WorldWideScience

Sample records for angiogenesis vascularity hydration

  1. Vascular grading of angiogenesis

    DEFF Research Database (Denmark)

    Hansen, S; Grabau, D A; Sørensen, Flemming Brandt

    2000-01-01

    The study aimed to evaluate the prognostic value of angiogenesis by vascular grading of primary breast tumours, and to evaluate the prognostic impact of adding the vascular grade to the Nottingham Prognostic Index (NPI). The investigation included 836 patients. The median follow-up time was 11...... was moderately reproduced (kappa = 0.59). Vascular grade was significantly associated with axillary node involvement, tumour size, malignancy grade, oestrogen receptor status and histological type. In univariate analyses vascular grade significantly predicted recurrence free survival and overall survival for all...... impact for 24% of the patients, who had a shift in prognostic group, as compared to NPI, and implied a better prognostic dissemination. We concluded that the angiogenesis determined by vascular grading has independent prognostic value of clinical relevance for patients with breast cancer....

  2. Angiogenesis, Cancer, and Vascular Aging

    Directory of Open Access Journals (Sweden)

    Junji Moriya

    2017-10-01

    Full Text Available Several lines of evidence have revealed that the angiogenic response to ischemic injury declines with age, which might account for the increased morbidity and mortality of cardiovascular disease (CVD among the elderly. While impairment of angiogenesis with aging leads to delayed wound healing or exacerbation of atherosclerotic ischemic diseases, it also inhibits the progression of cancer. Age-related changes of angiogenesis have been considered to at least partly result from vascular aging or endothelial cell senescence. There is considerable evidence supporting the hypothesis that vascular cell senescence contributes to the pathogenesis of age-related CVD, suggesting that vascular aging could be an important therapeutic target. Since therapeutic angiogenesis is now regarded as a promising concept for patients with ischemic CVD, it has become even more important to understand the detailed molecular mechanisms underlying impairment of angiogenesis in older patients. To improve the usefulness of therapeutic angiogenesis, approaches are needed that can compensate for impaired angiogenic capacity in the elderly while not promoting the development or progression of malignancy. In this review, we briefly outline the mechanisms of angiogenesis and vascular aging, followed by a description of how vascular aging leads to impairment of angiogenesis. We also examine potential therapeutic approaches that could enhance angiogenesis and/or vascular function in the elderly, as well as discussing the possibility of anti-senescence therapy or reversal of endothelial cell senescence.

  3. VASCULAR REMODELING IN HYPERTENSION: ANGIOGENESIS FEATURES

    Directory of Open Access Journals (Sweden)

    L. A. Haisheva

    2014-07-01

    Full Text Available Aim — cross-sectional study of changes in various segments of the vascular bed in arterial hypertension (AH, defining the role of inducers and inhibitors of angiogenesis in these processes.Materials and methods. The study included 99 patients with arterial hypertension of I–II degree, average age of 63.2 ± 2.6 years, diseaseduration 9.2 ± 7.2 years.Results. It was found that patients with arterial hypertension have disorders in all segments of vascular bed: endothelial dysfunction (highvWF, microcirculatory disorders, and increased pulse wave velocity (PWV of elastic-type vessels. The level of angioginesis factors doesnot depend on such parameters as gender, age, body mass index. Smoking and duration of hypertension influence on vascular endothelialgrowth factor raise and endostatin levels are higher in patients with family history of cardiovascular diseases. Duration of disease is directlycorrelated with microcirculatory disorders and the PWV, correlation between microcirculatory disorders and pulse wave velocity indicatetheir common processes.

  4. Vascular endothelial growth factors and angiogenesis in eye disease

    NARCIS (Netherlands)

    Witmer, A. N.; Vrensen, G. F. J. M.; van Noorden, C. J. F.; Schlingemann, R. O.

    2003-01-01

    The vascular endothelial growth factor (VEGF) family of growth factors controls pathological angiogenesis and increased vascular permeability in important eye diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD). The purpose of this review is to develop new insights

  5. 3D Multiscale Modelling of Angiogenesis and Vascular Tumour Growth

    KAUST Repository

    Perfahl, H.

    2012-11-01

    We present a three-dimensional, multiscale model of vascular tumour growth, which couples nutrient/growth factor transport, blood flow, angiogenesis, vascular remodelling, movement of and interactions between normal and tumour cells, and nutrient-dependent cell cycle dynamics within each cell. We present computational simulations which show how a vascular network may evolve and interact with tumour and healthy cells. We also demonstrate how our model may be combined with experimental data, to predict the spatio-temporal evolution of a vascular tumour.

  6. Angiogenesis: the genetic regulation of vascular development

    NARCIS (Netherlands)

    R.A. Haasdijk (Remco Anton)

    2014-01-01

    markdownabstract__Abstract__ For centuries, many scientists are fascinated by the organisation of the vascular network. The Greek philosopher and polymath Aristotle (384 BC) was one of the first man who described the vasculature. He wrote: “the system of blood vessels in the body may

  7. Vascular Permeability Factor/Vascular Endothelial Growth Factor Induces Lymphangiogenesis as well as Angiogenesis

    OpenAIRE

    Nagy, Janice A.; Vasile, Eliza; Feng, Dian; Sundberg, Christian; Brown, Lawrence F.; Detmar, Michael J.; Lawitts, Joel A.; Benjamin, Laura; Tan, Xiaolian; Manseau, Eleanor J.; Dvorak, Ann M.; Dvorak, Harold F.

    2002-01-01

    Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF, VEGF-A) is a multifunctional cytokine with important roles in pathological angiogenesis. Using an adenoviral vector engineered to express murine VEGF-A164, we previously investigated the steps and mechanisms by which this cytokine induced the formation of new blood vessels in adult immunodeficient mice and demonstrated that the newly formed blood vessels closely resembled those found in VEGF-A–expressing tumors. We now...

  8. Targeting vascular NADPH oxidase 1 blocks tumor angiogenesis through a PPARα mediated mechanism.

    Directory of Open Access Journals (Sweden)

    Sarah Garrido-Urbani

    Full Text Available Reactive oxygen species, ROS, are regulators of endothelial cell migration, proliferation and survival, events critically involved in angiogenesis. Different isoforms of ROS-generating NOX enzymes are expressed in the vasculature and provide distinct signaling cues through differential localization and activation. We show that mice deficient in NOX1, but not NOX2 or NOX4, have impaired angiogenesis. NOX1 expression and activity is increased in primary mouse and human endothelial cells upon angiogenic stimulation. NOX1 silencing decreases endothelial cell migration and tube-like structure formation, through the inhibition of PPARα, a regulator of NF-κB. Administration of a novel NOX-specific inhibitor reduced angiogenesis and tumor growth in vivo in a PPARα dependent manner. In conclusion, vascular NOX1 is a critical mediator of angiogenesis and an attractive target for anti-angiogenic therapies.

  9. Vascular development during distraction osteogenesis proceeds by sequential intramuscular arteriogenesis followed by intraosteal angiogenesis.

    Science.gov (United States)

    Morgan, Elise F; Hussein, Amira I; Al-Awadhi, Bader A; Hogan, Daniel E; Matsubara, Hidenori; Al-Alq, Zainab; Fitch, Jennifer; Andre, Billy; Hosur, Krutika; Gerstenfeld, Louis C

    2012-09-01

    Vascular formation is intimately associated with bone formation during distraction osteogenesis (DO). While prior studies on this association have focused on vascular formation locally within the regenerate, we hypothesized that this vascular formation, as well as the resulting osteogenesis, relies heavily on the response of the vascular network in surrounding muscular compartments. To test this hypothesis, the spatiotemporal sequence of vascular formation was assessed in both muscular and osseous compartments in a murine model of DO and was compared to the progression of osteogenesis. Micro-computed tomography (μCT) scans were performed sequentially, before and after demineralization, on specimens containing contrast-enhanced vascular casts. Image registration and subtraction procedures were developed to examine the co-related, spatiotemporal patterns of vascular and osseous tissue formation. Immunohistochemistry was used to assess the contributory roles of arteriogenesis (formation of large vessels) and angiogenesis (formation of small vessels) to overall vessel formation. Mean vessel thickness showed an increasing trend during the period of active distraction (p=0.068), whereas vessel volume showed maximal increases during the consolidation period (p=0.009). The volume of mineralized tissue in the regenerate increased over time (pconsolidation. Immunohistological data suggested that: 1) the period of active distraction was characterized primarily by arteriogenesis in the surrounding muscle; 2) during consolidation, angiogenesis predominated in the intraosteal region; and 3) vessel formation proceeded from the surrounding muscle into the regenerate. These data show that formation of vascular tissue occurs in both muscular and osseous compartments during DO and that periods of intense osteogenesis are concurrent with those of angiogenesis. The results further suggest the presence of morphogenetic factors that coordinate the development of vascular tissues from

  10. Contrast-enhanced color Doppler US in breast cancer: Tumoral vascularity correlated with angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun A; Yoon, Kwon Ha; Yun, Ki Jung; Lee, Kwang Man; Park, Ki Han; Juhng, Seon Kwan; Won, Jong Jin [Wonkwang University School of Medicine, Seoul (Korea, Republic of)

    2000-12-15

    To evaluate the effects of contrast-enhanced color Doppler ultrasonography (CDUS) on the depiction of vascularity and flow pattern in breast cancer and to determine the relationship between tumoral vascularity and angiogenesis. Twenty-one patients with breast cancer were prospectively evaluated with CDUS before and after injection of the contrast agent (SH U 508A, 2.5g, 300 mg/ml ). The tumoral vascularity was expressed as percentage of color Doppler area, which was measured quantitatively by a computerized program (Ultrasonic Imaging Tool; Soongsil University, Seoul, Korea). The flow pattern (four-patterns; spotty, linear, branching, marginal) of the vascularity was analyzed. After surgery, tumor angiogenesis was assessed by microvessel density. The relationship between the vascularity on CDUS and microvessel density was statistically analyzed. At unenhanced CDUS, tumoral flow signals were detected in 12 lesions (48%); at contrast-enhanced CDUS, 18 lesions (86%). All These 18 lesions showed increased signals, compared with those at unenhanced CDUS. The percentage color Doppler area was 1.86 {+-} 0.48% at unenhanced CDUS and 5.23 {+-} 1.18% at contrast-enhanced CDUS. The flow patterns before contrast injection were spotty pattern in 11 tumors and linear pattern in one; after contrast injection, spotty in 8, linear in 4, branching in 5, and marginal in one. The tumoral vascularity at contrast-enhanced CDUS showed no significant correlation with microvessel density. Contrast-enhanced CDUS seems to be a valuable tool in the depiction of vascularity and characterization of flow pattern in breast cancer. However, tumoral vascularity on CDUS may not reflect tumoral angiogenesis.

  11. Imatinib disrupts lymphoma angiogenesis by targeting vascular pericytes.

    Science.gov (United States)

    Ruan, Jia; Luo, Min; Wang, Chunjie; Fan, Lei; Yang, Shao Ning; Cardenas, Mariano; Geng, Huimin; Leonard, John P; Melnick, Ari; Cerchietti, Leandro; Hajjar, Katherine A

    2013-06-27

    Pericytes and vascular smooth muscle cells (VSMCs), which are recruited to developing blood vessels by platelet-derived growth factor BB, support endothelial cell survival and vascular stability. Here, we report that imatinib, a tyrosine kinase inhibitor of platelet-derived growth factor receptor β (PDGFRβ), impaired growth of lymphoma in both human xenograft and murine allograft models. Lymphoma cells themselves neither expressed PDGFRβ nor were growth inhibited by imatinib. Tumor growth inhibition was associated with decreased microvascular density and increased vascular leakage. In vivo, imatinib induced apoptosis of tumor-associated PDGFRβ(+) pericytes and loss of perivascular integrity. In vitro, imatinib inhibited PDGFRβ(+) VSMC proliferation and PDGF-BB signaling, whereas small interfering RNA knockdown of PDGFRβ in pericytes protected them against imatinib-mediated growth inhibition. Fluorescence-activated cell sorter analysis of tumor tissue revealed depletion of pericytes, endothelial cells, and their progenitors following imatinib treatment. Compared with imatinib, treatment with an anti-PDGFRβ monoclonal antibody partially inhibited lymphoma growth. Last, microarray analysis (Gene Expression Omnibus database accession number GSE30752) of PDGFRβ(+) VSMCs following imatinib treatment showed down-regulation of genes implicated in vascular cell proliferation, survival, and assembly, including those representing multiple pathways downstream of PDGFRβ. Taken together, these data indicate that PDGFRβ(+) pericytes may represent a novel, nonendothelial, antiangiogenic target for lymphoma therapy.

  12. Vascularization and Angiogenesis in Tissue Engineering: Beyond Creating Static Networks

    NARCIS (Netherlands)

    Rouwkema, Jeroen; Khademhosseini, A.

    2016-01-01

    Engineered tissues need a vascular network to supply cells with nutrients and oxygen after implantation. A network that can connect to the vasculature of the patient after implantation can be included during in vitro culture. For optimal integration, this network needs to be highly organized,

  13. The effects of homocysteine and folic acid on angiogenesis and VEGF expression during chicken vascular development.

    Science.gov (United States)

    Oosterbaan, Annelien M; Steegers, Eric A P; Ursem, Nicolette T C

    2012-03-01

    Homocysteine (Hcy) has been implicated in the development of cardiovascular developmental defects. Additionally, in experimental studies, vasculotoxic properties of Hcy have been described. Although Hcy has been identified as a vascular pathogen, little is known about the direct effects Hcy exerts during early embryonic vascular development. Angiogenesis is a critical process involved in embryo survival and development. There are limited studies on the effects of Hcy on early embryonic vasculogenesis and angiogenesis. Folic acid (FA) is a B vitamin essential in embryo development, and FA supplementation may lead to reduced Hcy levels. Therefore, the purpose of our study was to explore the effects of Hcy and FA on early embryonic vascular development. Embryonic day (E) 3.5 chicken embryos were treated with a sham, Hcy or FA solution. We developed a computational program for systematic analysis of microscopic images obtained from the extra embryonic vascular beds. These results were combined with real-time PCR data on the expression of VEGF-A and its receptor in these vascular beds. Our data show that Hcy exposure inhibits early vascular development, displayed by a significant reduction of vessel area and altered composition of the vascular beds. Vascular beds of Hcy embryos for the greater part consisted of vessels of the smallest diameters, compared to middle size vessels in control and FA embryos. Hcy also reduced expression of VEGF-A and VEGFR-2. No significant effects of FA were found. We conclude that Hcy exposure causes impaired early extra embryonic vascular development, shown by altered composition of the vascular beds as well as reduced expression of VEGF-A and VEGFR-2. These effects of Hcy, and the consecutive cascade of events, may be involved in the development of cardiovascular developmental defects. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. A novel compound, NP-184, inhibits the vascular endothelial growth factor induced angiogenesis.

    Science.gov (United States)

    Lin, Kuan-Ting; Lien, Jin-Cherng; Chung, Ching-Hu; Kuo, Sheng-Chu; Huang, Tur-Fu

    2010-03-25

    Angiogenesis is observed in many diseases, such as tumor progression, diabetes and rheumatoid arthritis; it is a process that involves proliferation, migration, differentiation and tube formation of endothelial cells. Vascular endothelial growth factor (VEGF) plays an important role in angiogenesis by induction of these endothelial functions. Thus, inhibition of these critical angiogenic steps is a practical therapeutic strategy for those diseases. NP-184 is a substituted benzimidazole analogue which exhibits a potent anti-thrombotic activity. In this report, NP-184 inhibited the viability of human umbilical vascular endothelial cells (HUVEC) in a concentration-dependent manner, and caused cell apoptosis as examined by cell-cycle analysis and Annexin V staining with flow cytometry. NP-184 also concentration-dependently inhibited the HUVEC migration, tube formation on Matrigel, and rat aortic ring sprouting stimulated by VEGF. Regarding the intracellular signal transduction, NP-184 concentration-dependently interfered with the activation of AKT, ERK and the nuclear translocation of NF-kappaB. In vivo study showed that NP-184 dose-dependently reduced angiogenesis in Matrigel plug assay. These results indicate that NP-184 is a potential candidate for developing the treatment of angiogenesis related-diseases.

  15. Cardamonin Regulates miR-21 Expression and Suppresses Angiogenesis Induced by Vascular Endothelial Growth Factor

    Directory of Open Access Journals (Sweden)

    Fu-Sheng Jiang

    2015-01-01

    Full Text Available Cardamonin has promising potential in cancer prevention and therapy by interacting with proteins and modifying the expressions and activities, including factors of cell survival, proliferation, and angiogenesis. In our precious study, we have demonstrated that cardamonin suppressed vascular endothelial growth factor- (VEGF- induced angiogenesis as evaluated in the mouse aortic ring assay. It is also known that microRNAs (miRNAs play important roles in angiogenesis. Herein, we hypothesized whether antiangiogenesis effect of cardamonin in human umbilical vein endothelial cells (HUVECs triggered by VEGF was associated with miRNAs. We found that cardamonin reduced the miR-21 expression induced by VEGF in HUVECs. Treatment with miR-21 mimics abolished the effects of cardamonin on VEGF-induced cell proliferation, migration, and angiogenesis in HUVECs. However, treatment with miR-21 inhibitors presented the opposite effects, indicating the vital role of miR-21 in this process. Our study provides a new insight of the preliminary mechanism of anti-VEGF-induced angiogenesis by cardamonin in HUVECs.

  16. Acetylbritannilactone Modulates Vascular Endothelial Growth Factor Signaling and Regulates Angiogenesis in Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Jingshan Zhao

    Full Text Available The present study was conducted to determine the effects of 1-O-acetylbritannilactone (ABL, a compound extracted from Inula britannica L., on vascular endothelial growth factor (VEGF signaling and angiogenesis in endothelial cells (ECs. We showed that ABL promotes VEGF-induced cell proliferation, growth, migration, and tube formation in cultured human ECs. Furthermore, the modulatory effect of ABL on VEGF-induced Akt, MAPK p42/44, and p38 phosphorylation, as well as on upstream VEGFR-2 phosphorylation, were associated with VEGF-dependent Matrigel angiogenesis in vivo. In addition, animals treated with ABL (26 mg/kg/day recovered blood flow significantly earlier than control animals, suggesting that ABL affects ischemia-mediated angiogenesis and arteriogenesis in vivo. Finally, we demonstrated that ABL strongly reduced the levels of VEGFR-2 on the cell surface, enhanced VEGFR-2 endocytosis, which consistent with inhibited VE-cadherin, a negative regulator of VEGF signaling associated with VEGFR-2 complex formation, but did not alter VE-cadherin or VEGFR-2 expression in ECs. Our results suggest that ABL may serve as a novel therapeutic intervention for various cardiovascular diseases, including chronic ischemia, by regulating VEGF signaling and modulating angiogenesis.

  17. Acetylbritannilactone Modulates Vascular Endothelial Growth Factor Signaling and Regulates Angiogenesis in Endothelial Cells.

    Science.gov (United States)

    Zhao, Jingshan; Niu, Honglin; Li, Aiying; Nie, Lei

    2016-01-01

    The present study was conducted to determine the effects of 1-O-acetylbritannilactone (ABL), a compound extracted from Inula britannica L., on vascular endothelial growth factor (VEGF) signaling and angiogenesis in endothelial cells (ECs). We showed that ABL promotes VEGF-induced cell proliferation, growth, migration, and tube formation in cultured human ECs. Furthermore, the modulatory effect of ABL on VEGF-induced Akt, MAPK p42/44, and p38 phosphorylation, as well as on upstream VEGFR-2 phosphorylation, were associated with VEGF-dependent Matrigel angiogenesis in vivo. In addition, animals treated with ABL (26 mg/kg/day) recovered blood flow significantly earlier than control animals, suggesting that ABL affects ischemia-mediated angiogenesis and arteriogenesis in vivo. Finally, we demonstrated that ABL strongly reduced the levels of VEGFR-2 on the cell surface, enhanced VEGFR-2 endocytosis, which consistent with inhibited VE-cadherin, a negative regulator of VEGF signaling associated with VEGFR-2 complex formation, but did not alter VE-cadherin or VEGFR-2 expression in ECs. Our results suggest that ABL may serve as a novel therapeutic intervention for various cardiovascular diseases, including chronic ischemia, by regulating VEGF signaling and modulating angiogenesis.

  18. Role of Microvessel Density and Vascular Endothelial Growth Factor in Angiogenesis of Hematological Malignancies

    Directory of Open Access Journals (Sweden)

    Rashika Chand

    2016-01-01

    Full Text Available Angiogenesis plays an important role in progression of tumor with vascular endothelial growth factor (VEGF being key proangiogenic factor. It was intended to study angiogenesis in different hematological malignancies by quantifying expression of VEGF and MVD in bone marrow biopsy along with serum VEGF levels and observing its change following therapy. The study included 50 cases of hematological malignancies which were followed for one month after initial therapy along with 30 controls. All of them were subjected to immunostaining by anti-VEGF and factor VIII antibodies on bone marrow biopsy along with the measurement of serum VEGF levels. Significantly higher pretreatment VEGF scores, serum VEGF levels, and MVD were observed in cases as compared to controls (p<0.05. The highest VEGF score and serum VEGF were observed in chronic myeloid leukemia and maximum MVD in Non-Hodgkin’s Lymphoma. Significant decrease in serum VEGF levels after treatment was observed in all hematological malignancies except for AML. To conclude angiogenesis plays an important role in pathogenesis of all the hematological malignancies as reflected by increased VEGF expression and MVD in bone marrow biopsy along with increased serum VEGF level. The decrease in serum VEGF level after therapy further supports this view and also lays the importance of anti angiogenic therapy.

  19. Oscillation of Angiogenesis with Vascular Dropout in Diabetic Retinopathy by VESsel GENeration Analysis (VESGEN)

    Science.gov (United States)

    Parsons-Wingerter, Patricia; Radbakrishnan, Krisbnan; Vickerman, Mary B.; Kaiser, Peter K.

    2010-01-01

    PURPOSE. Vascular dropout and angiogenesis are hallmarks of the progression of diabetic retinopathy (DR). However, current evaluation of DR relies on grading of secondary vascular effects, such as microaneurysms and hemorrhages, by clinical examination instead of by evaluation of actual vascular changes. The purpose of this study was to map and quantify vascular changes during progression of DR by VESsel GENeration Analysis (VESGEN). METHODS. In this prospective cross-sectional study, 15 eyes with DR were evaluated with fluorescein angiography (FA) and color fundus photography, and were graded using modified Early Treatment Diabetic Retinopathy Study criteria. FA images were separated by semiautomatic image processing into arterial and venous trees. Vessel length density (L(sub v)), number density (N(sub v)), and diameter (D(sub v)) were analyzed in a masked fashion with VESGEN software. Each vascular tree was automatically segmented into branching generations (G(sub 1)...G(sub 8) or G(sub 9)) by vessel diameter and branching. Vascular remodeling status (VRS) for N(sub v) and L(sub v) was graded 1 to 4 for increasing severity of vascular change. RESULTS. By N(sub v) and L(sub v), VRS correlated significantly with the independent clinical diagnosis of mild to proliferative DR (13/15 eyes). N(sub v) and L(sub v) of smaller vessels (G(sub >=6) increased from VRS1 to VRS2 by 2.4 X and 1.6 X, decreased from VRS2 to VRS3 by 0.4 X and 0.6X, and increased from VRS3 to VRS4 by 1.7 X and 1.5 X (P < 0.01). Throughout DR progression, the density of larger vessels (G(sub 1-5)) remained essentially unchanged, and D(sub v1-5) increased slightly. CONCLUSIONS. Vessel density oscillated with the progression of DR. Alternating phases of angiogenesis/neovascularization and vascular dropout were dominated first by remodeling of arteries and subsequently by veins.

  20. "ApoptomiRs" in vascular cells: their role in physiological and pathological angiogenesis.

    Science.gov (United States)

    Quintavalle, Cristina; Garofalo, Michela; Croce, Carlo M; Condorelli, Gerolama

    2011-10-01

    MicroRNAs (miRNAs) have emerged as crucial players regulating the magnitude of gene expression in a variety of organisms. This class of short (22 nucleotides) noncoding RNA molecules have been shown to participate in almost every cellular process investigated so far, and their deregulation is observed in different human pathologies including cancer, heart disease, and neurodegeneration. These new molecular regulators have been identified also in endothelial cells (ECs), and their role in the regulation of different aspects of the angiogenic process has been recently investigated in a variety of laboratories. The current review focuses on the research progress regarding the roles of miRNAs in vascular pathology and their potential therapeutic applications for vascular diseases associated with abnormal angiogenesis, such as cancer. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Total glucosides of Paeonia lactiflora Pall inhibit vascular endothelial growth factor-induced angiogenesis.

    Science.gov (United States)

    Deng, Hui; Yan, Chunlin; Xiao, Tian; Yuan, Dingfen; Xu, Jinhua

    2010-02-17

    To evaluate the anti-angiogenesis effect of total glucosides of Paeonia lactiflora Pall. In this study, we determined the effect of TGP on the proliferation of human vascular endothelial cells through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and fluorescence-activated cell sorting analysis. A migration assay and a tube formation assay were used to investigate the migration properties and tube formation abilities of human vascular endothelial cells after being treated with TGP. Furthermore, the in vivo anti-angiogenic ability of TGP was determined through a chick chorioallantoic membrane assay. TGP (12.5, 62.5, and 312.5 microg/ml) resulted in a dose-dependent reduction in the proliferation of endothelial cells. This inhibition effect began 6h after treatment and lasted at least 24h. Fluorescence-activated cell sorting analysis data showed an accumulation of cells in the G0/G1 phase of the cell cycle, which exhibited apoptotic features indicative of cell death. The migration properties and tube forming abilities of endothelial cells were dramatically inhibited by the TGP extract. Our results show that TGP can inhibit angiogenesis in vitro and in vivo. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  2. Circulating Markers of Vascular Injury and Angiogenesis in ANCA-Associated Vasculitis

    Science.gov (United States)

    Monach, Paul A; Tomasson, Gunnar; Specks, Ulrich; Stone, John H; Cuthbertson, David; Krischer, Jeffrey; Ding, Linna; Fervenza, Fernando C; Fessler, Barri J; Hoffman, Gary S; Ikle, David; Kallenberg, Cees GM; Langford, Carol A; Mueller, Mark; Seo, Philip; St.Clair, E William; Spiera, Robert; Tchao, Nadia; Ytterberg, Steven R; Gu, Yi-Zhong; Snyder, Ronald D; Merkel, Peter A

    2011-01-01

    Objective To identify biomarkers that distinguish between active ANCA-associated vasculitis (AAV) and remission in a manner superior or complementary to established markers of systemic inflammation. Methods Markers of vascular injury and angiogenesis were measured before and after treatment in a large clinical trial in AAV. 163 subjects enrolled in the Rituximab in ANCA-Associated Vasculitis (RAVE) trial were studied. Serum levels of E-selectin, ICAM-3, MMP1, MMP3, MMP9, P-selectin, thrombomodulin, and VEGF were measured at study screening (time of active disease) and at month 6. ESR and CRP levels had been measured at the time of the clinical visit. The primary outcome was the difference in marker level between screening and month 6 among patients in remission (BVAS/WG score of 0) at month 6. Results All subjects had severe active vasculitis (mean BVAS/WG score 8.6 +/− 3.2 SD) at screening. Among the 123 subjects clinically in remission at month 6, levels of all markers except E-selectin showed significant declines. MMP3 levels were also higher among the 23 subjects with active disease at month 6 than among the 123 subjects in remission. MMP3 levels correlated weakly with ESR and CRP. Conclusion Many markers of vascular injury and angiogenesis are elevated in severe active AAV and decline with treatment, but MMP3 appears to distinguish active AAV from remission better than the other markers studied. Further study of MMP3 is warranted to determine its clinical utility in combination with conventional markers of inflammation and ANCA titers. PMID:21953143

  3. Vascular endothelial growth factor (VEGF)-A: role on cardiac angiogenesis following myocardial infarction.

    Science.gov (United States)

    Zhao, Tieqiang; Zhao, Wenyuan; Chen, Yuanjian; Ahokas, Robert A; Sun, Yao

    2010-09-01

    The current study is to determine the regulatory role of VEGF-A in cardiac angiogenesis following myocardial infarction (MI). Cardiac angiogenic response and temporal/spatial expression of VEGF-A/VEGF receptors (VEGFR) were examined at 1, 2, 6, 12 h and 1, 2, 3, 4, 7, 14, and 28 days postMI. We found that following MI, newly formed vessels first appeared at the border zone between noninfarcted and infarcted myocardium as early as day 3 and subsequently in the infarcted myocardium. Vascular density in the infarcted myocardium peaked at day 7 and then gradually declined. VEGF-A mRNA started to increase at the border zone at 2 h postMI, reached peak at 12 h, declined at day 1, and returned to normal levels at day 2 and thereafter. VEGF-A protein levels at the border zone were only increased during day 1 postMI. VEGF-A within the infarcted myocardium levels, however, was persistently suppressed postMI. VEGFR expression was significantly increased only at the border zone at day 1, but not in the later stages. The expression of VEGF-A/VEGFR remained unchanged in the noninfarcted myocardium. Thus, the early rise of VEGF-A/VEGFR at the border zone suggests that VEGF-A initiates the cardiac angiogenic response postMI, but short-lived VEGF-A/VEGFR activation at the border zone and consistently suppressed VEGF-A within the infarcted myocardium suggests that VEGF-A may not be crucial to the later stages of angiogenesis. Copyright 2010. Published by Elsevier Inc.

  4. Triphala and its active constituent chebulinic acid are natural inhibitors of vascular endothelial growth factor-a mediated angiogenesis.

    Directory of Open Access Journals (Sweden)

    Kai Lu

    Full Text Available Triphala churna (THL is a combination of three fruits that has been used for many years in India for the treatment of various diseases. There are now reports which indicate that THL can inhibit growth of malignant tumors in animals. However, the mechanisms by which THL mediates its anti-tumor actions are still being explored. Because vascular endothelial growth factor-A (VEGF induced angiogenesis plays a critical role in the pathogenesis of cancer, we therefore investigated whether tumor inhibitory effects of THL or its active constituents are through suppression of VEGF actions. We herein report that THL and chebulinic (CI present in THL can significantly and specifically inhibit VEGF induced angiogenesis by suppressing VEGF receptor-2 (VEGFR-2 phosphorylation. These results are of clinical significance as these inexpensive and non-toxic natural products can be used for the prevention and treatment of diseases where VEGF induced angiogenesis has an important role.

  5. Angiogenesis for tumor vascular normalization of Endostar on hepatoma 22 tumor-bearing mice is involved in the immune response.

    Science.gov (United States)

    Xu, Qingyu; Gu, Junfei; Lv, You; Yuan, Jiarui; Yang, Nan; Chen, Juan; Wang, Chunfei; Hou, Xuefeng; Jia, Xiaobin; Feng, Liang; Yin, Guowen

    2018-03-01

    Tumor vascular normalization involved in immune response is beneficial to the chemotherapy of tumors. Recombinant human endostatin (Endostar), an angiogenesis inhibitor, has been demonstrated to be effective in hepatocellular cancer (HCC). However, its vascular normalization in HCC and the role of the immune response in angiogenesis were unclear. In the present study, effects of Endostar on tumor vascular normalization were evaluated in hepatoma 22 (H22) tumor-bearing mice. Endostar was able to inhibit the proliferation and infiltration of tumor cells and improve α-fetoprotein, tumor necrosis factor-α and cyclic adenosine 5'-phosphate levels in the serum of H22-bearing mice, as well as the protein expression levels of the immune factors interferon-γ and cluster of differentiation (CD)86 in liver tissue. Endostar also exhibited more marked downregulation of the levels of vascular endothelial growth factor, CD31, matrix metalloproteinase (MMP)-2, MMP-9 and interleukin-17 during day 3-9 treatment, resulting in short-term normalization of tumor blood vessels. The period of vascular normalization was 3-9 days. The results of the present study demonstrated that Endostar was able to induce the period of vascular normalization, contributing to a more efficacious means of HCC treatment combined with other chemotherapy, and this effect was associated with the immune response. It may be concluded that Endostar inhibited immunity-associated angiogenesis behaviors of vascular endothelial cells in response to HCC. The results of the present study provided more reasonable possibility for the combination therapy of Endostar for the treatment of HCC.

  6. Vascular Endothelial Growth Factor Receptor 2 (VEGFR-2) Functions to Promote Uterine Decidual Angiogenesis during Early Pregnancy in the Mouse

    Science.gov (United States)

    Douglas, Nataki C.; Tang, Hongyan; Gomez, Raul; Pytowski, Bronislaw; Hicklin, Daniel J.; Sauer, Christopher M.; Kitajewski, Jan; Sauer, Mark V.; Zimmermann, Ralf C.

    2009-01-01

    Implantation of an embryo induces rapid proliferation and differentiation of uterine stromal cells, forming a new structure, the decidua. One salient feature of decidua formation is a marked increase in maternal angiogenesis. Vascular endothelial growth factor (VEGF)-dependent pathways are active in the ovary, uterus, and embryo, and inactivation of VEGF function in any of these structures might prevent normal pregnancy development. We hypothesized that decidual angiogenesis is regulated by VEGF acting through specific VEGF receptors (VEGFRs). To test this hypothesis, we developed a murine pregnancy model in which systemic administration of a receptor-blocking antibody would act specifically on uterine angiogenesis and not on ovarian or embryonic angiogenesis. In our model, ovarian function was replaced with exogenous progesterone, and blocking antibodies were administered prior to embryonic expression of VEGFRs. After administration of a single dose of the anti-VEGFR-2 antibody during the peri-implantation period, no embryos were detected on embryonic d 10.5. The pregnancy was disrupted because of a significant reduction in decidual angiogenesis, which under physiological conditions peaks on embryonic d 5.5 and 6.5. Inactivation of VEGFR-3 reduced angiogenesis in the primary decidual zone, whereas administration of VEGFR-1 blocking antibodies had no effect. Pregnancy was not disrupted after administration of anti-VEGFR-3 or anti-VEGFR-1 antibodies. Thus, the VEGF/VEGFR-2 pathway plays a key role in the maintenance of early pregnancy through its regulation of peri-implantation angiogenesis in the uterine decidua. This newly formed decidual vasculature serves as the first exchange apparatus for the developing embryo until the placenta becomes functionally active. PMID:19406950

  7. Premedication with fast-acting oxycodone hydrochloride hydrate effectively reduced oxaliplatin-induced severe vascular pain.

    Science.gov (United States)

    Nagao, Sayaka; Furihata, Makoto; Fukagawa, Kazushi; Furihata, Tadashi; Matsuhashi, Yuki; Wada, Tomonori

    2017-07-01

    Oxaliplatin is a platinum-based chemotherapeutic agent that holds a prominent position in the treatment of colorectal and gastric cancers. However, severe oxaliplatin-related vascular pain can be problematic for patients. Here we describe seven patients who experienced severe vascular pain caused by oxaliplatin administration. All seven patients were treated with capecitabine and oxaliplatin or capecitabine plus oxaliplatin with bevacizumab as an adjuvant or a treatment for recurrent colorectal cancer, respectively. Patients experienced intolerable vascular pain during oxaliplatin administration, which continued for several days. Moreover, vascular pain also induced insomnia and appetite loss in all patients. We recommended implantation of a central venous (CV) port to the patients; however, all patients declined this treatment. In addition, various known countermeasures were taken, but were ineffective. Therefore, patients were orally administered oxycodone hydrochloride hydrate (Oxinorm ® ) 45 min prior to oxaliplatin administration. This pretreatment successfully reduced vascular pain and improved subsequent chemotherapy. Oxinorm ® is a fast-acting opioid that can be an effective and practical option for severe vascular pain induced by oxaliplatin. The present report is the first description that emphasizes the usefulness of Oxinorm ® to overcome the vascular pain induced by administration of oxaliplatin via a peripheral vein. Copyright © 2017 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  8. Conjugation of gold nanoparticles and recombinant human endostatin modulates vascular normalization via interruption of anterior gradient 2-mediated angiogenesis.

    Science.gov (United States)

    Pan, Fan; Yang, Wende; Li, Wei; Yang, Xiao-Yan; Liu, Shuhao; Li, Xin; Zhao, Xiaoxu; Ding, Hui; Qin, Li; Pan, Yunlong

    2017-07-01

    Several studies have revealed the potential of normalizing tumor vessels in anti-angiogenic treatment. Recombinant human endostatin is an anti-angiogenic agent which has been applied in clinical tumor treatment. Our previous research indicated that gold nanoparticles could be a nanoparticle carrier for recombinant human endostatin delivery. The recombinant human endostatin-gold nanoparticle conjugates normalized vessels, which improved chemotherapy. However, the mechanism of recombinant human endostatin-gold nanoparticle-induced vascular normalization has not been explored. Anterior gradient 2 has been reported to be over-expressed in many malignant tumors and involved in tumor angiogenesis. To date, the precise efficacy of recombinant human endostatin-gold nanoparticles on anterior gradient 2-mediated angiogenesis or anterior gradient 2-related signaling cohort remained unknown. In this study, we aimed to explore whether recombinant human endostatin-gold nanoparticles could normalize vessels in metastatic colorectal cancer xenografts, and we further elucidated whether recombinant human endostatin-gold nanoparticles could interrupt anterior gradient 2-induced angiogenesis. In vivo, it was indicated that recombinant human endostatin-gold nanoparticles increased pericyte expression while inhibit vascular endothelial growth factor receptor 2 and anterior gradient 2 expression in metastatic colorectal cancer xenografts. In vitro, we uncovered that recombinant human endostatin-gold nanoparticles reduced cell migration and tube formation induced by anterior gradient 2 in human umbilical vein endothelial cells. Treatment with recombinant human endostatin-gold nanoparticles attenuated anterior gradient 2-mediated activation of MMP2, cMyc, VE-cadherin, phosphorylation of p38, and extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) in human umbilical vein endothelial cells. Our findings demonstrated recombinant human endostatin-gold nanoparticles might normalize

  9. Vascular Endothelial Growth Factor (VEGF) Bioavailability Regulates Angiogenesis and Intestinal Stem and Progenitor Cell Proliferation during Postnatal Small Intestinal Development.

    Science.gov (United States)

    Schlieve, Christopher R; Mojica, Salvador Garcia; Holoyda, Kathleen A; Hou, Xiaogang; Fowler, Kathryn L; Grikscheit, Tracy C

    2016-01-01

    Vascular endothelial growth factor (VEGF) is a highly conserved, master regulatory molecule required for endothelial cell proliferation, organization, migration and branching morphogenesis. Podocoryne carnea and drosophila, which lack endothelial cells and a vascular system, express VEGF homologs, indicating potential roles beyond angiogenesis and vasculogenesis. The role of VEGF in the development and homeostasis of the postnatal small intestine is unknown. We hypothesized regulating VEGF bioavailability in the postnatal small intestine would exhibit effects beyond the vasculature and influence epithelial cell stem/progenitor populations. VEGF mutant mice were created that overexpressed VEGF in the brush border of epithelium via the villin promotor following doxycycline treatment. To decrease VEGF bioavailability, sFlt-1 mutant mice were generated that overexpressed the soluble VEGF receptor sFlt-1 upon doxycycline administration in the intestinal epithelium. Mice were analyzed after 21 days of doxycycline administration. Increased VEGF expression was confirmed by RT-qPCR and ELISA in the intestine of the VEGF mutants compared to littermates. The VEGF mutant duodenum demonstrated increased angiogenesis and vascular leak as compared to littermate controls. The VEGF mutant duodenum revealed taller villi and increased Ki-67-positive cells in the transit-amplifying zone with reduced Lgr5 expression. The duodenum of sFlt-1 mutants revealed shorter villi and longer crypts with reduced proliferation in the transit-amplifying zone, reduced expression of Dll1, Bmp4 and VE-cadherin, and increased expression of Sox9 and EphB2. Manipulating VEGF bioavailability leads to profound effects on not only the intestinal vasculature, but epithelial stem and progenitor cells in the intestinal crypt. Elucidation of the crosstalk between VEGF signaling in the vasculature, mesenchyme and epithelial stem/progenitor cell populations may direct future cell therapies for intestinal

  10. Angiogenesis impairment in diabetes: role of methylglyoxal-induced receptor for advanced glycation endproducts, autophagy and vascular endothelial growth factor receptor 2.

    Directory of Open Access Journals (Sweden)

    Hongtao Liu

    Full Text Available Diabetes impairs physiological angiogenesis by molecular mechanisms that are not fully understood. Methylglyoxal (MGO, a metabolite of glycolysis, is increased in patients with diabetes. This study defined the role of MGO in angiogenesis impairment and tested the mechanism in diabetic animals. Endothelial cells and mouse aortas were subjected to Western blot analysis of vascular endothelial growth factor receptor 2 (VEGFR2 protein levels and angiogenesis evaluation by endothelial cell tube formation/migration and aortic ring assays. Incubation with MGO reduced VEGFR2 protein, but not mRNA, levels in a time and dose dependent manner. Genetic knockdown of the receptor for advanced glycation endproducts (RAGE attenuated the reduction of VEGFR2. Overexpression of Glyoxalase 1, the enzyme that detoxifies MGO, reduced the MGO-protein adducts and prevented VEGFR2 reduction. The VEGFR2 reduction was associated with impaired angiogenesis. Suppression of autophagy either by inhibitors or siRNA, but not of the proteasome and caspase, normalized both the VEGFR2 protein levels and angiogenesis. Conversely, induction of autophagy either by rapamycin or overexpression of LC3 and Beclin-1 reduced VEGFR2 and angiogenesis. MGO increased endothelial LC3B and Beclin-1, markers of autophagy, which were accompanied by an increase of both autophagic flux (LC3 punctae and co-immunoprecipitation of VEGFR2 with LC3. Pharmacological or genetic suppression of peroxynitrite (ONOO(- generation not only blocked the autophagy but also reversed the reduction of VEGFR2 and angiogenesis. Like MGO-treated aortas from normglycemic C57BL/6J mice, aortas from diabetic db/db and Akita mice presented reductions of angiogenesis or VEGFR2. Administration of either autophagy inhibitor ex vivo or superoxide scavenger in vivo abolished the reductions. Taken together, MGO reduces endothelial angiogenesis through RAGE-mediated, ONOO(-dependent and autophagy-induced VEGFR2 degradation, which

  11. Two Dimensional Mathematical Model of Tumor Angiogenesis: Coupling of Avascular Growth and Vascularization

    Directory of Open Access Journals (Sweden)

    Farideh Hosseini

    2015-09-01

    Full Text Available Introduction As a tumor grows, the demand for oxygen and nutrients increases and it grows further if acquires the ability to induce angiogenesis. In this study, we aimed to present a two-dimensional continuous mathematical model for avascular tumor growth, coupled with a discrete model of angiogenesis. Materials and Methods In the avascular growth model, tumor is considered as a single mass, which uptakes oxygen through diffusion and invades the extracellular matrix (ECM. After the tumor reaches its maximum size in the avascular growth phase, tumor cells may be in three different states (proliferative, quiescent and apoptotic, depending on oxygen availability. Quiescent cells are assumed to secrete tumor angiogenic factors, which diffuse into the surrounding tissue until reaching endothelial cells. The mathematical model for tumor angiogenesis is consisted of a five-point finite difference scheme to simulate the progression of endothelial cells in ECM and their penetration into the tumor. Results The morphology of produced networks was investigated, based on various ECM degradation patterns. The generated capillary networks involved the rules of microvascular branching and anastomosis. Model predictions were in qualitative agreement with experimental observations and might have implications as a supplementary model to facilitate mathematical analyses for anti-cancer therapies. Conclusion Our numerical simulations could facilitate the qualitative comparison between three layers of tumor cells, their TAF-producing abilities and subsequent penetration of micro-vessels in order to determine the dynamics of microvascular branching and anastomosis in ECM and three different parts of the tumor.

  12. The Orphan Receptor Tie1 Controls Angiogenesis and Vascular Remodeling by Differentially Regulating Tie2 in Tip and Stalk Cells

    Directory of Open Access Journals (Sweden)

    Soniya Savant

    2015-09-01

    Full Text Available Tie1 is a mechanistically poorly characterized endothelial cell (EC-specific orphan receptor. Yet, Tie1 deletion is embryonic lethal and Tie1 has been implicated in critical vascular pathologies, including atherosclerosis and tumor angiogenesis. Here, we show that Tie1 does not function independently but exerts context-dependent effects on the related receptor Tie2. Tie1 was identified as an EC activation marker that is expressed during angiogenesis by a subset of angiogenic tip and remodeling stalk cells and downregulated in the adult quiescent vasculature. Functionally, Tie1 expression by angiogenic EC contributes to shaping the tip cell phenotype by negatively regulating Tie2 surface presentation. In contrast, Tie1 acts in remodeling stalk cells cooperatively to sustain Tie2 signaling. Collectively, our data support an interactive model of Tie1 and Tie2 function, in which dynamically regulated Tie1 versus Tie2 expression determines the net positive or negative effect of Tie1 on Tie2 signaling.

  13. Microultrasound Molecular Imaging of Vascular Endothelial Growth Factor Receptor 2 in a Mouse Model of Tumor Angiogenesis

    Directory of Open Access Journals (Sweden)

    Joshua J. Rychak

    2007-09-01

    Full Text Available High-frequency microultrasound imaging of tumor progression in mice enables noninvasive anatomic and functional imaging at excellent spatial and temporal resolution, although microultrasonography alone does not offer molecular scale data. In the current study, we investigated the use of microbubble ultrasound contrast agents bearing targeting ligands specific for molecular markers of tumor angiogenesis using high-frequency microultrasound imaging. A xenograft tumor model in the mouse was used to image vascular endothelial growth factor receptor 2 (VEGFR-2 expression with microbubbles conjugated to an anti-VEGFR-2 monoclonal antibody or an isotype control. Microultrasound imaging was accomplished at a center frequency of 40 MHz, which provided lateral and axial resolutions of 40 and 90 μm, respectively. The B-mode (two-dimensional mode acoustic signal from microbubbles bound to the molecular target was determined by an ultrasound-based destruction-subtraction scheme. Quantification of the adherent microbubble fraction in nine tumor-bearing mice revealed significant retention of VEGFR-2-targeted microbubbles relative to control-targeted microbubbles. These data demonstrate that contrast-enhanced microultrasound imaging is a useful method for assessing molecular expression of tumor angiogenesis in mice at high resolution.

  14. PLVAP in diabetic retinopathy: A gatekeeper of angiogenesis and vascular permeability

    NARCIS (Netherlands)

    Wiśniewska-Kruk, J.

    2014-01-01

    Nowadays, approximately 4 million people worldwide experience blindness or severe vision loss caused by diabetic retinopathy. Diabetic retinopathy is a multifactorial disease that can progress from minor changes in vascular permeability, into a proliferative retinal disorder. The increasing

  15. The vascular permeabilizing factors histamine and serotonin induce angiogenesis through TR3/Nur77 and subsequently truncate it through thrombospondin-1

    Science.gov (United States)

    Qin, Liuliang; Zhao, Dezheng; Xu, Jianfeng; Ren, Xianghui; Terwilliger, Ernest F.; Parangi, Sareh; Lawler, Jack; Dvorak, Harold F.

    2013-01-01

    Angiogenesis plays an important role in cancer and in many other human diseases. Vascular endothelial growth factor-A (VEGF-A), the best known angiogenic factor, was originally discovered as a potent vascular permeability factor (VPF), suggesting that other vascular permeabilizing agents, such as histamine and serotonin, might also have angiogenic activity. We recently demonstrated that, like VEGF-A, histamine and serotonin up-regulate the orphan nuclear receptor and transcription factor TR3 (mouse homolog Nur77) and that TR3/Nur77 is essential for their vascular permeabilizing activities. We now report that histamine and serotonin are also angiogenic factors that, at low micromolar concentrations, induce endothelial cell proliferation, migration and tube formation in vitro, and angiogenesis in vivo. All of these responses are mediated through specific histamine and serotonin receptors, are independent of VEGF-A, and are directly dependent on TR3/Nur77. Initially, the angiogenic response closely resembled that induced by VEGF-A, with generation of “mother” vessels. However, after ∼10 days, mother vessels began to regress as histamine and serotonin, unlike VEGF-A, up-regulated the potent angiogenesis inhibitor thrombospondin-1, thereby triggering a negative feedback loop. Thus, histamine and serotonin induce an angiogenic response that fits the time scale of acute inflammation. PMID:23315169

  16. Quantitative gene-expression of the tumor angiogenesis markers vascular endothelial growth factor, integrin alphaV and integrin beta3 in human neuroendocrine tumors

    DEFF Research Database (Denmark)

    Oxboel, Jytte; Binderup, Tina; Knigge, Ulrich

    2009-01-01

    Anti-angiogenesis treatment is a promising new therapy for cancer that recently has also been suggested for patients with neuroendocrine tumors. The aim of the present study was therefore to investigate the level of tumor angiogenesis, and thereby the molecular basis for anti-angiogenesis treatment......, in neuroendocrine tumors. We used quantitative real-time PCR for measuring mRNA gene-expression of vascular endothelial growth factor (VEGF), integrin alphaV, and integrin beta3, and CD34 for a group of patients with neuroendocrine tumors (n=13). Tissue from patients with colorectal cancer liver metastases (n=14......) and normal liver tissues (n=16) was used as control. We found a lower mRNA level of VEGF in neuroendocrine tumors compared to both colorectal liver metastases (ptumors...

  17. Down-regulation of hypoxia-inducible factor-1 alpha and vascular endothelial growth factor by HEXIM1 attenuates myocardial angiogenesis in hypoxic mice.

    Science.gov (United States)

    Yoshikawa, Noritada; Shimizu, Noriaki; Ojima, Hidenori; Kobayashi, Hiroshi; Hosono, Osamu; Tanaka, Hirotoshi

    2014-10-24

    Pulmonary hypertension (PH) sustains elevation of pulmonary vascular resistance and ultimately leads to right ventricular (RV) hypertrophy and failure and death. Recently, proangiogenic factors hypoxia-inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF) have been known to promote left ventricular myocardial angiogenesis and lead to cardiac hypertrophy, and this would be involved in RV hypertrophy of PH patients. Previously, we revealed that overexpression of HEXIM1 prevents endothelin-1-induced cardiomyocyte hypertrophy and hypertrophic genes expression, and that cardiomyocyte-specific HEXIM1 transgenic mice ameliorates RV hypertrophy in hypoxia-induced PH model. Given these results, here we analyzed the effect of HEXIM1 on the expression of HIF-1α and VEGF and on myocardial angiogenesis of RV in PH. We revealed that overexpression of HEXIM1 prevented hypoxia-induced expression of HIF-1α protein and its target genes including VEGF in the cultured cardiac myocytes and fibroblasts, and that cardiomyocyte-specific HEXIM1 transgenic mice repressed RV myocardial angiogenesis in hypoxia-induced PH model. Thus, we conclude that HEXIM1 could prevent RV hypertrophy, at least in part, via suppression of myocardial angiogenesis through down-regulation of HIF-1α and VEGF in the myocardium under hypoxic condition. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. PEG-b-PCL polymeric nano-micelle inhibits vascular angiogenesis by activating p53-dependent apoptosis in zebrafish

    Directory of Open Access Journals (Sweden)

    Zhou T

    2016-12-01

    Full Text Available Tian Zhou,1 Qinglei Dong,1 Yang Shen,2 Wei Wu,1 Haide Wu,1 Xianglin Luo,3 Xiaoling Liao,4 Guixue Wang1 1Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 2Institute of Biomedical Engineering, School of Preclinical and Forensic Medicine, Sichuan University, 3College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan, 4Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallury and Materials Engineering, Chongqing University of Science and Technology, Chongqing, People’s Republic of China Abstract: Micro/nanoparticles could cause adverse effects on cardiovascular system and increase the risk for cardiovascular disease-related events. Nanoparticles prepared from poly(ethylene glycol (PEG-b-poly(ε-caprolactone (PCL, namely PEG-b-PCL, a widely studied biodegradable copolymer, are promising carriers for the drug delivery systems. However, it is unknown whether polymeric PEG-b-PCL nano-micelles give rise to potential complications of the cardiovascular system. Zebrafish were used as an in vivo model to evaluate the effects of PEG-b-PCL nano-micelle on cardiovascular development. The results showed that PEG-b-PCL nano-micelle caused embryo mortality as well as embryonic and larval malformations in a dose-dependent manner. To determine PEG-b-PCL nano-micelle effects on embryonic angiogenesis, a critical process in zebrafish cardiovascular development, growth of intersegmental vessels (ISVs and caudal vessels (CVs in flk1-GFP transgenic zebrafish embryos using fluorescent stereomicroscopy were examined. The expression of fetal liver kinase 1 (flk1, an angiogenic factor, by real-time quantitative polymerase chain reaction (qPCR and in situ whole-mount hybridization were also analyzed. PEG-b-PCL nano-micelle decreased growth of ISVs and CVs, as

  19. Lack of endogenous parathyroid hormone delays fracture healing by inhibiting vascular endothelial growth factor‑mediated angiogenesis.

    Science.gov (United States)

    Ding, Qingfeng; Sun, Peng; Zhou, Hao; Wan, Bowen; Yin, Jian; Huang, Yao; Li, Qingqing; Yin, Guoyong; Fan, Jin

    2018-04-03

    Intermittent low‑dose injections of parathyroid hormone (PTH) have been reported to exert bone anabolic effects and to promote fracture healing. As an important proangiogenic cytokine, vascular endothelial growth factor (VEGF) is secreted by bone marrow mesenchymal stem cells (BMSCs) and osteoblasts, and serves a crucial regulatory role in the process of vascular development and regeneration. To investigate whether lack of endogenous PTH causes reduced angiogenic capacity and thereby delays the process of fracture healing by downregulating the VEGF signaling pathway, a PTH knockout (PTHKO) mouse fracture model was generated. Fracture healing was observed using X‑ray and micro‑computerized tomography. Bone anabolic and angiogenic markers were analyzed by immunohistochemistry and western blot analysis. The expression levels of VEGF and associated signaling pathways in murine BMSC‑derived osteoblasts were measured by quantitative polymerase chain reaction and western blot analysis. The expression levels of protein kinase A (PKA), phosphorylated‑serine/threonine protein kinase (pAKT), hypoxia‑inducible factor‑1α (HIF1α) and VEGF were significantly decreased in BMSC‑derived osteoblasts from PTHKO mice. In addition, positive platelet endothelial cell adhesion molecule staining was reduced in PTHKO mice, as determined by immunohistochemistry. The expression levels of HIF1α, VEGF, runt‑related transcription factor 2, osteocalcin and alkaline phosphatase were also decreased in PTHKO mice, and fracture healing was delayed. In conclusion, lack of endogenous PTH may reduce VEGF expression in BMSC‑derived osteoblasts by downregulating the activity of the PKA/pAKT/HIF1α/VEGF pathway, thus affecting endochondral bone formation by causing a reduction in angiogenesis and osteogenesis, ultimately leading to delayed fracture healing.

  20. Perlecan and vascular endothelial growth factor-encoding DNA-loaded chitosan scaffolds promote angiogenesis and wound healing.

    Science.gov (United States)

    Lord, Megan S; Ellis, April L; Farrugia, Brooke L; Whitelock, John M; Grenett, Hernan; Li, Chuanyu; O'Grady, Robert L; DeCarlo, Arthur A

    2017-03-28

    The repair of dermal wounds, particularly in the diabetic population, poses a significant healthcare burden. The impaired wound healing of diabetic wounds is attributed to low levels of endogenous growth factors, including vascular endothelial growth factor (VEGF), that normally stimulate multiple phases of wound healing. In this study, chitosan scaffolds were prepared via freeze drying and loaded with plasmid DNA encoding perlecan domain I and VEGF189 and analyzed in vivo for their ability to promote dermal wound healing. The plasmid DNA encoding perlecan domain I and VEGF189 loaded scaffolds promoted dermal wound healing in normal and diabetic rats. This treatment resulted in an increase in the number of blood vessels and sub-epithelial connective tissue matrix components within the wound beds compared to wounds treated with chitosan scaffolds containing control DNA or wounded controls. These results suggest that chitosan scaffolds containing plasmid DNA encoding VEGF189 and perlecan domain I have the potential to induce angiogenesis and wound healing. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Vascular endothelial growth factor expression and angiogenesis in various grades and subtypes of meningioma

    Directory of Open Access Journals (Sweden)

    Priya Dharmalingam

    2013-01-01

    Full Text Available Background: Vascular endothelial growth factor (VEGF expression has been extensively studied in astrocytoma, whereas relatively less literature exists on VEGF expression in meningioma. Materials and Methods: Patients operated for meningioma from 2006 to 2011 (n = 46 were included. Tumor was subtyped and graded as per WHO grading. Immunohistochemistry was performed for MIB labeling index, VEGF, and CD 34 staining. The patterns of VEGF expression in various histological subtypes and grades and its correlation with microvascular density were analyzed. Results: This series consisted of 40 Grade I meningioma, 4 Grade II tumors, and 2 Grade III tumors. While 14 (30.4% tumors showed no staining with VEGF antibody, 32 (69.6% were positive for VEGF. Sixty five percent of Grade I tumors showed VEGF positivity, while 100% of Grade II and Grade III tumors were VEGF positive (P = 0.157. The mean microvascular density in VEGF-negative tumors was 9.00, while that of VEGF-positive tumors was 17.81(P = 0.013. There was a gradual increase in microvascular density from tumors which are negative for VEGF to tumors which expressed moderate to strong VEGF, the difference being statistically significant (P = 0.009. Conclusions: VEGF expression correlated with the microvascular density in meningioma irrespective of tumor grade, with a gradual increase in microvascular density in relation to the VEGF score.

  2. Oxalomalate reduces expression and secretion of vascular endothelial growth factor in the retinal pigment epithelium and inhibits angiogenesis: Implications for age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    Sung Hwan Kim

    2016-12-01

    Full Text Available Clinical and experimental observations indicate a critical role for vascular endothelial growth factor (VEGF, secreted by the retinal pigment epithelium (RPE, in pathological angiogenesis and the development of choroidal neovascularization (CNV in age-related macular degeneration (AMD. RPE-mediated VEGF expression, leading to angiogenesis, is a major signaling mechanism underlying ocular neovascular disease. Inhibiting this signaling pathway with a therapeutic molecule is a promising anti-angiogenic strategy to treat this disease with potentially fewer side effects. Oxalomalate (OMA is a competitive inhibitor of NADP+-dependent isocitrate dehydrogenase (IDH, which plays an important role in cellular signaling pathways regulated by reactive oxygen species (ROS. Here, we have investigated the inhibitory effect of OMA on the expression of VEGF, and the associated underlying mechanism of action, using in vitro and in vivo RPE cell models of AMD. We found that OMA reduced the expression and secretion of VEGF in RPE cells, and consequently inhibited CNV formation. This function of OMA was linked to its capacity to activate the pVHL-mediated HIF-1α degradation in these cells, partly via a ROS-dependent ATM signaling axis, through inhibition of IDH enzymes. These findings reveal a novel role for OMA in inhibiting RPE-derived VEGF expression and angiogenesis, and suggest unique therapeutic strategies for treating pathological angiogenesis and AMD development.

  3. CdGAP/ARHGAP31, a Cdc42/Rac1 GTPase regulator, is critical for vascular development and VEGF-mediated angiogenesis

    Science.gov (United States)

    Caron, Christine; DeGeer, Jonathan; Fournier, Patrick; Duquette, Philippe M.; Luangrath, Vilayphone; Ishii, Hidetaka; Karimzadeh, Fereshteh; Lamarche-Vane, Nathalie; Royal, Isabelle

    2016-01-01

    Mutations in the CdGAP/ARHGAP31 gene, which encodes a GTPase-activating protein for Rac1 and Cdc42, have been reported causative in the Adams-Oliver developmental syndrome often associated with vascular defects. However, despite its abundant expression in endothelial cells, CdGAP function in the vasculature remains unknown. Here, we show that vascular development is impaired in CdGAP-deficient mouse embryos at E15.5. This is associated with superficial vessel defects and subcutaneous edema, resulting in 44% embryonic/perinatal lethality. VEGF-driven angiogenesis is defective in CdGAP−/− mice, showing reduced capillary sprouting from aortic ring explants. Similarly, VEGF-dependent endothelial cell migration and capillary formation are inhibited upon CdGAP knockdown. Mechanistically, CdGAP associates with VEGF receptor-2 and controls VEGF-dependent signaling. Consequently, CdGAP depletion results in impaired VEGF-mediated Rac1 activation and reduced phosphorylation of critical intracellular mediators including Gab1, Akt, PLCγ and SHP2. These findings are the first to demonstrate the importance of CdGAP in embryonic vascular development and VEGF-induced signaling, and highlight CdGAP as a potential therapeutic target to treat pathological angiogenesis and vascular dysfunction. PMID:27270835

  4. CS5931, a Novel Polypeptide in Ciona savignyi, Represses Angiogenesis via Inhibiting Vascular Endothelial Growth Factor (VEGF and Matrix Metalloproteinases (MMPs

    Directory of Open Access Journals (Sweden)

    Ge Liu

    2014-03-01

    Full Text Available CS5931 is a novel polypeptide from Ciona savignyi with anticancer activities. Previous study in our laboratory has shown that CS5931 can induce cell death via mitochondrial apoptotic pathway. In the present study, we found that the polypeptide could inhibit angiogenesis both in vitro and in vivo. CS5931 inhibited the proliferation, migration and formation of capillary-like structures of HUVECs (Human Umbilical Vein Endothelial Cell in a dose-dependent manner. Additionally, CS5931 repressed spontaneous angiogenesis of the zebrafish vessels. Further studies showed that CS5931 also blocked vascular endothelial growth factor (VEGF production but without any effect on its mRNA expression. Moreover, CS5931 reduced the expression of matrix metalloproteinases (MMP-2 and MMP-9 both on protein and mRNA levels in HUVEC cells. We demonstrated that CS5931 possessed strong anti-angiogenic activity both in vitro and in vivo, possible via VEGF and MMPs. This study indicates that CS5931 has the potential to be developed as a novel therapeutic agent as an inhibitor of angiogenesis for the treatment of cancer.

  5. Hyperosmotic stimulus induces reversible angiogenesis within the hypothalamic magnocellular nuclei of the adult rat: a potential role for neuronal vascular endothelial growth factor

    Directory of Open Access Journals (Sweden)

    Vincent Anne

    2005-03-01

    Full Text Available Abstract Background In mammals, the CNS vasculature is established during the postnatal period via active angiogenesis, providing different brain regions with capillary networks of various densities that locally supply adapted metabolic support to neurons. Thereafter this vasculature remains essentially quiescent excepted for specific pathologies. In the adult rat hypothalamus, a particularly dense network of capillary vessels is associated with the supraoptic (SON and paraventricular (PVN nuclei containing the magnocellular neurons secreting vasopressin and oxytocin, two neurohormones involved in the control of the body fluid homoeostasis. In the seventies, it was reported that proliferation of astrocytes and endothelial cells occurs within these hypothalamic nuclei when strong metabolic activation of the vasopressinergic and oxytocinergic neurons was induced by prolonged hyperosmotic stimulation. The aim of the present study was to determine whether such proliferative response to osmotic stimulus is related to local angiogenesis and to elucidate the cellular and molecular mechanisms involved. Results Our results provide evidence that cell proliferation occurring within the SON of osmotically stimulated adult rats corresponds to local angiogenesis. We show that 1 a large majority of the SON proliferative cells is associated with capillary vessels, 2 this proliferative response correlates with a progressive increase in density of the capillary network within the nucleus, and 3 SON capillary vessels exhibit an increased expression of nestin and vimentin, two markers of newly formed vessels. Contrasting with most adult CNS neurons, hypothalamic magnocellular neurons were found to express vascular endothelial growth factor (VEGF, a potent angiogenic factor whose production was increased by osmotic stimulus. When VEGF was inhibited by dexamethasone treatment or by the local application of a blocking antibody, the angiogenic response was strongly

  6. The use of transformed Escherichia coli for experimental angiogenesis induced by regulated in situ production of vascular endothelial growth factor--an alternative gene therapy.

    Science.gov (United States)

    Celec, Peter; Gardlík, Roman; Pálffy, Roland; Hodosy, Július; Stuchlík, Stanislav; Drahovská, Hana; Stuchlíková, Martina; Minárik, Gabriel; Lukács, Ján; Jurkovicová, Ingrid; Hulín, Ivan; Turna, Ján; Jakubovský, Ján; Kopáni, Martin; Danisovic, Lubos; Jandzík, Dávid; Kúdela, Matús; Yonemitsu, Yoshikazu

    2005-01-01

    Defects in angiogenesis (blood vessel formation) are responsible for two most important causes of death in developed countries (ischemic heart disease and cancer). Vascular endothelial growth factor (VEGF) plays a pivotal role in physiological and pathological regulation of angiogenesis. In the last years several studies have indicated the possibilities of VEGF in the therapy of ischemic heart disease. However, especially VEGF gene therapy (naked DNA, plasmids and adenovirus mediated) is associated with adverse side effects regarding the expression regulation. To prepare bacterial strains producing VEGF using plasmids containing the VEGF cDNA for the use in experimental angiogenesis. Escherichia coli strain BL21(DE3) was transformed with Bluescript vector containing the inserts with cDNA sequences coding VEGF-A isoforms (VEGF121, VEGF164, VEGF189). Selection of recombinants was achieved by cultivating E. coli cells on ampicillin-added medium. The expression of target genes in the T7 expression system was induced by isopropyl-beta-D-thiogalactoside (IPTG). Polyacrylamide gel electrophoresis of the cell lysates showed the presence of polypeptides of molecular weight corresponding with known values of VEGF isoforms. Blood vessel formation induced by bacterial VEGF production was proved in vivo in mice seven days after intraperitoneal injection of transformed bacteria by light microscopy. CONCLUSION AND HYPOTHESIS: In summary, E. coli strain expressing VEGF was prepared and its biological effect confirmed. Bacteria, which produce angiogenic factors, provide a new modality for experimental angiogenesis and may be also suitable for clinical use. The in situ production of therapeutic proteins using optimalized prokaryotic expression systems can represent a useful tool for treatment based on molecular biomedicine. The main advantage of the described approach lies in the enhanced regulation control--bacterial expression can be regulated positively (induction by exogenous

  7. SPECT and PET imaging of angiogenesis and arteriogenesis in pre-clinical models of myocardial ischemia and peripheral vascular disease

    Energy Technology Data Exchange (ETDEWEB)

    Hendrikx, Geert [Maastricht University Medical Centre MUMC+, Department of Nuclear Medicine, Postbox 5800, Maastricht (Netherlands); Maastricht University, Cardiovascular Research Institute Maastricht (CARIM), Maastricht (Netherlands); Voeoe, Stefan [Maastricht University Medical Centre MUMC+, Department of Nuclear Medicine, Postbox 5800, Maastricht (Netherlands); Bauwens, Matthias [Maastricht University Medical Centre MUMC+, Department of Nuclear Medicine, Postbox 5800, Maastricht (Netherlands); Maastricht University, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht (Netherlands); Post, Mark J. [Maastricht University, Department of Physiology, Maastricht (Netherlands); Maastricht University, Cardiovascular Research Institute Maastricht (CARIM), Maastricht (Netherlands); Mottaghy, Felix M. [Maastricht University Medical Centre MUMC+, Department of Nuclear Medicine, Postbox 5800, Maastricht (Netherlands); University Hospital, RWTH Aachen University, Department of Nuclear Medicine, Aachen (Germany)

    2016-12-15

    The extent of neovascularization determines the clinical outcome of coronary artery disease and other occlusive cardiovascular disorders. Monitoring of neovascularization is therefore highly important. This review article will elaborately discuss preclinical studies aimed at validating new nuclear angiogenesis and arteriogenesis tracers. Additionally, we will briefly address possible obstacles that should be considered when designing an arteriogenesis radiotracer. A structured medline search was the base of this review, which gives an overview on different radiopharmaceuticals that have been evaluated in preclinical models. Neovascularization is a collective term used to indicate different processes such as angiogenesis and arteriogenesis. However, while it is assumed that sensitive detection through nuclear imaging will facilitate translation of successful therapeutic interventions in preclinical models to the bedside, we still lack specific tracers for neovascularization imaging. Most nuclear imaging research to date has focused on angiogenesis, leaving nuclear arteriogenesis imaging largely overlooked. Although angiogenesis is the process which is best understood, there is no scarcity in theoretical targets for arteriogenesis imaging. (orig.)

  8. Plexin-D1/Semaphorin 3E pathway may contribute to dysregulation of vascular tone control and defective angiogenesis in systemic sclerosis.

    Science.gov (United States)

    Mazzotta, Celestina; Romano, Eloisa; Bruni, Cosimo; Manetti, Mirko; Lepri, Gemma; Bellando-Randone, Silvia; Blagojevic, Jelena; Ibba-Manneschi, Lidia; Matucci-Cerinic, Marco; Guiducci, Serena

    2015-08-21

    The vascular and nervous systems have several anatomic and molecular mechanism similarities. Emerging evidence suggests that proteins involved in transmitting axonal guidance cues, including members of class III semaphorin (Sema3) family, play a critical role in blood vessel guidance during physiological and pathological vascular development. Sema3E is a natural antiangiogenic molecule that causes filopodial retraction in endothelial cells, inhibiting cell adhesion by disrupting integrin-mediated adhesive structures. The aim of the present study was to investigate whether in systemic sclerosis (SSc) Plexin-D1/Sema3E axis could be involved in the dysregulation of vascular tone control and angiogenesis. Sema3E levels were measured by quantitative colorimetric sandwich ELISA in serum samples from 48 SSc patients, 45 subjects with primary Raynaud's phenomenon (pRP) and 48 age-matched and sex-matched healthy controls. Immunofluorescence staining on skin sections from 14 SSc patients and 12 healthy subjects was performed to evaluate Sema3E and Plexin-D1 expression. Western blotting was used to assess Plexin-D1/Sema3E axis in human SSc and healthy dermal microvascular endothelial cells (SSc-MVECs and H-MVECs, respectively) at basal condition and after stimulation with recombinant human vascular endothelial growth factor (VEGF), SSc and healthy sera. Capillary morphogenesis on Matrigel was performed on H-MVECs treated with healthy, pRP or SSc sera in the presence of Sema3E and Plexin-D1 soluble peptides. Serum Sema3E levels were significantly higher both in pRP subjects and SSc patients than in controls. In SSc, Sema3E levels were significantly increased in patients with early nailfold videocapillaroscopy (NVC) pattern compared to active/late patterns and pRP, and in patients without digital ulcers versus those with ulcers. In SSc skin, Sema3E expression was strongly increased in the microvascular endothelium. Cultured SSc-MVECs showed higher levels of phosphorylated

  9. Key role of microRNA-15a in the KLF4 suppressions of proliferation and angiogenesis in endothelial and vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Zheng, Xuemei; Li, Aiqin; Zhao, Liang; Zhou, Tengfei; Shen, Qiang; Cui, Qinghua; Qin, Xiaomei

    2013-01-01

    Highlights: •This is the first demonstration that miR-15a is a novel target gene of KLF4. •A novel finding that KLF4 increases the expression of miR-15a in ECs and VSMCs. •The novel mechanism is that KLF4 inhibits the proliferation of ECs via miR-15a. •The novel mechanism is that KLF4 inhibits the proliferation of VSMCs via miR-15. •miR-15a mediates the anti-angiogenic activity of KLF4. -- Abstract: While recent insights indicate that the transcription factor Krüppel-like factor 4 (KLF4) is indispensable for vascular homeostasis, its exact role in proliferation and angiogenesis and how it functions remain unresolved. Thus, the aim of the present study was to evaluate the role of KLF4 in the proliferations of endothelial and vascular smooth muscle cells, as well as the angiogenesis. The overexpression of KLF4 in endothelial cells significantly impaired tube formation. KLF4 inhibited the formation of a vascular network in implanted Matrigel plugs in nude mice. Importantly, we found that KLF4 significantly upregulated the miR-15a expression in endothelial cells and vascular smooth muscle cells, and conversely, KLF4 depletion reduced the amount of miR-15a. Furthermore, KLF4 blocked cell cycle progression and decreased cyclin D1 expression in endothelial cells and vascular smooth muscle cells through the induction of miR-15a. Intriguingly, the delivery of a miR-15a antagomir to nude mice resulted in marked attenuation of the anti-angiogenic effect of KLF4. Collectively, our present study provide the first evidence that miR-15a as a direct transcriptional target of KLF4 that mediates the anti-proliferative and anti-angiogenic actions of KLF4, which indicates that KLF4 upregulation of miR-15a may represent a therapeutic option to suppress proliferative vascular disorders

  10. Epithelial to mesenchymal transition in arsenic-transformed cells promotes angiogenesis through activating β-catenin–vascular endothelial growth factor pathway

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhishan; Humphries, Brock; Xiao, Hua [Department of Physiology, Michigan State University, East Lansing, MI 48824 (United States); Jiang, Yiguo [Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou 510182 (China); Yang, Chengfeng, E-mail: yangcf@msu.edu [Department of Physiology, Michigan State University, East Lansing, MI 48824 (United States); Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824 (United States)

    2013-08-15

    Arsenic exposure represents a major health concern increasing cancer risks, yet the mechanism of arsenic carcinogenesis has not been elucidated. We and others recently reported that cell malignant transformation by arsenic is accompanied by epithelial to mesenchymal transition (EMT). However, the role of EMT in arsenic carcinogenesis is not well understood. Although previous studies showed that short term exposure of endothelial cells to arsenic stimulated angiogenesis, it remains to be determined whether cells that were malignantly transformed by long term arsenic exposure have a pro-angiogenic effect. The objective of this study was to investigate the effect of arsenic-transformed human bronchial epithelial cells that underwent EMT on angiogenesis and the underlying mechanism. It was found that the conditioned medium from arsenic-transformed cells strongly stimulated tube formation by human umbilical vein endothelial cells (HUVECs). Moreover, enhanced angiogenesis was detected in mouse xenograft tumor tissues resulting from inoculation of arsenic-transformed cells. Mechanistic studies revealed that β-catenin was activated in arsenic-transformed cells up-regulating its target gene expression including angiogenic-stimulating vascular endothelial growth factor (VEGF). Stably expressing microRNA-200b in arsenic-transformed cells that reversed EMT inhibited β-catenin activation, decreased VEGF expression and reduced tube formation by HUVECs. SiRNA knockdown β-catenin decreased VEGF expression. Adding a VEGF neutralizing antibody into the conditioned medium from arsenic-transformed cells impaired tube formation by HUVECs. Reverse transcriptase-PCR analysis revealed that the mRNA levels of canonical Wnt ligands were not increased in arsenic-transformed cells. These findings suggest that EMT in arsenic-transformed cells promotes angiogenesis through activating β-catenin–VEGF pathway. - Highlights: • Arsenic-transformed cells that underwent EMT displayed a pro

  11. Angiogenesis and Melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Ribatti, Domenico, E-mail: ribatti@anatomia.uniba.it; Annese, Tiziana; Longo, Vito [Department of Human Anatomy and Histology, University of Bari Medical School, Piazza G. Cesare, 11, Policlinico 70124, Bari (Italy)

    2010-02-25

    Angiogenesis occurs in pathological conditions, such as tumors, where a specific critical point in tumor progression is the transition from the avascular to the vascular phase. Tumor angiogenesis depends mainly on the release by neoplastic cells of growth factors specific for endothelial cells, which are able to stimulate the growth of the host’s blood vessels. This article summarizes the literature concerning the relationship between angiogenesis and human melanoma progression. The recent applications of antiangiogenic agents which interfere with melanoma progression are also described.

  12. Quantitative gene-expression of the tumor angiogenesis markers vascular endothelial growth factor, integrin alphaV and integrin beta3 in human neuroendocrine tumors

    DEFF Research Database (Denmark)

    Oxboel, Jytte; Binderup, Tina; Knigge, Ulrich

    2009-01-01

    compared to both colorectal liver metastases (p=0.10) and normal liver tissue (p=0.06). In neuroendocrine tumors, gene-expression was highly variable of VEGF (530-fold), integrin alphaV (23-fold) and integrin beta3 (106-fold). Quantitative gene-expression levels of the key angiogenesis molecules VEGF......, in neuroendocrine tumors. We used quantitative real-time PCR for measuring mRNA gene-expression of vascular endothelial growth factor (VEGF), integrin alphaV, and integrin beta3, and CD34 for a group of patients with neuroendocrine tumors (n=13). Tissue from patients with colorectal cancer liver metastases (n=14......) and normal liver tissues (n=16) was used as control. We found a lower mRNA level of VEGF in neuroendocrine tumors compared to both colorectal liver metastases (pbeta3 there was also a borderline significant lower level of mRNA in neuroendocrine tumors...

  13. Inhibiting trophoblast PAR-1 overexpression suppresses sFlt-1-induced anti-angiogenesis and abnormal vascular remodeling: a possible therapeutic approach for preeclampsia.

    Science.gov (United States)

    Zhao, Yin; Zheng, YanFang; Liu, XiaoXia; Luo, QingQing; Wu, Di; Liu, XiaoPing; Zou, Li

    2018-03-01

    Is it possible to improve vascular remodeling by inhibiting the excessive expression of protease-activated receptor 1 (PAR-1) in trophoblast of abnormal placenta? Inhibition of trophoblast PAR-1 overexpression may promote placental angiogenesis and vascular remodeling, offering an alternative therapeutic approach for preeclampsia. PAR-1 is high-affinity receptor of thrombin. Thrombin increases sFlt-1 secretion in trophoblast via the activation of PAR-1. It is reported that the expression of both thrombin and PAR-1 expression are increased in placentas of preeclampsia patients compared with normal placentas. Trophoblast cells were transfected with PAR-1 short hairpin RNA (shRNA) or PAR-1 overexpression plasmids in vitro. Tube formation assays and a villus-decidua co-culture system were used to study the effect of PAR-1 inhibition on placental angiogenesis and vascular remodeling, respectively. Placentas from rats with preeclampsia were transfected with PAR-1 shRNA to confirm the effect of inhibiting PAR-1 overexpression in placenta. The trophoblast cell line HTR-8/SVneo was transfected with PAR-1 shRNA or PAR-1 overexpression plasmids. After 48 h, supernatant was collected and the level of sFlt-1 secretion was measured by ELISA. Human umbilical cord epithelial cells and a villus-decidua co-culture system were treated with conditioned media to study the effect of PAR-1 inhibition on tube formation and villi vascular remodeling. A preeclampsia rat model was established by intraperitoneal injection of L-NAME. Plasmids were injected into the placenta of the preeclampsia rats and systolic blood pressure was measured on Days 15 and 19. The effect of different treatments was evaluated by proteinuria, placental weights, fetal weights and fetal numbers in study and control groups. The level of serum sFlt-1 in rats with preeclampsia was also measured. Changes in the placenta microvessels were studied by histopathological staining. PAR-1 shRNA inhibited PAR-1 expression and

  14. Ferric citrate hydrate, a new phosphate binder, prevents the complications of secondary hyperparathyroidism and vascular calcification.

    Science.gov (United States)

    Iida, Akio; Kemmochi, Yusuke; Kakimoto, Kochi; Tanimoto, Minako; Mimura, Takayuki; Shinozaki, Yuichi; Uemura, Atsuhiro; Matsuo, Akira; Matsushita, Mutsuyoshi; Miyamoto, Ken-ichi

    2013-01-01

    Ferric citrate hydrate (JTT-751) is being developed as a treatment for hyperphosphatemia in chronic kidney disease patients, and shows serum phosphorus-reducing effects on hyperphosphatemia in hemodialysis patients. We examined whether JTT-751 could reduce phosphorus absorption in normal rats and prevent the progression of ectopic calcification, secondary hyperparathyroidism and bone abnormalities in chronic renal failure (CRF) rats. Normal rats were fed a diet containing 0.3, 1 or 3% JTT-751 for 7 days. The effects of JTT-751 on phosphorus absorption were evaluated with fecal and urinary phosphorus excretion. Next, a CRF model simulating hyperphosphatemia was induced by feeding rats a 0.75% adenine diet. After 21 days of starting the adenine diet feeding, 1 or 3% JTT-751 was administered for 35 days by dietary admixture. The serum phosphorus levels and mineral parameters were measured. Calcification in the aorta was examined biochemically and histopathologically. Hyperparathyroidism and bone abnormalities were evaluated by histopathological analysis of the parathyroid and femur, respectively. In normal rats, JTT-751 increased fecal phosphorus excretion and reduced phosphorus absorption and urinary phosphorus excretion. In CRF rats, JTT-751 reduced serum phosphorus levels, the calcium-phosphorus product and calcium content in the aorta. Serum intact parathyroid hormone levels and the incidence and severity of parathyroid hyperplasia were also decreased. JTT-751 reduced femoral bone fibrosis, porosity and osteoid formation. JTT-751 could bind with phosphate in the gastrointestinal tract, increase fecal phosphorus excretion and reduce phosphorus absorption. JTT-751 could prevent the progression of ectopic calcification, secondary hyperparathyroidism and bone abnormalities in rats. Copyright © 2013 S. Karger AG, Basel.

  15. PF573,228 inhibits vascular tumor cell growth, migration as well as angiogenesis, induces apoptosis and abrogates PRAS40 and S6RP phosphorylation.

    Science.gov (United States)

    Mabeta, Peace

    2016-09-01

    PF573,228 is a compound that targets focal adhesion kinase (FAK), a non-receptor protein kinase, which is over-expressed in various tumors. The aim of this study was to evaluate the effects of PF573,228 on the cells derived from mouse vascular tumors, namely, endothelioma cells. The treatment of endothelioma cells with PF573,228 reduced their growth with an IC50 of approximately 4.6 μmol L-1 and inhibited cell migration with an IC50 of about 0.01 μmol L-1. Microscopic studies revealed morphological attributes of apoptosis. These observations were confirmed by ELISA, which showed increased caspase-3 activity. PF573,228 also inhibited angiogenesis in a dose-dependent manner, with an IC50 of approximately 3.7 μmol L-1, and abrogated the phosphorylation of cell survival proteins, proline-rich Akt substrate (PRAS40) and S6 ribosomal protein (S6RP). Array data further revealed that PF573,228 induced caspase-3 activation, thus promoting apoptosis. Since all the processes inhibited by PF573,228 provide important support to tumor survival and progression, the drug may have a potential role in the treatment of vascular tumors.

  16. Cyclin A1 modulates the expression of vascular endothelial growth factor and promotes hormone-dependent growth and angiogenesis of breast cancer.

    Directory of Open Access Journals (Sweden)

    Azharuddin Sajid Syed Khaja

    Full Text Available Alterations in cellular pathways related to both endocrine and vascular endothelial growth factors (VEGF may contribute to breast cancer progression. Inhibition of the elevated levels of these pathways is associated with clinical benefits. However, molecular mechanisms by which endocrine-related pathways and VEGF signalling cooperatively promote breast cancer progression remain poorly understood. In the present study, we show that the A-type cyclin, cyclin A1, known for its important role in the initiation of leukemia and prostate cancer metastasis, is highly expressed in primary breast cancer specimens and metastatic lesions, in contrasting to its barely detectable expression in normal human breast tissues. There is a statistically significant correlation between cyclin A1 and VEGF expression in breast cancer specimens from two patient cohorts (p<0.01. Induction of cyclin A1 overexpression in breast cancer cell line MCF-7 results in an enhanced invasiveness and a concomitant increase in VEGF expression. In addition, there is a formation of protein-protein complexes between cyclin A1 and estrogen receptor ER-α cyclin A1 overexpression increases ER-α expression in MCF-7 and T47D cells. In mouse tumor xenograft models in which mice were implanted with MCF-7 cells that overexpressed cyclin A1 or control vector, cyclin A1 overexpression results in an increase in tumor growth and angiogenesis, which is coincident with an enhanced expression of VEGF, VEGFR1 and ER-α Our findings unravel a novel role for cyclin A1 in growth and progression of breast cancer, and suggest that multiple cellular pathways, including cell cycle regulators, angiogenesis and estrogen receptor signalling, may cooperatively contribute to breast cancer progression.

  17. Targeting Vascular Endothelial Growth Factor Receptor 2 and Protein Kinase D1 Related Pathways by a Multiple Kinase Inhibitor in Angiogenesis and Inflammation Related Processes In Vitro

    Science.gov (United States)

    Varga, Attila; Gyulavári, Pál; Greff, Zoltán; Futosi, Krisztina; Németh, Tamás; Simon-Szabó, Laura; Kerekes, Krisztina; Szántai-Kis, Csaba; Brauswetter, Diána; Kokas, Márton; Borbély, Gábor; Erdei, Anna; Mócsai, Attila; Kéri, György; Vántus, Tibor

    2015-01-01

    Emerging evidence suggests that the vascular endothelial growth factor receptor 2 (VEGFR2) and protein kinase D1 (PKD1) signaling axis plays a critical role in normal and pathological angiogenesis and inflammation related processes. Despite all efforts, the currently available therapeutic interventions are limited. Prior studies have also proved that a multiple target inhibitor can be more efficient compared to a single target one. Therefore, development of novel inflammatory pathway-specific inhibitors would be of great value. To test this possibility, we screened our molecular library using recombinant kinase assays and identified the previously described compound VCC251801 with strong inhibitory effect on both VEGFR2 and PKD1. We further analyzed the effect of VCC251801 in the endothelium-derived EA.hy926 cell line and in different inflammatory cell types. In EA.hy926 cells, VCC251801 potently inhibited the intracellular activation and signaling of VEGFR2 and PKD1 which inhibition eventually resulted in diminished cell proliferation. In this model, our compound was also an efficient inhibitor of in vitro angiogenesis by interfering with endothelial cell migration and tube formation processes. Our results from functional assays in inflammatory cellular models such as neutrophils and mast cells suggested an anti-inflammatory effect of VCC251801. The neutrophil study showed that VCC251801 specifically blocked the immobilized immune-complex and the adhesion dependent TNF-α -fibrinogen stimulated neutrophil activation. Furthermore, similar results were found in mast cell degranulation assay where VCC251801 caused significant reduction of mast cell response. In summary, we described a novel function of a multiple kinase inhibitor which strongly inhibits the VEGFR2-PKD1 signaling and might be a novel inhibitor of pathological inflammatory pathways. PMID:25874616

  18. Targeting vascular endothelial growth factor receptor 2 and protein kinase D1 related pathways by a multiple kinase inhibitor in angiogenesis and inflammation related processes in vitro.

    Directory of Open Access Journals (Sweden)

    Attila Varga

    Full Text Available Emerging evidence suggests that the vascular endothelial growth factor receptor 2 (VEGFR2 and protein kinase D1 (PKD1 signaling axis plays a critical role in normal and pathological angiogenesis and inflammation related processes. Despite all efforts, the currently available therapeutic interventions are limited. Prior studies have also proved that a multiple target inhibitor can be more efficient compared to a single target one. Therefore, development of novel inflammatory pathway-specific inhibitors would be of great value. To test this possibility, we screened our molecular library using recombinant kinase assays and identified the previously described compound VCC251801 with strong inhibitory effect on both VEGFR2 and PKD1. We further analyzed the effect of VCC251801 in the endothelium-derived EA.hy926 cell line and in different inflammatory cell types. In EA.hy926 cells, VCC251801 potently inhibited the intracellular activation and signaling of VEGFR2 and PKD1 which inhibition eventually resulted in diminished cell proliferation. In this model, our compound was also an efficient inhibitor of in vitro angiogenesis by interfering with endothelial cell migration and tube formation processes. Our results from functional assays in inflammatory cellular models such as neutrophils and mast cells suggested an anti-inflammatory effect of VCC251801. The neutrophil study showed that VCC251801 specifically blocked the immobilized immune-complex and the adhesion dependent TNF-α -fibrinogen stimulated neutrophil activation. Furthermore, similar results were found in mast cell degranulation assay where VCC251801 caused significant reduction of mast cell response. In summary, we described a novel function of a multiple kinase inhibitor which strongly inhibits the VEGFR2-PKD1 signaling and might be a novel inhibitor of pathological inflammatory pathways.

  19. Regulation of angiogenesis by vascular endothelial growth factor and angiopoietin-1 in the rat aorta model: distinct temporal patterns of intracellular signaling correlate with induction of angiogenic sprouting.

    Science.gov (United States)

    Zhu, Wen-Hui; MacIntyre, Angela; Nicosia, Roberto Francesco

    2002-09-01

    Vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang-1) promote the spontaneous angiogenic response of freshly cut rat aortic rings. When VEGF and Ang-1 were tested in cultures of 14-day-old rings, which are quiescent and unable to spontaneously produce neovessels, only VEGF was capable of inducing an angiogenic response. Ang-1 failed to initiate angiogenesis in this system, but significantly potentiated VEGF-induced neovessel sprouting. Potential differences in cell signaling triggered by VEGF and Ang-1 were evaluated in cultures of quiescent rings. VEGF induced biphasic and prolonged (15 minutes and 4 to 24 hours) phosphorylation of p44/42 MAPK and Akt, while the effect of Ang-1 was transient and monophasic (15 minutes). Both VEGF and Ang-1 induced rapid, monophasic (15 minutes) phosphorylation of p38 MAPK. When VEGF and Ang-1 were administered together, the second peak of VEGF-induced p44/42 MAPK phosphorylation was markedly reduced. The effect of the VEGF/Ang-1 combination on AKT phosphorylation was, instead, additive over time, and sustained over a 24-hour period. The VEGF/Ang-1 combination caused an additive effect also on p38 MAPK phosphorylation at 1 hour. Confocal microscopy of VEGF-, Ang-1, or VEGF/Ang-1-stimulated aortic rings double stained at time points of maximal phosphorylation for cell markers and signal transduction proteins demonstrated phosphorylated p44/42 MAPK, p38 MAPK, and Akt predominantly in endothelial cells. Experiments with specific inhibitors demonstrated that p44/42 MAPK and Akt, but not p38 MAPK, are necessary for neovessel sprouting. These results identify p44/42 MAPK and Akt as critical intracellular mediators of angiogenesis, whose transient phosphorylation is, however, not sufficient for the initiation of this process. The observation that sustained phosphorylation of these signaling pathways, particularly of Akt, correlates with induction of angiogenesis suggests that the duration of phosphorylation signals

  20. Angiogenesis and Its Therapeutic Opportunities

    Directory of Open Access Journals (Sweden)

    So Young Yoo

    2013-01-01

    Full Text Available Angiogenesis plays critical roles in human physiology that range from reproduction and fetal growth to wound healing and tissue repair. The sophisticated multistep process is tightly regulated in a spatial and temporal manner by “on-off switch signals” between angiogenic factors, extracellular matrix components, and endothelial cells. Uncontrolled angiogenesis may lead to several angiogenic disorders, including vascular insufficiency (myocardial or critical limb ischemia and vascular overgrowth (hemangiomas, vascularized tumors, and retinopathies. Thus, numerous therapeutic opportunities can be envisaged through the successful understanding and subsequent manipulation of angiogenesis. Here, we review the clinical implications of angiogenesis and discuss pro- and antiangiogenic agents that offer potential therapy for cancer and other angiogenic diseases.

  1. The role of the vascular endothelial growth factor/vascular endothelial growth factor receptors axis mediated angiogenesis in curcumin-loaded nanostructured lipid carriers induced human HepG2 cells apoptosis

    Directory of Open Access Journals (Sweden)

    Fengling Wang

    2015-01-01

    Full Text Available Background: Curcumin (diferuloylmethane, the active constituent of turmeric extract has potent anti-cancer properties have been demonstrated in hepatocellular carcinoma (HCC. However, its underlying molecular mechanism of therapeutic effects remains unclear. Vascular endothelial growth factor (VEGF and its receptors (VEGFRs have crucial roles in tumor angiogenesis. Purpose: The goal of this study was to investigate the role of the VEGF/VEGFRs mediated angiogenesis during the proliferation and apoptosis of human HepG2 hepatoma cell line and the effect of curcumin-loaded nanostructured lipid carriers (Cur-NLC. Materials and Methods: The proliferation of HepG2 cells was determined by methyl thiazolyl tetrazolium after exposure to Cur-NLC and native curcumin. Apoptosis was quantified by flow cytometry with annexin V-fluorescein isothiocyanate and propidium iodide staining. Cellular internalization of Cur-NLC was observed by fluorescent microscope. The level of VEGF was detected by enzyme-linked immunosorbent assay kits. The expression of VEGFRs was quantified by Western blotting. Results: Cur-NLC was more effective in inhibiting the proliferation and enhancing the apoptosis of HepG2 cells than native curcumin. Fluorescent microscope analysis showed that HepG2 cells internalized Cur-NLC more effectively than native curcumin. Furthermore, Cur-NLC down-regulated the level of VEGF and the expression of VEGFR-2, but had a slight effect on VEGFR-1. Conclusion: These results clearly demonstrated that Cur-NLC was more effective in anti-cancer activity than the free form of curcumin. These studies demonstrate for the 1 st time that Cur-NLC exerts an antitumor effect on HepG2 cells by modulating VEGF/VEGFRs signaling pathway.

  2. Huoxue Anxin Recipe () promotes myocardium angiogenesis of acute myocardial infarction rats by up-regulating miR-210 and vascular endothelial growth factor.

    Science.gov (United States)

    Wang, Jie; Zhang, Yun; Liu, Yong-Mei; Guo, Li-Li; Wu, Ping; Dong, Yu; Wu, Guang-Jun

    2016-09-01

    To investigate the microRNAs (miRNAs) expression profile of acute myocardial infarction (AMI) rats and the regulating effects of Huoxue Anxin Recipe (, HAR) on angiogenesis-related miRNAs and genes. Forty-five Wistar rats were randomly assigned to 3 groups according to a random number table: sham, AMI, and AMI+HAR groups (15 in each group). AMI rats were established by ligation of the left descending coronary artery. HAR was intragastrically administered to rats of the AMI+HAR group for successive 21 days since modeling, meanwhile the same volume of 0.9% normal saline was administered to rats of the sham and AMI groups. Doppler echocardiography was used for noninvasive cardiac function test. Hematoxylin and eosin staining was used to observe the histopathological change. miRNAs expression profile was detected by quantitative realtime polymerase chain reaction (qRT-PCR). The mRNA and protein expressions of vascular endothelial growth factor (VEGF), and a target gene of miR-210 was further detected by qRT-PCR and Western blot, respectively. The microvessels density of myocardium was evaluated by CD31 immunostaining. Compared with the sham group, ejection fraction (EF) and fractional shortening (FS) values were decreased significantly in the AMI group (Pinfarction area and the interstitial collagen deposition were increased obviously. As for the AMI+HAR group, EF and FS values were increased significantly (Pinfarction area was reduced and the interstitial collagen deposition were alleviated significantly. Total of 23 miRNAs in the AMI group expressed differently by at least 1.5 folds compared with those in the sham group; 5 miRNAs in the AMI+HAR group expressed differently by at least 1.5 folds compared with those in the AMI group. Among them, miR-210 was low in the AMI group and high in the AMI+HAR group. The relative mRNA and protein expressions of VEGF were decreased significantly in the AMI group (Pinfarction area, alleviate the interstitial fibrosis and improve

  3. Expression, purification, and characterization of a diabody against the most important angiogenesis cell receptor: Vascular endothelial growth factor receptor 2

    Directory of Open Access Journals (Sweden)

    Mahdi Behdani

    2012-01-01

    Full Text Available Antibodies and their derivative fragments have long been used as tools in a variety of applications, in fundamental research work, biotechnology, diagnosis, and therapy. Camels produce single heavy-chain antibodies (VHH in addition to usual antibodies. These minimal-sized binders are very robust and bind the antigen with high affinity in a monomeric state. Vascular endothelial growth factor recepror-2 (VEGFR2 is an important tumor-associated receptor that blockade of its signaling can lead to the inhibition of neovascularization and tumor metastasis. Here, we describe the construction, expression, and purification VEGFR2-specific Diabody. Two variable fragments of a same camel anti-VEGFR2 antibody were linked together by the upper hinge segment of antibody to make a diabody. We showed the ability of diabody to recognition of VEGFR2 on the cell surface by FACS. Diabodies can be produced in the low-cost prokaryotic expression system, so they are suitable molecules for diagnostic and therapeutic issues.

  4. Hypoxia-inducible factor-1α, vascular endothelial growth factor, inducible nitric oxide synthase, and endothelin-1 expression correlates with angiogenesis in congenital heart disease

    Directory of Open Access Journals (Sweden)

    Hsin-Ling Yin

    2016-07-01

    Full Text Available In Taiwan, the average prevalence of congenital heart disease (CHD is 13.08/1000 live births. Most children with CHD die before the age of 5 years; therefore, identifying treatment methods to extend the life of CHD patients is an important issue in clinical practice. The objective of this study is to evaluate the roles of hypoxia-inducible factor-1α (HIF-1α, vascular endothelial growth factor (VEGF, inducible nitric oxide synthase (iNOS, endothelin-1 (ET-1, and CD34 in CHD autopsy cases in comparison with autopsy cases without CHD. The study included 19 autopsy cases, which were divided into the following four groups: acyanotic CHD (n = 11, cyanotic CHD (n = 3, CHD associated with chromosomal abnormalities (n = 3, and complex CHD (n = 2. Heart specimens obtained from 10 autopsy cases without CHD were included as controls. Our results indicated that high percentages of HIF-1α (100%, VEGF (89.5%, iNOS (78.9%, and ET-1 (84.2% expressions were observed in CHD autopsy cases and this was found to be significant. HIF-1α induced by hypoxia could play a potential role in relating downstream gene expressions in CHD patients. Upregulation of VEGF by HIF-1α could play an important role in triggering angiogenesis to protect myocardial cell survival in a hypoxic microenvironment. Therefore, HIF-1α could be a significant prognosis marker in CHD and be a prospective candidate in the development of target therapy in cardiovascular diseases.

  5. Cytotoxicity of VEGF121/rGel on vascular endothelial cells resulting in inhibition of angiogenesis is mediated via VEGFR-2

    Directory of Open Access Journals (Sweden)

    Hittelman Walter N

    2011-08-01

    Full Text Available Abstract Background The fusion protein VEGF121/rGel composed of the growth factor VEGF121 and the plant toxin gelonin targets the tumor neovasculature and exerts impressive anti-vascular effects. We have previously shown that VEGF121/rGel is cytotoxic to endothelial cells overexpressing VEGFR-2 but not to endothelial cells overexpressing VEGFR-1. In this study, we examined the basis for the specific toxicity of this construct and assessed its intracellular effects in vitro and in vivo. Methods We investigated the binding, cytotoxicity and internalization profile of VEGF121/rGel on endothelial cells expressing VEGFR-1 or VEGFR-2, identified its effects on angiogenesis models in vitro and ex vivo, and explored its intracellular effects on a number of molecular pathways using microarray analysis. Results Incubation of PAE/VEGFR-2 and PAE/VEGFR-1 cells with 125I-VEGF121/rGel demonstrated binding specificity that was competed with unlabeled VEGF121/rGel but not with unlabeled gelonin. Assessment of the effect of VEGF121/rGel on blocking tube formation in vitro revealed a 100-fold difference in IC50 levels between PAE/VEGFR-2 (1 nM and PAE/VEGFR-1 (100 nM cells. VEGF121/rGel entered PAE/VEGFR-2 cells within one hour of treatment but was not detected in PAE/VEGFR-1 cells up to 24 hours after treatment. In vascularization studies using chicken chorioallantoic membranes, 1 nM VEGF121/rGel completely inhibited bFGF-stimulated neovascular growth. The cytotoxic effects of VEGF121/rGel were not apoptotic since treated cells were TUNEL-negative with no evidence of PARP cleavage or alteration in the protein levels of select apoptotic markers. Microarray analysis of VEGF121/rGel-treated HUVECs revealed the upregulation of a unique "fingerprint" profile of 22 genes that control cell adhesion, apoptosis, transcription regulation, chemotaxis, and inflammatory response. Conclusions Taken together, these data confirm the selectivity of VEGF121/rGel for VEGFR-2

  6. Angiogenesis in vestibular schwannomas

    DEFF Research Database (Denmark)

    Møller, Martin Nue; Werther, Kim; Nalla, Amarnadh

    2010-01-01

    targets the angiogenic process by investigation of tumor expression of MMP-2, MMP-9, and tissue inhibitors of metalloproteinase (TIMP)-1. A possible correlation with gender, patient age, symptom duration, tumor size, and the absolute and relative growth rate is explored.......Vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs) are potent mediators of tumor angiogenesis. It has been demonstrated that vestibular schwannoma VEGF expression correlates with tumor growth pattern, whereas knowledge on the expression of MMPs is lacking. This study...

  7. Therapeutic angiogenesis for cardiovascular disease

    Directory of Open Access Journals (Sweden)

    D'Amore Patricia A

    2001-10-01

    Full Text Available Abstract The identification of angiogenic growth factors, such as vascular endothelial growth factor and fibroblast growth factor, has fueled interest in using such factors to induce therapeutic angiogenesis. The results of numerous animal studies and clinical trials have offered promise for new treatment strategies for various ischemic diseases. Increased understanding of the cellular and molecular biology of vessel growth has, however, prompted investigators and clinicians alike to reconsider the complexity of therapeutic angiogenesis. The realization that formation of a stable vessel is a complex, multistep process may provide useful insights into the design of the next generation of angiogenesis therapy.

  8. Angiogenesis Inhibitors

    Science.gov (United States)

    ... Peer Review and Funding Outcomes Step 4: Award Negotiation & Issuance Manage Your Award Grants Management Contacts Monitoring ... revealed the potential for complications that reflect the importance of angiogenesis in many normal body processes, such ...

  9. Angiogenesis and Cancer Prevention by Selenium

    National Research Council Canada - National Science Library

    Lu, Junxuan

    2002-01-01

    ...) in breast cancer chemoprevention. We first established the anti- angiogenesis phenomenon of chemopreventive intake of Se with data supporting an association of reduced microvessel density and decreased vascular endothelial growth...

  10. Preclinical MRI experience in imaging angiogenesis.

    Science.gov (United States)

    Neeman, M

    2000-01-01

    Magnetic resonance imaging (MRI) provides a range of non-invasive measures for visualization of tumor angiogenesis in the clinic as well as in experimental tumor models. MRI methods were developed for assessment of spatial and temporal changes in perfusion, blood volume fraction, vascular permeability, vascular function, vascular maturation, vessel diameter and tortuosity. Molecular targeted contrast agents were used for mapping specific markers of neovasculature. These approaches were applied for analysis of a number of regulatory mechanisms controlling tumor angiogenesis and for preclinical evaluation of tumor response to antiangiogenic agents.

  11. A novel technique for quantifying changes in vascular density, endothelial cell proliferation and protein expression in response to modulators of angiogenesis using the chick chorioallantoic membrane (CAM assay

    Directory of Open Access Journals (Sweden)

    Kohn Elise

    2004-01-01

    Full Text Available Abstract Reliable quantitative evaluation of molecular pathways is critical for both drug discovery and treatment monitoring. We have modified the CAM assay to quantitatively measure vascular density, endothelial proliferation, and changes in protein expression in response to anti-angiogenic and pro-angiogenic agents. This improved CAM assay can correlate changes in vascular density with changes seen on a molecular level. We expect that these described modifications will result in a single in vivo assay system, which will improve the ability to investigate molecular mechanisms underlying the angiogenic response.

  12. PF573,228 inhibits vascular tumor cell growth, migration as well as angiogenesis, induces apoptosis and abrogates PRAS40 and S6RP phosphorylation

    Directory of Open Access Journals (Sweden)

    Mabeta Peace

    2016-09-01

    Full Text Available PF573,228 is a compound that targets focal adhesion kinase (FAK, a non-receptor protein kinase, which is over-expressed in various tumors. The aim of this study was to evaluate the effects of PF573,228 on the cells derived from mouse vascular tumors, namely, endothelioma cells.

  13. Diabetes and Wound Angiogenesis

    Science.gov (United States)

    Okonkwo, Uzoagu A.; DiPietro, Luisa A.

    2017-01-01

    Diabetes Mellitus Type II (DM2) is a growing international health concern with no end in sight. Complications of DM2 involve a myriad of comorbidities including the serious complications of poor wound healing, chronic ulceration, and resultant limb amputation. In skin wound healing, which has definite, orderly phases, diabetes leads to improper function at all stages. While the etiology of chronic, non-healing diabetic wounds is multi-faceted, the progression to a non-healing phenotype is closely linked to poor vascular networks. This review focuses on diabetic wound healing, paying special attention to the aberrations that have been described in the proliferative, remodeling, and maturation phases of wound angiogenesis. Additionally, this review considers therapeutics that may offer promise to better wound healing outcomes. PMID:28671607

  14. Enzyme 15-lipoxygenase 1 promotes hypoxia-inducible factor 1α turnover and reduces vascular endothelial growth factor expression: implications for angiogenesis

    International Nuclear Information System (INIS)

    Zhong, Hua; Wang, Ruoxiang; Kelavkar, Uddhav; Wang, Christopher Y; Simons, Jonathan

    2014-01-01

    Hypoxia-inducible factor 1α (HIF-1α) is the regulatory subunit of the heterodimeric HIF-1 that plays a critical role in transcriptional regulation of genes in angiogenesis and hypoxic adaptation, while fatty acid metabolism mediated by lipoxygenases has been implicated in a variety of pathogeneses, including cancers. In this study, we report that 15-lipoxygenase 1 (15-LO1), a key member of the lipoxygenase family, promotes HIF-1α ubiquitination and degradation. Altering the level of 15-LO1 yields inverse changes in HIF-1α and HIF-1 transcriptional activity, under both normoxia and hypoxia, and even in CoCl 2 -treated cells where HIF-1α has been artificially elevated. The antagonistic effect of 15-LO1 is mediated by the Pro 564 /hydroxylation/26S proteasome system, while both the enzymatic activity and the intracellular membrane-binding function of 15-LO1 appear to contribute to HIF-1α suppression. Our findings provide a novel mechanism for HIF-1α regulation, in which oxygen-dependent HIF-1 activity is modulated by an oxygen-insensitive lipid metabolic enzyme

  15. Expression of angiopoietin-2 and vascular endothelial growth factor receptor-3 correlates with lymphangiogenesis and angiogenesis and affects survival of oral squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Chao Li

    Full Text Available BACKGROUND: Both Ang-2 and VEGFR-3 are major regulators of angiogenesis and lymphangiogenesis, respectively, and thus may affect prognosis of OSCC. We sought to determine the associations between Ang-2 and VEGFR-3 expression and survival of OSCC. METHODS: Ang-2 and VEGFR-3 expression was determined immunohistochemically in tumor tissues from 112 patients with OSCC; OSCC-adjacent noncancerous oral tissue from 85 OSCC patients; and normal oral mucosa from 37 cancer-free individuals. A log-rank test and Cox proportional hazard models were used to compare survival among different groups with expression of Ang-2 and VEGFR-3. RESULTS: Ang-2 and VEGFR-3 expression was upregulated in OSCC compared to nontumor tissue (all P<0.05. High Ang-2 expression positively correlated with microvessel density (MVD (P<0.01, and high VEGFR-3 expression positively correlated with lymph node metastasis (P<0.01 and lymphatic vessel density (LVD (P<0.01. The patients with high expression of Ang-2 alone or in combination with VEGFR-3 had a significantly worse survival than in patients with low expression of Ang-2 or any other co-expression status (all P<0.05, respectively. Furthermore, multivariable analysis showed that patients with high expression of Ang-2 alone or in combination with VEGFR-3 had a significantly increased risk of death compared with those with low expression of Ang-2 or any other co-expression status (HR, 2.7, 95% CI, 1.1-6.2 and 5.0, 1.3-15.4, respectively. CONCLUSIONS: These results suggest that increased expression in tumors of Ang-2 may individually, or in combination with VEGFR-3, predict poor prognosis of OSCC.

  16. NADPH Oxidases, Angiogenesis, and Peripheral Artery Disease

    Directory of Open Access Journals (Sweden)

    Pradeep Manuneedhi Cholan

    2017-07-01

    Full Text Available Peripheral artery disease (PAD is caused by narrowing of arteries in the limbs, normally occurring in the lower extremities, with severe cases resulting in amputation of the foot or leg. A potential approach for treatment is to stimulate the formation of new blood vessels to restore blood flow to limb tissues. This is a process called angiogenesis and involves the proliferation, migration, and differentiation of endothelial cells. Angiogenesis can be stimulated by reactive oxygen species (ROS, with NADPH oxidases (NOX being a major source of ROS in endothelial cells. This review summarizes the recent evidence implicating NOX isoforms in their ability to regulate angiogenesis in vascular endothelial cells in vitro, and in PAD in vivo. Increasing our understanding of the involvement of the NOX isoforms in promoting therapeutic angiogenesis may lead to new treatment options to slow or reverse PAD.

  17. Mediators of ocular angiogenesis

    Indian Academy of Sciences (India)

    . Pathologic angiogenesis in the eye can lead to severe visual impairment. In our review, we discuss the roles of both pro-angiogenic and anti-angiogenic molecular players in corneal angiogenesis, proliferative diabetic retinopathy, exudative ...

  18. Fibromodulin Enhances Angiogenesis during Cutaneous Wound Healing

    Directory of Open Access Journals (Sweden)

    Zhong Zheng, PhD

    2014-12-01

    Conclusions: Altogether, we demonstrated that in addition to reducing scar formation, FMOD also promotes angiogenesis. As blood vessels organize and regulate wound healing, its potent angiogenic properties will further expand the clinical application of FMOD for cutaneous healing of poorly vascularized wounds.

  19. The Ketogenic Diet Alters the Hypoxic Response and Affects Expression of Proteins Associated with Angiogenesis, Invasive Potential and Vascular Permeability in a Mouse Glioma Model.

    Science.gov (United States)

    Woolf, Eric C; Curley, Kara L; Liu, Qingwei; Turner, Gregory H; Charlton, Julie A; Preul, Mark C; Scheck, Adrienne C

    2015-01-01

    The successful treatment of malignant gliomas remains a challenge despite the current standard of care, which consists of surgery, radiation and temozolomide. Advances in the survival of brain cancer patients require the design of new therapeutic approaches that take advantage of common phenotypes such as the altered metabolism found in cancer cells. It has therefore been postulated that the high-fat, low-carbohydrate, adequate protein ketogenic diet (KD) may be useful in the treatment of brain tumors. We have demonstrated that the KD enhances survival and potentiates standard therapy in a mouse model of malignant glioma, yet the mechanisms are not fully understood. To explore the effects of the KD on various aspects of tumor growth and progression, we used the immunocompetent, syngeneic GL261-Luc2 mouse model of malignant glioma. Tumors from animals maintained on KD showed reduced expression of the hypoxia marker carbonic anhydrase 9, hypoxia inducible factor 1-alpha, and decreased activation of nuclear factor kappa B. Additionally, tumors from animals maintained on KD had reduced tumor microvasculature and decreased expression of vascular endothelial growth factor receptor 2, matrix metalloproteinase-2 and vimentin. Peritumoral edema was significantly reduced in animals fed the KD and protein analyses showed altered expression of zona occludens-1 and aquaporin-4. The KD directly or indirectly alters the expression of several proteins involved in malignant progression and may be a useful tool for the treatment of gliomas.

  20. The Ketogenic Diet Alters the Hypoxic Response and Affects Expression of Proteins Associated with Angiogenesis, Invasive Potential and Vascular Permeability in a Mouse Glioma Model.

    Directory of Open Access Journals (Sweden)

    Eric C Woolf

    Full Text Available The successful treatment of malignant gliomas remains a challenge despite the current standard of care, which consists of surgery, radiation and temozolomide. Advances in the survival of brain cancer patients require the design of new therapeutic approaches that take advantage of common phenotypes such as the altered metabolism found in cancer cells. It has therefore been postulated that the high-fat, low-carbohydrate, adequate protein ketogenic diet (KD may be useful in the treatment of brain tumors. We have demonstrated that the KD enhances survival and potentiates standard therapy in a mouse model of malignant glioma, yet the mechanisms are not fully understood.To explore the effects of the KD on various aspects of tumor growth and progression, we used the immunocompetent, syngeneic GL261-Luc2 mouse model of malignant glioma.Tumors from animals maintained on KD showed reduced expression of the hypoxia marker carbonic anhydrase 9, hypoxia inducible factor 1-alpha, and decreased activation of nuclear factor kappa B. Additionally, tumors from animals maintained on KD had reduced tumor microvasculature and decreased expression of vascular endothelial growth factor receptor 2, matrix metalloproteinase-2 and vimentin. Peritumoral edema was significantly reduced in animals fed the KD and protein analyses showed altered expression of zona occludens-1 and aquaporin-4.The KD directly or indirectly alters the expression of several proteins involved in malignant progression and may be a useful tool for the treatment of gliomas.

  1. Modeling angiogenesis with micro- and nanotechnology.

    Science.gov (United States)

    Chen, Li-Jiun; Kaji, Hirokazu

    2017-12-05

    Angiogenesis plays an important role not only in the growth and regeneration of tissues in humans but also in pathological conditions such as inflammation, degenerative disease and the formation of tumors. Angiogenesis is also vital in thick engineered tissues and constructs, such as those for the heart and bone, as these can face difficulties in successful implantation if they are insufficiently vascularized or unable to connect to the host vasculature. Considerable research has been carried out on angiogenic processes using a variety of approaches. Pathological angiogenesis has been analyzed at the cellular level through investigation of cell migration and interactions, modeling tissue level interactions between engineered blood vessels and whole organs, and elucidating signaling pathways involved in different angiogenic stimuli. Approaches to regenerative angiogenesis in ischemic tissues or wound repair focus on the vascularization of tissues, which can be broadly classified into two categories: scaffolds to direct and facilitate tissue growth and targeted delivery of genes, cells, growth factors or drugs that promote the regeneration. With technological advancement, models have been designed and fabricated to recapitulate the innate microenvironment. Moreover, engineered constructs provide not only a scaffold for tissue ingrowth but a reservoir of agents that can be controllably released for therapeutic purposes. This review summarizes the current approaches for modeling pathological and regenerative angiogenesis in the context of micro-/nanotechnology and seeks to bridge these two seemingly distant aspects of angiogenesis. The ultimate aim is to provide insights and advances from various models in the realm of angiogenesis studies that can be applied to clinical situations.

  2. Clinical implications of angiogenesis in cancers

    Directory of Open Access Journals (Sweden)

    Roberta WC Pang

    2006-06-01

    Full Text Available Roberta WC Pang1, Ronnie TP Poon2 Departments of 1Medicine and 2Surgery, The University of Hong Kong, Pokfulam, Hong Kong, ChinaAbstract: Angiogenesis plays an important role in the growth and progression of cancer. The regulation of tumor angiogenesis depends on a net balance of angiogenic factors and antiangiogenic factors, which are secreted by both tumor cells and host-infiltrating cells. Numerous studies have indicated that assessment of angiogenic activity by either microvessel density or expression of angiogenic factors in cancer can provide prognostic information independent of conventional clinicopathological factors such as tumor staging. Some studies also suggested that assessment of tumor angiogenesis may predict cancer response to chemotherapy or radiotherapy. However, the most important clinical implication of tumor angiogenesis is the development of a novel strategy of anticancer therapy targeting tumor vessels instead of cancer cells. Antiangiogenic therapy aims to inhibit the growth of tumor, and current evidence suggests that it works best in combination with conventional cytotoxic chemotherapy. Recently, a monoclonal antibody against vascular endothelial growth factor, which is one of the most potent angiogenic factors, has been approved for clinical use in colorectal cancer patients after a clinical trial confirmed that combining the antibody with standard chemotherapy regimen could prolong patient survival. The clinical implications of angiogenesis in cancer are reviewed in this article.Keywords: angiogenesis, antiangiogenic therapy, cancer, prognosis

  3. Stimulating angiogenesis by hyperbaric oxygen in an isolated tissue construct.

    Science.gov (United States)

    Roth, Valerie; Herron, Margo S; Bueno, Reuben A; Chambers, Christopher B; Neumeister, Michael W

    2011-01-01

    Hyperbaric oxygen (HBO2) treatment has been shown to stimulate angiogenesis in prefabricated myocutaneous flaps. We conducted the current study to determine optimal HBO2 treatment intervals for peak angiogenesis. Lewis rats were implanted subcutaneously with silicone molds in the inguinal region. Molds contained inguinal fat, a vascular pedicle and Matrigel plug. Thirty-two animals were randomized into four groups: HBO2 Treatment (2.5 atm of 100% oxygen, 90 minutes, 2x/day)--Group 1 (seven days) or--Group 2 (14 days); and Control Treatment (room air at atmospheric pressure)--Group 1 (seven days) or--Group 2(14 days). Implants were harvested, processed for H&E staining, and imaged digitally; angiogenesis was assessed by grade of vascularization at the Matrigel/fat boundary. Intergroup grading differences were assessed statistically. Vascularization in seven-day HBO2-treated implants was significantly increased compared to seven-day controls (p = 0.008). Vascularization in 14-day HBO2-treated implants was significantly decreased compared to 14-day controls (p = 0.012). There was no significant difference between seven-day HBO-treated implants and 14-day controls (p > 0.05). Short-term HBO2 exposure appears to increase angiogenesis in isolated tissue constructs. Prolonged HBO2 exposure may lead to vascular pruning. Short-term HBO2 exposure appears to expedite the natural vascularization process, resulting in equivalent vascularization in a shorter time.

  4. Angiogenesis is inhibitory for mammalian digit regeneration

    Science.gov (United States)

    Yu, Ling; Yan, Mingquan; Simkin, Jennifer; Ketcham, Paulina D.; Leininger, Eric; Han, Manjong

    2014-01-01

    Abstract The regenerating mouse digit tip is a unique model for investigating blastema formation and epimorphic regeneration in mammals. The blastema is characteristically avascular and we previously reported that blastema expression of a known anti‐angiogenic factor gene, Pedf, correlated with a successful regenerative response (Yu, L., Han, M., Yan, M., Lee, E. C., Lee, J. & Muneoka, K. (2010). BMP signaling induces digit regeneration in neonatal mice. Development, 137, 551–559). Here we show that during regeneration Vegfa transcripts are not detected in the blastema but are expressed at the onset of differentiation. Treating the amputation wound with vascular endothelial growth factor enhances angiogenesis but inhibits regeneration. We next tested bone morphogenetic protein 9 (BMP9), another known mediator of angiogenesis, and found that BMP9 is also a potent inhibitor of digit tip regeneration. BMP9 induces Vegfa expression in the digit stump suggesting that regenerative failure is mediated by enhanced angiogenesis. Finally, we show that BMP9 inhibition of regeneration is completely rescued by treatment with pigment epithelium‐derived factor. These studies show that precocious angiogenesis is inhibitory for regeneration, and provide compelling evidence that the regulation of angiogenesis is a critical factor in designing therapies aimed at stimulating mammalian regeneration. PMID:27499862

  5. Soliton driven angiogenesis.

    Science.gov (United States)

    Bonilla, L L; Carretero, M; Terragni, F; Birnir, B

    2016-08-09

    Angiogenesis is a multiscale process by which blood vessels grow from existing ones and carry oxygen to distant organs. Angiogenesis is essential for normal organ growth and wounded tissue repair but it may also be induced by tumours to amplify their own growth. Mathematical and computational models contribute to understanding angiogenesis and developing anti-angiogenic drugs, but most work only involves numerical simulations and analysis has lagged. A recent stochastic model of tumour-induced angiogenesis including blood vessel branching, elongation, and anastomosis captures some of its intrinsic multiscale structures, yet allows one to extract a deterministic integropartial differential description of the vessel tip density. Here we find that the latter advances chemotactically towards the tumour driven by a soliton (similar to the famous Korteweg-de Vries soliton) whose shape and velocity change slowly. Analysing these collective coordinates paves the way for controlling angiogenesis through the soliton, the engine that drives this process.

  6. Cytokines and Angiogenesis in the Corpus Luteum

    Directory of Open Access Journals (Sweden)

    António M. Galvão

    2013-01-01

    Full Text Available In adults, physiological angiogenesis is a rare event, with few exceptions as the vasculogenesis needed for tissue growth and function in female reproductive organs. Particularly in the corpus luteum (CL, regulation of angiogenic process seems to be tightly controlled by opposite actions resultant from the balance between pro- and antiangiogenic factors. It is the extremely rapid sequence of events that determines the dramatic changes on vascular and nonvascular structures, qualifying the CL as a great model for angiogenesis studies. Using the mare CL as a model, reports on locally produced cytokines, such as tumor necrosis factor α (TNF, interferon gamma (IFNG, or Fas ligand (FASL, pointed out their role on angiogenic activity modulation throughout the luteal phase. Thus, the main purpose of this review is to highlight the interaction between immune, endothelial, and luteal steroidogenic cells, regarding vascular dynamics/changes during establishment and regression of the equine CL.

  7. Application Study on Isotope Tracing RRL Tumor Angiogenesis Imaging

    Directory of Open Access Journals (Sweden)

    WANG Rong-fu

    2015-11-01

    Full Text Available Angiogenesis plays crucial roles in the progress of tumor growth, progression and metastases. The new tumor blood vessel tracer RRL can be targeted to the VEGFR-2 receptor on tumor vascular endothelial cells, Tracing with radioisotopes different types of tumor and angiogenesis in malignant tumor tissues with different invasive ability will provide the important information on the diagnosis, treatment and evaluated prognosis of malignant tumor. In this review, the recent study and progresses on molecular imaging with the peptide RRL in tumor angiogenesis will be summarized.

  8. Chloral Hydrate

    Science.gov (United States)

    ... if you are allergic to chloral hydrate, aspirin, tartrazine (a yellow dye in some processed foods and ... in, tightly closed, and out of reach of children. Store it at room temperature, away from excess ...

  9. Mediators of ocular angiogenesis

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Keywords. ocular angiogenesis; corneal neovascularization; retinal neovascularization; diabetic retinopathy; age-related macular degeneration; retinopathy of prematurity; VEGF; PEDF; Flt-1; Flk-1; endostatin; angiopoietin; erythropoietin; Tie2; inflammation; complement; gene therapy; TLR-3; Robo4.

  10. Mediators of ocular angiogenesis

    Indian Academy of Sciences (India)

    2009-12-31

    Dec 31, 2009 ... changes damage retinal endothelial cells, pericytes, neurons, glia and pigment epithelial cells and recruit inflammatory cells which produce vasoactive compounds, growth factors, coagulation factors and adhesion molecules that eventually leading to angiogenesis and tissue remodelling (Pelikanova.

  11. Non-invasive analysis of rat ovarian angiogenesis by MRI.

    Science.gov (United States)

    Tempel-Brami, Catherine; Neeman, Michal

    2002-02-22

    Magnetic resonance imaging (MRI) was employed for non-invasive analysis of vascular remodeling during follicular maturation in the PMSG/hCG rat ovary model. Changes in water diffusion and in perfusion led us to suggest that hypoxic stress may be a component in the regulation of angiogenesis in the growing follicle. However, in contrast with solid tumors of similar size, the spatial and temporal pattern of expression of vascular endothelial growth factor (VEGF), did not match the angiogenic response. The mismatch could be explained by the role of hyaluronan as a high molecular weight suppressor of angiogenesis maintaining an avascular follicular antrum.

  12. Gas hydrates

    Digital Repository Service at National Institute of Oceanography (India)

    Ramprasad, T.

    Fuels in India’s Energy Future. Workshop on “Alternate Fuels in India’s Energy Future”, held at Hotel International, New Delhi,19 Sept 2006 , Jointly organised by CII,ERM and British High Commission Bangs, N.L., D.S. Sawyer, X. Golovchenko... hydrates: relevance to world margin stability and climatic change, Tutorial book: Gent, Belgium, pp. 1-37. Sloan, E. D., 1998, Clathrate hydrates of natural gases. 2 nd edition: Marcel Dekker, Inc., New York, pp705. Stakes...

  13. Monitoring angiogenesis using magnetic resonance methods

    DEFF Research Database (Denmark)

    Holm, David Alberg

    2008-01-01

    When a tumor reaches a certain size it can no longer rely on passive perfusion for nutrition. The tumor therefore emits signaling molecules which stimulating surrounding vessels to divide and grow towards the tumor, a process known as angiogenesis. Very little angiogenesis is present in healthy a...... in a transgenic mouse model. The last manuscript presents a new method for in vivo cell labeling. This method could find use in studying the metastatic spread of cancer cells throughout the body.......-angiogenic treatment is presented in the first manuscript. In the second and third manuscript, two separate methods of quantifying perfusion, blood volume and vessel permeability are presented. The methods are used to show that drug delivery to a xenografted tumor is plausible and to show possible vascular maturation...... and the involved signaling molecules. Subsequently, a short review of contrast agents and perfusion measurements is given. Finally, methods for monitoring angiogenesis using magnetic resonance imaging are reviewed. A method for monitoring early stages of angiogenesis as well as the effect of anti...

  14. Folate Deficiency Could Restrain Decidual Angiogenesis in Pregnant Mice

    Directory of Open Access Journals (Sweden)

    Yanli Li

    2015-08-01

    Full Text Available The mechanism of birth defects induced by folate deficiency was focused on mainly in fetal development. Little is known about the effect of folate deficiency on the maternal uterus, especially on decidual angiogenesis after implantation which establishes vessel networks to support embryo development. The aim of this study was to investigate the effects of folate deficiency on decidual angiogenesis. Serum folate levels were measured by electrochemiluminescence. The status of decidual angiogenesis was examined by cluster designation 34 (CD34 immunohistochemistry and the expression of angiogenic factors, including vascular endothelial growth factor A (VEGFA, placental growth factor (PLGF, and VEGF receptor 2 (VEGFR2 were also tested. Serum levels of homocysteine (Hcy, follicle stimulating hormone (FSH, luteinizing hormone (LH, prolactin (PRL, progesterone (P4, and estradiol (E2 were detected by Enzyme-linked immunosorbent assay. The folate-deficient mice had a lower folate level and a higher Hcy level. Folate deficiency restrained decidual angiogenesis with significant abnormalities in vascular density and the enlargement and elongation of the vascular sinus. It also showed a reduction in the expressions of VEGFA, VEGFR2, and PLGF. In addition, the serum levels of P4, E2, LH, and PRL were reduced in folate-deficient mice, and the expression of progesterone receptor (PR and estrogen receptor α (ERα were abnormal. These results indicated that folate deficiency could impaire decidual angiogenesis and it may be related to the vasculotoxic properties of Hcy and the imbalance of the reproductive hormone.

  15. Genetic regulation of systemic angiogenesis in the mouse lung.

    Science.gov (United States)

    Mitzner, W; Srisuma, S; Wagner, E

    2003-10-01

    The work in this study takes advantage of a new experimental model in the mouse that completely isolates the angiogenic process from the direct effects of ischemia. The model also leads to lung angiogenesis that mimics the vascular source of many lung pathologies, and allows investigation of the temporal and spatial factors that can promote or inhibit angiogenesis. This work describes the expression patterns of genes relevant to pro-angiogenic signals and conditions in response to ischemia in the lung. The most notable changes were increases in the expression of genes involved in inflammation and tissue remodeling. In particular, the results confirm a important role of ELR+ CXC chemokines as proangiogenic signals. In addition, the experimental findings in this mouse lung model show that lung ischemia, rather than hypoxia, is the essential trigger for angiogenesis. Results from this model also suggest potential approaches for determining critical pathways and potential therapeutic strategies related to the control of angiogenesis.

  16. How phototherapy affects angiogenesis

    Science.gov (United States)

    Dyson, Mary

    2007-02-01

    Angiogenesis is essential for normal growth, tissue repair and regeneration. Its stimulation accelerates repair and regeneration including wound healing where these processes are delayed. Its inhibition can reduce the rate of growth of solid tumors. Phototherapy can accelerate the resolution of acute inflammation with the result that the proliferative phase of tissue repair, when angiogenesis occurs, begins earlier than in sham-irradiated controls. Evidence that angiogenesis is enhanced in dermal repair, tendon repair and bone regeneration in rodents is presented. The cellular mechanisms that control angiogenesis involve the interaction of endothelial cells, macrophages, pericytes and other cells in response, for example, to changes in the availability of oxygen in the local environment. Pericytes and macrophages modulate endothelial cell proliferation; pericytes guide endothelial cell migration. The stimulation of endothelial cell proliferation in vitro following exposure to red (660 nm) and infrared (820 nm) radiation, 15 mW, at 2-8 J/cm2 is presented. 1J/cm2 was ineffective. 820 nm irradiation, 15 mW, at 8 J/cm2 was observed to inhibit pericyte proliferation in vitro. Indirect effects on endothelial cell and pericyte proliferation followed stimulation of soluble mediator production by macrophages following exposure to red and infrared radiation. The potential clinical significance of the results obtained is discussed and the necessity of clinical trials emphasized.

  17. Melatonin as an angiogenesis inhibitor to combat cancer: Mechanistic evidence.

    Science.gov (United States)

    Goradel, Nasser Hashemi; Asghari, Mohammad Hossein; Moloudizargari, Milad; Negahdari, Babak; Haghi-Aminjan, Hamed; Abdollahi, Mohammad

    2017-11-15

    Melatonin, a pineal indolamine, participates in different body functions and is shown to possess diverse biological activities such as anti-tumor action. Angiogenesis inhibition is one of the mechanisms by which melatonin exerts its oncostatic effects. Increased angiogenesis is a major feature of tumor progression, thus angiogenesis inhibition is a critical step in cancer therapy. Melatonin employs a variety of mechanisms to target nutrients and oxygen supply to cancer cells. At the transcriptional level, hypoxia induced factor-1α (HIF-1α) and the genes under its control, such as vascular endothelial growth factor (VEGF) are the main targets of melatonin for inhibition of angiogenesis. Melatonin prevents translocation of HIF-1α into the nucleus thereby hindering VEGF expression and also prevents the formation of HIF-1α, phospho-STAT3 and CBP/p300 complex which is involved in the expression of angiogenesis-related genes. Angiostatic properties of melatonin could be also due to its ability to inhibit VEGFR2's activation and expression. Other angiostatic mechanisms of melatonin include the inhibition of endothelial cell migration, invasion, and tube formation. In the present study, we have reviewed the molecular anti-angiogenesis pathways mediated by melatonin and the responsible mechanisms in various types of cancers both in vitro and in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Advances in the cellular and molecular biology of angiogenesis.

    Science.gov (United States)

    Egginton, Stuart; Bicknell, Roy

    2011-12-01

    Capillaries have been recognized for over a century as one of the most important components in regulating tissue oxygen transport, and their formation or angiogenesis a pivotal element of tissue remodelling during development and adaptation. Clinical interest stems from observations that both excessive and inadequate vascular growth plays a major role in human diseases, and novel developments in treatments for cancer and eye disease increasingly rely on anti-angiogenic therapies. Although the discovery of VEGF (vascular endothelial growth factor) provided the first clue for specificity of signalling in endothelial cell activation, understanding the integrative response that drives angiogenesis requires a much broader perspective. The Advances in the Cellular and Molecular Biology of Angiogenesis meeting brought together researchers at the forefront of this rapidly moving field to provide an update on current understanding, and the most recent insights into molecular and cellular mechanisms of vascular growth. The plenary lecture highlighted the integrative nature of the angiogenic process, whereas invited contributions from basic and clinician scientists described fundamental mechanisms and disease-associated issues of blood vessel formation, grouped under a number of themes to aid discussion. These articles will appeal to academic, clinical and pharmaceutical scientists interested in the molecular and cellular basis of angiogenesis, their modulation or dysfunction in human diseases, and application of these findings towards translational medicine.

  19. Perlecan and tumor angiogenesis

    DEFF Research Database (Denmark)

    Jiang, Xinnong; Couchman, John R

    2003-01-01

    Perlecan is a major heparan sulfate proteoglycan (HSPG) of basement membranes (BMs) and connective tissues. The core protein of perlecan is divided into five domains based on sequence homology to other known proteins. Commonly, the N-terminal domain I of mammalian perlecan is substituted with thr...... have unwanted promoting effects on tumor cell proliferation and tumor angiogenesis. Understanding of these attributes at the molecular level may offer opportunities for therapeutic intervention....

  20. Angiogenesis in male breast cancer

    Directory of Open Access Journals (Sweden)

    Kanthan Rani

    2005-03-01

    Full Text Available Abstract Background Male breast cancer is a rare but aggressive and devastating disease. This disease presents at a later stage and in a more advanced fashion than its female counterpart. The immunophenotype also appears to be distinct when compared to female breast cancer. Angiogenesis plays a permissive role in the development of a solid tumor and provides an avenue for nutrient exchange and waste removal. Recent scrutiny of angiogenesis in female breast cancer has shown it to be of significant prognostic value. It was hypothesized that this holds true in invasive ductal carcinoma of the male breast. In the context of male breast cancer, we investigated the relationship of survival and other clinico-pathological variables to the microvascular density of the tumor tissue. Methods Seventy-five cases of primary male breast cancer were identified using the records of the Saskatchewan Cancer Agency over a period of 26 years. Forty-seven cases of invasive ductal carcinoma of the male breast had formalin-fixed paraffin-embedded tissue blocks that were suitable for this study. All cases were reviewed. Immunohistochemical staining was performed for the angiogenic markers (cluster designations 31 (CD31, 34 (CD34 and 105 (CD105, von Willebrand factor (VWF, and vascular endothelial growth factor (VEGF. Microvascular density (MVD was determined using average, centre, and highest microvessel counts (AMC, CMC, and HMC, respectively. Statistical analyses compared differences in the distribution of survival times and times to relapse between levels of MVD, tumor size, node status and age at diagnosis. In addition, MVD values were compared within each marker, between each marker, and were also compared to clinico-pathological data. Results Advanced age and tumor size were related to shorter survival times. There were no statistically significant differences in distributions of survival times and times to relapse between levels of MVD variables. There was no

  1. Modelling Tumor-induced Angiogenesis: Combination of Stochastic Sprout Spacing and Sprout Progression

    Directory of Open Access Journals (Sweden)

    Hosseini F.

    2017-09-01

    Full Text Available Background: Angiogenesis initiated by cancerous cells is the process by which new blood vessels are formed to enhance oxygenation and growth of tumor. Objective: In this paper, we present a new multiscale mathematical model for the formation of a vascular network in tumor angiogenesis process. Methods: Our model couples an improved sprout spacing model as a stochastic mathematical model of sprouting along an existing parent blood vessel, with a mathematical model of sprout progression in the extracellular matrix (ECM in response to some tumor angiogenic factors (TAFs. We perform simulations of the siting of capillary sprouts on an existing blood vessel using finite difference approximation of the dynamic equations of some angiogenesis activators and inhibitors. Angiogenesis activators are chemicals secreted by hypoxic tumor cells for initiating angiogenesis, and inhibitors of the angiogenesis are chemicals that are produced around every new sprout during tumor angiogenesis to inhibit the formation of further sprouts as a feedback of sprouting in angiogenesis. Moreover, for modelling sprout progression in ECM, we use three equations for the motility of endothelial cells at the tip of the activated sprouts, the consumption of TAF and the production and uptake of Fibronectin by endothelial cells. Results: Coupling these two basic models not only does provide a better time estimation of angiogenesis process, but also it is more compatible with reality. Conclusion: This model can be used to provide basic information for angiogenesis in the related studies. Related simulations can estimate the position and number of sprouts along parent blood vessel during the initial steps of angiogenesis and models the process of sprout progression in ECM until they vascularize a tumor.

  2. A mathematical model of tumour angiogenesis: growth, regression and regrowth.

    Science.gov (United States)

    Vilanova, Guillermo; Colominas, Ignasi; Gomez, Hector

    2017-01-01

    Cancerous tumours have the ability to recruit new blood vessels through a process called angiogenesis. By stimulating vascular growth, tumours get connected to the circulatory system, receive nutrients and open a way to colonize distant organs. Tumour-induced vascular networks become unstable in the absence of tumour angiogenic factors (TAFs). They may undergo alternating stages of growth, regression and regrowth. Following a phase-field methodology, we propose a model of tumour angiogenesis that reproduces the aforementioned features and highlights the importance of vascular regression and regrowth. In contrast with previous theories which focus on vessel remodelling due to the absence of flow, we model an alternative regression mechanism based on the dependency of tumour-induced vascular networks on TAFs. The model captures capillaries at full scale, the plastic dynamics of tumour-induced vessel networks at long time scales, and shows the key role played by filopodia during angiogenesis. The predictions of our model are in agreement with in vivo experiments and may prove useful for the design of antiangiogenic therapies. © 2017 The Author(s).

  3. Targeted microbubbles for imaging tumor angiogenesis: assessment of whole-body biodistribution with dynamic micro-PET in mice

    DEFF Research Database (Denmark)

    Willmann, Jürgen K; Cheng, Zhen; Davis, Corrine

    2008-01-01

    To evaluate in vivo whole-body biodistribution of microbubbles (MBs) targeted to tumor angiogenesis-related vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2) by using dynamic micro-positron emission tomography (PET) in living mice....

  4. Effect of the micronutrient iodine in thyroid carcinoma angiogenesis.

    Science.gov (United States)

    Daniell, Kayla; Nucera, Carmelo

    2016-12-20

    Iodide is a micronutrient essential for thyroid hormone production. The uptake and metabolism of iodide by thyrocytes is crucial to proper thyroid function. Iodide ions are drawn into the thyroid follicular cell via the sodium-iodide symporter (NIS) in the cell membrane and become integrated into tyrosyl residues to ultimately form thyroid hormones. We sought to learn how an abnormal concentration of iodide within thyrocyte can have significant effects on the thyroid, specifically the surrounding vascular network. Insufficient levels of iodide can lead to increased expression or activity of several pathways, including vascular endothelial growth factor (VEGF). The VEGF protein fuel vessel growth (angiogenesis) and therefore enhances the nutrients available to surrounding cells. Alternatively, normal/surplus iodide levels can have inhibitory effects on angiogenesis. Varying levels of iodide in the thyroid can influence thyroid carcinoma cell proliferation and angiogenesis via regulation of the hypoxia inducible factor-1 (HIF-1) and VEGF-dependent pathway. We have reviewed a number of studies to investigate how the effect of iodide on angiogenic and oxidative stress regulation can affect the viability of thyroid carcinoma cells. The various studies outlined give key insights to the role of iodide in thyroid follicles function and vascular growth, generally highlighting that insufficient levels of iodide stimulate pathways resulting in vascular growth, and viceversa normal/surplus iodide levels inhibit such pathways. Intriguingly, TSH and iodine levels differentially regulate the expression levels of angiogenic factors. All cells, including carcinoma cells, increase uptake of blood nutrients, meaning the vascular profile is influential to tumor growth and progression. Importantly, variation in the iodine concentrations also influence BRAF V600E -mediated oncogenic activity and might deregulate tumor proliferation. Although the mechanisms are not well eluted, iodine

  5. Tympanomastoid cholesterol granulomas: Immunohistochemical evaluation of angiogenesis.

    Science.gov (United States)

    Iannella, Giannicola; Di Gioia, Cira; Carletti, Raffaella; Magliulo, Giuseppe

    2017-08-01

    This study investigates the immunohistochemical expression of vascular endothelial growth factor (VEGF) and CD34 in patients treated for middle ear and mastoid cholesterol granulomas to evaluate the angiogenesis and vascularization of this type of lesion. A correlation between the immunohistochemical data and the radiological and intraoperative evidence of temporal bone marrow invasion and blood source connection was performed to validate this hypothesis. Retrospective study. Immunohistochemical expression of VEGF and CD34 in a group of 16 patients surgically treated for cholesterol granuloma was examined. Middle ear cholesteatomas with normal middle ear mucosa and external auditory canal skin were used as the control groups. The radiological and intraoperative features of cholesterol granulomas were also examined. In endothelial cells, there was an increased expression of angiogenetic growth factor receptors in all the cholesterol granulomas in this study. The quantitative analysis of VEGF showed a mean value of 37.5, whereas the CD34 quantitative analysis gave a mean value of 6.8. Seven patients presented radiological or intraoperative evidence of bone marrow invasion, hematopoietic potentialities, or blood source connections that might support the bleeding theory. In all of these cases there was computed tomography or intraoperative evidence of bone erosion of the middle ear and/or temporal bone structures. The mean values of VEGF and CD34 were 41.1 and 7.7, respectively. High values of VEGF and CD34 are present in patients with cholesterol granulomas. Upregulation of VEGF and CD34 is indicative of a remarkable angiogenesis and a widespread vascular concentration in cholesterol granulomas. 3b. Laryngoscope, 127:E283-E290, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  6. Type-2 pericytes participate in normal and tumoral angiogenesis.

    Science.gov (United States)

    Birbrair, Alexander; Zhang, Tan; Wang, Zhong-Min; Messi, Maria Laura; Olson, John D; Mintz, Akiva; Delbono, Osvaldo

    2014-07-01

    Tissue growth and function depend on vascularization, and vascular insufficiency or excess exacerbates many human diseases. Identification of the biological processes involved in angiogenesis will dictate strategies to modulate reduced or excessive vessel formation. We examine the essential role of pericytes. Their heterogeneous morphology, distribution, origins, and physiology have been described. Using double-transgenic Nestin-GFP/NG2-DsRed mice, we identified two pericyte subsets. We found that Nestin-GFP(-)/NG2-DsRed(+) (type-1) and Nestin-GFP(+)/NG2-DsRed(+) (type-2) pericytes attach to the walls of small and large blood vessels in vivo; in vitro, type-2, but not type-1, pericytes spark endothelial cells to form new vessels. Matrigel assay showed that only type-2 pericytes participate in normal angiogenesis. Moreover, when cancer cells were transplanted into Nestin-GFP/NG2-DsRed mice, type-1 pericytes did not penetrate the tumor, while type-2 pericytes were recruited during its angiogenesis. As inhibition of angiogenesis is a promising strategy in cancer therapy, type-2 pericytes may provide a cellular target susceptible to signaling and pharmacological manipulation in treating malignancy. This work also reports the potential of type-2 pericytes to improve blood perfusion in ischemic hindlimbs, indicating their potential for treating ischemic illnesses. Copyright © 2014 the American Physiological Society.

  7. Green tea and its anti-angiogenesis effects.

    Science.gov (United States)

    Rashidi, Bahman; Malekzadeh, Mehrnoush; Goodarzi, Mohammad; Masoudifar, Aria; Mirzaei, Hamed

    2017-05-01

    The development of new blood vessels from a pre-existing vasculature (also known as angiogenesis) is required for many physiological processes including embryogenesis and post-natal growth. However, pathological angiogenesis is also a hallmark of cancer and many ischaemic and inflammatory diseases. The pro-angiogenic members of the VEGF family (vascular endothelial growth factor family), VEGF-A, VEGF-B, VEGF-C, VEGF-D and placental growth factor (PlGF), and the related receptors, VEGFR-1, VEGFR-2 and VEGFR-3 have a central and decisive role in angiogenesis. Indeed, they are the targets for anti-angiogenic drugs currently approved. Green tea (from the Camellia sinensis plant) is one of the most popular beverages in the world. It is able to inhibit angiogenesis by different mechanisms such as microRNAs (miRNAs). Green tea and its polyphenolic substances (like catechins) show chemo-preventive and chemotherapeutic features in various types of cancer and experimental models for human cancers. The tea catechins, including (-)-epigallocatechin-3-gallate (EGCG), have multiple effects on the cellular proteome and signalome. Note that the polyphenolic compounds from green tea are able to change the miRNA expression profile associated with angiogenesis in various cancer types. This review focuses on the ability of the green tea constituents to suppress angiogenesis signaling and it summarizes the mechanisms by which EGCG might inhibit the VEGF family. We also highlighted the miRNAs affected by green tea which are involved in anti-angiogenesis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Excessive angiogenesis associated with psoriasis as a cause for cardiovascular ischaemia.

    Science.gov (United States)

    Malecic, Nina; Young, Helen S

    2017-04-01

    Psoriasis, a common disease affecting 2%-3% of the UK population, produces significant impairment of quality of life and is an immense burden on sufferers and their families. Psoriasis is associated with significant cardiovascular comorbidity and the metabolic syndrome. Angiogenesis, a relatively under-researched component of psoriasis, is a key factor in pathogenesis of psoriasis and also contributes to the development of atherosclerosis. Vascular endothelial growth factor (VEGF) is a well-established mediator of pathological angiogenesis which is upregulated in psoriasis. It is possible that, in patients with psoriasis, cutaneous angiogenesis may be both a marker for systemic vascular pathology and a novel therapeutic target. In this viewpoint study, the role of VEGF-mediated angiogenesis as a cause for cardiovascular events in patients with psoriasis is explored. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Friends Turned Foes: Angiogenic Growth Factors beyond Angiogenesis.

    Science.gov (United States)

    Matkar, Pratiek N; Ariyagunarajah, Ramya; Leong-Poi, Howard; Singh, Krishna K

    2017-10-02

    Angiogenesis, the formation of new blood vessels from pre-existing ones is a biological process that ensures an adequate blood flow is maintained to provide the cells with a sufficient supply of nutrients and oxygen within the body. Numerous soluble growth factors and inhibitors, cytokines, proteases as well as extracellular matrix proteins and adhesion molecules stringently regulate the multi-factorial process of angiogenesis. The properties and interactions of key angiogenic molecules such as vascular endothelial growth factors (VEGFs), fibroblast growth factors (FGFs) and angiopoietins have been investigated in great detail with respect to their molecular impact on angiogenesis. Since the discovery of angiogenic growth factors, much research has been focused on their biological actions and their potential use as therapeutic targets for angiogenic or anti-angiogenic strategies in a context-dependent manner depending on the pathologies. It is generally accepted that these factors play an indispensable role in angiogenesis. However, it is becoming increasingly evident that this is not their only role and it is likely that the angiogenic factors have important functions in a wider range of biological and pathological processes. The additional roles played by these molecules in numerous pathologies and biological processes beyond angiogenesis are discussed in this review.

  10. Friends Turned Foes: Angiogenic Growth Factors beyond Angiogenesis

    Directory of Open Access Journals (Sweden)

    Pratiek N. Matkar

    2017-10-01

    Full Text Available Angiogenesis, the formation of new blood vessels from pre-existing ones is a biological process that ensures an adequate blood flow is maintained to provide the cells with a sufficient supply of nutrients and oxygen within the body. Numerous soluble growth factors and inhibitors, cytokines, proteases as well as extracellular matrix proteins and adhesion molecules stringently regulate the multi-factorial process of angiogenesis. The properties and interactions of key angiogenic molecules such as vascular endothelial growth factors (VEGFs, fibroblast growth factors (FGFs and angiopoietins have been investigated in great detail with respect to their molecular impact on angiogenesis. Since the discovery of angiogenic growth factors, much research has been focused on their biological actions and their potential use as therapeutic targets for angiogenic or anti-angiogenic strategies in a context-dependent manner depending on the pathologies. It is generally accepted that these factors play an indispensable role in angiogenesis. However, it is becoming increasingly evident that this is not their only role and it is likely that the angiogenic factors have important functions in a wider range of biological and pathological processes. The additional roles played by these molecules in numerous pathologies and biological processes beyond angiogenesis are discussed in this review.

  11. Evaluation of Functionalized Porous Titanium Implants for Enhancing Angiogenesis in Vitro

    Science.gov (United States)

    Roland, Laura; Backhaus, Samantha; Grau, Michael; Matena, Julia; Teske, Michael; Beyerbach, Martin; Murua Escobar, Hugo; Haferkamp, Heinz; Gellrich, Nils-Claudius; Nolte, Ingo

    2016-01-01

    Implant constructs supporting angiogenesis are favorable for treating critically-sized bone defects, as ingrowth of capillaries towards the center of large defects is often insufficient. Consequently, the insufficient nutritional supply of these regions leads to impaired bone healing. Implants with specially designed angiogenic supporting geometry and functionalized with proangiogenic cytokines can enhance angiogenesis. In this study, Vascular Endothelial Growth Factor (VEGF) and High Mobility Group Box 1 (HMGB1) were used for incorporation into poly-ε-caprolactone (PCL)-coated porous titanium implants. Bioactivity of released factors and influence on angiogenesis of functionalized implants were evaluated using a migration assay and angiogenesis assays. Both implants released angiogenic factors, inducing migration of endothelial cells. Also, VEGF-functionalized PCL-coated titanium implants enhanced angiogenesis in vitro. Both factors were rapidly released in high doses from the implant coating during the first 72 h. PMID:28773427

  12. Regulation of angiogenesis in human skeletal muscle with specific focus on pro- angiogenic and angiostatic factors

    DEFF Research Database (Denmark)

    Høier, Birgitte

    It is well established that acute exercise promotes an angiogenic response and that a period of exercise training results in capillary growth. Skeletal muscle angiogenesis is a complex process that requires a coordinated interplay of multiple factors and compounds to ensure proper vascular functi...... and a concurrent increase in the angiostatic factors occur when capillary growth no longer is required. Thus the balance of pro-angiogenic and angiostatic factors is a determining regulator of exercise-induced angiogenesis in human skeletal muscle....

  13. The Role of IL-17 in the Angiogenesis of Rheumatoid Arthritis

    Science.gov (United States)

    2015-06-01

    AWARD NUMBER: W81XWH-10-1-0102 TITLE: The Role of IL-17 in the Angiogenesis of Rheumatoid Arthritis PRINCIPAL INVESTIGATOR: Shiva Shahrara...NUMBER W81XWH-10-1-0102 The Role of IL-17 in the Angiogenesis of Rheumatoid Arthritis 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S... rheumatoid arthritis (RA) joint vascularization. However, less is known about the pro-angiogenic factors downstream of IL-17 cascade that could indirectly

  14. Angiogenesis and Endometriosis

    Directory of Open Access Journals (Sweden)

    Ana Luiza L. Rocha

    2013-01-01

    Full Text Available A comprehensive review was performed to survey the role of angiogenesis in the pathogenesis of endometriosis. This is a multifactorial disease in which the development and maintenance of endometriotic implants depend on their invasive capacity and angiogenic potential. The peritoneal fluid of patients with endometriosis is a complex suspension carrying inflammatory cytokines, growth factors, steroid hormones, proangiogenic factors, macrophages, and endometrial and red blood cells. These cells and their signaling products concur to promote the spreading of new blood vessels at the endometriotic lesions and surroundings, which contributes to the endometriotic implant survival. Experimental studies of several antiangiogenic agents demonstrated the regression of endometriotic lesions by reducing their blood supply. Further studies are necessary before these novel agents can be introduced into clinical practice, in particular the establishment of the safety of anti-angiogenic medications in women who are seeking to become pregnant.

  15. Angiogenesis in gliomas.

    Directory of Open Access Journals (Sweden)

    Elzbieta Czykier

    2008-02-01

    Full Text Available Brain gliomas are characterized by invasive growth and neovascularisation potential. Angiogenesis plays a major role in the progression of gliomas and its determination has a great prognostic value. The aim of the study was to assess the vascularisation of chosen brain gliomas and to estimate how it is correlated with tumour histological type, malignancy grade, location and size, and with age and sex of patients. Tumour vascularisation analysis was based on the determination of microvascular proliferation (MVP and microvessel density (MVD. Microvascular proliferation was measured with immunohistochemical methods using mouse monoclonal antibodies to detect cell proliferation antigens. The following antibodies were used Ki-67 and PCNA (DAKO. Identification of vessels was performed by CD31 antibody and anti-human von Willebrand factor (DAKO. The highest microvascular proliferation and microvascular density were observed in multiform glioblastomas and the lowest in oligodendrogliomas. Significant correlation was observed between the vascularisation and malignancy grade.

  16. Angiogenesis Inhibitors in NSCLC

    Directory of Open Access Journals (Sweden)

    Anna Manzo

    2017-09-01

    Full Text Available Angiogenesis is a complex biological process that plays a relevant role in sustaining the microenvironment, growth, and metastatic potential of several tumors, including non-small cell lung cancer (NSCLC. Bevacizumab was the first angiogenesis inhibitor approved for the treatment of patients with advanced NSCLC in combination with chemotherapy; however, it was limited to patients with non-squamous histology and first-line setting. Approval was based on the results of two phase III trials (ECOG4599 and AVAIL that demonstrated an improvement of about two months in progression-free survival (PFS in both trials, and in the ECOG4599 trial, an improvement in overall survival (OS also. Afterwards, other antiangiogenic agents, including sunitinib, sorafenib, and vandetanib have been unsuccessfully tested in first and successive lines. Recently, two new antiangiogenic agents (ramucirumab and nintedanib produced a significant survival benefit in second-line setting. In the REVEL study, ramucirumab plus docetaxel prolonged the median OS of patients with any histology NSCLC when compared with docetaxel alone (10.4 versus 9.1 months, hazard ratio (HR 0.857, p = 0.0235. In the LUME-Lung 1 study, nintedanib plus docetaxel prolonged the median PFS of patients with any tumor histology (p = 0.0019, and improved OS (12.6 versus 10.3 months in patients with adenocarcinoma. As a result, it became a new option for the second-line treatment of patients with advanced NSCLC and adenocarcinoma histology. Identifying predictive biomarkers to optimize the benefit of antiangiogenic drugs remains an ongoing challenge.

  17. Influence of Levamisole and Other Angiogenesis Inhibitors on Angiogenesis and Endothelial Cell Morphology in Vitro

    Energy Technology Data Exchange (ETDEWEB)

    Friis, Tina; Engel, Anne-Marie; Bendiksen, Christine D.; Larsen, Line S.; Houen, Gunnar, E-mail: gh@ssi.dk [Department of Clinical Biochemistry, Immunology and Genetics, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen (Denmark)

    2013-06-24

    Angiogenesis, the formation of new blood vessels from existing vessels is required for many physiological processes and for growth of solid tumors. Initiated by hypoxia, angiogenesis involves binding of angiogenic factors to endothelial cell (EC) receptors and activation of cellular signaling, differentiation, migration, proliferation, interconnection and canalization of ECs, remodeling of the extracellular matrix and stabilization of newly formed vessels. Experimentally, these processes can be studied by several in vitro and in vivo assays focusing on different steps in the process. In vitro, ECs form networks of capillary-like tubes when propagated for three days in coculture with fibroblasts. The tube formation is dependent on vascular endothelial growth factor (VEGF) and omission of VEGF from the culture medium results in the formation of clusters of undifferentiated ECs. Addition of angiogenesis inhibitors to the coculture system disrupts endothelial network formation and influences EC morphology in two distinct ways. Treatment with antibodies to VEGF, soluble VEGF receptor, the VEGF receptor tyrosine kinase inhibitor SU5614, protein tyrosine phosphatase inhibitor (PTPI) IV or levamisole results in the formation of EC clusters of variable size. This cluster morphology is a result of inhibited EC differentiation and levamisole can be inferred to influence and block VEGF signaling. Treatment with platelet factor 4, thrombospondin, rapamycin, suramin, TNP-470, salubrinal, PTPI I, PTPI II, clodronate, NSC87877 or non-steriodal anti-inflammatory drugs (NSAIDs) results in the formation of short cords of ECs, which suggests that these inhibitors have an influence on later steps in the angiogenic process, such as EC proliferation and migration. A humanized antibody to VEGF is one of a few angiogenesis inhibitors used clinically for treatment of cancer. Levamisole is approved for clinical treatment of cancer and is interesting with respect to anti-angiogenic activity

  18. The effects of radiation on angiogenesis.

    Science.gov (United States)

    Grabham, Peter; Sharma, Preety

    2013-10-26

    The average human body contains tens of thousands of miles of vessels that permeate every tissue down to the microscopic level. This makes the human vasculature a prime target for an agent like radiation that originates from a source and passes through the body. Exposure to radiation released during nuclear accidents and explosions, or during cancer radiotherapy, is well known to cause vascular pathologies because of the ionizing effects of electromagnetic radiations (photons) such as gamma rays. There is however, another type of less well-known radiation - charged ion particles, and these atoms stripped of electrons, have different physical properties to the photons of electromagnetic radiation. They are either found in space or created on earth by particle collider facilities, and are of significant recent interest due to their enhanced effectiveness and increasing use in cancer radiotherapy, as well as a health risk to the growing number of people spending time in the space environment. Although there is to date, relatively few studies on the effects of charged particles on the vascular system, a very different picture of the biological effects of these particles compared to photons is beginning to emerge. These under researched biological effects of ion particles have a large impact on the health consequences of exposure. In this short review, we will discuss the effects of charged particles on an important biological process of the vascular system, angiogenesis, which creates and maintains the vasculature and is highly important in tumor vasculogenesis.

  19. Upregulation of angiogenesis in oral lichen planus.

    Science.gov (United States)

    Al-Hassiny, A; Friedlander, L T; Parachuru, V P B; Seo, B; Hussaini, H M; Rich, A M

    2018-02-01

    As angiogenesis is fundamental to the pathogenesis of many chronic inflammatory disorders, this study investigated the expression of various vascular markers in oral lichen planus and non-specific oral mucosal inflammatory tissues. Archival specimens of oral lichen planus (n = 15) and inflamed tissues (n = 13) were stained using immunohistochemistry with antibodies to CD34, vascular endothelial growth factor, vascular endothelial growth factor receptor and vasohibin. Nine representative sites at the epithelial-connective tissue junction and through the fibrous connective tissue were selected, and automated analysis techniques were used to determine the extent of positivity expressed as the percentage of positive cells. Significance was denoted when P lichen planus samples compared with inflamed controls. A higher level of CD34 was observed in the deeper parts of the connective tissue of Oral lichen planus (OLP) (P = .04), whereas VEGF and VEGFR2 expressions were higher all through the tissues (respectively, P lichen planus in all sites evaluated (P lichen planus compared with inflamed controls, with increased expression of pro-angiogenic factors and decreased anti-angiogenic expression. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. VEGF promotes tumorigenesis and angiogenesis of human glioblastoma stem cells

    International Nuclear Information System (INIS)

    Oka, Naoki; Soeda, Akio; Inagaki, Akihito; Onodera, Masafumi; Maruyama, Hidekazu; Hara, Akira; Kunisada, Takahiro; Mori, Hideki; Iwama, Toru

    2007-01-01

    There is increasing evidence for the presence of cancer stem cells (CSCs) in malignant brain tumors, and these CSCs may play a pivotal role in tumor initiation, growth, and recurrence. Vascular endothelial growth factor (VEGF) promotes the proliferation of vascular endothelial cells (VECs) and the neurogenesis of neural stem cells. Using CSCs derived from human glioblastomas and a retrovirus expressing VEGF, we examined the effects of VEGF on the properties of CSCs in vitro and in vivo. Although VEGF did not affect the property of CSCs in vitro, the injection of mouse brains with VEGF-expressing CSCs led to the massive expansion of vascular-rich GBM, tumor-associated hemorrhage, and high morbidity, suggesting that VEGF promoted tumorigenesis via angiogenesis. These results revealed that VEGF induced the proliferation of VEC in the vascular-rich tumor environment, the so-called stem cell niche

  1. Artificial Hydration and Nutrition

    Science.gov (United States)

    ... Crisis Situations Pets and Animals myhealthfinder Food and Nutrition Healthy Food Choices Weight Loss and Diet Plans ... Your Health Resources Healthcare Management Artificial Hydration and Nutrition Artificial Hydration and Nutrition Share Print Patients who ...

  2. Coupling between Myogenesis and Angiogenesis during Skeletal Muscle Regeneration Is Stimulated by Restorative Macrophages

    Directory of Open Access Journals (Sweden)

    Claire Latroche

    2017-12-01

    Full Text Available Summary: In skeletal muscle, new functions for vessels have recently emerged beyond oxygen and nutrient supply, through the interactions that vascular cells establish with muscle stem cells. Here, we demonstrate in human and mouse that endothelial cells (ECs and myogenic progenitor cells (MPCs interacted together to couple myogenesis and angiogenesis in vitro and in vivo during skeletal muscle regeneration. Kinetics of gene expression of ECs and MPCs sorted at different time points of regeneration identified three effectors secreted by both ECs and MPCs. Apelin, Oncostatin M, and Periostin were shown to control myogenesis/angiogenesis coupling in vitro and to be required for myogenesis and vessel formation during muscle regeneration in vivo. Furthermore, restorative macrophages, which have been previously shown to support myogenesis in vivo, were shown in a 3D triculture model to stimulate myogenesis/angiogenesis coupling, notably through Oncostatin M production. Our data demonstrate that restorative macrophages orchestrate muscle regeneration by controlling myogenesis/angiogenesis coupling. : In this study, Chazaud et al. demonstrate that endothelial cells (ECs and myogenic progenitor cells (MPCs interacted to couple myogenesis and angiogenesis during skeletal muscle regeneration. EC- and MPC-derived Apelin, Oncostatin M, and Periostin controlled myogenesis/angiogenesis coupling and were required for myogenesis and vessel formation. They show that, via the production of Oncostatin M, restorative macrophages promoted myogenesis/angiogenesis coupling. Keywords: muscle stem cells, myogenesis, angiogenesis, skeletal muscle regeneration, macrophages

  3. Hacking macrophage-associated immunosuppression for regulating glioblastoma angiogenesis.

    Science.gov (United States)

    Cui, Xin; Morales, Renee-Tyler Tan; Qian, Weiyi; Wang, Haoyu; Gagner, Jean-Pierre; Dolgalev, Igor; Placantonakis, Dimitris; Zagzag, David; Cimmino, Luisa; Snuderl, Matija; Lam, Raymond H W; Chen, Weiqiang

    2018-04-01

    Glioblastoma (GBM) is the most lethal primary adult brain tumor and its pathology is hallmarked by distorted neovascularization, diffuse tumor-associated macrophage infiltration, and potent immunosuppression. Reconstituting organotypic tumor angiogenesis models with biomimetic cell heterogeneity and interactions, pro-/anti-inflammatory milieu and extracellular matrix (ECM) mechanics is critical for preclinical anti-angiogenic therapeutic screening. However, current in vitro systems do not accurately mirror in vivo human brain tumor microenvironment. Here, we engineered a three-dimensional (3D), microfluidic angiogenesis model with controllable and biomimetic immunosuppressive conditions, immune-vascular and cell-matrix interactions. We demonstrate in vitro, GL261 and CT-2A GBM-like tumors steer macrophage polarization towards a M2-like phenotype for fostering an immunosuppressive and proangiogenic niche, which is consistent with human brain tumors. We distinguished that GBM and M2-like immunosuppressive macrophages promote angiogenesis, while M1-like pro-inflammatory macrophages suppress angiogenesis, which we coin "inflammation-driven angiogenesis." We observed soluble immunosuppressive cytokines, predominantly TGF-β1, and surface integrin (α v β 3 ) endothelial-macrophage interactions are required in inflammation-driven angiogenesis. We demonstrated tuning cell-adhesion receptors using an integrin (α v β 3 )-specific collagen hydrogel regulated inflammation-driven angiogenesis through Src-PI3K-YAP signaling, highlighting the importance of altered cell-ECM interactions in inflammation. To validate the preclinical applications of our 3D organoid model and mechanistic findings of inflammation-driven angiogenesis, we screened a novel dual integrin (α v β 3 ) and cytokine receptor (TGFβ-R1) blockade that suppresses GBM tumor neovascularization by simultaneously targeting macrophage-associated immunosuppression, endothelial-macrophage interactions, and

  4. Proinflammatory mediators stimulate neutrophil-directed angiogenesis.

    LENUS (Irish Health Repository)

    McCourt, M

    2012-02-03

    BACKGROUND: Vascular endothelial growth factor (VEGF; vascular permeability factor) is one of the most potent proangiogenic cytokines, and it plays a central role in mediating the process of angiogenesis or new blood vessel formation. Neutrophils (PMNs) recently have been shown to produce VEGF. HYPOTHESIS: The acute inflammatory response is a potent stimulus for PMN-directed angiogenesis. METHODS: Neutrophils were isolated from healthy volunteers and stimulated with lipopolysaccharide (LPS), tumor necrosis factor alpha (TNF-alpha), interleukin 6 (IL-6), and anti-human Fas monoclonal antibody. Culture supernatants were assayed for VEGF using enzyme-linked immunosorbent assays. Culture supernatants from LPS- and TNF-alpha-stimulated PMNs were then added to human umbilical vein endothelial cells and human microvessel endothelial cells and assessed for endothelial cell proliferation using 5-bromodeoxyuridine labeling. Tubule formation was also assessed on MATRIGEL basement membrane matrix. Neutrophils were lysed to measure total VEGF release, and VEGF expression was detected using Western blot analysis. RESULTS: Lipopolysaccharide and TNF-alpha stimulation resulted in significantly increased release of PMN VEGF (532+\\/-49 and 484+\\/-80 pg\\/mL, respectively; for all, presented as mean +\\/- SEM) compared with control experiments (32+\\/-4 pg\\/mL). Interleukin 6 and Fas had no effect. Culture supernatants from LPS- and TNF-alpha-stimulated PMNs also resulted in significant increases (P<.005) in macrovascular and microvascular endothelial cell proliferation and tubule formation. Adding anti-human VEGF-neutralizing polyclonal antibody to stimulated PMN supernatant inhibited these effects. Total VEGF release following cell lysis and Western blot analysis suggests that the VEGF is released from an intracellular store. CONCLUSION: Activated human PMNs are directly angiogenic by releasing VEGF, and this has important implications for inflammation, capillary leak syndrome

  5. Angiogenesis Regulates Prostate Cancer Metastasis

    National Research Council Canada - National Science Library

    Pettaway, Curtis

    1999-01-01

    .... We are evaluating the relationship of the expression of the angiogenesis factors bFGF, VEGF, and IL-8 with prostate cancer growth and metastasis, using our orthotopic model of metastatic prostate cancer in nude mice...

  6. Syndecan-4 shedding impairs macrovascular angiogenesis in diabetes mellitus

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ran; Xie, Jun; Wu, Han; Li, Guannan; Chen, Jianzhou; Chen, Qinhua; Wang, Lian; Xu, Biao, E-mail: xubiao@medmail.com.cn

    2016-05-20

    Purpose: Syndecan-4 (synd4) is a ubiquitous heparan sulfate proteoglycan cell surface receptor that modulates cell proliferation, migration, mechanotransduction, and endocytosis. The extracellular domain of synd4 sheds heavily in acute inflammation, but the shedding of synd4 in chronic inflammation, such as diabetes mellitus (DM), is still undefined. We investigated the alterations of synd4 endothelial expression in DM and the influence of impaired synd4 signaling on angiogenesis in human umbilical vein endothelial cells (HUVECs), diabetic rats, synd4 null mice, and db/db mice. Material and methods: HUVECs were incubated with advanced glycation end products (AGEs). Western blot analysis was used to determine synd4 protein expression and ELISA was used to detect soluble synd4 fragments. The concentration of synd4 in the aortic endothelia of diabetic rats was detected by immunohistochemical staining. Aortic ring assays were performed to study the process of angiogenesis in the diabetic rats and in synd4 null and db/db mice. Recombinant adenoviruses containing the synd4 gene or null were constructed to enhance synd4 aortic expression in db/db mice. Results: Western blot analysis showed decreased expression of the synd4 extracellular domain in HUVECs, and ELISA detected increased soluble fragments of synd4 in the media. Synd4 endothelial expression in the aortas of diabetic rats was decreased. Aortic ring assay indicated impaired angiogenesis in synd4 null and db/db mice, which was partially reversed by synd4 overexpression in db/db mice. Conclusion: Synd4 shedding from vascular endothelial cells played an important role in the diabetes-related impairment of angiogenesis. -- Highlights: •Synd4 shedding from endothelial cells is accelerated under the stimulation of AGEs. •Extracellular domain of synd4 is diminished in the endothelium of DM rats. •Aortic rings of synd4 null mice showed impaired angiogenesis. •Overexpression of synd4 partly rescues macrovascular

  7. Albendazole inhibits endothelial cell migration, tube formation, vasopermeability, VEGF receptor-2 expression and suppresses retinal neovascularization in ROP model of angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Pourgholami, Mohammad H., E-mail: mh.pourgholami@unsw.edu.au [University of New South Wales, Department of Surgery, St George Hospital (SESIAHS), Sydney (Australia); Khachigian, Levon M.; Fahmy, Roger G. [Centre for Vascular Research, The University of New South Wales, Department of Haematology, The Prince of Wales Hospital, Sydney (Australia); Badar, Samina; Wang, Lisa; Chu, Stephanie Wai Ling; Morris, David Lawson [University of New South Wales, Department of Surgery, St George Hospital (SESIAHS), Sydney (Australia)

    2010-07-09

    The angiogenic process begins with the cell proliferation and migration into the primary vascular network, and leads to vascularization of previously avascular tissues and organs as well to growth and remodeling of the initially homogeneous capillary plexus to form a new microcirculation. Additionally, an increase in microvascular permeability is a crucial step in angiogenesis. Vascular endothelial growth factor (VEGF) plays a central role in angiogenesis. We have previously reported that albendazole suppresses VEGF levels and inhibits malignant ascites formation, suggesting a possible effect on angiogenesis. This study was therefore designed to investigate the antiangiogenic effect of albendazole in non-cancerous models of angiogenesis. In vitro, treatment of human umbilical vein endothelial cells (HUVECs) with albendazole led to inhibition of tube formation, migration, permeability and down-regulation of the VEGF type 2 receptor (VEGFR-2). In vivo albendazole profoundly inhibited hyperoxia-induced retinal angiogenesis in mice. These results provide new insights into the antiangiogenic effects of albendazole.

  8. Gas hydrate and humans

    Science.gov (United States)

    Kvenvolden, K.A.

    2000-01-01

    The potential effects of naturally occurring gas hydrate on humans are not understood with certainty, but enough information has been acquired over the past 30 years to make preliminary assessments possible. Three major issues are gas hydrate as (1) a potential energy resource, (2) a factor in global climate change, and (3) a submarine geohazard. The methane content is estimated to be between 1015 to 1017 m3 at STP and the worldwide distribution in outer continental margins of oceans and in polar regions are significant features of gas hydrate. However, its immediate development as an energy resource is not likely because there are various geological constraints and difficult technological problems that must be solved before economic recovery of methane from hydrate can be achieved. The role of gas hydrate in global climate change is uncertain. For hydrate methane to be an effective greenhouse gas, it must reach the atmosphere. Yet there are many obstacles to the transfer of methane from hydrate to the atmosphere. Rates of gas hydrate dissociation and the integrated rates of release and destruction of the methane in the geo/hydro/atmosphere are not adequately understood. Gas hydrate as a submarine geohazard, however, is of immediate and increasing importance to humans as our industrial society moves to exploit seabed resources at ever-greater depths in the waters of our coastal oceans. Human activities and installations in regions of gas-hydrate occurrence must take into account the presence of gas hydrate and deal with the consequences of its presence.

  9. Macrophages: An Inflammatory Link between Angiogenesis and Lymphangiogenesis

    Science.gov (United States)

    Corliss, Bruce A.; Azimi, Mohammad S.; Munson, Jenny; Peirce, Shayn M.; Murfee, Walter Lee

    2015-01-01

    Angiogenesis and lymphangiogenesis often occur in response to tissue injury or in the presence of pathology (e.g. cancer), and it is these types of environments in which macrophages are activated and increased in number. Moreover, the blood vascular microcirculation and the lymphatic circulation serve as the conduits for entry and exit for monocyte-derived macrophages in nearly every tissue and organ. Macrophages both affect and are affected by the vessels through which they travel. Therefore, it is not surprising that examination of macrophage behaviors in both angiogenesis and lymphangiogenesis has yielded interesting observations that suggest macrophages may be key regulators of these complex growth and remodeling processes. In this review, we will take a closer look at macrophages through the lens of angiogenesis and lymphangiogenesis, examining how their dynamic behaviors may regulate vessel sprouting and function. We present macrophages as a cellular link that spatially and temporally connects angiogenesis with lymphangiogenesis, in both physiological growth and in pathological adaptations, such as tumorigenesis. As such, attempts to therapeutically target macrophages in order to affect these processes may be particularly effective, and studying macrophages in both settings will accelerate the field’s understanding of this important cell type in health and disease. PMID:26614117

  10. Dietary compounds galangin and myricetin suppress ovarian cancer cell angiogenesis.

    Science.gov (United States)

    Huang, Haizhi; Chen, Allen Y; Rojanasakul, Yon; Ye, Xingqian; Rankin, Gary O; Chen, Yi Charlie

    2015-05-01

    Galangin and myricetin are flavonoids isolated from vegetables and fruits which exhibit anti-proliferative activity in human cancer cells. In this study, their anti-angiogenic effects were investigated with in vitro (HUVEC) and in vivo (CAM) models, which showed that galangin and myricetin inhibited angiogenesis induced by OVCAR-3 cells. The molecular mechanisms through which galangin and myricetin suppress angiogenesis were also studied. It was observed that galangin and myricetin inhibited secretion of the key angiogenesis mediator vascular endothelial growth factor (VEGF) and decreased levels of p-Akt, p-70S6K and hypoxia-inducible factor-1α (HIF-1α) proteins in A2780/CP70 and OVCAR-3 cells. Transient transfection experiments showed that galangin and myricetin inhibited secretion of VEGF by the Akt/p70S6K/ HIF-1α pathway. Moreover, a novel pathway, p21/HIF-1α/VEGF, was found to be involved in the inhibitory effect of myricetin on angiogenesis in OVCAR-3 cells. These data suggest that galangin and myricetin might serve as potential anti-angiogenic agents in the prevention of ovarian cancers dependent on new blood vessel networks.

  11. Targeting Angiogenesis in Biliary Tract Cancers: An Open Option

    Directory of Open Access Journals (Sweden)

    Valeria Simone

    2017-02-01

    Full Text Available Biliary tract cancers (BTCs are characterized by a bad prognosis and the armamentarium of drugs for their treatment is very poor. Although the inflammatory status of biliary tract represents the first step in the cancerogenesis, the microenvironment also plays a key role in the pathogenesis of BTCs, promoting tumor angiogenesis, invasion and metastasis. Several molecules, such as vascular endothelial growth factor (VEGF and fibroblast growth factor (FGF, are involved in the angiogenesis process and their expression on tumor samples has been explored as prognostic marker in both cholangiocarcinoma and gallbladder cancer. Recent studies evaluated the genomic landscape of BTCs and evidenced that aberrations in several genes enrolled in the pro-angiogenic signaling, such as FGF receptor-2 (FGFR-2, are characteristic of BTCs. New drugs targeting the signaling pathways involved in angiogenesis have been tested in preclinical studies both in vitro and in vivo with promising results. Moreover, several clinical studies tested monoclonal antibodies against VEGF and tyrosine kinase inhibitors targeting the VEGF and the MEK/ERK pathways. Herein, we evaluate both the pathogenic mechanisms of BTCs focused on angiogenesis and the preclinical and clinical data available regarding the use of new anti-angiogenic drugs in these malignancies.

  12. Uncoupled angiogenesis and osteogenesis in nicotine-compromised bone healing.

    Science.gov (United States)

    Ma, Li; Zheng, Li Wu; Sham, Mai Har; Cheung, Lim Kwong

    2010-06-01

    Nicotine is the main chemical component responsible for tobacco addiction. This study aimed to evaluate the influence of nicotine on angiogenesis and osteogenesis and the associated expression of angiogenic and osteogenic mediators during bone healing. Forty-eight adult New Zealand White rabbits were randomly assigned to a nicotine group and a control group. Nicotine pellets (1.5 g, 60-day time release) or placebo pellets were implanted in the neck subcutaneous tissue. The nicotine or placebo exposure time for all the animals was 7 weeks. Unilateral mandibular distraction osteogenesis was performed. Eight animals in each group were euthanized on day 5, day 11 of active distraction, and week 1 of consolidation, respectively. The mandibular samples were subjected to radiographic, histologic, immunohistochemical, and real-time reverse-transcriptase polymerase chain reaction examinations. Nicotine exposure upregulated the expression of hypoxia inducible factor 1alpha and vascular endothelial growth factor and enhanced angiogenesis but inhibited the expression of bone morphogenetic protein 2 and impaired bone healing. The results indicate that nicotine decouples angiogenesis and osteogenesis in this rabbit model of distraction osteogenesis, and the enhanced angiogenesis cannot compensate for the adverse effects of nicotine on bone healing. (c) 2010 American Society for Bone and Mineral Research.

  13. Apparent diffusion coefficient correlation with oesophageal tumour stroma and angiogenesis

    International Nuclear Information System (INIS)

    Aoyagi, Tomoyoshi; Shuto, Kiyohiko; Okazumi, Shinichi; Hayano, Kohichi; Satoh, Asami; Saitoh, Hiroshige; Shimada, Hideaki; Nabeya, Yoshihiro; Matsubara, Hisahiro; Kazama, Toshiki

    2012-01-01

    Because diffusion-weighted imaging (DWI) can predict the prognosis of patients with oesophageal squamous cell carcinoma (ESCC), we hypothesised that apparent diffusion coefficient (ADC) values might be correlated with the collagen content and tumour angiogenesis. The purpose of this study was to determine the correlation between ADC values of ESCC before treatment and oesophageal tumour stroma and angiogenesis. Seventeen patients with ESCC were enrolled. The ADC values were calculated from the DWI score. Seventeen patients who had undergone oesophagectomy were analysed for tumour stroma, vascular endothelial growth factor (VEGF) and CD34. Tissue collagen was stained with azocarmine and aniline blue to quantitatively analyse the extracellular matrix in cancer stroma. Tissues were stained with VEGF and CD34 to analyse the angiogenesis. The ADC values decreased with stromal collagen growth. We found a negative correlation between the tumour ADC and the amount of stromal collagen (r = -0.729, P = 0.001), i.e. the ADC values decreased with growth of VEGF. We also found a negative correlation between the ADC of the tumours and the amount of VEGF (r = 0.538, P = 0.026). Our results indicated that the ADC value may be a novel prognostic factor and contribute to the treatment of oesophageal cancer. circle Magnetic resonance apparent diffusion coefficient values inversely indicate tumour stromal collagen circle There is also negative correlation between ADCs and vascular endothelial growth factor circle ADC values may contribute to the treatment of oesophageal cancer. (orig.)

  14. VEGF Spliced Variants: Possible Role of Anti-Angiogenesis Therapy

    Directory of Open Access Journals (Sweden)

    Caroline Hilmi

    2012-01-01

    Full Text Available Angiogenesis has been targeted in retinopathies, psoriasis, and a variety of cancers (colon, breast, lung, and kidney. Among these tumour types, clear cell renal cell carcinomas (RCCs are the most vascularized tumours due to mutations of the von Hippel Lindau gene resulting in HIF-1 alpha stabilisation and overexpression of Vascular Endothelial Growth Factor (VEGF. Surgical nephrectomy remains the most efficient curative treatment for patients with noninvasive disease, while VEGF targeting has resulted in varying degrees of success for treating metastatic disease. VEGF pre-mRNA undergoes alternative splicing generating pro-angiogenic isoforms. However, the recent identification of novel splice variants of VEGF with anti-angiogenic properties has provided some insight for the lack of current treatment efficacy. Here we discuss an explanation for the relapse to anti-angiogenesis treatment as being due to either an initial or acquired resistance to the therapy. We also discuss targeting angiogenesis via SR (serine/arginine-rich proteins implicated in VEGF splicing.

  15. Digital Microscopy Assessment of Angiogenesis in Different Breast Cancer Compartments

    Directory of Open Access Journals (Sweden)

    Anca Haisan

    2013-01-01

    Full Text Available Background/Aim. Tumour angiogenesis defined by microvessel density (MVD is generally accepted as a prognostic factor in breast cancer. However, due to variability of measurement systems and cutoffs, it is questionable to date whether it contributes to predictive outline. Our study aims to grade vascular heterogeneity by comparing clear-cut compartments: tumour associated stroma (TAS, tumour parenchyma, and tumour invasive front. Material and Methods. Computerized vessel area measurement was performed using a tissue cytometry system (TissueFAXS on slides originated from 50 patients with breast cancer. Vessels were marked using immunohistochemistry with CD34. Regions of interest were manually defined for each tumour compartment. Results. Tumour invasive front vascular endothelia area was 2.15 times higher than that in tumour parenchyma and 4.61 times higher than that in TAS (P<0.002. Worth to mention that the lymph node negative subgroup of patients show a slight but constant increase of vessel index in all examined compartments of breast tumour. Conclusion. Whole slide digital examination and region of interest (ROI analysis are a valuable tool in scoring angiogenesis markers and disclosing their prognostic capacity. Our study reveals compartments’ variability of vessel density inside the tumour and highlights the propensity of invasive front to associate an active process of angiogenesis with potential implications in adjuvant therapy.

  16. Intra-laboratory validation of a human cell based in vitro angiogenesis assay for testing angiogenesis modulators

    Directory of Open Access Journals (Sweden)

    Jertta-Riina Sarkanen

    2011-01-01

    Full Text Available The developed standardized human cell based in vitro angiogenesis assay was intra-laboratory validated to verify that the method is reliable and relevant for routine testing of modulators of angiogenesis e.g. pharmaceuticals and industrial chemicals. This assay is based on the earlier published method but it was improved and shown to be more sensitive and rapid than the previous assay. The performance of the assay was assessed by using 6 reference chemicals, which are widely used pharmaceuticals that inhibit angiogenesis: acetyl salicylic acid, erlotinib, 2-methoxyestradiol, levamisole, thalidomide, and anti-vascular endothelial growth factor. In the intra-laboratory validation, the sensitivity of the assay (upper and lower limits of detection and linearity of response in tubule formation, batch to batch variation in tubule formation between different Master cell bank batches, and precision as well as the reliability of the assay (reproducibility and repeatability were tested. The pre-set acceptance criteria for the intra-laboratory validation study were met. The relevance of the assay in man was investigated by comparing the effects of reference chemicals and their concentrations to the published human data. The comparison showed a good concordance, which indicates that this human cell based angiogenesis model predicts well the effects in man and has the potential to be used to supplement and/or replace of animal tests.

  17. Hydration, fluid regulation and the eye: in health and disease.

    Science.gov (United States)

    Sherwin, Justin C; Kokavec, Jan; Thornton, Simon N

    2015-11-01

    Variation in systemic hydration status, namely chronic systemic hypohydration or dehydration, can influence the development of several chronic non-ophthalmic diseases. Owing to the eye's high water content and unique system of fluid regulation, we hypothesized that hydration status may affect the eye in health and disease states. Therefore, we performed a systematic review of the current evidence implicating changes in hydration and their association with ocular physiology and morphological characteristics. We also reviewed relevant clinical correlations of changes in hydration and major common eye diseases. Our findings suggest that systemic hydration status broadly affects a variety of ocular pathophysiologic processes and disease states. For example, dehydration may be associated with development of dry eye syndrome, cataract, refractive changes and retinal vascular disease. On the other hand, excessive hydration is associated with some ocular diseases. Tear fluid osmolarity may be an effective marker of systemic hydration status. Recent studies implicate chronic renin-angiotensin-aldosterone system activation in the pathogenesis of diabetic retinopathy and glaucoma but also suggest its antagonism may be a useful therapeutic target. Our findings indicate that assessment of hydration status may be an important consideration in the management of patients with chronic eye diseases and undergoing eye surgery. Further research investigating the role of acute and chronic changes in hydration in individuals with and without ocular disease is warranted. © 2015 Royal Australian and New Zealand College of Ophthalmologists.

  18. COX-2 – A Novel Target for Reducing Tumor Angiogenesis and Metastasis | Center for Cancer Research

    Science.gov (United States)

    Angiogenesis is essential for tumor growth and metastasis, by supplying a steady stream of nutrients, removing waste, and providing tumor cells access to other sites in the body. The vascular endothelial growth factor (VEGF) and its receptors (VEGFRs) play a key role in tumor-mediated angiogenesis, and this pathway is the target of monoclonal antibodies and tyrosine kinase inhibitors (TKIs) that have been approved to treat patients with cancer. Unfortunately, tumors can use alternative angiogenesis mechanisms to escape VEGF pathway blockade, but these alternate pathways are not well understood. Brad St. Croix, Ph.D., of CCR’s Mouse Cancer Genetics Program, along with Lihong Xu, Ph.D., a Postdoctoral Fellow in the St. Croix laboratory, and colleagues set out to identify VEGF-independent mediators of tumor angiogenesis.

  19. Aminoacyl-tRNA synthetase dependent angiogenesis revealed by a bioengineered macrolide inhibitor.

    Science.gov (United States)

    Mirando, Adam C; Fang, Pengfei; Williams, Tamara F; Baldor, Linda C; Howe, Alan K; Ebert, Alicia M; Wilkinson, Barrie; Lounsbury, Karen M; Guo, Min; Francklyn, Christopher S

    2015-08-14

    Aminoacyl-tRNA synthetases (AARSs) catalyze an early step in protein synthesis, but also regulate diverse physiological processes in animal cells. These include angiogenesis, and human threonyl-tRNA synthetase (TARS) represents a potent pro-angiogenic AARS. Angiogenesis stimulation can be blocked by the macrolide antibiotic borrelidin (BN), which exhibits a broad spectrum toxicity that has discouraged deeper investigation. Recently, a less toxic variant (BC194) was identified that potently inhibits angiogenesis. Employing biochemical, cell biological, and biophysical approaches, we demonstrate that the toxicity of BN and its derivatives is linked to its competition with the threonine substrate at the molecular level, which stimulates amino acid starvation and apoptosis. By separating toxicity from the inhibition of angiogenesis, a direct role for TARS in vascular development in the zebrafish could be demonstrated. Bioengineered natural products are thus useful tools in unmasking the cryptic functions of conventional enzymes in the regulation of complex processes in higher metazoans.

  20. Gas hydrate in nature

    Science.gov (United States)

    Ruppel, Carolyn D.

    2018-01-17

    Gas hydrate is a naturally occurring, ice-like substance that forms when water and gas combine under high pressure and at moderate temperatures. Methane is the most common gas present in gas hydrate, although other gases may also be included in hydrate structures, particularly in areas close to conventional oil and gas reservoirs. Gas hydrate is widespread in ocean-bottom sediments at water depths greater than 300–500 meters (m; 984–1,640 feet [ft]) and is also present in areas with permanently frozen ground (permafrost). Several countries are evaluating gas hydrate as a possible energy resource in deepwater or permafrost settings. Gas hydrate is also under investigation to determine how environmental change may affect these deposits.

  1. Origins of hydration lubrication.

    Science.gov (United States)

    Ma, Liran; Gaisinskaya-Kipnis, Anastasia; Kampf, Nir; Klein, Jacob

    2015-01-14

    Why is friction in healthy hips and knees so low? Hydration lubrication, according to which hydration shells surrounding charges act as lubricating elements in boundary layers (including those coating cartilage in joints), has been invoked to account for the extremely low sliding friction between surfaces in aqueous media, but not well understood. Here we report the direct determination of energy dissipation within such sheared hydration shells. By trapping hydrated ions in a 0.4-1 nm gap between atomically smooth charged surfaces as they slide past each other, we are able to separate the dissipation modes of the friction and, in particular, identify the viscous losses in the subnanometre hydration shells. Our results shed light on the origins of hydration lubrication, with potential implications both for aqueous boundary lubricants and for biolubrication.

  2. Gas hydrate nucleation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The overall aim of the project was to gain more knowledge about the kinetics of gas hydrate formation especially the early growth phase. Knowledge of kinetics of gas hydrate formation is important and measurements of gas hydrate particle size and concentration can contribute to improve this knowledge. An experimental setup for carrying out experimental studies of the nucleation and growth of gas hydrates has been constructed and tested. Multi wavelength extinction (MWE) was the experimental technique selected for obtaining particle diameter and concentration. The principle behind MWE is described as well as turbidity spectrum analysis that in an initial stage of the project was considered as an alternative experimental technique. Details of the experimental setup and its operation are outlined. The measuring cell consists of a 1 litre horizontal tube sustaining pressures up to 200 bar. Laser light for particle size determination can be applied through sapphire windows. A description of the various auxiliary equipment and of another gas hydrate cell used in the study are given. A computer program for simulation and analysis of gas hydrate experiments is based on the gas hydrate kinetics model proposed by Skovborg and Rasmussen (1993). Initial measurements showed that knowledge of the refractive index of gas hydrates was important in order to use MWE. An experimental determination of the refractive index of methane and natural gas hydrate is described. The test experiments performed with MWE on collectives of gas hydrate particles and experiments with ethane, methane and natural gas hydrate are discussed. Gas hydrate particles initially seem to grow mainly in size and at latter stages in number. (EG) EFP-94; 41 refs.

  3. Gene therapy and angiogenesis in patients with coronary artery disease

    DEFF Research Database (Denmark)

    Kastrup, Jens

    2010-01-01

    Not all patients with severe coronary artery disease can be treated satisfactorily with current recommended medications and revascularization techniques. Various vascular growth factors have the potential to induce angiogenesis in ischemic tissue. Clinical trials have only evaluated the effect...... of VEGF and FGF in patients with coronary artery disease. The initial small and unblinded studies with either recombinant growth factor proteins or genes encoding growth factors were encouraging, demonstrating both clinical improvement and evidence of angiogenesis. However, subsequent larger double...... an improvement in clinical results can be obtained with a cocktail of growth factors or by a combination of gene and stem cell therapy in patients with severe coronary artery disease, which cannot be treated effectively with current treatment strategies....

  4. miR-21 Is Linked to Glioma Angiogenesis

    DEFF Research Database (Denmark)

    Hermansen, Simon Kjær; Nielsen, Boye Schnack; Aaberg-Jessen, Charlotte

    2016-01-01

    -positive tumor cells, we systematically stained consecutive serial sections from ten astrocytomas for miR-21, hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), phosphatase and tensin homolog (PTEN), octamer-binding transcription factor 4 (Oct4), sex-determining region Y box 2......-localized with the hypoxia- and angiogenesis-associated markers HIF-1α (p=0.0020) and VEGF (p=0.0096), whereas the putative miR-21 target, PTEN, was expressed independently of miR-21. Expression of stem cell markers Oct4, Sox2 and CD133 was not associated with miR-21. In six glioblastoma cultures, miR-21 did not correlate...... with the six markers. These findings suggest that miR-21 is linked to glioma angiogenesis, that miR-21 is unlikely to regulate PTEN, and that miR-21-positive tumor cells do not possess stem cell characteristics....

  5. Radiolabeling of VEGF(165) with Tc-99m to evaluate VEGFR expression in tumor angiogenesis

    NARCIS (Netherlands)

    Galli, Filippo; Artico, Marco; Taurone, Samanta; Manni, Isabella; Bianchi, Enrica; Piaggio, Giulia; Weintraub, Bruce D.; Szkudlinski, Mariusz W.; Agostinelli, Enzo; Dierckx, Rudi A. J. O.; Signore, Alberto

    Angiogenesis is the main process responsible for tumor growth and metastatization. The principal effector of such mechanism is the vascular endothelial growth factor (VEGF) secreted by cancer cells and other components of tumor microenvironment. Radiolabeled VEGF analogues may provide a useful tool

  6. Chalkley estimates of angiogenesis in early breast cancer--relevance to prognosis

    DEFF Research Database (Denmark)

    Offersen, Birgitte V; Sørensen, Flemming Brandt; Yilmaz, Mette

    2002-01-01

    The aim of this study was to investigate whether Chalkley estimates of angiogenesis add new knowledge regarding prediction of prognosis in 455 consecutive early breast carcinomas, both node-positive (52%) and node-negative (48%). Median follow-up was 101 months. Intense vascularization indicated...

  7. [CT and MRI imaging in tumoral angiogenesis].

    Science.gov (United States)

    de Bazelaire, C; Calmon, R; Chapellier, M; Pluvinage, A; Frija, J; de Kerviler, E

    2010-01-01

    Angiogenesis is the process of activating dormant endothelial cells to form new vessels, after stimulation and it is essential in tumor growth. In many types of cancer, angiogenesis results from the activation of oncogenes that stimulate the production of Vascular Endothelial Growth Factor (VEGF). However, these newly formed vessels have a great number of abnormalities: increased density of fragile and hyper-permeable microvessels, arterial-venous shunts, caliber abnormalities and flow instabilities susceptible to flow direction inversion according to interstitial pressure. Anti-angiogenic treatments inhibit VEGF activity, perceived as structural and functional normalization of the microvascular pattern, such as reduced density of microvessels and restored morphology of the remaining ones. Conventional imaging techniques are not sensible to these changes, at best they show tumor size stabilization, hence the need of new techniques. Microvascularization imaging can be achieved by detecting functional disturbances to blood flow and not by showing the microvasculature per se. These techniques are based in quantifying the enhancement in tumor due to the passage of contrast agent after injection or protons labeled by a magnetic field. Through these measurements, one can derive interstitial and blood volumes as well as the tissue perfusion and capillary wall permeability. Microvascular imaging has greatly benefited from the improvements seen in CT and MRI equipment allowing large volume coverage with high spatial and temporal resolutions as from the evolutions in the methods to calculate, present and compare maps of the microcirculation and it's heterogeneity. However, software to analyze microvascularization are still rare, limiting the technique's application and validation in large scale. Nevertheless, imaging of the microcirculation is useful throughout the care of the oncological patient: it can reinforce the suspicious nature of a lesion, suggest anti

  8. Mechanisms of angiogenesis in neoplasia

    Directory of Open Access Journals (Sweden)

    Anna Antonina Sobocińska

    2016-12-01

    Full Text Available Mechanism of forming new capillary from basal vessels, named angiogenesis, exist under both physiological and pathological conditions. Initiation of this process requires imbalance between proangiogenic and antiangiogenic factors, which can occur for instance under hypoxic conditions. Angiogenesis is complex process which allow tumor cells to proliferate, thus providing tumor to increase its structure. This dependence is highly connected to enhanced migration of tumor cells through blood, which often ends up being an onset of metastasis. It has been proved that capillaries that form during tumor lifetime are different in case of morphology. However, it seems that antigens spread through these blood vessel are the same as antigens produced during physiological angiogenesis. In recent years angiogenesis has become one of the most important targets in therapies used in oncology. Antiangiogenic therapies have proven itself to be very spectacular and promising in treatment of renal and pancreatic cancers or multiple myeloma. Bewacizumab, Sunitinib, Cetuximab and Talidomid are examples of drugs used in such therapies. Tyrosine kinase inhibitors are group that represents most of the drugs of antiangiogenic properties. It is worth mentioning that during administration of such substances spectrum of side effects is observed. However, antiangiogenic therapy is one of the most promising targets in today’s oncology. Therefore, it is highly explainable to continue further research in this area.

  9. Are tumours angiogenesis-dependent?

    NARCIS (Netherlands)

    Verheul, H. M. W.; Voest, E. E.; Schlingemann, R. O.

    2004-01-01

    The final proof of principle that cancer patients can be effectively treated with angiogenesis inhibitors is eagerly awaited. Various preclinical in vivo experiments have proven that most tumours need new vessel formation in order to grow and to form metastases. First of all, tumours do not grow in

  10. Association of tumor angiogenesis with bone marrow micrometastases in breast cancer patients.

    Science.gov (United States)

    Fox, S B; Leek, R D; Bliss, J; Mansi, J L; Gusterson, B; Gatter, K C; Harris, A L

    1997-07-16

    The microscopic detection of tumor cells (micrometastases) in bone marrow and the extent of blood vessel formation (angiogenesis) in primary tumor specimens are recognized as independent prognostic markers in patients with breast cancer. Since micrometastases occur as a consequence of interaction between the neoplastic cells and the tumor neovasculature, we have examined the relationship between these markers to determine whether the degree of angiogenesis is related to the presence of micrometastases. Micrometastases were identified in bone marrow aspirates collected from multiple sites in 214 breast cancer patients prior to surgery (mastectomy or lumpectomy). Tumor cells were detected through an examination of epithelial membrane antigen expression and an analysis of cell morphology. Tumor vascularity was graded semiquantitatively or quantitatively (Chalkley point count) after immunohistochemical staining of the CD31 antigen expressed by the endothelial cells. The reproducibility and accuracy of the vascular grading were validated by use of kappa statistics. Associations between micrometastases and clinicopathologic characteristics, including angiogenesis, were examined using chi-squared and logistic regression techniques. All tests of statistical significance were two-sided. Of the 214 patients, 42 (20%) were positive for bone marrow micrometastases and 75 (35%) had tumors of high vascular grade. There was 86% agreement between vascular grades assessed twice for 35 tumors (kappa statistic = 0.66); for 22 evaluated tumors, there was absolute concordance between vascular grade and Chalkley point count. There were significant positive associations between tumor angiogenesis and micrometastasis (P = .01), tumor grade (P = .003), and estrogen receptor expression (P = .007); however, no significant associations were observed with tumor size (P = .9), lymph node status (P = .33), vascular invasion (peritumoral blood or lymph vessels) (P = .9), menopausal status (P

  11. Effects of infection with recombinant adenovirus on human vascular endothelial and smooth muscle cells

    NARCIS (Netherlands)

    Quax, P.H.A.; Lamfers, M.L.M.; Grimbergen, J.M.; Teeling, J.; Hoeben, R.C.; Nieuw Amerongen, G.P. van; Hinsbergh, V.W.M. van

    1996-01-01

    The plasminogen activation (PA) system is involved in vascular remodelling. Modulating its activity in vascular cells might be a way to interfere in processes such as angiogenesis and restenosis. Adenoviral vectors have become a favourable tool for direct gene transfer into vascular cells. In the

  12. Angiogenesis, Thrombospondin-1 and Cervical Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Ming-Ping Wu

    2005-06-01

    Full Text Available Angiogenesis, the growth of new vessels from existing vasculature, plays an essential role in tumor development. The process involves interaction among cancer cells, endothelial cells, and components of the extracellular matrix, and is regulated by the balance of angiogenesis activators and angiogenesis inhibitors. This review profiles some fundamental concepts of angiogenesis, the importance of angiogenesis in cervical neoplasm, and the role of thrombospondin-1 as an angiogenesis inhibitor in cervical carcinogenesis. The usefulness and limitations of microvessel density in evaluation of angiogenic status are also discussed. Recent research and evolving concepts have led to a paradigm shift in anticancer therapy, from conventional cancer-centered chemotherapy to angiogenic or “metronomic” chemotherapy and/or combined angiogenesis inhibitors. The epigenetic strategy, which views the tumor system as a whole, transcends the cancer gene-centered approach.

  13. Vascular Function and Angiogenesis in Aging and Essential Hypertension

    DEFF Research Database (Denmark)

    Gliemann, Lasse

    antioxidants  In aged individuals, the presence of ROS may be excessive, due to increased ROS formation and reduced antioxidant defense capacity. Such an increase in oxidative stress could lead to cell damage and inflammation. The present work shows that a period of exercise training in aged men can lower...... markers of basal oxidative stress and inflammation in skeletal muscle. The effect of training on markers of oxidative stress was likely, at least in part, due to a increase in skeletal muscle levels of SOD2, as the potential for ROS formation actually increased as evidenced by an increase...... in the expression of NAD(P)H oxidase. This latter finding of a training induced increase in NAD(P)H oxidase emphasizes the importance of ROS for muscle function and adaptation and to some extent even questions the theory of harmful oxidative stress in healthy aged individuals. Our studies were not able to support...

  14. Camel milk inhibits inflammatory angiogenesis via downregulation of proangiogenic and proinflammatory cytokines in mice.

    Science.gov (United States)

    Alhaider, Abdulqader A; Abdel Gader, Abdel Galil M; Almeshaal, Nawaf; Saraswati, Sarita

    2014-07-01

    Camel milk has traditionally been used to treat cancer, but this practice awaits scientific scrutiny, in particular its role in tumor angiogenesis, the key step involved in tumor growth and metastasis. We aimed to investigate the effects of camel milk on key components of inflammatory angiogenesis in sponge implant angiogenesis model. Polyester-polyurethane sponges, used as a framework for fibrovascular tissue growth, were implanted in Swiss albino mice and camel milk (25, 50 and 100 mg/kg/day) was administered for 14 days through installed cannula. The implants collected at day 14 post-implantation were processed for the assessment of hemoglobin (Hb), myeloperoxidase (MPO), N-acetylglucosaminidase (NAG), and collagen, which were used as indices for angiogenesis, neutrophil, and macrophage accumulation and extracellular matrix deposition, respectively. Relevant inflammatory, angiogenic, and fibrogenic cytokines were also determined. Camel milk treatment attenuated the main components of the fibrovascular tissue, wet weight, vascularization (Hb content), macrophage recruitment (NAG activity), collagen deposition and the levels of vascular endothelial growth factor (VEGF), interleukin (IL)-1β, IL-6, IL-17, tumor necrosis factor-α, and transforming growth factor-β. A regulatory function of camel milk on multiple parameters of the main components of inflammatory angiogenesis has been revealed, giving insight into the potential therapeutic benefit underlying the anti-cancer actions of camel milk. © 2013 APMIS. Published by John Wiley & Sons Ltd.

  15. Cranial vasculature in zebrafish forms by angioblast cluster-derived angiogenesis.

    Science.gov (United States)

    Proulx, Kira; Lu, Annie; Sumanas, Saulius

    2010-12-01

    Formation of embryonic vasculature involves vasculogenesis as endothelial cells differentiate and aggregate into vascular cords and angiogenesis which includes branching from the existing vessels. In the zebrafish which has emerged as an advantageous model to study vasculogenesis, cranial vasculature is thought to originate by a combination of vasculogenesis and angiogenesis, but how these processes are coordinated is not well understood. To determine how angioblasts assemble into cranial vasculature, we generated an etsrp:GFP transgenic line in which GFP reporter is expressed under the promoter control of an early regulator of vascular and myeloid development, etsrp/etv2. By utilizing time-lapse imaging we show that cranial vessels originate by angiogenesis from angioblast clusters, which themselves form by the mechanism of vasculogenesis. The two major pairs of bilateral clusters include the rostral organizing center (ROC) which gives rise to the most rostral cranial vessels and the midbrain organizing center (MOC) which gives rise to the posterior cranial vessels and to the myeloid and endocardial lineages. In Etsrp knockdown embryos initial cranial vasculogenesis proceeds normally but endothelial and myeloid progenitors fail to initiate differentiation, migration and angiogenesis. Such angioblast cluster-derived angiogenesis is likely to be involved during vasculature formation in other vertebrate systems as well. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Targeting angiogenesis inhibits tumor infiltration and expression of the pro-invasive protein SPARC.

    Science.gov (United States)

    Vajkoczy, P; Menger, M D; Goldbrunner, R; Ge, S; Fong, T A; Vollmar, B; Schilling, L; Ullrich, A; Hirth, K P; Tonn, J C; Schmiedek, P; Rempel, S A

    2000-07-15

    The solid growth of high-grade glioma appears to be critically dependent on tumor angiogenesis. It remains unknown, however, whether the diffuse infiltration of glioma cells into healthy adjacent tissue is also dependent on the formation of new tumor vessels. Here, we analyze the relationship between tumor angiogenesis and tumor cell infiltration in an experimental glioma model. C6 cells were implanted into the dorsal skinfold chamber of nude mice, and tumor angiogenesis was monitored by intravital fluorescence videomicroscopy. Glioma infiltration was assessed by the extent of tumor cell invasion into the adjacent chamber tissue and by expression of SPARC, a cellular marker of glioma invasiveness. To test the hypothesis that glioma angiogenesis and glioma infiltration are codependent, we assessed tumor infiltration in both the presence and the absence of the angiogenesis inhibitor SU5416. SU5416 is a selective inhibitor of the VEGF/Flk-1 signal-transduction pathway, a critical pathway implicated in angiogenesis. Control tumors demonstrated both high angiogenic activity and tumor cell invasion accompanied by strong expression of SPARC in invading tumor cells at the tumor-host tissue border. SU5416-treated tumors demonstrated reduced vascular density and vascular surface in the tumor periphery accompanied by marked inhibition of glioma invasion and decreased SPARC expression. A direct effect of SU5416 on glioma cell motility and invasiveness was excluded by in vitro migration and invasion assays. These results suggest a crucial role for glioma-induced angiogenesis as a prerequisite for diffuse tumor invasion and a possible therapeutic role for anti-angiogenic compounds as inhibitors of both solid and diffuse infiltrative tumor growth. Copyright 2000 Wiley-Liss, Inc.

  17. Isthmin is a novel secreted angiogenesis inhibitor that inhibits tumour growth in mice

    Science.gov (United States)

    Xiang, Wei; Ke, Zhiyuan; Zhang, Yong; Ho-Yuet Cheng, Grace; Irwan, Ishak Darryl; Sulochana, K N; Potturi, Padma; Wang, Zhengyuan; Yang, He; Wang, Jingyu; Zhuo, Lang; Kini, R Manjunatha; Ge, Ruowen

    2011-01-01

    Abstract Anti-angiogenesis represents a promising therapeutic strategy for the treatment of various malignancies. Isthmin (ISM) is a gene highly expressed in the isthmus of the midbrain–hindbrain organizer in Xenopus with no known functions. It encodes a secreted 60 kD protein containing a thrombospondin type 1 repeat domain in the central region and an adhesion-associated domain in MUC4 and other proteins (AMOP) domain at the C-terminal. In this work, we demonstrate that ISM is a novel angiogenesis inhibitor. Recombinant mouse ISM inhibited endothelial cell (EC) capillary network formation on Matrigel through its C-terminal AMOP domain. It also suppressed vascular endothelial growth factor (VEGF)-basic fibroblast growth factor (bFGF) induced in vivo angiogenesis in mouse. It mitigated VEGF-stimulated EC proliferation without affecting EC migration. Furthermore, ISM induced EC apoptosis in the presence of VEGF through a caspase-dependent pathway. ISM binds to αvβ5 integrin on EC surface and supports EC adhesion. Overexpression of ISM significantly suppressed mouse B16 melanoma tumour growth through inhibition of tumour angiogenesis without affecting tumour cell proliferation. Knockdown of isthmin in zebrafish embryos using morpholino antisense oligonucleotides led to disorganized intersegmen-tal vessels in the trunk. Our results demonstrate that ISM is a novel endogenous angiogenesis inhibitor with functions likely in physiological as well as pathological angiogenesis. PMID:19874420

  18. The Role of NOX4 and TRX2 in Angiogenesis and Their Potential Cross-Talk

    Directory of Open Access Journals (Sweden)

    Chaofei Chen

    2017-06-01

    Full Text Available The nicotinamide adenine dinucleotide phosphate (NADPH oxidase (NOX family is the major source of reactive oxygen species (ROS in the vascular system. In this family, NOX4, a constitutive active form of NOXs, plays an important role in angiogenesis. Thioredoxin 2 (TRX2 is a key mitochondrial redox protein that maintains normal protein function and also provides electrons to peroxiredoxin 3 (PRX3 to scavenge H2O2 in mitochondria. Angiogenesis, a process of new blood vessel formation, is involved in a variety of physiological processes and pathological conditions. It seems to be paradoxical for ROS-producing NOX4 and ROS-scavenging TRX2 to have a similar role in promoting angiogenesis. In this review, we will focus on data supporting the role of NOX4 and TRX2 in angiogenesis and their cross-talks and discuss how ROS can positively or negatively regulate angiogenesis, depending on their species, levels and locations. NOX4 and TRX2-mediated ROS signaling could be promising targets for the treatment of angiogenesis-related diseases.

  19. Oridonin inhibits tumor growth and metastasis through anti-angiogenesis by blocking the Notch signaling.

    Directory of Open Access Journals (Sweden)

    Yanmin Dong

    Full Text Available While significant progress has been made in understanding the anti-inflammatory and anti-proliferative effects of the natural diterpenoid component Oridonin on tumor cells, little is known about its effect on tumor angiogenesis or metastasis and on the underlying molecular mechanisms. In this study, Oridonin significantly suppressed human umbilical vascular endothelial cells (HUVECs proliferation, migration, and apillary-like structure formation in vitro. Using aortic ring assay and mouse corneal angiogenesis model, we found that Oridonin inhibited angiogenesis ex vivo and in vivo. In our animal experiments, Oridonin impeded tumor growth and metastasis. Immunohistochemistry analysis further revealed that the expression of CD31 and vWF protein in xenografts was remarkably decreased by the Oridonin. Furthermore, Oridonin reinforced endothelial cell-cell junction and impaired breast cancer cell transendothelial migration. Mechanistically, Oridonin not only down-regulated Jagged2 expression and Notch1 activity but also decreased the expression of their target genes. In conclusion, our results demonstrated an original role of Oridonin in inhibiting tumor angiogenesis and propose a mechanism. This study also provides new evidence supporting the central role of Notch in tumor angiogenesis and suggests that Oridonin could be a potential drug candidate for angiogenesis related diseases.

  20. TMA Vessel Segmentation Based on Color and Morphological Features: Application to Angiogenesis Research

    Science.gov (United States)

    Fernández-Carrobles, M. Milagro; Tadeo, Irene; Bueno, Gloria; Noguera, Rosa; Déniz, Oscar; Salido, Jesús; García-Rojo, Marcial

    2013-01-01

    Given that angiogenesis and lymphangiogenesis are strongly related to prognosis in neoplastic and other pathologies and that many methods exist that provide different results, we aim to construct a morphometric tool allowing us to measure different aspects of the shape and size of vascular vessels in a complete and accurate way. The developed tool presented is based on vessel closing which is an essential property to properly characterize the size and the shape of vascular and lymphatic vessels. The method is fast and accurate improving existing tools for angiogenesis analysis. The tool also improves the accuracy of vascular density measurements, since the set of endothelial cells forming a vessel is considered as a single object. PMID:24489494

  1. Therapeutic angiogenesis due to balanced single-vector delivery of VEGF and PDGF-BB

    Science.gov (United States)

    Banfi, Andrea; von Degenfeld, Georges; Gianni-Barrera, Roberto; Reginato, Silvia; Merchant, Milton J.; McDonald, Donald M.; Blau, Helen M.

    2012-01-01

    Therapeutic angiogenesis by delivery of vascular growth factors is an attractive strategy for treating debilitating occlusive vascular diseases, yet clinical trials have thus far failed to show efficacy. As a result, limb amputation remains a common outcome for muscle ischemia due to severe atherosclerotic disease, with an overall incidence of 100 per million people in the United States per year. A challenge has been that the angiogenic master regulator vascular endothelial growth factor (VEGF) induces dysfunctional vessels, if expressed outside of a narrow dosage window. We tested the hypothesis that codelivery of platelet-derived growth factor-BB (PDGF-BB), which recruits pericytes, could induce normal angiogenesis in skeletal muscle irrespective of VEGF levels. Coexpression of VEGF and PDGF-BB encoded by separate vectors in different cells or in the same cells only partially corrected aberrant angiogenesis. In marked contrast, coexpression of both factors in every cell at a fixed relative level via a single bicistronic vector led to robust, uniformly normal angiogenesis, even when VEGF expression was high and heterogeneous. Notably, in an ischemic hindlimb model, single-vector expression led to efficient growth of collateral arteries, revascularization, increased blood flow, and reduced tissue damage. Furthermore, these results were confirmed in a clinically applicable gene therapy approach by adenoviral-mediated delivery of the bicistronic vector. We conclude that coordinated expression of VEGF and PDGF-BB via a single vector constitutes a novel strategy for harnessing the potency of VEGF to induce safe and efficacious angiogenesis.—Banfi, A., von Degenfeld, G., Gianni-Barrera, R., Reginato, S., Merchant, M. J., McDonald, D. M., Blau, H. M. Therapeutic angiogenesis due to balanced single-vector delivery of VEGF and PDGF-BB. PMID:22391130

  2. Angiogenesis assessment in experimental third degree skin burns: a histological and immunohistochemical study.

    Science.gov (United States)

    Busuioc, Cristina Jana; Popescu, Florina Carmen; Mogoşanu, G D; Lascăr, I; Pirici, Ionica; Pop, O T; Mogoantă, L

    2011-01-01

    In the past 30 years, after the discovery of vascular proliferation factors, angiogenesis is one of the most intensively studied fields. Restoring the vascular network after burn injury is essential for healing, as it brings oxygen and nutrients to injured tissues, improves the contribution of inflammatory cells and prepares the damaged area for repair and tissue regeneration. To study the process of angiogenesis we used seven groups of five animals, each of adult Wistar rats, which were inflicted with third degree skin burns. From each group of animals, we sampled at successive intervals of three days the entire burnt wound with a ring of surrounding normal skin. Sampled skin fragments were processed for paraffin inclusion, sectioned with a microtome and stained with Hematoxylin-Eosin or Masson trichrome. The samples were also analyzed using single chromogenic immunohistochemistry or double immunofluorescence for the presence of CD34 and alpha smooth muscle actin (α-SMA). Angiogenesis process started at about three days after the burn infliction, with the appearance of tubular structures lined by CD34-positive cells. Subsequently, these cells showed intense proliferative activity that generated a network that included progressive neovascularization around the wound surface. Maximum vascular proliferation occurred at 9-15 days after injury, when the number of capillaries reached 229/mm², and the total area of capillary angiogenesis at 100.27 μm² (about 10% of the section area). Subsequently, the process of angiogenesis was gradually reduced, but remained at moderate levels after wound healing. During the process of angiogenesis, there was a very close relationship between CD34-positive cells and pericytes (as α-SMA-positive).

  3. Methane Hydrates: Chapter 8

    Science.gov (United States)

    Boswell, Ray; Yamamoto, Koji; Lee, Sung-Rock; Collett, Timothy S.; Kumar, Pushpendra; Dallimore, Scott

    2008-01-01

    Gas hydrate is a solid, naturally occurring substance consisting predominantly of methane gas and water. Recent scientific drilling programs in Japan, Canada, the United States, Korea and India have demonstrated that gas hydrate occurs broadly and in a variety of forms in shallow sediments of the outer continental shelves and in Arctic regions. Field, laboratory and numerical modelling studies conducted to date indicate that gas can be extracted from gas hydrates with existing production technologies, particularly for those deposits in which the gas hydrate exists as pore-filling grains at high saturation in sand-rich reservoirs. A series of regional resource assessments indicate that substantial volumes of gas hydrate likely exist in sand-rich deposits. Recent field programs in Japan, Canada and in the United States have demonstrated the technical viability of methane extraction from gas-hydrate-bearing sand reservoirs and have investigated a range of potential production scenarios. At present, basic reservoir depressurisation shows the greatest promise and can be conducted using primarily standard industry equipment and procedures. Depressurisation is expected to be the foundation of future production systems; additional processes, such as thermal stimulation, mechanical stimulation and chemical injection, will likely also be integrated as dictated by local geological and other conditions. An innovative carbon dioxide and methane swapping technology is also being studied as a method to produce gas from select gas hydrate deposits. In addition, substantial additional volumes of gas hydrate have been found in dense arrays of grain-displacing veins and nodules in fine-grained, clay-dominated sediments; however, to date, no field tests, and very limited numerical modelling, have been conducted with regard to the production potential of such accumulations. Work remains to further refine: (1) the marine resource volumes within potential accumulations that can be

  4. Endothelial Notch activity promotes angiogenesis and osteogenesis in bone

    Science.gov (United States)

    Ramasamy, Saravana K.; Kusumbe, Anjali P.; Wang, Lin; Adams, Ralf H.

    2014-03-01

    Blood vessel growth in the skeletal system and osteogenesis seem to be coupled, suggesting the existence of molecular crosstalk between endothelial and osteoblastic cells. Understanding the nature of the mechanisms linking angiogenesis and bone formation should be of great relevance for improved fracture healing or prevention of bone mass loss. Here we show that vascular growth in bone involves a specialized, tissue-specific form of angiogenesis. Notch signalling promotes endothelial cell proliferation and vessel growth in postnatal long bone, which is the opposite of the well-established function of Notch and its ligand Dll4 in the endothelium of other organs and tumours. Endothelial-cell-specific and inducible genetic disruption of Notch signalling in mice not only impaired bone vessel morphology and growth, but also led to reduced osteogenesis, shortening of long bones, chondrocyte defects, loss of trabeculae and decreased bone mass. On the basis of a series of genetic experiments, we conclude that skeletal defects in these mutants involved defective angiocrine release of Noggin from endothelial cells, which is positively regulated by Notch. Administration of recombinant Noggin, a secreted antagonist of bone morphogenetic proteins, restored bone growth and mineralization, chondrocyte maturation, the formation of trabeculae and osteoprogenitor numbers in endothelial-cell-specific Notch pathway mutants. These findings establish a molecular framework coupling angiogenesis, angiocrine signals and osteogenesis, which may prove significant for the development of future therapeutic applications.

  5. CECR1-mediated cross talk between macrophages and vascular mural cells promotes neovascularization in malignant glioma

    NARCIS (Netherlands)

    C. Zhu (Changbin); I. Chrifi (Ihsan); D.A.M. Mustafa (Dana); M.M. van der Weiden (Marcel); P.J. Leenen (Pieter); D.J.G.M. Duncker (Dirk); J.M. Kros (Johan); C. Cheng (Caroline)

    2017-01-01

    textabstractGlioblastomas (glioblastoma multiforme, GBM) are most malignant brain tumors characterized by profound vascularization. The activation of macrophages strongly contributes to tumor angiogenesis during GBM development. Previously, we showed that extracellular adenosine deaminase protein

  6. Unorthodox angiogenesis in skeletal muscle.

    Science.gov (United States)

    Egginton, S; Zhou, A L; Brown, M D; Hudlická, O

    2001-02-16

    The morphological pattern of angiogenesis occurring in mature, differentiated skeletal muscle in response to chronically increased muscle blood flow, muscle stretch or repetitious muscle contractions was examined to determine (a) whether capillary neoformation follows the generally accepted temporal paradigm, and (b) how the growth pattern is influenced by mechanical stimuli. Adult rats were treated for a maximum of 14 days either with the vasodilator prazosin, to elevate skeletal muscle blood flow, or underwent surgical removal of one ankle flexor, to induce compensatory overload in the remaining muscles, or had muscles chronically stimulated by implanted electrodes. Extensor digitorum longus and/or extensor hallucis proprius muscles were removed at intervals and processed for electron microscopy. A systematic examination of capillaries and their ultrastructure characterised the sequence of morphological changes indicative of angiogenesis, i.e., basement membrane disruption, endothelial cell (EC) sprouting and proliferation [immunogold labelling after bromodeoxyuridine (BrdU) incorporation]. Capillary growth in response to increased blood flow occurred by luminal division without sprouting or basement membrane (BM) breakage. In stretched muscles, EC proliferation and abluminal sprouting gave rise to new capillaries, with BM loss only at sprout tips. These distinct mechanisms appear to be additive as in chronically stimulated muscles (increased blood flow with repetitive stretch and shortening during muscle contractions) both forms of capillary growth occurred. Endothelial cell numbers per capillary profile, mitotic EC nuclei, and BrdU labelling confirmed cell proliferation prior to overt angiogenesis. Physiological angiogenesis within adult skeletal muscle progresses by mechanisms that do not readily conform to the consensus view of capillary growth, derived mainly from observations made during development, pathological vessel growth, or from in vitro systems. The

  7. Halting angiogenesis by non-viral somatic gene therapy alleviates psoriasis and murine psoriasiform skin lesions

    DEFF Research Database (Denmark)

    Zibert, John Robert; Wallbrecht, Katrin; Schön, Margarete

    2011-01-01

    with epidermal expression of human TGF-ß1, we have demonstrated that antiangiogenic non-viral somatic gene therapy reduces the cutaneous microvasculature and alleviates chronic inflammatory skin disorders. Transient muscular expression of the recombinant disintegrin domain (RDD) of metargidin (also known as ADAM...... in all models. Thus, non-viral antiangiogenic gene therapy can alleviate psoriasis and may do so in other angiogenesis-related inflammatory skin disorders.......-15) by in vivo electroporation reduced cutaneous angiogenesis and vascularization in all 3 models. As demonstrated using red fluorescent protein-coupled RDD, the treatment resulted in muscular expression of the gene product and its deposition within the cutaneous hyperangiogenic connective tissue...

  8. Temporal assessment of vascular reactivity and functionality using MRI during postischemic proangiogenenic vascular remodeling.

    Science.gov (United States)

    Huang, Chien-Hsiang; Shih, Yen-Yu Ian; Siow, Tiing-Yee; Hsu, Yi-Hua; Chen, Chiao-Chi V; Lin, Teng-Nan; Jaw, Fu-Shan; Chang, Chen

    2015-09-01

    Postischemic angiogenesis is an important recovery mechanism. Both arteries and veins are upregulated during angiogenesis, but eventually there are more angiogenic veins than arteries in terms of number and length. It is critical to understand how the veins are modulated after ischemia and then transitioned into angiogenic vessels during the proangiogenic stage to finally serve as a restorative strength to the injured area. Using a rat model of transient focal cerebral ischemia, the hypercapnic blood oxygen level-dependent (BOLD) response was used to evaluate vascular reactivity, while the hyperoxic BOLD and tissue oxygen level-dependent (TOLD) responses were used to evaluate the vascular functionality at 1, 3, and 7days after ischemia. Vessel-like venous signals appeared on R2* maps on days 3 and 7, but not on day 1. The large hypercapnic BOLD responses on days 3 and 7 indicated that these areas have high vascular reactivity. The temporal correlation between vascular reactivity and the immunoreactivity to desmin and VEGF further indicates that the integrity of vascular reactivity is associated with the pericyte coverage as regulated by the VEGF level. Vascular functionality remained low on days 1, 3, and 7, as reflected by the small hyperoxic BOLD and large hyperoxic TOLD responses, indicating the low oxygen consumption of the ischemic tissues. These functional changes in proangiogenic veins may be critical for angiogenesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Pathophysiological consequences of VEGF-induced vascular permeability

    Science.gov (United States)

    Weis, Sara M.; Cheresh, David A.

    2005-09-01

    Although vascular endothelial growth factor (VEGF) induces angiogenesis, it also disrupts vascular barrier function in diseased tissues. Accordingly, VEGF expression in cancer and ischaemic disease has unexpected pathophysiological consequences. By uncoupling endothelial cell-cell junctions VEGF causes vascular permeability and oedema, resulting in extensive injury to ischaemic tissues after stroke or myocardial infarction. In cancer, VEGF-mediated disruption of the vascular barrier may potentiate tumour cell extravasation, leading to widespread metastatic disease. Therefore, by blocking the vascular permeability promoting effects of VEGF it may be feasible to reduce tissue injury after ischaemic disease and minimize the invasive properties of circulating tumour cells.

  10. Imaging after vascular gene therapy

    International Nuclear Information System (INIS)

    Manninen, Hannu I.; Yang, Xiaoming

    2005-01-01

    Targets for cardiovascular gene therapy currently include limiting restenosis after balloon angioplasty and stent placement, inhibiting vein bypass graft intimal hyperplasia/stenosis, therapeutic angiogenesis for cardiac and lower-limb ischemia, and prevention of thrombus formation. While catheter angiography is still standard method to follow-up vascular gene transfer, other modern imaging techniques, especially intravascular ultrasound (IVUS), magnetic resonance (MR), and positron emission tomography (PET) imaging provide complementary information about the therapeutic effect of vascular gene transfer in humans. Although molecular imaging of therapeutic gene expression in the vasculatures is still in its technical development phase, it has already offered basic medical science an extremely useful in vivo evaluation tool for non- or minimally invasive imaging of vascular gene therapy

  11. Coeliac disease-specific autoantibodies targeted against transglutaminase 2 disturb angiogenesis

    Science.gov (United States)

    Myrsky, E; Kaukinen, K; Syrjänen, M; Korponay-Szabó, I R; Mäki, M; Lindfors, K

    2008-01-01

    Coeliac disease is characterized by immunoglobulin-A (IgA)-class autoantibodies targeted against transglutaminase 2 (TG2), a multi-functional protein also with a role in angiogenesis. These antibodies are present in patient serum but are also found bound to TG2 below the epithelial basement membrane and around capillaries in the small intestinal mucosa. Based on these facts and the information that the mucosal vasculature of coeliac patients on a gluten-containing diet is disorganized, we studied whether the coeliac disease-specific autoantibodies targeted against TG2 would disturb angiogenesis. The effects of coeliac disease-specific autoantibodies on in vitro angiogenesis were studied in angiogenic cell cultures. The binding of the antibodies to cells, endothelial sprouting, migration of both endothelial and vascular mesenchymal cells, the integrity of the actin cytoskeleton in both cell types and the differentiation of vascular mesenchymal cells were recorded. In vitro, IgA derived from coeliac disease patients on a gluten-containing diet binds to surface TG2 on endothelial and vascular mesenchymal cells and this binding can be inhibited by the removal of TG2. In addition, coeliac disease-specific autoantibodies targeting TG2 disturb several steps of angiogenesis: endothelial sprouting and the migration of both endothelial and vascular mesenchymal cells. Furthermore, the autoantibodies cause disorganization of the actin cytoskeleton in both capillary cell types that account most probably for the defective cellular migration. We conclude that coeliac disease-specific autoantibodies recognizing TG2 inhibit angiogenesis in vitro. This disturbance of the angiogenic process could lead in vivo to the disruption of the mucosal vasculature seen in coeliac disease patients on a gluten-containing diet. PMID:18279443

  12. Angiogenesis concept in odontogenic keratocyst: A comparative study

    Directory of Open Access Journals (Sweden)

    Donia Sadri

    2017-01-01

    Full Text Available Context: Recent reports have indicated that angiogenesis possibly affects the biologic behavior of the lesions. Aim: Given the different clinical behaviors of odontogenic keratocyst (OKC, the present study was undertaken to evaluate the concept of angiogenesis in pathogenesis and clinical behavior of OKC. Setting and Design: This experimental study was carried out on 22 and 24 samples of OKCs and dentigerous cysts (DCs, respectively. Methods: Immunohistochemical staining was approached using CD34 and vascular endothelial growth factor (VEGF antibodies. The expression of VEGF was first reported by determining the counts of stained cells, including epithelial cells, fibroblasts, and endothelial cells, followed by the percentage of stained cells in each sample based on a 0–2 scoring system. The counts of CD34+ cells were reported in each group in the form of means ± standard deviations. In addition, the patterns of blood vessels in the samples prepared from the walls of both cysts were evaluated. Statistical Analysis Used: Mann–Whitney U-test, Chi-squared test, and t-test were used for analysis of data, and statistical significance was defined at p < 0.05. Results: The expression percentage and scores of VEGF and the mean expression rate of CD34 were significantly higher in OKCs than DCs (p = 0.045, 0.000, and < 0.001. No significant difference was detected in the vascular patterns of these lesions (p = 0.58. Finally, there was a strong correlation between the expressions of the two markers in the samples (Correlation coefficient = 0.766. Conclusion: The present results indicate the angiogenesis may play an important role in the pathogenesis and the unique clinical behavior of OKC.

  13. Angiogenesis in life, disease and medicine

    Science.gov (United States)

    Carmeliet, Peter

    2005-12-01

    The growth of blood vessels (a process known as angiogenesis) is essential for organ growth and repair. An imbalance in this process contributes to numerous malignant, inflammatory, ischaemic, infectious and immune disorders. Recently, the first anti-angiogenic agents have been approved for the treatment of cancer and blindness. Angiogenesis research will probably change the face of medicine in the next decades, with more than 500 million people worldwide predicted to benefit from pro- or anti-angiogenesis treatments.

  14. Integrated approaches to spatiotemporally directing angiogenesis in host and engineered tissues.

    Science.gov (United States)

    Kant, Rajeev J; Coulombe, Kareen L K

    2018-03-15

    The field of tissue engineering has turned towards biomimicry to solve the problem of tissue oxygenation and nutrient/waste exchange through the development of vasculature. Induction of angiogenesis and subsequent development of a vascular bed in engineered tissues is actively being pursued through combinations of physical and chemical cues, notably through the presentation of topographies and growth factors. Presenting angiogenic signals in a spatiotemporal fashion is beginning to generate improved vascular networks, which will allow for the creation of large and dense engineered tissues. This review provides a brief background on the cells, mechanisms, and molecules driving vascular development (including angiogenesis), followed by how biomaterials and growth factors can be used to direct vessel formation and maturation. Techniques to accomplish spatiotemporal control of vascularization include incorporation or encapsulation of growth factors, topographical engineering, and 3D bioprinting. The vascularization of engineered tissues and their application in angiogenic therapy in vivo is reviewed herein with an emphasis on the most densely vascularized tissue of the human body - the heart. Vascularization is vital to wound healing and tissue regeneration, and development of hierarchical networks enables efficient nutrient transfer. In tissue engineering, vascularization is necessary to support physiologically dense engineered tissues, and thus the field seeks to induce vascular formation using biomaterials and chemical signals to provide appropriate, pro-angiogenic signals for cells. This review critically examines the materials and techniques used to generate scaffolds with spatiotemporal cues to direct vascularization in engineered and host tissues in vitro and in vivo. Assessment of the field's progress is intended to inspire vascular applications across all forms of tissue engineering with a specific focus on highlighting the nuances of cardiac tissue

  15. Endoglin inhibition leads to intussusceptive angiogenesis via activation of factors related to COUP-TFII signaling pathway.

    Directory of Open Access Journals (Sweden)

    Ruslan Hlushchuk

    Full Text Available Angiogenesis is a highly coordinated, extremely complex process orchestrated by multiple signaling molecules and blood flow conditions. While sprouting mode of angiogenesis is very well investigated, the molecular mechanisms underlying intussusception, the second mode of angiogenesis, remain largely unclear. In the current study two molecules involved in vascular growth and differentiation, namely endoglin (ENG/CD105 and chicken ovalbumin upstream promoter transcription factor II (COUP-TFII were examined to unravel their specific roles in angiogenesis. Down- respectively up-regulation of both molecules tightly correlates with intussusceptive microvascular growth. Upon ENG inhibition in chicken embryo model, formation of irregular capillary meshwork accompanied by increased expression of COUP-TFII could be observed. This dynamic expression pattern of ENG and COUP-TFII during vascular development and remodeling correlated with formation of pillars and progression of intussusceptive angiogenesis. Similar findings could be observed in mammalian model of acute rat Thy1.1 glomerulonephritis, which was induced by intravenous injection of anti-Thy1 antibody and has shown upregulation of COUP-TFII in initial phase of intussusception, while ENG expression was not disturbed compared to the controls but decreased over the time of pillar formation. In this study, we have shown that ENG inhibition and at the same time up-regulation of COUP-TFII expression promotes intussusceptive angiogenesis.

  16. Vascular Cures

    Science.gov (United States)

    ... vascular disease, such as stroke, aneurysm and pulmonary artery disease. Each one has their own unique story about their battle with vascular disease and their road to recovery. SEE PATIENT STORIES Our Supporters Caring ...

  17. Angiogenesis in Pituitary Adenomas: Human Studies and New Mutant Mouse Models

    Directory of Open Access Journals (Sweden)

    Carolina Cristina

    2014-01-01

    Full Text Available The role of angiogenesis in pituitary tumor development has been questioned, as pituitary tumors have been usually found to be less vascularized than the normal pituitary tissue. Nevertheless, a significantly higher degree of vasculature has been shown in invasive or macropituitary prolactinomas when compared to noninvasive and microprolactinomas. Many growth factors and their receptors are involved in pituitary tumor development. For example, VEGF, FGF-2, FGFR1, and PTTG, which give a particular vascular phenotype, are modified in human and experimental pituitary adenomas of different histotypes. In particular, vascular endothelial growth factor, VEGF, the central mediator of angiogenesis in endocrine glands, was encountered in experimental and human pituitary tumors at different levels of expression and, in particular, was higher in dopamine agonist resistant prolactinomas. Furthermore, several anti-VEGF techniques lowered tumor burden in human and experimental pituitary adenomas. Therefore, even though the role of angiogenesis in pituitary adenomas is contentious, VEGF, making permeable pituitary endothelia, might contribute to adequate temporal vascular supply and mechanisms other than endothelial cell proliferation. The study of angiogenic factor expression in aggressive prolactinomas with resistance to dopamine agonists will yield important data in the search of therapeutical alternatives.

  18. Angiogenesis in pituitary adenomas: human studies and new mutant mouse models.

    Science.gov (United States)

    Cristina, Carolina; Luque, Guillermina María; Demarchi, Gianina; Lopez Vicchi, Felicitas; Zubeldia-Brenner, Lautaro; Perez Millan, Maria Ines; Perrone, Sofia; Ornstein, Ana Maria; Lacau-Mengido, Isabel M; Berner, Silvia Inés; Becu-Villalobos, Damasia

    2014-01-01

    The role of angiogenesis in pituitary tumor development has been questioned, as pituitary tumors have been usually found to be less vascularized than the normal pituitary tissue. Nevertheless, a significantly higher degree of vasculature has been shown in invasive or macropituitary prolactinomas when compared to noninvasive and microprolactinomas. Many growth factors and their receptors are involved in pituitary tumor development. For example, VEGF, FGF-2, FGFR1, and PTTG, which give a particular vascular phenotype, are modified in human and experimental pituitary adenomas of different histotypes. In particular, vascular endothelial growth factor, VEGF, the central mediator of angiogenesis in endocrine glands, was encountered in experimental and human pituitary tumors at different levels of expression and, in particular, was higher in dopamine agonist resistant prolactinomas. Furthermore, several anti-VEGF techniques lowered tumor burden in human and experimental pituitary adenomas. Therefore, even though the role of angiogenesis in pituitary adenomas is contentious, VEGF, making permeable pituitary endothelia, might contribute to adequate temporal vascular supply and mechanisms other than endothelial cell proliferation. The study of angiogenic factor expression in aggressive prolactinomas with resistance to dopamine agonists will yield important data in the search of therapeutical alternatives.

  19. Angiogenesis during mandibular distraction osteogenesis.

    Science.gov (United States)

    Rowe, N M; Mehrara, B J; Luchs, J S; Dudziak, M E; Steinbrech, D S; Illei, P B; Fernandez, G J; Gittes, G K; Longaker, M T

    1999-05-01

    Recruitment of a blood supply is critical for successful bone induction and fracture healing. Despite the clinical success of distraction osteogenesis (DO), an analysis of angiogenesis during membranous bone DO has not been performed. The purpose of this study was to evaluate the temporal and spatial pattern of angiogenesis during mandibular DO. The right hemimandible of adult male rats was osteotomized, and a customized distraction device was applied. Following a 3-day latency period, distraction was begun at a rate of 0.25 mm twice daily for 6 days (3.0 mm total; 12% increase in mandibular length). Three animals each were sacrificed on days 2, 4, and 6 of distraction (D1, D2, and D3 respectively), or after 1, 2, or 4 weeks of consolidation (C1, C2, and C3 respectively). Two experienced pathologists reviewed the regenerate histology, and angiogenesis was assessed by counting the number of blood vessels per intermediate-power field (IPF). Statistical analysis was performed using analysis of variance, with p response during the early stages of distraction (D1). On average, 31.5+/-7.9 vessels were noted in each IPF examined during this time point. The number of blood vessels in the distraction regenerate decreased significantly during the later distraction time points, with approximately 14.0+/-2.0 and 14.7+/-3.5 blood vessels per IPF in sections obtained after days 4 and 6 of distraction (D2, D3) respectively. However, blood vessels at these time points took on a more mature histological pattern. During the consolidation period, the number of blood vessels noted in the regenerate decreased with 8.0+/-2.6, 9.3+/-2.1, and 4.0+/-2.0 vessels per IPF in sections obtained after 1, 2, or 4 weeks of consolidation (C1, C2, C3) respectively (p response associated with mandibular DO occurs primarily during the early stages of distraction. The authors hypothesize that as distraction continues, newly formed vessels likely undergo consolidation, thus forming more mature vessels

  20. VEGF-mediated inflammation precedes angiogenesis in adult brain.

    Science.gov (United States)

    Croll, Susan D; Ransohoff, Richard M; Cai, Ning; Zhang, Qing; Martin, Francis J; Wei, Tao; Kasselman, Lora J; Kintner, Jennifer; Murphy, Andrew J; Yancopoulos, George D; Wiegand, Stanley J

    2004-06-01

    Vascular endothelial growth factor (VEGF) has been shown to induce angiogenesis when infused continuously into adult rat brain tissue. In addition, VEGF has been shown to enhance permeability in brain vasculature. Adult rats were continuously infused with mouse VEGF into neocortex for up to 7 days. We studied the development of VEGF-induced vasculature in rat neocortex and evaluated the temporal expression of a wide variety of markers for inflammation and vascular leak in relation to the angiogenic response using immunohistochemistry and Western blot analysis. We report here that VEGF-mediated inflammation in brain is characterized by upregulation of ICAM-1 and the chemokine MIP-1alpha, as well as a preferential extravasation of monocytes. VEGF causes a dramatic breakdown of the blood-brain barrier, which is characterized by decreased investment of the vasculature with astroglial endfeet. Perivascular cells, in contrast, increase around the newly formed cerebrovasculature. In addition, breakdown of the blood-brain barrier, leukocyte extravasation, and extracellular matrix deposition occur before vascular proliferation. Furthermore, administration of low doses of VEGF induces permeability and inflammation without appreciable vascular proliferation.

  1. A novel in vitro assay for human angiogenesis.

    Science.gov (United States)

    Brown, K J; Maynes, S F; Bezos, A; Maguire, D J; Ford, M D; Parish, C R

    1996-10-01

    Angiogenesis, the development of new blood vessels, is an important process in tissue development and wound healing but becomes pathologic when associated with solid tumor growth, proliferative retinopathies, and rheumatoid arthritis. To date, there has not been a physiologically relevant in vitro model for human angiogenesis that can be used to screen for enhancers and inhibitors of human angiogenesis and allow further investigation of this process. Initially, culture conditions were established for the induction of human angiogenesis in vitro using fragments of human placental blood vessel. Once the assay was validated, it was examined for its ability to detect known inhibitors and enhancers of angiogenesis. The role of endogenous acidic fibroblast growth factor (aFGF), basic fibroblast growth factor (bFGF), and vascular endothelial growth factor (VEGF) in the angiogenic response was also assessed by performing RT-PCR on both the parent vessel and microvessel outgrowths. In addition, neutralizing antibodies against the three growth factors were used to quantify the relative importance of each growth factor in the angiogenic response. A fragment of human placental blood vessel was embedded in a fibrin gel in microculture plates and was found to give rise to a complex network of microvessels during a period of 7 to 21 days in culture. The response did not require the addition of exogenous growth factors, and thus provides a convenient system for testing substances for their ability to stimulate or inhibit a human in vitro angiogenic response. The ability of the well known angiogenesis antagonist, hydrocortisone, in the presence and absence of heparin, and suramin to significantly inhibit the angiogenic response indicated that the model could be used as an efficient in vitro assay for screening inhibitors of human angiogenesis. The presence of mRNA for aFGF, bFGF, and three isoforms of VEGF, as well as their receptors, FGFR1, FGFR2, Flt-1, and KDR, in vessel

  2. Peptide-coated gold nanoparticles for modulation of angiogenesis in vivo

    Directory of Open Access Journals (Sweden)

    Roma-Rodrigues C

    2016-06-01

    Full Text Available Catarina Roma-Rodrigues,1 Amelie Heuer-Jungemann,2 Alexandra R Fernandes,1 Antonios G Kanaras,2 Pedro V Baptista1 1UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal; 2Institute for Life Sciences, Physics and Astronomy, Faculty of Physical Sciences and Engineering, University of Southampton, Southampton, UK Abstract: In this work, peptides designed to selectively interact with cellular receptors involved in the regulation of angiogenesis were anchored to oligo-ethylene glycol-capped gold nanoparticles (AuNPs and used to evaluate the modulation of vascular development using an ex ovo chick chorioallantoic membrane assay. These nanoparticles alter the balance between naturally secreted pro- and antiangiogenic factors, under various biological conditions, without causing toxicity. Exposure of chorioallantoic membranes to AuNP–peptide activators of angiogenesis accelerated the formation of new arterioles when compared to scrambled peptide-coated nanoparticles. On the other hand, antiangiogenic AuNP–peptide conjugates were able to selectively inhibit angiogenesis in vivo. We demonstrated that AuNP vectorization is crucial for enhancing the effect of active peptides. Our data showed for the first time the effective control of activation or inhibition of blood vessel formation in chick embryo via AuNP-based formulations suitable for the selective modulation of angiogenesis, which is of paramount importance in applications where promotion of vascular growth is desirable (eg, wound healing or ought to be contravened, as in cancer development. Keywords: angiogenesis activators, antiangiogenic, CAM assay, gold nanoparticles, peptide-coated gold nanoparticles, vascular development

  3. Monitoring angiogenesis using magnetic resonance methods

    DEFF Research Database (Denmark)

    Peters, David Alberg

    2008-01-01

    and the involved signaling molecules. Subsequently, a short review of contrast agents and perfusion measurements is given. Finally, methods for monitoring angiogenesis using magnetic resonance imaging are reviewed. A method for monitoring early stages of angiogenesis as well as the effect of anti...

  4. Molecular profiling of angiogenesis in hypericin mediated photodynamic therapy

    Directory of Open Access Journals (Sweden)

    Ali Seyed M

    2008-06-01

    Full Text Available Abstract Background Photodynamic therapy (PDT involves the administration of a tumor-localizing photosensitizing drug, which is activated by light of specific wavelength in the presence of molecular oxygen thus generating reactive oxygen species that is toxic to the tumor cells. PDT selectively destroys photosensitized tissue leading to various cellular and molecular responses. The present study was designed to examine the angiogenic responses at short (0.5 h and long (6 h drug light interval (DLI hypericin-PDT (HY-PDT treatment at 24 h and 30 days post treatment in a human bladder carcinoma xenograft model. As short DLI targets tumor vasculature and longer DLI induces greater cellular damage, we hypothesized a differential effect of these treatments on the expression of angiogenic factors. Results Immunohistochemistry (IHC results showed minimal CD31 stained endothelium at 24 h post short DLI PDT indicating extensive vascular damage. Angiogenic proteins such as vascular endothelial growth factor (VEGF, tumor necrosis growth factor-α (TNF-α, interferon-α (IFN-α and basic fibroblast growth factor (bFGF were expressed to a greater extent in cellular targeting long DLI PDT compared to vascular mediated short DLI PDT. Gene expression profiling for angiogenesis pathway demonstrated downregulation of adhesion molecules – cadherin 5, collagen alpha 1 and 3 at 24 h post treatment. Hepatocyte growth factor (HGF and Ephrin-A3 (EFNA3 were upregulated in all treatment groups suggesting a possible activation of c-Met and Ephrin-Eph signaling pathways. Conclusion In conclusion, long DLI HY-PDT induces upregulation of angiogenic proteins. Differential expression of genes involved in the angiogenesis pathway was observed in the various groups treated with HY-PDT.

  5. Protein hydration and dynamics

    International Nuclear Information System (INIS)

    Nakagawa, Hiroshi; Kataoka, Mikio

    2015-01-01

    Inelastic neutron scattering can measure the protein thermal fluctuations under the physiological aqueous environment, especially it is powerful to observe the low-energy protein dynamics in THz region, which are revealed theoretically to be coupled with solvations. Neutron enables the selective observation of protein and hydration water by deuteration. The complementary analysis with molecular dynamics simulation is also effective for the study of protein hydration. Some examples of the application toward the understanding of molecular basis of protein functions will be introduced. (author)

  6. A computational tool for quantitative analysis of vascular networks.

    Directory of Open Access Journals (Sweden)

    Enrique Zudaire

    Full Text Available Angiogenesis is the generation of mature vascular networks from pre-existing vessels. Angiogenesis is crucial during the organism' development, for wound healing and for the female reproductive cycle. Several murine experimental systems are well suited for studying developmental and pathological angiogenesis. They include the embryonic hindbrain, the post-natal retina and allantois explants. In these systems vascular networks are visualised by appropriate staining procedures followed by microscopical analysis. Nevertheless, quantitative assessment of angiogenesis is hampered by the lack of readily available, standardized metrics and software analysis tools. Non-automated protocols are being used widely and they are, in general, time--and labour intensive, prone to human error and do not permit computation of complex spatial metrics. We have developed a light-weight, user friendly software, AngioTool, which allows for quick, hands-off and reproducible quantification of vascular networks in microscopic images. AngioTool computes several morphological and spatial parameters including the area covered by a vascular network, the number of vessels, vessel length, vascular density and lacunarity. In addition, AngioTool calculates the so-called "branching index" (branch points/unit area, providing a measurement of the sprouting activity of a specimen of interest. We have validated AngioTool using images of embryonic murine hindbrains, post-natal retinas and allantois explants. AngioTool is open source and can be downloaded free of charge.

  7. Disruption of Angiogenesis by Anthocyanin-Rich Extracts of Hibiscus sabdariffa

    Science.gov (United States)

    Joshua, Madu; Okere, Christiana; Sylvester, O’Donnell; Yahaya, Muhammad; Precious, Omale; Dluya, Thagriki; Um, Ji-Yeon; Neksumi, Musa; Boyd, Jessica; Vincent-Tyndall, Jennifer; Choo, Dong-Won; Gutsaeva, Diana R.; Jahng, Wan Jin

    2017-01-01

    Abnormal vessel formations contribute to the progression of specific angiogenic diseases including age-related macular degeneration. Adequate vessel growth and maintenance represent the coordinated process of endothelial cell proliferation, matrix remodeling, and differentiation. However, the molecular mechanism of the proper balance between angiogenic activators and inhibitors remains elusive. In addition, quantitative analysis of vessel formation has been challenging due to complex angiogenic morphology. We hypothesized that conjugated double bond containing-natural products, including anthocyanin extracts from Hibiscus sabdariffa, may control the proper angiogenesis. The current study was designed to determine whether natural molecules from African plant library modulate angiogenesis. Further, we questioned how the proper balance of anti- or pro-angiogenic signaling can be obtained in the vascular microenvironment by treating anthocyanin or fatty acids using chick chorioallantoic membrane angiogenesis model in ovo. The angiogenic morphology was analyzed systematically by measuring twenty one angiogenic indexes using Angiogenic Analyzer software. Chick chorioallantoic model demonstrated that anthocyanin-rich extracts inhibited angiogenesis in time- and concentration-dependent manner. Molecular modeling analysis proposed that hibiscetin as a component in Hibiscus may bind to the active site of vascular endothelial growth factor receptor 2 (VEGFR2) with ΔG= −8.42 kcal/mol of binding energy. Our results provided the evidence that anthocyanin is an angiogenic modulator that can be used to treat uncontrolled neovascular-related diseases, including age-related macular degeneration. PMID:28459020

  8. Disruption of Angiogenesis by Anthocyanin-Rich Extracts of Hibiscus sabdariffa.

    Science.gov (United States)

    Joshua, Madu; Okere, Christiana; Sylvester, O'Donnell; Yahaya, Muhammad; Precious, Omale; Dluya, Thagriki; Um, Ji-Yeon; Neksumi, Musa; Boyd, Jessica; Vincent-Tyndall, Jennifer; Choo, Dong-Won; Gutsaeva, Diana R; Jahng, Wan Jin

    2017-02-01

    Abnormal vessel formations contribute to the progression of specific angiogenic diseases including age-related macular degeneration. Adequate vessel growth and maintenance represent the coordinated process of endothelial cell proliferation, matrix remodeling, and differentiation. However, the molecular mechanism of the proper balance between angiogenic activators and inhibitors remains elusive. In addition, quantitative analysis of vessel formation has been challenging due to complex angiogenic morphology. We hypothesized that conjugated double bond containing-natural products, including anthocyanin extracts from Hibiscus sabdariffa , may control the proper angiogenesis. The current study was designed to determine whether natural molecules from African plant library modulate angiogenesis. Further, we questioned how the proper balance of anti- or pro-angiogenic signaling can be obtained in the vascular microenvironment by treating anthocyanin or fatty acids using chick chorioallantoic membrane angiogenesis model in ovo. The angiogenic morphology was analyzed systematically by measuring twenty one angiogenic indexes using Angiogenic Analyzer software. Chick chorioallantoic model demonstrated that anthocyanin-rich extracts inhibited angiogenesis in time- and concentration-dependent manner. Molecular modeling analysis proposed that hibiscetin as a component in Hibiscus may bind to the active site of vascular endothelial growth factor receptor 2 (VEGFR2) with ΔG= -8.42 kcal/mol of binding energy. Our results provided the evidence that anthocyanin is an angiogenic modulator that can be used to treat uncontrolled neovascular-related diseases, including age-related macular degeneration.

  9. The GPR 55 agonist, L-α-lysophosphatidylinositol, mediates ovarian carcinoma cell-induced angiogenesis.

    Science.gov (United States)

    Hofmann, Nicole A; Yang, Jiang; Trauger, Sunia A; Nakayama, Hironao; Huang, Lan; Strunk, Dirk; Moses, Marsha A; Klagsbrun, Michael; Bischoff, Joyce; Graier, Wolfgang F

    2015-08-01

    Highly vascularized ovarian carcinoma secretes the putative endocannabinoid and GPR55 agonist, L-α-lysophosphatidylinositol (LPI), into the circulation. We aimed to assess the involvement of this agonist and its receptor in ovarian cancer angiogenesis. Secretion of LPI by three ovarian cancer cell lines (OVCAR-3, OVCAR-5 and COV-362) was tested by mass spectrometry. Involvement of cancer cell-derived LPI on angiogenesis was tested in the in vivo chicken chorioallantoic membrane (CAM) assay along with the assessment of the effect of LPI on proliferation, network formation, and migration of neonatal and adult human endothelial colony-forming cells (ECFCs). Engagement of GPR55 was verified by using its pharmacological inhibitor CID16020046 and diminution of GPR55 expression by four different target-specific siRNAs. To study underlying signal transduction, Western blot analysis was performed. Ovarian carcinoma cell-derived LPI stimulated angiogenesis in the CAM assay. Applied LPI stimulated proliferation, network formation, and migration of neonatal ECFCs in vitro and angiogenesis in the in vivo CAM. The pharmacological GPR55 inhibitor CID16020046 inhibited LPI-stimulated ECFC proliferation, network formation and migration in vitro as well as ovarian carcinoma cell- and LPI-induced angiogenesis in vivo. Four target-specific siRNAs against GPR55 prevented these effects of LPI on angiogenesis. These pro-angiogenic effects of LPI were transduced by GPR55-dependent phosphorylation of ERK1/2 and p38 kinase. We conclude that inhibiting the pro-angiogenic LPI/GPR55 pathway appears a promising target against angiogenesis in ovarian carcinoma. © 2015 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of The British Pharmacological Society.

  10. Heparanase and Syndecan-4 Are Involved in Low Molecular Weight Fucoidan-Induced Angiogenesis

    Directory of Open Access Journals (Sweden)

    Oualid Haddad

    2015-10-01

    Full Text Available Induction of angiogenesis is a potential treatment for chronic ischemia. Low molecular weight fucoidan (LMWF, the sulfated polysaccharide from brown seaweeds, has been shown to promote revascularization in a rat limb ischemia, increasing angiogenesis in vivo. We investigated the potential role of two heparan sulfate (HS metabolism enzymes, exostosin-2 (EXT2 and heparanase (HPSE, and of two HS-membrane proteoglycans, syndecan-1 and -4 (SDC-1 and SDC-4, in LMWF induced angiogenesis. Our results showed that LMWF increases human vascular endothelial cell (HUVEC migration and angiogenesis in vitro. We report that the expression and activity of the HS-degrading HPSE was increased after LMWF treatment. The phenotypic tests of LMWF-treated and EXT2- or HPSE-siRNA-transfected cells indicated that EXT2 or HPSE expression significantly affect the proangiogenic potential of LMWF. In addition, LMWF increased SDC-1, but decreased SDC-4 expressions. The effect of LMWF depends on SDC-4 expression. Silencing EXT2 or HPSE leads to an increased expression of SDC-4, providing the evidence that EXT2 and HPSE regulate the SDC-4 expression. Altogether, these data indicate that EXT2, HPSE, and SDC-4 are involved in the proangiogenic effects of LMWF, suggesting that the HS metabolism changes linked to LMWF-induced angiogenesis offer the opportunity for new therapeutic strategies of ischemic diseases.

  11. The tetrapeptide Arg-Leu-Tyr-Glu inhibits VEGF-induced angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Yi-Yong; Lee, Dong-Keon [Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); So, Ju-Hoon; Kim, Cheol-Hee [Department of Biology, Chungnam National University, Daejeon, 305-764 (Korea, Republic of); Jeoung, Dooil [Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); Lee, Hansoo [Department of Life Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); Choe, Jongseon [Department of Immunology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); Won, Moo-Ho [Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); Ha, Kwon-Soo [Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); Kwon, Young-Guen [Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-752 (Korea, Republic of); Kim, Young-Myeong, E-mail: ymkim@kangwon.ac.kr [Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of)

    2015-08-07

    Kringle 5, derived from plasminogen, is highly capable of inhibiting angiogenesis. Here, we have designed and synthesized 10 tetrapeptides, based on the amino acid properties of the core tetrapeptide Lys-Leu-Tyr-Asp (KLYD) originating from anti-angiogenic kringle 5 of human plasminogen. Of these, Arg-Leu-Tyr-Glu (RLYE) effectively inhibited vascular endothelial growth factor (VEGF)-induced endothelial cell proliferation, migration and tube formation, with an IC{sub 50} of 0.06–0.08 nM, which was about ten-fold lower than that of the control peptide KLYD (0.79 nM), as well as suppressed developmental angiogenesis in a zebrafish model. Furthermore, this peptide effectively inhibited the cellular events that precede angiogenesis, such as ERK and eNOS phosphorylation and nitric oxide production, in endothelial cells stimulated with VEGF. Collectively, these data demonstrate that RLYE is a potent anti-angiogenic peptide that targets the VEGF signaling pathway. - Highlights: • The tetrapeptide RLYE inhibited VEGF-induced angiogenesis in vitro. • RLYE also suppressed neovascularization in a zebrafish model. • Its effect was correlated with inhibition of VEGF-induced ERK and eNOS activation. • RLYE may be used as a therapeutic drug for angiogenesis-related diseases.

  12. Up-regulated basigin-2 in microglia induced by hypoxia promotes retinal angiogenesis.

    Science.gov (United States)

    Yin, Jie; Xu, Wen-Qin; Ye, Ming-Xiang; Zhang, Yong; Wang, Hai-Yan; Zhang, Jian; Li, Yu; Wang, Yu-Sheng

    2017-12-01

    Retinal microglia cells contribute to vascular angiogenesis and vasculopathy induced by relative hypoxia. However, its concrete molecular mechanisms in shaping retinal angiogenesis have not been elucidated. Basigin, being involved in tumour neovasculogenesis, is explored to exert positive effects on retinal angiogenesis induced by microglia. Therefore, we set out to investigate the expression of basigin using a well-characterized mouse model of oxygen-induced retinopathy, which recapitulated hypoxia-induced aberrant neovessel growth. Our results elucidate that basigin is overexpressed in microglia, which accumulating in retinal angiogenic sprouts. In vitro, conditioned media from microglia BV2 under hypoxia treatment increase migration and tube formation of retinal capillary endothelia cells, compared with media from normoxic condition. The angiogenic capacity of BV2 is inhibited after basigin knockdown by small interfering RNAs. A new molecular mechanism for high angiogenic capacity, whereby microglia cells release basigin via up-regulation of PI3K-AKT and IGF-1 pathway to induce angiogenesis is unveiled. Collectively, our results demonstrate that basigin from hypoxic microglia plays a pivotal pro-angiogenic role, providing new insights into microglia-promoting retinal angiogenesis. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  13. [Markers of angiogenesis in tumor growth].

    Science.gov (United States)

    Nefedova, N A; Kharlova, O A; Danilova, N V; Malkov, P G; Gaifullin, N M

    2016-01-01

    Angiogenesis is a process of new blood vessels formation. The role of angiogenesis in growth, invasion and metastasis of malignant tumours is nowdays universally recognized. Though, investigation of mechanisms of blood vessels formation and elaboration methods for assessment of tumour angiogenesis are still up-dated. Another important concern are different aspects of usage of immunohistochemical markers of blood vessels endothelium (CD31 and CD34) for assessment of tumour aggressiveness and prognosis. The problems of malignant lymphangiogenesis are also up-to-date. The focus is on methods of immunohistochemical visualization of forming lymphatic vessels, role of podoplanin, the most reliable marker of lymphatic vessels, in their identification, and formulization of the main criteria for lymphangiogenesis estimation, its correlation with metastatic activity and prognostic potential. Studying of angiogenesis and lymph angiogenesis in malignant tumors is important and challenging direction for researching tumour progression and invention of antiangiogenic therapy.

  14. Realizing the Potential of Vascular Targeted Therapy: The Rationale for Combining Vascular Disrupting Agents and Anti-Angiogenic Agents to Treat Cancer

    DEFF Research Database (Denmark)

    Siemann, D W; Chaplin, D J; Horsman, M R

    2017-01-01

    Vascular targeted therapies (VTTs) are agents that target tumor vasculature and can be classified into two categories: those that inhibit angiogenesis and those that directly interfere with established tumor vasculature. Although both the anti-angiogenic agents (AAs) and the vascular disrupting a...

  15. Involvement of RhoA/Rho kinase signaling in VEGF-induced endothelial cell migration and angiogenesis in vitro

    NARCIS (Netherlands)

    Nieuw Amerongen, G.P. van; Koolwijk, P.; Versteilen, A.; Hinsbergh, V.W.M. van

    2003-01-01

    Objective - Growth factor-induced angiogenesis involves migration of endothelial cells (ECs) into perivascular areas and requires active remodeling of the endothelial F-actin cytoskeleton. The small GTPase RhoA previously has been implicated in vascular endothelial growth factor (VEGF)-induced

  16. Anatomical and microstructural imaging of angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Kiessling, Fabian [University of Aachen (RWTH), Experimental Molecular Imaging, Aachen (Germany); Razansky, Daniel [Technical University of Munich and Helmholtz Center Munich, Institute for Biological and Medical Imaging, Munich (Germany); Alves, Frauke [University Medical Center, Department of Haematology and Oncology, Goettingen (Germany); Max-Planck-Institute for Experimental Medicine, Department of Molecular Biology of Neuronal Signals, Goettingen (Germany)

    2010-08-15

    This article reviews and discusses different options for visualizing the microarchitecture of vessels ex vivo and in vivo with respect to reliability, practicability and availability. The investigation of angiogenesis by standard histological methods, like microvessel density counts, is limited since the three-dimensional (3-D) architecture and the functionality of vessels cannot be considered properly. Coregistration of immunostained images of vessels may be performed but is time consuming and often not sufficiently accurate. Confocal fluorescence microscopy is an alternative, but only enables 3-D stacks of less than 500 nm in thickness. Multiphoton microscopy and other advanced technologies, such as optical coherence tomography and optical frequency domain imaging, provide a deeper view into tissues and allow for in vivo imaging of microvessels, which is a precondition for longitudinal studies. Besides these microscopic techniques, the vascularization in larger tissue samples can be investigated using corrosion casts in combination with scanning electron microscopy, or microcomputed tomography ({mu}CT). Furthermore, recent improvements in {mu}CT technology open up new perspectives for in vivo scans with high resolution and tolerable X-ray doses. Also 3-D contrast-enhanced high-frequency ultrasound has been shown to be sensitive for angiogenic vessels and even distinguishing between mature and immature vessels appears feasible. Microvessel architecture can also be visualized by MRI. Here, T1-weighted angiography techniques after injection of blood pool contrast agents appear preferable. Optoacoustic tomographic imaging has more recently shown promise for high-resolution in vivo mapping of the microvasculature in rodents using intrinsic haemoglobin-based contrast and exogenous contrast agents. (orig.)

  17. Buyanghuanwu decoction promotes angiogenesis after cerebral ischemia/reperfusion injury: mechanisms of brain tissue repair

    Directory of Open Access Journals (Sweden)

    Zhen-qiang Zhang

    2016-01-01

    Full Text Available Buyanghuanwu decoction has been shown to protect against cerebral ischemia/reperfusion injury, but the underlying mechanisms remain unclear. In this study, rats were intragastrically given Buyanghuanwu decoction, 15 mL/kg, for 3 days. A rat model of cerebral ischemia/reperfusion injury was established by middle cerebral artery occlusion. In rats administered Buyanghuanwu decoction, infarct volume was reduced, serum vascular endothelial growth factor and integrin αvβ3 levels were increased, and brain tissue vascular endothelial growth factor and CD34 expression levels were increased compared with untreated animals. These effects of Buyanghuanwu decoction were partially suppressed by an angiogenesis inhibitor (administered through the lateral ventricle for 7 consecutive days. These data suggest that Buyanghuanwu decoction promotes angiogenesis, improves cerebral circulation, and enhances brain tissue repair after cerebral ischemia/reperfusion injury.

  18. [The use of genetic angiogenesis inductors in surgical treatment of chronic lower limb ischemia].

    Science.gov (United States)

    Gavrilenko, A V; Voronov, D A; Bochkov, N P

    2013-01-01

    The efficacy and safety of gene-engineering recombinant constructions with endothelial growth factor gene and angiogenin for the treatment of the chronic lower limb ischemia were studied. 134 patients were included in prospective controlled study. The main group, who received both traditional treatment and genetic therapy, consisted of 74 patients. The rest 60 patients were included into the control group. Of 74 patients from the main group, genetic therapy was used together with conservative means in 39 patients and with reconstructive vascular operations in 35 patients. The gene-engineering angiogenesis stimulation therapy proved to be effective and safe. The combination of angiogenesis genetic stimulation with reconstructive vascular surgery demonstrated significantly better results, then monotherapy.

  19. Efficacy and safety of angiogenesis inhibitors in advanced gastric cancer: a systematic review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Jing Yu

    2016-10-01

    Full Text Available Abstract Monoclonal antibodies and small molecule tyrosine kinase inhibitors (TKIs directed against the vascular endothelial growth factor (VEGF or its receptors have been investigated in several studies for the treatment of advanced gastric cancer (GC. In the present study, we aimed to evaluate the efficacy and safety of angiogenesis inhibitors in advanced GC. We searched published randomized controlled trials (RCTs comparing angiogenesis inhibitors with non-angiogenesis inhibitors for the treatment of GC. MEDLINE, EMBASE, and the Cochrane Controlled Trials Register were searched. The extracted data on progression-free survival (PFS and overall survival (OS were measured in terms of hazard ratios (HR and corresponding 95 % confidence intervals (CIs. In addition, risk ratios (RR and corresponding 95 % CIs were pooled for objective response rate (ORR, disease control rate (DCR, and risk of adverse events (AEs. Ten RCTs involving 2786 patients were included. Compared with non-angiogenesis inhibitor-containing regimens, angiogenesis inhibitor-containing regimens resulted in a significant improvement in OS (HR 0.80, 95 % CI 0.69–0.93, P = 0.004, prolonged PFS (HR 0.66, 95 % CI 0.51–0.86, P = 0.002, and superior ORR (RR 1.34, 95 % CI 1.09–1.65, P = 0.005 and DCR (RR 1.37, 95 % CI 1.17–1.61, P = 0.0001. Angiogenesis inhibitors were associated with a greater number of AEs, but most of these were predictable and manageable. However, hand-foot syndrome, diarrhea, and gastrointestinal (GI perforation were significantly increased in patients treated with angiogenesis inhibitors. In summary, angiogenesis inhibitor-containing regimens were superior to non-angiogenesis inhibitor-containing regimens in terms of OS, PFS, RR, and DCR in patients with advanced GC.

  20. Aluminum Sulfate 18 Hydrate

    Science.gov (United States)

    Young, Jay A.

    2004-01-01

    A chemical laboratory information profile (CLIP) of the chemical, aluminum sulfate 18 hydrate, is presented. The profile lists physical and harmful properties, exposure limits, reactivity risks, and symptoms of major exposure for the benefit of teachers and students using the chemical in the laboratory.

  1. Angiogenesis in vestibular schwannomas: expression of extracellular matrix factors MMP-2, MMP-9, and TIMP-1

    DEFF Research Database (Denmark)

    Møller, Martin Nue; Werther, Kim; Nalla, Amarnadh

    2010-01-01

    targets the angiogenic process by investigation of tumor expression of MMP-2, MMP-9, and tissue inhibitors of metalloproteinase (TIMP)-1. A possible correlation with gender, patient age, symptom duration, tumor size, and the absolute and relative growth rate is explored.......Vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs) are potent mediators of tumor angiogenesis. It has been demonstrated that vestibular schwannoma VEGF expression correlates with tumor growth pattern, whereas knowledge on the expression of MMPs is lacking. This study...

  2. Angiogenesis in Pituitary Adenomas: Human Studies and New Mutant Mouse Models

    OpenAIRE

    Cristina, Carolina; Luque, Guillermina María; Demarchi, Gianina; Lopez Vicchi, Felicitas; Zubeldia-Brenner, Lautaro; Perez Millan, Maria Ines; Perrone, Sofia; Ornstein, Ana Maria; Lacau-Mengido, Isabel M.; Berner, Silvia Inés; Becu-Villalobos, Damasia

    2014-01-01

    The role of angiogenesis in pituitary tumor development has been questioned, as pituitary tumors have been usually found to be less vascularized than the normal pituitary tissue. Nevertheless, a significantly higher degree of vasculature has been shown in invasive or macropituitary prolactinomas when compared to noninvasive and microprolactinomas. Many growth factors and their receptors are involved in pituitary tumor development. For example, VEGF, FGF-2, FGFR1, and PTTG, which give a partic...

  3. The Methane Hydrate Reservoir System

    Science.gov (United States)

    Flemings, P. B.; Liu, X.

    2007-12-01

    We use multi phase flow modeling and field examples (Hydrate Ridge, offshore Oregon and Blake Ridge, offshore North Carolina) to demonstrate that the methane hydrate reservoir system links traditional and non- traditional hydrocarbon system components: free gas flow is a fundamental control on this system. As in a traditional hydrocarbon reservoir, gas migrates into the hydrate reservoir as a separate phase (secondary migration) where it is trapped in a gas column beneath the base of the hydrate layer. With sufficient gas supply, buoyancy forces exceed either the capillary entry pressure of the cap rock or the fracture strength of the cap rock, and gas leaks into the hydrate stability zone, or cap rock. When gas enters the hydrate stability zone and forms hydrate, it becomes a very non traditional reservoir. Free gas forms hydrate, depletes water, and elevates salinity until pore water is too saline for further hydrate formation: salinity and hydrate concentration increase upwards from the base of the regional hydrate stability zone (RHSZ) to the seafloor and the base of the hydrate stability zone has significant topography. Gas chimneys couple the free gas zone to the seafloor through high salinity conduits that are maintained at the three-phase boundary by gas flow. As a result, significant amounts of gaseous methane can bypass the RHSZ, which implies a significantly smaller hydrate reservoir than previously envisioned. Hydrate within gas chimneys lie at the three-phase boundary and thus small increases in temperature or decreases in pressure can immediately transport methane into the ocean. This type of hydrate deposit may be the most economical for producing energy because it has very high methane concentrations (Sh > 70%) located near the seafloor, which lie on the three-phase boundary.

  4. YKL-40 acts as an angiogenic factor to promote tumor angiogenesis

    Science.gov (United States)

    Shao, Rong

    2013-01-01

    A secreted glycoprotein YKL-40 also named chitinase-3-like-1 is normally expressed by multiple cell types such as macrophages, chondrocytes, and vascular smooth muscle cells. However, a prominently high level of YKL-40 was found in a wide spectrum of human diseases including cancers and chronic inflammatory diseases where it was strongly expressed by cancerous cells and infiltrating macrophages. Here, we summarized recent important findings of YKL-40 derived from cancerous cells and smooth muscle cells during tumor angiogenesis and development. YKL-40 is a potent angiogenic factor capable of stimulating tumor vascularization mediated by endothelial cells and maintaining vascular integrity supported by smooth muscle cells. In addition, YKL-40 induces FAK-MAPK signaling and up-regulates VEGF receptor 2 in endothelial cells; but a neutralizing antibody (mAY) against YKL-40 inhibits its angiogenic activity. While YKL-40 is essential for angiogenesis, little is known about its functional role in tumor-associated macrophage (TAM)-mediated tumor development. Therefore, significant efforts are urgently needed to identify pathophysiological function of YKL-40 in the dynamic interaction between tumor cells and TAMs in the tumor microenvironment, which may offer substantial mechanistic insights into tumor angiogenesis and metastasis, and also point to a therapeutic target for treatment of cancers and other diseases. PMID:23755018

  5. Leaf hydraulics II: vascularized tissues.

    Science.gov (United States)

    Rockwell, Fulton E; Holbrook, N Michele; Stroock, Abraham D

    2014-01-07

    Current models of leaf hydration employ an Ohm's law analogy of the leaf as an ideal capacitor, neglecting the resistance to flow between cells, or treat the leaf as a plane sheet with a source of water at fixed potential filling the mid-plane, neglecting the discrete placement of veins as well as their resistance. We develop a model of leaf hydration that considers the average conductance of the vascular network to a representative areole (region bounded by the vascular network), and represent the volume of tissue within the areole as a poroelastic composite of cells and air spaces. Solutions to the 3D flow problem are found by numerical simulation, and these results are then compared to 1D models with exact solutions for a range of leaf geometries, based on a survey of temperate woody plants. We then show that the hydration times given by these solutions are well approximated by a sum of the ideal capacitor and plane sheet times, representing the time for transport through the vasculature and tissue respectively. We then develop scaling factors relating this approximate solution to the 3D model, and examine the dependence of these scaling factors on leaf geometry. Finally, we apply a similar strategy to reduce the dimensions of the steady state problem, in the context of peristomatal transpiration, and consider the relation of transpirational gradients to equilibrium leaf water potential measurements. © 2013 Published by Elsevier Ltd. All rights reserved.

  6. Angiogenesis is induced by airway smooth muscle strain.

    Science.gov (United States)

    Hasaneen, Nadia A; Zucker, Stanley; Lin, Richard Z; Vaday, Gayle G; Panettieri, Reynold A; Foda, Hussein D

    2007-10-01

    Angiogenesis is an important feature of airway remodeling in both chronic asthma and chronic obstructive pulmonary disease (COPD). Airways in those conditions are exposed to excessive mechanical strain during periods of acute exacerbations. We recently reported that mechanical strain of human airway smooth muscle (HASM) led to an increase in their proliferation and migration. Sustained growth in airway smooth muscle in vivo requires an increase in the nutritional supply to these muscles, hence angiogenesis. In this study, we examined the hypothesis that cyclic mechanical strain of HASM produces factors promoting angiogenic events in the surrounding vascular endothelial cells. Our results show: 1) a significant increase in human lung microvascular endothelial cell (HMVEC-L) proliferation, migration, and tube formation following incubation in conditioned media (CM) from HASM cells exposed to mechanical strain; 2) mechanical strain of HASM cells induced VEGF expression and release; 3) VEGF neutralizing antibodies inhibited the proliferation, migration, and tube formations of HMVEC-L induced by the strained airway smooth muscle CM; 4) mechanical strain of HASM induced a significant increase in hypoxia-inducible factor-1alpha (HIF-1alpha) mRNA and protein, a transcription factor required for VEGF gene transcription; and 5) mechanical strain of HASM induced HIF-1alpha/VEGF through dual phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) and ERK pathways. In conclusion, exposing HASM cells to mechanical strain induces signal transduction pathway through PI3K/Akt/mTOR and ERK pathways that lead to an increase in HIF-1alpha, a transcription factor required for VEGF expression. VEGF release by mechanical strain of HASM may contribute to the angiogenesis seen with repeated exacerbation of asthma and COPD.

  7. Angiogenesis: From Chronic Liver Inflammation to Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Paloma Sanz-Cameno

    2010-01-01

    Full Text Available Recently, new information relating to the potential relevance of chronic hepatic inflammation to the development and progression of hepatocellular carcinoma (HCC has been generated. Persistent hepatocellular injury alters the homeostatic balance within the liver; deregulation of the expression of factors involved in wound healing may lead to the evolution of dysplastic lesions into transformed nodules. Progression of such nodules depends directly on the development and organization of a vascular network, which provides the nutritional and oxygen requirements to an expanding nodular mass. Angiogenic stimulation promotes intense structural and functional changes in liver architecture and physiology, in particular, it facilitates transformation of dysplasia to nodular lesions with carcinogenic potential. HCC depends on the growth and spreading of vessels throughout the tumor. Because these vascular phenomena correlate with disease progression and prognosis, therapeutic strategies are being developed that focus on precluding vascular expansion in these tumors. Accordingly, an in-depth study of factors that promote and support pathological angiogenesis in chronic hepatic diseases may provide insights into methods of preventing the development of HCC and/or stimulating the regression of established HCC.

  8. Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine

    Directory of Open Access Journals (Sweden)

    Mikaël M Martino

    2015-04-01

    Full Text Available Blood vessel growth plays a key role in regenerative medicine, both to restore blood supply to ischemic tissues and to ensure rapid vascularization of clinical-size tissue-engineered grafts. For example, vascular endothelial growth factor (VEGF is the master regulator of physiological blood vessel growth and is one of the main molecular targets of therapeutic angiogenesis approaches. However, angiogenesis is a complex process and there is a need to develop rational therapeutic strategies based on a firm understanding of basic vascular biology principles, as evidenced by the disappointing results of initial clinical trials of angiogenic factor delivery. In particular, the spatial localization of angiogenic signals in the extracellular matrix is crucial to ensure the proper assembly and maturation of new vascular structures. Here we discuss the therapeutic implications of matrix interactions of angiogenic factors, with a special emphasis on VEGF, as well as provide an overview of current approaches, based on protein and biomaterial engineering that mimic the regulatory functions of extracellular matrix to optimize the signaling microenvironment of vascular growth factors.

  9. Mechanical and Chemical Signaling in Angiogenesis

    CERN Document Server

    2013-01-01

    This volume of Studies in Mechanobiology, Tissue Engineering and Biomaterials describes the most recent advances in angiogenesis research at all biological length scales: molecular, cellular and tissue, in both in vivo and in vitro settings.  Angiogenesis experts from diverse fields including engineering, cell and developmental biology, and chemistry have contributed chapters which focus on the mechanical and chemical signals which affect and promote blood vessel growth. Specific emphasis is given to novel methodologies and biomaterials that have been developed and applied to angiogenesis research. 

  10. Retinal angiogenesis in development and disease

    Science.gov (United States)

    Gariano, Ray F.; Gardner, Thomas W.

    2004-12-01

    The retina has long been regarded as `an approachable part of the brain' for investigating neurosensory processes. Cell biologists are now capitalizing on the accessibility of the retina to investigate important aspects of developmental angiogenesis, including how it relates to neuronal and glial development, morphogenesis, oxygen sensing and progenitor cells. Pathological angiogenesis also occurs in the retina and is a major feature of leading blinding diseases, particularly diabetic retinopathy. The retina and its clinical disorders have a pivotal role in angiogenesis research and provide model systems in which to investigate neurovascular relationships and angiogenic diseases.

  11. Hypoxia and Matrix Manipulation for Vascular Engineering

    Science.gov (United States)

    Abaci, Hasan E.; Hanjaya-Putra, Donny; Gerecht, Sharon

    The great majority of cell types are known to be capable of sensing changes in O2 tension and in the extracellular matrix (ECM), resulting in various responses depending on the cell type and other factors in the microenvironment, such as cell-cell interactions. A growing body of evidence suggests that hypoxia greatly influences the processes of angiogenesis/vasculogenesis through the transcription of several genes, including vascular endothelial growth factor (VEGF), the major regulatory protein of angiogenesis/vasculogenesis. At the same time, the spatial and temporal distribution of ECM components affects ECM properties and growth factor (GF) availability, which, in turn, regulates vascular development. This chapter will discuss how hypoxia and the ECM influence vascular morphogenesis. It seeks a better understanding of vascular development by considering recent research and emerging technologies focused on controlling O2 tension and manipulating ECM properties. The first part of the chapter focuses on the influences of O2 tension and ECM distribution on vascular formation. The second part presents strategies for manipulating the microenvironment using synthetic biomaterials. Control over O2 in three-dimensional (3D) microenvironments is thoroughly highlighted, along with the currently available O2 measurement techniques and mathematical models that are necessary to monitor O2 gradients in 3D microenvironments. Finally, the chapter discusses the state-of-the-art technology in microfluidics and smart biomaterials to provide insight into its future direction.

  12. WNT Signaling Is Required for Peritoneal Membrane Angiogenesis.

    Science.gov (United States)

    Padwal, Manreet Kaur; Cheng, Genyang; Liu, Limin; Boivin, Felix J; Gangji, Azim; Brimble, Kenneth Scott; Bridgewater, Darren; Margetts, Peter J

    2018-01-24

    The WNT signaling pathway is involved in wound healing and fibrosis. We evaluated the WNT signaling pathway in peritoneal membrane injury. We assessed WNT1 protein expression in the peritoneal effluents of 54 stable peritoneal dialysis (PD) patients and WNT-related gene expression in ex vivo mesothelial cell cultures from 21 PD patients. In a transforming growth factor beta (TGFB) mediated animal model of peritoneal fibrosis, we evaluated regulation of the WNT pathway and the effect of WNT inhibition on peritoneal fibrosis and angiogenesis. WNT1 and WNT2 gene expression were positively correlated with peritoneal membrane solute transport in PD patients. In the mouse peritoneum, TGFΒ-induced peritoneal fibrosis was associated with increased expression of WNT2 and WNT4. Peritoneal b-catenin protein was significantly upregulated after infection with AdTGFB along with elements of the WNT signaling pathway. Treatment with a b-catenin inhibitor (ICG-001) in mice with AdTGFB-induced peritoneal fibrosis resulted in attenuation of peritoneal angiogenesis and reduced vascular endothelial growth factor. Similar results were also observed with the WNT antagonist Dickkopf related protein (DKK) 1. In addition to this, DKK-1 blocked epithelial to mesenchymal transition and increased levels of the cell adhesion protein E-cadherin. We provide evidence that WNT signaling is active in the setting of experimental peritoneal fibrosis and WNT1 correlates with patient peritoneal membrane solute transport in PD patients. Intervention in this pathway is a possible therapy for peritoneal membrane injury.

  13. Strychnine inhibits inflammatory angiogenesis in mice via down regulation of VEGF, TNF-α and TGF-β.

    Science.gov (United States)

    Saraswati, Sarita; Agarwal, S S

    2013-05-01

    Strychnine is known to possess anti-inflammatory and antitumour activity, but its roles in tumour angiogenesis, the key step involved in tumour growth and metastasis, and the involved molecular mechanism are still unknown. We aimed to investigate the effects of strychnine on key components of inflammatory angiogenesis in the murine cannulated sponge implant angiogenesis model. Polyester-polyurethane sponges, used as a framework for fibrovascular tissue growth, were implanted in Swiss albino mice and strychnine (0.25, and 0.5 mg/kg/day) was given through installed cannulas for 9 days. The implants collected at day 9 postimplantation were processed for the assessment of haemoglobin (Hb), myeloperoxidase (MPO), N-acetylglucosaminidase (NAG) and collagen used as indexes for angiogenesis, neutrophil and macrophage accumulation and extracellular matrix deposition, respectively. Relevant inflammatory, angiogenic and fibrogenic cytokines were also determined. Strychnine treatment attenuated the main components of the fibrovascular tissue, wet weight, vascularization (Hb content), macrophage recruitment (NAG activity), collagen deposition and the levels of vascular endothelial growth factor (VEGF), tumour necrosis factor (TNF)-α and transforming growth factor (TGF-β). A regulatory function of strychnine on multiple parameters of main components of inflammatory angiogenesis has been revealed giving insight into the potential therapeutic underlying the actions of strychnine. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Looking for the Word "Angiogenesis" in the History of Health Sciences: From Ancient Times to the First Decades of the Twentieth Century.

    Science.gov (United States)

    Natale, Gianfranco; Bocci, Guido; Lenzi, Paola

    2017-06-01

    This review deals with the origin of the term "angiogenesis", with an attention to John Hunter who is credited with this neologism. A part of the literature refers to a Hunter's work dating 1787, and the other part claims the first use of the term "angiogenesis" in the Hunter's masterpiece published in 1794. Since we were unable to find the term "angiogenesis" in Hunter's works, this review attempts to bring a new contribution to the historical research of this important concept, moving from ancient times to the first decades of the twentieth century, when "angiogenesis" begun to appear on titles of scientific articles. The development of the knowledge on the cardiocirculatory system and the principal steps of this fascinating subject were examined, with particular regard to microvascular bed and vessel sprouting, and to the intriguing observations on blood vessel neoformation that have been also made in the premicroscopic era. In Hunter's works, the concept of angiogenesis indeed emerges, but not the term "angiogenesis". The scientific language occurring during Hunter's time was still old-fashioned, and the term "angiogenesis" was not one of those he used, rather a much later neologism that sounds too modern to appear in that context. Would the first appearance of the term "angiogenesis" occur in late nineteenth century in studies dealing with embryogenesis and organ vascularization? The present study aims to explore the scientific literature and to open a debate to better define this matter.

  15. Cancer gene therapy targeting angiogenesis: An updated Review

    Science.gov (United States)

    Liu, Ching-Chiu; Shen, Zan; Kung, Hsiang-Fu; Lin, Marie CM

    2006-01-01

    Since the relationship between angiogenesis and tumor growth was established by Folkman in 1971, scientists have made efforts exploring the possibilities in treating cancer by targeting angiogenesis. Inhibition of angiogenesis growth factors and administration of angiogenesis inhibitors are the basics of anti-angiogenesis therapy. Transfer of anti-angiogenesis genes has received attention recently not only because of the advancement of recombinant vectors, but also because of the localized and sustained expression of therapeutic gene product inside the tumor after gene transfer. This review provides the up-to-date information about the strategies and the vectors studied in the field of anti-angiogenesis cancer gene therapy. PMID:17109514

  16. Curcumin and turmeric attenuate arsenic-induced angiogenesis in ovo.

    Science.gov (United States)

    Pantazis, Panayotis; Varman, Aarthi; Simpson-Durand, Cindy; Thorpe, Jessica; Ramalingam, Satish; Subramaniam, Dharmalingam; Houchen, Courtney; Ihnat, Michael; Anant, Shrikant; Ramanujam, Rama P

    2010-01-01

    Trivalent arsenic [As(III)] is currently approved by the FDA for the treatment of chronic and acute leukemias. However, As(III) has also demonstrated damaging effects on human health, including development of cardiovascular disease, diabetes, and cancer. Further, As(III) is a potent angiogenic agent. In this context, curcumin, an active ingredient in the dietary agent turmeric, has demonstrated potent antiproliferative, antiinflammatory, and antiangiogenic properties. In this report, we have shown that both curcumin and turmeric inhibit expression of vascular endothelial growth factor in HCT-116 human colon cancer cells exposed to As(III). Further, in the chicken chorioallantoic membrane assay model, treatment with low As(III) concentrations results in extensive increase in blood vessel density, which, however, is reduced in the presence of curcumin or turmeric. Collectively, the findings reported here strongly suggest that turmeric and curcumin can dramatically attenuate the process of angiogenesis induced by low As(III) concentrations.

  17. Historical methane hydrate project review

    Science.gov (United States)

    Collett, Timothy; Bahk, Jang-Jun; Frye, Matt; Goldberg, Dave; Husebo, Jarle; Koh, Carolyn; Malone, Mitch; Shipp, Craig; Torres, Marta

    2013-01-01

    In 1995, U.S. Geological Survey made the first systematic assessment of the volume of natural gas stored in the hydrate accumulations of the United States. That study, along with numerous other studies, has shown that the amount of gas stored as methane hydrates in the world greatly exceeds the volume of known conventional gas resources. However, gas hydrates represent both a scientific and technical challenge and much remains to be learned about their characteristics and occurrence in nature. Methane hydrate research in recent years has mostly focused on: (1) documenting the geologic parameters that control the occurrence and stability of gas hydrates in nature, (2) assessing the volume of natural gas stored within various gas hydrate accumulations, (3) analyzing the production response and characteristics of methane hydrates, (4) identifying and predicting natural and induced environmental and climate impacts of natural gas hydrates, and (5) analyzing the effects of methane hydrate on drilling safety.Methane hydrates are naturally occurring crystalline substances composed of water and gas, in which a solid water-­‐lattice holds gas molecules in a cage-­‐like structure. The gas and water becomes a solid under specific temperature and pressure conditions within the Earth, called the hydrate stability zone. Other factors that control the presence of methane hydrate in nature include the source of the gas included within the hydrates, the physical and chemical controls on the migration of gas with a sedimentary basin containing methane hydrates, the availability of the water also included in the hydrate structure, and the presence of a suitable host sediment or “reservoir”. The geologic controls on the occurrence of gas hydrates have become collectively known as the “methane hydrate petroleum system”, which has become the focus of numerous hydrate research programs.Recognizing the importance of methane hydrate research and the need for a coordinated

  18. The Hydrated Electron

    Science.gov (United States)

    Herbert, John M.; Coons, Marc P.

    2017-05-01

    Existence of a hydrated electron as a byproduct of water radiolysis was established more than 50 years ago, yet this species continues to attract significant attention due to its role in radiation chemistry, including DNA damage, and because questions persist regarding its detailed structure. This work provides an overview of what is known in regards to the structure and spectroscopy of the hydrated electron, both in liquid water and in clusters [Formula: see text], the latter of which provide model systems for how water networks accommodate an excess electron. In clusters, the existence of both surface-bound and internally bound states of the excess electron has elicited much debate, whereas in bulk water there are questions regarding how best to understand the structure of the excess electron's spin density. The energetics of the equilibrium species e-(aq) and its excited states, in bulk water and at the air/water interface, are also addressed.

  19. Embryonic stem cell-derived embryoid bodies development in collagen gels recapitulates sprouting angiogenesis.

    Science.gov (United States)

    Feraud, O; Cao, Y; Vittet, D

    2001-12-01

    The formation of new blood vessels proceeds by both vasculogenesis and angiogenesis. The development of models, which fully recapitulate spatio-temporal events involved during these processes, are crucial to fully understand their mechanisms of regulation. In vitro differentiation of murine embryonic stem (ES) cells has been shown to be a useful tool to investigate factors and genes potentially involved in vasculogenesis (Hirashima et al, 1999; Risau et al, 1988; Vittet et al, 1996; Wang et al, 1992; Wartenberg et al, 1998). We asked here whether this model system can also recapitulate angiogenesis, which may offer new means to study mechanisms involved in this process. ES-derived embryoid bodies (EBs) obtained after 11 days of differentiation, in which a primitive vascular network had formed, were then subcultured into a type I collagen matrix. In the presence of angiogenic growth factors, EBs rapidly developed branching pseudopods. Whole mount immunostainings with a PECAM antibody revealed that more than 75% EBs displayed, within a few days, a large number of endothelial outgrowths that can give tube-like structures with concomitant differentiation of alpha-smooth muscle actin positive cells, thus evoking sprouting angiogenesis. High expression levels of flk1 (VEGFR2), flt1 (VEGFR1), tie-1, and tie-2 are also found, indicating that budding endothelial cells displayed an angiogenic phenotype. The endothelial sprouting response was specifically induced by angiogenic factors with a major contribution of vascular endothelial growth factor (VEGF). Known angiostatic agents, such as platelet factor 4 (PF4), angiostatin, and endostatin inhibited the formation of endothelial sprouts induced by angiogenic factors. Moreover, consistent with the in vivo phenotype, VE-cadherin deficient EBs failed to develop angiogenesis in this model. ES cell differentiation can then recapitulate, in addition to vasculogenesis, the early stages of sprouting angiogenesis. This model system

  20. Anthocyanin-rich purple corn extract inhibit diabetes-associated glomerular angiogenesis.

    Directory of Open Access Journals (Sweden)

    Min-Kyung Kang

    Full Text Available Diabetic nephropathy (DN is one of the major diabetic complications and the leading cause of end-stage renal disease. Abnormal angiogenesis results in new vessels that are often immature and play a pathological role in DN, contributing to renal fibrosis and disrupting glomerular failure. Purple corn has been utilized as a daily food and exerts disease-preventive activities. This study was designed to investigate whether anthocyanin-rich purple corn extract (PCE prevented glomerular angiogenesis under hyperglycemic conditions. Human endothelial cells were cultured in conditioned media of mesangial cells exposed to 33 mM high glucose (HG-HRMC-CM. PCE decreased endothelial expression of vascular endothelial growth factor (VEGF and hypoxia inducible factor (HIF-1α induced by HG-HRMC-CM. Additionally, PCE attenuated the induction of the endothelial marker of platelet endothelial cell adhesion molecule (PECAM-1 and integrin β3 enhanced in HG-HRMC-CM. Endothelial tube formation promoted by HG-HRMC-CM was disrupted in the presence of PCE. In the in vivo study employing db/db mice treated with 10 mg/kg PCE for 8 weeks, PCE alleviated glomerular angiogenesis of diabetic kidneys by attenuating the induction of VEGF and HIF-1α. Oral administration of PCE retarded the endothelial proliferation in db/db mouse kidneys, evidenced by its inhibition of the induction of vascular endothelium-cadherin, PECAM-1 and Ki-67. PCE diminished the mesangial and endothelial induction of angiopoietin (Angpt proteins under hypeglycemic conditions. The induction and activation of VEGF receptor 2 (VEGFR2 were dampened by treating PCE to db/db mice. These results demonstrate that PCE antagonized glomerular angiogenesis due to chronic hyperglycemia and diabetes through disturbing the Angpt-Tie-2 ligand-receptor system linked to renal VEGFR2 signaling pathway. Therefore, PCE may be a potent therapeutic agent targeting abnormal angiogenesis in DN leading to kidney failure.

  1. Therapeutic Angiogenesis for Treating Cardiovascular Diseases

    Science.gov (United States)

    Deveza, Lorenzo; Choi, Jeffrey; Yang, Fan

    2012-01-01

    Cardiovascular disease is the leading cause of death worldwide and is often associated with partial or full occlusion of the blood vessel network in the affected organs. Restoring blood supply is critical for the successful treatment of cardiovascular diseases. Therapeutic angiogenesis provides a valuable tool for treating cardiovascular diseases by stimulating the growth of new blood vessels from pre-existing vessels. In this review, we discuss strategies developed for therapeutic angiogenesis using single or combinations of biological signals, cells and polymeric biomaterials. Compared to direct delivery of growth factors or cells alone, polymeric biomaterials provide a three-dimensional drug-releasing depot that is capable of facilitating temporally and spatially controlled release. Biomimetic signals can also be incorporated into polymeric scaffolds to allow environmentally-responsive or cell-triggered release of biological signals for targeted angiogenesis. Recent progress in exploiting genetically engineered stem cells and endogenous cell homing mechanisms for therapeutic angiogenesis is also discussed. PMID:22916079

  2. Modeling Hydrates and the Gas Hydrate Markup Language

    Directory of Open Access Journals (Sweden)

    Weihua Wang

    2007-06-01

    Full Text Available Natural gas hydrates, as an important potential fuels, flow assurance hazards, and possible factors initiating the submarine geo-hazard and global climate change, have attracted the interest of scientists all over the world. After two centuries of hydrate research, a great amount of scientific data on gas hydrates has been accumulated. Therefore the means to manage, share, and exchange these data have become an urgent task. At present, metadata (Markup Language is recognized as one of the most efficient ways to facilitate data management, storage, integration, exchange, discovery and retrieval. Therefore the CODATA Gas Hydrate Data Task Group proposed and specified Gas Hydrate Markup Language (GHML as an extensible conceptual metadata model to characterize the features of data on gas hydrate. This article introduces the details of modeling portion of GHML.

  3. Overview: Nucleation of clathrate hydrates

    Science.gov (United States)

    Warrier, Pramod; Khan, M. Naveed; Srivastava, Vishal; Maupin, C. Mark; Koh, Carolyn A.

    2016-12-01

    Molecular level knowledge of nucleation and growth of clathrate hydrates is of importance for advancing fundamental understanding on the nature of water and hydrophobic hydrate formers, and their interactions that result in the formation of ice-like solids at temperatures higher than the ice-point. The stochastic nature and the inability to probe the small length and time scales associated with the nucleation process make it very difficult to experimentally determine the molecular level changes that lead to the nucleation event. Conversely, for this reason, there have been increasing efforts to obtain this information using molecular simulations. Accurate knowledge of how and when hydrate structures nucleate will be tremendously beneficial for the development of sustainable hydrate management strategies in oil and gas flowlines, as well as for their application in energy storage and recovery, gas separation, carbon sequestration, seawater desalination, and refrigeration. This article reviews various aspects of hydrate nucleation. First, properties of supercooled water and ice nucleation are reviewed briefly due to their apparent similarity to hydrates. Hydrate nucleation is then reviewed starting from macroscopic observations as obtained from experiments in laboratories and operations in industries, followed by various hydrate nucleation hypotheses and hydrate nucleation driving force calculations based on the classical nucleation theory. Finally, molecular simulations on hydrate nucleation are discussed in detail followed by potential future research directions.

  4. Cannabidiol inhibits angiogenesis by multiple mechanisms

    Science.gov (United States)

    Solinas, M; Massi, P; Cantelmo, AR; Cattaneo, MG; Cammarota, R; Bartolini, D; Cinquina, V; Valenti, M; Vicentini, LM; Noonan, DM; Albini, A; Parolaro, D

    2012-01-01

    BACKGROUND AND PURPOSE Several studies have demonstrated anti-proliferative and pro-apoptotic actions of cannabinoids on various tumours, together with their anti-angiogenic properties. The non-psychoactive cannabinoid cannabidiol (CBD) effectively inhibits the growth of different types of tumours in vitro and in vivo and down-regulates some pro-angiogenic signals produced by glioma cells. As its anti-angiogenic properties have not been thoroughly investigated to date, and given its very favourable pharmacological and toxicological profile, here, we evaluated the ability of CBD to modulate tumour angiogenesis. EXPERIMENTAL APPROACH Firstly, we evaluated the effect of CBD on human umbilical vein endothelial cell (HUVEC) proliferation and viability – through [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay and FACS analysis – and in vitro motility – both in a classical Boyden chamber test and in a wound-healing assay. We next investigated CBD effects on different angiogenesis-related proteins released by HUVECs, using an angiogenesis array kit and an ELISA directed at MMP2. Then we evaluated its effects on in vitro angiogenesis in treated HUVECs invading a Matrigel layer and in HUVEC spheroids embedded into collagen gels, and further characterized its effects in vivo using a Matrigel sponge model of angiogenesis in C57/BL6 mice. KEY RESULTS CBD induced HUVEC cytostasis without inducing apoptosis, inhibited HUVEC migration, invasion and sprouting in vitro, and angiogenesis in vivo in Matrigel sponges. These effects were associated with the down-modulation of several angiogenesis-related molecules. CONCLUSIONS AND IMPLICATIONS This study reveals that CBD inhibits angiogenesis by multiple mechanisms. Its dual effect on both tumour and endothelial cells supports the hypothesis that CBD has potential as an effective agent in cancer therapy. PMID:22624859

  5. Histamine synergistically promotes bFGF-induced angiogenesis by enhancing VEGF production via H1 receptor.

    Science.gov (United States)

    Lu, Qian; Wang, Chong; Pan, Rong; Gao, Xinghua; Wei, Zhifeng; Xia, Yufeng; Dai, Yue

    2013-05-01

    Histamine, a major mediator present in mast cells that is released into the extracellular milieu upon degranulation, is well known to possess a wide range of biological activities in several classic physiological and pathological processes. However, whether and how it participates in angiogenesis remains obscure. In the present study, we observed its direct and synergistic action with basic fibroblast growth factor (bFGF), an important inducer of angiogenesis, on in vitro angiogenesis models of endothelial cells. Data showed that histamine (0.1, 1, 10 µM) itself was absent of direct effects on the processes of angiogenesis, including the proliferation, migration, and tube formation of endothelial cells. Nevertheless, it could concentration-dependently enhance bFGF-induced angiogenesis as well as production of vascular endothelial growth factor (VEGF) from endothelial cells. The synergistic effect of histamine on VEGF production could be reversed by pretreatments with diphenhydramine (H1-receptor antagonist), SB203580 (selective p38 mitogen-activated protein kinase (MAPK) inhibitor) and L-NAME (nitric oxide synthase (NOS) inhibitor), but not with cimetidine (H2-receptor antagonist) and indomethacin (cyclooxygenase (COX) inhibitor). Moreover, histamine could augment bFGF-incuced phosphorylation and degradation of IκBα, a key factor accounting for the activation and translocation of nuclear factor κB (NF-κB) in endothelial cells. These findings indicated that histamine was able to synergistically augment bFGF-induced angiogenesis, and this action was linked to VEGF production through H1-receptor and the activation of endothelial nitric oxide synthase (eNOS), p38 MAPK, and IκBα in endothelial cells. Copyright © 2012 Wiley Periodicals, Inc.

  6. Ethyl p-methoxycinnamate from Kaempferia galanga inhibits angiogenesis through tyrosine kinase

    Directory of Open Access Journals (Sweden)

    Juni Ekowati

    2015-04-01

    Full Text Available Background Many tumors express on their receptor tyrosine kinases vascular endothelial growth factor activity associated with angiogenesis. Inhibition of angiogenesis through reduction of tyrosine kinase activity is a promising strategy for cancer therapy. The present study aimed to determine the mechanism and potency of ethyl p-methoxycinnamate (EPMC isolated from Kaempferia galanga as angiogenesis inhibitor. Methods A laboratory experimental study was conducted using chorio-allantoic membranes (CAMs of nine-day old chicken eggs induced by 60ng basic fibroblast growth factor (bFGF. Ethyl p-methoxycinnamate (EPMC potency was determined at dosages of 30, 60, 90 and 120 mg and compared with celecoxib 60 mg as reference drug and one negative bFGF-induced control group. Neovascularization and endothelial cell count in CAM blood vessels were evaluated. To predict the antiangiogenic mechanism of EPMC, a docking study was performed with the Molegro Virtual Docker program on tyrosine kinase as receptor (PDB 1XKK. Results Angiogenesis stimulation by bFGF was prevented significantly (p<0.05 by EPMC at dosages of 30, 60, 90 and 120 mg and this activity was dose dependent. Molecular docking showed interaction between EPMC functional groups and tyrosine kinase amino acids at Met766, Met793, Thr854, Thr790, Gln791 and Ala743. There was an association between EPMC antiangiogenic activity and docking study results. Conclusions Ethyl p-methoxycinnamate is a potential new angiogenesis inhibitor through interaction with tyrosine kinase. EPMC could be a promising therapeutic agent for treatment of angiogenesis-related diseases.

  7. Fluorescence imaging of angiogenesis in green fluorescent protein-expressing tumors

    Science.gov (United States)

    Yang, Meng; Baranov, Eugene; Jiang, Ping; Li, Xiao-Ming; Wang, Jin W.; Li, Lingna; Yagi, Shigeo; Moossa, A. R.; Hoffman, Robert M.

    2002-05-01

    The development of therapeutics for the control of tumor angiogenesis requires a simple, reliable in vivo assay for tumor-induced vascularization. For this purpose, we have adapted the orthotopic implantation model of angiogenesis by using human and rodent tumors genetically tagged with Aequorea victoria green fluorescent protein (GFP) for grafting into nude mice. Genetically-fluorescent tumors can be readily imaged in vivo. The non-luminous induced capillaries are clearly visible against the bright tumor fluorescence examined either intravitally or by whole-body luminance in real time. Fluorescence shadowing replaces the laborious histological techniques for determining blood vessel density. High-level GFP-expressing tumor cell lines made it possible to acquire the high-resolution real-time fluorescent optical images of angiogenesis in both primary tumors and their metastatic lesions in various human and rodent tumor models by means of a light-based imaging system. Intravital images of angiogenesis onset and development were acquired and quantified from a GFP- expressing orthotopically-growing human prostate tumor over a 19-day period. Whole-body optical imaging visualized vessel density increasing linearly over a 20-week period in orthotopically-growing, GFP-expressing human breast tumor MDA-MB-435. Vessels in an orthotopically-growing GFP- expressing Lewis lung carcinoma tumor were visualized through the chest wall via a reversible skin flap. These clinically-relevant angiogenesis mouse models can be used for real-time in vivo evaluation of agents inhibiting or promoting tumor angiogenesis in physiological micro- environments.

  8. Scutellarin promotes in vitro angiogenesis in human umbilical vein endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhong-Xiu-Zi [Department of Anatomy, Basic Medical Science College, Harbin Medical University, Harbin (China); Huang, Da-Yong [Department of Oncology, The Second Clinical Hospital, Harbin Medical University, Harbin (China); Li, Hai-Xia; Zhang, Li-Na; Lv, Yan-Hong; Cui, Hai-Dong [Department of Anatomy, Basic Medical Science College, Harbin Medical University, Harbin (China); Zheng, Jin-Hua, E-mail: jhzhenghrbmu@yahoo.cn [Department of Anatomy, Basic Medical Science College, Harbin Medical University, Harbin (China)

    2010-09-10

    Research highlights: {yields} It has been shown that scutellarin exhibits a variety of pharmacological actions, including anti-oxidative, anti-inflammatory, vasodilator as well as cardiovascular and cerebrovascular ischemia protective effects, indicating beneficial vascular effects of scutellarin. Therefore, it is speculated that scutellarin may be able to stimulate angiogenesis, which could be beneficial in the treatment of ischemic disease, wound healing and tissue regeneration. {yields} The purpose of the present study was to elucidate the direct angiogenic actions of scutellarin on human umbilical vein endothelial cells (HUVECs) in vitro. {yields} Our results showed that scutellarin to directly induce in vitro angiogenesis, which is closely correlated with upregulated MMP-2 expression, suggesting a potential for increasing angiogenesis. -- Abstract: Angiogenesis is critical to a wide range of physiological and pathological processes. Scutellarin, a major flavonoid of a Chinese herbal medicine Erigeron breviscapus (Vant.) Hand. Mazz. has been shown to offer beneficial effects on cardiovascular and cerebrovascular functions. However, scutellarin's effects on angiogenesis and underlying mechanisms are not fully elucidated. Here, we studied angiogenic effects of scutellarin on human umbilical vein endothelial cells (HUVECs) in vitro. Scutellarin was found by MTT assay to induce proliferation of HUVECs. In scutellarin-treated HUVECs, a dramatic increase in migration was measured by wound healing assay; Transwell chamber assay found significantly more invading cells in scutellarin-treated groups. Scutellarin also promoted capillary-like tube formation in HUVECs on Matrigel, and significantly upregulated platelet endothelial cell adhesion molecule-1 at both mRNA and protein levels. Scutellarin's angiogenic mechanism was investigated in vitro by measuring expression of angiogenic factors associated with cell migration and invasion. Scutellarin strongly

  9. The effects of a picosecond pulsed electric field on angiogenesis in the cervical cancer xenograft models.

    Science.gov (United States)

    Wu, Limei; Yao, Chenguo; Xiong, Zhengai; Zhang, Ruizhe; Wang, Zhiliang; Wu, Yutong; Qin, Qin; Hua, Yuanyuan

    2016-04-01

    The application of picosecond pulsed electric field (psPEF) is a new biomedical engineering technique used in cancer therapy. However, its effects on cervical cancer angiogenesis are not clear. Therefore, the aim of the present study is to investigate the effects of psPEF on angiogenesis in cervical cancer xenograft models. Xenograft tumors were created by subcutaneously inoculating nude mice (athymic BALB/c nu/nu mice) with HeLa cells, then were placed closely between tweezer-type plate electrodes and subjected to psPEF with a gradually increased electric field intensity (0kV/cm, 50kV/cm, 60kV/cm, 70kV/cm). The direct effect on tumor tissue was observed by hematoxylin and eosin (H&E) staining and transmission electron microscopy (TEM). The changes of blood vessels and oxygen saturation (sO2) of tumors were monitored in vivo by photoacoustic tomography (PAT). The microvessel density (MVD), vascular endothelial growth factor (VEGF) and hypoxia-inducible transcription factors (HIF-1α and HIF-2α) were detected by immunohistochemical technique (IHC). Their protein expressions and gene transcription levels were evaluated using western blot (WB) and quantitative reverse transcription and polymerase chain reaction (RT-PCR). PsPEF induced obvious necrosis of cervical cancer tissue; with the increasing of electric field intensity, the MVD, vascular PA signal and sO2 values declined significantly. The protein expression and gene transcription levels of VEGF, HIF1α and HIF2α were significantly decreased at the same time. PsPEF exhibited dramatic anti-tumor and anti-angiogenesis effects in cervical cancer xenograft models by exerting direct effect on cancer cells and vascular endothelial cells and indirect effect on tumor angiogenesis-related factors. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Rapid gas hydrate formation process

    Science.gov (United States)

    Brown, Thomas D.; Taylor, Charles E.; Unione, Alfred J.

    2013-01-15

    The disclosure provides a method and apparatus for forming gas hydrates from a two-phase mixture of water and a hydrate forming gas. The two-phase mixture is created in a mixing zone which may be wholly included within the body of a spray nozzle. The two-phase mixture is subsequently sprayed into a reaction zone, where the reaction zone is under pressure and temperature conditions suitable for formation of the gas hydrate. The reaction zone pressure is less than the mixing zone pressure so that expansion of the hydrate-forming gas in the mixture provides a degree of cooling by the Joule-Thompson effect and provides more intimate mixing between the water and the hydrate-forming gas. The result of the process is the formation of gas hydrates continuously and with a greatly reduced induction time. An apparatus for conduct of the method is further provided.

  11. Vascular Vertigo

    Directory of Open Access Journals (Sweden)

    Mazyar Hashemilar

    2017-02-01

    Full Text Available Vertigo is a common complaint in neurology and medicine. The most common causes of vertigo are benign paroxysmal positional vertigo, vestibular neuritis, Meniere’s disease, and vascular disorders. Vertigo of vascular origin is usually limited to migraine, transient ischemic attacks, and ischemic or hemorrhagic stroke. Vascular causes lead to various central or peripheral vestibular syndromes with vertigo. This review provides an overview of epidemiology and clinical syndromes of vascular vertigo. Vertigo is an illusion of movement caused by asymmetrical involvement of the vestibular system by various causes. Migraine is the most frequent vascular disorder that causes vertigo in all age groups. Vertigo may occur in up to 25% of patients with migraine. The lifetime prevalence of migrainous vertigo is almost 1%. Cerebrovascular disorders are estimated to account for 3% to 7% of patients with vertigo. Vestibular paroxysmia has been diagnosed in 1.8% to 4% of cases in various dizziness units. Vasculitic disorders are rare in the general population, but vertigo may be seen in almost up to 50% of patients with different vasculitic syndromes. Conclusions: Migraine, cerebrovascular disorders especially involving the vertebrobasilar territory, cardiocirculatory diseases, neurovascular compression of the eighth nerve, and vasculitis are vascular causes of vertigo syndromes.

  12. Hypoxia-Inducible Factor-1 in Physiological and Pathophysiological Angiogenesis: Applications and Therapies

    Science.gov (United States)

    Zimna, Agnieszka; Kurpisz, Maciej

    2015-01-01

    The cardiovascular system ensures the delivery of oxygen and nutrients to all cells, tissues, and organs. Under extended exposure to reduced oxygen levels, cells are able to survive through the transcriptional activation of a series of genes that participate in angiogenesis, glucose metabolism, and cell proliferation. The oxygen-sensitive transcriptional activator HIF-1 (hypoxia-inducible factor-1) is a key transcriptional mediator of the response to hypoxic conditions. The HIF-1 pathway was found to be a master regulator of angiogenesis. Whether the process is physiological or pathological, HIF-1 seems to participate in vasculature formation by synergistic correlations with other proangiogenic factors such as VEGF (vascular endothelial growth factor), PlGF (placental growth factor), or angiopoietins. Considering the important contributions of HIF-1 in angiogenesis and vasculogenesis, it should be considered a promising target for treating ischaemic diseases or cancer. In this review, we discuss the roles of HIF-1 in both physiological/pathophysiological angiogenesis and potential strategies for clinical therapy. PMID:26146622

  13. Tumor angiogenesis in the absence of fibronectin or its cognate integrin receptors.

    Directory of Open Access Journals (Sweden)

    Patrick A Murphy

    Full Text Available Binding of α5β1 and αvβ3/β5 integrin receptors on the endothelium to their fibronectin substrate in the extracellular matrix has been targeted as a possible means of blocking tumor angiogenesis and tumor growth. However, clinical trials of blocking antibodies and peptides have been disappointing despite promising preclinical results, leading to questions about the mechanism of the inhibitors and the reasons for their failure. Here, using tissue-specific and inducible genetics to delete the α5 and αv receptors in the endothelium or their fibronectin substrate, either in the endothelium or globally, we show that both are dispensable for tumor growth, in transplanted tumors as well as spontaneous and angiogenesis-dependent RIP-Tag-driven pancreatic adenocarcinomas. In the nearly complete absence of fibronectin, no differences in vascular density or the deposition of basement membrane laminins, ColIV, Nid1, Nid2, or the TGFβ binding matrix proteins, fibrillin-1 and -2, could be observed. Our results reveal that fibronectin and the endothelial fibronectin receptor subunits, α5 and αv, are dispensable for tumor angiogenesis, suggesting that the inhibition of angiogenesis induced by antibodies or small molecules may occur through a dominant negative effect, rather than a simple functional block.

  14. Therapeutic angiogenesis of adipose-derived stem cells for ischemic diseases.

    Science.gov (United States)

    Zhao, Lina; Johnson, Takerra; Liu, Dong

    2017-06-05

    Ischemic diseases, the leading cause of disability and death, are caused by the stenosis or obstruction of arterioles/capillaries that is not compensated for by vessel dilatation or collateral circulation. Angiogenesis is a complex process leading to new blood vessel formation and is triggered by ischemic conditions. Adequate angiogenesis, as a compensatory mechanism in response to ischemia, may increase oxygen and nutrient supplies to tissues and protect their function. Therapeutic angiogenesis has been the most promising therapy for treating ischemic diseases. In recent years, stem cell transplantation has been recognized as a new technique with therapeutic angiogenic effects on ischemic diseases. Adipose-derived stem cells, characterized by their ease of acquisition, high yields, proliferative growth, and low immunogenicity, are an ideal cell source. In this review, the characterization of adipose-derived stem cells and the role of angiogenesis in ischemic attack are summarized. The angiogenic effects of adipose-derived stem cells are discussed from the perspectives of in-vitro, in-vivo, and clinical trial studies for the treatment of ischemic diseases, including ischemic cardiac, cerebral, and peripheral vascular diseases and wound healing. The microvesicles/exosomes released from adipose-derived stem cells are also presented as a novel therapeutic prospect for treating ischemic diseases.

  15. Bee products prevent VEGF-induced angiogenesis in human umbilical vein endothelial cells

    Directory of Open Access Journals (Sweden)

    Mishima Satoshi

    2009-11-01

    Full Text Available Abstract Background Vascular endothelial growth factor (VEGF is a key regulator of pathogenic angiogenesis in diseases such as cancer and diabetic retinopathy. Bee products [royal jelly (RJ, bee pollen, and Chinese red propolis] from the honeybee, Apis mellifera, have been used as traditional health foods for centuries. The aim of this study was to investigate the anti-angiogenic effects of bee products using human umbilical vein endothelial cells (HUVECs. Methods In an in vitro tube formation assay, HUVECs and fibroblast cells were incubated for 14 days with VEGF and various concentrations of bee products [RJ, ethanol extract of bee pollen, ethanol extract of Chinese red propolis and its constituent, caffeic acid phenethyl ester (CAPE]. To clarify the mechanism of in vitro angiogenesis, HUVEC proliferation and migration were induced by VEGF with or without various concentrations of RJ, bee pollen, Chinese red propolis, and CAPE. Results RJ, bee pollen, Chinese red propolis, and CAPE significantly suppressed VEGF-induced in vitro tube formation in the descending order: CAPE > Chinese red propolis >> bee pollen > RJ. RJ and Chinese red propolis suppressed both VEGF-induced HUVEC proliferation and migration. In contrast, bee pollen and CAPE suppressed only the proliferation. Conclusion Among the bee products, Chinese red propolis and CAPE in particular showed strong suppressive effects against VEGF-induced angiogenesis. These findings indicate that Chinese red propolis and CAPE may have potential as preventive and therapeutic agents against angiogenesis-related human diseases.

  16. Scutellarin suppresses human colorectal cancer metastasis and angiogenesis by targeting ephrinb2.

    Science.gov (United States)

    Zhu, Ping Ting; Mao, Ming; Liu, Zhao Guo; Tao, Li; Yan, Bing Chun

    2017-01-01

    Tumor induced angiogenesis is an attractive target for anti-cancer drug treatment. Scutellarin, which is a native compound derived from scutellaria altissima leaves, has already been proved to possess anti-tumor activities. Nevertheless, their effects in colorectal cancer metastasis and angiogenesis have not been evaluated. In order to reveal the anti-angiogenic and anti-metastasis capacity of scutellarin, wound healing and Transwell chamber inserts invasion were done in colorectal cancer cells, and cell proliferation as wells colony formation were conducted to identify the proliferation inhibition of colorectal cancer in vitro. The growth inhibition of scutellarin was further definite by a mouse colorectal xenograft model in vivo. Herein, we demonstrated scutellarin suppressed colorectal cancer cell viability and colony formation in vitro, and remarkably reduced tumor growth in vivo mouse xenografts. Additionally, scutellarin restrained colorectal cancer cells-induced angiogenesis, inhibited human umbilical vascular endothelial cells (HUVECs) migration, tube formation of HUVECs, and micro-vessel formation in chick embnyo chorioallantoic menbreme (CAM) assay. Altogether, our results exhibited the evidence that scutellarin inhibit colorectal cancer angiogenesis and metastasis via targeting ephrinb2 signaling, with the potential of an anti-tumor agent for cancer treatment.

  17. Vaccinium myrtillus (Bilberry Extracts Reduce Angiogenesis In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Nozomu Matsunaga

    2010-01-01

    Full Text Available Vaccinium myrtillus (Bilberry extracts (VME were tested for effects on angiogenesis in vitro and in vivo. VME (0.3–30 µg ml−1 and GM6001 (0.1–100 µM; a matrix metalloproteinase inhibitor concentration-dependently inhibited both tube formation and migration of human umbilical vein endothelial cells (HUVECs induced by vascular endothelial growth factor-A (VEGF-A. In addition, VME inhibited VEGF-A-induced proliferation of HUVECs. VME inhibited VEGF-A-induced phosphorylations of extracellular signal-regulated kinase 1/2 (ERK 1/2 and serine/threonine protein kinase family protein kinase B (Akt, but not that of phospholipase Cγ (PLCγ. In an in vivo assay, intravitreal administration of VME inhibited the formation of neovascular tufts during oxygen-induced retinopathy in mice. Thus, VME inhibited angiogenesis both in vitro and in vivo, presumably by inhibiting the phosphorylations of ERK 1/2 and Akt. These findings indicate that VME may be effective against retinal diseases involving angiogenesis, providing it can reach the retina after its administration. Further investigations will be needed to clarify the major angiogenesis-modulating constituent(s of VME.

  18. VEGF-mediated angiogenesis stimulates neural stem cell proliferation and differentiation in the premature brain

    International Nuclear Information System (INIS)

    Sun, Jinqiao; Sha, Bin; Zhou, Wenhao; Yang, Yi

    2010-01-01

    This study investigated the effects of angiogenesis on the proliferation and differentiation of neural stem cells in the premature brain. We observed the changes in neurogenesis that followed the stimulation and inhibition of angiogenesis by altering vascular endothelial growth factor (VEGF) expression in a 3-day-old rat model. VEGF expression was overexpressed by adenovirus transfection and down-regulated by siRNA interference. Using immunofluorescence assays, Western blot analysis, and real-time PCR methods, we observed angiogenesis and the proliferation and differentiation of neural stem cells. Immunofluorescence assays showed that the number of vWF-positive areas peaked at day 7, and they were highest in the VEGF up-regulation group and lowest in the VEGF down-regulation group at every time point. The number of neural stem cells, neurons, astrocytes, and oligodendrocytes in the subventricular zone gradually increased over time in the VEGF up-regulation group. Among the three groups, the number of these cells was highest in the VEGF up-regulation group and lowest in the VEGF down-regulation group at the same time point. Western blot analysis and real-time PCR confirmed these results. These data suggest that angiogenesis may stimulate the proliferation of neural stem cells and differentiation into neurons, astrocytes, and oligodendrocytes in the premature brain.

  19. Vascular Growth in Health and Disease

    Directory of Open Access Journals (Sweden)

    Anja eBondke Persson

    2011-08-01

    Full Text Available Vascular growth forms the first functional organ system during development, and continues into adult life, wherein it is often associated with disease states. Genetically determined vasculogenesis produces a primary vascular plexus in ontogenesis. Angiogenesis, occuring e.g. in response to metabolic stress within hypoxic tissues, enhances tissue capillarization. Arteriogenesis denotes the adaptive outgrowth of preexistent collateral arteries to bypass arterial stenoses in response to hemodynamic changes. It has been debated whether vasculogenesis occurs in the adult, and whether or not circulating progenitor cells structurally contribute to vessel regeneration. Secondly, the major determinants of vascular growth - genetic predisposition, metabolic factors (hypoxia and hemodynamics - cannot be assigned in a mutually exclusive fashion to vasculogenesis, angiogenesis and arteriogenesis, respectively; rather, mechanisms overlap. Lastly, all three mechanisms of vessel growth seem to contribute to physiological embryogenesis as well as adult adaptive vascularization as occurs in tumors or to circumvent arterial stenosis. Thus, much conceptual and terminological confusion has been created, while therapies targetting neovascularization have yielded promising results in the lab, but failed randomised studies when taken to the bedside. Therefore, this review article aims at providing an exact definition of the mechanisms of vascular growth and their contribution to embryonic development as well as adult adaptive revascularization. We have been looking for potential reasons for why clinical trials have failed, how vitally the application of appropriate methods of measuring and assessment influences study outcomes, and how relevant e.g. results gained in models of vascular occlusive disease may be for antineoplastic startegies, advocating a reverse bedside-to-bench approach, which may hopefully yield successful approaches to therapeutically targetting

  20. Decidualized Human Endometrial Stromal Cells Mediate Hemostasis, Angiogenesis, and Abnormal Uterine Bleeding

    Science.gov (United States)

    Lockwood, Charles J.; Krikun, Graciela; Hickey, Martha; Huang, S. Joseph; Schatz, Frederick

    2011-01-01

    Factor VII binds trans-membrane tissue factor to initiate hemostasis by forming thrombin. Tissue factor expression is enhanced in decidualized human endometrial stromal cells during the luteal phase. Long-term progestin only contraceptives elicit: 1) abnormal uterine bleeding from fragile vessels at focal bleeding sites, 2) paradoxically high tissue factor expression at bleeding sites; 3) reduced endometrial blood flow promoting local hypoxia and enhancing reactive oxygen species levels; and 4) aberrant angiogenesis reflecting increased stromal cell-expressed vascular endothelial growth factor, decreased Angiopoietin-1 and increased endothelial cell-expressed Angiopoietin-2. Aberrantly high local vascular permeability enhances circulating factor VII to decidualized stromal cell-expressed tissue factor to generate excess thrombin. Hypoxia-thrombin interactions augment expression of vascular endothelial growth factor and interleukin-8 by stromal cells. Thrombin, vascular endothelial growth factor and interlerukin-8 synergis-tically augment angiogenesis in a milieu of reactive oxygen species-induced endothelial cell activation. The resulting enhanced vessel fragility promotes abnormal uterine bleeding. PMID:19208784

  1. Low Molecular Weight Fucoidan Inhibits Tumor Angiogenesis through Downregulation of HIF-1/VEGF Signaling under Hypoxia

    Directory of Open Access Journals (Sweden)

    Meng-Chuan Chen

    2015-07-01

    Full Text Available Activation of hypoxia-induced hypoxia-inducible factors-1 (HIF-1 plays a critical role in promoting tumor angiogenesis, growth and metastasis. Low molecular weight fucoidan (LMWF is prepared from brown algae, and exhibits anticancer activity. However, whether LMWF attenuates hypoxia-induced angiogenesis in bladder cancer cells and the molecular mechanisms involved remain unclear. This is the first study to demonstrate that LMWF can inhibit hypoxia-stimulated H2O2 formation, HIF-1 accumulation and transcriptional activity vascular endothelial growth factor (VEGF secretion, and the migration and invasion in hypoxic human bladder cancer cells (T24 cells. LMWF also downregulated hypoxia-activated phosphorylation of PI3K/AKT/mTOR/p70S6K/4EBP-1 signaling in T24 cells. Blocking PI3K/AKT or mTOR activity strongly diminished hypoxia-induced HIF-1α expression and VEGF secretion in T24 cells, supporting the involvement of PI3K/AKT/mTOR in the induction of HIF-1α and VEGF. Additionally, LMWF significantly attenuated angiogenesis in vitro and in vivo evidenced by reduction of tube formation of hypoxic human umbilical vascular endothelial cells and blood capillary generation in the tumor. Similarly, administration of LMWF also inhibited the HIF-1α and VEGF expression in vivo, accompanied by a reduction of tumor growth. In summary, under hypoxia conditions, the antiangiogenic activity of LMWF in bladder cancer may be associated with suppressing HIF-1/VEGF-regulated signaling pathway.

  2. Ghrelin inhibits atherosclerotic plaque angiogenesis and promotes plaque stability in a rabbit atherosclerotic model.

    Science.gov (United States)

    Wang, Li; Chen, Qingwei; Ke, Dazhi; Li, Guiqiong

    2017-04-01

    Intraplaque angiogenesis associates with the instability of atherosclerotic plaques. In the present study, we investigated the effects of ghrelin on intraplaque angiogenesis and plaque instability in a rabbit model of atherosclerosis. The rabbits were randomly divided into three groups, namely, the control group, atherosclerotic model group, and ghrelin-treated group, with treatments lasting for 4 weeks. We found that the thickness ratio of the intima to media in rabbits of the ghrelin-treated group was significantly lower than that in rabbits of the atherosclerotic model group. The number of neovessels and the levels of vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor 2 (VEGFR2) decreased dramatically in rabbits of the ghrelin-treated group compared to those of the atherosclerotic model group. Ghrelin significantly decreased the plaque content of macrophages, matrix metalloproteinase (MMP)-2, and MMP-9, in a rabbit model of atherosclerosis. In addition, the level of the pro-inflammatory factor monocyte chemoattractant protein (MCP)-1 was significantly lower in rabbits of the ghrelin-treated group than in rabbits of the atherosclerotic model group. In summary, ghrelin can inhibit intraplaque angiogenesis and promote plaque stability by down-regulating VEGF and VEGFR2 expression, inhibiting the plaque content of macrophages, and reducing MCP-1 expression at an advanced stage of atherosclerosis in rabbits. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Plasma treatment effect on angiogenesis in wound healing process evaluated in vivo using angiographic optical coherence tomography

    Science.gov (United States)

    Kim, D. W.; Park, T. J.; Jang, S. J.; You, S. J.; Oh, W. Y.

    2016-12-01

    Non-thermal atmospheric pressure plasma holds promise for promoting wound healing. However, plasma-induced angiogenesis, which is important to better understand the underlying physics of plasma treatment effect on wound healing, remains largely unknown. We therefore evaluated the effect of non-thermal plasma on angiogenesis during wound healing through longitudinal monitoring over 30 days using non-invasive angiographic optical coherence tomography imaging in vivo. We demonstrate that the plasma-treated vascular wound area of mouse ear was noticeably decreased as compared to that of control during the early days in the wound healing process. We also observed that the vascular area density was increased in the plasma affected region near the wound as compared to the plasma unaffected region. The difference in the vascular wound area and the vascular area density peaked around day 3. This indicates that the plasma treatment induced additional angiogenic effects in the wound healing process especially during the early days. This non-invasive optical angiographic approach for in vivo time-lapse imaging provides further insights into elucidating plasma-induced angiogenesis in the wound healing process and its application in the biomedical plasma evaluation.

  4. Dose response of angiogenesis to basic fibroblast growth factor in rat corneal pocket assay: II. Numerical simulations.

    Science.gov (United States)

    Tong, Sheng; Yuan, Fan

    2008-01-01

    Angiogenesis involves interactions among various molecules and cells. To understand the complexity of interactions, we developed a mathematical model to numerically simulate angiogenesis induced by basic fibroblast growth factor (bFGF) in the corneal pocket assay. The model considered interstitial transport of bFGF, cellular uptake of bFGF, and dynamics of vessel growth. The model was validated by comparing simulated vascular networks, induced by bFGF at three different doses: 5 ng, 15 ng, and 50 ng, with experimental data obtained in the first part of the study, in terms of migration distance of vascular network, total vessel length, and number of vessels. The model was also used to simulate growth dynamics of vascular networks as well as spatial and temporal distribution of bFGF, which could not be measured experimentally. Taken together, results of the study suggested that the coupling between diffusion and cellular uptake of bFGF was critical for determining structures of vascular networks and that the mathematical model was appropriate for simulation of angiogenesis in the cornea.

  5. Hydrate-CASM for modeling Methane Hydrate-Bearing Sediments

    Science.gov (United States)

    De La Fuente Ruiz, M.; Vaunat, J.; Marin Moreno, H.

    2017-12-01

    A clear understanding of the geomechanical behavior of methane hydrate-bearing sediments (MHBS) is crucial to assess the stability of the seafloor and submarine infrastructures to human and natural loading changes. Here we present the Hydrate-CASM, a new elastoplastic constitutive model to predict the geomechanical behavior of MHBS. Our model employs the critical state model CASM (Clay and Sand Model) because of its flexibility in describing the shape of the yield surface and its proven ability to predict the mechanical behavior of sands, the most commercially viable hydrate reservoirs. The model considers MHBS as a deformable elastoplastic continuum, and hydrate-related changes in the stress-strain behavior are predicted by a densification mechanism. The densification attributes the mechanical contribution of hydrate to; a reduction of the available void ratio; a decrease of the swelling line slope; and an increase of the volumetric yield stress. It is described by experimentally derived physical parameters except from the swelling slope coefficient that requires empirical calibration. The Hydrate-CASM is validated against published triaxial laboratory tests performed at different confinement stresses, hydrate saturations, and hydrate morphologies. During the validation, we focused on capturing the mechanical behavior of the host sediment and consider perturbations of the sediment's mechanical properties that could result from the sample preparation. Our model successfully captures the experimentally observed influence of hydrate saturation in the magnitude and trend of the stiffness, shear strength, and dilatancy of MHBS. Hence, we propose that hydrate-related densification changes might be a major factor controlling the geomechanical response of MHBS.

  6. Mathematical modeling of solid cancer growth with angiogenesis

    Directory of Open Access Journals (Sweden)

    Yang Hyun M

    2012-02-01

    Full Text Available Abstract Background Cancer arises when within a single cell multiple malfunctions of control systems occur, which are, broadly, the system that promote cell growth and the system that protect against erratic growth. Additional systems within the cell must be corrupted so that a cancer cell, to form a mass of any real size, produces substances that promote the growth of new blood vessels. Multiple mutations are required before a normal cell can become a cancer cell by corruption of multiple growth-promoting systems. Methods We develop a simple mathematical model to describe the solid cancer growth dynamics inducing angiogenesis in the absence of cancer controlling mechanisms. Results The initial conditions supplied to the dynamical system consist of a perturbation in form of pulse: The origin of cancer cells from normal cells of an organ of human body. Thresholds of interacting parameters were obtained from the steady states analysis. The existence of two equilibrium points determine the strong dependency of dynamical trajectories on the initial conditions. The thresholds can be used to control cancer. Conclusions Cancer can be settled in an organ if the following combination matches: better fitness of cancer cells, decrease in the efficiency of the repairing systems, increase in the capacity of sprouting from existing vascularization, and higher capacity of mounting up new vascularization. However, we show that cancer is rarely induced in organs (or tissues displaying an efficient (numerically and functionally reparative or regenerative mechanism.

  7. Ductile flow of methane hydrate

    Science.gov (United States)

    Durham, W.B.; Stern, L.A.; Kirby, S.H.

    2003-01-01

    Compressional creep tests (i.e., constant applied stress) conducted on pure, polycrystalline methane hydrate over the temperature range 260-287 K and confining pressures of 50-100 MPa show this material to be extraordinarily strong compared to other icy compounds. The contrast with hexagonal water ice, sometimes used as a proxy for gas hydrate properties, is impressive: over the thermal range where both are solid, methane hydrate is as much as 40 times stronger than ice at a given strain rate. The specific mechanical response of naturally occurring methane hydrate in sediments to environmental changes is expected to be dependent on the distribution of the hydrate phase within the formation - whether arranged structurally between and (or) cementing sediments grains versus passively in pore space within a sediment framework. If hydrate is in the former mode, the very high strength of methane hydrate implies a significantly greater strain-energy release upon decomposition and subsequent failure of hydrate-cemented formations than previously expected.

  8. Tumor angiogenesis assessment using multi-fluorescent scans on murine slices by Markov random field framework

    Science.gov (United States)

    Laifa, Oumeima; Le Guillou-Buffello, Delphine; Racoceanu, Daniel

    2017-11-01

    The fundamental role of vascular supply in tumor growth makes the evaluation of the angiogenesis crucial in assessing effect of anti-angiogenic therapies. Since many years, such therapies are designed to inhibit the vascular endothelial growth factor (VEGF). To contribute to the assessment of anti-angiogenic agent (Pazopanib) effect on vascular and cellular structures, we acquired data from tumors extracted from a murine tumor model using Multi- Fluorescence Scanning. In this paper, we implemented an unsupervised algorithm combining the Watershed segmentation and Markov Random Field model (MRF). This algorithm allowed us to quantify the proportion of apoptotic endothelial cells and to generate maps according to cell density. Stronger association between apoptosis and endothelial cells was revealed in the tumors receiving anti-angiogenic therapy (n = 4) as compared to those receiving placebo (n = 4). A high percentage of apoptotic cells in the tumor area are endothelial. Lower density cells were detected in tumor slices presenting higher apoptotic endothelial areas.

  9. COX-2, VEGF and tumour angiogenesis.

    LENUS (Irish Health Repository)

    Toomey, D P

    2009-06-01

    Epidemiological evidence suggests a protective effective of regular NSAID use against developing cancer. Cyclooxygenase-2, a target of NSAIDs, is upregulated in many cancers and has been associated with increased VEGF production and angiogenesis. Angiogenesis is the formation of new vessels from existing vasculature and as an essential process for tumour development represents an important therapeutic target. Following an extensive review of the literature this article details the current knowledge on the role of COX-2 in tumorigenesis focusing on its relationship to angiogenesis and VEGF production by tumour cells. While COX-2 is clearly detrimental to prognosis and NSAIDs have a beneficial effect, the possibility of COX-2 independent effects being partly or wholly responsible for this benefit cannot be excluded.

  10. Mesoscopic and continuum modelling of angiogenesis

    KAUST Repository

    Spill, F.

    2014-03-11

    Angiogenesis is the formation of new blood vessels from pre-existing ones in response to chemical signals secreted by, for example, a wound or a tumour. In this paper, we propose a mesoscopic lattice-based model of angiogenesis, in which processes that include proliferation and cell movement are considered as stochastic events. By studying the dependence of the model on the lattice spacing and the number of cells involved, we are able to derive the deterministic continuum limit of our equations and compare it to similar existing models of angiogenesis. We further identify conditions under which the use of continuum models is justified, and others for which stochastic or discrete effects dominate. We also compare different stochastic models for the movement of endothelial tip cells which have the same macroscopic, deterministic behaviour, but lead to markedly different behaviour in terms of production of new vessel cells. © 2014 Springer-Verlag Berlin Heidelberg.

  11. Flow assurance intervention, hydrates remediation

    Energy Technology Data Exchange (ETDEWEB)

    Mancini, Christopher S. [Oceaneering International Inc., Houston, TX (United States)

    2012-07-01

    This paper addresses the issues of removing hydrates in sub sea flow lines and associated equipment with an Remotely Operated Vehicle (ROV) of opportunity and a multi-service-vessel (MSV). The paper is split into three topics: the equipment used with the ROV, assessing the interface points and handling fluids produced from drawing down the pressure. Each section is explained thoroughly and backed up with real world experience. The equipment section details information from actual jobs performed and why the particular components were utilized. The system is generally contained in an ROV mounted skid. Pumps are utilized to draw down the pressure inside the hydrated section of equipment, removing one of the three necessary components for hydrates formation. Once the section is pumped down, several options exist for handling the fluids pumped out of the system: pumping to surface, re-injection into the well, or injection into an operating flow line. This method of hydrates remediation is both economical and timely. Hydrate blockages form in low temperatures and high pressures. Reducing the pressure or increasing the temperature so the conditions lie to the right of the hydrate dissociation curve will slowly decompose the blockage. Depressurization and the use of MEG or methanol will give favorable conditions to remove the hydrate plug. Oceaneering has the capabilities to remove hydrates using the FRS in conjunction with an installation vessel to dispose of the gas and fluid removed from the flow line. Hydrate remediation techniques should be implemented into the initial design to reduce costs later. The cost of stopped production combined with the day rate for equipment needed for hydrate removal outweighs the costs if no technique is utilized. (author)

  12. Ovarian serous carcinoma: relationship of p53 and bcl-2 with tumor angiogenesis and VEGF expression.

    Science.gov (United States)

    Crasta, Julian A; Mishra, Suniti; Vallikad, Elizabeth

    2011-11-01

    The aim of the study was to assess the microvessel density (MVD) and vascular endothelial growth factor (VEGF) expression in ovarian serous carcinoma and to examine their relation with apoptosis.Paraffin-embedded specimens of 41 cases of ovarian serous carcinomas were evaluated by immunohistochemistry for VEGF, p53, and bcl-2 expression. MVD was assessed with CD31 staining. We investigated the association of tumor angiogenesis (MVD and VEGF) with clinicopathologic factors, p53 overexpression, and bcl-2 expression.There was a significant correlation between high MVD and suboptimal debulking and advanced stage disease. A significant negative correlation was expressed between bcl-2 and VEGF expression. In univariate analysis, only stage had a significant impact on disease-free survival.The results of this study suggest that higher degree of angiogenesis is associated with suboptimal debulking and advanced-stage disease. Expression of VEGF had negative association with VEGF expression.

  13. Functional inhibition of UQCRB suppresses angiogenesis in zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yoon Sun; Jung, Hye Jin [Chemical Genomics National Research Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Seok, Seung Hyeok [Department of Microbiology and Immunology, Institute for Experimental Animals, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Payumo, Alexander Y.; Chen, James K. [Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305 (United States); Kwon, Ho Jeong, E-mail: kwonhj@yonsei.ac.kr [Chemical Genomics National Research Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2013-04-19

    Highlights: ► This is the first functional characterization of UQCRB in vivo model. ► Angiogenesis is inhibited with UQCRB loss of function in zebrafish. ► UQCRB is introduced as a prognostic marker for mitochondria- and angiogenesis-related diseases. -- Abstract: As a subunit of mitochondrial complex III, UQCRB plays an important role in complex III stability, electron transport, and cellular oxygen sensing. Herein, we report UQCRB function regarding angiogenesis in vivo with the zebrafish (Danio rerio). UQCRB knockdown inhibited angiogenesis in zebrafish leading to the suppression of VEGF expression. Moreover, the UQCRB-targeting small molecule terpestacin also inhibited angiogenesis and VEGF levels in zebrafish, supporting the role of UQCRB in angiogenesis. Collectively, UQCRB loss of function by either genetic and pharmacological means inhibited angiogenesis, indicating that UQCRB plays a key role in this process and can be a prognostic marker of angiogenesis- and mitochondria-related diseases.

  14. PDGF-BB/KLF4/VEGF Signaling Axis in Pulmonary Artery Endothelial Cell Angiogenesis.

    Science.gov (United States)

    Liang, Songhe; Yu, Hao; Chen, Xinxin; Shen, Tingting; Cui, Zhongqi; Si, Genle; Zhang, JunTing; Cheng, Yue; Jia, Shiwei; Song, Shasha; Zhang, Xiang; Yu, Xiufeng

    2017-01-01

    Accumulating evidence suggests that platelet-derived growth factor-BB (PDGF-BB) and vascular endothelial growth factor(VEGF) play a role in the progression of pulmonary arterial hypertension (PAH).Since chronic hypoxia is responsible for intimal hyperplasia and disordered angiogenesis of pulmonary arteries, which are histological hallmarks of PAH, we explored the role of the PDGF-BB/KLF4/VEGF signaling axis in the angiogenesis of pulmonary artery endothelial cells (PAECs). Adult male Wistar rats were used to study hypoxia-induced or monocrotaline (MCT)-induced right ventricular (RV) remodeling as well as systolic function and hemodynamics using echocardiography and a pressure-volume admittance catheter. Morphometric analyses of lung vasculature and RV vessels were performed. The results revealed that both the PDGF receptor-tyrosine kinase inhibitor imatinib and the multi-targeted VEGF and PDGF receptor inhibit or sunitinib malate reversed hypoxia-induced increases in right ventricular systolic pressure (RVSP), right ventricular function and thickening of the medial walls. Mechanistically VEGF/VEGFR and PDGF/PDGFR formed a biological complex. We also showed that PDGF-BBincreasedKLF4 promoter activity transcriptionally activating VEGF expression, which regulates PAEC proliferation; migration; and the cell-cycle transition from G0/G1phase to S phase and G2/M-phase and eventually leads to PAEC angiogenesis Conclusion: Our study indicates that hypoxia-induced angiogenesis of PAECs is associated with increased levels of PDGF-BB/KLF4/VEGF, which contribute to pulmonary vascular remodeling. Overall, our study contributes to a better understanding of PAH pathogenesis. © 2017 The Author(s). Published by S. Karger AG, Basel.

  15. Necl-5/poliovirus receptor interacts with VEGFR2 and regulates VEGF-induced angiogenesis.

    Science.gov (United States)

    Kinugasa, Mitsuo; Amano, Hisayuki; Satomi-Kobayashi, Seimi; Nakayama, Kazuhiko; Miyata, Muneaki; Kubo, Yoshiki; Nagamatsu, Yuichi; Kurogane, Yusuke; Kureha, Fumie; Yamana, Shota; Hirata, Ken-ichi; Miyoshi, Jun; Takai, Yoshimi; Rikitake, Yoshiyuki

    2012-03-02

    Vascular endothelial growth factor (VEGF), a major proangiogenic agent, exerts its proangiogenic action by binding to VEGF receptor 2 (VEGFR2), the activity of which is regulated by direct interactions with other cell surface proteins, including integrin α(V)β(3). However, how the interaction between VEGFR2 and integrin α(V)β(3) is regulated is not clear. To investigate whether Necl-5/poliovirus receptor, an immunoglobulin-like molecule that is known to bind integrin α(V)β(3), regulates the interaction between VEGFR2 and integrin α(V)β(3), and to clarify the role of Necl-5 in the VEGF-induced angiogenesis. Necl-5-knockout mice displayed no obvious defect in vascular development; however, recovery of blood flow after hindlimb ischemia and the VEGF-induced neovascularization in implanted Matrigel plugs were impaired in Necl-5-knockout mice. To clarify the mechanism of the regulation of angiogenesis by Necl-5, we investigated the roles of Necl-5 in the VEGF-induced angiogenic responses in vitro. Knockdown of Necl-5 by siRNAs in human umbilical vein endothelial cells (HUVECs) inhibited the VEGF-induced capillary-like network formation on Matrigel, migration, and proliferation, and conversely, enhanced apoptosis. Coimmunoprecipitation assays showed the interaction of Necl-5 with VEGFR2, and knockdown of Necl-5 prevented the VEGF-induced interaction of integrin α(V)β(3) with VEGFR2. Knockdown of Necl-5 suppressed the VEGFR2-mediated activation of downstream proangiogenic and survival signals, including Rap1, Akt, and endothelial nitric oxide synthase. These results demonstrate the critical role of Necl-5 in angiogenesis and suggest that Necl-5 may regulate the VEGF-induced angiogenesis by controlling the interaction of VEGFR2 with integrin α(v)β(3), and the VEGFR2-mediated Rap1-Akt signaling pathway.

  16. MOSAIC: a multiscale model of osteogenesis and sprouting angiogenesis with lateral inhibition of endothelial cells.

    Directory of Open Access Journals (Sweden)

    Aurélie Carlier

    Full Text Available The healing of a fracture depends largely on the development of a new blood vessel network (angiogenesis in the callus. During angiogenesis tip cells lead the developing sprout in response to extracellular signals, amongst which vascular endothelial growth factor (VEGF is critical. In order to ensure a correct development of the vasculature, the balance between stalk and tip cell phenotypes must be tightly controlled, which is primarily achieved by the Dll4-Notch1 signaling pathway. This study presents a novel multiscale model of osteogenesis and sprouting angiogenesis, incorporating lateral inhibition of endothelial cells (further denoted MOSAIC model through Dll4-Notch1 signaling, and applies it to fracture healing. The MOSAIC model correctly predicted the bone regeneration process and recapitulated many experimentally observed aspects of tip cell selection: the salt and pepper pattern seen for cell fates, an increased tip cell density due to the loss of Dll4 and an excessive number of tip cells in high VEGF environments. When VEGF concentration was even further increased, the MOSAIC model predicted the absence of a vascular network and fracture healing, thereby leading to a non-union, which is a direct consequence of the mutual inhibition of neighboring cells through Dll4-Notch1 signaling. This result was not retrieved for a more phenomenological model that only considers extracellular signals for tip cell migration, which illustrates the importance of implementing the actual signaling pathway rather than phenomenological rules. Finally, the MOSAIC model demonstrated the importance of a proper criterion for tip cell selection and the need for experimental data to further explore this. In conclusion, this study demonstrates that the MOSAIC model creates enhanced capabilities for investigating the influence of molecular mechanisms on angiogenesis and its relation to bone formation in a more mechanistic way and across different time and spatial

  17. Extract of Cordyceps militaris inhibits angiogenesis and suppresses tumor growth of human malignant melanoma cells.

    Science.gov (United States)

    Ruma, I Made Winarsa; Putranto, Endy Widya; Kondo, Eisaku; Watanabe, Risayo; Saito, Ken; Inoue, Yusuke; Yamamoto, Ken-Ichi; Nakata, Susumu; Kaihata, Masaji; Murata, Hitoshi; Sakaguchi, Masakiyo

    2014-07-01

    Angiogenesis is essential for tumor development and metastasis. Among several angiogenic factors, vascular endothelial growth factor receptor (VEGF) is important for tumor-derived angiogenesis and commonly overexpressed in solid tumors. Thus, many antitumor strategies targeting VEGF have been developed to inhibit cancer angiogenesis, offering insights into the successful treatment of solid cancers. However, there are a number of issues such as harmful effects on normal vascularity in clinical trials. Taking this into consideration, we employed Cordyceps militaris as an antitumor approach due to its biological safety in vivo. The herbal medicinal mushroom Cordyceps militaris has been reported to show potential anticancer properties including anti-angiogenic capacity; however, its concrete properties have yet to be fully demonstrated. In this study, we aimed to elucidate the biological role of Cordyceps militaris extract in tumor cells, especially in regulating angiogenesis and tumor growth of a human malignant melanoma cell line. We demonstrated that Cordyceps militaris extract remarkably suppressed tumor growth via induction of apoptotic cell death in culture that links to the abrogation of VEGF production in melanoma cells. This was followed by mitigation of Akt1 and GSK-3β activation, while p38α phosphorylation levels were increased. Extract treatment in mouse model xenografted with human melanoma cells resulted in a dramatic antitumor effect with down-regulation of VEGF expression. The results suggest that suppression of tumor growth by Cordyceps militaris extract is, at least, mediated by its anti-angiogenicity and apoptosis induction capacities. Cordyceps militaris extract may be a potent antitumor herbal drug for solid tumors.

  18. Shifting Focus: From Hydration for Performance to Hydration for Health.

    Science.gov (United States)

    Perrier, Erica T

    2017-01-01

    Over the past 10 years, literature on hydration biomarkers has evolved considerably - from (de)hydration assessment towards a more global definition of biomarkers of hydration in daily life. This shift in thinking about hydration markers was largely driven by investigating the differences that existed between otherwise healthy individuals whose habitual, ad-libitum drinking habits differ, and by identifying physiological changes in low-volume drinkers who subsequently increase their water intake. Aside from obvious differences in urinary volume and concentration, a growing body of evidence is emerging that links differences in fluid intake with small, but biologically significant, differences in vasopressin (copeptin), glomerular filtration rate, and markers of metabolic dysfunction or disease. Taken together, these pieces of the puzzle begin to form a picture of how much water intake should be considered adequate for health, and represent a shifting focus from hydration for performance, toward hydration for health outcomes. This narrative review outlines the key areas of research in which the global hydration process - including water intake, urinary hydration markers, and vasopressin - has been associated with health outcomes, focusing on kidney and metabolic endpoints. It will also provide a commentary on how various hydration biomarkers may be used in hydration for health assessment. Finally, if adequate water intake can play a role in maintaining health, how might we tell if we are drinking enough? Urine output is easily measured, and can take into account differences in daily physical activity, climate, dietary solute load, and other factors that influence daily water needs. Today, targets have been proposed for urine osmolality, specific gravity, and color that may be used by researchers, clinicians, and individuals as simple indicators of optimal hydration. However, there remain a large number of incomplete or unanswered research questions regarding the

  19. Inhibition of in vivo angiogenesis by Anacardium occidentale L. involves repression of the cytokine VEGF gene expression.

    Science.gov (United States)

    Lingaraju, S M; Keshavaiah, K; Salimath, B P

    2008-08-01

    Lethal tumor growth and progression cannot occur without angiogenesis, which facilitates cancer cell proliferation, survival, and dissemination. Among the many growth factors and cytokines engaged in angiogenesis, the cytokine vascular endothelial growth factor (VEGF) is regarded as the most potent and specific. Angiogenesis inhibitors are recognized as potentially useful agents for treating angiogenesis-associated diseases and VEGF represents a promising and well-studied target for antiangiogenic agents. In this study, we have tested the crude ethanolic extract of the leaves of Anacardium occidentale Linn, on Ehrlich ascites tumor cells (EAT) in vivo and in vitro. Anacardium occidentale extract (AOE) was able to suppress VEGF-induced angiogenesis in vivo in the chorioallantoic membrane, rat cornea, and tumorinduced angiogenesis in the peritoneum of EAT bearing mice. The extract inhibited cell proliferation of different tumor cells such as EAT, BeWo, and MCF-7 in vitro in a dose-dependent manner and it reduced the VEGF level in the ascites of treated mice. A decrease in the microvessel density count and CD31 antigen staining of treated mice peritoneum provide further evidence of its antiangiogenic activity. Our results from Northern blot analysis and ELISA demonstrate that AOE can downregulate endogenous VEGF gene expression at the mRNA and protein level. Furthermore, results of our gene analysis of VEGF-promoter luciferase reporter indicated that this effect is mediated by transcriptional repression of VEGF promoter activity in EAT cells treated with AOE. Taken together, the data suggest that the VEGF system of angiogenesis is the molecular target for the antiangiogenic action of AOE.

  20. Triptolide Suppresses Alkali Burn-Induced Corneal Angiogenesis Along with a Downregulation of VEGFA and VEGFC Expression.

    Science.gov (United States)

    Wang, Geng; Li, Na; Lv, Xiaohong; Ahmed, Naila; Li, Xinlei; Liu, Huidong; Ma, Jing; Zhang, Yafang

    2017-07-01

    Triptolide (TPL) is an active compound extracted from a Chinese herbal medicine tripterygium wilfordii Hook. f. (Celastraceae), which has been used as an anti-inflammatory drug for years. It also inhibits the growth and proliferation of different types of cancer cells. The inhibitory effect of TPL on angiogenesis after chemical-induced corneal inflammation was studied in vivo. The effects of TPL on the proliferation, apoptosis, migration, and tube formation of rat aortic endothelial cells (RAECs) were studied in vitro. Cell proliferation and apoptosis were measured by MTT assay and flow cytometry, respectively. Migration was analyzed using the scratch wound healing assay and transwell assay. Tube formation assay was used to examine angiogenesis. Real-time PCR and Western blot were used to determine the expression of vascular endothelial growth factor A (VEGFA) and VEGFC. To study the in vivo effects of TPL, the mouse model of alkali burn-induced corneal angiogenesis was used. The angiogenesis was analyzed by determining the density of the newly generated blood vessels in corneas. We found that TPL induced apoptosis and inhibited the proliferation of RAECs in a dose-dependent manner. TPL inhibited migration and tube formation of RAECs and decreased the expression of VEGFA and VEGFC in vitro. Furthermore, TPL suppressed alkali burn-induced corneal angiogenesis and inhibited the expression of VEGFA and VEGFC in corneas in vivo. In conclusion, topical TPL as a pharmacological agent has the ability to reduce angiogenesis in cornea and may have clinical indications for the treatment of corneal angiogenesis diseases which have to be further explored. Anat Rec, 300:1348-1355, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Dysregulated angiogenesis in B-chronic lymphocytic leukemia: Morphologic, immunohistochemical, and flow cytometric evidence

    Directory of Open Access Journals (Sweden)

    Crawford Susan E

    2008-04-01

    Full Text Available Abstract Background The extent of enhanced bone marrow angiogenesis in chronic lymphocytic leukemia (CLL and relationship to proangiogenic factors and prognostic indicators is largely unexplored. Methods To further investigate the role of angiogenesis in CLL by evaluating the topography and extent of angiogenesis in a group of CLL bone marrow biopsies, to study the expression of pro and antiangiogenic vascular factors in CLL cells to more precisely document the cell types producing these factors, and to evaluate the role, if any, of localized hypoxia in upregulation of angiogenesis in CLL We used immunohistochemistry (IHC (n = 21 pts with antibodies to CD3 and CD20, proangiogenic (VEGF, HIF-1a and antiangiogenic (TSP-1 factors, and VEGF receptors -1 and -2 to examine pattern/extent of CLL marrow involvement, microvessel density (MVD, and angiogenic characteristics; flow cytometry (FC was performed on 21 additional cases for VEGF and TSP-1. Results CLL patients had higher MVD (23.8 vs 14.6, p~0.0002 compared to controls (n = 10. MVD was highest at the periphery of focal infiltrates, was not enhanced in proliferation centers, and was increased irrespective of the presence or absence of cytogenetic/immunophenotypic markers of aggressivity. By IHC, CLL cells were VEGF(+, HIF-1a (+, TSP-1(-, VEGFR-1(+, and VEGFR-2(+. By FC, CLL cells were 1.4–2.0-fold brighter for VEGF than T cells and were TSP-1(-. Conclusion CLL demonstrates enhanced angiogenesis, with increased MVD, upregulated VEGF and downregulated TSP-1. Upregulation of HIF-1a in all CLL cases suggests localized tissue hypoxia as an important stimulant of microvessel proliferation. The presence of VEGF receptors on CLL cells implies an autocrine effect for VEGF. Differences in MVD did not correlate with traditional genetic/immunophenotypic markers of aggressiveness.

  2. Tpl2 Inhibitors Thwart Endothelial Cell Function in Angiogenesis and Peritoneal Dissemination

    Directory of Open Access Journals (Sweden)

    Wen-Jane Lee

    2013-09-01

    Full Text Available Angiogenesis is critical in the development of cancer, which involves several angiogenic factors in its peritoneal dissemination. The role of protein tumor progression locus 2 (Tpl2 in angiogenic factor-related endothelial cell angiogenesis is still unclear. To understand the precise mechanism(s of Tpl2 inhibition in endothelial cells, this study investigated the role of Tpl2 in mediating angiogenic signals using in vitro, in vivo, and ex vivo models. Results showed that inhibition of Tpl2 inhibitor significantly reduced peritoneal dissemination in a mouse model by positron emission tomography/computed tomography imaging. Simultaneously, inhibiting Tpl2 blocked angiogenesis in tumor nodules and prevented angiogenic factor-induced proliferating cell nuclear antigen (PCNA in endothelial cells. Vascular endothelial growth factor (VEGF or chemokine (C-X-C motif ligand 1 (CXCL1 increased Tpl2 kinase activity and phosphorylation in a dose- and time-dependent manner. Furthermore, Tpl2 inhibition or ablation by siRNA prevented the angiogenic signal-induced tube formation in Matrigel plug assay or aortic ring assay. Inhibiting Tpl2 also prevented the angiogenic factor-induced chemotactic motility and migration of endothelial cells. Tpl2 inhibition by CXCL1 or epidermal growth factor in endothelial cells was associated with inactivation of CCAAT/enhancer binding protein β, nuclear factor κ light-chain enhancer of activated B cells, and activating protein 1 and suppression of VEGF expression. Thus, Tpl2 inhibitors thwart Tpl2-regulated VEGF by inactivating transcription factors involved in angiogenic factor-triggered endothelial cell angiogenesis. These results suggest that the therapeutic inhibition of Tpl2 may extend beyond cancer and include the treatment of other diseases involving pathologic angiogenesis.

  3. A novel peptide derived from human apolipoprotein E is an inhibitor of tumor growth and ocular angiogenesis.

    Directory of Open Access Journals (Sweden)

    Partha S Bhattacharjee

    2011-01-01

    Full Text Available Angiogenesis is a hallmark of tumor development and metastasis and now a validated target for cancer treatment. We previously reported that a novel dimer peptide (apoEdp derived from the receptor binding region of human apolipoprotein E (apoE inhibits virus-induced angiogenesis. However, its role in tumor anti-angiogenesis is unknown. This study demonstrates that apoEdp has anti-angiogenic property in vivo through reduction of tumor growth in a mouse model and ocular angiogenesis in a rabbit eye model. Our in vitro studies show that apoEdp inhibits human umbilical vein endothelial cell proliferation, migration, invasion and capillary tube formation. We document that apoEdp inhibits vascular endothelial growth factor-induced Flk-1 activation as well as downstream signaling pathways that involve c-Src, Akt, eNOS, FAK, and ERK1/2. These in vitro data suggest potential sites of the apoE dipeptide inhibition that could occur in vivo.This is the first evidence that a synthetic dimer peptide mimicking human apoE has anti-angiogenesis functions and could be an anti-tumor drug candidate.

  4. Ferulic Acid Exerts Anti-Angiogenic and Anti-Tumor Activity by Targeting Fibroblast Growth Factor Receptor 1-Mediated Angiogenesis.

    Science.gov (United States)

    Yang, Guang-Wei; Jiang, Jin-Song; Lu, Wei-Qin

    2015-10-12

    Most anti-angiogenic therapies currently being evaluated target the vascular endothelial growth factor (VEGF) pathway; however, the tumor vasculature can acquire resistance to VEGF-targeted therapy by shifting to other angiogenesis mechanisms. Therefore, other therapeutic agents that block non-VEGF angiogenic pathways need to be evaluated. Here, we identified ferulic acid as a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor and a novel agent with potential anti-angiogenic and anti-cancer activities. Ferulic acid demonstrated inhibition of endothelial cell proliferation, migration and tube formation in response to basic fibroblast growth factor 1 (FGF1). In ex vivo and in vivo angiogenesis assays, ferulic acid suppressed FGF1-induced microvessel sprouting of rat aortic rings and angiogenesis. To understand the underlying molecular basis, we examined the effects of ferulic acid on different molecular components and found that ferulic acid suppressed FGF1-triggered activation of FGFR1 and phosphatidyl inositol 3-kinase (PI3K)-protein kinase B (Akt) signaling. Moreover, ferulic acid directly inhibited proliferation and blocked the PI3K-Akt pathway in melanoma cell. In vivo, using a melanoma xenograft model, ferulic acid showed growth-inhibitory activity associated with inhibition of angiogenesis. Taken together, our results indicate that ferulic acid targets the FGFR1-mediated PI3K-Akt signaling pathway, leading to the suppression of melanoma growth and angiogenesis.

  5. Vascular dementia

    African Journals Online (AJOL)

    Adele

    2003-12-10

    Dec 10, 2003 ... ischaemic VaD includes multiple lacunes and subcortical arteriosclerotic encephalopathy (Binswanger's disease) and imaging shows multiple deep ... culitis, multiple sclerosis, acute demyelinating encephalomy- ... Table I. The NINDS-AIREN criteria for the diagnosis of Vascular Dementia. 12. Require both ...

  6. VASCULAR SURGERY

    African Journals Online (AJOL)

    2016-06-02

    Jun 2, 2016 ... with the literature from South Africa over the last four decades, and reflects the high rate of interpersonal violence in the country.14,15 As expected, cervical ... via the intact circle of Willis in young patients is the most likely explanation for the lack of strokes. Five patients were referred to the Durban vascular ...

  7. Ultrasound -- Vascular

    Science.gov (United States)

    ... waves from passing into your body. The sonographer (ultrasound technologist) or radiologist then places the transducer on the ... is specialized and is best performed by a technologist and physician with experience in vascular ultrasound imaging. top of page Additional Information and Resources ...

  8. Targeting angiogenesis-dependent calcified neoplasms using combined polymer therapeutics.

    Directory of Open Access Journals (Sweden)

    Ehud Segal

    Full Text Available There is an immense clinical need for novel therapeutics for the treatment of angiogenesis-dependent calcified neoplasms such as osteosarcomas and bone metastases. We developed a new therapeutic strategy to target bone metastases and calcified neoplasms using combined polymer-bound angiogenesis inhibitors. Using an advanced "living polymerization" technique, the reversible addition-fragmentation chain transfer (RAFT, we conjugated the aminobisphosphonate alendronate (ALN, and the potent anti-angiogenic agent TNP-470 with N-(2-hydroxypropylmethacrylamide (HPMA copolymer through a Glycine-Glycine-Proline-Norleucine linker, cleaved by cathepsin K, a cysteine protease overexpressed at resorption sites in bone tissues. In this approach, dual targeting is achieved. Passive accumulation is possible due to the increase in molecular weight following polymer conjugation of the drugs, thus extravasating from the tumor leaky vessels and not from normal healthy vessels. Active targeting to the calcified tissues is achieved by ALN's affinity to bone mineral.The anti-angiogenic and antitumor potency of HPMA copolymer-ALN-TNP-470 conjugate was evaluated both in vitro and in vivo. We show that free and conjugated ALN-TNP-470 have synergistic anti-angiogenic and antitumor activity by inhibiting proliferation, migration and capillary-like tube formation of endothelial and human osteosarcoma cells in vitro. Evaluation of anti-angiogenic, antitumor activity and body distribution of HPMA copolymer-ALN-TNP-470 conjugate was performed on severe combined immunodeficiency (SCID male mice inoculated with mCherry-labeled MG-63-Ras human osteosarcoma and by modified Miles permeability assay. Our targeted bi-specific conjugate reduced VEGF-induced vascular hyperpermeability by 92% and remarkably inhibited osteosarcoma growth in mice by 96%.This is the first report to describe a new concept of a narrowly-dispersed combined polymer therapeutic designed to target both tumor and

  9. Notch-1 mediates hypoxia-induced angiogenesis in rheumatoid arthritis.

    Science.gov (United States)

    Gao, Wei; Sweeney, Catherine; Connolly, Mary; Kennedy, Aisling; Ng, Chin Teck; McCormick, Jennifer; Veale, Douglas J; Fearon, Ursula

    2012-07-01

    To examine the effect of hypoxia on Notch-1 signaling pathway components and angiogenesis in inflammatory arthritis. The expression and regulation of Notch-1, its ligand delta-like protein 4 (DLL-4) and downstream signaling components (hairy-related transcription factor 1 [HRT-1], HRT-2), and hypoxia-inducible factor 1α (HIF-1α) under normoxic and hypoxic conditions (1-3%) were assessed in synovial tissue specimens from patients with inflammatory arthritis and controls and in human dermal microvascular endothelial cells (HDMECs) by immunohistology, dual immunofluorescence staining (Notch-1/factor VIII), Western blotting, and real-time polymerase chain reaction. In vivo synovial tissue oxygen levels (tissue PO2) were measured under direct visualization at arthroscopy. HDMEC activation under hypoxic conditions in the presence of Notch-1 small interfering RNA (siRNA), the γ-secretase inhibitor DAPT, or dimethyloxalylglycine (DMOG) was assessed by Matrigel tube formation assay, migration assay, invasion assay, and matrix metalloproteinase 2 (MMP-2)/MMP-9 zymography. Expression of Notch-1, its ligand DLL-4, and HRT-1 was demonstrated in synovial tissue, with the strongest expression localized to perivascular/vascular regions. Localization of Notch-1 to synovial endothelium was confirmed by dual immunofluorescence staining. Notch-1 intracellular domain (NICD) expression was significantly higher in synovial tissue from patients with tissue PO2 of PO2 of >20 mm Hg (>3% O2). Exposure of HDMECs to 3% hypoxia induced HIF-1α and NICD protein expression and DLL-4, HRT-1, and HRT-2 messenger RNA expression. DMOG directly induced NICD expression, while Notch-1 siRNA inhibited hypoxia-induced HIF-1α expression, suggesting that Notch-1/HIF-1α signaling is bidirectional. Finally, 3% hypoxia-induced angiogenesis, endothelial cell migration, endothelial cell invasion, and proMMP-2 and proMMP-9 activities were inhibited by Notch-1 siRNA and/or the γ-secretase inhibitor DAPT. Our

  10. Matrix Metalloproteinases: Inflammatory Regulators of Cell Behaviors in Vascular Formation and Remodeling

    Directory of Open Access Journals (Sweden)

    Qishan Chen

    2013-01-01

    Full Text Available Abnormal angiogenesis and vascular remodeling contribute to pathogenesis of a number of disorders such as tumor, arthritis, atherosclerosis, restenosis, hypertension, and neurodegeneration. During angiogenesis and vascular remodeling, behaviors of stem/progenitor cells, endothelial cells (ECs, and vascular smooth muscle cells (VSMCs and its interaction with extracellular matrix (ECM play a critical role in the processes. Matrix metalloproteinases (MMPs, well-known inflammatory mediators are a family of zinc-dependent proteolytic enzymes that degrade various components of ECM and non-ECM molecules mediating tissue remodeling in both physiological and pathological processes. MMPs including MMP-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, MMP-12, and MT1-MMP, are stimulated and activated by various stimuli in vascular tissues. Once activated, MMPs degrade ECM proteins or other related signal molecules to promote recruitment of stem/progenitor cells and facilitate migration and invasion of ECs and VSMCs. Moreover, vascular cell proliferation and apoptosis can also be regulated by MMPs via proteolytically cleaving and modulating bioactive molecules and relevant signaling pathways. Regarding the importance of vascular cells in abnormal angiogenesis and vascular remodeling, regulation of vascular cell behaviors through modulating expression and activation of MMPs shows therapeutic potential.

  11. Role of simvastatin and/or antioxidant vitamins in therapeutic angiogenesis in experimental diabetic hindlimb ischemia: effects on capillary density, angiogenesis markers, and oxidative stress.

    Science.gov (United States)

    El-Azab, Mona F; Hazem, Reem M; Moustafa, Yasser M

    2012-09-05

    Therapeutic angiogenesis has emerged as an attractive approach for the management of peripheral arterial disease in diabetic patients. Oxidative stress generated and aggravated by prolonged hyperglycemia may interfere with and destroy the newly formed blood vessels. Angiogenic effect of simvastatin has been reported; however, its exact mechanism is yet to be evaluated. In addition, the exact role of antioxidant vitamins in diabetic peripheral arterial disease is still controversial. The present study was undertaken to investigate the therapeutic potential of simvastatin and antioxidant vitamins (E and C) and their combined effects on angiogenesis in diabetic hind-limb ischemia. Streptozotocin diabetic rats were treated for 6 weeks with simvastatin either alone or in combination with vitamin E or vitamin C. Parameters of angiogenesis, nitric oxide, heme oxygenase-1 (HO-1), and oxidative stress markers were evaluated. CD31 immunostaining revealed an increased capillary density in ischemic gastrocnemious tissue of diabetic rats treated with either simvastatin or its combination with vitamin C. This effect was accompanied by up-regulated plasma levels of HO-1, nitric oxide, vascular endothelial growth factor (VEGF) and its intra-muscular receptor type-2 (Flk-1). Tissue reduced glutathione and antioxidant enzymes activities were normalized in groups treated with antioxidant vitamins or their combination with simvastatin with concomitant blunting of lipid peroxidation. Vitamins E and C, through their antioxidant effects, evidently enhanced the angiogenic effect of simvastatin in ischemic diabetic muscle. Hence, the use of antioxidant vitamins combined with statins to induce therapeutic angiogenesis is a promising strategy in the management of diabetes-associated peripheral arterial disease. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. A comparison of hydration effect on body fluid and temperature regulation between Malaysian and Japanese males exercising at mild dehydration in humid heat.

    Science.gov (United States)

    Wakabayashi, Hitoshi; Wijayanto, Titis; Lee, Joo-Young; Hashiguchi, Nobuko; Saat, Mohamed; Tochihara, Yutaka

    2014-02-04

    This study investigated the effect of hydration differences on body fluid and temperature regulation between tropical and temperate indigenes exercising in the heat. Ten Japanese and ten Malaysian males with matched physical characteristics (height, body weight, and peak oxygen consumption) participated in this study. Participants performed exercise for 60 min at 55% peak oxygen uptake followed by a 30-min recovery at 32°C and 70% relative air humidity with hydration (4 times each, 3 mL per kg body weight, 37°C) or without hydration. Rectal temperature, skin temperature, heart rate, skin blood flow, and blood pressure were measured continuously. The percentage of body weight loss and total sweat loss were calculated from body weight measurements. The percentage change in plasma volume was estimated from hemoglobin concentration and hematocrit. Malaysian participants had a significantly lower rectal temperature, a smaller reduction in plasma volume, and a lower heart rate in the hydrated condition than in the non-hydrated condition at the end of exercise (P hydration conditions. Hydration induced a greater total sweat loss in both groups (P hydrated Malaysians was significantly less than in hydrated Japanese (P hydration conditions was observed for the percentage of mean cutaneous vascular conductance during exercise relative to baseline (P hydrated Malaysians indicated an advantage in body fluid regulation. This may enable Malaysians to reserve more blood for circulation and heat dissipation and thereby maintain lower rectal temperatures in a hydrated condition.

  13. Glycosaminoglycan-based hydrogels to modulate heterocellular communication in in vitro angiogenesis models

    Science.gov (United States)

    Chwalek, Karolina; Tsurkan, Mikhail V.; Freudenberg, Uwe; Werner, Carsten

    2014-03-01

    Angiogenesis, the outgrowth of blood vessels, is crucial in development, disease and regeneration. Studying angiogenesis in vitro remains challenging because the capillary morphogenesis of endothelial cells (ECs) is controlled by multiple exogenous signals. Therefore, a set of in situ-forming starPEG-heparin hydrogels was used to identify matrix parameters and cellular interactions that best support EC morphogenesis. We showed that a particular type of soft, matrix metalloproteinase-degradable hydrogel containing covalently bound integrin ligands and reversibly conjugated pro-angiogenic growth factors could boost the development of highly branched, interconnected, and lumenized endothelial capillary networks. Using these effective matrix conditions, 3D heterocellular interactions of ECs with different mural cells were demonstrated that enabled EC network modulation and maintenance of stable vascular capillaries over periods of about one month in vitro. The approach was also shown to permit in vitro tumor vascularization experiments with unprecedented levels of control over both ECs and tumor cells. In total, the introduced 3D hydrogel co-culture system could offer unique options for dissecting and adjusting biochemical, biophysical, and cell-cell triggers in tissue-related vascularization models.

  14. Neuronal VEGF expression correlates with angiogenesis in postnatal developing rat brain.

    Science.gov (United States)

    Ogunshola, O O; Stewart, W B; Mihalcik, V; Solli, T; Madri, J A; Ment, L R

    2000-01-03

    When exposed to chronic sublethal hypoxia the developing brain responds with increases in permeability and angiogenesis. Vascular endothelial growth factor (VEGF) may mediate this response. Here, we present data on the localization of VEGF in the rat brain cortex during postnatal development and its correlation to vascularization. We reared newborn rats under normoxic conditions and in hypoxic chambers (FiO(2) 9.5%), removed them at postnatal days (P) 3, 8, 13, 24, and 33 and prepared the cortical brain tissue for immunohistochemistry, in situ hybridization (ISH), Western blot analyses and vessel density counting. When compared to age-matched controls, hypoxic-reared animals displayed a significant increase in platelet endothelial cell adhesion molecule 1 (PECAM-1) protein levels, cerebral microvascular lumen diameter and number and density of vessels (number of capillaries per area). In control animals, ISH and immunohistochemistry revealed that localization of VEGF is restricted almost exclusively to cortical neurons at early stages of development. As the vascular bed begins to stabilize, predominant VEGF expression switches to maturing glial cells which invest vessels while neuronal expression is reduced to a basal level. In hypoxic animals, early localization of VEGF is also restricted to cortical neurons, however, during later developmental stages, glial cells express elevated levels of VEGF protein and high neuronal expression also persists. Thus chronic sublethal hypoxia disrupts the temporal-spatial expression of VEGF, which correlates with continuing hypoxia-driven angiogenesis.

  15. Advances and challenges in skeletal muscle angiogenesis

    DEFF Research Database (Denmark)

    Olfert, I Mark; Baum, Oliver; Hellsten, Ylva

    2016-01-01

    The role of capillaries is to serve as the interface for delivery of oxygen and removal of metabolites to/from tissues. During the past decade there has been a proliferation of studies that have advanced our understanding of angiogenesis demonstrating tissue capillary supply is under strict control...

  16. Their function on angiogenesis and cellular signalling

    Indian Academy of Sciences (India)

    Copper, although known as a micronutrient, has a pivotal role in modulating the cellular metabolism. Many studieshave reported the role of copper in angiogenesis. Copper chaperones are intracellular proteins that mediate coppertrafficking to various cell organelles. However, the role and function of copper chaperones in ...

  17. Orphan nuclear receptor TR3/Nur77 regulates VEGF-A–induced angiogenesis through its transcriptional activity

    OpenAIRE

    Zeng, Huiyan; Qin, Liuliang; Zhao, Dezheng; Tan, Xiaolian; Manseau, Eleanor J.; Van Hoang, Mien; Senger, Donald R.; Brown, Lawrence F.; Nagy, Janice A.; Dvorak, Harold F.

    2006-01-01

    Vascular endothelial growth factor (VEGF)-A has essential roles in vasculogenesis and angiogenesis, but the downstream steps and mechanisms by which human VEGF-A acts are incompletely understood. We report here that human VEGF-A exerts much of its angiogenic activity by up-regulating the expression of TR3 (mouse homologue Nur77), an immediate-early response gene and orphan nuclear receptor transcription factor previously implicated in tumor cell, lymphocyte, and neuronal growth and apoptosis....

  18. The effect of Setarud (IMODTM) on angiogenesis in transplanted human ovarian tissue to nude mice

    Science.gov (United States)

    Hormozi, Maryam; Talebi, Saeed; Khorram Khorshid, Hamid Reza; Zarnani, Amir-Hassan; Kamali, Koorosh; Jeddi-Tehrani, Mahmood; Soltangoraee, Haleh; Akhondi, Mohammad Mehdi

    2015-01-01

    Background: One of the promising methods in fertility preservation among women with cancer is cryopreservation of ovarian cortex but there are many drawbacks such as apoptosis and considerable reduction of follicular density in the transplanted ovary. One solution to reduce ischemic damage is enhancing angiogenesis after transplantation of ovarian cortex tissue. Objective: The aim of this study was to investigate the effect of Setarud, on angiogenesis in transplanted human ovarian tissue. Materials and Methods: In this case control study, twenty four nude mice were implanted subcutaneously, with human ovarian tissues, from four women. The mice were randomly divided into two groups (n=12): the experimental group was treated with Setarud, while control group received only vehicle. Each group was divided into three subgroups (n=4) based on the graft recovery days post transplantation (PT). The transplanted fragments were removed on days 2, 7, and 30 PT and the expression of Angiopoietin-1, Angiopoietin-2, and Vascular endothelial growth factor at both gene and protein levels and vascular density were studied in the grafted ovarian tissues. Results: On the 2nd and 7th day PT, the level of Angiopoietin-1 gene expression in case group was significantly lower than that in control group, while the opposite results were obtained for Angiopoietin-2 and Vascular endothelial growth factor. These results were also confirmed at the protein level. The density of vessels in Setarud group elevated significantly on day 7 PT compared to pre-treatment state. Conclusion: Our results showed that administration of Setarud may stimulates angiogenesis in transplanted human ovarian tissues, although further researches are needed before a clear judgment is made. PMID:26644788

  19. Disrupting galectin-1 interactions with N-glycans suppresses hypoxia-driven angiogenesis and tumorigenesis in Kaposi’s sarcoma

    Science.gov (United States)

    Croci, Diego O.; Salatino, Mariana; Rubinstein, Natalia; Cerliani, Juan P.; Cavallin, Lucas E.; Leung, Howard J.; Ouyang, Jing; Ilarregui, Juan M.; Toscano, Marta A.; Domaica, Carolina I.; Croci, María C.; Shipp, Margaret A.; Mesri, Enrique A.; Albini, Adriana

    2012-01-01

    Kaposi’s sarcoma (KS), a multifocal vascular neoplasm linked to human herpesvirus-8 (HHV-8/KS-associated herpesvirus [KSHV]) infection, is the most common AIDS-associated malignancy. Clinical management of KS has proven to be challenging because of its prevalence in immunosuppressed patients and its unique vascular and inflammatory nature that is sustained by viral and host-derived paracrine-acting factors primarily released under hypoxic conditions. We show that interactions between the regulatory lectin galectin-1 (Gal-1) and specific target N-glycans link tumor hypoxia to neovascularization as part of the pathogenesis of KS. Expression of Gal-1 is found to be a hallmark of human KS but not other vascular pathologies and is directly induced by both KSHV and hypoxia. Interestingly, hypoxia induced Gal-1 through mechanisms that are independent of hypoxia-inducible factor (HIF) 1α and HIF-2α but involved reactive oxygen species–dependent activation of the transcription factor nuclear factor κB. Targeted disruption of Gal-1–N-glycan interactions eliminated hypoxia-driven angiogenesis and suppressed tumorigenesis in vivo. Therapeutic administration of a Gal-1–specific neutralizing mAb attenuated abnormal angiogenesis and promoted tumor regression in mice bearing established KS tumors. Given the active search for HIF-independent mechanisms that serve to couple tumor hypoxia to pathological angiogenesis, our findings provide novel opportunities not only for treating KS patients but also for understanding and managing a variety of solid tumors. PMID:23027923

  20. Vascular neoplasms.

    Science.gov (United States)

    Williams, H B

    1980-07-01

    Vascular neoplasms in the broad sense represent a very common group of tumors or hamartomas that show great variability in gross appearance, microscopic appearance, and clinical course. Generally, neoplasms are composed of one cell type, but vascular neoplasms are collections of endothelial-lined tubes or tubules with connective tissue walls that may contain smooth muscle cells, pericytes, and nerve elements according to the specific tissues of origin. The classification of vascular neoplasms as outlined in this article attempts to delineate each tumor or hamartoma according to its histologic appearance and clinical behavior. The clinical course ranges from completely benign, self-involuting malformations such as the strawberry hemangioma to highly malignant angiosarcomas with their rapid growth and frequent metastases. Defects in the lymphatic system show gradations from simple lymphangiomas through lymphedema and lymphangiectasia, which can probably be explained by faulty embryologic development. Management of these lesions has been discussed, including brief descriptions of most of the currently accepted treatment methods for these frequently encountered clinical problems.

  1. Hydration water and microstructure in calcium silicate and aluminate hydrates

    International Nuclear Information System (INIS)

    Fratini, Emiliano; Ridi, Francesca; Chen, Sow-Hsin; Baglioni, Piero

    2006-01-01

    Understanding the state of the hydration water and the microstructure development in a cement paste is likely to be the key for the improvement of its ultimate strength and durability. In order to distinguish and characterize the reacted and unreacted water, the single-particle dynamics of water molecules in hydrated calcium silicates (C 3 S, C 2 S) and aluminates (C 3 A, C 4 AF) were studied by quasi-elastic neutron scattering, QENS. The time evolution of the immobile fraction represents the hydration kinetics and the mobile fraction follows a non-Debye relaxation. Less sophisticated, but more accessible and cheaper techniques, like differential scanning calorimetry, DSC, and near-infrared spectroscopy, NIR, were validated through QENS results and they allow one to easily and quantitatively follow the cement hydration kinetics and can be widely applied on a laboratory scale to understand the effect of additives (i.e., superplasticizers, cellulosic derivatives, etc) on the thermodynamics of the hydration process. DSC provides information on the free water index and on the activation energy involved in the hydration process while the NIR band at 7000 cm -1 monitors, at a molecular level, the increase of the surface-interacting water. We report as an example the effect of two classes of additives widely used in the cement industry: superplasticizers, SPs, and cellulose derivatives. SPs interact at the solid surface, leading to a consistent increment of the activation energy for the processes of nucleation and growth of the hydrated phases. In contrast, the cellulosic additives do not affect the nucleation and growth activation energy, but cause a significant increment in the water availability: in other words the hydration process is more efficient without any modification of the solid/liquid interaction, as also evidenced by the 1 H-NMR. Additional information is obtained by scanning electron microscopy (SEM), ultra small angle neutron scattering (USANS) and wide

  2. Hydration water and microstructure in calcium silicate and aluminate hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Fratini, Emiliano [Department of Chemistry and CSGI, University of Florence, via della Lastruccia 3-Sesto Fiorentino, I-50019 Florence (Italy); Ridi, Francesca [Department of Chemistry and CSGI, University of Florence, via della Lastruccia 3-Sesto Fiorentino, I-50019 Florence (Italy); Chen, Sow-Hsin [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Baglioni, Piero [Department of Chemistry and CSGI, University of Florence, via della Lastruccia 3-Sesto Fiorentino, I-50019 Florence (Italy)

    2006-09-13

    Understanding the state of the hydration water and the microstructure development in a cement paste is likely to be the key for the improvement of its ultimate strength and durability. In order to distinguish and characterize the reacted and unreacted water, the single-particle dynamics of water molecules in hydrated calcium silicates (C{sub 3}S, C{sub 2}S) and aluminates (C{sub 3}A, C{sub 4}AF) were studied by quasi-elastic neutron scattering, QENS. The time evolution of the immobile fraction represents the hydration kinetics and the mobile fraction follows a non-Debye relaxation. Less sophisticated, but more accessible and cheaper techniques, like differential scanning calorimetry, DSC, and near-infrared spectroscopy, NIR, were validated through QENS results and they allow one to easily and quantitatively follow the cement hydration kinetics and can be widely applied on a laboratory scale to understand the effect of additives (i.e., superplasticizers, cellulosic derivatives, etc) on the thermodynamics of the hydration process. DSC provides information on the free water index and on the activation energy involved in the hydration process while the NIR band at 7000 cm{sup -1} monitors, at a molecular level, the increase of the surface-interacting water. We report as an example the effect of two classes of additives widely used in the cement industry: superplasticizers, SPs, and cellulose derivatives. SPs interact at the solid surface, leading to a consistent increment of the activation energy for the processes of nucleation and growth of the hydrated phases. In contrast, the cellulosic additives do not affect the nucleation and growth activation energy, but cause a significant increment in the water availability: in other words the hydration process is more efficient without any modification of the solid/liquid interaction, as also evidenced by the {sup 1}H-NMR. Additional information is obtained by scanning electron microscopy (SEM), ultra small angle neutron

  3. Cell proliferation along vascular islands during microvascular network growth

    Directory of Open Access Journals (Sweden)

    Kelly-Goss Molly R

    2012-06-01

    Full Text Available Abstract Background Observations in our laboratory provide evidence of vascular islands, defined as disconnected endothelial cell segments, in the adult microcirculation. The objective of this study was to determine if vascular islands are involved in angiogenesis during microvascular network growth. Results Mesenteric tissues, which allow visualization of entire microvascular networks at a single cell level, were harvested from unstimulated adult male Wistar rats and Wistar rats 3 and 10 days post angiogenesis stimulation by mast cell degranulation with compound 48/80. Tissues were immunolabeled for PECAM and BRDU. Identification of vessel lumens via injection of FITC-dextran confirmed that endothelial cell segments were disconnected from nearby patent networks. Stimulated networks displayed increases in vascular area, length density, and capillary sprouting. On day 3, the percentage of islands with at least one BRDU-positive cell increased compared to the unstimulated level and was equal to the percentage of capillary sprouts with at least one BRDU-positive cell. At day 10, the number of vascular islands per vascular area dramatically decreased compared to unstimulated and day 3 levels. Conclusions These results show that vascular islands have the ability to proliferate and suggest that they are able to incorporate into the microcirculation during the initial stages of microvascular network growth.

  4. Acellular implantable and injectable hydrogels for vascular regeneration.

    Science.gov (United States)

    Blatchley, Michael R; Gerecht, Sharon

    2015-03-16

    In recent years, therapeutic angiogenesis has been sought as a treatment for many vascular disorders, including peripheral artery disease and coronary artery disease. As mechanisms of angiogenesis and vasculogenesis have been elucidated, the functions of important growth factors and cytokines have been identified. Bolus injections of these growth factors have had limited clinical success because of their short half-lives and difficulty controlling their systemic effects. Over the last 15 years, many hydrogel technologies have been developed to help solve these issues. Many of these hydrogel technologies have aimed to conjugate pro-angiogenic growth factors with controlled, local delivery. However, in order to attain maximum therapeutic effects, multiple growth factors are necessary, owing to the complex nature of the angiogenic pathway. While many groups have successfully conjugated growth factors controlling different steps of angiogenesis, clinical success remains elusive and will likely rely on both spatial and temporal control over growth factor release as these systems evolve in the future. A number of physical factors of the microenvironment also play a vital role in regulating angiogenesis, including ultrastructure, degradability, and matrix stiffness. Vascular engineering research has been advanced by design of hydrogels that decouple the effects of physical and biological factors, to enhance the understanding of the myriad factors involved in vascular morphogenesis. Recently, hydrogels have been developed to influence microenvironmental factors, such as hypoxia, upstream of growth factor production. By triggering angiogenesis further upstream, a more robust angiogenic response may be achieved by promoting the entire array of growth factors and cytokines necessary for new vessel formation and stabilization. As the field moves forward, study of other upstream environmental factors will likely provide insights into the formation of neovascularature as well

  5. Mechanism of gypsum hydration

    Directory of Open Access Journals (Sweden)

    Pacheco, G.

    1991-06-01

    Full Text Available There is an hypothesis that the mechanism o f gypsum hydration and dehydration is performed through two simultaneous phenomena. In this study we try to clear up this phenomenon using chlorides as accelerators or a mixture of ethanol-methanol as retarders to carry out the gypsum setting. Natural Mexican gypsum samples and a hemihydrate prepared in the laboratory are used. The following analytical techniques are used: MO, DRX, DTA, TG and DTG. In agreement with the obtained results, it can be concluded: that colloid formation depends on the action of accelerators or retarders and the crystals are a consequence of the quantity of hemihydrate formed.

    En el mecanismo de hidratación y deshidratación del yeso existe la hipótesis de que éste se efectúa por dos fenómenos simultáneos. Este estudio intenta esclarecer estos fenómenos, empleando: cloruros como aceleradores o mezcla etanol-metanol como retardadores para efectuar el fraguado del yeso. Se emplean muestras de yeso de origen natural mexicano y hemihydrate preparado en laboratorio; se utilizan técnicas analíticas: MO, DRX, DTA, TG y DTG. De acuerdo a los resultados obtenidos se puede deducir: que la formación del coloide depende de la acción de los agentes aceleradores o retardadores y que los cristales son consecuencia de la cantidad de hemihidrato formado.

  6. Cheiradone: a vascular endothelial cell growth factor receptor antagonist

    Directory of Open Access Journals (Sweden)

    Ahmed Nessar

    2008-01-01

    Full Text Available Abstract Background Angiogenesis, the growth of new blood vessels from the pre-existing vasculature is associated with physiological (for example wound healing and pathological conditions (tumour development. Vascular endothelial growth factor (VEGF, fibroblast growth factor-2 (FGF-2 and epidermal growth factor (EGF are the major angiogenic regulators. We have identified a natural product (cheiradone isolated from a Euphorbia species which inhibited in vivo and in vitro VEGF- stimulated angiogenesis but had no effect on FGF-2 or EGF activity. Two primary cultures, bovine aortic and human dermal endothelial cells were used in in vitro (proliferation, wound healing, invasion in Matrigel and tube formation and in vivo (the chick chorioallantoic membrane models of angiogenesis in the presence of growth factors and cheiradone. In all cases, the concentration of cheiradone which caused 50% inhibition (IC50 was determined. The effect of cheiradone on the binding of growth factors to their receptors was also investigated. Results Cheiradone inhibited all stages of VEGF-induced angiogenesis with IC50 values in the range 5.20–7.50 μM but did not inhibit FGF-2 or EGF-induced angiogenesis. It also inhibited VEGF binding to VEGF receptor-1 and 2 with IC50 values of 2.9 and 0.61 μM respectively. Conclusion Cheiradone inhibited VEGF-induced angiogenesis by binding to VEGF receptors -1 and -2 and may be a useful investigative tool to study the specific contribution of VEGF to angiogenesis and may have therapeutic potential.

  7. Reconsideration on Hydration of Sodium Ion: From Micro-Hydration to Bulk Hydration

    Science.gov (United States)

    Yongquan, Zhou; Chunhui, Fang; Yan, Fang; Fayan, Zhu; Haiwen, Ge; Hongyan, Liu

    2017-12-01

    Micro hydration structures of the sodium ion, [Na(H2O) n ]+, n = 1-12, were probed by density functional theory (DFT) at B3LYP/aug-cc-pVDZ level in both gaseous and aqueous phase. The predicted equilibrium sodium-oxygen distance of 0.240 nm at the present level of theory. The four-, five- and six-coordinated cluster can transform from each other at the ambient condition. The analysis of the successive water binding energy and natural charge population (NBO) on Na+ clearly shows that the influence of Na+ on the surrounding water molecules goes beyond the first hydration shell with the hydration number of 6. The Car-Parrinello molecular dynamic simulation shows that only the first hydration sphere can be found, and the hydration number of Na+ is 5.2 and the hydration distance ( r Na-O) is 0.235 nm. All our simulations mentioned in the present paper show an excellent agreement with the diffraction result from X-ray scattering study.

  8. Aloe Gel Enhances Angiogenesis in Healing of Diabetic Wound

    Directory of Open Access Journals (Sweden)

    Djanggan Sargowo

    2011-12-01

    Full Text Available BACKGROUND: Diabetic micro and macroangiophathy lead to the incident of diabetic foot ulcers characterized by an increased number of circulating endothelial cells (CECs and decreased function of endothelial progenitor cells (EPCs. This fact is correlated with ischemia and diabetic wound healing failure. Aloe vera gel is known to be able to stimulate vascular endothelial growth factor (VEGF expression and activity by enhancing nitric oxide (NO production as a result of nitric oxide synthase (NOS enzyme activity. Aloe vera is a potential target to enhancing angiogenesis in wound healing. OBJECTIVE: The objective of this study was to explore the major role of Aloe vera gel in wound healing of diabetic ulcers by increasing the level of EPCs, VEGF, and endothelial nitric oxide synthase (eNOS, as well as by reducing the level of CECs involved in angiogenesis process of diabetic ulcers healing. METHODS: The experimental groups was divided into five subgroups consisting of non diabetic wistar rats, diabetic rats without oral administration of aloe gel, and treatment subgroup (diabetic rats with 30, 60 and 120 mg/day of aloe gel doses for 14 days. All subgroups were wounded and daily observation was done on the wounds areas. Measurement of the number of EPCs (CD34, and CECs (CD45 and CD146 was done by flow cytometry, followed by measurement of VEGF and eNOS expression on dermal tissue by immunohistochemical method on day 0 and day 14 after treatment. The quantitative data were analyzed by One-Way ANOVA and Linear Regression, with a confidence interval 5% and significance level (p<0.05 using SPSS 16 software to compare the difference and correlation between wound diameters, number of EPCs and CECs as well as the levels of VEGF and eNOS. RESULTS: The results of this study showed that aloe gel oral treatment in diabetic wistar rats was able to accelerate the wound healing process. It was shown by significant reduction of wound diameter (0.27±0.02; the

  9. Markers of angiogenesis in high-risk, early-stage cervical cancer: A Gynecologic Oncology Group study.

    Science.gov (United States)

    Randall, Leslie M; Monk, Bradley J; Darcy, Kathleen M; Tian, Chunqiao; Burger, Robert A; Liao, Shu-Yuan; Peters, William A; Stock, Richard J; Fruehauf, John P

    2009-03-01

    To determine whether markers of tumor angiogenesis were associated with progression-free survival (PFS) and overall survival (OS) in women with high-risk, early-stage cervical cancer treated on a phase III trial. One hundred seventy-three tumor specimens were analyzed by semi-quantitative immunohistochemical (IHC) staining for vascular endothelial growth factor (VEGF, pro-angiogenesis factor), thrombospondin-1 (TSP-1, anti-angiogenesis factor), CD31 (non-specific endothelial marker), and CD105 (tumor-specific endothelial marker). Tumoral histoscores (HS) were calculated for VEGF using the formula: [% cells positivex(intensity+1)]. TSP-1 specimens were categorized as negative or positive. CD31 and CD105 microvessel density (MVD) "hotspots" were counted in three 20x high-power fields. Associations between angiogenesis markers and survival were evaluated. TSP-1 expression was observed in 65% of cases while 66% expressed high VEGF (>or=200), 34% exhibited high CD31 (CD31>or=110) and 66% displayed high CD105 (CD105>or=28). In univariate analyses CD31 MVD, but not tumor TSP-1, was associated with improved PFS (HR=0.37; 95% CI=0.18-0.76; p=0.007) and OS (HR=0.37; 95% CI=0.17-0.79; p=0.010). After adjusting for prognostic clinical covariates, high CD31 MVD, but not TSP-1, VEGF or CD105 MVD, was an independent prognostic factor for PFS (HR=0.36; 95% CI=0.17-0.75; p=0.006) and OS (HR=0.36; 95% CI=0.17-0.79; p=0.010). Tumor angiogenesis measured by CD31 MVD is an independent prognostic factor for both PFS and OS in high-risk, early-stage cervical cancer. We hypothesize that this finding may be explained by improved treatment response in well-vascularized, well-oxygenated tumors.

  10. Long-term safety and stability of angiogenesis induced by balanced single-vector co-expression of PDGF-BB and VEGF164 in skeletal muscle

    Science.gov (United States)

    Gianni-Barrera, Roberto; Burger, Maximilian; Wolff, Thomas; Heberer, Michael; Schaefer, Dirk J.; Gürke, Lorenz; Mujagic, Edin; Banfi, Andrea

    2016-01-01

    Therapeutic angiogenesis by growth factor delivery is an attractive treatment strategy for ischemic diseases, yet clinical efficacy has been elusive. The angiogenic master regulator VEGF-A can induce aberrant angiogenesis if expressed above a threshold level. Since VEGF remains localized in the matrix around expressing cells, homogeneous dose distribution in target tissues is required, which is challenging. We found that co-expression of the pericyte-recruiting factor PDGF-BB at a fixed ratio with VEGF from a single bicistronic vector ensured normal angiogenesis despite heterogeneous high VEGF levels. Taking advantage of a highly controlled gene delivery platform, based on monoclonal populations of transduced myoblasts, in which every cell stably produces the same amount of each factor, here we rigorously investigated a) the dose-dependent effects, and b) the long-term safety and stability of VEGF and PDGF-BB co-expression in skeletal muscle. PDGF-BB co-expression did not affect the normal angiogenesis by low and medium VEGF doses, but specifically prevented vascular tumors by high VEGF, yielding instead normal and mature capillary networks, accompanied by robust arteriole formation. Induced angiogenesis persisted unchanged up to 4 months, while no tumors appeared. Therefore, PDGF-BB co-expression is an attractive strategy to improve safety and efficacy of therapeutic angiogenesis by VEGF gene delivery. PMID:26882992

  11. Inhibition of VEGF-dependent angiogenesis by the anti-CD82 monoclonal antibody 4F9 through regulation of lipid raft microdomains

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Sayaka; Iwata, Satoshi; Hatano, Ryo [Division of Clinical Immunology, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639 (Japan); Komiya, Eriko [Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421 (Japan); Dang, Nam H. [Division of Hematology/Oncology, University of Florida, 1600 SW Archer Road- Box 100278, Room MSB M410A, Gainesville, FL, 32610 (United States); Iwao, Noriaki [Department of Hematology, School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421 (Japan); Ohnuma, Kei, E-mail: kohnuma@juntendo.ac.jp [Department of Rheumatology and Allergy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639 (Japan); Morimoto, Chikao [Division of Clinical Immunology, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639 (Japan); Department of Rheumatology and Allergy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639 (Japan)

    2016-05-20

    CD82 (also known as KAI1) belongs to the tetraspanin superfamily of type III transmembrane proteins, and is involved in regulating cell adhesion, migration and proliferation. In contrast to these well-established roles of CD82 in tumor biology, its function in endothelial cell (EC) activity and tumor angiogenesis is yet to be determined. In this study, we show that suppression of CD82 negatively regulates vascular endothelial growth factor (VEGF)-induced angiogenesis. Moreover, we demonstrate that the anti-CD82 mAb 4F9 effectively inhibits phosphorylation of VEGF receptor 2 (VEGFR2), which is the principal mediator of the VEGF-induced angiogenic signaling process in tumor angiogenesis, by regulating the organization of the lipid raft microdomain signaling platform in human EC. Our present work therefore suggests that CD82 on EC is a potential target for anti-angiogenic therapy in VEGFR2-dependent tumor angiogenesis. -- Highlights: •Knockdown of CD82 decreases EC migration, proliferation and angiogenesis. •Anti-CD82 mAb 4F9 inhibits EC migration, proliferation and angiogenesis. •4F9 inhibits VEGFR2 phosphorylation via control of CD82 distribution in lipid rafts.

  12. Vascular ultrasound.

    Science.gov (United States)

    Pilcher, D B; Ricci, M A

    1998-04-01

    Surgeon-interpreted diagnostic ultrasound has become the preferred screening test and often the definitive test for the diagnosis of arterial stenosis, aneurysm, and venous thrombosis. As a modality for surveillance, its noninvasive quality makes it particularly appealing as the test of choice to screen patients for abdominal aortic aneurysms or to perform follow-up examinations on those patients with a carotid endartectomy or in situ bypass grafts. The increasing reliance on intraoperative duplex imaging of vascular procedures demands that the surgeon learn the skills to perform the studies without a technologist or radiologist to interpret the examination.

  13. Tumor Angiogenesis Therapy Using Targeted Delivery of Paclitaxel to the Vasculature of Breast Cancer Metastases

    Directory of Open Access Journals (Sweden)

    Shijun Zhu

    2014-01-01

    Full Text Available Breast cancer aberrantly expresses tissue factor (TF in cancer tissues and cancer vascular endothelial cells (VECs. TF plays a central role in cancer angiogenesis, growth, and metastasis and, as such, is a target for therapy and drug delivery. TF is the cognate receptor of factor VIIa (fVIIa. We have coupled PTX (paclitaxel, also named Taxol with a tripeptide, phenylalanine-phenylalanine-arginine chloromethyl ketone (FFRck and conjugated it with fVIIa. The key aim of the work is to evaluate the antiangiogenic effects of PTX-FFRck-fVIIa against a PTX-resistant breast cancer cell line. Matrigel mixed with VEGF and MDA-231 was injected subcutaneously into the flank of athymic nude mice. Animals were treated by tail vein injection of the PTX-FFRck-fVIIa conjugate, unconjugated PTX, or PBS. The PTX-FFRck-fVIIa conjugate significantly reduces microvessel density in matrigel (p<0.01–0.05 compared to PBS and unconjugated PTX. The breast cancer lung metastasis model in athymic nude mice was developed by intravenous injection of MDA-231 cells expressing luciferase. Animals were similarly treated intravenously with the PTX-FFRck-fVIIa conjugate or PBS. The conjugate significantly inhibits lung metastasis as compared to the control, highlighting its potential to antagonize angiogenesis in metastatic carcinoma. In conclusion, PTX conjugated to fVIIa is a promising therapeutic approach for improving selective drug delivery and inhibiting angiogenesis.

  14. ADAM17 silencing in mouse colon carcinoma cells: the effect on tumoricidal cytokines and angiogenesis.

    Directory of Open Access Journals (Sweden)

    Sudipta Das

    Full Text Available ADAM17 (a disintegrin and metalloprotease 17 is a major sheddase for numerous growth factors, cytokines, receptors, and cell adhesion molecules and is often overexpressed in malignant cells. It is generally accepted that ADAM17 promotes tumor development via activating growth factors from the EGF family, thus facilitating autocrine stimulation of tumor cell proliferation and migration. Here we show, using MC38CEA murine colon carcinoma model, that ADAM17 also regulates tumor angiogenesis and cytokine profile. When ADAM17 was silenced in MC38CEA cells, in vivo tumor growth and in vitro cell motility were significantly diminished, but no effect was seen on in vitro cell proliferation. ADAM17-silencing was accompanied by decreased in vitro expression of vascular endothelial growth factor-A and matrix metalloprotease-9, which was consistent with the limited angiogenesis and slower growth seen in ADAM17-silenced tumors. Among the growth factors susceptible to shedding by ADAM17, neuregulin-1 was the only candidate to mediate the effects of ADAM17 on MC38CEA motility and tumor angiogenesis. Concentrations of TNF and IFNγ, cytokines that synergistically induced proapoptotic effects on MC38CEA cells, were significantly elevated in the lysates of ADAM17-silenced tumors compared to mock transfected controls, suggesting a possible role for ADAM17 in host immune suppression. These results introduce new, complex roles of ADAM17 in tumor progression, including its impact on the anti-tumor immune response.

  15. Endothelial Side Population Cells Contribute to Tumor Angiogenesis and Antiangiogenic Drug Resistance.

    Science.gov (United States)

    Naito, Hisamichi; Wakabayashi, Taku; Kidoya, Hiroyasu; Muramatsu, Fumitaka; Takara, Kazuhiro; Eino, Daisuke; Yamane, Keitaro; Iba, Tomohiro; Takakura, Nobuyuki

    2016-06-01

    Angiogenesis plays a crucial role in tumor growth, with an undisputed contribution of resident endothelial cells (EC) to new blood vessels in the tumor. Here, we report the definition of a small population of vascular-resident stem/progenitor-like EC that contributes predominantly to new blood vessel formation in the tumor. Although the surface markers of this population are similar to other ECs, those from the lung vasculature possess colony-forming ability in vitro and contribute to angiogenesis in vivo These specific ECs actively proliferate in lung tumors, and the percentage of this population significantly increases in the tumor vasculature relative to normal lung tissue. Using genetic recombination and bone marrow transplant models, we show that these cells are phenotypically true ECs and do not originate from hematopoietic cells. After treatment of tumors with antiangiogenic drugs, these specific ECs selectively survived and remained in the tumor. Together, our results established that ECs in the peripheral vasculature are heterogeneous and that stem/progenitor-like ECs play an indispensable role in tumor angiogenesis as EC-supplying cells. The lack of susceptibility of these ECs to antiangiogenic drugs may account for resistance of the tumor to this drug type. Thus, inhibiting these ECs might provide a promising strategy to overcome antiangiogenic drug resistance. Cancer Res; 76(11); 3200-10. ©2016 AACR. ©2016 American Association for Cancer Research.

  16. Butein Inhibits Angiogenesis of Human Endothelial Progenitor Cells via the Translation Dependent Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Ching-Hu Chung

    2013-01-01

    Full Text Available Compelling evidence indicates that bone marrow-derived endothelial progenitor cells (EPCs can contribute to postnatal neovascularization and tumor angiogenesis. EPCs have been shown to play a “catalytic” role in metastatic progression by mediating the angiogenic switch. Understanding the pharmacological functions and molecular targets of natural products is critical for drug development. Butein, a natural chalcone derivative, has been reported to exert potent anticancer activity. However, the antiangiogenic activity of butein has not been addressed. In this study, we found that butein inhibited serum- and vascular endothelial growth factor- (VEGF- induced cell proliferation, migration, and tube formation of human EPCs in a concentration dependent manner without cytotoxic effect. Furthermore, butein markedly abrogated VEGF-induced vessels sprouting from aortic rings and suppressed microvessel formation in the Matrigel implant assay in vivo. In addition, butein concentration-dependently repressed the phosphorylation of Akt, mTOR, and the major downstream effectors, p70S6K, 4E-BP1, and eIF4E in EPCs. Taken together, our results demonstrate for the first time that butein exhibits the antiangiogenic effect both in vitro and in vivo by targeting the translational machinery. Butein is a promising angiogenesis inhibitor with the potential for treatment of cancer and other angiogenesis-related diseases.

  17. Angiogenesis interactome and time course microarray data reveal the distinct activation patterns in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Liang-Hui Chu

    Full Text Available Angiogenesis involves stimulation of endothelial cells (EC by various cytokines and growth factors, but the signaling mechanisms are not completely understood. Combining dynamic gene expression time-course data for stimulated EC with protein-protein interactions associated with angiogenesis (the "angiome" could reveal how different stimuli result in different patterns of network activation and could implicate signaling intermediates as points for control or intervention. We constructed the protein-protein interaction networks of positive and negative regulation of angiogenesis comprising 367 and 245 proteins, respectively. We used five published gene expression datasets derived from in vitro assays using different types of blood endothelial cells stimulated by VEGFA (vascular endothelial growth factor A. We used the Short Time-series Expression Miner (STEM to identify significant temporal gene expression profiles. The statistically significant patterns between 2D fibronectin and 3D type I collagen substrates for telomerase-immortalized EC (TIME show that different substrates could influence the temporal gene activation patterns in the same cell line. We investigated the different activation patterns among 18 transmembrane tyrosine kinase receptors, and experimentally measured the protein level of the tyrosine-kinase receptors VEGFR1, VEGFR2 and VEGFR3 in human umbilical vein EC (HUVEC and human microvascular EC (MEC. The results show that VEGFR1-VEGFR2 levels are more closely coupled than VEGFR1-VEGFR3 or VEGFR2-VEGFR3 in HUVEC and MEC. This computational methodology can be extended to investigate other molecules or biological processes such as cell cycle.

  18. Temporal and spatial vascularization patterns of unions and nonunions: role of vascular endothelial growth factor and bone morphogenetic proteins.

    Science.gov (United States)

    Garcia, P; Pieruschka, A; Klein, M; Tami, A; Histing, T; Holstein, J H; Scheuer, C; Pohlemann, T; Menger, M D

    2012-01-04

    Failure of fracture-healing with nonunion is a major clinical problem. Angiogenesis is closely linked to bone regeneration, but the role of angiogenesis in nonunion formation remains unclear. Because established nonunions are well vascularized, we hypothesized that lack of vascular endothelial growth factor (VEGF) expression and vascularization during the early time course of fracture-healing determine nonunion formation. In seventy-two CD-1 mice, a femoral osteotomy with a gap size of 1.80 mm (nonunion group) or a gap size of 0.25 mm (union group) was created and stabilized by a pin-clip technique. Healing was analyzed after three, seven, fourteen, twenty-one, twenty-eight, and seventy days by micro-computed tomography and histomorphometry. Vascularization was determined in different healing zones by immunohistochemical staining of PECAM-1 (platelet-endothelial cell adhesion molecule). Additional animals were analyzed after seven, fourteen, and twenty-one days with Western blot analysis of VEGF, bone morphogenetic protein (BMP)-2, and BMP-4 expression. Micro-computed tomography and histomorphometry showed complete bone-bridging in the union group, whereas animals in the nonunion group showed atrophic nonunion formation. Vascularization increased from day 3 to day 7 in both groups, with a subsequent decrease after fourteen days. However, overall vascularization did not differ between unions and nonunions over time. It is of interest that vascularization within the endosteal healing zone was even higher in nonunions than in unions after fourteen days. Expression of VEGF was significantly higher in nonunions, while expression of BMP-2 and 4 and proliferating cell nuclear antigen were found significantly reduced compared with unions. Because vascularization during the early time course of fracture-healing was not impaired despite the failure of bone-healing in nonunions, we rejected our hypothesis and accepted the null hypothesis that nonunion formation is not due to

  19. Protons in hydrated protein powders

    International Nuclear Information System (INIS)

    Careri, G.; Bruni, F.; Consolini, G.

    1995-01-01

    Previous work from this laboratory has shown that hydrated lysozyme powders exhibit a dielectric behaviour, due to proton conductivity, explainable within the frame of percolation theory. Long range proton displacement appears only above the critical hydration for percolation, when the 2-dimensional motion takes place on fluctuating clusters of hydrogen-bonded water molecules adsorbed on the protein surface. The emergence of biological function, enzyme catalysis, was found to coincide with the critical hydration for percolation. More recently, we have evaluated the protonic conductivity of hydrated lysozyme powders, from room down to liquid N 2 temperature. In the high temperature limit a classical isotopic effect can be detected, and the conductivity follows the familiar Arrhenius law for thermally activated hopping. In the low temperature region the conductivity shows a temperature dependence in agreement with prediction by the theory of dissipative quantum tunneling. Below room temperature the static dielectric constant, and the dielectric relaxation time for charge transport showed an increase likely to be identified with the formation of a polaronic-solitonic species as predicted by the theory of proton transport in water chains, a species which displays a larger effective mass and a larger dipole moment that the usual hydrated protonic defects. The purpose of this paper is twofold. In the first section we present a tutorial report of some previous experimental results on proton displacement in slightly hydrated biological systems at room temperature, to show that in these systems the emergence of biological systems at room temperature, to show that in these systems the emergence of biological function coincides with the onset of percolative pathways in the water molecules network adsorbed on the surface of biomolecules. In the second section, we report on preliminary data on the dielectric relaxation of hydrated lysozyme below room temperature, to suggest

  20. Energy resource potential of natural gas hydrates

    Science.gov (United States)

    Collett, T.S.

    2002-01-01

    The discovery of large gas hydrate accumulations in terrestrial permafrost regions of the Arctic and beneath the sea along the outer continental margins of the world's oceans has heightened interest in gas hydrates as a possible energy resource. However, significant to potentially insurmountable technical issues must be resolved before gas hydrates can be considered a viable option for affordable supplies of natural gas. The combined information from Arctic gas hydrate studies shows that, in permafrost regions, gas hydrates may exist at subsurface depths ranging from about 130 to 2000 m. The presence of gas hydrates in offshore continental margins has been inferred mainly from anomalous seismic reflectors, known as bottom-simulating reflectors, that have been mapped at depths below the sea floor ranging from about 100 to 1100 m. Current estimates of the amount of gas in the world's marine and permafrost gas hydrate accumulations are in rough accord at about 20,000 trillion m3. Disagreements over fundamental issues such as the volume of gas stored within delineated gas hydrate accumulations and the concentration of gas hydrates within hydrate-bearing strata have demonstrated that we know little about gas hydrates. Recently, however, several countries, including Japan, India, and the United States, have launched ambitious national projects to further examine the resource potential of gas hydrates. These projects may help answer key questions dealing with the properties of gas hydrate reservoirs, the design of production systems, and, most important, the costs and economics of gas hydrate production.

  1. Angiogenesis and blood vessel stability in inflammatory arthritis.

    LENUS (Irish Health Repository)

    Kennedy, Aisling

    2012-02-01

    OBJECTIVE: To assess blood vessel stability in inflammatory synovial tissue (ST) and to examine neural cell adhesion molecule (NCAM), oxidative DNA damage, and hypoxia in vivo. METHODS: Macroscopic vascularity and ST oxygen levels were determined in vivo in patients with inflammatory arthritis who were undergoing arthroscopy. Vessel maturity\\/stability was quantified in matched ST samples by dual immunofluorescence staining for factor VIII (FVIII)\\/alpha-smooth muscle actin (alpha-SMA). NCAM and 8-oxo-7,8-dihydro-2\\'-deoxyguanosine (8-oxodG) were examined by immunohistochemistry. Angiogenesis was assessed in vitro, using human dermal endothelial cells (HDECs) in a Matrigel tube formation assay. RESULTS: A significant number of immature vessels (showing no pericyte recruitment) was observed in tissue from patients with inflammatory arthritis (P < 0.001), in contrast to osteoarthritic and normal tissue, which showed complete recruitment of pericytes. Low in vivo PO(2) levels in the inflamed joint (median [range] 22.8 [3.2-54.1] mm Hg) were inversely related to increased macroscopic vascularity (P < 0.04) and increased microscopic expression of FVIII and alpha-SMA (P < 0.04 and P < 0.03, respectively). A significant proportion of vessels showed focal expression of NCAM and strong nuclear 8-oxodG expression, implicating a loss of EC-pericyte contact and increased DNA damage, levels of which were inversely associated with low in vivo PO(2) (P = 0.04 for each comparison). Circulating cells were completely negative for 8-oxodG. Exposure of HDEC to 3% O(2) (reflecting mean ST in vivo measurements) significantly increased EC tube formation (P < 0.05). CONCLUSION: Our findings indicate the presence of unstable vessels in inflamed joints associated with hypoxia, incomplete EC-pericyte interactions, and increased DNA damage. These changes may further contribute to persistent hypoxia in the inflamed joint to further drive this unstable microenvironment.

  2. Maternal hemoglobin concentration and hematocrit values may affect fetus development by influencing placental angiogenesis.

    Science.gov (United States)

    Stangret, Aleksandra; Wnuk, Anna; Szewczyk, Grzegorz; Pyzlak, Michał; Szukiewicz, Dariusz

    2017-01-01

    Vasculogenesis and angiogenesis are crucial for maintaining proper placental perfusion and optimal fetal development. Among other physical and chemical factors, hypoxia is known to stimulate angiogenic processes. Preplacental type of hypoxia is often associated with maternal anemia and is thought to enhance vascularization within the fetoplacental unit. The goal of this study was to establish the correlation between the local expression of vascular endothelial growth factor (VEGF) and placenta growth factor (PlGF) receptors (flt-1, flk-1) with maternal hemoglobin (Hb) concentration, hematocrit (Ht) values and the infant birthweight. In total, 43 specimens of term placentas obtained from normal course pregnancies delivered at term were included in the study. The expression of flt-1 and flk-1 receptors was analyzed by immunohistochemical staining. Vascular/extravascular tissular index (V/EVTI) was measured by assessing a total vascular area. Nonparametric Mann-Whitney U-test and Spearman's rank correlation were used to compare the various parameters and their differences between the groups. Among the patients with low Hb concentration, nearly 2-fold greater expression of the flt-1 receptor was positively correlated with infants birthweight (p = 0.028). Increased placental vascular density (increased flt-1 expression), during a physiological course of gestation, may be an adaptive response to lowered maternal Hb concentration and Ht values encountered during pregnancy.

  3. Crude Fucoidan Extracts Impair Angiogenesis in Models Relevant for Bone Regeneration and Osteosarcoma via Reduction of VEGF and SDF-1

    Directory of Open Access Journals (Sweden)

    Fanlu Wang

    2017-06-01

    Full Text Available The marine origin polysaccharide fucoidan combines multiple biological activities. As demonstrated by various studies in vitro and in vivo, fucoidans show anti-viral, anti-tumor, anti-oxidant, anti-inflammatory and anti-coagulant properties, although the detailed molecular action remains to be elucidated. The aim of the present study is to assess the impact of crude fucoidan extracts, on the formation of vascular structures in co-culture models relevant for bone vascularization during bone repair and for vascularization processes in osteosarcoma. The co-cultures consisted of bone marrow derived mesenchymal stem cells, respectively the osteosarcoma cell line MG63, and human blood derived outgrowth endothelial cells (OEC. The concentration dependent effects on the metabolic activity on endothelial cells and osteoblast cells were first assessed using monocultures of OEC, MSC and MG63 suggesting a concentration of 100 µg/mL as a suitable concentration for further experiments. In co-cultures fucoidan significantly reduced angiogenesis in MSC/OEC but also in MG63/OEC co-cultures suggesting a potential application of fucoidan to lower the vascularization in bone tumors such as osteosarcoma. This was associated with a decrease in VEGF (vascular endothelial growth factor and SDF-1 (stromal derived factor-1 on the protein level, both related to the control of angiogenesis and furthermore discussed as crucial factors in osteosarcoma progression and metastasis. In terms of bone formation, fucoidan slightly lowered on the calcification process in MSC monocultures and MSC/OEC co-cultures. In summary, these data suggest the suitability of lower fucoidan doses to limit angiogenesis for instance in osteosarcoma.

  4. Methyl jasmonate abolishes the migration, invasion and angiogenesis of gastric cancer cells through down-regulation of matrix metalloproteinase 14

    International Nuclear Information System (INIS)

    Zheng, Liduan; Li, Dan; Xiang, Xuan; Tong, Ling; Qi, Meng; Pu, Jiarui; Huang, Kai; Tong, Qiangsong

    2013-01-01

    Recent evidence indicates that methyl jasmonate (MJ), a plant stress hormone, exhibits anti-cancer activity on human cancer cells. The aim of this study is to determine whether sub-cytotoxic MJ can abolish the migration, invasion and angiogenesis gastric cancer cells. Human gastric cancer cell lines SGC-7901 and MKN-45 were treated with diverse concentrations of MJ. Cell viability, proliferation, migration, invasion and angiogenesis capabilities of cancer cells were measured by MTT colorimetry, EdU incorporation, scratch assay, matrigel invasion assay, and tube formation assay. Gene expression was detected by western blot and real-time quantitative RT-PCR. Binding of transcription factor on gene promoter was detected by chromatin immunoprecipitation. Sub-cytotoxic (0.05 to 0.2 mM) MJ attenuated the migration, invasion and angiogenesis, but not the cell viability or proliferation, of gastric cancer cells in a time- and dose-dependent manner, with down-regulation of matrix metalloproteinase 14 (MMP-14) and its downstream gene vascular endothelial growth factor. Restoration of MMP-14 expression rescued the SGC-7901 and MKN-45 cells from sub-cytotoxic MJ-inhibited migration, invasion and angiogenesis. In addition, sub-cytotoxic MJ decreased the specificity protein 1 (Sp1) expression and binding on MMP-14 promoter, while restoration of Sp1 expression rescued the cancer cells from sub-cytotoxic MJ-mediated defects in MMP-14 expression, migration, invasion and angiogenesis. Sub-cytotoxic MJ attenuates the MMP-14 expression via decreasing the Sp1 expression and binding on MMP-14 promoter, thus inhibiting the migration, invasion and angiogenesis of gastric cancer cells

  5. Regulation of Matrix Metalloproteinase-2 Activity by COX-2-PGE2-pAKT Axis Promotes Angiogenesis in Endometriosis

    Science.gov (United States)

    Ray, Amlan K.; DasMahapatra, Pramathes; Swarnakar, Snehasikta

    2016-01-01

    Endometriosis is characterized by the ectopic development of the endometrium which relies on angiogenesis. Although studies have identified the involvement of different matrix metalloproteinases (MMPs) in endometriosis, no study has yet investigated the role of MMP-2 in endometriosis-associated angiogenesis. The present study aims to understand the regulation of MMP-2 activity in endothelial cells and on angiogenesis during progression of ovarian endometriosis. Histological and biochemical data showed increased expressions of vascular endothelial growth factor (VEGF), VEGF receptor-2, cycloxygenase (COX)-2, von Willebrand factor along with angiogenesis during endometriosis progression. Women with endometriosis showed decreased MMP-2 activity in eutopic endometrium as compared to women without endometriosis. However, ectopic ovarian endometrioma showed significantly elevated MMP-2 activity with disease severity. In addition, increased MT1MMP and decreased tissue inhibitors of metalloproteinases (TIMP)-2 expressions were found in the late stages of endometriosis indicating more MMP-2 activation with disease progression. In vitro study using human endothelial cells showed that prostaglandin E2 (PGE2) significantly increased MMP-2 activity as well as tube formation. Inhibition of COX-2 and/or phosphorylated AKT suppressed MMP-2 activity and endothelial tube formation suggesting involvement of PGE2 in regulation of MMP-2 activity during angiogenesis. Moreover, specific inhibition of MMP-2 by chemical inhibitor significantly reduced cellular migration, invasion and tube formation. In ovo assay showed decreased angiogenic branching upon MMP-2 inhibition. Furthermore, a significant reduction of lesion numbers was observed upon inhibition of MMP-2 and COX-2 in mouse model of endometriosis. In conclusion, our study establishes the involvement of MMP-2 activity via COX-2-PGE2-pAKT axis in promoting angiogenesis during endometriosis progression. PMID:27695098

  6. Enhancement of cell-based therapeutic angiogenesis using a novel type of injectable scaffolds of hydroxyapatite-polymer nanocomposite microspheres.

    Directory of Open Access Journals (Sweden)

    Yohei Mima

    Full Text Available BACKGROUND: Clinical trials demonstrate the effectiveness of cell-based therapeutic angiogenesis in patients with severe ischemic diseases; however, their success remains limited. Maintaining transplanted cells in place are expected to augment the cell-based therapeutic angiogenesis. We have reported that nano-hydroxyapatite (HAp coating on medical devices shows marked cell adhesiveness. Using this nanotechnology, HAp-coated poly(l-lactic acid (PLLA microspheres, named nano-scaffold (NS, were generated as a non-biological, biodegradable and injectable cell scaffold. We investigate the effectiveness of NS on cell-based therapeutic angiogenesis. METHODS AND RESULTS: Bone marrow mononuclear cells (BMNC and NS or control PLLA microspheres (LA were intramuscularly co-implanted into mice ischemic hindlimbs. When BMNC derived from enhanced green fluorescent protein (EGFP-transgenic mice were injected into ischemic muscle, the muscle GFP level in NS+BMNC group was approximate fivefold higher than that in BMNC or LA+BMNC groups seven days after operation. Kaplan-Meier analysis demonstrated that NS+BMNC markedly prevented hindlimb necrosis (P<0.05 vs. BMNC or LA+BMNC. NS+BMNC revealed much higher induction of angiogenesis in ischemic tissues and collateral blood flow confirmed by three-dimensional computed tomography angiography than those of BMNC or LA+BMNC groups. NS-enhanced therapeutic angiogenesis and arteriogenesis showed good correlations with increased intramuscular levels of vascular endothelial growth factor and fibroblast growth factor-2. NS co-implantation also prevented apoptotic cell death of transplanted cells, resulting in prolonged cell retention. CONCLUSION: A novel and feasible injectable cell scaffold potentiates cell-based therapeutic angiogenesis, which could be extremely useful for the treatment of severe ischemic disorders.

  7. Trisubstituted pyrazolopyrimidines as novel angiogenesis inhibitors.

    Directory of Open Access Journals (Sweden)

    Sabine B Weitensteiner

    Full Text Available Current inhibitors of angiogenesis comprise either therapeutic antibodies (e.g. bevacicumab binding to VEGF-A or small molecular inhibitors of receptor tyrosin kinases like e.g. sunitinib, which inhibits PDGFR and VEGFR. We have recently identified cyclin-dependent kinase 5 (Cdk5 as novel alternative and pharmacologically accessible target in the context of angiogenesis. In the present work we demonstrate that trisubstituted pyrazolo[4,3-d]pyrimidines constitute a novel class of compounds which potently inhibit angiogenesis. All seven tested compounds inhibited endothelial cell proliferation with IC(50 values between 1 and 18 µM. Interestingly, this seems not to be due to cytotoxicity, since none of them showed acute cytotoxic effects on endothelial cells at a concentration of 10 µM,. The three most potent compounds (LGR1404, LGR1406 and LGR1407 also inhibited cell migration (by 27, 51 and 31%, resp., chemotaxis (by 50, 70 and 60% in accumulative distance, resp., and tube formation (by 25, 60 and 30% of total tube length, resp. at the non-toxic concentration of 10 µM. Furthermore, angiogenesis was reduced in vivo in the CAM assay by these three compounds. A kinase selectivity profiling revealed that the compounds prevalently inhibit Cdk2, Cdk5 and Cdk9. The phenotype of the migrating cells (reduced formation of lamellipodia, loss of Rac-1 translocation to the membrane resembles the previously described effects of silencing of Cdk5 in endothelial cells. We conclude that especially LGR1406 and LGR1407 are highly attractive anti-angiogenic compounds, whose effects seem to largely depend on their Cdk5 inhibiting properties.

  8. Wars2 is a determinant of angiogenesis

    Czech Academy of Sciences Publication Activity Database

    Wang, M.; Sips, P.; Khin, E.; Rotival, M.; Sun, X.; Ahmed, R.; Widjaja, A. A.; Schafer, S.; Yusoff, P.; Choksi, P. K.; Ko, N. S. J.; Singh, M. K.; Epstein, D.; Guan, Y.; Houštěk, Josef; Mráček, Tomáš; Nůsková, Hana; Mikell, B.; Tan, J.; Pesce, F.; Kolář, František; Bottolo, L.; Mancini, M.; Hubner, N.; Pravenec, Michal; Petretto, E.; MacRae, C.; Cook, S. A.

    2016-01-01

    Roč. 7, Jul (2016), s. 12061 ISSN 2041-1723 R&D Projects: GA MŠk(CZ) LL1204; GA ČR(CZ) GB14-36804G; GA MZd(CZ) NT12370 Institutional support: RVO:67985823 Keywords : Wars2 mutant gene * angiogenesis * coronary flow * spontaneously hypertensive rat Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 12.124, year: 2016

  9. Proton pumps, angiogenesis, and metastatic breast cancer

    Science.gov (United States)

    Rojas, Jose D.; Sanka, Shankar C.; Luo, Defeng; Busch, Christian; Martinez, Gloria M.; Hendrix, Mary J. C.; Martinez-Zaguilan, Raul

    2000-04-01

    We have previously shown the relationship between metastatic potential and plasmalemmal V-H+-ATPase (pmV-ATPase) expression in tumor cells. This led us to hypothesize that pmV-ATPase activity is involved in invasion. Angiogenesis involves invasion of adjacent tissues by microvascular endothelial cells, thus we hypothesized that pmV-ATPases contribute to pHin regulation and invasion in microvascular endothelial cells.

  10. Biomarkers in Tumor Angiogenesis and Anti-Angiogenic Therapy

    Science.gov (United States)

    Pircher, Andreas; Hilbe, Wolfgang; Heidegger, Isabel; Drevs, Joachim; Tichelli, André; Medinger, Michael

    2011-01-01

    Tumor angiogenesis has been identified to play a critical role in tumor growth and tumor progression, and is regulated by a balance of angiogenic and anti-angiogenic cytokines. Among them VEGF (vascular endothelial growth factor) and its signaling through its receptors are of crucial relevance. Inhibition of VEGF signaling by monoclonal antibodies or small molecules (kinase inhibitors) has already been successfully established for the treatment of different cancer entities and multiple new drugs are being tested in clinical trials. However not all patients are likely to respond to these therapies, but to date there are no reliable biomarkers available to predict therapy response. Many studies integrated biomarker programs in their study protocols, thus several potential biomarkers have been identified which are currently under clinical investigation in prospective randomized studies. This review intends to give an overview of the described potential biomarkers as well as different imaging techniques such as ultrasound and magnetic resonance imaging that can indicate benefit, resistance and toxicity to anti-angiogenic therapies. PMID:22072937

  11. Nanoparticles of carbon allotropes inhibit glioblastoma multiforme angiogenesis in ovo

    Directory of Open Access Journals (Sweden)

    Grodzik M

    2011-11-01

    Full Text Available Marta Grodzik1, Ewa Sawosz1, Mateusz Wierzbicki1, Piotr Orlowski1, Anna Hotowy2, Tomasz Niemiec1, Maciej Szmidt3, Katarzyna Mitura4, André Chwalibog21Division of Biotechnology and Biochemistry of Nutrition, Warsaw University of Life Sciences, Warsaw, Poland; 2Department of Basic Animal and Veterinary Science, University of Copenhagen, Copenhagen, Denmark; 3Division of Histology and Embryology, Warsaw University of Life Sciences, Warsaw, Poland; 4Department of Biomedical Engineering, Koszalin University of Technology, Koszalin, PolandAbstract: The objective of the study was to determine the effect of carbon nanoparticles produced by different methods on the growth of brain tumor and the development of blood vessels. Glioblastoma multiforme cells were cultured on the chorioallantoic membrane of chicken embryo and after 7 days of incubation, were treated with carbon nanoparticles administered in ovo to the tumor. Both types of nanoparticles significantly decreased tumor mass and volume, and vessel area. Quantitative real-time polymerase chain reaction analysis showed downregulated fibroblast growth factor-2 and vascular endothelial growth factor expression at the messenger ribonucleic acid level. The present results demonstrate antiangiogenic activity of carbon nanoparticles, making them potential factors for anticancer therapy.Keywords: cancer, nanoparticle, embryo, angiogenesis, FGF-2, VEGF

  12. Microparticles, vascular function, and atherothrombosis.

    Science.gov (United States)

    Rautou, Pierre-Emmanuel; Vion, Anne-Clémence; Amabile, Nicolas; Chironi, Gilles; Simon, Alain; Tedgui, Alain; Boulanger, Chantal M

    2011-08-19

    Membrane-shed submicron microparticles (MPs) are released after cell activation or apoptosis. High levels of MPs circulate in the blood of patients with atherothrombotic diseases, where they could serve as a useful biomarker of vascular injury and a potential predictor of cardiovascular mortality and major adverse cardiovascular events. Atherosclerotic lesions also accumulate large numbers of MPs of leukocyte, smooth muscle cell, endothelial, and erythrocyte origin. A large body of evidence supports the role of MPs at different steps of atherosclerosis development, progression, and complications. Circulating MPs impair the atheroprotective function of the vascular endothelium, at least partly, by decreased nitric oxide synthesis. Plaque MPs favor local inflammation by augmenting the expression of adhesion molecule, such as intercellular adhesion molecule -1 at the surface of endothelial cell, and monocyte recruitment within the lesion. In addition, plaque MPs stimulate angiogenesis, a key event in the transition from stable to unstable lesions. MPs also may promote local cell apoptosis, leading to the release and accumulation of new MPs, and thus creating a vicious circle. Furthermore, highly thrombogenic plaque MPs could increase thrombus formation at the time of rupture, together with circulating MPs released in this context by activated platelets and leukocytes. Finally, MPs also could participate in repairing the consequences of arterial occlusion and tissue ischemia by promoting postischemic neovascularization.

  13. Soy and Breast Cancer: Focus on Angiogenesis

    Directory of Open Access Journals (Sweden)

    Lenka Varinska

    2015-05-01

    Full Text Available Epidemiological studies have revealed that high consumption of soy products is associated with low incidences of hormone-dependent cancers, including breast and prostate cancer. Soybeans contain large amounts of isoflavones, such as the genistein and daidzain. Previously, it has been demonstrated that genistein, one of the predominant soy isoflavones, can inhibit several steps involved in carcinogenesis. It is suggested that genistein possesses pleiotropic molecular mechanisms of action including inhibition of tyrosine kinases, DNA topoisomerase II, 5α-reductase, galectin-induced G2/M arrest, protein histidine kinase, and cyclin-dependent kinases, modulation of different signaling pathways associated with the growth of cancer cells (e.g., NF-κB, Akt, MAPK, etc. Moreover, genistein is also a potent inhibitor of angiogenesis. Uncontrolled angiogenesis is considered as a key step in cancer growth, invasion, and metastasis. Genistein was found to inhibit angiogenesis through regulation of multiple pathways, such as regulation of VEGF, MMPs, EGFR expressions and NF-κB, PI3-K/Akt, ERK1/2 signaling pathways, thereby causing strong antiangiogenic effects. This review focuses on the antiangiogenic properties of soy isoflavonoids and examines their possible underlying mechanisms.

  14. Molecular Therapeutic Targets for Glioma Angiogenesis

    Directory of Open Access Journals (Sweden)

    Shingo Takano

    2010-01-01

    Full Text Available Due to the prominent angiogenesis that occurs in malignant glioma, antiangiogenic therapy has been attempted. There have been several molecular targets that are specific to malignant gliomas, as well as more broadly in systemic cancers. In this review, I will focus on some topics related to molecular therapeutic targets for glioma angiogenesis. First, important angiogenic factors that could be considered molecular targets are VEGF, VEGF-induced proteins on endothelial cells, tissue factor, osteopontin, v3 integrin, and thymidine phosphorylase as well as endogenous inhibitors, soluble Flt1, and thrombospondin 1. Second, hypoxic areas are also decreased by metronomic CPT11 treatment as well as temozolomide. Third, glioma-derived endothelial cells that are genetically and functionally distinct from normal endothelial cells should be targeted, for example, with SDF-1 and CXCR7 chemokine. Fourth, endothelial progenitor cells (EPCs likely contribute towards glioma angiogenesis in the brain and could be useful as a drug delivery tool. Finally, blockade of delta-like 4 (Dll4 results in a nonfunctioning vasculature and could be another important target distinct from VEGF.

  15. Tissue factor in cancer progression and angiogenesis.

    Science.gov (United States)

    Ruf, Wolfram; Yokota, Naho; Schaffner, Florence

    2010-04-01

    Constitutive expression of tissue factor (TF) by cancer cells triggers local and systemic activation of the coagulation cascade and is a major cause of cancer-associated thrombosis. Primary breast cancer biopsies show a marked upregulation of TF and protease activated receptor (PAR) 2, as well as increased TF cytoplasmic domain phosphorylation that is correlated with cancer relapse. TF signaling involving PAR2 and integrins has multiple effects on angiogenesis and tumor progression. The non-coagulant, alternatively spliced form of TF retains an integrin-binding site and, upon deposition into the tumor stroma, stimulates angiogenesis by ligating endothelial integrins alpha(v)beta(3) and alpha(6)beta(1). On tumor cells, full-length TF is constitutively associated with laminin-binding beta(1) integrins that support TF-VIIa-PAR2 signaling leading to upregulation of pro-angiogenic and immune modulatory cytokines and growth factors. Deficiency of PAR2, but not of the thrombin receptor PAR1, delays spontaneous breast cancer development and the angiogenic switch in mice. In addition, human xenograft breast cancer growth and angiogenesis is suppressed by selective antibody inhibition of TF-VIIa-PAR2 signaling, but not by blocking TF initiated coagulation. Thus, interruption of TF signaling represents a potential anti-angiogenic strategy that does not carry an increased risk of bleeding associated with prolonged inhibition of the TF coagulation pathway.

  16. Glioblastoma angiogenesis: VEGF resistance solutions and new strategies based on molecular mechanisms of tumor vessel formation.

    Science.gov (United States)

    Takano, Shingo

    2012-04-01

    Glioblastomas are highly vascular tumors. Recent preclinical and clinical investigations have revealed that agents targeting angiogenesis may have efficacy against this type of tumor. Antibodies to vascular endothelial growth factor are being studied in this patient population. Unfortunately, treatment inevitably fails. This review provides an update on recent research on the mechanisms by which tumor cells acquire resistance, and discusses recent preclinical and experimental development of novel new-generation anti-angiogenic agents that overcome this problem, especially those based on the molecular mechanisms of tumor vessel formation. The tumor vasculature not only nourishes glioblastomas, but also provides a specialized microenvironment for tumor stem-like cells and for the brain tumor. The factors, pathways, and interactions described in this review provide information about the cell biology of glioblastomas which may ultimately result in new modes of treatment.

  17. Coupled Hybrid Continuum-Discrete Model of Tumor Angiogenesis and Growth.

    Directory of Open Access Journals (Sweden)

    Jie Lyu

    Full Text Available The processes governing tumor growth and angiogenesis are codependent. To study the relationship between them, we proposed a coupled hybrid continuum-discrete model. In this model, tumor cells, their microenvironment (extracellular matrixes, matrix-degrading enzymes, and tumor angiogenic factors, and their network of blood vessels, described by a series of discrete points, were considered. The results of numerical simulation reveal the process of tumor growth and the change in microenvironment from avascular to vascular stage, indicating that the network of blood vessels develops gradually as the tumor grows. Our findings also reveal that a tumor is divided into three regions: necrotic, semi-necrotic, and well-vascularized. The results agree well with the previous relevant studies and physiological facts, and this model represents a platform for further investigations of tumor therapy.

  18. Neovascularization following traumatic brain injury: possible evidence for both angiogenesis and vasculogenesis.

    Science.gov (United States)

    Morgan, Randy; Kreipke, Christian W; Roberts, George; Bagchi, Mihir; Rafols, José A

    2007-06-01

    Our goal was to characterize the angiogenic response following traumatic brain injury (TBI). Western analysis for vascular endothelial growth factor (VEGF) expression, double immunofluorescence labeling of endothelium and vascular endothelial growth factor receptor 2 (VEGFR2), bromodioxyuridine (BrdU) incorporation and measurement of capillary density, were all used to determine the temporal angiogenic response following TBI. The angiogenic factors, VEGF and VEGFR2, increase following trauma. Capillary density increases and BrdU incorporation confirm the presence of newly formed vessels up to 48 hours post-injury. Our results indicated that following TBI, there is a substantial increase in angiogenesis and based on morphologic characterization of BrdU-positive nuclei within the endothelium, we provide evidence for vasculogenesis following injury.

  19. The miR-24-Bim pathway promotes tumor growth and angiogenesis in pancreatic carcinoma.

    Science.gov (United States)

    Liu, Rui; Zhang, Haiyang; Wang, Xia; Zhou, Likun; Li, Hongli; Deng, Ting; Qu, Yanjun; Duan, Jingjing; Bai, Ming; Ge, Shaohua; Ning, Tao; Zhang, Le; Huang, Dingzhi; Ba, Yi

    2015-12-22

    miRNAs are a group of small RNAs that have been reported to play a key role at each stage of tumorigenesis and are believed to have future practical value. We now demonstrate that Bim, which stimulates cell apoptosis, is obviously down-regulated in pancreatic cancer (PaC) tissues and cell lines. And Bim-related miR-24 is significantly up-regulated in PaC. The repressed expression of Bim is proved to be a result of miR-24, thus promoting cell growth of both cancer and vascular cells, and accelerating vascular ring formation. By using mouse tumor model, we clearly showed that miR-24 promotes tumor growth and angiogenesis by suppressing Bim expression in vivo. Therefore, a new pathway comprising miR-24 and Bim can be used in the exploration of drug-target therapy of PaC.

  20. Clinker mineral hydration at reduced relative humidities

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben; Lachowski, Eric E.

    1999-01-01

    Vapour phase hydration of purl cement clinker minerals at reduced relative humidities is described. This is relevant to modern high performance concrete that may self-desiccate during hydration and is also relevant to the quality of the cement during storage. Both the oretical considerations...... and experimental data are presented showing that C(3)A can hydrate at lower humidities than either C3S or C2S. It is suggested that the initiation of hydration during exposure to water vapour is nucleation controlled. When C(3)A hydrates at low humidity, the characteristic hydration product is C(3)AH(6...

  1. Increased expression of CYP4Z1 promotes tumor angiogenesis and growth in human breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Wei [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Chai, Hongyan [Center for Gene Diagnosis, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Li, Ying; Zhao, Haixia; Xie, Xianfei; Zheng, Hao; Wang, Chenlong; Wang, Xue [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Yang, Guifang [Department of Pathology, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Cai, Xiaojun [Department of Ophthalmology, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Falck, John R. [Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390 (United States); Yang, Jing, E-mail: yangjingliu@yahoo.com.cn [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China)

    2012-10-01

    Cytochrome P450 (CYP) 4Z1, a novel CYP4 family member, is over-expressed in human mammary carcinoma and associated with high-grade tumors and poor prognosis. However, the precise role of CYP4Z1 in tumor progression is unknown. Here, we demonstrate that CYP4Z1 overexpression promotes tumor angiogenesis and growth in breast cancer. Stable expression of CYP4Z1 in T47D and BT-474 human breast cancer cells significantly increased mRNA expression and production of vascular endothelial growth factor (VEGF)-A, and decreased mRNA levels and secretion of tissue inhibitor of metalloproteinase-2 (TIMP-2), without affecting cell proliferation and anchorage-independent cell growth in vitro. Notably, the conditioned medium from CYP4Z1-expressing cells enhanced proliferation, migration and tube formation of human umbilical vein endothelial cells, and promoted angiogenesis in the zebrafish embryo and chorioallantoic membrane of the chick embryo. In addition, there were lower levels of myristic acid and lauric acid, and higher contents of 20-hydroxyeicosatetraenoic acid (20-HETE) in CYP4Z1-expressing T47D cells compared with vector control. CYP4Z1 overexpression significantly increased tumor weight and microvessel density by 2.6-fold and 1.9-fold in human tumor xenograft models, respectively. Moreover, CYP4Z1 transfection increased the phosphorylation of ERK1/2 and PI3K/Akt, while PI3K or ERK inhibitors and siRNA silencing reversed CYP4Z1-mediated changes in VEGF-A and TIMP-2 expression. Conversely, HET0016, an inhibitor of the CYP4 family, potently inhibited the tumor-induced angiogenesis with associated changes in the intracellular levels of myristic acid, lauric acid and 20-HETE. Collectively, these data suggest that increased CYP4Z1 expression promotes tumor angiogenesis and growth in breast cancer partly via PI3K/Akt and ERK1/2 activation. -- Highlights: ► CYP4Z1 overexpression promotes human breast cancer growth and angiogenesis. ► The pro-angiogenic effects of CYP4Z1 have

  2. Effective treatment of diverse medulloblastoma models with mebendazole and its impact on tumor angiogenesis.

    Science.gov (United States)

    Bai, Ren-Yuan; Staedtke, Verena; Rudin, Charles M; Bunz, Fred; Riggins, Gregory J

    2015-04-01

    Medulloblastoma is the most common malignant brain tumor in children. Current standard treatments cure 40%-60% of patients, while the majority of survivors suffer long-term neurological sequelae. The identification of 4 molecular groups of medulloblastoma improved the clinical management with the development of targeted therapies; however, the tumor acquires resistance quickly. Mebendazole (MBZ) has a long safety record as antiparasitic in children and has been recently implicated in inhibition of various tyrosine kinases in vitro. Here, we investigated the efficacy of MBZ in various medulloblastoma subtypes and MBZ's impact on vascular endothelial growth factor receptor 2 (VEGFR2) and tumor angiogenesis. The inhibition of MBZ on VEGFR2 kinase was investigated in an autophosphorylation assay and a cell-free kinase assay. Mice bearing orthotopic PTCH1-mutant medulloblastoma allografts, a group 3 medulloblastoma xenograft, and a PTCH1-mutant medulloblastoma with acquired resistance to the smoothened inhibitor vismodegib were treated with MBZ. The survival benefit and the impact on tumor angiogenesis and VEGFR2 kinase function were analyzed. We determined that MBZ interferes with VEGFR2 kinase by competing with ATP. MBZ selectively inhibited tumor angiogenesis but not the normal brain vasculatures in orthotopic medulloblastoma models and suppressed VEGFR2 kinase in vivo. MBZ significantly extended the survival of medulloblastoma models derived from different molecular backgrounds. Our findings support testing of MBZ as a possible low-toxicity therapy for medulloblastomas of various molecular subtypes, including tumors with acquired vismodegib resistance. Its antitumor mechanism may be partially explained by inhibition of tumor angiogenesis. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Serum human chorionic gonadotropin is associated with angiogenesis in germ cell testicular tumors

    Directory of Open Access Journals (Sweden)

    Avilés-Salas Alejandro

    2009-08-01

    Full Text Available Abstract Background Germ cell testicular tumors have survival rate that diminishes with high tumor marker levels, such as human chorionic gonadotropin (hCG. hCG may regulate vascular neoformation through vascular endothelial growth factor (VEGF. Our purpose was to determine the relationship between hCG serum levels, angiogenesis, and VEGF expression in germ cell testicular tumors. Methods We conducted a retrospective study of 101 patients. Serum levels of hCG, alpha-fetoprotein (AFP, and lactate dehydrogenase were measured prior to surgery. Vascular density (VD and VEGF tissue expression were determined by immunohistochemistry and underwent double-blind analysis. Results Histologically, 46% were seminomas and 54%, non-seminomas. Median follow-up was 43 ± 27 months. Relapse was present in 7.5% and mortality in 11.5%. Factors associated with high VD included non-seminoma type (p = 0.016, AFP ≥ 14.7 ng/mL (p = 0.0001, and hCG ≥ 25 mIU/mL (p = 0.0001. In multivariate analysis, the only significant VD-associated factor was hCG level (p = 0.04. When hCG levels were stratified, concentrations ≥ 25 mIU/mL were related with increased neovascularization (p Conclusion This is the first study that relates increased serum hCG levels with vascularization in testicular germ cell tumors. Hence, its expression might play a role in tumor angiogenesis, independent of VEGF expression, and may explain its association with poor prognosis. hCG might represent a molecular target for therapy.

  4. Gas hydrates forming and decomposition conditions analysis

    Directory of Open Access Journals (Sweden)

    А. М. Павленко

    2017-07-01

    Full Text Available The concept of gas hydrates has been defined; their brief description has been given; factors that affect the formation and decomposition of the hydrates have been reported; their distribution, structure and thermodynamic conditions determining the gas hydrates formation disposition in gas pipelines have been considered. Advantages and disadvantages of the known methods for removing gas hydrate plugs in the pipeline have been analyzed, the necessity of their further studies has been proved. In addition to the negative impact on the process of gas extraction, the hydrates properties make it possible to outline the following possible fields of their industrial use: obtaining ultrahigh pressures in confined spaces at the hydrate decomposition; separating hydrocarbon mixtures by successive transfer of individual components through the hydrate given the mode; obtaining cold due to heat absorption at the hydrate decomposition; elimination of the open gas fountain by means of hydrate plugs in the bore hole of the gushing gasser; seawater desalination, based on the hydrate ability to only bind water molecules into the solid state; wastewater purification; gas storage in the hydrate state; dispersion of high temperature fog and clouds by means of hydrates; water-hydrates emulsion injection into the productive strata to raise the oil recovery factor; obtaining cold in the gas processing to cool the gas, etc.

  5. Engineering of blood vessel patterns by angio-morphogens [angiotropins]: non-mitogenic copper-ribonucleoprotein cytokins [CuRNP ribokines] with their metalloregulated constituents of RAGE-binding S100-EF-hand proteins and extracellular RNA bioaptamers in vascular remodeling of tissue and angiogenesis in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Wissler, J.H. [ARCONS Applied Research, Bad Nauheim (Germany)

    2001-12-01

    Tissue vascularization is requisite to successful cell-based therapies, biomaterial design and implant integration. Thus, known problems in ossointegration of avascular implants in connection with the generation of bone tissue reflect arrays of general problems of socio-economic relevance existing in reparative medicine still waiting for to be solved. For this purpose, morphogenesis and remodeling of endothelial angio-architectures in tissue and in vitro by isolated non-mitogenic angio-morphogens [angiotropins] are considered in terms of their structure, function and action mechanisms. Extracellular angiotropins are secreted by activated leukocytes/monocytes/macrophages. They are a family of cytokines with morphogen bioactivity selectively directed to endothelial cells. Their structure was deciphered as metalloregulated copper-ribonucleoproteins [CuRNP ribokines]. They are built up of angiotropin-related S100-EF-hand protein [ARP] and highly modified and edited 5'end-phosphorylated RNA [ARNA], complexed together by copper ions. Oxidant-sensitive ARNA and their precursors represent novel types in a RNA world: They are the first isolated and sequenced forms of extracellular RNA [eRNA], may act as cytokine and bioaptamer, contain isoguanosine [crotonoside] as modified nucleoside and show up copper as RNA-structuring transition metal ion. By metalloregulated bioaptamer functions, ARNA impart novel biofunctions to RAGE-binding S100-EF-hand proteins. Angiotropin morphogens were shown suitable for neointiation and remodeling of blood vessel patterns in different, adult, embryonal and artificial tissues. These neovascular patterns manifest regulated hemodynamics for preventing tissue necrosis, supporting tissue functions and promoting wound healing. As evaluated in skin and muscle vascularization, the neovascular patterns are integrated into homeostatic control mechanisms of tissue. Thus, the morphogens show up beneficial perspectives and are suggested useful tools

  6. Regulation of Vascular Growth in the Chorioallantoic Membrane of Japanese Quail Eggs

    Science.gov (United States)

    Montague, Idoreyin P.

    2004-01-01

    The Microgravity Research Program is part of NASA's Office of Biological and Physical Research (OBPR). The mission of the Microgravity Fluid Physics research program is to facilitate and conduct the best possible fluid physics research using the space environment and make this knowledge available to the scientific community and the public at large. During the summer of 2004, I worked in this division with Dr. Patricia Parsons-Wingerter. Dr. Parsons was working on several projects that used the chorioallantoic membrane (CAM) of Japanese quail eggs. The CAM develops in the eggs of birds and reptiles and is a very vascular fetal membrane composed of the fused chorion and adjacent wall of the allantois. The CAM is formed on day 4 of incubation and its primary job is to mediate gas exchanges with the extra embryonic environment. The CAM of our Japanese quail eggs is easily identifiable to us because it is transparent and it sits on top of the yolk with the embryo in the center. The CAM is of interest because of its many applications in the field of medicine as it relates to vascular remodeling and angiogenesis. Angiogenesis is simply the growth or formation of new blood vessels and anti-angiogenesis is the inhibition of said vessels. Angiogenesis occurs naturally in a healthy body for healing wounds and for restoring blood flow to tissues after injury and in females during the monthly reproductive cycle. In many serious diseases, like several types of cancer and those that affect the heart and cardiovascular system, the body loses control over angiogenesis. These diseases, which are dependent on angiogenesis, result when new blood vessels either grow excessively or insufficiently. The chorioallantoic membrane of our Japanese quail eggs gives a good model of angiogenesis. We used angiogenic regulators to inhibit or stimulate vascular growth in the CAM in a healthy manner and they induced distinct vascular patterns in vivo. Certain dominant regulators can be recognized by

  7. Local inhibition of angiogenesis by halofuginone coated silicone materials.

    Science.gov (United States)

    Jordan, Martin C; Zeplin, Philip H

    2012-05-01

    Anti-angiogenic therapy is a promising approach for the treatment of increased angiogenesis in certain diseases. We aimed to investigate the local anti-angiogenic effect of silicone implants coated with Halofuginone, an angiogenesis inhibitor that inhibits synthesis of collagen-type-I and matrix metalloproteinases. The degree of angiogenesis was observed after implantation of surface modified Halofuginone eluting silicone implants into a submuscular pocket in rats over a period of 3 months. Subsequently, key mediators of angiogenesis (TGF-beta-1, bFGF, COL1A1, MMP-2, MMP-9, VEGF and PDGF) were established by immunohistological staining and RT-PCR and statistically evaluated. In comparison to uncoated silicone implants, Halofuginone eluting silicone implants lead to a significant local decrease of angiogenesis. Halofuginone eluting hybrid surface silicone implants have a significant local anti-angiogenic effect by down-regulating the expression activity of key mediators of angiogenesis.

  8. A new method of lectin histochemistry for the study of brain angiogenesis. Lectin angiography.

    Science.gov (United States)

    Minamikawa, T; Miyake, T; Takamatsu, T; Fujita, S

    1987-01-01

    In an attempt to analyse the kinetics of angiogenesis in the brain, we developed a new lectin-histochemical staining technique for identifying the vasculature. Three horseradish-peroxidase-conjugated lectins, i.e., Griffonia simplicifolia agglutinin 1 (GS1), Ricinus communis agglutinin 1 (RCA1) and soybean agglutinin (SBA), selectively stained vascular walls in brain-tissue sections. When these lectins were injected into the circulation of ether-anesthetized animals via the pulsating left ventricle, they bound specifically to the inner surface of endothelial cells and revealed the three-dimensional architecture of the vascular network within thick tissue preparations. When this technique, referred to a lectin angiography, was combined with 5-bromo-2-deoxyuridine (BudR) immunohistochemistry, proliferating capillary cells could be easily identified in three-dimensional structures of the developing vasculature. Because of its simplicity and wide applicability, lectin angiography should be useful for analysing the kinetics of angiogenesis in developmental, regenerative, and pathological conditions in various tissues and organs.

  9. Elevated expression of CD93 promotes angiogenesis and tumor growth in nasopharyngeal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Lili [Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province (China); Tang, Mingming [Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Cancer Hospital of Nantong University, Nantong, 226361, Jiangsu (China); Zhang, Qicheng; You, Bo; Shan, Ying; Shi, Si; Li, Li [Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province (China); Hu, Songqun, E-mail: hsq@ntu.edu.cn [Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province (China); You, Yiwen, E-mail: youyiwen_nantong@163.com [Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province (China)

    2016-08-05

    CD93, also known as the complement component C1q receptor (C1qRp), has been reported to promote the progression of some cancer types. However, the expression and physiological significance of CD93 in nasopharyngeal carcinoma (NPC) remain largely elusive. In this study, we first examined the expression of CD93 in NPC and experimentally manipulated its expression. We observed that vascular CD93 expression is elevated in NPC and is correlated with T classification, N classification, distant metastasis, clinical stage and poor prognosis (all P < 0.05). In addition, overexpression of CD93 promoted angiogenesis in vitro. What’s more, we found that CD93 was highly expressed in NPC tissues and cells, and the regulation of CD93 on cell proliferation was determined by cell counting kit (CCK)-8 assay and cell cycle analyses. Our findings provide unique insight into the pathogenesis of NPC and underscore the need to explore novel therapeutic targets such as CD93 to improve NPC treatment. -- Highlights: •This is the first research about the relationship between CD93 and nasopharyngeal carcinoma. •We explored the prognostic significance of vascular CD93 expression in nasopharyngeal carcinoma. •We researched on angiogenesis and cell proliferation of nasopharyngeal carcinoma and how CD93 affected them.

  10. The relationship of mast cells and angiogenesis with prognosis in renal cell carcinoma

    International Nuclear Information System (INIS)

    Guldur, M.E.; Kocarslan, S.; Dincoglu, D.

    2014-01-01

    Objective: To evaluate the effects of mast cell count and angiogenesis on the prognosis of renal cell carcinoma. Methods: The retrospective study was conducted at the Harran University, Sanliurfa, Turkey, and included 64 cases with diagnosis of renal cell carcinoma between 2002 and 2012. Immunohistochemical analysis was performed on paraffin sections using the standard streptavidin-biotin immunoperoxidase method. CD31 antibodies were used to identify microvessels in tumoural tissues. The microvessel density was calculated using a serological method. The mean vascular density was equivalent to the vascular surface area (in mm) per unit tissue volume (in mm) (MVD=mm). Mast cells tryptase antibody was used to evaluate the mast cell count in tumoural and non-tumoural tissues. The relationship between mast cell count and microvessel density was evaluated and compared with stage, grade, tumour diameter, and age. Results: The mast cell count in the tumoral tissue of renal cell carcinoma was significantly higher compared with non-neoplastic renal tissue (p 0.05). The intratumoural mast cell count in clear cell renal carcinoma was significantly higher compared with non-clear variety (p=0.001). No significant relationship was found between microvessel density, age, stage, diameter, or grade of the tumour and tumoral mast cell count (p>0.05). Conclusion: No significant association was found between the number of mast cells in tumoral tissue and microvessel density. Further studies are needed to demonstrate the effect of mast cells on angiogenesis in renal cell carcinoma. (author)

  11. Halofuginone Inhibits Angiogenesis and Growth in Implanted Metastatic Rat Brain Tumor Model-an MRI Study

    Directory of Open Access Journals (Sweden)

    Rinat Abramovitch

    2004-09-01

    Full Text Available Tumor growth and metastasis depend on angiogenesis; therefore, efforts are made to develop specific angiogenic inhibitors. Halofuginone (HF is a potent inhibitor of collagen type α1(I. In solid tumor models, HF has a potent antitumor and antiangiogenic effect in vivo, but its effect on brain tumors has not yet been evaluated. By employing magnetic resonance imaging (MRI, we monitored the effect of HF on tumor progression and vascularization by utilizing an implanted malignant fibrous histiocytoma metastatic rat brain tumor model. Here we demonstrate that treatment with HF effectively and dose-dependently reduced tumor growth and angiogenesis. On day 13, HF-treated tumors were fivefold smaller than control (P < .001. Treatment with HF significantly prolonged survival of treated animals (142%; P = .001. In HF-treated rats, tumor vascularization was inhibited by 30% on day 13 and by 37% on day 19 (P < .05. Additionally, HF treatment inhibited vessel maturation (P = .03. Finally, in HF-treated rats, we noticed the appearance of a few clusters of satellite tumors, which were distinct from the primary tumor and usually contained vessel cores. This phenomenon was relatively moderate when compared to previous reports of other antiangiogenic agents used to treat brain tumors. We therefore conclude that HF is effective for treatment of metastatic brain tumors.

  12. Interleukin-12 Inhibits Tumor Growth in a Novel Angiogenesis Canine Hemangiosarcoma Xenograft Model

    Directory of Open Access Journals (Sweden)

    Nasim Akhtar

    2004-03-01

    Full Text Available We established a canine hemangiosarcoma cell line derived from malignant endothelial cells comprising a spontaneous tumor in a dog to provide a renewable source of endothelial cells for studies of angiogenesis in malignancy. Pieces of the hemangiosarcoma biopsy were engrafted subcutaneously in a bg/nu/XID mouse allowing the tumor cells to expand in vivo. A cell line, SB-HSA, was derived from the xenograft. SB-HSA cells expressed vascular endothelial growth factor (VEGF receptors 1 and 2, CD31, CD146, and αvβ3 integrin, and produced several growth factors and cytokines, including VEGF, basic fibroblast growth factor, and interleukin (IL-8 that are stimulatory to endothelial cell growth. These results indicated that the cells recapitulated features of mitotically activated endothelia. In vivo, SB-HSA cells stimulated robust angiogenic responses in mice and formed tumor masses composed of aberrant vascular channels in immunocompromised mice providing novel opportunities for investigating the effectiveness of antiangiogenic agents. Using this model, we determined that IL-12, a cytokine with both immunostimulatory and antiangiogenic effects, suppressed angiogenesis induced by, and tumor growth of, SB-HSA cells. The endothelial cell model we have described offers unique opportunities to pursue further investigations with IL-12, as well as other antiangiogenic approaches in cancer therapy.

  13. Interleukin-12 Inhibits Tumor Growth in a Novel Angiogenesis Canine Hemangiosarcoma Xenograft Model1

    Science.gov (United States)

    Dickerson, Erin B; Steinberg, Howard; Breen, Matthew; Auerbach, Robert; Helfand, Stuart C

    2004-01-01

    Abstract We established a canine hemangiosarcoma cell line derived from malignant endothelial cells comprising a spontaneous tumor in a dog to provide a renewable source of endothelial cells for studies of angiogenesis in malignancy. Pieces of the hemangiosarcoma biopsy were engrafted subcutaneously in a bg/nu/XID mouse allowing the tumor cells to expand in vivo. A cell line, SB-HSA, was derived from the xenograft. SB-HSA cells expressed vascular endothelial growth factor (VEGF) receptors 1 and 2, CD31, CD146, and αvβ3 integrin, and produced several growth factors and cytokines, including VEGF, basic fibroblast growth factor, and interleukin (IL)-8 that are stimulatory to endothelial cell growth. These results indicated that the cells recapitulated features of mitotically activated endothelia. In vivo, SB-HSA cells stimulated robust angiogenic responses in mice and formed tumor masses composed of aberrant vascular channels in immunocompromised mice providing novel opportunities for investigating the effectiveness of antiangiogenic agents. Using this model, we determined that IL-12, a cytokine with both immunostimulatory and antiangiogenic effects, suppressed angiogenesis induced by, and tumor growth of, SB-HSA cells. The endothelial cell model we have described offers unique opportunities to pursue further investigations with IL-12, as well as other antiangiogenic approaches in cancer therapy. PMID:15140399

  14. Activated Notch1 expression is associated with angiogenesis in cutaneous melanoma.

    Science.gov (United States)

    Murtas, Daniela; Piras, Franca; Minerba, Luigi; Maxia, Cristina; Ferreli, Caterina; Demurtas, Paolo; Lai, Simone; Mura, Ester; Corrias, Michela; Sirigu, Paola; Perra, Maria Teresa

    2015-08-01

    An early event in melanocytic tumor growth is the upregulation of Notch signaling. When an active form of Notch1 is overexpressed in primary human melanocytes, it increases cell growth, survival and invasive properties, promoting melanoma progression. Recent evidence suggested that tumor initiation and growth are driven by a subset of tumor-initiating cells termed cancer stem cells. Notch1 plays a predominant role in the maintenance of melanoblasts, including melanocyte stem cells, by preventing initiation of apoptosis. Moreover, the importance of Notch1 in the regulation of tumor angiogenesis is supported by growing evidence in various cancers. Nestin has been widely used as a marker for melanocyte stem cells as well as an angiogenic marker to evaluate neovascularity of endothelial cells in tumors. To gain an insight into the impact of Notch1 activation on the maintenance of melanocyte stem cells and angiogenesis in melanoma, the expression levels of activated Notch1 and nestin were analyzed by immunohistochemistry in 114 primary cutaneous melanomas and 35 lymph node metastases. Activated Notch1 and nestin expression was also evaluated in four dysplastic melanocytic nevi. This study provides evidence that activated Notch1 is overexpressed in cutaneous melanoma, in tumor cells as well as in microvessel endothelium, and that it can promote tumor angiogenesis. Indeed, the overexpression of activated Notch1 in both tumor and vascular endothelial cells was significantly associated with microvascular density in melanoma samples. Thus, activated Notch1 inhibitors may provide a therapeutic strategy in the treatment of melanoma by blocking tumor-associated vascularization.

  15. The effect of blocking angiogenesis on anterior cruciate ligament healing following stem cell transplantation.

    Science.gov (United States)

    Takayama, Koji; Kawakami, Yohei; Mifune, Yutaka; Matsumoto, Tomoyuki; Tang, Ying; Cummins, James H; Greco, Nick; Kuroda, Ryosuke; Kurosaka, Masahiro; Wang, Bing; Fu, Freddie H; Huard, Johnny

    2015-08-01

    Ruptured human anterior cruciate ligaments (ACL) contain vascular stem cells capable of enhancing the healing of tendon grafts. In the current study we explored the role that neo-angiogenesis plays in ACL healing. ACL-derived CD34+ cells were isolated via Fluorescence Activated Cell Sorting (FACS) from the rupture sites of human ACLs. The cells were then virally transduced to express either vascular endothelial growth factor (VEGF) or soluble FLT-1 (sFLT-1), which is an antagonist of VEGF. We established five groups: CD34+VEGF(100%), where 100% of the cells were transduced with VEGF, CD34+VEGF(25%), where only 25% of the cells were transduced with VEGF, CD34+, CD34+sFLT-1, and a No cells group. The CD34+sFLT1 group had a significant reduction in biomechanical strength compared to the CD34+ group at 4 and 8 weeks; whereas the biomechanical strength of the CD34+VEGF(25%) group was significantly greater than the CD34+ group at week 4; however, no difference was observed by week 8. Immunohistochemical staining demonstrated a significantly lower number of isolectin B4 and hCD31 positive cells, markers associated with angiogenesis, in the CD34+sFLT1 group, and a higher number of isolectin B4 and hCD31 positive cells in the CD34+VEGF(100%) and CD34+VEGF(25%) groups compared to the CD34+ group. Graft maturation was significantly delayed in the CD34+sFLT1 group and accelerated in the CD34+VEGF(25%) group compared to the CD34+ group. In conclusion, blocking VEGF reduced angiogenesis, graft maturation and biomechanical strength following ACL reconstruction. Native expression of VEGF by the CD34+ cells improved tendon graft maturation and biomechanical strength; however, over-expression of VEGF impeded improvements in biomechanical strength. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Osteoprotegerin Is a New Regulator of Inflammation and Angiogenesis in Proliferative Diabetic Retinopathy.

    Science.gov (United States)

    Abu El-Asrar, Ahmed M; Struyf, Sofie; Mohammad, Ghulam; Gouwy, Mieke; Rytinx, Pieter; Siddiquei, Mohammad Mairaj; Hernández, Cristina; Alam, Kaiser; Mousa, Ahmed; De Hertogh, Gert; Opdenakker, Ghislain; Simó, Rafael

    2017-06-01

    Osteoprotegerin (OPG) is a novel regulator of endothelial cell function, angiogenesis, and vasculogenesis. We correlated expression levels of OPG with those of the angiogenic and inflammatory factors vascular endothelial growth factor (VEGF) and monocyte chemoattractant protein-1 (MCP-1/CCL2) in proliferative diabetic retinopathy (PDR). We also examined expression of OPG in retinas from diabetic rats and diabetic patients and measured production of OPG by human retinal microvascular endothelial cells (HRMEC) and investigated its angiogenic activity. Vitreous samples from 47 PDR and 28 nondiabetic patients, epiretinal membranes from 14 patients with PDR, human retinas (10 from diabetic patients and 10 from nondiabetic subjects), and rat retinas and HRMEC were studied by using enzyme-linked immunosorbent assay, immunohistochemistry, immunofluorescence, Western blot analysis, and RT-PCR. In vitro and in vivo angiogenesis assays were performed. We showed a significant increase in the expression of OPG, VEGF, and MCP-1/CCL2 in a comparison between vitreous samples from PDR patients and those from nondiabetic controls. Significant positive correlations were found between levels of OPG and levels of VEGF and MCP-1/CCL2. In epiretinal membranes, OPG was expressed in vascular endothelial cells and stromal cells. Significant increases of OPG mRNA and protein were detected in the retinas from diabetic patients. The proinflammatory cytokines TNF-α and IL-1β, but not VEGF, MCP-1/CCL2 or thrombin, induced upregulation of OPG in HRMEC. Osteoprotegerin induced ERK1/2 and Akt phosphorylation in HRMEC and stimulated their migration. Osteoprotegerin potentiated the angiogenic effect of VEGF in the in vivo protein gelatin plug assay. These results suggest that OPG is involved in PDR angiogenesis.

  17. Plasminogen activator inhibitor-1 (PAI-1) facilitates retinal angiogenesis in a model of oxygen-induced retinopathy.

    Science.gov (United States)

    Basu, Anupam; Menicucci, Gina; Maestas, Joann; Das, Arup; McGuire, Paul

    2009-10-01

    Angiogenesis, or the formation of new retinal blood vessels, is a key feature of many proliferative retinal diseases including diabetic retinopathy, retinal vein occlusion, and retinopathy of prematurity. The aim of the present study was to investigate the role of the serine proteinase inhibitor plasminogen activator inhibitor -1 (PAI-1) in facilitating retinal angiogenesis. The temporal expression of PAI-1 was examined by real-time PCR, Western blot analysis, and immunohistochemistry in retinal tissues from mice with oxygen-induced retinopathy. The requirement for PAI-1 in facilitating the retinal angiogenic response in this model was examined by quantitating the angiogenic response with wild-type and PAI-1 null mice. The mechanism by which PAI-1 mediates angiogenesis was further investigated with isolated human retinal vascular endothelial cells. PAI-1 expression was upregulated in the retinas of mice with oxygen-induced retinopathy, which coincided with a significant increase in the expression of vitronectin in the retina of the experimental mice. There was significant reduction in the angiogenic response of PAI-1(-/-) mice compared with wild-type mice. PAI-1 promotes endothelial cell migration in vitro and facilitates the migration of cells on a vitronectin substrate by regulating alpha v integrin cell surface expression. These observations suggest a role for PAI-1 during retinal angiogenesis and point to a potential new therapeutic target in the prevention or treatment of retinal neovascularization seen in many ocular diseases.

  18. Long non-coding RNA MALAT1 promotes gastric cancer tumorigenicity and metastasis by regulating vasculogenic mimicry and angiogenesis.

    Science.gov (United States)

    Li, Yue; Wu, Zhenzhen; Yuan, Jia; Sun, Li; Lin, Li; Huang, Na; Bin, Jianping; Liao, Yulin; Liao, Wangjun

    2017-06-01

    MALAT1 is an oncogenic long non-coding RNA that has been found to promote the proliferation of many malignant cell types and non-malignant human umbilical vein endothelial cells (HUVECs). However, the functions of MALAT1 in vasculogenic mimicry (VM) and angiogenesis and the potential mechanisms responsible have not yet been investigated in any malignancy. Here, in situ hybridization and CD31/periodic acid-Schiff double staining of 150 gastric cancer (GC) clinical specimens revealed that MALAT1 expression was tightly associated with densities of VM and endothelial vessels. MALAT1 knockdown markedly reduced GC cell migration, invasion, tumorigenicity, metastasis, and VM, while restricting HUVEC angiogenesis and increasing vascular permeability. Moreover, MALAT1 was found to regulate expression of VE-cadherin, β-catenin, MMPs 2 and 9, MT1-MMP, p-ERK, p-FAK, and p-paxillin, which have been established as classical markers of VM and angiogenesis and components of associated signaling pathways. Consistent with this, the p-ERK inhibitors U0126 and PD98059 both effectively blocked GC cell VM. In conclusion, MALAT1 can promote tumorigenicity and metastasis in GC by facilitating VM and angiogenesis via the VE-cadherin/β-catenin complex and ERK/MMP and FAK/paxillin signaling pathways. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Activation of Apoptotic Signal in Endothelial Cells through Intracellular Signaling Molecules Blockade in Tumor-Induced Angiogenesis

    Directory of Open Access Journals (Sweden)

    Hossein Bazmara

    2015-01-01

    Full Text Available Tumor-induced angiogenesis is the bridge between avascular and vascular tumor growth phases. In tumor-induced angiogenesis, endothelial cells start to migrate and proliferate toward the tumor and build new capillaries toward the tumor. There are two stages for sprout extension during angiogenesis. The first stage is prior to anastomosis, when single sprouts extend. The second stage is after anastomosis when closed flow pathways or loops are formed and blood flows in the closed loops. Prior to anastomosis, biochemical and biomechanical signals from extracellular matrix regulate endothelial cell phenotype; however, after anastomosis, blood flow is the main regulator of endothelial cell phenotype. In this study, the critical signaling pathways of each stage are introduced. A Boolean network model is used to map environmental and flow induced signals to endothelial cell phenotype (proliferation, migration, apoptosis, and lumen formation. Using the Boolean network model, blockade of intracellular signaling molecules of endothelial cell is investigated prior to and after anastomosis and the cell fate is obtained in each case. Activation of apoptotic signal in endothelial cell can prevent the extension of new vessels and may inhibit angiogenesis. It is shown that blockade of a few signaling molecules in endothelial cell activates apoptotic signal that are proposed as antiangiogenic strategies.

  20. Quantitative assessment of angiogenesis in the chick embryo and its chorioallantoic membrane by computerised analysis of angiographic images

    International Nuclear Information System (INIS)

    Nikiforidis, G.; Papazafiropoulos, D.; Siablis, D.; Karnabatidis, D.; Hatjikondi, O.; Dimopoulos, J.

    1999-01-01

    We studied, in vivo, the angiogenesis process in the chick embryo and its chorioallantoic membrane (CAM) using digital subtraction angiography (DSA) in conjunction with computer-assisted image analysis. In a series of fertilised eggs, angiography was carried out at days 8, 10, 12 and 14 of embryonic development. The angiographic images were digitised and subsequently processed for a specific image analysis. A set of specific morphological parameters has been defined to allow an analytical characterisation of the vascularity status. Vessels were classified into three categories according to their diameter (50-100, 100-200, and >200 μm). The data were normalised and statistically evaluated. Graphs showing the development of angiogenesis were obtained. Total vascular area revealed a continuous rise, whereas, total vascular length increased until day 12 and then it started decreasing. These morphometric parameters in the first two vessel categories progressively increased throughout the entire period of development, whereas in the third category they increased until day 10 and then they started decreasing. By applying a vascular casting technique CAM vessels were visualised and compared with those extracted from the processed angiographic image. The comparison revealed that there is exact matching for the first two vessel categories (diameters higher than 100 μm) while the matching of the third category (diameters between 50 and 100 μm) is approximate

  1. Evaluation of superpave mixtures containing hydrated lime.

    Science.gov (United States)

    2013-07-01

    The use of hydrated lime in Hot-Mix Asphalt (HMA) mixtures can reduce permanent deformation, long-term aging, and moisture : susceptibility of mixtures. In addition, hydrated lime increases the stiffness and fatigue resistance of mixtures. This study...

  2. Novel understanding of calcium silicate hydrate from dilute hydration

    KAUST Repository

    Zhang, Lina

    2017-05-13

    The perspective of calcium silicate hydrate (C-S-H) is still confronting various debates due to its intrinsic complicated structure and properties after decades of studies. In this study, hydration at dilute suspension of w/s equaling to 10 was conducted for tricalcium silicate (C3S) to interpret long-term hydration process and investigate the formation, structure and properties of C-S-H. Based on results from XRD, IR, SEM, NMR and so forth, loose and dense clusters of C-S-H with analogous C/S ratio were obtained along with the corresponding chemical formulae proposed as Ca5Si4O13∙6.2H2O. Crystalline structure inside C-S-H was observed by TEM, which was allocated at the foil-like proportion as well as the edge of wrinkles of the product. The long-term hydration process of C3S in dilute suspension could be sketchily described as migration of calcium hydroxide and in-situ growth of C-S-H with equilibrium silicon in aqueous solution relatively constant and calcium varied.

  3. Gene transfer therapy in vascular diseases.

    Science.gov (United States)

    McKay, M J; Gaballa, M A

    2001-01-01

    angiogenesis in the cardiac muscle are discussed in reviews by several investigators (13,26,57,74,83). In another review, Meyerson et al. (43) discuss advances in gene therapy for vascular proliferative disorders and chronic peripheral and cardiac ischemia.

  4. Vascularization of human glioma spheroids implanted into rat cortex is conferred by two distinct mechanisms.

    Science.gov (United States)

    Goldbrunner, R H; Bernstein, J J; Plate, K H; Vince, G H; Roosen, K; Tonn, J C

    1999-02-15

    Aim of this study was to develop and characterize an applicable in vivo model to investigate angiogenesis of human gliomas. An established glioblastoma spheroid model was used to investigate the neovascularization of a standardized avascular solid tumor mass. Spheroids of two human glioma cell lines were labeled with an in vivo fluorescent dye. Single spheroids were implanted into the cortex of athymic rats. After 1, 3, 7, 14, and 21 days, brain sections containing the spheroid were immunostained for endothelial cells or vascular endothelial growth factor (VEGF). The dye-stained glioma spheroid and the endothelial cells were visualized by confocal microscopy. Two distinct mechanisms of tumor vascularization could be observed. (1) "Classical" angiogenesis with new vessels sprouting from existing host vessels into the spheroid was seen. (2) Individual endothelial cells were found to migrate towards and into the center of the spheroid where they coalesced to form new vessels. This process occurred as early as 24 hr after spheroid implantation. Spheroid vascularization was accompanied by an increase of VEGF expression, which peaked 7 days after implantation and returned to normal patterns by 14-21 days. Besides the "classical" angiogenesis by angiogenic blood vessels, the recruitment of individual endothelial cells seems to be an additional mechanism in early glioma vascularization. Our model proves to be a reliable, reproducible system to study in vivo angiogenesis of human gliomas. Copyright 1999 Wiley-Liss, Inc.

  5. Evaluation of hydration indexes in kale leaves

    OpenAIRE

    Calbo, Adonai G.; Ferreira, Marcos D.

    2011-01-01

    Hydration indexes are practical variables for quantifying plant water stress and can be useful for agronomic purposes. Three adapted hydration indexes based on relative water content, volumetric hydration, and leaf turgor pressure were evaluated in kale (Brassica oleracea var. acephala) leaf segments. Relative water content and volumetric hydration were measured in leaf segments after a water infiltration procedure with the aim of filling its large intercellular volumes (@18%v/v). The infiltr...

  6. Hydration modeling of calcium sulphates

    NARCIS (Netherlands)

    de Korte, A.C.J.; Brouwers, H.J.H.; Al-Mattarneh, Hashem; Mustapha, Kamal N.; Nuruddin, Muhd Fadhil

    2008-01-01

    The CEMHYD3D model has been extended at the University of Twente in the last ten years [1,2]. At present the cement hydration model is extended for the use of gypsum. Although gypsum was present in the model already, the model was not suitable for high contents of gypsum and did not include the

  7. Is Br2 hydration hydrophobic?

    Science.gov (United States)

    Alcaraz-Torres, A; Gamboa-Suárez, A; Bernal-Uruchurtu, M I

    2017-02-28

    The spectroscopic properties of bromine in aqueous systems suggest it can behave as either hydrophilic or hydrophobic solute. In small water clusters, the halogen bond and the hydrogen-halogen interaction are responsible for its specific way of binding. In water hydrates, it is efficiently hosted by two different cages forming the crystal structure and it has been frequently assumed that there is little or no interaction between the guest and the host. Bromine in liquid solution poses a challenging question due to its non-negligible solubility and the large blue shift measured in its absorption spectra. Using a refined semi-empirical force field, PM3-PIF, we performed a Born-Oppenheimer molecular dynamics study of bromine in liquid water. Here we present a detailed study in which we retrieved the most representative hydration structures in terms of the most frequent positions around bromine and the most common water orientations. Albeit being an approximate description of the total hydration phenomenon, it captures the contribution of the leading molecular interactions in form of the recurrent structures. Our findings confirm that the spectroscopic signature is mainly caused by the closest neighbors. The dynamics of the whole first hydration shell strongly suggests that the external molecules in that structure effectively isolate the bulk from the presence of bromine. The solvation structure fluctuates from a hydrophilic to a hydrophobic-like environment along the studied trajectory.

  8. Inhibition of Hyaluronic Acid Synthesis Suppresses Angiogenesis in Developing Endometriotic Lesions.

    Directory of Open Access Journals (Sweden)

    Carla N Olivares

    Full Text Available The development and long-term survival of endometriotic lesions is crucially dependent on an adequate vascularization. Hyaluronic acid (HA through its receptor CD44 has been described to be involved in the process of angiogenesis.To study the effect of HA synthesis inhibition using non-toxic doses of 4-methylumbelliferone (4-MU on endometriosis-related angiogenesis.The cytotoxicity of different in vitro doses of 4-MU on endothelial cells was firstly tested by means of a lactate dehydrogenase assay. The anti-angiogenic action of non-cytotoxic doses of 4-MU was then assessed by a rat aortic ring assay. In addition, endometriotic lesions were induced in dorsal skinfold chambers of female BALB/c mice, which were daily treated with an intraperitoneal injection of 0.9% NaCl (vehicle group; n = 6, 20 mg/kg 4-MU (n = 8 or 80 mg/kg 4-MU (n = 7 throughout an observation period of 14 days. The effect of 4-MU on their vascularization, survival and growth were studied by intravital fluorescence microscopy, histology and immunohistochemistry.Non-cytotoxic doses of 4-MU effectively inhibited vascular sprout formation in the rat aortic ring assay. Endometriotic lesions in dorsal skinfold chambers of 4-MU-treated mice dose-dependently exhibited a significantly smaller vascularized area and lower functional microvessel density when compared to vehicle-treated controls. Histological analyses revealed a downregulation of HA expression in 4-MU-treated lesions. This was associated with a reduced density of CD31-positive microvessels within the lesions. In contrast, numbers of PCNA-positive proliferating and cleaved caspase-3-positive apoptotic cells did not differ between 4-MU-treated and control lesions.The present study demonstrates for the first time that targeting the synthesis of HA suppresses angiogenesis in developing endometriotic lesions. Further studies have to clarify now whether in the future this anti-angiogenic effect can be used beneficially for the

  9. Signaling and molecular basis of bone marrow niche angiogenesis in leukemia

    NARCIS (Netherlands)

    Shirzad, R.; Shahrabi, S.; Ahmadzadeh, A.; Kampen, K. R.; Shahjahani, M.; Saki, N.

    2016-01-01

    Angiogenesis, the process of blood vessel formation, is necessary for tissue survival in normal and pathologic conditions. Increased angiogenesis in BM niche is correlated with leukemia progression and resistance to treatment. Angiogenesis can interfere with disease progression and several

  10. Hydration mechanisms of mineral trioxide aggregate.

    Science.gov (United States)

    Camilleri, J

    2007-06-01

    To report the hydration mechanism of white mineral trioxide aggregate (White MTA, Dentsply, Tulsa Dental Products, Tulsa, OK, USA). The chemical constitution of white MTA was studied by viewing the powder in polished sections under the scanning electron microscope (SEM). The hydration of both white MTA and white Portland cement (PC) was studied by characterizing cement hydrates viewed under the SEM, plotting atomic ratios, performing quantitative energy dispersive analyses with X-ray (EDAX) and by calculation of the amount of anhydrous clinker minerals using the Bogue calculation. Un-hydrated MTA was composed of impure tri-calcium and di-calcium silicate and bismuth oxide. The aluminate phase was scarce. On hydration the white PC produced a dense structure made up of calcium silicate hydrate, calcium hydroxide, monosulphate and ettringite as the main hydration products. The un-reacted cement grain was coated with a layer of hydrated cement. In contrast MTA produced a porous structure on hydration. Levels of ettringite and monosulphate were low. Bismuth oxide was present as un-reacted powder but also incorporated with the calcium silicate hydrate. White MTA was deficient in alumina suggesting that the material was not prepared in a rotary kiln. On hydration this affected the production of ettringite and monosulphate usually formed on hydration of PC. The bismuth affected the hydration mechanism of MTA; it formed part of the structure of C-S-H and also affected the precipitation of calcium hydroxide in the hydrated paste. The microstructure of hydrated MTA would likely be weaker when compared with that of PC.

  11. Apparatus investigates geological aspects of gas hydrates

    Science.gov (United States)

    Booth, J.S.; Winters, W.J.; Dillon, William P.

    1999-01-01

    The US Geological Survey (USGS), in response to potential geohazards, energy resource potential, and climate issues associated with marine gas hydrates, has developed a laboratory research system that permits hydrate genesis and dissociation under deep-sea conditions, employing user-selected sediment types and pore fluids.The apparatus, GHASTI (gas hydrate and sediment test laboratory instrument), provides a means to link field studies and theory and serves as a tool to improve gas hydrate recognition and assessment, using remote sensing techniques.GHASTLI's use was proven in an exploration well project led by the Geological Survey of Canada and the Japanese National Oil Corp., collaborating with Japan Petroleum Exploration Co. and the USGS. The site was in the Mackenzie Delta region of the Northwest Territories (Mallik 2L-38 drillsite).From tests on natural methane hydrate-bearing sand recovered at about 1,000 m subsurface, the in situ quantity of hydrate was estimated from acoustic properties, and a substantial increase in shear strength due to the presence of the hydrate was measured.1 2GHASTI can mimic a wide range of geologic settings and processes. Initial goals involve improved recognition and mapping of gas hydrate-bearing sediments, understanding factors that control the occurrence and concentration of gas hydrates, knowledge of hydrate's significance to slope failure and foundation problems, and analysis of gas hydrate's potential use as an energy resource.

  12. Influence of fluorosurfactants on hydrate formation rates

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C.U.; Jeong, K.E.; Chae, H.J.; Jeong, S.Y. [Korea Reasearch Inst. of Chemical Technology, Alternative Chemicals/Fuel Research Center, Yuseong-Gu, Daejon (Korea, Republic of)

    2008-07-01

    Gas hydrates, or clathrates, are ice-like solids that forms when natural gas is in contact with liquid water or ice under high pressure and low temperature. There is significant interest in studying the storage and transportation of gas in the form of hydrates. However, a critical problem impacting the industrial application of gas hydrates for storage and transportation of natural gas is the slow formation rate of natural gas hydrate. Researchers have previously reported on the promotion effect of some additives on gas hydrate formation and hydrate gas content. Fluorosurfactants are significantly superior to nonfluorinated surfactants in wetting action, as well as stability in harsh environments, both thermal and chemical. This paper discussed an experimental investigation into the effects of fluorosurfactants with different ionic types on the formation of methane hydrate. The surfactants used were FSN-100 of DuPont Zonyl as non-ionic surfactant and FC-143 of DuPont as anionic surfactant. The paper discussed the experimental apparatus for methane hydrate formation. It also discussed hydrate formation kinetics and the series of hydrate formation experiments that were conducted in the presence of fluorosurfactants. Last, the paper explored the results of the study. It was concluded that anionic fluorosurfactant of FC-143 had a better promoting effect on methane hydrate formation compared with nonionic surfactant of FSN-100. 8 refs., 2 tabs., 2 figs.

  13. Terahertz Time Domain Spectroscopy for Structure-II Gas Hydrates

    DEFF Research Database (Denmark)

    Takeya, Kei; Zhang, Caihong; Kawayama, Iwao

    2009-01-01

    For the nondestructive inspection of gas hydrates, terahertz (THz) time-domain spectroscopy (TDS) was applied to tetrahydrofuran (THF) hydrate and propane hydrate. The absorption of propane hydrate monotonically increases with frequency, similar to the case of ice, while THF hydrate has a charact......For the nondestructive inspection of gas hydrates, terahertz (THz) time-domain spectroscopy (TDS) was applied to tetrahydrofuran (THF) hydrate and propane hydrate. The absorption of propane hydrate monotonically increases with frequency, similar to the case of ice, while THF hydrate has...

  14. Handbook of gas hydrate properties and occurrence

    Energy Technology Data Exchange (ETDEWEB)

    Kuustraa, V.A.; Hammershaimb, E.C.

    1983-12-01

    This handbook provides data on the resource potential of naturally occurring hydrates, the properties that are needed to evaluate their recovery, and their production potential. The first two chapters give data on the naturally occurring hydrate potential by reviewing published resource estimates and the known and inferred occurrences. The third and fourth chapters review the physical and thermodynamic properties of hydrates, respectively. The thermodynamic properties of hydrates that are discussed include dissociation energies and a simplified method to calculate them; phase diagrams for simple and multi-component gases; the thermal conductivity; and the kinetics of hydrate dissociation. The final chapter evaluates the net energy balance of recovering hydrates and shows that a substantial positive energy balance can theoretically be achieved. The Appendices of the Handbook summarize physical and thermodynamic properties of gases, liquids and solids that can be used in designing and evaluating recovery processes of hydrates. 158 references, 67 figures, 47 tables.

  15. Glacial Cycles Influence Marine Methane Hydrate Formation

    Science.gov (United States)

    Malinverno, A.; Cook, A. E.; Daigle, H.; Oryan, B.

    2018-01-01

    Methane hydrates in fine-grained continental slope sediments often occupy isolated depth intervals surrounded by hydrate-free sediments. As they are not connected to deep gas sources, these hydrate deposits have been interpreted as sourced by in situ microbial methane. We investigate here the hypothesis that these isolated hydrate accumulations form preferentially in sediments deposited during Pleistocene glacial lowstands that contain relatively large amounts of labile particulate organic carbon, leading to enhanced microbial methanogenesis. To test this hypothesis, we apply an advection-diffusion-reaction model with a time-dependent organic carbon deposition controlled by glacioeustatic sea level variations. In the model, hydrate forms in sediments with greater organic carbon content deposited during the penultimate glacial cycle ( 120-240 ka). The model predictions match hydrate-bearing intervals detected in three sites drilled on the northern Gulf of Mexico continental slope, supporting the hypothesis of hydrate formation driven by enhanced organic carbon burial during glacial lowstands.

  16. Is the Surface of Gas Hydrates Dry?

    Directory of Open Access Journals (Sweden)

    Nobuo Maeda

    2015-06-01

    Full Text Available Adhesion (cohesion and agglomeration properties of gas hydrate particles have been a key to hydrate management in flow assurance in natural gas pipelines. Despite its importance, the relevant data in the area, such as the surface energy and the interfacial energy of gas hydrates with gas and/or water, are scarce; presumably due to the experimental difficulties involved in the measurements. Here we review what is known about the surface energy and the interfacial energy of gas hydrates to date. In particular, we ask a question as to whether pre-melting can occur on the surface of gas hydrates. Surface thermodynamic analyses show that pre-melting is favoured to occur on the surface of gas hydrates, however, not sufficient data are available to assess its thickness. The effects of the existence of pre-melting layers on the cohesion and friction forces between gas hydrate particles are also discussed.

  17. Inhibition of angiogenesis: a novel antitumor mechanism of the herbal compound arctigenin.

    Science.gov (United States)

    Gu, Yuan; Scheuer, Claudia; Feng, Dilu; Menger, Michael D; Laschke, Matthias W

    2013-09-01

    Arctigenin, a functional ingredient of several traditional Chinese herbs, has been reported to have potential antitumor activity. However, its mechanisms of action are still not well elucidated. Because the establishment and metastatic spread of tumors is crucially dependent on angiogenesis, here we investigated whether arctigenin inhibits tumor growth by disturbing blood vessel formation. For this purpose, human dermal microvascular endothelial cells were exposed to different arctigenin doses to study their viability, proliferation, protein expression, migration, and tube formation compared with vehicle-treated controls. In addition, arctigenin action on vascular sprouting was analyzed in an aortic ring assay. Furthermore, we studied direct arctigenin effects on CT26.WT colon carcinoma cells. Spheroids of these tumor cells were transplanted into the dorsal skinfold chamber of arctigenin-treated and vehicle-treated BALB/c mice for the in-vivo analysis of tumor vascularization and growth by intravital fluorescence microscopy, histology, and immunohistochemistry. We found that noncytotoxic doses of arctigenin dose dependently reduced the proliferation of human dermal microvascular endothelial cells without affecting their migratory and tube-forming capacity. Arctigenin treatment also resulted in a decreased cellular expression of phosphorylated serine/threonine protein kinase AKT, vascular endothelial growth factor receptor 2, and proliferating cell nuclear antigen and inhibited vascular sprouting from aortic rings. In addition, proliferation, but not secretion of vascular endothelial growth factor, was decreased in arctigenin-treated tumor cells. Finally, arctigenin suppressed the vascularization and growth of engrafting CT26.WT tumors in the dorsal skinfold chamber model. Taken together, these results show for the first time an antiangiogenic action of arctigenin, which may contribute considerably toward its antitumor activity.

  18. Inhibition of Tumor Growth and Angiogenesis by Soluble EphB4

    Directory of Open Access Journals (Sweden)

    Georg Martiny-Baron

    2004-05-01

    Full Text Available EphB receptors and their ephrinB ligands play a key role in the formation of a regular vascular system. Recent studies have also shown the involvement of Eph/ephrin interactions in malignant tumor progression and angiogenesis. We have generated soluble monomeric EphB4 (sEphB4-expressing A375 melanoma cells to study the effect of dominant negatively acting sEphB4 on tumor growth and angiogenesis. Soluble EphB4-expressing A375 tumors grown subcutaneously in nude mice show dramatically reduced tumor growth compared to control tumors. The proliferative capacity of sEphB4-expressing cells in monolayer culture is not altered. Yet, sEphB4-expressing A375 cells cannot establish proper cell-cell contacts in three-dimensional spheroids. However, sEphB4 transfectants have reduced proliferation and apoptosis rates when grown in three-dimensional culture in vitro or in subcutaneous tumors in vivo. Analysis of the vascular phenotype of the tumors revealed a reduction of intratumoral microvessel density in sEphB4-expressing tumors. Corresponding to these mouse experiments, a matched pair analysis of EphB4 and ephrinB2 expression in human colon carcinomas revealed significantly upregulated levels of EphB4 expression compared to adjacent normal tissue. Taken together, the data identify dual effects of sEphB4 on the tumor and the vascular compartment that collectively inhibit tumor growth.

  19. Poly-ADP-ribose polymerase inhibition enhances ischemic and diabetic wound healing by promoting angiogenesis.

    Science.gov (United States)

    Zhou, Xin; Patel, Darshan; Sen, Sabyasachi; Shanmugam, Victoria; Sidawy, Anton; Mishra, Lopa; Nguyen, Bao-Ngoc

    2017-04-01

    Chronic nonhealing wounds are a major health problem for patients in the United States and worldwide. Diabetes and ischemia are two major risk factors behind impaired healing of chronic lower extremity wounds. Poly-ADP-ribose polymerase (PARP) is found to be overactivated with both ischemic and diabetic conditions. This study seeks a better understanding of the role of PARP in ischemic and diabetic wound healing, with a specific focus on angiogenesis and vasculogenesis. Ischemic and diabetic wounds were created in FVB/NJ mice and an in vitro scratch wound model. PARP inhibitor PJ34 was delivered to the animals at 10 mg/kg/d through implanted osmotic pumps or added to the culture medium, respectively. Animal wound healing was assessed by daily digital photographs. Animal wound tissues, peripheral blood, and bone marrow cells were collected at different time points for further analysis with Western blot and flow cytometry. Scratch wound migration and invasion angiogenesis assays were performed using human umbilical vein endothelial cells (HUVECs). Measurements were reported as mean ± standard deviation. Continuous measurements were compared by t-test. P < .05 was considered statistically significant. A significant increase in PARP activity was observed under ischemic and diabetic conditions that correlated with delayed wound healing and slower HUVEC migration. The beneficial effect of PARP inhibition with PJ34 on ischemic and diabetic wound healing was observed in both animal and in vitro models. In the animal model, the percentage of wound healing was significantly enhanced from 43% ± 6% to 71% ± 9% (P < .05) by day 7 with the addition of PJ34. PARP inhibition promoted angiogenesis at the ischemic and diabetic wound beds as evidenced by significantly higher levels of endothelial cell markers (vascular endothelial growth factor receptor 2 [VEGFR2] and endothelial nitric oxide synthase) in mice treated with PJ34 compared with controls. Flow cytometry

  20. Canine classical seminoma: a specific malignant type with human classifications is highly correlated with tumor angiogenesis

    International Nuclear Information System (INIS)

    Kim, Jong-Hyuk; Yu, Chi-Ho; Yhee, Ji-Young; Im, Keum-Soon; Kim, Na-Hyun; Sur, Jung-Hyang

    2010-01-01

    Human seminoma is classified as classical seminoma (SE) and spermatocytic seminoma (SS). Human SE is known to be more malignant and metastasizing more frequently than SS. Tumor angiogenesis is highly related with tumor progression and metastasis, with microvessel density (MVD) being an important parameter of metastatic potential. Canine seminoma is not yet well-established as SE or SS type including correlation with angiogenesis. We classified canine SE and SS, and then compared them to tumor associated vessels. Twenty-three cases of canine seminomas (2 intratubular, 9 diffuse, and 12 intratubular/diffuse seminomas showing both intratubular and diffuse patterns) were classified as SE or SS by immunohistochemistry (IHC) using monoclonal antibody against PLAP and by PAS stain. The histopathological data were then compared to see if there was a correlation with SE or SS. Angiogenesis of seminomas were evaluated by immunohistochemical assay using polyclonal antibody against Von Willebrand factor (vWF) and by calculating the means of MVD, vessels area and perimeters using computerized image analysis. Statistical Package for Social Sciences (SPSS) program was used for various statistical analyses. The numbers of PLAP+/PAS+ canine SEs were 8/23 (34.8%) and PLAP-/PAS- SSs were 15/23 (61.2%). All SE cases (8/8, 100%) were intratubular/diffuse types. SS types included 2 intratubular (2/15, 13.3%), 9 diffuse (9/15, 60%), and 4 intratubular/diffuse (4/15, 26.7%) types. MVD and vascular parameters in SEs were significantly higher than in SSs, showing the highest value in the intratubular/diffuse type. Seminomas observed with neoplastic cells invasion of vessels presented higher perimeter and area values than seminomas without conformed neoplastic cells invasion. In this study, we demonstrated a positive relationship between canine SE and tumor angiogenesis. Furthermore, we also showed that a tumor cells invasion of vessels were a correlated vascular parameter. Although

  1. 1-o-acetylbritannilactone (ABL) inhibits angiogenesis and lung cancer cell growth through regulating VEGF-Src-FAK signaling

    Energy Technology Data Exchange (ETDEWEB)

    Zhengfu, He; Hu, Zhang; Huiwen, Miao; Zhijun, Li [Department of Thoracic Surgery, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou (China); Jiaojie, Zhou [Zhejiang University School of Medicine, Hangzhou (China); Xiaoyi, Yan, E-mail: xiaoyiyan163@163.com [Zhejiang University School of Medicine, Hangzhou (China); Xiujun, Cai, E-mail: xiujuncaomaj@163.com [Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou (China)

    2015-08-21

    The search for safe, effective and affordable therapeutics against non-small cell lung cancer (NSCLC) and other lung cancers is important. Here we explored the potential effect of 1-o-acetylbritannilactone (ABL), a novel extract from Inula britannica-F, on angiogenesis and lung cancer cell growth. We demonstrated that ABL dose-dependently inhibited vascular endothelial growth factor (VEGF)-induced proliferation, migration, and capillary structure formation of cultured human umbilical vascular endothelial cells (HUVECs). In vivo, ABL administration suppressed VEGF-induced new vasculature formation in Matrigel plugs. For the mechanism investigations, we found that ABL largely inhibited VEGF-mediated activation of Src kinase and focal adhesion kinase (FAK) in HUVECs. Furthermore, treatment of A549 NSCLC cells with ABL resulted in cell growth inhibition and Src-FAK in-activation. Significantly, administration of a single dose of ABL (12 mg/kg/day) remarkably suppressed growth of A549 xenografts in nude mice. In vivo microvessels formation and Src activation were also significantly inhibited in ABL-treated xenograft tumors. Taken together, our findings suggest that ABL suppresses angiogenesis and lung cancer cell growth possibly via regulating the VEGFR-Src-FAK signaling. - Highlights: • 1-o-acetylbritannilactone (ABL) inhibits VEGF-induced angiogenesis in vivo. • ABL inhibits VEGF-induced HUVEC migration, proliferation, capillary tube formation. • ABL inhibits VEGF-mediated activation of Src and FAK in HUVECs. • ABL inhibits growth and Src-FAK activation in A549 cells. • ABL administration inhibits A549 tumor angiogenesis and growth in nude mice.

  2. TSLP promotes angiogenesis of human umbilical vein endothelial cells by strengthening the crosstalk between cervical cancer cells and eosinophils.

    Science.gov (United States)

    Zhang, Bing; Wei, Chun-Yan; Chang, Kai-Kai; Yu, Jia-Jun; Zhou, Wen-Jie; Yang, Hui-Li; Shao, Jun; Yu, Jin-Jin; Li, Ming-Qing; Xie, Feng

    2017-12-01

    Our previous study demonstrated that thymic stromal lymphopoietin (TSLP) secreted by cervical cancer cells promotes angiogenesis and recruitment, and regulates the function of eosinophils (EOS). However, the function of TSLP in the crosstalk between EOS and vascular endothelial cells in cancer lesions remains unknown. The aim of the present study was to investigate the effect of EOS caused by TSLP in in vitro angiogenesis of human umbilical vein endothelial cells (HUVECs). The results of the present study revealed that recombinant human TSLP protein (rhTSLP) increased the secretion of vascular endothelial growth factor (VEGF), but not fibroblast growth factors, in HL-60-eosinophils (HL-60E). Compared with cervical cancer cells (HeLa or CasKi cells) or HL-60E alone, there were increased levels of interleukin (IL)-8 and VEGF in the co-culture system between cervical cancer cells, and HL-60E cells. This effect was strengthened by rhTSLP, but inhibited by inhibiting the TSLP signal with anti-human TSLP or TSLP receptor neutralizing antibodies. The results of the tube formation assays revealed that treatment with the supernatant from cervical cancer cells and/or HL-60E resulted in an increase in angiogenesis in HUVECs, which could be decreased by TSLP or TSLPR inhibitors. The results of the present study suggested that TSLP derived of cervical cancer cells may indirectly stimulate angiogenesis of HUVECs, by upregulating IL-8 and VEGF production, in a co-culture model between cervical cancer cells and EOS, therefore promoting the development of cervical cancer.

  3. Adaptation in Response of Excitation and Inhibition Factors of Angiogenesis after 4 Weeks of Progressive Resistant Training in Sedentary Men

    Directory of Open Access Journals (Sweden)

    s. Karami

    2016-09-01

    Full Text Available Aims: The sport activity is an important factor affecting the capillary density and angiogenesis. Nitric oxide (NO and vascular endothelial growth factor (VEGF are the most important stimulative regulators in the angiogenesis. In addition, endostatin is one of the inhibitors of angiogenesis. The aim of this study was to investigate the adaptation in the responses of the angiogenesis inhibition and stimulating factors after 4-week increasing resistive exercises in the sedentary men. Materials & Methods: In the semi-experimental study, 20 healthy and inactive male students, aged between 20 and 25 years, who were residents of Tehran University Dormitory, were studied in the first semester of the academic year 2015-16. The subjects, selected via available sampling method, were divided into two groups including experimental and control groups (n=10 per group. 4-week resistive exercises were done three sessions per week. Blood-sampling was done before and 48 hours after the last exercise session. VEGF, NO, and endostatin were then measured. Data was analyzed by SPSS 18 software using independent and dependent T tests, as well as Pearson correlation coefficient test. Findings: In experimental group, VEGF and No significantly increased at the posttest stage than the pretest (p=0.001. Nevertheless, no significant difference was observed in control group (p>0.05. In both experimental and control groups, endostatin level did not significantly increase at the posttest stage than the pretest (p>0.05. In addition, VEGF and NO were the only variables that were significantly correlated (p=0.016; r=0.82. Conclusion: 4-week increasing resistive exercises in the sedentary men significantly affect the angiogenes stimulating factors, i. e. VEGF and NO, while such exercises do not significantly affect the angiogenesis inhibition factor, i. e. endostatin.

  4. Phases of the cutaneous angiogenesis process in experimental third-degree skin burns: histological and immunohistochemical study.

    Science.gov (United States)

    Busuioc, Cristina Jana; Mogoşanu, G D; Popescu, Florina Carmen; Lascăr, I; Pârvănescu, H; Mogoantă, L

    2013-01-01

    Skin burns represent a major problem of public health because of their frequency and because of their seriousness, too. The healing process of the burnt wound is extremely complex, as it requires a well-coordinated collaboration among different tissues and cellular strings. From the morphological point of view, the stages of the repairing process of the skin wounds include processes of inflammation, proliferation and tissular remodeling. Angiogenesis has a role of extreme importance within the healing process of third-degree skin burns. That is because the vascularization remake is necessary for feeding the tissue of granulation with nutritive substances and oxygen. The angiogenesis started relatively fast. Three days after the producing of the burn, there could be identified strings of CD34+ endothelial precursor cells at the edges and deep into the wound, all these having contact with the normal blood vessels or with those lees affected by the thermal aggression. After the lumenization of the newly-formed capillary vessels, there appeared the pericytes within their membrane. The CD34+ endothelial precursor cells (EPc), as well as the pericytes, participate at the synthesis of the base membrane of the angiogenesis vessels. The density of the angiogenesis vessels on the surface unit within the tissue of granulation grew from three to 12 days. After that, they reduced progressively while the tissue of granulation was becoming mature. The angiogenesis vessels go through a process of reshuffling and maturation at the same time with the maturation of the tissue of granulation, but these processes did not appear to be finished when the skin was completely healed, and the epidermis was totally recovered.

  5. Identification of Padi2 as a novel angiogenesis-regulating gene by genome association studies in mice.

    Directory of Open Access Journals (Sweden)

    Mehrdad Khajavi

    2017-06-01

    Full Text Available Recent findings indicate that growth factor-driven angiogenesis is markedly influenced by genetic variation. This variation in angiogenic responsiveness may alter the susceptibility to a number of angiogenesis-dependent diseases. Here, we utilized the genetic diversity available in common inbred mouse strains to identify the loci and candidate genes responsible for differences in angiogenic response. The corneal micropocket neovascularization assay was performed on 42 different inbred mouse strains using basic fibroblast growth factor (bFGF pellets. We performed a genome-wide association study utilizing efficient mixed-model association (EMMA mapping using the induced vessel area from all strains. Our analysis yielded five loci with genome-wide significance on chromosomes 4, 8, 11, 15 and 16. We further refined the mapping on chromosome 4 within a haplotype block containing multiple candidate genes. These genes were evaluated by expression analysis in corneas of various inbred strains and in vitro functional assays in human microvascular endothelial cells (HMVECs. Of these, we found the expression of peptidyl arginine deiminase type II (Padi2, known to be involved in metabolic pathways, to have a strong correlation with a haplotype shared by multiple high angiogenic strains. In addition, inhibition of Padi2 demonstrated a dosage-dependent effect in HMVECs. To investigate its role in vivo, we knocked down Padi2 in transgenic kdrl:zsGreen zebrafish embryos using morpholinos. These embryos had disrupted vessel formation compared to control siblings. The impaired vascular pattern was partially rescued by human PADI2 mRNA, providing evidence for the specificity of the morphant phenotype. Taken together, our study is the first to indicate the potential role of Padi2 as an angiogenesis-regulating gene. The characterization of Padi2 and other genes in associated pathways may provide new understanding of angiogenesis regulation and novel targets for

  6. Identification of Padi2 as a novel angiogenesis-regulating gene by genome association studies in mice.

    Science.gov (United States)

    Khajavi, Mehrdad; Zhou, Yi; Birsner, Amy E; Bazinet, Lauren; Rosa Di Sant, Amanda; Schiffer, Alex J; Rogers, Michael S; Krishnaji, Subrahmanian Tarakkad; Hu, Bella; Nguyen, Vy; Zon, Leonard; D'Amato, Robert J

    2017-06-01

    Recent findings indicate that growth factor-driven angiogenesis is markedly influenced by genetic variation. This variation in angiogenic responsiveness may alter the susceptibility to a number of angiogenesis-dependent diseases. Here, we utilized the genetic diversity available in common inbred mouse strains to identify the loci and candidate genes responsible for differences in angiogenic response. The corneal micropocket neovascularization assay was performed on 42 different inbred mouse strains using basic fibroblast growth factor (bFGF) pellets. We performed a genome-wide association study utilizing efficient mixed-model association (EMMA) mapping using the induced vessel area from all strains. Our analysis yielded five loci with genome-wide significance on chromosomes 4, 8, 11, 15 and 16. We further refined the mapping on chromosome 4 within a haplotype block containing multiple candidate genes. These genes were evaluated by expression analysis in corneas of various inbred strains and in vitro functional assays in human microvascular endothelial cells (HMVECs). Of these, we found the expression of peptidyl arginine deiminase type II (Padi2), known to be involved in metabolic pathways, to have a strong correlation with a haplotype shared by multiple high angiogenic strains. In addition, inhibition of Padi2 demonstrated a dosage-dependent effect in HMVECs. To investigate its role in vivo, we knocked down Padi2 in transgenic kdrl:zsGreen zebrafish embryos using morpholinos. These embryos had disrupted vessel formation compared to control siblings. The impaired vascular pattern was partially rescued by human PADI2 mRNA, providing evidence for the specificity of the morphant phenotype. Taken together, our study is the first to indicate the potential role of Padi2 as an angiogenesis-regulating gene. The characterization of Padi2 and other genes in associated pathways may provide new understanding of angiogenesis regulation and novel targets for diagnosis and

  7. Celiac Disease–Specific TG2-Targeted Autoantibodies Inhibit Angiogenesis Ex Vivo and In Vivo in Mice by Interfering with Endothelial Cell Dynamics

    Science.gov (United States)

    Kalliokoski, Suvi; Sulic, Ana-Marija; Korponay-Szabó, Ilma R.; Szondy, Zsuzsa; Frias, Rafael; Perez, Mileidys Alea; Martucciello, Stefania; Roivainen, Anne; Pelliniemi, Lauri J.; Esposito, Carla; Griffin, Martin; Sblattero, Daniele; Mäki, Markku; Kaukinen, Katri; Lindfors, Katri; Caja, Sergio

    2013-01-01

    A characteristic feature of celiac disease is the presence of circulating autoantibodies targeted against transglutaminase 2 (TG2), reputed to have a function in angiogenesis. In this study we investigated whether TG2-specific autoantibodies derived from celiac patients inhibit angiogenesis in both ex vivo and in vivo models and sought to clarify the mechanism behind this phenomenon. We used the ex vivo murine aorta-ring and the in vivo mouse matrigel-plug assays to address aforementioned issues. We found angiogenesis to be impaired as a result of celiac disease antibody supplementation in both systems. Our results also showed the dynamics of endothelial cells was affected in the presence of celiac antibodies. In the in vivo angiogenesis assays, the vessels formed were able to transport blood despite impairment of functionality after treatment with celiac autoantibodies, as revealed by positron emission tomography. We conclude that celiac autoantibodies inhibit angiogenesis ex vivo and in vivo and impair vascular functionality. Our data suggest that the anti-angiogenic mechanism of the celiac disease-specific autoantibodies involves extracellular TG2 and inhibited endothelial cell mobility. PMID:23824706

  8. An analysis on the roles of angiogenesis-related factors including serum vitamin D, soluble endoglin (sEng), soluble fms-like tyrosine kinase 1 (sFlt1), and vascular endothelial growth factor (VEGF) in the diagnosis and severity of late-onset preeclampsia.

    Science.gov (United States)

    Cim, Numan; Kurdoglu, Mertihan; Ege, Serhat; Yoruk, Ibrahim; Yaman, Gorkem; Yildizhan, Recep

    2017-07-01

    The aim of this study was to evaluate the roles of proangiogenic factors including serum vitamin D and vascular endothelial growth factor (VEGF) and anti-angiogenic factors including soluble endoglin (sEng) and soluble fms-like tyrosine kinase 1 (sFlt1) in the diagnosis and severity of late-onset preeclampsia. The study was conducted at Yuzuncu Yil University Research and Education Hospital Department of Gynecology and Obstetrics. The study included a patient group of 40 women with late-onset preeclampsia who were pregnant at ≥32 weeks of gestation according to the last menstrual period (LMP) or ultrasonographic fetal biometric measurement and a control group of 40 healthy pregnant women who presented to our clinic for routine pregnancy examination and were at the same age and gestational period with those in the patient group. The two groups were compared in terms of maternal age, gravida, parity, week of gestation, systolic/diastolic blood pressure, total protein in spot urine sample, 24-h urine protein, white blood cell (WBC), hemoglobin (Hgb), platelet count, urea, creatinine, liver function tests (AST, ALT, LDH), vitamin D 3 , 25(OH) vitamin D 3 , 1,25(OH) vitamin D 3 , sEng, sFlt1, and VEGF levels, mode of delivery, the infant APGAR score at 1 and 5 min after delivery, and infant weight at delivery. The groups were similar in terms of age, gravida, parity, week of gestation, serum vitamin D 3 , 25(OH) vitamin D 3 , 1,25(OH) 2 vitamin D 3 and VEGF levels, and infant weight at delivery (p > 0.05). Systolic/diastolic blood pressure, total protein in spot urine sample, 24-h urine protein, WBC, Hgb, serum urea, creatine, AST, ALT, and LDH were significantly higher in the preeclamptic group compared to the healthy group (p preeclampsia compared to the women with mild preeclampsia (p preeclampsia (p > 0.05). Both sEng and sFlt1 levels are remarkably high in patients with late-onset preeclampsia; however, only sEng may be a useful tool in the

  9. Angiogenesis is required for successful bone induction during distraction osteogenesis.

    Science.gov (United States)

    Fang, Tony D; Salim, Ali; Xia, Wei; Nacamuli, Randall P; Guccione, Samira; Song, HanJoon M; Carano, Richard A; Filvaroff, Ellen H; Bednarski, Mark D; Giaccia, Amato J; Longaker, Michael T

    2005-07-01

    The role of angiogenesis during mechanically induced bone formation is incompletely understood. The relationship between the mechanical environment, angiogenesis, and bone formation was determined in a rat distraction osteogenesis model. Disruption of either the mechanical environment or endothelial cell proliferation blocked angiogenesis and bone formation. This study further defines the role of the mechanical environment and angiogenesis during distraction osteogenesis. Whereas successful fracture repair requires a coordinated and complex transcriptional program that integrates mechanotransductive signaling, angiogenesis, and osteogenesis, the interdependence of these processes is not fully understood. In this study, we use a system of bony regeneration known as mandibular distraction osteogenesis (DO) in which a controlled mechanical stimulus promotes bone induction after an osteotomy and gradual separation of the osteotomy edges to examine the relationship between the mechanical environment, angiogenesis, and osteogenesis. Adult Sprague-Dawley rats were treated with gradual distraction, gradual distraction plus the angiogenic inhibitor TNP-470, or acute distraction (a model of failed bony regeneration). Animals were killed at the end of distraction (day 13) or at the end of consolidation (day 41) and examined with muCT, histology, and immunohistochemistry for angiogenesis and bone formation (n = 4 per time-point per group). An additional group of animals (n = 6 per time-point per group) was processed for microarray analysis at days 5, 9, 13, 21, and 41. Either TNP-470 administration or disruption of the mechanical environment prevented normal osteogenesis and resulted in a fibrous nonunion. Subsequent analysis of the regenerate showed an absence of angiogenesis by gross histology and immunohistochemical localization of platelet endothelial cell adhesion molecule in the groups that failed to heal. Microarray analysis revealed distinct patterns of expression of

  10. Vascular pattern of the dentate gyrus is regulated by neural progenitors.

    Science.gov (United States)

    Pombero, Ana; Garcia-Lopez, Raquel; Estirado, Alicia; Martinez, Salvador

    2018-05-01

    Neurogenesis is a vital process that begins during early embryonic development and continues until adulthood, though in the latter case, it is restricted to the subventricular zone and the subgranular zone of the dentate gyrus (DG). In particular, the DG's neurogenic properties are structurally and functionally unique, which may be related to its singular vascular pattern. Neurogenesis and angiogenesis share molecular signals and act synergistically, supporting the concept of a neurogenic niche as a functional unit between neural precursors cells and their environment, in which the blood vessels play an important role. Whereas it is well known that vascular development controls neural proliferation in the embryonary and in the adult brain, by releasing neurotrophic factors; the potential influence of neural cells on vascular components during angiogenesis is largely unknown. We have demonstrated that the reduction of neural progenitors leads to a significant impairment of vascular development. Since VEGF is a potential regulator in the neurogenesis-angiogenesis crosstalk, we were interested in assessing the possible role of this molecule in the hippocampal neurovascular development. Our results showed that VEGF is the molecule involved in the regulation of vascular development by neural progenitor cells in the DG.

  11. Breast Angiosarcoma: Case Series and Expression of Vascular Endothelial Growth Factor

    Directory of Open Access Journals (Sweden)

    Rondeep Brar

    2009-12-01

    Full Text Available Purpose: Angiosarcoma of the breast is a rare, malignant tumor for which little is known regarding prognostic indicators and optimal therapeutic regimens. To address this issue, we performed a retrospective analysis of breast angiosarcoma cases seen at Stanford University along with immunohistochemical analysis for markers of angiogenesis. Methods: Breast angiosarcoma cases seen between 1980 and 2008 were examined. Viable tissue blocks were analyzed for expression of vascular endothelial growth factor and its receptors. Results: A total of 16 cases were identified. Data was collected regarding epidemiology, treatment, response rates, disease-free survival, and the use of various imaging modalities. Five tissue blocks remained viable for immunohistochemical analysis. Vascular endothelial growth factor-A was positively expressed in 3 of these samples. Conclusion: Angiosarcoma of the breast is an aggressive malignancy with a propensity for both local recurrence and distant metastases. Angiogenesis inhibition may represent a novel therapeutic modality in this rare, vascular malignancy.

  12. Morphogenesis of 3D vascular networks is regulated by tensile forces

    Science.gov (United States)

    Rosenfeld, Dekel; Landau, Shira; Shandalov, Yulia; Raindel, Noa; Freiman, Alina; Shor, Erez; Blinder, Yaron; Vandenburgh, Herman H.; Mooney, David J.; Levenberg, Shulamit

    2016-01-01

    Understanding the forces controlling vascular network properties and morphology can enhance in vitro tissue vascularization and graft integration prospects. This work assessed the effect of uniaxial cell-induced and externally applied tensile forces on the morphology of vascular networks formed within fibroblast and endothelial cell-embedded 3D polymeric constructs. Force intensity correlated with network quality, as verified by inhibition of force and of angiogenesis-related regulators. Tensile forces during vessel formation resulted in parallel vessel orientation under static stretching and diagonal orientation under cyclic stretching, supported by angiogenic factors secreted in response to each stretch protocol. Implantation of scaffolds bearing network orientations matching those of host abdominal muscle tissue improved graft integration and the mechanical properties of the implantation site, a critical factor in repair of defects in this area. This study demonstrates the regulatory role of forces in angiogenesis and their capacities in vessel structure manipulation, which can be exploited to improve scaffolds for tissue repair. PMID:26951667

  13. Immediate response in markers of inflammation and angiogenesis during exercise: a randomised cross-over study in heart transplant recipients.

    Science.gov (United States)

    Yardley, Marianne; Ueland, Thor; Aukrust, Pål; Michelsen, Annika; Bjørkelund, Elisabeth; Gullestad, Lars; Nytrøen, Kari

    2017-01-01

    The present study explored and compared the immediate responses in markers of inflammation and angiogenesis in maintenance heart transplant (HTx) recipients before, during and after sessions of high-intensity interval training (HIT) versus moderate-intensity continuous training (MICT). The study aimed to explain some of the trigger mechanisms behind HIT in HTx recipients. This cross-over study included 14 HTx patients (mean±SD age: 53±13 years; time since HTx, 3±2 years). All participants underwent baseline blood samples and a cardiopulmonary exercise test during their first visit. The next two visits included one HIT session and one MICT session, in randomised order. Blood samples were taken during and after each exercise session. Myokines and inflammatory markers related to vascular inflammation, blood-platelet activation and modulation of angiogenesis were analysed. The main findings in this study were (1) exercise, regardless of intensity, induced a significant immediate response in several vascular, angiogenetic and in particular platelet-derived inflammatory mediators in HTx recipients. (2) HIT showed trends to induce an increased response in von Willebrand factor, vascular endothelial growth factor-1 and angiopoetin-2, and a decreased response in growth differentiation factor-15, compared with MICT. This pattern and in particular the trend towards an increased angiogenetic mediator response could contribute to the beneficial effects of HIT in HTx recipients. NCT02602834.

  14. CCN2/connective tissue growth factor is essential for pericyte adhesion and endothelial basement membrane formation during angiogenesis.

    Directory of Open Access Journals (Sweden)

    Faith Hall-Glenn

    Full Text Available CCN2/Connective Tissue Growth Factor (CTGF is a matricellular protein that regulates cell adhesion, migration, and survival. CCN2 is best known for its ability to promote fibrosis by mediating the ability of transforming growth factor β (TGFβ to induce excess extracellular matrix production. In addition to its role in pathological processes, CCN2 is required for chondrogenesis. CCN2 is also highly expressed during development in endothelial cells, suggesting a role in angiogenesis. The potential role of CCN2 in angiogenesis is unclear, however, as both pro- and anti-angiogenic effects have been reported. Here, through analysis of Ccn2-deficient mice, we show that CCN2 is required for stable association and retention of pericytes by endothelial cells. PDGF signaling and the establishment of the endothelial basement membrane are required for pericytes recruitment and retention. CCN2 induced PDGF-B expression in endothelial cells, and potentiated PDGF-B-mediated Akt signaling in mural (vascular smooth muscle/pericyte cells. In addition, CCN2 induced the production of endothelial basement membrane components in vitro, and was required for their expression in vivo. Overall, these results highlight CCN2 as an essential mediator of vascular remodeling by regulating endothelial-pericyte interactions. Although most studies of CCN2 function have focused on effects of CCN2 overexpression on the interstitial extracellular matrix, the results presented here show that CCN2 is required for the normal production of vascular basement membranes.

  15. Involvement of plasmalogens in post-natal retinal vascular development.

    Directory of Open Access Journals (Sweden)

    Sarah Saab

    Full Text Available Proper development of retinal blood vessels is essential to ensure sufficient oxygen and nutrient supplies to the retina. It was shown that polyunsaturated fatty acids (PUFAs could modulate factors involved in tissue vascularization. A congenital deficiency in ether-phospholipids, also termed "plasmalogens", was shown to lead to abnormal ocular vascularization. Because plasmalogens are considered to be reservoirs of PUFAs, we wished to improve our understanding of the mechanisms by which plasmalogens regulate retinal vascular development and whether the release of PUFAs by calcium-independent phospholipase A2 (iPLA2 could be involved.By characterizing the cellular and molecular steps of retinal vascular development in a mouse model of plasmalogen deficiency, we demonstrated that plasmalogens modulate angiogenic processes during the early phases of retinal vascularization. They influence glial activity and primary astrocyte template formation, endothelial cell proliferation and retinal vessel outgrowth, and impact the expression of the genes involved in angiogenesis in the retina. These early defects led to a disorganized and dysfunctional retinal vascular network at adult age. By comparing these data to those obtained on a mouse model of retinal iPLA2 inhibition, we suggest that these processes may be mediated by PUFAs released from plasmalogens and further signalling through the angiopoietin/tie pathways.These data suggest that plasmalogens play a crucial role in retinal vascularization processes.

  16. Blocking heme oxygenase-1 by zinc protoporphyrin reduces tumor hypoxia-mediated VEGF release and inhibits tumor angiogenesis as a potential therapeutic agent against colorectal cancer

    OpenAIRE

    Cheng, Chun-Chia; Guan, Siao-Syun; Yang, Hao-Jhih; Chang, Chun-Chao; Luo, Tsai-Yueh; Chang, Jungshan; Ho, Ai-Sheng

    2016-01-01

    Background Hypoxia in tumor niche is one of important factors to start regeneration of blood vessels, leading to increase survival, proliferation, and invasion in cancer cells. Under hypoxia microenvironment, furthermore, steadily increased hypoxia-inducible factor-1? (HIF-1?) is observed, and can increase vascular endothelial growth factor (VEGF) expression and promote angiogenesis. Zinc protoporphyrin (ZnPP), a heme oxygenase-1 (HO-1) inhibitor, is potential to inhibit tumor proliferation a...

  17. Influence of Androgen Receptor in Vascular Cells on Reperfusion following Hindlimb Ischaemia.

    Directory of Open Access Journals (Sweden)

    Junxi Wu

    Full Text Available Studies in global androgen receptor knockout (G-ARKO and orchidectomised mice suggest that androgen accelerates reperfusion of the ischaemic hindlimb by stimulating angiogenesis. This investigation used novel, vascular cell-specific ARKO mice to address the hypothesis that the impaired hindlimb reperfusion in G-ARKO mice was due to loss of AR from cells in the vascular wall.Mice with selective deletion of AR (ARKO from vascular smooth muscle cells (SM-ARKO, endothelial cells (VE-ARKO, or both (SM/VE-ARKO were compared with wild type (WT controls. Hindlimb ischaemia was induced in these mice by ligation and removal of the femoral artery. Post-operative reperfusion was reduced in SM-ARKO and SM/VE-ARKO mice. Immunohistochemistry indicated that this was accompanied by a reduced density of smooth muscle actin-positive vessels but no change in the density of isolectin B4-positive vessels in the gastrocnemius muscle. Deletion of AR from the endothelium (VE-ARKO did not alter post-operative reperfusion or vessel density. In an ex vivo (aortic ring culture model of angiogenesis, AR was not detected in vascular outgrowths and angiogenesis was not altered by vascular ARKO or by exposure to dihydrotestosterone (DHT 10-10-10-7M; 6 days.These results suggest that loss of AR from vascular smooth muscle, but not from the endothelium, contributes to impaired reperfusion in the ischaemic hindlimb of G-ARKO. Impaired reperfusion was associated with reduced collateral formation rather than reduced angiogenesis.

  18. A Network Model to Explore the Effect of the Micro-environment on Endothelial Cell Behavior during Angiogenesis.

    Science.gov (United States)

    Weinstein, Nathan; Mendoza, Luis; Gitler, Isidoro; Klapp, Jaime

    2017-01-01

    Angiogenesis is an important adaptation mechanism of the blood vessels to the changing requirements of the body during development, aging, and wound healing. Angiogenesis allows existing blood vessels to form new connections or to reabsorb existing ones. Blood vessels are composed of a layer of endothelial cells (ECs) covered by one or more layers of mural cells (smooth muscle cells or pericytes). We constructed a computational Boolean model of the molecular regulatory network involved in the control of angiogenesis. Our model includes the ANG/TIE, HIF, AMPK/mTOR, VEGF, IGF, FGF, PLCγ/Calcium, PI3K/AKT, NO, NOTCH, and WNT signaling pathways, as well as the mechanosensory components of the cytoskeleton. The dynamical behavior of our model recovers the patterns of molecular activation observed in Phalanx, Tip, and Stalk ECs. Furthermore, our model is able to describe the modulation of EC behavior due to extracellular micro-environments, as well as the effect due to loss- and gain-of-function mutations. These properties make our model a suitable platform for the understanding of the molecular mechanisms underlying some pathologies. For example, it is possible to follow the changes in the activation patterns caused by mutations that promote Tip EC behavior and inhibit Phalanx EC behavior, that lead to the conditions associated with retinal vascular disorders and tumor vascularization. Moreover, the model describes how mutations that promote Phalanx EC behavior are associated with the development of arteriovenous and venous malformations. These results suggest that the network model that we propose has the potential to be used in the study of how the modulation of the EC extracellular micro-environment may improve the outcome of vascular disease treatments.

  19. A Network Model to Explore the Effect of the Micro-environment on Endothelial Cell Behavior during Angiogenesis

    Directory of Open Access Journals (Sweden)

    Nathan Weinstein

    2017-11-01

    Full Text Available Angiogenesis is an important adaptation mechanism of the blood vessels to the changing requirements of the body during development, aging, and wound healing. Angiogenesis allows existing blood vessels to form new connections or to reabsorb existing ones. Blood vessels are composed of a layer of endothelial cells (ECs covered by one or more layers of mural cells (smooth muscle cells or pericytes. We constructed a computational Boolean model of the molecular regulatory network involved in the control of angiogenesis. Our model includes the ANG/TIE, HIF, AMPK/mTOR, VEGF, IGF, FGF, PLCγ/Calcium, PI3K/AKT, NO, NOTCH, and WNT signaling pathways, as well as the mechanosensory components of the cytoskeleton. The dynamical behavior of our model recovers the patterns of molecular activation observed in Phalanx, Tip, and Stalk ECs. Furthermore, our model is able to describe the modulation of EC behavior due to extracellular micro-environments, as well as the effect due to loss- and gain-of-function mutations. These properties make our model a suitable platform for the understanding of the molecular mechanisms underlying some pathologies. For example, it is possible to follow the changes in the activation patterns caused by mutations that promote Tip EC behavior and inhibit Phalanx EC behavior, that lead to the conditions associated with retinal vascular disorders and tumor vascularization. Moreover, the model describes how mutations that promote Phalanx EC behavior are associated with the development of arteriovenous and venous malformations. These results suggest that the network model that we propose has the potential to be used in the study of how the modulation of the EC extracellular micro-environment may improve the outcome of vascular disease treatments.

  20. Study of Formation Mechanisms of Gas Hydrate

    Science.gov (United States)

    Yang, Jia-Sheng; Wu, Cheng-Yueh; Hsieh, Bieng-Zih

    2015-04-01

    Gas hydrates, which had been found in subsurface geological environments of deep-sea sediments and permafrost regions, are solid crystalline compounds of gas molecules and water. The estimated energy resources of hydrates are at least twice of that of the conventional fossil fuel in the world. Gas hydrates have a great opportunity to become a dominating future energy. In the past years, many laboratory experiments had been conducted to study chemical and thermodynamic characteristics of gas hydrates in order to investigate the formation and dissociation mechanisms of hydrates. However, it is difficult to observe the formation and dissociation of hydrates in a porous media from a physical experiment directly. The purpose of this study was to model the dynamic formation mechanisms of gas hydrate in porous media by reservoir simulation. Two models were designed for this study: 1) a closed-system static model with separated gas and water zones; this model was a hydrate equilibrium model to investigate the behavior of the formation of hydrates near the initial gas-water contact; and 2) an open-system dynamic model with a continuous bottom-up gas flow; this model simulated the behavior of gas migration and studied the formation of hydrates from flowed gas and static formation water in porous media. A phase behavior module was developed in this study for reservoir simulator to model the pressure-volume-temperature (PVT) behavior of hydrates. The thermodynamic equilibriums and chemical reactions were coupled with the phase behavior module to have functions modelling the formation and dissociation of hydrates from/to water and gas. The simulation models used in this study were validated from the code-comparison project proposed by the NETL. According to the modelling results of the closed-system static model, we found that predominated location for the formation of hydrates was below the gas-water contact (or at the top of water zone). The maximum hydrate saturation

  1. Reactive Oxygen Species in Vascular Formation and Development

    Directory of Open Access Journals (Sweden)

    Yijiang Zhou

    2013-01-01

    Full Text Available Reactive oxygen species (ROS are derived from the metabolism of oxygen and are traditionally viewed as toxic byproducts that cause damage to biomolecules. It is now becoming widely acknowledged that ROS are key modulators in a variety of biological processes and pathological states. ROS mediate key signaling transduction pathways by reversible oxidation of certain signaling components and are involved in the signaling of growth factors, G-protein-coupled receptors, Notch, and Wnt and its downstream cascades including MAPK, JAK-STAT, NF-κB, and PI3K/AKT. Vascular formation and development is one of the most important events during embryogenesis and is vital for postnasal tissue repair. In this paper, we will discuss how ROS regulate different steps in vascular development, including smooth muscle cell differentiation, angiogenesis, endothelial progenitor cells recruitment, and vascular cell migration.

  2. Vascular endothelial growth factors: A comparison between invertebrates and vertebrates.

    Science.gov (United States)

    Kipryushina, Yulia O; Yakovlev, Konstantin V; Odintsova, Nelly A

    2015-12-01

    This review aims to summarize recent data concerning the structure and role of the members of the vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor (VEGFR) families in the context of early development, organogenesis and regeneration, with a particular emphasis on the role of these factors in the development of invertebrates. Homologs of VEGF and/or VEGFR have been found in all Eumetazoa, in both Radiata and Bilateria, where they are expressed in the descendants of different germ layers and play a pivotal role in the development of animals with and without a vascular system. VEGF is a well-known angiogenesis regulator, but this factor also control cell migration during neurogenesis and the development of branching organs (the trachea) in invertebrate and vertebrate species. A possible explanation for the origin of Vegf/Vegfr in the animal kingdom and a pathway of Vegf/Vegfr evolution are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Combinatorial incorporation of fluoride and cobalt ions into calcium phosphates to stimulate osteogenesis and angiogenesis.

    Science.gov (United States)

    Birgani, Zeinab Tahmasebi; Gharraee, Nazli; Malhotra, Angad; van Blitterswijk, Clemens A; Habibovic, Pamela

    2016-02-29

    Bone healing requires two critical mechanisms, angiogenesis and osteogenesis. In order to improve bone graft substitutes, both mechanisms should be addressed simultaneously. While the individual effects of various bioinorganics have been studied, an understanding of the combinatorial effects is lacking. Cobalt and fluoride ions, in appropriate concentrations, are known to individually favor the vascularization and mineralization processes, respectively. This study investigated the potential of using a combination of fluoride and cobalt ions to simultaneously promote osteogenesis and angiogenesis in human mesenchymal stromal cells (hMSCs). Using a two-step biomimetic method, wells of tissue culture plates were coated with a calcium phosphate (CaP) layer without or with the incorporation of cobalt, fluoride, or both. In parallel, hMSCs were cultured on uncoated well plates, and cultured with cobalt and/or fluoride ions within the media. The results revealed that cobalt ions increased the expression of angiogenic markers, with the effects being stronger when the ions were added as a dissolved salt in cell medium as compared to incorporation into CaP. Cobalt ions generally suppressed the ALP activity, the expression of osteogenic genes, and the level of mineralization, regardless of delivery method. Fluoride ions, individually or in combination with cobalt, significantly increased the expression of many of the selected osteogenic markers, as well as mineral deposition. This study demonstrates an approach to simultaneously target the two essential mechanisms in bone healing: angiogenesis and osteogenesis. The incorporation of cobalt and fluoride into CaPs is a promising method to improve the biological performance of fully synthetic bone graft substitutes.

  4. miR-191 suppresses angiogenesis by activation of NF-κB signaling.

    Science.gov (United States)

    Gu, Yuan; Ampofo, Emmanuel; Menger, Michael D; Laschke, Matthias W

    2017-08-01

    MicroRNAs (miRNAs) are powerful regulators of diverse biologic processes. However, the function of most miRNAs in angiogenesis remains elusive. In this study, we identified miR-191-5p (miR-191) as a potent inhibitor of blood vessel development. Transfection of human dermal microvascular endothelial cells with miR-191 mimic (miR-191m) inhibited their proliferation, migration, and tube formation. Moreover, vascular sprouting of miR-191m-transfected mouse aortic rings was significantly reduced when compared with controls. Transfection with miR-191 inhibitor (miR-191i) induced proangiogenic effects. The anti- and proangiogenic activities of miR-191m and -191i were further demonstrated in vivo Additional molecular biologic analyses revealed that miR-191m activates NF-κB signaling by up-regulating the mRNA expression of p65. miR-191 also increased the mRNA levels of the antiangiogenic factors p21 and tissue inhibitor of metalloproteinase-1 and reduced the expression of the proangiogenic factors eNOS and matrix metalloproteinase-1 and -9. Blockade of NF-κB activation with Bay 11-7082 reversed the antiangiogenic effects of miR-191m. These findings indicate that miR-191 effectively suppresses angiogenesis by activation of the NF-κB signaling pathway.-Gu, Y., Ampofo, E., Menger, M. D., Laschke, M. W. miR-191 suppresses angiogenesis by activation of NF-κB signaling. © FASEB.

  5. IQGAP1 is involved in post-ischemic neovascularization by regulating angiogenesis and macrophage infiltration.

    Directory of Open Access Journals (Sweden)

    Norifumi Urao

    2010-10-01

    Full Text Available Neovascularization is an important repair mechanism in response to ischemic injury and is dependent on inflammation, angiogenesis and reactive oxygen species (ROS. IQGAP1, an actin-binding scaffold protein, is a key regulator for actin cytoskeleton and motility. We previously demonstrated that IQGAP1 mediates vascular endothelial growth factor (VEGF-induced ROS production and migration of cultured endothelial cells (ECs; however, its role in post-ischemic neovascularization is unknown.Ischemia was induced by left femoral artery ligation, which resulted in increased IQGAP1 expression in Mac3(+ macrophages and CD31(+ capillary-like ECs in ischemic legs. Mice lacking IQGAP1 exhibited a significant reduction in the post-ischemic neovascularization as evaluated by laser Doppler blood flow, capillary density and α-actin positive arterioles. Furthermore, IQGAP1(-/- mice showed a decrease in macrophage infiltration and ROS production in ischemic muscles, leading to impaired muscle regeneration and increased necrosis and fibrosis. The numbers of bone marrow (BM-derived cells in the peripheral blood were not affected in these knockout mice. BM transplantation revealed that IQGAP1 expressed in both BM-derived cells and tissue resident cells, such as ECs, is required for post-ischemic neovascularization. Moreover, thioglycollate-induced peritoneal macrophage recruitment and ROS production were inhibited in IQGAP1(-/- mice. In vitro, IQGAP1(-/- BM-derived macrophages showed inhibition of migration and adhesion capacity, which may explain the defective macrophage recruitment into the ischemic tissue in IQGAP1(-/- mice.IQGAP1 plays a key role in post-ischemic neovascularization by regulating, not only, ECs-mediated angiogenesis but also macrophage infiltration as well as ROS production. Thus, IQGAP1 is a potential therapeutic target for inflammation- and angiogenesis-dependent ischemic cardiovascular diseases.

  6. Deficient retinoid-driven angiogenesis may contribute to failure of adult human lung regeneration in emphysema.

    Science.gov (United States)

    Ng-Blichfeldt, John-Poul; Alçada, Joana; Montero, M Angeles; Dean, Charlotte H; Griesenbach, Uta; Griffiths, Mark J; Hind, Matthew

    2017-06-01

    Molecular pathways that regulate alveolar development and adult repair represent potential therapeutic targets for emphysema. Signalling via retinoic acid (RA), derived from vitamin A, is required for mammalian alveologenesis, and exogenous RA can induce alveolar regeneration in rodents. Little is known about RA signalling in the human lung and its potential role in lung disease. To examine regulation of human alveolar epithelial and endothelial repair by RA, and characterise RA signalling in human emphysema. The role of RA signalling in alveolar epithelial repair was investigated with a scratch assay using an alveolar cell line (A549) and primary human alveolar type 2 (AT2) cells from resected lung, and the role in angiogenesis using a tube formation assay with human lung microvascular endothelial cells (HLMVEC). Localisation of RA synthetic (RALDH-1) and degrading (cytochrome P450 subfamily 26 A1 (CYP26A1)) enzymes in human lung was determined by immunofluorescence. Regulation of RA pathway components was investigated in emphysematous and control human lung tissue by quantitative real-time PCR and Western analysis. RA stimulated HLMVEC angiogenesis in vitro; this was partially reproduced with a RAR-α agonist. RA induced mRNA expression of vascular endothelial growth factor A (VEGFA) and VEGFR2. RA did not modulate AT2 repair. CYP26A1 protein was identified in human lung microvasculature, whereas RALDH-1 partially co-localised with vimentin-positive fibroblasts. CYP26A1 mRNA and protein were increased in emphysema. RA regulates lung microvascular angiogenesis; the endothelium produces CYP26A1 which is increased in emphysema, possibly leading to reduced RA availability. These data highlight a role for RA in maintenance of the human pulmonary microvascular endothelium. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  7. Human Genetic Variation, Sport and Exercise Medicine, and Achilles Tendinopathy: Role for Angiogenesis-Associated Genes.

    Science.gov (United States)

    Rahim, Masouda; El Khoury, Louis Y; Raleigh, Stuart M; Ribbans, William J; Posthumus, Michael; Collins, Malcolm; September, Alison V

    2016-09-01

    Sport and Exercise Medicine is one of the important subspecialties of 21st century healthcare contributing to improving the physical function, health, and vitality of populations while reducing the prevalence of lifestyle-related diseases. Moreover, sport and exercise are associated with injuries such as Achilles tendinopathy, which is a common tendon injury. The angiogenesis-associated signaling pathway plays a key role in extracellular matrix remodeling, with increased levels of angiogenic cytokines reported after cyclic stretching of tendon fibroblasts. We investigated the variants in angiogenesis genes in relation to the risk of Achilles tendinopathy in two population samples drawn independently from South Africa (SA) and the United Kingdom (UK). The study sample comprised 120 SA and 130 UK healthy controls, and 108 SA and 87 UK participants with Achilles tendinopathy. All participants were genotyped for five functional polymorphisms in the vascular endothelial growth factor, A isoform (VEGFA) (rs699947, rs1570360, rs2010963) and kinase insert-domain receptor (KDR) genes (rs1870377, rs2071559). The VEGFA A-G-G inferred haplotype was associated with an increased risk of Achilles tendinopathy in the SA group (15% in controls vs. 20% in cases, p = 0.048) and the combined SA+UK group (14% in controls vs. 20% in cases, p = 0.009). These new findings implicate the VEGFA gene with Achilles tendinopathy risk, while highlighting the potential biological significance of the angiogenesis signaling pathway in the etiology of Achilles tendinopathy. The evidence suggesting a genetic contribution to the susceptibility of sustaining a tendon injury is growing. We anticipate that high-throughput and multi-omics approaches, building on genomics, proteomics, and metabolomics, may soon uncover the pathophysiology of many diseases in the field of Sports and Exercise Medicine, as a new frontier of global precision medicine.

  8. Treatment of medulloblastoma with oncolytic measles viruses expressing the angiogenesis inhibitors endostatin and angiostatin

    International Nuclear Information System (INIS)

    Hutzen, Brian; Bid, Hemant Kumar; Houghton, Peter J; Pierson, Christopher R; Powell, Kimerly; Bratasz, Anna; Raffel, Corey; Studebaker, Adam W

    2014-01-01

    Medulloblastoma is the most common type of pediatric brain tumor. Although numerous factors influence patient survival rates, more than 30% of all cases will ultimately be refractory to conventional therapies. Current standards of care are also associated with significant morbidities, giving impetus for the development of new treatments. We have previously shown that oncolytic measles virotherapy is effective against medulloblastoma, leading to significant prolongation of survival and even cures in mouse xenograft models of localized and metastatic disease. Because medulloblastomas are known to be highly vascularized tumors, we reasoned that the addition of angiogenesis inhibitors could further enhance the efficacy of oncolytic measles virotherapy. Toward this end, we have engineered an oncolytic measles virus that express a fusion protein of endostatin and angiostatin, two endogenous and potent inhibitors of angiogenesis. Oncolytic measles viruses encoding human and mouse variants of a secretable endostatin/angiostatin fusion protein were designed and rescued according to established protocols. These viruses, known as MV-hE:A and MV-mE:A respectively, were then evaluated for their anti-angiogenic potential and efficacy against medulloblastoma cell lines and orthotopic mouse models of localized disease. Medulloblastoma cells infected by MV-E:A readily secrete endostatin and angiostatin prior to lysis. The inclusion of the endostatin/angiostatin gene did not negatively impact the measles virus’ cytotoxicity against medulloblastoma cells or alter its growth kinetics. Conditioned media obtained from these infected cells was capable of inhibiting multiple angiogenic factors in vitro, significantly reducing endothelial cell tube formation, viability and migration compared to conditioned media derived from cells infected by a control measles virus. Mice that were given a single intratumoral injection of MV-E:A likewise showed reduced numbers of tumor-associated blood

  9. Fundamentals and applications of gas hydrates.

    Science.gov (United States)

    Koh, Carolyn A; Sloan, E Dendy; Sum, Amadeu K; Wu, David T

    2011-01-01

    Fundamental understanding of gas hydrate formation and decomposition processes is critical in many energy and environmental areas and has special importance in flow assurance for the oil and gas industry. These areas represent the core of gas hydrate applications, which, albeit widely studied, are still developing as growing fields of research. Discovering the molecular pathways and chemical and physical concepts underlying gas hydrate formation potentially can lead us beyond flowline blockage prevention strategies toward advancing new technological solutions for fuel storage and transportation, safely producing a new energy resource from natural deposits of gas hydrates in oceanic and arctic sediments, and potentially facilitating effective desalination of seawater. The state of the art in gas hydrate research is leading us to new understanding of formation and dissociation phenomena that focuses on measurement and modeling of time-dependent properties of gas hydrates on the basis of their well-established thermodynamic properties.

  10. VEGFR tyrosine kinase inhibitor II (VRI) induced vascular insufficiency in zebrafish as a model for studying vascular toxicity and vascular preservation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shang; Dang, Yuan Ye; Oi Lam Che, Ginny [State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao (China); Kwan, Yiu Wa [School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong (China); Chan, Shun Wan [State Key Laboratory of Chinese Medicine and Molecular Pharmacology, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong (China); Leung, George Pak Heng [Pharmacology and Pharmacy, Faculty of Medicine, The University of Hong Kong, Hong Kong (China); Lee, Simon Ming Yuen, E-mail: simonlee@umac.mo [State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao (China); Hoi, Maggie Pui Man, E-mail: maghoi@umac.mo [State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao (China)

    2014-11-01

    In ischemic disorders such as chronic wounds and myocardial ischemia, there is inadequate tissue perfusion due to vascular insufficiency. Besides, it has been observed that prolonged use of anti-angiogenic agents in cancer therapy produces cardiovascular toxicity caused by impaired vessel integrity and regeneration. In the present study, we used VEGFR tyrosine kinase inhibitor II (VRI) to chemically induce vascular insufficiency in zebrafish in vivo and human umbilical vein endothelial cells (HUVEC) in vitro to further study the mechanisms of vascular morphogenesis in these pathological conditions. We also explored the possibility of treating vascular insufficiency by enhancing vascular regeneration and repair with pharmacological intervention. We observed that pretreatment of VRI induced blood vessel loss in developing zebrafish by inhibiting angiogenesis and increasing endothelial cell apoptosis, accompanied by down-regulation of kdr, kdrl and flt-1 genes expression. The VRI-induced blood vessel loss in zebrafish could be restored by post-treatment of calycosin, a cardiovascular protective isoflavone. Similarly, VRI induced cytotoxicity and apoptosis in HUVEC which could be rescued by calycosin post-treatment. Further investigation of the underlying mechanisms showed that the PI3K/AKT/Bad cell survival pathway was a main contributor of the vascular regenerative effect of calycosin. These findings indicated that the cardiovascular toxicity in anti-angiogenic therapy was mainly caused by insufficient endothelial cell survival, suggesting its essential role in vascular integrity, repair and regeneration. In addition, we showed that VRI-induced blood vessel loss in zebrafish represented a simple and effective in vivo model for studying vascular insufficiency and evaluating cancer drug vascular toxicities. - Highlights: • In vivo VRI model • Rescue effects of calycosin • Calycosin EC survival pathways.

  11. Separation of water through gas hydrate formation

    DEFF Research Database (Denmark)

    Boch Andersen, Torben; Thomsen, Kaj

    2009-01-01

    Gas hydrate is normally recognized as a troublemaker in the oil and gas industry. However, gas hydrate has some interesting possibilities when used in connection with separation of water. Nordic Sugar has investigated the possibility of using gas hydrates for concentration of sugar juice. The goa...... volumes and the needs for high pressure. The process could be interesting for concentration of heat sensitive, high value products...

  12. Natural gas hydrate occurrence and issues

    Science.gov (United States)

    Kvenvolden, K.A.

    1994-01-01

    Naturally occurring gas hydrate is found in sediment of two regions: (1) continental, including continental shelves, at high latitudes where surface temperatures are very cold, and (2) submarine outer continental margins where pressures are very high and bottom-water temperatures are near 0??C. Continental gas hydrate is found in association with onshore and offshore permafrost. Submarine gas hydrate is found in sediment of continental slopes and rises. The amount of methane present in gas hydrate is thought to be very large, but the estimates that have been made are more speculative than real. Nevertheless, at the present time there has been a convergence of ideas regarding the amount of methane in gas hydrate deposits worldwide at about 2 x 1016 m3 or 7 x 1017 ft3 = 7 x 105 Tcf [Tcf = trillion (1012) ft3]. The potentially large amount of methane in gas hydrate and the shallow depth of gas hydrate deposits are two of the principal factors driving research concerning this substance. Such a large amount of methane, if it could be commercially produced, provides a potential energy resource for the future. Because gas hydrate is metastable, changes of surface pressure and temperature affect its stability. Destabilized gas hydrate beneath the sea floor leads to geologic hazards such as submarine mass movements. Examples of submarine slope failures attributed to gas hydrate are found worldwide. The metastability of gas hydrate may also have an effect on climate. The release of methane, a 'greenhouse' gas, from destabilized gas hydrate may contribute to global warming and be a factor in global climate change.

  13. Thermal conductivity of hydrate-bearing sediments

    Science.gov (United States)

    Cortes, Douglas D.; Martin, Ana I.; Yun, Tae Sup; Francisca, Franco M.; Santamarina, J. Carlos; Ruppel, Carolyn D.

    2009-01-01

    A thorough understanding of the thermal conductivity of hydrate-bearing sediments is necessary for evaluating phase transformation processes that would accompany energy production from gas hydrate deposits and for estimating regional heat flow based on the observed depth to the base of the gas hydrate stability zone. The coexistence of multiple phases (gas hydrate, liquid and gas pore fill, and solid sediment grains) and their complex spatial arrangement hinder the a priori prediction of the thermal conductivity of hydrate-bearing sediments. Previous studies have been unable to capture the full parameter space covered by variations in grain size, specific surface, degree of saturation, nature of pore filling material, and effective stress for hydrate-bearing samples. Here we report on systematic measurements of the thermal conductivity of air dry, water- and tetrohydrofuran (THF)-saturated, and THF hydrate–saturated sand and clay samples at vertical effective stress of 0.05 to 1 MPa (corresponding to depths as great as 100 m below seafloor). Results reveal that the bulk thermal conductivity of the samples in every case reflects a complex interplay among particle size, effective stress, porosity, and fluid-versus-hydrate filled pore spaces. The thermal conductivity of THF hydrate–bearing soils increases upon hydrate formation although the thermal conductivities of THF solution and THF hydrate are almost the same. Several mechanisms can contribute to this effect including cryogenic suction during hydrate crystal growth and the ensuing porosity reduction in the surrounding sediment, increased mean effective stress due to hydrate formation under zero lateral strain conditions, and decreased interface thermal impedance as grain-liquid interfaces are transformed into grain-hydrate interfaces.

  14. Transforming growth factor β family members in regulation of vascular function: in the light of vascular conditional knockouts.

    Science.gov (United States)

    Jakobsson, Lars; van Meeteren, Laurens A

    2013-05-15

    Blood vessels are composed of endothelial cells, mural cells (smooth muscle cells and pericytes) and their shared basement membrane. During embryonic development a multitude of signaling components orchestrate the formation of new vessels. The process is highly dependent on correct dosage, spacing and timing of these signaling molecules. As vessels mature some cascades remain active, albeit at very low levels, and may be reactivated upon demand. Members of the Transforming growth factor β (TGF-β) protein family are strongly engaged in developmental angiogenesis but are also regulators of vascular integrity in the adult. In humans various genetic alterations within this protein family cause vascular disorders, involving disintegration of vascular integrity. Here we summarize and discuss recent data gathered from conditional and endothelial cell specific genetic loss-of-function of members of the TGF-β family in the mouse. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Human Cytomegalovirus Secretome Contains Factors That Induce Angiogenesis and Wound Healing

    Energy Technology Data Exchange (ETDEWEB)

    Dumortier, Jerome; Streblow, Daniel N.; Moses, Ashlee V.; Jacobs, Jon M.; Kreklywich, Craig N.; Camp, David G.; Smith, Richard D.; Orloff, Susan L.; Nelson, Jay

    2008-07-01

    Human cytomegalovirus (HCMV) is implicated in the acceleration of a number of vascular diseases including transplant vascular sclerosis (TVS), the lesion associated with chronic rejection (CR) of solid organ transplants. Although the virus persists in the allograft throughout the course of disease, few cells are directly infected by CMV. This observation is in contrast to the global effects that CMV has on the acceleration of TVS/CR, suggesting that CMV infection indirectly promotes the vascular disease process. Recent transcriptome analysis of CMV-infected heart allografts indicates that the virus induces cytokines and growth factors associated with angiogenesis (AG) and wound healing (WH), suggesting that CMV may accelerate TVS/CR through the induction and secretion of AG/WH factors from infected cells. We analyzed virus-free supernatants from HCMV-infected cells (HCMV secretomes) for growth factors, by mass spectrometry and immunoassays, and found that the HCMV secretome contains over 1,000 cellular proteins, many of which are involved in AG/WH. Importantly, functional assays demonstrated that CMV but not herpes simplex virus secretomes not only induce AG/WH but also promote neovessel stabilization and endothelial cell survival for 2 weeks. These findings suggest that CMV acceleration of TVS occurs through virus-induced growth factors and cytokines in the CMV secretome.

  16. Accelerated hydration of high silica cements

    International Nuclear Information System (INIS)

    Walker, Colin; Yui, Mikazu

    2012-01-01

    Current Japanese designs for high level radioactive waste (HLW) repositories anticipate the use of both bentonite (buffer and backfill material) and cement based materials. Using hydrated Ordinary Portland Cement (OPC) as a grouting material is undesirable because the associated high pH buffer will have an undisputed detrimental effect on the performance of the bentonite buffer and backfill and of the host rock by changing its porosity. Instead, hydrated low pH cement (LopHC) grouting materials are being developed to provide a pH inferior or equal to 11 to reduce these detrimental effects. LopHC grouting materials use mixtures of superfine OPC (SOPC) clinker and silica fume (SF), and are referred as high silica cements (HSC). The focus of the present study was to identify the development of the unhydrated and hydrated mineral assemblage and the solution chemistry during the hydration of HSC. Since hydration experiments of cementitious materials are notably slow, a ball mill was used to accelerate hydration. This was done for two reasons. Firstly, to develop a method to rapidly hydrate cement based materials without the need for higher temperatures (which can alter the mineral assemblage), and secondly, to ensure that the end point of hydration was reached in a reasonable time frame and so to realize the final mineralogy and solution chemistry of hydrated HSC

  17. Paradox between angiogenesis and oxygen effect in the treatment of tumor

    International Nuclear Information System (INIS)

    Hayashi, Masanobu

    2008-01-01

    The paradox in the title is described on recent findings concerning the effects of anti-angiogenetic drugs on possible radiation resistance and sensitivity of tumor tissue. Suppression of angiogenesis leads to inhibition of tumor growth, based on which anti-tumor drugs like anti- vascular endotherial growth factor (VEGF) antibody bevacizumab to suppress the genesis have been developed and clinically used, but they conceivably increase the population of hypoxic tumor cells. Those drugs are essentially used in combination with other chemotherapeutic agents and/or radiation. Hypoxic tumor cells present in the tissue are generally radioresistant. There are reported findings, however, that the drugs sometimes elevate the efficacy of radiotherapy, which hypothesizes that the drugs induces a proangiogenetic state, where increased level of growth factors in the tissue is reduced to normalize the vasculature and thereby reoxygenation occurs, the oxygen effect. Because copper is a cofactor of growth factors like VEGF and basic fibroblast growth factor (bFGF) and essential for angiogenesis, authors have studied the effect of a Cu-chelator, trientine, on transplanted mouse tumors which has been shown to induce apoptosis of the target cells. Combination of the chelator with X-ray irradiation is found effective in tumor growth inhibition and in survival increase. For more effective combination therapy, the interaction occurring in combinations of regimen should be elucidated. (R.T.)

  18. miR-203 Suppresses Tumor Growth and Angiogenesis by Targeting VEGFA in Cervical Cancer

    Directory of Open Access Journals (Sweden)

    Xiangyu Zhu

    2013-07-01

    Full Text Available Background/Aims: MicroRNA (miRNA plays important roles in the development of different cancers. In this study, we investigated the roles and mechanisms of miR-203 in human cervical cancer. Methods: miR-203 expression was detected in cervical cancer tumors and cell lines by qRT-PCR. The methylation status in the promoter region of miR-203 was examined by methylation-specific PCR. The functional effect of miR-203 was determined by both in vitro and in vivo assays. Results: miR-203 was frequently down-regulated in cervical cancer tumors and cell lines. This down-regulation of miR-203 was associated with methylation of the miR-203 promoter. Furthermore, miR-203 down-regulated vascular endothelial growth factor alpha (VEGFA expression by directly targeting its 3'-untranslated region. Functional assays revealed that miR-203 suppressed cervical cancer cell proliferation, tumor growth, and angiogenesis in nude mice, whereas forced expression of VEGFA rescued this inhibitory effect. Conclusion: Our collective findings indicate that miR-203 functions as a tumor suppressor by targeting VEGFA, resulting in the inhibition of tumor growth and angiogenesis. Thus, miR-203 may be a potential therapeutic target and prognostic marker in cervical cancer.

  19. FOXD3 suppresses tumor growth and angiogenesis in non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Jun-Hai; Zhao, Chun-Liu [Department of Respiratory Medicine, Luwan Branch of Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 20020 (China); Ding, Lan-Bao [Department of Nuclear Medicine, Shanghai 10th People' s Hospital, Tongji University School of Medicine, Shanghai 200072 (China); Zhou, Xi, E-mail: modelmap@139.com [Department of Respiratory Medicine, Luwan Branch of Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 20020 (China)

    2015-10-09

    The transcription factor forkhead box D3 (FOXD3), widely studied as a transcriptional repressor in embryogenesis, participates in the carcinogenesis of many cancers. However, the expression pattern and role of FOXD3 in non-small cell lung cancer (NSCLC) have not been well characterized. We report that FOXD3 is significantly downregulated in NSCLC cell lines and clinical tissues. FOXD3 overexpression significantly inhibits cell growth and results in G1 cell cycle arrest in NSCLC A549 and H1299 cells. In a xenograft tumor model, FOXD3 overexpression inhibits tumor growth and angiogenesis. Remarkably, expression of vascular endothelial growth factor (VEGF) was reduced in FOXD3 overexpression models both in vitro and in vivo. These findings suggest that FOXD3 plays a potential tumor suppressor role in NSCLC progression and represents a promising clinical prognostic marker and therapeutic target for this disease. - Highlights: • FOXD3 is downregulated in NSCLC cell lines and tissues. • FOXD3 overexpression inhibited cell proliferation in NSCLC cells. • FOXD3 overexpression led to decreased angiogenesis in NSCLC cells in vitro and in vivo.

  20. Stretch-induced intussuceptive and sprouting angiogenesis in the chick chorioallantoic membrane.

    Science.gov (United States)

    Belle, Janeil; Ysasi, Alexandra; Bennett, Robert D; Filipovic, Nenad; Nejad, Mohammad Imani; Trumper, David L; Ackermann, Maximilian; Wagner, Willi; Tsuda, Akira; Konerding, Moritz A; Mentzer, Steven J

    2014-09-01

    Vascular systems grow and remodel in response to not only metabolic needs, but also mechanical influences as well. Here, we investigated the influence of tissue-level mechanical forces on the patterning and structure of the chick chorioallantoic membrane (CAM) microcirculation. A dipole stretch field was applied to the CAM using custom computer-controlled servomotors. The topography of the stretch field was mapped using finite element models. After 3days of stretch, Sholl analysis of the CAM demonstrated a 7-fold increase in conducting vessel intersections within the stretch field (p0.05). In contrast, corrosion casting and SEM of the stretch field capillary meshwork demonstrated intense sprouting and intussusceptive angiogenesis. Both planar surface area (p<0.05) and pillar density (p<0.01) were significantly increased relative to control regions of the CAM. We conclude that a uniaxial stretch field stimulates the axial growth and realignment of conducting vessels as well as intussusceptive and sprouting angiogenesis within the gas exchange capillaries of the ex ovo CAM. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Stretch-induced Intussuceptive and Sprouting Angiogenesis in the Chick Chorioallantoic Membrane

    Science.gov (United States)

    Belle, Janeil; Ysasi, Alexandra; Bennett, Robert; Filipovic, Nenad; Nejad, Mohammad Imani; Trumper, David L.; Ackermann, Max; Wagner, Willi; Tsuda, Akira; Konerding, Moritz A.; Mentzer, Steven J.

    2014-01-01

    Vascular systems grow and remodel in response to not only metabolic needs, but mechanical influences as well. Here, we investigated the influence of tissue-level mechanical forces on the patterning and structure of the chick chorioallantoic membrane (CAM) microcirculation. A dipole stretch field was applied to the CAM using custom computer-controlled servomotors. The topography of the stretch field was mapped using finite element models. After 3 days of stretch, Sholl analysis of the CAM demonstrated a 7-fold increase in conducting vessel intersections within the stretch field (p0.05). In contrast, corrosion casting and SEM of the stretch field capillary meshwork demonstrated intense sprouting and intussusceptive angiogenesis. Both planar surface area (p<0.05) and pillar density (p<0.01) were significantly increased relative to control regions of the CAM. We conclude that a uniaxial stretch field stimulates the axial growth and realignment of conducting vessels as well as intussusceptive and sprouting angiogenesis within the gas exchange capillaries of the ex ovo CAM. PMID:24984292

  2. Anti-angiogenesis and anti-tumor activity of recombinant anginex

    International Nuclear Information System (INIS)

    Brandwijk, Ricardo J.M.G.E.; Dings, Ruud P.M.; Linden, Edith van der; Mayo, Kevin H.; Thijssen, Victor L.J.L.; Griffioen, Arjan W.

    2006-01-01

    Anginex, a synthetic 33-mer angiostatic peptide, specifically inhibits vascular endothelial cell proliferation and migration along with induction of apoptosis in endothelial cells. Here we report on the in vivo characterization of recombinant anginex and use of the artificial anginex gene for gene therapy approaches. Tumor growth of human MA148 ovarian carcinoma in athymic mice was inhibited by 80% when treated with recombinant anginex. Histological analysis of the tumors showed an approximate 2.5-fold reduction of microvessel density, suggesting that angiogenesis inhibition is the cause of the anti-tumor effect. Furthermore, there was a significant correlation between the gene expression patterns of 16 angiogenesis-related factors after treatment with both recombinant and synthetic anginex. To validate the applicability of the anginex gene for gene therapy, stable transfectants of murine B16F10 melanoma cells expressing recombinant anginex were made. Supernatants of these cells inhibited endothelial cell proliferation in vitro. Furthermore, after subcutaneous injection of these cells in C57BL/6 mice, an extensive delay in tumor growth was observed. These data show that the artificial anginex gene can be used to produce a recombinant protein with similar activity as its synthetic counterpart and that the gene can be applied in gene therapy approaches for cancer treatment

  3. Semiquantifiable angiogenesis parameters in association with the malignant transformation of oral leukoplakia.

    Science.gov (United States)

    Thiem, Daniel G E; Schneider, Schamiem; Venkatraman, Narayan T; Kumar, Vinay V; Brieger, Jürgen; Frerich, Bernhard; Kämmerer, Peer W

    2017-10-01

    Aim of the study was to assess the role of angiogenesis in the process of malignant transformation of clinical diagnosed oral leucoplakia (OL). A total of 131 histological preparations [oral leukoplakia/hyperkeratosis without dysplasia (OL; n = 49), oral leukoplakia/hyperkeratosis with mild dysplasia (OL-SIN1; n = 33), with moderate dysplasia (OL-SIN2; n = 13) and leukoplakia-derived oral squamous cell carcinoma (OL-OSCC; n = 36)] were evaluated for microvessel density (MVD), vessel diameter as well as for vascular endothelial growth factor (VEGF-A) expression. Data were compared within the groups. For MVD, there were significant differences between OL and OL-SIN 2/OL-OSCC (P < 0.05) and between OL-SIN 1 and OL-OSCC (P < 0.05). For OL-OSCC, vessel diameters were significantly increased compared with OL (P < 0.05). Expression of VEGF-A increased significantly gradually from OL-SIN 1 to OSCC (each P < 0.05). This was especially evident for lesions of the tongue when compared to the others. Angiogenesis increases during the transition from OL through dysplasia to OL-OSCC. In particular, OL-OSCCs of the tongue, VEGF-A expression may be used for estimation of malignant progression of OL. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Targeting Angiogenesis and Tumor Microenvironment in Metastatic Colorectal Cancer: Role of Aflibercept

    Directory of Open Access Journals (Sweden)

    Guido Giordano

    2014-01-01

    Full Text Available In the last decades, we have progressively observed an improvement in therapeutic options for metastatic colorectal cancer (mCRC treatment with a progressive prolongation of survival. mCRC prognosis still remains poor with low percentage of 5-year survival. Targeted agents have improved results obtained with standard chemotherapy. Angiogenesis plays a crucial role in colorectal cancer growth, proliferation, and metastasization and it has been investigated as a potential target for mCRC treatment. Accordingly, novel antiangiogenic targeted agents bevacizumab, regorafenib, and aflibercept have been approved for mCRC treatment as the result of several phase III randomized trials. The development of a tumor permissive microenvironment via the aberrant expression by tumor cells of paracrine factors alters the tumor-stroma interactions inducing an expansion of proangiogenic signals. Recently, the VELOUR study showed that addition of aflibercept to FOLFIRI regimen as a second-line therapy for mCRC improved significantly OS, PFS, and RR. This molecule represents a valid second-line therapeutic option and its peculiar ability to interfere with placental growth factor (PlGF/vascular endothelial growth factor receptor 1 (VEGFR1 axis makes it effective in targeting angiogenesis, inflammatory cells and in overcoming resistances to anti-angiogenic first-line treatment. Here, we discuss about Aflibercept peculiar ability to interfere with tumor microenvironment and angiogenic pathway.

  5. Caspase 3 in dying tumor cells mediates post-irradiation angiogenesis

    Science.gov (United States)

    Zhang, Zhengxiang; Yu, Yang; Cheng, Jin; Gong, Yanping; Li, Chuan-Yuan; Huang, Qian

    2015-01-01

    Cytotoxic radiotherapy unfavorably induces tumor cells to generate various proangiogenic substances, promoting post-irradiation angiogenesis (PIA), which is one of major causes of radiotherapy failure. Though several studies have reported some mechanisms behind PIA, they have not yet described the beginning proangiogenic motivator buried in the irradiated microenvironment. In this work, we revealed that dying tumor cells induced by irradiation prompted PIA via a caspase 3 dependent mechanism. Proteolytic inactivation of caspase 3 in dying tumor cells by transducing a dominant-negative version weakened proangiogenic effects in vitro and in vivo. In addition, inhibition of caspase 3 activity suppressed tumor angiogenesis and tumorigenesis in xenograft mouse model. Importantly, we identified vascular endothelial growth factor (VEGF)-A as a downstream proangiogenic factor regulated by caspase 3 possibly through Akt signaling. Collectively, these findings indicated that besides acting as a key executioner in apoptosis, caspase 3 in dying tumor cells may play a central role in driving proangiogenic response after irradiation. Thus, radiotherapy in combination with caspase 3 inhibitors may be a novel promising therapeutic strategy to reduce tumor recurrence due to restrained PIA. PMID:26431328

  6. [Reparative Osteogenesis and Angiogenesis in Low Intensity Electromagnetic Radiation of Ultra-High Frequency].

    Science.gov (United States)

    Iryanov, Y M; Kiryanov, N A

    2015-01-01

    Non-drug correction of reparative bone tissue regeneration in different pathological states - one of the most actual problems of modern medicine. Our aim was to conduct morphological analysis of the influence of electromagnetic radiation of ultra-high frequency and low intensity on reparative osteogenesis and angiogenesis in fracture treatment under transosseous osteosynthesis. A controlled nonrandomized study was carried out. In the experiment conducted on rats we modeled tibial fracture with reposition and fixation of the bone fragments both in control and experimental groups. In the animals of the experimental group the fracture zone was exposed to low intensity electromagnetic radiation of ultra-high frequency. Exposure simulation was performed in the control group. The operated bones were examined using radiography, light and electronic microscopy, X-ray electronic probe microanalysis. It has been established that electromagnetic radiation of ultra-high frequency sessions in fracture treatment stimulate secretory activity and degranulation of mast cells, produce microcirculatory bed vascular permeability increase, endotheliocyte migration phenotype expression, provide endovascular endothelial outgrowth formation, activate reparative osteogenesis and angiogenesis while fracture reparation becomes the one of the primary type. The full periosteal, intermediary and intraosteal bone union was defined in 28 days. Among the therapeutic benefits of electromagnetic radiation of ultra-high frequency in fracture treatment we can detect mast cell secretorv activity stimulation and endovascular anziozenesis activation.

  7. FASN expression, angiogenesis and lymphangiogenesis in central and peripheral giant cell lesions

    Directory of Open Access Journals (Sweden)

    Saulo Gabriel Moreira FALCI

    2014-04-01

    Full Text Available Central giant cell lesion (CGCL and peripheral giant cell lesion (PGCL are non-neoplastic proliferative processes of the jaws. PGCL is a reactive process induced by irritant local factors and CGCL is an intra-osseous lesion of unknown etiology. Both lesions exhibit similar histologic features showing abundant mononuclear cells, admixed with a large number of multinucleated giant cells and a rich vascularized stroma with extravasated erythrocytes, hemosiderin deposition, and blood-filled pools. Recent studies have linked fatty acid synthase (FASN with angiogenesis. Objective: To evaluate angiogenesis and lymphangiogenesis and their relationship with FASN expression in CGCL and PGCL. Material and Methods: Thirteen CGCL and 14 PGCL of the jaws were selected for immunoexpression of FASN; CD34 and CD105 (to assess blood microvessel density [MVD] and microvessel area [MVA]; and D2-40 (to assess lymphatic MVD and MVA. Results: Within PGCL and CGCL, MVD-CD34 was signifcantly higher than MVD-CD10S, followed by MVD-D2-40. Moreover, a signifcantly higher number of FASN-positive multinucleated giant cells than mononuclear cells were observed. Between PGCL and CGCL, only MVD-CD34 and all MVA were signifcantly higher in PGCL. Positive correlation between MVA-CD10S with FASNpositive mononuclear cells in both lesions was observed. Conclusions: Our results show both lesions exhibiting similar levels of FASN expression and neoangiogenesis, suggesting constitutive processes that regulate tissue maintenance.

  8. FOXD3 suppresses tumor growth and angiogenesis in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Yan, Jun-Hai; Zhao, Chun-Liu; Ding, Lan-Bao; Zhou, Xi

    2015-01-01

    The transcription factor forkhead box D3 (FOXD3), widely studied as a transcriptional repressor in embryogenesis, participates in the carcinogenesis of many cancers. However, the expression pattern and role of FOXD3 in non-small cell lung cancer (NSCLC) have not been well characterized. We report that FOXD3 is significantly downregulated in NSCLC cell lines and clinical tissues. FOXD3 overexpression significantly inhibits cell growth and results in G1 cell cycle arrest in NSCLC A549 and H1299 cells. In a xenograft tumor model, FOXD3 overexpression inhibits tumor growth and angiogenesis. Remarkably, expression of vascular endothelial growth factor (VEGF) was reduced in FOXD3 overexpression models both in vitro and in vivo. These findings suggest that FOXD3 plays a potential tumor suppressor role in NSCLC progression and represents a promising clinical prognostic marker and therapeutic target for this disease. - Highlights: • FOXD3 is downregulated in NSCLC cell lines and tissues. • FOXD3 overexpression inhibited cell proliferation in NSCLC cells. • FOXD3 overexpression led to decreased angiogenesis in NSCLC cells in vitro and in vivo.

  9. Waters of Hydration of Cupric Hydrates: A Comparison between Heating and Absorbance Methods

    Science.gov (United States)

    Barlag, Rebecca; Nyasulu, Frazier

    2011-01-01

    The empirical formulas of four cupric hydrates are determined by measuring the absorbance in aqueous solution. The Beer-Lambert Law is verified by constructing a calibration curve of absorbance versus known Cu[superscript 2+](aq) concentration. A solution of the unknown hydrate is prepared by using 0.2-0.3 g of hydrate, and water is added such…

  10. Methane hydrates as potential energy resource: Part 2 - Methane production processes from gas hydrates

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2010-01-01

    Three processes have been proposed for dissociation of methane hydrates: thermal stimulation, depressurization, and inhibitor injection. The obvious production approaches involve depressurization, heating and their combinations. The depressurization method is lowering the pressure inside the well and encouraging the methane hydrate to dissociate. Its objective is to lower the pressure in the free-gas zone immediately beneath the hydrate stability zone, causing the hydrate at the base of the hydrate stability zone to decompose. The thermal stimulation method is applied to the hydrate stability zone to raise its temperature, causing the hydrate to decompose. In this method, a source of heat provided directly in the form of injected steam or hot water or another heated liquid, or indirectly via electric or sonic means. This causes methane hydrate to decompose and generates methane gas. The methane gas mixes with the hot water and returns to the surface, where the gas and hot water are separated. The chemical inhibition method seeks to displace the natural-gas hydrate equilibrium condition beyond the hydrate stability zone's thermo-dynamic conditions through injection of a liquid inhibitor chemical adjacent to the hydrate. In this method, inhibitor such as methanol is injected from surface down to methane hydrate-bearing layers. The thermal stimulation method is quite expensive. The chemical inhibitor injection method is also expensive. The depressurization method may prove useful to apply more than one production.

  11. Vascular endothelial growth factor and not cyclooxygenase 2 promotes endothelial cell viability in the pancreatic tumor microenvironment.

    LENUS (Irish Health Repository)

    Toomey, Desmond P

    2010-07-01

    Cyclooxygenase 2 (COX-2) and vascular endothelial growth factor (VEGF), often coexpressed in cancer, are associated with poor prognosis. However, results from pancreatic cancer trials of their inhibitors were disappointing. This study delineated the role of COX-2 and nonsteroidal anti-inflammatory drugs in angiogenesis and VEGF regulation.

  12. Differential effects of vascular endothelial growth factor A isoforms in a mouse brain metastasis model of human melanoma.

    NARCIS (Netherlands)

    Kusters, B.; Waal, R.M.W. de; Wesseling, P.; Verrijp, K.; Maass, C.N.; Heerschap, A.; Barentsz, J.O.; Sweep, C.G.J.; Ruiter, D.J.; Leenders, W.P.J.

    2003-01-01

    We reported previously that vascular endothelial growth factor isoform A (VEGF-A) expression by Mel57 human melanoma cells led to tumor progression in a murine brain metastasis model in an angiogenesis-independent fashion by dilation of co-opted, pre-existing vessels and concomitant enhanced blood

  13. PAF receptor antagonist Ginkgolide B inhibits tumourigenesis and angiogenesis in colitis-associated cancer.

    Science.gov (United States)

    Sun, Lei; He, Zhen; Ke, Jia; Li, Senmao; Wu, Xianrui; Lian, Lei; He, Xiaowen; He, Xiaosheng; Hu, Jiancong; Zou, Yifeng; Wu, Xiaojian; Lan, Ping

    2015-01-01

    Platelet activating factor (PAF), a potent pro-inflammatory phospholipid, has been found to trigger tumor growth and angiogenesis through its G-protein coupled receptor (PAFR). This study was aimed to investigate the potential role of PAF in azoxymethane (AOM)/dextran sulfate sodium (DSS) induced colitis-associated cancer (CAC), using PAFR antagonist Ginkgolide B (GKB). We found GKB up-regulated serum level of PAF-AH activity. As assessed by disease activity index (DAI), histological injury scores, leukocytes infiltration, and expression of pro-inflammatory cytokines, GKB ameliorated colonic inflammation and decreased tumor number and load in mice. GKB also decreased expression of vascular endothelial growth factor (VEGF) and microvessel density (MVD) in tumor. These results suggest that PAFR antagonist might be a potential therapeutic strategy for CAC.

  14. Regulation of angiogenesis in human skeletal muscle with specific focus on pro- angiogenic and angiostatic factors

    DEFF Research Database (Denmark)

    Høier, Birgitte

    It is well established that acute exercise promotes an angiogenic response and that a period of exercise training results in capillary growth. Skeletal muscle angiogenesis is a complex process that requires a coordinated interplay of multiple factors and compounds to ensure proper vascular function...... was investigated. This was achieved by investigating the response of pro-angiogenic and angiostatic factors during acute passive movement and active exercise and during passive and active training. In addition, the response of pro-angiogenic and angiostatic factors during acute passive movement and active exercise...... exercise and passive movement before and after training which appears to be independent of exercise intensity at sub-maximal levels whereas high intensity exercise results in a lower increase in the interstitial VEGF protein concentration. The reason for a lower increase in interstitial VEGF with high...

  15. Hydration in soccer: a review

    Directory of Open Access Journals (Sweden)

    Monteiro Cristiano Ralo

    2003-01-01

    Full Text Available Hydration should be considered before, during and after the exercise. This review intends to approach the main points of hydration process in soccer. The replacement of fluids during exercise is proportional to some factors, such as: exercise intensity; climatic conditions; the athlete's acclimatization; the athlete's physical conditioning; physiologic individual characteristics and the player's biomechanics. Performance is improved when players ingest not only water but also carbohydrate. The rates that carbohydrate and water are absorbed by the organism are limited by the rates of gastric emptying and intestinal absorption. The composition of drinks offered to the players should be influenced by the relative importance of the need of supplying carbohydrates or water; it should be remembered that the depletion of carbohydrate can result in fatigue and decrease of performance, but it is not usually a life-threatening condition. The addition of carbohydrate in these drinks increases the concentrations of blood glucose, increases the use of external fuel through the increase of the glucose oxidation in the muscles and it spares muscle glycogen. So, the ingestion of carbohydrate before and during the exercise can delay the emergence of fatigue and increase the players' performance. Several tactics can be used to avoid dehydration, like hyperhydration before exercise and player's acclimatization. The ideal situation to restore the player's fluid losses is between the sessions of exercises. Since soccer is a sport with quite peculiar characteristics related to hydration, the players should be concerned and educated about the importance of fluid ingestion before, during and after the exercise.

  16. Protein dynamics: hydration and cavities

    Directory of Open Access Journals (Sweden)

    Heremans K.

    2005-01-01

    Full Text Available The temperature-pressure behavior of proteins seems to be unique among the biological macromolecules. Thermodynamic as well as kinetic data show the typical elliptical stability diagram. This may be extended by assuming that the unfolded state gives rise to volume and enthalpy-driven liquid-liquid transitions. A molecular interpretation follows from the temperature and the pressure dependence of the hydration and cavities. We suggest that positron annihilation spectroscopy can provide additional quantitative evidence for the contributions of cavities to the dynamics of proteins. Only mature amyloid fibrils that form from unfolded proteins are very resistant to pressure treatment.

  17. In vitro angiogenesis and expression of nuclear factor κB and VEGF in high and low metastasis cell lines of salivary gland Adenoid Cystic Carcinoma

    International Nuclear Information System (INIS)

    Zhang, Jiali; Peng, Bin

    2007-01-01

    Adenoid cystic carcinoma is a high malignant carcinoma characterized by intensive local invasion and high incidence of distant metastasis. Although many reports have demonstrated that angiogenesis has played an important role in tumor metastasis, the relationship between metastasis characters and angiogenesis ability in high and low metastasis cell lines of Adenoid cystic carcinoma has rarely been reported. The present study aimed to compare the angiogenesis ability of ACC-M (high metastasis) and ACC-2 (low metastasis) cell lines in vitro. Furthermore, the activity of nuclear factor κappa B and the expression of vascular endothelial growth factor (VEGF) in ACC-2 and ACC-M were also detected. Electrophoretic mobility shift assay was used to detect nuclear factor κappa B activity. Semi-quantitative RT-PCR was used to quantify the mRNA level of VEGF. Immuofluorescence double staining and semi-quantitative confocal laser scanning analysis was carried out to detect nuclear factor κappa B nuclear localization and staining intensity of VEGF. The angiogenesis ability of ACC-M and ACC-2 was compared by an in vitro three-dimensional angiogenic model assay. The vector transfection assay was performed to transfect the PCMV-IκBαM vector into ACCs cell lines expressing the phosphorylation defective IκBαM. Nuclear factor κappa B activity and the rate of nuclear factor κappa B nuclear localization in ACC-M was significantly higher than that in ACC-2. Moreover, ACC-M exhibited higher mRNA and protein levels of vascular endothelial growth factor than ACC-2. VEGF mRNA expression was effectively decreased by inhibition of nuclear factor κappa B activity. Furthermore, ACC-M could remarkably stimulate the migration and tube formation of endothelial cells and induce The umbilical vein endothelial cells sprouting into the gel matrix. These results implicated that ACCs cells with higher metastasis feature might present greater angiogenesis ability

  18. Collagen vascular disease

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/001223.htm Collagen vascular disease To use the sharing features on ... were previously said to have "connective tissue" or "collagen vascular" disease. We now have names for many ...

  19. Vascular Anomalies in Pediatrics.

    Science.gov (United States)

    Foley, Lisa S; Kulungowski, Ann M

    2015-08-01

    A standardized classification system allows improvements in diagnostic accuracy. Multidisciplinary vascular anomaly centers combine medical, surgical, radiologic, and pathologic expertise. This collaborative approach tailors treatment and management of vascular anomalies for affected individuals.

  20. Peripheral Vascular Disease

    Science.gov (United States)

    ... Topics FAQs Peripheral Vascular Disease Peripheral vascular disease (PVD) involves damage to or blockage in the blood ... the organs in and below your stomach area. PVD may also affect the arteries leading to your ...

  1. Controlled release of vascular endothelial growth factor from spray-dried alginate microparticles in collagen-hydroxyapatite scaffolds for promoting vascularization and bone repair.

    Science.gov (United States)

    Quinlan, Elaine; López-Noriega, Adolfo; Thompson, Emmet M; Hibbitts, Alan; Cryan, Sally Ann; O'Brien, Fergal J

    2017-04-01

    A major limitation with current tissue-engineering approaches is creating functionally vascularized constructs that can successfully integrate with the host; this often leads to implant failure, due to avascular necrosis. In order to overcome this, the objective of the present work was to develop a method to incorporate growth factor-eluting alginate microparticles (MPs) into freeze-dried, collagen-based scaffolds. A collagen-hydroxyapatite (CHA) scaffold, previously optimized for bone regeneration, was functionalized for the sustained delivery of an angiogenic growth factor, vascular endothelial growth factor (VEGF), with the aim of facilitating angiogenesis and enhancing bone regeneration. VEGF was initially encapsulated in alginate MPs by spray-drying, producing particles of functionalized scaffold, composed entirely of natural-based materials, may offer an ideal platform to promote angiogenesis and tissue regeneration. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Cinnamic aldehyde suppresses hypoxia-induced angiogenesis via inhibition of hypoxia-inducible factor-1α expression during tumor progression.

    Science.gov (United States)

    Bae, Woom-Yee; Choi, Jae-Sun; Kim, Ja-Eun; Jeong, Joo-Won

    2015-11-01

    During tumor progression, hypoxia-inducible factor 1 (HIF-1) plays a critical role in tumor angiogenesis and tumor growth by regulating the transcription of several genes in response to a hypoxic environment and changes in growth factors. This study was designed to investigate the effects of cinnamic aldehyde (CA) on tumor growth and angiogenesis and the mechanisms underlying CA's anti-angiogenic activities. We found that CA administration inhibits tumor growth and blocks tumor angiogenesis in BALB/c mice. In addition, CA treatment decreased HIF-1α protein expression and vascular endothelial growth factor (VEGF) expression in mouse tumors and Renca cells exposed to hypoxia in vitro. Interestingly, CA treatment did not affect the stability of von Hippel-Lindau protein (pVHL)-associated HIF-1α and CA attenuated the activation of mammalian target of rapamycin (mTOR) pathway. Collectively, these findings strongly indicate that the anti-angiogenic activity of CA is, at least in part, regulated by the mTOR pathway-mediated suppression of HIF-1α protein expression and these findings suggest that CA may be a potential drug for human cancer therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Efficient inhibition of tumor angiogenesis and growth by a synthetic peptide blocking S100A4-methionine aminopeptidase 2 interaction

    Directory of Open Access Journals (Sweden)

    Takahiro Ochiya

    Full Text Available The prometastatic calcium-binding protein, S100A4, is expressed in endothelial cells, and its downregulation markedly suppresses tumor angiogenesis in a xenograft cancer model. Given that endothelial S100A4 can be a molecular target for inhibiting tumor angiogenesis, we addressed here whether synthetic peptide capable of blocking S100A4-effector protein interaction could be a novel antiangiogenic agent. To examine this hypothesis, we focused on the S100A4-binding domain of methionine aminopeptidase 2, an effector protein, which plays a role in endothelial cell growth. Overexpression of the domain in mouse endothelial MSS31 cells reduced DNA synthesis, and the corresponding synthetic peptide (named NBD indeed interacted with S100A4 and inhibited capillary formation in vitro and new blood vessel formation in vivo. Intriguingly, a single intra-tumor administration of the NBD peptide in human prostate cancer xenografts significantly reduced vascularity, resulting in tumor regression. Mechanistically, the NBD peptide enhanced assembly of nonmuscle myosin IIA filaments along with Ser1943 phosphorylation, stimulated formation of focal adhesions without phosphorylation of focal adhesion kinase, and provoked G1/S arrest of the cell cycle. Altogether, the NBD peptide is a potent inhibitor for tumor angiogenesis, and is the first example of an anticancer peptide drug developed on the basis of an endothelial S100A4-targeted strategy.

  4. Poly-ε-caprolactone Coated and Functionalized Porous Titanium and Magnesium Implants for Enhancing Angiogenesis in Critically Sized Bone Defects.

    Science.gov (United States)

    Roland, Laura; Grau, Michael; Matena, Julia; Teske, Michael; Gieseke, Matthias; Kampmann, Andreas; Beyerbach, Martin; Murua Escobar, Hugo; Haferkamp, Heinz; Gellrich, Nils-Claudius; Nolte, Ingo

    2015-12-22

    For healing of critically sized bone defects, biocompatible and angiogenesis supporting implants are favorable. Murine osteoblasts showed equal proliferation behavior on the polymers poly-ε-caprolactone (PCL) and poly-(3-hydroxybutyrate)/poly-(4-hydroxybutyrate) (P(3HB)/P(4HB)). As vitality was significantly better for PCL, it was chosen as a suitable coating material for further experiments. Titanium implants with 600 µm pore size were evaluated and found to be a good implant material for bone, as primary osteoblasts showed a vitality and proliferation onto the implants comparable to well bottom (WB). Pure porous titanium implants and PCL coated porous titanium implants were compared using Live Cell Imaging (LCI) with Green fluorescent protein (GFP)-osteoblasts. Cell count and cell covered area did not differ between the implants after seven days. To improve ingrowth of blood vessels into porous implants, proangiogenic factors like Vascular Endothelial Growth Factor (VEGF) and High Mobility Group Box 1 (HMGB1) were incorporated into PCL coated, porous titanium and magnesium implants. An angiogenesis assay was performed to establish an in vitro method for evaluating the impact of metallic implants on angiogenesis to reduce and refine animal experiments in future. Incorporated concentrations of proangiogenic factors were probably too low, as they did not lead to any effect. Magnesium implants did not yield evaluable results, as they led to pH increase and subsequent cell death.

  5. Poly-ε-caprolactone Coated and Functionalized Porous Titanium and Magnesium Implants for Enhancing Angiogenesis in Critically Sized Bone Defects

    Directory of Open Access Journals (Sweden)

    Laura Roland

    2015-12-01

    Full Text Available For healing of critically sized bone defects, biocompatible and angiogenesis supporting implants are favorable. Murine osteoblasts showed equal proliferation behavior on the polymers poly-ε-caprolactone (PCL and poly-(3-hydroxybutyrate/poly-(4-hydroxybutyrate (P(3HB/P(4HB. As vitality was significantly better for PCL, it was chosen as a suitable coating material for further experiments. Titanium implants with 600 µm pore size were evaluated and found to be a good implant material for bone, as primary osteoblasts showed a vitality and proliferation onto the implants comparable to well bottom (WB. Pure porous titanium implants and PCL coated porous titanium implants were compared using Live Cell Imaging (LCI with Green fluorescent protein (GFP-osteoblasts. Cell count and cell covered area did not differ between the implants after seven days. To improve ingrowth of blood vessels into porous implants, proangiogenic factors like Vascular Endothelial Growth Factor (VEGF and High Mobility Group Box 1 (HMGB1 were incorporated into PCL coated, porous titanium and magnesium implants. An angiogenesis assay was performed to establish an in vitro method for evaluating the impact of metallic implants on angiogenesis to reduce and refine animal experiments in future. Incorporated concentrations of proangiogenic factors were probably too low, as they did not lead to any effect. Magnesium implants did not yield evaluable results, as they led to pH increase and subsequent cell death.

  6. Role of hypoxia‑mediated cellular prion protein functional change in stem cells and potential application in angiogenesis (Review).

    Science.gov (United States)

    Yun, Seung Pil; Han, Yong-Seok; Lee, Jun Hee; Yoon, Yeo Min; Yun, Chul Won; Rhee, Peter; Lee, Sang Hun

    2017-11-01

    Cellular prion protein (PrPC) can replace other pivotal molecules due to its interaction with several partners in performing a variety of important biological functions that may differ between embryonic and mature stem cells. Recent studies have revealed major advances in elucidating the putative role of PrPC in the regulation of stem cells and its application in stem cell therapy. What is special about PrPC is that its expression may be regulated by hypoxia‑inducible factor (HIF)‑1α, which is the transcriptional factor of cellular response to hypoxia. Hypoxic conditions have been known to drive cellular responses that can enhance cell survival, differentiation and angiogenesis through adaptive processes. Our group recently reported hypoxia‑enhanced vascular repair of endothelial colony‑forming cells on ischemic injury. Hypoxia‑induced AKT/signal transducer and activator of transcription 3 phosphorylation eventually increases neovasculogenesis. In stem cell biology, hypoxia promotes the expression of growth factors. According to other studies, aspects of tissue regeneration and cell function are influenced by hypoxia, which serves an essential role in stem cell HIF‑1α signaling. All these data suggest the possibility that hypoxia‑mediated PrPC serves an important role in angiogenesis. Therefore, the present review summarizes the characteristics of PrPC, which is produced by HIF‑1α in hypoxia, as it relates to angiogenesis.

  7. Efficient inhibition of tumor angiogenesis and growth by a synthetic peptide blocking S100A4-methionine aminopeptidase 2 interaction.

    Science.gov (United States)

    Ochiya, Takahiro; Takenaga, Keizo; Asagiri, Masataka; Nakano, Kazumi; Satoh, Hitoshi; Watanabe, Toshiki; Imajoh-Ohmi, Shinobu; Endo, Hideya

    2015-01-01

    The prometastatic calcium-binding protein, S100A4, is expressed in endothelial cells, and its downregulation markedly suppresses tumor angiogenesis in a xenograft cancer model. Given that endothelial S100A4 can be a molecular target for inhibiting tumor angiogenesis, we addressed here whether synthetic peptide capable of blocking S100A4-effector protein interaction could be a novel antiangiogenic agent. To examine this hypothesis, we focused on the S100A4-binding domain of methionine aminopeptidase 2, an effector protein, which plays a role in endothelial cell growth. Overexpression of the domain in mouse endothelial MSS31 cells reduced DNA synthesis, and the corresponding synthetic peptide (named NBD) indeed interacted with S100A4 and inhibited capillary formation in vitro and new blood vessel formation in vivo. Intriguingly, a single intra-tumor administration of the NBD peptide in human prostate cancer xenografts significantly reduced vascularity, resulting in tumor regression. Mechanistically, the NBD peptide enhanced assembly of nonmuscle myosin IIA filaments along with Ser1943 phosphorylation, stimulated formation of focal adhesions without phosphorylation of focal adhesion kinase, and provoked G1/S arrest of the cell cycle. Altogether, the NBD peptide is a potent inhibitor for tumor angiogenesis, and is the first example of an anticancer peptide drug developed on the basis of an endothelial S100A4-targeted strategy.

  8. AAV-CRISPR/Cas9-Mediated Depletion of VEGFR2 Blocks Angiogenesis In Vitro.

    Science.gov (United States)

    Wu, Wenyi; Duan, Yajian; Ma, Gaoen; Zhou, Guohong; Park-Windhol, Cindy; D'Amore, Patricia A; Lei, Hetian

    2017-12-01

    Pathologic angiogenesis is a component of many diseases, including neovascular age-related macular degeneration, proliferation diabetic retinopathy, as well as tumor growth and metastasis. The purpose of this project was to examine whether the system of adeno-associated viral (AAV)-mediated CRISPR (clustered regularly interspaced short palindromic repeats)-associated endonuclease (Cas)9 can be used to deplete expression of VEGF receptor 2 (VEGFR2) in human vascular endothelial cells in vitro and thus suppress its downstream signaling events. The dual AAV system of CRISPR/Cas9 from Streptococcus pyogenes (AAV-SpGuide and -SpCas9) was adapted to edit genomic VEGFR2 in primary human retinal microvascular endothelial cells (HRECs). In this system, the endothelial-specific promoter for intercellular adhesion molecule 2 (ICAM2) was cloned into the dual AAV vectors of SpGuide and SpCas9 for driving expression of green fluorescence protein (GFP) and SpCas9, respectively. These two AAV vectors were applied to production of recombinant AAV serotype 5 (rAAV5), which were used to infect HRECs for depletion of VEGFR2. Protein expression was determined by Western blot; and cell proliferation, migration, as well as tube formation were examined. AAV5 effectively infected vascular endothelial cells (ECs) and retinal pigment epithelial (RPE) cells; the ICAM2 promoter drove expression of GFP and SpCas9 in HRECs, but not in RPE cells. The results showed that the rAAV5-CRISPR/Cas9 depleted VEGFR2 by 80% and completely blocked VEGF-induced activation of Akt, and proliferation, migration as well as tube formation of HRECs. AAV-CRISRP/Cas9-mediated depletion of VEGFR2 is a potential therapeutic strategy for pathologic angiogenesis.

  9. Taurine protects methamphetamine-induced developmental angiogenesis defect through antioxidant mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Xue; Hu, Zhengtao; Hu, Chunyan; Bu, Qian; Yan, Guangyan [National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041 (China); Deng, Pengchi [Analytical and Testing Center, Sichuan University, Chengdu 610041 (China); Lv, Lei [National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041 (China); Wu, Dan [College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041 (China); Deng, Yi; Zhao, Jinxuan; Zhu, Ruiming; Li, Yan; Li, Hongyu; Xu, Youzhi; Yang, Hanshuo; Zhao, Yinglan [National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041 (China); Cen, Xiaobo, E-mail: xbcenalan@vip.sina.com [National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041 (China)

    2012-05-01

    Investigations have characterized addictive drug-induced developmental cardiovascular malformation in human, non-human primate and rodent. However, the underlying mechanism of malformation caused by drugs during pregnancy is still largely unknown, and preventive and therapeutic measures have been lacking. Using {sup 1}H NMR spectroscopy, we profiled the metabolites from human embryo endothelial cells exposed to methamphetamine (METH) and quantified a total of 226 peaks. We identified 11 metabolites modified robustly and found that taurine markedly increased. We then validated the hypothesis that this dramatic increase in taurine could attribute to its effect in inhibiting METH-induced developmental angiogenesis defect. Taurine supplement showed a more significant potential than other metabolites in protecting against METH-induced injury in endothelial cells. Taurine strongly attenuated METH-induced inhibition of proliferation and migration in endothelial cells. Furthermore, death rate and vessel abnormality of zebrafish embryos treated with METH were greatly reversed by taurine. In addition, taurine supplement caused a rapid decrease in reactive oxygen species generation and strongly attenuated the excitable arise of antioxidase activities in the beginning of METH exposure prophase. Dysregulations of NF-κB, p-ERK as well as Bax, which reflect apoptosis, cell cycle arrest and oxidative stress in vascular endothelium, were blocked by taurine. Our results provide the first evidence that taurine prevents METH-caused developmental angiogenesis defect through antioxidant mechanism. Taurine could serve as a potential therapeutic or preventive intervention of developmental vascular malformation for the pregnant women with drug use. Highlights: ► Metabonomics findings. ► Abnormal development. ► Dysregulations of key proteins.

  10. From glioblastoma to endothelial cells through extracellular vesicles: messages for angiogenesis.

    Science.gov (United States)

    Giusti, Ilaria; Delle Monache, Simona; Di Francesco, Marianna; Sanità, Patrizia; D'Ascenzo, Sandra; Gravina, Giovanni Luca; Festuccia, Claudio; Dolo, Vincenza

    2016-09-01

    Glioblastoma has one of the highest mortality rates among cancers, and it is the most common and malignant form of brain cancer. Among the typical features of glioblastoma tumors, there is an aberrant vascularization: all gliomas are among the most vascularized/angiogenic tumors. In recent years, it has become clear that glioblastoma cells can secrete extracellular vesicles which are spherical and membrane-enclosed particles released, in vitro or in vivo, by both normal and tumor cells; they are involved in the regulation of both physiological and pathological processes; among the latter, cancer is the most widely studied. Extracellular vesicles from tumor cells convey messages to other tumor cells, but also to normal stromal cells in order to create a microenvironment that supports cancer growth and progression and are implicated in drug resistance, escape from immunosurveillance and from apoptosis, as well as in metastasis formation; they are also involved in angiogenesis stimulation, inducing endothelial cells proliferation, and other pro-angiogenic activities. To this aim, the present paper assesses in detail the extracellular vesicles phenomenon in the human glioblastoma cell line U251 and evaluates extracellular vesicles ability to promote the processes required to achieve the formation of new blood vessels in human brain microvascular endothelial cells, highlighting that they stimulate proliferation, motility, and tube formation in a dose-response manner. Moreover, a molecular characterization shows that extracellular vesicles are fully equipped for angiogenesis stimulation in terms of proteolytic enzymes (gelatinases and plasminogen activators), pro-angiogenic growth factors (VEGF and TGFβ), and the promoting-angiogenic CXCR4 chemokine receptor.

  11. Formation rate of natural gas hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Mork, Marit

    2002-07-01

    The rate of methane hydrate and natural gas hydrate formation was measured in a 9.5 litre stirred tank reactor of standard design. The experiments were performed to better understand the performance and scale-up of a reactor for continuous production of natural gas hydrates. The hydrate formation rate was measured at steady-state conditions at pressures between 70 and 90 bar and temperatures between 7 and 15 deg C. Between 44 and 56 % of the gas continuously supplied to the reactor was converted to hydrate. The experimental results show that the rate of hydrate formation is strongly influenced by gas injection rate and pressure. The effect of stirring rate is less significant and subcooling has no observable effect on the formation rate. Hydrate crystal concentration and gas composition do not influence the hydrate formation rate. Observations of produced hydrate crystals indicate that the crystals are elongated, about 5 micron in diameter and 10 micron long. Analysis of the results shows that the rate of hydrate formation is dominated by gas-liquid mass transfer. A mass transfer model, the bubble-to-crystal model, was developed for the hydrate formation rate in a continuous stirred tank reactor, given in terms of concentration driving force and an overall mass transfer coefficient. The driving force is the difference between the gas concentration at the gas-liquid interface and at the hydrate crystal surface. These concentrations correspond to the solubility of gas in water at experimental temperature and pressure and the solubility of gas at hydrate equilibrium temperature and experimental pressure, respectively. The overall mass transfer coefficient is expressed in terms of superficial gas velocity and impeller power consumption, parameters commonly used in study of stirred tank reactors. Experiments and modeling show that the stirred tank reactor has a considerable potential for increased production capacity. However, at higher hydrate production rates the

  12. Simulation and Characterization of Methane Hydrate Formation

    Science.gov (United States)

    Dhakal, S.; Gupta, I.

    2017-12-01

    The ever rising global energy demand dictates human endeavor to explore and exploit new and innovative energy sources. As conventional oil and gas reserves deplete, we are constantly looking for newer sources for sustainable energy. Gas hydrates have long been discussed as the next big energy resource to the earth. Its global occurrence and vast quantity of natural gas stored is one of the main reasons for such interest in its study and exploration. Gas hydrates are solid crystalline substances with trapped molecules of gas inside cage-like crystals of water molecules. Gases such as methane, ethane, propane and carbon dioxide can form hydrates but in natural state, methane hydrates are the most common. Subsurface geological conditions with high pressure and low temperature favor the formation and stability of gas hydrates. While the occurrence and potential of gas hydrates as energy source has long been studied, there are still gaps in knowledge, especially in the quantitative research of gas hydrate formation and reservoir characterization. This study is focused on exploring and understanding the geological setting in which gas hydrates are formed and the subsequent changes in rock characteristics as they are deposited. It involves the numerical simulation of methane gas flow through fault to form hydrates. The models are representative of the subsurface geologic setting of Gulf of Mexico with a fault through layers of shale and sandstone. Hydrate formation simulated is of thermogenic origin. The simulations are conducted using TOUGH+HYDRATE, a numerical code developed at the Lawrence Berkley National Laboratory for modeling multiphase flow through porous medium. Simulation results predict that as the gas hydrates form in the pores of the model, the porosity, permeability and other rock properties are altered. Preliminary simulation results have shown that hydrates begin to form in the fault zone and gradually in the sandstone layers. The increase in hydrate

  13. Selective inhibition of retinal angiogenesis by targeting PI3 kinase.

    Directory of Open Access Journals (Sweden)

    Yolanda Alvarez

    Full Text Available Ocular neovascularisation is a pathological hallmark of some forms of debilitating blindness including diabetic retinopathy, age related macular degeneration and retinopathy of prematurity. Current therapies for delaying unwanted ocular angiogenesis include laser surgery or molecular inhibition of the pro-angiogenic factor VEGF. However, targeting of angiogenic pathways other than, or in combination to VEGF, may lead to more effective and safer inhibitors of intraocular angiogenesis. In a small chemical screen using zebrafish, we identify LY294002 as an effective and selective inhibitor of both developmental and ectopic hyaloid angiogenesis in the eye. LY294002, a PI3 kinase inhibitor, exerts its anti-angiogenic effect in a dose-dependent manner, without perturbing existing vessels. Significantly, LY294002 delivered by intraocular injection, significantly inhibits ocular angiogenesis without systemic side-effects and without diminishing visual function. Thus, targeting of PI3 kinase pathways has the potential to effectively and safely treat neovascularisation in eye disease.

  14. Microenvironmental Regulation of Tumor Angiogenesis: Biological and Engineering Considerations

    Science.gov (United States)

    Infanger, David W.; Pathi, Siddharth P.; Fischbach, Claudia

    Tumor angiogenesis is fundamental to tumor growth and metastasis, and antiangiogenic therapies have been developed to target this process. However, the clinical success of these treatments has been limited, which may be due, in part, to an incomplete understanding of cell-microenvironment interactions and their role in tumor angiogenesis. Traditionally, two-dimensional (2D) culture approaches have been used to study tumor progression in vitro, but these systems fail to faithfully recreate tumor microenvironmental conditions contributing to tumor angiogenesis in vivo. By integrating cancer biology with tissue engineering and drug delivery approaches, the development of biologically inspired tumor models has emerged. Such 3D model systems allow studying the specific role of soluble factor signaling, cell-extracellular matrix (ECM) interactions, cell-cell interactions, mechanical cues, and metabolic stress. This chapter discusses specific biological and engineering design considerations for tissue-engineered tumor models and highlights their application for defining the underpinnings of tumor angiogenesis.

  15. Surgical revascularization induces angiogenesis in orthotopic bone allograft

    NARCIS (Netherlands)

    Willems, Wouter F.; Kremer, Thomas; Friedrich, Patricia; Bishop, Allen T.

    2012-01-01

    Remodeling of structural bone allografts relies on adequate revascularization, which can theoretically be induced by surgical revascularization. We developed a new orthotopic animal model to determine the technical feasibility of axial arteriovenous bundle implantation and resultant angiogenesis. We

  16. Thyroidal angiogenesis in zebrafish (Danio rerio) exposed to high ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-04-20

    Mukhi and Patino, 2003;. Mukhi et al., 2005). Angiogenesis has been recognized as a complex process contributing to the pathophysiology of many benign and malignant diseases of thyroid (Mitchell and. Parangi, 2005).

  17. Leukocyte-derived microparticles in vascular homeostasis.

    Science.gov (United States)

    Angelillo-Scherrer, Anne

    2012-01-20

    Leukocyte-derived microparticles (LMPs) may originate from neutrophils, monocytes/macrophages, and lymphocytes. They express markers from their parental cells and harbor membrane and cytoplasmic proteins as well as bioactive lipids implicated in a variety of mechanisms, maintaining or disrupting vascular homeostasis. When they carry tissue factor or coagulation inhibitors, they participate in hemostasis and pathological thrombosis. Both proinflammatory and anti-inflammatory processes can be affected by LMPs, thus ensuring an appropriate inflammatory response. LMPs also play a dual role in the endothelium by either improving the endothelial function or inducing an endothelial dysfunction. LMPs are implicated in all stages of atherosclerosis. They circulate at a high level in the bloodstream of patients with high atherothrombotic risk, such as smokers, diabetics, and subjects with obstructive sleep apnea, where their prolonged contact with the vessel wall may contribute to its overall deterioration. Numbering microparticles, including LMPs, might be useful in predicting cardiovascular events. LMPs modify the endothelial function and promote the recruitment of inflammatory cells in the vascular wall, necessary processes for the progression of the atherosclerotic lesion. In addition, LMPs favor the neovascularization within the vulnerable plaque and, in the ruptured plaque, they take part in coagulation and platelet activation. Finally, LMPs participate in angiogenesis. They might represent a novel therapeutic tool to reset the angiogenic switch in pathologies with altered angiogenesis. Additional studies are needed to further investigate the role of LMPs in cardiovascular diseases. However, large-scale studies are currently difficult to set up because microparticle measurement still requires elaborate techniques which lack standardization.

  18. Angiopoietin-2 is critical for cytokine-induced vascular leakage.

    Directory of Open Access Journals (Sweden)

    Andrew V Benest

    Full Text Available Genetic experiments (loss-of-function and gain-of-function have established the role of Angiopoietin/Tie ligand/receptor tyrosine kinase system as a regulator of vessel maturation and quiescence. Angiopoietin-2 (Ang-2 acts on Tie2-expressing resting endothelial cells as an antagonistic ligand to negatively interfere with the vessel stabilizing effects of constitutive Ang-1/Tie-2 signaling. Ang-2 thereby controls the vascular response to inflammation-inducing as well as angiogenesis-inducing cytokines. This study was aimed at assessing the role of Ang-2 as an autocrine (i.e. endothelial-derived regulator of rapid vascular responses (within minutes caused by permeability-inducing agents. Employing two independent in vivo assays to quantitatively assess vascular leakage (tracheal microsphere assay, 1-5 min and Miles assay, 20 min, the immediate vascular response to histamine, bradykinin and VEGF was analyzed in Ang-2-deficient (Ang-2(-/- mice. In comparison to the wild type control mice, the Ang2(-/- mice demonstrated a significantly attenuated response. The Ang-2(-/- phenotype was rescued by systemic administration (paracrine of an adenovirus encoding Ang-2. Furthermore, cytokine-induced intracellular calcium influx was impaired in Ang-2(-/- endothelioma cells, consistent with reduced phospholipase activation in vivo. Additionally, recombinant human Ang-2 (rhAng-2 alone was unable to induce vascular leakage. In summary, we report here in a definite genetic setting that Ang-2 is critical for multiple vascular permeability-inducing cytokines.

  19. Vascular Remodelling and Mesenchymal Transition in Systemic Sclerosis

    Directory of Open Access Journals (Sweden)

    Pier Andrea Nicolosi

    2016-01-01

    Full Text Available Fibrosis of the skin and of internal organs, autoimmunity, and vascular inflammation are hallmarks of Systemic Sclerosis (SSc. The injury and activation of endothelial cells, with hyperplasia of the intima and eventual obliteration of the vascular lumen, are early features of SSc. Reduced capillary blood flow coupled with deficient angiogenesis leads to chronic hypoxia and tissue ischemia, enforcing a positive feed-forward loop sustaining vascular remodelling, further exacerbated by extracellular matrix accumulation due to fibrosis. Despite numerous developments and a growing number of controlled clinical trials no treatment has been shown so far to alter SSc natural history, outlining the need of further investigation in the molecular pathways involved in the pathogenesis of the disease. We review some processes potentially involved in SSc vasculopathy, with attention to the possible effect of sustained vascular inflammation on the plasticity of vascular cells. Specifically we focus on mesenchymal transition, a key phenomenon in the cardiac and vascular development as well as in the remodelling of injured vessels. Recent work supports the role of transforming growth factor-beta, Wnt, and Notch signaling in these processes. Importantly, endothelial-mesenchymal transition may be reversible, possibly offering novel cues for treatment.

  20. Leptin and its cardiovascular effects: Focus on angiogenesis

    Directory of Open Access Journals (Sweden)

    Zoya Tahergorabi

    2015-01-01

    Full Text Available Leptin is an endocrine hormone synthesized by adipocytes. It plays a key role in the energy homeostasis in central and peripheral tissues and has additional roles are attributed to it, such as the regulation of reproduction, immune function, bone homeostasis, and angiogenesis. The plasma concentration of leptin significantly increases in obese individuals. In the present review, we give an introduction concerning leptin, its receptors, signaling pathways, and its effect on cardiovascular system, especially on angiogenesis.

  1. Transcriptomics of Post-Stroke Angiogenesis in the Aged Brain

    OpenAIRE

    Buga, Ana Maria; Margaritescu, Claudiu; Scholz, Claus Juergen; Radu, Eugen; Zelenak, Christine; Popa-Wagner, Aurel

    2014-01-01

    Despite the obvious clinical significance of post-stroke angiogenesis in aged subjects, a detailed transcriptomic analysis of post-stroke angiogenesis has not yet been undertaken in an aged experimental model. In this study, by combining stroke transcriptomics with immunohistochemistry in aged rats and post-stroke patients, we sought to identify an age-specific gene expression pattern that may characterize the angiogenic process after stroke. We found that both young and old infarcted rats in...

  2. Long non-coding RNA taurine upregulated 1 enhances tumor-induced angiogenesis through inhibiting microRNA-299 in human glioblastoma.

    Science.gov (United States)

    Cai, H; Liu, X; Zheng, J; Xue, Y; Ma, J; Li, Z; Xi, Z; Li, Z; Bao, M; Liu, Y

    2017-01-19

    Angiogenesis is one of the critical biological elements affecting the development and progression of cancer. Long non-coding RNAs (lncRNAs) are important regulators and aberrantly expressed in various types of human cancer. Our previous studies indicated that lncRNA taurine upregulated 1 (TUG1) implicated in the regulation of blood-tumor barrier permeability; however, its role in glioblastoma angiogenesis still unclear. Here we demonstrated that TUG1 was up-expressed in human glioblastoma tissues and glioblastoma cell lines. Knockdown of TUG1 remarkably suppressed tumor-induced endothelial cell proliferation, migration and tube formation as well as reducing spheroid-based angiogenesis ability in vitro, which are the critical steps for tumor angiogenesis. Besides, knockdown of TUG1 significantly increased the expression of mircroRNA-299 (miR-299), which was down-expressed in glioblastoma tissues and glioblastoma cell lines. Bioinformatics analysis and luciferase reporter assay revealed that TUG1 influenced tumor angiogenesis via directly binding to the miR-299 and there was a reciprocal repression between TUG1 and miR-299 in the same RNA-induced silencing complex. Moreover, knockdown of TUG1 reduced the expression of vascular endothelial growth factor A (VEGFA), which was defined as a functional downstream target of miR-299. In addition, knockdown of TUG1, shown in the in vivo studies, has effects on suppressing tumor growth, reducing tumor microvessel density and decreasing the VEGFA expression by upregulating miR-299 in xenograft glioblastoma model. Overall, the results demonstrated that TUG1 enhances tumor-induced angiogenesis and VEGF expression through inhibiting miR-299. Also, the inhibition of TUG1 could provide a novel therapeutic target for glioblastoma treatment.

  3. Endothelium-derived fibronectin regulates neonatal vascular morphogenesis in an autocrine fashion.

    Science.gov (United States)

    Turner, Christopher J; Badu-Nkansah, Kwabena; Hynes, Richard O

    2017-11-01

    Fibronectin containing alternatively spliced EIIIA and EIIIB domains is largely absent from mature quiescent vessels in adults, but is highly expressed around blood vessels during developmental and pathological angiogenesis. The precise functions of fibronectin and its splice variants during developmental angiogenesis however remain unclear due to the presence of cardiac, somitic, mesodermal and neural defects in existing global fibronectin KO mouse models. Using a rare family of surviving EIIIA EIIIB double KO mice, as well as inducible endothelial-specific fibronectin-deficient mutant mice, we show that vascular development in the neonatal retina is regulated in an autocrine manner by endothelium-derived fibronectin, and requires both EIIIA and EIIIB domains and the RGD-binding α5 and αv integrins for its function. Exogenous sources of fibronectin do not fully substitute for the autocrine function of endothelial fibronectin, demonstrating that fibronectins from different sources contribute differentially to specific aspects of angiogenesis.

  4. Markers of angiogenesis in high-risk, early-stage cervical cancer: A Gynecologic Oncology Group study☆

    Science.gov (United States)

    Randall, Leslie M.; Monk, Bradley J.; Darcy, Kathleen M.; Tian, Chunqiao; Burger, Robert A.; Liao, Shu-Yuan; Peters, William A.; Stock, Richard J.; Fruehauf, John P.

    2010-01-01

    Objectives To determine whether markers of tumor angiogenesis were associated with progression-free survival (PFS) and overall survival (OS) in women with high-risk, early-stage cervical cancer treated on a phase III trial. Methods One hundred seventy-three tumor specimens were analyzed by semi-quantitative immunohistochemical (IHC) staining for vascular endothelial growth factor (VEGF, pro-angiogenesis factor), thrombospondin-1 (TSP-1, anti-angiogenesis factor), CD31 (non-specific endothelial marker), and CD105 (tumor-specific endothelial marker). Tumoral histoscores (HS) were calculated for VEGF using the formula: [% cells positive×(intensity+1)]. TSP-1 specimens were categorized as negative or positive. CD31 and CD105 microvessel density (MVD) “hotspots” were counted in three 20× high-power fields. Associations between angiogenesis markers and survival were evaluated. Results TSP-1 expression was observed in 65% of cases while 66% expressed high VEGF (≥200), 34% exhibited high CD31 (CD31≥110) and 66% displayed high CD105 (CD105≥28). In univariate analyses CD31 MVD, but not tumor TSP-1, was associated with improved PFS (HR=0.37; 95% CI=0.18–0.76; p=0.007) and OS (HR=0.37; 95% CI=0.17–0.79; p=0.010). After adjusting for prognostic clinical covariates, high CD31 MVD, but not TSP-1, VEGF or CD105 MVD, was an independent prognostic factor for PFS (HR=0.36; 95% CI=0.17–0.75; p=0.006) and OS (HR=0.36; 95% CI=0.17–0.79; p=0.010). Conclusions Tumor angiogenesis measured by CD31 MVD is an independent prognostic factor for both PFS and OS in high-risk, early-stage cervical cancer. We hypothesize that this finding may be explained by improved treatment response in well-vascularized, well-oxygenated tumors. PMID:19110305

  5. Human trophoblast-derived hydrogen sulfide stimulates placental artery endothelial cell angiogenesis.

    Science.gov (United States)

    Chen, Dong-Bao; Feng, Lin; Hodges, Jennifer K; Lechuga, Thomas J; Zhang, Honghai

    2017-09-01

    Endogenous hydrogen sulfide (H2S), mainly synthesized by cystathionine β-synthase (CBS) and cystathionine γ-lyase (CTH), has been implicated in regulating placental angiogenesis; however, the underlying mechanisms are unknown. This study was to test a hypothesis that trophoblasts synthesize H2S to promote placental angiogenesis. Human choriocarcinoma-derived BeWo cells expressed both CBS and CTH proteins, while the first trimester villous trophoblast-originated HTR-8/SVneo cells expressed CTH protein only. The H2S producing ability of BeWo cells was significantly inhibited by either inhibitors of CBS (carboxymethyl hydroxylamine hemihydrochloride, CHH) or CTH (β-cyano-L-alanine, BCA) and that in HTR-8/SVneo cells was inhibited by CHH only. H2S donors stimulated cell proliferation, migration, and tube formation in ovine placental artery endothelial cells (oFPAECs) as effectively as vascular endothelial growth factor. Co-culture with BeWo and HTR-8/SVneo cells stimulated oFPAEC migration, which was inhibited by CHH or BCA in BeWo but CHH only in HTR-8/SVneo cells. Primary human villous trophoblasts (HVT) were more potent than trophoblast cell lines in stimulating oFPAEC migration that was inhibited by CHH and CHH/BCA combination in accordance with its H2S synthesizing activity linked to CBS and CTH expression patterns. H2S donors activated endothelial nitric oxide synthase (NOS3), v-AKT murine thymoma viral oncogene homolog 1 (AKT1), and extracellular signal-activated kinase 1/2 (mitogen-activated protein kinase 3/1, MAPK3/1) in oFPAECs. H2S donor-induced NOS3 activation was blocked by AKT1 but not MAPK3/1 inhibition. In keeping with our previous studies showing a crucial role of AKT1, MAPK3/1, and NOS3/NO in placental angiogenesis, these data show that trophoblast-derived endogenous H2S stimulates placental angiogenesis, involving activation of AKT1, NOS3/NO, and MAPK3/1. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study

  6. Vasculogenesis and angiogenesis initiation under normoxic conditions through Wnt/β-catenin pathway in gliomas.

    Science.gov (United States)

    Vallée, Alexandre; Guillevin, Rémy; Vallée, Jean-Noël

    2018-01-26

    inhibiting HIF-1α prolyl hydroxylation and preventing HIF labeling by the von Hippel-Lindau protein. Increased lactate with acid environment and HIF-1α overexpression induce the vascular endothelial growth factor (VEGF) pathway of vasculogenesis and angiogenesis under normoxic conditions. Hypoxia and acidic pH have no synergistic effect on VEGF transcription.

  7. Cytochrome b5 reductase 2 suppresses tumor formation in nasopharyngeal carcinoma by attenuating angiogenesis.

    Science.gov (United States)

    Ming, Huixin; Lan, Ying; He, Feng; Xiao, Xue; Zhou, Xiaoying; Zhang, Zhe; Li, Ping; Huang, Guangwu

    2015-08-15

    Cytochrome b5 reductase 2 (CYB5R2) is a potential tumor suppressor that inhibits cell proliferation and motility in nasopharyngeal carcinoma (NPC). Inactivation of CYB5R2 is associated with lymph node metastasis in NPC. This study aimed to explore the mechanisms contributing to the anti-neoplastic effects of CYB5R2. Polymerase chain reaction (PCR) assays were used to analyze the transcription of 84 genes known to be involved in representative cancer pathways in the NPC cell line HONE1. NPC cell lines CNE2 and HONE1 were transiently transfected with CYB5R2, and data was validated by real-time PCR. A chick chorioallantoic membrane (CAM) embryo model was implanted with CYB5R2-expressing CNE2 and HONE1 cells to evaluate the effect of CYB5R2 on angiogenesis. An immunohistochemical assay of the CAM model was used to analyze the protein expression of vascular endothelial growth factor (VEGF). In CYB5R2-transfected NPC cells, PCR assays revealed up-regulated mRNA levels of Fas cell surface death receptor (FAS), FBJ murine osteosarcoma viral oncogene homolog (FOS), phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1), integrin beta 3 (ITGB3), metastasis suppressor 1 (MTSS1), interferon beta 1 (IFNB1), and cyclin-dependent kinase inhibitor 2A (CDKN2A) and down-regulated levels of integrin beta 5 (ITGB5), insulin-like growth factor 1 (IGF1), TEK tyrosine kinase (TEK), transforming growth factor beta receptor 1 (TGFBR1), and VEGF. The angiogenesis in the CAM model implanted with CYB5R2-transfected NPC cells was inhibited. Down-regulation of VEGF by CYB5R2 in NPC cells was confirmed by immunohistochemical staining in the CAM model. CYB5R2 up-regulates the expression of genes that negatively modulate angiogenesis in NPC cells and down-regulates the expression of VEGF to reduce angiogenesis, thereby suppressing tumor formation.

  8. Enhanced platelet adhesion induces angiogenesis in intestinal inflammation and inflammatory bowel disease microvasculature

    Science.gov (United States)

    Rutella, Sergio; Vetrano, Stefania; Correale, Carmen; Graziani, Cristina; Sturm, Andreas; Spinelli, Antonino; De Cristofaro, Raimondo; Repici, Alessandro; Malesci, Alberto; Danese, Silvio

    2011-01-01

    Abstract Although angiogenesis is viewed as a fundamental component of inflammatory bowel disease (IBD) pathogenesis, we presently lack a thorough knowledge of the cell type(s) involved in its induction and maintenance in the inflamed intestinal mucosa. This study aimed to determine whether platelet (PLT) adhesion to inflamed intestinal endothelial cells of human origin may favour angiogenesis. Unstimulated or thrombin-activated human PLT were overlaid on resting or tumour necrosis factor (TNF)-α-treated human intestinal microvascular endothelial cells (HIMEC), in the presence or absence of blocking antibodies to either vascular cell adhesion molecule (VCAM)-1, intercellular adhesion molecule (ICAM)-1, integrin αvβ3, tissue factor (TF) or fractalkine (FKN). PLT adhesion to HIMEC was evaluated by fluorescence microscopy, and release of angiogenic factors (VEGF and soluble CD40L) was measured by ELISA. A matrigel tubule formation assay was used to estimate PLT capacity to induce angiogenesis after co-culturing with HIMEC. TNF-α up-regulated ICAM-1, αvβ3 and FKN expression on HIMEC. When thrombin-activated PLT were co-cultured with unstimulated HIMEC, PLT adhesion increased significantly, and this response was further enhanced by HIMEC activation with TNF-α. PLT adhesion to HIMEC was VCAM-1 and TF independent but ICAM-1, FKN and integrin αvβ3 dependent. VEGF and sCD40L were undetectable in HIMEC cultures either before or after TNF-α stimulation. By contrast, VEGF and sCD40L release significantly increased when resting or activated PLT were co-cultured with TNF-α-pre-treated HIMEC. These effects were much more pronounced when PLT were derived from IBD patients. Importantly, thrombin-activated PLT promoted tubule formation in HIMEC, a functional estimate of their angiogenic potential. In conclusion, PLT adhesion to TNF-α-pre-treated HIMEC is mediated by ICAM-1, FKN and αvβ3, and is associated with VEGF and sCD40L release. These findings suggest that

  9. Differential Effects of EGFL6 on Tumor versus Wound Angiogenesis

    Directory of Open Access Journals (Sweden)

    Kyunghee Noh

    2017-12-01

    Full Text Available Summary: Angiogenesis inhibitors are important for cancer therapy, but clinically approved anti-angiogenic agents have shown only modest efficacy and can compromise wound healing. This necessitates the development of novel anti-angiogenesis therapies. Here, we show significantly increased EGFL6 expression in tumor versus wound or normal endothelial cells. Using a series of in vitro and in vivo studies with orthotopic and genetically engineered mouse models, we demonstrate the mechanisms by which EGFL6 stimulates tumor angiogenesis. In contrast to its antagonistic effects on tumor angiogenesis, EGFL6 blockage did not affect normal wound healing. These findings have significant implications for development of anti-angiogenesis therapies. : Noh et al. identify EGFL6 as an angiogenic target that is selectively present in tumor endothelial cells in a hypoxic tumor microenvironment. EGFL6 blockade exerts robust anti-angiogenic and anti-tumor effects without affecting wound healing. These findings suggest an important approach for effectively targeting tumor angiogenesis. Keywords: tumor endothelial cells, ovarian cancer, chitosan nanoparticles, tumor vasculature, wound healing

  10. Cerebral insulin, insulin signaling pathway, and brain angiogenesis.

    Science.gov (United States)

    Zeng, Yi; Zhang, Le; Hu, Zhiping

    2016-01-01

    Insulin performs unique non-metabolic functions within the brain. Broadly speaking, two major areas of these functions are those related to brain endothelial cells and the blood-brain barrier (BBB) function, and those related to behavioral effects, like cognition in disease states (Alzheimer's disease, AD) and in health. Recent studies showed that both these functions are associated with brain angiogenesis. These findings raise interesting questions such as how they are linked to each other and whether modifying brain angiogenesis by targeting certain insulin signaling pathways could be an effective strategy to treat dementia as in AD, or even to help secure healthy longevity. The two canonical downstream pathways involved in mediating the insulin signaling pathway, the phosphoinositide-3 kinase (PI3K), and mitogen-activated protein kinase (MAPK) cascades, in the brain are supposed to be similar to those in the periphery. PI3K and MAPK pathways play important roles in angiogenesis. Both are involved in stimulating hypoxia inducible factor (HIF) in angiogenesis and could be activated by the insulin signaling pathway. This suggests that PI3K and MAPK pathways might act as cross-talk between the insulin signaling pathway and the angiogenesis pathway in brain. But the cerebral insulin, insulin signaling pathway, and the detailed mechanism in the connection of insulin signaling pathway, brain angiogenesis pathway, and healthy aging or dementias are still mostly not clear and need further studies.

  11. Clinker mineral hydration at reduced relative humidities

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede

    1998-01-01

    This report deals with gas phase hydration of pure cement clinker minerals at reduced relative humidities. This is an important subject in relation to modern high performance concrete which may self-desiccate during hydration. In addition the subject has relevance to storage stability where...

  12. Raman Spectroscopic Studies of Methane Gas Hydrates

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.

    2009-01-01

    A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory.......A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory....

  13. Investigations into surfactant/gas hydrate relationship

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Rudy; Zhang, Guochang; Dearman, Jennifer; Woods, Charles [Swalm School of Chemical Engineering, Mississippi State University, Mississippi State, MS 39762 (United States)

    2007-03-15

    Gas hydrates have unique physical properties portending useful industrial applications of gas storage, gas separation, or water desalination. When gas hydrates were found in the early 1990s to occur naturally and abundantly in seafloors, three other primary interests and concerns emerged: potential new energy source, climate threat from their greenhouse gases, and seafloor instabilities. This paper presents research showing how anionic synthetic surfactants helped develop an industrial gas hydrate storage process for natural gas and how naturally-occurring in-situ anionic biosurfactants influence the formation and placement of gas hydrates in ocean sediments. The catalytic effects, mechanisms, and surface specificities imparted by synthetic surfactants in the gas storage process and imparted by biosurfactants in porous media are discussed. The Bacillus subtilis bacterium that is indigenous to gas hydrate mounds in the Gulf of Mexico was cultured in the laboratory. Its biosurfactant was separated and found to catalyze gas hydrates in porous media. The experiments indicate that seafloor-biosurfactants can be produced rapidly in-situ to achieve threshold concentrations whereby hydrates are promoted. The biosurfactants accumulate and promote hydrate formation on specific mineral surfaces such as sodium montmorillonite. (author)

  14. Free energy of hydration of niobium oxide

    International Nuclear Information System (INIS)

    Plodinec, M.J.

    1996-01-01

    Some of the glasses being formulated by SRTC researchers contain niobium oxide. In this report, the free energy of hydration of the oxide is calculated from the free energies of formation of the oxide, the hydroxide, and water. This value can be used in calculations of the free energy of hydration of glasses containing niobium

  15. Pentagonal dodecahedron methane hydrate cage and methanol ...

    Indian Academy of Sciences (India)

    Abstract. Density functional theory based studies have been performed to elucidate the role of methanol as an methane hydrate inhibitor. A methane hydrate pentagonal dodecahedron cage's geometry optimization, natural bond orbital (NBO) analysis, Mullikan charge determination, electrostatic potential evaluation and ...

  16. Multicomponent modelling of Portland cement hydration reactions

    NARCIS (Netherlands)

    Ukrainczyk, N.; Koenders, E.A.B.; Van Breugel, K.

    2012-01-01

    The prospect of cement and concrete technologies depends on more in depth understanding of cement hydration reactions. Hydration reaction models simulate the development of the microstructures that can finally be used to estimate the cement based material properties that influence performance and

  17. 78 FR 26337 - Methane Hydrate Advisory Committee

    Science.gov (United States)

    2013-05-06

    ... DEPARTMENT OF ENERGY Methane Hydrate Advisory Committee AGENCY: Office of Fossil Energy, Department of Energy. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the Methane.... SUPPLEMENTARY INFORMATION: Purpose of the Committee: The purpose of the Methane Hydrate Advisory Committee is to...

  18. 75 FR 9886 - Methane Hydrate Advisory Committee

    Science.gov (United States)

    2010-03-04

    ... DEPARTMENT OF ENERGY Methane Hydrate Advisory Committee AGENCY: Department of Energy, Office of Fossil Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Methane... the Committee: The purpose of the Methane Hydrate Advisory Committee is to provide advice on potential...

  19. 76 FR 59667 - Methane Hydrate Advisory Committee

    Science.gov (United States)

    2011-09-27

    ... DEPARTMENT OF ENERGY Methane Hydrate Advisory Committee AGENCY: Office of Fossil Energy, Department of Energy. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the Methane...-5600. SUPPLEMENTARY INFORMATION: Purpose of the Committee: The purpose of the Methane Hydrate Advisory...

  20. 78 FR 37536 - Methane Hydrate Advisory Committee

    Science.gov (United States)

    2013-06-21

    ... DEPARTMENT OF ENERGY Methane Hydrate Advisory Committee AGENCY: Office of Fossil Energy, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Methane... Committee: The purpose of the Methane Hydrate Advisory Committee is to provide advice on potential...

  1. 77 FR 40032 - Methane Hydrate Advisory Committee

    Science.gov (United States)

    2012-07-06

    ... DEPARTMENT OF ENERGY Methane Hydrate Advisory Committee AGENCY: Office of Fossil Energy, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Methane... of the Methane Hydrate Advisory Committee is to provide advice on potential applications of methane...

  2. CMTM3 (CKLF-Like Marvel Transmembrane Domain 3) Mediates Angiogenesis by Regulating Cell Surface Availability of VE-Cadherin in Endothelial Adherens Junctions.

    Science.gov (United States)

    Chrifi, Ihsan; Louzao-Martinez, Laura; Brandt, Maarten; van Dijk, Christian G M; Burgisser, Petra; Zhu, Changbin; Kros, Johan M; Duncker, Dirk J; Cheng, Caroline

    2017-06-01

    Decrease in VE-cadherin adherens junctions reduces vascular stability, whereas disruption of adherens junctions is a requirement for neovessel sprouting during angiogenesis. Endocytosis plays a key role in regulating junctional strength by altering bioavailability of cell surface proteins, including VE-cadherin. Identification of new mediators of endothelial endocytosis could enhance our understanding of angiogenesis. Here, we assessed the function of CMTM3 (CKLF-like MARVEL transmembrane domain 3), which we have previously identified as highly expressed in Flk1 + endothelial progenitor cells during embryonic development. Using a 3-dimensional coculture of human umbilical vein endothelial cells-GFP (green fluorescent protein) and pericytes-RFP (red fluorescent protein), we demonstrated that siRNA-mediated CMTM3 silencing in human umbilical vein endothelial cells impairs angiogenesis. In vivo CMTM3 inhibition by morpholino injection in developing zebrafish larvae confirmed that CMTM3 expression is required for vascular sprouting. CMTM3 knockdown in human umbilical vein endothelial cells does not affect proliferation or migration. Intracellular staining demonstrated that CMTM3 colocalizes with early endosome markers EEA1 (early endosome marker 1) and Clathrin + vesicles and with cytosolic VE-cadherin in human umbilical vein endothelial cells. Adenovirus-mediated CMTM3 overexpression enhances endothelial endocytosis, shown by an increase in Clathrin + , EEA1 + , Rab11 + , Rab5 + , and Rab7 + vesicles. CMTM3 overexpression enhances, whereas CMTM3 knockdown decreases internalization of cell surface VE-cadherin in vitro. CMTM3 promotes loss of endothelial barrier function in thrombin-induced responses, shown by transendothelial electric resistance measurements in vitro. In this study, we have identified a new regulatory function for CMTM3 in angiogenesis. CMTM3 is involved in VE-cadherin turnover and is a regulator of the cell surface pool of VE-cadherin. Therefore, CMTM

  3. Effect of Angiogenesis-Related Cytokines on Rotator Cuff Disease: The Search for Sensitive Biomarkers of Early Tendon Degeneration

    Directory of Open Access Journals (Sweden)

    Yulia A. Savitskaya

    2011-01-01

    Full Text Available Background Hallmarks of the pathogenesis of rotator cuff disease (RCD include an abnormal immune response, angiogenesis, and altered variables of vascularity. Degenerative changes enhance production of pro-inflammatory, anti-inflammatory, and vascular angiogenesis-related cytokines (ARC that play a pivotal role in the immune response to arthroscopic surgery and participate in the pathogenesis of RCD. The purpose of this study was to evaluate the ARC profile, ie, interleukin (IL: IL-1β, IL-6, IL-8, IL-10, vascular endothelial growth factor (VEGF, basic fibroblast growth factor (bFGF, and angiogenin (ANG, in human peripheral blood serum and correlate this with early degenerative changes in patients with RCD. Methods Blood specimens were obtained from 200 patients with RCD and 200 patients seen in the orthopedic clinic for nonrotator cuff disorders. Angiogenesis imaging assays was performed using power Doppler ultrasound to evaluate variables of vascularity in the rotator cuff tendons. Expression of ARC was measured by commercial Bio-Plex Precision Pro Human Cytokine Assays. Results Baseline concentrations of IL-1β, IL-8, and VEGF was significantly higher in RCD patients than in controls. Significantly higher serum VEGF levels were found in 85% of patients with RCD, and correlated with advanced stage of disease (r = 0.75; P < 0.0005, average microvascular density (r = 0.68, P < 0.005, and visual analog score (r = 0.75, P < 0.0002 in RCD patients. ANG and IL-10 levels were significantly lower in RCD patients versus controls. IL-1β and ANG levels were significantly correlated with degenerative tendon grade in RCD patients. No difference in IL-6 and bFGF levels was observed between RCD patients and controls. Patients with degenerative changes had markedly lower ANG levels compared with controls. Power Doppler ultrasound showed high blood vessel density in patients with tendon rupture. Conclusion The pathogenesis of RCD is associated with an

  4. Methane Production and Carbon Capture by Hydrate Swapping

    DEFF Research Database (Denmark)

    Mu, Liang; von Solms, Nicolas

    2017-01-01

    There are essentially two different approaches to producing methane from natural gas hydrate reservoirs, either bring the hydrate out of its thermodynamic stability region or expose the hydrate to a substance that will form a more stable hydrate structure, forcing an in situ swapping of the trapped...... in small hydrate cages, as long as the equilibrium formation pressure of (CO2 + N2) binary gas hydrate is below that of methane hydrate, even though adding nitrogen to carbon dioxide reduces the thermodynamic driving force for the formation of a new hydrate. When other conditions are similar, the methane...

  5. Gastric angiogenesis and Helicobacter pylori infection

    Directory of Open Access Journals (Sweden)

    I. D. Pousa

    Full Text Available The formation of new blood vessels seen in conditions commonly associated with Helicobacter pylori (H. pylori infection, including gastritis, peptic ulcer, and gastric carcinoma, prompts consideration of a potential relationship between mucosal colonization by this organism and the angiogenic process. H. pylori directly or indirectly damages endothelial cells, which induces a number of changes in the microvasculature of the gastric mucosa. In H. pylori-associated conditions, that is, in gastritis, peptic ulcer and gastric carcinoma, there is an increased concentration of angiogenic factors, and subsequently a formation of new blood vessels. However, this early angiogenesis -which is activated to repair the gastric mucosa- is subsequently inhibited in patients with peptic ulcer, and ulcer healing is thus delayed. This may be due to the antiproliferative action of this organism on endothelial cells. While the angiogenic process becomes inhibited in infected patients with peptic ulcer, it remains seemingly active in those with gastritis or gastric cancer. This fact is in support of the notion suggested by various studies that peptic ulcer and gastric cancer are mutually excluding conditions. In the case of gastric cancer, neoangiogenesis would enhance nutrient and oxygen supply to cancer cells, and thus tumor growth and metastatic spread.

  6. Hypoxia and Angiogenesis in Endometrioid Endometrial Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Nicole Horrée

    2007-01-01

    Full Text Available Background: Hypoxia-inducible factor 1α (HIF-1α plays an essential role in the adaptive response of cells to hypoxia, triggering biologic events associated with aggressive tumor behavior. Methods: Expression of HIF-1α and proteins in the HIF-1α pathway (Glut-1, CAIX, VEGF in paraffin-embedded specimens of normal (n = 17, premalignant (n = 17 and endometrioid endometrial carcinoma (n = 39 was explored by immunohistochemistry, in relation to microvessel density (MVD. Results: HIF-1α overexpression was absent in inactive endometrium but present in hyperplasia (61% and carcinoma (87%, with increasing expression in a perinecrotic fashion pointing to underlying hypoxia. No membranous expression of Glut-1 and CAIX was noticed in inactive endometrium, in contrast with expression in hyperplasia (Glut-1 0%, CAIX 61%, only focal and diffuse and carcinoma (Glut-1 94.6%, CAIX 92%, both mostly perinecrotically. Diffuse HIF-1α was accompanied by activation of downstream targets. VEGF was significantly higher expressed in hyperplasias and carcinomas compared to inactive endometrium. MVD was higher in hyperplasias and carcinomas than in normal endometrium (p < 0.001. Conclusion: HIF-1α and its downstream genes are increasingly expressed from normal through premalignant to endometrioid adenocarcinoma of the endometrium, paralleled by activation of its downstream genes and increased angiogenesis. This underlines the potential importance of hypoxia and its key regulator HIF-1α in endometrial carcinogenesis.

  7. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Donn McGuire; Steve Runyon; Richard Sigal; Bill Liddell; Thomas Williams; George Moridis

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. Hot Ice No. 1 was planned to test the Ugnu and West Sak sequences for gas hydrates and a concomitant free gas accumulation on Anadarko's 100% working interest acreage in section 30 of Township 9N, Range 8E of the Harrison Bay qu