stimulated with rhHGF. PMN CD 11a, CD 11b, and CD 18 receptor expression and VEGF release was measured using flow cytometry and ELISA respectively. RESULTS: TNF-alpha, LPS and fMLP stimulation resulted in significantly increased release of PMN HGF (755+\\/-216, 484+\\/-221 and 565+\\/-278 pg\\/ml, respectively) compared to controls (118+\\/-42 pg\\/ml). IL-8 had no effect. Total HGF release following cell lysis and Western blot suggests that HGF is released from intracellular stores. Recombinant human HGF did not alter PMN adhesion receptor expression and had no effect on PMN VEGF release. CONCLUSIONS: This study demonstrates that pro-inflammatory mediators can stimulate HGF release from a PMN intracellular store and that activated PMN in addition to secreting VEGF have further angiogenic potential by releasing HGF.

  6. Identification of a potent endothelium-derived angiogenic factor

    DEFF Research Database (Denmark)

    Jankowski, Vera; Tölle, Markus; Tran, Thi Nguyet Anh

    2013-01-01

    The secretion of angiogenic factors by vascular endothelial cells is one of the key mechanisms of angiogenesis. Here we report on the isolation of a new potent angiogenic factor, diuridine tetraphosphate (Up4U) from the secretome of human endothelial cells. The angiogenic effect of the endothelia...

  7. Friends Turned Foes: Angiogenic Growth Factors beyond Angiogenesis.

    Science.gov (United States)

    Matkar, Pratiek N; Ariyagunarajah, Ramya; Leong-Poi, Howard; Singh, Krishna K

    2017-10-02

    Angiogenesis, the formation of new blood vessels from pre-existing ones is a biological process that ensures an adequate blood flow is maintained to provide the cells with a sufficient supply of nutrients and oxygen within the body. Numerous soluble growth factors and inhibitors, cytokines, proteases as well as extracellular matrix proteins and adhesion molecules stringently regulate the multi-factorial process of angiogenesis. The properties and interactions of key angiogenic molecules such as vascular endothelial growth factors (VEGFs), fibroblast growth factors (FGFs) and angiopoietins have been investigated in great detail with respect to their molecular impact on angiogenesis. Since the discovery of angiogenic growth factors, much research has been focused on their biological actions and their potential use as therapeutic targets for angiogenic or anti-angiogenic strategies in a context-dependent manner depending on the pathologies. It is generally accepted that these factors play an indispensable role in angiogenesis. However, it is becoming increasingly evident that this is not their only role and it is likely that the angiogenic factors have important functions in a wider range of biological and pathological processes. The additional roles played by these molecules in numerous pathologies and biological processes beyond angiogenesis are discussed in this review.

  8. Angiogenic effect induced by mineral fibres

    International Nuclear Information System (INIS)

    Carbonari, Damiano; Campopiano, Antonella; Ramires, Deborah; Strafella, Elisabetta; Staffolani, Sara; Tomasetti, Marco; Curini, Roberta; Valentino, Matteo; Santarelli, Lory; Amati, Monica

    2011-01-01

    Highlights: → In this study we described the angiogenetic effect of some mineral fibres. → Wollastonite fibres induce blood vessel formation. → The size and shape of the fibres were important factors for the cell signalling. → Wollastonite induce ROS-NFκB activation and EGFR signalling. → Involvement of wollastonite exposure in the development of pathological conditions. -- Abstract: Due to the toxic effect of asbestos, other materials with similar chemical-physical characteristics have been introduced to substitute it. We evaluate the angiogenic effect of certain asbestos substitute fibres such as glass fibres (GFs), ceramic fibres (CFs) and wollastonite fibres (WFs) and then compare angiogenic responses to those induced by crocidolite asbestos fibres (AFs). An in vitro model using human endothelial cells in small islands within a culture matrix of fibroblasts (Angio-Kit) was used to evaluate vessel formation. The release of IL-6, sIL-R6, IL-8, VEGF-A and their soluble receptors, sVEGFR-1, sVEGFR-2, was determined in the conditioning medium of Angio-Kit system after fibre treatment. ROS formation and cell viability were evaluated in cultured endothelial cells (HUVEC). To evaluate the involvement of intracellular mechanisms, EGFR signalling, ROS formation and nuclear factor-κB (NFκB) pathway were then inhibited by incubating HUVEC cells with AG1478, NAC and PDTC respectively, and the cytokine and growth factor release was analyzed in the culture medium after 7 days of fibre incubation. Among the mineral fibres tested, WFs markedly induced blood vessel formation which was associated with release of IL-6 and IL-8, VEGF-A and their soluble receptors. ROS production was observed in HUVEC after WFs treatment which was associated with cell cytotoxicity. The EGFR-induced ERK phosphorylation and ROS-mediated NFκB activation were involved in the cytokine and angiogenic factor release. However, only the EGFR activation was able to induce angiogenesis. The WFs

  9. Vascular endothelial growth factor attachment to hydroxyapatite via self-assembled monolayers promotes angiogenic activity of endothelial cells

    International Nuclear Information System (INIS)

    Solomon, Kimberly D.; Ong, Joo L.

    2013-01-01

    Currently, tissue engineered constructs for critical sized bone defects are non-vascularized. There are many strategies used in order to promote vascularization, including delivery of growth factors such as vascular endothelial growth factor (VEGF). In this study, hydroxyapatite (HA) was coated with self-assembled monolayers (SAMs). The SAMs were in turn used to covalently bind VEGF to the surface of HA. The different SAM chain length ratios (phosphonoundecanoic acid (11-PUDA):16-phosphonohexadecanoic acid (16-PHDA) utilized in this study were 0:100, 25:75, 50:50, 75:25, and 100:0. Surfaces were characterized by contact angle (CA) and atomic force microscopy, and an in vitro VEGF release study was performed. It was observed that CA and root-mean-squared roughness were not significantly affected by the addition of SAMs, but that CA was significantly lowered with the addition of VEGF. VEGF release profiles of bound VEGF groups all demonstrated less initial burst release than adsorbed control, indicating that VEGF was retained on the HA surface when bound by SAMs. An in vitro study using human aortic endothelial cells (HAECs) demonstrated that bound VEGF increased metabolic activity and caused sustained production of angiopoietin-2, an angiogenic marker, over 28 days. In conclusion, SAMs provide a feasible option for growth factor delivery from HA surfaces, enhancing angiogenic activity of HAECs in vitro. - Highlights: • Vascular endothelial growth factor (VEGF) is attached to hydroxyapatite (HA). • Self-assembled monolayers (SAMs) delay the release of VEGF from hydroxyapatite. • SAM chain length ratio affects the total mass of VEGF released. • VEGF on HA up-regulates proliferation and angiogenic activity of endothelial cells

  10. The imbalance in expression of angiogenic and anti-angiogenic factors as candidate predictive biomarker in preeclampsia

    Directory of Open Access Journals (Sweden)

    Pooneh Nikuei

    2015-07-01

    Full Text Available Preeclampsia is an important pregnancy disorder with serious maternal and fetal complications which its etiology has not been completely understood yet. Early diagnosis and management of disease could reduce its potential side effects. The vascular endothelial growth factor (VEGF family including VEGF-A is the most potent endothelial growth factor which induces angiogenesis and endothelial cell proliferation and has basic role in vasculogenesis. VEGF and its tyrosine kinase receptors (Flt1 and KDR are major factors for fetal and placental angiogenic development. Finding mechanisms involved in expression of angiogenic factors may lead to new prognostic and therapeutic points in management of preeclampsia. Recent researches, has shown capability of some anti-angiogenic factors as potential candidate to be used as early predictors for preeclampsia. Soluble fms-like tyrosin kinase-1 (sFlt1 is a truncated splice variant of the membrane-bound VEGF receptor Flt1, that is produced by the placenta and it can bind to angiogenic growth factors and neutraliz, their effects. It is also observed that the ratio of sFlt1 to placental growth factor is valuable as prognostic marker. In this review, VEGF family member’s role in angiogenesis is evaluated as biomarkers to be used for prediction of preeclampsia.

  11. Angiogenic factors stimulate growth of adult neural stem cells.

    Directory of Open Access Journals (Sweden)

    Andreas Androutsellis-Theotokis

    2010-02-01

    Full Text Available The ability to grow a uniform cell type from the adult central nervous system (CNS is valuable for developing cell therapies and new strategies for drug discovery. The adult mammalian brain is a source of neural stem cells (NSC found in both neurogenic and non-neurogenic zones but difficulties in culturing these hinders their use as research tools.Here we show that NSCs can be efficiently grown in adherent cell cultures when angiogenic signals are included in the medium. These signals include both anti-angiogenic factors (the soluble form of the Notch receptor ligand, Dll4 and pro-angiogenic factors (the Tie-2 receptor ligand, Angiopoietin 2. These treatments support the self renewal state of cultured NSCs and expression of the transcription factor Hes3, which also identifies the cancer stem cell population in human tumors. In an organotypic slice model, angiogenic factors maintain vascular structure and increase the density of dopamine neuron processes.We demonstrate new properties of adult NSCs and a method to generate efficient adult NSC cultures from various central nervous system areas. These findings will help establish cellular models relevant to cancer and regeneration.

  12. Tissue factor is an angiogenic-specific receptor for factor VII-targeted immunotherapy and photodynamic therapy.

    Science.gov (United States)

    Hu, Zhiwei; Cheng, Jijun; Xu, Jie; Ruf, Wolfram; Lockwood, Charles J

    2017-02-01

    Identification of target molecules specific for angiogenic vascular endothelial cells (VEC), the inner layer of pathological neovasculature, is critical for discovery and development of neovascular-targeting therapy for angiogenesis-dependent human diseases, notably cancer, macular degeneration and endometriosis, in which vascular endothelial growth factor (VEGF) plays a central pathophysiological role. Using VEGF-stimulated vascular endothelial cells (VECs) isolated from microvessels, venous and arterial blood vessels as in vitro angiogenic models and unstimulated VECs as a quiescent VEC model, we examined the expression of tissue factor (TF), a membrane-bound receptor on the angiogenic VEC models compared with quiescent VEC controls. We found that TF is specifically expressed on angiogenic VECs in a time-dependent manner in microvessels, venous and arterial vessels. TF-targeted therapeutic agents, including factor VII (fVII)-IgG1 Fc and fVII-conjugated photosensitizer, can selectively bind angiogenic VECs, but not the quiescent VECs. Moreover, fVII-targeted photodynamic therapy can selectively and completely eradicate angiogenic VECs. We conclude that TF is an angiogenic-specific receptor and the target molecule for fVII-targeted therapeutics. This study supports clinical trials of TF-targeted therapeutics for the treatment of angiogenesis-dependent diseases such as cancer, macular degeneration and endometriosis.

  13. Systemic Effects of Anti-Angiogenic Therapy

    International Nuclear Information System (INIS)

    Starlinger, P.

    2011-01-01

    protein expression and processing in more detail. In the course of this study, we identified platelets as the major source of circulating TSP-1. While platelets release the full-length molecule, proteolytic fragmentation of TSP-1 occurs during the angiogenic process which we identified as a hallmark of in vivo as compared to in vitro platelet activation. In conclusion our results suggest that platelets which are known to produce and store angiogenesis factors may have a major impact on anti-angiogenic cancer therapy. Hence, for combined application thrombocytopenic chemotherapeutics should be avoided. However, prospective clinical trials will have to prove if this hypothesis will translate into therapeutic benefit. (author) [de

  14. Balance of antiangiogenic and angiogenic factors in the context of the etiology of preeclampsia.

    Science.gov (United States)

    Seki, Hiroyuki

    2014-10-01

    The "two-stage disorder" theory that is assumed for the etiology of preeclampsia hypothesizes that antiangiogenic and angiogenic factors and/or placental debris play an important role in this disorder. The physiological actions of placental debris occur via the balance between antiangiogenic and angiogenic factors. Accordingly, this balance between antiangiogenic and angiogenic factors should be investigated to elucidate the various pathological features of preeclampsia. Their accurate evaluation is needed to investigate not only antiangiogenic factors (such as sFlt-1 and sEng) and angiogenic factors (such as vascular endothelial growth factor, placental growth factor and transforming growth factor-β) but also the expression level of their receptors such as Flt-1 and Eng. However, it is ethically and technically difficult to investigate the above-mentioned factors at antepartum in human patients. The examination of the ratios of sFlt-1/vascular endothelial growth factor receptor ligands and sEng/transforming vascular endothelial growth factor-β and the use of experimental animal models may help in elucidating various unresolved issues in preeclampsia. © 2014 Nordic Federation of Societies of Obstetrics and Gynecology.

  15. Characterization of neuritin as a novel angiogenic factor

    Energy Technology Data Exchange (ETDEWEB)

    Han, Dingding; Qin, Bo; Liu, Guoqing; Liu, Tingting; Ji, Guoqing; Wu, Yanhua [State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433 (China); Yu, Long, E-mail: longyu@fudan.edu.cn [State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433 (China)

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer Neuritin protein has no effect on the endothelial cell proliferation and adhesion. Black-Right-Pointing-Pointer Neuritin protein increases endothelial cell migration. >Neuritin does not increase tumor cell proliferation in vitro. Black-Right-Pointing-Pointer Overexpression of neuritin induces tumor angiogenesis. >Overexpression of neuritin inhibits tumorigenesis. -- Abstract: Neuritin (NRN1), a neurotrophic factor, plays an important role in neurite growth and neuronal survival. In this study, we identify a new function of neuritin as a novel angiogenic factor in vitro and in vivo. Recombinant neuritin protein had no effect on the proliferation and adhesion of human umbilical vein endothelial cells (HUVEC), but it dose-dependently increased endothelial cell migration. Furthermore, overexpression of neuritin significantly promoted tumor angiogenesis, and surprisingly, it inhibited tumor growth in a xenograft tumor model. Thus, our results indicate that neuritin may act as an important angiogenic factor and serve as a potential target for cancer therapy.

  16. Hepatoma-derived growth factor-related protein-3 is a novel angiogenic factor.

    Directory of Open Access Journals (Sweden)

    Michelle E LeBlanc

    Full Text Available Hepatoma-derived growth factor-related protein-3 (Hdgfrp3 or HRP-3 was recently reported as a neurotrophic factor and is upregulated in hepatocellular carcinoma to promote cancer cell survival. Here we identified HRP-3 as a new endothelial ligand and characterized its in vitro and in vivo functional roles and molecular signaling. We combined open reading frame phage display with multi-round in vivo binding selection to enrich retinal endothelial ligands, which were systematically identified by next generation DNA sequencing. One of the identified endothelial ligands was HRP-3. HRP-3 expression in the retina and brain was characterized by Western blot and immunohistochemistry. Cell proliferation assay showed that HRP-3 stimulated the growth of human umbilical vein endothelial cells (HUVECs. HRP-3 induced tube formation of HUVECs in culture. Wound healing assay indicated that HRP-3 promoted endothelial cell migration. HRP-3 was further confirmed for its in vitro angiogenic activity by spheroid sprouting assay. HRP-3 extrinsically activated the extracellular-signal-regulated kinase ½ (ERK1/2 pathway in endothelial cells. The angiogenic activity of HRP-3 was independently verified by mouse cornea pocket assay. Furthermore, in vivo Matrigel plug assay corroborated HRP-3 activity to promote new blood vessel formation. These results demonstrated that HRP-3 is a novel angiogenic factor.

  17. [Potential role of the angiogenic factor "EG-VEGF" in gestational trophoblastic diseases].

    Science.gov (United States)

    Boufettal, H; Feige, J-J; Benharouga, M; Aboussaouira, T; Nadifi, S; Mahdaoui, S; Samouh, N; Alfaidy, N

    2013-10-01

    Gestational trophoblastic disease (MGT) includes a wide spectrum of pathologies of the placenta, ranging from benign precancerous lesions, with gestational trophoblastic tumors. Metastases are the leading causes of death as a result of this tumor. They represent a major problem for obstetrics and for the public health system. To date, there is no predictor of the progression of molar pregnancies to gestational trophoblastic tumor (GTT). Only an unfavorable plasma hCG monitoring after evacuation of hydatidiform mole is used to diagnose a TTG. The causes of the development of this cancer are still poorly understood. Increasing data in the literature suggests a close association between the development of this tumor and poor placental vascularization during the first trimester of pregnancy. The development of the human placenta depends on a coordination between the trophoblast and endothelial cells. A disruption in the expression of angiogenic factors could contribute to uterine or extra-uterine tissue invasion by extravillous trophoblast, contributing to the development of TTG. This review sheds lights on the phenomenon of angiogenesis during normal and abnormal placentation, especially during the MGT and reports preliminary finding concerning, the variability of expression of "Endocrine Gland-Derived Vascular Endothelial Growth Factor" (EG-VEGF), a specific placental angiogenic factor, in normal and molar placentas, and the potential role of differentiated expressions of the main placental angiogenic factors in the scalability of hydatidiform moles towards a recovery or towards the development of gestational trophoblastic tumor. Deciphering the mechanisms by which the angiogenic factor influences these processes will help understand the pathophysiology of MGT and to create opportunities for early diagnosis and treatment of the latter. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  18. Roles of pro-angiogenic and anti-angiogenic factors as well as matrix metalloproteinases in healing of NSAID-induced small intestinal ulcers in rats.

    Science.gov (United States)

    Gyenge, Melinda; Amagase, Kikuko; Kunimi, Shino; Matsuoka, Rie; Takeuchi, Koji

    2013-10-06

    We examined changes in the expression of a pro-angiogenic factor, vascular endothelial growth factor (VEGF), and an anti-angiogenic factor, endostatin, as well as matrix metalloproteinase (MMP)-2 and MMP-9 in the rat small intestine after administration of indomethacin and investigated the roles of these factors in the healing of indomethacin-induced small intestinal ulcers. Male SD rats were given indomethacin (10mg/kg) p.o. and euthanized at various time points (3-24h and 2-7days) after the administration. To impair the healing of these lesions, low-dose of indomethacin (2mg/kg) was given p.o. once daily for 6days starting 1day after ulceration. Levels of VEGF, endostatin, MMP-2 and MMP-9 were determined by Western blotting. The expression of both VEGF and endostatin was upregulated after the ulceration. Repeated administration of low-dose indomethacin impaired the ulcer healing with a decrease of VEGF expression and a further increase of endostatin expression, resulting in a marked decrease in the ratio of VEGF/endostatin expression. The levels of MMP-2 and MMP-9 were both significantly increased after the ulceration, but these responses were suppressed by the repeated indomethacin treatment. The healing of these ulcers was significantly delayed by the repeated administration of MMP inhibitors such as ARP-101 and SB-3CT. The results confirm the importance of the balance between pro-angiogenic and anti-angiogenic activities in the healing of indomethacin-induced small intestinal damage and further suggest that the increased expression of MMP-2 and MMP-9 is another important factor for ulcer healing in the small intestine. © 2013.

  19. Angiogenic and angiostatic factors in the molecular control of angiogenesis.

    Science.gov (United States)

    Distler, J H W; Hirth, A; Kurowska-Stolarska, M; Gay, R E; Gay, S; Distler, O

    2003-09-01

    The vascular system that ensures an adequate blood flow is required to provide the cells with sufficient supply of nutrients and oxygen. Two different mechanisms of the formation of new vessels can be distinguished: vasculogenesis, the formation of the first primitive vascular plexus de novo and angiogenesis, the formation of new vessels from preexisting ones. Both processes are regulated by a delicate balance of pro- and anti-angiogenic factors. Physiologically, angiostatic mediators outweigh the angiogenic molecules and angiogenesis does not occur. Under certain conditions such as tumor formation or wound healing, the positive regulators of angiogenesis predominate and the endothelium becomes activated. Angiogenesis is initiated by vasodilatation and an increased permeability. After destabilization of the vessel wall, endothelial cells proliferate, migrate and form a tube, which is finally stabilized by pericytes and smooth muscle cells. Numerous soluble growth factors and inhibitors, cytokines and proteases as well as extracellular matrix proteins and adhesion molecules strictly control this multi-step process. The properties and interactions of angiogenic molecules such as VEGFs, FGFs, angiopoietins, PDGF, angiogenin, angiotropin, HGF, CXC chemokines with ELR motif, PECAM-1, integrins and VE-cadherin as well as angiostatic key players such as angiostatin, endostatin, thrombospondin, CXC chemokines without ELR motif, PEDF are discussed in this review with respect to their molecular impact on angiogenesis.

  20. Angiogenic activity of bFGF and VEGF suppressed by proteolytic cleavage by neutrophil elastase

    International Nuclear Information System (INIS)

    Ai, Shingo; Cheng Xianwu; Inoue, Aiko; Nakamura, Kae; Okumura, Kenji; Iguchi, Akihisa; Murohara, Toyoaki; Kuzuya, Masafumi

    2007-01-01

    Neutrophil elastase (NE), a serine protease released from the azurophil granules of activated neutrophil, proteolytically cleaves multiple cytokines, and cell surface proteins. In the present study, we examined whether NE affects the biological abilities of angiogenic growth factors such as basic-fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF). NE degraded bFGF and VEGF in a time- and concentration-dependent manner, and these degradations were suppressed by sivelestat, a synthetic inhibitor of NE. The bFGF- or VEGF-mediated proliferative activity of human umbilical vein endothelial cells was inhibited by NE, and the activity was recovered by sivelestat. Furthermore, NE reduced the bFGF- or VEGF-induced tubulogenic response of the mice aortas, ex vivo angiogenesis assay, and these effects were also recovered by sivelestat. Neutrophil-derived NE degraded potent angiogenic factors, resulting in loss of their angiogenic activity. These findings provide additional insight into the role played by neutrophils in the angiogenesis process at sites of inflammation

  1. Peritumoral adipose tissue as a source of inflammatory and angiogenic factors in colorectal cancer.

    Science.gov (United States)

    Amor, S; Iglesias-de la Cruz, M C; Ferrero, E; García-Villar, O; Barrios, V; Fernandez, N; Monge, L; García-Villalón, A L; Granado, M

    2016-02-01

    Obesity is a risk factor for the development of human colorectal cancer (CC). The aim of this work is to report the inflammatory and angiogenic scenario in lean (BMI  30 kg/m2) patients with and without CC and to assess the role of peritumoral adipose tissue in CC-induced inflammation. Patients were divided in four experimental groups: obese patients with CC (OB-CC), lean patients with CC (LEAN-CC), obese patients without CC (OB), and lean patients without CC (LEAN). Plasma levels of pro-inflammatory cytokines (interleukin (IL)-6, IL-4, IL-8) and granulocyte-macrophage colony-stimulating factor (GM-CSF) were increased in OB-CC patients. Peritumoral adipose tissue (TF) explants and cultured mature adipocytes secreted higher amounts of nitrites and nitrates than did control and non-tumoral (NTF) adipose tissue both alone and in response to lipopolysaccharide (LPS). Nitrite and nitrate secretion was also increased in TF explants from OB-CC patients compared with that from LEAN-CC patients. Gene expression of adiponectin, tumor necrosis factor alpha (TNF-α), insulin-like growth factor type I (IGF-I), cyclooxygenase-2 (COX-2), and peroxisome proliferator-activated receptor γ (PPAR-γ) was increased in TF explants from CC patients. LPS increased the gene expression of IL-6, IL-10, TNF-α, vascular endothelial growth factor (VEGF), and COX-2 in OB and in TF explants from OB-CC patients. COX-2 and PPAR-γ inhibition further increased LPS-induced release of nitrites and nitrates in TF explants and adipocytes from OB-CC patients. In conclusion, OB-CC patients have increased plasma levels of pro-inflammatory and angiogenic factors. TF from OB-CC patients shows an increased secretion of inflammatory markers compared with both TF from LEAN-CC and non-tumoral adipose tissue (AT) through a COX-2- and PPAR-γ-independent mechanism.

  2. Circulating Angiogenic Factors and the Risk of Adverse Outcomes among Haitian Women with Preeclampsia.

    Directory of Open Access Journals (Sweden)

    Melissa I March

    Full Text Available Angiogenic factors are strongly associated with adverse maternal and fetal outcomes among women with preterm preeclampsia (PE in developed countries. We evaluated the role of angiogenic factors and their relationship to adverse outcomes among Haitian women with PE.We measured plasma antiangiogenic soluble fms-like tyrosine kinase 1 (sFlt1 and proangiogenic placental growth factor (PlGF levels in women with PE (n=35 compared to controls with no hypertensive disorders (NHD (n=43 among subjects with singleton pregnancies that delivered at Hospital Albert Schweitzer (HAS in Haiti. We divided the preeclamptic women into two groups, early onset (≤ 34 weeks and late onset (>34 weeks and examined relationships between sFlt1/PlGF ratios on admission and adverse outcomes (abruption, respiratory complications, stroke, renal insufficiency, eclampsia, maternal death, birth weight 34 weeks with no adverse outcome.PE-related adverse outcomes are common in women in Haiti and are associated with profound angiogenic imbalance regardless of gestational age at presentation.

  3. Apelin is a novel angiogenic factor in retinal endothelial cells

    International Nuclear Information System (INIS)

    Kasai, Atsushi; Shintani, Norihito; Oda, Maki; Kakuda, Michiya; Hashimoto, Hitoshi; Matsuda, Toshio; Hinuma, Shuji; Baba, Akemichi

    2004-01-01

    There has been much focus recently on the possible functions of apelin, an endogenous ligand for the orphan G-protein-coupled receptor APJ, in cardiovascular and central nervous systems. We report a new function of apelin as a novel angiogenic factor in retinal endothelial cells. The retinal endothelial cell line RF/6A highly expressed both apelin and APJ transcripts, while human umbilical venous endothelial cells (HUVECs) only expressed apelin mRNA. In accordance with these observations, apelin at concentrations of 1 pM-1 μM significantly enhanced migration, proliferation, and capillary-like tube formation of RF/6A cells, but not those of HUVECs, whereas VEGF stimulates those parameters of both cell types. In vivo Matrigel plug assay for angiogenesis, the inclusion of 1 nM apelin in the Matrigel resulted in clear capillary-like formations with an increase of hemoglobin content in the plug. This is the first report showing that apelin is an angiogenic factor in retinal endothelial cells

  4. Development of a surrogate angiogenic potency assay for clinical-grade stem cell production.

    Science.gov (United States)

    Lehman, Nicholas; Cutrone, Rochelle; Raber, Amy; Perry, Robert; Van't Hof, Wouter; Deans, Robert; Ting, Anthony E; Woda, Juliana

    2012-09-01

    Clinical results from acute myocardial infarction (AMI) patients treated with MultiStem®, a large-scale expanded adherent multipotent progenitor cell population (MAPC), have demonstrated a strong safety and benefit profile for these cells. The mechanism of benefit with MAPC treatment is a result, in part, of its ability to induce neovascularization through trophic support. Production of clinical-grade stem cell products requires the development of lot-release criteria based on potency assays that directly reflect the fundamental mechanistic pathway underlying the therapeutic response to verify manufacturing process consistency and product potency. Using an in vitro endothelial tube formation assay, a potency assay has been developed that reflects MAPC pro-angiogenic activity. Serum-free conditioned media collected from MAPC culture induced endothelial tube formation. A proteomic survey of angiogenic factors produced by the cells in vitro revealed candidate factors linked to angiogenic potency. Three cytokines, chemokine (C-X-C motif) ligand 5 (CXCL5), interleukin 8 (IL-8) and vascular endothelial growth factor (VEGF), were required for this angiogenic activity. Depletion of any of these factors from the media prevented tube formation, while adding back increasing amounts of these cytokines into the depleted serum-free conditioned media established the lower limits of each of the cytokines required to induce angiogenesis. A necessary threshold of angiogenic factor expression was established using an in vitro angiogenesis assay. By correlating the levels of the cytokines required to induce tube formation in vitro with levels of the factors found in the spent media from manufacturing production runs, detection of these factors was identified as a surrogate potency assay with defined pass/fail criteria.

  5. CXCL16 is a novel angiogenic factor for human umbilical vein endothelial cells

    International Nuclear Information System (INIS)

    Zhuge, Xin; Murayama, Toshinori; Arai, Hidenori; Yamauchi, Ryoko; Tanaka, Makoto; Shimaoka, Takeshi; Yonehara, Shin; Kume, Noriaki; Yokode, Masayuki; Kita, Toru

    2005-01-01

    CXCL16 is a unique chemokine with characteristics as a receptor for phosphatidylserine and oxidized low density lipoproteins in macrophages, and is involved in the accumulation of cellular cholesterol during atherosclerotic lesion development. In this study, we report a new function of CXCL16 as a novel angiogenic factor in human umbilical vein endothelial cells (HUVEC). CXCL16 stimulated proliferation and chemotaxis of HUVEC in a dose-dependent manner, reaching a maximum at 1 nM. CXCL16 also significantly induced tube formation of HUVEC on Matrigel. Further, exposure of HUVEC to CXCL16 led to a time- and dose-dependent activation of mitogen-activated protein kinase (ERK1/2), which was completely inhibited by a mitogen-activated protein kinase kinase inhibitor, PD98059. Proliferation and tube formation in response to CXCL16 were also blocked by the pretreatment with PD98059, but not CXCL16-induced chemotaxis. Thus, our data indicate that CXCL16 may act as a novel angiogenic factor for HUVEC and that ERK is involved as an important signaling molecule to mediate its angiogenic effects

  6. Maternal fish consumption, fatty acid levels and angiogenic factors: The Generation R Study

    NARCIS (Netherlands)

    P.K. Bautista-Niño (Paula); M.J. Tielemans (Myrte); S. Schalekamp-Timmermans (Sarah); J.C.J. Steenweg-de Graaff (Jolien); A. Hofman (Albert); H.W. Tiemeier (Henning); V.W.V. Jaddoe (Vincent); E.A.P. Steegers (Eric); J.F. Felix (Janine); O.H. Franco (Oscar)

    2015-01-01

    textabstractIntroduction Angiogenic factors, such as placental growth factor (PlGF) and soluble Flt-1 (sFlt-1), are key regulators of placental vascular development. Evidence from in vitro studies indicates that fatty acids can affect angiogenesis. We investigated the associations of maternal fish

  7. Is human fracture hematoma inherently angiogenic?

    LENUS (Irish Health Repository)

    Street, J

    2012-02-03

    This study attempts to explain the cellular events characterizing the changes seen in the medullary callus adjacent to the interfragmentary hematoma during the early stages of fracture healing. It also shows that human fracture hematoma contains the angiogenic cytokine vascular endothelial growth factor and has the inherent capability to induce angiogenesis and thus promote revascularization during bone repair. Patients undergoing emergency surgery for isolated bony injury were studied. Raised circulating levels of vascular endothelial growth factor were seen in all injured patients, whereas the fracture hematoma contained significantly higher levels of vascular endothelial growth factor than did plasma from these injured patients. However, incubation of endothelial cells in fracture hematoma supernatant significantly inhibited the in vitro angiogenic parameters of endothelial cell proliferation and microtubule formation. These phenomena are dependent on a local biochemical milieu that does not support cytokinesis. The hematoma potassium concentration is cytotoxic to endothelial cells and osteoblasts. Subcutaneous transplantation of the fracture hematoma into a murine wound model resulted in new blood vessel formation after hematoma resorption. This angiogenic effect is mediated by the significant concentrations of vascular endothelial growth factor found in the hematoma. This study identifies an angiogenic cytokine involved in human fracture healing and shows that fracture hematoma is inherently angiogenic. The differences between the in vitro and in vivo findings may explain the phenomenon of interfragmentary hematoma organization and resorption that precedes fracture revascularization.

  8. Potential Angiogenic Role of Platelet-Activating Factor in Human Breast Cancer

    Science.gov (United States)

    Montrucchio, Giuseppe; Sapino, Anna; Bussolati, Benedetta; Ghisolfi, Gianpiero; Rizea-Savu, Simona; Silvestro, Luigi; Lupia, Enrico; Camussi, Giovanni

    1998-01-01

    This study investigated the presence of platelet-activating factor (PAF) in the lipid extracts of 18 primary breast carcinomas and 20 control breast tissues. The amount of PAF detected in breast carcinomas was significantly higher than in controls. The mass spectrometric analysis of PAF-bioactive lipid extract from breast carcinomas showed the presence of several molecular species of PAF, including C16-alkylPAF, C18-lysophosphatidylcholine (LPC), C16-LPC, lyso-PAF, and C16-acylPAF. The amount of bioactive PAF extracted from breast specimens significantly correlated with tumor vascularization revealed by the number of CD34- and CD31-positive cells. As C16-alkylPAF was previously shown to induce angiogenesis in vivo, we evaluated whether the thin layer chromatography-purified lipid extracts of breast specimens elicited neoangiogenesis in a murine model of subcutaneous Matrigel injection. The lipid extracts from specimens of breast carcinoma containing high levels of PAF bioactivity, but not from breast carcinomas containing low levels of PAF bioactivity or from normal breast tissue, induced a significant angiogenic response. This angiogenic response was significantly inhibited by the PAF receptor antagonist WEB 2170. T47D and MCF7 breast cancer cell lines, but not an immortalized nontumor breast cell line (MCF10), released PAF in the culture medium. A significant in vivo neoangiogenic response, inhibited by WEB 2170, was elicited by T47D and MCF7 but not by MCF10 culture medium. These results indicate that an increased concentration of PAF is present in tumors with high microvessel density and that PAF may account for the neoangiogenic activity induced in mice by the lipid extracts obtained from breast cancer. A contribution of PAF in the neovascularization of human breast cancer is suggested. PMID:9811351

  9. Capillary growth in human skeletal muscle: physiological factors and the balance between pro-angiogenic and angiostatic factors

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Hoier, Birgitte

    2014-01-01

    . Depending on the mechanical signal provided, capillary growth may occur either by longitudinal splitting (shear stress) or by sprouting (passive stretch). The mechanical signals initiate angiogenic processes by up-regulation or release of angioregulatory proteins that either promote, modulate or inhibit...... by mechanical or by chemical signalling. Mechanical signals originate from shear stress forces on the endothelial cell layer induced by the blood flowing through the vessel, but include also mechanical stretch and compression of the vascular structures and the surrounding tissue, as the muscle contracts...

  10. Angiogenic properties of sustained release platelet-rich plasma: characterization in-vitro and in the ischemic hind limb of the mouse.

    Science.gov (United States)

    Bir, Shyamal Chandra; Esaki, Jiro; Marui, Akira; Yamahara, Kenichi; Tsubota, Hideki; Ikeda, Tadashi; Sakata, Ryuzo

    2009-10-01

    While single growth factor has limitation to induce optimal neovascularization, platelet-rich plasma (PRP) is an autologous reserver of various growth factors. However, little is known about the mechanism of PRP-related neovascularization.The objective of this investigation was to characterize the angiogenic and growth factor content of PRP and to determine, in vitro, its effect on endothelial cell proliferation. Additionally, this experiment sought to determine the effectiveness of different compositions of PRP (solution versus sustained release) on perfusion and neovascularization in a murine model of hind limb ischemia. Different growth factors were measured by enzyme-linked immunosorbent assay (ELISA). In vivo study, we used gelatin hydrogel as a sustained release carrier for growth factors in PRP. We induced hind limb ischemia by excising right femoral artery in wild type C57BL6 mice. After surgery, mice were randomly assigned to four experimental groups; control (C), 100 muL of sustained release form of platelet-poor plasma (PPP), 100 muL of solution form of PRP (PRP-sol), 100 muL of sustained release form of PRP (PRP-sr); each formulation was administered via an intramuscular injection to the ischemic hind limb. Endpoint evaluations were blood perfusion by laser Doppler perfusion image, vascular density by anti Von Willebrand factor (vWF), and mature vessel density by anti smooth muscle actin (SMA) antibody. Green fluorescent protein (GFP+) transgenic mice were generated by transplantation of bone marrow derived mononuclear cells to wild type C57BL6 mice, and finally CD34+ cell in the ischemic site of transgenic mice was detected by staining with anti-CD34 antibody. In vitro study showed that PRP containing different growth factors induces endothelial cell proliferation and capillary tube formation. In vivo study demonstrated that sustained release of PRP increased perfusion of ischemic tissue as measured by laser Doppler perfusion imaging (LDPI) (57 +/- 12

  11. Angiogenic Factors and Cytokines in Diabetic Retinopathy

    Science.gov (United States)

    Abcouwer, Steven F.

    2013-01-01

    Diabetic retinopathy (DR) is a sight-threatening complication of both type-1 and type-2 diabetes. The recent success of treatments inhibiting the function of vascular endothelial growth factor (VEGF) demonstrates that specific targeting of a growth factor responsible for vascular permeability and growth is an effective means of treating DR-associated vascular dysfunction, edema and angiogenesis. This has stimulated research of alternative therapeutic targets involved in the control of retinal vascular function. However, additional treatment options and preventative measures are still needed and these require a greater understanding of the pathological mechanisms leading to the disturbance of retinal tissue homeostasis in DR. Although severe DR can be treated as a vascular disease, abundant data suggests that inflammation is also occurring in the diabetic retina.Thus, anti-inflammatory therapies may also be useful for treatment and prevention of DR. Herein, the evidence for altered expression of angiogenic factors and cytokines in DR is reviewed and possible mechanisms by which the expression of VEGF and cytokines may be increased in the diabetic retina are examined. In addition, the potential role for microglial activation in diabetic retinal neuroinflammation is explored. PMID:24319628

  12. Comparison of anti-angiogenic properties of pristine carbon nanoparticles

    DEFF Research Database (Denmark)

    Wierzbicki, Mateusz; Sawosz, Ewa; Grodzik, Marta

    2013-01-01

    nanomaterials on blood vessel development. Diamond nanoparticles, graphite nanoparticles, graphene nanosheets, multi-wall nanotubes and C60 fullerenes were evaluated for their angiogenic activities using the in ovo chick embryo chorioallantoic membrane model. Diamond nanoparticles and multi-wall nanotubes...... showed the greatest anti-angiogenic properties. Interestingly, fullerene exhibited the opposite effect, increasing blood vessel development, while graphite nanoparticles and graphene had no effect. Subsequently, protein levels of pro-angiogenic growth factor receptors were analysed, showing that diamond...... nanoparticles decreased the expression of vascular endothelial growth factor receptor. These results provide new insights into the biological activity of carbon nanomaterials and emphasise the potential use of multi-wall nanotubes and diamond nanoparticles in anti-angiogenic tumour therapy....

  13. Regulation of angiogenesis in human skeletal muscle with specific focus on pro- angiogenic and angiostatic factors

    DEFF Research Database (Denmark)

    Høier, Birgitte

    It is well established that acute exercise promotes an angiogenic response and that a period of exercise training results in capillary growth. Skeletal muscle angiogenesis is a complex process that requires a coordinated interplay of multiple factors and compounds to ensure proper vascular function....... The angiogenic process is initiated through changes in mechanical and/or metabolic factors during exercise and when exercise is repeated these stimuli may result in capillary growth if needed. The present PhD thesis is based on six studies in which the regulation of angiogenesis in skeletal muscle...... was studied in peripheral arterial disease. Vascular endothelial growth factor (VEGF) is the most important factor in exercise-induced angiogenesis and is located primarily in muscle cells but also in endothelial cells, pericytes, and in the extracellular matrix. VEGF protein secretion to the interstitium...

  14. Celecoxib restores angiogenic factor expression at the maternal-fetal interface in the BPH/5 mouse model of preeclampsia.

    Science.gov (United States)

    Reijnders, Dorien; Liu, Chin-Chi; Xu, Xinjing; Zhao, Anna M; Olson, Kelsey N; Butler, Scott D; Douglas, Nataki C; Sones, Jenny L

    2018-05-01

    Preeclampsia (PE), a hypertensive disease of pregnancy, is a leading cause of fetal and maternal morbidity/mortality. Early angiogenic and inflammatory disturbances within the placenta are thought to underlie the development of the maternal PE syndrome and poor pregnancy outcomes. However, the exact etiology remains largely unknown. Here, we use the BPH/5 mouse model of PE to elucidate the way in which inflammation early in pregnancy contributes to abnormal expression of angiogenic factors at the maternal-fetal interface. We have previously described improvement in maternal hypertension and fetal growth restriction in this model after treatment with the anti-inflammatory cyclooxygenase-2 (Cox2) specific inhibitor celecoxib. To further characterize the mechanisms by which celecoxib improves poor pregnancy outcomes in BPH/5 mice, we determined expression of angiogenic factors and complement pathway components after celecoxib. In BPH/5 implantation sites there was increased hypoxia inducible factor-1α ( Hif1α), heme oxygenase-1 ( Ho-1), and stem cell factor ( Scf) mRNA concomitant with elevated prostaglandin synthase 2 ( Ptgs2), encoding Cox2, and elevated VEGF protein. Angiopoietin 1 ( Ang1), tunica interna endothelial cell kinase-2 receptor ( Tie2), complement factor 3 ( C3), and complement factor B ( CfB) were increased in midgestation BPH/5 placentae. Whereas BPH/5 expression levels of VEGF, Ang1, and Tie2 normalized after celecoxib, placental C3 and CfB mRNA remained unchanged. However, celecoxib did reduce the pregnancy-specific circulating soluble fms-like tyrosine kinase-1 (sFlt-1) rise in BPH/5 mice at midgestation. These data show that elevated Cox2 during implantation contributes to placental angiogenic factor imbalances in the BPH/5 mouse model of PE.

  15. Embolization biomaterial reinforced with nanotechnology for an in-situ release of anti-angiogenic agent in the treatment of hyper-vascularized tumors and arteriovenous malformations.

    Science.gov (United States)

    Jubeli, E; Yagoubi, N; Pascale, F; Bédouet, L; Slimani, K; Labarre, D; Saint-Maurice, J P; Laurent, A; Moine, L

    2015-10-01

    A polymer based material was developed to act as an embolic agent and drug reservoir for the treatment of arteriovenous malformations (AVM) and hyper vascularized solid tumors. The aim was to combine the blocking of blood supply to the target region and the inhibition of the embolization-stimulated angiogenesis. The material is composed of an ethanolic solution of a linear acrylate based copolymer and acrylate calibrated microparticles containing nanospheres loaded with sunitinib, an anti-angiogenic agent. The precipitation of the linear copolymer in aqueous environment after injection through microcatheter results in the formation of an in-situ embolization gel whereas the microparticles serve to increase the cohesive properties of the embolization agent and to form a reservoir from which the sunitinib-loaded nanospheres are released post-embolization. The swollen state of the microparticles in contact with aqueous medium results in the release of the nanospheres out of microparticles macromolecular structure. After the synthesis, the formulation and the characterization of the different components of the material, anti-angiogenic activity was evaluated in vitro using endothelial cells and in vivo using corneal neovascularization model in rabbit. The efficiency of the arterial embolization was tested in vivo in a sheep model. Results proved the feasibility of this new system for vascular embolization in association with an in situ delivery of anti-angiogenic drug. This combination is a promising strategy for the management of arteriovenous malformations and solid tumors. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Comprehensive study of angiogenic factors in women with endometriosis compared to women without endometriosis.

    Science.gov (United States)

    Yerlikaya, Gülen; Balendran, Sukirthini; Pröstling, Katharina; Reischer, Theresa; Birner, Peter; Wenzl, Rene; Kuessel, Lorenz; Streubel, Berthold; Husslein, Heinrich

    2016-09-01

    Endometriosis is a benign gynaecological disease, affecting women during their reproductive years. Angiogenesis represents a crucial step in the pathogenesis of endometriosis, because endometriotic lesions require neovascularization. In this study several angiogenesis-related genes have been studied in the context of endometriosis. Some of the analyzed angiogenic factors as well as their interactions were studied the first time regarding a possible association with endometriosis. This case-control study consisted of 205 biopsies of 114 patients comprising 61 endometriosis patients and 53 control patients. Among them in 29 cases paired samples were obtained. VEGFA, VEGFR2, HIF1A, HGF, NRP1, PDGFB, FGF18, TNFα, TGFB2, EPHB4, EPO and ANG mRNA expression was analyzed by qRT-PCR in ectopic tissue samples, in eutopic endometrium of women with and without endometriosis, and in unaffected peritoneum of women with and without endometriosis. VEGFR2, HIF1A, HGF, PDGFB, NRP1 and EPHB4 are overexpressed in ectopic lesions compared to eutopic tissues. VEGFR2, HGF, PDGFB, NRP1, and EPHB4 showed highest mRNA levels in peritoneal implants, in contrast HIF1A showed the highest expression in ovarian endometriomas. Correlation analyses of angiogenic factors in ectopic lesions revealed the strongest associations between VEGFR2, PDGFB, and EPHB4. We further showed a significant upregulation of VEGFR2, HIF1A and EPHB4 in eutopic endometrium of women with endometriosis compared to that of controls and a trend towards upregulation of HGF. Additionally, a significant downregulation for HIF1A, HGF and EPHB4 was observed in unaffected peritoneal tissues of women with endometriosis compared to controls. We identified new genes (EPHB4 and NRP1) that may contribute to angiogenesis in endometriosis beside known factors (VEGFA, VEGFR2, HIF1A, HGF, and PDGFB). Correlation studies revealed the putative importance of EBHB4 in association with endometriosis. Our analyses support preliminary reports

  17. Syndecan-1 knock-down in decidualized human endometrial stromal cells leads to significant changes in cytokine and angiogenic factor expression patterns

    Directory of Open Access Journals (Sweden)

    Krüssel Jan-Steffen

    2010-11-01

    Full Text Available Abstract Background Successful embryonic implantation depends on a synchronized embryo-maternal dialogue. Chemokines, such as chemokine ligand 1 (CXCL1, play essential roles in the maternal reproductive tract leading to morphological changes during decidualization, mediating maternal acceptance towards the semi-allograft embryo and induction of angiogenesis. Chemokine binding to their classical G-protein coupled receptors is essentially supported by the syndecan (Sdc family of heparan sulfate proteoglycans. The aim of this study was to identify the involvement of Sdc-1 at the embryo-maternal interface regarding changes of the chemokine and angiogenic profile of the decidua during the process of decidualization and implantation in human endometrium. Methods A stable Sdc-1 knock-down was generated in the immortalized human endometrial stromal cell line St-T1 and was named KdS1. The ability of KdS1 to decidualize was proven by Insulin-like growth factor binding 1 (IGFBP1 and prolactin (PRL confirmation on mRNA level before further experiments were carried out. Dot blot protein analyses of decidualized knock-down cells vs non-transfected controls were performed. In order to imitate embryonic implantation, decidualized KdS1 were then incubated with IL-1beta, an embryo secretion product, vs controls. Statistical analyses were performed applying the Student's t-test with p Results The induction of the Sdc-1 knock-down revealed significant changes in cytokine and angiogenic factor expression profiles of dKdS1 vs decidualized controls. Incubation with embryonic IL-1beta altered the expression patterns of KdS1 chemokines and angiogenic factors towards inflammatory-associated molecules and factors involved in matrix regulation. Conclusions Sdc-1 knock-down in human endometrial stroma cells led to fulminant changes regarding cytokine and angiogenic factor expression profiles upon decidualization and imitation of embryonic contact. Sdc-1 appears to play an

  18. Platelet lysate-based pro-angiogenic nanocoatings.

    Science.gov (United States)

    Oliveira, Sara M; Pirraco, Rogério P; Marques, Alexandra P; Santo, Vítor E; Gomes, Manuela E; Reis, Rui L; Mano, João F

    2016-03-01

    Human platelet lysate (PL) is a cost-effective and human source of autologous multiple and potent pro-angiogenic factors, such as vascular endothelial growth factor A (VEGF A), fibroblast growth factor b (FGF b) and angiopoietin-1. Nanocoatings previously characterized were prepared by layer-by-layer assembling incorporating PL with marine-origin polysaccharides and were shown to activate human umbilical vein endothelial cells (HUVECs). Within 20 h of incubation, the more sulfated coatings induced the HUVECS to the form tube-like structures accompanied by an increased expression of angiogenic-associated genes, such as angiopoietin-1 and VEGF A. This may be a cost-effective approach to modify 2D/3D constructs to instruct angiogenic cells towards the formation of neo-vascularization, driven by multiple and synergistic stimulations from the PL combined with sulfated polysaccharides. The presence, or fast induction, of a stable and mature vasculature inside 3D constructs is crucial for new tissue formation and its viability. This has been one of the major tissue engineering challenges, limiting the dimensions of efficient tissue constructs. Many approaches based on cells, growth factors, 3D bioprinting and channel incorporation have been proposed. Herein, we explored a versatile technique, layer-by-layer assembling in combination with platelet lysate (PL), that is a cost-effective source of many potent pro-angiogenic proteins and growth factors. Results suggest that the combination of PL with sulfated polyelectrolytes might be used to introduce interfaces onto 2D/3D constructs with potential to induce the formation of cell-based tubular structures. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Expression of angiogenic switch, cachexia and inflammation factors at the crossroad in undifferentiated thyroid carcinoma with BRAF(V600E).

    Science.gov (United States)

    Husain, Amjad; Hu, Nina; Sadow, Peter M; Nucera, Carmelo

    2016-10-01

    Cachexia is the result of complex metabolic alterations which cause morbidity and mortality in patients with advanced cancers including undifferentiated (anaplastic) thyroid carcinoma (ATC). ATC is a lethal disease with limited therapeutic options and unclear etiology for cachexia. We hypothesize that the BRAF(V600E) oncoprotein triggers microvascular endothelial cell tubule formation (in vitro angiogenesis) by means of factors which play a crucial role in angiogenic switch, inflammation/immune response and cachexia. We use human ATC cells and applied multiplex ELISA assay to screen for and measure angiogenic/cachectic and pro-inflammatory factors in the ATC-derived secretome. We find that vemurafenib anti-BRAF(V600E) therapy significantly reduces secreted VEGFA, VEGFC and IL6 protein levels compared to vehicle-treated ATC cells. As a result, the secretome from vemurafenib-treated ATC cells inhibits microvascular endothelial cell-related in vitro angiogenesis. Furthermore, ATC clinical samples express VEGFA, VEGFC and IL6 proteins. Our results suggest that angiogenic/cachectic and pro-inflammatory/immune response factors could play a crucial role in BRAF(V600E)-positive human ATC aggressiveness. Understanding the extent to which microenvironment-associated angiogenic factors participate in cachexia and cancer metabolism in advanced thyroid cancers will reveal new biomarkers and foster novel therapeutic approaches. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. hCG-dependent regulation of angiogenic factors in human granulosa lutein cells.

    Science.gov (United States)

    Phan, B; Rakenius, A; Pietrowski, D; Bettendorf, H; Keck, C; Herr, D

    2006-07-01

    As prerequisite for development and maintenance of many diseases angiogenesis is of particular interest in medicine. Pathologic angiogenesis takes place in chronic arthritis, collagen diseases, arteriosclerosis, retinopathy associated with diabetes, and particularly in cancers. However, angiogenesis as a physiological process regularly occurs in the ovary. After ovulation the corpus luteum is formed by rapid vascularization of initially avascular granulosa lutein cell tissue. This process is regulated by gonadotropic hormones. In order to gain further insights in the regulatory mechanisms of angiogenesis in the ovary, we investigated these mechanisms in cell culture of human granulosa lutein cells. In particular, we determined the expression and production of several angiogenic factors including tissue inhibitor of matrix metalloproteinases-1 (TIMP-1), Leptin, connective tissue growth factor (CTGF), meningioma-associated complimentary DNA (Mac25), basic fibroblast growth factor (bFGF), and Midkine. In addition, we showed that human chorionic gonadotropin (hCG) has distinct effects on their expression and production. hCG enhances the expression and production of TIMP-1, whereas it downregulates the expression of CTGF and Mac25. Furthermore it decreases the expression of Leptin. Our results provide evidence that hCG determines growth and development of the corpus luteum by mediating angiogenic pathways in human granulosa lutein cells. Hence we describe a further approach to understand the regulation of angiogenesis in the ovary.

  1. Preeclampsia and the Anti-Angiogenic State

    OpenAIRE

    Agarwal, Isha; Karumanchi, S. Ananth

    2011-01-01

    Preeclampsia is a major cause of maternal and fetal morbidity and mortality worldwide, however, its etiology remains unclear. Abnormal placental angiogenesis during pregnancy resulting from high levels of anti-angiogenic factors, soluble Flt1 (sFlt1) and soluble endoglin (sEng), has been implicated in preeclampsia pathogenesis. Accumulating evidence also points to a role for these anti-angiogenic proteins as serum biomarkers for the clinical diagnosis and prediction of preeclampsia. Uncoverin...

  2. Characterizing the angiogenic activity of patients with single ventricle physiology and aortopulmonary collateral vessels.

    Science.gov (United States)

    Sandeep, Nefthi; Uchida, Yutaka; Ratnayaka, Kanishka; McCarter, Robert; Hanumanthaiah, Sridhar; Bangoura, Aminata; Zhao, Zhen; Oliver-Danna, Jacqueline; Leatherbury, Linda; Kanter, Joshua; Mukouyama, Yoh-Suke

    2016-04-01

    Patients with single ventricle congenital heart disease often form aortopulmonary collateral vessels via an unclear mechanism. To gain insights into the pathogenesis of aortopulmonary collateral vessels, we correlated angiogenic factor levels with in vitro activity and angiographic aortopulmonary collateral assessment and examined whether patients with single ventricle physiology have increased angiogenic factors that can stimulate endothelial cell sprouting in vitro. In patients with single ventricle physiology (n = 27) and biventricular acyanotic control patients (n = 21), hypoxia-inducible angiogenic factor levels were measured in femoral venous and arterial plasma at cardiac catheterization. To assess plasma angiogenic activity, we used a 3-dimensional in vitro cell sprouting assay that recapitulates angiogenic sprouting. Aortopulmonary collateral angiograms were graded using a 4-point scale. Compared with controls, patients with single ventricle physiology had increased vascular endothelial growth factor (artery: 58.7 ± 1.2 pg/mL vs 35.3 ± 1.1 pg/mL, P collateral severity. We are the first to correlate plasma angiogenic factor levels with angiography and in vitro angiogenic activity in patients with single ventricle disease with aortopulmonary collaterals. Patients with single ventricle disease have increased stromal-derived factor 1-alpha and soluble fms-like tyrosine kinase-1, and their roles in aortopulmonary collateral formation require further investigation. Plasma factors and angiogenic activity correlate poorly with aortopulmonary collateral severity in patients with single ventricles, suggesting complex mechanisms of angiogenesis. Published by Elsevier Inc.

  3. Angiogenic biomarkers in pregnancy

    DEFF Research Database (Denmark)

    Rasmussen, Lene G; Lykke, Jacob A; Staff, Anne C

    2015-01-01

    We review diagnostic and predictive roles of the angiogenic proteins placental growth factor, soluble fms-like tyrosine kinase 1, and soluble endoglin in preeclampsia, and their association with future cardiovascular disease, diabetes, and breast cancer. Specific patterns of these proteins repres...

  4. Late acute graft-versus-host disease: a prospective analysis of clinical outcomes and circulating angiogenic factors.

    Science.gov (United States)

    Holtan, Shernan G; Khera, Nandita; Levine, John E; Chai, Xiaoyu; Storer, Barry; Liu, Hien D; Inamoto, Yoshihiro; Chen, George L; Mayer, Sebastian; Arora, Mukta; Palmer, Jeanne; Flowers, Mary E D; Cutler, Corey S; Lukez, Alexander; Arai, Sally; Lazaryan, Aleksandr; Newell, Laura F; Krupski, Christa; Jagasia, Madan H; Pusic, Iskra; Wood, William; Renteria, Anne S; Yanik, Gregory; Hogan, William J; Hexner, Elizabeth; Ayuk, Francis; Holler, Ernst; Watanaboonyongcharoen, Phandee; Efebera, Yvonne A; Ferrara, James L M; Panoskaltsis-Mortari, Angela; Weisdorf, Daniel; Lee, Stephanie J; Pidala, Joseph

    2016-11-10

    Late acute (LA) graft-versus-host disease (GVHD) is persistent, recurrent, or new-onset acute GVHD symptoms occurring >100 days after allogeneic hematopoietic cell transplantation (HCT). The aim of this analysis is to describe the onset, course, morbidity, and mortality of and examine angiogenic factors associated with LA GVHD. A prospective cohort of patients (n = 909) was enrolled as part of an observational study within the Chronic GVHD Consortium. Eighty-three patients (11%) developed LA GVHD at a median of 160 (interquartile range, 128-204) days after HCT. Although 51 out of 83 (61%) achieved complete or partial response to initial therapy by 28 days, median failure-free survival was only 7.1 months (95% confidence interval, 3.4-19.1 months), and estimated overall survival (OS) at 2 years was 56%. Given recently described alterations of circulating angiogenic factors in classic acute GVHD, we examined whether alterations in such factors could be identified in LA GVHD. We first tested cases (n = 55) and controls (n = 50) from the Chronic GVHD Consortium and then validated the findings in 37 cases from Mount Sinai Acute GVHD International Consortium. Plasma amphiregulin (AREG; an epidermal growth factor [EGF] receptor ligand) was elevated, and an AREG/EGF ratio at or above the median was associated with inferior OS and increased nonrelapse mortality in both cohorts. Elevation of AREG was detected in classic acute GVHD, but not chronic GVHD. These prospective data characterize the clinical course of LA GVHD and demonstrate alterations in angiogenic factors that make LA GVHD biologically distinct from chronic GVHD. © 2016 by The American Society of Hematology.

  5. Placental growth factor neutralising antibodies give limited anti-angiogenic effects in an in vitro organotypic angiogenesis model.

    Science.gov (United States)

    Brave, Sandra R; Eberlein, Cath; Shibuya, Masabumi; Wedge, Stephen R; Barry, Simon T

    2010-12-01

    Vascular Endothelial Growth Factor Receptor (VEGFR) mediated signalling drives angiogenesis. This is predominantly attributed to the activity of VEGFR-2 following binding of VEGF-A. Whether other members of the VEGFR and ligand families such as VEGFR-1 and its ligand Placental Growth Factor (PlGF) can also contribute to developmental and pathological angiogenesis is less clear. We explored the function of PlGF in VEGF-A dependent angiogenesis using an in vitro co-culture assay in which endothelial cells are cultured on a fibroblast feeder layer. In the presence of 2% FS MCDB media (containing limited growth factors) in vitro endothelial tube formation is driven by endogenous angiogenic stimuli which are produced by the fibroblast and endothelial cells. Under these conditions independent sequestration of either free VEGF-A or PlGF with polyclonal and monoclonal antibodies inhibited tube formation suggesting that both ligands are required to drive an angiogenic response. Endothelial tube formation could only be driven within this assay by the addition of exogenous VEGF-A, VEGF-E or VEGF-A/PlGF heterodimer, but not by PlGF alone, implying that activation of either VEGFR-2/VEGFR-1 heterodimers or VEGFR-2 homodimers were responsible for eliciting an angiogenic response directly, but not VEGFR-1 homodimers. In contrast to results obtained with an endogenous angiogenic drive, sequestration of PlGF did not affect endothelial tube formation when the assay was driven by 1 ng/ml exogenous VEGF-A. These data suggest that although neutralising PlGF can be shown to reduce endothelial tube formation in vitro, this effect is only observed under restricted culture conditions and is influenced by VEGF-A. Such data questions whether neutralising PlGF would have a therapeutic benefit in vivo in the presence of pathological concentrations of VEGF-A.

  6. Circulating Angiogenic Growth Factors in Diabetes Patients with Peripheral Arterial Disease and Exertional Leg Pain in Ghana

    Directory of Open Access Journals (Sweden)

    Kwame Yeboah

    2017-01-01

    Full Text Available Objective. Peripheral arterial disease (PAD is a common complication of diabetes, associated with impairment in angiogenesis. Angiogenesis is regulated by angiogenic growth factors such as angiopoietin 1 (Ang-1, Ang-2, and vascular endothelial growth factor (VEGF. We studied the association between angiogenic growth factors versus PAD and exertional leg symptoms in diabetes patients in Ghana. Method. In this cross-sectional study, ankle-brachial index was measured with oscillometrically and exertional leg symptoms were screened with Edinburgh claudication questionnaire in 140 diabetes patients and 110 nondiabetes individuals. Circulating levels of Ang-1, Ang-2, and VEGF were measured with immunosorbent assay. Results. The prevalence of PAD and exertional leg pain was 16.8% and 24.8%, respectively. Compared to non-PAD participants, PAD patients had higher VEGF levels [85.8 (37.5–154.5 versus 57.7 (16.6–161.1 p=0.032] and lower Ang-1 levels [31.3 (24.8–42.6 versus 40.9 (28.2–62.1, p=0.017]. In multivariable logistic regression, patients with exertional leg pain had increased the odds of plasma Ang-2 levels [OR (95% CI: 2.08 (1.08–6.41, p=0.036]. Conclusion. Diabetes patients with PAD and exertional leg pain have imbalance in angiogenic growth factors, indicating impaired angiogenesis. In patients with exertional leg pains, Ang-2 may be an important biomarker.

  7. Leptin’s Pro-Angiogenic Signature in Breast Cancer

    International Nuclear Information System (INIS)

    Gonzalez-Perez, Ruben Rene; Lanier, Viola; Newman, Gale

    2013-01-01

    Obesity is linked to increased incidence of breast cancer. The precise causes and mechanisms of these morbid relationships are unknown. Contradictory data on leptin angiogenic actions have been published. However, accumulating evidence would suggest that leptin’s pro-angiogenic effects in cancer play an essential role in the disease. Leptin, the main adipokine secreted by adipose tissue, is also abnormally expressed together with its receptor (OB-R) by breast cancer cells. Leptin induces proliferation and angiogenic differentiation of endothelial cells upregulates VEGF/VEGFR2 and transactivates VEGFR2 independent of VEGF. Leptin induces two angiogenic factors: IL-1 and Notch that can increase VEGF expression. Additionally, leptin induces the secretion and synthesis of proteases and adhesion molecules needed for the development of angiogenesis. Leptin’s paracrine actions can further affect stromal cells and tumor associated macrophages, which express OB-R and secrete VEGF and IL-1, respectively. A complex crosstalk between leptin, Notch and IL-1 (NILCO) that induces VEGF/VEGFR2 is found in breast cancer. Leptin actions in tumor angiogenesis could amplify, be redundant and/or compensatory to VEGF signaling. Current failure of breast cancer anti-angiogenic therapies emphasizes the necessity of targeting the contribution of other pro-angiogenic factors in breast cancer. Leptin’s impact on tumor angiogenesis could be a novel target for breast cancer, especially in obese patients. However, more research is needed to establish the importance of leptin in tumor angiogenesis. This review is focused on updated information on how leptin could contribute to tumor angiogenesis

  8. Angiogenic factors for prediction of preeclampsia and intrauterine growth restriction onset in high-risk women: AngioPred study.

    Science.gov (United States)

    Raia-Barjat, Tiphaine; Prieux, Carole; Gris, Jean-Christophe; Chapelle, Céline; Laporte, Silvy; Chauleur, Céline

    2017-09-22

    The study aimed to compare the level of two angiogenic factors, soluble fms-like tyrosine kinase-1 (sFlt1) and soluble endoglin (sEng), for the prediction of preeclampsia and intrauterine growth restriction in high-risk pregnant women. A prospective multicenter cohort study of 200 pregnant patients was conducted between June 2008 and October 2010. sFlt1 and sEng were measured by enzyme-linked immunosorbent assay. Forty-five patients developed a placenta-mediated adverse pregnancy outcome. Plasma levels of sFlt1 and sEng were higher in patients who will experience a preeclampsia at 28, 32, and 36 weeks compared with patients with no complication. The same results were observed for intrauterine growth restriction. Plasma levels of sFlt1 and sEng were not significantly different for patients with preeclampsia compare to patients with intrauterine growth restriction. Patients with early pre-eclampsia (PE) had very high rates of angiogenic factors at 20, 24, and 28 weeks. Patients with late PE and early and late intrauterine growth retardation (IUGR) had high rates at 32 and 36 weeks. In high-risk women, angiogenic factors are disturbed before the onset of preeclampsia and this is true for intrauterine growth restriction.

  9. Haploinsufficiency of the insulin-like growth factor-1 receptor enhances endothelial repair and favorably modifies angiogenic progenitor cell phenotype.

    Science.gov (United States)

    Yuldasheva, Nadira Y; Rashid, Sheikh Tawqeer; Haywood, Natalie J; Cordell, Paul; Mughal, Romana; Viswambharan, Hema; Imrie, Helen; Sukumar, Piruthivi; Cubbon, Richard M; Aziz, Amir; Gage, Matthew; Mbonye, Kamatamu Amanda; Smith, Jessica; Galloway, Stacey; Skromna, Anna; Scott, D Julian A; Kearney, Mark T; Wheatcroft, Stephen B

    2014-09-01

    Defective endothelial regeneration predisposes to adverse arterial remodeling and is thought to contribute to cardiovascular disease in type 2 diabetes mellitus. We recently demonstrated that the type 1 insulin-like growth factor receptor (IGF1R) is a negative regulator of insulin sensitivity and nitric oxide bioavailability. In this report, we examined partial deletion of the IGF1R as a potential strategy to enhance endothelial repair. We assessed endothelial regeneration after wire injury in mice and abundance and function of angiogenic progenitor cells in mice with haploinsufficiency of the IGF1R (IGF1R(+/-)). Endothelial regeneration after arterial injury was accelerated in IGF1R(+/-) mice. Although the yield of angiogenic progenitor cells was lower in IGF1R(+/-) mice, these angiogenic progenitor cells displayed enhanced adhesion, increased secretion of insulin-like growth factor-1, and enhanced angiogenic capacity. To examine the relevance of IGF1R manipulation to cell-based therapy, we transfused IGF1R(+/-) bone marrow-derived CD117(+) cells into wild-type mice. IGF1R(+/-) cells accelerated endothelial regeneration after arterial injury compared with wild-type cells and did not alter atherosclerotic lesion formation. Haploinsufficiency of the IGF1R is associated with accelerated endothelial regeneration in vivo and enhanced tube forming and adhesive potential of angiogenic progenitor cells in vitro. Partial deletion of IGF1R in transfused bone marrow-derived CD117(+) cells enhanced their capacity to promote endothelial regeneration without altering atherosclerosis. Our data suggest that manipulation of the IGF1R could be exploited as novel therapeutic approach to enhance repair of the arterial wall after injury. © 2014 American Heart Association, Inc.

  10. Effect of estradiol on the expression of angiogenic factors in epithelial ovarian cancer.

    Science.gov (United States)

    Valladares, Macarena; Plaza-Parrochia, Francisca; Lépez, Macarena; López, Daniela; Gabler, Fernando; Gayan, Patricio; Selman, Alberto; Vega, Margarita; Romero, Carmen

    2017-11-01

    Ovarian cancer presents a high angiogenesis (formation of new blood vessels) regulated by pro-angiogenic factors, mainly vascular endothelial growth factor (VEGF) and nerve growth factor (NGF). An association between endogenous levels of estrogen and increased risk of developing ovarian cancer has been reported. Estrogen action is mediated by the binding to its specific receptors (ERα and ERβ), altered ERα/ERβ ratio may constitute a marker of ovarian carcinogenesis progression. To determine the effect of estradiol through ERα on the expression of NGF and VEGF in epithelial ovarian cancer (EOC). Levels of phosphorylated estrogen receptor alpha (pERα) were evaluated in well, moderate and poorly differentiated EOC samples (EOC-I, EOC-II, EOC-III). Additionally, ovarian cancer explants were stimulated with NGF (0, 10 and 100 ng/ml) and ERα, ERβ and pERα levels were detected. Finally, human ovarian surface epithelial (HOSE) and epithelial ovarian cancer (A2780) cell lines were stimulated with estradiol, where NGF and VEGF protein levels were evaluated. In tissues, ERs were detected being pERα levels significantly increased in EOC-III samples compared with EOC-I (p<0.05). Additionally, ovarian explants treated with NGF increased pERα levels meanwhile total ERα and ERβ levels did not change. Cell lines stimulated with estradiol revealed an increase of NGF and VEGF protein levels (p<0.05). Estradiol has a positive effect on pro-angiogenic factors such as NGF and VEGF expression in EOC, probably through the activation of ERα; generating a positive loop induced by NGF increasing pERα levels in epithelial ovarian cells.

  11. Radiosensitivity of angiogenic and mitogenic factors in human amniotic membrane

    International Nuclear Information System (INIS)

    Deocaris, Custer C.; De Guzman, Zenaida M.; Deocaris, Chester C.; Jacinto, Sonia D.

    2003-01-01

    Amniotic membrane as a temporary biological dressing remains as a beneficial and cost-effective means of treating burns in developing countries. This medical application is attributed mainly to placental structural and biochemical features that are important for maintaining proper embryonic development. Since fresh amnions are nevertheless for straightforward clinical use and for preservation, radiation-sterilization is been performed to improve the safety of this placental material. However, like any other sterilization method, gamma-radiation may induce physical and chemical changes that may influence the biological property of the material. Thus, the aim of this study is to compare the effects of various levels of radiation-sterilization protocols for human amnions on angiogenic (neovascularization) and epithelial-mitogenic activities, both of which are physiological processes fundamental to wound healing. Water-soluble extract of non-irradiated amnions demonstrates a strong stimulatory effect on both cell proliferation and angiogenesis. No change in biological activity is seen in amnions irradiated at 25 kGy, the sterilization dose used by the Philippine Nuclear Research Institute (PNRI) for the production of radiation-sterilized human amniotic membranes (RSHAM). However, it appears that amniotic angiogenic factors are more radiosensitive than its mitogenic components, evident from the depressed vascularization of the chorioallantoic membrane (CAM) exposed to 35 kGy-irradiated amnions. The dose of 35 kGy is at present the medical sterilization dose used at the Central Tissue Bank in Warsaw (Poland) for the preparation of their amnion allografts. (Authors)

  12. Induction of Pro-Angiogenic Factors by Pregnancy-Specific Glycoproteins and Studies on Receptor Usage

    Science.gov (United States)

    2008-01-01

    induce pro- angiogenic factors during pregancy . To address this, the specific aims of this study are to: 1. Examine the cytokine expression of monocytes...dialyzed into a 20 mM sodium phosphate...it was processed as described below. 68 PSG1d-Flag and PSG22N1A were dialyzed into a 20 mM sodium phosphate buffer containing 20 mM imidazole

  13. Controllable mineral coatings on scaffolds as carriers for growth factor release for bone tissue engineering

    Science.gov (United States)

    Saurez-Gonzalez, Darilis

    The work presented in this document, focused on the development and characterization of mineral coatings on scaffold materials to serve as templates for growth factor binding and release. Mineral coatings were formed using a biomimetic approach that consisted in the incubation of scaffolds in modified simulated body fluids (mSBF). To modulate the properties of the mineral coating, which we hypothesized would dictate growth factor release, we used carbonate (HCO3) concentration in mSBF of 4.2 mM, 25mM, and 100mM. Analysis of the mineral coatings formed using scanning electron microscopy indicated growth of a continuous layer of mineral with different morphologies. X-ray diffraction analysis showed peaks associated with hydroxyapatite. FTIR data confirmed the substitution of HCO3 in the mineral. As the extent of HCO3 substitution increased, the coating exhibited more rapid dissolution kinetics in an environment deficient in calcium and phosphate. The mineral coatings provided an effective mechanism for bioactive growth factor binding and release. Peptide versions of vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP2) were bound with efficiencies up to 90% to mineral-coated PCL scaffolds. Recombinant human vascular endothelial growth factor (rhVEGF) also bound to mineral coated scaffolds with lower efficiency (20%) and released with faster release kinetics compared to peptides growth factor. Released rhVEGF induced human umbilical vein endothelial cell (HUVEC) proliferation in vitro and enhanced blood vessel formation in vivo in an intramuscular sheep model. In addition to the use the mineral coatings for single growth factor release, we expanded the concept and bound both an angiogenic (rhVEGF) and osteogenic (mBMP2) growth factor by a simple double dipping process. Sustained release of both growth factors was demonstrated for over 60 days. Released rhVEGF enhanced blood vessel formation in vivo in sheep and its biological activity was

  14. Extravillous trophoblast invasion in placenta accreta is associated with differential local expression of angiogenic and growth factors: a cross-sectional study.

    Science.gov (United States)

    Duzyj, C M; Buhimschi, I A; Laky, C A; Cozzini, G; Zhao, G; Wehrum, M; Buhimschi, C S

    2018-02-22

    Placenta accreta is clinically associated with maternal uterine scar. Our objective was to investigate the biochemical contribution of maternal scarring to hyperinvasive trophoblast. We hypothesised that trophoblast over-invasion in placenta accreta is associated with aberrant invasion-site signalling of growth and angiogenic factors known to be involved in wound healing and promotion of cell invasion through the epithelial to mesenchymal cellular programme. Cross-sectional series. Yale-New Haven Hospital. Women with histologically confirmed normal and abnormal placentation. Placental invasion site tissue sections were immunostained for endoglin and other angiogenic regulators, and transforming growth factor β (TGFβ) proteins. Maternal serum endoglin, and the vascular endothelial growth factor (VEGF) mediators hypoxia-inducible factor-1α (HIF1α) and endostatin, were assessed using immunoassay. Differences in median H-score by immunostaining and in mean serum level by immunoassay. By immunostaining, placenta accreta samples demonstrated intervillous endoglin shedding and increased trophoblast expression of its cleavage protein matrix metalloproteinase-14. Absent decidual HIF1α and endostatin were observed in areas of VEGF upregulation. TGFβ1 was present in myocytes but not in collagen bundles into which accreta trophoblast invaded. Maternal serum endoglin decreased in praevia and accreta when corrected for gestational age. Angiogenic and growth factors at the placental invasion site are altered in accreta, both by decidual absence and within myometrial scar. We postulate this promotes the invasive phenotype of placenta accreta by activating hyperinvasive trophoblast and by dysregulating placental vascular remodelling. Yale Department of Obstetrics, Gynecology and Reproductive Sciences funds. Placenta accreta histology shows dysregulation of angiogenic and growth factors. © 2018 Royal College of Obstetricians and Gynaecologists.

  15. A stromal cell-derived factor-1 releasing matrix enhances the progenitor cell response and blood vessel growth in ischaemic skeletal muscle

    Directory of Open Access Journals (Sweden)

    D Kuraitis

    2011-09-01

    Full Text Available Although many regenerative cell therapies are being developed to replace or regenerate ischaemic muscle, the lack of vasculature and poor persistence of the therapeutic cells represent major limiting factors to successful tissue restoration. In response to ischaemia, stromal cell-derived factor-1 (SDF-1 is up-regulated by the affected tissue to stimulate stem cell-mediated regenerative responses. Therefore, we encapsulated SDF-1 into alginate microspheres and further incorporated these into an injectable collagen-based matrix in order to improve local delivery. Microsphere-matrix impregnation reduced the time for matrix thermogelation, and also increased the viscosity reached. This double-incorporation prolonged the release of SDF-1, which maintained adhesive and migratory bioactivity, attributed to chemotaxis in response to SDF-1. In vivo, treatment of ischaemic hindlimb muscle with microsphere-matrix led to increased mobilisation of bone marrow-derived progenitor cells, and also improved recruitment of angiogenic cells expressing the SDF-1 receptor (CXCR4 from bone marrow and local tissues. Both matrix and SDF-1-releasing matrix were successful at restoring perfusion, but SDF-1 treatment appeared to play an earlier role, as evidenced by arterioles that are phenotypically older and by increased angiogenic cytokine production, stimulating the generation of a qualitative microenvironment for a rapid and therefore more efficient regeneration. These results support the release of implanted SDF-1 as a promising method for enhancing progenitor cell responses and restoring perfusion to ischaemic tissues via neovascularisation.

  16. HIF-1α effects on angiogenic potential in human small cell lung carcinoma

    Directory of Open Access Journals (Sweden)

    Xia Wanli

    2011-08-01

    Full Text Available Abstract Background Hypoxia-inducible factor-1 alpha (HIF-1α maybe an important regulatory factor for angiogenesis of small cell lung cancer (SCLC. Our study aimed to investigate the effect of HIF-1α on angiogenic potential of SCLC including two points: One is the effect of HIF-1α on the angiogenesis of SCLC in vivo. The other is the regulation of angiogenic genes by HIF-1α in vitro and in vivo. Methods In vivo we used an alternative method to study the effect of HIF-1a on angiogenic potential of SCLC by buliding NCI-H446 cell transplantation tumor on the chick embryo chorioallantoic membrane (CAM surface. In vitro we used microarray to screen out the angiogenic genes regulated by HIF-1a and tested their expression level in CAM transplantation tumor by RT-PCR and Western-blot analysis. Results In vivo angiogenic response surrounding the SCLC transplantation tumors in chick embryo chorioallantoic membrane (CAM was promoted after exogenous HIF-1α transduction (p In vitro the changes of angiogenic genes expression induced by HIF-1α in NCI-H446 cells were analyzed by cDNA microarray experiments. HIF-1α upregulated the expression of angiogenic genes VEGF-A, TNFAIP6, PDGFC, FN1, MMP28, MMP14 to 6.76-, 6.69-, 2.26-, 2.31-, 4.39-, 2.97- fold respectively and glycolytic genes GLUT1, GLUT2 to2.98-, 3.74- fold respectively. In addition, the expression of these angiogenic factors were also upregulated by HIF-1α in the transplantion tumors in CAM as RT-PCR and Western-blot analysis indicated. Conclusions These results indicated that HIF-1α may enhance the angiogenic potential of SCLC by regulating some angiogenic genes such as VEGF-A, MMP28 etc. Therefore, HIF-1α may be a potential target for the gene targeted therapy of SCLC.

  17. Key endothelial cell angiogenic mechanisms are stimulated by the circulating milieu in sickle cell disease and attenuated by hydroxyurea

    Science.gov (United States)

    Lopes, Flavia C. M.; Traina, Fabiola; Almeida, Camila B.; Leonardo, Flavia C.; Franco-Penteado, Carla F.; Garrido, Vanessa T.; Colella, Marina P.; Soares, Raquel; Olalla-Saad, Sara T.; Costa, Fernando F.; Conran, Nicola

    2015-01-01

    As hypoxia-induced inflammatory angiogenesis may contribute to the manifestations of sickle cell disease, we compared the angiogenic molecular profiles of plasma from sickle cell disease individuals and correlated these with in vitro endothelial cell-mediated angiogenesis-stimulating activity and in vivo neovascularization. Bioplex demonstrated that plasma from patients with steady-state sickle cell anemia contained elevated concentrations of pro-angiogenic factors (angiopoietin-1, basic fibroblast growth factor, vascular endothelial growth factor, vascular endothelial growth factor-D and placental growth factor) and displayed potent pro-angiogenic activity, significantly increasing endothelial cell proliferation, migration and capillary-like structure formation. In vivo neovascularization of Matrigel plugs was significantly greater in sickle cell disease mice than in non-sickle cell disease mice, consistent with an up-regulation of angiogenesis in the disease. In plasma from patients with hemoglobin SC disease without proliferative retinopathy, anti-angiogenic endostatin and thrombospondin-2 were significantly elevated. In contrast, plasma from hemoglobin SC individuals with proliferative retinopathy had a pro-angiogenic profile and more significant effects on endothelial cell proliferation and capillary formation than plasma from patients without retinopathy. Hydroxyurea therapy was associated with significant reductions in plasma angiogenic factors and inhibition of endothelial cell-mediated angiogenic mechanisms and neovascularization. Thus, individuals with sickle cell anemia or hemoglobin SC disease with retinopathy present a highly angiogenic circulating milieu, capable of stimulating key endothelial cell-mediated angiogenic mechanisms. Combination anti-angiogenic therapy to prevent the progression of unregulated neovascularization and associated manifestations in sickle cell disease, such as pulmonary hypertension, may be indicated; furthermore, the

  18. Correlation between spontaneous apoptosis and the expression of angiogenic factors in advanced gastric adenocarcinoma.

    Science.gov (United States)

    Ikeguchi, M; Cai, J; Fukuda, K; Oka, S; Katano, K; Tsujitani, S; Maeta, M; Kaibara, N

    2001-06-01

    The aim of this study was to investigate whether angiogenic factors influence the occurrence of spontaneous apoptosis in advanced gastric cancer. The apoptotic indices (AIs) of 97 tumors from 97 patients with advanced gastric cancer (pT3, pN0, pM0, Stage II) were analyzed by the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate biotin nick end labeling (TUNEL) method. Intratumoral microvessel densities (IMVDs) of tumors stained with anti-CD34 monoclonal antibody were quantified under x 200 magnification using computer-assisted image analysis. The expressions of angiogenic factors, such as vascular endothelial growth factor (VEGF), thymidine phosphorylase (dThdPase), transforming growth factor-alpha (TGF-alpha), and p53 were analyzed immunohistochemically and compared with IMVDs and AIs. The mean IMVD of the 97 tumors was 365/mm2 (range 147-990/mm2). The mean AI of tumors was 2.1% (range 0-11.3%). A significant inverse correlation between the AIs and the IMVDs was shown (p = -0.278, P = 0.0064). The mean IMVDs of tumors with high expressions of dThdPase, TGF-alpha, or p53 were significantly higher than those of tumors with low expressions of these factors. The mean AI of tumors with high expressions of dThdPase was significantly lower than that of tumors with low expressions of dThdPase (P = 0.023). However, no significant correlations were detected between AIs and the expression levels of VEGF, TGF-alpha, or p53. In gastric cancer, dThdPase may play an important role in tumor progression by increasing microvessels and by suppressing apoptosis of cancer cells.

  19. Thrombospondins deployed by thrombopoietic cells determine angiogenic switch and extent of revascularization

    Science.gov (United States)

    Kopp, Hans-Georg; Hooper, Andrea T.; Broekman, M. Johan; Avecilla, Scott T.; Petit, Isabelle; Luo, Min; Milde, Till; Ramos, Carlos A.; Zhang, Fan; Kopp, Tabitha; Bornstein, Paul; Jin, David K.; Marcus, Aaron J.; Rafii, Shahin

    2006-01-01

    Thrombopoietic cells may differentially promote or inhibit tissue vascularization by releasing both pro- and antiangiogenic factors. However, the molecular determinants controlling the angiogenic phenotype of thrombopoietic cells remain unknown. Here, we show that expression and release of thrombospondins (TSPs) by megakaryocytes and platelets function as a major antiangiogenic switch. TSPs inhibited thrombopoiesis, diminished bone marrow microvascular reconstruction following myelosuppression, and limited the extent of revascularization in a model of hind limb ischemia. We demonstrate that thrombopoietic recovery following myelosuppression was significantly enhanced in mice deficient in both TSP1 and TSP2 (TSP-DKO mice) in comparison with WT mice. Megakaryocyte and platelet levels in TSP-DKO mice were rapidly restored, thereby accelerating revascularization of myelosuppressed bone marrow and ischemic hind limbs. In addition, thrombopoietic cells derived from TSP-DKO mice were more effective in supporting neoangiogenesis in Matrigel plugs. The proangiogenic activity of TSP-DKO thrombopoietic cells was mediated through activation of MMP-9 and enhanced release of stromal cell–derived factor 1. Thus, TSP-deficient thrombopoietic cells function as proangiogenic agents, accelerating hemangiogenesis within the marrow and revascularization of ischemic hind limbs. As such, interference with the release of cellular stores of TSPs may be clinically effective in augmenting neoangiogenesis. PMID:17143334

  20. Tumor necrosis factor-alpha but not interleukin-1 beta or interleukin-8 concentrations correlate with angiogenic activity of peritoneal fluid from patients with minimal to mild endometriosis

    NARCIS (Netherlands)

    Maas, J. W.; Calhaz-Jorge, C.; ter Riet, G.; Dunselman, G. A.; de Goeij, A. F.; Struijker-Boudier, H. A.

    2001-01-01

    OBJECTIVE: To assess the angiogenic activity of peritoneal fluid in women with minimal to mild endometriosis and to investigate the relationship between this activity and the concentration of macrophage-derived angiogenic factors and clinical variables, such as phase of menstrual cycle, type of

  1. [Concentration of selected angiogenic factors in serum and peritoneal fluid of women with endometriosis].

    Science.gov (United States)

    Gogacz, Marek; Gałczyński, Krzysztof; Romanek-Piva, Katarzyna; Winkler, Izabela; Rechberger, Tomasz; Adamiak-Godlewska, Aneta

    2015-03-01

    Endometriosis is a sex hormone-dependent and successively progressing gynecological disease, characterized by the presence of endometrial tissue outside the uterus. The etiology of endometriosis is known to be multifactorial, and its growth depends on immunological, hormonal, genetic and environmental factors. Angiogenesis plays a key role in implantation and growth of endometriotic lesions, as well as in adhesion formation. Physiologically angiogenesis is responsible for neoangiogenesis and recruitment of new capillaries from the already existing capillaries. It is well-documented that altered angiogenesis provokes improper follicular maturation, infertility recurrent miscarriages, ovarian hyperstimulation syndrome, and carcinogenesis. Factors stimulating angionesis include angiogenin, vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF). The aim of the study was to analyze angiogenic factor concentration (angiogenin, VEGF, FGF) in blood serum and peritoneal fluid in patients with diagnosed endometriosis and idiopathic infertility. A total of 39 patients were recruited for the study including 19 patients (study group) diagnosed with endometriosis during the laparoscopic procedure and 20 patients (control group) with idiopathic infertility and no morphologic changes within the pelvis revealed during the laparoscopic procedure. All patients underwent laparoscopy during the follicular phase of the menstrual cycle. Vein blood sample was obtained before the procedure and during laparoscopy the entire peritoneal fluid was aspirated for further measurement of VEGF, FGF and angiogenin concentrations. Angiogenin concentration in peritoneal fluid was statistically higher in patient with idiopathic infertility in comparison to endometriosis (pendometriosis, but no statistical significance was found. VEGF and FGF concentration in blood serum and peritoneal fluid was similar in both groups (p>0.05). There were no significant differences between serum

  2. Angiogenic Factor Profiles in Pregnant Women With a History of Early-Onset Severe Preeclampsia Receiving Low-Molecular-Weight Heparin Prophylaxis.

    Science.gov (United States)

    Lecarpentier, Edouard; Gris, Jean Christophe; Cochery-Nouvellon, Eva; Mercier, Erick; Touboul, Cyril; Thadhani, Ravi; Karumanchi, S Ananth; Haddad, Bassam

    2018-01-01

    To evaluate whether daily low-molecular-weight (LMW) heparin prophylaxis during pregnancy alters profile of circulating angiogenic factors that have been linked with the pathogenesis of preeclampsia and fetal growth restriction. This is a planned ancillary study of the Heparin-Preeclampsia trial, a randomized trial in pregnant women with a history of severe early-onset preeclampsia (less than 34 weeks of gestation). In the parent study, all women were treated with aspirin and then randomized to receive LMW heparin or aspirin alone. In this study, we measured serum levels of circulating angiogenic factors (soluble fms-like tyrosine kinase-1, placental growth factor, and soluble endoglin by immunoassay) at the following gestational windows: 10-13 6/7 weeks, 14-17 6/7 weeks, 18-21 6/7 weeks, 22-25 6/7 weeks, 26-29 6/7 weeks, 30-33 6/7 weeks, and 34-37 6/7 weeks. Samples were available from 185 patients: LMW heparin+aspirin (n=92) and aspirin alone (n=93). The two groups had comparable baseline characteristics and had similar adverse composite outcomes (35/92 [38.0%] compared with 36/93 [38.7%]; P=.92). There were no significant differences in serum levels of soluble fms-like tyrosine kinase-1, placental growth factor, and soluble endoglin in the participants who received LMW heparin and aspirin compared with those who received aspirin alone regardless of gestational age period. Finally, women who developed an adverse composite outcome at less than 34 weeks of gestation demonstrated significant alterations in serum angiogenic profile as early as 10-13 6/7 weeks that was most dramatic 6-8 weeks preceding delivery. Prophylactic LMW heparin therapy when beginning from before 14 weeks of gestation with aspirin during pregnancy is not associated with an improved angiogenic profile. This may provide a molecular explanation for the lack of clinical benefit noted in recent trials. ClinicalTrials.gov, NCT00986765.

  3. Nanodiamond-based injectable hydrogel for sustained growth factor release: Preparation, characterization and in vitro analysis.

    Science.gov (United States)

    Pacelli, Settimio; Acosta, Francisca; Chakravarti, Aparna R; Samanta, Saheli G; Whitlow, Jonathan; Modaresi, Saman; Ahmed, Rafeeq P H; Rajasingh, Johnson; Paul, Arghya

    2017-08-01

    Nanodiamonds (NDs) represent an emerging class of carbon nanomaterials that possess favorable physical and chemical properties to be used as multifunctional carriers for a variety of bioactive molecules. Here we report the synthesis and characterization of a new injectable ND-based nanocomposite hydrogel which facilitates a controlled release of therapeutic molecules for regenerative applications. In particular, we have formulated a thermosensitive hydrogel using gelatin, chitosan and NDs that provides a sustained release of exogenous human vascular endothelial growth factor (VEGF) for wound healing applications. Addition of NDs improved the mechanical properties of the injectable hydrogels without affecting its thermosensitive gelation properties. Biocompatibility of the generated hydrogel was verified by in vitro assessment of apoptotic gene expressions and anti-inflammatory interleukin productions. NDs were complexed with VEGF and the inclusion of this complex in the hydrogel network enabled the sustained release of the angiogenic growth factor. These results suggest for the first time that NDs can be used to formulate a biocompatible, thermosensitive and multifunctional hydrogel platform that can function both as a filling agent to modulate hydrogel properties, as well as a delivery platform for the controlled release of bioactive molecules and growth factors. One of the major drawbacks associated with the use of conventional hydrogels as carriers of growth factors is their inability to control the release kinetics of the loaded molecules. In fact, in most cases, a burst release is inevitable leading to diminished therapeutic effects and unsuccessful therapies. As a potential solution to this issue, we hereby propose a strategy of incorporating ND complexes within an injectable hydrogel matrix. The functional groups on the surface of the NDs can establish interactions with the model growth factor VEGF and promote a prolonged release from the polymer network

  4. Anti-inflammatory and angiogenic activity of polysaccharide extract obtained from Tibetan kefir.

    Science.gov (United States)

    Prado, Maria Rosa Machado; Boller, Christian; Zibetti, Rosiane Guetter Mello; de Souza, Daiany; Pedroso, Luciana Lopes; Soccol, Carlos Ricardo

    2016-11-01

    The search for new bioactive molecules is a driving force for research pharmaceutical industries, especially those molecules obtained from fermentation. The molecules possessing angiogenic and anti-inflammatory attributes have attracted attention and are the focus of this study. Angiogenic activity from kefir polysaccharide extract, via chorioallantoic membrane assay, exhibited a pro-angiogenic effect compared with vascular endothelial factor (pro-angiogenic) and hydrocortisone (anti-angiogenic) activity as standards with an EC50 of 192ng/mL. In terms of anti-inflammatory activity determined via hyaluronidase enzyme assay, kefir polysaccharide extract inhibited the enzyme with a minimal activity of 2.08mg/mL and a maximum activity of 2.57mg/mL. For pharmaceutical purposes, kefir polysaccharide extract is considered to be safe because it does not inhibit VERO cells in cytotoxicity assays. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Pro-angiogenic cell-based therapy for the treatment of ischemic cardiovascular diseases.

    Science.gov (United States)

    Silvestre, Jean-Sébastien

    2012-10-01

    Pro-angiogenic cell therapy has emerged as a promising option to treat patients with acute myocardial infarction or with critical limb ischemia. Exciting pre-clinical studies have prompted the initiation of numerous clinical trials based on administration of stem/progenitor cells with pro-angiogenic potential. Most of the clinical studies performed so far have used bone marrow-derived or peripheral blood-derived mononuclear cells and showed, overall, a modest but significant benefit on tissue remodeling and function in patients with ischemic diseases. These mixed results pave the way for the development of strategies to overcome the limitation of autologous cell therapy and to propose more efficient approaches. Such strategies include pretreatment of cells with activators to augment cell recruitment and survival in the ischemic target area and/or the improvement of cell functions such as their paracrine ability to release proangiogenic factors and vasoactive molecules. In addition, efforts should be directed towards stimulation of both angiogenesis and vessel maturation, the development of a composite product consisting of stem/progenitor cells encapsulated in a biomaterial and the use of additional sources of regenerative cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Cardiac angiogenic imbalance leads to peripartum cardiomyopathy.

    Science.gov (United States)

    Patten, Ian S; Rana, Sarosh; Shahul, Sajid; Rowe, Glenn C; Jang, Cholsoon; Liu, Laura; Hacker, Michele R; Rhee, Julie S; Mitchell, John; Mahmood, Feroze; Hess, Philip; Farrell, Caitlin; Koulisis, Nicole; Khankin, Eliyahu V; Burke, Suzanne D; Tudorache, Igor; Bauersachs, Johann; del Monte, Federica; Hilfiker-Kleiner, Denise; Karumanchi, S Ananth; Arany, Zoltan

    2012-05-09

    Peripartum cardiomyopathy (PPCM) is an often fatal disease that affects pregnant women who are near delivery, and it occurs more frequently in women with pre-eclampsia and/or multiple gestation. The aetiology of PPCM, and why it is associated with pre-eclampsia, remain unknown. Here we show that PPCM is associated with a systemic angiogenic imbalance, accentuated by pre-eclampsia. Mice that lack cardiac PGC-1α, a powerful regulator of angiogenesis, develop profound PPCM. Importantly, the PPCM is entirely rescued by pro-angiogenic therapies. In humans, the placenta in late gestation secretes VEGF inhibitors like soluble FLT1 (sFLT1), and this is accentuated by multiple gestation and pre-eclampsia. This anti-angiogenic environment is accompanied by subclinical cardiac dysfunction, the extent of which correlates with circulating levels of sFLT1. Exogenous sFLT1 alone caused diastolic dysfunction in wild-type mice, and profound systolic dysfunction in mice lacking cardiac PGC-1α. Finally, plasma samples from women with PPCM contained abnormally high levels of sFLT1. These data indicate that PPCM is mainly a vascular disease, caused by excess anti-angiogenic signalling in the peripartum period. The data also explain how late pregnancy poses a threat to cardiac homeostasis, and why pre-eclampsia and multiple gestation are important risk factors for the development of PPCM.

  7. Scleroderma dermal microvascular endothelial cells exhibit defective response to pro-angiogenic chemokines

    Science.gov (United States)

    Rabquer, Bradley J.; Ohara, Ray A.; Stinson, William A.; Campbell, Phillip L.; Amin, M. Asif; Balogh, Beatrix; Zakhem, George; Renauer, Paul A.; Lozier, Ann; Arasu, Eshwar; Haines, G. Kenneth; Kahaleh, Bashar; Schiopu, Elena; Khanna, Dinesh; Koch, Alisa E.

    2016-01-01

    Objectives. Angiogenesis plays a critical role in SSc (scleroderma). The aim of this study was to examine the expression of growth-regulated protein-γ (Gro-γ/CXCL3), granulocyte chemotactic protein 2 (GCP-2/CXCL6) and their receptor CXCR2 in endothelial cells (ECs) isolated from SSc skin and determine whether these cells mount an angiogenic response towards pro-angiogenic chemokines. The downstream signalling pathways as well as the pro-angiogenic transcription factor inhibitor of DNA-binding protein 1 (Id-1) were also examined. Methods. Skin biopsies were obtained from patients with dcSSc. ECs were isolated via magnetic positive selection. Angiogenesis was measured by EC chemotaxis assay. Results. Gro-γ/CXCL3 and GCP-2/CXCL6 were minimally expressed in both skin types but elevated in SSc serum. Pro-angiogenic chemokine mRNA was greater in SSc ECs than in normal ECs. SSc ECs did not migrate to vascular endothelial growth factor (VEGF), Gro-γ/CXCL3, GCP-2/CXCL6 or CXCL16. The signalling pathways stimulated by these chemokines were also dysregulated. Id-1 mRNA in SSc ECs was lower compared with normal ECs, and overexpression of Id-1 in SSc ECs increased their ability to migrate towards VEGF and CXCL16. Conclusion. Our results show that SSc ECs are unable to respond to pro-angiogenic chemokines despite their increased expression in serum and ECs. This might be due to the differences in the signalling pathways activated by these chemokines in normal vs SSc ECs. In addition, the lower expression of Id-1 also decreases the angiogenic response. The inability of pro-angiogenic chemokines to promote EC migration provides an additional mechanism for the impaired angiogenesis that characterizes SSc. PMID:26705326

  8. Coupling growth-factor engineering with nanotechnology for therapeutic angiogenesis.

    Science.gov (United States)

    Sinha Roy, Rituparna; Soni, Shivani; Harfouche, Rania; Vasudevan, Pooja R; Holmes, Oliver; de Jonge, Hugo; Rowe, Arthur; Paraskar, Abhimanyu; Hentschel, Dirk M; Chirgadze, Dimitri; Blundell, Tom L; Gherardi, Ermanno; Mashelkar, Raghunath A; Sengupta, Shiladitya

    2010-08-03

    Therapeutic angiogenesis is an emerging paradigm for the management of ischemic pathologies. Proangiogenic Therapy is limited, however, by the current inability to deliver angiogenic factors in a sustained manner at the site of pathology. In this study, we investigated a unique nonglycosylated active fragment of hepatocyte growth factor/scatter factor, 1K1, which acts as a potent angiogenic agent in vitro and in a zebrafish embryo and a murine matrigel implant model. Furthermore, we demonstrate that nanoformulating 1K1 for sustained release temporally alters downstream signaling through the mitogen activated protein kinase pathway, and amplifies the angiogenic outcome. Merging protein engineering and nanotechnology offers exciting possibilities for the treatment of ischemic disease, and furthermore allows the selective targeting of downstream signaling pathways, which translates into discrete phenotypes.

  9. Angiogenic Type I Collagen Extracellular Matrix Integrated with Recombinant Bacteriophages Displaying Vascular Endothelial Growth Factors.

    Science.gov (United States)

    Yoon, Junghyo; Korkmaz Zirpel, Nuriye; Park, Hyun-Ji; Han, Sewoon; Hwang, Kyung Hoon; Shin, Jisoo; Cho, Seung-Woo; Nam, Chang-Hoon; Chung, Seok

    2016-01-21

    Here, a growth-factor-integrated natural extracellular matrix of type I collagen is presented that induces angiogenesis. The developed matrix adapts type I collagen nanofibers integrated with synthetic colloidal particles of recombinant bacteriophages that display vascular endothelial growth factor (VEGF). The integration is achieved during or after gelation of the type I collagen and the matrix enables spatial delivery of VEGF into a desired region. Endothelial cells that contact the VEGF are found to invade into the matrix to form tube-like structures both in vitro and in vivo, proving the angiogenic potential of the matrix. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Counterbalancing angiogenic regulatory factors control the rate of cancer progression and survival in a stage-specific manner.

    Science.gov (United States)

    Xie, Liang; Duncan, Michael B; Pahler, Jessica; Sugimoto, Hikaru; Martino, Margot; Lively, Julie; Mundel, Thomas; Soubasakos, Mary; Rubin, Kristofer; Takeda, Takaaki; Inoue, Masahiro; Lawler, Jack; Hynes, Richard O; Hanahan, Douglas; Kalluri, Raghu

    2011-06-14

    Whereas the roles of proangiogenic factors in carcinogenesis are well established, those of endogenous angiogenesis inhibitors (EAIs) remain to be fully elaborated. We investigated the roles of three EAIs during de novo tumorigenesis to further test the angiogenic balance hypothesis, which suggests that blood vessel development in the tumor microenvironment can be governed by a net loss of negative regulators of angiogenesis in addition to the well-established principle of up-regulated angiogenesis inducers. In a mouse model of pancreatic neuroendocrine cancer, administration of endostatin, thrombospondin-1, and tumstatin peptides, as well as deletion of their genes, reveal neoplastic stage-specific effects on angiogenesis, tumor progression, and survival, correlating with endothelial expression of their receptors. Deletion of tumstatin and thrombospondin-1 in mice lacking the p53 tumor suppressor gene leads to increased incidence and reduced latency of angiogenic lymphomas associated with diminished overall survival. The results demonstrate that EAIs are part of a balance mechanism regulating tumor angiogenesis, serving as intrinsic microenvironmental barriers to tumorigenesis.

  11. Thrombin induces rapid PAR1-mediated non-classical FGF1 release

    International Nuclear Information System (INIS)

    Duarte, Maria; Kolev, Vihren; Soldi, Raffaella; Kirov, Alexander; Graziani, Irene; Oliveira, Silvia Marta; Kacer, Doreen; Friesel, Robert; Maciag, Thomas; Prudovsky, Igor

    2006-01-01

    Thrombin induces cell proliferation and migration during vascular injury. We report that thrombin rapidly stimulated expression and release of the pro-angiogenic polypeptide fibroblast growth factor 1 (FGF1). Thrombin failed to induce FGF1 release from protease-activated receptor 1 (PAR1) null fibroblasts, indicating that this effect was dependent on PAR1. Similarly to thrombin, FGF1 expression and release were induced by TRAP, a specific oligopeptide agonist of PAR1. These results identify a novel aspect of the crosstalk between FGF and thrombin signaling pathways which both play important roles in tissue repair and angiogenesis

  12. Cannabinoids inhibit angiogenic capacities of endothelial cells via release of tissue inhibitor of matrix metalloproteinases-1 from lung cancer cells.

    Science.gov (United States)

    Ramer, Robert; Fischer, Sascha; Haustein, Maria; Manda, Katrin; Hinz, Burkhard

    2014-09-15

    Cannabinoids inhibit tumor neovascularization as part of their tumorregressive action. However, the underlying mechanism is still under debate. In the present study the impact of cannabinoids on potential tumor-to-endothelial cell communication conferring anti-angiogenesis was studied. Cellular behavior of human umbilical vein endothelial cells (HUVEC) associated with angiogenesis was evaluated by Boyden chamber, two-dimensional tube formation and fibrin bead assay, with the latter assessing three-dimensional sprout formation. Viability was quantified by the WST-1 test. Conditioned media (CM) from A549 lung cancer cells treated with cannabidiol, Δ(9)-tetrahydrocannabinol, R(+)-methanandamide or the CB2 agonist JWH-133 elicited decreased migration as well as tube and sprout formation of HUVEC as compared to CM of vehicle-treated cancer cells. Inhibition of sprout formation was further confirmed for cannabinoid-treated A549 cells co-cultured with HUVEC. Using antagonists to cannabinoid-activated receptors the antimigratory action was shown to be mediated via cannabinoid receptors or transient receptor potential vanilloid 1. SiRNA approaches revealed a cannabinoid-induced expression of tissue inhibitor of matrix metalloproteinases-1 (TIMP-1) as well as its upstream trigger, the intercellular adhesion molecule-1, to be causally linked to the observed decrease of HUVEC migration. Comparable anti-angiogenic effects were not detected following direct exposure of HUVEC to cannabinoids, but occurred after addition of recombinant TIMP-1 to HUVEC. Finally, antimigratory effects were confirmed for CM of two other cannabinoid-treated lung cancer cell lines (H460 and H358). Collectively, our data suggest a pivotal role of the anti-angiogenic factor TIMP-1 in intercellular tumor-endothelial cell communication resulting in anti-angiogenic features of endothelial cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Cyr61/CCN1 and CTGF/CCN2 mediate the pro-angiogenic activity of VHL mutant renal carcinoma cells

    Science.gov (United States)

    Chintalapudi, Mastan R.; Markiewicz, Margaret; Kose, Nurgun; Dammai, Vincent; Champion, Kristen J.; Hoda, Rana S.; Trojanowska, Maria; Hsu, Tien

    2008-01-01

    The von Hippel-Lindau (VHL) protein serves as a negative regulator of hypoxia inducible factor-alpha subunit (HIF-α). Since HIF regulates critical angiogenic factors such as vascular endothelial growth factor (VEGF) and lesions in VHL gene are present in a majority of the highly vascularized renal cell carcinoma (RCC), it is believed that deregulation of the VHL-HIF pathway is crucial for the pro-angiogenic activity of RCC. Although VEGF has been confirmed as a critical angiogenic factor up-regulated in VHL mutant cells, the efficacy of anti-angiogenic therapy specifically targeting VEGF signaling remains modest. In this study we developed a three-dimensional in vitro assay to evaluate the ability of RCC cells to promote cord formation by the primary human dermal microvascular endothelial cells (HDMECs). Compared to VHL wild-type cells, VHL mutant RCC cells demonstrated a significantly increased pro-angiogenic activity, which correlated with increased secretion of Cyr61/CCN1, CTGF/CCN2 and VEGF in conditioned culture medium. Both CCN proteins are required for HDMEC cord formation as shown by RNAi knock-down experiments. Importantly, the pro-angiogenic activities conferred by the CCN proteins and VEGF are additive, suggesting non-overlapping functions. Expression of the CCN proteins is at least partly dependent on the HIF-2α function, the dominant HIF-α isoform expressed in RCC. Finally, immunohistochemical staining of Cyr61/CCN1 and CTGF/CCN2 in renal cell carcinoma tissue samples showed that increased expression of these proteins correlates with loss of VHL protein expression. These findings strengthened the notion that the hypervascularized phenotype of RCC is afforded by multiple pro-angiogenic factors that function in parallel pathways. PMID:18212329

  14. Counterbalancing angiogenic regulatory factors control the rate of cancer progression and survival in a stage-specific manner

    Science.gov (United States)

    Xie, Liang; Duncan, Michael B.; Pahler, Jessica; Sugimoto, Hikaru; Martino, Margot; Lively, Julie; Mundel, Thomas; Soubasakos, Mary; Rubin, Kristofer; Takeda, Takaaki; Inoue, Masahiro; Lawler, Jack; Hynes, Richard O.; Hanahan, Douglas; Kalluri, Raghu

    2011-01-01

    Whereas the roles of proangiogenic factors in carcinogenesis are well established, those of endogenous angiogenesis inhibitors (EAIs) remain to be fully elaborated. We investigated the roles of three EAIs during de novo tumorigenesis to further test the angiogenic balance hypothesis, which suggests that blood vessel development in the tumor microenvironment can be governed by a net loss of negative regulators of angiogenesis in addition to the well-established principle of up-regulated angiogenesis inducers. In a mouse model of pancreatic neuroendocrine cancer, administration of endostatin, thrombospondin-1, and tumstatin peptides, as well as deletion of their genes, reveal neoplastic stage-specific effects on angiogenesis, tumor progression, and survival, correlating with endothelial expression of their receptors. Deletion of tumstatin and thrombospondin-1 in mice lacking the p53 tumor suppressor gene leads to increased incidence and reduced latency of angiogenic lymphomas associated with diminished overall survival. The results demonstrate that EAIs are part of a balance mechanism regulating tumor angiogenesis, serving as intrinsic microenvironmental barriers to tumorigenesis. PMID:21622854

  15. Cardioprotective effect of valsartan in mice with short-term high-salt diet by regulating cardiac aquaporin 1 and angiogenic factor expression.

    Science.gov (United States)

    Jiang, Yong; Wang, Hui-Yan; Zheng, Sheng; Mu, Shang-Qiang; Ma, Meng-Ni; Xie, Xin; Zhang, Yang-Yang; Zhang, Chun-Xue; Cai, Jian-Hui

    2015-01-01

    Hypertension is the most common risk factor for various cardiovascular and cerebrovascular diseases that affects approximately 61 million, or 25% of the population in United States. The dietary salt intake is one of the most important but modifiable factors for hypertension. In the current study, we aim to elucidate the role of aquaporin 1 in high-salt-induced hypertension and cardiac injuries and whether angiotensin II receptor blocker valsartan could ameliorate the effect of high salt on blood pressure. Mice were fed with normal diet, high-salt diet in the presence or absence of valsartan for 4 weeks. The body weight gain, feeding behavior, blood pressure, and cardiac pathology changes were monitored after 4 weeks. The expression of aquaporin 1, vascular endothelial growth factor, transforming growth factor β1, and basic fibroblast growth factor were analyzed using quantitative real-time polymerase chain reaction, Western blot, and immunohistochemical staining. Valsartan partially reversed the effects of high-salt diet on hypertension, cardiac injuries such as fibrosis and inflammatory cell infiltration, and inhibition of aquaporin 1 and angiogenic factors; valsartan alone did not exert such effects. The current data demonstrated that the reduction of cardiac aquaporin 1 and angiogenic factor expression level might be associated with high-salt-induced hypertension and cardiac injuries in mice, which could be ameliorated by angiotensin II receptor blocker treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Antibacterial ability and angiogenic activity of Cu-Ti-O nanotube arrays

    International Nuclear Information System (INIS)

    Zong, Mingxiang; Bai, Long; Liu, Yanlian; Wang, Xin; Zhang, Xiangyu; Huang, Xiaobo; Hang, Ruiqiang; Tang, Bin

    2017-01-01

    Bacterial infection and loosening of orthopedic implants remain two disastrously postoperative complications. Angiogenesis is critical important to facilitate implant osseointegration in vivo. TiO 2 nanotubes arrays (NTAs) with proper dimensions possess good osseointegration ability. Accordingly, the present work incorporated copper (Cu) into TiO 2 NTAs (Cu-Ti-O NTAs) to enhance their antibacterial ability and angiogenesis activity, which was realized through anodizing magnetron-sputtered TiCu coatings with different Cu contents on pure titanium (Ti). Our results show ordered Cu-Ti-O NTAs can be produced under proper Cu content (< 15.14%) in TiCu coatings. The NTAs possess excellent long-term antibacterial ability against Staphylococcus aureus (S. aureus), which may be ascribed to sustained release of Cu 2+ . The cytotoxicity of Cu-Ti-O NTAs to endothelial cells (ECs) could be negligible and can even promote cell proliferation as revealed by live/dead staining and MTT. Meanwhile, Cu-Ti-O NTAs can up-regulate nitric oxide (NO) synthesis and vascular endothelial growth factors (VEGF) secretion of ECs on the sample surfaces compared with that of pure TiO 2 NTAs (control). Furthermore, the angiogenic activity is also enhanced in ionic extracts of Cu-Ti-O NTAs compared with the control. The excellent long-term antibacterial ability and favorable angiogenic activity render Cu-Ti-O NTAs to be promising implant coatings. - Highlights: • Cu-Ti-O NTAs possess long-term antibacterial ability against Staphylococcus aureus. • Cu-Ti-O NTAs can up-regulate nitric oxide synthesis and vascular endothelial growth factors secretion of endothelial cells. • Cu-Ti-O NTAs can enhance in vitro angiogenesis activity of endothelial cells.

  17. Antibacterial ability and angiogenic activity of Cu-Ti-O nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Zong, Mingxiang; Bai, Long; Liu, Yanlian; Wang, Xin; Zhang, Xiangyu; Huang, Xiaobo; Hang, Ruiqiang, E-mail: hangruiqiang@tyut.edu.cn; Tang, Bin

    2017-02-01

    Bacterial infection and loosening of orthopedic implants remain two disastrously postoperative complications. Angiogenesis is critical important to facilitate implant osseointegration in vivo. TiO{sub 2} nanotubes arrays (NTAs) with proper dimensions possess good osseointegration ability. Accordingly, the present work incorporated copper (Cu) into TiO{sub 2} NTAs (Cu-Ti-O NTAs) to enhance their antibacterial ability and angiogenesis activity, which was realized through anodizing magnetron-sputtered TiCu coatings with different Cu contents on pure titanium (Ti). Our results show ordered Cu-Ti-O NTAs can be produced under proper Cu content (< 15.14%) in TiCu coatings. The NTAs possess excellent long-term antibacterial ability against Staphylococcus aureus (S. aureus), which may be ascribed to sustained release of Cu{sup 2+}. The cytotoxicity of Cu-Ti-O NTAs to endothelial cells (ECs) could be negligible and can even promote cell proliferation as revealed by live/dead staining and MTT. Meanwhile, Cu-Ti-O NTAs can up-regulate nitric oxide (NO) synthesis and vascular endothelial growth factors (VEGF) secretion of ECs on the sample surfaces compared with that of pure TiO{sub 2} NTAs (control). Furthermore, the angiogenic activity is also enhanced in ionic extracts of Cu-Ti-O NTAs compared with the control. The excellent long-term antibacterial ability and favorable angiogenic activity render Cu-Ti-O NTAs to be promising implant coatings. - Highlights: • Cu-Ti-O NTAs possess long-term antibacterial ability against Staphylococcus aureus. • Cu-Ti-O NTAs can up-regulate nitric oxide synthesis and vascular endothelial growth factors secretion of endothelial cells. • Cu-Ti-O NTAs can enhance in vitro angiogenesis activity of endothelial cells.

  18. Angiogenic activity in patients with psoriasis is significantly decreased by Goeckerman's therapy

    Energy Technology Data Exchange (ETDEWEB)

    Andrys, C.; Borska, L.; Pohl, D.; Fiala, Z.; Hamakova, K.; Krejsek, J. [Faculty Hospital, Hradec Kralove (Czech Republic). Dept. of Clinical Immunology & Allergy

    2007-03-15

    Goeckerman's therapy (GT) of psoriasis is based on daily application of pharmacy grade coal tar on affected skin with subsequent exposure to UV light. Goeckerman's therapy is still the first line therapy of psoriasis in the Czech Republic because of its low cost and long-term efficacy. Disturbances in angiogenic activity are characteristic for the immunopathogenesis of psoriasis. An abnormal spectrum of cytokines, growth factors and proangiogenic mediators is produced by keratinocytes and inflammatory cells in patients suffering from the disease. The aim of this study was to evaluate the influence of GT of psoriasis on angiogenic activities by comparing serum levels of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) in 44 patients with psoriasis in peripheral blood samples collected before and after therapy. It was found that the angiogenic potential which is abnormally increased in patients with psoriasis is significantly alleviated by GT.

  19. Using the angiogenic factors sFlt-1 and PlGF with Doppler ultrasound of the uterine artery for confirming preeclampsia.

    Science.gov (United States)

    Bahlmann, Franz; Al Naimi, Ammar

    2016-11-01

    The aim of this study is to assess the value of the angiogenic factors for diagnosing preeclampsia and predicting the severity of manifestation. A secondary aim is assessing the combination of the uterine artery Doppler with the angiogenic factors for improving the diagnostic power. This is a prospective single center study in a tertiary referral hospital. This study includes 728 individual patients. Inclusion criteria were singleton pregnancies, a referral to the hospital with suspicion of preeclampsia and any one or combination of the following symptoms: headache, upper abdominal pain, edema, and hypertension. Patients with complications that would affect the course of the pregnancy, such as placenta praevia, premature preterm rupture of membranes, breech presentation, and fetal chromosomal or structural anomalies, were excluded from the study. Blood samples collection and uterine artery Doppler ultrasound were performed at time of recruitment. The differences in sFlt-1, PlGF, and their quotient among normal collective and patients with preeclampsia were analyzed. Doppler ultrasound was performed by one of four highly qualified sonographers. Wilcoxon-Mann-Whitney U test, Spearman's rank correlation, receiver operating characteristic curves, Chi-square test, and logistic regression were used in the analysis. A total of 1003 individual samples for the angiogenic factors were included in the analysis. 584 out of the recruited 728 patients had follow-up data with delivery information at the study hospital. Patients with preeclampsia show a significant increase in sFlt-1, which directly correlate with the increased severity of manifestation (Spearman's ρ 0.49). The sFlt-1 cut-off value of 5424 pg/ml confirms preeclampsia with 83.7 % sensitivity, 68.1 % specificity, and 24 % misclassification rate. Preeclampsia patients also show a significant decrease in PlGF, which negatively correlates with the increased severity of manifestation (Spearman's ρ -0.39). A Pl

  20. Intrinsic pro-angiogenic status of cystic fibrosis airway epithelial cells

    International Nuclear Information System (INIS)

    Verhaeghe, Catherine; Tabruyn, Sebastien P.; Oury, Cecile; Bours, Vincent; Griffioen, Arjan W.

    2007-01-01

    Cystic fibrosis is a common genetic disorder characterized by a severe lung inflammation and fibrosis leading to the patient's death. Enhanced angiogenesis in cystic fibrosis (CF) tissue has been suggested, probably caused by the process of inflammation, as similarly described in asthma and chronic bronchitis. The present study demonstrates an intrinsic pro-angiogenic status of cystic fibrosis airway epithelial cells. Microarray experiments showed that CF airway epithelial cells expressed several angiogenic factors such as VEGF-A, VEGF-C, bFGF, and PLGF at higher levels than control cells. These data were confirmed by real-time quantitative PCR and, at the protein level, by ELISA. Conditioned media of these cystic fibrosis cells were able to induce proliferation, migration and sprouting of cultured primary endothelial cells. This report describes for the first time that cystic fibrosis epithelial cells have an intrinsic angiogenic activity. Since excess of angiogenesis is correlated with more severe pulmonary disease, our results could lead to the development of new therapeutic applications

  1. [Anti-angiogenic drugs].

    Science.gov (United States)

    Sato, Yasufumi

    2010-06-01

    Angiogenesis or neovascularization, the formation of neo-vessels, is a physiological phenomenon endued in vasculature, but is involved in various pathological conditions. Angiogenesis is required for tumor growth and metastasis, and thus constitutes an important target for the control of tumor progression. Indeed, the recent development of bevacizumab, a neutralizing anti-VEGF monoclonal antibody as the first anti-angiogenic drug, legalized the clinical merit of anti-angiogenesis in cancers. Thereafter, various drugs targeting VEGF-mediated signals have been developed to control tumor angiogenesis. Thus, anti-angiogenic drugs are now recognized in the clinic as a major step forward for the treatment of cancers. This review focuses on the current status of antiangiogenesis treatment in cancers.

  2. Assessment of angiogenic properties of biomaterials using the chicken embryo chorioallantoic membrane assay

    International Nuclear Information System (INIS)

    Azzarello, Joseph; Ihnat, Michael A; Kropp, Bradley P; Warnke, Linda A; Lin, H.-K.

    2007-01-01

    The angiogenic potential of a biomaterial is a critical factor for successful graft intake in tissue engineering. We developed a modified, rapid and reproducible chicken embryo chorioallantoic membrane (CAM) assay to evaluate the ability of biomaterials in inducing blood vessel density. Five biomaterials including one-layer porcine small intestinal submucosa (SIS), two-layer SIS, four-layer vacuum pressed (VP) SIS, polyglycolic acid (PGA) and PGA modified with poly(lactic-co-glycolic acid) (PLGA) were analyzed. A circular section (1.2 mm diameter) of each biomaterial was placed near a group of blood vessels in the CAM. Blood vessels around the biomaterials were captured with black and white images at 96 h post implantation; and the images were subjected to densitometry evaluation. One-layer SIS induced a significant increase in blood vessel density as compared to the cellulose nitrate negative control, and had the greatest increase in blood vessel density as compared to four-layer VP SIS, PGA, or PLGA modified PGA. Although two-layer SIS has enhanced physical structure for surgical manipulation, its induction in blood vessel density was significantly lower than the one-layer SIS. Stripping the SIS proteins or incubating one-layer SIS with neutralizing antibodies against basic fibroblast growth factor (bFGF) or vascular endothelial growth factor (VEGF) resulted in decreased angiogenesis. Consistent with results obtained from bladder augmentation animal models, these results confirmed that angiogenic growth factors were present in SIS and affected the angiogenic potential of biomaterials. These data also demonstrated that the CAM assay can be used to ascertain methodically the angiogenic potential of biomaterials

  3. Longitudinal analysis of osteogenic and angiogenic signaling factors in healing models mimicking atrophic and hypertrophic non-unions in rats.

    Directory of Open Access Journals (Sweden)

    Susann Minkwitz

    Full Text Available Impaired bone healing can have devastating consequences for the patient. Clinically relevant animal models are necessary to understand the pathology of impaired bone healing. In this study, two impaired healing models, a hypertrophic and an atrophic non-union, were compared to physiological bone healing in rats. The aim was to provide detailed information about differences in gene expression, vascularization and histology during the healing process. The change from a closed fracture (healing control group to an open osteotomy (hypertrophy group led to prolonged healing with reduced mineralized bridging after 42 days. RT-PCR data revealed higher gene expression of most tested osteogenic and angiogenic factors in the hypertrophy group at day 14. After 42 days a significant reduction of gene expression was seen for Bmp4 and Bambi in this group. The inhibition of angiogenesis by Fumagillin (atrophy group decreased the formation of new blood vessels and led to a non-healing situation with diminished chondrogenesis. RT-PCR results showed an attempt towards overcoming the early perturbance by significant up regulation of the angiogenic regulators Vegfa, Angiopoietin 2 and Fgf1 at day 7 and a further continuous increase of Fgf1, -2 and Angiopoietin 2 over time. However µCT angiograms showed incomplete recovery after 42 days. Furthermore, lower expression values were detected for the Bmps at day 14 and 21. The Bmp antagonists Dan and Twsg1 tended to be higher expressed in the atrophy group at day 42. In conclusion, the investigated animal models are suitable models to mimic human fracture healing complications and can be used for longitudinal studies. Analyzing osteogenic and angiogenic signaling patterns, clear changes in expression were identified between these three healing models, revealing the importance of a coordinated interplay of different factors to allow successful bone healing.

  4. MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia.

    Directory of Open Access Journals (Sweden)

    Zhong Hua

    Full Text Available MicroRNAs (miRNAs are a class of 20-24 nt non-coding RNAs that regulate gene expression primarily through post-transcriptional repression or mRNA degradation in a sequence-specific manner. The roles of miRNAs are just beginning to be understood, but the study of miRNA function has been limited by poor understanding of the general principles of gene regulation by miRNAs. Here we used CNE cells from a human nasopharyngeal carcinoma cell line as a cellular system to investigate miRNA-directed regulation of VEGF and other angiogenic factors under hypoxia, and to explore the principles of gene regulation by miRNAs. Through computational analysis, 96 miRNAs were predicted as putative regulators of VEGF. But when we analyzed the miRNA expression profile of CNE and four other VEGF-expressing cell lines, we found that only some of these miRNAs could be involved in VEGF regulation, and that VEGF may be regulated by different miRNAs that were differentially chosen from 96 putative regulatory miRNAs of VEGF in different cells. Some of these miRNAs also co-regulate other angiogenic factors (differential regulation and co-regulation principle. We also found that VEGF was regulated by multiple miRNAs using different combinations, including both coordinate and competitive interactions. The coordinate principle states that miRNAs with independent binding sites in a gene can produce coordinate action to increase the repressive effect of miRNAs on this gene. By contrast, the competitive principle states when multiple miRNAs compete with each other for a common binding site, or when a functional miRNA competes with a false positive miRNA for the same binding site, the repressive effects of miRNAs may be decreased. Through the competitive principle, false positive miRNAs, which cannot directly repress gene expression, can sometimes play a role in miRNA-mediated gene regulation. The competitive principle, differential regulation, multi-miRNA binding sites, and false

  5. Adipose Extracellular Matrix/Stromal Vascular Fraction Gel Secretes Angiogenic Factors and Enhances Skin Wound Healing in a Murine Model

    Directory of Open Access Journals (Sweden)

    Mingliang Sun

    2017-01-01

    Full Text Available Mesenchymal stem cells are an attractive cell type for cytotherapy in wound healing. The authors recently developed a novel, adipose-tissue-derived, injectable extracellular matrix/stromal vascular fraction gel (ECM/SVF-gel for stem cell therapy. This study was designed to assess the therapeutic effects of ECM/SVF-gel on wound healing and potential mechanisms. ECM/SVF-gel was prepared for use in nude mouse excisional wound healing model. An SVF cell suspension and phosphate-buffered saline injection served as the control. The expression levels of vascular endothelial growth factor (VEGF, basic fibroblast growth factor (bFGF, and monocyte chemotactic protein-1 (MCP-1 in ECM/SVF-gel were analyzed at different time points. Angiogenesis (tube formation assays of ECM/SVF-gel extracts were evaluated, and vessels density in skin was determined. The ECM/SVF-gel extract promoted tube formation in vitro and increased the expression of the angiogenic factors VEGF and bFGF compared with those in the control. The expression of the inflammatory chemoattractant MCP-1 was high in ECM/SVF-gel at the early stage and decreased sharply during the late stage of wound healing. The potent angiogenic effects exerted by ECM/SVF-gel may contribute to the improvement of wound healing, and these effects could be related to the enhanced inflammatory response in ECM/SVF-gel during the early stage of wound healing.

  6. Radiotherapy effect on the release of tumor micro-vesicles by glioblastoma cells

    International Nuclear Information System (INIS)

    Ding, Haixia

    2014-01-01

    Radiation therapy is a major therapeutic tool for glioblastoma (GBM). However, the post-radiation recurrence is almost inevitable, due to the emergence of a subpopulation of radioresistant cancer cells with greater proliferative, invasive, and pro-angiogenic capacities. The objective of this study was to investigate in vitro how irradiated cancer cells affect the function of untreated neighboring tumor cells and endothelial cells, focusing on signals exchange initiated by irradiation, such as soluble factors and tumor micro-vesicles (TMVs). Radiotherapy has slowed down the proliferation of GBM cells (T98G, U87) and induced mitotic death of 50-60%, without significant apoptosis. Through long-term monitoring of cell growth (xCELLigence) and wound-healing assay, we have confirmed that surviving GBM cells after irradiation release signals that can change the functions of endothelial cells HUVEC and non-irradiated tumor cells. In addition to the secretion of known soluble factors (VEGF, uPA), we were able to show using scanning electron microscopy and the Nanoparticle Tracking Analysis (NTA), the release of tumor micro-vesicles (TMVS), whose size was generally less than 500 nm. By NTA and flow cytometry, we have shown that the release of TMVs (exosome + 'shedding vesicles') can be significantly stimulated by irradiation in two lines, in a time-dependent manner. According to the proteomics analysis, soluble factors such as VEGF or IL-8, well known as pro-angiogenic factors, rather contribute to promote the survival or proliferation of HUVEC, while the released TMVs after irradiation, significantly altered the migration abilities of non-irradiated HUVEC and tumor cells. The pro-migratory properties of TMVs could thus contribute to glioblastoma recurrence after irradiation. (author) [fr

  7. Emerging paradigms and questions on pro-angiogenic bone marrow-derived myelomonocytic cells.

    Science.gov (United States)

    Laurent, Julien; Touvrey, Cédric; Botta, Francesca; Kuonen, François; Ruegg, Curzio

    2011-01-01

    Cancer-related inflammation has emerged in recent years as a major event contributing to tumor angiogenesis, tumor progression and metastasis formation. Bone marrow-derived and inflammatory cells promote tumor angiogenesis by providing endothelial progenitor cells that differentiate into mature endothelial cells, and by secreting pro-angiogenic factors and remodeling the extracellular matrix to stimulate angiogenesis though paracrine mechanisms. Several bone marrow-derived myelonomocytic cells, including monocytes and macrophages, have been identified and characterized by several laboratories in recent years. While the central role of these cells in promoting tumor angiogenesis, tumor progression and metastasis is nowadays well established, many questions remain open and new ones are emerging. These include the relationship between their phenotype and function, the mechanisms of pro-angiogenic programming, their contribution to resistance to anti-angiogenic treatments and to metastasis and their potential clinical use as biomarkers of angiogenesis and anti-angiogenic therapies. Here, we will review phenotypical and functional aspects of bone marrow-derived myelonomocytic cells and discuss some of the current outstanding questions.

  8. The association between angiogenic markers and fetal sex

    DEFF Research Database (Denmark)

    Andersen, Louise Bjørkholt; Jørgensen, J S; Herse, F

    2016-01-01

    OBJECTIVE: Current research suggests sexual dimorphism between the male and female fetoplacental units, but with unknown relevance for preeclampsia. We investigated the association between fetal sex and concentrations of the angiogenic markers soluble Fms-like kinase 1 (sFlt-1), placental growth...... factor (PlGF), and sFlt-1/PlGF ratio in first and second-third trimester in women with/without preeclampsia, and the impact of fetal sex on the prognostic value of angiogenic markers for preeclampsia. STUDY DESIGN: Observational study in a prospective, population-based cohort of 2110 singleton...... (preeclampsia cases) associated with fetal sex in adjusted analyses (pfetal sex (all, p=0.028; preeclampsia, p=0.067) In receiver operating curve analysis, prediction of early-onset preeclampsia by sFlt-1/PlGF tended to be superior...

  9. HET0016, a selective inhibitor of 20-HETE synthesis, decreases pro-angiogenic factors and inhibits growth of triple negative breast cancer in mice.

    Directory of Open Access Journals (Sweden)

    Thaiz Ferraz Borin

    Full Text Available A selective inhibitor of 20-HETE synthesis, HET0016, has been reported to inhibit angiogenesis. 20-HETE has been known as a second mitogenic messenger of angiogenesis inducing growth factors. HET0016 effects were analyzed on MDA-MB-231 derived breast cancer in mouse and in vitro cell line. MDA-MB-231 tumor cells were implanted in animals' right flank and randomly assigned to early (1 and 2, starting treatments on day 0, or delayed groups (3 and 4 on day 8 after implantation of tumor. Animals received HET0016 (10 mg/kg treatment via intraperitoneal injection for 5 days/week for either 3 or 4 weeks. Control group received vehicle treatment. Tumor sizes were measured on days 7, 14, 21, and 28 and the animals were euthanized on day 22 and 29. Proteins were extracted from the whole tumor and from cells treated with 10 µM HET0016 for 4 and 24 hrs. Protein array kits of 20 different cytokines/factors were used. ELISA was performed to observe the HIF-1α and MMP-2 protein expression. Other markers were confirmed by IHC. HET0016 significantly inhibited tumor growth in all treatment groups at all-time points compared to control (p<0.05. Tumor growth was completely inhibited on three of ten animals on early treatment group. Treatment groups showed significantly lower expression of pro-angiogenic factors compared to control at 21 days; however, there was no significant difference in HIF-1α expression after treatments. Similar results were found in vitro at 24 hrs of HET0016 treatment. After 28 days, significant increase of angiogenin, angiopoietin-1/2, EGF-R and IGF-1 pro-angiogenic factors were found (p<0.05 compared to control, as well as an higher intensity of all factors were found when compared to that of 21 day's data, suggesting a treatment resistance. HET0016 inhibited tumor growth by reducing expression of different set of pro-angiogenic factors; however, a resistance to treatment seemed to happen after 21 days.

  10. Early pregnancy angiogenic markers and spontaneous abortion

    DEFF Research Database (Denmark)

    Andersen, Louise B; Dechend, Ralf; Karumanchi, S Ananth

    2016-01-01

    BACKGROUND: Spontaneous abortion is the most commonly observed adverse pregnancy outcome. The angiogenic factors soluble Fms-like kinase 1 and placental growth factor are critical for normal pregnancy and may be associated to spontaneous abortion. OBJECTIVE: We investigated the association between...... maternal serum concentrations of soluble Fms-like kinase 1 and placental growth factor, and subsequent spontaneous abortion. STUDY DESIGN: In the prospective observational Odense Child Cohort, 1676 pregnant women donated serum in early pregnancy, gestational week ..., interquartile range 71-103). Concentrations of soluble Fms-like kinase 1 and placental growth factor were determined with novel automated assays. Spontaneous abortion was defined as complete or incomplete spontaneous abortion, missed abortion, or blighted ovum

  11. Angiopoietin-like-4 is a potential angiogenic mediator in arthritis

    NARCIS (Netherlands)

    Hermann, L.M.; Pinkerton, M.; Jennings, K.; Yang, L.; Grom, A.; Sowders, D.; Kersten, A.H.; Witte, D.P.; Hirsch, R.; Thornton, S.

    2005-01-01

    Our previous studies of gene expression profiling during collagen-induced arthritis (CIA) indicated that the putative angiogenic factor Angptl4 was one of the most highly expressed mRNAs early in disease. To investigate the potential involvement of Angptl4 in CIA pathogenesis, Angptl4 protein levels

  12. Association between Placental Lesions, Cytokines and Angiogenic Factors in Pregnant Women with Preeclampsia.

    Directory of Open Access Journals (Sweden)

    Ingrid C Weel

    Full Text Available Preeclampsia (PE is considered the leading cause of maternal and perinatal morbidity and mortality. The placenta seems to play an essential role in this disease, probably due to factors involved in its formation and development. The present study aimed to investigate the association between placental lesions, cytokines and angiogenic factors in pregnant women with preeclampsia (PE. We evaluated 20 normotensive pregnant women, 40 with early-onset PE and 80 with late-onset PE. Placental samples were analyzed for histopathology, immunohistochemistry and determination of granulocyte-macrophage colony-stimulating factor (GM-CSF, interleukin-10 (IL-10, transforming growth factor-beta 1 (TGF-β1, tumor necrosis factor-alpha (TNF-α, placental growth factor (PlGF, vascular endothelial growth factor (VEGF, fms-like tyrosine-kinase-1 (Flt-1 and endoglin (Eng levels. Higher percentages of increased syncytial knots and increased perivillous fibrin deposits, and greater levels of TNF-α, TGF-β1and Flt-1 were detected in placentas from early-onset PE. Levels of IL-10, VEGF and PlGF were decreased in PE versus normotensive placentas. Both the TNF-α/IL-10 and sFlt-1/PlGF ratios were higher in placental homogenate of early-onset PE than late-onset PE and control groups. The more severe lesions and the imbalance between TNF-α/IL-10 and PlGF/sFlt-1 in placentas from early-onset PE allows differentiation of early and late-onset PE and suggests higher placental impairment in early-onset PE.

  13. In Vitro and In Vivo Investigation of the Angiogenic Effects of Liraglutide during Islet Transplantation.

    Directory of Open Access Journals (Sweden)

    Allan Langlois

    Full Text Available This study investigated the angiogenic properties of liraglutide in vitro and in vivo and the mechanisms involved, with a focus on Hypoxia Inducible Factor-1α (HIF-1α and mammalian target of rapamycin (mTOR.Rat pancreatic islets were incubated in vitro with 10 μmol/L of liraglutide (Lira for 12, 24 and 48 h. Islet viability was studied by fluorescein diacetate/propidium iodide staining and their function was assessed by glucose stimulation. The angiogenic effect of liraglutide was determined in vitro by the measure of vascular endothelial growth factor (VEGF secretion using enzyme-linked immunosorbent assay and by the evaluation of VEGF and platelet-derived growth factor-α (PDGFα expression with quantitative polymerase chain reaction technic. Then, in vitro and in vivo, angiogenic property of Lira was evaluated using immunofluorescence staining targeting the cluster of differentiation 31 (CD31. To understand angiogenic mechanisms involved by Lira, HIF-1α and mTOR activation were studied using western blotting. In vivo, islets (1000/kg body-weight were transplanted into diabetic (streptozotocin Lewis rats. Metabolic control was assessed for 1 month by measuring body-weight gain and fasting blood glucose.Islet viability and function were respectively preserved and enhanced (p<0.05 with Lira, versus control. Lira increased CD31-positive cells, expression of VEGF and PDGFα (p<0.05 after 24 h in culture. Increased VEGF secretion versus control was also observed at 48 h (p<0.05. Moreover, Lira activated mTOR (p<0.05 signalling pathway. In vivo, Lira improved vascular density (p<0.01, body-weight gain (p<0.01 and reduced fasting blood glucose in transplanted rats (p<0.001.The beneficial effects of liraglutide on islets appeared to be linked to its angiogenic properties. These findings indicated that glucagon-like peptide-1 analogues could be used to improve transplanted islet revascularisation.

  14. Snake venom VEGF Vammin induces a highly efficient angiogenic response in skeletal muscle via VEGFR-2/NRP specific signaling.

    Science.gov (United States)

    Toivanen, Pyry I; Nieminen, Tiina; Laakkonen, Johanna P; Heikura, Tommi; Kaikkonen, Minna U; Ylä-Herttuala, Seppo

    2017-07-17

    Vascular Endothelial Growth Factors (VEGFs) are promising molecules for the treatment of ischemic diseases by pro-angiogenic therapy. Snake venom VEGFs are a novel subgroup with unique receptor binding profiles and as such are potential new therapeutic agents. We determined the ligand-receptor interactions, gene regulation and angiogenic properties of Vipera ammodytes venom VEGF, Vammin, and compared it to the canonical angiogenic factor VEGF-A to evaluate the use of Vammin for therapeutic angiogenesis. Vammin efficiently induced VEGFR-2 mediated proliferation and expression of genes associated with proliferation, migration and angiogenesis. VEGF-A 165 and especially VEGF-A 109 induced less pronounced effects. Vammin regulates a number of signaling pathways by inducing the expression of NR4A family nuclear receptors and regulators of calcium signaling and MAP kinase pathways. Interestingly, MARC1, which encodes an enzyme discovered to catalyze reduction of nitrate to NO, was identified as a novel VEGFR-2 regulated gene. In rabbit skeletal muscle adenoviral delivery of Vammin induced prominent angiogenic responses. Both the vector dose and the co-receptor binding of the ligand were critical parameters controlling the type of angiogenic response from sprouting angiogenesis to vessel enlargement. Vammin induced VEGFR-2/NRP-1 mediated signaling more effectively than VEGF-A, consequently it is a promising candidate for development of pro-angiogenic therapies.

  15. Anti-angiogenic effect of triptolide in rheumatoid arthritis by targeting angiogenic cascade.

    Directory of Open Access Journals (Sweden)

    Xiangying Kong

    Full Text Available Rheumatoid arthritis (RA is characterized by a pre-vascular seriously inflammatory phase, followed by a vascular phase with high increase in vessel growth. Since angiogenesis has been considered as an essential event in perpetuating inflammatory and immune responses, as well as supporting pannus growth and development of RA, inhibition of angiogenesis has been proposed as a novel therapeutic strategy for RA. Triptolide, a diterpenoid triepoxide from Tripterygium wilfordii Hook F, has been extensively used in treatment of RA patients. It also acts as a small molecule inhibitor of tumor angiogenesis in several cancer types. However, it is unclear whether triptolide possesses an anti-angiogenic effect in RA. To address this problem, we constructed collagen-induced arthritis (CIA model using DA rats by the injection of bovine type II collagen. Then, CIA rats were treated with triptolide (11-45 µg/kg/day starting on the day 1 after first immunization. The arthritis scores (P<0.05 and the arthritis incidence (P<0.05 of inflamed joints were both significantly decreased in triptolide-treated CIA rats compared to vehicle CIA rats. More interestingly, doses of 11~45 µg/kg triptolide could markedly reduce the capillaries, small, medium and large vessel density in synovial membrane tissues of inflamed joints (all P<0.05. Moreover, triptolide inhibited matrigel-induced cell adhesion of HFLS-RA and HUVEC. It also disrupted tube formation of HUVEC on matrigel and suppressed the VEGF-induced chemotactic migration of HFLS-RA and HUVEC, respectively. Furthermore, triptolide significantly reduced the expression of angiogenic activators including TNF-α, IL-17, VEGF, VEGFR, Ang-1, Ang-2 and Tie2, as well as suppressed the IL1-β-induced phosphorylated of ERK, p38 and JNK at protein levels. In conclusion, our data suggest for the first time that triptolide may possess anti-angiogenic effect in RA both in vivo and in vitro assay systems by downregulating the

  16. Urinary tract infection during pregnancy, angiogenic factor profiles, and risk of preeclampsia.

    Science.gov (United States)

    Easter, Sarah Rae; Cantonwine, David E; Zera, Chloe A; Lim, Kee-Hak; Parry, Samuel I; McElrath, Thomas F

    2016-03-01

    Despite decades of research, and much progress in discernment of biomarkers in the maternal circulation, the pathogenesis of preeclampsia (PE) remains elusive. The pathophysiology of PE is believed to involve aberrant placentation and an associated increase in systemic inflammation. In this conceptualization, PE becomes more likely when the level of systemic inflammatory burden inherent in pregnancy itself exceeds the maternal capacity to compensate for this additional stress. If this is the case, then it is possible to hypothesize that conditions, such as infectious disease, that increase systemic inflammatory burden should also increase the risk of PE. As urinary tract infection (UTI) represents a common source of inflammation during pregnancy, we tested whether presence of UTI during pregnancy increased the odds of developing PE. Prior work has documented this association. However many of these studies were limited by small cohort sizes and insufficient control for covariates. The present study is a secondary analysis of a robust contemporary obstetrical cohort recruited to examine the ability of longitudinally sampled maternal angiogenic concentrations to predict PE. We hypothesize that the occurrence of UTI during a pregnancy is associated with the later occurrence of PE in that pregnancy. As PE is believed to be associated with aberrations in systemic angiogenic levels (placental growth factor and soluble isoform of VEGF receptor), we further hypothesize that there will be significant interactions between maternal angiogenic protein levels and the occurrence of UTI. Women aged ≥18 years (n = 2607) were recruited and followed up prospectively from the initiation of prenatal care through delivery at 3 regional academic centers. PE was defined by American Congress of Obstetricians and Gynecologists criteria and was independently validated by a panel of physicians. UTI was defined by the presence of clinical symptoms necessitating treatment in addition to

  17. Anti-Angiogenics: Current Situation and Future Perspectives.

    Science.gov (United States)

    Zirlik, Katja; Duyster, Justus

    2018-01-01

    Angiogenesis, the process leading to the formation of new blood vessels, is one of the hallmarks of cancer. Extensive studies established that i) vascular endothelial growth factor (VEGF) is a key driver of sprouting angiogenesis, ii) VEGF is overexpressed in most solid cancers, and iii) inhibition of VEGF can suppress tumor growth in animal models. This has led to the development of pharmacological agents for anti-angiogenesis to disrupt the vascular supply and starve the tumor of nutrients and oxygen, primarily through the blockade of VEGF/VEGF receptor signaling. This effort has resulted in 11 anti-VEGF drugs approved for certain advanced cancers, either alone or in combination with chemotherapy and other targeted therapies. However, inhibition of VEGF signaling is not effective in all cancers, and anti-angiogenics have often only limited impact on overall survival of cancer patients. This review focuses on the current status of FDA-approved anti-angiogenic antibodies and tyrosine kinase inhibitors and summarizes the progress and future directions of VEGF-targeted therapy. © 2018 S. Karger GmbH, Freiburg.

  18. Excretion of anti-angiogenic proteins in patients with chronic allograft dysfunction.

    Science.gov (United States)

    Moskowitz-Kassai, Eliza; Mackelaite, Lina; Chen, Jun; Patel, Kaushal; Dadhania, Darshana M; Gross, Steven S; Chander, Praveen; Delaney, Vera; Deng, Luqin; Chen, Ligong; Cui, Xiangqin; Suthanthiran, Manikkam; Goligorsky, Michael S

    2012-02-01

    We have recently documented the appearance of an anti-angiogenic peptide, endorepellin, in the urine of patients with chronic allograft dysfunction (CAD). Here, we analyzed using enzyme-linked immunosorbent assay the excretion of anti-angiogenic peptides endostatin, pigment epithelium-derived factor (PEDF) and Kruppel-like factor-2 (KLF-2), in healthy individuals, patients with stable graft function and patients with various degrees of CAD. In healthy subjects and patients with CAD-0, endostatin, PEDF and KLF-2 excretions were at the level of detection. In contrast, there were significant differences between the patients with CAD-3 and CAD-0, CAD-1 and healthy controls for endostatin and CAD-0 versus CAD-3 for PEDF, but no differences in KLF-2 excretion. Receiver operating characteristic (ROC) curve analyses demonstrated a highly discriminative profile for all three biomarkers: the combination of these parameters offered 83% sensitivity and 90% specificity in distinguishing CAD-0 from CAD-1-3. The quality of these potential biomarkers of CAD was, however, highest in discriminating CAD status in biopsy-proven cases and dropped when CAD-0 was diagnosed based on clinical criteria. In conclusion, these findings indicate the diagnostic potential of urinary detection of endostatin, PEDF and to lesser degree KLF-2 and suggest a mechanistic role played by anti-angiogenic substances in the developing vasculopathy and vascular rarefaction in patients with CAD.

  19. A pro-angiogenic degradable Mg-poly(lactic-co-glycolic acid) implant combined with rhbFGF in a rat limb ischemia model.

    Science.gov (United States)

    Bao, Hanmei; Lv, Feng; Liu, Tianjun

    2017-12-01

    Site-specific controlled release of exogenous angiogenic growth factors, such as recombinant human basic fibroblast growth factor (rhbFGF), has become a promising approach to improve peripheral vascular disease. Here, we have developed an implant composed of spiral magnesium (Mg) and a coating made using poly(lactic-co-glycolic acid) (PLGA) with encapsulated rhbFGF (Mg-PLGA-rhbFGF). The encapsulated protein could release continually for 4weeks with well preserved bioactivity. We compared the angiogenic effect produced by Mg-PLGA-rhbFGF with that of a PLGA implant loaded with rhbFGF (PLGA-rhbFGF). The incorporation of Mg in the implant raised the microclimate pH in the polymer, which preserved the stability of rhbFGF. Mg-PLGA-rhbFGF exhibited advantages over PLGA-rhbFGF implant in terms of a cytocompatibility evaluation. An in vivo angiogenesis test further confirmed the efficacy of released rhbFGF. HE, CD31 and α-SMA staining revealed that the controlled release of rhbFGF from the Mg-PLGA-rhbFGF implant was superior in promoting angiogenesis compared with that of the PLGA-rhbFGF implant. Four weeks post-implantation, the capillary density of the Mg-PLGA-rhbFGF group was significantly higher than that of the PLGA-rhbFGF, control and the normal group (pspiral magnesium and a coating made using poly(lactic-co-glycolic acid) (PLGA) with encapsulated rhbFGF (Mg-PLGA-rhbFGF). The preparation method does not involve any complex processes and results in a high encapsulation efficiency (approximately 100%). The degradation of metal Mg raise the microclimate pH in the PLGA polymer, which could well preserve the bioactivity of rhbFGF incorporated in the implant. Mg-PLGA-based, sustained local delivery of rhbFGF promotes post-ischemic angiogenesis and blood flow recovery in rat limb ischemic model. This work marks the first report for controlled release of rhbFGF in combination with metal Mg, and suggests potential therapeutic usefulness of Mg-PLGA-rhbFGF for tissue ischemia

  20. Pro- and anti-angiogenic factors in human skeletal muscle in response to acute exercise and training

    DEFF Research Database (Denmark)

    Høier, Birgitte; Nordsborg, Nikolai; Andersen, Søren

    2012-01-01

    This study examined the effect of acute exercise and 4 weeks of aerobic training on skeletal muscle gene and protein expression of pro- and anti-angiogenic factors in 14 young male subjects. Training consisted of 60 min of cycling (~ 60% of VO2 max), 3 times/week. Biopsies were obtained from m. v....... lateralis before and after training. Muscle interstitial fluid was collected during cycling at week 0 and 4. Training increased (P ... to acute exercise increased similarly (>6-fold; P training. Resting protein levels of soluble VEGF receptor-1 in interstitial fluid, and of VEGF, Thrombospondin-1 (TSP-1) and Tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) in muscle, were unaffected by training, whereas e...

  1. Revisiting the role of hCG: new regulation of the angiogenic factor EG-VEGF and its receptors.

    Science.gov (United States)

    Brouillet, S; Hoffmann, P; Chauvet, S; Salomon, A; Chamboredon, S; Sergent, F; Benharouga, M; Feige, J J; Alfaidy, N

    2012-05-01

    Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an angiogenic factor reported to be specific for endocrine tissues, including the placenta. Its biological activity is mediated via two G protein-coupled receptors, prokineticin receptor 1 (PROKR1) and prokineticin receptor 2 (PROKR2). We have recently shown that (i) EG-VEGF expression peaks between the 8th and 11th weeks of gestation, (ii) its mRNA and protein levels are up-regulated by hypoxia, (iii) EG-VEGF is a negative regulator of trophoblast invasion and (iv) its circulating levels are increased in preeclampsia (PE), the most threatening pathology of pregnancy. Here, we investigated the regulation of the expression of EG-VEGF and its receptors by hCG, a key pregnancy hormone that is also deregulated in PE. During the first trimester of pregnancy, hCG and EG-VEGF exhibit the same pattern of expression, suggesting that EG-VEGF is potentially regulated by hCG. Both placental explants (PEX) and primary cultures of trophoblasts from the first trimester of pregnancy were used to investigate this hypothesis. Our results show that (i) LHCGR, the hCG receptor, is expressed both in cyto- and syncytiotrophoblasts, (ii) hCG increases EG-VEGF, PROKR1 and PROKR2 mRNA and protein expression in a dose- and time-dependent manner, (iii) hCG increases the release of EG-VEGF from PEX conditioned media, (iv) hCG effects are transcriptional and post-transcriptional and (v) the hCG effects are mediated by cAMP via cAMP response elements present in the EG-VEGF promoter region. Altogether, these results demonstrate a new role for hCG in the regulation of EG-VEGF and its receptors, an emerging regulatory system in placental development.

  2. Dextran-shelled oxygen-loaded nanodroplets reestablish a normoxia-like pro-angiogenic phenotype and behavior in hypoxic human dermal microvascular endothelium

    International Nuclear Information System (INIS)

    Basilico, Nicoletta; Magnetto, Chiara; D'Alessandro, Sarah; Panariti, Alice; Rivolta, Ilaria; Genova, Tullio; Khadjavi, Amina; Gulino, Giulia Rossana; Argenziano, Monica; Soster, Marco

    2015-01-01

    In chronic wounds, hypoxia seriously undermines tissue repair processes by altering the balances between pro-angiogenic proteolytic enzymes (matrix metalloproteinases, MMPs) and their inhibitors (tissue inhibitors of metalloproteinases, TIMPs) released from surrounding cells. Recently, we have shown that in human monocytes hypoxia reduces MMP-9 and increases TIMP-1 without affecting TIMP-2 secretion, whereas in human keratinocytes it reduces MMP-2, MMP-9, and TIMP-2, without affecting TIMP-1 release. Provided that the phenotype of the cellular environment is better understood, chronic wounds might be targeted by new oxygenating compounds such as chitosan- or dextran-shelled and 2H,3H-decafluoropentane-cored oxygen-loaded nanodroplets (OLNs). Here, we investigated the effects of hypoxia and dextran-shelled OLNs on the pro-angiogenic phenotype and behavior of human dermal microvascular endothelium (HMEC-1 cell line), another cell population playing key roles during wound healing. Normoxic HMEC-1 constitutively released MMP-2, TIMP-1 and TIMP-2 proteins, but not MMP-9. Hypoxia enhanced MMP-2 and reduced TIMP-1 secretion, without affecting TIMP-2 levels, and compromised cell ability to migrate and invade the extracellular matrix. When taken up by HMEC-1, nontoxic OLNs abrogated the effects of hypoxia, restoring normoxic MMP/TIMP levels and promoting cell migration, matrix invasion, and formation of microvessels. These effects were specifically dependent on time-sustained oxygen diffusion from OLN core, since they were not achieved by oxygen-free nanodroplets or oxygen-saturated solution. Collectively, these data provide new information on the effects of hypoxia on dermal endothelium and support the hypothesis that OLNs might be used as effective adjuvant tools to promote chronic wound healing processes. - Highlights: • Hypoxia enhances MMP-2 and reduces TIMP-1 secretion by dermal HMEC-1 cell line. • Hypoxia compromises migration and matrix invasion abilities of

  3. Dextran-shelled oxygen-loaded nanodroplets reestablish a normoxia-like pro-angiogenic phenotype and behavior in hypoxic human dermal microvascular endothelium

    Energy Technology Data Exchange (ETDEWEB)

    Basilico, Nicoletta, E-mail: nicoletta.basilico@unimi.it [Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università di Milano, via Pascal 36, 20133 Milano (Italy); Magnetto, Chiara, E-mail: c.magnetto@inrim.it [Istituto Nazionale di Ricerca Metrologica (INRIM), Strada delle Cacce, 91, 10135 Torino (Italy); D' Alessandro, Sarah, E-mail: sarah.dalessandro@unimi.it [Dipartimento di Scienze Farmacologiche e Biomolecolari, Università di Milano, via Pascal 36, 20133 Milano (Italy); Panariti, Alice, E-mail: alice.panariti@mail.mcgill.ca [Dipartimento di Scienze della Salute, Università di Milano Bicocca, Via Cadore 48, 20900 Monza (Italy); Rivolta, Ilaria, E-mail: ilaria.rivolta@unimib.it [Dipartimento di Scienze della Salute, Università di Milano Bicocca, Via Cadore 48, 20900 Monza (Italy); Genova, Tullio, E-mail: tullio.genova@unito.it [Dipartimento di Scienze della Vita e Biologia dei Sistemi, Via Accademia Albertina 13, 10123 Torino (Italy); Khadjavi, Amina, E-mail: amina.khadjavi@unito.it [Dipartimento di Neuroscienze, Università di Torino, Corso Raffaello 30, 10125 Torino (Italy); Gulino, Giulia Rossana, E-mail: giuliarossana.gulino@unito.it [Dipartimento di Oncologia, Università di Torino, Via Santena 5 bis, 10126 Torino (Italy); Argenziano, Monica, E-mail: monica.argenziano@unito.it [Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via Giuria, 9, 10125 Torino (Italy); Soster, Marco, E-mail: marco.soster@unito.it [Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via Giuria, 9, 10125 Torino (Italy); and others

    2015-11-01

    In chronic wounds, hypoxia seriously undermines tissue repair processes by altering the balances between pro-angiogenic proteolytic enzymes (matrix metalloproteinases, MMPs) and their inhibitors (tissue inhibitors of metalloproteinases, TIMPs) released from surrounding cells. Recently, we have shown that in human monocytes hypoxia reduces MMP-9 and increases TIMP-1 without affecting TIMP-2 secretion, whereas in human keratinocytes it reduces MMP-2, MMP-9, and TIMP-2, without affecting TIMP-1 release. Provided that the phenotype of the cellular environment is better understood, chronic wounds might be targeted by new oxygenating compounds such as chitosan- or dextran-shelled and 2H,3H-decafluoropentane-cored oxygen-loaded nanodroplets (OLNs). Here, we investigated the effects of hypoxia and dextran-shelled OLNs on the pro-angiogenic phenotype and behavior of human dermal microvascular endothelium (HMEC-1 cell line), another cell population playing key roles during wound healing. Normoxic HMEC-1 constitutively released MMP-2, TIMP-1 and TIMP-2 proteins, but not MMP-9. Hypoxia enhanced MMP-2 and reduced TIMP-1 secretion, without affecting TIMP-2 levels, and compromised cell ability to migrate and invade the extracellular matrix. When taken up by HMEC-1, nontoxic OLNs abrogated the effects of hypoxia, restoring normoxic MMP/TIMP levels and promoting cell migration, matrix invasion, and formation of microvessels. These effects were specifically dependent on time-sustained oxygen diffusion from OLN core, since they were not achieved by oxygen-free nanodroplets or oxygen-saturated solution. Collectively, these data provide new information on the effects of hypoxia on dermal endothelium and support the hypothesis that OLNs might be used as effective adjuvant tools to promote chronic wound healing processes. - Highlights: • Hypoxia enhances MMP-2 and reduces TIMP-1 secretion by dermal HMEC-1 cell line. • Hypoxia compromises migration and matrix invasion abilities of

  4. PlGF repairs myocardial ischemia through mechanisms of angiogenesis, cardioprotection and recruitment of myo-angiogenic competent marrow progenitors.

    Directory of Open Access Journals (Sweden)

    Hiroto Iwasaki

    Full Text Available Despite preclinical success in regenerating and revascularizing the infarcted heart using angiogenic growth factors or bone marrow (BM cells, recent clinical trials have revealed less benefit from these therapies than expected.We explored the therapeutic potential of myocardial gene therapy of placental growth factor (PlGF, a VEGF-related angiogenic growth factor, with progenitor-mobilizing activity.Myocardial PlGF gene therapy improves cardiac performance after myocardial infarction, by inducing cardiac repair and reparative myoangiogenesis, via upregulation of paracrine anti-apoptotic and angiogenic factors. In addition, PlGF therapy stimulated Sca-1(+/Lin(- (SL BM progenitor proliferation, enhanced their mobilization into peripheral blood, and promoted their recruitment into the peri-infarct borders. Moreover, PlGF enhanced endothelial progenitor colony formation of BM-derived SL cells, and induced a phenotypic switch of BM-SL cells, recruited in the infarct, to the endothelial, smooth muscle and cardiomyocyte lineage.Such pleiotropic effects of PlGF on cardiac repair and regeneration offer novel opportunities in the treatment of ischemic heart disease.

  5. Platelet adhesion and degranulation induce pro-survival and pro-angiogenic signalling in ovarian cancer cells.

    Directory of Open Access Journals (Sweden)

    Karl Egan

    Full Text Available Thrombosis is common in ovarian cancer. However, the interaction of platelets with ovarian cancer cells has not been critically examined. To address this, we investigated platelet interactions in a range of ovarian cancer cell lines with different metastatic potentials [HIO-80, 59M, SK-OV-3, A2780, A2780cis]. Platelets adhered to ovarian cancer cells with the most significant adhesion to the 59M cell line. Ovarian cancer cells induced platelet activation [P-selectin expression] in a dose dependent manner, with the most significant activation seen in response to the 59M cell line. The platelet antagonists [cangrelor, MRS2179, and apyrase] inhibited 59M cell induced activation suggesting a P2Y12 and P2Y1 receptor mediated mechanism of platelet activation dependent on the release of ADP by 59M cells. A2780 and 59M cells potentiated PAR-1, PAR-4, and TxA2 receptor mediated platelet activation, but had no effect on ADP, epinephrine, or collagen induced activation. Analysis of gene expression changes in ovarian cancer cells following treatment with washed platelets or platelet releasate showed a subtle but valid upregulation of anti-apoptotic, anti-autophagy pro-angiogenic, pro-cell cycle and metabolic genes. Thus, ovarian cancer cells with different metastatic potential adhere and activate platelets differentially while both platelets and platelet releasate mediate pro-survival and pro-angiogenic signals in ovarian cancer cells.

  6. Physicochemical/photophysical characterization and angiogenic properties of Curcuma longa essential oil

    Directory of Open Access Journals (Sweden)

    LILHIAN A. ARAÚJO

    Full Text Available ABSTRACT This study analyzed the physicochemical and photophysical properties of essential oil of Curcuma longa and its angiogenic potential. The results showed that curcumin is the main fluorescent component present in the oil, although the amount is relatively small. The experimental chorioallantoic membrane model was used to evaluate angiogenic activity, showing a significant increase in the vascular network of Curcuma longa and positive control groups when compared to the neutral and inhibitor controls (P 0.05. Histological analysis showed extensive neovascularization, hyperemia and inflammation in the positive control group and Curcuma longa when compared to other controls (P <0.05, characteristic factors of the angiogenesis process. In conclusion, Curcuma longa oil showed considerable proangiogenic activity and could be a potential compound in medical applications.

  7. In Vitro and In Vivo Investigation of the Angiogenic Effects of Liraglutide during Islet Transplantation

    Science.gov (United States)

    Langlois, Allan; Mura, Carole; Bietiger, William; Seyfritz, Elodie; Dollinger, Camille; Peronet, Claude; Maillard, Elisa; Pinget, Michel; Jeandidier, Nathalie; Sigrist, Séverine

    2016-01-01

    Introduction This study investigated the angiogenic properties of liraglutide in vitro and in vivo and the mechanisms involved, with a focus on Hypoxia Inducible Factor-1α (HIF-1α) and mammalian target of rapamycin (mTOR). Materials and Methods Rat pancreatic islets were incubated in vitro with 10 μmol/L of liraglutide (Lira) for 12, 24 and 48 h. Islet viability was studied by fluorescein diacetate/propidium iodide staining and their function was assessed by glucose stimulation. The angiogenic effect of liraglutide was determined in vitro by the measure of vascular endothelial growth factor (VEGF) secretion using enzyme-linked immunosorbent assay and by the evaluation of VEGF and platelet-derived growth factor-α (PDGFα) expression with quantitative polymerase chain reaction technic. Then, in vitro and in vivo, angiogenic property of Lira was evaluated using immunofluorescence staining targeting the cluster of differentiation 31 (CD31). To understand angiogenic mechanisms involved by Lira, HIF-1α and mTOR activation were studied using western blotting. In vivo, islets (1000/kg body-weight) were transplanted into diabetic (streptozotocin) Lewis rats. Metabolic control was assessed for 1 month by measuring body-weight gain and fasting blood glucose. Results Islet viability and function were respectively preserved and enhanced (p<0.05) with Lira, versus control. Lira increased CD31-positive cells, expression of VEGF and PDGFα (p<0.05) after 24 h in culture. Increased VEGF secretion versus control was also observed at 48 h (p<0.05). Moreover, Lira activated mTOR (p<0.05) signalling pathway. In vivo, Lira improved vascular density (p<0.01), body-weight gain (p<0.01) and reduced fasting blood glucose in transplanted rats (p<0.001). Conclusion The beneficial effects of liraglutide on islets appeared to be linked to its angiogenic properties. These findings indicated that glucagon-like peptide-1 analogues could be used to improve transplanted islet revascularisation

  8. Targeting tissue factor on tumour cells and angiogenic vascular endothelial cells by factor VII-targeted verteporfin photodynamic therapy for breast cancer in vitro and in vivo in mice

    International Nuclear Information System (INIS)

    Hu, Zhiwei; Rao, Benqiang; Chen, Shimin; Duanmu, Jinzhong

    2010-01-01

    The objective of this study was to develop a ligand-targeted photodynamic therapy (tPDT) by conjugating factor VII (fVII) protein with photosensitiser verteporfin in order to overcome the poor selectivity and enhance the effect of non-targeted PDT (ntPDT) for cancer. fVII is a natural ligand for receptor tissue factor (TF) with high affinity and specificity. The reason for targeting receptor TF for the development of tPDT is that TF is a common but specific target on angiogenic tumour vascular endothelial cells (VEC) and many types of tumour cells, including solid tumours and leukaemia. Murine factor VII protein (mfVII) containing a mutation (Lys341Ala) was covalently conjugated via a cross linker EDC with Veterporfin (VP) that was extracted from liposomal Visudyne, and then free VP was separated by Sephadex G50 spin columns. fVII-tPDT using mfVII-VP conjugate, compared to ntPDT, was tested in vitro for the killing of breast cancer cells and VEGF-stimulated VEC and in vivo for inhibiting the tumour growth of breast tumours in a mouse xenograft model. We showed that: (i) fVII protein could be conjugated with VP without affecting its binding activity; (ii) fVII-tPDT could selectively kill TF-expressing breast cancer cells and VEGF-stimulated angiogenic HUVECs but had no side effects on non-TF expressing unstimulated HUVEC, CHO-K1 and 293 cells; (iii) fVII targeting enhanced the effect of VP PDT by three to four fold; (iii) fVII-tPDT induced significantly stronger levels of apoptosis and necrosis than ntPDT; and (iv) fVII-tPDT had a significantly stronger effect on inhibiting breast tumour growth in mice than ntPDT. We conclude that the fVII-targeted VP PDT that we report here is a novel and effective therapeutic with improved selectivity for the treatment of breast cancer. Since TF is expressed on many types of cancer cells including leukaemic cells and selectively on angiogenic tumour VECs, fVII-tPDT could have broad therapeutic applications for other solid cancers

  9. Insulin Like Growth Factor-1 (IGF-1 Causes Overproduction of IL-8, an Angiogenic Cytokine and Stimulates Neovascularization in Isoproterenol-Induced Myocardial Infarction in Rats

    Directory of Open Access Journals (Sweden)

    Nagaraja Haleagrahara

    2011-11-01

    Full Text Available Angiogenesis factors are produced in response to hypoxic or ischemic insult at the site of pathology, which will cause neovascularization. Insulin like growth factor-1 (IGF-1 exerts potent proliferative, angiogenic and anti-apoptotic effects in target tissues. The present study was aimed to evaluate the effects of IGF-1 on circulating level of angiogenic cytokine interleukin-8 (IL-8, in experimentally-induced myocardial ischemia in rats. Male Sprague-Dawley rats were divided into control, IGF-1 treated (2 µg/kg/day subcutaneously, for 5 and 10 days, isoproterenol (ISO treated (85 mg/kg, subcutaneously for two days and ISO with IGF-1 treated (for 5 and 10 days. Heart weight, serum IGF-1, IL-8 and cardiac marker enzymes (CK-MB and LDH were recorded after 5 and 10 days of treatment. Histopathological analyses of the myocardium were also done. There was a significant increase in serum cardiac markers with ISO treatment indicating myocardial infarction in rats. IGF-1 level increased significantly in ISO treated groups and the level of IGF-1 was significantly higher after 10 days of treatment. IL-8 level increased significantly after ISO treatment after 5 and 10 days and IGF-1 concurrent treatment to ISO rats had significantly increased IL-8 levels. Histopathologically, myocyte necrosis and nuclear pyknosis were reduced significantly in IGF-1 treated group and there were numerous areas of capillary sprouting suggestive of neovascularization in the myocardium. Thus, IGF-1 protects the ischemic myocardium with increased production of circulating angiogenic cytokine, IL-8 and increased angiogenesis.

  10. Synthetic Receptors Induce Anti Angiogenic and Stress Signaling on Human First Trimester Cytotrophoblast Cells

    Directory of Open Access Journals (Sweden)

    Ahmed F. Pantho

    2017-05-01

    Full Text Available The cytotrophoblast (CTB cells of the human placenta have membrane receptors that bind certain cardiotonic steroids (CTS found in blood plasma. One of these, marinobufagenin, is a key factor in the etiology of preeclampsia. Herein, we used synthetic receptors (SR to study their effectiveness on the angiogenic profile of human first trimester CTB cells. The humanextravillous CTB cells (Sw.71 used in this study were derived from first trimester chorionic villus tissue. Culture media of CTB cells treated with ≥1 nM SR level revealed sFlt-1 (Soluble fms-like tyrosine kinase-1 was significantly increased while VEGF (vascular endothelial growth factor was significantly decreased in the culture media (* p < 0.05 for each The AT2 receptor (Angiotensin II receptor type 2 expression was significantly upregulated in ≥1 nM SR-treated CTB cells as compared to basal; however, the AT1 (Angiotensin II receptor, type 1 and VEGFR-1 (vascular endothelial growth factor receptor 1 receptor expression was significantly downregulated (* p < 0.05 for each. Our results show that the anti-proliferative and anti-angiogenic effects of SR on CTB cells are similar to the effects of CTS. The observed anti angiogenic activity of SR on CTB cells demonstrates that the functionalized-urea/thiourea molecules may be useful as potent inhibitors to prevent CTS-induced impairment of CTB cells.

  11. The SK3 channel promotes placental vascularization by enhancing secretion of angiogenic factors.

    Science.gov (United States)

    Rada, Cara C; Murray, Grace; England, Sarah K

    2014-11-15

    Proper placental perfusion is essential for fetal exchange of oxygen, nutrients, and waste with the maternal circulation. Impairment of uteroplacental vascular function can lead to pregnancy complications, including preeclampsia and intrauterine growth restriction (IUGR). Potassium channels have been recognized as regulators of vascular proliferation, angiogenesis, and secretion of vasoactive factors, and their dysfunction may underlie pregnancy-related vascular diseases. Overexpression of one channel in particular, the small-conductance calcium-activated potassium channel 3 (SK3), is known to increase vascularization in mice, and mice overexpressing the SK3 channel (SK3(T/T) mice) have a high rate of fetal demise and IUGR. Here, we show that overexpression of SK3 causes fetal loss through abnormal placental vascularization. We previously reported that, at pregnancy day 14, placentas isolated from SK3(T/T) mice are smaller than those obtained from wild-type mice. In this study, histological analysis reveals that SK3(T/-) placentas at this stage have abnormal placental morphology, and microcomputed tomography shows that these placentas have significantly larger and more blood vessels than those from wild-type mice. To identify the mechanism by which these vascularization defects occur, we measured levels of vascular endothelial growth factor (VEGF), placental growth factor, and the soluble form of VEGF receptor 1 (sFlt-1), which must be tightly regulated to ensure proper placental development. Our data reveal that overexpression of SK3 alters systemic and placental ratios of the angiogenic factor VEGF to antiangiogenic factor sFlt-1 throughout pregnancy. Additionally, we observe increased expression of hypoxia-inducing factor 2α in SK3(T/-) placentas. We conclude that the SK3 channel modulates placental vascular development and fetal health by altering VEGF signaling. Copyright © 2014 the American Physiological Society.

  12. Anti-angiogenic treatment of gastrointestinal malignancies.

    Science.gov (United States)

    Salmon, J Stuart; Lockhart, A Craig; Berlin, Jordan

    2005-01-01

    The scientific rationale to block angiogenesis as a treatment strategy for human cancer has been developed over the last 30 years, but is only now entering the clinical arena. Preclinical studies have demonstrated the importance of the vascular endothelial growth factor (VEGF) pathways in both physiologic and pathologic angiogenesis, and have led to the development of approaches to block its role in tumor angiogenesis. Bevacizumab is an antibody to VEGF and has been shown to prolong survival when given with chemotherapy in the treatment of metastatic colorectal cancer (CRC). Although this is the first anti-angiogenic treatment to be approved for the treatment of human epithelial malignancy, a number of other approaches currently are in development. Soluble chimeric receptors to sequester serum VEGF and monoclonal antibodies against VEGF receptors have both shown considerable promise in the laboratory and are being brought into clinical investigation. A number of small-molecule tyrosine kinase inhibitors that have activity against VEGF receptors also are in clinical trials. Although these novel treatments are being pioneered in CRC, anti-angiogenic approaches also are being tested in the treatment of other gastrointestinal malignancies. Anti-VEGF therapy has shown promise in such traditionally resistant tumors as pancreatic cancer and hepatocellular carcinoma. This review will examine the preclinical foundation and then focus on the clinical studies of anti-VEGF therapy in gastrointestinal cancers.

  13. Perforated Gastric Ulcer Associated with Anti-Angiogenic Therapy

    Directory of Open Access Journals (Sweden)

    Diogo Libânio

    2017-08-01

    Full Text Available Anti-angiogenic therapy with bevacizumab, an inhibitor of vascular endothelial growth factor, is commonly used in metastatic colorectal cancer and is rarely associated with gastrointestinal perforation, perforation being more frequent in the primary tumor site or at the anastomotic level. We present the case of a 64-year-old male with stage IV rectal adenocarcinoma who was on palliative chemotherapy with FOLFOX and bevacizumab. After the 4th chemotherapy cycle, our patient started fever and epigastric pain. He was hemodynamically stable, and signs of peritoneal irritation were absent. There were no alterations in the abdominal X-ray, and C-reactive protein was markedly elevated. A CT scan revealed a de novo thickness in the gastric antrum. Upper digestive endoscopy showed an ulcerated 40-mm lesion in the angulus, with a 20-mm orifice communicating with an exsudative cavity revested by the omentum. A conservative approach was decided including fasting, broad-spectrum intravenous antibiotics, and proton-pump inhibitors. Subsequent gastroduodenal series showed no contrast extravasation, allowing the resumption of oral nutrition. Esophagogastroduodenoscopy after 8 weeks showed perforation closure. Biopsies did not show neoplastic cells or Heliobacter pylori infection. Although the success in the conservative management of perforation allowing the maintenance of palliative chemotherapy (without bevacizumab, the patient died after 4 months due to liver failure. The reported case shows an uncommon endoscopic finding due to a rare complication of anti-angiogenic therapy. Additionally, it reminds clinicians that a history of gastroduodenal ulcers should be actively sought before starting anti-angiogenic treatment and that suspicion for perforation should be high in these cases.

  14. Reduced angiogenic factor expression in intrauterine fetal growth restriction using semiquantitative immunohistochemistry and digital image analysis.

    Science.gov (United States)

    Alahakoon, Thushari I; Zhang, Weiyi; Arbuckle, Susan; Zhang, Kewei; Lee, Vincent

    2018-05-01

    To localize, quantify and compare angiogenic factors, vascular endothelial growth factor (VEGF), placental growth factor (PlGF), as well as their receptors fms-like tyrosine kinase receptor (Flt-1) and kinase insert domain receptor (KDR) in the placentas of normal pregnancy and complications of preeclampsia (PE), intrauterine fetal growth restriction (IUGR) and PE + IUGR. In a prospective cross-sectional case-control study, 30 pregnant women between 24-40 weeks of gestation, were recruited into four clinical groups. Representative placental samples were stained for VEGF, PlGF, Flt-1 and KDR. Analysis was performed using semiquantitative methods and digital image analysis. The overall VEGF and Flt-1 were strongly expressed and did not show any conclusive difference in the expression between study groups. PlGF and KDR were significantly reduced in expression in the placentas from pregnancies complicated by IUGR compared with normal and preeclamptic pregnancies. The lack of PlGF and KDR may be a cause for the development of IUGR and may explain the loss of vasculature and villous architecture in IUGR. Automated digital image analysis software is a viable alternative method to the manual reading of placental immunohistochemical staining. © 2018 Japan Society of Obstetrics and Gynecology.

  15. Adipose stem cells can secrete angiogenic factors that inhibit hyaline cartilage regeneration.

    Science.gov (United States)

    Lee, Christopher Sd; Burnsed, Olivia A; Raghuram, Vineeth; Kalisvaart, Jonathan; Boyan, Barbara D; Schwartz, Zvi

    2012-08-24

    Adipose stem cells (ASCs) secrete many trophic factors that can stimulate tissue repair, including angiogenic factors, but little is known about how ASCs and their secreted factors influence cartilage regeneration. Therefore, the aim of this study was to determine the effects ASC-secreted factors have in repairing chondral defects. ASCs isolated from male Sprague Dawley rats were cultured in monolayer or alginate microbeads supplemented with growth (GM) or chondrogenic medium (CM). Subsequent co-culture, conditioned media, and in vivo cartilage defect studies were performed. ASC monolayers and microbeads cultured in CM had decreased FGF-2 gene expression and VEGF-A secretion compared to ASCs cultured in GM. Chondrocytes co-cultured with GM-cultured ASCs for 7 days had decreased mRNAs for col2, comp, and runx2. Chondrocytes treated for 12 or 24 hours with conditioned medium from GM-cultured ASCs had reduced sox9, acan, and col2 mRNAs; reduced proliferation and proteoglycan synthesis; and increased apoptosis. ASC-conditioned medium also increased endothelial cell tube lengthening whereas conditioned medium from CM-cultured ASCs had no effect. Treating ASCs with CM reduced or abolished these deleterious effects while adding a neutralizing antibody for VEGF-A eliminated ASC-conditioned medium induced chondrocyte apoptosis and restored proteoglycan synthesis. FGF-2 also mitigated the deleterious effects VEGF-A had on chondrocyte apoptosis and phenotype. When GM-grown ASC pellets were implanted in 1 mm non-critical hyaline cartilage defects in vivo, cartilage regeneration was inhibited as evaluated by radiographic and equilibrium partitioning of an ionic contrast agent via microCT imaging. Histology revealed that defects with GM-cultured ASCs had no tissue ingrowth from the edges of the defect whereas empty defects and defects with CM-grown ASCs had similar amounts of neocartilage formation. ASCs must be treated to reduce the secretion of VEGF-A and other factors that

  16. Biomarkers for Anti-Angiogenic Therapy in Cancer

    Directory of Open Access Journals (Sweden)

    Markus Wehland

    2013-04-01

    Full Text Available Angiogenesis, the development of new vessels from existing vasculature, plays a central role in tumor growth, survival, and progression. On the molecular level it is controlled by a number of pro- and anti-angiogenic cytokines, among which the vascular endothelial growth factors (VEGFs, together with their related VEGF-receptors, have an exceptional position. Therefore, the blockade of VEGF signaling in order to inhibit angiogenesis was deemed an attractive approach for cancer therapy and drugs interfering with the VEGF-ligands, the VEGF receptors, and the intracellular VEGF-mediated signal transduction were developed. Although promising in pre-clinical trials, VEGF-inhibition proved to be problematic in the clinical context. One major drawback was the generally high variability in patient response to anti-angiogenic drugs and the rapid development of therapy resistance, so that, in total, only moderate effects on progression-free and overall survival were observed. Biomarkers predicting the response to VEGF-inhibition might attenuate this problem and help to further individualize drug and dosage determination. Although up to now no definitive biomarker has been identified for this purpose, several candidates are currently under investigation. This review aims to give an overview of the recent developments in this field, focusing on the most prevalent tumor species.

  17. Date syrup-derived polyphenols attenuate angiogenic responses and exhibits anti-inflammatory activity mediated by vascular endothelial growth factor and cyclooxygenase-2 expression in endothelial cells.

    Science.gov (United States)

    Taleb, Hajer; Morris, R Keith; Withycombe, Cathryn E; Maddocks, Sarah E; Kanekanian, Ara D

    2016-07-01

    Bioactive components such as polyphenols, present in many plants, are purported to have anti-inflammatory and antiangiogenic properties. Date syrup, produced from date fruit of the date palm tree, has traditionally been used to treat a wide range of diseases with etiologies involving angiogenesis and inflammation. It was hypothesized that polyphenols in date syrup reduce angiogenic responses such as cell migration, tube formation, and matrix metalloproteinase activity in an inflammatory model by exhibiting anti-inflammatory activity mediated by vascular endothelial growth factor (VEGF) and the prostaglandin enzyme cyclooxygenase-2 (COX-2) in endothelial cells. Date syrup polyphenols at 60 and 600μg/mL reduced inflammation and suppressed several stages of angiogenesis, including endothelial cell migration, invasion, matrix metalloproteinase activity, and tube formation, without evidence of cytotoxicity. VEGF and COX-2 expression induced by tumor necrosis factor-alpha at both gene expression and protein level was significantly reduced by date syrup polyphenols in comparison to untreated cells. In conclusion, polyphenols in date syrup attenuated angiogenic responses and exhibited anti-inflammatory activity mediated by VEGF and COX-2 expression in endothelial cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Triiodothyronine regulates angiogenic growth factor and cytokine secretion by isolated human decidual cells in a cell-type specific and gestational age-dependent manner.

    Science.gov (United States)

    Vasilopoulou, E; Loubière, L S; Lash, G E; Ohizua, O; McCabe, C J; Franklyn, J A; Kilby, M D; Chan, S Y

    2014-06-01

    Does triiodothyronine (T3) regulate the secretion of angiogenic growth factors and cytokines by human decidual cells isolated from early pregnancy? T3 modulates the secretion of specific angiogenic growth factors and cytokines, with different regulatory patterns observed amongst various isolated subpopulations of human decidual cells and with a distinct change between the first and second trimesters of pregnancy. Maternal thyroid dysfunction during early pregnancy is associated with complications of malplacentation including miscarriage and pre-eclampsia. T3 regulates the proliferation and apoptosis of fetal-derived trophoblasts, as well as promotes the invasive capability of extravillous trophoblasts (EVT). We hypothesize that T3 may also have a direct impact on human maternal-derived decidual cells, which are known to exert paracrine regulation upon trophoblast behaviour and vascular development at the uteroplacental interface. This laboratory-based study used human decidua from first (8-11 weeks; n = 18) and second (12-16 weeks; n = 12) trimester surgical terminations of apparently uncomplicated pregnancies. Primary cultures of total decidual cells, and immunomagnetic bead-isolated populations of stromal-enriched (CD10+) and stromal-depleted (CD10-) cells, uterine natural killer cells (uNK cells; CD56+) and macrophages (CD14+) were assessed for thyroid hormone receptors and transporters by immunocytochemistry. Each cell population was treated with T3 (0, 1, 10, 100 nM) and assessments were made of cell viability (MTT assay) and angiogenic growth factor and cytokine secretion (immunomediated assay). The effect of decidual cell-conditioned media on EVT invasion through Matrigel(®) was evaluated. Immunocytochemistry showed the expression of thyroid hormone transporters (MCT8, MCT10) and receptors (TRα1, TRβ1) required for thyroid hormone-responsiveness in uNK cells and macrophages from the first trimester. The viability of total decidual cells and the different

  19. Targeting Metabolic Symbiosis to Overcome Resistance to Anti-angiogenic Therapy

    Directory of Open Access Journals (Sweden)

    Laura Pisarsky

    2016-05-01

    Full Text Available Despite the approval of several anti-angiogenic therapies, clinical results remain unsatisfactory, and transient benefits are followed by rapid tumor recurrence. Here, we demonstrate potent anti-angiogenic efficacy of the multi-kinase inhibitors nintedanib and sunitinib in a mouse model of breast cancer. However, after an initial regression, tumors resume growth in the absence of active tumor angiogenesis. Gene expression profiling of tumor cells reveals metabolic reprogramming toward anaerobic glycolysis. Indeed, combinatorial treatment with a glycolysis inhibitor (3PO efficiently inhibits tumor growth. Moreover, tumors establish metabolic symbiosis, illustrated by the differential expression of MCT1 and MCT4, monocarboxylate transporters active in lactate exchange in glycolytic tumors. Accordingly, genetic ablation of MCT4 expression overcomes adaptive resistance against anti-angiogenic therapy. Hence, targeting metabolic symbiosis may be an attractive avenue to avoid resistance development to anti-angiogenic therapy in patients.

  20. Impaired Circulating Angiogenic Cells Mobilization and Metalloproteinase-9 Activity after Dynamic Exercise in Early Metabolic Syndrome.

    Science.gov (United States)

    Rocha, Natalia G; Sales, Allan R K; Penedo, Leticia A; Pereira, Felipe S; Silva, Mayra S; Miranda, Renan L; Silva, Jemima F R; Silva, Bruno M; Santos, Aline A; Nobrega, Antonio C L

    2015-01-01

    Increased levels of adhesion molecules or metalloproteinases (MMPs) may indicate endothelial dysfunction. Exercise mobilizes circulating angiogenic cells (CACs) from bone marrow in healthy subjects, improving vascular function. However, it is unclear whether this mechanism is preserved in the early stages of metabolic syndrome (early MetS). We aimed to evaluate the acute effects of exercise on adhesion molecules, angiogenic factors, MMPs, and CACs in early MetS. Fifteen subjects with early MetS and nine healthy controls underwent an exercise session and a nonexercise session, randomly. Adhesion molecules, angiogenic factors, CACs, and MMPs were evaluated before and after exercise or nonexercise sessions. At baseline, levels of sE-selectin, sICAM-1, and MMP-9 were higher in early MetS than in controls (P ≤ 0.03). After exercise, sE-selectin, sICAM-1, and MMP-9 levels were still higher in early MetS (P exercise. There was no difference between moments in nonexercise session (P > 0.05). In conclusion, subjects with early MetS already presented impaired endothelial function at rest along with a decrease in CACs and an increase in MMP-9 activity in response to exercise.

  1. Angiogenesis in calcium phosphate scaffolds by inorganic copper ion release.

    Science.gov (United States)

    Barralet, Jake; Gbureck, Uwe; Habibovic, Pamela; Vorndran, Elke; Gerard, Catherine; Doillon, Charles J

    2009-07-01

    Angiogenesis in a tissue-engineered device may be induced by incorporating growth factors (e.g., vascular endothelial growth factor [VEGF]), genetically modified cells, and=or vascular cells. It represents an important process during the formation and repair of tissue and is essential for nourishment and supply of reparative and immunological cells. Inorganic angiogenic factors, such as copper ions, are therefore of interest in the fields of regenerative medicine and tissue engineering due to their low cost, higher stability, and potentially greater safety compared with recombinant proteins or genetic engineering approaches. The purpose of this study was to compare tissue responses to 3D printed macroporous bioceramic scaffolds implanted in mice that had been loaded with either VEGF or copper sulfate. These factors were spatially localized at the end of a single macropore some 7 mm from the surface of the scaffold. Controls without angiogenic factors exhibited only poor tissue growth within the blocks; in contrast, low doses of copper sulfate led to the formation of microvessels oriented along the macropore axis. Further, wound tissue ingrowth was particularly sensitive to the quantity of copper sulfate and was enhanced at specific concentrations or in combination with VEGF. The potential to accelerate and guide angiogenesis and wound healing by copper ion release without the expense of inductive protein(s) is highly attractive in the area of tissue-engineered bone and offers significant future potential in the field of regenerative biomaterials.

  2. Response to Plasmapheresis Measured by Angiogenic Factors in a Woman with Antiphospholipid Syndrome in Pregnancy

    Directory of Open Access Journals (Sweden)

    Karoline Mayer-Pickel

    2015-01-01

    Full Text Available An imbalance of angiogenic and antiangiogenic placental factors such as endoglin and soluble fms-like tyrosine kinase 1 has been implicated in the pathophysiology of preeclampsia. Extraction of these substances by plasmapheresis might be a therapeutical approach in cases of severe early-onset preeclampsia. Case Report. A 21-year-old primigravida with antiphospholipid syndrome developed early-onset preeclampsia at 18 weeks’ gestation. She was treated successfully with plasmapheresis in order to prolong pregnancy. Endoglin and sflt-1-levels were measured by ELISA before and after treatment. Endoglin levels decreased significantly after treatment (p < 0.05 and showed a significant decrease throughout pregnancy. A rerise of endoglin and sflt-1 preceded placental abruption 4 weeks before onset of incident. Conclusion. Due to the limited long-term therapeutical possibilities for pregnancies complicated by PE, plasmapheresis seems to be a therapeutical option. This consideration refers especially to pregnancies with early-onset preeclampsia, in which, after first conventional treatment of PE, prolongation of pregnancy should be above all.

  3. Effects of gintonin on the proliferation, migration, and tube formation of human umbilical-vein endothelial cells: involvement of lysophosphatidic-acid receptors and vascular-endothelial-growth-factor signaling

    Directory of Open Access Journals (Sweden)

    Sung-Hee Hwang

    2016-10-01

    Conclusion: The gintonin-mediated proliferation, migration, and vascular-endothelial-growth-factor release in HUVECs via LPA-receptor activation may be one of in vitro mechanisms underlying ginseng-induced angiogenic and wound-healing effects.

  4. Disrupted Balance of Angiogenic and Antiangiogenic Signalings in Preeclampsia

    Directory of Open Access Journals (Sweden)

    Mitsuko Furuya

    2011-01-01

    Full Text Available The placenta plays a central role in governing local circulatory system that mediates maternal condition and fetal growth. In early gestational phases, the placenta exerts properties of invasion and neovascularization for successful placentation. Extravillous invasive trophoblasts replace uterine endometrial vasculature and establish local blood pathway to obtain oxygen and nutrients from the mother. In later phases, the placenta promotes villous angiogenesis and vascular maturation that are finely controlled by angiogenic and antiangiogenic molecules. Among various molecules involved in placental neovascularization, vascular endothelial growth factor receptors (VEGFRs and angiotensin II receptor type 1 (AT1 mediate important signaling pathways for maternal circulatory system and fetal growth. VEGFR1 and VEGFR2 are functional receptors for placental growth factor (PlGF and VEGF, respectively, and PlGF-VEGFR1 and VEGF-VEGFR2 interactions are disturbed in many preeclamptic patients by excess amount of soluble form of VEGFR1 (also named sFlt1, a natural PlGF/VEGF antagonist. Recent studies have disclosed that excessive sFlt1 production in the placenta and aberrant AT1 signaling in the mother are closely associated with the pathology of preeclampsia and intrauterine growth restriction (IUGR. In this paper, neovascularization of the placenta and pathological events associated with disrupted balance between angiogenic and antiangiogenic signaling in preeclampsia are discussed.

  5. Effects of Ellagic Acid on Angiogenic Factors in Prostate Cancer Cells

    International Nuclear Information System (INIS)

    Vanella, Luca; Di Giacomo, Claudia; Acquaviva, Rosaria; Barbagallo, Ignazio; Li Volti, Giovanni; Cardile, Venera; Abraham, Nader G.; Sorrenti, Valeria

    2013-01-01

    Background: Several natural antioxidants, including ellagic acid (EA), have been reported to have chemotherapeutic activity in vivo and in vitro settings. Cytochrome P450 (CYP) activity and synthesis of both epoxyeicosatrienoic acids (EETs) and 20-hydroxy-5,8,11,14-eicosatetraenoic acid (20-HETE), together with vascular endothelial growth factor (VEGF) and heme oxygenase system (HO) have emerged as important modulators of tumor growth and metastasis. Methods: The anti-angiogenic effects of EA were investigated in the human prostatic cancer cell line LnCap. HO-1, HO-2, CYP2J2 and soluble epoxyde hydrolase (sEH) expressions were evaluated by western blotting. Levels of VEGF and osteoprotegerin (OPG) were determined in the culture supernatant using an ELISA assay, while CYP mRNAs were determined by qRT-PCR. Results: EA treatment induced a significant decrease (p < 0.05) in HO-1, HO-2 and CYP2J2 expression, and in VEGF and OPG levels. Similarly CYP2J2, CYP4F2 and CYPA22 mRNAs were significantly (p < 0.05) down-regulated by EA treatment. The decrease in CYP2J2 mRNA was associated with an increase in sEH expression. Conclusions: Results reported in the present study highlighted the ability of EA to modulate a new pathway, in addition to anti-proliferative and pro-differentiation properties, via a mechanism that involves a decrease in eicosanoid synthesis and a down-regulation of the HO system in prostate cancer

  6. Effects of Ellagic Acid on Angiogenic Factors in Prostate Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Vanella, Luca; Di Giacomo, Claudia; Acquaviva, Rosaria; Barbagallo, Ignazio; Li Volti, Giovanni [Department of Drug Science, Section of Biochemistry, University of Catania, I-95125 Catania (Italy); Cardile, Venera [Department of Bio-Medical Sciences, Section of Physiology, University of Catania, I-95125, Catania (Italy); Abraham, Nader G. [Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701 (United States); Sorrenti, Valeria, E-mail: sorrenti@unict.it [Department of Drug Science, Section of Biochemistry, University of Catania, I-95125 Catania (Italy)

    2013-06-19

    Background: Several natural antioxidants, including ellagic acid (EA), have been reported to have chemotherapeutic activity in vivo and in vitro settings. Cytochrome P450 (CYP) activity and synthesis of both epoxyeicosatrienoic acids (EETs) and 20-hydroxy-5,8,11,14-eicosatetraenoic acid (20-HETE), together with vascular endothelial growth factor (VEGF) and heme oxygenase system (HO) have emerged as important modulators of tumor growth and metastasis. Methods: The anti-angiogenic effects of EA were investigated in the human prostatic cancer cell line LnCap. HO-1, HO-2, CYP2J2 and soluble epoxyde hydrolase (sEH) expressions were evaluated by western blotting. Levels of VEGF and osteoprotegerin (OPG) were determined in the culture supernatant using an ELISA assay, while CYP mRNAs were determined by qRT-PCR. Results: EA treatment induced a significant decrease (p < 0.05) in HO-1, HO-2 and CYP2J2 expression, and in VEGF and OPG levels. Similarly CYP2J2, CYP4F2 and CYPA22 mRNAs were significantly (p < 0.05) down-regulated by EA treatment. The decrease in CYP2J2 mRNA was associated with an increase in sEH expression. Conclusions: Results reported in the present study highlighted the ability of EA to modulate a new pathway, in addition to anti-proliferative and pro-differentiation properties, via a mechanism that involves a decrease in eicosanoid synthesis and a down-regulation of the HO system in prostate cancer.

  7. Clinicopathological Features and Prognosis of Papillary Thyroid Microcarcinoma for Surgery and Relationships with the BRAFV600E Mutational Status and Expression of Angiogenic Factors.

    Directory of Open Access Journals (Sweden)

    Chenlei Shi

    Full Text Available To investigate the clinicopathological characteristics of papillary thyroid microcarcinoma (PTMC for surgery by comparing the difference between PTMC and larger papillary thyroid carcinoma (LPTC.We analyzed the differences in the clinicopathological characteristics, prognosis, B-type RAF kinase (BRAFV600E mutational status and expression of angiogenic factors, including pigment epithelium-derived factor (PEDF, Vascular Endothelial Growth Factor (VEGF, and hypoxia-inducible factor alpha subunit (HIF-1α, between PTMC and LPTC by retrospectively reviewing the records of 251 patients with papillary thyroid carcinoma, 169 with PTMC, and 82 with LPTC (diameter >1 cm.There were no significant differences in the gender, age, multifocality, Hashimoto's thyroiditis, TNM stage, PEDF protein expression, rate of recurrence, or mean follow-up duration between patients with PTMC or LPTC. The prevalence of extrathyroidal invasion (EI, lymph node metastasis (LNM, and BRAF mutation in patients with PTMC was significantly lower than in patients with LPTC. In addition, in PTMC patients with EI and/or LNM and/or positive BRAF (high-risk PTMC patients, the prevalence of extrathyroidal invasion, Hashimoto's disease, lymph node metastasis, tumor TNM stage, PEDF positive protein expression, the rate of recurrent disease, and the mRNA expression of anti-angiogenic factors was almost as high as in patients with larger PTC, but with no significant difference.Extrathyroid invasion, lymph node metastases, and BRAFV600E mutation were the high risk factors of PTMC. PTMC should be considered for the same treatment strategy as LPTC when any of these factors is found. Particularly, PTMC with BRAFV600E gene mutations needed earlier surgical treatment. In addition, the high cell subtype of PTMC with BRAFV600E gene mutation is recommended for total thyroidectomy in primary surgery to reduce the risk of recurrence.

  8. Uniformity of Peptide Release Is Maintained by Methylation of Release Factors

    Directory of Open Access Journals (Sweden)

    William E. Pierson

    2016-09-01

    Full Text Available Termination of protein synthesis on the ribosome is catalyzed by release factors (RFs, which share a conserved glycine-glycine-glutamine (GGQ motif. The glutamine residue is methylated in vivo, but a mechanistic understanding of its contribution to hydrolysis is lacking. Here, we show that the modification, apart from increasing the overall rate of termination on all dipeptides, substantially increases the rate of peptide release on a subset of amino acids. In the presence of unmethylated RFs, we measure rates of hydrolysis that are exceptionally slow on proline and glycine residues and approximately two orders of magnitude faster in the presence of the methylated factors. Structures of 70S ribosomes bound to methylated RF1 and RF2 reveal that the glutamine side-chain methylation packs against 23S rRNA nucleotide 2451, stabilizing the GGQ motif and placing the side-chain amide of the glutamine toward tRNA. These data provide a framework for understanding how release factor modifications impact termination.

  9. Adipose-derived mesenchymal stromal cells from aged patients with coronary artery disease keep mesenchymal stromal cell properties but exhibit characteristics of aging and have impaired angiogenic potential.

    Science.gov (United States)

    Efimenko, Anastasia; Dzhoyashvili, Nina; Kalinina, Natalia; Kochegura, Tatiana; Akchurin, Renat; Tkachuk, Vsevolod; Parfyonova, Yelena

    2014-01-01

    Tissue regeneration is impaired in aged individuals. Adipose-derived mesenchymal stromal cells (ADSCs), a promising source for cell therapy, were shown to secrete various angiogenic factors and improve vascularization of ischemic tissues. We analyzed how patient age affected the angiogenic properties of ADSCs. ADSCs were isolated from subcutaneous fat tissue of patients with coronary artery disease (CAD; n = 64, 43-77 years old) and without CAD (n = 31, 2-82 years old). ADSC phenotype characterized by flow cytometry was CD90(+)/CD73(+)/CD105(+)/CD45(-)/CD31(-) for all samples, and these cells were capable of adipogenic and osteogenic differentiation. ADSCs from aged patients had shorter telomeres (quantitative reverse transcription polymerase chain reaction) and a tendency to attenuated telomerase activity. ADSC-conditioned media (ADSC-CM) stimulated capillary-like tube formation by endothelial cells (EA.hy926), and this effect significantly decreased with the age of patients both with and without CAD. Angiogenic factors (vascular endothelial growth factor, placental growth factor, hepatocyte growth factor, angiopoetin-1, and angiogenin) in ADSC-CM measured by enzyme-linked immunosorbent assay significantly decreased with patient age, whereas levels of antiangiogenic factors thrombospondin-1 and endostatin did not. Expression of angiogenic factors in ADSCs did not change with patient age (real-time polymerase chain reaction); however, gene expression of factors related to extracellular proteolysis (urokinase and its receptor, plasminogen activator inhibitor-1) and urokinase-type plasminogen activator receptor surface expression increased in ADSCs from aged patients with CAD. ADSCs from aged patients both with and without CAD acquire aging characteristics, and their angiogenic potential declines because of decreasing proangiogenic factor secretion. This could restrict the effectiveness of autologous cell therapy with ADSCs in aged patients.

  10. Phosphorylated human prolactin (S179D-hPRL) is a potent anti-angiogenic hormone in vitro and in vivo

    International Nuclear Information System (INIS)

    Ueda, Eric Kinnosuke Martins

    2006-01-01

    S179D-prolactin (hPRL) is an experimentally useful mimic of naturally phosphorylated human prolactin. S179D-hPRL, but not unmodified PRL, was found to be anti-angiogenic in both the chorioallantoic membrane and corneal assays. Further investigation using human endothelial in vitro models showed reduced cell number, reduced tubule formation in Matrigel, and reduced migration and invasion, as a function of treatment with S179D-hPRL. Analysis of growth factors in human endothelial cells in response to S179D-hPRL showed a decreased expression or release of endogenous PRL, heme-oxygenase-1, basic fibroblast growth factor (bFGF), angio genin, epidermal growth factor and vascular endothelial growth factor and an increased expression of inhibitors of matrix metallo proteases. S179D-hPRL also blocked signaling from bFGF in these cells. We conclude that this molecular mimic of a pituitary hormone is a potent anti-angiogenic protein, partly as a result of its ability to reduce utilization of several well-established endothelial autocrine growth loops, partly by its ability to block signaling from bFGF and partly because of its ability to decrease endothelial migration. We also examined the influence of S179D-hPRL on apoptosis in human endothelial cells, using procaspase-8 as a marker of the extrinsic pathway, and cytochrome C release as a marker of the intrinsic pathway. Both pathways converge at caspase-3, which cleaves DNA fragmentation factor (DFF45). A 3-day incubation with 50 ng/ml S179D-hPRL quadrupled the early apoptotic cells; this effect was doubled at 100 ng/ml and maximal at 500 ng/ml. DFF45 and pro-caspase 8 cleavage were detectable at 100 ng/ml. Cytochrome C, however, was unaffected until 500 ng/ml. p21 increased at 100 ng/ml, whereas a change in p53 activity required both triple the time and 500 ng/ml. p21 promoter activity was maximal at 50 ng/ml, whereas 500 ng/ml were required to see a significant change in the Bax promoter (a measure of p53 activity). As

  11. Anti-angiogenic activity and phytochemical screening of fruit fractions from Vitex agnus castus.

    Science.gov (United States)

    Certo, Giovanna; Costa, Rosaria; D'Angelo, Valeria; Russo, Marina; Albergamo, Ambrogina; Dugo, Giacomo; Germanò, Maria Paola

    2017-12-01

    Although the antitumour activity of Vitex agnus castus fruits has been already addressed, no work has yet assessed their anti-angiogenic potential. To this purpose, several extractive fractions of such fruits were tested on zebrafish embrios by EAP assay, so that only the bioactive fractions could be subsequently tested on the chick chorioallantoic membrane by CAM assay. Bioactive fractions were also phytochemically screened to identify those bioactive compounds responsible for anti-angiogenic activity. A marked inhibition of vessel formation was detected only in zebrafish embryos treated with chloroform or ethyl acetate fractions. Considering CAM assay, chloroform fraction induced a strong reduction of microvasculature and haemoglobin content; while lower anti-angiogenic effects of the ethyl acetate fraction were determined. Phytochemical analyses confirmed the presence of several bioactive anti-angiogenic compounds. Overall, obtained preliminary results highlighted a potential anti-angiogenic activity of V. agnus castus fruits.

  12. Melanocyte-secreted fibromodulin promotes an angiogenic microenvironment.

    Science.gov (United States)

    Adini, Irit; Ghosh, Kaustabh; Adini, Avner; Chi, Zai-Long; Yoshimura, Takeru; Benny, Ofra; Connor, Kip M; Rogers, Michael S; Bazinet, Lauren; Birsner, Amy E; Bielenberg, Diane R; D'Amato, Robert J

    2014-01-01

    Studies have established that pigmentation can provide strong, protective effects against certain human diseases. For example, angiogenesis-dependent diseases such as wet age-related macular degeneration and infantile hemangioma are more common in light-skinned individuals of mixed European descent than in African-Americans. Here we found that melanocytes from light-skinned humans and albino mice secrete high levels of fibromodulin (FMOD), which we determined to be a potent angiogenic factor. FMOD treatment stimulated angiogenesis in numerous in vivo systems, including laser-induced choroidal neovascularization, growth factor-induced corneal neovascularization, wound healing, and Matrigel plug assays. Additionally, FMOD enhanced vascular sprouting during normal retinal development. Deletion of Fmod in albino mice resulted in a marked reduction in the amount of neovascularization induced by retinal vein occlusion, corneal growth factor pellets, and Matrigel plugs. Our data implicate the melanocyte-secreted factor FMOD as a key regulator of angiogenesis and suggest an underlying mechanism for epidemiological differences between light-skinned individuals of mixed European descent and African-Americans. Furthermore, inhibition of FMOD in humans has potential as a therapeutic strategy for treating angiogenesis-dependent diseases.

  13. Biocomposites of copper-containing mesoporous bioactive glass and nanofibrillated cellulose: Biocompatibility and angiogenic promotion in chronic wound healing application.

    Science.gov (United States)

    Wang, Xiaoju; Cheng, Fang; Liu, Jun; Smått, Jan-Henrik; Gepperth, David; Lastusaari, Mika; Xu, Chunlin; Hupa, Leena

    2016-12-01

    Biocomposites of copper-containing mesoporous bioactive glass (Cu-MBG) and nanofibrillated cellulose (NFC) were designated as potential dressing material for chronic wound healing. The phase composition and mesoporous micro-structure of the synthesized Cu-MBGs were elaborately characterized by combining several techniques, including TEM, SEM, XRD, SXAS and N 2 physisorption. High bioactivity of the Cu-MBG was confirmed in stimulated body fluids in vitro. A controlled dissolution of Cu from the glass suggests Cu-MBG a suitable source for Cu release in wound healing dressings. Depending on the content of Cu-MBG in the composite formulation, the composites were fabricated as membranes and aerogels. In biocompatibility assessment of the composites, a dose-dependent cytotoxicity of Cu 2+ on 3T3 fibroblasts was found. Importantly, a critical biological level of Cu 2+ below 10mg/L was suggested for the survival and growth of 3T3 fibroblasts. The Cu 2+ released from the composite aerogel of NFC and Cu-MBG showed a profound angiogenic effect in the 3D spheroid culture system of human umbilical vein endothelial cells. Moreover, the angiogenic gene expression of 3T3 fibroblast was upregulated in the real-time quantitative PCR analysis, which also confirms that the incorporation of Cu-MBG into NFC matrix enhances the proangiogenic potential of the biocomposites. In addition, composites of NFC and Cu-MBG also showed an inhibiting effect on the growth of E. coli. To address an urgent need in clinics on developing a new generation of therapeutic dressings with advanced functionalities, this study has exploited the utilization of Cu-containing mesoporous bioactive glass in the nanocellulose matrix to release Cu 2+ as therapeutic ions for its angiogenic effect on promoting wound healing. This manuscript reports research work on biomaterial design, fabrication development, material characterizations and bioassessments in 2D cellular studies. To utilize nanocellulose derived from the

  14. Platelet released growth factors boost expansion of bone marrow derived CD34(+) and CD133(+) endothelial progenitor cells for autologous grafting.

    Science.gov (United States)

    Lippross, Sebastian; Loibl, Markus; Hoppe, Sven; Meury, Thomas; Benneker, Lorin; Alini, Mauro; Verrier, Sophie

    2011-01-01

    Stem cell based autologous grafting has recently gained mayor interest in various surgical fields for the treatment of extensive tissue defects. CD34(+) and CD133(+) cells that can be isolated from the pool of bone marrow mononuclear cells (BMC) are capable of differentiating into mature endothelial cells in vivo. These endothelial progenitor cells (EPC) are believed to represent a major portion of the angiogenic regenerative cells that are released from bone marrow when tissue injury has occurred. In recent years tissue engineers increasingly looked at the process of vessel neoformation because of its major importance for successful cell grafting to replace damaged tissue. Up to now one of the greatest problems preventing a clinical application is the large scale of expansion that is required for such purpose. We established a method to effectively enhance the expansion of CD34(+) and CD133(+) cells by the use of platelet-released growth factors (PRGF) as a media supplement. PRGF were prepared from thrombocyte concentrates and used as a media supplement to iscove's modified dulbecco's media (IMDM). EPC were immunomagnetically separated from human bone morrow monocyte cells and cultured in IMDM + 10% fetal calf serum (FCS), IMDM + 5%, FCS + 5% PRGF and IMDM + 10% PRGF. We clearly demonstrate a statistically significant higher and faster cell proliferation rate at 7, 14, 21, and 28 days of culture when both PRGF and FCS were added to the medium as opposed to 10% FCS or 10% PRGF alone. The addition of 10% PRGF to IMDM in the absence of FCS leads to a growth arrest from day 14 on. In histochemical, immunocytochemical, and gene-expression analysis we showed that angiogenic and precursor markers of CD34(+) and CD133(+) cells are maintained during long-term culture. In summary, we established a protocol to boost the expansion of CD34(+) and CD133(+) cells. Thereby we provide a technical step towards the clinical application of autologous stem cell

  15. Reciprocal interactions between endothelial cells and macrophages in angiogenic vascular niches

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Caroline; Squadrito, Mario Leonardo [The Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne (Switzerland); Iruela-Arispe, M. Luisa, E-mail: arispe@mcdb.ucla.edu [The Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne (Switzerland); Department of Molecular, Cell and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles 90095, CA (United States); De Palma, Michele, E-mail: michele.depalma@epfl.ch [The Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne (Switzerland)

    2013-07-01

    The ability of macrophages to promote vascular growth has been associated with the secretion and local delivery of classic proangiogenic factors (e.g., VEGF-A and proteases). More recently, a series of studies have also revealed that physical contact of macrophages with growing blood vessels coordinates vascular fusion of emerging sprouts. Interestingly, the interactions between macrophages and vascular endothelial cells (ECs) appear to be bidirectional, such that activated ECs also support the expansion and differentiation of proangiogenic macrophages from myeloid progenitors. Here, we discuss recent findings suggesting that dynamic angiogenic vascular niches might also exist in vivo, e.g. in tumors, where sprouting blood vessels and immature myeloid cells like monocytes engage in heterotypic interactions that are required for angiogenesis. Finally, we provide an account of emerging mechanisms of cell-to-cell communication that rely on secreted microvesicles, such as exosomes, which can offer a vehicle for the rapid exchange of molecules and genetic information between macrophages and ECs engaged in angiogenesis. -- Highlights: • Macrophages promote angiogenesis by secreting proangiogenic factors. • Macrophages modulate angiogenesis via cell-to-cell contacts with endothelial cells. • Endothelial cells promote the differentiation of proangiogenic macrophages. • Macrophages and endothelial cells may cooperate to form angiogenic vascular niches.

  16. Reciprocal interactions between endothelial cells and macrophages in angiogenic vascular niches

    International Nuclear Information System (INIS)

    Baer, Caroline; Squadrito, Mario Leonardo; Iruela-Arispe, M. Luisa; De Palma, Michele

    2013-01-01

    The ability of macrophages to promote vascular growth has been associated with the secretion and local delivery of classic proangiogenic factors (e.g., VEGF-A and proteases). More recently, a series of studies have also revealed that physical contact of macrophages with growing blood vessels coordinates vascular fusion of emerging sprouts. Interestingly, the interactions between macrophages and vascular endothelial cells (ECs) appear to be bidirectional, such that activated ECs also support the expansion and differentiation of proangiogenic macrophages from myeloid progenitors. Here, we discuss recent findings suggesting that dynamic angiogenic vascular niches might also exist in vivo, e.g. in tumors, where sprouting blood vessels and immature myeloid cells like monocytes engage in heterotypic interactions that are required for angiogenesis. Finally, we provide an account of emerging mechanisms of cell-to-cell communication that rely on secreted microvesicles, such as exosomes, which can offer a vehicle for the rapid exchange of molecules and genetic information between macrophages and ECs engaged in angiogenesis. -- Highlights: • Macrophages promote angiogenesis by secreting proangiogenic factors. • Macrophages modulate angiogenesis via cell-to-cell contacts with endothelial cells. • Endothelial cells promote the differentiation of proangiogenic macrophages. • Macrophages and endothelial cells may cooperate to form angiogenic vascular niches

  17. Angiogenic activity of Synadenium umbellatum Pax latex

    Directory of Open Access Journals (Sweden)

    PR. Melo-Reis

    Full Text Available Synadenium umbellatum Pax, popularly known as "cola-nota", is a medicinal plant that grows in tropical regions. Latex of this plant is used to treat various diseases such as diabetes mellitus, Hansen´s disease, tripanosomiases, leukemia and several malignant tumors. In the present study, the angiogenic activity of S. umbellatum latex was evaluated using the chick embryo chorioallantoic membrane (CAM assay. Results showed significant increase of the vascular net (p < 0.05 compared to the negative control (H2O. The histological analysis was in accordance with the results obtained. In conclusion, our data indicate that S. umbellatum latex, under the conditions of this research, presented angiogenic effect.

  18. Changes of plasma angiogenic factors during chronic resistance exercise in type 1 diabetic rats

    International Nuclear Information System (INIS)

    Esfahani, S.P.; Gharakhanlou, R.

    2012-01-01

    Objective: Exercise has several beneficial effects on cardiovascular system. However, the exact mechanism is unclear. The purpose of this study was to evaluate the effects of chronic resistance exercise on some plasma angiogenic factors in type 1 diabetic rats. Methodology: Thirty male Wistar rats were divided into three groups of control, diabetic and diabetic trained (n = 10 each). Diabetes was induced by a single intraperitoneal injection of streptozotocin (55 mg/kg). The rats in the trained group undertook one training session per day, 3 days/week, for 4 weeks. Blood samples were taken and the concentrations of plasma glucose, lipid profile, nitric oxide (NO), vascular endothelial growth factor (VEGF) and soluble form of VEGF receptor-1 (sFlt-1) were determined. Results: We found a significant reduction in plasma NO concentrations in diabetic rats compared to the controls (p 0.05). There were no significant differences in plasma VEGF and sFlt-1 concentrations between diabetic sedentary and trained groups (p > 0.05). Moreover, VEGF/sFlt-1 ratios in diabetic animals were lower than the control group and resistance exercise could not increase this ratio in diabetic animals (p > 0.05) Conclusion: Resistance exercise could not change plasma VEGF, sFlt-1 and VEGF/sFlt-1 ratio. However, it increased plasma NO concentrations in diabetic animals. More studies are needed to determine the effects of this type of exercise on the angiogenesis process. (author)

  19. Angiogenic potential of human macrophages on electrospun bioresorbable vascular grafts

    Energy Technology Data Exchange (ETDEWEB)

    Garg, K; Sell, S A; Madurantakam, P; Bowlin, G L, E-mail: glbowlin@vcu.ed [Virginia Commonwealth University, Richmond, VA 23284 (United States)

    2009-06-15

    The aim of this study was to investigate macrophage interactions with electrospun scaffolds and quantify the expression of key angiogenic growth factors in vitro. This study will further help in evaluating the potential of these electrospun constructs as vascular grafts for tissue repair and regeneration in situ. Human peripheral blood macrophages were seeded in serum free media on electrospun (10 mm) discs of polydioxanone (PDO), elastin and PDO:elastin blends (50:50, 70:30 and 90:10). The growth factor secretion was analyzed by ELISA. Macrophages produced high levels of vascular endothelial growth factor and acidic fibroblast growth factor. Transforming growth factor beta-1 (TGF-beta1) secretion was relatively low and there was negligible production of basic fibroblast growth factor. Therefore, it can be anticipated that these scaffolds will support tissue regeneration and angiogenesis. (communication)

  20. Anti-angiogenic activity of a new andrographolide derivative in zebrafish and HUVECs.

    Science.gov (United States)

    Li, Jingjing; Peng, Yuran; Li, Shang; Sun, Yicheng; Chan, Judy Yuet-Wa; Cui, Guozhen; Wang, Decai; Zhou, Guo-Chun; Lee, Simon Ming-Yuen

    2016-10-15

    Andrographolide is among the most promising anti-tumor and anti-angiogenic components in Andrographis paniculata but its poor bioavailability and limited efficacy pose difficulties for its therapeutic development. Therefore, improving its pharmaceutical features and potency, by modifying its chemical structure, is desirable. In the present study, a new andrographolide derivative (AGP-40) was synthesized and characterized for its anti-angiogenic properties. Human umbilical vein endothelial cells (HUVECs) and zebrafish models were used to identify the anti-angiogenic activity of AGP-40. AGP-40 significantly suppressed the formation of blood vessels in zebrafish and inhibited proliferation, migration and tube formation in vitro. The anti-angiogenic effects of AGP-40 are at least partially mediated via the PI3K/Akt and MEK/Erk(1/2) signaling pathways. Furthermore, AGP-40 exhibited stronger anti-proliferative effects than andrographolide against A549, HepG2, Hela cancer cell lines. This study is the first to demonstrate the promising anti-angiogenic activity of the new andrographolide derivative AGP-40. Our results indicate that AGP-40 could serve as a potential therapeutic agent for the treatment and prevention of diseases associated with excessive angiogenesis. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. ITE Suppresses Angiogenic Responses in Human Artery and Vein Endothelial Cells: Differential Roles of AhR.

    Science.gov (United States)

    Li, Yan; Wang, Kai; Zou, Qing-Yun; Jiang, Yi-Zhou; Zhou, Chi; Zheng, Jing

    2017-12-01

    Aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor is involved in regulation of many essential biological processes including vascular development and angiogenesis. 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) is an AhR ligand, which regulates immune responses and cancer cell growth. However, the roles of the ITE/AhR pathway in mediating placental angiogenesis remains elusive. Here, we determined if ITE affected placental angiogenic responses via AhR in human umbilical vein (HUVECs) and artery endothelial (HUAECs) cells in vitro. We observed that ITE dose- and time-dependently inhibited proliferation and viability of HUAECs and HUVECs, whereas it inhibited migration of HUAECs, but not HUVECs. While AhR siRNA significantly suppressed AhR protein expression in HUVECs and HUAECs, it attenuated the ITE-inhibited angiogenic responses of HUAECs, but not HUVECs. Collectively, ITE suppressed angiogenic responses of HUAECs and HUVECs, dependent and independent of AhR, respectively. These data suggest that ITE may regulate placental angiogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Pro-angiogenic capacities of microvesicles produced by skin wound myofibroblasts.

    Science.gov (United States)

    Merjaneh, Mays; Langlois, Amélie; Larochelle, Sébastien; Cloutier, Chanel Beaudoin; Ricard-Blum, Sylvie; Moulin, Véronique J

    2017-08-01

    Wound healing is a very highly organized process where numerous cell types are tightly regulated to restore injured tissue. Myofibroblasts are cells that produce new extracellular matrix and contract wound edges. We previously reported that the human myofibroblasts isolated from normal wound (WMyos) produced microvesicles (MVs) in the presence of the serum. In this study, MVs were further characterized using a proteomic strategy and potential functions of the MVs were determined. MV proteins isolated from six WMyo populations were separated using two-dimensional differential gel electrophoresis. Highly conserved spots were selected and analyzed using mass spectrometry resulting in the identification of 381 different human proteins. Using the DAVID database, clusters of proteins involved in cell motion, apoptosis and adhesion, but also in extracellular matrix production (21 proteins, enrichment score: 3.32) and in blood vessel development/angiogenesis (19 proteins, enrichment score: 2.66) were identified. Another analysis using the functional enrichment analysis tool FunRich was consistent with these results. While the action of the myofibroblasts on extracellular matrix formation is well known, their angiogenic potential is less studied. To further characterize the angiogenic activity of the MVs, they were added to cultured microvascular endothelial cells to evaluate their influence on cell growth and migration using scratch test and capillary-like structure formation in Matrigel ® . The addition of a MV-enriched preparation significantly increased endothelial cell growth, migration and capillary formation compared with controls. The release of microvesicles by the wound myofibroblasts brings new perspectives to the field of communication between cells during the normal healing process.

  3. Automated tracking and quantification of angiogenic vessel formation in 3D microfluidic devices.

    Science.gov (United States)

    Wang, Mengmeng; Ong, Lee-Ling Sharon; Dauwels, Justin; Asada, H Harry

    2017-01-01

    Angiogenesis, the growth of new blood vessels from pre-existing vessels, is a critical step in cancer invasion. Better understanding of the angiogenic mechanisms is required to develop effective antiangiogenic therapies for cancer treatment. We culture angiogenic vessels in 3D microfluidic devices under different Sphingosin-1-phosphate (S1P) conditions and develop an automated vessel formation tracking system (AVFTS) to track the angiogenic vessel formation and extract quantitative vessel information from the experimental time-lapse phase contrast images. The proposed AVFTS first preprocesses the experimental images, then applies a distance transform and an augmented fast marching method in skeletonization, and finally implements the Hungarian method in branch tracking. When applying the AVFTS to our experimental data, we achieve 97.3% precision and 93.9% recall by comparing with the ground truth obtained from manual tracking by visual inspection. This system enables biologists to quantitatively compare the influence of different growth factors. Specifically, we conclude that the positive S1P gradient increases cell migration and vessel elongation, leading to a higher probability for branching to occur. The AVFTS is also applicable to distinguish tip and stalk cells by considering the relative cell locations in a branch. Moreover, we generate a novel type of cell lineage plot, which not only provides cell migration and proliferation histories but also demonstrates cell phenotypic changes and branch information.

  4. Different angiogenic phenotypes in primary and secondary glioblastomas.

    Science.gov (United States)

    Karcher, Sibylle; Steiner, Hans-Herbert; Ahmadi, Rezvan; Zoubaa, Saida; Vasvari, Gergely; Bauer, Harry; Unterberg, Andreas; Herold-Mende, Christel

    2006-05-01

    Primary and secondary glioblastomas (pGBM, sGBM) are supposed to evolve through different genetic pathways, including EGF receptor and PDGF and its receptor and thus genes that are involved in tumor-induced angiogenesis. However, whether other angiogenic cytokines are also differentially expressed in these glioblastoma subtypes is not known so far, but this knowledge might be important to optimize an antiangiogenic therapy. Therefore, we studied the expression of several angiogenic cytokines, including VEGF-A, HGF, bFGF, PDGF-AB, PDGF-BB, G-CSF and GM-CSF in pGBMs and sGBMs as well as in gliomas WHO III, the precursor lesions of sGBMs. In tumor tissues, expression of all cytokines was observed albeit with marked differences concerning intensity and distribution pattern. Quantification of the cytokines in the supernatant of 30 tissue-corresponding glioma cultures revealed a predominant expression of VEGF-A in pGBMs and significantly higher expression levels of PDGF-AB in sGBMs. HGF and bFGF were determined in nearly all tumor cultures but with no GBM subtype or malignancy-related differences. Interestingly, GM-CSF and especially G-CSF were produced less frequently by tumor cells. However, GM-CSF secretion occurred together with an increased number of simultaneously secreted cytokines and correlated with a worse patient prognosis and may thus represent a more aggressive angiogenic phenotype. Finally, we confirmed an independent contribution of each tumor-derived cytokine analyzed to tumor-induced vascularization. Our data indicate that an optimal antiangiogenic therapy may require targeting of multiple angiogenic pathways that seem to differ markedly in pGBMs and sGBMs. 2005 Wiley-Liss, Inc.

  5. Anti-Angiogenic Therapeutic Indictors in Breast Cancer

    National Research Council Canada - National Science Library

    Su, Min-Ying

    2003-01-01

    This project studies the therapeutic indicators in ant-angiogenic therapy. Every animal with mammary tumor was scheduled to receive a baseline MRI, core biopsy, then followed by 4 treatments with weekly MRI follow...

  6. Anti-angiogenic activity in metastasis of human breast cancer cells irradiated by a proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyu-Shik; Shin, Jin-Sun; Nam, Kyung-Soo [Dongguk University, Gyeongju (Korea, Republic of); Shon, Yun-Hee [Kyungpook National University Hospital, Daegu (Korea, Republic of)

    2012-07-15

    Angiogenesis is an essential process of metastasis in human breast cancer. We investigated the effects of proton beam irradiation on angiogenic enzyme activities and their expressions in MCF-7 human breast cancer cells. The regulation of angiogenic regulating factors, of transforming growth factor-β (TGF-β) and of vesicular endothelial growth factor (VEGF) expression in breast cancer cells irradiated with a proton beam was studied. Aromatase activity and mRNA expression, which is correlated with metastasis, were significantly decreased by irradiation with a proton beam in a dose-dependent manner. TGF-β and VEGF transcriptions were also diminished by proton beam irradiation. In contrast, transcription of tissue inhibitors of matrix metalloproteinases (TIMPs), also known as biological inhibitors of matrix metalloproteinases (MMPs), was dose-dependently enhanced. Furthermore, an increase in the expression of TIMPs caused the MMP-9 activity to be diminished and the MMP-9 and the MMP-2 expressions to be decreased. These results suggest that inhibition of angiogenesis by proton beam irradiation in breast cancer cells is closely related to inhibitions of aromatase activity and transcription and to down-regulation of TGF-β and VEGF transcription.

  7. Biofunctionalization of scaffold material with nano-scaled diamond particles physisorbed with angiogenic factors enhances vessel growth after implantation.

    Science.gov (United States)

    Schimke, Magdalena M; Stigler, Robert; Wu, Xujun; Waag, Thilo; Buschmann, Peter; Kern, Johann; Untergasser, Gerold; Rasse, Michael; Steinmüller-Nethl, Doris; Krueger, Anke; Lepperdinger, Günter

    2016-04-01

    Biofunctionalized scaffold facilitates complete healing of large defects. Biological constraints are induction and ingrowth of vessels. Angiogenic growth factors such as vascular endothelial growth factor or angiopoietin-1 can be bound to nano-scaled diamond particles. Corresponding bioactivities need to be examined after biofunctionalization. We therefore determined the physisorptive capacity of distinctly manufactured, differently sized nDP and the corresponding activities of bound factors. The properties of biofunctionalized nDPs were investigated on cultivated human mesenchymal stem cells and on the developing chicken embryo chorio-allantoic membrane. Eventually porous bone substitution material was coated with nDP to generate an interface that allows biofactor physisorption. Angiopoietin-1 was applied shortly before scaffold implantation into an osseous defect in sheep calvaria. Biofunctionalized scaffolds exhibited significantly increased rates of angiogenesis already one month after implantation. Conclusively, nDP can be used to ease functionalization of synthetic biomaterials. With the advances in nanotechnology, many nano-sized materials have been used in the biomedical field. This is also true for nano-diamond particles (nDP). In this article, the authors investigated the physical properties of functionalized nano-diamond particles in both in-vitro and in-vivo settings. The positive findings would help improve understanding of these nanomaterials in regenerative medicine. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Human chorionic gonadotropin, angiogenic factors, and preeclampsia risk: a nested case-control study.

    Science.gov (United States)

    Asvold, Bjørn O; Eskild, Anne; Vatten, Lars J

    2014-05-01

    To study whether human chorionic gonadotropin concentrations during pregnancy or combinations of human chorionic gonadotropin and other angiogenic factors, soluble fms-like tyrosine kinase 1 and placental growth factor (PlGF), are associated with preeclampsia risk. Nested case-control study. Population cohort of pregnant women. A total of 121 cases of preterm (cases of term preeclampsia (≥37 weeks of gestation) and 356 women without preeclampsia (controls). Women with preeclampsia were identified by linkage to the Medical Birth Registry of Norway. Concentrations of human chorionic gonadotropin, soluble fms-like tyrosine kinase 1 and PlGF were measured in maternal serum samples collected in each trimester of pregnancy. Odds ratios of preterm and term preeclampsia. High human chorionic gonadotropin concentrations (highest quartile) in the first trimester were associated with reduced risk for preterm preeclampsia (OR 0.3, 95% CI 0.1-0.9), compared with low human chorionic gonadotropin (lowest quartile), whereas high human chorionic gonadotropin concentrations in the second trimester were associated with increased risk for preterm preeclampsia (OR 4.0, 95% CI 1.8-8.9). High human chorionic gonadotropin concentrations in the third trimester were associated with increased risk for term preeclampsia (OR 4.8, 95% CI 1.8-13.3). Concentrations of human chorionic gonadotropin above the median value combined with PlGF below the median in the second trimester were associated with very high risk for preterm preeclampsia (OR 36.9, 95% CI 8.2-165.8). The results suggest an important role of human chorionic gonadotropin in the pathophysiological processes that lead to preeclampsia. The combined association of human chorionic gonadotropin and PlGF indicates a possible synergism between underlying biological pathways. © 2014 Nordic Federation of Societies of Obstetrics and Gynecology.

  9. Angiogenic factor imbalance precedes complement deposition in placentae of the BPH/5 model of preeclampsia.

    Science.gov (United States)

    Sones, Jennifer L; Merriam, Audrey A; Seffens, Angelina; Brown-Grant, Dex-Ann; Butler, Scott D; Zhao, Anna M; Xu, Xinjing; Shawber, Carrie J; Grenier, Jennifer K; Douglas, Nataki C

    2018-05-01

    Preeclampsia (PE), a hypertensive disorder of pregnancy, is a leading cause of maternal and fetal morbidity and mortality. Although the etiology is unknown, PE is thought to be caused by defective implantation and decidualization in pregnancy. Pregnant blood pressure high (BPH)/5 mice spontaneously develop placentopathies and maternal features of human PE. We hypothesized that BPH/5 implantation sites have transcriptomic alterations. Next-generation RNA sequencing of implantation sites at peak decidualization, embryonic day (E)7.5, revealed complement gene up-regulation in BPH/5 vs. controls. In BPH/5, expression of complement factor 3 was increased around the decidual vasculature of E7.5 implantation sites and in the trophoblast giant cell layer of E10.5 placentae. Altered expression of VEGF pathway genes in E5.5 BPH/5 implantation sites preceded complement dysregulation, which correlated with abnormal vasculature and increased placental growth factor mRNA and VEGF 164 expression at E7.5. By E10.5, proangiogenic genes were down-regulated, whereas antiangiogenic sFlt-1 was up-regulated in BPH/5 placentae. We found that early local misexpression of VEGF genes and abnormal decidual vasculature preceded sFlt-1 overexpression and increased complement deposition in BPH/5 placentae. Our findings suggest that abnormal decidual angiogenesis precedes complement activation, which in turn contributes to the aberrant trophoblast invasion and poor placentation that underlie PE.-Sones, J. L., Merriam, A. A., Seffens, A., Brown-Grant, D.-A., Butler, S. D., Zhao, A. M., Xu, X., Shawber, C. J., Grenier, J. K., Douglas, N. C. Angiogenic factor imbalance precedes complement deposition in placentae of the BPH/5 model of preeclampsia.

  10. Effects of " vitex agnus castus" extract and magnesium supplementation, alone and in combination, on osteogenic and angiogenic factors and fracture healing in women with long bone fracture

    OpenAIRE

    Mohammad Hassan Eftekhari; Zahra Hassanzadeh Rostami; Mohammad Jafar Emami; Hamid Reza Tabatabaee

    2014-01-01

    Background: The purpose of this study was to investigate the effects of the combination of vitex agnus castus extract, as a source of phytoestrogens, plus magnesium supplementation on osteogenic and angiogenic factors and callus formation in women with long bone fracture. Material and Methods: In a double-blind randomized placebo controlled trial, 64 women with long bone fracture, 20-45 years old, were randomly allocated to receive 1) one Agnugol tablet (4 mg dried fruit extract of vitex agnu...

  11. Cord Blood Angiogenic Profile in Normotensive Pregnancies

    African Journals Online (AJOL)

    2017-06-30

    Jun 30, 2017 ... favorable anti- to pro-angiogenic balance in pregnant women. ... tweak,and build upon the work non-commercially,as long as the author is credited and the new ..... utero blood pressure in childhood and adult life and mortality.

  12. Expression of the angiogenic mediator, angiopoietin-like 4, in the eyes of patients with proliferative sickle retinopathy.

    Directory of Open Access Journals (Sweden)

    Kathleen Jee

    Full Text Available The recent success of therapies directly targeting the angiogenic mediator, vascular endothelial growth factor (VEGF, for the treatment of proliferative diabetic retinopathy has encouraged clinicians to extend the use of anti-VEGF therapies for the treatment of another ischemic retinal vascular disease, proliferative sickle cell retinopathy (PSR, the most common cause of irreversible blindness in patients with sickle cell disease. However, results from case reports evaluating anti-VEGF therapies for PSR have been mixed. This highlights the need to identify alternative therapeutic targets for the treatment of retinal neovascularization in sickle cell patients. In this regard, angiopoietin-like 4 (ANGPTL4 is a novel angiogenic factor regulated by the transcription factor, hypoxia-inducible factor 1, the master regulator of angiogenic mediators (including VEGF in ischemic retinal disease. In an effort to identify alternative targets for the treatment of sickle cell retinopathy, we have explored the expression of ANGPTL4 in the eyes of patients with PSR. To this end, we examined expression and localization of ANGPTL4 by immunohistochemistry in autopsy eyes from patients with known PSR (n = 5 patients. Complementary studies were performed using enzyme-linked immunosorbent assays in aqueous (n = 8; 7 patients, 2 samples from one eye of same patient and vitreous (n = 3 patients samples from a second group of patients with active PSR. We detected expression of ANGPTL4 in neovascular tissue and in the ischemic inner retina in PSR, but not control, eyes. We further observed elevated expression of ANGPTL4 in the aqueous and vitreous of PSR patients compared to controls. These results suggest that ANGPTL4 could contribute to the development of retinal neovascularization in sickle cell patients and could therefore be a therapeutic target for the treatment of PSR.

  13. Angiogenic CXC chemokine expression during differentiation of human mesenchymal stem cells towards the osteoblastic lineage.

    Science.gov (United States)

    Bischoff, D S; Zhu, J H; Makhijani, N S; Kumar, A; Yamaguchi, D T

    2008-02-15

    The potential role of ELR(+) CXC chemokines in early events in bone repair was studied using human mesenchymal stem cells (hMSCs). Inflammation, which occurs in the initial phase of tissue healing in general, is critical to bone repair. Release of cytokines from infiltrating immune cells and injured bone can lead to recruitment of MSCs to the region of repair. CXC chemokines bearing the Glu-Leu-Arg (ELR) motif are also released by inflammatory cells and serve as angiogenic factors stimulating chemotaxis and proliferation of endothelial cells. hMSCs, induced to differentiate with osteogenic medium (OGM) containing ascorbate, beta-glycerophosphate (beta-GP), and dexamethasone (DEX), showed an increase in mRNA and protein secretion of the ELR(+) CXC chemokines CXCL8 and CXCL1. CXCL8 mRNA half-life studies reveal an increase in mRNA stability upon OGM stimulation. Increased expression and secretion is a result of DEX in OGM and is dose-dependent. Inhibition of the glucocorticoid receptor with mifepristone only partially inhibits DEX-stimulated CXCL8 expression indicating both glucocorticoid receptor dependent and independent pathways. Treatment with signal transduction inhibitors demonstrate that this expression is due to activation of the ERK and p38 mitogen-activated protein kinase (MAPK) pathways and is mediated through the G(alphai)-coupled receptors. Angiogenesis assays demonstrate that OGM-stimulated conditioned media containing secreted CXCL8 and CXCL1 can induce angiogenesis of human microvascular endothelial cells in an in vitro Matrigel assay. Copyright 2007 Wiley-Liss, Inc.

  14. VEGF-independent angiogenic pathways induced by PDGF-C

    Science.gov (United States)

    Kumar, Anil; Zhang, Fan; Lee, Chunsik; Li, Yang; Tang, Zhongshu; Arjunan, Pachiappan

    2010-01-01

    VEGF is believed to be a master regulator in both developmental and pathological angiogenesis. The role of PDGF-C in angiogenesis, however, is only at the beginning of being revealed. We and others have shown that PDGF-C is a critical player in pathological angiogenesis because of its pleiotropic effects on multiple cellular targets. The angiogenic pathways induced by PDGF-C are, to a large extent, VEGF-independent. These pathways may include, but not limited to, the direct effect of PDGF-C on vascular cells, the effect of PDGF-C on tissue stroma fibroblasts, and its effect on macrophages. Taken together, the pleiotropic, versatile and VEGF-independent angiogenic nature of PDGF-C has placed it among the most important target genes for antiangiogenic therapy. PMID:20871734

  15. Circulating angiogenic cells can be derived from cryopreserved peripheral blood mononuclear cells.

    Directory of Open Access Journals (Sweden)

    Tanja Sofrenovic

    Full Text Available Cell transplantation for regenerative medicine has become an appealing therapeutic method; however, stem and progenitor cells are not always freshly available. Cryopreservation offers a way to freeze cells as they are generated, for storage and transport until required for therapy. This study was performed to assess the feasibility of cryopreserving peripheral blood mononuclear cells (PBMCs for the subsequent in vitro generation of their derived therapeutic population, circulating angiogenic cells (CACs.PBMCs were isolated from healthy human donors. Freshly isolated cells were either analyzed immediately or cryopreserved in media containing 6% plasma serum and 5% dimethyl sulfoxide. PBMCs were thawed after being frozen for 1 (early thaw or 28 (late thaw days and analyzed, or cultured for 4 days to generate CACs. Analysis of the cells consisted of flow cytometry for viability and phenotype, as well as functional assays for their adhesion and migration potential, cytokine secretion, and in vivo angiogenic potential.The viability of PBMCs and CACs as well as their adhesion and migration properties did not differ greatly after cryopreservation. Phenotypic changes did occur in PBMCs and to a lesser extent in CACs after freezing; however the potent CD34(+VEGFR2(+CD133(+ population remained unaffected. The derived CACs, while exhibiting changes in inflammatory cytokine secretion, showed no changes in the secretion of important regenerative and chemotactic cytokines, nor in their ability to restore perfusion in ischemic muscle.Overall, it appears that changes do occur in cryopreserved PBMCs and their generated CACs; however, the CD34(+VEGFR2(+CD133(+ progenitor population, the secretion of pro-vasculogenic factors, and the in vivo angiogenic potential of CACs remain unaffected by cryopreservation.

  16. Role of vascular endothelial growth factor and other growth factors in post-stroke recovery

    Directory of Open Access Journals (Sweden)

    Tanu Talwar

    2014-01-01

    Full Text Available Stroke is a major health problem world-wide and its burden has been rising in last few decades. Until now tissue plasminogen activator is only approved treatment for stroke. Angiogenesis plays a vital role for striatal neurogenesis after stroke. Administration of various growth factors in an early post ischemic phase, stimulate both angiogenesis and neurogenesis and lead to improved functional recovery after stroke. However vascular endothelial growth factors (VEGF is the most potent angiogenic factor for neurovascularization and neurogenesis in ischemic injury can be modulated in different ways and thus can be used as therapy in stroke. In response to the ischemic injury VEGF is released by endothelial cells through natural mechanism and leads to angiogenesis and vascularization. This release can also be up regulated by exogenous administration of Mesenchymal stem cells, by various physical therapy regimes and electroacupuncture, which further potentiate the efficacy of VEGF as therapy in post stroke recovery. Recent published literature was searched using PubMed and Google for the article reporting on methods of up regulation of VEGF and therapeutic potential of growth factors in stroke.

  17. Anti-angiogenic Therapy in Patients with Advanced Gastric and Gastroesophageal Junction Cancer: A Systematic Review.

    Science.gov (United States)

    Chen, Li-Tzong; Oh, Do-Youn; Ryu, Min-Hee; Yeh, Kun-Huei; Yeo, Winnie; Carlesi, Roberto; Cheng, Rebecca; Kim, Jongseok; Orlando, Mauro; Kang, Yoon-Koo

    2017-10-01

    Despite advancements in therapy for advanced gastric and gastroesophageal junction cancers, their prognosis remains dismal. Tumor angiogenesis plays a key role in cancer growth and metastasis, and recent studies indicate that pharmacologic blockade of angiogenesis is a promising approach to therapy. In this systematic review, we summarize current literature on the clinical benefit of anti-angiogenic agents in advanced gastric cancer. We conducted a systematic search of PubMed and conference proceedings including the American Society of Clinical Oncology, the European Society for Medical Oncology, and the European Cancer Congress. Included studies aimed to prospectively evaluate the efficacy and safety of anti-angiogenic agents in advanced gastric or gastroesophageal junction cancer. Each trial investigated at least one of the following endpoints: overall survival, progression-free survival/time to progression, and/or objective response rate. Our search yielded 139 publications. Forty-two met the predefined inclusion criteria. Included studies reported outcomes with apatinib, axitinib, bevacizumab, orantinib, pazopanib, ramucirumab, regorafenib, sorafenib, sunitinib, telatinib, and vandetanib. Second-line therapy with ramucirumab and third-line therapy with apatinib are the only anti-angiogenic agents so far shown to significantly improve survival of patients with advanced gastric cancer. Overall, agents that specifically target the vascular endothelial growth factor ligand or receptor have better safety profile compared to multi-target tyrosine kinase inhibitors.

  18. Angiogenic activity of sesamin through the activation of multiple signal pathways

    International Nuclear Information System (INIS)

    Chung, Byung-Hee; Lee, Jung Joon; Kim, Jong-Dai; Jeoung, Dooil; Lee, Hansoo; Choe, Jongseon; Ha, Kwon-Soo; Kwon, Young-Geun; Kim, Young-Myeong

    2010-01-01

    The natural product sesamin has been known to act as a potent antioxidant and prevent endothelial dysfunction. We here found that sesamin increased in vitro angiogenic processes, such as endothelial cell proliferation, migration, and tube formation, as well as neovascularization in an animal model. This compound elicited the activation of multiple angiogenic signal modulators, such as ERK, Akt, endothelial nitric oxide synthase (eNOS), NO production, FAK, and p38 MAPK, but not Src. The MEK inhibitor PD98059 and the PI3K inhibitor Wortmannin specifically inhibited sesamin-induced activation of the ERK and Akt/eNOS pathways. These inhibitors reduced angiogenic events, with high specificity for MEK/ERK-dependent cell proliferation and migration and PI3K/Akt-mediated tube formation. Moreover, inhibition of p38 MAPK effectively inhibited sesamin-induced cell migration. The angiogenic activity of sesamin was not associated with VEGF expression. Furthermore, this compound did not induce vascular permeability and upregulated ICAM-1 and VCAM-1 expression, which are hallmarks of vascular inflammation. These results suggest that sesamin stimulates angiogenesis in vitro and in vivo through the activation of MEK/ERK-, PI3K/Akt/eNOS-, p125 FAK -, and p38 MAPK-dependent pathways, without increasing vascular inflammation, and may be used for treating ischemic diseases and tissue regeneration.

  19. HL-217, a new topical anti-angiogenic agent, inhibits retinal vascular leakage and pathogenic subretinal neovascularization in Vldlr−/− mice

    International Nuclear Information System (INIS)

    Kim, Junghyun; Kim, Chan-Sik; Jo, Kyuhyung; Cho, Yun-Seok; Kim, Hyun-Gyu; Lee, Geun-Hyeog; Lee, Yun Mi; Sohn, Eunjin; Kim, Jin Sook

    2015-01-01

    Highlights: • HL-217 is a new synthetic topical anti-angiogenic agent. • HL-217 attenuated subretinal neovascularization in Vldlr −/− mice. • HL-217 blocked the binding of PDGF-BB to PDGFRβ. - Abstract: HL-217 is a new synthetic angiogenesis inhibitor. Platelet derived growth factor (PDGF) is a vasoactive factor and has been implicated in proliferative retinopathies. In this study, we examined the mechanism of action and efficacy of topical application of HL-217 on subretinal neovascularization in very low-density lipoprotein receptor knockout (Vldlr −/− ) mice. In three-week-old male Vldlr −/− mice, HL-217 (1.5 or 3 mg/ml) was administered twice per day for 4 weeks by topical eye drop instillation. Neovascular areas were then measured. We used a protein array to evaluate the expression levels of angiogenic factors. The inhibitory effect of HL-217 on the PDGF-BB/PDGFRβ interaction was evaluated in vitro. The neovascular area in the Vldlr −/− mice was significantly reduced by HL-217. Additionally, HL-217 decreased the expression levels of PDGF-BB protein and VEGF mRNA. Moreover, HL-217 dose-dependently inhibited the PDGF-BB/PDGFRβ interaction (IC 50 = 38.9 ± 0.7 μM). These results suggest that HL-217 is a potent inhibitor of PDGF-BB. HL-217, when applied topically, is an effective inhibitor of subretinal neovascularization due to its ability to inhibit the pro-angiogenic effects of PDGF-BB

  20. Mel-18, a mammalian Polycomb gene, regulates angiogenic gene expression of endothelial cells.

    Science.gov (United States)

    Jung, Ji-Hye; Choi, Hyun-Jung; Maeng, Yong-Sun; Choi, Jung-Yeon; Kim, Minhyung; Kwon, Ja-Young; Park, Yong-Won; Kim, Young-Myeong; Hwang, Daehee; Kwon, Young-Guen

    2010-10-01

    Mel-18 is a mammalian homolog of Polycomb group (PcG) genes. Microarray analysis revealed that Mel-18 expression was induced during endothelial progenitor cell (EPC) differentiation and correlates with the expression of EC-specific protein markers. Overexpression of Mel-18 promoted EPC differentiation and angiogenic activity of ECs. Accordingly, silencing Mel-18 inhibited EC migration and tube formation in vitro. Gene expression profiling showed that Mel-18 regulates angiogenic genes including kinase insert domain receptor (KDR), claudin 5, and angiopoietin-like 2. Our findings demonstrate, for the first time, that Mel-18 plays a significant role in the angiogenic function of ECs by regulating endothelial gene expression. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Short-term hypoxia/reoxygenation activates the angiogenic pathway ...

    Indian Academy of Sciences (India)

    2013-04-20

    Apr 20, 2013 ... angiogenic pathway in the rat caudate putamen as a neuroprotective mechanism to hypoxia .... (1:3 w/v) with a homogenator (Pellet Pestle Motor Cordless, ..... showing that the capillary density in the rat cerebral cortex was.

  2. Growth of MCF-7 breast cancer cells and efficacy of anti-angiogenic agents in a hydroxyethyl chitosan/glycidyl methacrylate hydrogel.

    Science.gov (United States)

    Wang, Hejing; Qian, Junmin; Zhang, Yaping; Xu, Weijun; Xiao, Juxiang; Suo, Aili

    2017-01-01

    Breast cancer negatively affects women's health worldwide. The tumour microenvironment plays a critical role in tumour initiation, proliferation, and metastasis. Cancer cells are traditionally grown in two-dimensional (2D) cultures as monolayers on a flat solid surface lacking cell-cell and cell-matrix interactions. These experimental conditions deviate from the clinical situation. Improved experimental systems that can mimic the in vivo situation are required to discover new therapies, particularly for anti-angiogenic agents that mainly target intercellular factors and play an essential role in treating some cancers. Chitosan can be modified to construct three-dimensional (3D) tumour models. Here, we report an in vitro 3D tumour model using a hydroxyethyl chitosan/glycidyl methacrylate (HECS-GMA) hydrogel produced by a series of chitosan modifications. Parameters relating to cell morphology, viability, proliferation, and migration were analysed using breast cancer MCF-7 cells. In a xenograft model, secretion of angiogenesis-related growth factors and the anti-angiogenic efficacy of Endostar and Bevacizumab in cells grown in HECS-GMA hydrogels were assessed by immunohistochemistry. Hydroxyethyl chitosan/glycidyl methacrylate hydrogels had a highly porous microstructure, mechanical properties, swelling ratio, and morphology consistent with a 3D tumour model. Compared with a 2D monolayer culture, breast cancer MCF-7 cells residing in the HECS-GMA hydrogels grew as tumour-like clusters in a 3D formation. In a xenograft model, MCF-7 cells cultured in the HECS-GMA hydrogels had increased secretion of angiogenesis-related growth factors. Recombinant human endostatin (Endostar), but not Bevacizumab (Avastin), was an effective anti-angiogenic agent in HECS-GMA hydrogels. The HECS-GMA hydrogel provided a 3D tumour model that mimicked the in vivo cancer microenvironment and supported the growth of MCF7 cells better than traditional tissue culture plates. The HECS

  3. The Angiogenic Potential of DPSCs and SCAPs in an In Vivo Model of Dental Pulp Regeneration

    Directory of Open Access Journals (Sweden)

    Petra Hilkens

    2017-01-01

    Full Text Available Adequate vascularization, a restricting factor for the survival of engineered tissues, is often promoted by the addition of stem cells or the appropriate angiogenic growth factors. In this study, human dental pulp stem cells (DPSCs and stem cells from the apical papilla (SCAPs were applied in an in vivo model of dental pulp regeneration in order to compare their regenerative potential and confirm their previously demonstrated paracrine angiogenic properties. 3D-printed hydroxyapatite scaffolds containing DPSCs and/or SCAPs were subcutaneously transplanted into immunocompromised mice. After twelve weeks, histological and ultrastructural analysis demonstrated the regeneration of vascularized pulp-like tissue as well as mineralized tissue formation in all stem cell constructs. Despite the secretion of vascular endothelial growth factor in vitro, the stem cell constructs did not display a higher vascularization rate in comparison to control conditions. Similar results were found after eight weeks, which suggests both osteogenic/odontogenic differentiation of the transplanted stem cells and the promotion of angiogenesis in this particular setting. In conclusion, this is the first study to demonstrate the successful formation of vascularized pulp-like tissue in 3D-printed scaffolds containing dental stem cells, emphasizing the promising role of this approach in dental tissue engineering.

  4. The interplay between surfaces and soluble factors define the immunologic and angiogenic properties of myeloid dendritic cells

    Directory of Open Access Journals (Sweden)

    Mansfield Kristen

    2011-06-01

    Full Text Available Abstract Background Dendritic cells (DCs are antigen presenting cells capable of inducing specific immune responses against microbial infections, transplant antigens, or tumors. Interestingly, microenvironment conditions such as those present in tumor settings might induce a DC phenotype that is poorly immunogenic and with the capability of promoting angiogenesis. We hypothesize that this plasticity may be caused not only by the action of specific cytokines or growth factors but also by the properties of the surfaces with which they interact, such as extracellular matrix (ECM components. Results Herewith we studied the effect of different surfaces and soluble factors on the biology of DCs. To accomplish this, we cultured murine myeloid(m DCs on surfaces coated with fibronectin, collagen I, gelatin, and Matrigel using poly-D-lysine and polystyrene as non-biological surfaces. Further, we cultured these cells in the presence of regular DC medium (RPMI 10% FBS or commercially available endothelial medium (EGM-2. We determined that mDCs could be kept in culture up to 3 weeks in these conditions, but only in the presence of GM-CSF. We were able to determine that long-term DC cultures produce an array of angiogenic factors, and that some of these cultures still retain the capability to induce T cell responses. Conclusions Altogether these data indicate that in order to design DC-based vaccines or treatments focused on changing the phenotype of DCs associated with diseases such as cancer or atherosclerosis, it becomes necessary to fully investigate the microenvironment in which these cells are present or will be delivered.

  5. Tumor necrosis factor-α regulates expression of vascular endothelial growth factor receptor-2 and of its co-receptor neuropilin-1 in human vascular endothelial cells

    NARCIS (Netherlands)

    Giraudo, E.; Primo, L.; Audero, E.; Gerber, H.-P.; Koolwijk, P.; Soker, S.; Klagsbrun, M.; Ferrara, N.; Bussolino, F.

    1998-01-01

    Tumor necrosis factor-α (TNF-α) modulates gene expression in endothelial cells and is angiogenic in vivo. TNF-α does not activate in vitro migration and proliferation of endothelium, and its angiogenic activity is elicited by synthesis of direct angiogenic inducers or of proteases. Here, we show

  6. Release of Growth Factors into Root Canal by Irrigations in Regenerative Endodontics.

    Science.gov (United States)

    Zeng, Qian; Nguyen, Sean; Zhang, Hongming; Chebrolu, Hari Priya; Alzebdeh, Dalia; Badi, Mustafa A; Kim, Jong Ryul; Ling, Junqi; Yang, Maobin

    2016-12-01

    The aim of this study was to investigate the release of growth factors into root canal space after the irrigation procedure of regenerative endodontic procedure. Sixty standardized root segments were prepared from extracted single-root teeth. Nail varnish was applied to all surfaces except the root canal surface. Root segments were irrigated with 1.5% NaOCl + 17% EDTA, 2.5% NaOCl + 17% EDTA, 17% EDTA, or deionized water. The profile of growth factors that were released after irrigation was studied by growth factor array. Enzyme-linked immunosorbent assay was used to validate the release of transforming growth factor (TGF)-β1 and basic fibroblast growth factor (bFGF) at 4 hours, 1 day, and 3 days after irrigation. The final concentrations were calculated on the basis of the root canal volume measured by cone-beam computed tomography. Dental pulp stem cell migration on growth factors released from root segments was measured by using Transwell assay. Total of 11 of 41 growth factors were detected by growth factors array. Enzyme-linked immunosorbent assay showed that TGF-β1 was released in all irrigation groups. Compared with the group with 17% EDTA (6.92 ± 4.49 ng/mL), the groups with 1.5% NaOCl + 17% EDTA and 2.5% NaOCl + 17% EDTA had significantly higher release of TGF-β1 (69.04 ± 30.41 ng/mL and 59.26 ± 3.37 ng/mL, respectively), with a peak release at day 1. The release of bFGF was detected at a low level in all groups (0 ng/mL to 0.43 ± 0.22 ng/mL). Migration assay showed the growth factors released from root segments induced dental pulp stem cell migration. The root segment model in present study simulated clinical scenario and indicated that the current irrigation protocol released a significant amount of TGF-β1 but not bFGF. The growth factors released into root canal space induced dental pulp stem cell migration. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. Changes in circulating angiogenic factors after an acute training bout before and after resistance training with or without whole-body-vibration training

    Science.gov (United States)

    Beijer, Åsa; Degens, Hans; May, Francisca; Bloch, Wilhelm; Rittweger, Joern; Rosenberger, Andre

    2012-07-01

    Both Resistance Exercise and Whole-Body-Vibration training are currently considered as countermeasures against microgravity-induced physiological deconditioning. Here we investigated the effects of whole-body vibration superimposed upon resistance exercise. Within this context, the present study focuses on changes in circulating angiogenic factors as indicators of skeletal muscle adaption. Methods: Twenty-six healthy male subjects (25.2 ± 4.2 yr) were included in this two-group parallel-designed study and randomly assigned to one of the training interventions: either resistance exercise (RE) or resistance vibration exercise (RVE). Participants trained 2-3 times per week for 6 weeks (completing 16 training sessions), where one session took 9 ± 1 min. Participants trained with weights on a guided barbell. The individual training load was set at 80% of their 1-Repetition-Maximum. Each training session consisted of three sets with 8 squats and 12 heel raises, following an incremental training design with regards to weight (RE and RVE) and vibration frequency (RVE only). The vibration frequency was increased from 20 Hz in the first week till 40 Hz during the last two weeks with 5-Hz weekly increments. At the first and 16 ^{th} training session, six blood samples (pre training and 2 min, 5 min, 15 min, 35 min and 75 min post training) were taken. Circulating levels of vascular endothelial growth factor (VEGF), Endostatin and Matrix Metalloproteinases -2 and -9 (MMPs) were determined in serum using Enzyme-linked Immunosorbent Assays. Results: MMP-2 levels increased by 7.0% (SE = 2.7%, P < 0.001) within two minutes after the exercise bout and then decreased to 5.7% below baseline (SE = 2.4%, P < 0.001) between 15 and 75 minutes post exercise. This response was comparable before and after the training programs (P = 0.70) and also between the two intervention groups (P = 0.42). Preliminary analyses indicate that a similar pattern applies to circulating MMP-9, VEGF and

  8. Tumour vasculature and angiogenic profile of paediatric pilocytic astrocytoma; is it much different from glioblastoma?

    NARCIS (Netherlands)

    Sie, M.; de Bont, E. S. J. M.; Scherpen, F. J. G.; Hoving, E. W.; den Dunnen, W. F. A.

    2010-01-01

    Aims: Pilocytic astrocytomas are the most frequent brain tumours in children. Because of their high vascularity, this study aimed to obtain insights into potential angiogenic related therapeutic targets in these tumours by characterization of the vasculature and the angiogenic profile. In this study

  9. Interleukin-3 greatly expands non-adherent endothelial forming cells with pro-angiogenic properties

    Directory of Open Access Journals (Sweden)

    Lachlan M. Moldenhauer

    2015-05-01

    Full Text Available Circulating endothelial progenitor cells (EPCs provide revascularisation for cardiovascular disease and the expansion of these cells opens up the possibility of their use as a cell therapy. Herein we show that interleukin-3 (IL3 strongly expands a population of human non-adherent endothelial forming cells (EXnaEFCs with low immunogenicity as well as pro-angiogenic capabilities in vivo, making their therapeutic utilisation a realistic option. Non-adherent CD133+ EFCs isolated from human umbilical cord blood and cultured under different conditions were maximally expanded by day 12 in the presence of IL3 at which time a 350-fold increase in cell number was obtained. Cell surface marker phenotyping confirmed expression of the hematopoietic progenitor cell markers CD133, CD117 and CD34, vascular cell markers VEGFR2 and CD31, dim expression of CD45 and absence of myeloid markers CD14 and CD11b. Functional experiments revealed that EXnaEFCs exhibited classical properties of endothelial cells (ECs, namely binding of Ulex europaeus lectin, up-take of acetylated-low density lipoprotein and contribution to EC tube formation in vitro. These EXnaEFCs demonstrated a pro-angiogenic phenotype within two independent in vivo rodent models. Firstly, a Matrigel plug assay showed increased vascularisation in mice. Secondly, a rat model of acute myocardial infarction demonstrated reduced heart damage as determined by lower levels of serum creatinine and a modest increase in heart functionality. Taken together, these studies show IL3 as a potent growth factor for human CD133+ cell expansion with clear pro-angiogenic properties (in vitro and in vivo and thus may provide clinical utility for humans in the future.

  10. Prolonged hypoxic culture and trypsinization increase the pro-angiogenic potential of human adipose tissue-derived stem cells

    DEFF Research Database (Denmark)

    Rasmussen, Jeppe Grøndahl; Frøbert, Ole; Pilgaard, Linda

    2011-01-01

    Transplantation of mesenchymal stromal cells (MSC), including adipose tissue-derived stem cells (ASC), is a promising option in the treatment of vascular disease. Short-term hypoxic culture of MSC augments secretion of anti-apoptotic and angiogenic cytokines. We hypothesized that prolonged hypoxic...... (1% and 5% oxygen) culture and trypsinization would augment ASC expression of anti-apoptotic and angiogenic cytokines and increase the angiogenic potential of ASC-conditioned media....

  11. Preconditioning of adipose tissue-derived mesenchymal stem cells with deferoxamine increases the production of pro-angiogenic, neuroprotective and anti-inflammatory factors: Potential application in the treatment of diabetic neuropathy.

    Science.gov (United States)

    Oses, Carolina; Olivares, Belén; Ezquer, Marcelo; Acosta, Cristian; Bosch, Paul; Donoso, Macarena; Léniz, Patricio; Ezquer, Fernando

    2017-01-01

    Diabetic neuropathy (DN) is one of the most frequent and troublesome complications of diabetes mellitus. Evidence from diabetic animal models and diabetic patients suggests that reduced availability of neuroprotective and pro-angiogenic factors in the nerves in combination with a chronic pro-inflammatory microenvironment and high level of oxidative stress, contribute to the pathogenesis of DN. Mesenchymal stem cells (MSCs) are of great interest as therapeutic agents for regenerative purposes, since they can secrete a broad range of cytoprotective and anti-inflammatory factors. Therefore, the use of the MSC secretome may represent a promising approach for DN treatment. Recent data indicate that the paracrine potential of MSCs could be boosted by preconditioning these cells with an environmental or pharmacological stimulus, enhancing their therapeutic efficacy. In the present study, we observed that the preconditioning of human adipose tissue-derived MSCs (AD-MSCs) with 150μM or 400μM of the iron chelator deferoxamine (DFX) for 48 hours, increased the abundance of the hypoxia inducible factor 1 alpha (HIF-1α) in a concentration dependent manner, without affecting MSC morphology and survival. Activation of HIF-1α led to the up-regulation of the mRNA levels of pro-angiogenic factors like vascular endothelial growth factor alpha and angiopoietin 1. Furthermore this preconditioning increased the expression of potent neuroprotective factors, including nerve growth factor, glial cell-derived neurotrophic factor and neurotrophin-3, and cytokines with anti-inflammatory activity like IL4 and IL5. Additionally, we observed that these molecules, which could also be used as therapeutics, were also increased in the secretome of MSCs preconditioned with DFX compared to the secretome obtained from non-preconditioned cells. Moreover, DFX preconditioning significantly increased the total antioxidant capacity of the MSC secretome and they showed neuroprotective effects when

  12. In vitro and in vivo anti-angiogenic activities of Panduratin A.

    Directory of Open Access Journals (Sweden)

    Siew-Li Lai

    Full Text Available Targeting angiogenesis has emerged as an attractive and promising strategy in anti-cancer therapeutic development. The present study investigates the anti-angiogenic potential of Panduratin A (PA, a natural chalcone isolated from Boesenbergia rotunda by using both in vitro and in vivo assays.PA exerted selective cytotoxicity on human umbilical vein endothelial cells (HUVECs with IC(50 value of 6.91 ± 0.85 µM when compared to human normal fibroblast and normal liver epithelial cells. Assessment of the growth kinetics by cell impedance-based Real-Time Cell Analyzer showed that PA induced both cytotoxic and cytostatic effects on HUVECs, depending on the concentration used. Results also showed that PA suppressed VEGF-induced survival and proliferation of HUVECs. Furthermore, endothelial cell migration, invasion, and morphogenesis or tube formation demonstrated significant time- and dose-dependent inhibition by PA. PA also suppressed matrix metalloproteinase-2 (MMP-2 secretion and attenuated its activation to intermediate and active MMP-2. In addition, PA suppressed F-actin stress fiber formation to prevent migration of the endothelial cells. More importantly, anti-angiogenic potential of PA was also evidenced in two in vivo models. PA inhibited neo-vessels formation in murine Matrigel plugs, and angiogenesis in zebrafish embryos.Taken together, our study demonstrated the distinctive anti-angiogenic properties of PA, both in vitro and in vivo. This report thus reveals another biological activity of PA in addition to its reported anti-inflammatory and anti-cancer activities, suggestive of PA's potential for development as an anti-angiogenic agent for cancer therapy.

  13. HL-217, a new topical anti-angiogenic agent, inhibits retinal vascular leakage and pathogenic subretinal neovascularization in Vldlr{sup −/−} mice

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Junghyun; Kim, Chan-Sik; Jo, Kyuhyung [Korean Medicine Based Herbal Drug Development Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon (Korea, Republic of); Cho, Yun-Seok; Kim, Hyun-Gyu; Lee, Geun-Hyeog [Research and Development Center, Hanlim Pharm. Co. Ltd., 1656-10, Seocho-dong, Seocho-gu, Seoul (Korea, Republic of); Lee, Yun Mi; Sohn, Eunjin [Korean Medicine Based Herbal Drug Development Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon (Korea, Republic of); Kim, Jin Sook, E-mail: jskim@kiom.re.kr [Korean Medicine Based Herbal Drug Development Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon (Korea, Republic of)

    2015-01-02

    Highlights: • HL-217 is a new synthetic topical anti-angiogenic agent. • HL-217 attenuated subretinal neovascularization in Vldlr{sup −/−} mice. • HL-217 blocked the binding of PDGF-BB to PDGFRβ. - Abstract: HL-217 is a new synthetic angiogenesis inhibitor. Platelet derived growth factor (PDGF) is a vasoactive factor and has been implicated in proliferative retinopathies. In this study, we examined the mechanism of action and efficacy of topical application of HL-217 on subretinal neovascularization in very low-density lipoprotein receptor knockout (Vldlr{sup −/−}) mice. In three-week-old male Vldlr{sup −/−} mice, HL-217 (1.5 or 3 mg/ml) was administered twice per day for 4 weeks by topical eye drop instillation. Neovascular areas were then measured. We used a protein array to evaluate the expression levels of angiogenic factors. The inhibitory effect of HL-217 on the PDGF-BB/PDGFRβ interaction was evaluated in vitro. The neovascular area in the Vldlr{sup −/−} mice was significantly reduced by HL-217. Additionally, HL-217 decreased the expression levels of PDGF-BB protein and VEGF mRNA. Moreover, HL-217 dose-dependently inhibited the PDGF-BB/PDGFRβ interaction (IC{sub 50} = 38.9 ± 0.7 μM). These results suggest that HL-217 is a potent inhibitor of PDGF-BB. HL-217, when applied topically, is an effective inhibitor of subretinal neovascularization due to its ability to inhibit the pro-angiogenic effects of PDGF-BB.

  14. The pro-angiogenic properties of multi-functional bioactive glass composite scaffolds

    KAUST Repository

    Gerhardt, Lutz Christian; Widdows, Kate L.; Erol, Melek M.; Burch, Charles W.; Sanz-Herrera, José A.; Ochoa, Ignacio; Stä mpfli, Rolf; Roqan, Iman S.; Gabe, Simon M.; Ansari, Tahera I.; Boccaccini, Aldo R.

    2011-01-01

    The angiogenic properties of micron-sized (m-BG) and nano-sized (n-BG) bioactive glass (BG) filled poly(D,L lactide) (PDLLA) composites were investigated. On the basis of cell culture work investigating the secretion of vascular endothelial growth factor (VEGF) by human fibroblasts in contact with composite films (0, 5, 10, 20 wt %), porous 3D composite scaffolds, optimised with respect to the BG filler content capable of inducing angiogenic response, were produced. The in vivo vascularisation of the scaffolds was studied in a rat animal model and quantified using stereological analyses. The prepared scaffolds had high porosities (81-93%), permeability (k = 5.4-8.6 × 10-9 m2) and compressive strength values (0.4-1.6 MPa) all in the range of trabecular bone. On composite films containing 20 wt % m-BG or n-BG, human fibroblasts produced 5 times higher VEGF than on pure PDLLA films. After 8 weeks of implantation, m-BG and n-BG containing scaffolds were well-infiltrated with newly formed tissue and demonstrated higher vascularisation and percentage blood vessel to tissue (11.6-15.1%) than PDLLA scaffolds (8.5%). This work thus shows potential for the regeneration of hard-soft tissue defects and increased bone formation arising from enhanced vascularisation of the construct. © 2011 Elsevier Ltd.

  15. The pro-angiogenic properties of multi-functional bioactive glass composite scaffolds

    KAUST Repository

    Gerhardt, Lutz Christian

    2011-06-01

    The angiogenic properties of micron-sized (m-BG) and nano-sized (n-BG) bioactive glass (BG) filled poly(D,L lactide) (PDLLA) composites were investigated. On the basis of cell culture work investigating the secretion of vascular endothelial growth factor (VEGF) by human fibroblasts in contact with composite films (0, 5, 10, 20 wt %), porous 3D composite scaffolds, optimised with respect to the BG filler content capable of inducing angiogenic response, were produced. The in vivo vascularisation of the scaffolds was studied in a rat animal model and quantified using stereological analyses. The prepared scaffolds had high porosities (81-93%), permeability (k = 5.4-8.6 × 10-9 m2) and compressive strength values (0.4-1.6 MPa) all in the range of trabecular bone. On composite films containing 20 wt % m-BG or n-BG, human fibroblasts produced 5 times higher VEGF than on pure PDLLA films. After 8 weeks of implantation, m-BG and n-BG containing scaffolds were well-infiltrated with newly formed tissue and demonstrated higher vascularisation and percentage blood vessel to tissue (11.6-15.1%) than PDLLA scaffolds (8.5%). This work thus shows potential for the regeneration of hard-soft tissue defects and increased bone formation arising from enhanced vascularisation of the construct. © 2011 Elsevier Ltd.

  16. Acidic pH reduces VEGF-mediated endothelial cell responses by downregulation of VEGFR-2; relevance for anti-angiogenic therapies.

    Science.gov (United States)

    Faes, Seraina; Uldry, Emilie; Planche, Anne; Santoro, Tania; Pythoud, Catherine; Demartines, Nicolas; Dormond, Olivier

    2016-12-27

    Anti-angiogenic treatments targeting the vascular endothelial growth factor or its receptors have shown clinical benefits. However, impact on long-term survival remains limited. Solid tumors display an acidic microenvironment that profoundly influences their biology. Consequences of acidity on endothelial cells and anti-angiogenic therapies remain poorly characterized and hence are the focus of this study. We found that exposing endothelial cells to acidic extracellular pH resulted in reduced cell proliferation and migration. Also, whereas VEGF increased endothelial cell proliferation and survival at pH 7.4, it had no effect at pH 6.4. Furthermore, in acidic conditions, stimulation of endothelial cells with VEGF did not result in activation of downstream signaling pathways such as AKT. At a molecular level, acidity significantly decreased the expression of VEGFR-2 by endothelial cells. Consequently, anti-angiogenic therapies that target VEGFR-2 such as sunitinib and sorafenib failed to block endothelial cell proliferation in acidic conditions. In vivo, neutralizing tumor acidity with sodium bicarbonate increased the percentage of endothelial cells expressing VEGFR-2 in tumor xenografts. Furthermore, combining sodium bicarbonate with sunitinib provided stronger anti-cancer activity than either treatment alone. Histological analysis showed that sunitinib had a stronger anti-angiogenic effect when combined with sodium bicarbonate. Overall, our results show that endothelial cells prosper independently of VEGF in acidic conditions partly as a consequence of decreased VEGFR-2 expression. They further suggest that strategies aiming to raise intratumoral pH can improve the efficacy of anti-VEGF treatments.

  17. Increased expression of pro-angiogenic factors and vascularization in thyroid hyperfunctioning adenomas with and without TSH receptor activating mutations.

    Science.gov (United States)

    Celano, Marilena; Sponziello, Marialuisa; Tallini, Giovanni; Maggisano, Valentina; Bruno, Rocco; Dima, Mariavittoria; Di Oto, Enrico; Redler, Adriano; Durante, Cosimo; Sacco, Rosario; Filetti, Sebastiano; Russo, Diego

    2013-02-01

    Autonomously functioning thyroid nodules (AFTN) are known to receive an increased blood influx necessary to sustain their high rate of growth and hormone production. Here, we investigated the expression of hematic and lymphatic vases in a series of 20 AFTN compared with the contralateral non-tumor tissues of the same patients, and the transcript levels of proteins involved in the control of vascular proliferation, including the vascular endothelial growth factor (VEGF) and platelet-derived growth factors (PDGF) and their receptors and the endothelial nitric oxide synthase (eNOS). In parallel, the expression of the differentiation markers sodium/iodide symporter (NIS), thyroperoxidase (TPO), thyroglobulin (Tg), and TSH receptor (TSHR) was also investigated. The data were further analyzed comparing subgroups of tumors with or without mutations in the TSHR gene. Analysis by means of CD31 and D2-40 immunostaining showed in AFTN an increased number of hematic, but not lymphatic, vessels in parallel with an enhanced proliferation rate shown by increased Ki67 staining. Quantitative RT-PCR analysis revealed an increase of VEGF, VEGFR1 and 2, PDGF-A, PDGF-B, and eNOS expression in tumor versus normal tissues. Also, higher transcript levels of NIS, TPO, and Tg were detected. Comparison of the two subgroups of samples revealed only few differences in the expression of the genes examined. In conclusion, these data demonstrate an increased expression of angiogenesis-related factors associated with an enhanced proliferation of hematic, but not lymphatic, vessels in AFTNs. In this context, the presence of TSHR mutations may only slightly influence the expression of pro-angiogenic growth factors.

  18. Muscle ERRγ mitigates Duchenne muscular dystrophy via metabolic and angiogenic reprogramming.

    Science.gov (United States)

    Matsakas, Antonios; Yadav, Vikas; Lorca, Sabina; Narkar, Vihang

    2013-10-01

    Treatment of Duchenne muscular dystrophy (DMD) by replacing mutant dystrophin or restoring dystrophin-associated glycoprotein complex (DAG) has been clinically challenging. Instead, identifying and targeting muscle pathways deregulated in DMD will provide new therapeutic avenues. We report that the expression of nuclear receptor estrogen-related receptor-γ (ERRγ), and its metabolic and angiogenic targets are down-regulated (50-85%) in skeletal muscles of mdx mice (DMD model) vs. wild-type mice. Corelatively, oxidative myofibers, muscle vasculature, and exercise tolerance (33%) are decreased in mdx vs. wild-type mice. Overexpressing ERRγ selectively in the dystrophic muscles of the mdx mice restored metabolic and angiogenic gene expression compared with control mdx mice. Further, ERRγ enhanced muscle oxidative myofibers, vasculature, and blood flow (by 33-66%) and improved exercise tolerance (by 75%) in the dystrophic mice. Restoring muscle ERRγ pathway ameliorated muscle damage and also prevented DMD hallmarks of postexercise muscle damage, hypoxia, and fatigue in mdx mice. Notably, ERRγ did not restore sarcolemmal DAG complex, which is thus dispensable for antidystrophic effects of ERRγ. In summary, ERRγ-dependent metabolic and angiogenic gene program is defective in DMD, and we demonstrate that its restoration is a potential strategy for treating muscular dystrophy.

  19. Microvascular function in pre-eclampsia is influenced by insulin resistance and an imbalance of angiogenic mediators.

    Science.gov (United States)

    Ghosh, Anshuman; Freestone, Nicholas S; Anim-Nyame, Nicholas; Arrigoni, Francesca I F

    2017-04-01

    In preeclampsia, maternal microvascular function is disrupted and angiogenesis is dysfunctional. Insulin resistance that occurs in some pregnancies also pathologically affects microvascular function. We wished to examine the relationship of angiogenic mediators and insulin resistance on microvascular health in pregnancy. We performed a nested, case-control study of 16 women who developed preeclampsia with 17 normal pregnant controls. We hypothesized that the impaired microvascular blood flow in preeclamptic women associated with an increased ratio of the antiangiogenic factors; (s-endoglin [sEng] and soluble fms-like tyrosine kinase-1 [sFlt-1]) and proangiogenic molecule (placental growth factor [PlGF]) could be influenced by insulin resistance. Serum samples taken after 28 weeks of gestation were measured for the angiogenic factors, insulin, and glucose alongside the inflammatory marker; tumor necrosis factor-α and endothelial activation, namely; soluble vascular cell adhesion molecule 1, intercellular adhesion molecule-1, and e-selectin. Maternal microvascular blood flow, measured by strain gauge plethysmography, correlated with ratios of pro- and antiangiogenic mediators independently of preeclampsia. Decreased microvascular function measured in preeclampsia strongly correlated with both the antiangiogenic factor (sFlt-1 + sEng): PlGF ratio and high levels of insulin resistance, and combining insulin resistance with antiangiogenic factor ratios further strengthened this relationship. In pregnancy, microvascular blood flow is strongly associated with perturbations in pro- and antiangiogenic mediators. In preeclampsia, the relationship of maternal microvascular dysfunction with antiangiogenic mediators is strengthened when combined with insulin resistance. © 2017 Kingston University. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  20. Aminopeptidase A is a functional target in angiogenic blood vessels.

    Science.gov (United States)

    Marchiò, Serena; Lahdenranta, Johanna; Schlingemann, Reinier O; Valdembri, Donatella; Wesseling, Pieter; Arap, Marco A; Hajitou, Amin; Ozawa, Michael G; Trepel, Martin; Giordano, Ricardo J; Nanus, David M; Dijkman, Henri B P M; Oosterwijk, Egbert; Sidman, Richard L; Cooper, Max D; Bussolino, Federico; Pasqualini, Renata; Arap, Wadih

    2004-02-01

    We show that a membrane-associated protease, aminopeptidase A (APA), is upregulated and enzymatically active in blood vessels of human tumors. To gain mechanistic insight, we evaluated angiogenesis in APA null mice. We found that, although these mice develop normally, they fail to mount the expected angiogenic response to hypoxia or growth factors. We then isolated peptide inhibitors of APA from a peptide library and show that they specifically bind to and inhibit APA, suppress migration and proliferation of endothelial cells, inhibit angiogenesis, and home to tumor blood vessels. Finally, we successfully treated tumor-bearing mice with APA binding peptides or anti-APA blocking monoclonal antibodies. These data show that APA is a regulator of blood vessel formation, and can serve as a functional vascular target.

  1. Angiogenic imbalance and diminished matrix metalloproteinase-2 and -9 underlie regional decreases in uteroplacental vascularization and feto-placental growth in hypertensive pregnancy.

    Science.gov (United States)

    Dias-Junior, Carlos A; Chen, Juanjuan; Cui, Ning; Chiang, Charles L; Zhu, Minglin; Ren, Zongli; Possomato-Vieira, Jose S; Khalil, Raouf A

    2017-12-15

    Preeclampsia is a form of hypertension-in-pregnancy (HTN-Preg) with unclear mechanism. Generalized reduction of uterine perfusion pressure (RUPP) could be an initiating event leading to uteroplacental ischemia, angiogenic imbalance, and HTN-Preg. Additional regional differences in uteroplacental blood flow could further affect the pregnancy outcome and increase the risk of preeclampsia in twin or multiple pregnancy, but the mechanisms involved are unclear. To test the hypothesis that regional differences in angiogenic balance and matrix metalloproteinases (MMPs) underlie regional uteroplacental vascularization and feto-placental development, we compared fetal and placental growth, and placental and myoendometrial vascularization in the proximal, middle and distal regions of the uterus (in relation to the iliac bifurcation) in normal pregnant (Preg) and RUPP rats. Maternal blood pressure and plasma anti-angiogenic soluble fms-like tyrosine kinase-1 (sFlt-1)/placenta growth factor (PIGF) ratio were higher, and average placentae number, placenta weight, litter size, and pup weight were less in RUPP than Preg rats. The placenta and pup number and weight were reduced, while the number and diameter of placental and adjacent myoendometrial arteries, and MMP-2 and MMP-9 levels/activity were increased, and sFlt-1/PlGF ratio was decreased in distal vs proximal uterus of Preg rats. In RUPP rats, the placenta and pup number and weight, the number and diameter of placental and myoendometrial arteries, and MMP-2 and -9 levels/activity were decreased, and sFlt-1/PlGF ratio was increased in distal vs proximal uterus. Treatment with sFlt-1 or RUPP placenta extract decreased MMP-2 and MMP-9 in distal segments of Preg uterus, and treatment with PIGF or Preg placenta extract restored MMP levels in distal segments of RUPP uterus. Thus, in addition to the general reduction in placental and fetal growth during uteroplacental ischemia, localized angiogenic imbalance and diminished MMP-2

  2. Non-invasive imaging for studying anti-angiogenic therapy effects

    NARCIS (Netherlands)

    Ehling, J.; Lammers, Twan Gerardus Gertudis Maria; Kiessling, F.

    2013-01-01

    Noninvasive imaging plays an emerging role in preclinical and clinical cancer research and has high potential to improve clinical translation of new drugs. This article summarises and discusses tools and methods to image tumour angiogenesis and monitor anti-angiogenic therapy effects. In this

  3. Influence of factors on release of antimicrobials from antimicrobial packaging materials.

    Science.gov (United States)

    Wu, Yu-Mei; Wang, Zhi-Wei; Hu, Chang-Ying; Nerín, Cristina

    2018-05-03

    Antimicrobial packaging materials (films or coatings) (APMs) have aroused great interest among the scientists or the experts specialized in material science, food science, packaging engineering, biology and chemistry. APMs have been used to package the food, such as dairy products, poultry, meat (e.g., beef), salmon muscle, pastry dough, fresh pasta, bakery products, fruits, vegetables and beverages. Some materials have been already commercialized. The ability of APMs to extend the shelf-life of the food depends on the release rate of the antimicrobials (AMs) from the materials to the food. The optimum rate is defined as target release rate (TRR). To achieve TRR, the influencing factors of the release rate should be considered. Herein we reviewed for the first time these factors and their influence on the release. These factors mainly include the AMs, food (or food simulant), packaging materials, the interactions among them, the temperature and environmental relative humidity (RH).

  4. Research of the degradation products of chitosan's angiogenic function

    International Nuclear Information System (INIS)

    Wang Jianyun; Chen Yuanwei; Ding Yulong; Shi Guoqi; Wan Changxiu

    2008-01-01

    Angiogenesis is of great importance in tissue engineering and has gained large attention in the past decade. But how it will be influenced by the biodegradable materials, especially their degradation products, remains unknown. Chitosan (CS) is a kind of naturally occurred polysaccharide which can be degraded in physiological environment. In order to gain some knowledge of the influences of CS degradation products on angiogenesis, the interaction of vascular endothelial cells with the degradation products was investigated in the present study. The CS degradation products were prepared by keeping CS sample in physiological saline aseptically at 37 deg. C for 120 days. Endothelial cells were co-cultured with the degradation products and the angiogenic cell behaviors, including cell proliferation, migration and tube-like structure (TLS) formation, were tested by MTT assay, cell migration quantification method (CMQM), and tube-like structure quantification method (TLSQM) respectively. Furthermore, mRNA expressions of vascular endothelial growth factor (VEGF) and matrix metallo proteinase (MMP-2) were determined by real-time reverse transcriptional polymerase chain reaction (RT-PCR). Physiological saline served as a negative control. As the results showed, the degradation products obtained from 20th to 60th day significantly inhibited the proliferation, migration, and TLS formation of endothelial cells. However, degradation products of the first 14 days and the last 30 days were found to be proangiogenic. At the molecular level, the initial results indicated that the mRNA expressions of VEGF and MMP-2 were increased by the degradation products of 7th day, but were decreased by the ones of 60th day. According to all the results, it could be concluded that the angiogenic behaviors of endothelial cells at both cellular and molecular level could be significantly stimulated or suppressed by the degradation products of CS and the influences are quite time-dependent

  5. Evaluation of Functionalized Porous Titanium Implants for Enhancing Angiogenesis in Vitro

    Directory of Open Access Journals (Sweden)

    Laura Roland

    2016-04-01

    Full Text Available Implant constructs supporting angiogenesis are favorable for treating critically-sized bone defects, as ingrowth of capillaries towards the center of large defects is often insufficient. Consequently, the insufficient nutritional supply of these regions leads to impaired bone healing. Implants with specially designed angiogenic supporting geometry and functionalized with proangiogenic cytokines can enhance angiogenesis. In this study, Vascular Endothelial Growth Factor (VEGF and High Mobility Group Box 1 (HMGB1 were used for incorporation into poly-ε-caprolactone (PCL-coated porous titanium implants. Bioactivity of released factors and influence on angiogenesis of functionalized implants were evaluated using a migration assay and angiogenesis assays. Both implants released angiogenic factors, inducing migration of endothelial cells. Also, VEGF-functionalized PCL-coated titanium implants enhanced angiogenesis in vitro. Both factors were rapidly released in high doses from the implant coating during the first 72 h.

  6. The anti-proliferative and anti-angiogenic effect of the methanol extract from brittle star.

    Science.gov (United States)

    Baharara, Javad; Amini, Elaheh; Mousavi, Marzieh

    2015-04-01

    Anti-angiogenic therapy is a crucial step in cancer treatment. The discovery of new anti-angiogenic compounds from marine organisms has become an attractive concept in anti-cancer therapy. Because little data correlated to the pro- and anti-angiogenic efficacies of Ophiuroidea, which include brittle star, the current study was designed to explore the anti-angiogenic potential of brittle star methanol extract in vitro and in vivo. The anti-proliferative effect of brittle star extract on A2780cp cells was examined by MTT assays, and transcriptional expression of VEGF and b-FGF was evaluated by RT-PCR. In an in vivo model, 40 fertilized Ross eggs were divided into control and three experimental groups. The experimental groups were incubated with brittle star extract at concentrations of 25, 50 and 100 µg/ml, and photographed by photo-stereomicroscopy. Ultimately, numbers and lengths of vessels were measured by Image J software. Data were analyzed with SPSS software (pstar extract exerted a dose- and time-dependent anti-proliferative effect on A2780cp cancer cells. In addition, VEGF and b-FGF expression decreased with brittle star methanol extract treatment. Macroscopic evaluations revealed significant changes in the second and third experimental group compared to controls (pstar methanol extract in vitro and in vivo confer novel insight into the application of natural marine products in angiogenesis-related pathologies.

  7. Physicochemical/photophysical characterization and angiogenic properties of Curcuma longa essential oil.

    Science.gov (United States)

    Araújo, Lilhian A; Araújo, Rafael G M; Gomes, Flávia O; Lemes, Susy R; Almeida, Luciane M; Maia, Lauro J Q; Gonçalves, Pablo J; Mrué, Fátima; Silva-Junior, Nelson J; Melo-Reis, Paulo R DE

    2016-01-01

    This study analyzed the physicochemical and photophysical properties of essential oil of Curcuma longa and its angiogenic potential. The results showed that curcumin is the main fluorescent component present in the oil, although the amount is relatively small. The experimental chorioallantoic membrane model was used to evaluate angiogenic activity, showing a significant increase in the vascular network of Curcuma longa and positive control groups when compared to the neutral and inhibitor controls (P Curcuma longa essential oil and the positive control (P >0.05). Histological analysis showed extensive neovascularization, hyperemia and inflammation in the positive control group and Curcuma longa when compared to other controls (P Curcuma longa oil showed considerable proangiogenic activity and could be a potential compound in medical applications.

  8. Controllable mineral coatings on PCL scaffolds as carriers for growth factor release.

    Science.gov (United States)

    Suárez-González, Darilis; Barnhart, Kara; Migneco, Francesco; Flanagan, Colleen; Hollister, Scott J; Murphy, William L

    2012-01-01

    In this study, we have developed mineral coatings on polycaprolactone scaffolds to serve as templates for growth factor binding and release. Mineral coatings were formed using a biomimetic approach that consisted in the incubation of scaffolds in modified simulated body fluids (mSBF). To modulate the properties of the mineral coating, which we hypothesized would dictate growth factor release, we used carbonate (HCO(3)) concentration in mSBF of 4.2 mm, 25 mm, and 100 mm. Analysis of the mineral coatings formed using scanning electron microscopy indicated growth of a continuous layer of mineral with different morphologies. X-ray diffraction analysis showed peaks associated with hydroxyapatite, the major inorganic constituent of human bone tissue in coatings formed in all HCO(3) concentrations. Mineral coatings with increased HCO(3) substitution showed more rapid dissolution kinetics in an environment deficient in calcium and phosphate but showed re-precipitation in an environment with the aforementioned ions. The mineral coating provided an effective mechanism for growth factor binding and release. Peptide versions of vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP2) were bound with efficiencies up to 90% to mineral mineral-coated PCL scaffolds. We also demonstrated sustained release of all growth factors with release kinetics that were strongly dependent in the solubility of the mineral coating. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. URG4/URGCP enhances the angiogenic capacity of human hepatocellular carcinoma cells in vitro via activation of the NF-κB signaling pathway

    International Nuclear Information System (INIS)

    Xing, Sizhong; Zhang, Bing; Hua, Ruixi; Tai, William Chi-shing; Zeng, Zhirong; Xie, Binhui; Huang, Chenghui; Xue, Jisu; Xiong, Shiqiu; Yang, Jianyong; Liu, Side; Li, Heping

    2015-01-01

    Angiogenesis is essential for tumor growth. Hepatocellular carcinoma (HCC) is characterized by hypervascularity; high levels of angiogenesis are associated with poor prognosis and a highly invasive phenotype in HCC. Up-regulated gene-4 (URG4), also known as upregulator of cell proliferation (URGCP), is overexpressed in multiple tumor types and has been suggested to act as an oncogene. This study aimed to elucidate the effect of URG4/URGCP on the angiogenic capacity of HCC cells in vitro. Expression of URG4/URGCP in HCC cell lines and normal liver epithelial cell lines was examined by Western blotting and quantitative real-time PCR. URG4/URGCP was stably overexpressed or transiently knocked down using a shRNA in two HCC cell lines. The human umbilical vein endothelial cell (HUVEC) tubule formation and Transwell migration assays and chicken chorioallantoic membrane (CAM) assay were used to examine the angiogenic capacity of conditioned media from URG4/URGCP-overexpressing and knockdown cells. A luciferase reporter assay was used to examine the transcriptional activity of nuclear factor kappa – light – chain - enhancer of activated B cells (NF-κB). NF-κB was inhibited by overexpressing degradation-resistant mutant inhibitor of κB (IκB)-α. Expression of vascular endothelial growth factor C (VEGFC), tumor necrosis factor-α (TNFα), interleukin (IL)-6, IL-8 and v-myc avian myelocytomatosis viral oncogene homolog (MYC) were examined by quantitative real-time PCR; VEGFC protein expression was analyzed using an ELISA. URG4/URGCP protein and mRNA expression were significantly upregulated in HCC cell lines. Overexpressing URG4/URGCP enhanced - while silencing URG4/URGCP decreased - the capacity of HCC cell conditioned media to induce HUVEC tubule formation and migration and neovascularization in the CAM assay. Furthermore, overexpressing URG4/URGCP increased - whereas knockdown of URG4/URGCP decreased - VEGFC expression, NF-κB transcriptional activity, the levels

  10. Mechanical stretch endows mesenchymal stem cells stronger angiogenic and anti-apoptotic capacities via NFκB activation

    International Nuclear Information System (INIS)

    Zhu, Zhuoli; Gan, Xueqi; Fan, Hongyi; Yu, Haiyang

    2015-01-01

    Mesenchymal stem cells (MSCs) have been broadly used for tissue regeneration and repair due to their broad differentiation potential and potent paracrine properties such as angiogenic capacity. Strategies to increase their survival rate after transplantation and the angiogenic ability are of priority for the utility of MSCs. In this study, we found that mechanical stretch (10% extension, 30 cycles/min cyclic stretch) preconditioning increase the angiogenic capacity via VEGFA induction. In addition, mechanical stretch also increases the survival rate of mesenchymal stem cells under nutrients deprivation. Consistent with the increase VEGFA expression and resistance to apoptosis, nuclear localization of NFκB activity p65 increased upon mechanical stretch. Inhibition of NFκB activity by BAY 11-708 blocks the pro-angiogenesis and anti-apoptosis function of mechanical stretch. Taken together, our findings here raise the possibility that mechanical stretch preconditioning might enhance the therapeutic efficacy of mesenchymal stem cells. - Highlights: • Mechanical stretch increases the angiogenic capacity via VEGFA induction in MSCs. • Mechanical stretch increases the survival rate of MSCs under nutrients deprivation. • Mechanical stretch manipulates MSCs via the activation of NFκB.

  11. Mechanical stretch endows mesenchymal stem cells stronger angiogenic and anti-apoptotic capacities via NFκB activation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhuoli; Gan, Xueqi [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Fan, Hongyi [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Applied Mechanics, College of Architecture and Environment, Sichuan University, Chengdu 610065 (China); Yu, Haiyang, E-mail: yhyang6812@foxmail.com [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China)

    2015-12-25

    Mesenchymal stem cells (MSCs) have been broadly used for tissue regeneration and repair due to their broad differentiation potential and potent paracrine properties such as angiogenic capacity. Strategies to increase their survival rate after transplantation and the angiogenic ability are of priority for the utility of MSCs. In this study, we found that mechanical stretch (10% extension, 30 cycles/min cyclic stretch) preconditioning increase the angiogenic capacity via VEGFA induction. In addition, mechanical stretch also increases the survival rate of mesenchymal stem cells under nutrients deprivation. Consistent with the increase VEGFA expression and resistance to apoptosis, nuclear localization of NFκB activity p65 increased upon mechanical stretch. Inhibition of NFκB activity by BAY 11-708 blocks the pro-angiogenesis and anti-apoptosis function of mechanical stretch. Taken together, our findings here raise the possibility that mechanical stretch preconditioning might enhance the therapeutic efficacy of mesenchymal stem cells. - Highlights: • Mechanical stretch increases the angiogenic capacity via VEGFA induction in MSCs. • Mechanical stretch increases the survival rate of MSCs under nutrients deprivation. • Mechanical stretch manipulates MSCs via the activation of NFκB.

  12. Prospective evaluation of angiogenic, hypoxic and EGFR-related biomarkers in recurrent glioblastoma multiforme treated with cetuximab, bevacizumab and irinotecan

    DEFF Research Database (Denmark)

    Hasselbalch, Benedikte; Eriksen, Jesper Grau; Broholm, Helle

    2010-01-01

    , hypoxia and mediators of the epidermal growth factor receptor (EGFR) pathway were investigated. Tumor tissue was obtained from a previous phase II study, treating recurrent primary glioblastoma multiforme (GBM) patients with the EGFR inhibitor cetuximab in combination with bevacizumab and irinotecan...... of cetuximab. There is still an urgent need for one or more reliable and reproducible biomarkers able to predict the efficacy of anti-angiogenic therapy....

  13. Molecular features of interaction between VEGFA and anti-angiogenic drugs used in retinal diseases: a computational approach

    Directory of Open Access Journals (Sweden)

    Chiara Bianca Maria Platania

    2015-10-01

    Full Text Available Anti-angiogenic agents are biological drugs used for treatment of retinal neovascular degenerative diseases. In this study, we aimed at in-silico analysis of interaction of vascular endothelial growth factor A (VEGFA, the main mediator of angiogenesis, with binding domains of anti-angiogenic agents used for treatment of retinal diseases, such as ranibizumab, bevacizumab and aflibercept. The analysis of anti-VEGF/VEGFA complexes was carried out by means of protein-protein docking and molecular dynamics (MD coupled to molecular mechanics-Poisson Boltzmann Surface Area (MM-PBSA calculation. Molecular dynamics simulation was further analyzed by protein contact networks. Rough energetic evaluation with protein-protein docking scores revealed that aflibercept/VEGFA complex was characterized by electrostatic stabilization, whereas ranibizumab and bevacizumab complexes were stabilized by Van der Waals (VdW energy term; these results were confirmed by MM-PBSA. Comparison of MM-PBSA predicted energy terms with experimental binding parameters reported in literature indicated that the high association rate (Kon of aflibercept to VEGFA was consistent with high stabilizing electrostatic energy. On the other hand, the relatively low experimental dissociation rate (Koff of ranibizumab may be attributed to lower conformational fluctuations of the ranibizumab/VEGFA complex, higher number of contacts and hydrogen bonds in comparison to bevacizumab and aflibercept. Thus, the anti-angiogenic agents have been found to be considerably different both in terms of molecular interactions and stabilizing energy. Characterization of such features can improve the design of novel biological drugs potentially useful in clinical practice.

  14. Levels of serum-circulating angiogenic factors within 1 week prior to delivery are closely related to conditions of pregnant women with pre-eclampsia, gestational hypertension, and/or fetal growth restriction.

    Science.gov (United States)

    Nanjo, Sakiko; Minami, Sawako; Mizoguchi, Mika; Yamamoto, Madoka; Yahata, Tamaki; Toujima, Saori; Shiro, Michihisa; Kobayashi, Aya; Muragaki, Yasuteru; Ino, Kazuhiko

    2017-12-01

    We aimed to investigate maternal serum angiogenic marker profiles within 1 week prior to delivery in cases of gestational hypertension (GH), pre-eclampsia (PE), and/or fetal growth restriction (FGR) with different clinical conditions. We enrolled 165 women with singleton pregnancy. The participants were classified based on three characteristics: (i) proteinuria (GH and PE); (ii) FGR (PE with FGR [PE + FGR], PE alone, and FGR alone); and (iii) onset (early onset PE [EO PE] and late-onset PE [LO PE]). All sera were obtained within 1 week prior to delivery, and soluble fms-like tyrosine kinase 1 (sFlt-1), soluble endoglin (sEng), and placental growth factor (PlGF) were measured with enzyme-linked immunosorbent assay. (i) In PE, a significantly increased sFlt-1, sEng, and sFlt-1 to PlGF ratio (sFlt-1/PlGF) and significantly decreased PlGF were observed compared with GH and Term control, whereas in GH, only sFlt-1/PlGF was significantly higher than Term control. (ii) In PE + FGR, similar changes were more markedly shown compared with PE alone. The FGR alone group exhibited similar tendencies as PE, although significant differences were found in PlGF and sEng levels. (iii) In EO PE, significant changes were observed in all factors compared with LO PE or Term control, while no significant change in PlGF levels was observed between LO PE and Term control. We demonstrated that the levels of circulating angiogenic factors just before delivery are correlated with the severity of hypertensive disorders of pregnancy and FGR. Profiling these specific markers may contribute to better understanding of the clinical conditions in individual patients and their pathogenesis. © 2017 Japan Society of Obstetrics and Gynecology.

  15. Towards retrievable vascularized bioartificial pancreas: induction and long-lasting stability of polymeric mesh implant vascularized with the help of acidic and basic fibroblast growth factors and hydrogel coating.

    Science.gov (United States)

    Prokop, A; Kozlov, E; Nun Non, S; Dikov, M M; Sephel, G C; Whitsitt, J S; Davidson, J M

    2001-01-01

    We seek to improve existing methodologies for allogenic grafting of pancreatic islets. The lack of success of encapsulated transplanted islets inside the peritoneal cavity is presently attributed to poor vascularization of the implant. A thick, fibrotic capsule often surrounds the graft, limiting survival. We have tested the hypothesis that neovascularization of the graft material can be induced by the addition of proper angiogenic factors embedded within a polymeric coat. Biocompatible and nonresorbable meshes coated with hydrophilic polymers were implanted in rats and harvested after 1-, 6-, and 12-week intervals. The implant response was assessed by histological observations on the degree of vascularity, fibrosis, and inflammation. Macrostructural geometry of meshes was conducive to tissue ingrowth into the interstitial space between the mesh filaments. Hydrogel coating with incorporated acidic or basic FGF in an electrostatic complex with polyelectrolytes and/or with heparin provided a sustained slow release of the angiogenic growth factor. Anti-factor VIII and anti-collagen type IV antibodies and a GSL I-B4 lectin were used to measure the extent of vascularization. Vigorous and persistent vascularization radiated several hundred microns from the implant. The level of vascularization should provide a sufficient diffusion of nutrients and oxygen to implanted islets. Based on our observations, stable vascularization may require a sustained angiogenic signal to allow for the development of a permanent implant structure.

  16. Fibroblasts derived from human pluripotent stem cells activate angiogenic responses in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Yulia Shamis

    Full Text Available Human embryonic and induced pluripotent stem cells (hESC/hiPSC are promising cell sources for the derivation of large numbers of specific cell types for tissue engineering and cell therapy applications. We have describe a directed differentiation protocol that generates fibroblasts from both hESC and hiPSC (EDK/iPDK that support the repair and regeneration of epithelial tissue in engineered, 3D skin equivalents. In the current study, we analyzed the secretory profiles of EDK and iPDK cells to investigate the production of factors that activate and promote angiogenesis. Analysis of in vitro secretion profiles from EDK and iPDK cells demonstrated the elevated secretion of pro-angiogenic soluble mediators, including VEGF, HGF, IL-8, PDGF-AA, and Ang-1, that stimulated endothelial cell sprouting in a 3D model of angiogenesis in vitro. Phenotypic analysis of EDK and iPDK cells during the course of differentiation from hESCs and iPSCs revealed that both cell types progressively acquired pericyte lineage markers NG2, PDGFRβ, CD105, and CD73 and demonstrated transient induction of pericyte progenitor markers CD31, CD34, and Flk1/VEGFR2. Furthermore, when co-cultured with endothelial cells in 3D fibrin-based constructs, EDK and iPDK cells promoted self-assembly of vascular networks and vascular basement membrane deposition. Finally, transplantation of EDK cells into mice with hindlimb ischemia significantly reduced tissue necrosis and improved blood perfusion, demonstrating the potential of these cells to stimulate angiogenic responses in vivo. These findings demonstrate that stable populations of pericyte-like angiogenic cells can be generated with high efficiency from hESC and hiPSC using a directed differentiation approach. This provides new cell sources and opportunities for vascular tissue engineering and for the development of novel strategies in regenerative medicine.

  17. Chemopreventive effect and angiogenic activity of punicalagin isolated from leaves of Lafoensia pacari A. St.-Hil

    Energy Technology Data Exchange (ETDEWEB)

    Costa Carneiro, Cristiene, E-mail: profacristiene@gmail.com [Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001970 Goiânia, GO (Brazil); Costa Santos, Suzana da [Instituto de Química, Universidade Federal de Goiás, 74001970 Goiânia, GO (Brazil); Souza Lino, Ruy de [Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605050 Goiânia, GO (Brazil); Bara, Maria Teresa Freitas; Chaibub, Beatriz Abdallah [Faculdade de Farmácia, Universidade Federal de Goiás, 74605170 Goiânia, GO (Brazil); Melo Reis, Paulo Roberto de; Chaves, Dwight Assis [Laboratório de Estudos Experimentais e Biotecnológicos, Pontifícia Universidade Católica de Goiás, 74605010 Goiânia, GO (Brazil); Ribeiro da Silva, Antônio Jorge [Núcleo de Pesquisas de Produtos Naturais, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, 21941590 Rio de Janeiro, RJ (Brazil); Santos Silva, Luana; Melo e Silva, Daniela de; Chen-Chen, Lee [Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001970 Goiânia, GO (Brazil)

    2016-11-01

    Punicalagin is the major ellagitannin constituent from leaves of Lafoensia pacari, a Brazilian medicinal plant widely used for the treatment of peptic ulcer and wound healing. Genotoxic, cytotoxic, antigenotoxic, and anticytotoxic effects of punicalagin were assessed using micronucleus (MN) test and comet assay in mice. Due to the extensive use of L. pacari in the wound healing process, we also assessed the angiogenic activity of punicalagin using the chick chorioallantoic membrane (CAM) angiogenic assay. The highest dose of punicalagin (50 mg/kg) showed significant cytotoxic effect by MN test and in the co-treatment with cyclophosphamide (CPA), this cytotoxicity was enhanced. Co-treatment, pre-treatment and post-treatment of punicalagin with CPA led to a significant reduction in the number of DNA breaks and in the frequency of CPA-induced MN, indicating antigenotoxic effect. Using the CAM model, punicalagin exhibited angiogenic activity in all doses mainly at the lowest concentration (12.5 μg/μL). Therefore, these findings indicate an effective chemopreventive role of punicalagin and a high capacity to induce DNA repair. Also, the angiogenic activity presented by punicalagin in this study could contribute for the processes of tissue repairing and wound healing. - Highlights: • The ellagitannin punicalagin was isolated for the first time from L. pacari leaves. • The genotoxic and chemopreventive effects of punicalagin were evaluated in mice. • The highest dose of punicalagin showed significant cytotoxic effect. • Punicalagin exhibited antigenotoxic effects by the co-, pre- and post-treatment. • Punicalagin showed angiogenic activity and could be applied for tissue repairing.

  18. Growth factor delivery: How surface interactions modulate release in vitro and in vivo

    Science.gov (United States)

    King, William J.; Krebsbach, Paul H.

    2013-01-01

    Biomaterial scaffolds have been extensively used to deliver growth factors to induce new bone formation. The pharmacokinetics of growth factor delivery has been a critical regulator of their clinical success. This review will focus on the surface interactions that control the non-covalent incorporation of growth factors into scaffolds and the mechanisms that control growth factor release from clinically relevant biomaterials. We will focus on the delivery of recombinant human bone morphogenetic protein-2 from materials currently used in the clinical practice, but also suggest how general mechanisms that control growth factor incorporation and release delineated with this growth factor could extend to other systems. A better understanding of the changing mechanisms that control growth factor release during the different stages of preclinical development could instruct the development of future scaffolds for currently untreatable injuries and diseases. PMID:22433783

  19. In vitro and in vivo anti-angiogenic activity of girinimbine isolated from Murraya koenigii

    Directory of Open Access Journals (Sweden)

    Iman V

    2015-03-01

    Full Text Available Venoos Iman,1 Hamed Karimian,1 Syam Mohan,2 Yahya Hasan Hobani,2 Mohamed Ibrahim Noordin,1 Mohd Rais Mustafa,3 Suzita Mohd Noor41Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; 2Medical Research Center, University of Jazan, Jazan, Saudi Arabia; 3Department of Pharmacology, Centre for Natural Products and Drug Discovery (CENAR, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; 4Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, MalaysiaAbstract: Girinimbine is a carbazole alkaloid isolated from the stem bark and root of Murraya koenigii. Here we report that girinimbine is an inhibitor of angiogenic activity both in vitro and in vivo. MTT results showed that girinimbine inhibited proliferation of human umbilical vein endothelial cells, while results from endothelial cell invasion, migration, tube formation, and wound healing assays demonstrated significant time- and dose-dependent inhibition by girinimbine. A proteome profiler array done on girinimbine-treated human umbilical vein endothelial cells showed that girinimbine had mediated regulation of pro-angiogenic and anti-angiogenic proteins. The anti-angiogenic potential of girinimbine was also evidenced in vivo in the zebrafish embryo model wherein girinimbine inhibited neo vessel formation in zebrafish embryos following 24 hours of exposure. Together, these results showed that girinimbine could effectively suppress angiogenesis, suggestive of its therapeutic potential as a novel angiogenesis inhibitor. Keywords: angiogenesis, inhibitor, carbazole alkaloid, zebrafish

  20. Dynamics of tumor growth and combination of anti-angiogenic and cytotoxic therapies

    Science.gov (United States)

    Kohandel, M.; Kardar, M.; Milosevic, M.; Sivaloganathan, S.

    2007-07-01

    Tumors cannot grow beyond a certain size (about 1-2 mm in diameter) through simple diffusion of oxygen and other essential nutrients into the tumor. Angiogenesis, the formation of blood vessels from pre-existing vessels, is a crucial and observed step, through which a tumor obtains its own blood supply. Thus, strategies that interfere with the development of this tumor vasculature, known as anti-angiogenic therapy, represent a novel approach to controlling tumor growth. Several pre-clinical studies have suggested that currently available angiogenesis inhibitors are unlikely to yield significant sustained improvements in tumor control on their own, but rather will need to be used in combination with conventional treatments to achieve maximal benefit. Optimal sequencing of anti-angiogenic treatment and radiotherapy or chemotherapy is essential to the success of these combined treatment strategies. Hence, a major challenge to mathematical modeling and computer simulations is to find appropriate dosages, schedules and sequencing of combination therapies to control or eliminate tumor growth. Here, we present a mathematical model that incorporates tumor cells and the vascular network, as well as their interplay. We can then include the effects of two different treatments, conventional cytotoxic therapy and anti-angiogenic therapy. The results are compared with available experimental and clinical data.

  1. The role of substrate morphology for the cytokine release profile of immature human primary macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Bartneck, Matthias [Department of Medicine III, Medical Faculty, RWTH Aachen, Pauwelsstr. 30, 52074 Aachen (Germany); Heffels, Karl-Heinz [Department and Chair of Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, 97070 Würzburg (Germany); Bovi, Manfred [Electron Microscopic Facility, Medical Faculty, RWTH Aachen (Germany); Groll, Jürgen [Department and Chair of Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, 97070 Würzburg (Germany); Zwadlo-Klarwasser, Gabriele [Interdisciplinary Center for Clinical Research and Dept. of Dermatology, Medical Faculty, RWTH Aachen, Pauwelsstr. 30, 52056 Aachen (Germany)

    2013-12-01

    There is increasing evidence that the physicochemical nature of any given material is a dominant factor for the release of cytokines by innate immune cells, specifically of macrophages, and thus majorly influences their interaction with other cell types. Recently, we could show that the 3D structure of star shaped polytheylene oxide–polypropylene oxide co-polymers (sP(EO-stat-PO))-hydrogel coated substrates has a stronger influence on the release pattern of cytokines after 7 days of culture than surface chemistry. Here, we focused on the analysis of cytokine release over time and a more detailed analysis of cell morphology by scanning electron microscopy (SEM). Therefore, we compared different strategies for SEM sample preparation and found that using osmium tetroxide combined with aqua bidest led to best preparation results. For cytokine release we show significant changes from day 3 to day 7 of cell culture. After 3 days, the sP(EO-stat-PO)-coated substrates led to an induction of pro-angiogenic CCL3 and CCL4, and of low amounts of the anti-inflammatory IL10, which declined at day 7. In contrast, pleiotropic IL6 and the pro-inflammatory TNFα and IL1β were expressed stronger at day 7 than at day 3. - Highlights: • Strategies for the preparation of macrophages on hydrogel materials (Fig. 1) • Cytokine release of immature macrophages on the substrates (Fig. 2 and Table 1) • Changes in cytokine release during macrophage maturation (Table 2)

  2. The role of substrate morphology for the cytokine release profile of immature human primary macrophages

    International Nuclear Information System (INIS)

    Bartneck, Matthias; Heffels, Karl-Heinz; Bovi, Manfred; Groll, Jürgen; Zwadlo-Klarwasser, Gabriele

    2013-01-01

    There is increasing evidence that the physicochemical nature of any given material is a dominant factor for the release of cytokines by innate immune cells, specifically of macrophages, and thus majorly influences their interaction with other cell types. Recently, we could show that the 3D structure of star shaped polytheylene oxide–polypropylene oxide co-polymers (sP(EO-stat-PO))-hydrogel coated substrates has a stronger influence on the release pattern of cytokines after 7 days of culture than surface chemistry. Here, we focused on the analysis of cytokine release over time and a more detailed analysis of cell morphology by scanning electron microscopy (SEM). Therefore, we compared different strategies for SEM sample preparation and found that using osmium tetroxide combined with aqua bidest led to best preparation results. For cytokine release we show significant changes from day 3 to day 7 of cell culture. After 3 days, the sP(EO-stat-PO)-coated substrates led to an induction of pro-angiogenic CCL3 and CCL4, and of low amounts of the anti-inflammatory IL10, which declined at day 7. In contrast, pleiotropic IL6 and the pro-inflammatory TNFα and IL1β were expressed stronger at day 7 than at day 3. - Highlights: • Strategies for the preparation of macrophages on hydrogel materials (Fig. 1) • Cytokine release of immature macrophages on the substrates (Fig. 2 and Table 1) • Changes in cytokine release during macrophage maturation (Table 2)

  3. Analysis of GLUT-1, GLUT-3, and angiogenic index in syndromic and non-syndromic keratocystic odontogenic tumors

    Directory of Open Access Journals (Sweden)

    Rafaella Bastos LEITE

    2017-04-01

    Full Text Available Abstract The aim of this study was to evaluate the immunoexpression of glucose transporters 1 (GLUT-1 and 3 (GLUT-3 in keratocystic odontogenic tumors associated with Gorlin syndrome (SKOTs and non-syndromic keratocystic odontogenic tumors (NSKOTs, and to establish correlations with the angiogenic index. Seventeen primary NSKOTs, seven recurrent NSKOTs, and 17 SKOTs were selected for the study. The percentage of immunopositive cells for GLUT-1 and GLUT-3 in the epithelial component of the tumors was assessed. The angiogenic index was determined by microvessel count. The results were analyzed statistically using the nonparametric Kruskal-Wallis test and Spearman’s correlation test. High epithelial immunoexpression of GLUT-1 was observed in most tumors (p = 0.360. There was a higher frequency of negative cases for GLUT-3 in all groups. The few GLUT-3-positive tumors exhibited low expression of this protein in epithelial cells. No significant difference in the angiogenic index was observed between groups (p = 0.778. GLUT-1 expression did not correlate significantly with the angiogenic index (p > 0.05. The results suggest that the more aggressive biological behavior of SKOTs when compared to NSKOTs may not be related to GLUT-1 or GLUT-3 expression. GLUT-1 may play an important role in glucose uptake by epithelial cells of KOTs and this process is unlikely related to the angiogenic index. GLUT-1 could be a potential target for future development of therapeutic strategies for KOTs.

  4. Evaluation of the in vitro and in vivo angiogenic effects of exendin-4

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hye-Min [Department of Anatomy and Neurobiology, Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul (Korea, Republic of); Kang, Yujung; Chun, Hyung J. [Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (United States); Jeong, Joo-Won [Department of Anatomy and Neurobiology, Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul (Korea, Republic of); Park, Chan, E-mail: psychan@khu.ac.kr [Department of Anatomy and Neurobiology, Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul (Korea, Republic of)

    2013-04-26

    Highlights: •We investigated the effects of exendin-4 on the angiogenic process. •Exendin-4 increased migration, sprouting, and tube formation by HUVECs in in vitro. •Exendin-4 increased sprouts in aortic rings and induced new vessels in Matrigel in in vivo. •Exendin-4 may be of potential use for the treatment of vascular complications of diabetes. -- Abstract: Exendin-4, an analog of glucagon-like peptide (GLP)-1, has beneficial effects on cardiovascular disease induced by diabetes mellitus (DM). Recently, exendin-4 was reported to induce the proliferation of endothelial cells. However, its angiogenic effect on endothelial cells has not been clearly evaluated. Therefore, we investigated the effects of exendin-4 on the angiogenic process with respect to migration, sprouting, and neovascularization using in vitro and in vivo assays. Treatment with exendin-4 increased the migration of human umbilical vein endothelial cells (HUVECs) in in vitro scratch wound assays, as well as the number of lumenized vessels sprouting from HUVECs in in vitro 3D bead assays. These responses were abolished by co-treatment with exendin (9–39), a GLP-1 receptor antagonist, which suggests that exendin-4 regulates endothelial cell migration and tube formation in a GLP-1 receptor-dependent manner. In an ex vivo assay, treatment of aortic rings with exendin-4 increased the sprouting of endothelial cells. Exendin-4 also significantly increased the number of new vessels and induced blood flow in Matrigel plugs in in vivo assays. Our results provide clear evidence for the angiogenic effect of exendin-4 in in vitro and in vivo assays and provide a mechanism underlying the cardioprotective effects of exendin-4.

  5. Cells and Angiogenic Cytokines in Therapeutic Angiogenesis for Ischemic Heart Disease

    DEFF Research Database (Denmark)

    Luo, Yu; Zhang, Dai-Fu; Liang, Bo

    2005-01-01

    In the past 20 to 30 years,great developments had been achieved in the applying of cells and angiogenic cytokines for ischemic heart disease.The thesis reviews latest studies of mechanism and clinic application of this novel therapy....

  6. Carvacrol promotes angiogenic paracrine potential and endothelial differentiation of human mesenchymal stem cells at low concentrations.

    Science.gov (United States)

    Matluobi, Danial; Araghi, Atefeh; Maragheh, Behnaz Faramarzian Azimi; Rezabakhsh, Aysa; Soltani, Sina; Khaksar, Majid; Siavashi, Vahid; Feyzi, Adel; Bagheri, Hesam Saghaei; Rahbarghazi, Reza; Montazersaheb, Soheila

    2018-01-01

    Phenolic monoterpene compound, named Carvacrol, has been found to exert different biological outcomes. It has been accepted that the angiogenic activity of human mesenchymal stem cells was crucial in the pursuit of appropriate regeneration. In the current experiment, we investigated the contribution of Carvacrol on the angiogenic behavior of primary human mesenchymal stem cells. Mesenchymal stem cells were exposed to Carvacrol in a dose ranging from 25 to 200μM for 48h. We measured cell survival rate by MTT assay and migration rate by a scratch test. The oxidative status was monitored by measuring SOD, GPx activity. The endothelial differentiation was studied by evaluating the level of VE-cadherin and vWF by real-time PCR and ELISA analyses. The content of VEGF and tubulogenesis behavior was monitored in vitro. We also conducted Matrigel plug in vivo CAM assay to assess the angiogenic potential of conditioned media from human mesenchymal stem cells after exposure to Carvacrol. Carvacrol was able to increase mesenchymal stem cell survival and migration rate (pcells by detecting vWF and VE-cadherin expression (pmesenchymal stem cells conditioned media improved angiogenesis tube formation in vitro (pmesenchymal stem cells by modulating cell differentiation and paracrine angiogenic response. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Potential role of follicle-stimulating hormone (FSH) and transforming growth factor (TGFβ1) in the regulation of ovarian angiogenesis.

    Science.gov (United States)

    Kuo, Shih-Wei; Ke, Ferng-Chun; Chang, Geen-Dong; Lee, Ming-Ting; Hwang, Jiuan-Jiuan

    2011-06-01

    Angiogenesis occurs during ovarian follicle development and luteinization. Pituitary secreted FSH was reported to stimulate the expression of endothelial mitogen VEGF in granulosa cells. And, intraovarian cytokine transforming growth factor (TGF)β1 is known to facilitate FSH-induced differentiation of ovarian granulosa cells. This intrigues us to investigate the potential role of FSH and TGFβ1 regulation of granulosa cell function in relation to ovarian angiogenesis. Granulosa cells were isolated from gonadotropin-primed immature rats and treated once with FSH and/or TGFβ1 for 48 h, and the angiogenic potential of conditioned media (granulosa cell culture conditioned media; GCCM) was determined using an in vitro assay with aortic ring embedded in collagen gel and immunoblotting. FSH and TGFβ1 increased the secreted angiogenic activity in granulosa cells (FSH + TGFβ1 > FSH ≈ TGFβ1 >control) that was partly attributed to the increased secretion of pro-angiogenic factors VEGF and PDGF-B. This is further supported by the evidence that pre-treatment with inhibitor of VEGF receptor-2 (Ki8751) or PDGF receptor (AG1296) throughout or only during the first 2-day aortic ring culture period suppressed microvessel growth in GCCM-treated groups, and also inhibited the FSH + TGFβ1-GCCM-stimulated release of matrix remodeling-associated gelatinase activities. Interestingly, pre-treatment of AG1296 at late stage suppressed GCCM-induced microvessel growth and stability with demise of endothelial and mural cells. Together, we provide original findings that both FSH and TGFβ1 increased the secretion of VEGF and PDGF-B, and that in turn up-regulated the angiogenic activity in rat ovarian granulosa cells. This implicates that FSH and TGFβ1 play important roles in regulation of ovarian angiogenesis during follicle development. Copyright © 2010 Wiley-Liss, Inc.

  8. Deletion of pro-angiogenic factor vasohibin-2 ameliorates glomerular alterations in a mouse diabetic nephropathy model

    Science.gov (United States)

    Masuda, Kana; Ujike, Haruyo; Hinamoto, Norikazu; Miyake, Hiromasa; Tanimura, Satoshi; Sugiyama, Hitoshi; Sato, Yasufumi; Maeshima, Yohei; Wada, Jun

    2018-01-01

    Angiogenesis has been implicated in glomerular alterations in the early stage of diabetic nephropathy. We previously reported the renoprotective effects of vasohibin-1 (VASH1), which is a novel angiogenesis inhibitor derived from endothelial cells, on diabetic nephropathy progression. Vasohibin-2 (VASH2) was originally identified as a VASH1 homolog and possesses pro-angiogenic activity in contrast to VASH1. In addition, VASH2 was recently shown to promote epithelial-to-mesenchymal transition via enhanced transforming growth factor (TGF)-β signaling in cancer cells. Herein, we investigated the pathogenic roles of VASH2 in diabetic nephropathy using VAHS2-deficient mice. The type 1 diabetes model was induced by intraperitoneal injections of streptozotocin in VASH2 homozygous knockout (VASH2LacZ/LacZ) or wild-type mice. These mice were euthanized 16 weeks after inducing hyperglycemia. Increased urine albumin excretion and creatinine clearance observed in diabetic wild-type mice were significantly prevented in diabetic VASH2-deficient mice. Accordingly, diabetes-induced increase in glomerular volume and reduction in glomerular slit-diaphragm density were significantly improved in VASH2 knockout mice. Increased glomerular endothelial area was also suppressed in VASH2-deficient mice, in association with inhibition of enhanced vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2), but not VEGF level. Furthermore, glomerular accumulation of mesangial matrix, including type IV collagen, and increased expression of TGF-β were improved in diabetic VASH2 knockout mice compared with diabetic wild-type mice. Based on the immunofluorescence findings, endogenous VASH2 localization in glomeruli was consistent with mesangial cells. Human mesangial cells (HMCs) were cultured under high glucose condition in in vitro experiments. Transfection of VASH2 small interfering RNA (siRNA) into the HMCs resulted in the suppression of type IV collagen production induced by high glucose

  9. Evaluation of a collagen-chitosan hydrogel for potential use as a pro-angiogenic site for islet transplantation.

    Directory of Open Access Journals (Sweden)

    Joanne E McBane

    Full Text Available Islet transplantation to treat type 1 diabetes (T1D has shown varied long-term success, due in part to insufficient blood supply to maintain the islets. In the current study, collagen and collagen:chitosan (10:1 hydrogels, +/- circulating angiogenic cells (CACs, were compared for their ability to produce a pro-angiogenic environment in a streptozotocin-induced mouse model of T1D. Initial characterization showed that collagen-chitosan gels were mechanically stronger than the collagen gels (0.7 kPa vs. 0.4 kPa elastic modulus, respectively, had more cross-links (9.2 vs. 7.4/µm(2, and were degraded more slowly by collagenase. After gelation with CACs, live/dead staining showed greater CAC viability in the collagen-chitosan gels after 18 h compared to collagen (79% vs. 69%. In vivo, collagen-chitosan gels, subcutaneously implanted for up to 6 weeks in a T1D mouse, showed increased levels of pro-angiogenic cytokines over time. By 6 weeks, anti-islet cytokine levels were decreased in all matrix formulations ± CACs. The 6-week implants demonstrated increased expression of VCAM-1 in collagen-chitosan implants. Despite this, infiltrating vWF(+ and CXCR4(+ angiogenic cell numbers were not different between the implant types, which may be due to a delayed and reduced cytokine response in a T1D versus non-diabetic setting. The mechanical, degradation and cytokine data all suggest that the collagen-chitosan gel may be a suitable candidate for use as a pro-angiogenic ectopic islet transplant site.

  10. Micro-angiographic system using synchrotron radiation and conventional x-ray source for visualizing angiogenic vessels induced by cardiovascular regeneration therapy

    International Nuclear Information System (INIS)

    Mori, H.; Chiku, M.; Nishigami, K.; Tanaka, E.; Kimura, K.; Kawai, T.; Suzuki, K.; Mochizuki, R.; Okawa, Y.

    2004-01-01

    Therapeutic angiogenesis improved critical limb and myocardial ischemia in human, however, angiogenic vessels were not visualized well by conventional angiography, because of its limited spatial resolution of 200 μm. Recently, synchrotron radiation system characterized by high brightness, monochromatic and collimated nature revealed the micro-vessels of heart and lower limb in situ. We developed also an in-house microangiographic system with a relatively low cost. Limb ischemia models were made by ligature of femoral artery and treated by angiogenic growth factor genes and so on. One month after the treatment, we evaluated collateral micro-vessels by using the conventional and micro-angiographic systems. The approach was left femoral artery, and catheter was located in abdominal aorta. Iodine contrast (300 mg/ml) was injected 5 ml by 3 ml/sec with auto-injection system. The imaging was recorded by digital source in 1000 x 1000 pixels. The micro-angiographic system could detect the micro-vessels more precisely than conventional angiographic system and evaluate their function. (author)

  11. Clinical Implication of Anti-Angiogenic Effect of Regorafenib in Metastatic Colorectal Cancer.

    Directory of Open Access Journals (Sweden)

    Yoojoo Lim

    Full Text Available Regorafenib induces distinct radiological changes that represent its anti-angiogenic effect. However, clinical implication of the changes is unclear.Tumor attenuation as measured by Hounsfield units (HU in contrast-enhanced computed tomography (CT and cavitary changes of lung metastases were analyzed in association with treatment outcome of metastatic colorectal cancer patients (N = 80 treated with regorafenib in a prospective study.141 lesions in 72 patients were analyzed with HU. After 2 cycles of regorafenib, 87.5% of patients showed decrease of HU (Median change -23.9%, range -61.5%-20.7%. Lesional attenuation change was modestly associated with metabolic changes of 18-fluoro-deoxyglucose positron emission tomography-CT (Pearson's r = 0.37, p = 0.002. Among 53 patients with lung metastases, 17 (32.1% developed cavitary changes. There were no differences in disease control rate, progression-free survival, or overall survival according to the radiological changes. At the time of progressive disease (PD according to RECIST 1.1, HU was lower than baseline in 86.0% (43/50 and cavitary change of lung metastasis persisted without refilling in 84.6% (11/13.Regorafenib showed prominent anti-angiogenic effect in colorectal cancer, but the changes were not associated with treatment outcome. However, the anti-angiogenic effects persisted at the time of PD, which suggests that we may need to develop new treatment strategies.

  12. Clinical Implication of Anti-Angiogenic Effect of Regorafenib in Metastatic Colorectal Cancer

    Science.gov (United States)

    Yoon, Jeong Hee; Lee, Jeong Min; Lee, Jung Min; Paeng, Jin Chul; Won, Jae-Kyung; Kang, Gyeong Hoon; Jeong, Seung-Yong; Park, Kyu Joo; Lee, Kyung-Hun; Kim, Jee Hyun; Kim, Tae-You

    2015-01-01

    Background Regorafenib induces distinct radiological changes that represent its anti-angiogenic effect. However, clinical implication of the changes is unclear. Methods Tumor attenuation as measured by Hounsfield units (HU) in contrast-enhanced computed tomography (CT) and cavitary changes of lung metastases were analyzed in association with treatment outcome of metastatic colorectal cancer patients (N = 80) treated with regorafenib in a prospective study. Results 141 lesions in 72 patients were analyzed with HU. After 2 cycles of regorafenib, 87.5% of patients showed decrease of HU (Median change -23.9%, range -61.5%–20.7%). Lesional attenuation change was modestly associated with metabolic changes of 18-fluoro-deoxyglucose positron emission tomography-CT (Pearson’s r = 0.37, p = 0.002). Among 53 patients with lung metastases, 17 (32.1%) developed cavitary changes. There were no differences in disease control rate, progression-free survival, or overall survival according to the radiological changes. At the time of progressive disease (PD) according to RECIST 1.1, HU was lower than baseline in 86.0% (43/50) and cavitary change of lung metastasis persisted without refilling in 84.6% (11/13). Conclusion Regorafenib showed prominent anti-angiogenic effect in colorectal cancer, but the changes were not associated with treatment outcome. However, the anti-angiogenic effects persisted at the time of PD, which suggests that we may need to develop new treatment strategies. PMID:26671465

  13. 76 FR 27888 - Implantation or Injectable Dosage Form New Animal Drugs; Gonadotropin Releasing Factor-Diphtheria...

    Science.gov (United States)

    2011-05-13

    ... Factor-Diphtheria Toxoid Conjugate AGENCY: Food and Drug Administration, HHS. ACTION: Final rule. [[Page... veterinary prescription use of gonadotropin releasing factor-diphtheria toxoid conjugate by subcutaneous... provides for the veterinary prescription use of IMPROVEST (gonadotropin releasing factor-diphtheria toxoid...

  14. Modeling tumor-associated edema in gliomas during anti-angiogenic therapy and its impact on imageable tumor

    Directory of Open Access Journals (Sweden)

    Andrea eHawkins-Daarud

    2013-04-01

    Full Text Available Glioblastoma, the most aggressive form of primary brain tumor is predominantly assessed with gadolinium-enhanced T1-weighted (T1Gd and T2-weighted magnetic resonance imaging (MRI. Pixel intensity enhancement on the T1Gd image is understood to correspond to the gadolinium contrast agent leaking from the tumor-induced neovasculature, while hyperintensity on the T2/FLAIR images corresponds with edema and infiltrated tumor cells. None of these modalities directly show tumor cells; rather, they capture abnormalities in the microenvironment caused by the presence of tumor cells. Thus, assessing disease response after treatments impacting the microenvironment remains challenging through the obscuring lens of MR imaging. Anti-angiogenic therapies have been used in the treatment of gliomas with spurious results ranging from no apparent response to significant imaging improvement with the potential for extremely diffuse patterns of tumor recurrence on imaging and autopsy. Anti-angiogenic treatment normalizes the vasculature, effectively decreasing vessel permeability and thus reducing tumor-induced edema, drastically altering T2-weighted MRI. We extend a previously developed mathematical model of glioma growth to explicitly incorporate edema formation allowing us to directly characterize and potentially predict the effects of anti-angiogenics on imageable tumor growth. A comparison of simulated glioma growth and imaging enhancement with and without bevacizumab supports the current understanding that anti-angiogenic treatment can serve as a surrogate for steroids and the clinically-driven hypothesis that anti-angiogenic treatment may not have any significant effect on the growth dynamics of the overall tumor-cell populations. However, the simulations do illustrate a potentially large impact on the level of edematous extracellular fluid, and thus on what would be imageable on T2/FLAIR MR for tumors with lower proliferation rates.

  15. Resistance to cytotoxic and anti-angiogenic anticancer agents: similarities and differences.

    NARCIS (Netherlands)

    Broxterman, H.J.; Lankelma, J.; Hoekman, K.

    2003-01-01

    Intrinsic resistance to anticancer drugs, or resistance developed during chemotherapy, remains a major obstacle to successful treatment. This is the case both for resistance to cytotoxic agents, directed at malignant cells, and for resistance to anti-angiogenic agents, directed at non-malignant

  16. Vascular endothelial growth factor and basic fibroblast growth factor expression positively correlates with angiogenesis and peritumoural brain oedema in astrocytoma

    International Nuclear Information System (INIS)

    Jang, F.F.; Wei, W.

    2008-01-01

    Astrocytoma is the most malignant intracranial neoplasm and is characterized by high neovascularization and peritumoural brain oedema. Angiogenesis is a complicated process in oncogenesis regulated by the balance between angiogenic and antiangiogenic factors. The expression of two angiogenic growth factors, vascular endothelial growth factor and basic fibroblast growth factor were investigated using immunohistochemistry for astrocytoma from 82 patients and 11 normal human tissues. The expression of vascular endothelial growth factor and basic fibroblast growth factor positively correlate with the pathological grade of astrocytoma, microvessel density numbers and brain oedema, which may be responsible for the increased tumour neovascularization and peritumoural brain oedema. The results support the idea that inhibiting vascular endothelial growth factor and basic fibroblast growth factor are useful for the treatment of human astrocytoma and to improve patient's clinical outcomes and prognosis. (author)

  17. Enhancing human islet transplantation by localized release of trophic factors from PLG scaffolds.

    Science.gov (United States)

    Hlavaty, K A; Gibly, R F; Zhang, X; Rives, C B; Graham, J G; Lowe, W L; Luo, X; Shea, L D

    2014-07-01

    Islet transplantation represents a potential cure for type 1 diabetes, yet the clinical approach of intrahepatic delivery is limited by the microenvironment. Microporous scaffolds enable extrahepatic transplantation, and the microenvironment can be designed to enhance islet engraftment and function. We investigated localized trophic factor delivery in a xenogeneic human islet to mouse model of islet transplantation. Double emulsion microspheres containing exendin-4 (Ex4) or insulin-like growth factor-1 (IGF-1) were incorporated into a layered scaffold design consisting of porous outer layers for islet transplantation and a center layer for sustained factor release. Protein encapsulation and release were dependent on both the polymer concentration and the identity of the protein. Proteins retained bioactivity upon release from scaffolds in vitro. A minimal human islet mass transplanted on Ex4-releasing scaffolds demonstrated significant improvement and prolongation of graft function relative to blank scaffolds carrying no protein, and the release profile significantly impacted the duration over which the graft functioned. Ex4-releasing scaffolds enabled better glycemic control in animals subjected to an intraperitoneal glucose tolerance test. Scaffolds releasing IGF-1 lowered blood glucose levels, yet the reduction was insufficient to achieve euglycemia. Ex4-delivering scaffolds provide an extrahepatic transplantation site for modulating the islet microenvironment to enhance islet function posttransplant. © Copyright 2014 The American Society of Transplantation and the American Society of Transplant Surgeons.

  18. 77 FR 4227 - Implantation or Injectable Dosage Form New Animal Drugs; Gonadotropin Releasing Factor Analog...

    Science.gov (United States)

    2012-01-27

    ... Factor Analog-Diphtheria Toxoid Conjugate AGENCY: Food and Drug Administration, HHS. ACTION: Final rule... extends the slaughter interval for intact male swine injected with gonadotropin releasing factor analog...-322 for IMPROVEST (gonadotropin releasing factor analog-diphtheria toxoid conjugate) Sterile Solution...

  19. Investigation of the effects of certain formulation factors on release ...

    African Journals Online (AJOL)

    Objective: To study the effects of three formulation variables (PVP, stearic acid and Avicel PH101) on disintegration time and release properties of paracetamol tablets using a 23 factorial experimental design. Methodology: Three formulation variables; Polyvinyl pyrrolidone (factor A), Stearic acid (factor B) and Avicel PH 101 ...

  20. Silymarin Ameliorates Diabetes-Induced Proangiogenic Response in Brain Endothelial Cells through a GSK-3β Inhibition-Induced Reduction of VEGF Release

    Directory of Open Access Journals (Sweden)

    Ahmed Alhusban

    2017-01-01

    Full Text Available Diabetes mellitus (DM is a major risk factor for cardiovascular disease. Additionally, it was found to induce a dysfunctional angiogenic response in the brain that was attributed to oxidative stress. Milk thistle seed extract (silymarin has potent antioxidant properties, though its potential use in ameliorating diabetes-induced aberrant brain angiogenesis is unknown. Glycogen synthase kinase-3β is a regulator of angiogenesis that is upregulated by diabetes. Its involvement in diabetes-induced angiogenesis is unknown. To evaluate the potential of silymarin to ameliorate diabetes-induced aberrant angiogenesis, human brain endothelial cells (HBEC-5i were treated with 50 μg/mL advanced glycation end (AGE products in the presence or absence of silymarin (50, 100 μM. The angiogenic potential of HBEC-5i was evaluated in terms of migration and in vitro tube formation capacities. The involvement of GSK-3β was also evaluated. AGE significantly increased the migration and tube formation rates of HBEC-5i by about onefold (p=0.0001. Silymarin reduced AGE-induced migration in a dose-dependent manner where 50 μM reduced migration by about 50%, whereas the 100 μM completely inhibited AGE-induced migration. Similarly, silymarin 50 μg/mL blunted AGE-induced tube formation (p=0.001. This effect was mediated through a GSK-3β-dependent inhibition of VEGF release. In conclusion, silymarin inhibits AGE-induced aberrant angiogenesis in a GSK-3β-mediated inhibition of VEGF release.

  1. Stem cell secretome-rich nanoclay hydrogel: a dual action therapy for cardiovascular regeneration

    Science.gov (United States)

    Waters, Renae; Pacelli, Settimio; Maloney, Ryan; Medhi, Indrani; Ahmed, Rafeeq P. H.; Paul, Arghya

    2016-03-01

    A nanocomposite hydrogel with photocrosslinkable micro-porous networks and a nanoclay component was successfully prepared to control the release of growth factor-rich stem cell secretome. The proven pro-angiogenic and cardioprotective potential of this new bioactive system provides a valuable therapeutic platform for cardiac tissue repair and regeneration.A nanocomposite hydrogel with photocrosslinkable micro-porous networks and a nanoclay component was successfully prepared to control the release of growth factor-rich stem cell secretome. The proven pro-angiogenic and cardioprotective potential of this new bioactive system provides a valuable therapeutic platform for cardiac tissue repair and regeneration. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07806g

  2. Relationship between tumour necrosis factor-related apoptosis inducing ligand (TRAIL) and vascular endothelial growth factor in human multiple myeloma patients.

    Science.gov (United States)

    Bolkun, Lukasz; Lemancewicz, Dorota; Piszcz, Jaroslaw; Moniuszko, Marcin; Bolkun-Skornicka, Urszula; Szkiladz, Malgorzata; Jablonska, Ewa; Kloczko, Janusz; Dzieciol, Janusz

    2015-12-01

    Tumour necrosis factor-alfa (TNF-α) is an inflammatory cytokine with a wide spectrum of biological activity, including angiogenesis. Tumour necrosis factor-related apoptosis inducing ligand (TRAIL), which belongs to the TNF family of proteins, plays a role in the regulation of vascular responses, but its effect on the formation of new blood vessels (angiogenesis) is unclear. We analysed TRAIL concentrations in parallel with pro-angiogenic cytokines in serum and their expression in trephine biopsy (TB) in 56 patients with newly diagnosed IgG MM and 24 healthy volunteers. The study showed statistically higher concentrations of TRAIL and TNF-α, as well as of VEGF and its receptor, in MM patients compared to healthy volunteers and patients in advanced stages of the disease. Furthermore, we observed a significant decrease in all studied pro-angiogenic cytokines and significant increase of TRAIL concentration after anti-angiogenic therapy, with meaningful differences between responders (at least partial remission) and patients with progression during the induction treatment. It was also established that TRAIL correlated statistically and negatively with pro-angiogenic cytokines such as VEGF with its receptor and expression of VEGF and syndecan-1 in TB. In summary, our data indicate that in MM patients, both clinical course and treatment responsiveness are associated with dynamic yet corresponding changes of levels of TRAIL parallel pro-angiogenic mediators such as VEGF with its receptor and expression of VEGF and syndecan-1 in TB. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Predictive model of thrombospondin-1 and vascular endothelial growth factor in breast tumor tissue.

    Science.gov (United States)

    Rohrs, Jennifer A; Sulistio, Christopher D; Finley, Stacey D

    2016-01-01

    Angiogenesis, the formation of new blood capillaries from pre-existing vessels, is a hallmark of cancer. Thus far, strategies for reducing tumor angiogenesis have focused on inhibiting pro-angiogenic factors, while less is known about the therapeutic effects of mimicking the actions of angiogenesis inhibitors. Thrombospondin-1 (TSP1) is an important endogenous inhibitor of angiogenesis that has been investigated as an anti-angiogenic agent. TSP1 impedes the growth of new blood vessels in many ways, including crosstalk with pro-angiogenic factors. Due to the complexity of TSP1 signaling, a predictive systems biology model would provide quantitative understanding of the angiogenic balance in tumor tissue. Therefore, we have developed a molecular-detailed, mechanistic model of TSP1 and vascular endothelial growth factor (VEGF), a promoter of angiogenesis, in breast tumor tissue. The model predicts the distribution of the angiogenic factors in tumor tissue, revealing that TSP1 is primarily in an inactive, cleaved form due to the action of proteases, rather than bound to its cellular receptors or to VEGF. The model also predicts the effects of enhancing TSP1's interactions with its receptors and with VEGF. To provide additional predictions that can guide the development of new anti-angiogenic drugs, we simulate administration of exogenous TSP1 mimetics that bind specific targets. The model predicts that the CD47-binding TSP1 mimetic dramatically decreases the ratio of receptor-bound VEGF to receptor-bound TSP1, in favor of anti-angiogenesis. Thus, we have established a model that provides a quantitative framework to study the response to TSP1 mimetics.

  4. Autologous circulating angiogenic cells treated with osteopontin and delivered via a collagen scaffold enhance wound healing in the alloxan-induced diabetic rabbit ear ulcer model.

    Science.gov (United States)

    O'Loughlin, Aonghus; Kulkarni, Mangesh; Vaughan, Erin E; Creane, Michael; Liew, Aaron; Dockery, Peter; Pandit, Abhay; O'Brien, Timothy

    2013-01-01

    Diabetic foot ulceration is the leading cause of amputation in people with diabetes mellitus. Peripheral vascular disease is present in the majority of patients with diabetic foot ulcers. Despite standard treatments there exists a high amputation rate. Circulating angiogenic cells previously known as early endothelial progenitor cells are derived from peripheral blood and support angiogenesis and vasculogenesis, providing a potential topical treatment for non-healing diabetic foot ulcers. A scaffold fabricated from Type 1 collagen facilitates topical cell delivery to a diabetic wound. Osteopontin is a matricellular protein involved in wound healing and increases the angiogenic potential of circulating angiogenic cells. A collagen scaffold seeded with circulating angiogenic cells was developed. Subsequently the effect of autologous circulating angiogenic cells that were seeded in a collagen scaffold and topically delivered to a hyperglycemic cutaneous wound was assessed. The alloxan-induced diabetic rabbit ear ulcer model was used to determine healing in response to the following treatments: collagen seeded with autologous circulating angiogenic cells exposed to osteopontin, collagen seeded with autologous circulating angiogenic cells, collagen alone and untreated wound. Stereology was used to assess angiogenesis in wounds. The cells exposed to osteopontin and seeded on collagen increased percentage wound closure as compared to other groups. Increased angiogenesis was observed with the treatment of collagen and collagen seeded with circulating angiogenic cells. These results demonstrate that topical treatment of full thickness cutaneous ulcers with autologous circulating angiogenic cells increases wound healing. Cells exposed to the matricellular protein osteopontin result in superior wound healing. The wound healing benefit is associated with a more efficient vascular network. This topical therapy provides a potential novel therapy for the treatment of non

  5. Tumor Vesicle—Associated CD147 Modulates the Angiogenic Capability of Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Danilo Millimaggi

    2007-04-01

    Full Text Available Matrix metalloproteinase (MMP degradation of extracellular matrix is thought to play an important role in invasion, angiogenesis, tumor growth, and metastasis. Several studies have demonstrated that CD147/ extracellular MMP inducer, a membrane-spanning molecule highly expressed in tumor cells, may be involved in the progression of malignancies by regulating expression of MMP in peritumoral stromal cells. In the present study we show that CD147 is expressed in microvesicles derived from epithelial ovarian cancer cells and that CD147-positive vesicles may promote an angiogenic phenotype in endothelial cells in vitro. Vesicles shed by human ovarian carcinoma cell lines OVCAR3, SKOV3, and A2780 expressed different levels of CD147 and stimulated proangiogenic activities of human umbilical vein endothelial cells (HUVECs in a CD147-dependent fashion (OVCAR3 > SKOV3 > A2780. Moreover, vesicles shed by ovarian carcinoma cell line CABA I with low CD147 expression had no significant effect on the development of angiogenic phenotype in HUVECs. The treatment of OVCAR3 cells with small interfering RNA against CD147 suppressed the angiogenic potential of OVCAR3-derived microvesicles. However, transfection of CD147 cDNA into the CABA I cell line enabled CABA I-derived vesicles to induce angiogenesis and to promote MMP genes expression in HUVECs. We therefore conclude that vesicles shed by ovarian cancer cells may induce proangiogenic activities of HUVECs by a CD147-mediated mechanism.

  6. Immunological, anti-angiogenic and clinical effects of intratumoral interleukin 12 electrogene therapy combined with metronomic cyclophosphamide in dogs with spontaneous cancer: A pilot study.

    Science.gov (United States)

    Cicchelero, Laetitia; Denies, Sofie; Vanderperren, Katrien; Stock, Emmelie; Van Brantegem, Leen; de Rooster, Hilde; Sanders, Niek N

    2017-08-01

    The immunological, anti-angiogenic and clinical effects of metronomic cyclophosphamide and 3 consecutive intratumoral interleukin (IL)-12 gene therapy (electrogene therapy (EGT)) treatments were evaluated in 6 dogs with spontaneous cancer. In all dogs, a decrease in peripheral leukocytes 2 days after IL-12 EGT coincided with erythema and swelling of the tumor. In the tumor, a transient increase in IL-12 levels was measured, whereas a continuous increase in interferon γ (IFNγ) and thrombospondin 1 (TSP-1) were determined in contrast to a continuous decrease in vascular endothelial growth factor (VEGF). In the serum, a transient increase in IL-12 and IL-10 levels were noted in contrast to a transient decrease in VEGF and TSP-1. The treatment resulted in a significant anti-angiogenic effect. Although all primary tumors continued to progress in time, this progression was slower than before treatment according to the contrast-enhanced ultrasound data. Besides the encouraging immunostimulatory and anti-angiogenic effects observed in all dogs we also noticed in 4 out of 6 dogs clinically relevant improvements in quality of life and weight. These results hold great promise for combinatorial strategies of IL-12 EGT and metronomic chemotherapy with conventional antitumor (immuno)therapies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Angiogenic profile and smoking in the Finnish Genetics of Pre-Eclampsia Consortium (FINNPEC) cohort.

    Science.gov (United States)

    Jääskeläinen, Tiina; Suomalainen-König, Sanna; Hämäläinen, Esa; Pulkki, Kari; Romppanen, Jarkko; Heinonen, Seppo; Laivuori, Hannele

    2017-11-01

    The biological mechanism by which smoking reduces the risk of pre-eclampsia (PE) is unresolved. We studied serum levels of soluble fms-like tyrosine kinase 1 (sFlt-1), placental growth factor (PlGF) and their ratio, in addition to soluble endoglin (sEng) in early and late pregnancy to ascertain whether these factors are altered in women who smoke. First trimester serum samples were available from 217 women who later developed PE and 238 women who did not develop PE. Second/third trimester serum samples were available from 174 PE and 54 non-PE women. PE women who smoked during pregnancy had elevated first trimester concentrations of serum PlGF [geometric mean (95% CI): 39.8 (32.6-48.5) pg/ml, p = .001] and reduced sEng concentration [5.0 (4.6-5.6) ng/ml, p = .047] compared to PE non-smokers [30.0 (28.1-32.1) pg/ml and 6.1 (5.9-6.4) ng/ml, respectively]. Non-smoking women in the PE group had the highest sFlt-1/PlGF ratio in early and late pregnancy. The protective effect of smoking in reducing the risk of PE may be due to the early pregnancy change towards pro-angiogenic marker profile. Also, in late pregnancy, smoking exerted effect in sFlt-1/PlGF ratio in PE pregnancies, and may complicate its use as a prognostic and diagnostic marker. Key messages Smoking appears to have angiogenic effects in early pregnancy with reduced sEng concentrations and elevated PlGF concentrations in both normal and PE pregnancies. Throughout pregnancy, smoking exerted effect in PlGF concentration and sFlt-1/PlGF ratio in PE pregnancies, and thus may complicate its use as a prognostic and diagnostic marker.

  8. Differential expression of anti-angiogenic factors and guidance genes in the developing macula.

    Science.gov (United States)

    Kozulin, Peter; Natoli, Riccardo; O'Brien, Keely M Bumsted; Madigan, Michele C; Provis, Jan M

    2009-01-01

    The primate retina contains a specialized, cone-rich macula, which mediates high acuity and color vision. The spatial resolution provided by the neural retina at the macula is optimized by stereotyped retinal blood vessel and ganglion cell axon patterning, which radiate away from the macula and reduce shadowing of macular photoreceptors. However, the genes that mediate these specializations, and the reasons for the vulnerability of the macula to degenerative disease, remain obscure. The aim of this study was to identify novel genes that may influence retinal vascular patterning and definition of the foveal avascular area. We used RNA from human fetal retinas at 19-20 weeks of gestation (WG; n=4) to measure differential gene expression in the macula, a region nasal to disc (nasal) and in the surrounding retina (surround) by hybridization to 12 GeneChip microarrays (HG-U133 Plus 2.0). The raw data was subjected to quality control assessment and preprocessing, using GC-RMA. We then used ANOVA analysis (Partek) Genomic Suite 6.3) and clustering (DAVID website) to identify the most highly represented genes clustered according to "biological process." The neural retina is fully differentiated at the macula at 19-20 WG, while neuronal progenitor cells are present throughout the rest of the retina. We therefore excluded genes associated with the cell cycle, and markers of differentiated neurons, from further analyses. Significantly regulated genes (pmacula versus surround" and "macula versus nasal." KEGG pathway clustering of the filtered gene lists identified 25 axon guidance-related genes that are differentially regulated in the macula. Furthermore, we found significant upregulation of three anti-angiogenic factors in the macula: pigment epithelium derived factor (PEDF), natriuretic peptide precurusor B (NPPB), and collagen type IValpha2. Differential expression of several members of the ephrin and semaphorin axon guidance gene families, PEDF, and NPPB was verified by

  9. The Transcription Factor Nrf2 Protects Angiogenic Capacity of Endothelial Colony-Forming Cells in High-Oxygen Radical Stress Conditions

    Directory of Open Access Journals (Sweden)

    Hendrik Gremmels

    2017-01-01

    Full Text Available Background. Endothelial colony forming cells (ECFCs have shown a promise in tissue engineering of vascular constructs, where they act as endothelial progenitor cells. After implantation, ECFCs are likely to be subjected to elevated reactive oxygen species (ROS. The transcription factor Nrf2 regulates the expression of antioxidant enzymes in response to ROS. Methods. Stable knockdown of Nrf2 and Keap1 was achieved by transduction with lentiviral shRNAs; activation of Nrf2 was induced by incubation with sulforaphane (SFN. Expression of Nrf2 target genes was assessed by qPCR, oxidative stress was assessed using CM-DCFDA, and angiogenesis was quantified by scratch-wound and tubule-formation assays. Results. Nrf2 knockdown led to a reduction of antioxidant gene expression and increased ROS. Angiogenesis was disturbed after Nrf2 knockdown even in the absence of ROS. Conversely, angiogenesis was preserved in high ROS conditions after knockdown of Keap1. Preincubation of ECFCs with SFN reduced intracellular ROS in the presence of H2O2 and preserved scratch-wound closure and tubule-formation. Conclusion. The results of this study indicate that Nrf2 plays an important role in the angiogenic capacity of ECFCs, particularly under conditions of increased oxidative stress. Pretreatment of ECFCs with SFN prior to implantation may be a protective strategy for tissue-engineered constructs or cell therapies.

  10. Influence of Echinacea purpurea intake during pregnancy on fetal growth and tissue angiogenic activity.

    Directory of Open Access Journals (Sweden)

    Ewa Sommer

    2008-04-01

    Full Text Available The process of angiogenesis and control of blood vessels sprouting are fundamental to human health, as they play key roles in many physiological and pathological conditions. Intake of different pharmaceuticals with antiangiogenic activity by pregnant women may lead to severe developmental disturbances as it was described in case of thalidomide. It may also cause immunomodulatory effects as it was shown for antibiotics, theobromine, caffeic acid or catechins on the pregnant mice model. At present, Echinacea purpurea-based phytoceuticals are among the most popular herbals in the marketplace. Many compounds of Echinacea extracts (polysaccharides, alkamides, polyphenols, glycoproteins exert immunomodulatory, anti-oxidative and anti-inflammatory activity. Echinacea is one of the most powerful and effective remedies against many kinds of bacterial and viral infections. In previous studies we shown significant inhibitory effect of the Echinacea purpurea based remedy on tumour angiogenic activity using cutaneous angiogenesis test, and an inhibitory effect on L-1 sarcoma growth was observed . The aim of the present study was to establish whether pharmaceuticals containing alcoholic extracts of Echinacea purpurea given to pregnant mice influence angiogenic activity and tissue VEGF and bFGF production of their fetuses. We showed that angiogenic activity of tissue homogenates was increased in Esberitox group and diminished in case of Immunal forte as compared to standard diet group. In case of Echinapur group we did not find significant differences in angiogenic activity. VEGF and bFGF concentration were lower in all groups compared to the control. In the case of Echinapur and Esberitox number of fetuses in one litter were slightly lower as compared to control group, but the difference is on the border of statistical significance. In conclusion, there is some possibility that pharmaceuticals containing Echinacea purpurea might influence fetal development in

  11. Targeted Proteomics to Assess the Response to Anti-Angiogenic Treatment in Human Glioblastoma (GBM).

    Science.gov (United States)

    Demeure, Kevin; Fack, Fred; Duriez, Elodie; Tiemann, Katja; Bernard, Amandine; Golebiewska, Anna; Bougnaud, Sébastien; Bjerkvig, Rolf; Domon, Bruno; Niclou, Simone P

    2016-02-01

    Glioblastoma (GBM) is a highly aggressive primary brain tumor with dismal outcome for affected patients. Because of the significant neo-angiogenesis exhibited by GBMs, anti-angiogenic therapies have been intensively evaluated during the past years. Recent clinical studies were however disappointing, although a subpopulation of patients may benefit from such treatment. We have previously shown that anti-angiogenic targeting in GBM increases hypoxia and leads to a metabolic adaptation toward glycolysis, suggesting that combination treatments also targeting the glycolytic phenotype may be effective in GBM patients. The aim of this study was to identify marker proteins that are altered by treatment and may serve as a short term readout of anti-angiogenic therapy. Ultimately such proteins could be tested as markers of efficacy able to identify patient subpopulations responsive to the treatment. We applied a proteomics approach based on selected reaction monitoring (SRM) to precisely quantify targeted protein candidates, selected from pathways related to metabolism, apoptosis and angiogenesis. The workflow was developed in the context of patient-derived intracranial GBM xenografts developed in rodents and ensured the specific identification of human tumor versus rodent stroma-derived proteins. Quality control experiments were applied to assess sample heterogeneity and reproducibility of SRM assays at different levels. The data demonstrate that tumor specific proteins can be precisely quantified within complex biological samples, reliably identifying small concentration differences induced by the treatment. In line with previous work, we identified decreased levels of TCA cycle enzymes, including isocitrate dehydrogenase, whereas malectin, calnexin, and lactate dehydrogenase A were augmented after treatment. We propose the most responsive proteins of our subset as potential novel biomarkers to assess treatment response after anti-angiogenic therapy that warrant future

  12. Vasohibin inhibits angiogenic sprouting in vitro and supports vascular maturation processes in vivo

    International Nuclear Information System (INIS)

    Kern, Johann; Steurer, Michael; Gastl, Günther; Gunsilius, Eberhard; Untergasser, Gerold

    2009-01-01

    The murine homologue of human vasohibin (mVASH1), a putative antiangiogenic protein, was investigated for its effects on in vitro and in vivo angiogenesis. Cell growth and migration were analyzed in murine fibroblasts, smooth muscle cells and endothelial cells. Angiogenic sprouting was studied in human umbilical vein endothelial cells (HUVECs) in the spheroid sprouting assay. In vivo effects on blood vessel formation were investigated in the chorioallantoic membrane (CAM) assay and in the C57BL/6 melanoma xenograft model. Purified murine and human VASH1 protein induced apoptosis of murine fibroblasts in vitro, but not of vascular aortic smooth muscle cells (AoSMC) or endothelial cells. Adenoviral overexpression of murine and human VASH1 inhibited capillary sprouting of HUVECs in the spheroid assay. Administration of recombinant murine and human VASH1 inhibited growth of large vessels in the CAM assay and promoted the formation of a dense, fine vascular network. Murine VASH1-overexpressing B16F10 melanomas displayed a reduction in large vessels and vascular area. Moreover, tumors showed more microvessels that stained positive for the mural cell markers α-smooth muscle cell actin (ASMA) and proteoglycan (NG2). Our data imply that murine VASH1 causes angiogenic remodelling by inhibiting angiogenic sprouting and large vessel growth, thereby supporting the formation of a vascular bed consisting predominantly of mature microvessels

  13. Corticotropin-Releasing Factor Mediates Pain-Induced Anxiety through the ERK1/2 Signaling Cascade in Locus Coeruleus Neurons

    Science.gov (United States)

    Borges, Gisela Patrícia; Micó, Juan Antonio; Neto, Fani Lourença

    2015-01-01

    Background: The corticotropin-releasing factor is a stress-related neuropeptide that modulates locus coeruleus activity. As locus coeruleus has been involved in pain and stress-related patologies, we tested whether the pain-induced anxiety is a result of the corticotropin-releasing factor released in the locus coeruleus. Methods: Complete Freund’s adjuvant-induced monoarthritis was used as inflammatory chronic pain model. α-Helical corticotropin-releasing factor receptor antagonist was microinjected into the contralateral locus coeruleus of 4-week-old monoarthritic animals. The nociceptive and anxiety-like behaviors, as well as phosphorylated extracellular signal-regulated kinases 1/2 and corticotropin-releasing factor receptors expression, were quantified in the paraventricular nucleus and locus coeruleus. Results: Monoarthritic rats manifested anxiety and increased phosphorylated extracellular signal-regulated kinases 1/2 levels in the locus coeruleus and paraventricular nucleus, although the expression of corticotropin-releasing factor receptors was unaltered. α-Helical corticotropin-releasing factor antagonist administration reversed both the anxiogenic-like behavior and the phosphorylated extracellular signal-regulated kinases 1/2 levels in the locus coeruleus. Conclusions: Pain-induced anxiety is mediated by corticotropin-releasing factor neurotransmission in the locus coeruleus through extracellular signal-regulated kinases 1/2 signaling cascade. PMID:25716783

  14. Resveratrol modulates the angiogenic response to exercise training in skeletal muscle of aged men

    DEFF Research Database (Denmark)

    Gliemann Hybholt, Lasse; Olesen, Jesper; Biensø, Rasmus S

    2014-01-01

    Aim: The polyphenol resveratrol has in animal studies been shown to influence several pathways of importance for angiogenesis in skeletal muscle. The aim was to examine the angiogenic effect of resveratrol supplementation with parallel exercise training in aged men. Methods: Forty-three healthy...... physically inactive aged men (65±1 years) were divided into A) a training group that conducted 8 weeks of intense exercise training where half of the subjects received a daily intake of either 250 mg trans resveratrol (n=14) and the other half received placebo (n=13); and B) a non-training group...... show that exercise training has a strong angiogenic effect whereas resveratrol supplementation may limit basal and training-induced angiogenesis....

  15. Three-dimensional endothelial cell morphogenesis under controlled ion release from copper-doped phosphate glass.

    Science.gov (United States)

    Stähli, Christoph; James-Bhasin, Mark; Nazhat, Showan N

    2015-02-28

    Copper ions represent a promising angiogenic agent but are associated with cytotoxicity at elevated concentrations. Phosphate-based glasses (PGs) exhibit adjustable dissolution properties and allow for controlled ion release. This study examined the formation of capillary-like networks by SVEC4-10 endothelial cells (ECs) seeded in a three-dimensional (3D) type I collagen hydrogel matrix mixed with PG particles of the formulation 50P2O5-30CaO-(20-x)Na2O-xCuO (x=0 and 10 mol%). Copper and total phosphorus release decreased over time and was more sustained in the case of 10% CuO PG. Moreover, increasing the concentration of 10% CuO PG in collagen substantially delayed dissolution along with preferential release of copper. A 3D morphometric characterization method based on confocal laser scanning microscopy image stacks was developed in order to quantify EC network length, connectivity and branching. Network length was initially reduced in a concentration-dependent fashion by 10% CuO PG and, to a lesser extent, by 0% CuO PG, but reached values identical to the non-PG control by day 5 in culture. This reduction was attributed to a PG-mediated decrease in cell metabolic activity while cell proliferation as well as network connectivity and branching were independent of PG content. Gene expression of matrix metalloproteinases (MMP)-1 and -2 was up-regulated by PGs, indicating that MMPs did not play a critical role in network growth. The relationship between ion release and EC morphogenesis in 3D provided in this study is expected to contribute to an ultimately successful pro-angiogenic application of CuO-doped PGs. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Release kinetics of platelet-derived and plasma-derived growth factors from autologous plasma rich in growth factors.

    Science.gov (United States)

    Anitua, Eduardo; Zalduendo, Mari Mar; Alkhraisat, Mohammad Hamdan; Orive, Gorka

    2013-10-01

    Many studies have evaluated the biological effects of platelet rich plasma reporting the final outcomes on cell and tissues. However, few studies have dealt with the kinetics of growth factor delivery by plasma rich in growth factors. Venous blood was obtained from three healthy volunteers and processed with PRGF-Endoret technology to prepare autologous plasma rich in growth factors. The gel-like fibrin scaffolds were then incubated in triplicate, in a cell culture medium to monitor the release of PDGF-AB, VEGF, HGF and IGF-I during 8 days of incubation. A leukocyte-platelet rich plasma was prepared employing the same technology and the concentrations of growth factors and interleukin-1β were determined after 24h of incubation. After each period, the medium was collected, fibrin clot was destroyed and the supernatants were stored at -80°C until analysis. The growth factor delivery is diffusion controlled with a rapid initial release by 30% of the bioactive content after 1h of incubation and a steady state release when almost 70% of the growth factor content has been delivered. Autologous fibrin matrix retained almost 30% of the amount of the growth factors after 8 days of incubation. The addition of leukocytes to the formula of platelet rich plasma did not increase the concentration of the growth factors, while it drastically increased the presence of pro-inflammatory IL-1β. Further studies employing an in vitro inflammatory model would be interesting to study the difference in growth factors and pro-inflammatory cytokines between leukocyte-free and leukocyte-rich platelet rich plasma. Copyright © 2013 Elsevier GmbH. All rights reserved.

  17. G-protein-coupled receptor 81 promotes a malignant phenotype in breast cancer through angiogenic factor secretion.

    Science.gov (United States)

    Lee, Yu Jin; Shin, Kyeong Jin; Park, Soo-Ah; Park, Kyeong Su; Park, Seorim; Heo, Kyun; Seo, Young-Kyo; Noh, Dong-Young; Ryu, Sung Ho; Suh, Pann-Ghill

    2016-10-25

    G-protein-coupled receptor 81 (GPR81) functions as a receptor for lactate and plays an important role in the regulation of anti-lipolytic effects in adipocytes. However, to data, a role for GPR81 in the tumor microenvironment has not been clearly defined. Here, GPR81 expression in breast cancer patients and several breast cancer cell lines was significantly increased compared with normal mammary tissues and cells. GPR81 knockdown resulted in impaired breast cancer growth and led to apoptosis both in vitro and in vivo. Furthermore, the inhibition of GPR81 signaling suppressed angiogenesis through a phosphoinositide 3-OH kinase (PI3K)/Akt-cAMP response element binding protein (CREB) pathway, which led to decreased production of the pro-angiogenic mediator amphiregulin (AREG). Overall, these findings identify GPR81 as a tumor-promoting receptor in breast cancer progression and suggest a novel mechanism that regulates GPR81-dependent activation of the PI3K/Akt signaling axis in tumor microenvironment.

  18. The vascular permeabilizing factors histamine and serotonin induce angiogenesis through TR3/Nur77 and subsequently truncate it through thrombospondin-1

    Science.gov (United States)

    Qin, Liuliang; Zhao, Dezheng; Xu, Jianfeng; Ren, Xianghui; Terwilliger, Ernest F.; Parangi, Sareh; Lawler, Jack; Dvorak, Harold F.

    2013-01-01

    Angiogenesis plays an important role in cancer and in many other human diseases. Vascular endothelial growth factor-A (VEGF-A), the best known angiogenic factor, was originally discovered as a potent vascular permeability factor (VPF), suggesting that other vascular permeabilizing agents, such as histamine and serotonin, might also have angiogenic activity. We recently demonstrated that, like VEGF-A, histamine and serotonin up-regulate the orphan nuclear receptor and transcription factor TR3 (mouse homolog Nur77) and that TR3/Nur77 is essential for their vascular permeabilizing activities. We now report that histamine and serotonin are also angiogenic factors that, at low micromolar concentrations, induce endothelial cell proliferation, migration and tube formation in vitro, and angiogenesis in vivo. All of these responses are mediated through specific histamine and serotonin receptors, are independent of VEGF-A, and are directly dependent on TR3/Nur77. Initially, the angiogenic response closely resembled that induced by VEGF-A, with generation of “mother” vessels. However, after ∼10 days, mother vessels began to regress as histamine and serotonin, unlike VEGF-A, up-regulated the potent angiogenesis inhibitor thrombospondin-1, thereby triggering a negative feedback loop. Thus, histamine and serotonin induce an angiogenic response that fits the time scale of acute inflammation. PMID:23315169

  19. Prognostic impact of placenta growth factor and vascular endothelial growth factor A in patients with breast cancer

    DEFF Research Database (Denmark)

    Maae, Else; Olsen, Dorte Aalund; Steffensen, Karina Dahl

    2012-01-01

    Placenta growth factor (PlGF) and vascular endothelial growth factor A (VEGF-A) are angiogenic growth factors interacting competitively with the same receptors. VEGF-A is essential in both normal and pathologic conditions, but the functions of PlGF seem to be restricted to pathologic conditions s...

  20. Investigating the in vitro and in vivo angiogenic activity of five Philippine medicinal plants associated with wound healing properties

    International Nuclear Information System (INIS)

    Lacson, Mona Lisa B.; Macahig, Rene Angelo S.; Rojas, Nina Rosario L.

    2015-01-01

    Plants have been used since time immemorial to treat many ailments and speed up healing process. Plant parts and extracts have been traditionally used to heal wounds. Angiogenesis is one of the events associated with wound healing. It is a tightly regulated process of blood vessel formation and an important target for diseases like coronary infarction, ischemia and stroke. Several in vitro and in vivo methods have been developed to assess the angiogenic activity of different compounds. These include the chorio-allantaoic membrane (CAM) assay which uses the egg's gas exchange membrane to assess the angiogenic potential of a substance and the tube formation assay which uses endothelial cells grown in the lab. Aqueous ethanolic extracts of five Philippine medicinal plants associated with wound healing were used in the study. Preliminary phytochemical screening using spray raegents and toxicity test using brine shrimp (Artemia salina) nauplii was done. 10% of the computed LC 5 0 value was used to screen the angiogenic potential of the plant extracts using human umbilical vein endothelial cells (HUVECs) in an in vitro tube formation assay and in vivo chorio-allantoic membrane (CAM) assay. Phorbol myristate (PMA) a known pro-angiogenic compound was used as positive control. Initial phytochemical screening showed that the crude enthanolic extracts of the leaves of the five contain flavonoids, steroids, phenols, saponins, alkanoids, coumarins, anthranoids, anthraquinones, sugars and essential oils. Brine shrimp lethality assay revealed that the plants used were not toxic to Artemia salina nauplii at 1000 μg/mL. In vitro tube formation assay revealed the crude ethanolic extracts of the leaves of M. indica showed the greatest angiogenic activity, closely followed by C. pubescens, T. catappa, A. barbadensis and C. odorata. The effect of the crude ethanolic extracts of the plants on blood vessel formation in the in vivo CAM model showed A. barbadensis with the highest

  1. Phosphorylated human prolactin (S179D-hPRL) is a potent anti-angiogenic hormone in vitro and in vivo; Prolactina humana pseudofosforilada (S179D-hPRL) e um potente fator anti-angiogenico in vitro e in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Eric Kinnosuke Martins

    2006-07-01

    S179D-prolactin (hPRL) is an experimentally useful mimic of naturally phosphorylated human prolactin. S179D-hPRL, but not unmodified PRL, was found to be anti-angiogenic in both the chorioallantoic membrane and corneal assays. Further investigation using human endothelial in vitro models showed reduced cell number, reduced tubule formation in Matrigel, and reduced migration and invasion, as a function of treatment with S179D-hPRL. Analysis of growth factors in human endothelial cells in response to S179D-hPRL showed a decreased expression or release of endogenous PRL, heme-oxygenase-1, basic fibroblast growth factor (bFGF), angio genin, epidermal growth factor and vascular endothelial growth factor and an increased expression of inhibitors of matrix metallo proteases. S179D-hPRL also blocked signaling from bFGF in these cells. We conclude that this molecular mimic of a pituitary hormone is a potent anti-angiogenic protein, partly as a result of its ability to reduce utilization of several well-established endothelial autocrine growth loops, partly by its ability to block signaling from bFGF and partly because of its ability to decrease endothelial migration. We also examined the influence of S179D-hPRL on apoptosis in human endothelial cells, using procaspase-8 as a marker of the extrinsic pathway, and cytochrome C release as a marker of the intrinsic pathway. Both pathways converge at caspase-3, which cleaves DNA fragmentation factor (DFF45). A 3-day incubation with 50 ng/ml S179D-hPRL quadrupled the early apoptotic cells; this effect was doubled at 100 ng/ml and maximal at 500 ng/ml. DFF45 and pro-caspase 8 cleavage were detectable at 100 ng/ml. Cytochrome C, however, was unaffected until 500 ng/ml. p21 increased at 100 ng/ml, whereas a change in p53 activity required both triple the time and 500 ng/ml. p21 promoter activity was maximal at 50 ng/ml, whereas 500 ng/ml were required to see a significant change in the Bax promoter (a measure of p53 activity). As

  2. Growth hormone-releasing factor stimulates proliferation of somatotrophs in vitro

    DEFF Research Database (Denmark)

    Billestrup, Nils; Swanson, L W; Vale, W

    1986-01-01

    The mitogenic effect of the hypothalamic peptides growth hormone-releasing factor (GRF) and somatostatin on cultured growth hormone (GH)-producing cells (somatotrophs) was studied. Using autoradiographic detection of [3H]thymidine uptake and immunocytochemical identification of GH-producing cells...

  3. Monocytes with angiogenic potential are selectively induced by liver resection and accumulate near the site of liver regeneration.

    Science.gov (United States)

    Schauer, Dominic; Starlinger, Patrick; Zajc, Philipp; Alidzanovic, Lejla; Maier, Thomas; Buchberger, Elisabeth; Pop, Lorand; Gruenberger, Birgit; Gruenberger, Thomas; Brostjan, Christine

    2014-10-30

    Monocytes reportedly contribute to liver regeneration. Three subsets have been identified to date: classical, intermediate, non-classical monocytes. The intermediate population and a subtype expressing TIE2 (TEMs) were suggested to promote angiogenesis. In a clinical setting, we investigated which monocyte subsets are regulated after liver resection and correlate with postoperative liver function. In 38 patients monocyte subsets were evaluated in blood and subhepatic wound fluid by flow cytometry before and 1-3 days after resection of colorectal liver metastases. The monocyte-regulating cytokines macrophage colony stimulating factor (M-CSF), transforming growth factor beta 1 (TGFβ1), and angiopoietin 2 (ANG-2) were measured in patient plasma by ELISA. C-reactive protein (CRP) and liver function parameters were retrieved from routine hospital analyses. On post-operative day (POD) 1 blood monocytes shifted to significantly elevated levels of intermediate monocytes. In wound fluid, a delayed surge in intermediate monocytes was detected by POD 3. Furthermore, TEMs were highly enriched in wound fluid as compared to circulation. CRP and M-CSF levels were substantially increased in patient blood after surgery and correlated significantly with the frequency of intermediate monocytes. In addition, liver function parameters showed a significant association with intermediate monocyte levels on POD 3. The reportedly pro-angiogenic subsets of monocytes are selectively increased upon liver resection and accumulate next to the site of liver regeneration. As previously proposed by in vitro experiments, the release of CRP and M-CSF may trigger the induction of intermediate monocytes. The correlation with liver parameters points to a functional involvement of these monocyte populations in liver regeneration which warrants further investigation.

  4. Increased vascular endothelial growth factor (VEGF) expression in ...

    African Journals Online (AJOL)

    User

    2011-05-16

    May 16, 2011 ... Vascular endothelial growth factor (VEGF), a well known angiogenic factor, has been shown to have direct and/or ... Endogenous repair efforts fail to repair ... Spinal cord injury model preparation and intramedullary spinal.

  5. VEGF121b and VEGF165b are weakly angiogenic isoforms of VEGF-A

    Directory of Open Access Journals (Sweden)

    Pio Ruben

    2010-12-01

    Full Text Available Abstract Background Different isoforms of VEGF-A (mainly VEGF121, VEGF165 and VEGF189 have been shown to display particular angiogenic properties in the generation of a functional tumor vasculature. Recently, a novel class of VEGF-A isoforms, designated as VEGFxxxb, generated through alternative splicing, have been described. Previous studies have suggested that these isoforms may inhibit angiogenesis. In the present work we have produced recombinant VEGF121/165b proteins in the yeast Pichia pastoris and constructed vectors to overexpress these isoforms and assess their angiogenic potential. Results Recombinant VEGF121/165b proteins generated either in yeasts or mammalian cells activated VEGFR2 and its downstream effector ERK1/2, although to a lesser extent than VEGF165. Furthermore, treatment of endothelial cells with VEGF121/165b increased cell proliferation compared to untreated cells, although such stimulation was lower than that induced by VEGF165. Moreover, in vivo angiogenesis assays confirmed angiogenesis stimulation by VEGF121/165b isoforms. A549 and PC-3 cells overexpressing VEGF121b or VEGF165b (or carrying the PCDNA3.1 empty vector, as control and xenotransplanted into nude mice showed increased tumor volume and angiogenesis compared to controls. To assess whether the VEGFxxxb isoforms are differentially expressed in tumors compared to healthy tissues, immunohistochemical analysis was conducted on a breast cancer tissue microarray. A significant increase (p xxxb and total VEGF-A protein expression in infiltrating ductal carcinomas compared to normal breasts was observed. A positive significant correlation (r = 0.404, p = 0.033 between VEGFxxxb and total VEGF-A was found. Conclusions Our results demonstrate that VEGF121/165b are not anti-angiogenic, but weakly angiogenic isoforms of VEGF-A. In addition, VEGFxxxb isoforms are up-regulated in breast cancer in comparison with non malignant breast tissues. These results are to be taken

  6. Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine

    Directory of Open Access Journals (Sweden)

    Mikaël M Martino

    2015-04-01

    Full Text Available Blood vessel growth plays a key role in regenerative medicine, both to restore blood supply to ischemic tissues and to ensure rapid vascularization of clinical-size tissue-engineered grafts. For example, vascular endothelial growth factor (VEGF is the master regulator of physiological blood vessel growth and is one of the main molecular targets of therapeutic angiogenesis approaches. However, angiogenesis is a complex process and there is a need to develop rational therapeutic strategies based on a firm understanding of basic vascular biology principles, as evidenced by the disappointing results of initial clinical trials of angiogenic factor delivery. In particular, the spatial localization of angiogenic signals in the extracellular matrix is crucial to ensure the proper assembly and maturation of new vascular structures. Here we discuss the therapeutic implications of matrix interactions of angiogenic factors, with a special emphasis on VEGF, as well as provide an overview of current approaches, based on protein and biomaterial engineering that mimic the regulatory functions of extracellular matrix to optimize the signaling microenvironment of vascular growth factors.

  7. Protein kinase D1 signaling in angiogenic gene expression and VEGF-mediated angiogenesis

    Directory of Open Access Journals (Sweden)

    Bin eRen MD, Phd, FAHA

    2016-05-01

    Full Text Available Protein kinase D 1 (PKD-1 is a signaling kinase important in fundamental cell functions including migration, proliferation and differentiation. PKD-1 is also a key regulator of gene expression and angiogenesis that is essential for cardiovascular development and tumor progression. Further understanding molecular aspects of PKD-1 signaling in the regulation of angiogenesis may have translational implications in obesity, cardiovascular disease and cancer. The author will summarize and provide the insights into molecular mechanisms by which PKD-1 regulates transcriptional expression of angiogenic genes, focusing on the transcriptional regulation of CD36 by PKD-1-FoxO1 signaling axis along with the potential implications of this axis in arterial differentiation and morphogenesis. He will also discuss a new concept of dynamic balance between proangiogenic and antiangiogenic signaling in determining angiogenic switch, and stress how PKD-1 signaling regulates VEGF signaling-mediated angiogenesis.

  8. Culicoides antigen extract stimulates equine blood mononuclear (BMN) cell proliferation and the release of eosinophil adherence-inducing factor(s).

    Science.gov (United States)

    Mckelvie, J; Foster, A P; Hamblin, A S; Cunningham, F M

    2001-04-01

    Intradermal injection of a Culicoides antigen extract (CAgX) induces T lymphocyte and eosinophil accumulation in the skin of horses with sweet itch. Blood mononuclear (BMN) cells from normal ponies proliferate when stimulated by mitogen (phytohaemagglutinin, PHA) or antigen (tetanus toxoid, TT) and, as shown here, release soluble factor(s) that induce eosinophil adherence. CAgX also caused concentration dependent proliferation of BMN cells from sweet itch and normal ponies [stimulation index: 29 (13) and 17 (7) for BMN cells from sweet itch and normal ponies, respectively during the active phase of disease; 4 microg protein ml(-1)CAgX; 168 h]. A heat labile factor(s) which caused eosinophil adherence was also released [sweet itch ponies: 6.0 (1.6) per cent adherence versus 1.3 (0.4) per cent; normal ponies: 6.6 (0.5) per cent adherence versus 0.9 (0.1) per cent for supernatants from CAgX (4 microg protein ml(-1); 48 hours) stimulated versus unstimulated BMN cells, respectively]. These results suggest that soluble proteins released from T lymphocytes could affect eosinophil function in the lesional skin of sweet itch horses. Copyright 2001 Harcourt Publishers Ltd.

  9. Blue-light filtering alters angiogenic signaling in human retinal pigmented epithelial cells culture model.

    Science.gov (United States)

    Vila, Natalia; Siblini, Aya; Esposito, Evangelina; Bravo-Filho, Vasco; Zoroquiain, Pablo; Aldrees, Sultan; Logan, Patrick; Arias, Lluis; Burnier, Miguel N

    2017-11-02

    Light exposure and more specifically the spectrum of blue light contribute to the oxidative stress in Age-related macular degeneration (AMD). The purpose of the study was to establish whether blue light filtering could modify proangiogenic signaling produced by retinal pigmented epithelial (RPE) cells under different conditions simulating risk factors for AMD. Three experiments were carried out in order to expose ARPE-19 cells to white light for 48 h with and without blue light-blocking filters (BLF) in different conditions. In each experiment one group was exposed to light with no BLF protection, a second group was exposed to light with BLF protection, and a control group was not exposed to light. The ARPE-19 cells used in each experiment prior to light exposure were cultured for 24 h as follows: Experiment 1) Normoxia, Experiment 2) Hypoxia, and Experiment 3) Lutein supplemented media in normoxia. The media of all groups was harvested after light exposure for sandwich ELISA-based assays to quantify 10 pro-angiogenic cytokines. A significant decrease in angiogenin secretion levels and a significant increase in bFGF were observed following light exposure, compared to dark conditions, in both normoxia and hypoxia conditions. With the addition of a blue light-blocking filter in normoxia, a significant increase in angiogenin levels was observed. Although statistical significance was not achieved, blue light filters reduce light-induced secretion of bFGF and VEGF to near normal levels. This trend is also observed when ARPE-19 cells are grown under hypoxic conditions and when pre-treated with lutein prior to exposure to experimental conditions. Following light exposure, there is a decrease in angiogenin secretion by ARPE-19 cells, which was abrogated with a blue light - blocking filter. Our findings support the position that blue light filtering affects the secretion of angiogenic factors by retinal pigmented epithelial cells under normoxic, hypoxic, and lutein

  10. Injectable Biodegradable Polyurethane Scaffolds with Release of Platelet-derived Growth Factor for Tissue Repair and Regeneration

    Science.gov (United States)

    Hafeman, Andrea E.; Li, Bing; Yoshii, Toshitaka; Zienkiewicz, Katarzyna; Davidson, Jeffrey M.; Guelcher, Scott A.

    2013-01-01

    Purpose The purpose of this work was to investigate the effects of triisocyanate composition on the biological and mechanical properties of biodegradable, injectable polyurethane scaffolds for bone and soft tissue engineering. Methods Scaffolds were synthesized using reactive liquid molding techniques, and were characterized in vivo in a rat subcutaneous model. Porosity, dynamic mechanical properties, degradation rate, and release of growth factors were also measured. Results Polyurethane scaffolds were elastomers with tunable damping properties and degradation rates, and they supported cellular infiltration and generation of new tissue. The scaffolds showed a two-stage release profile of platelet-derived growth factor, characterized by a 75% burst release within the first 24 h and slower release thereafter. Conclusions Biodegradable polyurethanes synthesized from triisocyanates exhibited tunable and superior mechanical properties compared to materials synthesized from lysine diisocyanates. Due to their injectability, biocompatibility, tunable degradation, and potential for release of growth factors, these materials are potentially promising therapies for tissue engineering. PMID:18516665

  11. The influence of "host release factor" on carbon release by zooxanthellae isolated from fed and starved Aiptasia pallida (Verrill).

    Science.gov (United States)

    Davy, S K; Cook, C B

    2001-06-01

    Symbiotic dinoflagellates (zooxanthellae) typically respond to extracts of host tissue with enhanced release of short-term photosynthetic products. We examined this "host release factor" (HRF) response using freshly isolated zooxanthellae of differing nutritional status. The nutritional status was manipulated by either feeding or starving the sea anemone Aiptasia pallida (Verrill). The release of fixed carbon from isolated zooxanthellae was measured using 14C in 30 min experiments. Zooxanthellae in filtered seawater alone released approximately 5% of photosynthate irrespective of host feeding history. When we used a 10-kDa ultrafiltrate of A. pallida host tissue as a source of HRF, approximately 14% of photosynthate was released to the medium. This increased to over 25% for zooxanthellae from anemones starved for 29 days or more. The cell-specific photosynthetic rate declined with starvation in these filtrate experiments, but the decline was offset by the increased percentage release. Indeed, the total amount of released photosynthate remained unchanged, or even increased, as zooxanthellae became more nutrient deficient. Similar trends were also observed when zooxanthellae from A. pallida were incubated in a 3-kDa ultrafiltrate of the coral Montastraea annularis, suggesting that HRF in the different filtrates operated in a similar manner. Our results support the suggestion that HRF diverts surplus carbon away from storage compounds to translocated compounds such as glycerol.

  12. Membrane-bound transcription factors: regulated release by RIP or RUP.

    Science.gov (United States)

    Hoppe, T; Rape, M; Jentsch, S

    2001-06-01

    Regulated nuclear transport of transcription factors from cytoplasmic pools is a major route by which eukaryotes control gene expression. Exquisite examples are transcription factors that are kept in a dormant state in the cytosol by membrane anchors; such proteins are released from membranes by proteolytic cleavage, which enables these transcription factors to enter the nucleus. Cleavage can be mediated either by regulated intramembrane proteolysis (RIP) catalysed by specific membrane-bound proteases or by regulated ubiquitin/proteasome-dependent processing (RUP). In both cases processing can be controlled by cues that originate at or in the vicinity of the membrane.

  13. Influence of storage conditions on the release of growth factors in platelet-rich blood derivatives

    Directory of Open Access Journals (Sweden)

    Düregger Katharina

    2016-09-01

    Full Text Available Thrombocytes can be concentrated in blood derivatives and used as autologous transplants e.g. for wound treatment due to the release of growth factors such as platelet derived growth factor (PDGF. Conditions for processing and storage of these platelet-rich blood derivatives influence the release of PDGF from the platelet-bound α-granules into the plasma. In this study Platelet rich plasma (PRP and Platelet concentrate (PC were produced with a fully automated centrifugation system. Storage of PRP and PC for 1 h up to 4 months at temperatures between −20°C and +37°C was applied with the aim of evaluating the influence on the amount of released PDGF. Storage at −20°C resulted in the highest release of PDGF in PRP and a time dependency was determined: prolonged storage up to 1 month in PRP and 10 days in PC increased the release of PDGF. Regardless of the storage conditions, the release of PDGF per platelet was higher in PC than in PRP.

  14. Factors affecting calculations of dose resulting from a tritium release into the atmosphere

    International Nuclear Information System (INIS)

    Otaduy, P.; Easterly, C.E.; Booth, R.S.; Jacobs, D.G.

    1976-01-01

    Tritium releases in the form of HT represent a lower hazard to man than releases as HTO. However, during movement in the environment, HT is converted into HTO. The effects of the conversion rate on calcultions of dose are described, and a general method is presented for determining the dose from tritium for various conversion rates and relative HTO/HT risk factors

  15. Platelet-Released Growth Factors Induce Differentiation of Primary Keratinocytes

    OpenAIRE

    Bayer, Andreas; Tohidnezhad, Mersedeh; Lammel, Justus; Lippross, Sebastian; Behrendt, Peter; Klüter, Tim; Pufe, Thomas; Jahr, Holger; Cremer, Jochen; Rademacher, Franziska; Gläser, Regine; Harder, Jürgen

    2017-01-01

    Autologous thrombocyte concentrate lysates, for example, platelet-released growth factors, (PRGFs) or their clinically related formulations (e.g., Vivostat PRF?) came recently into the physicians' focus as they revealed promising effects in regenerative and reparative medicine such as the support of healing of chronic wounds. To elucidate the underlying mechanisms, we analyzed the influence of PRGF and Vivostat PRF on human keratinocyte differentiation in vitro and on epidermal differentiatio...

  16. Fast-degrading PLA/ORMOGLASS fibrous composite scaffold leads to a calcium-rich angiogenic environment

    Directory of Open Access Journals (Sweden)

    Sachot N

    2017-07-01

    Full Text Available Nadège Sachot,1,2 Agata Roguska,3 Josep Anton Planell,1,2 Malgorzata Lewandowska,3 Elisabeth Engel,1,2,4 Oscar Castaño1,2,5,6 1Biomaterials for Regenerative Therapies, Institute for Bioengineering of Catalonia (IBEC, Barcelona, 2CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Zaragoza, Spain; 3Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland; 4Department of Materials Science and Metallurgical Engineering, Universitat Politècnica de Catalunya (UPC, 5Department of Materials Science and Physical Chemistry, Universitat de Barcelona (UB, 6Department of Engineerings: Electronics, Universitat de Barcelona, Barcelona, Spain Abstract: The success of scaffold implantation in acellular tissue engineering approaches relies on the ability of the material to interact properly with the biological environment. This behavior mainly depends on the design of the graft surface and, more precisely, on its capacity to biodegrade in a well-defined manner (nature of ions released, surface-to-volume ratio, dissolution profile of this release, rate of material resorption, and preservation of mechanical properties. The assessment of the biological behavior of temporary templates is therefore very important in tissue engineering, especially for composites, which usually exhibit complicated degradation behavior. Here, blended polylactic acid (PLA calcium phosphate ORMOGLASS (organically modified glass nanofibrous mats have been incubated up to 4 weeks in physiological simulated conditions, and their morphological, topographical, and chemical changes have been investigated. The results showed that a significant loss of inorganic phase occurred at the beginning of the immersion and the ORMOGLASS maintained a stable composition afterward throughout the degradation period. As a whole, the nanostructured scaffolds underwent fast and heterogeneous degradation. This study reveals that an angiogenic calcium

  17. Targeting different angiogenic pathways with combination of curcumin, leflunomide and perindopril inhibits diethylnitrosamine-induced hepatocellular carcinoma in mice.

    Science.gov (United States)

    Nasr, Magda; Selima, Eman; Hamed, Omar; Kazem, Amany

    2014-01-15

    No effective chemopreventive agent has been approved against hepatocellular carcinoma (HCC) to date. Since HCC is one of the hypervascular solid tumors, blocking angiogenesis represents an intriguing approach to HCC chemoprevention. The aim of the current study was to examine the combined effect of the anti-angiogenic agents: leflunomide; a disease modifying antirheumatic drug, perindopril; an angiotensin converting enzyme inhibitor (ACEI) and curcumin; the active principle of turmeric, on diethylnitrosamine (DEN)-induced HCC in mice. Eight weeks following DEN administration, there was a significant rise in immunohistochemical staining of CD31-positive endothelial cells and consequently hepatic microvessel density (MVD) as compared to normal liver. DEN treatment was associated with elevation in hepatic vascular endothelial growth factor (VEGF) level as compared to normal controls (Pcurcumin alone abrogated the DEN-induced increased MVD as well as the elevated expression of VEGF, while only curcumin inhibited HIF-1α hepatic expression. Combination of these agents showed further inhibitory action on neovascularization and synergistic attenuation of hepatic VEGF (1954.27±115pg/ml) when compared to each single agent. Histopathological examination revealed a more beneficial chemopreventive activity in the combination group compared to each monotherapy. In conclusion, the combination treatment of leflunomide, perindopril and curcumin targeting different angiogenic pathways, resulted in synergistic inhibition of angiogenesis and consequently more effective chemoprevention of HCC. © 2013 Published by Elsevier B.V.

  18. ALTERED EXPRESSION OF SURFACE RECEPTORS AT EA.HY926 ENDOTHELIAL CELL LINE INDUCED WITH PLACENTAL SECRETORY FACTORS

    Directory of Open Access Journals (Sweden)

    O. I. Stepanova

    2012-01-01

    Full Text Available Abstract. Placental cell populations produce a great variety of angiogenic factors and cytokines than control angiogenesis in placenta. Functional regulation of endothelial cells proceeds via modulation of endothelial cell receptors for endogenous angiogenic and apoptotic signals. Endothelial phenotype alteration during normal pregnancy and in cases of preclampsia is not well understood. The goal of this investigation was to evaluate altered expression of angiogenic and cytokine receptors at EA.hy926 endothelial cells under the influence of placental tissue supernatants. Normal placental tissue supernatants from 1st and 3rd trimesters, and pre-eclamptic placental tissue supernatants (3rd trimester stimulated angiogenic and cytokine receptors expression by the cultured endothelial cells, as compared with their background expression. Tissue supernatants from placental samples of 3rd trimester caused a decreased expression of angiogenic and cytokine receptors by endothelial cells, thus reflecting maturation of placental vascular system at these terms. Supernatants from preeclamptic placental tissue induced an increase of CD119 expression, in comparison with normal placental supernatants from the 3rd trimester. This finding suggests that IFNγ may be a factor of endothelial activation in pre-eclampsia. The study was supported by grants ГК №02.740.11.0711, НШ-3594.2010.7., and МД-150.2011.7.

  19. Establishment of canine hemangiosarcoma xenograft models expressing endothelial growth factors, their receptors, and angiogenesis-associated homeobox genes

    International Nuclear Information System (INIS)

    Kodama, Atsushi; Yanai, Tokuma; Sakai, Hiroki; Matsuura, Satoko; Murakami, Mami; Murai, Atsuko; Mori, Takashi; Maruo, Kouji; Kimura, Tohru; Masegi, Toshiaki

    2009-01-01

    Human hemangiosarcoma (HSA) tends to have a poor prognosis; its tumorigenesis has not been elucidated, as there is a dearth of HSA clinical specimens and no experimental model for HSA. However, the incidence of spontaneous HSA is relatively high in canines; therefore, canine HSA has been useful in the study of human HSA. Recently, the production of angiogenic growth factors and their receptors in human and canine HSA has been reported. Moreover, the growth-factor environment of HSA is very similar to that of pathophysiological angiogenesis, which some homeobox genes regulate in the transcription of angiogenic molecules. In the present study, we established 6 xenograft canine HSA tumors and detected the expression of growth factors, their receptors, and angiogenic homeobox genes. Six primary canine HSAs were xenografted to nude mice subcutaneously and serially transplanted. Subsequently, the expressions of vascular endothelial growth factor (VEGF)-A, basic fibroblast growth factors (bFGF), flt-1 and flk-1 (receptors of VEGF-A), FGFR-1, and angiogenic homeobox genes HoxA9, HoxB3, HoxB7, HoxD3, Pbx1, and Meis1 were investigated in original and xenograft tumors by histopathology, immunostaining, and reverse transcription polymerase chain reaction (RT-PCR), using canine-specific primer sets. Histopathologically, xenograft tumors comprised a proliferation of neoplastic cells that were varied in shape, from spindle-shaped and polygonal to ovoid; some vascular-like structures and vascular clefts of channels were observed, similar to those in the original tumors. The expression of endothelial markers (CD31 and vWF) was detected in xenograft tumors by immunohistochemistry and RT-PCR. Moreover, the expression of VEGF-A, bFGF, flt-1, flk-1, FGFR-1, HoxA9, HoxB3, HoxB7, HoxD3, Pbx1, and Meis1 was detected in xenograft tumors. Interestingly, expressions of bFGF tended to be higher in 3 of the xenograft HSA tumors than in the other tumors. We established 6 xenograft canine HSA

  20. Anti-angiogenic SPARC peptides inhibit progression of neuroblastoma tumors

    Directory of Open Access Journals (Sweden)

    Tian Yufeng

    2010-06-01

    Full Text Available Abstract Background New, more effective strategies are needed to treat highly aggressive neuroblastoma. Our laboratory has previously shown that full-length Secreted Protein Acidic and Rich in Cysteine (SPARC and a SPARC peptide corresponding to the follistatin domain of the protein (FS-E potently block angiogenesis and inhibit the growth of neuroblastoma tumors in preclinical models. Peptide FS-E is structurally complex and difficult to produce, limiting its potential as a therapeutic in the clinic. Results In this study, we synthesized two smaller and structurally more simple SPARC peptides, FSEN and FSEC, that respectively correspond to the N-and C-terminal loops of peptide FS-E. We show that both peptides FSEN and FSEC have anti-angiogenic activity in vitro and in vivo, although FSEC is more potent. Peptide FSEC also significantly inhibited the growth of neuroblastoma xenografts. Histologic examination demonstrated characteristic features of tumor angiogenesis with structurally abnormal, tortuous blood vessels in control neuroblastoma xenografts. In contrast, the blood vessels observed in tumors, treated with SPARC peptides, were thin walled and structurally more normal. Using a novel method to quantitatively assess blood vessel abnormality we demonstrated that both SPARC peptides induced changes in blood vessel architecture that are consistent with blood vessel normalization. Conclusion Our results demonstrate that SPARC peptide FSEC has potent anti-angiogenic and anti-tumorigenic effects in neuroblastoma. Its simple structure and ease of production indicate that it may have clinical utility in the treatment of high-risk neuroblastoma and other types of pediatric and adult cancers, which depend on angiogenesis.

  1. Surface modification of strontium-doped porous bioactive ceramic scaffolds via poly(DOPA) coating and immobilizing silk fibroin for excellent angiogenic and osteogenic properties.

    Science.gov (United States)

    Wang, Xu; Gu, Zhipeng; Jiang, Bo; Li, Li; Yu, Xixun

    2016-04-01

    For bioceramic scaffolds employed in clinical applications, excellent bioactivity and tenacity were of great importance. Modifying inorganic SCPP scaffolds with biological macromolecules could obviously improve its bioactivity and eliminate its palpable brittleness. However, it was hard to execute directly due to extremely bad interfacial compatibility between them. In this research, dopamine (DOPA) was introduced onto strontium-doped calcium polyphosphate (SCPP) scaffolds, subsequently the preliminary material was successfully further modified by silk fibroin (SF). SCPP/D/SF possessed suitable biomechanical properties, ability to stimulate angiogenic factor secretion and excellent biocompatibility. Biomechanical examination demonstrated that SCPP/D/SF scaffolds yielded better compressive strength because of improved interfacial compatibility. MTT assay and CLSM observation showed that SCPP/D/SF scaffolds had good cytocompatibility and presented better inducing-cell-migration potential than pure SCPP scaffolds. Meanwhile, its ability to stimulate angiogenic factor secretion was measured through the ELISA assay and immunohistological analysis in vitro and in vivo respectively. The results revealed, superior to SCPP, SCPP/D/SF could effectively promote VEGF and bFGF expression, possibly leading to enhancing angiogenesis and osteogenesis. In a word, SCPP/D/SF could serve as a potential bone tissue engineering scaffold for comparable biomechanical properties and excellent bioactivity. It provided a novel idea for modification of inorganic materials to prepare promising bone tissue engineering scaffolds with the ability to accelerate bone regeneration and vascularization.

  2. Unraveling the role of hypoxia-inducible factor (HIF)-1α and HIF-2α in the adaption process of human microvascular endothelial cells (HMEC-1) to hypoxia: Redundant HIF-dependent regulation of macrophage migration inhibitory factor.

    Science.gov (United States)

    Hahne, Martin; Schumann, Peggy; Mursell, Mathias; Strehl, Cindy; Hoff, Paula; Buttgereit, Frank; Gaber, Timo

    2018-03-01

    Hypoxia driven angiogenesis is a prominent feature of tissue regeneration, inflammation and tumor growth and is regulated by hypoxia-inducible factor (HIF)-1 and -2. The distinct functions of HIFs in the hypoxia-induced angiogenesis and metabolic switch of endothelial cells are still unknown and therefore aim of this study. We investigated the role of HIF-1 and -2 in the adaptation of immortalized human microvascular endothelial cells (HMEC-1) to hypoxic conditions (1% O 2 ) in terms of angiogenesis, cytokine secretion, gene expression and ATP/ADP-ratio using shRNA-mediated reduction of the oxygen sensitive α-subunits of either HIF-1 or HIF-2 or the combination of both. Reduction of HIF-1α diminished cellular energy, hypoxia-induced glycolytic gene expression, and angiogenesis not altering pro-angiogenic factors. Reduction of HIF-2α diminished hypoxia-induced pro-angiogenic factors, enhanced anti-angiogenic factors and attenuated angiogenesis not altering glycolytic gene expression. Reduction of both HIFs reduced cell survival, gene expression of glycolytic enzymes and pro-angiogenic factors as compared to the corresponding control. Finally, we identified the macrophage migration inhibitory factor (MIF) to be redundantly regulated by HIF-1 and HIF-2 and to be essential in the process of hypoxia-driven angiogenesis. Our results demonstrate a major impact of HIF-1 and HIF-2 on hypoxia-induced angiogenesis indicating distinct but also overlapping functions of HIF-1 and HIF-2. These findings open new possibilities for therapeutic approaches by specifically targeting the HIF-1 and HIF-2 or their target MIF. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Endothelium trans differentiated from Wharton's jelly mesenchymal cells promote tissue regeneration: potential role of soluble pro-angiogenic factors.

    Science.gov (United States)

    Aguilera, Valeria; Briceño, Luis; Contreras, Hector; Lamperti, Liliana; Sepúlveda, Esperanza; Díaz-Perez, Francisca; León, Marcelo; Veas, Carlos; Maura, Rafael; Toledo, Jorge Roberto; Fernández, Paulina; Covarrubias, Ambart; Zuñiga, Felipe Andrés; Radojkovic, Claudia; Escudero, Carlos; Aguayo, Claudio

    2014-01-01

    Mesenchymal stem cells have a high capacity for trans-differentiation toward many adult cell types, including endothelial cells. Feto-placental tissue, such as Wharton's jelly is a potential source of mesenchymal stem cells with low immunogenic capacity; make them an excellent source of progenitor cells with a potential use for tissue repair. We evaluated whether administration of endothelial cells derived from mesenchymal stem cells isolated from Wharton's jelly (hWMSCs) can accelerate tissue repair in vivo. Mesenchymal stem cells were isolated from human Wharton's jelly by digestion with collagenase type I. Endothelial trans-differentiation was induced for 14 (hWMSC-End14d) and 30 (hWMSC-End30d) days. Cell phenotyping was performed using mesenchymal (CD90, CD73, CD105) and endothelial (Tie-2, KDR, eNOS, ICAM-1) markers. Endothelial trans-differentiation was demonstrated by the expression of endothelial markers and their ability to synthesize nitric oxide (NO). hWMSCs can be differentiated into adipocytes, osteocytes, chondrocytes and endothelial cells. Moreover, these cells show high expression of CD73, CD90 and CD105 but low expression of endothelial markers prior to differentiation. hWMSCs-End express high levels of endothelial markers at 14 and 30 days of culture, and also they can synthesize NO. Injection of hWMSC-End30d in a mouse model of skin injury significantly accelerated wound healing compared with animals injected with undifferentiated hWMSC or injected with vehicle alone. These effects were also observed in animals that received conditioned media from hWMSC-End30d cultures. These results demonstrate that mesenchymal stem cells isolated from Wharton's jelly can be cultured in vitro and trans-differentiated into endothelial cells. Differentiated hWMSC-End may promote neovascularization and tissue repair in vivo through the secretion of soluble pro-angiogenic factors.

  4. Decidual Stromal Cell Response to Paracrine Signals from the Trophoblast: Amplification of Immune and Angiogenic Modulators

    DEFF Research Database (Denmark)

    Hess, AP; Hamilton, AE; Talbi, S

    2007-01-01

    During the invasive phase of implantation, trophoblasts and maternal decidual stromal cells secrete products that regulate trophoblast differentiation and migration into the maternal endometrium. Paracrine interactions between the extravillous trophoblast and the maternal decidua are important...... a functional genomics approach to investigate these paracrine interactions. Human endometrial stromal cells were decidualized with progesterone and were further treated with conditioned media (CM) from human trophoblasts (TCM) or, as a control, with conditioned media (CCM) from non-decidualized stromal cells...... regulated groups. The data demonstrate a significant induction of pro-inflammatory cytokines and chemokines, as well as angiogenic/static factors in decidualized endometrial stromal cells in response to trophoblast-secreted products. The data suggest that the trophoblast acts to alter the local immune...

  5. Productive infection of HUVEC by HHV-8 is associated with changes compatible with angiogenic transformations.

    Science.gov (United States)

    Foglieni, C; Scabini, S; Belloni, D; Broccolo, F; Lusso, P; Malnati, M S; Ferrero, E

    2005-01-01

    Kaposi's Sarcoma (KS) is an angioproliferative disease associated with human herpesvirus 8 (HHV-8) infection. We have characterized the morphologic and phenotypic modifications of HUVEC in a model of productive HHV-8 infection. HHV-8 replication was associated with ultra-structural changes, flattened soma and a loss of marginal folds and intercellular contacts, and morphologic features, spindle cell conversion and cordon-like structures formation. Phenotypic changes observed on cordon-like structures included partial loss and redistribution of CD31/PECAM-1 and VE-cadherin, uPAR up-regulation and de novo expression of CD13/APN. Such changes demonstrate the induction, in HUVEC, of an angiogenic profile. Most of these findings are directly linked to HHV-8-encoded proteins expression, suggesting that HHV-8 itself may participate to the initial steps of the angiogenic transformation in KS.

  6. A preliminary study of pamidronic acid downregulation of angiogenic factors IGF-1/PECAM-1 expression in circulating level in bone metastatic breast cancer patients

    Directory of Open Access Journals (Sweden)

    Wang Z

    2016-05-01

    Full Text Available Zeng Wang,1,2 Lei Lei,2,3 Xin-jun Cai,4 Ling Ya Chen,1,2 Meiqin Yuan,2,3 Guonong Yang,1,2 Ping Huang,1,2 Xiaojia Wang2,3 1Department of Pharmacy, 2Zhejiang Key Lab of Diagnosis & Treatment Technology on Thoracic Oncology, 3Department of Chemotherapy Center, Zhejiang Cancer Hospital, 4Department of Pharmacy, Integrated Chinese and Western Medicine Hospital of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China Objective: To evaluate the expressions of circulating angiogenic factors affected by pamidronic acid (PA intravenous infusion in bone metastatic breast cancer patients and the impact on their prognosis.Methods: Peripheral blood of ten bone metastatic breast cancer patients was collected for serum insulin-like growth factor-1 (IGF-1 and platelet endothelial cell adhesion molecule-1 expression detection just before and 2 days after PA infusion.Results: Both IGF-1 and platelet endothelial cell adhesion molecule-1 concentrations decreased after PA treatment for 48 hours (P<0.05. Modification was defined as >20% decrease recorded 2 days after PA administration. The decrease of IGF-1 was more significant in breast cancer patients who had received previous hormonotherapy. Moreover, the progression-free survival of first-line chemotherapy treatment of IGF-1 modified patients was longer than that of IGF-1 unmodified patients (P=0.009.Conclusion: PA treatment could suppress circulating serum IGF-1 and platelet endothelial cell adhesion molecule-1 concentrations; moreover, the prognosis of patients in IGF-1 unmodified group was relatively poor. Keywords: pamidronic acid, insulin-like growth factor-1, platelet endothelial cell adhesion molecule-1, bone metastatic breast cancer, prognosis

  7. Enhanced activity of meprin-α, a pro-migratory and pro-angiogenic protease, in colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Daniel Lottaz

    Full Text Available Meprin-α is a metalloprotease overexpressed in cancer cells, leading to the accumulation of this protease in a subset of colorectal tumors. The impact of increased meprin-α levels on tumor progression is not known. We investigated the effect of this protease on cell migration and angiogenesis in vitro and studied the expression of meprin-α mRNA, protein and proteolytic activity in primary tumors at progressive stages and in liver metastases of patients with colorectal cancer, as well as inhibitory activity towards meprin-α in sera of cancer patient as compared to healthy controls. We found that the hepatocyte growth factor (HGF-induced migratory response of meprin-transfected epithelial cells was increased compared to wild-type cells in the presence of plasminogen, and that the angiogenic response in organ-cultured rat aortic explants was enhanced in the presence of exogenous human meprin-α. In patients, meprin-α mRNA was expressed in colonic adenomas, primary tumors UICC (International Union Against Cancer stage I, II, III and IV, as well as in liver metastases. In contrast, the corresponding protein accumulated only in primary tumors and liver metastases, but not in adenomas. However, liver metastases lacked meprin-α activity despite increased expression of the corresponding protein, which correlated with inefficient zymogen activation. Sera from cancer patients exhibited reduced meprin-α inhibition compared to healthy controls. In conclusion, meprin-α activity is regulated differently in primary tumors and metastases, leading to high proteolytic activity in primary tumors and low activity in liver metastases. By virtue of its pro-migratory and pro-angiogenic activity, meprin-α may promote tumor progression in colorectal cancer.

  8. Evaluation of antibacterial, angiogenic, and osteogenic activities of green synthesized gap-bridging copper-doped nanocomposite coatings

    Directory of Open Access Journals (Sweden)

    Huang D

    2017-10-01

    Full Text Available Dan Huang,1 Kena Ma,1,2 Xinjie Cai,1,2 Xu Yang,3 Yinghui Hu,1 Pin Huang,1 Fushi Wang,1 Tao Jiang,1,2 Yining Wang1,2 1The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 2Department of Prosthodontics, Hospital of Stomatology, Wuhan University, Wuhan, China; 3Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA Abstract: Titanium (Ti and its alloys have been widely used in clinics for years. However, their bio-inert surface challenges application in patients with compromised surgical conditions. Numerous studies were conducted to modify the surface topography and chemical composition of Ti substrates, for the purpose of obtaining antibacterial, angiogenic, and osteogenic activities. In this study, using green electrophoretic deposition method, we fabricated gap-bridging chitosan-gelatin (CSG nanocomposite coatings incorporated with different amounts of copper (Cu; 0.01, 0.1, 1, and 10 mM for Cu I, II, III, and IV groups, respectively on the Ti substrates. Physicochemical characterization of these coatings confirmed that Cu ions were successfully deposited into the coatings in a metallic status. After rehydration, the coatings swelled by 850% in weight. Mechanical tests verified the excellent tensile bond strength between Ti substrates and deposited coatings. All Cu-containing CSG coatings showed antibacterial property against both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. The antibacterial property was positively correlated with the Cu concentration. In vitro cytocompatibility evaluation demonstrated that activities of bone marrow stromal cells were not impaired on Cu-doped coatings except for the Cu IV group. Moreover, enhanced angiogenic and osteogenic activities were observed on Cu II and Cu III groups. Overall, our results

  9. Anti-angiogenic and cytotoxicity studies of some medicinal plants.

    Science.gov (United States)

    Ng, Kwok-Wen; Salhimi, Salizawati Muhamad; Majid, Amin Malik; Chan, Kit-Lam

    2010-06-01

    Angiogenesis plays an important role in tumor formation and proliferation. The development of anti-angiogenic agents to block new blood vessel growth will inhibit metastasis and induce apoptosis of the cancer cells. Nine medicinal plants, Strobilanthes crispus, Phyllanthus niruri, Phyllanthus pulcher, Phyllanthus urinaria, Ailanthus malabarica, Irvingia malayana, Smilax myosotiflora, Tinospora crispa and blumea balsamifera were screened for anti-angiogenic properties using the rat aortic ring assay. Of these, the methanol extracts of Phyllanthus species and Irvingia malayana exhibited the highest activity. At 100 microg/mL, P. pulcher, P. niruri, P. urinaria and I. malayana recorded an inhibition of 78.8 %, 59.5 %, 56.7 % and 46.4 %, respectively, against rat aortic vascular growth. Their activities were further investigated by the tube formation assay involving human umbilical vein endothelial cells (HUVEC) on Matrigel. I. malayana, P. niruri and P. urinaria showed a significant decrease of 45.5, 37.9 and 35.6 %, respectively, whilst P. pulcher showed a much lower decrease of 15.5 % when compared with that of the rat aortic ring assay. All the plant extracts were evaluated for cytotoxicity on a panel of human cancer cell lines using the MTT assay. None of them displayed acute cytotoxicity. The HPLC of P. niruri, P. urinaria and P. pulcher indicated the extracts contained some identical chromatographic peaks of lignans. Further fractionation of I. malayana yielded betulinic acid reported in this plant for the first time and at 100 microg/mL it exhibited a 67.3 % inhibition of vessel outgrowth and 46.5 % inhibition of tube formation. Georg Thieme Verlag KG Stuttgart-New York.

  10. Angiogenic, neurotrophic, and inflammatory system SNPs moderate the association between birth weight and ADHD symptom severity

    NARCIS (Netherlands)

    Smith, T.F.; Anastopoulos, A.D.; Garrett, M.E.; Arias Vasquez, A.; Franke, B.; Oades, R.D.; Sonuga-Barke, E.; Asherson, P.; Gill, M.; Buitelaar, J.K.; Sergeant, J.A.; Kollins, S.H.; Faraone, S.V.; Ashley-Koch, A.; Consortium, I.

    2014-01-01

    Low birth weight is associated with increased risk for Attention-Deficit/Hyperactivity Disorder (ADHD); however, the etiological underpinnings of this relationship remain unclear. This study investigated if genetic variants in angiogenic, dopaminergic, neurotrophic, kynurenine, and cytokine-related

  11. Electrically induced brain-derived neurotrophic factor release from Schwann cells.

    Science.gov (United States)

    Luo, Beier; Huang, Jinghui; Lu, Lei; Hu, Xueyu; Luo, Zhuojing; Li, Ming

    2014-07-01

    Regulating the production of brain-derived neurotrophic factor (BDNF) in Schwann cells (SCs) is critical for their application in traumatic nerve injury, neurodegenerative disorders, and demyelination disease in both central and peripheral nervous systems. The present study investigated the possibility of using electrical stimulation (ES) to activate SCs to release BDNF. We found that short-term ES was capable of promoting BDNF production from SCs, and the maximal BDNF release was achieved by ES at 6 V (3 Hz, 30 min). We further examined the involvement of intracellular calcium ions ([Ca2+]i) in the ES-induced BDNF production in SCs by pharmacological studies. We found that the ES-induced BDNF release required calcium influx through T-type voltage-gated calcium channel (VGCC) and calcium mobilization from internal calcium stores, including inositol triphosphate-sensitive stores and caffeine/ryanodine-sensitive stores. In addition, calcium-calmodulin dependent protein kinase IV (CaMK IV), mitogen-activated protein kinase (MAPK), and cAMP response element-binding protein (CREB) were found to play important roles in the ES-induced BDNF release from SCs. In conclusion, ES is capable of activating SCs to secrete BDNF, which requires the involvement of calcium influx through T-type VGCC and calcium mobilization from internal calcium stores. In addition, activation of CaMK IV, MAPK, and CREB were also involved in the ES-induced BDNF release. The findings indicate that ES can improve the neurotrophic ability in SCs and raise the possibility of developing electrically stimulated SCs as a source of cell therapy for nerve injury in both peripheral and central nervous systems. Copyright © 2014 Wiley Periodicals, Inc.

  12. Dual growth factor delivery from biofunctionalized allografts: Sequential VEGF and BMP-2 release to stimulate allograft remodeling.

    Science.gov (United States)

    Sharmin, Farzana; McDermott, Casey; Lieberman, Jay; Sanjay, Archana; Khan, Yusuf

    2017-05-01

    Autografts have been shown to stimulate osteogenesis, osteoclastogenesis, and angiogenesis, and subsequent rapid graft incorporation. Large structural allografts, however, suffer from limited new bone formation and remodeling, both of which are directly associated with clinical failure due to non-unions, late graft fractures, and infections, making it a priority to improve large structural allograft healing. We have previously shown the osteogenic ability of a polymer-coated allograft that delivers bone morphogenetic protein-2 both in vitro and in vivo through both burst release and sustained release kinetics. In this study, we have demonstrated largely sequential delivery of bone morphogenetic protein-2 and vascular endothelial growth factor from the same coated allograft. Release data showed that loading both growth factors onto a polymeric coating with two different techniques resulted in short-term (95% release within 2 weeks) and long-term (95% release within 5 weeks) delivery kinetics. We have also demonstrated how released VEGF, traditionally associated with angiogenesis, can also provide a stimulus for allograft remodeling via resorption. Bone marrow derived mononuclear cells were co-cultured with VEGF released from the coated allograft and showed a statistically significant (p exposed to VEGF released from the allografts over controls (p < 0.05). These results indicate that by using different loading protocols temporal control can be achieved when delivering multiple growth factors from a polymer-coated allograft. Further, released VEGF can also stimulate osteoclastogenesis that may enhance allograft incorporation, and thus mitigate long-term clinical complications. © 2017 Orthopedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1086-1095, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  13. Angiogenic effects of cryosurgery with liquid nitrogen on the normal skin of rats, through morphometric study.

    Science.gov (United States)

    Pimentel, Camila Bianco; Moraes, Aparecida Machado de; Cintra, Maria Letícia

    2014-01-01

    Cryosurgery is an efficient therapeutic technique used to treat benign and malignant cutaneous diseases. The primary active mechanism of cryosurgery is related to vascular effects on treated tissue. After a cryosurgical procedure, exuberant granulation tissue is formed at the injection site, probably as a result of angiogenic stimulation of the cryogen and inflammatory response, particularly in endothelial cells. To evaluate the angiogenic effects of freezing, as part of the phenomenon of healing rat skin subjected to previous injury. Two incisions were made in each of the twenty rats, which were divided randomly into two groups of ten. After 3 days, cryosurgery with liquid nitrogen was performed in one of incisions. The rats' samples were then collected, cut and stained to conduct histopathological examination, to assess the local angiogenesis in differing moments and situations. It was possible to demonstrate that cryosurgery, in spite of promoting cell death and accentuated local inflammation soon after its application, induces quicker cell proliferation in the affected tissue and maintenance of this rate in a second phase, than in tissue healing without this procedure. These findings, together with the knowledge that there is a direct relationship between mononuclear cells and neovascularization (the development of a rich system of new vessels in injury caused by cold), suggest that cryosurgery possesses angiogenic stimulus, even though complete healing takes longer to occur. The significance level for statistical tests was 5% (p<0,05).

  14. Shengui Sansheng San extraction is an angiogenic switch via regulations of AKT/mTOR, ERK1/2 and Notch1 signal pathways after ischemic stroke.

    Science.gov (United States)

    Liu, Bowen; Luo, Cheng; Zheng, Zhaoguang; Xia, Zhenyan; Zhang, Qian; Ke, Chienchih; Liu, Renshyan; Zhao, Yonghua

    2018-05-15

    As a traditional Chinese herbal formula, Shengui Sansheng San (SSS) has been employed for stroke treatment more than 300 years. We hypothesize that SSS extraction is an angiogenic switch in penumbra post-stroke, and corresponding mechanisms are investigated. In present study, rats were subjected to permanent middle cerebral artery occlusion model (MCAo) and were treated with low, middle and high doses of SSS extraction. We assessed neurological function and survival rate, and measured infarct volume by 2,3,5-triphenyltetrazolium chloride staining on day 7 after ischemia. von Willebrand factor (vWF), stromal cell-derived factor-1 alpha (SDF-1α) /chemokine (C-X-C motif) receptor 4 (CXCR4) axis, vascular endothelial growth factor (VEGF)/VEGF receptor 2 (VEGFR2) as well as protein kinase B (AKT)/mammalian target of rapamycin (mTOR) /hypoxia-inducible factor-1 alpha (HIF-1α), extracellular signal-regulated kinase 1/2 (ERK1/2) and Notch1 signaling pathways were respectively investigated by immunofluorescence assay or western blotting in vivo and oxygen-glucose-deprived (OGD) brain microvascular endothelial cells (BMECs); simultaneously, wound healing of BMECs and tube formation assay were administrated. Compared to MCAo group, SSS extraction could significantly improve neurological functional scores, survival rate and cerebral infarct volume, enhance vWF + vascular density and perimeter, SDF-1α/CXCR4 axis, VEGF expression, as well as activate AKT/mTOR/HIF-1α and ERK1/2 and inhibit Notch1 pathways in penumbra. In vitro, containing SSS extraction serum increased BMEC migration, capillary formation and VEGF expression via up-regulations of AKT/mTOR and ERK1/2 pathways in OGD BMECs, but ERK inhibitor (U0126) reversed the result of VEGF expression in high dose of SSS group. Additionally, VEGFR2 and Notch1 expressions were suppressed by containing SSS extraction serum. All results were in dose dependent manner. Our study firstly demonstrates that SSS extraction is an

  15. [Evaluation of angiogenic activity in sera from patients with interstitial lung diseases].

    Science.gov (United States)

    Zielonka, T M; Demkow, U; Kowalski, J; Kuś, J; Krychniak-Soszka, A; Radzikowska, E; Skopińska-Rózewska, E; Rowińska-Zakrzewska, E

    1997-01-01

    Angiogenesis is a process of new blood vessels' formation occurring in many physiological and pathological conditions. Neovascularisation is the principal vascular response in chronic inflammation and concomitant fibrotic process. Microvascular changes in various organ sites in sarcoidosis (BBS) and some of the symptoms of the disease may be related to microangiopathy. Moreover, vascular alterations were also observed in lung specimens from idiopathic pulmonary fibrosis (IPF) and avian fanciers lung (AFL) patients. The present study was aimed at testing the effects of serum from 43 patients with ILD (24 BBS, 8 AFL, 8 IPF, 3 DIPF--drug induced pulmonary fibrosis) and 11 healthy controls on angiogenic capability of normal blood peripheral mononuclear cells (PBMC) in the murine intradermal angiogenesis assay (according to Sidky and Auerbach). The data demonstrated that sera from ILD patients significantly enhanced angiogenic capacity of normal PBMC as compared to control sera (p < 0.001). The effect was more pronounced for AFL patients than for BBS and IPF ones (p < 0.05). Sera from DIPF did not stimulate angiogenesis compared to control sera. The data showed that sera from ILD patients constitute sources of mediators participating in angiogenesis. This phenomenon may play role in pathogenesis of chronic immunological processes in lung.

  16. Fibrocytes: A Novel Stromal Cells to Regulate Resistance to Anti-Angiogenic Therapy and Cancer Progression.

    Science.gov (United States)

    Goto, Hisatsugu; Nishioka, Yasuhiko

    2017-12-29

    An adequate blood supply is essential for cancer cells to survive and grow; thus, the concept of inhibiting tumor angiogenesis has been applied to cancer therapy, and several drugs are already in clinical use. It has been shown that treatment with those anti-angiogenic drugs improved the response rate and prolonged the survival of patients with various types of cancer; however, it is also true that the effect was mostly limited. Currently, the disappointing clinical results are explained by the existence of intrinsic or acquired resistance to the therapy mediated by both tumor cells and stromal cells. This article reviews the mechanisms of resistance mediated by stromal cells such as endothelial cells, pericytes, fibroblasts and myeloid cells, with an emphasis on fibrocytes, which were recently identified as the cell type responsible for regulating acquired resistance to anti-angiogenic therapy. In addition, the other emerging role of fibrocytes as mediator-producing cells in tumor progression is discussed.

  17. Extracorporeal Shockwave Therapy Increases Growth Factor Release from Equine Platelet-Rich Plasma In Vitro

    Directory of Open Access Journals (Sweden)

    Kathryn A. Seabaugh

    2017-12-01

    Full Text Available IntroductionExtracorporeal shockwave therapy (ESWT and platelet-rich plasma (PRP are common treatments for soft tissue injuries in horses. Shockwave triggers cell specific responses to promote healing. Growth factors released from PRP also promote healing. It has been hypothesized that greater growth factor release would amplify the healing process. The combination of ESWT and PRP could promote healing in injured tendons and ligaments in the horse. The objective of this study was to determine if application of shockwaves to PRP samples increases the concentration of transforming growth factor-β1 (TGF-β1 and platelet-derived growth factor ββ (PDGF-ββ released from the platelets in vitro.Materials and methodsPRP was produced from blood drawn from six horses. The PRP from each horse was exposed to the following treatments: (1 positive control (freeze-thaw cycle, (2 untreated negative control, or shockwaves with either (3 a “standard probe” (ESWT-S with a 2 cm focal width and medium energy density or (4 a “power probe” (ESWT-P with a 1 cm focal width and high energy density. After each treatment, the samples were centrifuged, and the supernatant was harvested. The supernatant was then used for growth factor quantification via commercially available ELISA kits for TGF-β1 and PDGF-ββ.ResultsConcentrations of TGF-β1 and PDGF-ββ in PRP that underwent a freeze-thaw cycle were significantly increased compared with all other treatments. Both ESWT-S and ESWT-P resulted in significantly increased TGF-β1 concentrations, 46 and 33%, respectively, when compared with the negative control. Both ESWT-S and ESWT-P resulted in significantly increased PDGF-ββ concentrations, 219 and 190%, respectively, when compared with the negative control.DiscussionThese data indicate that the application of ESWT to PRP increases the expression of growth factors in vitro. This suggests that the combination therapy of local PRP injection followed by ESWT

  18. Composite Scaffold of Poly(Vinyl Alcohol) and Interfacial Polyelectrolyte Complexation Fibers for Controlled Biomolecule Delivery

    Science.gov (United States)

    Cutiongco, Marie Francene A.; Choo, Royden K. T.; Shen, Nathaniel J. X.; Chua, Bryan M. X.; Sju, Ervi; Choo, Amanda W. L.; Le Visage, Catherine; Yim, Evelyn K. F.

    2015-01-01

    Controlled delivery of hydrophilic proteins is an important therapeutic strategy. However, widely used methods for protein delivery suffer from low incorporation efficiency and loss of bioactivity. The versatile interfacial polyelectrolyte complexation (IPC) fibers have the capacity for precise spatiotemporal release and protection of protein, growth factor, and cell bioactivity. Yet its weak mechanical properties limit its application and translation into a viable clinical solution. To overcome this limitation, IPC fibers can be incorporated into polymeric scaffolds such as the biocompatible poly(vinyl alcohol) hydrogel (PVA). Therefore, we explored the use of a composite scaffold of PVA and IPC fibers for controlled biomolecule release. We first observed that the permeability of biomolecules through PVA films were dependent on molecular weight. Next, IPC fibers were incorporated in between layers of PVA to produce PVA–IPC composite scaffolds with different IPC fiber orientation. The composite scaffold demonstrated excellent mechanical properties and efficient biomolecule incorporation. The rate of biomolecule release from PVA–IPC composite grafts exhibited dependence on molecular weight, with lysozyme showing near-linear release for 1 month. Angiogenic factors were also incorporated into the PVA–IPC grafts, as a potential biomedical application of the composite graft. While vascular endothelial growth factor only showed a maximum cumulative release of 3%, the smaller PEGylated-QK peptide showed maximum release of 33%. Notably, the released angiogenic biomolecules induced endothelial cell activity thus indicating retention of bioactivity. We also observed lack of significant macrophage response against PVA–IPC grafts in a rabbit model. Showing permeability, mechanical strength, precise temporal growth factor release, and bioinertness, PVA–IPC fibers composite scaffolds are excellent scaffolds for controlled biomolecule delivery in soft tissue

  19. Composite scaffold of poly(vinyl alcohol) and interfacial polyelectrolyte complexation fibers for controlled biomolecule delivery.

    Science.gov (United States)

    Cutiongco, Marie Francene A; Choo, Royden K T; Shen, Nathaniel J X; Chua, Bryan M X; Sju, Ervi; Choo, Amanda W L; Le Visage, Catherine; Yim, Evelyn K F

    2015-01-01

    Controlled delivery of hydrophilic proteins is an important therapeutic strategy. However, widely used methods for protein delivery suffer from low incorporation efficiency and loss of bioactivity. The versatile interfacial polyelectrolyte complexation (IPC) fibers have the capacity for precise spatiotemporal release and protection of protein, growth factor, and cell bioactivity. Yet its weak mechanical properties limit its application and translation into a viable clinical solution. To overcome this limitation, IPC fibers can be incorporated into polymeric scaffolds such as the biocompatible poly(vinyl alcohol) hydrogel (PVA). Therefore, we explored the use of a composite scaffold of PVA and IPC fibers for controlled biomolecule release. We first observed that the permeability of biomolecules through PVA films were dependent on molecular weight. Next, IPC fibers were incorporated in between layers of PVA to produce PVA-IPC composite scaffolds with different IPC fiber orientation. The composite scaffold demonstrated excellent mechanical properties and efficient biomolecule incorporation. The rate of biomolecule release from PVA-IPC composite grafts exhibited dependence on molecular weight, with lysozyme showing near-linear release for 1 month. Angiogenic factors were also incorporated into the PVA-IPC grafts, as a potential biomedical application of the composite graft. While vascular endothelial growth factor only showed a maximum cumulative release of 3%, the smaller PEGylated-QK peptide showed maximum release of 33%. Notably, the released angiogenic biomolecules induced endothelial cell activity thus indicating retention of bioactivity. We also observed lack of significant macrophage response against PVA-IPC grafts in a rabbit model. Showing permeability, mechanical strength, precise temporal growth factor release, and bioinertness, PVA-IPC fibers composite scaffolds are excellent scaffolds for controlled biomolecule delivery in soft tissue engineering.

  20. Anti-inflammatory drugs for Duchenne muscular dystrophy: focus on skeletal muscle-releasing factors.

    Science.gov (United States)

    Miyatake, Shouta; Shimizu-Motohashi, Yuko; Takeda, Shin'ichi; Aoki, Yoshitsugu

    2016-01-01

    Duchenne muscular dystrophy (DMD), an incurable and a progressive muscle wasting disease, is caused by the absence of dystrophin protein, leading to recurrent muscle fiber damage during contraction. The inflammatory response to fiber damage is a compelling candidate mechanism for disease exacerbation. The only established pharmacological treatment for DMD is corticosteroids to suppress muscle inflammation, however this treatment is limited by its insufficient therapeutic efficacy and considerable side effects. Recent reports show the therapeutic potential of inhibiting or enhancing pro- or anti-inflammatory factors released from DMD skeletal muscles, resulting in significant recovery from muscle atrophy and dysfunction. We discuss and review the recent findings of DMD inflammation and opportunities for drug development targeting specific releasing factors from skeletal muscles. It has been speculated that nonsteroidal anti-inflammatory drugs targeting specific inflammatory factors are more effective and have less side effects for DMD compared with steroidal drugs. For example, calcium channels, reactive oxygen species, and nuclear factor-κB signaling factors are the most promising targets as master regulators of inflammatory response in DMD skeletal muscles. If they are combined with an oligonucleotide-based exon skipping therapy to restore dystrophin expression, the anti-inflammatory drug therapies may address the present therapeutic limitation of low efficiency for DMD.

  1. Immunochemical determination of cellular content of translation release factor RF4 in Escherichia coli

    DEFF Research Database (Denmark)

    Andersen, Lars Dyrskjøt; Manuel Palacios Moreno, Juan; Clark, Brian F. C.

    1999-01-01

    The biosynthesis of proteins in prokaryotes is terminated when a stop codon is present in the A-site of the 70S ribosomal complex. Four different translation termination factors are known to participate in the termination process. Release factor RF1 and RF2 are responsible for the recognition of ...

  2. Endothelial monocyte activating polypeptide-II modulates endothelial cell responses by degrading hypoxia-inducible factor-1alpha through interaction with PSMA7, a component of the proteasome

    International Nuclear Information System (INIS)

    Tandle, Anita T.; Calvani, Maura; Uranchimeg, Badarch; Zahavi, David; Melillo, Giovanni; Libutti, Steven K.

    2009-01-01

    The majority of human tumors are angiogenesis dependent. Understanding the specific mechanisms that contribute to angiogenesis may offer the best approach to develop therapies to inhibit angiogenesis in cancer. Endothelial monocyte activating polypeptide-II (EMAP-II) is an anti-angiogenic cytokine with potent effects on endothelial cells (ECs). It inhibits EC proliferation and cord formation, and it suppresses primary and metastatic tumor growth in-vivo. However, very little is known about the molecular mechanisms behind the anti-angiogenic activity of EMAP-II. In the present study, we explored the molecular mechanism behind the anti-angiogenic activity exerted by this protein on ECs. Our results demonstrate that EMAP-II binds to the cell surface α5β1 integrin receptor. The cell surface binding of EMAP-II results in its internalization into the cytoplasmic compartment where it interacts with its cytoplasmic partner PSMA7, a component of the proteasome degradation pathway. This interaction increases hypoxia-inducible factor 1-alpha (HIF-1α) degradation under hypoxic conditions. The degradation results in the inhibition of HIF-1α mediated transcriptional activity as well as HIF-1α mediated angiogenic sprouting of ECs. HIF-1α plays a critical role in angiogenesis by activating a variety of angiogenic growth factors. Our results suggest that one of the major anti-angiogenic functions of EMAP-II is exerted through its inhibition of the HIF-1α activities.

  3. Endothelial monocyte activating polypeptide-II modulates endothelial cell responses by degrading hypoxia-inducible factor-1alpha through interaction with PSMA7, a component of the proteasome

    Energy Technology Data Exchange (ETDEWEB)

    Tandle, Anita T. [Tumor Angiogenesis Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892 (United States); Calvani, Maura; Uranchimeg, Badarch [DTP-Tumor Hypoxia Laboratory, SAIC Frederick, Inc., National Cancer Institute, Frederick, Maryland 21702 (United States); Zahavi, David [Tumor Angiogenesis Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892 (United States); Melillo, Giovanni [DTP-Tumor Hypoxia Laboratory, SAIC Frederick, Inc., National Cancer Institute, Frederick, Maryland 21702 (United States); Libutti, Steven K., E-mail: slibutti@montefiore.org [Department of Surgery, Montefiore-Einstein Center for Cancer Care, Albert Einstein College of Medicine, Greene Medical Arts Pavilion, 4th Floor 3400, Bainbridge Avenue, Bronx, New York 10467 (United States)

    2009-07-01

    The majority of human tumors are angiogenesis dependent. Understanding the specific mechanisms that contribute to angiogenesis may offer the best approach to develop therapies to inhibit angiogenesis in cancer. Endothelial monocyte activating polypeptide-II (EMAP-II) is an anti-angiogenic cytokine with potent effects on endothelial cells (ECs). It inhibits EC proliferation and cord formation, and it suppresses primary and metastatic tumor growth in-vivo. However, very little is known about the molecular mechanisms behind the anti-angiogenic activity of EMAP-II. In the present study, we explored the molecular mechanism behind the anti-angiogenic activity exerted by this protein on ECs. Our results demonstrate that EMAP-II binds to the cell surface {alpha}5{beta}1 integrin receptor. The cell surface binding of EMAP-II results in its internalization into the cytoplasmic compartment where it interacts with its cytoplasmic partner PSMA7, a component of the proteasome degradation pathway. This interaction increases hypoxia-inducible factor 1-alpha (HIF-1{alpha}) degradation under hypoxic conditions. The degradation results in the inhibition of HIF-1{alpha} mediated transcriptional activity as well as HIF-1{alpha} mediated angiogenic sprouting of ECs. HIF-1{alpha} plays a critical role in angiogenesis by activating a variety of angiogenic growth factors. Our results suggest that one of the major anti-angiogenic functions of EMAP-II is exerted through its inhibition of the HIF-1{alpha} activities.

  4. Cardiac regeneration by pharmacologically active microcarriers releasing growth factors and/or transporting adipose-derived stem cells

    Directory of Open Access Journals (Sweden)

    Monia Savi

    2014-01-01

    Full Text Available We tested the hypothesis that cardiac regeneration through local delivery of adipose-derived stem cells (ASCs, activation of resident cardiac stem cells via growth factors (GFs [hepatocyte growth factor (HGF and insulin-like growth factor 1 (IGF-1:GFs] or both, are improved by pharmacologically active microcarriers (PAMs interacting with cells/molecules conveyed on their surface. Rats with one-month old myocardial infarction were treated with ASCs, ASCs+PAMs, GF-releasing PAMs, ASCs+GF-releasing PAMs or vehicle. Two weeks later, hemodynamic function and inducibility of ventricular arrhythmias (VAs were assessed. Eventually, the hearts were subjected to anatomical and immunohistochemical analyses. A significant ASCs engraftment and the largest improvement in cardiac mechanics occurred in ASC+GF-releasing PAM rats which by contrast were more vulnerable to VAs. Thus, PAMs may improve cell/GF-based cardiac regeneration although caution should be paid on the electrophysiological impact of their physical interaction with the myocardium.

  5. Downregulation of Securin by the variant RNF213 R4810K (rs112735431, G>A) reduces angiogenic activity of induced pluripotent stem cell-derived vascular endothelial cells from moyamoya patients

    Energy Technology Data Exchange (ETDEWEB)

    Hitomi, Toshiaki [Department of Health and Environmental Sciences, Kyoto University, Kyoto (Japan); Habu, Toshiyuki [Radiation Biology Center, Kyoto University, Kyoto (Japan); Kobayashi, Hatasu; Okuda, Hiroko; Harada, Kouji H. [Department of Health and Environmental Sciences, Kyoto University, Kyoto (Japan); Osafune, Kenji [Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto (Japan); Taura, Daisuke; Sone, Masakatsu [Department of Medicine and Clinical Science, Kyoto University, Kyoto (Japan); Asaka, Isao; Ameku, Tomonaga; Watanabe, Akira; Kasahara, Tomoko; Sudo, Tomomi; Shiota, Fumihiko [Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto (Japan); Hashikata, Hirokuni; Takagi, Yasushi [Department of Neurosurgery, Kyoto University,Kyoto (Japan); Morito, Daisuke [Faculty of Life Sciences, Kyoto Sangyo University, Kyoto (Japan); Miyamoto, Susumu [Department of Neurosurgery, Kyoto University,Kyoto (Japan); Nakao, Kazuwa [Department of Medicine and Clinical Science, Kyoto University, Kyoto (Japan); Koizumi, Akio, E-mail: koizumi.akio.5v@kyoto-u.ac.jp [Department of Health and Environmental Sciences, Kyoto University, Kyoto (Japan)

    2013-08-16

    Highlights: •Angiogenic activities were reduced in iPSECs from MMD patients. •Many mitosis-regulated genes were downregulated in iPSECs from MMD patients. •RNF213 R4810K downregulated Securin and inhibited angiogenic activity. •Securin suppression by siRNA reduced angiogenic activities of iPSECs and HUVECs. -- Abstract: Moyamoya disease (MMD) is a cerebrovascular disease characterized by occlusive lesions in the circle of Willis. The RNF213 R4810K polymorphism increases susceptibility to MMD. Induced pluripotent stem cells (iPSCs) were established from unaffected fibroblast donors with wild-type RNF213 alleles, and from carriers/patients with one or two RNF213 R4810K alleles. Angiogenic activities of iPSC-derived vascular endothelial cells (iPSECs) from patients and carriers were lower (49.0 ± 19.4%) than from wild-type subjects (p < 0.01). Gene expression profiles in iPSECs showed that Securin was down-regulated (p < 0.01) in carriers and patients. Overexpression of RNF213 R4810K downregulated Securin, inhibited angiogenic activity (36.0 ± 16.9%) and proliferation of humanumbilical vein endothelial cells (HUVECs) while overexpression of RNF213 wild type did not. Securin expression was downregulated using RNA interference techniques, which reduced the level of tube formation in iPSECs and HUVECs without inhibition of proliferation. RNF213 R4810K reduced angiogenic activities of iPSECs from patients with MMD, suggesting that it is a promising in vitro model for MMD.

  6. Direct projection from the suprachiasmatic nucleus to hypophysiotrophic corticotropin-releasing factor immunoreactive cells in the paraventricular nucleus of the hypothalamus demonstrated...

    DEFF Research Database (Denmark)

    Vrang, N.; Larsen, P.J.; Mikkelsen, J.D.

    1995-01-01

    Suprachiasmatic nucleus, paraventricular nucleus, circadian rhythms, phaseolus vulgaris-leucoagglutinin, corticotropin-releasing factor, dual immunocytochemistry......Suprachiasmatic nucleus, paraventricular nucleus, circadian rhythms, phaseolus vulgaris-leucoagglutinin, corticotropin-releasing factor, dual immunocytochemistry...

  7. Angiotensin II Evokes Angiogenic Signals within Skeletal Muscle through Co-ordinated Effects on Skeletal Myocytes and Endothelial Cells

    Science.gov (United States)

    Gorman, Jennifer L.; Liu, Sammy T. K.; Slopack, Dara; Shariati, Khashayar; Hasanee, Adam; Olenich, Sara; Olfert, I. Mark; Haas, Tara L.

    2014-01-01

    Skeletal muscle overload induces the expression of angiogenic factors such as vascular endothelial growth factor (VEGF) and matrix metalloproteinase (MMP)-2, leading to new capillary growth. We found that the overload-induced increase in angiogenesis, as well as increases in VEGF, MMP-2 and MT1-MMP transcripts were abrogated in muscle VEGF KO mice, highlighting the critical role of myocyte-derived VEGF in controlling this process. The upstream mediators that contribute to overload-induced expression of VEGF have yet to be ascertained. We found that muscle overload increased angiotensinogen expression, a precursor of angiotensin (Ang) II, and that Ang II signaling played an important role in basal VEGF production in C2C12 cells. Furthermore, matrix-bound VEGF released from myoblasts induced the activation of endothelial cells, as evidenced by elevated endothelial cell phospho-p38 levels. We also found that exogenous Ang II elevates VEGF expression, as well as MMP-2 transcript levels in C2C12 myotubes. Interestingly, these responses also were observed in skeletal muscle endothelial cells in response to Ang II treatment, indicating that these cells also can respond directly to the stimulus. The involvement of Ang II in muscle overload-induced angiogenesis was assessed. We found that blockade of AT1R-dependent Ang II signaling using losartan did not attenuate capillary growth. Surprisingly, increased levels of VEGF protein were detected in overloaded muscle from losartan-treated rats. Similarly, we observed elevated VEGF production in cultured endothelial cells treated with losartan alone or in combination with Ang II. These studies conclusively establish the requirement for muscle derived VEGF in overload-induced angiogenesis and highlight a role for Ang II in basal VEGF production in skeletal muscle. However, while Ang II signaling is activated following overload and plays a role in muscle VEGF production, inhibition of this pathway is not sufficient to halt overload

  8. Defibrotide: an endothelium protecting and stabilizing drug, has an anti-angiogenic potential in vitro and in vivo.

    Science.gov (United States)

    Koehl, Gudrun E; Geissler, Edward K; Iacobelli, Massimo; Frei, Caroline; Burger, Verena; Haffner, Silvia; Holler, Ernst; Andreesen, Reinhard; Schlitt, Hans J; Eissner, Günther

    2007-05-01

    Defibrotide (DF) is a polydisperse mixture of 90% single-stranded oligonucleotides with anti-thrombotic and anti-apoptotic functions. DF is used in the treatment of endothelial complications in the course of allogeneic stem cell transplantation. Recent preclinical evidence suggests that DF might also have anti-neoplastic properties. In the present study we hypothesized that DF might inhibit tumors via an anti-angiogenic effect. The anti-angiogenic potential of DF was tested in vitro using human microvascular endothelial cells forming vessel structures across a layer of dermal fibroblasts. Our results show that pharmacologic DF concentrations (100 mug/ml) significantly reduced vessel formation in this assay. Similarly, DF blocked sprouting from cultured rat aortic rings. In vivo, angiogenesis in a human gastric tumor (TMK1) implanted in dorsal skin-fold chambers (in nude mice) was inhibited by i.v. application of 450 mg/kg DF. Notably, due to its short half-life, DF was most effective when given on a daily basis. Although the precise mechanism of DF remains to be elucidated, initial Western blots show that DF reduces phosphorylation-activation of p70S6 kinase, which is a key target in the PI3K/Akt/mTOR signaling pathway linked to endothelial cell and pericyte proliferation and activation. However, in vitro data suggest that DF acts independently of vascular endothelial growth factor. Taken together, our data suggest that while DF is known for its endothelium-protecting function in SCT, it also inhibits formation of new blood vessels, and thus should be considered for further testing as an adjuvant anti-cancer agent, either alone, or in combination with other drugs.

  9. Platelet-rich plasma stimulated by pulse electric fields: Platelet activation, procoagulant markers, growth factor release and cell proliferation.

    Science.gov (United States)

    Frelinger, A L; Torres, A S; Caiafa, A; Morton, C A; Berny-Lang, M A; Gerrits, A J; Carmichael, S L; Neculaes, V B; Michelson, A D

    2016-01-01

    Therapeutic use of activated platelet-rich plasma (PRP) has been explored for wound healing, hemostasis and antimicrobial wound applications. Pulse electric field (PEF) stimulation may provide more consistent platelet activation and avoid complications associated with the addition of bovine thrombin, the current state of the art ex vivo activator of therapeutic PRP. The aim of this study was to compare the ability of PEF, bovine thrombin and thrombin receptor activating peptide (TRAP) to activate human PRP, release growth factors and induce cell proliferation in vitro. Human PRP was prepared in the Harvest SmartPreP2 System and treated with vehicle, PEF, bovine thrombin, TRAP or Triton X-100. Platelet activation and procoagulant markers and microparticle generation were measured by flow cytometry. Released growth factors were measured by ELISA. The releasates were tested for their ability to stimulate proliferation of human epithelial cells in culture. PEF produced more platelet-derived microparticles, P-selectin-positive particles and procoagulant annexin V-positive particles than bovine thrombin or TRAP. These differences were associated with higher levels of released epidermal growth factor after PEF than after bovine thrombin or TRAP but similar levels of platelet-derived, vascular-endothelial, and basic fibroblast growth factors, and platelet factor 4. Supernatant from PEF-treated platelets significantly increased cell proliferation compared to plasma. In conclusion, PEF treatment of fresh PRP results in generation of microparticles, exposure of prothrombotic platelet surfaces, differential release of growth factors compared to bovine thrombin and TRAP and significant cell proliferation. These results, together with PEF's inherent advantages, suggest that PEF may be a superior alternative to bovine thrombin activation of PRP for therapeutic applications.

  10. A Novel Natural Product-Derived Compound, Vestaine A1, Exerts both Pro-Angiogenic and Anti-Permeability Activity via a Different Pathway from VEGF

    Directory of Open Access Journals (Sweden)

    Yoko Ishimoto

    2016-10-01

    Full Text Available Background/Aims: Vascular endothelial growth factor (VEGF is a key molecule in the regulation of both angiogenesis and vascular permeability. However, it is known that overproduction of VEGF induces abnormal blood vessel formation and these vessels cause several disease pathologies, such as diabetic retinopathy. The purpose of this study was to find novel vasoactive compounds which have different properties from VEGF. Methods/Results: We screened a natural product library using a co-culture angiogenic assay of endothelial cells and fibroblasts. By focusing on morphological changes of endothelial cells, we isolated the novel compounds vestaine A1 and vestaine B1 from the cultured broth of an actinomycete strain, Streptomyces sp. SANK 63697. Vestaine A1 enhanced tube formation of endothelial cells in Matrigel and suppressed cell death induced by serum deprivation. Vestaine A1 activated both MEK1/2 and PI-3 kinase pathways independently of the VEGF pathway in a dose- and time-dependent fashion. Finally, vestaine A1 potently suppressed VEGF-induced vascular permeability both in vitro and in vivo. Conclusion: Vestaine A1 has the potential to exhibit both pro-angiogenic and anti-permeability properties, and would therefore be useful for therapeutic treatment for abnormal vascular permeability-related diseases.

  11. Inhibition of Lysyl Oxidases Impairs Migration and Angiogenic Properties of Tumor-Associated Pericytes

    Directory of Open Access Journals (Sweden)

    Aline Lopes Ribeiro

    2017-01-01

    Full Text Available Pericytes are important cellular components of the tumor microenviroment with established roles in angiogenesis and metastasis. These two cancer hallmarks are modulated by enzymes of the LOX family, but thus far, information about LOX relevance in tumor-associated pericytes is lacking. Here, we performed a comparative characterization of normal and tumoral pericytes and report for the first time the modulatory effects of LOX enzymes on activated pericyte properties. Tumoral pericytes isolated from childhood ependymoma and neuroblastoma specimens displayed angiogenic properties in vitro and expressed typical markers, including CD146, NG2, and PDGFRβ. Expression of all LOX family members could be detected in both normal and tumor-associated pericytes. In most pericyte samples, LOXL3 was the family member displaying the highest transcript levels. Inhibition of LOX/LOXL activity with the inhibitor β-aminopropionitrile (βAPN significantly reduced migration of pericytes, while proliferation rates were kept unaltered. Formation of tube-like structures in vitro by pericytes was also significantly impaired upon inhibition of LOX/LOXL activity with βAPN, which induced more prominent effects in tumor-associated pericytes. These findings reveal a novel involvement of the LOX family of enzymes in migration and angiogenic properties of pericytes, with implications in tumor development and in therapeutic targeting tumor microenvironment constituents.

  12. Immunoexpression of vascular endothelial growth factor in periapical granulomas, radicular cysts, and residual radicular cysts.

    Science.gov (United States)

    Nonaka, Cassiano Francisco Weege; Maia, Alexandre Pinto; Nascimento, George João Ferreira do; de Almeida Freitas, Roseana; Batista de Souza, Lélia; Galvão, Hébel Cavalcanti

    2008-12-01

    Our aim was to assess and compare the immunoexpression of vascular endothelial growth factor (VEGF) in periapical granulomas (PGs), radicular cysts (RCs), and residual radicular cysts (RRCs), relating it to the angiogenic index and the intensity of the inflammatory infiltrate. Twenty PGs, 20 RCs, and 10 RRCs were evaluated by immunohistochemistry using anti-VEGF antibody. Angiogenic index was determined by microvessel count (MVC) using anti-von Willebrand factor antibody. The PGs and RCs showed higher expression of VEGF than the RRCs. Lesions presenting few inflammatory infiltrate revealed the lowest immunoexpression of VEGF (P .05). VEGF is present in periapical inflammatory lesions but at a lower level in RRCs. The expression of this proangiogenic factor is closely related to the intensity of the inflammatory infiltrate in these lesions.

  13. Conversion factors for estimating release rate of gaseous radioactivity by an aerial survey

    International Nuclear Information System (INIS)

    Saito, Kimiaki; Moriuchi, Shigeru

    1988-02-01

    Conversion factors necessary for estimating release rate of gaseous radioactivity by an aerial survey are presented. The conversion factors were determined based on calculation assuming a Gaussian plume model as a function of atmospheric stability, down-wind distance and flight height. First, the conversion factors for plumes emitting mono-energy gamma rays were calculated, then, conversion factors were constructed through convolution for the radionuclides essential in an accident of a nuclear reactor, and for mixtures of these radionuclides considering elapsed time after shutdown. These conversion factors are shown in figures, and also polynomial expressions of the conversion factors as a function of height have been decided with the least-squares method. A user can easily obtain proper conversion factors from data shown here. (author)

  14. Anti-angiogenic effect of curcumin, curcumin ethylenediamine derivative and curcumin ethylenediamine manganese complex

    OpenAIRE

    SUNTORNSUK, Leena; Koizumi, Keiichi; Saitoh, Yurika; Nakamura, ElianeShizuka; KAMMASUD, Naparat; VAJARAGUPTA, Opa; Saiki, Ikuo

    2004-01-01

    We investigated the anti-angiogenic effect of curcumin, curcumin ethylenediamine derivative (curcumin ED) and curcumin ethylenediamine manganese complex (curcumin EDMn) through the inhibition of the formation of tube-like structures by human umbilical vascular endothelial cells (HUVEC). Curcumin, curcumin ED, curcumin EDMn did not show cytotoxicity to HUVEC at concentrations equal and lower than 10 μM. At the concentration of 10 μM,curcumin, curcumin ED and curcumin EDMn inhibited the tube fo...

  15. Prolonged hypoxic culture and trypsinization increase the pro-angiogenic potential of human adipose tissue-derived stem cells

    DEFF Research Database (Denmark)

    Rasmussen, Jeppe Grøndahl; Frøbert, Ole; Pilgaard, Linda

    2011-01-01

    Transplantation of mesenchymal stromal cells (MSC), including adipose tissue-derived stem cells (ASC), is a promising option in the treatment of vascular disease. Short-term hypoxic culture of MSC augments secretion of anti-apoptotic and angiogenic cytokines. We hypothesized that prolonged hypoxi...

  16. A rhodium(III) complex inhibits LPS-induced nitric oxide production and angiogenic activity in cellulo.

    Science.gov (United States)

    Liu, Li-Juan; Lin, Sheng; Chan, Daniel Shiu-Hin; Vong, Chi Teng; Hoi, Pui Man; Wong, Chun-Yuen; Ma, Dik-Lung; Leung, Chung-Hang

    2014-11-01

    Metal-containing complexes have arisen as viable alternatives to organic molecules as therapeutic agents. Metal complexes possess a number of advantages compared to conventional carbon-based compounds, such as distinct geometries, interesting electronic properties, variable oxidation states and the ability to arrange different ligands around the metal centre in a precise fashion. Meanwhile, nitric oxide (NO) plays key roles in the regulation of angiogenesis, vascular permeability and inflammation. We herein report a novel cyclometalated rhodium(III) complex as an inhibitor of lipopolysaccharides (LPS)-induced NO production in RAW264.7 macrophages. Experiments suggested that the inhibition of NO production in cells by complex 1 was mediated through the down-regulation of nuclear factor-κB (NF-κB) activity. Furthermore, complex 1 inhibited angiogenesis in human umbilical vein endothelial cells (HUVECs) as revealed by an endothelial tube formation assay. This study demonstrates that kinetically inert rhodium(III) complexes may be potentially developed as effective anti-angiogenic agents. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Atmospheric dilution factors for radioactive releases from Inshas research reactor, Egypt

    International Nuclear Information System (INIS)

    Abdel Aal, M.M.; Aly, A.I.M.; Tawfik, F.S.

    1994-01-01

    In the frame of assessing the suitability of Inshas site for constructing a new research reactor 20 MW, the meteorological condition are analyzed to determine the most affected population sectors. The atmospheric stability classes are estimated by a developed computer program in which the meteorological data for one year are used as input data. The results indicate that stability class F (moderately stable) is predominant one. The dilution factor is calculated using the computer code XOQDOQ for meteorological evaluation of routine effluent releases at nuclear power stations, which implements regulatory Guide 1.111 for both normal and desert conditions and for ground and elevated releases. The concentration isopleths are plotted and the most affected sector is the southern one with higher values for desert condition than the corresponding normal condition at same distance from the source. 4 fig., 3 tab

  18. What factors influence the decisions of mental health professionals to release service users from seclusion?

    Science.gov (United States)

    Jackson, Haley; Baker, John; Berzins, Kathyrn

    2018-06-22

    Mental health policy stipulates seclusion should only be used as an intervention of last resort and for the minimum possible duration. Current evidence details which service users are more likely to be secluded, why they are secluded, and what influences the decision to seclude them. However, very little is known about the decision to release service users from seclusion. An integrative review was undertaken to explore the decision-making processes of mental health professionals which guide the ending of seclusion. The review used a systematic approach to gather and thematically analyse evidence within a framework approach. The twelve articles identified generated one overriding theme, maintaining safety. In addition, several subthemes emerged including the process of risk assessing which was dependent upon interaction and control, mediated by factors external to the service user such as the attitude and experience of staff and the acuity of the environment. Service users were expected to demonstrate compliance with the process ultimately ending in release and reflection. Little evidence exists regarding factors influencing mental health professionals in decisions to release service users from seclusion. There is no evidence-based risk assessment tool, and service users are not routinely involved in the decision to release them. Support from experienced professionals is vital to ensure timely release from seclusion. Greater insight into influences upon decisions to discontinue episodes may support initiatives aimed at reducing durations and use of seclusion. © 2018 Australian College of Mental Health Nurses Inc.

  19. Aging-induced dysregulation of dicer1-dependent microRNA expression impairs angiogenic capacity of rat cerebromicrovascular endothelial cells.

    Science.gov (United States)

    Ungvari, Zoltan; Tucsek, Zsuzsanna; Sosnowska, Danuta; Toth, Peter; Gautam, Tripti; Podlutsky, Andrej; Csiszar, Agnes; Losonczy, Gyorgy; Valcarcel-Ares, M Noa; Sonntag, William E; Csiszar, Anna

    2013-08-01

    Age-related impairment of angiogenesis is likely to play a central role in cerebromicrovascular rarefaction and development of vascular cognitive impairment, but the underlying mechanisms remain elusive. To test the hypothesis that dysregulation of Dicer1 (ribonuclease III, a key enzyme of the microRNA [miRNA] machinery) impairs endothelial angiogenic capacity in aging, primary cerebromicrovascular endothelial cells (CMVECs) were isolated from young (3 months old) and aged (24 months old) Fischer 344 × Brown Norway rats. We found an age-related downregulation of Dicer1 expression both in CMVECs and in small cerebral vessels isolated from aged rats. In aged CMVECs, Dicer1 expression was increased by treatment with polyethylene glycol-catalase. Compared with young cells, aged CMVECs exhibited altered miRNA expression profile, which was associated with impaired proliferation, adhesion to vitronectin, collagen and fibronectin, cellular migration (measured by a wound-healing assay using electric cell-substrate impedance sensing technology), and impaired ability to form capillary-like structures. Overexpression of Dicer1 in aged CMVECs partially restored miRNA expression profile and significantly improved angiogenic processes. In young CMVECs, downregulation of Dicer1 (siRNA) resulted in altered miRNA expression profile associated with impaired proliferation, adhesion, migration, and tube formation, mimicking the aging phenotype. Collectively, we found that Dicer1 is essential for normal endothelial angiogenic processes, suggesting that age-related dysregulation of Dicer1-dependent miRNA expression may be a potential mechanism underlying impaired angiogenesis and cerebromicrovascular rarefaction in aging.

  20. [HPV DNA vaccines expressing recombinant CRT/HPV6bE7 fusion protein inhibit tumor growth and angiogenic activity].

    Science.gov (United States)

    Xu, Yan; Cheng, Hao; Zhao, Ke-Jia; Zhu, Ke-Jian; Zhang, Xing

    2007-11-01

    This paper was to study the angiogenic inhibitory effect and the potential antitumor effect of the constructed recombinant DNA vaccine CRT/HPV6bE7 in vivo. The C57BL/6 mice were vaccinated respectively with recombinant CRT/HPV6bE7 DNA plamids. The inhibitory effects on angiogenesis of generated vaccines in vivo were evaluated by a bFGF-induced angiogenesis assay using the Matrigel kit. To investigate the potential antitumor effect, the mean tumor weights, sizes and tumor appearing times were measured in C57BL/6 mice treated with HPV6bE7-expressing B16 cells. The results indicated that the recombinants CRT180/HPV6bE7 and CRT180 showed strong anti-angiogenic effects in bFGF-induced angiogenesis in vivo. Moreover, CRT180/HPV6bE7 and CRT180 DNA vaccines could significantly inhibit the tumor growth in tumor challenge experiment, and CRT180/HPV6bE7 was superior to other vaccines in delaying tumor formation time, limiting tumor size and weight in tumor protection experiment. In conclusion, recombinant CRT180/HPV6bE7 DNA could elicit a most efficient anti-angiogenic effect and inhibit tumor growth in mice inoculated with DNA vaccines. The antiangiogenic activity of CRT were suggested residing in a domain between CRT 120-180 aa.

  1. Studies on the Biological Effects of Ozone: 10. Release of Factors from Ozonated Human Platelets

    Directory of Open Access Journals (Sweden)

    G. Valacchi

    1999-01-01

    Full Text Available In a previous work we have shown that heparin, in the presence of ozone (O3, promotes a dose-dependent platelet aggregation, while after Ca2+ chelation with citrate, platelet aggregation is almost negligible. These results led us to think that aggregation may enhance the release of platelet components. We have here shown that indeed significantly higher amount of platelet-derived growth factor (PDGF, transforming growth factor β1 (TGF-β1 and interleukin-8(IL-8 are released in a dose-dependent manner after ozonation of heparinised platelet-rich plasma samples. These findings may explain the enhanced healing of torpid ulcers in patients with chronic limbischemia treated with O3 autohaemoteraphy (O3-AHT.

  2. VEGFR2 heterogeneity and response to anti-angiogenic low dose metronomic cyclophosphamide treatment

    International Nuclear Information System (INIS)

    Patten, Steven G; Adamcic, Una; Lacombe, Kristen; Minhas, Kanwal; Skowronski, Karolina; Coomber, Brenda L

    2010-01-01

    Targeting tumor vasculature is a strategy with great promise in the treatment of many cancers. However, anti-angiogenic reagents that target VEGF/VEGFR2 signaling have met with variable results clinically. Among the possible reasons for this may be heterogeneous expression of the target protein. Double immunofluorescent staining was performed on formalin-fixed paraffin embedded sections of treated and control SW480 (colorectal) and WM239 (melanoma) xenografts, and tissue microarrays of human colorectal carcinoma and melanoma. Xenografts were developed using RAG1 -/- mice by injection with WM239 or SW480 cells and mice were treated with 20 mg/kg/day of cyclophosphamide in their drinking water for up to 18 days. Treated and control tissues were characterized by double immunofluorescence using the mural cell marker α-SMA and CD31, while the ratio of desmin/CD31 was also determined by western blot. Hypoxia in treated and control tissues were quantified using both western blotting for HIF-1α and immunohistochemistry of CA-IX. VEGFR2 is heterogeneously expressed in tumor vasculature in both malignant melanoma and colorectal carcinoma. We observed a significant decrease in microvascular density (MVD) in response to low dose metronomic cyclophosphamide chemotherapy in both malignant melanoma (with higher proportion VEGFR2 positive blood vessels; 93%) and colorectal carcinoma (with lower proportion VEGFR2 positive blood vessels; 60%) xenografts. This reduction in MVD occurred in the absence of a significant anti-tumor effect. We also observed less hypoxia in treated melanoma xenografts, despite successful anti-angiogenic blockade, but no change in hypoxia of colorectal xenografts, suggesting that decreases in tumor hypoxia reflect a complex relationship with vascular density. Based on α-SMA staining and the ratio of desmin to CD31 expression as markers of tumor blood vessel functionality, we found evidence for increased stabilization of colorectal microvessels, but no

  3. Angiogenic and inflammatory biomarkers in the differentiation of pulmonary hypertension.

    Science.gov (United States)

    Säleby, Joanna; Bouzina, Habib; Lundgren, Jakob; Rådegran, Göran

    2017-10-01

    Pulmonary hypertension (PH) is a serious condition where diagnosis often is delayed due to unspecific symptoms. New methods to diagnose and differentiate PH earlier would therefore be of great value. The aim of this study was therefore to evaluate the relationship between circulating angiogenic and inflammatory biomarkers and various hemodynamic variables in relation to different causes of PH. Plasma samples from 63 patients at diagnosis were extracted from Lund Cardio Pulmonary Register, separated into pulmonary arterial hypertension (PAH, n = 22), chronic thromboembolic pulmonary hypertension (CTEPH, n = 15) and left heart disease (LHD) with (n = 21) and without (n = 5) PH. Blood samples from eight control subjects devoid of PH were additionally evaluated. Plasma concentrations of angiogenic (PlGF, Tie2, VEGF-A, VEGF-D, bFGF, sFlt-1) and inflammatory (IL-6, IL-8, TNF-α) biomarkers were analysed and related to hemodynamic variables. SFlt-1 (p < .004) and VEGF-A (p < .035) were higher in all PH groups compared to controls. TNF-α (p < .030) were elevated in PAH patients in relation to the other PH groups as well as controls. Likewise, plasma VEGF-D (p < .008) were elevated in LHD with PH compared to the other groups with PH and controls. In PAH, higher sFlt-1 concentrations correlated to a worse state of hemodynamics. Our findings indicate that sFlt-1 and VEGF-A may be future tools when discriminating PH from non-PH. Moreover, TNF-α may differentiate PAH and VEGF- D may differentiate LHD with PH, from the other groups with PH, as well as controls. SFlt-1 may furthermore play a role as a future marker of disease severity.

  4. The β3-Integrin Binding Protein β3-Endonexin Is a Novel Negative Regulator of Hypoxia-Inducible Factor-1

    Science.gov (United States)

    Kračun, Damir; Rieß, Florian; Kanchev, Ivan; Gawaz, Meinrad

    2014-01-01

    Abstract Aims: Integrins are multifunctional heterodimeric adhesion receptors that mediate the attachment between a cell and the extracellular matrix or other surrounding cells. In endothelial cells, integrins can modulate cell migration and motility. In particular, β3-integrin is expressed in angiogenic vessels. Signal transduction by β3-integrins requires the recruitment of intracellular signaling molecules. β3-endonexin is a highly spliced molecule that has been identified as a β3-integrin binding protein. β3-endonexin isoforms are expressed in endothelial cells and have been suggested to act as shuttle proteins between the membrane and the nucleus. However, their functional role in angiogenesis is unclear. In this study, we investigated whether β3-endonexin isoforms are involved in endothelial angiogenic processes under hypoxia. Results: The overexpression of β3-endonexin isoforms decreased endothelial proliferation and tube formation under hypoxia, while the depletion of β3-endonexin by RNAi promoted angiogenic responses in vitro and in vivo. In hypoxia, β3-endonexin accumulated in the nucleus, and prevention of this response by depletion of β3-endonexin increased hypoxic activation and induction of the hypoxia-inducible factor (HIF)-1 and its target genes VEGF and PAI-1. β3-endonexin diminished nuclear factor kappa B (NFκB) activation and decreased NFκB binding to the HIF-1α promoter under hypoxia, subsequently diminishing NFκB-dependent transcription of HIF-1α under hypoxia. Innovation: Our results indicate for the first time that the overexpression of β3-endonexin can decrease hypoxic induction and activation of HIF-1α and can prevent hypoxic endothelial proliferation and angiogenic responses. Conclusion: β3-endonexin can act as a novel anti-angiogenic factor specifically in the response to hypoxia due to its negative impact on the activation of HIF-1. Antioxid. Redox Signal. 20, 1964–1976. PMID:24386901

  5. C5a enhances dysregulated inflammatory and angiogenic responses to malaria in vitro: potential implications for placental malaria.

    Directory of Open Access Journals (Sweden)

    Andrea Conroy

    Full Text Available Placental malaria (PM is a leading cause of maternal and infant mortality. Although the accumulation of parasitized erythrocytes (PEs and monocytes within the placenta is thought to contribute to the pathophysiology of PM, the molecular mechanisms underlying PM remain unclear. Based on the hypothesis that excessive complement activation may contribute to PM, in particular generation of the potent inflammatory peptide C5a, we investigated the role of C5a in the pathogenesis of PM in vitro and in vivo.Using primary human monocytes, the interaction between C5a and malaria in vitro was assessed. CSA- and CD36-binding PEs induced activation of C5 in the presence of human serum. Plasmodium falciparum GPI (pfGPI enhanced C5a receptor expression (CD88 on monocytes, and the co-incubation of monocytes with C5a and pfGPI resulted in the synergistic induction of cytokines (IL-6, TNF, IL-1beta, and IL-10, chemokines (IL-8, MCP-1, MIP1alpha, MIP1beta and the anti-angiogenic factor sFlt-1 in a time and dose-dependent manner. This dysregulated response was abrogated by C5a receptor blockade. To assess the potential role of C5a in PM, C5a plasma levels were measured in malaria-exposed primigravid women in western Kenya. Compared to pregnant women without malaria, C5a levels were significantly elevated in women with PM.These results suggest that C5a may contribute to the pathogenesis of PM by inducing dysregulated inflammatory and angiogenic responses that impair placental function.

  6. Extracellular anti-angiogenic proteins augment an endosomal protein trafficking pathway to reach mitochondria and execute apoptosis in HUVECs.

    Science.gov (United States)

    Chen, Mo; Qiu, Tao; Wu, Jiajie; Yang, Yang; Wright, Graham D; Wu, Min; Ge, Ruowen

    2018-03-09

    Classic endocytosis destinations include the recycling endosome returning to the plasma membrane or the late endosome (LE) merging with lysosomes for cargo degradation. However, the anti-angiogenic proteins angiostatin and isthmin, are endocytosed and trafficked to mitochondria (Mito) to execute apoptosis of endothelial cells. How these extracellular proteins reach mitochondria remains a mystery. Through confocal and super-resolution fluorescent microscopy, we demonstrate that angiostatin and isthmin are trafficked to mitochondria through the interaction between LE and Mito. Using purified organelles, the LE-Mito interaction is confirmed through in vitro lipid-fusion assay, as well as single vesicle total internal reflection fluorescent microscopy. LE-Mito interaction enables the transfer of not only lipids but also proteins from LE to Mito. Angiostatin and isthmin augment this endosomal protein trafficking pathway and make use of it to reach mitochondria to execute apoptosis. Cell fractionation and biochemical analysis identified that the cytosolic scaffold protein Na+/H+ exchanger regulatory factor 1 (NHERF1) associated with LE and the t-SNARE protein synaptosome-associated protein 25 kDa (SNAP25) associated with Mito form an interaction complex to facilitate LE-Mito interaction. Proximity ligation assay coupled with fluorescent microscopy showed that both NHERF1 and SNAP25 are located at the contacting face between LE and Mito. RNAi knockdown of either NHERF1 or SNAP25 suppressed not only the mitochondrial trafficking of angiostatin and isthmin but also their anti-angiogenic and pro-apoptotic functions. Hence, this study reveals a previously unrealized endosomal protein trafficking pathway from LE to Mito that allows extracellular proteins to reach mitochondria and execute apoptosis.

  7.  The role of metalloproteinases in modification of extracellular matrix in invasive tumor growth, metastasis and angiogenesis

    Directory of Open Access Journals (Sweden)

    Krzysztof Fink

    2012-09-01

    Full Text Available Extracellular matrix metalloproteinases (MMPs are a family of endopeptydases which recquire a zinc ion at their active site, for proteolityc activity. There are six members of the MMP family: matrilysins, collagenases, stromelysins, gelatinases, membrane MMPs and other MMPs. Activity of MMPs is regulated at the level of gene transcription, mRNA stability, zymogene proteolitic activation, inhibition of an active enzyme and MMP degradation. Tissue inhibitors of metalloproteinases (TIMPs are main intracellular inhibitors of MMPs. Host cells can be stimulated by tumor cells to produce MMPs by secreted interleukins, interferons, growth factors and an extracellular matrix metalloproteinase inducer (EMMPRIN. MMPs are produced by tumor cells, fibroblasts, macrophages, mast cells, polimorphonuclear neutrophiles (PMNs and endothelial cells (ECs. MMPs affect many stages of tumor development, facilitating its growth through promoting tumor cells proliferation, invasion and migration, new blood vessels formation and blocking tumor cells apoptosis. MMPs can promote tumor development in several ways. ECM degradation results in release of peptide growth factors. Growth factors linked with cell surface or binding proteins can also be liberated by MMPs. MMPs can indirectly regulate integrin signalling or cleave E-cadherins, facilitating cell migration. MMPs support metastasis inducing an epithelial to mesenchymal transition (EMT. MMP also support transendothelial migration. MMPs support angiogenesis by releasing pro-angiogenic factors and degrading ECM to support ECs migration. Cell surface growth factor receptors are also cleaved by MMPs, which results in inhibition of tumor development, so is release of anti-angiogenic factors from ECM. 

  8. Factors controlling alkalisalt deposition in recovery boiler- release mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    McKeough, P.; Kylloenen, H.; Kurkela, M. [VTT Energy, Espoo (Finland). Process Technology Group

    1996-12-01

    As part of a cooperative effort to develop a model to describe the behaviour of inorganic compounds in kraft recovery boilers, an experimental investigation of the release of sulphur during black liquor pyrolysis has been undertaken. Previous to these studies, the mechanisms of sulphur release and the reasons for the observed effects of process conditions on sulphur release were very poorly understood. On the basis of the experimental results, the main reactions leading to sulphur release have been elucidated with a fair degree of certainty. Logical explanations for the variations of sulphur release with temperature and with liquor solids content have been proposed. The influence of pressure has been investigated in order to gain insights into the effects of mass transfer on the sulphur-release rate. In the near future, the research will be aimed at generating the kinetic data necessary for modelling the release of sulphur in the recovery furnace. (author)

  9. Controlled copper ion release from phosphate-based glasses improves human umbilical vein endothelial cell survival in a reduced nutrient environment.

    Science.gov (United States)

    Stähli, Christoph; Muja, Naser; Nazhat, Showan N

    2013-02-01

    The success of tissue engineering is dependent on rapid scaffold vascularization after engraftment. Copper ions are well known to be angiogenic but exhibit cytotoxicity at elevated doses. The high sensitivity to copper concentration underlines the need of a controlled release mechanism. This study investigated the effect of copper ions released from phosphate-based glasses (PGs) on human umbilical vein endothelial cells (HUVECs) under standard growth conditions (SGC), as well as in a reduced nutrient environment (RNE) with decreased bovine serum and growth factor concentrations to approximate conditions in the core of large volume scaffolds where nutrient diffusion is limited. Initially, HUVECs were exposed to a range of CuCl(2) concentrations in order to identify an optimal response in terms of their metabolism, viability, and apoptotic activity. Under SGC, HUVEC metabolic activity and viability were reduced in a dose-dependent manner in the presence of 0.44-12 ppm Cu(2+). In contrast, HUVEC death induced by the RNE was delayed by an optimal dose of 4 ppm Cu(2+), which was associated with a down-regulation of apoptosis as evidenced by caspase-3/7 activity. Copper ion release from soluble PGs of the formulation 50P(2)O(5)-30CaO-(20-x)Na(2)O-xCuO [mol%] (x=0, 1, 5 and 10) demonstrated a controllable increase with CuO content. The presence of 4 ppm copper ions released from the 10% CuO PG composition reproduced the delay in HUVEC death in the RNE, suggesting the potential of these materials to extend survival of transplanted endothelial cells in large volume scaffolds.

  10. K20E, an oxidative-coupling compound of methyl caffeate, exhibits anti-angiogenic activities through down-regulations of VEGF and VEGF receptor-2

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Chun-Hsu [Department of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan (China); Lin, Wen-Hsin; Chien, Yi-Chung; Liu, Fon-Chang; Sheu, Ming-Jyh [School of Pharmacy, China Medical University, Taichung 40402, Taiwan (China); Kuo, Yueh-Hsiung, E-mail: kuoyh@mail.cmu.edu.tw [Tsuzuki Institute for Traditional Medicine, China Medical University, Taichung 40402, Taiwan (China); Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan (China); Department of Biotechnology, Asia University, Taichung 41354, Taiwan (China); Wu, Chieh-Hsi, E-mail: chhswu@tmu.edu.tw [Department of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan (China); School of Pharmacy, China Medical University, Taichung 40402, Taiwan (China); Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan (China)

    2015-01-15

    Anti-angiogenesis is one of the most popular clinical interventions for cancer chemotherapy. A series of synthesized derivative of methyl caffeate were used to evaluate the anti-angiogenic activity and to investigate possible pharmacological mechanisms in the present study. The most potent anti-angiogenic compound was evaluated in the experiments of murine allograft tumor model and Matrigel plug assay as well as cell models in the human umbilical vascular endothelial cells (HUVECs) and the LLC1 lung cancer cells. Our results suggested that K20E suppressed the tumor growth in the allograft tumor model and exhibited anti-angiogenic activity in Matrigel plug assay. Besides, HUVEC viability was found to be significantly reduced by arresting cell cycle at G{sub 2}/M phase and apoptosis. Cell migration, invasion, and tube formation of the HUVECs were also markedly suppressed by K20E treatment. K20E largely down-regulated the intracellular and secreted vascular endothelial growth factor (VEGF) in the LLC1 cancer cells. Besides, VEGF receptor-2 (VEGFR-2) and its downstream signaling cascades (AKT-mTOR and MEK1/2-ERK1/2) as well as gelatinases were all evidently reduced in the HUVECs treated with K20E. Inversely, K20E can up-regulate the expression levels of p53 and p21 proteins in the HUVECs. Based on these results, our study suggested that K20E possessed inhibiting angiogenesis through regulation of VEGF/VEGFR-2 and its downstream signaling cascades in the vascular endothelial cells (VECs). - Highlights: • K20E is an oxidative-coupling compound of methyl caffeate. • K20E exhibits anti-tumor and anti-angiogenesis effects. • K20E suppresses the expressions of VEGF and VEGF receptor-2 (VEGFR-2) proteins. • K20E deactivates VEGFR-2-mediated downstream signaling pathways to inhibit angiogenesis. • K20E up-regulates p53-p21 pathway to induce apoptosis and cell arrest at G2/M phase.

  11. Zinc-chelation contributes to the anti-angiogenic effect of ellagic acid on inhibiting MMP-2 activity, cell migration and tube formation.

    Directory of Open Access Journals (Sweden)

    Sheng-Teng Huang

    Full Text Available BACKGROUND: Ellagic acid (EA, a dietary polyphenolic compound, has been demonstrated to exert anti-angiogenic effect but the detailed mechanism is not yet fully understood. The aim of this study was to investigate whether the zinc chelating activity of EA contributed to its anti-angiogenic effect. METHODS AND PRINCIPAL FINDINGS: The matrix metalloproteinases-2 (MMP-2 activity, a zinc-required reaction, was directly inhibited by EA as examined by gelatin zymography, which was reversed dose-dependently by adding zinc chloride. In addition, EA was demonstrated to inhibit the secretion of MMP-2 from human umbilical vein endothelial cells (HUVECs as analyzed by Western blot method, which was also reversed by the addition of zinc chloride. Reversion-inducing cysteine-rich protein with Kazal motifs (RECK, known to down-regulate the MMP-2 activity, was induced by EA at both the mRNA and protein levels which was correlated well with the inhibition of MMP-2 activity. Interestingly, zinc chloride could also abolish the increase of EA-induced RECK expression. The anti-angiogenic effect of EA was further confirmed to inhibit matrix-induced tube formation of endothelial cells. The migration of endothelial cells as analyzed by transwell filter assay was suppressed markedly by EA dose-dependently as well. Zinc chloride could reverse these two effects of EA also in a dose-dependent manner. Since magnesium chloride or calcium chloride could not reverse the inhibitory effect of EA, zinc was found to be involved in tube formation and migration of vascular endothelial cells. CONCLUSIONS/SIGNIFICANCE: Together these results demonstrated that the zinc chelation of EA is involved in its anti-angiogenic effects by inhibiting MMP-2 activity, tube formation and cell migration of vascular endothelial cells. The role of zinc was confirmed to be important in the process of angiogenesis.

  12. Hypothalamic growth hormone releasing factor deficiency following cranial irradiation

    International Nuclear Information System (INIS)

    Ahmed, S.R.; Shalet, S.M.

    1984-01-01

    The effect of synthetic human pancreatic tumour GH releasing factor (hp GRF1-44) on GH release has been studied in 10 patients with radiation-induced GH deficiency and four normal subjects. All 10 patients showed subnormal GH responses to both an ITT (median peak GH 3.2 mU/1) and to arginine stimulation (median peak GH 2.9 mU/1), although the remainder of pituitary function was intact. Following an acute intravenous bolus (100 μg) of hp GRF1-44, there was no GH response in two patients and a subnormal but definite GH response in a further four. The remaining four patients showed a significant GH response (median peak GH level 29 mU/1; range 22-57 mU/1) to hp GRF1-44, similar in magnitude and timing to that seen in th four normals. This strongly suggests that in these four subjects, the discrepancy in GH responses to hp GRF1-44, ITT and to arginine was a result of radiation-induced hypothalamic damage leading to a deficiency of endogenous GRF. The availability of synthetic hp GRF capable of stimulating GH secretion means that the distinction between hypothalamic and pituitary causes of GH deficiency will be of considerable therapeutic importance in the future. (author)

  13. X-Ray structure and biophysical properties of rabbit fibroblast growth factor 1

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jihun; Blaber, Sachiko I.; Irsigler, Andre; Aspinwall, Eric; Blaber, Michael; (FSU)

    2010-01-14

    The rabbit is an important and de facto animal model in the study of ischemic disease and angiogenic therapy. Additionally, fibroblast growth factor 1 (FGF-1) is emerging as one of the most important growth factors for novel pro-angiogenic and pro-arteriogenic therapy. However, despite its significance, the fundamental biophysical properties of rabbit FGF-1, including its X-ray structure, have never been reported. Here, the cloning, crystallization, X-ray structure and determination of the biophysical properties of rabbit FGF-1 are described. The X-ray structure shows that the amino-acid differences between human and rabbit FGF-1 are solvent-exposed and therefore potentially immunogenic, while the biophysical studies identify differences in thermostability and receptor-binding affinity that distinguish rabbit FGF-1 from human FGF-1.

  14. Effect of centrifugation time on growth factor and MMP release of an experimental platelet-rich fibrin-type product.

    Science.gov (United States)

    Eren, Gülnihal; Gürkan, Ali; Atmaca, Harika; Dönmez, Ayhan; Atilla, Gül

    2016-07-01

    Platelet-rich fibrin (PRF) has a controlled release of growth factors due to the fibrin matrix structure. Different centrifugation protocols were suggested for PRF preparation. Since the derivation method of PRF can alter its contents, in the present study it is aimed to investigate the cell contents and transforming growth factor beta-1 (TGF-β1), platelet-derived growth factor (PDGF-AB), vascular endothelial growth factor (VEGF), matrix metalloproteinase (MMP)-1 and-8 release from experimental PRF-type membranes obtained with different centrifugation times at 400 gravity. Three blood samples were collected from 20 healthy non-smoker volunteers. One tube was used for whole blood analyses. The other two tubes were centrifuged at 400 g for 10 minutes (group A) or 12 minutes (group B). Each experimental PRF-type membrane was placed in Dulbecco's Modified Eagle's Medium (DMEM)and at 1, 24 and 72 hours, TGF-β1, PDGF-AB, VEGF, MMP-1 and -8 release amounts were analysed by enzyme-linked immunosorbent assay (ELISA). The blood cell count of membranes was determined by subtracting plasma supernatant and red blood cell (RBC) mixture from the whole blood cell counts. At 72 hours, the VEGF level of group B was statistically higher than that of group A (p = 0.040). The centrifugation time was not found to influence the release of other growth factors, enzymes and cell counts. Within the limits of the present study, it might be suggested that centrifugation time at a constant gravity has a significant effect on the VEGF levels released from experimental PRF-type membrane. It can be concluded that due to the importance of VEGF in the tissue healing process, membranes obtained at 12-minute centrifugation time may show a superior potential in wound healing.

  15. A ternary-complex of a suicide gene, a RAGE-binding peptide, and polyethylenimine as a gene delivery system with anti-tumor and anti-angiogenic dual effects in glioblastoma.

    Science.gov (United States)

    Choi, Eunji; Oh, Jungju; Lee, Dahee; Lee, Jaewon; Tan, Xiaonan; Kim, Minkyung; Kim, Gyeungyun; Piao, Chunxian; Lee, Minhyung

    2018-04-13

    The receptor for advanced glycation end-products (RAGE) is involved in tumor angiogenesis. Inhibition of RAGE might be an effective anti-angiogenic therapy for cancer. In this study, a cationic RAGE-binding peptide (RBP) was produced as an antagonist of RAGE, and a ternary-complex consisting of RBP, polyethylenimine (2 kDa, PEI2k), and a suicide gene (pHSVtk) was developed as a gene delivery system with dual functions: the anti-tumor effect of pHSVtk and anti-angiogenic effect of RBP. As an antagonist of RAGE, RBP decreased the secretion of vascular-endothelial growth factor (VEGF) in activated macrophages and reduced the tube-formation of endothelial cells in vitro. In in vitro transfection assays, the RBP/PEI2k/plasmid DNA (pDNA) ternary-complex had higher transfection efficiency than the PEI2k/pDNA binary-complex. In an intracranial glioblastoma animal model, the RBP/PEI2k/pHSVtk ternary-complex reduced α-smooth muscle actin expression, suggesting that the complex has an anti-angiogenic effect. In addition, the ternary-complex had higher pHSVtk delivery efficiency than the PEI2k/pHSVtk and PEI25k/pHSVtk binary-complexes in an animal model. As a result, the ternary-complex induced apoptosis and reduced tumor volume more effectively than the PEI2k/pHSVtk and PEI25k/pHSVtk binary-complexes. In conclusion, due to its dual anti-tumor and anti-angiogenesis effects, the RBP/PEI2k/pHSVtk ternary-complex might be an efficient gene delivery system for the treatment of glioblastoma. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Effect of trehalose coating on basic fibroblast growth factor release from tailor-made bone implants.

    Science.gov (United States)

    Choi, Sungjin; Lee, Jongil; Igawa, Kazuyo; Suzuki, Shigeki; Mochizuki, Manabu; Nishimura, Ryohei; Chung, Ung-il; Sasaki, Nobuo

    2011-12-01

    Artificial bone implants are often incorporated with osteoinductive factors to facilitate early bone regeneration. Calcium phosphate, the main component in artificial bone implants, strongly binds these factors, and in a few cases, the incorporated proteins are not released from the implant under conditions of physiological pH, thereby leading to reduction in their osteoinductivity. In this study, we coated tailor-made bone implants with trehalose to facilitate the release of basic fibroblast growth factor (bFGF). In an in vitro study, mouse osteoblastic cells were separately cultured for 48 hr in a medium with a untreated implant (T-), trehalose-coated implant (T+), bFGF-incorporated implant (FT-), and bFGF-incorporated implant with trehalose coating (FT+). In the FT+ group, cell viability was significantly higher than that in the other groups (Pbone implant without affecting the crystallinity or the mechanical strength of the artificial bone implant. These results suggest that coating artificial bone implants with trehalose could limit the binding of bFGF to calcium phosphate.

  17. Releasing growth factors from activated human platelets after chitosan stimulation: a possible bio-material for platelet-rich plasma preparation.

    Science.gov (United States)

    Shen, E-Chin; Chou, Tz-Chong; Gau, Ching-Hwa; Tu, Hsiao-Pei; Chen, Yen-Teen; Fu, Earl

    2006-10-01

    Thrombin is commonly used for activating the platelets and releasing the growth factors on the application of platelet-rich plasma (PRP). We have previously reported that chitosan can enhance rabbit platelet aggregation. In this study, the effects of chitosan on the subsequent growth factors release after human platelets activation were examined to evaluate the possibility of chitosan being used as a substitute for thrombin during PRP preparation. Human platelet activation was determined by aggregation, adhesion and alpha-granule membrane glycoprotein expression. Platelet aggregation was measured by the turbidimetric method, the adhesion was directly examined on chitosan-coated glass plates under light microscope and scanning electron microscope (SEM), and the alpha-granule membrane glycoprotein was detected by fluorescent isothiocyanate (FITC)-conjugated anti-CD61 antibody through flow cytometry. The subsequent epidermal growth factor (EGF), platelet-derived growth factor (PDGF)-AB and transforming growth factor (TGF)-beta1 release from platelets were assayed by ELISA after mixing with chitosan. The enhancing effects on the platelet adhesion and the aggregation from chitosan were observed. Under both microscopes, the adhesive platelets on the chitosan-coated plates were not only greater in number but also earlier in activation than those on the control plates. With flow cytometry, increased glycoprotein IIIa expression in platelets was detected after chitosan treatment. Greater concentrations of growth factors were measured from PRP after chitosan treatment than after the solvent treatment. Because of the observations of growth factors releasing from activated human platelets after chitosan stimulation, we suggest that chitosan may be an appropriate substitute for thrombin in PRP preparation.

  18. The effect of glutathione as chain transfer agent in PNIPAAm-based thermo-responsive hydrogels for controlled release of proteins.

    Science.gov (United States)

    Drapala, Pawel W; Jiang, Bin; Chiu, Yu-Chieh; Mieler, William F; Brey, Eric M; Kang-Mieler, Jennifer J; Pérez-Luna, Victor H

    2014-03-01

    To control degradation and protein release using thermo-responsive hydrogels for localized delivery of anti-angiogenic proteins. Thermo-responsive hydrogels derived from N-isopropylacrylamide (NIPAAm) and crosslinked with poly(ethylene glycol)-co-(L-lactic acid) diacrylate (Acry-PLLA-b-PEG-b-PLLA-Acry) were synthesized via free radical polymerization in the presence of glutathione, a chain transfer agent (CTA) added to modulate their degradation and release properties. Immunoglobulin G (IgG) and the recombinant proteins Avastin® and Lucentis® were encapsulated in these hydrogels and their release was studied. The encapsulation efficiency of IgG was high (75-87%) and decreased with CTA concentration. The transition temperature of these hydrogels was below physiological temperature, which is important for minimally invasive therapies involving these materials. The toxicity from unreacted monomers and free radical initiators was eliminated with a minimum of three buffer extractions. Addition of CTA accelerated degradation and resulted in complete protein release. Glutathione caused the degradation products to become solubilized even at 37°C. Hydrogels prepared without glutathione did not disintegrate nor released protein completely after 3 weeks at 37°C. PEGylation of IgG postponed the burst release effect. Avastin® and Lucentis® released from degraded hydrogels retained their biological activity. These systems offer a promising platform for the localized delivery of proteins.

  19. Outrage Factors in Government Press Releases of Food Risk and Their Influence on News Media Coverage.

    Science.gov (United States)

    Ju, Youngkee; Lim, Jeongsub; Shim, Minsun; You, Myoungsoon

    2015-08-01

    An appropriate level of risk perception should be a critical issue in modern "risk society." There have been many studies on the influences on risk perception. This study investigates whether risk communication scholar Dr. Peter Sandman's outrage factors intensify journalistic attention to health risks from food consumption. A content analysis of a health institution's press releases was conducted to examine 15 outrage factors of food risks conveyed in the governmental risk communication. In addition, the news stories covering the food risks informed by the press releases were calculated to evaluate the relation between outrage factors of a risk and the number of news stories covering the risk. Results showed that controllability was the most salient outrage factor, followed by trust, voluntariness, familiarity, and human origin; the greater the outrage score of a risk, the more news stories of the risk. For individual outrage factors, a risk with an implication of catastrophic potential was associated with an increase of news stories. Food providers' distrustful behaviors also influenced journalistic attention to the food risks. The implication of the findings to health message designers is discussed.

  20. Biochemical study on some tumour angiogenesis factors and inhibitors in breast cancer

    International Nuclear Information System (INIS)

    Mohamed, N.M.E

    2007-01-01

    This pilot study was undertaken to investigate the significance of some tumour angiogenic factors (e.g. MMP, ADAM-12 and VEGF) and tumour angiogenic inhibitors (endostatin and TIMP-1) in the aetiology of breast cancer and their responsiveness to cancer treatment as well . We also sought to assess the significance of these angiogenic and antiangiogenic factors in the prognosis and diagnosis of breast cancer. The cases were allocated into five groups: Normal control group (Gr.l), fibroadenoma (Gr.l l), breast cancer (invasive duct carcinoma type grade l l) (Gr.lll) , breast cancer + chemo hormonal therapy (Gr.IV), and breast cancer + chemo hormonal and radiotherapy (Gr.V).Results obtained from this study reported absence of matrix metalloproteinase-9 (MMP-9)activity in the urine and serum of normal subjects and fibroadenoma patients and its significant depression in the urine and serum of breast cancer patients treated with chemo hormonal therapy alone or followed by radiotherapy, compared to breast cancer group as reference. A significantly mild elevation in urinary MMP-2 activity and a non significant change in its activity in the serum of fibroadenoma patients, compared to the dramatic rise in the urine and serum of breast cancer patients were observed

  1. Effects of "vitex agnus castus" extract and magnesium supplementation, alone and in combination, on osteogenic and angiogenic factors and fracture healing in women with long bone fracture.

    Science.gov (United States)

    Eftekhari, Mohammad Hassan; Rostami, Zahra Hassanzadeh; Emami, Mohammad Jafar; Tabatabaee, Hamid Reza

    2014-01-01

    The purpose of this study was to investigate the effects of the combination of vitex agnus castus extract, as a source of phytoestrogens, plus magnesium supplementation on osteogenic and angiogenic factors and callus formation in women with long bone fracture. In a double-blind randomized placebo controlled trial, 64 women with long bone fracture, 20-45 years old, were randomly allocated to receive 1) one Agnugol tablet (4 mg dried fruit extract of vitex agnus castus) plus 250 mg magnesium oxide (VAC + Mg group (n = 10)), 2) one Agnugol tablet plus placebo (VAC group (n = 15)), 3) placebo plus 250 mg magnesium oxide (Mg group (n = 12)), or 4) placebo plus placebo (placebo group (n = 14)) per day for 8 weeks. At baseline and endpoint of the trial, serum alkaline phosphatase, osteocalcin, and vascular endothelial growth factor (VEGF) were measured together with radiological bone assessment. There were no significant differences in the characteristic aspects of concern between the four groups at baseline. Despite the increased level of alkaline phosphatase in the VAC group (188.33 ± 16.27 to 240.40 ± 21.49, P = 0.05), administration of VAC + Mg could not increase alkaline phosphatase activity. However, treatment with VAC + Mg significantly enhanced the osteocalcin level. The serum concentration of VEGF was increased in the VAC group (269.04 ± 116.63 to 640.03 ± 240.16, P vitex agnus castus plus magnesium may promote fracture healing. However, more studies need to further explore the roles of vitex agnus castus in fracture repair processes.

  2. Factors influencing immediate post-release survival of spectacled eiders following surgical implantation of transmitters with percutaneous antennae

    Science.gov (United States)

    Sexson, Matthew G.; Mulcahy, Daniel M.; Spriggs, Maria; Myers, Gwen E.

    2014-01-01

    Surgically implanted transmitters are a common method for tracking animal movements. Immediately following surgical implantation, animals pass through a critical recovery phase when behaviors may deviate from normal and the likelihood of individual survival may be reduced. Therefore, data collected during this period may be censored to minimize bias introduced by surgery-related behaviors or mortality. However, immediate post-release mortalities negate a sampling effort and reduce the amount of data potentially collected after the censoring period. Wildlife biologists should employ methods to support an animal’s survival through this period, but factors contributing to immediate post-release survival have not been formally assessed. We evaluated factors that potentially influenced the immediate post-release survival of 56 spectacled eiders (Somateria fischeri) marked with coelomically implanted satellite transmitters with percutaneous antennae in northern Alaska in 2010 and 2011. We modeled survival through the first 14 days following release and assessed the relative importance and effect of 15 covariates hypothesized to influence survival during this immediate post-release period. Estimated daily survival rate increased over the duration of the immediate post-release period; the probability of mortality was greatest within the first 5 days following release. Our top-ranking model included the effect of 2 blood analytes, pH and hematocrit, measured prior to surgical implantation of a transmitter. We found a positive response to pH; eiders exhibiting acidemia (low pH) prior to surgery were less likely to survive the immediate post-release period. We found a curvilinear response to hematocrit; eiders exhibiting extremely low or high pre-surgery hematocrit were also less likely to survive the immediate post-release period. In the interest of maximizing the survival of marked birds following release, hematological data obtained prior to surgical implantation of

  3. Low-molecular-weight organoiodine and organobromine compounds released by polar macroalgae--the influence of abiotic factors.

    Science.gov (United States)

    Laturnus, F; Giese, B; Wiencke, C; Adams, F C

    2000-01-01

    The influence of temperature, light, salinity and nutrient availability on the release of volatile halogenated hydrocarbons was investigated in the Antarctic red macroalgal species Gymnogongrus antarcticus Skottsberg. Compared to standard culture condition, an increase in the release rates of iodocompounds was generally found for the exposure of the alga to altered environmental conditions. Macroalgae exhibited higher release rates after adaptation for two months to the changed factors, than after short-term exposure. Monitoring the release rates during a 24 h incubation period (8.25 h light, 15.75 h darkness) showed that changes between light and dark periods had no influence on the release of volatile halocarbons. Compounds like bromoform and 1-iodobutane exhibited constant release rates during the 24 h period. The formation mechanisms and biological role of volatile organohalogens are discussed. Although marine macroalgae are not considered to be the major source of biogenically-produced volatile organohalogens, they contribute significantly to the bromine and iodine cycles in the environment. Under possible environmental changes like global warming and uncontrolled entrophication of the oceans their significance may be increase.

  4. Barrier and operational risk analysis of hydrocarbon releases (BORA-Release)

    International Nuclear Information System (INIS)

    Sklet, Snorre; Vinnem, Jan Erik; Aven, Terje

    2006-01-01

    This paper presents results from a case study carried out on an offshore oil and gas production platform with the purpose to apply and test BORA-Release, a method for barrier and operational risk analysis of hydrocarbon releases. A description of the BORA-Release method is given in Part I of the paper. BORA-Release is applied to express the platform specific hydrocarbon release frequencies for three release scenarios for selected systems and activities on the platform. The case study demonstrated that the BORA-Release method is a useful tool for analysing the effect on the release frequency of safety barriers introduced to prevent hydrocarbon releases, and to study the effect on the barrier performance of platform specific conditions of technical, human, operational, and organisational risk influencing factors (RIFs). BORA-Release may also be used to analyse the effect on the release frequency of risk reducing measures

  5. Hypoxia-induced mitogenic factor enhances angiogenesis by promoting proliferation and migration of endothelial cells

    International Nuclear Information System (INIS)

    Tong Qiangsong; Zheng Liduan; Li Bo; Wang Danming; Huang Chuanshu; Matuschak, George M.; Li Dechun

    2006-01-01

    Our previous studies have indicated that hypoxia-induced mitogenic factor (HIMF) has angiogenic properties in an in vivo matrigel plug model and HIMF upregulates expression of vascular endothelial growth factor (VEGF) in mouse lungs and cultured lung epithelial cells. However, whether HIMF exerts angiogenic effects through modulating endothelial cell function remains unknown. In this study, mouse aortic rings cultured with recombinant HIMF protein resulted in enhanced vascular sprouting and increased endothelial cell spreading as confirmed by Dil-Ac-LDL uptake, von Willebrand factor and CD31 staining. In cultured mouse endothelial cell line SVEC 4-10, HIMF dose-dependently enhanced cell proliferation, in vitro migration and tubulogenesis, which was not attenuated by SU1498, a VEGFR2/Flk-1 receptor tyrosine kinase inhibitor. Moreover, HIMF stimulation resulted in phosphorylation of Akt, p38 and ERK1/2 kinases in SVEC 4-10 cells. Treatment of mouse aortic rings and SVEC 4-10 cells with LY294002, but not SB203580, PD098059 or U0126, abolished HIMF-induced vascular sprouting and angiogenic responses. In addition, transfection of a dominant-negative mutant of phosphatidylinositol 3-kinase (PI-3K), Δp85, blocked HIMF-induced phosphorylation of Akt, endothelial activation and tubulogenesis. These results indicate that HIMF enhances angiogenesis by promoting proliferation and migration of endothelial cells via activation of the PI-3K/Akt pathways

  6. Factors affecting release of ethanol vapour in active modified atmosphere packaging systems for horticultural products

    Directory of Open Access Journals (Sweden)

    Weerawate Utto

    2014-04-01

    Full Text Available The active modified atmosphere packaging (active MAP system , which provides interactive postharvest control , using ethanol vapour controlled release, is one of the current interests in the development of active packaging for horticultural products. A number of published research work have discussed the relationship between the effectiveness of ethanol vapour and its concentration in the package headspace, including its effect on postharvest decay and physiological controls. This is of importance because a controlled release system should release and maintain ethanol vapour at effective concentrations during the desired storage period. A balance among the mass transfer processes of ethanol vapour in the package results in ethanol vapour accumulation in the package headspace. Key factors affecting these processes include ethanol loading, packaging material, packaged product and storage environment (temperature and relative h umidity. This article reviews their influences and discusses future work required to better understand their influences on ethanol vapour release and accumulations in active MAP.

  7. VEGFR2 heterogeneity and response to anti-angiogenic low dose metronomic cyclophosphamide treatment

    Directory of Open Access Journals (Sweden)

    Skowronski Karolina

    2010-12-01

    Full Text Available Abstract Background Targeting tumor vasculature is a strategy with great promise in the treatment of many cancers. However, anti-angiogenic reagents that target VEGF/VEGFR2 signaling have met with variable results clinically. Among the possible reasons for this may be heterogeneous expression of the target protein. Methods Double immunofluorescent staining was performed on formalin-fixed paraffin embedded sections of treated and control SW480 (colorectal and WM239 (melanoma xenografts, and tissue microarrays of human colorectal carcinoma and melanoma. Xenografts were developed using RAG1-/- mice by injection with WM239 or SW480 cells and mice were treated with 20 mg/kg/day of cyclophosphamide in their drinking water for up to 18 days. Treated and control tissues were characterized by double immunofluorescence using the mural cell marker α-SMA and CD31, while the ratio of desmin/CD31 was also determined by western blot. Hypoxia in treated and control tissues were quantified using both western blotting for HIF-1α and immunohistochemistry of CA-IX. Results VEGFR2 is heterogeneously expressed in tumor vasculature in both malignant melanoma and colorectal carcinoma. We observed a significant decrease in microvascular density (MVD in response to low dose metronomic cyclophosphamide chemotherapy in both malignant melanoma (with higher proportion VEGFR2 positive blood vessels; 93% and colorectal carcinoma (with lower proportion VEGFR2 positive blood vessels; 60% xenografts. This reduction in MVD occurred in the absence of a significant anti-tumor effect. We also observed less hypoxia in treated melanoma xenografts, despite successful anti-angiogenic blockade, but no change in hypoxia of colorectal xenografts, suggesting that decreases in tumor hypoxia reflect a complex relationship with vascular density. Based on α-SMA staining and the ratio of desmin to CD31 expression as markers of tumor blood vessel functionality, we found evidence for increased

  8. Biomaterial-based drug delivery systems for the controlled release of neurotrophic factors

    International Nuclear Information System (INIS)

    Mohtaram, Nima Khadem; Montgomery, Amy; Willerth, Stephanie M

    2013-01-01

    This review highlights recent work on the use of biomaterial-based drug delivery systems to control the release of neurotrophic factors as a potential strategy for the treatment of neurological disorders. Examples of neurotrophic factors include the nerve growth factor, the glial cell line-derived neurotrophic factor, the brain-derived neurotrophic factor and neurotrophin-3. In particular, this review focuses on two methods of drug delivery: affinity-based and reservoir-based systems. We review the advantages and challenges associated with both types of drug delivery system and how these systems can be applied to neurological diseases and disorders. While a limited number of affinity-based delivery systems have been developed for the delivery of neurotrophic factors, we also examine the broad spectrum of reservoir-based delivery systems, including microspheres, electrospun nanofibers, hydrogels and combinations of these systems. Finally, conclusions are drawn about the current state of such drug delivery systems as applied to neural tissue engineering along with some thoughts on the future direction of the field. (topical review)

  9. Arabidopsis MAP Kinase 4 regulates gene expression via transcription factor release in the nucleus

    DEFF Research Database (Denmark)

    Qiu, Jin-Long; Fiil, Berthe Katrine; Petersen, Klaus

    2008-01-01

    kinase 4 (MPK4) exists in nuclear complexes with the WRKY33 transcription factor. This complex depends on the MPK4 substrate MKS1. Challenge with Pseudomonas syringae or flagellin leads to the activation of MPK4 and phosphorylation of MKS1. Subsequently, complexes with MKS1 and WRKY33 are released from...... MPK4, and WRKY33 targets the promoter of PHYTOALEXIN DEFICIENT3 (PAD3) encoding an enzyme required for the synthesis of antimicrobial camalexin. Hence, wrky33 mutants are impaired in the accumulation of PAD3 mRNA and camalexin production upon infection. That WRKY33 is an effector of MPK4 is further...... supported by the suppression of PAD3 expression in mpk4-wrky33 double mutant backgrounds. Our data establish direct links between MPK4 and innate immunity and provide an example of how a plant MAP kinase can regulate gene expression by releasing transcription factors in the nucleus upon activation....

  10. Synergistic effect of anti-angiogenic herbal composition (Meta-X) in combination with radiotherapy on the inhibition of tumor growth

    International Nuclear Information System (INIS)

    Han, Young Soo; Song, Jie Young; Yoon, Yeon Sook; Kim, Joon Sik; Park, Byung Young; Lee, Hee Suk; Kim, Min Yung

    2004-01-01

    Anti-angiogenic composition called Meta-X was made from herbal medicines that are currently used oral drugs for other indications. We examined biochemical properties of Meta-X, and synergistic effect of Meta-X combined with irradiation on the inhibition of tumor growth

  11. Synergistic effect of anti-angiogenic herbal composition (Meta-X) in combination with radiotherapy on the inhibition of tumor growth

    Energy Technology Data Exchange (ETDEWEB)

    Han, Young Soo; Song, Jie Young; Yoon, Yeon Sook [Korea Institute of Radilolgical and Medical Science, Seoul (Korea, Republic of); Kim, Joon Sik; Park, Byung Young; Lee, Hee Suk; Kim, Min Yung [AngioLab, Seoul (Korea, Republic of)

    2004-07-01

    Anti-angiogenic composition called Meta-X was made from herbal medicines that are currently used oral drugs for other indications. We examined biochemical properties of Meta-X, and synergistic effect of Meta-X combined with irradiation on the inhibition of tumor growth.

  12. Effects of anti-aggregant, anti-inflammatory and anti-coagulant drug consumption on the preparation and therapeutic potential of plasma rich in growth factors (PRGF).

    Science.gov (United States)

    Anitua, Eduardo; Troya, María; Zalduendo, Mar; Orive, Gorka

    2015-02-01

    The prevalence and incidence of trauma-related injuries, coronary heart disease and other chronic diseases increase dramatically with age. This population sector is therefore a regular consumer of different types of drugs that may affect platelet aggregation and the coagulation cascade. We have evaluated whether the consumption of acetylsalicylic acid, acenocoumarol, glucosamine sulfate and chondroitin sulfate, and therefore their presence in blood, could interfere with the preparation and biological outcomes of plasma rich in growth factors (PRGF). Clotting time, clot retraction and platelet activation of PRGF was evaluated. PRGF growth factor content and the release of different biomolecules by tendon fibroblasts were also quantified, as well as cell proliferation and cell migration. The preparation and biological potential of PRGF is not affected by the intake of the evaluated drugs, and solely its angiogenic potential and its capacity to induce HA and fibronectin synthesis, is reduced in patients taking anti-coagulants.

  13. Anti-inflammatory drugs for Duchenne muscular dystrophy: focus on skeletal muscle-releasing factors

    Directory of Open Access Journals (Sweden)

    Miyatake S

    2016-08-01

    Full Text Available Shouta Miyatake,1 Yuko Shimizu-Motohashi,2 Shin’ichi Takeda,1 Yoshitsugu Aoki1 1Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan; 2Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan Abstract: Duchenne muscular dystrophy (DMD, an incurable and a progressive muscle wasting disease, is caused by the absence of dystrophin protein, leading to recurrent muscle fiber damage during contraction. The inflammatory response to fiber damage is a compelling candidate mechanism for disease exacerbation. The only established pharmacological treatment for DMD is corticosteroids to suppress muscle inflammation, however this treatment is limited by its insufficient therapeutic efficacy and considerable side effects. Recent reports show the therapeutic potential of inhibiting or enhancing pro- or anti-inflammatory factors released from DMD skeletal muscles, resulting in significant recovery from muscle atrophy and dysfunction. We discuss and review the recent findings of DMD inflammation and opportunities for drug development targeting specific releasing factors from skeletal muscles. It has been speculated that nonsteroidal anti-inflammatory drugs targeting specific inflammatory factors are more effective and have less side effects for DMD compared with steroidal drugs. For example, calcium channels, reactive oxygen species, and nuclear factor-κB signaling factors are the most promising targets as master regulators of inflammatory response in DMD skeletal muscles. If they are combined with an oligonucleotide-based exon skipping therapy to restore dystrophin expression, the anti-inflammatory drug therapies may address the present therapeutic limitation of low efficiency for DMD. Keywords: calcium channels, ryanodine receptor 1, exon skipping, NF-κB, myokine, ROS

  14. Immunochemical determination of cellular content of translation release factor RF4 in Escherichia coli

    DEFF Research Database (Denmark)

    Andersen, Lars Dyrskjøt; Manuel Palacios Moreno, Juan; Clark, Brian F. C.

    1999-01-01

    of the stop codons, and RF3 is known to accelerate the overall termination process. Release factor RF4 is a protein involved in the release of the mRNA and tRNA from the ribosomal complex. Furthermore, RF4 is involved in the proofreading in the elongation step of protein biosynthesis. The cellular contents...... of RF1, RF2, and RF3 were determined earlier. Here we report the cellular content of RF4 in Escherichia coli to be approximately 16,500 molecules per cell. The cells were grown in a rich medium and harvested in the beginning of the exponential growth phase. The quantifications were performed by using...

  15. Aerosol release factor for Pu as a consequence of an ion exchange resin fire in the process cell of a fuel reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Bhanti, D.P.; Malvankar, S.V.; Kotrappa, P.; Somasundaram, S.; Raghunath, B.; Curtay, A.M.

    1988-12-01

    One of the upper limit accidents usually considered in the safety analysis of a fuel reprocessing plant is an accidental explosion, followed by a fire, of an ion exchange column containing resin loaded with large quantities of plutonium. In such accidents, a certain fraction (release factor) of Pu is released in the form of an aerosol into the ventilation system, and finally to the environment through HEPA filters and the stack. The present study was undertaken to determine the aerosol release factor for Pu in the process cell of a typical fuel reprocessing plant. Geometrically similar scaled-down models of three different sizes were built, and suitably scaled-down quantities of resin loaded with thorium in nitric acid medium were burnt in these model cells. Thorium was used in place of Pu because of its physical and chemical similarities with Pu. The release factor was obtained by comparing the amount of Th in air with the total. The study also dealt with aerosol characteristics and kinematics of process of fire. The aerosol release factors for the three models were found to lie in the range 0.01-0.07%, and varied non-monotonically with model size. The analysis of scaled down results in conjunction with simplified aerosol modelling yielded the release factor for the actual cell conditions as 0.012% with an upper limit value of 0.1%. The particle size analysis based on Th-radioactivity and particle-mass indicated nonuniform tagging of Th to aerosol particles. These particles were irregularly shaped, but not as long chain-like aggregates. The study proposes, with a reasonable degree of conservatism, the release factor of 0.1% for such fires, and aerosol parameters, AMAD and sigma/sub g/, as 2 m and 2 respectively. However, for situations significantly different from the present one, the release factor of 1% recommended by the American National Standards Institute may be used with a greater degree of confidence in the light of the present work.

  16. Effects of Antiseptic Solutions Commonly Used in Dentistry on Bone Viability, Bone Morphology, and Release of Growth Factors.

    Science.gov (United States)

    Sawada, Kosaku; Fujioka-Kobayashi, Masako; Kobayashi, Eizaburo; Schaller, Benoit; Miron, Richard J

    2016-02-01

    Antiseptic solutions are commonly used in dentistry for a number of sterilization procedures, including harvesting of bone chips, irrigation of extraction sockets, and sterilization of osteonecrotic bone. Despite its widespread use, little information is available regarding the effects of various antiseptic solutions on bone cell viability, morphology, and the release of growth factors. The antiseptic solutions included 1) 0.5% povidone iodine (PI), 2) 0.2% chlorhexidine diguluconate (CHX), 3) 1% hydrogen peroxide (H2O2), and 4) 0.25% sodium hypochlorite (HYP). Bone samples collected from porcine mandibular cortical bone were rinsed in the antiseptic solutions for 10 minutes and assessed for cell viability using an MTS assay and protein release of transforming growth factor (TGF-β1), bone morphogenetic protein 2 (BMP2), vascular endothelial growth factor (VEGF), interleukin (IL)-1β, and receptor activator of nuclear factor κB ligand (RANKL) using an enzyme-linked immunosorbent assay at 15 minutes and 4 hours after rinsing. After antiseptic rinsing, changes to the surface protein content showed marked alterations, with an abundant protein layer remaining on CHX-rinsed bone samples. The amount of surface protein content gradually decreased in the following order: CHX, H2O2, PI, and HYP. A similar trend was also observed for the relative cell viability from within bone samples after rinsing, with up to 6 times more viable cells found in the CHX-rinsed bone samples than in the HYP- and PI-rinsed samples. An analysis of the growth factors found that both HYP and PI had significantly lower VEGF and TGF-β1 protein release from bone samples at 15 minutes and 4 hours after rinsing compared with CHX and H2O2. A similar trend was observed for RANKL and IL-1β protein release, although no change was observed for BMP2. The results from the present study have demonstrated that antiseptic solutions present with very different effects on bone samples after 10 minutes of

  17. In Vivo Assessment of Bone Regeneration in Alginate/Bone ECM Hydrogels with Incorporated Skeletal Stem Cells and Single Growth Factors

    Science.gov (United States)

    Gothard, David; Smith, Emma L.; Kanczler, Janos M.; Black, Cameron R.; Wells, Julia A.; Roberts, Carol A.; White, Lisa J.; Qutachi, Omar; Peto, Heather; Rashidi, Hassan; Rojo, Luis; Stevens, Molly M.; El Haj, Alicia J.; Rose, Felicity R. A. J.; Shakesheff, Kevin M.; Oreffo, Richard O. C.

    2015-01-01

    The current study has investigated the use of decellularised, demineralised bone extracellular matrix (ECM) hydrogel constructs for in vivo tissue mineralisation and bone formation. Stro-1-enriched human bone marrow stromal cells were incorporated together with select growth factors including VEGF, TGF-β3, BMP-2, PTHrP and VitD3, to augment bone formation, and mixed with alginate for structural support. Growth factors were delivered through fast (non-osteogenic factors) and slow (osteogenic factors) release PLGA microparticles. Constructs of 5 mm length were implanted in vivo for 28 days within mice. Dense tissue assessed by micro-CT correlated with histologically assessed mineralised bone formation in all constructs. Exogenous growth factor addition did not enhance bone formation further compared to alginate/bone ECM (ALG/ECM) hydrogels alone. UV irradiation reduced bone formation through degradation of intrinsic growth factors within the bone ECM component and possibly also ECM cross-linking. BMP-2 and VitD3 rescued osteogenic induction. ALG/ECM hydrogels appeared highly osteoinductive and delivery of angiogenic or chondrogenic growth factors led to altered bone formation. All constructs demonstrated extensive host tissue invasion and vascularisation aiding integration and implant longevity. The proposed hydrogel system functioned without the need for growth factor incorporation or an exogenous inducible cell source. Optimal growth factor concentrations and spatiotemporal release profiles require further assessment, as the bone ECM component may suffer batch variability between donor materials. In summary, ALG/ECM hydrogels provide a versatile biomaterial scaffold for utilisation within regenerative medicine which may be tailored, ultimately, to form the tissue of choice through incorporation of select growth factors. PMID:26675008

  18. Adenohypophysial changes in mice transgenic for human growth hormone-releasing factor

    DEFF Research Database (Denmark)

    Stefaneanu, L; Kovacs, K; Horvath, E

    1989-01-01

    The effect of protracted GH-releasing factor (GRF) stimulation on adenohypophysial morphology was investigated in six mice transgenic for human GRF (hGRF). All animals had significantly higher plasma levels of GH and GRF and greater body weights than controls. Eight-month-old mice were killed...... of their ultrastructural features, contained secretory granules heavily labeled for GH by immunogold technique; PRL labeling varied from cell to cell, with the predominance of a weak immunostaining and was colocalized with GH in secretory granules. These results indicate that chronic exposure to GRF excess leads...

  19. IFN-gamma Impairs Release of IL-8 by IL-1beta-stimulated A549 Lung Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Pfeilschifter Josef

    2008-09-01

    Full Text Available Abstract Background Production of interferon (IFN-γ is key to efficient anti-tumor immunity. The present study was set out to investigate effects of IFNγ on the release of the potent pro-angiogenic mediator IL-8 by human A549 lung carcinoma cells. Methods A549 cells were cultured and stimulated with interleukin (IL-1β alone or in combination with IFNγ. IL-8 production by these cells was analyzed with enzyme linked immuno sorbent assay (ELISA. mRNA-expression was analyzed by real-time PCR and RNase protection assay (RPA, respectively. Expression of inhibitor-κ Bα, cellular IL-8, and cyclooxygenase-2 was analyzed by Western blot analysis. Results Here we demonstrate that IFNγ efficiently reduced IL-8 secretion under the influence of IL-1β. Surprisingly, real-time PCR analysis and RPA revealed that the inhibitory effect of IFNγ on IL-8 was not associated with significant changes in mRNA levels. These observations concurred with lack of a modulatory activity of IFNγ on IL-1β-induced NF-κB activation as assessed by cellular IκB levels. Moreover, analysis of intracellular IL-8 suggests that IFNγ modulated IL-8 secretion by action on the posttranslational level. In contrast to IL-8, IL-1β-induced cyclooxygenase-2 expression and release of IL-6 were not affected by IFNγ indicating that modulation of IL-1β action by this cytokine displays specificity. Conclusion Data presented herein agree with an angiostatic role of IFNγ as seen in rodent models of solid tumors and suggest that increasing T helper type 1 (Th1-like functions in lung cancer patients e.g. by local delivery of IFNγ may mediate therapeutic benefit via mechanisms that potentially include modulation of pro-angiogenic IL-8.

  20. Outer Mitochondrial Membrane Localization of Apoptosis-Inducing Factor: Mechanistic Implications for Release

    Directory of Open Access Journals (Sweden)

    Seong-Woon Yu

    2009-10-01

    Full Text Available Poly(ADP-ribose polymerase-1-dependent cell death (known as parthanatos plays a pivotal role in many clinically important events including ischaemia/reperfusion injury and glutamate excitotoxicity. A recent study by us has shown that uncleaved AIF (apoptosis-inducing factor, but not calpain-hydrolysed truncated-AIF, was rapidly released from the mitochondria during parthanatos, implicating a second pool of AIF that might be present in brain mitochondria contributing to the rapid release. In the present study, a novel AIF pool is revealed in brain mitochondria by multiple biochemical analyses. Approx. 30% of AIF loosely associates with the outer mitochondrial membrane on the cytosolic side, in addition to its main localization in the mitochondrial intermembrane space attached to the inner membrane. Immunogold electron microscopic analysis of mouse brain further supports AIF association with the outer, as well as the inner, mitochondrial membrane in vivo. In line with these observations, approx. 20% of uncleaved AIF rapidly translocates to the nucleus and functionally causes neuronal death upon NMDA (N-methyl-d-aspartate treatment. In the present study we show for the first time a second pool of AIF in brain mitochondria and demonstrate that this pool does not require cleavage and that it contributes to the rapid release of AIF. Moreover, these results suggest that this outer mitochondrial pool of AIF is sufficient to cause cell death during parthanatos. Interfering with the release of this outer mitochondrial pool of AIF during cell injury paradigms that use parthanatos hold particular promise for novel therapies to treat neurological disorders.

  1. Infiltration of plasma rich in growth factors enhances in vivo angiogenesis and improves reperfusion and tissue remodeling after severe hind limb ischemia.

    Science.gov (United States)

    Anitua, Eduardo; Pelacho, Beatriz; Prado, Roberto; Aguirre, José Javier; Sánchez, Mikel; Padilla, Sabino; Aranguren, Xabier L; Abizanda, Gloria; Collantes, María; Hernandez, Milagros; Perez-Ruiz, Ana; Peñuelas, Ivan; Orive, Gorka; Prosper, Felipe

    2015-03-28

    PRGF is a platelet concentrate within a plasma suspension that forms an in situ-generated fibrin-matrix delivery system, releasing multiple growth factors and other bioactive molecules that play key roles in tissue regeneration. This study was aimed at exploring the angiogenic and myogenic effects of PRGF on in vitro endothelial cells (HUVEC) and skeletal myoblasts (hSkMb) as well as on in vivo mouse subcutaneously implanted matrigel and on limb muscles after a severe ischemia. Human PRGF was prepared and characterized. Both proliferative and anti-apoptotic responses to PRGF were assessed in vitro in HUVEC and hSkMb. In vivo murine matrigel plug assay was conducted to determine the angiogenic capacity of PRGF, whereas in vivo ischemic hind limb model was carried out to demonstrate PRGF-driven vascular and myogenic regeneration. Primary HUVEC and hSkMb incubated with PRGF showed a dose dependent proliferative and anti-apoptotic effect and the PRGF matrigel plugs triggered an early and significant sustained angiogenesis compared with the control group. Moreover, mice treated with PRGF intramuscular infiltrations displayed a substantial reperfusion enhancement at day 28 associated with a fibrotic tissue reduction. These findings suggest that PRGF-induced angiogenesis is functionally effective at expanding the perfusion capacity of the new vasculature and attenuating the endogenous tissue fibrosis after a severe-induced skeletal muscle ischemia. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Emerging vascular endothelial growth factor antagonists to treat neovascular age-related macular degeneration.

    Science.gov (United States)

    Hussain, Rehan M; Ciulla, Thomas A

    2017-09-01

    Evolving anti-vascular endothelial growth factor (VEGF) treatments for neovascular age-related macular degeneration (nAMD) include long acting agents, combination strategies involving new pathways, topical agents, sustained-release, and genetic therapy strategies. Areas covered: Brolucizumab and abicipar pegol have smaller molecular size, facilitating higher concentrations and potentially longer duration than current anti-VEGF agents. Agents being combined with anti-VEGFs include OPT-302 (to inhibit VEGF-C and VEGF-D); pegpleranib and rinucumab (to inhibit platelet derived growth factor, PDGF - but both failed to show consistently improved visual outcomes compared to anti-VEGF monotherapy); and RG7716, ARP-1536 and nesvacumab (to activate the Tie-2 tyrosine kinase receptor, which reduces permeability). X-82 is an oral anti-VEGF and anti-PDGF being tested in phase 2 studies. Topical anti-VEGF ± anti-PDGF drugs under study include pazopanib, PAN-90806, squalamine lactate, regorafinib, and LHA510. Sustained-release anti-VEGF delivery treatments, such as the ranibizumab Port Delivery System, GB-102, NT-503, hydrogel depot, Durasert, and ENV1305 aim to reduce the burden of frequent injections. Gene therapies with new viral vectors hold the potential to induce sustained expression of anti-angiogenic proteins via the retina's cellular apparatus, and include AVA-101/201, ADVM-202/302, AAV2-sFLT01, RGX314, and Retinostat. Expert opinion: There are many emerging anti-VEGF treatments that aim to improve visual outcomes and reduce the treatment burden of nAMD.

  3. Nitric oxide mediates angiogenesis induced in vivo by platelet-activating factor and tumor necrosis factor-alpha.

    Science.gov (United States)

    Montrucchio, G.; Lupia, E.; de Martino, A.; Battaglia, E.; Arese, M.; Tizzani, A.; Bussolino, F.; Camussi, G.

    1997-01-01

    We evaluated the role of an endogenous production of nitric oxide (NO) in the in vitro migration of endothelial cells and in the in vivo angiogenic response elicited by platelet-activating factor (PAF), tumor necrosis factor-alpha (TNF), and basic fibroblast growth factor (bFGF). The NO synthase inhibitor, N omega-nitro-L-arginine-methyl ester (L-NAME), but not its enantiomer D-NAME, prevented chemotaxis of endothelial cells induced in vitro by PAF and by TNF. The motogenic activity of TNF was also inhibited by WEB 2170, a specific PAF-receptor antagonist. In contrast, chemotaxis induced by bFGF was not prevented by L-NAME or by WEB 2170. Angiogenesis was studied in vivo in a murine model in which Matrigel was used as a vehicle for the delivery of mediators. In this model, the angiogenesis induced by PAF and TNF was inhibited by WEB 2170 and L-NAME but not by D-NAME. In contrast, angiogenesis induced by bFGF was not affected by L-NAME or by WEB 2170. TNF, but not bFGF, induced PAF synthesis within Matrigel. These results suggest that NO mediates the angiogenesis induced by PAF as well as that induced by TNF, which is dependent on the production of PAF. In contrast, the angiogenic effect of bFGF appears to be both PAF and NO independent. Images Figure 3 Figure 4 PMID:9250168

  4. The Significance of SDF-1α-CXCR4 Axis in in vivo Angiogenic Ability of Human Periodontal Ligament Stem Cells.

    Science.gov (United States)

    Bae, Yoon-Kyung; Kim, Gee-Hye; Lee, Jae Cheoun; Seo, Byoung-Moo; Joo, Kyeung-Min; Lee, Gene; Nam, Hyun

    2017-06-30

    Periodontal ligament stem cells (PDLSCs) are multipotent stem cells derived from periodontium and have mesenchymal stem cell (MSC)-like characteristics. Recently, the perivascular region was recognized as the developmental origin of MSCs, which suggests the in vivo angiogenic potential of PDLSCs. In this study, we investigated whether PDLSCs could be a potential source of perivascular cells, which could contribute to in vivo angiogenesis. PDLSCs exhibited typical MSC-like characteristics such as the expression pattern of surface markers (CD29, CD44, CD73, and CD105) and differentiation potentials (osteogenic and adipogenic differentiation). Moreover, PDLSCs expressed perivascular cell markers such as NG2, αsmooth muscle actin, platelet-derived growth factor receptor β, and CD146. We conducted an in vivo Matrigel plug assay to confirm the in vivo angiogenic potential of PDLSCs. We could not observe significant vessel-like structures with PDLSCs alone or human umbilical vein endothelial cells (HU-VECs) alone at day 7 after injection. However, when PDLSCs and HUVECs were co-injected, there were vessel-like structures containing red blood cells in the lumens, which suggested that anastomosis occurred between newly formed vessels and host circulatory system. To block the SDF-1α and CXCR4 axis between PDLSCs and HUVECs, AMD3100, a CXCR4 antagonist, was added into the Matrigel plug. After day 3 and day 7 after injection, there were no significant vessel-like structures. In conclusion, we demonstrated the peri-vascular characteristics of PDLSCs and their contribution to in vivo angiogenesis, which might imply potential application of PDLSCs into the neovascularization of tissue engineering and vascular diseases.

  5. A prospective study of prognostic factors for duration of sick leave after endoscopic carpal tunnel release

    Directory of Open Access Journals (Sweden)

    Dalsgaard Jesper

    2009-11-01

    Full Text Available Abstract Background Endoscopic carpal tunnel release with a single portal technique has been shown to reduce sick leave compared to open carpal tunnel release, claiming to be a less invasive procedure and reducing scar tenderness leading to a more rapid return to work, and the purpose of this study was to identify prognostic factors for prolonged sick leave after endoscopic carpal tunnel release in a group of employed Danish patients. Methods The design was a prospective study including 75 employed patients with carpal tunnel syndrome operated with ECTR at two hospitals. The mean age was 46 years (SD 10.1, the male/female ratio was 0.42, and the mean preoperative duration of symptoms 10 months (range 6-12. Only 21 (28% were unable to work preoperatively and mean sick leave was 4 weeks (range 1-4. At base-line and at the 3-month follow-up, a self-administered questionnaire was collected concerning physical, psychological, and social circumstances in relation to the hand problem. Data from a nerve conduction examination were collected at baseline and at the 3-month follow-up. Significant prognostic factors were identified through multiple logistic regression analysis. Results After the operation, the mean functional score was reduced from 2.3 to 1.4 (SD 0.8 and the mean symptom score from 2.9 to 1.5 (SD 0.7. The mean sick leave from work after the operation was 19.8 days (SD 14.3. Eighteen patients (24% had more than 21 days of sick leave. Two patients (3% were still unable to work after 3 months. Significant prognostic factors in the multivariate analysis for more than 21 days of postoperative sick leave were preoperative sick leave, blaming oneself for the hand problem and a preoperative distal motor latency. Conclusion Preoperative sick leave, blaming oneself for the hand problem, and a preoperative distal nerve conduction motor latency were prognostic factors for postoperative work absence of more than 21 days. Other factors may be important

  6. Evidence for a release of brain-derived neurotrophic factor from the brain during exercise

    DEFF Research Database (Denmark)

    Rasmussen, Peter; Brassard, Patrice; Adser, Helle

    2009-01-01

    Brain-derived neurotrophic factor (BDNF) has an important role in regulating maintenance, growth and survival of neurons. However, the main source of circulating BDNF in response to exercise is unknown. To identify whether the brain is a source of BDNF during exercise, eight volunteers rowed for 4...... h while simultaneous blood samples were obtained from the radial artery and the internal jugular vein. To further identify putative cerebral region(s) responsible for BDNF release, mouse brains were dissected and analysed for BDNF mRNA expression following treadmill exercise. In humans, a BDNF...... release from the brain was observed at rest (P BDNF, while that contribution decreased following 1 h of recovery. In mice, exercise induced a three...

  7. Localization and functional roles of corticotropin-releasing factor receptor type 2 in the cerebellum

    NARCIS (Netherlands)

    Gounko, Natalia V.; Gramsbergen, Albert; van der Want, Johannes J. L.

    The corticotropin-releasing factor (CRF) type 2 receptor has three splice variants alpha, beta, and gamma. In the rodent brain only CRF-R2 alpha is present. In the cerebellum, CRF-R2 alpha has two different isoforms: a full-length form (fl) and truncated (tr). Both forms CRF-R2 have a unique

  8. Extracellular histones reduce survival and angiogenic responses of late outgrowth progenitor and mature endothelial cells.

    Science.gov (United States)

    Mena, H A; Carestia, A; Scotti, L; Parborell, F; Schattner, M; Negrotto, S

    2016-02-01

    ESSENTIALS: Extracellular histones are highly augmented in sites of neovessel formation, such as regeneration tissues. We studied histone effect on survival and angiogenic activity of mature and progenitor endothelial cells. Extracellular histones trigger apoptosis and pyroptosis and reduce angiogenesis in vivo and in vitro. Histone blockade can be useful as a therapeutic strategy to improve angiogenesis and tissue regeneration. Extracellular histones are highly augmented in sites of neovessel formation, like regeneration tissues. Their cytotoxic effect has been studied in endothelial cells, although the mechanism involved and their action on endothelial colony-forming cells (ECFCs) remain unknown. To study the effect of histones on ECFC survival and angiogenic functions and compare it with mature endothelial cells. Nuclear morphology analysis showed that each human recombinant histone triggered both apoptotic-like and necrotic-like cell deaths in both mature and progenitor endothelial cells. While H1 and H2A exerted a weak toxicity, H2B, H3 and H4 were the most powerful. The percentage of apoptosis correlated with the percentage of ECFCs exhibiting caspase-3 activation and was zeroed by the pan-caspase inhibitor Z-VAD-FMK. Necrotic-like cell death was also suppressed by this compound and the caspase-1 inhibitor Ac-YVAD-CMK, indicating that histones triggered ECFC pyroptosis. All histones, at non-cytotoxic concentrations, reduced migration and H2B, H3 and H4 induced cell cycle arrest and impaired tubulogenesis via p38 activation. Neutrophil-derived histones exerted similar effects. In vivo blood vessel formation in the quail chorioallantoic membrane was also reduced by H2B, H3 and H4. Their cytotoxic and antiangiogenic effects were suppressed by unfractioned and low-molecular-weight heparins and the combination of TLR2 and TLR4 blocking antibodies. Histones trigger both apoptosis and pyroptosis of ECFCs and inhibit their angiogenic functions. Their cytotoxic and

  9. The hypoxia-inducible factor-responsive proteins semaphorin 4D and vascular endothelial growth factor promote tumor growth and angiogenesis in oral squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hua; Yang, Ying-Hua [Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650W. Baltimore Street, 7-North, Baltimore, MD 21201 (United States); Binmadi, Nada O. [Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650W. Baltimore Street, 7-North, Baltimore, MD 21201 (United States); Department of Oral Basic and Clinical Sciences, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Proia, Patrizia [Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650W. Baltimore Street, 7-North, Baltimore, MD 21201 (United States); Department of Sports Science (DISMOT), University of Palermo, Via Eleonora Duse 2 90146, Palermo (Italy); Basile, John R., E-mail: jbasile@umaryland.edu [Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650W. Baltimore Street, 7-North, Baltimore, MD 21201 (United States); Greenebaum Cancer Center, 22S. Greene Street, Baltimore, MD 21201 (United States)

    2012-08-15

    Growth and metastasis of solid tumors requires induction of angiogenesis to ensure the delivery of oxygen, nutrients and growth factors to rapidly dividing transformed cells. Through either mutations, hypoxia generated by cytoreductive therapies, or when a malignancy outgrows its blood supply, tumor cells undergo a change from an avascular to a neovascular phenotype, a transition mediated by the hypoxia-inducible factor (HIF) family of transcriptional regulators. Vascular endothelial growth factor (VEGF) is one example of a gene whose transcription is stimulated by HIF. VEGF plays a crucial role in promoting tumor growth and survival by stimulating new blood vessel growth in response to such stresses as chemotherapy or radiotherapy-induced hypoxia, and it therefore has become a tempting target for neutralizing antibodies in the treatment of advanced neoplasms. Emerging evidence has shown that the semaphorins, proteins originally associated with control of axonal growth and immunity, are regulated by changes in oxygen tension as well and may play a role in tumor-induced angiogenesis. Through the use of RNA interference, in vitro and in vivo angiogenesis assays and tumor xenograft experiments, we demonstrate that expression of semaphorin 4D (SEMA4D), which is under the control of the HIF-family of transcription factors, cooperates with VEGF to promote tumor growth and vascularity in oral squamous cell carcinoma (OSCC). We use blocking antibodies to show that targeting SEMA4D function along with VEGF could represent a novel anti-angiogenic therapeutic strategy for the treatment of OSCC and other solid tumors. -- Highlights: Black-Right-Pointing-Pointer Similar to VEGF, SEMA4D promotes angiogenesis in vitro and in vivo. Black-Right-Pointing-Pointer Both VEGF and SEMA4D are produced by OSCC cells in a HIF-dependent manner. Black-Right-Pointing-Pointer These factors combine to elicit a robust pro-angiogenic phenotype in OSCC. Black-Right-Pointing-Pointer Anti-SEMA4D

  10. The hypoxia-inducible factor-responsive proteins semaphorin 4D and vascular endothelial growth factor promote tumor growth and angiogenesis in oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Zhou, Hua; Yang, Ying-Hua; Binmadi, Nada O.; Proia, Patrizia; Basile, John R.

    2012-01-01

    Growth and metastasis of solid tumors requires induction of angiogenesis to ensure the delivery of oxygen, nutrients and growth factors to rapidly dividing transformed cells. Through either mutations, hypoxia generated by cytoreductive therapies, or when a malignancy outgrows its blood supply, tumor cells undergo a change from an avascular to a neovascular phenotype, a transition mediated by the hypoxia-inducible factor (HIF) family of transcriptional regulators. Vascular endothelial growth factor (VEGF) is one example of a gene whose transcription is stimulated by HIF. VEGF plays a crucial role in promoting tumor growth and survival by stimulating new blood vessel growth in response to such stresses as chemotherapy or radiotherapy-induced hypoxia, and it therefore has become a tempting target for neutralizing antibodies in the treatment of advanced neoplasms. Emerging evidence has shown that the semaphorins, proteins originally associated with control of axonal growth and immunity, are regulated by changes in oxygen tension as well and may play a role in tumor-induced angiogenesis. Through the use of RNA interference, in vitro and in vivo angiogenesis assays and tumor xenograft experiments, we demonstrate that expression of semaphorin 4D (SEMA4D), which is under the control of the HIF-family of transcription factors, cooperates with VEGF to promote tumor growth and vascularity in oral squamous cell carcinoma (OSCC). We use blocking antibodies to show that targeting SEMA4D function along with VEGF could represent a novel anti-angiogenic therapeutic strategy for the treatment of OSCC and other solid tumors. -- Highlights: ► Similar to VEGF, SEMA4D promotes angiogenesis in vitro and in vivo. ► Both VEGF and SEMA4D are produced by OSCC cells in a HIF-dependent manner. ► These factors combine to elicit a robust pro-angiogenic phenotype in OSCC. ► Anti-SEMA4D blocking antibody inhibits Plexin-B1 activation. ► SEMA4D is a valid anti-angiogenic target in the

  11. Expression and Regulation of Corticotropin-Releasing Factor Receptor Type 2 beta in Developing and Mature Mouse Skeletal Muscle

    NARCIS (Netherlands)

    Kuperman, Yael; Issler, Orna; Vaughan, Joan; Bilezikjian, Louise; Vale, Wylie; Chen, Alon

    Corticotropin-releasing factor receptor type 2 (CRFR2) is highly expressed in skeletal muscle (SM) tissue where it is suggested to inhibit interactions between insulin signaling pathway components affecting whole-body glucose homeostasis. However, little is known about factors regulating SM CRFR2

  12. Investigating the in vitro drug release kinetics from controlled release diclofenac potassium-ethocel matrix tablets and the influence of co-excipients on drug release patterns.

    Science.gov (United States)

    Shah, Shefaat Ullah; Shah, Kifayat Ullah; Rehman, Asimur; Khan, Gul Majid

    2011-04-01

    The objective of the study was to formulate and evaluate controlled release polymeric tablets of Diclofenac Potassium for the release rate, release patterns and the mechanism involved in the release process of the drug. Formulations with different types and grades of Ethyl Cellulose Ether derivatives in several drug-to-polymer ratios (D:P) were compressed into tablets using the direct compression method. In vitro drug release studies were performed in phosphate buffer (pH 7.4) as dissolution medium by using USP Method-1 (Rotating Basket Method). Similarity factor f2 and dissimilarity factor f1 were applied for checking the similarities and dissimilarities of the release profiles of different formulations. For the determination of the release mechanism and drug release kinetics various mathematical/kinetic models were employed. It was found that all of the Ethocel polymers could significantly slow down the drug release rate with Ethocel FP polymers being the most efficient, especially at D:P ratios of 10:03 which lead towards the achievement of zero or near zero order release kinetics.

  13. Neem leaf glycoprotein prophylaxis transduces immune dependent stop signal for tumor angiogenic switch within tumor microenvironment.

    Directory of Open Access Journals (Sweden)

    Saptak Banerjee

    Full Text Available We have reported that prophylactic as well as therapeutic administration of neem leaf glycoprotein (NLGP induces significant restriction of solid tumor growth in mice. Here, we investigate whether the effect of such pretreatment (25µg/mice; weekly, 4 times benefits regulation of tumor angiogenesis, an obligate factor for tumor progression. We show that NLGP pretreatment results in vascular normalization in melanoma and carcinoma bearing mice along with downregulation of CD31, VEGF and VEGFR2. NLGP pretreatment facilitates profound infiltration of CD8+ T cells within tumor parenchyma, which subsequently regulates VEGF-VEGFR2 signaling in CD31+ vascular endothelial cells to prevent aberrant neovascularization. Pericyte stabilization, VEGF dependent inhibition of VEC proliferation and subsequent vascular normalization are also experienced. Studies in immune compromised mice confirmed that these vascular and intratumoral changes in angiogenic profile are dependent upon active adoptive immunity particularly those mediated by CD8+ T cells. Accumulated evidences suggest that NLGP regulated immunomodulation is active in tumor growth restriction and normalization of tumor angiogenesis as well, thereby, signifying its clinical translation.

  14. Placental Induced Growth Factor (PIGf) in Coronary Artery Disease

    Science.gov (United States)

    Sundaresan, Alamelu; Carabello, Blaise; Mehta, Satish; Schlegel, Todd; Pellis, Neal; Ott, Mark; Pierson, Duane

    2010-01-01

    Our previous studies on normal human lymphocytes have shown a five-fold increase (p less than 0.001) in angiogenic inducers such as Placental Induced Growth Factor (PIGf) in physiologically stressful environments such as modeled microgravity, a space analog. This suggests de-regulation of cardiovascular signalling pathways indicated by upregulation of PIGf. In the current study, we measured PIGf in the plasma of 33 patients with and without coronary artery disease (CAD) to investigate whether such disease is associated with increased levels of PIGf. A control consisting of 31 sex matched apparently healthy subjects was also included in the study. We observed that the levels of PIGf in CAD patients were significantly increased compared to those in healthy control subjects (p less than 0.001) and usually increased beyond the clinical threshold level (greater than 27ng/L). The mechanisms leading to up-regulation of angiogenic factors and the adaptation of organisms to stressful environments such as isolation, high altitude, hypoxia, ischemia, microgravity, increased radiation, etc are presently unknown and require further investigation in spaceflight and these other physiologically stressed environments.

  15. Immuno-Expression of Endoglin and Smooth Muscle Actin in the Vessels of Brain Metastases. Is There a Rational for Anti-Angiogenic Therapy?

    Directory of Open Access Journals (Sweden)

    Valeria Barresi

    2014-04-01

    Full Text Available Despite ongoing clinical trials, the efficacy of anti-angiogenic drugs for the treatment of brain metastases (BM is still questionable. The lower response rate to anti-angiogenic therapy in the presence of BM than in metastatic disease involving other sites suggests that BM may be insensitive to these drugs, although the biological reasons underlining this phenomenon are still to be clarified. With the aim of assessing whether the targets of anti-angiogenic therapies are actually present in BM, in the present study, we analyzed the microvessel density (MVD, a measure of neo-angiogenesis, and the vascular phenotype (mature vs. immature in the tumor tissue of a series of BM derived from different primary tumors. By using immunohistochemistry against endoglin, a specific marker for newly formed vessels, we found that neo-angiogenesis widely varies in BM depending on the site of the primary tumor, as well as on its histotype. According to our results, BM from lung cancer displayed the highest MVD counts, while those from renal carcinoma had the lowest. Then, among BM from lung cancer, those from large cell and adenocarcinoma histotypes had significantly higher MVD counts than those originating from squamous cell carcinoma (p = 0.0043; p = 0.0063. Of note, MVD counts were inversely correlated with the maturation index of the endoglin-stained vessels, reflected by the coverage of smooth muscle actin (SMA positive pericytes (r = −0.693; p < 0.0001. Accordingly, all the endoglin-positive vessels in BM from pulmonary squamous cell carcinoma and renal carcinoma, displayed a mature phenotype, while vessels with an immature phenotype were found in highly vascularized BM from pulmonary large cell and adenocarcinoma. The low MVD and mature phenotype observed in BM from some primary tumors may account for their low sensitivity to anti-angiogenic therapies. Although our findings need to be validated in correlative studies with a clinical response, this should

  16. Nitric oxide-releasing agents enhance cytokine-induced tumor necrosis factor synthesis in human mononuclear cells

    NARCIS (Netherlands)

    Eigler, A; Sinha, B; Endres, S

    1993-01-01

    In septic shock tumor necrosis factor (TNF) leads to increased nitric oxide (NO) production by induction of NO synthase. An inverse regulatory effect, the influence of NO on cytokine synthesis, has rarely been investigated. The present study assessed the influence of NO-releasing agents on TNF

  17. The PR-1 domain accounts for the anti-angiogenic activity of a cysteine-rich secretory protein member from the buccal glands of Lampetra japonica.

    Science.gov (United States)

    Duan, Dandan; Wang, Hongyan; Zhou, Rong; Jiang, Qi; Xiao, Rong

    2018-02-01

    Previous studies have shown that cysteine-rich buccal gland protein (CRBGP) from buccal glands of Lampetra japonica could suppress angiogenesis in chick chorioallantoic membrane models. As CRBGP is composed of a pathogenesis-related group 1 (PR-1) domain and a cysteine-rich domain (CRD), which domain accounts for the effects of CRBGP on anti-angiogenesis? In the present study, recombinant PR-1 and CRD (rL-PR-1 and rL-CRD) were obtained. MTT assays showed rL-PR-1 inhibited the proliferation of HUVECs significantly in a dose-dependent manner with an IC 50 of 2μM, while rL-CRD had no obviously inhibitory effect on the proliferation of HUVECs, suggested that PR-1 is the main function domain on the anti-angiogenic activity of CRBGP. Similar to CRBGP, rL-PR-1 induced apoptosis in HUVECs in a mitochondrial-dependent pathway by affecting the level of BAX, BCL2 and caspase 3. Also, the cytotoxic property of rL-PR-1 might be one of the factors which suppressed the proliferation of HUVECs. Furthermore, rL-PR-1 blocked the adhesion, migration, invasion and tube formation of HUVECs by disturbing the cytoskeleton arrangement and down-regulating the level of matrix metallo-peptidase 2. In summary, rL-PR-1 has the anti-angiogenic activity which would provide the information on the functions and mechanisms of cysteine-rich secretory protein family members. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Continuous representation of tumor microvessel density and detection of angiogenic hotspots in histological whole-slide images.

    Science.gov (United States)

    Kather, Jakob Nikolas; Marx, Alexander; Reyes-Aldasoro, Constantino Carlos; Schad, Lothar R; Zöllner, Frank Gerrit; Weis, Cleo-Aron

    2015-08-07

    Blood vessels in solid tumors are not randomly distributed, but are clustered in angiogenic hotspots. Tumor microvessel density (MVD) within these hotspots correlates with patient survival and is widely used both in diagnostic routine and in clinical trials. Still, these hotspots are usually subjectively defined. There is no unbiased, continuous and explicit representation of tumor vessel distribution in histological whole slide images. This shortcoming distorts angiogenesis measurements and may account for ambiguous results in the literature. In the present study, we describe and evaluate a new method that eliminates this bias and makes angiogenesis quantification more objective and more efficient. Our approach involves automatic slide scanning, automatic image analysis and spatial statistical analysis. By comparing a continuous MVD function of the actual sample to random point patterns, we introduce an objective criterion for hotspot detection: An angiogenic hotspot is defined as a clustering of blood vessels that is very unlikely to occur randomly. We evaluate the proposed method in N=11 images of human colorectal carcinoma samples and compare the results to a blinded human observer. For the first time, we demonstrate the existence of statistically significant hotspots in tumor images and provide a tool to accurately detect these hotspots.

  19. ROS-induced ROS release orchestrated by Nox4, Nox2, and mitochondria in VEGF signaling and angiogenesis.

    Science.gov (United States)

    Kim, Young-Mee; Kim, Seok-Jo; Tatsunami, Ryosuke; Yamamura, Hisao; Fukai, Tohru; Ushio-Fukai, Masuko

    2017-06-01

    Reactive oxygen species (ROS) derived from NADPH oxidase (NOX) and mitochondria play a critical role in growth factor-induced switch from a quiescent to an angiogenic phenotype in endothelial cells (ECs). However, how highly diffusible ROS produced from different sources can coordinate to stimulate VEGF signaling and drive the angiogenic process remains unknown. Using the cytosol- and mitochondria-targeted redox-sensitive RoGFP biosensors with real-time imaging, here we show that VEGF stimulation in human ECs rapidly increases cytosolic RoGFP oxidation within 1 min, followed by mitochondrial RoGFP oxidation within 5 min, which continues at least for 60 min. Silencing of Nox4 or Nox2 or overexpression of mitochondria-targeted catalase significantly inhibits VEGF-induced tyrosine phosphorylation of VEGF receptor type 2 (VEGFR2-pY), EC migration and proliferation at the similar extent. Exogenous hydrogen peroxide (H 2 O 2 ) or overexpression of Nox4, which produces H 2 O 2 , increases mitochondrial ROS (mtROS), which is prevented by Nox2 siRNA, suggesting that Nox2 senses Nox4-derived H 2 O 2 to promote mtROS production. Mechanistically, H 2 O 2 increases S36 phosphorylation of p66Shc, a key mtROS regulator, which is inhibited by siNox2, but not by siNox4. Moreover, Nox2 or Nox4 knockdown or overexpression of S36 phosphorylation-defective mutant p66Shc(S36A) inhibits VEGF-induced mtROS, VEGFR2-pY, EC migration, and proliferation. In summary, Nox4-derived H 2 O 2 in part activates Nox2 to increase mtROS via pSer36-p66Shc, thereby enhancing VEGFR2 signaling and angiogenesis in ECs. This may represent a novel feed-forward mechanism of ROS-induced ROS release orchestrated by the Nox4/Nox2/pSer36-p66Shc/mtROS axis, which drives sustained activation of angiogenesis signaling program. Copyright © 2017 the American Physiological Society.

  20. An anti-VEGF ribozyme embedded within the adenoviral VAI sequence inhibits glioblastoma cell angiogenic potential in vitro.

    Science.gov (United States)

    Ciafrè, Silvia Anna; Niola, Francesco; Wannenes, Francesca; Farace, Maria Giulia

    2004-01-01

    Vascular endothelial growth factor (VEGF) plays an important role in tumor angiogenesis, where it functions as one of the major angiogenic factors sustaining growth and draining catabolites. In this study, we developed an anti-VEGF ribozyme targeted to the 5' part of human VEGF mRNA. We endowed this ribozyme with an additional feature expected to improve its activity in vivo, by cloning it into a VAI transcriptional cassette. VAI is originally part of the adenovirus genome, and is characterized by high transcription rates, good stability due to its strong secondary structure and cytoplasmic localization. Transfection of U87 human glioblastoma cells with plasmid vectors encoding for this ribozyme resulted in a strong (-56%) reduction of VEGF secreted in the extracellular medium, indicating a good biological activity of the ribozyme. Moreover, this reduction in VEGF secretion had the important functional consequence of drastically diminishing the formation of tube-like structures of human umbilical vascular endothelial cells in a Matrigel in vitro angiogenesis assay. In conclusion, our VAI-embedded anti-VEGF ribozyme is a good inhibitor of angiogenesis in vitro, in a glioblastoma cell context. Thus, it may represent a useful tool for future applications in vivo, for antiangiogenic gene therapy of glioblastoma and of highly vascularized tumors. Copyright 2004 S. Karger AG, Basel

  1. Platelet-Released Growth Factors Induce Differentiation of Primary Keratinocytes

    Science.gov (United States)

    Tohidnezhad, Mersedeh; Lammel, Justus; Lippross, Sebastian; Behrendt, Peter; Klüter, Tim; Pufe, Thomas; Jahr, Holger; Cremer, Jochen; Rademacher, Franziska; Gläser, Regine; Harder, Jürgen

    2017-01-01

    Autologous thrombocyte concentrate lysates, for example, platelet-released growth factors, (PRGFs) or their clinically related formulations (e.g., Vivostat PRF®) came recently into the physicians' focus as they revealed promising effects in regenerative and reparative medicine such as the support of healing of chronic wounds. To elucidate the underlying mechanisms, we analyzed the influence of PRGF and Vivostat PRF on human keratinocyte differentiation in vitro and on epidermal differentiation status of skin wounds in vivo. Therefore, we investigated the expression of early (keratin 1 and keratin 10) and late (transglutaminase-1 and involucrin) differentiation markers. PRGF treatment of primary human keratinocytes decreased keratin 1 and keratin 10 gene expression but induced involucrin and transglutaminase-1 gene expression in an epidermal growth factor receptor- (EGFR-) dependent manner. In concordance with these results, microscopic analyses revealed that PRGF-treated human keratinocytes displayed morphological features typical of keratinocytes undergoing terminal differentiation. In vivo treatment of artificial human wounds with Vivostat PRF revealed a significant induction of involucrin and transglutaminase-1 gene expression. Together, our results indicate that PRGF and Vivostat PRF induce terminal differentiation of primary human keratinocytes. This potential mechanism may contribute to the observed beneficial effects in the treatment of hard-to-heal wounds with autologous thrombocyte concentrate lysates in vivo. PMID:28808357

  2. Platelet-Released Growth Factors Induce Differentiation of Primary Keratinocytes

    Directory of Open Access Journals (Sweden)

    Andreas Bayer

    2017-01-01

    Full Text Available Autologous thrombocyte concentrate lysates, for example, platelet-released growth factors, (PRGFs or their clinically related formulations (e.g., Vivostat PRF® came recently into the physicians’ focus as they revealed promising effects in regenerative and reparative medicine such as the support of healing of chronic wounds. To elucidate the underlying mechanisms, we analyzed the influence of PRGF and Vivostat PRF on human keratinocyte differentiation in vitro and on epidermal differentiation status of skin wounds in vivo. Therefore, we investigated the expression of early (keratin 1 and keratin 10 and late (transglutaminase-1 and involucrin differentiation markers. PRGF treatment of primary human keratinocytes decreased keratin 1 and keratin 10 gene expression but induced involucrin and transglutaminase-1 gene expression in an epidermal growth factor receptor- (EGFR- dependent manner. In concordance with these results, microscopic analyses revealed that PRGF-treated human keratinocytes displayed morphological features typical of keratinocytes undergoing terminal differentiation. In vivo treatment of artificial human wounds with Vivostat PRF revealed a significant induction of involucrin and transglutaminase-1 gene expression. Together, our results indicate that PRGF and Vivostat PRF induce terminal differentiation of primary human keratinocytes. This potential mechanism may contribute to the observed beneficial effects in the treatment of hard-to-heal wounds with autologous thrombocyte concentrate lysates in vivo.

  3. Effects of intraluteal implants of prostaglandin E1 or E2 on angiogenic growth factors in luteal tissue of Angus and Brahman cows.

    Science.gov (United States)

    Weems, Yoshie S; Ma, Yan; Ford, Stephen P; Nett, Terry M; Vann, Rhonda C; Lewis, Andrew W; Neuendorff, Don A; Welsh, Thomas H; Randel, Ronald D; Weems, Charles W

    2014-12-01

    Previously, it was reported that intraluteal implants containing prostaglandin E1 or E2 (PGE1 and PGE2) in Angus or Brahman cows prevented luteolysis by preventing loss of mRNA expression for luteal LH receptors and luteal unoccupied and occupied LH receptors. In addition, intraluteal implants containing PGE1 or PGE2 upregulated mRNA expression for FP prostanoid receptors and downregulated mRNA expression for EP2 and EP4 prostanoid receptors. Luteal weight during the estrous cycle of Brahman cows was reported to be lesser than that of Angus cows but not during pregnancy. The objective of this experiment was to determine whether intraluteal implants containing PGE1 or PGE2 alter vascular endothelial growth factor (VEGF), fibroblast growth factor-2 (FGF-2), angiopoietin-1 (ANG-1), and angiopoietin-2 (ANG-2) protein in Brahman or Angus cows. On Day 13 of the estrous cycle, Angus cows received no intraluteal implant and corpora lutea were retrieved, or Angus and Brahman cows received intraluteal silastic implants containing vehicle, PGE1, or PGE2 on Day 13 and corpora lutea were retrieved on Day 19. Corpora lutea slices were analyzed for VEGF, FGF-2, ANG-1, and ANG-2 angiogenic proteins via Western blot. Day-13 Angus cow luteal tissue served as preluteolytic controls. Data for VEGF were not affected (P > 0.05) by day, breed, or treatment. PGE1 or PGE2 increased (P Angus cows compared with Day-13 and Day-19 Angus controls but decreased (P Angus controls. There was no effect (P > 0.05) of PGE1 or PGE2 on ANG-1 in Angus luteal tissue when compared with Day-13 or Day-19 controls, but ANG-1 was decreased (P Angus Vehicle controls when compared with Day-13 Angus controls, which was prevented (P Angus cows. There was no effect (P > 0.05) of PGE1 or PGE2 on ANG-2 in Brahman cows. PGE1 or PGE2 may alter cow luteal FGF-2, ANG-1, or ANG-2 but not VEGF to prevent luteolysis; however, species or breed differences may exist. Published by Elsevier Inc.

  4. Influence of environmental factors on mercury release in hydroelectric reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, K.; Therien, N.

    1991-04-01

    Due to increased mercury concentrations in fish in hydro-electric reservoirs after flooding, a study was carried out to evaluate the release and transformation of mercury due to vegetation and soil flooded as a result of reservoir creation. Samples of vegetation and soils were immersed in water and concentrations of total mercury, methylmercury and nutrients were followed. The effects of anoxia, pH and temperature on release and transformation were examined. An existing dynamic model of decomposition of flooded materials in reservoirs was modified to include mercury release and transformation, and was calibrated to the experimental data. Amounts of mercury released by the different substrates was of the same order of magnitude. Tree species contributed to the greatest amounts of methylmercury per unit biomass, but the biomass used for these was twigs and foliage. Soil released significant amounts of mercury, but methylation was very low. The model was able to fit well for all substrates except lichen. The model can be adapted to proposed reservoirs to predict nutrient and mecury release and transformation. 175 refs., 38 figs., 38 tabs.

  5. Corticotropin-releasing factor receptor types 1 and 2 are differentially expressed in pre- and post-synaptic elements in the post-natal developing rat cerebellum

    NARCIS (Netherlands)

    Swinny, JD; Kalicharan, D; Blaauw, EH; Ijkema-Paassen, J; Shi, F; Gramsbergen, A; van der Want, JJL

    Corticotropin-releasing factor (CRF)-like proteins act via two G-protein-coupled receptors (CRF-R1 and CRF-R2) playing important neuromodulatory roles in stress responses and synaptic plasticity. The cerebellar expression of corticotropin-releasing factor-like ligands has been well documented, but

  6. Adenosine inhibits neutrophil vascular endothelial growth factor release and transendothelial migration via A2B receptor activation.

    LENUS (Irish Health Repository)

    Wakai, A

    2012-02-03

    The effects of adenosine on neutrophil (polymorphonuclear neutrophils; PMN)-directed changes in vascular permeability are poorly characterized. This study investigated whether adenosine modulates activated PMN vascular endothelial growth factor (vascular permeability factor; VEGF) release and transendothelial migration. PMN activated with tumour necrosis factor-alpha (TNF-alpha, 10 ng\\/mL) were incubated with adenosine and its receptor-specific analogues. Culture supernatants were assayed for VEGF. PMN transendothelial migration across human umbilical vein endothelial cell (HUVEC) monolayers was assessed in vitro. Adhesion molecule receptor expression was assessed flow cytometrically. Adenosine and some of its receptor-specific analogues dose-dependently inhibited activated PMN VEGF release. The rank order of potency was consistent with the affinity profile of human A2B receptors. The inhibitory effect of adenosine was reversed by 3,7-dimethyl-1-propargylxanthine, an A2 receptor antagonist. Adenosine (100 microM) or the A2B receptor agonist 5\\'-N-ethylcarboxamidoadenosine (NECA, 100 microM) significantly reduced PMN transendothelial migration. However, expression of activated PMN beta2 integrins and HUVEC ICAM-1 were not significantly altered by adenosine or NECA. Adenosine attenuates human PMN VEGF release and transendothelial migration via the A2B receptor. This provides a novel target for the modulation of PMN-directed vascular hyperpermeability in conditions such as the capillary leak syndrome.

  7. Effects of " vitex agnus castus" extract and magnesium supplementation, alone and in combination, on osteogenic and angiogenic factors and fracture healing in women with long bone fracture

    Directory of Open Access Journals (Sweden)

    Mohammad Hassan Eftekhari

    2014-01-01

    Full Text Available Background: The purpose of this study was to investigate the effects of the combination of vitex agnus castus extract, as a source of phytoestrogens, plus magnesium supplementation on osteogenic and angiogenic factors and callus formation in women with long bone fracture. Material and Methods: In a double-blind randomized placebo controlled trial, 64 women with long bone fracture, 20-45 years old, were randomly allocated to receive 1 one Agnugol tablet (4 mg dried fruit extract of vitex agnus castus plus 250 mg magnesium oxide (VAC + Mg group (n = 10, 2 one Agnugol tablet plus placebo (VAC group (n = 15, 3 placebo plus 250 mg magnesium oxide (Mg group (n = 12, or 4 placebo plus placebo (placebo group (n = 14 per day for 8 weeks. At baseline and endpoint of the trial, serum alkaline phosphatase, osteocalcin, and vascular endothelial growth factor (VEGF were measured together with radiological bone assessment. Results: There were no significant differences in the characteristic aspects of concern between the four groups at baseline. Despite the increased level of alkaline phosphatase in the VAC group (188.33 ± 16.27 to 240.40 ± 21.49, P = 0.05, administration of VAC + Mg could not increase alkaline phosphatase activity. However, treatment with VAC + Mg significantly enhanced the osteocalcin level. The serum concentration of VEGF was increased in the VAC group (269.04 ± 116.63 to 640.03 ± 240.16, P < 0.05. Callus formation in the VAC + Mg group was higher than the other groups but the differences between the four groups were not significant (P = 0.39. No relevant side effect was observed in patients in each group. Conclusion : Our results suggest that administration of vitex agnus castus plus magnesium may promote fracture healing. However, more studies need to further explore the roles of vitex agnus castus in fracture repair processes.

  8. Astroglial Activation by an Enriched Environment after Transplantation of Mesenchymal Stem Cells Enhances Angiogenesis after Hypoxic-Ischemic Brain Injury

    Directory of Open Access Journals (Sweden)

    Sung-Rae Cho

    2016-09-01

    Full Text Available Transplantation of mesenchymal stem cells (MSCs has paracrine effects; however, the effects are known to be largely limited. Here we investigated the combination effects of cell transplantation and enriched environment (EE in a model of hypoxic-ischemic brain injury. Brain damage was induced in seven-day-old mice by unilateral carotid artery ligation and exposure to hypoxia (8% O2 for 90 min. At six weeks of age, the mice were randomly assigned to four groups: phosphate-buffered saline (PBS-control (CON, PBS-EE, MSC-CON, and MSC-EE. Rotarod and grip strength tests were performed to evaluate neurobehavioral functions. Histologic evaluations were also performed to confirm the extent of astrocyte activation and endogenous angiogenesis. An array-based multiplex ELISA and Western blot were used to identify growth factors in vivo and in vitro. Two weeks after treatment, levels of astrocyte density and angiogenic factors were increased in MSC-EE mice, but glial scarring was not increased. Eight weeks after treatment, angiogenesis was increased, and behavioral outcomes were synergistically improved in the MSC-EE group. Astrocytes co-cultured with MSCs expressed higher levels of angiogenic factors than astrocytes cultured alone. The mechanisms of this synergistic effect included enhanced repair processes, such as increased endogenous angiogenesis and upregulation of angiogenic factors released from activated astrocytes.

  9. A Mouse Model of the Cornea Pocket Assay for Angiogenesis Study

    Science.gov (United States)

    Tang, Zhongshu; Zhang, Fan; Li, Yang; Arjunan, Pachiappan; Kumar, Anil; Lee, Chunsik; Li, Xuri

    2011-01-01

    A normal cornea is clear of vascular tissues. However, blood vessels can be induced to grow and survive in the cornea when potent angiogenic factors are administered 1. This uniqueness has made the cornea pocket assay one of the most used models for angiogenesis studies. The cornea composes multiple layers of cells. It is therefore possible to embed a pellet containing the angiogenic factor of interest in the cornea to investigate its angiogenic effect 2,3. Here, we provide a step by step demonstration of how to (I) produce the angiogenic factor-containing pellet (II) embed the pellet into the cornea (III) analyze the angiogenesis induced by the angiogenic factor of interest. Since the basic fibroblast growth factor (bFGF) is known as one of the most potent angiogenic factors 4, it is used here to induce angiogenesis in the cornea. PMID:21876523

  10. Novel PI3K/AKT targeting anti-angiogenic activities of 4-vinylphenol, a new therapeutic potential of a well-known styrene metabolite.

    Science.gov (United States)

    Yue, Grace Gar-Lee; Lee, Julia Kin-Ming; Kwok, Hin-Fai; Cheng, Ling; Wong, Eric Chun-Wai; Jiang, Lei; Yu, Hua; Leung, Hoi-Wing; Wong, Yuk-Lau; Leung, Ping-Chung; Fung, Kwok-Pui; Lau, Clara Bik-San

    2015-06-08

    The pneumo- and hepato-toxicity of 4-vinylphenol (4VP), a styrene metabolite, has been previously reported. Nevertheless, the present study reported the novel anti-angiogenic activities of 4VP which was firstly isolated from the aqueous extract of a Chinese medicinal herb Hedyotis diffusa. Our results showed that 4VP at non-toxic dose effectively suppressed migration, tube formation, adhesion to extracellular matrix proteins, as well as protein and mRNA expressions of metalloproteinase-2 of human endothelial cells (HUVEC and HMEC-1). Investigation of the signal transduction revealed that 4VP down-regulated PI3K/AKT and p38 MAPK. Besides, 4VP interfered with the phosphorylation of ERK1/2, the translocation and expression of NFkappaB. In zebrafish embryo model, the new blood vessel growth was significantly blocked by 4VP (6.25-12.5 μg/mL medium). The VEGF-induced blood vessel formation in Matrigel plugs in C57BL/6 mice was suppressed by 4VP (20-100 μg/mL matrigel). In addition, the blood vessel number and tumor size were reduced by intraperitoneal 4VP (0.2-2 mg/kg) in 4T1 breast tumor-bearing BALB/c mice, with doxorubicin as positive control. Together, the in vitro and in vivo anti-angiogenic activities of 4VP were demonstrated for the first time. These findings suggest that 4VP has great potential to be further developed as an anti-angiogenic agent.

  11. Subchronic inhalation of soluble manganese induces expression of hypoxia-associated angiogenic genes in adult mouse lungs

    International Nuclear Information System (INIS)

    Bredow, Sebastian; Falgout, Melanie M.; March, Thomas H.; Yingling, Christin M.; Malkoski, Stephen P.; Aden, James; Bedrick, Edward J.; Lewis, Johnnye L.; Divine, Kevin K.

    2007-01-01

    Although the lung constitutes the major exposure route for airborne manganese (Mn), little is known about the potential pulmonary effects and the underlying molecular mechanisms. Transition metals can mimic a hypoxia-like response, activating the hypoxia inducible factor-1 (HIF-1) transcription factor family. Through binding to the hypoxia-response element (HRE), these factors regulate expression of many genes, including vascular endothelial growth factor (VEGF). Increases in VEGF, an important biomarker of angiogenesis, have been linked to respiratory diseases, including pulmonary hypertension. The objective of this study was to evaluate pulmonary hypoxia-associated angiogenic gene expression in response to exposure of soluble Mn(II) and to assess the genes' role as intermediaries of potential pulmonary Mn toxicity. In vitro, 0.25 mM Mn(II) altered morphology and slowed the growth of human pulmonary epithelial cell lines. Acute doses between 0.05 and 1 mM stimulated VEGF promoter activity up to 3.7-fold in transient transfection assays. Deletion of the HRE within the promoter had no effect on Mn(II)-induced VEGF expression but decreased cobalt [Co(II)]-induced activity 2-fold, suggesting that HIF-1 may not be involved in Mn(II)-induced VEGF gene transcription. Nose-only inhalation to 2 mg Mn(II)/m 3 for 5 days at 6 h/day produced no significant pulmonary inflammation but induced a 2-fold increase in pulmonary VEGF mRNA levels in adult mice and significantly altered expression of genes associated with murine angiogenesis. These findings suggest that even short-term exposures to soluble, occupationally relevant Mn(II) concentrations may alter pulmonary gene expression in pathways that ultimately could affect the lungs' susceptibility to respiratory disease

  12. Semaphorin7A promotes tumor growth and exerts a pro-angiogenic effect in macrophages of mammary tumor-bearing mice

    Directory of Open Access Journals (Sweden)

    Ramon eGarcia-Areas

    2014-02-01

    Full Text Available Semaphorins, a large family of molecules involved in the axonal guidance and development of the nervous system, have been recently shown to have both angiogenic and anti-angiogenic properties. Specifically, semaphorin 7A (SEMA7A has been reported to have a chemotactic activity in neurogenesis, and to be an immune modulator via it binding to α1β1integrins. Additionally, SEMA7A has been shown to promote chemotaxis of monocytes, inducing them to produce proinflammatory mediators. In this study we explored the role of SEMA7A in the tumoral context. We show that SEMA7A is highly expressed by DA-3 murine mammary tumor cells in comparison to normal mammary cells (EpH4, and that peritoneal macrophages from mammary tumor-bearing mice also express SEMA7A at higher levels compared to peritoneal macrophages derived from normal control mice. We also show that murine macrophages treated with recombinant murine SEMA7A significantly increased their expression of proangiogenic molecules, such as CXCL2/MIP-2. Gene silencing of SEMA7A in peritoneal elicited macrophages from DA-3 tumor-bearing mice resulted in decreased CXCL2 expression. Mice implanted with SEMA7A silenced tumor cells showed decreased angiogenesis in the tumors compared to the wild type tumors. Furthermore, peritoneal elicited macrophages from mice bearing SEMA7A-silenced tumors produce significantly (p< 0.01 lower levels of angiogenic proteins, such as MIP-2, CXCL1 and MMP-9, compared to macrophages from control DA-3 mammary tumors. We postulate that SEMA7A derived from mammary carcinomas may serve as a monocyte chemoattractant and skew monocytes into a pro-tumorigenic phenotype. A putative relationship between tumor-derived SEMA7A and monocytes could prove valuable in establishing new research avenues towards unraveling important tumor-host immune interactions in breast cancer patients.

  13. Factors controlling alkali salt deposition in recovery boilers. Release mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    McKeough, P; Kurkela, M; Kylloenen, H; Tapola, E [VTT Energy, Espoo (Finland). Process Technology Group

    1997-10-01

    The research was part of an ongoing cooperative research effort aimed at developing a model to describe the behaviour of inorganic compounds in kraft recovery boilers. During 1996 experimental investigations of sulphur release were continued. Experiments at elevated pressures and employing larger particle sizes were performed in order to gain information about mass transfer effects. The first experiments yielding data on the rates of the sulphur-release reactions were performed. This data will be used as the basis of a drop model for sulphur release being developed in cooperation with another research group. The other part of the work during 1996 explored the possibility of using chemical equilibrium calculations to predict the release of sodium, potassium and chlorine in the recovery furnace. The approach is essentially different from that employed in earlier studies in that the effects of fume formation are taken into account. So far, the predictions of the chemical equilibrium release model have, in no way, conflicted with field measurements. (orig.)

  14. Chitosan–aluminum monostearate composite sponge dressing containing asiaticoside for wound healing and angiogenesis promotion in chronic wound

    International Nuclear Information System (INIS)

    Phaechamud, Thawatchai; Yodkhum, Kotchamon; Charoenteeraboon, Juree; Tabata, Yasuhiko

    2015-01-01

    There are many factors that delay healing in chronic wounds including lowering level of growth factors and increasing exudate level comprising high amount of tissue destructive enzymes. Asiaticoside possesses interesting wound healing and angiogenic activities that are employed to stimulate tissue regeneration in wound healing application. This study attempted to develop chitosan–aluminum monostearate (Alst) composite sponge containing asiaticoside for use as an absorbent medical dressing in chronic wound. N-methyl-2-pyrrolidone (NMP) was used to enhance homogeneity of asiaticoside in the polymer composite matrix. The sponge dressings were prepared by lyophilization and dehydrothermal treatment (DHT). Functional group interaction, crystallinity, and morphology of the prepared sponges were investigated using FT-IR, PXRD, and SEM, respectively. Physicochemical properties, porosity, hydrophilic/hydrophobic properties and mechanical property, were evaluated. Wound dressing properties, water vapor transmission rate (WVTR), fluid absorbency, oxygen permeation (OP), and bio-adhesive property, were investigated. In vitro asiaticoside release study was conducted using immersion method. Cytotoxicity was studied in normal human dermal fibroblast (NHDF) and normal human epidermal keratinocyte (NHEK). Angiogenic activity of asiaticoside was evaluated using chick-chorioallantoic membrane (CAM) assay. FT-IR and PXRD results revealed the amidation after DHT to enhance the crystallinity of the prepared sponges. The prepared sponges had high porosity comprising high Alst-loaded amount that exhibited more compact structure. Alst enhanced hydrophobicity therefore it reduced the fluid absorption and WVTR together with bio-adhesion of the prepared sponge dressings. Porosity of all sponges was more than 85% therefore resulting in their high OP. Enhancing hydrophobicity of the material by Alst and more homogeneity caused by NMP eventually retarded the asiaticoside release for 7 days

  15. Chitosan–aluminum monostearate composite sponge dressing containing asiaticoside for wound healing and angiogenesis promotion in chronic wound

    Energy Technology Data Exchange (ETDEWEB)

    Phaechamud, Thawatchai, E-mail: thawatchaienator@gmail.com [Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakorn Pathom 73000 (Thailand); Yodkhum, Kotchamon, E-mail: marskotchamon@gmail.com [Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakorn Pathom 73000 (Thailand); Charoenteeraboon, Juree, E-mail: juree@su.ac.th [Department of Biopharmacy, Faculty of Pharmacy, Silpakorn University, Nakorn Pathom 73000 (Thailand); Tabata, Yasuhiko, E-mail: yasuhiko@frontier.kyoto-u.ac.jp [Department of Biomaterials, Field of tissue engineering, Institute for Frontier Medical Science, Kyoto University, Kyoto 606-8507 (Japan)

    2015-05-01

    There are many factors that delay healing in chronic wounds including lowering level of growth factors and increasing exudate level comprising high amount of tissue destructive enzymes. Asiaticoside possesses interesting wound healing and angiogenic activities that are employed to stimulate tissue regeneration in wound healing application. This study attempted to develop chitosan–aluminum monostearate (Alst) composite sponge containing asiaticoside for use as an absorbent medical dressing in chronic wound. N-methyl-2-pyrrolidone (NMP) was used to enhance homogeneity of asiaticoside in the polymer composite matrix. The sponge dressings were prepared by lyophilization and dehydrothermal treatment (DHT). Functional group interaction, crystallinity, and morphology of the prepared sponges were investigated using FT-IR, PXRD, and SEM, respectively. Physicochemical properties, porosity, hydrophilic/hydrophobic properties and mechanical property, were evaluated. Wound dressing properties, water vapor transmission rate (WVTR), fluid absorbency, oxygen permeation (OP), and bio-adhesive property, were investigated. In vitro asiaticoside release study was conducted using immersion method. Cytotoxicity was studied in normal human dermal fibroblast (NHDF) and normal human epidermal keratinocyte (NHEK). Angiogenic activity of asiaticoside was evaluated using chick-chorioallantoic membrane (CAM) assay. FT-IR and PXRD results revealed the amidation after DHT to enhance the crystallinity of the prepared sponges. The prepared sponges had high porosity comprising high Alst-loaded amount that exhibited more compact structure. Alst enhanced hydrophobicity therefore it reduced the fluid absorption and WVTR together with bio-adhesion of the prepared sponge dressings. Porosity of all sponges was more than 85% therefore resulting in their high OP. Enhancing hydrophobicity of the material by Alst and more homogeneity caused by NMP eventually retarded the asiaticoside release for 7 days

  16. Determination of the radionuclide release factor for an evaporator process using nondestructive assay

    International Nuclear Information System (INIS)

    Johnson, R.E.

    1998-01-01

    The 242-A Evaporator is the primary waste evaporator for the Hanford Site radioactive liquid waste stored in underground double-shell tanks. Low pressure evaporation is used to remove water from the waste, thus reducing the amount of tank space required for storage. The process produces a concentrated slurry, a process condensate, and an offgas. The offgas exhausts through two stages of high-efficiency particulate air (HEPA) filters before being discharged to the atmosphere 40 CFR 61 Subpart H requires assessment of the unfiltered exhaust to determine if continuous compliant sampling is required. Because potential (unfiltered) emissions are not measured, methods have been developed to estimate these emissions. One of the methods accepted by the Environmental Protection Agency is the measurement of the accumulation of radionuclides on the HEPA filters. Nondestructive assay (NDA) was selected for determining the accumulation on the HEPA filters. NDA was performed on the HEPA filters before and after a campaign in 1997. NDA results indicate that 2.1 E+4 becquerels of cesium-137 were accumulated on the primary HEPA 1700 filter during the campaign. The feed material processed in the campaign contained a total of 1.4 E+l6 Bq of cesium-137. The release factor for the evaporator process is 1.5 E-12. Based on this release factor, continuous compliant sampling is not required

  17. Platelet-Released Growth Factors Modulate the Secretion of Cytokines in Synoviocytes under Inflammatory Joint Disease

    Science.gov (United States)

    Rasuo, Biljana; Hock, Jennifer Vanessa Phi; Kweider, Nisreen; Fragoulis, Athanassios; Sönmez, Tolga Taha; Jahr, Holger; Pufe, Thomas; Lippross, Sebastian

    2017-01-01

    The etiology and pathogenesis of rheumatoid arthritis (RA) are marked by a complex interplay of various cell populations and is mediated by different signaling pathways. Traditionally, therapies have primarily focused on pain relief, reducing inflammation and the recovery of joint function. More recently, however, researchers have discussed the therapeutic efficacy of autologous platelet-rich plasma (PRP). The main objective of this work is to examine the influences of platelet-released growth factor (PRGF) on human synoviocytes under inflammatory conditions. Additionally, it is checked to which extend treatment with platelet concentrate influences the release of cytokines form synoviocytes. For this purpose, an in vitro RA model was created by stimulating the cells with the TNF-α. The release of cytokines was measured by ELISA. The cytokine gene expression was analyzed by real-time PCR. It has been observed that the stimulation concentration of 10 ng/ml TNF-α resulted in a significantly increased endogenous secretion and gene expression of IL-6 and TNF-α. The anti-inflammatory effect of PRGF could be confirmed through significant reduction of TNF-α and IL-1β. An induced inflammatory condition seems to cause PRGF to inhibit the release of proinflammatory cytokines. Further study is required to understand the exact effect mechanism of PRGF on synoviocytes. PMID:29348703

  18. Platelet-Released Growth Factors Modulate the Secretion of Cytokines in Synoviocytes under Inflammatory Joint Disease

    Directory of Open Access Journals (Sweden)

    Mersedeh Tohidnezhad

    2017-01-01

    Full Text Available The etiology and pathogenesis of rheumatoid arthritis (RA are marked by a complex interplay of various cell populations and is mediated by different signaling pathways. Traditionally, therapies have primarily focused on pain relief, reducing inflammation and the recovery of joint function. More recently, however, researchers have discussed the therapeutic efficacy of autologous platelet-rich plasma (PRP. The main objective of this work is to examine the influences of platelet-released growth factor (PRGF on human synoviocytes under inflammatory conditions. Additionally, it is checked to which extend treatment with platelet concentrate influences the release of cytokines form synoviocytes. For this purpose, an in vitro RA model was created by stimulating the cells with the TNF-α. The release of cytokines was measured by ELISA. The cytokine gene expression was analyzed by real-time PCR. It has been observed that the stimulation concentration of 10 ng/ml TNF-α resulted in a significantly increased endogenous secretion and gene expression of IL-6 and TNF-α. The anti-inflammatory effect of PRGF could be confirmed through significant reduction of TNF-α and IL-1β. An induced inflammatory condition seems to cause PRGF to inhibit the release of proinflammatory cytokines. Further study is required to understand the exact effect mechanism of PRGF on synoviocytes.

  19. Growth Hormone-Releaser Diet Attenuates Cognitive Dysfunction in Klotho Mutant Mice via Insulin-Like Growth Factor-1 Receptor Activation in a Genetic Aging Model

    Directory of Open Access Journals (Sweden)

    Seok Joo Park

    2014-09-01

    Full Text Available BackgroundIt has been recognized that a defect in klotho gene expression accelerates the degeneration of multiple age-sensitive traits. Accumulating evidence indicates that aging is associated with declines in cognitive function and the activity of growth hormone (GH/insulin-like growth factor-1 (IGF-1.MethodsIn this study, we examined whether a GH-releaser diet could be effective in protecting against cognitive impairment in klotho mutant mice.ResultsThe GH-releaser diet significantly induced the expression of IGF-1 and IGF-1 receptors in the hippocampus of klotho mutant mice. Klotho mutant mice showed significant memory impairments as compared with wild-type mice. In addition, the klotho mutation significantly decreased the expression of cell survival/antiapoptotic factors, including phospho-Akt (p-Akt/phospho-glycogen synthase kinase3β (p-GSK3β, phospho-extracellular signal-related kinase (p-ERK, and Bcl-2, but significantly increased those of cell death/proapoptotic factors, such as phospho-c-jun N-terminal kinase (p-JNK, Bax, and cleaved caspase-3 in the hippocampus. Treatment with GH-releaser diet significantly attenuated both decreases in the expression of cell survival/antiapoptotic factors and increases in the expression of cell death/proapoptotic factors in the hippocampus of klotho mutant mice. In addition, klotho mutation-induced oxidative stress was significantly attenuated by the GH-releaser diet. Consequently, a GH-releaser diet significantly improved memory function in the klotho mutant mice. GH-releaser diet-mediated actions were significantly reversed by JB-1, an IGF-1 receptor antagonist.ConclusionThe results suggest that a GH-releaser diet attenuates oxidative stress, proapoptotic changes and consequent dysfunction in klotho mutant mice by promoting IGF-1 expression and IGF-1 receptor activation.

  20. Association between adverse pregnancy outcome and imbalance in angiogenic regulators and oxidative stress biomarkers in gestational hypertension and preeclampsia.

    Science.gov (United States)

    Turpin, Cornelius A; Sakyi, Samuel A; Owiredu, William K B A; Ephraim, Richard K D; Anto, Enoch O

    2015-08-25

    Gestational hypertension (GH) and Preeclampsia, (PE) are the most complicated amongst hypertensive disorders of pregnancy. The mechanism that links hypertension in pregnancy to adverse maternal outcomes is not fully understood though some relate this to endothelial dysfunction originating from an imbalanced angiogenic regulators and oxidative stress biomarkers. This study assessed the correlation between angiogenic regulators and oxidative stress biomarker levels with adverse pregnancy outcomes among GH and PE participants. A cohort of pregnant women who received antenatal care at the Obstetrics and Gynaecology department of the Komfo Anokye Teaching Hospital (KATH) were followed. During their antenatal visits, 100 developed PE and 70 developed GE, of these, 50 PE and 50 GH gave informed consent. Their blood samples were taken at time of diagnosis and 48 h post-partum. 50 other aged-matched women who did not develop neither GH nor PE were selected as controls. Placental growth factor (PLGF), soluble fms-like tyrosine kinase 1 (sFlt-1) and 8-epi-prostaglandin F2alpha (8-epi-PGF2α) levels were estimated by ELISA and total antioxidant capacity (T-AOC) was measured spectrophotometrically. Graphpad Prism was used for data analysis. Median levels of sFlt-1, 8-epi-PGF2α and sFlt-1/PLGF were elevated among participants with PE co-existing with intrauterine fetal death (IUFD), placental abruptio, placental previa, HELLP syndrome and intrauterine growth restriction (IUGR) compared to PE without adverse outcomes (p = 0.041, p = 0.005, p = 0.0002). Levels of PLGF, T-AOC and PLGF/sFlt-1 were significantly reduced among participants with PE co-existing with IUFD, placental abruptio, placental previa, HELLP syndrome and IUGR compared to PE without adverse outcomes (p = 0.0013, p = 0.006, p < 0.0001). A significant negative correlation of IUGR (p = 0.0030; p < 0.0001), placental abruptio (p < 0.0001; p < 0.0001), IUFD (p < 0.0001; p

  1. Expression and hypophysiotropic actions of corticotropin-releasing factor in Xenopus laevis.

    Science.gov (United States)

    Boorse, Graham C; Denver, Robert J

    2004-07-01

    Members of the corticotropin-releasing factor (CRF) family of peptides play pivotal roles in the regulation of neuroendocrine, autonomic, and behavioral responses to physical and emotional stress. In amphibian tadpoles, CRF-like peptides stimulate both thyroid and interrenal (adrenal) hormone secretion, and can thereby modulate the rate of metamorphosis. To better understand the regulation of expression and actions of CRF in amphibians we developed a homologous radioimmunoassay (RIA) for Xenopus laevis CRF (xCRF). We validated this RIA and tissue extraction procedure for the measurement of brain CRF content in tadpoles and juveniles. We show that the CRF-binding protein, which is highly expressed in X. laevis brain, is largely removed by acid extraction and does not interfere in the RIA. We analyzed CRF peptide content in five microdissected brain regions in prometamorphic tadpoles and juveniles. CRF was detected throughout the brain, consistent with its role as both a hypophysiotropin and a neurotransmitter/neuromodulator. CRF content was highest in the region of the preoptic area (POa) and increased in all brain regions after metamorphosis. Exposure to 4h of handling/shaking stress resulted in increased CRF peptide content in the POa in juvenile frogs. Injections of xCRF into prometamorphic tadpoles increased whole body corticosterone and thyroxine content, thus supporting findings in other anuran species that this peptide functions as both a corticotropin- and a thyrotropin (TSH)-releasing factor. Furthermore, treatment of cultured tadpole pituitaries with xCRF (100nM for 24h) resulted in increased medium content, but decreased pituitary content of TSHbeta-immunoreactivity. Our results support the view that CRF functions as a stress neuropeptide in X. laevis as in other vertebrates. Furthermore, we provide evidence for a dual hypophysiotropic action of CRF on the thyroid and interrenal axes in X. laevis as has been shown previously in other amphibian species.

  2. Free amino acids exhibit anthozoan "host factor" activity: they induce the release of photosynthate from symbiotic dinoflagellates in vitro.

    Science.gov (United States)

    Gates, R D; Hoegh-Guldberg, O; McFall-Ngai, M J; Bil, K Y; Muscatine, L

    1995-08-01

    Reef-building corals and other tropical anthozoans harbor endosymbiotic dinoflagellates. It is now recognized that the dinoflagellates are fundamental to the biology of their hosts, and their carbon and nitrogen metabolisms are linked in important ways. Unlike free living species, growth of symbiotic dinoflagellates is unbalanced and a substantial fraction of the carbon fixed daily by symbiont photosynthesis is released and used by the host for respiration and growth. Release of fixed carbon as low molecular weight compounds by freshly isolated symbiotic dinoflagellates is evoked by a factor (i.e., a chemical agent) present in a homogenate of host tissue. We have identified this "host factor" in the Hawaiian coral Pocillopora damicornis as a set of free amino acids. Synthetic amino acid mixtures, based on the measured free amino acid pools of P. damicornis tissues, not only elicit the selective release of 14C-labeled photosynthetic products from isolated symbiotic dinoflagellates but also enhance total 14CO2 fixation.

  3. Impacts of environmental factors on arsenate biotransformation and release in Microcystis aeruginosa using the Taguchi experimental design approach.

    Science.gov (United States)

    Wang, Zhenhong; Luo, Zhuanxi; Yan, Changzhou; Xing, Baoshan

    2017-07-01

    Very limited information is available on how and to what extent environmental factors influence arsenic (As) biotransformation and release in freshwater algae. These factors include concentrations of arsenate (As(V)), dissolved inorganic nitrogen (N), phosphate (P), and ambient pH. This study conducted a series of experiments using Taguchi methods to determine optimum conditions for As biotransformation. We assessed principal effective factors of As(V), N, P, and pH and determined that As biotransformation and release actuate at 10.0 μM As(V) in dead alga cells, the As efflux ratio and organic As efflux content actuate at 1.0 mg/L P, algal growth and intracellular arsenite (As(III)) content actuate at 10.0 mg/L N, and the total sum of As(III) efflux from dead alga cells actuates at a pH level of 10. Moreover, N is the critical component for As(V) biotransformation in M. aeruginosa, specifically for As(III) transformation, because N can accelerate algal growth, subsequently improving As(III) accumulation and its efflux, which results in an As(V) to As(III) reduction. Furthermore, low P concentrations in combination with high N concentrations promote As accumulation. Following As(V), P was the primary impacting factor for As accumulation. In addition, small amounts of As accumulation under low concentrations of As and high P were securely stored in living algal cells and were easily released after cell death. Results from this study will help to assess practical applications and the overall control of key environmental factors, particularly those associated with algal bioremediation in As polluted water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Suckling induced insulin-like growth factor-1 (IGF-1) release in mother rats.

    Science.gov (United States)

    Lékó, András H; Cservenák, Melinda; Dobolyi, Árpád

    2017-12-01

    Lactation involves significant neuroendocrine changes. The elevated prolactin (PRL) release from the pituitary, induced markedly by suckling, is the most relevant example. Suckling also causes a significant and rapid elevation in growth hormone (GH) levels. GH is necessary for milk synthesis as milk yield is stopped completely in the absence of PRL and GH, while the absence of PRL alone causes only a 50% reduction. Insulin-like growth factor-1 (IGF-1) plays an important role in the GH axis. GH exerts its effects through IGF-1 in the periphery, for example in the mammary gland. In addition, IGF-1 is responsible for the long-loop feedback control of GH secretion. IGF-1 secretion has not been established yet in mothers. Therefore, in the present study, we investigated the effect of suckling on serum IGF-1 level in rat mothers and correlated it with serum PRL levels. We examined a potential mechanism of the regulation of IGF-1 level during suckling by administering IGF-1 into the lateral ventricle of rat mothers continuously for 12days, or acutely, right before the start of suckling. We described that suckling affected IGF-1 release based on one-way repeated measures ANOVA (F=10.8 and pIGF-1 level 30min after the start of suckling (pIGF-1 release. The prolonged central IGF-1 administration diminished the suckling-induced IGF-1 surge (F=9.19 and pIGF-1 release either by elevating PRL or GH. Long-loop feedback via IGF-1 in the GH axis can diminish this action. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Corticotropin-Releasing Factor Receptors Modulate Oxytocin Release in the Dorsolateral Bed Nucleus of the Stria Terminalis (BNST in Male Rats

    Directory of Open Access Journals (Sweden)

    Daisy Martinon

    2018-03-01

    Full Text Available The neuropeptide oxytocin (OT plays an important role in the regulation of social and anxiety-like behavior. Our previous studies have shown that OT neurons send projections from the hypothalamus to the dorsolateral bed nucleus of the stria terminalis (BNSTdl, a forebrain region critically involved in the modulation of anxiety-like behavior. Importantly, these OT terminals in the BNSTdl express presynaptic corticotropin releasing factor (CRF receptor type 2 (CRFR2. This suggests that CRFR2 might be involved in the modulation of OT release. To test this hypothesis, we measured OT content in microdialysates collected from the BNSTdl of freely-moving male Sprague-Dawley rats following the administration of a selective CRFR2 agonist (Urocortin 3 or antagonist (Astressin 2B, As2B. To determine if type 1 CRF receptors (CRFR1 are also involved, we used selective CRFR1 antagonist (NBI35965 as well as CRF, a putative ligand of both CRFR1 and CRFR2. All compounds were delivered directly into the BNSTdl via reverse dialysis. OT content in the microdialysates was measured with highly sensitive and selective radioimmunoassay. Blocking CRFR2 with As2B caused an increase in OT content in BNSTdl microdialysates, whereas CRFR2 activation by Urocortin 3 did not have an effect. The As2B-induced increase in OT release was blocked by application of the CRFR1 antagonist demonstrating that the effect was dependent on CRFR1 transmission. Interestingly, CRF alone caused a delayed increase in OT content in BNSTdl microdialysates, which was dependent on CRF2 but not CRF1 receptors. Our results suggest that members of the CRF peptide family modulate OT release in the BNSTdl via a fine-tuned mechanism that involves both CRFR1 and CRFR2. Further exploration of mechanisms by which endogenous OT system is modulated by CRF peptide family is needed to better understand the role of these neuropeptides in the regulation of anxiety and the stress response.

  6. Multifunction Sr, Co and F co-doped microporous coating on titanium of antibacterial, angiogenic and osteogenic activities

    OpenAIRE

    Jianhong Zhou; Lingzhou Zhao

    2016-01-01

    Advanced multifunction titanium (Ti) based bone implant with antibacterial, angiogenic and osteogenic activities is stringently needed in clinic, which may be accomplished via incorporation of proper inorganic bioactive elements. In this work, microporous TiO2/calcium-phosphate coating on Ti doped with strontium, cobalt and fluorine (SCF-TiCP) was developed, which had a hierarchical micro/nano-structure with a microporous structure evenly covered with nano-grains. SCF-TiCP greatly inhibited t...

  7. Synergistic effects of dimethyloxallyl glycine and recombinant human bone morphogenetic protein-2 on repair of critical-sized bone defects in rats

    Science.gov (United States)

    Qi, Xin; Liu, Yang; Ding, Zhen-Yu; Cao, Jia-Qing; Huang, Jing-Huan; Zhang, Jie-Yuan; Jia, Wei-Tao; Wang, Jing; Liu, Chang-Sheng; Li, Xiao-Lin

    2017-02-01

    In bone remodeling, osteogenesis is closely coupled to angiogenesis. Bone tissue engineering using multifunctional bioactive materials is a promising technique which has the ability to simultaneously stimulate osteogenesis and angiogenesis for repair of bone defects. We developed mesoporous bioactive glass (MBG)-doped poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) composite scaffolds as delivery vehicle. Two bioactive molecules, dimethyloxalylglycine (DMOG), a small-molecule angiogenic drug, and recombinant human bone morphogenetic protein-2 (rhBMP-2), an osteoinductive growth factor, were co-incorporated into the scaffold. The synergistic effects of DMOG and rhBMP-2 released in the composite scaffolds on osteogenic and angiogenic differentiation of hBMSCs were investigated using real-time quantitative polymerase chain reaction and western blotting. Moreover, in vivo studies were conducted to observe bone regeneration and vascular formation of critical-sized bone defects in rats using micro-computed tomography, histological analyses, Microfil® perfusion, fluorescence labeling, and immunohistochemical analysis. The results showed that DMOG and rhBMP-2 released in the MBG-PHBHHx scaffolds did exert synergistic effects on the osteogenic and angiogenic differentiation of hBMSCs. Moreover, DMOG and rhBMP-2 produced significant increases in newly-formed bone and neovascularization of calvarial bone defects in rats. It is concluded that the co-delivery strategy of both rhBMP-2 and DMOG can significantly improve the critical-sized bone regeneration.

  8. The proangiogenic phenotype of tumor-derived endothelial cells is reverted by the overexpression of platelet-activating factor acetylhydrolase.

    Science.gov (United States)

    Doublier, Sophie; Ceretto, Monica; Lupia, Enrico; Bravo, Stefania; Bussolati, Benedetta; Camussi, Giovanni

    2007-10-01

    We previously reported that human tumor-derived endothelial cells (TEC) have an angiogenic phenotype related to the autocrine production of several angiogenic factors. The purpose of the present study was to evaluate whether an enhanced synthesis of platelet-activating factor (PAF) might contribute to the proangiogenic characteristics of TEC and whether its inactivation might inhibit angiogenesis. To address the potential role of PAF in the proangiogenic characteristics of TEC, we engineered TEC to stably overexpress human plasma PAF-acetylhydrolase (PAF-AH), the major PAF-inactivating enzyme, and we evaluated in vitro and in vivo angiogenesis. TECs were able to synthesize a significantly enhanced amount of PAF compared with normal human microvascular endothelial cells when stimulated with thrombin, vascular endothelial growth factor, or soluble CD154. Transfection of TEC with PAF-AH (TEC-PAF-AH) significantly inhibited apoptosis resistance and spontaneous motility of TEC. In addition, PAF and vascular endothelial growth factor stimulation enhanced the motility and adhesion of TEC but not of TEC-PAF-AH. In vitro, TEC-PAF-AH lost the characteristic ability of TEC to form vessel-like structures when plated on Matrigel. Finally, when cells were injected s.c. within Matrigel in severe combined immunodeficiency mice or coimplanted with a renal carcinoma cell line, the overexpression of PAF-AH induced a significant reduction of functional vessel formation. These results suggest that inactivation of PAF, produced by TEC, by the overexpression of plasma PAF-AH affects survival, migration, and the angiogenic response of TEC both in vitro and in vivo.

  9. Substance P enhances tissue factor release from granulocyte-macrophage colony-stimulating factor-dependent macrophages via the p22phox/β-arrestin 2/Rho A signaling pathway.

    Science.gov (United States)

    Yamaguchi, Rui; Yamamoto, Takatoshi; Sakamoto, Arisa; Ishimaru, Yasuji; Narahara, Shinji; Sugiuchi, Hiroyuki; Yamaguchi, Yasuo

    2016-03-01

    Granulocyte-macrophage colony stimulating factor (GM-CSF) induces procoagulant activity of macrophages. Tissue factor (TF) is a membrane-bound glycoprotein and substance P (SP) is a pro-inflammatory neuropeptide involved in the formation of membrane blebs. This study investigated the role of SP in TF release by GM-CSF-dependent macrophages. SP significantly decreased TF levels in whole-cell lysates of GM-CSF-dependent macrophages. TF was detected in the culture supernatant by enzyme-linked immunosorbent assay after stimulation of macrophages by SP. Aprepitant (an SP/neurokinin 1 receptor antagonist) reduced TF release from macrophages stimulated with SP. Pretreatment of macrophages with a radical scavenger(pyrrolidinedithiocarbamate) also limited the decrease of TF in whole-cell lysates after stimulation with SP. A protein kinase C inhibitor (rottlerin) partially blocked this macrophage response to SP, while it was significantly inhibited by a ROCK inhibitor (Y-27632) or a dynamin inhibitor (dinasore). An Akt inhibitor (perifosine) also partially blocked this response. Furthermore, siRNA targeting p22phox, β-arrestin 2, or Rho A, blunted the release of TF from macrophages stimulated with SP. In other experiments, visceral adipocytes derived from cryopreserved preadipocytes were found to produce SP. In conclusion, SP enhances the release of TF from macrophages via the p22phox/β-arrestin 2/Rho A signaling pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Orexin–Corticotropin-Releasing Factor Receptor Heteromers in the Ventral Tegmental Area as Targets for Cocaine

    Science.gov (United States)

    Navarro, Gemma; Quiroz, César; Moreno-Delgado, David; Sierakowiak, Adam; McDowell, Kimberly; Moreno, Estefanía; Rea, William; Cai, Ning-Sheng; Aguinaga, David; Howell, Lesley A.; Hausch, Felix; Cortés, Antonio; Mallol, Josefa; Casadó, Vicent; Lluís, Carme; Canela, Enric I.

    2015-01-01

    Release of the neuropeptides corticotropin-releasing factor (CRF) and orexin-A in the ventral tegmental area (VTA) play an important role in stress-induced cocaine-seeking behavior. We provide evidence for pharmacologically significant interactions between CRF and orexin-A that depend on oligomerization of CRF1 receptor (CRF1R) and orexin OX1 receptors (OX1R). CRF1R–OX1R heteromers are the conduits of a negative crosstalk between orexin-A and CRF as demonstrated in transfected cells and rat VTA, in which they significantly modulate dendritic dopamine release. The cocaine target σ1 receptor (σ1R) also associates with the CRF1R–OX1R heteromer. Cocaine binding to the σ1R–CRF1R–OX1R complex promotes a long-term disruption of the orexin-A–CRF negative crosstalk. Through this mechanism, cocaine sensitizes VTA cells to the excitatory effects of both CRF and orexin-A, thus providing a mechanism by which stress induces cocaine seeking. PMID:25926444

  11. Orexin-corticotropin-releasing factor receptor heteromers in the ventral tegmental area as targets for cocaine.

    Science.gov (United States)

    Navarro, Gemma; Quiroz, César; Moreno-Delgado, David; Sierakowiak, Adam; McDowell, Kimberly; Moreno, Estefanía; Rea, William; Cai, Ning-Sheng; Aguinaga, David; Howell, Lesley A; Hausch, Felix; Cortés, Antonio; Mallol, Josefa; Casadó, Vicent; Lluís, Carme; Canela, Enric I; Ferré, Sergi; McCormick, Peter J

    2015-04-29

    Release of the neuropeptides corticotropin-releasing factor (CRF) and orexin-A in the ventral tegmental area (VTA) play an important role in stress-induced cocaine-seeking behavior. We provide evidence for pharmacologically significant interactions between CRF and orexin-A that depend on oligomerization of CRF1 receptor (CRF1R) and orexin OX1 receptors (OX1R). CRF1R-OX1R heteromers are the conduits of a negative crosstalk between orexin-A and CRF as demonstrated in transfected cells and rat VTA, in which they significantly modulate dendritic dopamine release. The cocaine target σ1 receptor (σ1R) also associates with the CRF1R-OX1R heteromer. Cocaine binding to the σ1R-CRF1R-OX1R complex promotes a long-term disruption of the orexin-A-CRF negative crosstalk. Through this mechanism, cocaine sensitizes VTA cells to the excitatory effects of both CRF and orexin-A, thus providing a mechanism by which stress induces cocaine seeking. Copyright © 2015 the authors 0270-6474/15/356639-15$15.00/0.

  12. Rupatadine inhibits inflammatory mediator release from human laboratory of allergic diseases 2 cultured mast cells stimulated by platelet-activating factor.

    Science.gov (United States)

    Alevizos, Michail; Karagkouni, Anna; Vasiadi, Magdalini; Sismanopoulos, Nikolaos; Makris, Michael; Kalogeromitros, Dimitrios; Theoharides, Theoharis C

    2013-12-01

    Mast cells are involved in allergy and inflammation by the secretion of multiple mediators, including histamine, cytokines, and platelet-activating factor (PAF), in response to different triggers, including emotional stress. PAF has been associated with allergic inflammation, but there are no clinically available PAF inhibitors. To investigate whether PAF could stimulate human mast cell mediator release and whether rupatadine (RUP), a dual histamine-1 and PAF receptor antagonist, could inhibit the effect of PAF on human mast cells. Laboratory of allergic diseases 2 cultured mast cells were stimulated with PAF (0.001, 0.01, and 0.1 μmol/L) and substance P (1 μmol/L) with or without pretreatment with RUP (2.5 and 25 μmol/L), which was added 10 minutes before stimulation. Release of β-hexosaminidase was measured in supernatant fluid by spectrophotoscopy, and histamine, interleukin-8, and tumor necrosis factor were measured by enzyme-linked immunosorbent assay. PAF stimulated a statistically significant release of histamine, interleukin-8, and tumor necrosis factor (0.001-0.1 μmol/L) that was comparable to that stimulated by substance P. Pretreatment with RUP (25 μmol/L) for 10 minutes inhibited this effect. In contrast, pretreatment of laboratory of allergic diseases 2 cells with diphenhydramine (25 μmol/L) did not inhibit mediator release, suggesting that the effect of RUP was not due to its antihistaminic effect. PAF stimulates human mast cell release of proinflammatory mediators that is inhibited by RUP. This action endows RUP with additional properties in treating allergic inflammation. Copyright © 2013 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  13. Novel cobalt releasing sol-gel derived bioactive glass for bone tissue engineering

    International Nuclear Information System (INIS)

    Oliveira, Ana Celeste Ximenes; Barrioni, Breno Rocha; Leite, Maria de Fatima; Pereira, Marivalda Magalhaes

    2016-01-01

    Full text: Bone defects are caused by traumas, congenital disorders or infections, and bone grafts are the usual treatment. However, limitations of this therapy have lead to the advance of tissue engineering approaches. Bioactive glasses (BG) are an attractive bioactive ceramic for bone repair [1], due to its osteogenic properties and capability of releasing different ions, inducing specific biological responses. Tissue repair depends also on blood vessels formation. Among angiogenic agents, cobalt ion has been regarded as strategic component to incorporate into ion releasing materials. In this study, 5% (molar) cobalt releasing BG was synthesized by sol-gel method. To characterize the material, powder samples were evaluated by FTIR and DRX. To access the cytotoxic effects, MTT and LIVE/DEAD tests were performed on osteoblasts exposed to the ionic product of the material (100 μg/mL) for 72h. FTIR analysis reveals typical absorption bands of present groups in BG. X-ray diffractogram of DRX confirmed the amorphous character of BG, without the occurrence of recrystallization of cobalt precursor, suggesting that cobalt incorporation was well succeeded. MTT test showed that cells exposed to ionic product presented high levels of metabolic activity. LIVE/DEAD assay evidenced that cell membrane integrity and intracellular esterases activity were preserved. Both cytotoxic tests proved that cobalt-BG material generated a cell friendly environment. This work shows that BG with cobalt agent presented proper structural features and a non-cytotoxic behaviour. Reference: [1] Hench LL, J Mater Sci Mater Med 17(11), 967-78 (2006). (author)

  14. Novel retinoblastoma treatment avoids chemotherapy: the effect of optimally timed combination therapy with angiogenic and glycolytic inhibitors on LHBETATAG retinoblastoma tumors

    Directory of Open Access Journals (Sweden)

    Samuel K Houston

    2011-01-01

    Full Text Available Samuel K Houston1, Yolanda Piña1, Timothy G Murray1, Hinda Boutrid1, Colleen Cebulla2, Amy C Schefler1, Wei Shi1, Magda Celdran1, William Feuer1, Jaime Merchan3, Ted J Lampidis41Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA; 2Department of Ophthalmology, The Ohio State University, Columbus, OH, USA; 3Division of Hematology/Oncology, Department of Medicine, 4Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center, Miami, FL, USAPurpose: The purpose of this study was to evaluate the effect of optimally timed combination treatment with angiogenic and glycolytic inhibitors on tumor burden, hypoxia, and angiogenesis in advanced retinoblastoma tumors.Methods: LHBETATAG mice (n = 30 were evaluated. Mice were divided into 5 groups (n = 6 and received injections at 16 weeks of age (advanced tumors with a saline, b anecortave acetate (AA, c 2-deoxyglucose (2-DG, d AA + 2-DG (1 day post-AA treatment, or e AA + 2-DG (1 week post-AA treatment. Eyes were enucleated at 21 weeks and tumor sections were analyzed for hypoxia, angiogenesis, and tumor burden.Results: Eyes treated with 2-DG 1 day post-AA injection showed a 23% (P = 0.03 reduction in tumor burden compared with 2-DG alone and a 61% (P < 0.001 reduction compared with saline-treated eyes. Eyes treated with 2-DG 1 week post-AA injection showed no significant decrease in tumor burden compared with 2-DG alone (P = 0.21 and a 56% (P < 0.001 decrease in comparison with saline-treated eyes. 2-DG significantly reduced the total density of new blood vessels in tumors by 44% compared to saline controls (P < 0.001, but did not affect the density of mature vasculature.Conclusions: Combination therapy with angiogenic and glycolytic inhibitors significantly enhanced tumor control. Synergistic effects were shown to be dependent on the temporal course of treatment

  15. Resveratrol modulates the angiogenic response to exercise training in skeletal muscles of aged men.

    Science.gov (United States)

    Gliemann, Lasse; Olesen, Jesper; Biensø, Rasmus Sjørup; Schmidt, Jakob Friis; Akerstrom, Thorbjorn; Nyberg, Michael; Lindqvist, Anna; Bangsbo, Jens; Hellsten, Ylva

    2014-10-15

    In animal studies, the polyphenol resveratrol has been shown to influence several pathways of importance for angiogenesis in skeletal muscle. The aim of the present study was to examine the angiogenic effect of resveratrol supplementation with parallel exercise training in aged men. Forty-three healthy physically inactive aged men (65 ± 1 yr) were divided into 1) a training group that conducted 8 wk of intense exercise training where half of the subjects received a daily intake of either 250 mg trans-resveratrol (n = 14) and the other half received placebo (n = 13) and 2) a nontraining group that received either 250 mg trans-resveratrol (n = 9) or placebo (n = 7). The group that trained with placebo showed a ~20% increase in the capillary-to-fiber ratio, an increase in muscle protein expression of VEGF, VEGF receptor-2, and tissue inhibitor of matrix metalloproteinase (TIMP-1) but unaltered thrombospodin-1 levels. Muscle interstitial VEGF and thrombospodin-1 protein levels were unchanged after the training period. The group that trained with resveratrol supplementation did not show an increase in the capillary-to-fiber ratio or an increase in muscle VEGF protein. Muscle TIMP-1 protein levels were lower in the training and resveratrol group than in the training and placebo group. Both training groups showed an increase in forkhead box O1 protein. In nontraining groups, TIMP-1 protein was lower in the resveratrol-treated group than the placebo-treated group after 8 wk. In conclusion, these data show that exercise training has a strong angiogenic effect, whereas resveratrol supplementation may limit basal and training-induced angiogenesis. Copyright © 2014 the American Physiological Society.

  16. Angiogenic proteins, placental weight and perinatal outcomes among pregnant women in Tanzania.

    Science.gov (United States)

    McDonald, Chloe R; Darling, Anne M; Liu, Enju; Tran, Vanessa; Cabrera, Ana; Aboud, Said; Urassa, Willy; Kain, Kevin C; Fawzi, Wafaie W

    2016-01-01

    Placental vascular development, and ultimately placental weight, is essential to healthy fetal development. Here, we examined placental weight in a cohort of Tanzanian women in association with angiogenic proteins known to regulate placental vascular development and perinatal outcomes. A total of n = 6579 women with recorded placental weight were included in this study. The relative risk of adverse perinatal outcomes (Apgar score, death, asphyxia, respiratory distress, seizures, pneumonia and sepsis) was compared between placental weight in the bottom and top 10th percentiles. We quantified angiogenic mediators (Ang-1, Ang-2, VEGF, PGF and sFlt-1) in plasma samples (n = 901) collected between 12 to 27 weeks of pregnancy using ELISA and assessed the relative risk of placental weight in the bottom and top 10th percentiles by protein levels in quartiles. Women with Ang-2 levels in the highest quartile had an increased relative risk of placental weight in the bottom 10th percentile (RR = 1.45 (1.10, 1.91), p = 0.01). Women with VEGF-A (RR = 0.73 (0.56, 0.96), p = 0.05) and PGF (RR = 0.58 (0.44, 0.72), p = 0.002) in the highest quartile had a reduced relative risk of placental weight in the bottom 10th percentile. Low placental weight (in bottom 10th percentile) was associated with an increased relative risk of Apgar score of <7 at 1 minute (RR = 2.31 (1.70, 3.13), p = 0.001), at 5 minutes (RR = 3.53 (2.34, 5.33), p = 0.001), neonatal death (RR = 5.02 (3.61, 7.00), p = 0.001), respiratory distress (RR = 4.80(1.71, 13.45), p = 0.001), and seizures (RR = 4.18 (1.16, 15.02), p = 0.03). The association between low placental weight and risk of adverse perinatal outcomes in this cohort suggests that placental weight could serve as a useful indicator, providing additional insight into high-risk pregnancies and identifying neonates that may require additional monitoring and follow-up.

  17. Dual-drug delivery by porous silicon nanoparticles for improved cellular uptake, sustained release, and combination therapy.

    Science.gov (United States)

    Wang, Chang-Fang; Mäkilä, Ermei M; Kaasalainen, Martti H; Hagström, Marja V; Salonen, Jarno J; Hirvonen, Jouni T; Santos, Hélder A

    2015-04-01

    Dual-drug delivery of antiangiogenic and chemotherapeutic drugs can enhance the therapeutic effect for cancer therapy. Conjugation of methotrexate (MTX) to porous silicon (PSi) nanoparticles (MTX-PSi) with positively charged surface can improve the cellular uptake of MTX and inhibit the proliferation of cancer cells. Herein, MTX-PSi conjugates sustained the release of MTX up to 96 h, and the released fragments including MTX were confirmed by mass spectrometry. The intracellular distribution of the MTX-PSi nanoparticles was confirmed by transmission electron microscopy. Compared to pure MTX, the MTX-PSi achieved similar inhibition of cell proliferation in folate receptor (FR) over-expressing U87 MG cancer cells, and a higher effect in low FR-expressing EA.hy926 cells. Nuclear fragmentation analysis demonstrated programmed cell apoptosis of MTX-PSi in the high/low FR-expressing cancer cells, whereas PSi alone at the same dose had a minor effect on cell apoptosis. Finally, the porous structure of MTX-PSi enabled a successful concomitant loading of another anti-angiogenic hydrophobic drug, sorafenib, and considerably enhanced the dissolution rate of sorafenib. Overall, the MTX-PSi nanoparticles can be used as a platform for combination chemotherapy by simultaneously enhancing the dissolution rate of a hydrophobic drug and sustaining the release of a conjugated chemotherapeutic drug. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Effect of growth hormone-releasing factor on growth hormone release in children with radiation-induced growth hormone deficiency

    International Nuclear Information System (INIS)

    Lustig, R.H.; Schriock, E.A.; Kaplan, S.L.; Grumbach, M.M.

    1985-01-01

    Five male children who received cranial irradiation for extrahypothalamic intracranial neoplasms or leukemia and subsequently developed severe growth hormone (GH) deficiency were challenged with synthetic growth hormone-releasing factor (GRF-44), in an attempt to distinguish hypothalamic from pituitary dysfunction as a cause of their GH deficiency, and to assess the readily releasable GH reserve in the pituitary. In response to a pulse of GRF-44 (5 micrograms/kg intravenously), mean peak GH levels rose to values higher than those evoked by the pharmacologic agents L-dopa or arginine (6.4 +/- 1.3 ng/mL v 1.5 +/- 0.4 ng/mL, P less than .05). The peak GH value occurred at a mean of 26.0 minutes after administration of GRF-44. These responses were similar to those obtained in children with severe GH deficiency due to other etiologies (peak GH 6.3 +/- 1.7 ng/mL, mean 28.0 minutes). In addition, there was a trend toward an inverse relationship between peak GH response to GRF-44 and the postirradiation interval. Prolactin and somatomedin-C levels did not change significantly after the administration of a single dose of GRF-44. The results of this study support the hypothesis that cranial irradiation in children can lead to hypothalamic GRF deficiency secondary to radiation injury of hypothalamic GRF-secreting neurons. This study also lends support to the potential therapeutic usefulness of GRF-44 or an analog for GH deficiency secondary to cranial irradiation

  19. Applications of human factors engineering to LNG release prevention and control

    Energy Technology Data Exchange (ETDEWEB)

    Shikiar, R.; Rankin, W.L.; Rideout, T.B.

    1982-06-01

    The results of an investigation of human factors engineering and human reliability applications to LNG release prevention and control are reported. The report includes a discussion of possible human error contributions to previous LNG accidents and incidents, and a discussion of generic HF considerations for peakshaving plants. More specific recommendations for improving HF practices at peakshaving plants are offered based on visits to six facilities. The HF aspects of the recently promulgated DOT regulations are reviewed, and recommendations are made concerning how these regulations can be implemented utilizing standard HF practices. Finally, the integration of HF considerations into overall system safety is illustrated by a presentation of human error probabilities applicable to LNG operations and by an expanded fault tree analysis which explicitly recognizes man-machine interfaces.

  20. Magnetic resonance imaging detects placental hypoxia and acidosis in mouse models of perturbed pregnancies.

    Directory of Open Access Journals (Sweden)

    Gabriele Bobek

    Full Text Available Endothelial dysfunction as a result of dysregulation of anti-angiogenic molecules secreted by the placenta leads to the maternal hypertensive response characteristic of the pregnancy complication of preeclampsia. Structural abnormalities in the placenta have been proposed to result in altered placental perfusion, placental oxidative stress, cellular damage and inflammation and the release of anti-angiogenic compounds into the maternal circulation. The exact link between these factors is unclear. Here we show, using Magnetic Resonance Imaging as a tool to examine placental changes in mouse models of perturbed pregnancies, that T 2 contrast between distinct regions of the placenta is abolished at complete loss of blood flow. Alterations in T 2 (spin-spin or transverse relaxation times are explained as a consequence of hypoxia and acidosis within the tissue. Similar changes are observed in perturbed pregnancies, indicating that acidosis as well as hypoxia may be a feature of pregnancy complications such as preeclampsia and may play a prominent role in the signalling pathways that lead to the increased secretion of anti-angiogenic compounds.

  1. Silver nanoparticles delivery system based on natural rubber latex membranes

    Energy Technology Data Exchange (ETDEWEB)

    Guidelli, Eder Jose, E-mail: ederguidelli@gmail.com [Universidade de Sao Paulo/FFCLRP-DF (Brazil); Kinoshita, Angela [Universidade do Sagrado Coracao (Brazil); Ramos, Ana Paula [Universidade de Sao Paulo/FFCLRP-DQ (Brazil); Baffa, Oswaldo [Universidade de Sao Paulo/FFCLRP-DF (Brazil)

    2013-04-15

    The search for new materials for biomedical applications is extremely important. Here, we present results on the performance of a silver nanoparticles delivery system using natural rubber latex (NRL) as the polymeric matrix. Our aim was to obtain an optimized wound dressing by combining materials with potential healing action. The synthesis of silver nanoparticles and their characterization by UV-Vis spectroscopy, transmission electron microscopy, zeta potential, dynamic light scattering, and Fourier transform infrared spectroscopy (FTIR) are depicted. The NRL membranes are good matrix for silver nanoparticles and allow for their gradual release. The release of 30 nm silver nanoparticles by the NRL membranes depends on their mass percentage in NRL membranes. The total concentration of AgNP released by the NRL membranes was calculated. The AgNP attached to the cis-isoprene molecules in the NRL matrix remain attached to the membrane ({approx}0.1 % w/w). So, only the AgNP bound to the non-rubber molecules are released. FTIR spectra suggest that non-rubber molecules, like aminoacids and proteins, associated with the serum fraction of the NRL may be attached to the surfaces of the released nanoparticles, thereby increasing the release of such molecules. The released silver nanoparticles are sterically stabilized, more stable and well dispersed. Because the serum fraction of the NRL is responsible for the angiogenic properties of the matrix, the silver nanoparticles could increment the angiogenic properties of NRL. This biomaterial has desirable properties for the fabrication of a wound dressing with potential healing action, since it combines the angiogenic and antibacterial properties of the silver nanoparticles with the increased angiogenic properties of the NRL.Graphical AbstractThe AgNP attached to the cis-isoprene molecules remain in the NRL matrix and only the AgNP bound to the non-rubber molecules (NRL serum fraction) are released. The released AgNP are

  2. Silver nanoparticles delivery system based on natural rubber latex membranes

    International Nuclear Information System (INIS)

    Guidelli, Éder José; Kinoshita, Angela; Ramos, Ana Paula; Baffa, Oswaldo

    2013-01-01

    The search for new materials for biomedical applications is extremely important. Here, we present results on the performance of a silver nanoparticles delivery system using natural rubber latex (NRL) as the polymeric matrix. Our aim was to obtain an optimized wound dressing by combining materials with potential healing action. The synthesis of silver nanoparticles and their characterization by UV–Vis spectroscopy, transmission electron microscopy, zeta potential, dynamic light scattering, and Fourier transform infrared spectroscopy (FTIR) are depicted. The NRL membranes are good matrix for silver nanoparticles and allow for their gradual release. The release of 30 nm silver nanoparticles by the NRL membranes depends on their mass percentage in NRL membranes. The total concentration of AgNP released by the NRL membranes was calculated. The AgNP attached to the cis-isoprene molecules in the NRL matrix remain attached to the membrane (∼0.1 % w/w). So, only the AgNP bound to the non-rubber molecules are released. FTIR spectra suggest that non-rubber molecules, like aminoacids and proteins, associated with the serum fraction of the NRL may be attached to the surfaces of the released nanoparticles, thereby increasing the release of such molecules. The released silver nanoparticles are sterically stabilized, more stable and well dispersed. Because the serum fraction of the NRL is responsible for the angiogenic properties of the matrix, the silver nanoparticles could increment the angiogenic properties of NRL. This biomaterial has desirable properties for the fabrication of a wound dressing with potential healing action, since it combines the angiogenic and antibacterial properties of the silver nanoparticles with the increased angiogenic properties of the NRL.Graphical AbstractThe AgNP attached to the cis-isoprene molecules remain in the NRL matrix and only the AgNP bound to the non-rubber molecules (NRL serum fraction) are released. The released AgNP are sterically

  3. Molecular Effects of 13C/DIM in Prostate Cancer

    Science.gov (United States)

    2007-04-01

    expression, Arch. Biochem. Biophys. 352 (1998) 59–70. [36] M.G. Busby, A.R. Jeffcoat, L.T. Bloedon, M.A. Koch, T. Black, K.J. Dix, W.D. Heizer , B.F. Thomas...the extracellular environment is implicated in the angiogenic switch. They found that MMP-9 could render normal islets angiogenic releasing VEGF

  4. Acceleration of aneurysm healing by P(DLLA-co-TMC)-coated coils enabling the controlled release of vascular endothelial growth factor

    International Nuclear Information System (INIS)

    Wang, Qiujing; Gao, Yuyuan; Sun, Xinlin; Ji, Bin; Cui, Xubo; Liu, Yaqi; Zheng, Tao; Chen, Chengwei; Jiang, Xiaodan; Zhu, Aiping; Quan, Daping

    2014-01-01

    Since the introduction of the detachable coil in endovascular treatment of intracranial aneurysms, the in-hospital mortality rate has been significantly decreased. Recurrence of the aneurysm remains the major drawback of using detachable coils. We prepared a bioactive coil coated with poly(d,l-lactide)-7co-(1,3-trimethylene carbonate) (P(DLLA-co-TMC)), a novel copolymer for controlling the release of vascular endothelial growth factor (VEGF). Platinum coils were prepared by successive coating with cationic P(DLLA-co-TMC) and anionic heparin. Then, recombinant human VEGF-165 (rhVEGF) was immobilized by affinity binding to heparin. The morphological characteristics and sustained in vitro release of rhVEGF were examined using scanning electron microscopy and enzyme-linked immunosorbent assay, respectively. The efficacy of these novel coils modified by P(DLLA-co-TMC)/rhVEGF was tested using a common carotid artery aneurysm model in rats. Experimental aneurysms were embolized with unmodified, P(DLLA-co-TMC)/heparin-coated or P(DLLA-co-TMC)/rhVEGF-coated platinum coils (n = 18). The coils were removed on days 15, 30 and 90 after insertion, and the histological and immunohistochemical analysis of factor VIII was performed to confirm the presence of endothelial cells in the organized area. In addition, the controlled in vivo release of VEGF was confirmed by Western blotting analysis. The release of VEGF tended to increase during the whole period and no burst release was observed. In the group treated with P(DLLA-co-TMC)/rhVEGF-coated platinum coils, clot organization and endothelial cell proliferation were accelerated. The immunohistochemistry study showed that the expression of factor VIII was found in the P(DLLA-co-TMC)/rhVEGF-coated coil group but not in the other two groups. Furthermore, Western blotting analysis confirmed that the major released VEGF in the aneurysm sac was from the P(DLLA-co-TMC)/VEGF-coated coil. P(DLLA-co-TMC)/rhVEGF-coated platinum coils can

  5. Levels of human and rat hypothalamic growth hormone-releasing factor as determined by specific radioimmunoassay systems

    International Nuclear Information System (INIS)

    Audhya, T.; Manzione, M.M.; Nakane, T.; Kanie, N.; Passarelli, J.; Russo, M.; Hollander, C.S.

    1985-01-01

    Polyclonal antibodies to synthetic human pancreatic growth hormone-releasing factor [hpGRF(1-44)NH 2 ] and rat hypothalamic growth hormone-releasing factor [rhGRF(1-43)OH] were produced in rabbits. A subsequent booster injection by the conventional intramuscular route resulted in high-titer antibodies, which at a 1:20,000 dilution were used to develop highly sensitive and specific radioimmunoassays for these peptides. The antibody to hpGRF(1-44)NH 2 is directed against the COOH-terminal region of the molecule, as shown by its cross reactivity with various hpGRF analogues. Serial dilutions of human and rat hypothalamic extracts demonstrated parallelism with the corresponding species-specific standard and 125 I-labeled tracer. There was no cross reactivity with other neuropeptides, gastrointestinal peptides, or hypothalamic extracts of other species. Age-related changes in hypothalamic GRF content were present in rats, with a gradual increase from 2 to 16 weeks and a correlation between increasing body weight and GRF content. These radioimmunoassays will serve as important tools for understanding the regulation of growth hormone secretion in both human and rat

  6. The Effect of An Angiogenic Cytokine on Orthodontically Induced Inflammatory Root Resorption

    Science.gov (United States)

    Seifi, Massoud; Lotfi, Ali; Badiee, Mohammad Reza; Abdolazimi, Zahra; Amdjadi, Parisa; Bargrizan, Majid

    2016-01-01

    Objective Orthodontically induced inflammatory root resorption (OIIRR) is an undesirable sequel of tooth movement after sterile necrosis that takes place in periodontal ligament due to blockage of blood vessels following exertion of orthodontic force. This study sought to assess the effect of an angiogenic cytokine on OIIRR in rat model. Materials and Methods In this experimental animal study, 50 rats were randomly divided into 5 groups of 10 each: E10, E100 and E1000 receiving an injection of 10, 100 and 1000 ng of basic fibroblast growth factor (bFGF), respectively, positive control group (CP) receiving an orthodontic appliance and injection of phosphate buffered saline (PBS) and the negative control group (CN) receiving only the anesthetic agent. A nickel titanium coil spring was placed between the first molar and the incisor on the right side of maxilla. Twenty-one days later, the rats were sacrificed. Histopathological sections were made to assess the number and area of resorption lacunae, number of blood vessels, osteoclasts and Howship’s lacunae. Data were statistically analyzed using ANOVA and Tukey’s honest significant difference (HSD) test. Results Number of resorption lacunae and area of resorption lacunae in E1000 (0.97 ± 0.80 and 1. 27 ± 0.01×10-3, respectively) were significantly lower than in CP (4.17 ± 0.90 and 2.77 ± 0.01×10-3, respectively, P=0.000). Number of blood vessels, osteoclasts and Howship’s lacunae were significantly higher in E1000 compared to CP (Proot resorption by providing more oxygen and angiogenesis. PMID:27551674

  7. Role of tumor necrosis factor-alpha and platelet-activating factor in neoangiogenesis induced by synovial fluids of patients with rheumatoid arthritis.

    Science.gov (United States)

    Lupia, E; Montrucchio, G; Battaglia, E; Modena, V; Camussi, G

    1996-08-01

    The aim of the present study was to investigate in vivo in a mouse model the stimulation of neoangiogenesis by synovial fluids of patients with rheumatoid arthritis (RA) and to determine the role of tumor necrosis factor (TNF)-alpha and platelet-activating factor (PAF) in the formation of new vessels. Angiogenesis was studied in a mouse model in which Matrigel, injected subcutaneously, was used as a vehicle for the delivery of potential angiogenic stimuli. Synovial fluids of patients with RA but not with osteoarthritis (OA) were shown to induce neoangiogenesis. Since synovial fluid of patients with RA contained significantly higher levels of TNF-alpha-like bioactivity and of PAF than that of patients with OA, the role of these mediators was evaluated by using an anti-TNF-alpha neutralizing monoclonal antibody (mAb) and a PAF receptor antagonist, WEB 2170. When added to Matrigel, anti-TNF-alpha mAb and particularly WEB 2170 significantly reduced neoangiogenesis induced by synovial fluids of RA patients. Moreover, PAF extracted and purified from synovial fluid induced angiogenesis. These results suggest that the neoangiogenesis observed in rheumatoid synovitis may be due, at least in part, to the angiogenic effect of locally produced TNF-alpha and PAF.

  8. Corticotropin-Releasing Factor (CRF) Neurocircuitry and Neuropharmacology in Alcohol Drinking.

    Science.gov (United States)

    Schreiber, Allyson L; Gilpin, Nicholas W

    2018-01-28

    Alcohol use is pervasive in the United States. In the transition from nonhazardous drinking to hazardous drinking and alcohol use disorder, neuroadaptations occur within brain reward and brain stress systems. One brain signaling system that has received much attention in animal models of excessive alcohol drinking and alcohol dependence is corticotropin-releasing factor (CRF). The CRF system is composed of CRF, the urocortins, CRF-binding protein, and two receptors - CRF type 1 and CRF type 2. This review summarizes how acute, binge, and chronic alcohol dysregulates CRF signaling in hypothalamic and extra-hypothalamic brain regions and how this dysregulation may contribute to changes in alcohol reinforcement, excessive alcohol consumption, symptoms of negative affect during withdrawal, and alcohol relapse. In addition, it summarizes clinical work examining CRF type 1 receptor antagonists in humans and discusses why the brain CRF system is still relevant in alcohol research.

  9. The Antimicrobial Peptide Human Beta-Defensin-3 Is Induced by Platelet-Released Growth Factors in Primary Keratinocytes

    OpenAIRE

    Andreas Bayer; Justus Lammel; Mersedeh Tohidnezhad; Sebastian Lippross; Peter Behrendt; Tim Klüter; Thomas Pufe; Jochen Cremer; Holger Jahr; Franziska Rademacher; Regine Gläser; Jürgen Harder

    2017-01-01

    Platelet-released growth factors (PRGF) and its related clinically used formulations (e.g., Vivostat Platelet-Rich Fibrin (PRF?)) contain a variety of chemokines, cytokines, and growth factors and are therefore used to support healing of chronic, hard-to-heal, or infected wounds. Human beta-defensin-3 (hBD-3) is an antimicrobial peptide inducibly expressed in human keratinocytes especially upon wounding. The potent antimicrobial activity of hBD-3 together with its wound closure-promoting acti...

  10. Plutonium in the environment: key factors related to impact assessment in case of an accidental atmospheric release

    Energy Technology Data Exchange (ETDEWEB)

    Guetat, P. [CEA Valduc, 21 - Is-sur-Tille (France); Moulin, V.; Reiller, P. [CEA Saclay, 91 (FR)] (and others)

    2009-07-01

    This paper deals with plutonium and key factors related to impact assessment. It is based on recent work performed by CEA which summarize the main features of plutonium behaviour from sources inside installations to the environment and man, and to report current knowledge on the different parameters used in models for environmental and radiological impact assessment. These key factors are illustrated through a case study based on an accidental atmospheric release of Pu in a nuclear facility. (orig.)

  11. Experimental variation of the level and the ratio of angiogenic and osteogenic signaling affects the spatiotemporal expression of bone-specific markers and organization of bone formation in ectopic sites.

    Science.gov (United States)

    Moser, Norman; Goldstein, Jan; Kauffmann, Phillip; Epple, Matthias; Schliephake, Henning

    2018-04-01

    The aim of the present study was to test the hypothesis that the ratio of angiogenic and osteogenic signaling affects ectopic bone formation when delivered in different amounts. Porous composite PDLLA/CaCO 3 scaffolds were loaded with rhBMP2 and rhVEGF in different dosage combinations and implanted into the gluteal muscles of 120 adult male Wistar rats. Bone formation and expression of alkaline phosphatase and Runx2 were quantified by histomorphometry. Spatial distribution across the scaffolds was assessed by using a grid that discriminated between the periphery and center of the scaffolds. The evaluation showed that the combined delivery of bone morphogenetic protein BMP2 and VEGF in different dosage combinations did not enhance the overall quantity of ectopic bone formation compared to the delivery of BMP2 alone. The addition of VEGF generally upregulated Runx2 after 4 weeks, which may have retarded terminal osteogenic differentiation. However, slow combined delivery of 1.5-2.0 μg BMP2 combined with 50 ng VEGF165 over a period of 5 weeks supported a more even distribution of bone formation across the implanted scaffolds whereas higher amounts of VEGF did not elicit this effect. The findings suggest that structural organization rather than the quantity of ectopic bone formation is affected by the dosage and the ratio of BMP2 and VEGF levels at the observed intervals. The development of carriers for dual growth factor delivery has to take into account the necessity to carefully balance the ratio of growth release.

  12. Factors Released from Endothelial Cells Exposed to Flow Impact Adhesion, Proliferation, and Fate Choice in the Adult Neural Stem Cell Lineage.

    Science.gov (United States)

    Dumont, Courtney M; Piselli, Jennifer M; Kazi, Nadeem; Bowman, Evan; Li, Guoyun; Linhardt, Robert J; Temple, Sally; Dai, Guohao; Thompson, Deanna M

    2017-08-15

    The microvasculature within the neural stem cell (NSC) niche promotes self-renewal and regulates lineage progression. Previous work identified endothelial-produced soluble factors as key regulators of neural progenitor cell (NPC) fate and proliferation; however, endothelial cells (ECs) are sensitive to local hemodynamics, and the effect of this key physiological process has not been defined. In this study, we evaluated adult mouse NPC response to soluble factors isolated from static or dynamic (flow) EC cultures. Endothelial factors generated under dynamic conditions significantly increased neuronal differentiation, while those released under static conditions stimulated oligodendrocyte differentiation. Flow increases EC release of neurogenic factors and of heparin sulfate glycosaminoglycans that increase their bioactivity, likely underlying the enhanced neuronal differentiation. Additionally, endothelial factors, especially from static conditions, promoted adherent growth. Together, our data suggest that blood flow may impact proliferation, adhesion, and the neuron-glial fate choice of adult NPCs, with implications for diseases and aging that reduce flow.

  13. Investigation of some factors affecting on release of radon-222 from phosphogypsum waste associated with phosphate ore processing.

    Science.gov (United States)

    Hilal, M A; El Afifi, E M; Nayl, A A

    2015-07-01

    The aim of this study is oriented to investigate the influence of some physicochemical factors such as radium distribution, grain size, moisture content and chemical constituents on releases of radon-222 from the accumulated phosphogypsum (PG) waste. The emanation fraction, activity concentration in the pore and the surface exhalation rate of radon-222 in the bulk PG waste are 34.5 ± 0.3%, 238.6 ± 7.8 kBq m(-3) and 213 ± 6.9 mBq m(-2) s(-1), respectively. These values were varied and enhanced slightly in the fine grain sizes (F1 factor of 1.05 folds compared to the bulk residue. It was also found that release of radon from residue PG waste was controlled positively by radium (Ra-226), calcium (CaSO4) and strontium (SrO). About 67% of radon release attributed to the grain size below 0.5 mm, while 33% due to the large grain size above 0.5 mm. The emanation fraction of Rn-222 is increased with moisture content and the maximum emanation is ∼43% of moisture of 3-8%. It reduced slowly with the continuous increase in moisture till 20%. Due to PG waste in situ can be enhancing the background to the surround workers and/or public. Therefore, the environmental negative impacts due to release of Rn-222 can be minimized by legislation to restrict its civil uses, or increasing its moisture to ∼10%, or by the particle size separation of the fine fraction containing the high levels of Ra-226 followed by a suitable chemical treatment or disposal; whereas the low release amount can be diluted and used in cement industry, roads or dam construction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Effects of vitamin D(3)-binding protein-derived macrophage activating factor (GcMAF) on angiogenesis.

    Science.gov (United States)

    Kanda, Shigeru; Mochizuki, Yasushi; Miyata, Yasuyoshi; Kanetake, Hiroshi; Yamamoto, Nobuto

    2002-09-04

    The vitamin D(3)-binding protein (Gc protein)-derived macrophage activating factor (GcMAF) activates tumoricidal macrophages against a variety of cancers indiscriminately. We investigated whether GcMAF also acts as an antiangiogenic factor on endothelial cells. The effects of GcMAF on angiogenic growth factor-induced cell proliferation, chemotaxis, and tube formation were examined in vitro by using cultured endothelial cells (murine IBE cells, porcine PAE cells, and human umbilical vein endothelial cells [HUVECs]) and in vivo by using a mouse cornea micropocket assay. Blocking monoclonal antibodies to CD36, a receptor for the antiangiogenic factor thrombospondin-1, which is also a possible receptor for GcMAF, were used to investigate the mechanism of GcMAF action. GcMAF inhibited the endothelial cell proliferation, chemotaxis, and tube formation that were all stimulated by fibroblast growth factor-2 (FGF-2), vascular endothelial growth factor-A, or angiopoietin 2. FGF-2-induced neovascularization in murine cornea was also inhibited by GcMAF. Monoclonal antibodies against murine and human CD36 receptor blocked the antiangiogenic action of GcMAF on the angiogenic factor stimulation of endothelial cell chemotaxis. In addition to its ability to activate tumoricidal macrophages, GcMAF has direct antiangiogenic effects on endothelial cells independent of tissue origin. The antiangiogenic effects of GcMAF may be mediated through the CD36 receptor.

  15. [Preparation of hydrophilic matrix sustained release tablets of total lactones from Andrographis paniculata and study on its in vitro release mechanism].

    Science.gov (United States)

    Xu, Fang-Fang; Shi, Wei; Zhang, Hui; Guo, Qing-Ming; Wang Zhen-Zhong; Bi, Yu-An; Wang, Zhi-Min; Xiao, Wei

    2015-01-01

    In this study, hydrophilic matrix sustained release tablets of total lactones from Andrographis paniculata were prepared and the in vitro release behavior were also evaluated. The optimal prescription was achieved by studying the main factor of the type and amount of hydroxypropyl methylcellulose (HPMC) using single factor test and evaluating through cumulative release of three lactones. No burst drug release from the obtained matrix tablets was observed. Drug release sustained to 14 h. The release mechanism of three lactones from A. paniculata was accessed by zero-order, first-order, Higuchi and Peppas equation. The release behavior of total lactones from A. paniculata was better agreed with Higuchi model and the drug release from the tablets was controlled by degradation of the matrix. The preparation of hydrophilic matrix sustained release tablets of total lactones from A. paniculata with good performance of drug release was simple.

  16. Multigenic lentiviral vectors for combined and tissue-specific expression of miRNA- and protein-based antiangiogenic factors

    Directory of Open Access Journals (Sweden)

    Anne Louise Askou

    Full Text Available Lentivirus-based gene delivery vectors carrying multiple gene cassettes are powerful tools in gene transfer studies and gene therapy, allowing coexpression of multiple therapeutic factors and, if desired, fluorescent reporters. Current strategies to express transgenes and microRNA (miRNA clusters from a single vector have certain limitations that affect transgene expression levels and/or vector titers. In this study, we describe a novel vector design that facilitates combined expression of therapeutic RNA- and protein-based antiangiogenic factors as well as a fluorescent reporter from back-to-back RNApolII-driven expression cassettes. This configuration allows effective production of intron-embedded miRNAs that are released upon transduction of target cells. Exploiting such multigenic lentiviral vectors, we demonstrate robust miRNA-directed downregulation of vascular endothelial growth factor (VEGF expression, leading to reduced angiogenesis, and parallel impairment of angiogenic pathways by codelivering the gene encoding pigment epithelium-derived factor (PEDF. Notably, subretinal injections of lentiviral vectors reveal efficient retinal pigment epithelium-specific gene expression driven by the VMD2 promoter, verifying that multigenic lentiviral vectors can be produced with high titers sufficient for in vivo applications. Altogether, our results suggest the potential applicability of combined miRNA- and protein-encoding lentiviral vectors in antiangiogenic gene therapy, including new combination therapies for amelioration of age-related macular degeneration.

  17. Proteomic analysis of exosomes from nasopharyngeal carcinoma cell identifies intercellular transfer of angiogenic proteins

    KAUST Repository

    Chan, Yuk-kit

    2015-04-01

    Exosomes, a group of secreted extracellular nanovesicles containing genetic materials and signaling molecules, play a critical role in intercellular communication. During tumorigenesis, exosomes have been demonstrated to promote tumor angiogenesis and metastasis while their biological functions in nasopharyngeal carcinoma (NPC) are poorly understood. In this study, we focused on the role of NPC-derived exosomes on angiogenesis. Exosomes derived from the NPC C666-1 cells and immortalized nasopharyngeal epithelial cells (NP69 and NP460) were isolated using ultracentrifugation. The molecular profile and biophysical characteristics of exosomes were verified by Western blotting, sucrose density gradient, and electron microscopy. We showed that the C666-1 exosomes (10 and 20 μg/ml) could significantly increase the tubulogenesis, migration and invasion of human umbilical vein endothelial cells (HUVECs) in a dose-dependent manner. Subsequently, an iTRAQ-based quantitative proteomics was used to identify the differentially expressed proteins in C666-1 exosomes. Among the 640 identified proteins, 51 and 89 proteins were considered as up- and down-regulated (≥ 1.5-fold variations) in C666-1 exosomes compared to the normal counterparts, respectively. As expected, pro-angiogenic proteins including intercellular adhesion molecule-1 (ICAM-1) and CD44 variant isoform 5 (CD44v5) are among the up-regulated proteins, whereas angio-suppressive protein, thrombospondin-1 (TSP-1) was down-regulated in C666-1 exosomes. Further confocal microscopic study and Western blotting clearly demonstrated that the alteration of ICAM-1, and TSP-1 expressions in recipient HUVECs are due to internalization of exosomes. Taken together, these data strongly indicated the critical roles of identified angiogenic proteins in the involvement of exosomes-induced angiogenesis, which could potentially be developed as therapeutic targets in future. This article is protected by copyright. All rights reserved.

  18. Proteomic analysis of exosomes from nasopharyngeal carcinoma cell identifies intercellular transfer of angiogenic proteins

    KAUST Repository

    Chan, Yuk-kit; Zhang, Huoming; Liu, Pei; Tsao, George Sai-wah; Li Lung, Maria; Mak, Nai-ki; Ngok-shun Wong, Ricky; Ying-kit Yue, Patrick

    2015-01-01

    Exosomes, a group of secreted extracellular nanovesicles containing genetic materials and signaling molecules, play a critical role in intercellular communication. During tumorigenesis, exosomes have been demonstrated to promote tumor angiogenesis and metastasis while their biological functions in nasopharyngeal carcinoma (NPC) are poorly understood. In this study, we focused on the role of NPC-derived exosomes on angiogenesis. Exosomes derived from the NPC C666-1 cells and immortalized nasopharyngeal epithelial cells (NP69 and NP460) were isolated using ultracentrifugation. The molecular profile and biophysical characteristics of exosomes were verified by Western blotting, sucrose density gradient, and electron microscopy. We showed that the C666-1 exosomes (10 and 20 μg/ml) could significantly increase the tubulogenesis, migration and invasion of human umbilical vein endothelial cells (HUVECs) in a dose-dependent manner. Subsequently, an iTRAQ-based quantitative proteomics was used to identify the differentially expressed proteins in C666-1 exosomes. Among the 640 identified proteins, 51 and 89 proteins were considered as up- and down-regulated (≥ 1.5-fold variations) in C666-1 exosomes compared to the normal counterparts, respectively. As expected, pro-angiogenic proteins including intercellular adhesion molecule-1 (ICAM-1) and CD44 variant isoform 5 (CD44v5) are among the up-regulated proteins, whereas angio-suppressive protein, thrombospondin-1 (TSP-1) was down-regulated in C666-1 exosomes. Further confocal microscopic study and Western blotting clearly demonstrated that the alteration of ICAM-1, and TSP-1 expressions in recipient HUVECs are due to internalization of exosomes. Taken together, these data strongly indicated the critical roles of identified angiogenic proteins in the involvement of exosomes-induced angiogenesis, which could potentially be developed as therapeutic targets in future. This article is protected by copyright. All rights reserved.

  19. Growth hormone-releasing factor induces c-fos expression in cultured primary pituitary cells

    DEFF Research Database (Denmark)

    Billestrup, Nils; Mitchell, R L; Vale, W

    1987-01-01

    GH-releasing factor (GRF) and somatostatin regulates the secretion and biosynthesis of GH as well as the proliferation of GH-producing cells. In order to further characterize the mitogenic effect of GRF, we studied the expression of the proto-oncogene c-fos in primary pituitary cells. Maximal...... induction of c-fos mRNA was observed 20-60 min after stimulation with 5 nM GRF, returning to basal levels after 2 h. Somatostatin-14 (5 nM) partially inhibited the GRF induced c-fos expression. Forskolin and phorbol 12, 13 dibutyrate induced c-fos gene in cultured primary pituitary cells with similar...

  20. Nerve growth factor alters microtubule targeting agent-induced neurotransmitter release but not MTA-induced neurite retraction in sensory neurons.

    Science.gov (United States)

    Pittman, Sherry K; Gracias, Neilia G; Fehrenbacher, Jill C

    2016-05-01

    Peripheral neuropathy is a dose-limiting side effect of anticancer treatment with the microtubule-targeted agents (MTAs), paclitaxel and epothilone B (EpoB); however, the mechanisms by which the MTAs alter neuronal function and morphology are unknown. We previously demonstrated that paclitaxel alters neuronal sensitivity, in vitro, in the presence of nerve growth factor (NGF). Evidence in the literature suggests that NGF may modulate the neurotoxic effects of paclitaxel. Here, we examine whether NGF modulates changes in neuronal sensitivity and morphology induced by paclitaxel and EpoB. Neuronal sensitivity was assessed using the stimulated release of calcitonin gene-related peptide (CGRP), whereas morphology of established neurites was evaluated using a high content screening system. Dorsal root ganglion cultures, maintained in the absence or presence of NGF, were treated from day 7 to day 12 in culture with paclitaxel (300nM) or EpoB (30nM). Following treatment, the release of CGRP was stimulated using capsaicin or high extracellular potassium. In the presence of NGF, EpoB mimicked the effects of paclitaxel: capsaicin-stimulated release was attenuated, potassium-stimulated release was slightly enhanced and the total peptide content was unchanged. In the absence of NGF, both paclitaxel and EpoB decreased capsaicin- and potassium-stimulated release and the total peptide content, suggesting that NGF may reverse MTA-induced hyposensitivity. Paclitaxel and EpoB both decreased neurite length and branching, and this attenuation was unaffected by NGF in the growth media. These differential effects of NGF on neuronal sensitivity and morphology suggest that neurite retraction is not a causative factor to alter neuronal sensitivity. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Accelerating protein release from microparticles for regenerative medicine applications

    Energy Technology Data Exchange (ETDEWEB)

    White, Lisa J., E-mail: lisa.white@nottingham.ac.uk; Kirby, Giles T.S.; Cox, Helen C.; Qodratnama, Roozbeh; Qutachi, Omar; Rose, Felicity R.A.J.; Shakesheff, Kevin M.

    2013-07-01

    There is a need to control the spatio-temporal release kinetics of growth factors in order to mitigate current usage of high doses. A novel delivery system, capable of providing both structural support and controlled release kinetics, has been developed from PLGA microparticles. The inclusion of a hydrophilic PLGA–PEG–PLGA triblock copolymer altered release kinetics such that they were decoupled from polymer degradation. A quasi zero order release profile over four weeks was produced using 10% w/w PLGA–PEG–PLGA with 50:50 PLGA whereas complete and sustained release was achieved over ten days using 30% w/w PLGA–PEG–PLGA with 85:15 PLGA and over four days using 30% w/w PLGA–PEG–PLGA with 50:50 PLGA. These three formulations are promising candidates for delivery of growth factors such as BMP-2, PDGF and VEGF. Release profiles were also modified by mixing microparticles of two different formulations providing another route, not previously reported, for controlling release kinetics. This system provides customisable, localised and controlled delivery with adjustable release profiles, which will improve the efficacy and safety of recombinant growth factor delivery. Highlights: ► A new delivery system providing controlled release kinetics has been developed. ► Inclusion of hydrophilic PLGA–PEG–PLGA decoupled release kinetics from degradation. ► Using 10% triblock copolymer produced quasi zero order release over four weeks. ► Mixing microparticle formulations provided another route for controlling release. ► This system provides customisable, localised and controlled delivery of growth factors.

  2. Design of a variant of vascular endothelial growth factor-A (VEGF-A) antagonizing KDR/Flk-1 and Flt-1.

    NARCIS (Netherlands)

    Leenders, W.P.J.; Lubsen, N.H.; Altena, M.C. van; Clauss, M.; Deckers, M.; Lowik, C.W.G.M.; Breier, G.; Ruiter, D.J.; Waal, R.M.W. de

    2002-01-01

    Because of its central role in pathological angiogenesis, vascular endothelial growth factor (VEGF) has become a major target for anti-angiogenic therapies. We report here the construction of a heterodimeric antagonistic VEGF variant (HD-VEGF). In this antagonist, binding domains for the

  3. Preparation and Optimization of Immediate Release/Sustained Release Bilayered Tablets of Loxoprofen Using Box-Behnken Design.

    Science.gov (United States)

    Tak, Jin Wook; Gupta, Biki; Thapa, Raj Kumar; Woo, Kyu Bong; Kim, Sung Yub; Go, Toe Gyeong; Choi, Yongjoo; Choi, Ju Yeon; Jeong, Jee-Heon; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2017-05-01

    The aim of our current study was to characterize and optimize loxoprofen immediate release (IR)/sustained release (SR) tablet utilizing a three-factor, three-level Box-Behnken design (BBD) combined with a desirability function. The independent factors included ratio of drug in the IR layer to total drug (X 1 ), ratio of HPMC to drug in the SR layer (X 2 ), and ratio of Eudragit RL PO to drug in the SR layer (X 3 ). The dependent variables assessed were % drug released in distilled water at 30 min (Y 1 ), % drug released in pH 1.2 at 2 h (Y 2 ), and % drug released in pH 6.8 at 12 h (Y 3 ). The responses were fitted to suitable models and statistical validation was performed using analysis of variance. In addition, response surface graphs and contour plots were constructed to determine the effects of different factor level combinations on the responses. The optimized loxoprofen IR/SR tablets were successfully prepared with the determined amounts of ingredients that showed close agreement in the predicted and experimental values of tablet characterization and drug dissolution profile. Therefore, BBD can be utilized for successful optimization of loxoprofen IR/SR tablet, which can be regarded as a suitable substitute for the current marketed formulations.

  4. A photo-crosslinked poly(vinyl alcohol) hydrogel growth factor release vehicle for wound healing applications

    OpenAIRE

    Bourke, Sharon L.; Al-Khalili, Mohammad; Briggs, Tonye; Michniak, Bozena B.; Kohn, Joachim; Poole-Warren, Laura A.

    2003-01-01

    The objective of this study was to develop and evaluate a hydrogel vehicle for sustained release of growth factors for wound healing applications. Hydrogels were fabricated using ultraviolet photo-crosslinking of acrylamide-functionalized nondegradable poly(vinyl alcohol) (PVA). Protein permeability was initially assessed using trypsin inhibitor (TI), a 21 000 MW model protein drug. TI permeability was altered by changing the solids content of the gel and by adding hydrophilic PVA fillers. As...

  5. Sourcing of an alternative pericyte-like cell type from peripheral blood in clinically relevant numbers for therapeutic angiogenic applications.

    Science.gov (United States)

    Blocki, Anna; Wang, Yingting; Koch, Maria; Goralczyk, Anna; Beyer, Sebastian; Agarwal, Nikita; Lee, Michelle; Moonshi, Shehzahdi; Dewavrin, Jean-Yves; Peh, Priscilla; Schwarz, Herbert; Bhakoo, Kishore; Raghunath, Michael

    2015-03-01

    Autologous cells hold great potential for personalized cell therapy, reducing immunological and risk of infections. However, low cell counts at harvest with subsequently long expansion times with associated cell function loss currently impede the advancement of autologous cell therapy approaches. Here, we aimed to source clinically relevant numbers of proangiogenic cells from an easy accessible cell source, namely peripheral blood. Using macromolecular crowding (MMC) as a biotechnological platform, we derived a novel cell type from peripheral blood that is generated within 5 days in large numbers (10-40 million cells per 100 ml of blood). This blood-derived angiogenic cell (BDAC) type is of monocytic origin, but exhibits pericyte markers PDGFR-β and NG2 and demonstrates strong angiogenic activity, hitherto ascribed only to MSC-like pericytes. Our findings suggest that BDACs represent an alternative pericyte-like cell population of hematopoietic origin that is involved in promoting early stages of microvasculature formation. As a proof of principle of BDAC efficacy in an ischemic disease model, BDAC injection rescued affected tissues in a murine hind limb ischemia model by accelerating and enhancing revascularization. Derived from a renewable tissue that is easy to collect, BDACs overcome current short-comings of autologous cell therapy, in particular for tissue repair strategies.

  6. Human interleukin for DA cells or leukemia inhibitory factor is released by Vero cells in human embryo coculture.

    Science.gov (United States)

    Papaxanthos-Roche, A; Taupin, J L; Mayer, G; Daniel, J Y; Moreau, J F

    1994-09-01

    In the light of the newly discovered implications of human interleukin for DA cells and leukemia inhibitory factor in embryology, we searched for the presence of this soluble cytokine in the supernatant of Vero cell coculture systems. Using a bioassay as well as a specific ELISA, we demonstrated that Vero cells are able to release large quantities of human interleukin for DA cells and leukemia inhibitory factor in the embryo-growing medium of such cocultures.

  7. Alterations of plasma nitric oxide, vascular endothelial growth factor, and soluble form of its receptor (sFlt-1 after resistance exercise: An experimental study

    Directory of Open Access Journals (Sweden)

    Parivash Shekarchizadeh Esfahanni

    2014-01-01

    Conclusion: Resistance training does not alter plasma angiogenic factors (NO, VEGF, and sFlt-1, at least in normal rats. More studies are needed to show the effect of resistance training on angiogenesis process.

  8. In Situ Loading of Basic Fibroblast Growth Factor Within Porous Silica Nanoparticles for a Prolonged Release

    Directory of Open Access Journals (Sweden)

    Postovit Lynne-Marie

    2009-01-01

    Full Text Available Abstract Basic fibroblast growth factor (bFGF, a protein, plays a key role in wound healing and blood vessel regeneration. However, bFGF is easily degraded in biologic systems. Mesoporous silica nanoparticles (MSNs with well-tailored porous structure have been used for hosting guest molecules for drug delivery. Here, we report an in situ route to load bFGF in MSNs for a prolonged release. The average diameter (d of bFGF-loaded MSNs is 57 ± 8 nm produced by a water-in-oil microemulsion method. The in vitro releasing profile of bFGF from MSNs in phosphate buffer saline has been monitored for 20 days through a colorimetric enzyme linked immunosorbent assay. The loading efficiency of bFGF in MSNs is estimated at 72.5 ± 3%. In addition, the cytotoxicity test indicates that the MSNs are not toxic, even at a concentration of 50 μg/mL. It is expected that the in situ loading method makes the MSNs a new delivery system to deliver protein drugs, e.g. growth factors, to help blood vessel regeneration and potentiate greater angiogenesis.

  9. Involvement of serotonergic pathways in mediating the neuronal activity and genetic transcription of neuroendocrine corticotropin-releasing factor in the brain of systemically endotoxin-challenged rats

    Energy Technology Data Exchange (ETDEWEB)

    Laflamme, N.; Feuvrier, E.; Richard, D.; Rivest, S. [Laboratory of Molecular Endocrinology, CHUL Research Center and Department of Anatomy and Physiology, Laval University, 2705 boul. Laurier, Ste-Foy Quebec (Canada)

    1999-01-01

    The present study investigated the effect of serotonin depletion on the neuronal activity and transcription of corticotropin-releasing factor in the rat brain during the acute-phase response. Conscious male rats received an intraperitoneal (i.p.) injection with the immune activator lipopolysaccaride (25 {mu}g/100 g body wt) after being treated for three consecutive days with para-chlorophenylalanine (30 mg/100 g/day). This irreversible inhibitor of tryptophane-5-hydroxylase decreased hypothalamic serotonin levels by 96%. One, 3 and 6 h after a single i.p. injection of lipopolysaccharide or vehicle solution, rats were killed and their brains cut in 30-{mu}m coronal sections. Messenger RNAs encoding c-fos, nerve-growth factor inducible-B gene, corticotropin-releasing factor and the heteronuclear RNA encoding corticotropin-releasing factor primary transcript were assayed by in situ hybridization using {sup 35}S-labeled riboprobes, whereas Fos-immunoreactive nuclei were labeled by immunocytochemistry. Lipopolysaccharide induced a wide neuronal activation indicated by the expression of both immediate-early gene transcripts and Fos protein in numerous structures of the brain. The signal for both immediate-early gene transcripts was low to moderate 1 h after lipopolysaccharide administration, maximal at 3 h and decline at 6 h post-injection, whereas at that time, Fos-immunoreactive nuclei were still detected in most of the c-fos messenger RNA-positive structures. Interestingly, the strong and widespread induction of both immediate-early gene transcripts was almost totally inhibited by para-chlorophenylalanine treatment; in the hypothalamic paraventricular nucleus for example, c-fos messenger RNA signal and the number of Fos-immunoreactive positive cells were reduced by 80 and 48%, respectively, in serotonin-depleted rats treated with the bacterial endotoxin. This blunted neuronal response was also associated with an attenuated stimulation of neuroendocrine corticotropin-releasing

  10. The effect of riboflavin/UVA cross-linking on anti-degeneration and promoting angiogenic capability of decellularized liver matrix.

    Science.gov (United States)

    Xiang, Junxi; Liu, Peng; Zheng, Xinglong; Dong, Dinghui; Fan, Shujuan; Dong, Jian; Zhang, Xufeng; Liu, Xuemin; Wang, Bo; Lv, Yi

    2017-10-01

    Weak mechanical property and unstable degradation rate limited the application of decellularized liver matrix in tissue engineering. The aim of this study was to explore a new method for improving the mechanical properties, anti-degeneration and angiogenic capability of decellularized liver matrix. This was achieved by a novel approach using riboflavin/ultraviolet A treatment to induce collagen cross-linking of decellularized matrix. Histological staining and scanning electron microscope showed that the diameter of cross-linked fibers significantly increased compared with the control group. The average peak load and Young's modulus of decellularized matrix were obviously improved after cross-linking. Then we implanted the modified matrix into the rat hepatic injury model to test the anti-degeneration and angiogenic capability of riboflavin/UVA cross-linked decellularized liver scaffolds in vivo. The results indicated that cross-linked scaffolds degrade more slowly than those in the control group. In the experiment group, average microvessel density in the implanted matrix was higher than that in the control group since the first week after implantation. In conclusion, we initiated the method to improve the biomechanical properties of decellularized liver scaffolds by riboflavin/UVA cross-linking, and more importantly, its improvement on anti-degeneration and angiogenesis was identified. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2662-2669, 2017. © 2017 Wiley Periodicals, Inc.

  11. Anti-inflammatory and anti-angiogenic activities in vitro of eight diterpenes from Daphne genkwa based on hierarchical cluster and principal component analysis.

    Science.gov (United States)

    Wang, Ling; Lan, Xin-Yi; Ji, Jun; Zhang, Chun-Feng; Li, Fei; Wang, Chong-Zhi; Yuan, Chun-Su

    2018-06-01

    Rheumatoid arthritis (RA) is one of the most prevalent chronic inflammatory and angiogenic diseases. The aim of this study was to evaluate the anti-inflammatory and anti-angiogenic activities in vitro of eight diterpenoids isolated from Daphne genkwa. LC-MS was used to identify diterpenes isolated from D. genkwa. The anti-inflammatory and anti-angiogenic activities of eight diterpenoids were evaluated on LPS-induced macrophage RAW264.7 cells and TNF-α-stimulated human umbilical vein endothelial cells (HUVECs) using hierarchical cluster analysis (HCA) and principal component analysis (PCA). The eight diterpenes isolated from D. genkwa were identified as yuanhuaphnin, isoyuanhuacine, 12-O-(2'E,4'E-decadienoyl)-4-hydroxyphorbol-13-acetyl, yuanhuagine, isoyuanhuadine, yuanhuadine, yuanhuaoate C and yuanhuacine. All the eight diterpenes significantly down-regulated the excessive secretion of TNF-α, IL-6, IL-1β and NO in LPS-induced RAW264.7 macrophages. However, only 12-O-(2'E,4'E-decadienoyl)-4-hydroxyphorbol-13-acetyl markedly reduced production of VEGF, MMP-3, ICAM and VCAM in TNF-α-stimulated HUVECs. HCA obtained 4 clusters, containing 12-O-(2'E,4'E-decadienoyl)-4-hydroxyphorbol-13-acetyl, isoyuanhuacine, isoyuanhuadine and five other compounds. PCA showed that the ranking of diterpenes sorted by efficacy from highest to lowest was 12-O-(2'E,4'E-decadienoyl)-4-hydroxyphorbol-13-acetyl, yuanhuaphnin, isoyuanhuacine, yuanhuacine, yuanhuaoate C, yuanhuagine, isoyuanhuadine, yuanhuadine. In conclusion, eight diterpenes isolated from D. genkwa showed different levels of activity in LPS-induced RAW264.7 cells and TNF-α-stimulated HUVECs. The comprehensive evaluation of activity by HCA and PCA indicated that of the eight diterpenes, 12-O-(2'E,4'E-decadienoyl)-4-hydroxyphorbol-13-acetyl was the best, and can be developed as a new drug for RA therapy.

  12. Corticotropin-releasing factor peptide antagonists: design, characterization and potential clinical relevance.

    Science.gov (United States)

    Rivier, Jean E; Rivier, Catherine L

    2014-04-01

    Elusive for more than half a century, corticotropin-releasing factor (CRF) was finally isolated and characterized in 1981 from ovine hypothalami and shortly thereafter, from rat brains. Thirty years later, much has been learned about the function and localization of CRF and related family members (Urocortins 1, 2 and 3) and their 2 receptors, CRF receptor type 1 (CRFR1) and CRF receptor type 2 (CRFR2). Here, we report the stepwise development of peptide CRF agonists and antagonists, which led to the CRFR1 agonist Stressin1; the long-acting antagonists Astressin2-B which is specific for CRFR2; and Astressin B, which binds to both CRFR1 and CRFR2.This analog has potential for the treatment of CRF-dependent diseases in the periphery, such as irritable bowel syndrome. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Prognostic impact of placenta growth factor and vascular endothelial growth factor A in patients with breast cancer

    DEFF Research Database (Denmark)

    Maae, Else; Olsen, Dorte Aalund; Steffensen, Karina Dahl

    2012-01-01

    such as ischemic heart disease, arthritis and tumor growth. Angiogenesis is a complex process with several growth factors involved. Because PlGF modulates VEGF-A responses, we investigated their mutual relationship and impact on breast cancer prognosis. Quantitative PlGF and VEGF-A levels were measured in 229...... tumor tissue specimen from primarily operated patients with unilateral breast cancer. Non-malignant breast tissue was also dissected near the tumor and quantitative measurements were available for 211 patients. PlGF and VEGF-A protein levels in homogenized tissue lysates were analyzed using the Luminex......Placenta growth factor (PlGF) and vascular endothelial growth factor A (VEGF-A) are angiogenic growth factors interacting competitively with the same receptors. VEGF-A is essential in both normal and pathologic conditions, but the functions of PlGF seem to be restricted to pathologic conditions...

  14. Pore geometry of ceramic device: The key factor of drug release kinetics

    Directory of Open Access Journals (Sweden)

    Čolović B.

    2013-01-01

    Full Text Available Release kinetics of tigecycline, a potential antibiotic in treatment of osteomyelitis, from calcium hydroxyapatite (CHA, as one of the most important ceramic materials in bone tissue engineering, was investigated in this study. Tigecycline, in solid state, was mixed with CHA powder and the obtained mixture was compressed into tablets using two different pressures. These tablets were immersed in a phosphate-buffered saline solution and tigecycline release was measured by a UV-VIS spectrophotometer. The total release time was 5 or 28 days, depending on the pressure applied during compression. It was shown that there is a close relationship between pore sizes and drug release rate. The drug release kinetics was interpreted on the base of pore sizes and pore size distribution. [Projekat Ministarstva nauke Republike Srbije, br. 172026

  15. Growth factor release by vesicular phospholipid gels: in-vitro results and application for rotator cuff repair in a rat model.

    Science.gov (United States)

    Buchmann, Stefan; Sandmann, Gunther H; Walz, Lars; Reichel, Thomas; Beitzel, Knut; Wexel, Gabriele; Tian, Weiwei; Battmann, Achim; Vogt, Stephan; Winter, Gerhard; Imhoff, Andreas B

    2015-04-10

    Biological augmentation of rotator cuff repair is of growing interest to improve biomechanical properties and prevent re-tearing. But intraoperative single shot growth factor application appears not sufficient to provide healing support in the physiologic growth factor expression peaks. The purpose of this study was to establish a sustained release of granulocyte-colony stimulating factor (G-CSF) from injectable vesicular phospholipid gels (VPGs) in vitro and to examine biocompatibility and influence on histology and biomechanical behavior of G-CSF loaded VPGs in a chronic supraspinatus tear rat model. G-CSF loaded VPGs were produced by dual asymmetric centrifugation. In vitro the integrity, stability and release rate were analyzed. In vivo supraspinatus tendons of 60 rats were detached and after 3 weeks a transosseous refixation with G-CSF loaded VPGs augmentation (n = 15; control, placebo, 1 and 10 μg G-CSF/d) was performed. 6 weeks postoperatively the healing site was analyzed histologically (n = 9; H&E by modified MOVIN score/Collagen I/III) and biomechanically (n = 6). In vitro testing revealed stable proteins after centrifugation and a continuous G-CSF release of up to 4 weeks. Placebo VPGs showed histologically no negative side effects on the healing process. Histologically in vivo testing demonstrated significant advantages for G-CSF 1 μg/d but not for G-CSF 10 μg/d in Collagen III content (p = 0.035) and a higher Collagen I/III ratio compared to the other groups. Biomechanically G-CSF 1 μg/d revealed a significant higher load to failure ratio (p = 0.020) compared to control but no significant differences in stiffness. By use of VPGs a continuous growth factor release could be obtained in vitro. The in vivo results demonstrate an improvement of immunohistology and biomechanical properties with a low dose G-CSF application via VPG. The VPG itself was well tolerated and had no negative influence on the healing behavior. Due to the favorable properties

  16. Alveolar macrophage release of tumor necrosis factor-alpha in chronic alcoholics without liver disease.

    Science.gov (United States)

    Omidvari, K; Casey, R; Nelson, S; Olariu, R; Shellito, J E

    1998-05-01

    Alcohol is an immunosuppressive drug, and chronic abuse has been associated with increased susceptibility to a variety of infections, including bacterial pneumonia and tuberculosis. Alveolar macrophages are the resident phagocytes of the lung and play a central role in lung host defenses against infection ranging from direct antibacterial activity to the release of proinflammatory cytokines such as tumor necrosis factor-alpha (TNFalpha). TNFalpha, in particular, plays a key role in the development of the early inflammatory response. In this study, we investigated the effects of chronic alcohol consumption on alveolar macrophage release of TNFalpha in vitro. We prospectively studied lipopolysaccharide (LPS)-stimulated release of TNFalpha from alveolar macrophages obtained from bronchoalveolar lavage fluid (BALF) in 22 alcoholic (18 smokers, 4 nonsmokers) and 7 nondrinking healthy volunteers (3 smokers, 4 nonsmokers). The total number of cells recovered by bronchoalveolar lavage (BAL) and their differential distribution were not significantly different in alcoholics versus controls (43 +/- 8 x 10(6) and 39 +/- 13 x 10(6), respectively). However, the total number of cells recovered from BALF was significantly higher in smokers (51 +/- 8 x 10(6)) than in nonsmokers (19 +/- 5 x 10(6)). Spontaneous (basal) release of TNFalpha by alveolar macrophages was the same in alcoholics and controls. In contrast, LPS-stimulated release of TNFalpha was significantly suppressed in alcoholics compared with that of controls (1343 +/- 271 vs. 3806 +/- 926 U TNF/ml/10(6) cells, respectively, p < 0.015). When controlled for smoking, LPS-stimulated TNFalpha production was suppressed in alcoholic nonsmokers (563 +/- 413 U TNF/ml/10(6)) compared with control nonsmokers (5113 +/- 1264 U TNF/ml/10(6)). LPS-stimulated TNFalpha production was also less in control smokers (2063 +/- 386 U TNF/ml/10(6) cells) than in control nonsmokers (5113 +/- 1264 U TNF/ml/10(6) cells). There was no difference

  17. MiRNA-486 regulates angiogenic activity and survival of mesenchymal stem cells under hypoxia through modulating Akt signal

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xue-Feng [High Altitude Medicine of Ministry of Chinese Education and Research Center for High Altitude Medicine, Qinghai University, Xining 810001 (China); Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Department of Respiration, Qinghai Provincial People' s Hospital, Xining (China); Wang, Hua; Xiao, Feng-Jun [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Yin, Yue [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Department of Hematology, Peking University First Hospital, Beijing (China); Xu, Qin-Qin [High Altitude Medicine of Ministry of Chinese Education and Research Center for High Altitude Medicine, Qinghai University, Xining 810001 (China); Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Ge, Ri-Li, E-mail: geriligao@hotmail.com [High Altitude Medicine of Ministry of Chinese Education and Research Center for High Altitude Medicine, Qinghai University, Xining 810001 (China); Wang, Li-Sheng, E-mail: wangls@bmi.ac.cn [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China)

    2016-02-12

    MicroRNA-486 (miR-486) was first identified from human fetal liver cDNA library and validated as a regulator of hematopoiesis. Its roles in regulating the biological function of bone marrow-derived mesnechymal stem cells (BM-MSCs) under hypoxia have not been explored yet. In this study, we demonstrated that exposure to hypoxia upregulates miR-486 expression in BM-MSCs. Lentivirus-mediated overexpression of miR-486 resulted in increase of hepatocyte growth factor (HGF) and vascular endothelial growth factor(VEGF) in both mRNA and protein levels. MiR-486 expression also promotes proliferation and reduces apoptosis of BM-MSCs. Whereas MiR-486 knockdown downregulated the secretion of HGF and VEGF and induced apoptosis of BM-MSCs. Furthermore, PTEN-PI3K/AKT signaling was validated to be involved in changes of BM-MSC biological functions regulated by miR-486. These results suggested that MiR-486 mediated the hypoxia-induced angiogenic activity and promoted the proliferation and survival of BM-MSCs through regulating PTEN-PI3K/AKT signaling. These findings might provide a novel understanding of effective therapeutic strategy for hypoxic-ischemic diseases. - Highlights: • miR-486 is a hypoxia-induced miRNA. • miR-486 regulates the secretion of HGF and VEGF, promotes proliferation, and inhibits apoptosis of BM-MSCs. • miR-486 enhances PI3K/AKT activity signaling by targeting PTEN molecule.

  18. Imbalance between vascular endothelial growth factor and endostatin correlates with the prognosis of operable non-small cell lung cancer.

    Science.gov (United States)

    Hu, Y; Hu, M-m; Shi, G-L; Han, Y; Li, B-L

    2014-09-01

    Angiogenesis is regulated by a balance of pro-angiogenic and anti-angiogenic factors. Vascular endothelial growth factor (VEGF) and endostatin respectively represents a frequent component of inducers and inhibitors in the process of angiogenesis. The ratio of VEGF/endostatin may reflect the balance of angiogenic switch. This study aimed to determine whether an imbalance between VEGF/endostatin exists in operable non-small cell lung cancer (NSCLC) patients and to assess the correlation, if any, between the imbalance and the prognosis. Preoperative serum levels of VEGF and endostatin were simultaneously determined by quantitiative enzyme-linked immunosorbent assay (ELISA) and the ratio of them was calculated among 98 NSCLC patients and 51 healthy controls. The relationship between these factors and clinicopathological features, including prognosis, was examined. The ratio of VEGF/endostatin levels was significantly higher in operable NSCLC patients [median, 10.4; interquartile range (IQR), 5.9-19.8] than in normal controls [median, 5.1; IQR, 3.3-9.7] (P = 0.002). While the ratio in patients who were still alive for more than 60 months was 8.3 (IQR, 4.3-17.9), the ratio in those who died was 12.9 (IQR, 8.0-22.1) (p = 0.017). In subgroup analysis of patients with pathological stage N0, there was a statistically significant increase of the survival time in the group with a lower ratio than in the group with a higher ratio (p = 0.032). Multivariate analysis confirmed that the VEGF/endostatin ratio was an independent prognostic factor (p = 0.018). There was an imbalance between VEGF and endostatin in serum of operable NSCLC patients. The imbalance correlated with the prognosis of operable NSCLC. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. The membrane fraction of homogenized rat kidney contains an enzyme that releases epidermal growth factor from the kidney membranes

    DEFF Research Database (Denmark)

    Nexø, Ebba; Poulsen, Steen Seier

    1991-01-01

    shows that the membrane fraction of homogenized rat kidney contains an enzyme that releases immuno and receptor reactive EGF from the kidney membranes when incubated at 37 degrees C. Gel filtration shows that the EGF reactivity released from the membranes is similar to the EGF reactivity in rat urine......High levels of epidermal growth factor (EGF) are excreted in the urine and high levels of mRNA for the EGF-precursor have been demonstrated in the kidney. The EGF-precursor is a membrane bound peptide in the kidney, but little is known about the renal processing of the precursor. The present study...

  20. Vasohibin 2 promotes human luminal breast cancer angiogenesis in a non-paracrine manner via transcriptional activation of fibroblast growth factor 2.

    Science.gov (United States)

    Tu, Min; Lu, Cheng; Lv, Nan; Wei, Jishu; Lu, Zipeng; Xi, Chunhua; Chen, Jianmin; Guo, Feng; Jiang, Kuirong; Li, Qiang; Wu, Junli; Song, Guoxin; Wang, Shui; Gao, Wentao; Miao, Yi

    2016-12-28

    Vasohibin 2 (VASH2) is an angiogenic factor and cancer-related protein that acts via paracrine mechanisms. Here, we investigated the angiogenic function and mechanism of action of VASH2 in 200 human breast cancer tissues by performing immunohistochemical staining, western blot, indirect sandwich enzyme-linked immunosorbent assay (ELISA), and a semi-quantitative sandwich-based antibody array. Breast cancer cells stably overexpressing VASH2 or with knocked-down VASH2 were established and used for in vivo and in vitro models. In human luminal tissue, but not in HER2-positive or basal-like breast cancer tissues, VASH2 was positively correlated with CD31-positive microvascular density, induced angiogenesis in xenograft tumors, and promoted human umbilical vein endothelial cell tube formation in vitro. VASH2 expression was absent in the concentrated conditioned medium collected from knocked-down VASH2 and VASH2-overexpressing luminal breast cancer cells. Further, VASH2 regulated the expression of fibroblast growth factor 2 (FGF2) in human luminal breast cancer cells, and the pro-angiogenic effect induced by VASH2 overexpression was blocked by FGF2 neutralization in vitro. Additionally, dual luciferase reporter assay and Chromatin immunoprecipitation analysis results showed that FGF2 promoter was transcriptionally activated by VASH2 via histone modifications. In conclusion, VASH2 expression is positively correlated with FGF2 expression and promotes angiogenesis in human luminal breast cancer by transcriptional activation of fibroblast growth factor 2 through non-paracrine mechanisms. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Chitosan-aluminum monostearate composite sponge dressing containing asiaticoside for wound healing and angiogenesis promotion in chronic wound.

    Science.gov (United States)

    Phaechamud, Thawatchai; Yodkhum, Kotchamon; Charoenteeraboon, Juree; Tabata, Yasuhiko

    2015-05-01

    There are many factors that delay healing in chronic wounds including lowering level of growth factors and increasing exudate level comprising high amount of tissue destructive enzymes. Asiaticoside possesses interesting wound healing and angiogenic activities that are employed to stimulate tissue regeneration in wound healing application. This study attempted to develop chitosan-aluminum monostearate (Alst) composite sponge containing asiaticoside for use as an absorbent medical dressing in chronic wound. N-methyl-2-pyrrolidone (NMP) was used to enhance homogeneity of asiaticoside in the polymer composite matrix. The sponge dressings were prepared by lyophilization and dehydrothermal treatment (DHT). Functional group interaction, crystallinity, and morphology of the prepared sponges were investigated using FT-IR, PXRD, and SEM, respectively. Physicochemical properties, porosity, hydrophilic/hydrophobic properties and mechanical property, were evaluated. Wound dressing properties, water vapor transmission rate (WVTR), fluid absorbency, oxygen permeation (OP), and bio-adhesive property, were investigated. In vitro asiaticoside release study was conducted using immersion method. Cytotoxicity was studied in normal human dermal fibroblast (NHDF) and normal human epidermal keratinocyte (NHEK). Angiogenic activity of asiaticoside was evaluated using chick-chorioallantoic membrane (CAM) assay. FT-IR and PXRD results revealed the amidation after DHT to enhance the crystallinity of the prepared sponges. The prepared sponges had high porosity comprising high Alst-loaded amount that exhibited more compact structure. Alst enhanced hydrophobicity therefore it reduced the fluid absorption and WVTR together with bio-adhesion of the prepared sponge dressings. Porosity of all sponges was more than 85% therefore resulting in their high OP. Enhancing hydrophobicity of the material by Alst and more homogeneity caused by NMP eventually retarded the asiaticoside release for 7 days. The

  2. Aminopeptidase N inhibition could be involved in the anti-angiogenic effect of dobesilates

    Directory of Open Access Journals (Sweden)

    Farsa Oldřich

    2015-01-01

    Full Text Available Calcium, magnesium and zinc 2,5-dihydroxybenzenesulfonates (dobesilates were synthesized by sulfonation of hydroquinone with sulfuric acid under mild conditions. To form the salts, neutralization with calcium carbonate followed by cation exchange by means of magnesium or zinc sulfates was performed. The dobesilates were characterized by standard spectral methods and by AAS for metal content and then tested for inhibitory activity against aminopeptidase N. Calcium and magnesium 2,5-dihydroxybenzene sulfonates exhibited rather weak inhibitory activity to aminopeptidase N as demonstrated by IC50 values of 978.0 and 832.1 mmol l-1 respectively while zinc 2,5-dihydroxybenzene sulfonate reached the more significant inhibitory activity characterized by IC50 77.4 mmol l-1. The inhibitory activity results suggest that the inhibition of aminopeptidase N could play a role in the anti-angiogenic activity of 2,5-dihydroxybenzenesulfonates.

  3. Extra virgin olive oil rich in polyphenols modulates VEGF-induced angiogenic responses by preventing NADPH oxidase activity and expression.

    Science.gov (United States)

    Calabriso, Nadia; Massaro, Marika; Scoditti, Egeria; D'Amore, Simona; Gnoni, Antonio; Pellegrino, Mariangela; Storelli, Carlo; De Caterina, Raffaele; Palasciano, Giuseppe; Carluccio, Maria Annunziata

    2016-02-01

    Previous studies have shown the antiinflammatory, antioxidant and antiangiogenic properties by pure olive oil polyphenols; however, the effects of olive oil phenolic fraction on the inflammatory angiogenesis are unknown. In this study, we investigated the effects of the phenolic fraction (olive oil polyphenolic extract, OOPE) from extra virgin olive oil and related circulating metabolites on the VEGF-induced angiogenic responses and NADPH oxidase activity and expression in human cultured endothelial cells. We found that OOPE (1-10 μg/ml), at concentrations achievable nutritionally, significantly reduced, in a concentration-dependent manner, the VEGF-induced cell migration, invasiveness and tube-like structure formation through the inhibition of MMP-2 and MMP-9. OOPE significantly (Pextra virgin olive oil, with high polyphenol content, decreased VEGF-induced NADPH oxidase activity and Nox4 expression, as well as, MMP-9 expression, as compared with fasting control serum. Overall, native polyphenols and serum metabolites of extra virgin olive oil rich in polyphenols are able to lower the VEGF-induced angiogenic responses by preventing endothelial NADPH oxidase activity and decreasing the expression of selective NADPH oxidase subunits. Our results provide an alternative mechanism by which the consumption of olive oil rich in polyphenols may account for a reduction of oxidative stress inflammatory-related sequelae associated with chronic degenerative diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Experiment calculated ascertainment of factors affecting the energy release in IGR reactor core

    International Nuclear Information System (INIS)

    Kurpesheva, A.M.; Zhotabayev, Zh.R.

    2006-01-01

    Full text: At present energy supply resources problem is important. Nuclear reactors can, of course, solve this problem, but at the same time there is another issue, concerning safety exploitation of nuclear reactors. That is why, for the last seven years, such experiments as 'Investigation of the processes, conducting severe accidents with core melting' are being carried out at our IGR (impulse graphite reactor) reactor. Leaving out other difficulties of such experiments, it is necessary to notice, that such experiments require more accurate IGR core energy release calculations. The final aim of the present research is verification and correction of the existing method or creation of new method of IGR core energy release calculation. IGR reactor is unique and there is no the same reactor in the world. Therefore, application of the other research reactor methods here is quite useful. This work is based on evaluation of factors affecting core energy release (physical weight of experimental device, different configuration of reactor core, i.e. location of absorbers, initial temperature of core, etc), as well as interference of absorbers group. As it is known, energy release is a value of integral reactor power. During experiments with rays, Reactor power depends on currents of ion production chambers (IPC), located round the core. It is worth to notice that each ion production chamber (IPC) in the same start-up has its own ratio coefficient between IPC current and reactor present power. This task is complicated due to 'IPC current - reactor power' ratio coefficients, that change continuously, probably, because of new loading of experimental facility and different position of control rods. That is why, in order to try about reactor power, before every start-up, we have to re-determine the 'IPC current - reactor power' ratio coefficients for each ion production chamber (IPC). Therefore, the present work will investigate the behavior of ratio coefficient within the

  5. Effect of silica nanoparticles with variable size and surface functionalization on human endothelial cell viability and angiogenic activity

    Science.gov (United States)

    Guarnieri, Daniela; Malvindi, Maria Ada; Belli, Valentina; Pompa, Pier Paolo; Netti, Paolo

    2014-02-01

    Silica nanoparticles could be promising delivery vehicles for drug targeting or gene therapy. However, few studies have been undertaken to determine the biological behavior effects of silica nanoparticles on primary endothelial cells. Here we investigated uptake, cytotoxicity and angiogenic properties of silica nanoparticle with positive and negative surface charge and sizes ranging from 25 to 115 nm in primary human umbilical vein endothelial cells. Dynamic light scattering measurements and nanoparticle tracking analysis were used to estimate the dispersion status of nanoparticles in cell culture media, which was a key aspect to understand the results of the in vitro cellular uptake experiments. Nanoparticles were taken up by primary endothelial cells in a size-dependent manner according to their degree of agglomeration occurring after transfer in cell culture media. Functionalization of the particle surface with positively charged groups enhanced the in vitro cellular uptake, compared to negatively charged nanoparticles. However, this effect was contrasted by the tendency of particles to form agglomerates, leading to lower internalization efficiency. Silica nanoparticle uptake did not affect cell viability and cell membrane integrity. More interestingly, positively and negatively charged 25 nm nanoparticles did not influence capillary-like tube formation and angiogenic sprouting, compared to controls. Considering the increasing interest in nanomaterials for several biomedical applications, a careful study of nanoparticle-endothelial cells interactions is of high relevance to assess possible risks associated to silica nanoparticle exposure and their possible applications in nanomedicine as safe and effective nanocarriers for vascular transport of therapeutic agents.

  6. Toxic releases from power plants

    International Nuclear Information System (INIS)

    Rubin, E.S.

    1999-01-01

    Beginning in 1998, electric power plants burning coal or oil must estimate and report their annual releases of toxic chemicals listed in the Toxics Release Inventory (TRI) published by the US Environmental Protection Agency (EPA). This paper identifies the toxic chemicals of greatest significance for the electric utility sector and develops quantitative estimates of the toxic releases reportable to the TRI for a representative coal-fired power plant. Key factors affecting the magnitude and types of toxic releases for individual power plants also are discussed. A national projection suggests that the magnitude of electric utility industry releases will surpass those of the manufacturing industries which current report to the TRI. Risk communication activities at the community level will be essential to interpret and provide context for the new TRI results

  7. Improved wound healing in pressure-induced decubitus ulcer with controlled release of basic fibroblast growth factor

    International Nuclear Information System (INIS)

    Jiang Wei; Wang Hailun; Jin Faguang; Yu Chunyan; Chu Dongling; Wang Lin; Lu Xian

    2008-01-01

    The purpose was to evaluate the efficacy of the wound dressing containing basic fibroblast growth factor (bFGF)-loaded microspheres on promoting healing in pressure-induced decubitus ulcer. In this study, the pressure-induced ulcer in swine was used as a model to demonstrate the hypothesis that controlled release of bFGF has the potential to provide optimal healing milieu for chronic wounds in the repair process. Average size of the microspheres was 14.36 ± 3.56 μm and the network gelatin sponges were characterized with an average pore size of 80-160 μm. Both the in vitro release efficiency and the protein bioactivity revealed that bFGF was released from the microspheres in a controlled manner and it was biologically active as assessed by its ability to induce the proliferation of fibroblasts. Pressure-induced ulcer was created at 500 g/cm 2 pressure loaded on swine dorsal skin 12 h daily for 2 consecutive days. After removal of the pressure load, the gelatin sponge containing bFGF gelatin microspheres or bFGF in solution was implanted into the wound. Swine were sacrificed at 7, 14, and 21 days after implantation, and a full-thickness biopsy was taken and stained for histological analysis. It was observed that controlled release of bFGF provided an accelerated recovery in the wound areas. Histological investigations showed that the dressings were biocompatible and had capability of proliferating fibroblasts and inducing neovascularisation. The present study implied the clinical potential of gelatin sponge with bFGF microspheres to promote the healing in pressure-induced decubitus ulcer

  8. Improved wound healing in pressure-induced decubitus ulcer with controlled release of basic fibroblast growth factor

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Wei [Department of Respiratory Diseases, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China); Wang Hailun [Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China); Jin Faguang [Department of Respiratory Diseases, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China)], E-mail: nidewenzhang@163.com; Yu Chunyan [Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China); Chu Dongling [Department of Respiratory Diseases, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China); Wang Lin [Department of Internal Medicine, 316 Hospital of PLA, Beijing 100093 (China); Lu Xian [93942 Unit Hospital of PLA, Xianyang 710012 (China)

    2008-07-14

    The purpose was to evaluate the efficacy of the wound dressing containing basic fibroblast growth factor (bFGF)-loaded microspheres on promoting healing in pressure-induced decubitus ulcer. In this study, the pressure-induced ulcer in swine was used as a model to demonstrate the hypothesis that controlled release of bFGF has the potential to provide optimal healing milieu for chronic wounds in the repair process. Average size of the microspheres was 14.36 {+-} 3.56 {mu}m and the network gelatin sponges were characterized with an average pore size of 80-160 {mu}m. Both the in vitro release efficiency and the protein bioactivity revealed that bFGF was released from the microspheres in a controlled manner and it was biologically active as assessed by its ability to induce the proliferation of fibroblasts. Pressure-induced ulcer was created at 500 g/cm{sup 2} pressure loaded on swine dorsal skin 12 h daily for 2 consecutive days. After removal of the pressure load, the gelatin sponge containing bFGF gelatin microspheres or bFGF in solution was implanted into the wound. Swine were sacrificed at 7, 14, and 21 days after implantation, and a full-thickness biopsy was taken and stained for histological analysis. It was observed that controlled release of bFGF provided an accelerated recovery in the wound areas. Histological investigations showed that the dressings were biocompatible and had capability of proliferating fibroblasts and inducing neovascularisation. The present study implied the clinical potential of gelatin sponge with bFGF microspheres to promote the healing in pressure-induced decubitus ulcer.

  9. Cinnamic aldehyde suppresses hypoxia-induced angiogenesis via inhibition of hypoxia-inducible factor-1α expression during tumor progression.

    Science.gov (United States)

    Bae, Woom-Yee; Choi, Jae-Sun; Kim, Ja-Eun; Jeong, Joo-Won

    2015-11-01

    During tumor progression, hypoxia-inducible factor 1 (HIF-1) plays a critical role in tumor angiogenesis and tumor growth by regulating the transcription of several genes in response to a hypoxic environment and changes in growth factors. This study was designed to investigate the effects of cinnamic aldehyde (CA) on tumor growth and angiogenesis and the mechanisms underlying CA's anti-angiogenic activities. We found that CA administration inhibits tumor growth and blocks tumor angiogenesis in BALB/c mice. In addition, CA treatment decreased HIF-1α protein expression and vascular endothelial growth factor (VEGF) expression in mouse tumors and Renca cells exposed to hypoxia in vitro. Interestingly, CA treatment did not affect the stability of von Hippel-Lindau protein (pVHL)-associated HIF-1α and CA attenuated the activation of mammalian target of rapamycin (mTOR) pathway. Collectively, these findings strongly indicate that the anti-angiogenic activity of CA is, at least in part, regulated by the mTOR pathway-mediated suppression of HIF-1α protein expression and these findings suggest that CA may be a potential drug for human cancer therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Anti-vascular agent Combretastatin A-4-P modulates Hypoxia Inducible Factor-1 and gene expression

    Directory of Open Access Journals (Sweden)

    Currie Margaret J

    2006-12-01

    Full Text Available Abstract Background A functional vascular network is essential for the survival, growth and spread of solid tumours, making blood vessels a key target for therapeutic strategies. Combretastatin A-4 phosphate (CA-4-P is a tubulin-depolymerising agent in Phase II clinical trials as a vascular disrupting agent. Not much is known of the molecular effect of CA-4-P under tumour conditions. The tumour microenvironment differs markedly from that in normal tissue, specifically with respect to oxygenation (hypoxia. Gene regulation under tumour conditions is governed by hypoxia inducible factor 1 (HIF-1, controlling angiogenic and metastatic pathways. Methods We investigated the effect of CA-4-P on factors of the upstream and downstream signalling pathway of HIF-1 in vitro. Results CA-4-P treatment under hypoxia tended to reduce HIF-1 accumulation in a concentration-dependent manner, an effect which was more prominent in endothelial cells than in cancer cell lines. Conversely, CA-4-P increased HIF-1 accumulation under aerobic conditions in vitro. At these concentrations of CA-4-P under aerobic conditions, nuclear factor κB was activated via the small GTPase RhoA, and expression of the HIF-1 downstream angiogenic effector gene, vascular endothelial growth factor (VEGF-A, was increased. Conclusion Our findings advance the understanding of signal transduction pathways involved in the actions of the anti-vascular agent CA-4-P.

  11. Preparation of venlafaxine hydrochloride sustained-release tablets

    Directory of Open Access Journals (Sweden)

    GUO Lingling

    2013-08-01

    Full Text Available To prepare venlafxine hydrochloride sustained-release tablets.Hydroxypropylmethyl cellulose(HPMC and methyl cellulose(MC were used as main materials to prepare sustained-release tablets of velafaxine hydrochloride and the influence of important factors on in vitro release curves of venlafaxine hydrochloride sustained-release tablets was investigated.Results:The optimal prescription included 100 mg HPMC,25 mg MC,and 2.5% glidant in one tablet prepared with 30kN.The tablets were prepared with the method of wet granulation by NO.16 mesh sieve.The tablets exhibited good sustained-release property in phosphate buffered solution (pH=6.8.The as-prepared venlafxine hydrochloride sustained-release tablets have good sustained-release property.

  12. Next generation metronomic chemotherapy-report from the Fifth Biennial International Metronomic and Anti-angiogenic Therapy Meeting, 6-8 May 2016, Mumbai.

    Science.gov (United States)

    Pantziarka, Pan; Hutchinson, Lisa; André, Nicolas; Benzekry, Sébastien; Bertolini, Francesco; Bhattacharjee, Atanu; Chiplunkar, Shubhada; Duda, Dan G; Gota, Vikram; Gupta, Sudeep; Joshi, Amit; Kannan, Sadhana; Kerbel, Robert; Kieran, Mark; Palazzo, Antonella; Parikh, Aparna; Pasquier, Eddy; Patil, Vijay; Prabhash, Kumar; Shaked, Yuval; Sholler, Giselle Saulnier; Sterba, Jaroslav; Waxman, David J; Banavali, Shripad

    2016-01-01

    The 5 th Biennial Metronomic and Anti-angiogenic Therapy Meeting was held on 6 th - 8 th May in the Indian city of Mumbai. The meeting brought together a wide range of clinicians and researchers interested in metronomic chemotherapy, anti-angiogenics, drug repurposing and combinations thereof. Clinical experiences, including many from India, were reported and discussed in three symposia covering breast cancer, head and neck cancers and paediatrics. On the pre-clinical side research into putative mechanisms of action, and the interactions between low dose metronomic chemotherapy and angiogenesis and immune responses, were discussed in a number of presentations. Drug repurposing was discussed both in terms of clinical results, particularly with respect to angiosarcoma and high-risk neuroblastoma, and in pre-clinical settings, particularly the potential for peri-operative interventions. However, it was clear that there remain a number of key areas of challenge, particularly in terms of definitions, perceptions in the wider oncological community, mechanisms of action and predictive biomarkers. While the potential for metronomics and drug repurposing in low and middle income countries remains a key theme, it is clear that there is also considerable potential for clinically relevant improvements in patient outcomes even in high income economies.

  13. Role of pigment epithelium-derived factor in the involution of hemangioma: Autocrine growth inhibition of hemangioma-derived endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung-Jin [Department of Pharmacology, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Department of Biomedical Science, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Yun, Jang-Hyuk; Heo, Jong-Ik [Department of Pharmacology, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Lee, Eun Hui [Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Min, Hye Sook [Department of Pathology, Seoul National University Hospital, Seoul 110-744 (Korea, Republic of); Choi, Tae Hyun, E-mail: psthchoi@snu.ac.kr [Department of Plastic and Reconstructive Surgery, Seoul National University Children’s Hospital, Seoul 110-744 (Korea, Republic of); Department of Pediatric Plastic and Reconstructive Surgery, Seoul National University Children’s Hospital, Seoul 110-744 (Korea, Republic of); Cho, Chung-Hyun, E-mail: iamhyun@snu.ac.kr [Department of Pharmacology, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Department of Biomedical Science, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Cancer Research Institute, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of)

    2014-11-14

    Highlights: • PEDF was expressed and induced during the involuting phase of IH. • PEDF inhibited the cell growth of the involuting HemECs in an autocrine manner. • PEDF suppression restored the impaired cell growth of the involuting HemECs. - Abstract: Hemangioma is a benign tumor derived from abnormal blood vessel growth. Unlike other vascular tumor counterparts, a hemangioma is known to proliferate during its early stage but it is followed by a stage of involution where regression of the tumor occurs. The critical onset leading to the involution of hemangioma is currently not well understood. This study focused on the molecular identities of the involution of hemangioma. We demonstrated that a soluble factor released from the involuting phase of hemangioma-derived endothelial cells (HemECs) and identified pigment epithelium-derived factor (PEDF) as an anti-angiogenic factor that was associated with the growth inhibition of the involuting HemECs. The growth inhibition of the involuting HemECs was reversed by suppression of PEDF in the involuting HemECs. Furthermore, we found that PEDF was more up-regulated in the involuting phase of hemangioma tissues than in the proliferating or the involuted. Taken together, we propose that PEDF accelerates the involution of hemangioma by growth inhibition of HemECs in an autocrine manner. The regulatory mechanism of PEDF expression could be a potential therapeutic target to treat hemangiomas.

  14. Development of novel diclofenac potassium controlled release tablets by wet granulation technique and the effect of co-excipients on in vitro drug release rates.

    Science.gov (United States)

    Shah, Shefaatullah; Khan, Gul Majid; Jan, Syed Umer; Shah, Kifayatullah; Hussain, Abid; Khan, Haroon; Khan, Haroon; Khan, Haroon; Khan, Kamran Ahmad

    2012-01-01

    The aim of the present study was the formulation and evaluation of controlled release polymeric tablets of Diclofenac Potassium by wet granulation method for the release rate, release pattern and the mechanism involved in drug release. Formulations having three grades of polymer Ethocel (7P; 7FP, 10P, 10FP, 100P, 100FP) in several drugs to polymer ratios (10:3 and 10:1) were compressed into tablets using wet granulation method. Co-excipients were added to some selected formulations to investigate their enhancement effect on in vitro drug release patterns. In vitro drug release studies were performed using USP Method-1 (Rotating Basket method) and Phosphate buffer (pH 7.4) was used as a dissolution medium. The similarities and dissimilarities of release profiles of test formulations with reference standard were checked using f2 similarity factor and f1 dissimilarity factor. Mathematical/Kinetic models were employed to determine the release mechanism and drug release kinetics.

  15. Application of a drug delivery system using ultrasound and nano/microbubbles for anti-angiogenic therapy

    International Nuclear Information System (INIS)

    Horie, Sachiko; Kodama, Tetsuya; Sato, Yasushi

    2017-01-01

    The drug delivery system using ultrasound and nano/microbubbles is a molecular delivery approach using the mechanism of sonoporation. With sonoporation, an endothelium-derived negative-feedback regulator of angiogenesis, Vasohibin-1 (VASH1), was introduced specifically into tumor vessels. We found VASH1 in tumor vessels induce normalization of tumor vessels and inhibited tumor growth. A recent topic regarding tumor angiogenesis is vascular normalization. Tumor vessels are abnormal or immature that cause hyperpermeability and impaired blood flow. Tumor vascular normalization improves blood flow and tissue hypoxia, which increase the effectiveness of chemotherapy and radiotherapy and reduce tumor cell malignancy. In this review, application of drug delivery system using ultrasound for an anti-angiogenic therapy, a tumor vessel normalization therapy to treat cancer, is summarized. (author)

  16. Prokineticin 1 protein expression is a useful new prognostic factor for human sporadic colorectal cancer.

    Science.gov (United States)

    Nakazawa, Toshiyuki; Goi, Takanori; Hirono, Yasuo; Yamaguchi, Akio

    2015-05-01

    Hematogenous metastasis, regarded as closely related to angiogenic growth factors, is associated with colorectal cancer prognosis. The angiogenic growth factor prokineticin 1 (PROK1) has been cloned from endocrine cells. However, its protein expression in human malignant tumors has not been studied. The current study established the anti-PROK1 monoclonal antibody (mAb) and examined the relationship between the expression of PROK1 protein and human colorectal cancer. The expression of PROK1 protein was assessed in 620 resected sporadic colorectal cancer tissue samples by immunohistochemical staining with in-house-developed human PROK1 mAb to investigate the relationship of PROK1 expression to clinicopathologic factors, recurrence, and survival rate and to evaluate its prognostic significance. The expression of PROK1 protein was detected in 36 % (223/620) of human primary colorectal cancer lesions but no in the healthy mucosa adjacent to the colorectal cancer lesions. According to the clinicopathologic examinations, the frequency of positive PROK1 expression was significantly higher in cases with serosal invasion, lymphatic invasion, venous invasion, lymph node metastasis, liver metastasis, hematogenous metastasis, and higher stage disease. The recurrence rate and prognosis for patients with PROK1 expression-positive lesions were significantly worse. In the Cox proportional hazard model, PROK1 expression was an independent prognostic factor. The expression of PROK1 protein was identified for the first time as a new prognostic factor in colorectal cancer.

  17. Elevated CSF Corticotropin-Releasing Factor Concentrations in Posttraumatic Stress Disorder

    Science.gov (United States)

    Bremner, J. Douglas; Licinio, Julio; Darnell, Adam; Krystal, John H.; Owens, Michael J.; Southwick, Steven M.; Nemeroff, Charles B.; Charney, Dennis S.

    2011-01-01

    Objective Corticotropin-releasing factor (CRF) and somatostatin both play important roles in mediating responses to acute and chronic stress. The purpose of this study was to measure CSF concentrations of CRF and somatostatin in patients with chronic combat-related post-traumatic stress disorder (PTSD) and comparison subjects. Method Lumbar punctures for collection of CSF were performed in Vietnam combat veterans with PTSD (N=11) and comparison subjects (N=17). CSF concentrations of CRF and somatostatin were compared between the two groups. Results CSF concentrations of CRF were higher in the PTSD patients than in the comparison subjects (mean=29.0 pg/ml, SD=7.8, versus mean=21.9 pg/ml, SD=6.0). This group difference remained significant after covariance for age. CSF somatostatin concentrations in PTSD patients were higher than those of the comparison subjects (mean=19.9 pg/ml, SD=5.4, versus mean=13.7 pg/ml, SD=8.0). However, covarying for age reduced the level of significance. Conclusions Higher CSF CRF concentrations in patients with PTSD may reflect alterations in stress-related neurotransmitter systems. The higher CSF CRF concentrations may play a role in disturbances of arousal in patients with PTSD. PMID:9137116

  18. The glial cell line-derived neurotrophic factor (GDNF) does not acutely change acetylcholine release in developing and adult neuromuscular junction.

    Science.gov (United States)

    Garcia, Neus; Santafé, Manel M; Tomàs, Marta; Lanuza, Maria A; Besalduch, Nuria; Priego, Merche; Tomàs, Josep

    2010-08-16

    We use immunocytochemistry to show that the trophic molecule glial cell line-derived neurotrophic factor (GDNF) and its receptor GDNF family receptor alpha-1 (GFRalpha-1) are present in both neonatal (P6) and adult (P45) rodent neuromuscular junctions (NMJ) colocalized with several synaptic markers. However, incubation with exogenous GDNF (10-200ng/ml, 1-3h), does not affect spontaneous ACh release. Moreover, GDNF does not change the size of the evoked ACh release from the weak and the strong axonal inputs on dually innervated postnatal endplates nor in the most developed singly-innervated synapses at P6 and P45. Our findings indicate that GDNF (unlike neurotrophins) does not acutely modulate transmitter release during the developmental process of synapse elimination nor as the NMJ matures. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  19. In vitro study of the role of thrombin in platelet rich plasma (PRP) preparation: utility for gel formation and impact in growth factors release.

    Science.gov (United States)

    Huber, Stephany Cares; Cunha Júnior, José Luiz Rosenberis; Montalvão, Silmara; da Silva, Letícia Queiroz; Paffaro, Aline Urban; da Silva, Francesca Aparecida Ramos; Rodrigues, Bruno Lima; Lana, José Fabio Santos Duarte; Annichino-Bizzacchi, Joyce Maria

    2016-01-01

    The use of PRP has been studied for different fields, with promising results in regenerative medicine. Until now, there is no study in the literature evaluating thrombin levels in serum, used as autologous thrombin preparation. Therefore, in the present study we evaluated the role played by different thrombin concentrations in PRP and the impact in the release of growth factors. Also, different activators for PRP gel formation were evaluated. Thrombin levels were measured in different autologous preparations: serum, L-PRP (PRP rich in leukocytes) and T-PRP (thrombin produced through PRP added calcium gluconate). L-PRP was prepared according to the literature, with platelets and leukocytes being quantified. The effect of autologous thrombin associated or not with calcium in PRP gel was determined by measuring the time of gel formation. The relationship between thrombin concentration and release of growth factors was determined by growth factors (PDGF-AA, VEGF and EGF) multiplex analysis. A similar concentration of thrombin was observed in serum, L-PRP and T-PRP (8.13 nM, 8.63 nM and 7.56 nM, respectively) with a high variation between individuals (CV%: 35.07, 43 and 58.42, respectively). T-PRP and serum with calcium chloride showed similar results in time to promote gel formation. The increase of thrombin concentrations (2.66, 8 and 24 nM) did not promote an increase in growth factor release. The technique of using serum as a thrombin source proved to be the most efficient and reproducible for promoting PRP gel formation, with some advantages when compared to other activation methods, as this technique is easier and quicker with no need of consuming part of PRP. Noteworthy, PRP activation using different thrombin concentrations did not promote a higher release of growth factors, appearing not to be necessary when PRP is used as a suspension.

  20. Distribution of corticotropin-releasing factor receptors in primate brain

    International Nuclear Information System (INIS)

    Millan, M.A.; Jacobowitz, D.M.; Hauger, R.L.; Catt, K.J.; Aguilera, G.

    1986-01-01

    The distribution and properties of receptors for corticotropin-releasing factor (CRF) were analyzed in the brain of cynomolgus monkeys. Binding of [ 125 I]tyrosine-labeled ovine CRF to frontal cortex and amygdala membrane-rich fractions was saturable, specific, and time- and temperature-dependent, reaching equilibrium in 30 min at 23 0 C. Scatchard analysis of the binding data indicated one class of high-affinity sites with a K/sub d/ of 1 nM and a concentration of 125 fmol/mg. As in the rat pituitary and brain, CRF receptors in monkey cerebral cortex and amygdala were coupled to adenylate cyclase. Autoradiographic analysis of specific CRF binding in brain sections revealed that the receptors were widely distributed in the cerebral cortex and limbic system. Receptor density was highest in the pars tuberalis of the pituitary and throughout the cerebral cortex, specifically in the prefrontal, frontal, orbital, cingulate, insular, and temporal areas, and in the cerebellar cortex. A low binding density was present in the superior colliculus, locus coeruleus, substantia gelatinosa, preoptic area, septal area, and bed nucleus of the stria terminalis. These data demonstrate that receptors for CRF are present within the primate brain at areas related to the central control of visceral function and behavior, suggesting that brain CRF may serve as a neurotransmitter in the coordination of endocrine and neural mechanisms involved in the response to stress

  1. Basic fibroblast growth factor binds to subendothelial extracellular matrix and is released by heparitinase and heparin-like molecules

    International Nuclear Information System (INIS)

    Bashkin, P.; Doctrow, S.; Klagsbrun, M.; Svahn, C.M.; Folkman, J.; Vlodavsky, I.

    1989-01-01

    Basic fibroblast growth factor (bFGF) exhibits specific binding to the extracellular matrix (ECM) produced by cultured endothelial cells. Binding was saturable as a function both of time and of concentration of 125 I-bFGF. Scatchard analysis of FGF binding revealed the presence of about 1.5 x 10 12 binding sites/mm 2 ECM with an apparent k D of 610 nM. FGF binds to heparan sulfate (HS) in ECM as evidenced by (i) inhibition of binding in the presence of heparin or HS at 0.1-1 μg/mL, but not by chondroitin sulfate, keratan sulfate, or hyaluronic acid at 10 μg/mL, (ii) lack of binding to ECM pretreated with heparitinase, but not with chondroitinase ABC, and (iii) rapid release of up to 90% of ECM-bound FGF by exposure to heparin, HS, or heparitinase, but not to chondroitin sulfate, keratan sulfate, hyaluronic acid, or chondroitinase ABC. Oligosaccharides derived from depolymerized heparin, and as small as the tetrasaccharide, released the ECM-bound FGF, but there was little or no release of FGF by modified nonanticoagulant heparins such as totally desulfated heparin, N-desulfated heparin, and N-acetylated heparin. FGF released from ECM was biologically active, as indicated by its stimulation of cell proliferation and DNA synthesis in vascular endothelial cells and 3T3 fibroblasts. Similar results were obtained in studies on release of endogenous FGF-like mitogenic activity from Descement's membranes of bovine corneas. It is suggested that ECM storage and release of bFGF provide a novel mechanism for regulation of capillary blood vessel growth. Whereas ECM-bound FGF may be prevented from acting on endothelial cells, its displacement by heparin-like molecules and/or HS-degrading enzymes may elicit a neovascular response

  2. Vicrostatin - an anti-invasive multi-integrin targeting chimeric disintegrin with tumor anti-angiogenic and pro-apoptotic activities.

    Directory of Open Access Journals (Sweden)

    Radu O Minea

    2010-06-01

    Full Text Available Similar to other integrin-targeting strategies, disintegrins have previously shown good efficacy in animal cancer models with favorable pharmacological attributes and translational potential. Nonetheless, these polypeptides are notoriously difficult to produce recombinantly due to their particular structure requiring the correct pairing of multiple disulfide bonds for biological activity. Here, we show that a sequence-engineered disintegrin (called vicrostatin or VCN can be reliably produced in large scale amounts directly in the oxidative cytoplasm of Origami B E. coli. Through multiple integrin ligation (i.e., alphavbeta3, alphavbeta5, and alpha5beta1, VCN targets both endothelial and cancer cells significantly inhibiting their motility through a reconstituted basement membrane. Interestingly, in a manner distinct from other integrin ligands but reminiscent of some ECM-derived endogenous anti-angiogenic fragments previously described in the literature, VCN profoundly disrupts the actin cytoskeleton of endothelial cells (EC inducing a rapid disassembly of stress fibers and actin reorganization, ultimately interfering with EC's ability to invade and form tubes (tubulogenesis. Moreover, here we show for the first time that the addition of a disintegrin to tubulogenic EC sandwiched in vitro between two Matrigel layers negatively impacts their survival despite the presence of abundant haptotactic cues. A liposomal formulation of VCN (LVCN was further evaluated in vivo in two animal cancer models with different growth characteristics. Our data demonstrate that LVCN is well tolerated while exerting a significant delay in tumor growth and an increase in the survival of treated animals. These results can be partially explained by potent tumor anti-angiogenic and pro-apoptotic effects induced by LVCN.

  3. Endothelial Cell Migration and Vascular Endothelial Growth Factor Expression Are the Result of Loss of Breast Tissue Polarity

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Amy; Cuevas, Ileana; Kenny, Paraic A; Miyake, Hiroshi; Mace, Kimberley; Ghajar, Cyrus; Boudreau, Aaron; Bissell, Mina; Boudreau, Nancy

    2009-05-26

    Recruiting a new blood supply is a rate-limiting step in tumor progression. In a three-dimensional model of breast carcinogenesis, disorganized, proliferative transformed breast epithelial cells express significantly higher expression of angiogenic genes compared with their polarized, growth-arrested nonmalignant counterparts. Elevated vascular endothelial growth factor (VEGF) secretion by malignant cells enhanced recruitment of endothelial cells (EC) in heterotypic cocultures. Significantly, phenotypic reversion of malignant cells via reexpression of HoxD10, which is lost in malignant progression, significantly attenuated VEGF expression in a hypoxia-inducible factor 1{alpha}-independent fashion and reduced EC migration. This was due primarily to restoring polarity: forced proliferation of polarized, nonmalignant cells did not induce VEGF expression and EC recruitment, whereas disrupting the architecture of growth-arrested, reverted cells did. These data show that disrupting cytostructure activates the angiogenic switch even in the absence of proliferation and/or hypoxia and restoring organization of malignant clusters reduces VEGF expression and EC activation to levels found in quiescent nonmalignant epithelium. These data confirm the importance of tissue architecture and polarity in malignant progression.

  4. Tumor angiogenesis--a new therapeutic target in gliomas

    DEFF Research Database (Denmark)

    Lund, E L; Spang-Thomsen, M; Skovgaard-Poulsen, H

    1998-01-01

    significant angiogenic activity primarily by the expression of the angiogenic factor VEGF Anti-angiogenic therapy represents a new promising therapeutic modality in solid tumors. Several agents are currently under evaluation in clinical trials. The present review describes the principal inducers...

  5. Bone morphogenic protein 6 : a member of a novel class of prognostic factors expressed by normal and malignant plasma cells inhibiting proliferation and angiogenesis

    NARCIS (Netherlands)

    Seckinger, A.; Meissner, T.; Moreaux, J.; Goldschmidt, H.; Fuhler, G. M.; Benner, A.; Hundemer, M.; Reme, T.; Shaughnessy, J. D.; Barlogie, B.; Bertsch, U.; Hillengass, J.; Ho, A. D.; Pantesco, V.; Jauch, A.; De Vos, J.; Rossi, J. F.; Moehler, T.; Klein, B.; Hose, D.

    2009-01-01

    Pathogenesis of multiple myeloma is associated with an aberrant expression of pro-proliferative, pro-angiogenic and bone-metabolism-modifying factors by malignant plasma cells. Given the frequently long time span from diagnosis of early-stage plasma cell dyscrasias to overt myeloma and the mostly

  6. The anti-angiogenic effect of dexamethasone in a murine hepatocellular carcinoma model by augmentation of gluconeogenesis pathway in malignant cells.

    Science.gov (United States)

    Shang, Fei; Liu, Mingming; Li, Bingwei; Zhang, Xiaoyan; Sheng, Youming; Liu, Shuying; Han, Jianqun; Li, Hongwei; Xiu, Ruijuan

    2016-05-01

    Angiogenesis is a long-term complex process involving various protein factors in hepatocellular carcinoma (HCC). Dexamethasone (Dex), considered as a synthetic glucocorticoid drug in clinical therapy, has been reported to have the therapeutic efficacy against liver cancer by intervention of abnormal glycolysis. In this study, we investigated the anti-angiogenic effect of Dex in murine liver cancer and attempted to demonstrate the potential mechanism. The malignant cells H22 were treated with Dex. Western blotting was used to explore the expression of PEPCK and G6Pase which were the two key enzymes that regulated gluconeogenesis. The supernatants from cultured H22 treated by Dex were collected and co-cultured with HUVECs. In vitro, migration assay, transwell assay and tube formation assay were performed to assess for migration, proliferation and tube formation abilities of HUVECs, respectively. In situ murine hepatoma model with green fluorescent protein markers (HepG2-GFP) was constructed to determine angiogenesis after treatment by Dex. PEPCK and G6Pase were almost deficient in H22 compared with normal liver cells NCTC-1469 (P gluconeogenesis could be restored significantly (P gluconeogenesis pathway.

  7. Enhanced phosphoserine insertion during Escherichia coli protein synthesis via partial UAG codon reassignment and release factor 1 deletion

    Science.gov (United States)

    Heinemann, Ilka U.; Rovner, Alexis J.; Aerni, Hans R.; Rogulina, Svetlana; Cheng, Laura; Olds, William; Fischer, Jonathan T.; Söll, Dieter; Isaacs, Farren J.; Rinehart, Jesse

    2012-01-01

    Genetically encoded phosphoserine incorporation programmed by the UAG codon was achieved by addition of engineered elongation factor and an archaeal aminoacyl-tRNA synthetase to the normal Escherichia coli translation machinery (Park (2011) Science 333, 1151). However, protein yield suffers from expression of the orthogonal phosphoserine translation system and competition with release factor 1 (RF-1). In a strain lacking RF-1, phosphoserine phosphatase, and where 7 UAG codons residing in essential genes were converted to UAA, phosphoserine incorporation into GFP and WNK4 was significantly elevated, but with an accompanying loss in cellular fitness and viability. PMID:22982858

  8. Matrix metalloproteinase-10 promotes tumor progression through regulation of angiogenic and apoptotic pathways in cervical tumors

    International Nuclear Information System (INIS)

    Zhang, Ge; Miyake, Makito; Lawton, Adrienne; Goodison, Steve; Rosser, Charles J

    2014-01-01

    Cancer invasion and metastasis develops through a series of steps that involve the loss of cell to cell and cell to matrix adhesion, degradation of extracellular matrix and induction of angiogenesis. Different protease systems (e.g., matrix metalloproteinases, MMPs) are involved in these steps. MMP-10, one of the lesser studied MMPs, is limited to epithelial cells and can facilitate tumor cell invasion by targeting collagen, elastin and laminin. Enhanced MMP-10 expression has been linked to poor clinical prognosis in some cancers, however, mechanisms underlying a role for MMP-10 in tumorigenesis and progression remain largely unknown. Here, we report that MMP-10 expression is positively correlated with the invasiveness of human cervical and bladder cancers. Using commercial tissue microarray (TMA) of cervical and bladder tissues, MMP-10 immunohistochemical staining was performed. Furthermore using a panel of human cells (HeLa and UROtsa), in vitro and in vivo experiments were performed in which MMP-10 was overexpressed or silenced and we noted phenotypic and genotypic changes. Experimentally, we showed that MMP-10 can regulate tumor cell migration and invasion, and endothelial cell tube formation, and that MMP-10 effects are associated with a resistance to apoptosis. Further investigation revealed that increasing MMP-10 expression stimulates the expression of HIF-1α and MMP-2 (pro-angiogenic factors) and PAI-1 and CXCR2 (pro-metastatic factors), and accordingly, targeting MMP-10 with siRNA in vivo resulted in diminution of xenograft tumor growth with a concomitant reduction of angiogenesis and a stimulation of apoptosis. Taken together, our findings show that MMP-10 can play a significant role in tumor growth and progression, and that MMP-10 perturbation may represent a rational strategy for cancer treatment

  9. Formulation and Pharmacokinetic Evaluation of Controlled-Release ...

    African Journals Online (AJOL)

    The effect of several formulation variables on in ... The in vivo pharmacokinetics of the optimized formulation was compared ... Results: The core tablets exhibited extended release consisting of drug release from the embedded ... important factor in medical treatment with respect ... The solvents for high-performance liquid.

  10. Des-γ-Carboxy Prothrombin (DCP as a Potential Autologous Growth Factor for the Development of Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Yu-Sheng Zhang

    2014-08-01

    Full Text Available Des-γ-carboxy prothrombin (DCP is a prothrombin precursor produced in hepatocellular carcinoma (HCC. Because of deficiency of vitamin K or γ-glutamyl carboxylase in HCC cells, the 10 glutamic acid (Glu residues in prothrombin precursor did not completely carboxylate to γ-carboxylated glutamic acid (Gla residues, leaving some Glu residues remained in N-terminal domain. These prothrombin precursors with Glu residues are called DCPs. DCP displays insufficient coagulation activity. Since Liebman reported an elevated plasma DCP in patients with HCC, DCP has been used in the diagnosis of HCC. Recently, its biological malignant potential has been specified to describe DCP as an autologous growth factor to stimulate HCC growth and a paracrine factor to integrate HCC with vascular endothelial cells. DCP was found to stimulate HCC growth through activation of the DCP-Met-JAK1-STAT3 signaling pathway. DCP might increase HCC invasion and metastasis through activation of matrix metalloproteinase (MMPs and the ERK1/2 MAPK signaling pathway. DCP has also been found to play a crucial role in the formation of angiogenesis. DCP could increase the angiogenic factors released from HCC and vascular endothelial cells. These effects of DCP in angiogenesis might be related to activation of the DCP-KDR-PLC-γ-MAPK signaling pathway. In this article, we summarized recent studies on DCP in biological roles related to cancer progression and angiogenesis in HCC.

  11. Cancer Associated Fibroblasts and Tumor Growth: Focus on Multiple Myeloma

    International Nuclear Information System (INIS)

    De Veirman, Kim; Rao, Luigia; De Bruyne, Elke; Menu, Eline; Van Valckenborgh, Els; Van Riet, Ivan; Frassanito, Maria Antonia; Di Marzo, Lucia; Vacca, Angelo; Vanderkerken, Karin

    2014-01-01

    Cancer associated fibroblasts (CAFs) comprise a heterogeneous population that resides within the tumor microenvironment. They actively participate in tumor growth and metastasis by production of cytokines and chemokines, and the release of pro-inflammatory and pro-angiogenic factors, creating a more supportive microenvironment. The aim of the current review is to summarize the origin and characteristics of CAFs, and to describe the role of CAFs in tumor progression and metastasis. Furthermore, we focus on the presence of CAFs in hypoxic conditions in relation to multiple myeloma disease

  12. Cancer Associated Fibroblasts and Tumor Growth: Focus on Multiple Myeloma

    Energy Technology Data Exchange (ETDEWEB)

    De Veirman, Kim, E-mail: kdeveirm@vub.ac.be [Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels 1090 (Belgium); Rao, Luigia [Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels 1090 (Belgium); Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine, University of Bari Medical School, Bari I-70124 (Italy); De Bruyne, Elke; Menu, Eline; Van Valckenborgh, Els [Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels 1090 (Belgium); Van Riet, Ivan [Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels 1090 (Belgium); Stem Cell Laboratory, Division of Clinical Hematology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels 1090 (Belgium); Frassanito, Maria Antonia [Department of Biomedical Sciences and Human Oncology, Section of General Pathology, University of Bari Medical School, Bari I-70124 (Italy); Di Marzo, Lucia; Vacca, Angelo [Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine, University of Bari Medical School, Bari I-70124 (Italy); Vanderkerken, Karin, E-mail: kdeveirm@vub.ac.be [Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels 1090 (Belgium)

    2014-06-27

    Cancer associated fibroblasts (CAFs) comprise a heterogeneous population that resides within the tumor microenvironment. They actively participate in tumor growth and metastasis by production of cytokines and chemokines, and the release of pro-inflammatory and pro-angiogenic factors, creating a more supportive microenvironment. The aim of the current review is to summarize the origin and characteristics of CAFs, and to describe the role of CAFs in tumor progression and metastasis. Furthermore, we focus on the presence of CAFs in hypoxic conditions in relation to multiple myeloma disease.

  13. Clinical Importance of Angiogenic Cytokines, Fibrinolytic Activity and Effusion Size in Parapneumonic Effusions

    Science.gov (United States)

    Chung, Chi-Li; Hsiao, Shih-Hsin; Hsiao, George; Sheu, Joen-Rong; Chen, Wei-Lin; Chang, Shi-Chuan

    2013-01-01

    Objective To investigate the relationship among angiogenic cytokines, fibrinolytic activity and effusion size in parapneumonic effusion (PPE) and their clinical importance. Methods From January 2008 through December 2010, 26 uncomplicated (UPPE) and 38 complicated (CPPE) PPE were studied. Based on chest ultrasonography, there were non-loculated in 30, uni-loculated in 12, and multi-loculated effusions in 22 patients. The effusion size radiological scores, and effusion vascular endothelial growth factor (VEGF), interleukin (IL)-8, plasminogen activator inhibitor type-1 (PAI-1) and tissue type plasminogen activator (tPA) were measured on admission. Treatment outcome and pleural fibrosis, defined as radiological residual pleural thickening (RPT), were assessed at 6-month follow-up. Results The effusion size and effusion VEGF, IL-8 and PAI-1/tPA ratio were significantly higher in CPPE than in UPPE, and significantly higher in multi-loculated PPE than in non-locualted and uni-loculated PPE, respectively. VEGF (cutoff value 1975 pg/ml) and IL-8 (cutoff value 1937 pg/ml) seemed best to discriminate between UPPE and CPPE. VEGF, IL-8 and effusion size correlated positively with PAI-1/tPA ratio in both UPPE and CPPE. Moreover, the level of VEGF, but not IL-8, correlated positively with effusion size in all patients (r = 0.79, peffusion were prone to have medical treatment failure (n = 10; VEGF, odds ratio 1.01, p = 0.02; effusion size, odds ratio 1.26, p = 0.01). Additionally, ten patients with RPT had larger effusion size and higher levels of VEGF and PAI-1/tPA ratio than did those without. Conclusions In PPE, VEGF and IL-8 levels are valuable to identify CPPE, and higher VEGF level or larger effusion is associated with decreased fibrinolytic activity, development of pleural loculation and fibrosis, and higher risk of medical treatment failure. PMID:23308155

  14. Exercise induced capillary growth in human skeletal muscle and the dynamics of VEGF

    DEFF Research Database (Denmark)

    Høier, Birgitte; Hellsten, Ylva

    2014-01-01

    , such as shear stress and passive stretch, lead to cellular signalling, enhanced expression of angiogenic factors and initiation of capillary growth. The most central angiogenic factor in skeletal muscle capillary growth is vascular endothelial growth factor (VEGF). During muscle contraction, VEGF increases...... in the muscle interstitium, acts on VEGF receptors on the capillary endothelium and thereby stimulates angiogenic processes. A primary source of muscle interstitial VEGF during exercise is the skeletal muscle fibers which contain large stores of VEGF within vesicles. We propose that, during muscle activity...

  15. The Pseudo signal peptide of the corticotropin-releasing factor receptor type 2A prevents receptor oligomerization.

    Science.gov (United States)

    Teichmann, Anke; Rutz, Claudia; Kreuchwig, Annika; Krause, Gerd; Wiesner, Burkhard; Schülein, Ralf

    2012-08-03

    N-terminal signal peptides mediate the interaction of native proteins with the translocon complex of the endoplasmic reticulum membrane and are cleaved off during early protein biogenesis. The corticotropin-releasing factor receptor type 2a (CRF(2(a))R) possesses an N-terminal pseudo signal peptide, which represents a so far unique domain within the large protein family of G protein-coupled receptors (GPCRs). In contrast to a conventional signal peptide, the pseudo signal peptide remains uncleaved and consequently forms a hydrophobic extension at the N terminus of the receptor. The functional consequence of the presence of the pseudo signal peptide is not understood. Here, we have analyzed the significance of this domain for receptor dimerization/oligomerization in detail. To this end, we took the CRF(2(a))R and the homologous corticotropin-releasing factor receptor type 1 (CRF(1)R) possessing a conventional cleaved signal peptide and conducted signal peptide exchange experiments. Using single cell and single molecule imaging methods (fluorescence resonance energy transfer and fluorescence cross-correlation spectroscopy, respectively) as well as biochemical experiments, we obtained two novel findings; we could show that (i) the CRF(2(a))R is expressed exclusively as a monomer, and (ii) the presence of the pseudo signal peptide prevents its oligomerization. Thus, we have identified a novel functional domain within the GPCR protein family, which plays a role in receptor oligomerization and which may be useful to study the functional significance of this process in general.

  16. Mechanisms of Endothelial Dysfunction in Hypertensive Pregnancy and Preeclampsia

    Science.gov (United States)

    Possomato-Vieira, José S.; Khalil, Raouf A.

    2016-01-01

    Preeclampsia is a pregnancy-related disorder characterized by hypertension, and could lead to maternal and fetal morbidity and mortality. Although the causative factors and pathophysiological mechanisms are unclear, endothelial dysfunction is a major hallmark of preeclampsia. Clinical tests and experimental research have suggested that generalized endotheliosis in the systemic, renal, cerebral and hepatic circulation could decrease endothelium-derived vasodilators such as nitric oxide, prostacyclin and hyperpolarization factor and increase vasoconstrictors such as endothelin-1 and thromboxane A2, leading to increased vasoconstriction, hypertension and other manifestation of preeclampsia. In search for the upstream mechanisms that could cause endothelial dysfunction, certain genetic, demographic and environmental risk factors have been suggested to cause abnormal expression of uteroplacental integrins, cytokines and matrix metalloproteinases, leading to decreased maternal tolerance, apoptosis of invasive trophoblast cells, inadequate spiral arteries remodeling, reduced uterine perfusion pressure (RUPP), and placental ischemia/hypoxia. RUPP may cause imbalance between the anti-angiogenic factors soluble fms-like tyrosine kinase-1 and soluble endoglin and the pro-angiogenic factors vascular endothelial growth factor and placental growth factor, or stimulate the release of other circulating bioactive factors such as inflammatory cytokines, hypoxia-inducible factor-1, reactive oxygen species, and angiotensin AT1 receptor agonistic autoantibodies. These circulating factors could then target endothelial cells and cause generalized endothelial dysfunction. Therapeutic options are currently limited, but understanding the factors involved in endothelial dysfunction could help design new approaches for prediction and management of preeclampsia. PMID:27451103

  17. FACTORS AFFECTING THE RELEASE RATE OF A HIGHLY SOLUBLE DRUG FROM A PROGRAMMED RELEASE MEGALOPOROUS SYSTEM

    NARCIS (Netherlands)

    VANDERVEEN, C; MENGER, NR; LERK, CF

    The present study reports on the successful incorporation of a highly soluble drug, procaine HCl, in a programmed-release megaloporous system. This solid two-phase system is composed of housing phase matrix granules (HMG), controlling liquid penetration into the system, and of restraining phase

  18. Different Effects of Human Umbilical Cord Mesenchymal Stem Cells on Glioblastoma Stem Cells by Direct Cell Interaction or Via Released Soluble Factors

    Directory of Open Access Journals (Sweden)

    Adriana Bajetto

    2017-10-01

    Full Text Available Glioblastoma (GBM, the most common primary brain tumor in adults, is an aggressive, fast-growing and highly vascularized tumor, characterized by extensive invasiveness and local recurrence. In GBM and other malignancies, cancer stem cells (CSCs are believed to drive invasive tumor growth and recurrence, being responsible for radio- and chemo-therapy resistance. Mesenchymal stem cells (MSCs are multipotent progenitors that exhibit tropism for tumor microenvironment mediated by cytokines, chemokines and growth factors. Initial studies proposed that MSCs might exert inhibitory effects on tumor development, although, to date, contrasting evidence has been provided. Different studies reported either MSC anti-tumor activity or their support to tumor growth. Here, we examined the effects of umbilical cord (UC-MSCs on in vitro GBM-derived CSC growth, by direct cell-to-cell interaction or indirect modulation, via the release of soluble factors. We demonstrate that UC-MSCs and CSCs exhibit reciprocal tropism when co-cultured as 3D spheroids and their direct cell interaction reduces the proliferation of both cell types. Contrasting effects were obtained by UC-MSC released factors: CSCs, cultured in the presence of conditioned medium (CM collected from UC-MSCs, increased proliferation rate through transient ERK1/2 and Akt phosphorylation/activation. Analysis of the profile of the cytokines released by UC-MSCs in the CM revealed a strong production of molecules involved in inflammation, angiogenesis, cell migration and proliferation, such as IL-8, GRO, ENA-78 and IL-6. Since CXC chemokine receptor 2 (CXCR2, a receptor shared by several of these ligands, is expressed in GBM CSCs, we evaluated its involvement in CSC proliferation induced by UC-MSC-CM. Using the CXCR2 antagonist SB225002, we observed a partial but statistically significant inhibition of CSC proliferation and migration induced by the UC-MSC-released cytokines. Conversely, CXCR2 blockade did not

  19. Different Effects of Human Umbilical Cord Mesenchymal Stem Cells on Glioblastoma Stem Cells by Direct Cell Interaction or Via Released Soluble Factors

    Science.gov (United States)

    Bajetto, Adriana; Pattarozzi, Alessandra; Corsaro, Alessandro; Barbieri, Federica; Daga, Antonio; Bosio, Alessia; Gatti, Monica; Pisaturo, Valerio; Sirito, Rodolfo; Florio, Tullio

    2017-01-01

    Glioblastoma (GBM), the most common primary brain tumor in adults, is an aggressive, fast-growing and highly vascularized tumor, characterized by extensive invasiveness and local recurrence. In GBM and other malignancies, cancer stem cells (CSCs) are believed to drive invasive tumor growth and recurrence, being responsible for radio- and chemo-therapy resistance. Mesenchymal stem cells (MSCs) are multipotent progenitors that exhibit tropism for tumor microenvironment mediated by cytokines, chemokines and growth factors. Initial studies proposed that MSCs might exert inhibitory effects on tumor development, although, to date, contrasting evidence has been provided. Different studies reported either MSC anti-tumor activity or their support to tumor growth. Here, we examined the effects of umbilical cord (UC)-MSCs on in vitro GBM-derived CSC growth, by direct cell-to-cell interaction or indirect modulation, via the release of soluble factors. We demonstrate that UC-MSCs and CSCs exhibit reciprocal tropism when co-cultured as 3D spheroids and their direct cell interaction reduces the proliferation of both cell types. Contrasting effects were obtained by UC-MSC released factors: CSCs, cultured in the presence of conditioned medium (CM) collected from UC-MSCs, increased proliferation rate through transient ERK1/2 and Akt phosphorylation/activation. Analysis of the profile of the cytokines released by UC-MSCs in the CM revealed a strong production of molecules involved in inflammation, angiogenesis, cell migration and proliferation, such as IL-8, GRO, ENA-78 and IL-6. Since CXC chemokine receptor 2 (CXCR2), a receptor shared by several of these ligands, is expressed in GBM CSCs, we evaluated its involvement in CSC proliferation induced by UC-MSC-CM. Using the CXCR2 antagonist SB225002, we observed a partial but statistically significant inhibition of CSC proliferation and migration induced by the UC-MSC-released cytokines. Conversely, CXCR2 blockade did not reduce the

  20. Release fraction of PWR after severe accidents. Vol. 4

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, M; El-Messeiry, A M [National Center for Nuclear Safety and Radiation Control, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    Fission fragments and gases are emitted after accidents as a result of core meltdown and core concrete interactions. These aerosols are transported and fill the reactor containment. With increasing the pressure above pressure design bases, a failure of containment may occur and subsequently these aerosols will release into the external environment leading to a source term of radioactivity that affects the safety of workers and public. The amount of aerosol which escapes to the environment can be described by the release fraction which is defined as the total accumulated aerosol which initially enters the containment. The factors that affect the release fraction is studied, and the aerosol dynamics equation is used to model the release of aerosol to the outside atmosphere. These factors are containment pressure, failure time,break area, the size of aerosol particle. It found that early failure time and higher pressure increase the release fraction, also the release faction is affected by the area and the aerosol particle size. 7 figs., 2 tabs.

  1. Release fraction of PWR after severe accidents. Vol. 4

    International Nuclear Information System (INIS)

    Aziz, M.; El-Messeiry, A.M.

    1996-01-01

    Fission fragments and gases are emitted after accidents as a result of core meltdown and core concrete interactions. These aerosols are transported and fill the reactor containment. With increasing the pressure above pressure design bases, a failure of containment may occur and subsequently these aerosols will release into the external environment leading to a source term of radioactivity that affects the safety of workers and public. The amount of aerosol which escapes to the environment can be described by the release fraction which is defined as the total accumulated aerosol which initially enters the containment. The factors that affect the release fraction is studied, and the aerosol dynamics equation is used to model the release of aerosol to the outside atmosphere. These factors are containment pressure, failure time,break area, the size of aerosol particle. It found that early failure time and higher pressure increase the release fraction, also the release faction is affected by the area and the aerosol particle size. 7 figs., 2 tabs

  2. Guidance for Evaluating the Safety of Experimental Releases of Mosquitoes, Emphasizing Mark-Release-Recapture Techniques.

    Science.gov (United States)

    Benedict, Mark Q; Charlwood, J Derek; Harrington, Laura C; Lounibos, L Philip; Reisen, William K; Tabachnick, Walter J

    2018-01-01

    Experimental releases of mosquitoes are performed to understand characteristics of populations related to the biology, ability to transmit pathogens, and ultimately their control. In this article, we discuss considerations related to the safety of experimental releases of living mosquitoes, applying principles of good practice in vector biology that protect human health and comfort. We describe specific factors of experimental releases of mosquitoes that we believe are critical to inform institutional biosafety committees and similar review boards to which proposals to conduct mosquito release experiments have been submitted. In this study, "experimental releases" means those that do not significantly increase vector capacity or nuisance biting relative to the unperturbed natural baseline. This document specifically does not address releases of mosquitoes for ongoing control programs or trials of new control methods for which broader assessments of risk are required. It also does not address releases of transgenic or exotic (non-native) mosquito species, both of which require particular regulatory approval. Experimental releases may include females and males and evaluation must consider their effects based on the number released, their genotype and phenotype, the environment into which they are released, and postrelease collection activities. We consider whether increases of disease transmission and nuisance biting might result from proposed experimental releases against the backdrop of natural population size variation. We recommend that experimental releases be conducted in a manner that can be reasonably argued to have insignificant negative effects. Reviewers of proposals for experimental releases should expect applicants to provide such an argument based on evidence from similar studies and their planned activities. This document provides guidance for creating and evaluating such proposals.

  3. The major surface glycoprotein of Pneumocystis carinii induces release and gene expression of interleukin-8 and tumor necrosis factor alpha in monocytes

    DEFF Research Database (Denmark)

    Benfield, T L; Lundgren, Bettina; Levine, S J

    1997-01-01

    Recent studies suggest that interleukin-8 (IL-8) and tumor necrosis factor alpha (TNF-alpha) may play a central role in host defense and pathogenesis during Pneumocystis carinii pneumonia. In order to investigate whether the major surface antigen (MSG) of human P. carinii is capable of eliciting...... the release of IL-8 and TNF-alpha, human monocytes were cultured in the presence of purified MSG. MSG-stimulated cells released significant amounts of IL-8 within 4 h, and at 20 h, cells stimulated with MSG released 45.5 +/- 9.3 ng of IL-8/ml versus 3.7 +/- 1.1 ng/ml for control cultures (P = 0.......01). In a similar fashion, MSG elicited release of TNF-alpha. Initial increases were also seen at 4 h, and at 20 h, TNF-alpha levels reached 6.4 +/- 1.1 ng/ml, compared to 0.08 +/- 0.01 ng/ml for control cultures (P alpha secretion was observed at 20 h...

  4. Executive Order 12898 and Social, Economic, and Sociopolitical Factors Influencing Toxic Release Inventory Facility Location in EPA Region 6: A Multi-Scale Spatial Assessment of Environmental Justice

    Science.gov (United States)

    Moore, Andrea Lisa

    2013-01-01

    Toxic Release Inventory facilities are among the many environmental hazards shown to create environmental inequities in the United States. This project examined four factors associated with Toxic Release Inventory, specifically, manufacturing facility location at multiple spatial scales using spatial analysis techniques (i.e., O-ring statistic and…

  5. Stress, sex, and addiction: potential roles of corticotropin-releasing factor, oxytocin, and arginine-vasopressin.

    Science.gov (United States)

    Bisagno, Verónica; Cadet, Jean Lud

    2014-09-01

    Stress sensitivity and sex are predictive factors for the development of neuropsychiatric disorders. Life stresses are not only risk factors for the development of addiction but also are triggers for relapse to drug use. Therefore, it is imperative to elucidate the molecular mechanisms underlying the interactions between stress and drug abuse, as an understanding of this may help in the development of novel and more effective therapeutic approaches to block the clinical manifestations of drug addiction. The development and clinical course of addiction-related disorders do appear to involve neuroadaptations within neurocircuitries that modulate stress responses and are influenced by several neuropeptides. These include corticotropin-releasing factor, the prototypic member of this class, as well as oxytocin and arginine-vasopressin that play important roles in affiliative behaviors. Interestingly, these peptides function to balance emotional behavior, with sexual dimorphism in the oxytocin/arginine-vasopressin systems, a fact that might play an important role in the differential responses of women and men to stressful stimuli and the specific sex-based prevalence of certain addictive disorders. Thus, this review aims to summarize (i) the contribution of sex differences to the function of dopamine systems, and (ii) the behavioral, neurochemical, and anatomical changes in brain stress systems.

  6. GHRELIN ACTIVATES HYPOPHYSIOTROPIC CORTICOTROPIN-RELEASING FACTOR NEURONS INDEPENDENTLY OF THE ARCUATE NUCLEUS

    Science.gov (United States)

    Cabral, Agustina; Portiansky, Enrique; Sánchez-Jaramillo, Edith; Zigman, Jeffrey M.; Perello, Mario

    2016-01-01

    Previous work has established that the hormone ghrelin engages the hypothalamic-pituitary-adrenal neuroendocrine axis via activation of corticotropin-releasing factor (CRF) neurons of the hypothalamic paraventricular nucleus (PVN). The neuronal circuitry that mediates this effect of ghrelin is currently unknown. Here, we show that ghrelin-induced activation of PVN CRF neurons involved inhibition of γ-aminobutyric acid (GABA) inputs, likely via ghrelin binding sites that were localized at GABAergic terminals within the PVN. While ghrelin activated PVN CRF neurons in the presence of neuropeptide Y (NPY) receptor antagonists or in arcuate nucleus (ARC)-ablated mice, it failed to do it so in mice with ghrelin receptor expression limited to ARC agouti gene related protein (AgRP)/NPY neurons. These data support the notion that ghrelin activates PVN CRF neurons via inhibition of local GABAergic tone, in an ARC-independent manner. Furthermore, these data suggest that the neuronal circuits mediating ghrelin’s orexigenic action vs. its role as a stress signal are anatomically dissociated. PMID:26874559

  7. Protection of pigs against challenge with virulent Streptococcus suis serotype 2 strains by a muramidase-released protein and extracellular factor vaccine

    NARCIS (Netherlands)

    Wisselink, H.J.; Vecht, U.; Stockhofe Zurwieden, N.; Smith, H.E.

    2001-01-01

    The efficacy of a muramidase-released protein (MRP) and extracellular factor (EF) vaccine in preventing infection and disease in pigs challenged either with a homologous or a heterologous Streptococcus suis serotype 2 strain (MRP EF ) was compared with the efficacy of a vaccine containing

  8. A biomimetic collagen derived peptide exhibits anti-angiogenic activity in triple negative breast cancer.

    Directory of Open Access Journals (Sweden)

    Elena V Rosca

    Full Text Available We investigated the application of a mimetic 20 amino acid peptide derived from type IV collagen for treatment of breast cancer. We showed that the peptide induced a decrease of proliferation, adhesion, and migration of endothelial and tumor cells in vitro. We also observed an inhibition of triple negative MDA-MB-231 xenograft growth by 75% relative to control when administered intraperitoneally for 27 days at 10 mg/kg. We monitored in vivo the changes in vascular properties throughout the treatment using MRI and found that the vascular volume and permeability surface area product decreased significantly. The treatment also resulted in an increase of caspase-3 activity and in a reduction of microvascular density. The multiple mode of action of this peptide, i.e., anti-angiogenic, and anti-tumorigenic, makes it a viable candidate as a therapeutic agent as a monotherapy or in combination with other compounds.

  9. Ecological release in lizard assemblages of neotropical savannas.

    Science.gov (United States)

    Mesquita, Daniel Oliveira; Colli, Guarino Rinaldi; Vitt, Laurie J

    2007-08-01

    We compare lizard assemblages of Cerrado and Amazonian savannas to test the ecological release hypothesis, which predicts that niche dimensions and abundance should be greater in species inhabiting isolated habitat patches with low species richness (Amazonian savannas and isolated Cerrado patches) when compared with nonisolated areas in central Cerrado with greater species richness. We calculated microhabitat and diet niche breadths with data from 14 isolated Cerrado patches and Amazon savanna areas and six central Cerrado populations. Morphological data were compared using average Euclidean distances, and lizard abundance was estimated using the number of lizards captured in pitfall traps over an extended time period. We found no evidence of ecological release with respect to microhabitat use, suggesting that historical factors are better microhabitat predictors than ecological factors. However, data from individual stomachs indicate that ecological release occurs in these areas for one species (Tropidurus) but not others (Ameiva ameiva, Anolis, Cnemidophorus, and Micrablepharus), suggesting that evolutionary lineages respond differently to environmental pressures, with tropidurids being more affected by ecological factors than polychrotids, teiids, and gymnophthalmids. We found no evidence that ecological release occurs in these areas using morphological data. Based on abundance data, our results indicate that the ecological release (density compensation) hypothesis is not supported: lizard species are not more abundant in isolated areas than in nonisolated areas. The ecology of species is highly conservative, varying little from assemblage to assemblage. Nevertheless, increases in niche breadth for some species indicate that ecological release occurs as well.

  10. Functional Impact of Corticotropin-Releasing Factor Exposure on Tau Phosphorylation and Axon Transport.

    Directory of Open Access Journals (Sweden)

    Michelle H Le

    Full Text Available Stress exposure or increased levels of corticotropin-releasing factor (CRF induce hippocampal tau phosphorylation (tau-P in rodent models, a process that is dependent on the type-1 CRF receptor (CRFR1. Although these preclinical studies on stress-induced tau-P provide mechanistic insight for epidemiological work that identifies stress as a risk factor for Alzheimer's disease (AD, the actual impact of stress-induced tau-P on neuronal function remains unclear. To determine the functional consequences of stress-induced tau-P, we developed a novel mouse neuronal cell culture system to explore the impact of acute (0.5hr and chronic (2hr CRF treatment on tau-P and integral cell processes such as axon transport. Consistent with in vivo reports, we found that chronic CRF treatment increased tau-P levels and caused globular accumulations of phosphorylated tau in dendritic and axonal processes. Furthermore, while both acute and chronic CRF treatment led to significant reduction in CREB activation and axon transport of brain-derived neurotrophic factor (BDNF, this was not the case with mitochondrial transport. Acute CRF treatment caused increased mitochondrial velocity and distance traveled in neurons, while chronic CRF treatment modestly decreased mitochondrial velocity and greatly increased distance traveled. These results suggest that transport of cellular energetics may take priority over growth factors during stress. Tau-P was required for these changes, as co-treatment of CRF with a GSK kinase inhibitor prevented CRF-induced tau-P and all axon transport changes. Collectively, our results provide mechanistic insight into the consequences of stress peptide-induced tau-P and provide an explanation for how chronic stress via CRF may lead to neuronal vulnerability in AD.

  11. Exploring the role of CHI3L1 in pre-metastatic lungs of mammary tumor-bearing mice

    Directory of Open Access Journals (Sweden)

    Stephania eLibreros

    2013-12-01

    Full Text Available Elevated levels of chitinase-3-like-1 (CHI3L1 are associated with poor prognosis, shorter recurrence-free intervals and low survival in breast cancer patients. Breast cancer often metastasizes to the lung. We hypothesized that molecules expressed in the pre-metastatic lung microenvironment could support the newly immigrant tumor cells by providing growth and angiogenic factors. Macrophages are known to play an important role in tumor growth by releasing pro-angiogenic molecules. Using mouse mammary tumor models, we have previously shown that during neoplastic progression both the mammary tumor cells and splenic macrophages from tumor-bearing mice express higher levels of CHI3L1 compared to normal control mice. However, the role of CHI3L1 in inducing angiogenesis by macrophages at the pulmonary microenvironment to support newly arriving breast cancer cells is not yet known. In this study, we determined the expression of CHI3L1 in bronchoalveolar lavage macrophages and interstitial macrophages in regulating angiogenesis that could support the growth of newly immigrant mammary tumor cells into the lung. Here we show that in vitro treatment of pulmonary macrophages with recombinant murine CHI3L1 resulted in enhanced expression of pro-angiogenic molecules including CCL2, CXCL2 and MMP-9. We and others have previously shown that inhibition of CHI3L1 decreases the production of angiogenic molecules. In this study, we explored if in vivo administration of chitin microparticles has an effect on the expression of CHI3L1 and pro-angiogenic molecules in the lungs of mammary tumor-bearing mice. We show that treatment with chitin microparticles decreases the expression of CHI3L1 and pro-angiogenic molecules in the metastatic lung. These studies suggest that targeting CHI3L1 may serve as a potential therapeutic agent to inhibit angiogenesis and thus possibly tumor growth and metastasis.

  12. Incorporation of osteogenic and angiogenic small interfering RNAs into chitosan sponge for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Jia S

    2014-11-01

    Full Text Available Sen Jia,1,* Xinjie Yang,1,* Wen Song,2,* Lei Wang,1 Kaixiu Fang,3 Zhiqiang Hu,1,4 Zihui Yang,1 Chun Shan,1 Delin Lei,1 Bin Lu1 1Department of Oral and Maxillofacial Surgery, 2Department of Prosthetic Dentistry, 3Department of Implant Dentistry, School of Stomatology, State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi’an People’s Republic of China; 4Department of Otorhinolaryngology, No 113 Hospital of People’s Liberation Army, Ningbo, People’s Republic of China *These authors contributed to this paper equally and are considered to be joint first authors Abstract: Engineered bone substitutes are being extensively explored in response to growing demand. However, the angiogenesis that occurs during bone formation is often overlooked in scaffold design. In this novel study, we incorporated two small interfering RNAs (siRNAs, ie, small interfering RNA targets casein kinase 2 interaction protein 1 (siCkip-1 and small interfering RNA targets soluble VEGF receptor 1 (siFlt-1, which can promote osteogenesis and angiogenesis, into a chitosan sponge. This scaffold could maintain siRNAs for over 2 weeks in neutral phosphate-buffered saline and degraded rapidly in the presence of lysozyme. The chitosan sponge with siCkip-1 and siFlt-1 in vitro bioactivity was investigated using mesenchymal stem cells. Target genes were significantly suppressed, and osteocalcin, alkaline phosphatase, and vascular endothelial growth factor were significantly upregulated. Alizarin Red staining revealed that mineralization of the extracellular matrix was markedly enhanced by dual transfection. Further analysis by immunofluorescence confirmed that the siRNA-modified scaffold simultaneously improved the expression of osteocalcin and von Willebrand factor. In vivo testing in a skull critical-size defect model showed marked bone regeneration in rats treated with siCkip-1 and siFlt-1. In conclusion, chitosan sponge containing osteogenic and

  13. Expressions of pathologic markers in PRP based chondrogenic differentiation of human adipose derived stem cells.

    Science.gov (United States)

    Pakfar, Arezou; Irani, Shiva; Hanaee-Ahvaz, Hana

    2017-02-01

    Optimization of the differentiation medium through using autologous factors such as PRP is of great consideration, but due to the complex, variable and undefined composition of PRP on one hand and lack of control over the absolute regulatory mechanisms in in vitro conditions or disrupted and different mechanisms in diseased tissue microenvironments in in vivo conditions on the other hand, it is complicated and rather unpredictable to get the desired effects of PRP making it inevitable to monitor the possible pathologic or undesired differentiation pathways and therapeutic effects of PRP. Therefore, in this study the probable potential of PRP on inducing calcification, inflammation and angiogenesis in chondrogenically-differentiated cells was investigated. The expressions of chondrogenic, inflammatory, osteogenic and angiogenic markers from TGFβ or PRP-treated cells during chondrogenic differentiation of human adipose-derived stem cells (ADSCs) was evaluated. Expressions of Collagen II (Col II), Aggrecan, Sox9 and Runx2 were quantified using q-RT PCR. Expression of Col II and X was investigated by immunocytochemistry as well. Glycosaminoglycans (GAGs) production was also determined by GAG assay. Possible angiogenic/inflammatory potential was determined by quantitatively measuring the secreted VEGF, TNFα and phosphorylated VEGFR2 via ELISA. In addition, the calcification of the construct was monitored by measuring ALP activity and calcium deposition. Our data showed that PRP positively induced chondrogenesis; meanwhile the secretion of angiogenic and inflammatory markers was decreased. VEGFR2 phosphorylation and ALP activity had a decreasing trend, but tissue mineralization was enhanced upon treating with PRP. Although reduction in inflammatory/angiogenic potential of the chondrogenically differentiated constructs highlights the superior effectiveness of PRP in comparison to TGFβ for chondrogenic differentiation, yet further improvement of the PRP

  14. 28 CFR 541.50 - Release from a control unit.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Release from a control unit. 541.50... INMATE DISCIPLINE AND SPECIAL HOUSING UNITS Control Unit Programs § 541.50 Release from a control unit. (a) Only the Executive Panel may release an inmate from a control unit. The following factors are...

  15. PCDD/PCDF release inventories

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, H. [UNEP Chemicals, Chatelaine (Switzerland)

    2004-09-15

    The Stockholm Convention on Persistent Organic Pollutants (POPs) entered into force on 17 May 2004 with 50 Parties. In May 2004, 59 countries had ratified or acceded the Convention. The objective of the Convention is ''to protect human health and the environment from persistent organic pollutants''. For intentionally produced POPs, e.g., pesticides and industrial chemicals such as hexachlorobenzene and polychlorinated biphenyls, this will be achieved by stop of production and use. For unintentionally generated POPs, such as polychlorinated dibenzo-pdioxins (PCDD) and polychlorinated dibenzofurans (PCDF), measures have to be taken to ''reduce the total releases derived from anthropogenic sources''; the final goal is ultimate elimination, where feasible. Under the Convention, Parties have to establish and maintain release inventories to prove the continuous release reduction. Since many countries do not have the technical and financial capacity to measure all releases from all potential PCDD/PCDF sources, UNEP Chemicals has developed the ''Standardized Toolkit for the Identification of Quantification of Dioxin and Furan Releases'' (''Toolkit'' for short), a methodology to estimate annual releases from a number of sources. With this methodology, annual releases can be estimated by multiplying process-specific default emission factors provided in the Toolkit with national activity data. At the seventh session of the Intergovernmental Negotiating Committee, the Toolkit was recommended to be used by countries when reporting national release data to the Conference of the Parties. The Toolkit is especially used by developing countries and countries with economies in transition where no measured data are available. Results from Uruguay, Thailand, Jordan, Philippines, and Brunei Darussalam have been published.

  16. Enhancement of wound closure by modifying dual release patterns of stromal-derived cell factor-1 and a macrophage recruitment agent from gelatin hydrogels.

    Science.gov (United States)

    Kim, Yang-Hee; Tabata, Yasuhiko

    2017-11-01

    The objective of the present study is to evaluate the effects of the release patterns of stromal derived factor (SDF)-1 and sphingosine-1 phosphate agonist (SEW2871), used as MSC and macrophage recruitment agents, on the wound closure of diabetic mouse skin defects. To achieve different release patterns, hydrogels were prepared using two types of gelatin with isoelectric points (IEP) of 5 and 9, into which SDF-1 and SEW2871 were then incorporated in various combinations. When the hydrogels incorporating SDF-1 and SEW2871 were applied into wound defects of diabetic mice, the number of MSCs and macrophages recruited to the defects and the levels of pro- and anti- inflammatory cytokines were found to be dependent on the release profiles of SDF-1 and SEW2871. Of particular interest was the case of a rapid release of SDF-1 combined with a controlled release of SEW2871. This resulted in a higher number of M2 macrophages and gene expression levels of anti-inflammatory cytokines 3 days after implantation and faster wound closure than when pairing the controlled release of SDF-1 with a rapid release of SEW2871. Therefore, the present study demonstrates that different release patterns of SDF-1 and SEW2871 can enhance the in vivo recruitment of MSCs and macrophages, and can promote skin wound closure through the modulation of inflammation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Controlled release of biofunctional substances by radiation-induced polymerization

    International Nuclear Information System (INIS)

    Yoshida, M.; Kumakura, M.; Kaetsu, I.

    1978-01-01

    The release behaviour of a drug from flat circular capsules obtained by radiation-induced polymerization at low temperatures and with different hydrophilic properties has been studied. The effect of various factors on release property was investigated. The release process could be divided into three parts, an initial quick release stage, stationary state release stage and a retarded release stage. Release behaviour in the stationary state was examined using Noyes-Whitney and Higuchi equations. It was shown that the hydrophilic property of polymer matrix expressed by water content was the most important effect on diffusion and release rate. Rigidity of the polymer may also affect diffusivity. The first quick release step could be attributed to rapid dissolution of drug in the matrix surface due to polymer swelling. (author)

  18. Platelet-released growth factors inhibit proliferation of primary keratinocytes in vitro.

    Science.gov (United States)

    Bayer, Andreas; Tohidnezhad, Mersedeh; Berndt, Rouven; Lippross, Sebastian; Behrendt, Peter; Klüter, Tim; Pufe, Thomas; Jahr, Holger; Cremer, Jochen; Rademacher, Franziska; Simanski, Maren; Gläser, Regine; Harder, Jürgen

    2018-01-01

    Autologous thrombocyte concentrate lysates as platelet-released growth factors (PRGF) or Vivostat Platelet Rich Fibrin (PRF ® ) represent important tools in modern wound therapy, especially in the treatment of chronic, hard-to-heal or infected wounds. Nevertheless, underlying cellular and molecular mechanisms of the beneficial clinical effects of a local wound therapy with autologous thrombocyte concentrate lysates are poorly understood. Recently, we have demonstrated that PRGF induces antimicrobial peptides in primary keratinocytes and accelerates keratinocytes' differentiation. In the present study we analyzed the influence of PRGF on primary human keratinocytes' proliferation. Using the molecular proliferation marker Ki-67 we observed a concentration- and time dependent inhibition of Ki-67 gene expression in PRGF treated primary keratinocytes. These effects were independent from the EGFR- and the IL-6-R pathway. Inhibition of primary keratinocytes' proliferation by PRGF treatment was confirmed in colorimetric cell proliferation assays. Together, these data indicate that the clinically observed positive effects of autologous thrombocytes concentrates in the treatment of chronic, hard-to-heal wounds are not based on an increased keratinocytes proliferation. Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. Morpholino-Mediated Isoform Modulation of Vascular Endothelial Growth Factor Receptor-2 (VEGFR2) Reduces Colon Cancer Xenograft Growth

    Energy Technology Data Exchange (ETDEWEB)

    Stagg, Brian C., E-mail: briancstagg@gmail.com; Uehara, Hironori; Lambert, Nathan; Rai, Ruju; Gupta, Isha; Radmall, Bryce; Bates, Taylor; Ambati, Balamurali K. [John A Moran Eye Center, University of Utah, Salt Lake City, UT, 65 Mario Capecchi Drive, Salt Lake City, UT 84132 (United States)

    2014-11-26

    Angiogenesis plays a key role in tumor growth. Vascular endothelial growth factor (VEGF) is a pro-angiogenic that is involved in tumor angiogenesis. When VEGF binds to membrane-bound vascular endothelial growth factor receptor 2 (mVEGFR2), it promotes angiogenesis. Through alternative polyadenylation, VEGFR2 is also expressed in a soluble form (sVEGFR2). sVEGFR2 sequesters VEGF and is therefore anti-angiogenic. The aim of this study was to show that treatment with a previously developed and reported antisense morpholino oligomer that shifts expression from mVEGFR2 to sVEGFR2 would lead to reduced tumor vascularization and growth in a murine colon cancer xenograft model. Xenografts were generated by implanting human HCT-116 colon cancer cells into the flanks of NMRI nu/nu mice. Treatment with the therapeutic morpholino reduced both tumor growth and tumor vascularization. Because the HCT-116 cells used for the experiments did not express VEGFR2 and because the treatment morpholino targeted mouse rather than human VEGFR2, it is likely that treatment morpholino was acting on the mouse endothelial cells rather than directly on the tumor cells.

  20. Mitotic and antiapoptotic effects of nanoparticles coencapsulating human VEGF and human angiopoietin-1 on vascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Khan AA

    2011-05-01

    Full Text Available Afshan Afsar Khan, Arghya Paul, Sana Abbasi, Satya PrakashBiomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering Faculty of Medicine, McGill University Montreal, Québec, CanadaBackground: Research towards the application of nanoparticles as carrier vehicles for the delivery of therapeutic agents is increasingly gaining importance. The angiogenic growth factors, human vascular endothelial growth factor (VEGF and human angiopoietin-1 are known to prevent vascular endothelial cell apoptosis and in fact to stimulate human vascular endothelial cell (HUVEC proliferation. This paper aims to study the combined effect of these bioactive proteins coencapsulated in human serum albumin nanoparticles on HUVECs and to evaluate the potential application of this delivery system towards therapeutic angiogenesis.Methods and results: The angiogenic proteins, human VEGF and human angiopoietin-1, were coencapsulated in albumin nanoparticles for better controlled delivery of the proteins. The application of a nanoparticle system enabled efficient and extended-release kinetics of the proteins. The size of the nanoparticles crosslinked with glutaraldehyde was 101.0 ± 0.9 nm and the zeta potential was found to be -18 ± 2.9 mV. An optimal concentration of glutaraldehyde for the nanoparticle coating process was determined, and this provided stable and less toxic nanoparticles as protein carriers. The results of the study indicate that nanoparticles crosslinked with glutaraldehyde produced nanoparticles with tolerable toxicity which provided efficient and controlled release of the coencapsulated proteins. The nanoparticles were incubated for two weeks to determine the release profiles of the proteins. At the end of the two-week incubation period, it was observed that 49% ± 1.3% of human angiopoietin-1 and 59% ± 2.1% of human VEGF had been released from the nanoparticles. The proliferation and percent apoptosis of the HUVECs in