WorldWideScience

Sample records for angiogenesis platelet factor-4

  1. Expression of Angiogenesis Regulatory Proteins and Epithelial-Mesenchymal Transition Factors in Platelets of the Breast Cancer Patients

    Directory of Open Access Journals (Sweden)

    Hui Han

    2014-01-01

    Full Text Available Platelets play a role in tumor angiogenesis and growth and are the main transporters of several angiogenesis regulators. Here, we aimed to determine the levels of angiogenesis regulators and epithelial-mesenchymal transition factors sequestered by circulating platelets in breast cancer patients and age-matched healthy controls. Platelet pellets (PP and platelet-poor plasma (PPP were collected by routine protocols. Vascular endothelial growth factor (VEGF, platelet-derived growth factor BB (PDGF-BB, thrombospondin-1 (TSP-1, platelet factor 4 (PF4, and transforming growth factor-β1 (TGF-β1 were measured by enzyme-linked immunosorbent assay. Angiogenesis-associated expression of VEGF (2.1 pg/106 platelets versus 0.9 pg/106 platelets, P < 0.001, PF4 (21.2 ng/106 platelets versus 10.2 ng/106 platelets, P < 0.001, PDGF-BB (42.9 pg/106 platelets versus 19.1 pg/106 platelets, P < 0.001, and TGF-β1 (15.3 ng/106 platelets versus 4.3 ng/106 platelets, P < 0.001 differed in the PP samples of cancer and control subjects. In addition, protein concentrations were associated with clinical characteristics (P<0.05. Circulating platelets in breast cancer sequester higher levels of PF4, VEGF, PDGF-BB, and TGF-β1, suggesting a possible target for early diagnosis. VEGF, PDGF, and TGF-β1 concentrations in platelets may be associated with prognosis.

  2. Micronutrients attenuate progression of prostate cancer by elevating the endogenous inhibitor of angiogenesis, Platelet Factor-4

    International Nuclear Information System (INIS)

    Cervi, David; Pak, Brian; Venier, Natalie A; Sugar, Linda M; Nam, Robert K; Fleshner, Neil E; Klotz, Laurence H; Venkateswaran, Vasundara

    2010-01-01

    Longstanding evidence implicates an inadequate diet as a key factor in the onset and progression of prostate cancer. The purpose herein was to discover, validate and characterize functional biomarkers of dietary supplementation capable of suppressing the course of prostate cancer in vivo. The Lady transgenic mouse model that spontaneously develops prostate cancer received a diet supplemented with a micronutrient cocktail of vitamin E, selenium and lycopene ad libitum. A proteomic analysis was conducted to screen for serum biomarkers of this dietary supplementation. Candidate peptides were validated and identified by sequencing and analyzed for their presence within the prostates of all mice by immunohistochemistry. Dietary supplementation with the combined micronutrients significantly induced the expression of the megakaryocyte-specific inhibitor of angiogenesis, platelet factor-4 (P = 0.0025). This observation was made predominantly in mice lacking tumors and any manifestations associated with progressive disease beyond 37 weeks of life, at which time no survivors remained in the control group (P < 0.0001). While prostates of mice receiving standard chow were enlarged and burdened with poorly differentiated carcinoma, those of mice on the supplemented diet appeared normal. Immunohistochemical analysis revealed marked amplifications of both platelet binding and platelet factor-4 within the blood vessels of prostates from mice receiving micronutrients only. We present unprecedented data whereby these combined micronutrients effectively promotes tumor dormancy in early prostate cancer, following initiation mutations that may drive the angiogenesis-dependent response of the tumor, by inducing platelet factor-4 expression and concentrating it at the tumor endothelium through enhanced platelet binding

  3. Micronutrients attenuate progression of prostate cancer by elevating the endogenous inhibitor of angiogenesis, Platelet Factor-4

    Directory of Open Access Journals (Sweden)

    Fleshner Neil E

    2010-06-01

    Full Text Available Abstract Background Longstanding evidence implicates an inadequate diet as a key factor in the onset and progression of prostate cancer. The purpose herein was to discover, validate and characterize functional biomarkers of dietary supplementation capable of suppressing the course of prostate cancer in vivo. Methods The Lady transgenic mouse model that spontaneously develops prostate cancer received a diet supplemented with a micronutrient cocktail of vitamin E, selenium and lycopene ad libitum. A proteomic analysis was conducted to screen for serum biomarkers of this dietary supplementation. Candidate peptides were validated and identified by sequencing and analyzed for their presence within the prostates of all mice by immunohistochemistry. Results Dietary supplementation with the combined micronutrients significantly induced the expression of the megakaryocyte-specific inhibitor of angiogenesis, platelet factor-4 (P = 0.0025. This observation was made predominantly in mice lacking tumors and any manifestations associated with progressive disease beyond 37 weeks of life, at which time no survivors remained in the control group (P Conclusion We present unprecedented data whereby these combined micronutrients effectively promotes tumor dormancy in early prostate cancer, following initiation mutations that may drive the angiogenesis-dependent response of the tumor, by inducing platelet factor-4 expression and concentrating it at the tumor endothelium through enhanced platelet binding.

  4. Platelet factor-4 and its p17-70 peptide inhibit myeloma proliferation and angiogenesis in vivo

    International Nuclear Information System (INIS)

    Yang, Longjiang; Du, Juan; Hou, Jian; Jiang, Hua; Zou, Jianfeng

    2011-01-01

    Angiogenesis plays an important role in the development of multiple myeloma (MM). The interaction between MM cells and the bone marrow microenvironment stimulates the proliferation and migration of endothelial progenitor cells (EPCs). Vascular endothelial growth factor (VEGF) contributes to the formation of new blood vessels by actively recruiting circulating EPCs. The production of proangiogenic and antiangiogenic factors is also dysregulated in MM. Platelet factor 4 (PF4) is a potent angiostatic cytokine that inhibits angiogenesis and tumor growth in several animal models. In this study, we stably transfected human myeloma cell lines with the PF4 gene or the sequence encoding its more potent p17-70 peptide and investigated the effects of PF4 and p17-70 on angiogenesis and tumor growth in vitro and in a SCID-rab myeloma model. PF4 and p17-70 significantly attenuated VEGF production, both in vitro and in vivo. In a migration study using a Transwell system, PF4 or p17-70 markedly suppressed the migration of co-cultured human endothelial progenitor cells. PF4 or p17-70 also caused a significant reduction in microvessel densities in myeloma xenografts and markedly reduced the tumor volume in the SCID mice. Kaplan-Meier analysis demonstrated that PF4 and p17-70 significantly extended the overall survival of SCID mice bearing human myeloma xenografts. Our findings indicate that PF4 or p17-70 could be valuable in combating multiple myeloma by disrupting tumor angiogenesis

  5. The influence of platelet- derived products on angiogenesis and tissue repair: a concise update

    Directory of Open Access Journals (Sweden)

    Constanza E Martínez

    2015-10-01

    Full Text Available Platelet degranulation allows the release of a large amount of soluble mediators, is an essential step for wound healing initiation, and stimulates clotting and angiogenesis. The latter process is one of the most critical biological events observed during tissue repair,increasing the growth of blood vessels in the maturing wound. Angiogenesis requires the action of a variety of growth factors that act in an appropriate physiological ratio to assure functional blood vessel restoration. Platelets release main regulators of angiogenesis: Vascular Endothelial Growth Factors (VEGFs, basic fibroblast growth factor (FGF-2, and Platelet derived growth factors (PDGFs, among others. In order to stimulate tissue repair, platelet derived fractions have been used as an autologous source of growth factors and biomolecules, namely Platelet Rich Plasma (PRP, Platelet Poor Plasma (PPP and Platelet Rich Fibrin(PRF. The continuous release of these growth factors has been proposed to promote angiogenesis both in vitro and in vivo. Considering the existence of clinical trials currently evaluating the efficacy of autologous PRP, the present review analyses fundamental questions regarding the putative role of platelet derived fractions as regulators of angiogenesis and evaluates the possible clinical implications of these formulations.

  6. Nitric oxide mediates angiogenesis induced in vivo by platelet-activating factor and tumor necrosis factor-alpha.

    Science.gov (United States)

    Montrucchio, G.; Lupia, E.; de Martino, A.; Battaglia, E.; Arese, M.; Tizzani, A.; Bussolino, F.; Camussi, G.

    1997-01-01

    We evaluated the role of an endogenous production of nitric oxide (NO) in the in vitro migration of endothelial cells and in the in vivo angiogenic response elicited by platelet-activating factor (PAF), tumor necrosis factor-alpha (TNF), and basic fibroblast growth factor (bFGF). The NO synthase inhibitor, N omega-nitro-L-arginine-methyl ester (L-NAME), but not its enantiomer D-NAME, prevented chemotaxis of endothelial cells induced in vitro by PAF and by TNF. The motogenic activity of TNF was also inhibited by WEB 2170, a specific PAF-receptor antagonist. In contrast, chemotaxis induced by bFGF was not prevented by L-NAME or by WEB 2170. Angiogenesis was studied in vivo in a murine model in which Matrigel was used as a vehicle for the delivery of mediators. In this model, the angiogenesis induced by PAF and TNF was inhibited by WEB 2170 and L-NAME but not by D-NAME. In contrast, angiogenesis induced by bFGF was not affected by L-NAME or by WEB 2170. TNF, but not bFGF, induced PAF synthesis within Matrigel. These results suggest that NO mediates the angiogenesis induced by PAF as well as that induced by TNF, which is dependent on the production of PAF. In contrast, the angiogenic effect of bFGF appears to be both PAF and NO independent. Images Figure 3 Figure 4 PMID:9250168

  7. Platelet-rich fibrin matrix improves wound angiogenesis via inducing endothelial cell proliferation.

    Science.gov (United States)

    Roy, Sashwati; Driggs, Jason; Elgharably, Haytham; Biswas, Sabyasachi; Findley, Muna; Khanna, Savita; Gnyawali, Urmila; Bergdall, Valerie K; Sen, Chandan K

    2011-11-01

    The economic, social, and public health burden of chronic ulcers and other compromised wounds is enormous and rapidly increasing with the aging population. The growth factors derived from platelets play an important role in tissue remodeling including neovascularization. Platelet-rich plasma (PRP) has been utilized and studied for the last four decades. Platelet gel and fibrin sealant, derived from PRP mixed with thrombin and calcium chloride, have been exogenously applied to tissues to promote wound healing, bone growth, hemostasis, and tissue sealing. In this study, we first characterized recovery and viability of as well as growth factor release from platelets in a novel preparation of platelet gel and fibrin matrix, namely platelet-rich fibrin matrix (PRFM). Next, the effect of PRFM application in a delayed model of ischemic wound angiogenesis was investigated. The study, for the first time, shows the kinetics of the viability of platelet-embedded fibrin matrix. A slow and steady release of growth factors from PRFM was observed. The vascular endothelial growth factor released from PRFM was primarily responsible for endothelial mitogenic response via extracellular signal-regulated protein kinase activation pathway. Finally, this preparation of PRFM effectively induced endothelial cell proliferation and improved wound angiogenesis in chronic wounds, providing evidence of probable mechanisms of action of PRFM in healing of chronic ulcers. 2011 by the Wound Healing Society.

  8. Platelet-derived growth factor-DD targeting arrests pathological angiogenesis by modulating glycogen synthase kinase-3beta phosphorylation.

    Science.gov (United States)

    Kumar, Anil; Hou, Xu; Lee, Chunsik; Li, Yang; Maminishkis, Arvydas; Tang, Zhongshu; Zhang, Fan; Langer, Harald F; Arjunan, Pachiappan; Dong, Lijin; Wu, Zhijian; Zhu, Linda Y; Wang, Lianchun; Min, Wang; Colosi, Peter; Chavakis, Triantafyllos; Li, Xuri

    2010-05-14

    Platelet-derived growth factor-DD (PDGF-DD) is a recently discovered member of the PDGF family. The role of PDGF-DD in pathological angiogenesis and the underlying cellular and molecular mechanisms remain largely unexplored. In this study, using different animal models, we showed that PDGF-DD expression was up-regulated during pathological angiogenesis, and inhibition of PDGF-DD suppressed both choroidal and retinal neovascularization. We also demonstrated a novel mechanism mediating the function of PDGF-DD. PDGF-DD induced glycogen synthase kinase-3beta (GSK3beta) Ser(9) phosphorylation and Tyr(216) dephosphorylation in vitro and in vivo, leading to increased cell survival. Consistently, GSK3beta activity was required for the antiangiogenic effect of PDGF-DD targeting. Moreover, PDGF-DD regulated the expression of GSK3beta and many other genes important for angiogenesis and apoptosis. Thus, we identified PDGF-DD as an important target gene for antiangiogenic therapy due to its pleiotropic effects on vascular and non-vascular cells. PDGF-DD inhibition may offer new therapeutic options to treat neovascular diseases.

  9. Local administration of platelet-derived growth factor B (PDGFB) improves follicular development and ovarian angiogenesis in a rat model of Polycystic Ovary Syndrome.

    Science.gov (United States)

    Di Pietro, Mariana; Scotti, Leopoldina; Irusta, Griselda; Tesone, Marta; Parborell, Fernanda; Abramovich, Dalhia

    2016-09-15

    Alterations in ovarian angiogenesis are common features in Polycystic Ovary Syndrome (PCOS) patients; the most studied of these alterations is the increase in vascular endothelial growth factor (VEGF) production by ovarian cells. Platelet-derived growth factor B (PDGFB) and D (PDGFD) are decreased in follicular fluid of PCOS patients and in the ovaries of a rat model of PCOS. In the present study, we aimed to analyze the effects of local administration of PDGFB on ovarian angiogenesis, follicular development and ovulation in a DHEA-induced PCOS rat model. Ovarian PDGFB administration to PCOS rats partially restored follicular development, decreased the percentage of cysts, increased the percentage of corpora lutea, and decreased the production of anti-Müllerian hormone. In addition, PDGFB administration improved ovarian angiogenesis by reversing the increase in periendothelial cell area and restoring VEGF levels. Our results shed light into the mechanisms that lead to altered ovarian function in PCOS and provide new data for potential therapeutic strategies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. 21 CFR 864.7695 - Platelet factor 4 radioimmunoassay.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Platelet factor 4 radioimmunoassay. 864.7695 Section 864.7695 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7695 Platelet...

  11. Serum platelet-derived growth factor and fibroblast growth factor in patients with benign and malignant ovarian tumors

    DEFF Research Database (Denmark)

    Madsen, Christine Vestergaard; Steffensen, Karina Dahl; Olsen, Dorte Aalund

    2012-01-01

    New biological markers with predictive or prognostic value are highly warranted in the treatment of ovarian cancer. The platelet-derived growth factor (PDGF) system and fibroblast growth factor (FGF) system are important components in tumor growth and angiogenesis....

  12. Platelet factor 4 impairs the anticoagulant activity of activated protein C.

    LENUS (Irish Health Repository)

    Preston, Roger J S

    2012-02-01

    Platelet factor 4 (PF4) is an abundant platelet alpha-granule chemokine released following platelet activation. PF4 interacts with thrombomodulin and the gamma-carboxyglutamic acid (Gla) domain of protein C, thereby enhancing activated protein C (APC) generation by the thrombin-thrombomodulin complex. However, the protein C Gla domain not only mediates protein C activation in vivo, but also plays a critical role in modulating the diverse functional properties of APC once generated. In this study we demonstrate that PF4 significantly inhibits APC anti-coagulant activity. PF4 inhibited both protein S-dependent APC anticoagulant function in plasma and protein S-dependent factor Va (FVa) proteolysis 3- to 5-fold, demonstrating that PF4 impairs protein S cofactor enhancement of APC anticoagulant function. Using recombinant factor Va variants FVa-R506Q\\/R679Q and FVa-R306Q\\/R679Q, PF4 was shown to impair APC proteolysis of FVa at position Arg(306) by 3-fold both in the presence and absence of protein S. These data suggest that PF4 contributes to the poorly understood APC resistance phenotype associated with activated platelets. Finally, despite PF4 binding to the APC Gla domain, we show that APC in the presence of PF4 retains its ability to initiate PAR-1-mediated cytoprotective signaling. In summary, we propose that PF4 acts as a critical regulator of APC generation, but also differentially targets APC toward cytoprotective, rather than anticoagulant function at sites of vascular injury with concurrent platelet activation.

  13. Platelet factor 4 impairs the anticoagulant activity of activated protein C.

    LENUS (Irish Health Repository)

    Preston, Roger J S

    2009-02-27

    Platelet factor 4 (PF4) is an abundant platelet alpha-granule chemokine released following platelet activation. PF4 interacts with thrombomodulin and the gamma-carboxyglutamic acid (Gla) domain of protein C, thereby enhancing activated protein C (APC) generation by the thrombin-thrombomodulin complex. However, the protein C Gla domain not only mediates protein C activation in vivo, but also plays a critical role in modulating the diverse functional properties of APC once generated. In this study we demonstrate that PF4 significantly inhibits APC anti-coagulant activity. PF4 inhibited both protein S-dependent APC anticoagulant function in plasma and protein S-dependent factor Va (FVa) proteolysis 3- to 5-fold, demonstrating that PF4 impairs protein S cofactor enhancement of APC anticoagulant function. Using recombinant factor Va variants FVa-R506Q\\/R679Q and FVa-R306Q\\/R679Q, PF4 was shown to impair APC proteolysis of FVa at position Arg(306) by 3-fold both in the presence and absence of protein S. These data suggest that PF4 contributes to the poorly understood APC resistance phenotype associated with activated platelets. Finally, despite PF4 binding to the APC Gla domain, we show that APC in the presence of PF4 retains its ability to initiate PAR-1-mediated cytoprotective signaling. In summary, we propose that PF4 acts as a critical regulator of APC generation, but also differentially targets APC toward cytoprotective, rather than anticoagulant function at sites of vascular injury with concurrent platelet activation.

  14. Platelet antiheparin activity. The isolation and characterisation of platelet factor 4 released from thrombin-aggregated washed human platelets and its dissociation into subunits and the isolation of membrane-bound antiheparin activity.

    Science.gov (United States)

    Moore, S; Pepper, D S; Cash, J D

    1975-02-27

    Platelet factor 4 was isolated by gel filtration from the soluble release products of thrombin-aggregated washed human platelets as a proteoglycan-platelet factor 4 complex of molecular weight 358 000, Stokes radius (r-s) of 14.0 nm, sedimentation coefficient (s) of 7.1 S and frictional ratio (f/f-o) of 3.04. The complex was dissociated at high ionic strength (I equals 0.75) and the proteoglycan separated from platelet factor 4 by gel filtration. Platelet factor 4 had a molecular weight of 27 100, r-s of 2.52 nm, s of 2.4 S and f/f-o of 1.26, was insoluble under physiological conditions but readily soluble at pH 3. Under these conditions platelet factor 4 dissociated into four subunits with a molecular weight of 6900, r-s of 1.92 nm, s of 0.8 S, and f/f-o of 1.52. Qualitative N-terminal amino acid analysis showed the presence of glutamic acid or glutamine as the major end group. Platelet factor 4 was compared with protamine sulphate, which has similar biological properties, by electrophoresis at pH 2.2, in which both migrated as single bands but with differing mobility, and by amino acid analysis which showed a more normal distribution of residues than occurred in protamine sulphate. Of the basic amino acids platelet factor 4 (molecular weight 27 100) contained 5.97% arginine, 3.18% histidine, and 12.31% lysine compared to protamine sulphate with 64.2% arginine, 0.6% lysine and no histidine. A partial specific volume (v) of 0.747 was calculated for platelet factor 4 from its amino acid analysis. A membrane fraction with antiheparin activity, an isopycnic density of 1.090-1.110 and r-s of 15-35 nm, was also isolated by sucrose density gradient centrifugation from the ultrasonicated insoluble platelet residue remaining after thrombin-induced aggregation of washed human platelets. Trypsin treatment of the membrane fraction neither solubilised nor destroyed the activity.

  15. Platelet-rich plasma-containing fragmin-protamine micro-nanoparticles promote epithelialization and angiogenesis in split-thickness skin graft donor sites.

    Science.gov (United States)

    Takabayashi, Yuki; Ishihara, Masayuki; Sumi, Yuki; Takikawa, Makoto; Nakamura, Shingo; Kiyosawa, Tomoharu

    2015-01-01

    Platelet-rich plasma (PRP) contains multiple growth factors, and fragmin-protamine micro-nanoparticles (F-P M-NPs) significantly enhance and stabilize growth factors. The purpose of this study was to evaluate the effects of PRP-containing F-P M-NPs (PRP&F-P M-NPs) on wound repair in split-thickness skin graft (STSG-) donor sites (DS). A total of 56 inbred male rats were anesthetized and split-thickness skin graft donor site (STSG-DS) were created with a Padgett dermatome. PRP&F-P M-NPs, F-P M-NPs, PRP, and saline (control) were then intradermally injected evenly into the STSG-DSs. On 3, 4, 5, 7, and 10 d after creation of STSG-DS, skin sample sections were stained with hematoxylin and eosin to evaluate reepithelialization and angiogenesis. Treatment of STSG-DS with PRP&F-P M-NPs effectively promoted epithelialization and new vessel formation compared with those treated with PRP, F-P M-NPs, and control (saline). The intradermal injection of PRP&F-P M-NPs promotes epithelialization and angiogenesis in STSG-DS wounds. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Dansyl (5-dimethylaminonaphthalene-1-sulphonyl)-heparin binds antithrombin III and platelet factor 4 at separate sites

    Science.gov (United States)

    Piepkorn, Michael W.

    1981-01-01

    Antithrombin III binds to, and thereby augments the fluorescence of, dansyl-(5-dimethylaminonaphthalene-1-sulphonyl)-heparin; platelet factor 4 binding to the fluorescent heparin has little of this effect. Competition studies in which antithrombin III competes with platelet factor 4 for heparin binding demonstrate that heparin can simultaneously bind both proteins. PMID:7317004

  17. Platelet-derived growth factor inhibits platelet activation in heparinized whole blood.

    Science.gov (United States)

    Selheim, F; Holmsen, H; Vassbotn, F S

    1999-08-15

    We previously have demonstrated that human platelets have functionally active platelet-derived growth factor alpha-receptors. Studies with gel-filtered platelets showed that an autocrine inhibition pathway is transduced through this tyrosine kinase receptor during platelet activation. The physiological significance of this inhibitory effect of platelet-derived growth factor on gel-filtered platelets activation is, however, not known. In the present study, we investigated whether platelet-derived growth factor inhibits platelet activation under more physiological conditions in heparinized whole blood, which represents a more physiological condition than gel-filtered platelets. Using flow cytometric assays, we demonstrate here that platelet-derived growth factor inhibits thrombin-, thrombin receptor agonist peptide SFLLRN-, and collagen-induced platelet aggregation and shedding of platelet-derived microparticles from the platelet plasma membrane during platelet aggregation in stirred heparinized whole blood. The inhibitory effect of platelet-derived growth factor was dose dependent. However, under nonaggregating conditions (no stirring), we could not demonstrate any significant effect of platelet-derived growth factor on thrombin- and thrombin receptor agonist peptide-induced platelet surface expression of P-selectin. Our results demonstrate that platelet-derived growth factor appears to be a true antithrombotic agent only under aggregating conditions in heparinized whole blood.

  18. Platelet-derived-growth-factor-induced signalling in human platelets: phosphoinositide-3-kinase-dependent inhibition of platelet activation.

    Science.gov (United States)

    Selheim, F; Fukami, M H; Holmsen, H; Vassbotn, F S

    2000-09-01

    Human platelets release platelet-derived growth factor (PDGF) from alpha-granules during platelet activation. We have previously shown that platelets have PDGF alpha-receptors, a transmembrane tyrosine kinase that takes part in negative feedback regulation during platelet activation. Here we have described a study of PDGF-induced tyrosine phosphorylation of platelet substrates and phosphoinositide 3-kinase (PI-3K) activity in collagen-stimulated platelets. By immunoblotting with phosphotyrosine antibodies of collagen-activated platelets we found that PDGF increased the phosphorylation of several platelet substrates, e.g. pp140, pp120 and pp85. PDGF inhibited collagen-induced platelet activation in the presence of inhibitors of autocrine stimulation, thus blocking the pure collagen-induced signal transduction. PDGF enhanced the collagen-induced formation of PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3) as measured by HPLC. Wortmannin and LY294002, two unrelated inhibitors of PI-3K, were used to investigate the role of PI-3K in PDGF-induced platelet signalling. Incubation of platelets with wortmannin and LY294002 blocked the formation of three phosphorylated inositides as well as the inhibitory effect of PDGF on collagen-induced platelet activation. We conclude that the inhibitory effect of PDGF on platelet activation is PI-3K dependent. This is the first demonstration of a negative regulatory function of 3-phosphorylated inositides in platelets.

  19. Adaptation in Response of Excitation and Inhibition Factors of Angiogenesis after 4 Weeks of Progressive Resistant Training in Sedentary Men

    Directory of Open Access Journals (Sweden)

    s. Karami

    2016-09-01

    Full Text Available Aims: The sport activity is an important factor affecting the capillary density and angiogenesis. Nitric oxide (NO and vascular endothelial growth factor (VEGF are the most important stimulative regulators in the angiogenesis. In addition, endostatin is one of the inhibitors of angiogenesis. The aim of this study was to investigate the adaptation in the responses of the angiogenesis inhibition and stimulating factors after 4-week increasing resistive exercises in the sedentary men. Materials & Methods: In the semi-experimental study, 20 healthy and inactive male students, aged between 20 and 25 years, who were residents of Tehran University Dormitory, were studied in the first semester of the academic year 2015-16. The subjects, selected via available sampling method, were divided into two groups including experimental and control groups (n=10 per group. 4-week resistive exercises were done three sessions per week. Blood-sampling was done before and 48 hours after the last exercise session. VEGF, NO, and endostatin were then measured. Data was analyzed by SPSS 18 software using independent and dependent T tests, as well as Pearson correlation coefficient test. Findings: In experimental group, VEGF and No significantly increased at the posttest stage than the pretest (p=0.001. Nevertheless, no significant difference was observed in control group (p>0.05. In both experimental and control groups, endostatin level did not significantly increase at the posttest stage than the pretest (p>0.05. In addition, VEGF and NO were the only variables that were significantly correlated (p=0.016; r=0.82. Conclusion: 4-week increasing resistive exercises in the sedentary men significantly affect the angiogenes stimulating factors, i. e. VEGF and NO, while such exercises do not significantly affect the angiogenesis inhibition factor, i. e. endostatin.

  20. Effect of twenty minutes of aerobic exercise on in vivo platelet release in moderately trained females: radioimmunoassay of platelet factor 4 and beta-thromboglobulin

    International Nuclear Information System (INIS)

    Rudmann, S.V.

    1986-01-01

    Circulating blood platelets serve an important role in the physiological process of hemostasis. Physical exercise has been documented to result in alterations in many hemostatic parameters including platelet size, number and function. Most published research data support the hypotheses that both hemostasis and fibrinolysis become activated as a consequence of various levels of physical exercise. The purpose of this study was to determine the effect of twenty minutes aerobic exercise on platelet activation in vivo. Platelet activation in vivo is associated with the release of platelet granular contents. Platelet alpha granules contain two platelet specific proteins: platelet factor 4 (PF4) and beta-thromboglobulin (BTG). Elevated plasma levels of these proteins are a specific marker of in vivo platelet activation. Subjects were moderately trained female volunteers between the ages of 22 and 40 years. Subjects were exercised or twenty minutes on a bicycle ergometer at workloads that represented 65 to 75% of their functional capacity. Blood specimens were drawn within five minutes of exercise. Plasma samples from exercise and control subjects were assayed for PF4 and BTG using a sensitive competitive-binding radioimmunoassay procedure. The mean plasma levels of both proteins were significantly greater in the exercising subjects when compared with the non-exercising controls. Data from this study support the following research hypotheses: BTG plasma levels will be significantly higher in exercising subjects than in non-exercising controls, and PF4 plasma levels will be significantly higher in exercising subjects than in non-exercising controls

  1. Are the changes in the peripheral brain-derived neurotrophic factor levels due to platelet activation?

    Science.gov (United States)

    Serra-Millàs, Montserrat

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) plays an important role in central nervous system development, neurogenesis and neuronal plasticity. BDNF is also expressed in several non-neuronal tissues, and it could play an important role in other processes, such as cancer, angiogenesis, etc. Platelets are the major source of peripheral BDNF. However, platelets also contain high amounts of serotonin; they express specific surface receptors during activation, and a multitude of pro-inflammatory and immunomodulatory bioactive compounds are secreted from the granules. Until recently, there was insufficient knowledge regarding the relationship between BDNF and platelets. Recent studies showed that BDNF is present in two distinct pools in platelets, in α-granules and in the cytoplasm, and only the BDNF in the granules is secreted following stimulation, representing 30% of the total BDNF in platelets. BDNF has an important role in the pathophysiology of depression. Low levels of serum BDNF have been described in patients with major depressive disorder, and BDNF levels increased with chronic antidepressant treatment. Interestingly, there is an association between depression and platelet function. This review analyzed studies that evaluated the relationship between BDNF and platelet activation and the effect of treatments on both parameters. Only a few studies consider this possible confounding factor, and it could be very important in diseases such as depression, which show changes in both parameters. PMID:27014600

  2. The hypoxia-inducible factor-responsive proteins semaphorin 4D and vascular endothelial growth factor promote tumor growth and angiogenesis in oral squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hua; Yang, Ying-Hua [Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650W. Baltimore Street, 7-North, Baltimore, MD 21201 (United States); Binmadi, Nada O. [Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650W. Baltimore Street, 7-North, Baltimore, MD 21201 (United States); Department of Oral Basic and Clinical Sciences, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Proia, Patrizia [Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650W. Baltimore Street, 7-North, Baltimore, MD 21201 (United States); Department of Sports Science (DISMOT), University of Palermo, Via Eleonora Duse 2 90146, Palermo (Italy); Basile, John R., E-mail: jbasile@umaryland.edu [Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650W. Baltimore Street, 7-North, Baltimore, MD 21201 (United States); Greenebaum Cancer Center, 22S. Greene Street, Baltimore, MD 21201 (United States)

    2012-08-15

    Growth and metastasis of solid tumors requires induction of angiogenesis to ensure the delivery of oxygen, nutrients and growth factors to rapidly dividing transformed cells. Through either mutations, hypoxia generated by cytoreductive therapies, or when a malignancy outgrows its blood supply, tumor cells undergo a change from an avascular to a neovascular phenotype, a transition mediated by the hypoxia-inducible factor (HIF) family of transcriptional regulators. Vascular endothelial growth factor (VEGF) is one example of a gene whose transcription is stimulated by HIF. VEGF plays a crucial role in promoting tumor growth and survival by stimulating new blood vessel growth in response to such stresses as chemotherapy or radiotherapy-induced hypoxia, and it therefore has become a tempting target for neutralizing antibodies in the treatment of advanced neoplasms. Emerging evidence has shown that the semaphorins, proteins originally associated with control of axonal growth and immunity, are regulated by changes in oxygen tension as well and may play a role in tumor-induced angiogenesis. Through the use of RNA interference, in vitro and in vivo angiogenesis assays and tumor xenograft experiments, we demonstrate that expression of semaphorin 4D (SEMA4D), which is under the control of the HIF-family of transcription factors, cooperates with VEGF to promote tumor growth and vascularity in oral squamous cell carcinoma (OSCC). We use blocking antibodies to show that targeting SEMA4D function along with VEGF could represent a novel anti-angiogenic therapeutic strategy for the treatment of OSCC and other solid tumors. -- Highlights: Black-Right-Pointing-Pointer Similar to VEGF, SEMA4D promotes angiogenesis in vitro and in vivo. Black-Right-Pointing-Pointer Both VEGF and SEMA4D are produced by OSCC cells in a HIF-dependent manner. Black-Right-Pointing-Pointer These factors combine to elicit a robust pro-angiogenic phenotype in OSCC. Black-Right-Pointing-Pointer Anti-SEMA4D

  3. The hypoxia-inducible factor-responsive proteins semaphorin 4D and vascular endothelial growth factor promote tumor growth and angiogenesis in oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Zhou, Hua; Yang, Ying-Hua; Binmadi, Nada O.; Proia, Patrizia; Basile, John R.

    2012-01-01

    Growth and metastasis of solid tumors requires induction of angiogenesis to ensure the delivery of oxygen, nutrients and growth factors to rapidly dividing transformed cells. Through either mutations, hypoxia generated by cytoreductive therapies, or when a malignancy outgrows its blood supply, tumor cells undergo a change from an avascular to a neovascular phenotype, a transition mediated by the hypoxia-inducible factor (HIF) family of transcriptional regulators. Vascular endothelial growth factor (VEGF) is one example of a gene whose transcription is stimulated by HIF. VEGF plays a crucial role in promoting tumor growth and survival by stimulating new blood vessel growth in response to such stresses as chemotherapy or radiotherapy-induced hypoxia, and it therefore has become a tempting target for neutralizing antibodies in the treatment of advanced neoplasms. Emerging evidence has shown that the semaphorins, proteins originally associated with control of axonal growth and immunity, are regulated by changes in oxygen tension as well and may play a role in tumor-induced angiogenesis. Through the use of RNA interference, in vitro and in vivo angiogenesis assays and tumor xenograft experiments, we demonstrate that expression of semaphorin 4D (SEMA4D), which is under the control of the HIF-family of transcription factors, cooperates with VEGF to promote tumor growth and vascularity in oral squamous cell carcinoma (OSCC). We use blocking antibodies to show that targeting SEMA4D function along with VEGF could represent a novel anti-angiogenic therapeutic strategy for the treatment of OSCC and other solid tumors. -- Highlights: ► Similar to VEGF, SEMA4D promotes angiogenesis in vitro and in vivo. ► Both VEGF and SEMA4D are produced by OSCC cells in a HIF-dependent manner. ► These factors combine to elicit a robust pro-angiogenic phenotype in OSCC. ► Anti-SEMA4D blocking antibody inhibits Plexin-B1 activation. ► SEMA4D is a valid anti-angiogenic target in the

  4. Platelet factor 4 activity against P. falciparum and its translation to nonpeptidic mimics as antimalarials.

    Science.gov (United States)

    Love, Melissa S; Millholland, Melanie G; Mishra, Satish; Kulkarni, Swapnil; Freeman, Katie B; Pan, Wenxi; Kavash, Robert W; Costanzo, Michael J; Jo, Hyunil; Daly, Thomas M; Williams, Dewight R; Kowalska, M Anna; Bergman, Lawrence W; Poncz, Mortimer; DeGrado, William F; Sinnis, Photini; Scott, Richard W; Greenbaum, Doron C

    2012-12-13

    Plasmodium falciparum pathogenesis is affected by various cell types in the blood, including platelets, which can kill intraerythrocytic malaria parasites. Platelets could mediate these antimalarial effects through human defense peptides (HDPs), which exert antimicrobial effects by permeabilizing membranes. Therefore, we screened a panel of HDPs and determined that human platelet factor 4 (hPF4) kills malaria parasites inside erythrocytes by selectively lysing the parasite digestive vacuole (DV). PF4 rapidly accumulates only within infected erythrocytes and is required for parasite killing in infected erythrocyte-platelet cocultures. To exploit this antimalarial mechanism, we tested a library of small, nonpeptidic mimics of HDPs (smHDPs) and identified compounds that kill P. falciparum by rapidly lysing the parasite DV while sparing the erythrocyte plasma membrane. Lead smHDPs also reduced parasitemia in a murine malaria model. Thus, identifying host molecules that control parasite growth can further the development of related molecules with therapeutic potential. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Radioimmunoassay determination of factor 4 platelets (PF4) in acute myocardial infarction patients

    International Nuclear Information System (INIS)

    Leon Herrejon, Ma. de L.; Graef S, A.; Altamirano B, P.; Ramos C, M.A.

    1985-01-01

    From a pathological standpoint an increase in the Factor 4 platelet has been observed in various abnormal states including myocardial infarction, diabetes mellitus, diffuse intravascular coagulation and renal insufficiency among others. Eighty subjects were studied at rest: 40 normal and under no medication, and 40 myocardial infarction patients in the acute phase and with added pathology. All were under the same therapeutic regimen. Results obtained between both groups were statistically significant with a P > 0.01. (author)

  6. Angiogenesis-Related Pathways in the Pathogenesis of Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Aristotle Bamias

    2013-07-01

    Full Text Available Ovarian Cancer represents the most fatal type of gynecological malignancies. A number of processes are involved in the pathogenesis of ovarian cancer, especially within the tumor microenvironment. Angiogenesis represents a hallmark phenomenon in cancer, and it is responsible for tumor spread and metastasis in ovarian cancer, among other tumor types, as it leads to new blood vessel formation. In recent years angiogenesis has been given considerable attention in order to identify targets for developing effective anti-tumor therapies. Growth factors have been identified to play key roles in driving angiogenesis and, thus, the formation of new blood vessels that assist in “feeding” cancer. Such molecules include the vascular endothelial growth factor (VEGF, the platelet derived growth factor (PDGF, the fibroblast growth factor (FGF, and the angiopoietin/Tie2 receptor complex. These proteins are key players in complex molecular pathways within the tumor cell and they have been in the spotlight of the development of anti-angiogenic molecules that may act as stand-alone therapeutics, or in concert with standard treatment regimes such as chemotherapy. The pathways involved in angiogenesis and molecules that have been developed in order to combat angiogenesis are described in this paper.

  7. Pilot Evaluation of Angiogenesis Signaling Factor Response after Transcatheter Arterial Embolization for Hepatocellular Carcinoma.

    Science.gov (United States)

    Ronald, James; Nixon, Andrew B; Marin, Daniele; Gupta, Rajan T; Janas, Gemini; Chen, Willa; Suhocki, Paul V; Pabon-Ramos, Waleska; Sopko, David R; Starr, Mark D; Brady, John C; Hurwitz, Herbert I; Kim, Charles Y

    2017-10-01

    Purpose To identify changes in a broad panel of circulating angiogenesis factors after bland transcatheter arterial embolization (TAE), a purely ischemic treatment for hepatocellular carcinoma (HCC). Materials and Methods This prospective HIPAA-compliant study was approved by the institutional review board. Informed written consent was obtained from all participants prior to entry into the study. Twenty-five patients (21 men; mean age, 61 years; range, 30-81 years) with Liver Imaging Reporting and Data System category 5 or biopsy-proven HCC and who were undergoing TAE were enrolled from October 15, 2014, through December 2, 2015. Nineteen plasma angiogenesis factors (angiopoietin 2; hepatocyte growth factor; platelet-derived growth factor AA and BB; placental growth factor; vascular endothelial growth factor A and D; vascular endothelial growth factor receptor 1, 2, and 3; osteopontin; transforming growth factor β1 and β2; thrombospondin 2; intercellular adhesion molecule 1; interleukin 6 [IL-6]; stromal cell-derived factor 1; tissue inhibitor of metalloproteinases 1; and vascular cell adhesion molecule 1 [VCAM-1]) were measured by using enzyme-linked immunosorbent assays at 1 day, 2 weeks, and 5 weeks after TAE and were compared with baseline levels by using paired Wilcoxon tests. Tumor response was assessed according to modified Response Evaluation Criteria in Solid Tumors (mRECIST). Angiogenesis factor levels were compared between responders and nonresponders by mRECIST criteria by using unpaired Wilcoxon tests. Results All procedures were technically successful with no complications. Fourteen angiogenesis factors showed statistically significant changes following TAE, but most changes were transient. IL-6 was upregulated only 1 day after the procedure, but showed the largest increases of any factor. Osteopontin and VCAM-1 demonstrated sustained upregulation at all time points following TAE. At 3-month follow-up imaging, 11 patients had responses to TAE

  8. Broader expression of the mouse platelet factor 4-cre transgene beyond the megakaryocyte lineage.

    Science.gov (United States)

    Pertuy, F; Aguilar, A; Strassel, C; Eckly, A; Freund, J-N; Duluc, I; Gachet, C; Lanza, F; Léon, C

    2015-01-01

    Transgenic mice expressing cre recombinase under the control of the platelet factor 4 (Pf4) promoter, in the context of a 100-kb bacterial artificial chromosome, have become a valuable tool with which to study genetic modifications in the platelet lineage. However, the specificity of cre expression has recently been questioned, and the time of its onset during megakaryopoiesis remains unknown. To characterize the expression of this transgene, we used double-fluorescent cre reporter mice. In the bone marrow, Pf4-cre-mediated recombination had occurred in all CD42-positive megakaryocytes as early as stage I of maturation, and in rare CD42-negative cells. In circulating blood, all platelets had recombined, along with only a minor fraction of CD45-positive cells. However, we found that all tissues contained recombined cells of monocyte/macrophage origin. When recombined, these cells might potentially modify the function of the tissues under particular conditions, especially inflammatory conditions, which further increase recombination in immune cells. Unexpectedly, a subset of epithelial cells from the distal colon showed signs of recombination resulting from endogenous Pf4-cre expression. This is probably the basis of the unexplained colon tumors developed by Apc(flox/flox) ;Pf4-cre mice, generated in a separate study on the role of Apc in platelet formation. Altogether, our results indicate early recombination with full penetrance in megakaryopoiesis, and confirm the value of Pf4-cre mice for the genetic engineering of megakaryocytes and platelets. However, care must be taken when investigating the role of platelets in processes outside hemostasis, especially when immune cells might be involved. © 2014 International Society on Thrombosis and Haemostasis.

  9. Distinct effects of calorie restriction on adipose tissue cytokine and angiogenesis profiles in obese and lean mice

    Directory of Open Access Journals (Sweden)

    Kurki Eveliina

    2012-06-01

    Full Text Available Abstract Background Obesity associates with low-grade inflammation and adipose tissue remodeling. Using sensitive high-throughput protein arrays we here investigated adipose tissue cytokine and angiogenesis-related protein profiles from obese and lean mice, and in particular, the influence of calorie restriction (CR. Methods Tissue samples from visceral fat were harvested from obese mice fed with a high-fat diet (60% of energy, lean controls receiving low-fat control diet as well as from obese and lean mice kept under CR (energy intake 70% of ad libitum intake for 50 days. Protein profiles were analyzed using mouse cytokine and angiogenesis protein array kits. Results In obese and lean mice, CR was associated with 11.3% and 15.6% reductions in body weight, as well as with 4.0% and 4.6% reductions in body fat percentage, respectively. Obesity induced adipose tissue cytokine expressions, the most highly upregulated cytokines being IL-1ra, IL-2, IL-16, MCP-1, MIG, RANTES, C5a, sICAM-1 and TIMP-1. CR increased sICAM-1 and TIMP-1 expression both in obese and lean mice. Overall, CR showed distinct effects on cytokine expressions; in obese mice CR largely decreased but in lean mice increased adipose tissue cytokine expressions. Obesity was also associated with increased expressions of angiogenesis-related proteins, in particular, angiogenin, endoglin, endostatin, endothelin-1, IGFBP-3, leptin, MMP-3, PAI-1, TIMP-4, CXCL16, platelet factor 4, DPPIV and coagulation factor III. CR increased endoglin, endostatin and platelet factor 4 expressions, and decreased IGFBP-3, NOV, MMP-9, CXCL16 and osteopontin expressions both in obese and lean mice. Interestingly, in obese mice, CR decreased leptin and TIMP-4 expressions, whereas in lean mice their expressions were increased. CR decreased MMP-3 and PAI-1 only in obese mice, whereas CR decreased FGF acidic, FGF basic and coagulation factor III, and increased angiogenin and DPPIV expression only in lean mice

  10. Influence of Levamisole and Other Angiogenesis Inhibitors on Angiogenesis and Endothelial Cell Morphology in Vitro

    Energy Technology Data Exchange (ETDEWEB)

    Friis, Tina; Engel, Anne-Marie; Bendiksen, Christine D.; Larsen, Line S.; Houen, Gunnar, E-mail: gh@ssi.dk [Department of Clinical Biochemistry, Immunology and Genetics, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen (Denmark)

    2013-06-24

    Angiogenesis, the formation of new blood vessels from existing vessels is required for many physiological processes and for growth of solid tumors. Initiated by hypoxia, angiogenesis involves binding of angiogenic factors to endothelial cell (EC) receptors and activation of cellular signaling, differentiation, migration, proliferation, interconnection and canalization of ECs, remodeling of the extracellular matrix and stabilization of newly formed vessels. Experimentally, these processes can be studied by several in vitro and in vivo assays focusing on different steps in the process. In vitro, ECs form networks of capillary-like tubes when propagated for three days in coculture with fibroblasts. The tube formation is dependent on vascular endothelial growth factor (VEGF) and omission of VEGF from the culture medium results in the formation of clusters of undifferentiated ECs. Addition of angiogenesis inhibitors to the coculture system disrupts endothelial network formation and influences EC morphology in two distinct ways. Treatment with antibodies to VEGF, soluble VEGF receptor, the VEGF receptor tyrosine kinase inhibitor SU5614, protein tyrosine phosphatase inhibitor (PTPI) IV or levamisole results in the formation of EC clusters of variable size. This cluster morphology is a result of inhibited EC differentiation and levamisole can be inferred to influence and block VEGF signaling. Treatment with platelet factor 4, thrombospondin, rapamycin, suramin, TNP-470, salubrinal, PTPI I, PTPI II, clodronate, NSC87877 or non-steriodal anti-inflammatory drugs (NSAIDs) results in the formation of short cords of ECs, which suggests that these inhibitors have an influence on later steps in the angiogenic process, such as EC proliferation and migration. A humanized antibody to VEGF is one of a few angiogenesis inhibitors used clinically for treatment of cancer. Levamisole is approved for clinical treatment of cancer and is interesting with respect to anti-angiogenic activity

  11. Effect of platelet lysate on human cells involved in different phases of wound healing.

    Science.gov (United States)

    Barsotti, Maria Chiara; Chiara Barsotti, Maria; Losi, Paola; Briganti, Enrica; Sanguinetti, Elena; Magera, Angela; Al Kayal, Tamer; Feriani, Roberto; Di Stefano, Rossella; Soldani, Giorgio

    2013-01-01

    Platelets are rich in mediators able to positively affect cell activity in wound healing. Aim of this study was to characterize the effect of different concentrations of human pooled allogeneic platelet lysate on human cells involved in the different phases of wound healing (inflammatory phase, angiogenesis, extracellular matrix secretion and epithelialization). Platelet lysate effect was studied on endothelial cells, monocytes, fibroblasts and keratinocytes, in terms of viability and proliferation, migration, angiogenesis, tissue repair pathway activation (ERK1/2) and inflammatory response evaluation (NFκB). Results were compared both with basal medium and with a positive control containing serum and growth factors. Platelet lysate induced viability and proliferation at the highest concentrations tested (10% and 20% v/v). Whereas both platelet lysate concentrations increased cell migration, only 20% platelet lysate was able to significantly promote angiogenic activity (pplatelet lysate concentrations activated important inflammatory pathways such as ERK1/2 and NFκB with the same early kinetics, whereas the effect was different for later time-points. These data suggest the possibility of using allogeneic platelet lysate as both an alternative to growth factors commonly used for cell culture and as a tool for clinical regenerative application for wound healing.

  12. Friends Turned Foes: Angiogenic Growth Factors beyond Angiogenesis.

    Science.gov (United States)

    Matkar, Pratiek N; Ariyagunarajah, Ramya; Leong-Poi, Howard; Singh, Krishna K

    2017-10-02

    Angiogenesis, the formation of new blood vessels from pre-existing ones is a biological process that ensures an adequate blood flow is maintained to provide the cells with a sufficient supply of nutrients and oxygen within the body. Numerous soluble growth factors and inhibitors, cytokines, proteases as well as extracellular matrix proteins and adhesion molecules stringently regulate the multi-factorial process of angiogenesis. The properties and interactions of key angiogenic molecules such as vascular endothelial growth factors (VEGFs), fibroblast growth factors (FGFs) and angiopoietins have been investigated in great detail with respect to their molecular impact on angiogenesis. Since the discovery of angiogenic growth factors, much research has been focused on their biological actions and their potential use as therapeutic targets for angiogenic or anti-angiogenic strategies in a context-dependent manner depending on the pathologies. It is generally accepted that these factors play an indispensable role in angiogenesis. However, it is becoming increasingly evident that this is not their only role and it is likely that the angiogenic factors have important functions in a wider range of biological and pathological processes. The additional roles played by these molecules in numerous pathologies and biological processes beyond angiogenesis are discussed in this review.

  13. Platelet-Derived Growth Factor (PDGF/PDGF Receptors (PDGFR Axis as Target for Antitumor and Antiangiogenic Therapy

    Directory of Open Access Journals (Sweden)

    Anca Maria Cimpean

    2010-03-01

    Full Text Available Angiogenesis in normal and pathological conditions is a multi-step process governed by positive and negative endogenous regulators. Many growth factors are involved in different steps of angiogenesis, like vascular endothelial growth factors (VEGF, fibroblast growth factor (FGF-2 or platelet-derived growth factors (PDGF. From these, VEGF and FGF-2 were extensively investigated and it was shown that they significantly contribute to the induction and progression of angiogenesis. A lot of evidence has been accumulated in last 10 years that supports the contribution of PDGF/PDGFR axis in developing angiogenesis in both normal and tumoral conditions. The crucial role of PDGF-B and PDGFR-β in angiogenesis has been demonstrated by gene targeting experiments, and their expression correlates with increased vascularity and maturation of the vascular wall. PDGF and their receptors were identified in a large variety of human tumor cells. In experimental models it was shown that inhibition of PDGF reduces interstitial fluid pressure in tumors and enhances the effect of chemotherapy. PDGFR have been involved in the cardiovascular development and their loss leads to a disruption in yolk sac blood vessels development. PDGFRβ expression by pericytes is necessary for their recruitment and integration in the wall of tumor vessels. Endothelial cells of tumor-associated blood vessels can express PDGFR. Based on these data, it was suggested the potential benefit of targeting PDGFR in the treatment of solid tumors. The molecular mechanisms of PDGF/PDGFR-mediated angiogenesis are not fully understood, but it was shown that tyrosine kinase inhibitors reduce tumor growth and angiogenesis in experimental xenograft models, and recent data demonstrated their efficacy in chemoresistant tumors. The in vivo effects of PDGFR inhibitors are more complex, based on the cross-talk with other angiogenic factors. In this review, we summarize data regarding the mechanisms and

  14. The role of platelet factor 4 in local and remote tissue damage in a mouse model of mesenteric ischemia/reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Peter H Lapchak

    Full Text Available The robust inflammatory response that occurs during ischemia reperfusion (IR injury recruits factors from both the innate and adaptive immune systems. However the contribution of platelets and their products such as Platelet Factor 4 (PF4; CXCL4, during the pathogenesis of IR injury has not been thoroughly investigated. We show that a deficiency in PF4 protects mice from local and remote tissue damage after 30 minutes of mesenteric ischemia and 3 hours of reperfusion in PF4-/- mice compared to control B6 mice. This protection was independent from Ig or complement deposition in the tissues. However, neutrophil and monocyte infiltration were decreased in the lungs of PF4-/- mice compared with B6 control mice. Platelet-depleted B6 mice transfused with platelets from PF4-/- mice displayed reduced tissue damage compared with controls. In contrast, transfusion of B6 platelets into platelet depleted PF4-/- mice reconstituted damage in both intestine and lung tissues. We also show that PF4 may modulate the release of IgA. Interestingly, we show that PF4 expression on intestinal epithelial cells is increased after IR at both the mRNA and protein levels. In conclusion, these findings demonstrate that may PF4 represent an important mediator of local and remote tissue damage.

  15. Breaking the mold: transcription factors in the anucleate platelet and platelet-derived microparticles

    Directory of Open Access Journals (Sweden)

    Katie L Lannan

    2015-02-01

    Full Text Available Platelets are small anucleate blood cells derived from megakaryocytes. In addition to their pivotal roles in hemostasis, platelets are the smallest, yet most abundant, immune cell and regulate inflammation, immunity, and disease progression. Although platelets lack DNA, and thus no functional transcriptional activities, they are nonetheless rich sources of RNAs, possess an intact spliceosome, and are thus capable of synthesizing proteins. Previously, it was thought that platelet RNAs and translational machinery were remnants from the megakaryocyte. We now know that the initial description of platelets as cellular fragments is an antiquated notion, as mounting evidence suggests otherwise. Therefore, it is reasonable to hypothesize that platelet transcription factors are not vestigial remnants from megakaryoctes, but have important, if only partly understood functions. Proteins play multiple cellular roles to minimize energy expenditure for maximum cellular function; thus, the same can be expected for transcription factors. In fact, numerous transcription factors have non-genomic roles, both in platelets and in nucleated cells. Our lab and others have discovered the presence and nongenomic roles of transcription factors in platelets, such as the nuclear factor kappa β (NFκB family of proteins and peroxisome proliferator activated receptor gamma (PPARγ. In addition to numerous roles in regulating platelet activation, functional transcription factors can be transferred to vascular and immune cells through platelet microparticles. This method of transcellular delivery of key immune molecules may be a vital mechanism by which platelet transcription factors regulate inflammation and immunity. At the very least, platelets are an ideal model cell to dissect out the nongenomic roles of transcription factors in nucleated cells. There is abundant evidence to suggest that transcription factors in platelets play key roles in regulating inflammatory and

  16. A hypoxia-inducible factor (HIF)-3α splicing variant, HIF-3α4 impairs angiogenesis in hypervascular malignant meningiomas with epigenetically silenced HIF-3α4

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Hitoshi [Department of Neurosurgery, Nagoya University School of Medicine, Nagoya (Japan); Department of Neurosurgery, Fukushima Medical University School of Medicine, Fukushima (Japan); Natsume, Atsushi, E-mail: anatsume@med.nagoya-u.ac.jp [Department of Neurosurgery, Nagoya University School of Medicine, Nagoya (Japan); Iwami, Kenichiro; Ohka, Fumiharu [Department of Neurosurgery, Nagoya University School of Medicine, Nagoya (Japan); Kuchimaru, Takahiro; Kizaka-Kondoh, Shinae [Department of Biomolecular Engineering, Tokyo Institute of Technology Graduate School of Bioscience and Biotechnology, Yokohama (Japan); Ito, Kengo [National Center for Geriatrics and Gerontology, Aichi (Japan); Saito, Kiyoshi [Department of Neurosurgery, Fukushima Medical University School of Medicine, Fukushima (Japan); Sugita, Sachi; Hoshino, Tsuneyoshi [MICRON Inc.Medical Facilities Support Department, Aichi (Japan); Wakabayashi, Toshihiko [Department of Neurosurgery, Nagoya University School of Medicine, Nagoya (Japan)

    2013-03-29

    Highlights: ► HIF-3α4 is silenced by DNA methylation in meningiomas. ► Induction of HIF-3α4 impaired angiogenesis in meningiomas. ► Induction of HIF-3α4 impaired proliferation and oxygen-dependent metabolism. -- Abstract: Hypoxia inducible factor is a dominant regulator of adaptive cellular responses to hypoxia and controls the expression of a large number of genes regulating angiogenesis as well as metabolism, cell survival, apoptosis, and other cellular functions in an oxygen level-dependent manner. When a neoplasm is able to induce angiogenesis, tumor progression occurs more rapidly because of the nutrients provided by the neovasculature. Meningioma is one of the most hypervascular brain tumors, making anti-angiogenic therapy an attractive novel therapy for these tumors. HIF-3α has been conventionally regarded as a dominant-negative regulator of HIF-1α, and although alternative HIF-3α splicing variants are extensively reported, their specific functions have not yet been determined. In this study, we found that the transcription of HIF-3α4 was silenced by the promoter DNA methylation in meningiomas, and inducible HIF-3α4 impaired angiogenesis, proliferation, and metabolism/oxidation in hypervascular meningiomas. Thus, HIF-3α4 could be a potential molecular target in meningiomas.

  17. A hypoxia-inducible factor (HIF)-3α splicing variant, HIF-3α4 impairs angiogenesis in hypervascular malignant meningiomas with epigenetically silenced HIF-3α4

    International Nuclear Information System (INIS)

    Ando, Hitoshi; Natsume, Atsushi; Iwami, Kenichiro; Ohka, Fumiharu; Kuchimaru, Takahiro; Kizaka-Kondoh, Shinae; Ito, Kengo; Saito, Kiyoshi; Sugita, Sachi; Hoshino, Tsuneyoshi; Wakabayashi, Toshihiko

    2013-01-01

    Highlights: ► HIF-3α4 is silenced by DNA methylation in meningiomas. ► Induction of HIF-3α4 impaired angiogenesis in meningiomas. ► Induction of HIF-3α4 impaired proliferation and oxygen-dependent metabolism. -- Abstract: Hypoxia inducible factor is a dominant regulator of adaptive cellular responses to hypoxia and controls the expression of a large number of genes regulating angiogenesis as well as metabolism, cell survival, apoptosis, and other cellular functions in an oxygen level-dependent manner. When a neoplasm is able to induce angiogenesis, tumor progression occurs more rapidly because of the nutrients provided by the neovasculature. Meningioma is one of the most hypervascular brain tumors, making anti-angiogenic therapy an attractive novel therapy for these tumors. HIF-3α has been conventionally regarded as a dominant-negative regulator of HIF-1α, and although alternative HIF-3α splicing variants are extensively reported, their specific functions have not yet been determined. In this study, we found that the transcription of HIF-3α4 was silenced by the promoter DNA methylation in meningiomas, and inducible HIF-3α4 impaired angiogenesis, proliferation, and metabolism/oxidation in hypervascular meningiomas. Thus, HIF-3α4 could be a potential molecular target in meningiomas

  18. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4

    Science.gov (United States)

    Semeraro, Fabrizio; Ammollo, Concetta T.; Morrissey, James H.; Dale, George L.; Friese, Paul; Esmon, Naomi L.

    2011-01-01

    The release of histones from dying cells is associated with microvascular thrombosis and, because histones activate platelets, this could represent a possible pathogenic mechanism. In the present study, we assessed the influence of histones on the procoagulant potential of human platelets in platelet-rich plasma (PRP) and in purified systems. Histones dose-dependently enhanced thrombin generation in PRP in the absence of any trigger, as evaluated by calibrated automated thrombinography regardless of whether the contact phase was inhibited. Activation of coagulation required the presence of fully activatable platelets and was not ascribable to platelet tissue factor, whereas targeting polyphosphate with phosphatase reduced thrombin generation even when factor XII (FXII) was blocked or absent. In the presence of histones, purified polyphosphate was able to induce thrombin generation in plasma independently of FXII. In purified systems, histones induced platelet aggregation; P-selectin, phosphatidylserine, and FV/Va expression; and prothrombinase activity. Blocking platelet TLR2 and TLR4 with mAbs reduced the percentage of activated platelets and lowered the amount of thrombin generated in PRP. These data show that histone-activated platelets possess a procoagulant phenotype that drives plasma thrombin generation and suggest that TLR2 and TLR4 mediate the activation process. PMID:21673343

  19. Abnormalities in the Regulators of Angiogenesis in Patients with Scleroderma

    Science.gov (United States)

    HUMMERS, LAURA K.; HALL, AMY; WIGLEY, FREDRICK M.; SIMONS, MICHAEL

    2014-01-01

    Objective To determine plasma levels of regulators of angiogenesis in patients with scleroderma and to correlate those levels with manifestations of scleroderma-related vascular disease. Methods Plasma levels of vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), fibroblast growth factor-2 (FGF-2), matrix metalloproteinase-9 (MMP-9), endostatin, pro-MMP-1, hepatocyte growth factor (HGF), placental growth factor (PlGF), and FGF-4 were examined by ELISA in a cross-sectional study of 113 patients with scleroderma and 27 healthy controls. Simple and multivariate regression models were used to look for associations between factor levels and clinical disease characteristics. Results There were marked differences in the levels of pro-angiogenic growth factors between patients with scleroderma and controls, with significant elevations of VEGF, PDGF, FGF-2, and PlGF among patients with scleroderma (p scleroderma patients compared to controls (MMP-9 and pro-MMP-1) (p scleroderma, but had a positive correlation with right ventricular systolic pressure (RVSP) as measured by echocardiogram (p scleroderma (p scleroderma. The levels of some factors correlate with measures of vascular disease among patients with scleroderma. Dysregulated angiogenesis may play a role in the development of scleroderma vascular disease. PMID:19228661

  20. Lysyl Oxidase Plays a Critical Role in Endothelial Cell Stimulation to Drive Tumor Angiogenesis

    DEFF Research Database (Denmark)

    Baker, Ann-Marie; Bird, Demelza; Welti, Jonathan C

    2013-01-01

    Identification of key molecules that drive angiogenesis is critical for the development of new modalities for the prevention of solid tumor progression. Using multiple models of colorectal cancer, we show that activity of the extracellular matrix-modifying enzyme lysyl oxidase (LOX) is essential...... for stimulating endothelial cells in vitro and angiogenesis in vivo. We show that LOX activates Akt through platelet-derived growth factor receptor ß (PDGFRß) stimulation, resulting in increased VEGF expression. LOX-driven angiogenesis can be abrogated through targeting LOX directly or using inhibitors of PDGFRß...

  1. Modulation of protein C activation by histones, platelet factor 4, and heparinoids: new insights into activated protein C formation.

    Science.gov (United States)

    Kowalska, M Anna; Zhao, Guohua; Zhai, Li; David, George; Marcus, Stephen; Krishnaswamy, Sriram; Poncz, Mortimer

    2014-01-01

    Histones are detrimental in late sepsis. Both activated protein C (aPC) and heparin can reverse their effect. Here, we investigated whether histones can modulate aPC generation in a manner similar to another positively charged molecule, platelet factor 4, and how heparinoids (unfractionated heparin or oxygen-desulfated unfractionated heparin with marked decrease anticoagulant activity) may modulate this effect. We measured in vitro and in vivo effects of histones, platelet factor 4, and heparinoids on aPC formation, activated partial thromboplastin time, and murine survival. In vitro, histones and platelet factor 4 both affect thrombin/thrombomodulin aPC generation following a bell-shaped curve, with a peak of >5-fold enhancement. Heparinoids shift these curves rightward. Murine aPC generation studies after infusions of histones, platelet factor 4, and heparinoids supported the in vitro data. Importantly, although unfractionated heparin and 2-O, 3-O desulfated heparin both reversed the lethality of high-dose histone infusions, only mice treated with 2-O, 3-O desulfated heparin demonstrated corrected activated partial thromboplastin times and had significant levels of aPC. Our data provide a new contextual model of how histones affect aPC generation, and how heparinoid therapy may be beneficial in sepsis. These studies provide new insights into the complex interactions controlling aPC formation and suggest a novel therapeutic interventional strategy.

  2. Deletion of Crry and DAF on murine platelets stimulates thrombopoiesis and increases factor H-dependent resistance of peripheral platelets to complement attack.

    Science.gov (United States)

    Barata, Lidia; Miwa, Takashi; Sato, Sayaka; Kim, David; Mohammed, Imran; Song, Wen-Chao

    2013-03-15

    Complement receptor 1-related gene/protein y (Crry) and decay-accelerating factor (DAF) are two murine membrane C3 complement regulators with overlapping functions. Crry deletion is embryonically lethal whereas DAF-deficient mice are generally healthy. Crry(-/-)DAF(-/-) mice were viable on a C3(-/-) background, but platelets from such mice were rapidly destroyed when transfused into C3-sufficient mice. In this study, we used the cre-lox system to delete platelet Crry in DAF(-/-) mice and studied Crry/DAF-deficient platelet development in vivo. Rather than displaying thrombocytopenia, Pf4-Cre(+)-Crry(flox/flox) mice had normal platelet counts and their peripheral platelets were resistant to complement attack. However, chimera mice generated with Pf4-Cre(+)-Crry(flox/flox) bone marrows showed platelets from C3(-/-) but not C3(+/+) recipients to be sensitive to complement activation, suggesting that circulating platelets in Pf4-Cre(+)-Crry(flox/flox) mice were naturally selected in a complement-sufficient environment. Notably, Pf4-Cre(+)-Crry(flox/flox) mouse platelets became complement susceptible when factor H function was blocked. Examination of Pf4-Cre(+)-Crry(flox/flox) mouse bone marrows revealed exceedingly active thrombopoiesis. Thus, under in vivo conditions, Crry/DAF deficiency on platelets led to abnormal platelet turnover, but peripheral platelet count was compensated for by increased thrombopoiesis. Selective survival of Crry/DAF-deficient platelets aided by factor H protection and compensatory thrombopoiesis demonstrates the cooperation between membrane and fluid phase complement inhibitors and the body's ability to adaptively respond to complement regulator deficiencies.

  3. Effect of platelet lysate on human cells involved in different phases of wound healing.

    Directory of Open Access Journals (Sweden)

    Maria Chiara Barsotti

    Full Text Available BACKGROUND: Platelets are rich in mediators able to positively affect cell activity in wound healing. Aim of this study was to characterize the effect of different concentrations of human pooled allogeneic platelet lysate on human cells involved in the different phases of wound healing (inflammatory phase, angiogenesis, extracellular matrix secretion and epithelialization. METHODOLOGY/PRINCIPAL FINDINGS: Platelet lysate effect was studied on endothelial cells, monocytes, fibroblasts and keratinocytes, in terms of viability and proliferation, migration, angiogenesis, tissue repair pathway activation (ERK1/2 and inflammatory response evaluation (NFκB. Results were compared both with basal medium and with a positive control containing serum and growth factors. Platelet lysate induced viability and proliferation at the highest concentrations tested (10% and 20% v/v. Whereas both platelet lysate concentrations increased cell migration, only 20% platelet lysate was able to significantly promote angiogenic activity (p<0.05 vs. control, comparably to the positive control. Both platelet lysate concentrations activated important inflammatory pathways such as ERK1/2 and NFκB with the same early kinetics, whereas the effect was different for later time-points. CONCLUSION/SIGNIFICANCE: These data suggest the possibility of using allogeneic platelet lysate as both an alternative to growth factors commonly used for cell culture and as a tool for clinical regenerative application for wound healing.

  4. Interface between breast cancer cells and the tumor microenvironment using platelet-rich plasma to promote tumor angiogenesis - influence of platelets and fibrin bundles on the behavior of breast tumor cells.

    Science.gov (United States)

    Andrade, Sheila Siqueira; Sumikawa, Joana Tomomi; Castro, Eloísa Dognani; Batista, Fabricio Pereira; Paredes-Gamero, Edgar; Oliveira, Lilian Carolina; Guerra, Izabel Monastério; Peres, Giovani Bravin; Cavalheiro, Renan Pelluzzi; Juliano, Luiz; Nazário, Afonso Pinto; Facina, Gil; Tsai, Siu Mui; Oliva, Maria Luiza Vilela; Girão, Manoel João Batista Castello

    2017-03-07

    Cancer progression is associated with an evolving tissue interface of direct epithelial-tumor microenvironment interactions. In biopsies of human breast tumors, extensive alterations in molecular pathways are correlated with cancer staging on both sides of the tumor-stroma interface. These interactions provide a pivotal paracrine signaling to induce malignant phenotype transition, the epithelial-mesenchymal transition (EMT). We explored how the direct contact between platelets-fibrin bundles primes metastasis using platelet-rich plasma (PRP) as a source of growth factors and mimics the provisional fibrin matrix between actively growing breast cancer cells and the tumor stroma. We have demonstrated PRP functions, modulating cell proliferation that is tumor-subtype and cancer cell-type-specific. Epithelial and stromal primary cells were prepared from breast cancer biopsies from 21 women with different cancer subtypes. Cells supplemented with PRP were immunoblotted with anti-phospho and total Src-Tyr-416, FAK-Try-925, E-cadherin, N-cadherin, TGF-β, Smad2, and Snail monoclonal antibodies. Breast tumor cells from luminal B and HER2 subtypes showed the most malignant profiles and the expression of thrombin and other classes of proteases at levels that were detectable through FRET peptide libraries. The angiogenesis process was investigated in the interface obtained between platelet-fibrin-breast tumor cells co-cultured with HUVEC cells. Luminal B and HER2 cells showed robust endothelial cell capillary-like tubes ex vivo. The studied interface contributes to the attachment of endothelial cells, provides a source of growth factors, and is a solid substrate. Thus, replacement of FBS supplementation with PRP supplementation represents an efficient and simple approach for mimicking the real multifactorial tumor microenvironment.

  5. Platelet-activating factor podoplanin: from discovery to drug development.

    Science.gov (United States)

    Takemoto, Ai; Miyata, Kenichi; Fujita, Naoya

    2017-06-01

    Tumor cell-induced platelet aggregation facilitates hematogenous metastasis by promoting tumor embolization, preventing immunological assaults and shear stress, and the platelet-releasing growth factors support tumor growth and invasion. Podoplanin, also known as Aggrus, is a type I transmembrane mucin-like glycoprotein and is expressed on wide range of tumor cells. Podoplanin has a role in platelet aggregation and metastasis formation through the binding to its platelet receptor, C-type lectin-like receptor 2 (CLEC-2). The podoplanin research was originally started from the cloning of highly metastatic NL-17 subclone from mouse colon 26 cancer cell line and from the establishment of 8F11 monoclonal antibody (mAb) that could neutralize NL-17-induced platelet aggregation and hematogenous metastasis. Later on, podoplanin was identified as the antigen of 8F11 mAb, and its ectopic expression brought to cells the platelet-aggregating abilities and hematogenous metastasis phenotypes. From the 8F11 mAb recognition epitopes, podoplanin is found to contain tandemly repeated, highly conserved motifs, designated platelet aggregation-stimulating (PLAG) domains. Series of analyses using the cells expressing the mutants and the established neutralizing anti-podoplanin mAbs uncovered that both PLAG3 and PLAG4 domains are associated with the CLEC-2 binding. The neutralizing mAbs targeting PLAG3 or PLAG4 could suppress podoplanin-induced platelet aggregation and hematogenous metastasis through inhibiting the podoplanin-CLEC-2 binding. Therefore, these domains are certainly functional in podoplanin-mediated metastasis through its platelet-aggregating activity. This review summarizes the platelet functions in metastasis formation, the role of platelet aggregation-inducing factor podoplanin in pathological and physiological situations, and the possibility to develop podoplanin-targeting drugs in the future.

  6. CXCR4(+) dendritic cells promote angiogenesis during embryo implantation in mice.

    Science.gov (United States)

    Barrientos, Gabriela; Tirado-González, Irene; Freitag, Nancy; Kobelt, Peter; Moschansky, Petra; Klapp, Burghard F; Thijssen, Victor L J L; Blois, Sandra M

    2013-04-01

    Early pregnancy is characterized by decidual adaption to the developing embryo involving angiogenesis and vascular growth. Failure of decidual vascular expansion is linked to diseases of pregnancy. Dendritic cells (DC) have been associated with vascular growth during early gestation, though it is unknown whether their capacity to modulate angiogenesis is ubiquitous to all DC subsets. Here, we show that DC normally found associated with the decidual vasculature co-express the C-X-C chemokine receptor type 4 (CXCR4). In addition, we demonstrate that impaired homing of CXCR4(+)DC during early gestation provoked a disorganized decidual vasculature with impaired spiral artery remodeling later in gestation. In contrast, adoptive transfer experiments provided evidence that CXCR4(+)DC are able to rescue early pregnancy by normalizing decidual vascular growth and delivery of pro-angiogenic factors, which results in adequate remodeling of the spiral arteries during placental development. Taken together, our results indicate an important role of CXCR4(+)DC in the regulation of decidual angiogenesis and highlight the importance of the CXCL12/CXCR4 pathway during this process, suggesting that this may represent a key pathway to evaluate during pregnancy pathologies associated with impaired vascular expansion.

  7. Platelet-rich plasma stimulated by pulse electric fields: Platelet activation, procoagulant markers, growth factor release and cell proliferation.

    Science.gov (United States)

    Frelinger, A L; Torres, A S; Caiafa, A; Morton, C A; Berny-Lang, M A; Gerrits, A J; Carmichael, S L; Neculaes, V B; Michelson, A D

    2016-01-01

    Therapeutic use of activated platelet-rich plasma (PRP) has been explored for wound healing, hemostasis and antimicrobial wound applications. Pulse electric field (PEF) stimulation may provide more consistent platelet activation and avoid complications associated with the addition of bovine thrombin, the current state of the art ex vivo activator of therapeutic PRP. The aim of this study was to compare the ability of PEF, bovine thrombin and thrombin receptor activating peptide (TRAP) to activate human PRP, release growth factors and induce cell proliferation in vitro. Human PRP was prepared in the Harvest SmartPreP2 System and treated with vehicle, PEF, bovine thrombin, TRAP or Triton X-100. Platelet activation and procoagulant markers and microparticle generation were measured by flow cytometry. Released growth factors were measured by ELISA. The releasates were tested for their ability to stimulate proliferation of human epithelial cells in culture. PEF produced more platelet-derived microparticles, P-selectin-positive particles and procoagulant annexin V-positive particles than bovine thrombin or TRAP. These differences were associated with higher levels of released epidermal growth factor after PEF than after bovine thrombin or TRAP but similar levels of platelet-derived, vascular-endothelial, and basic fibroblast growth factors, and platelet factor 4. Supernatant from PEF-treated platelets significantly increased cell proliferation compared to plasma. In conclusion, PEF treatment of fresh PRP results in generation of microparticles, exposure of prothrombotic platelet surfaces, differential release of growth factors compared to bovine thrombin and TRAP and significant cell proliferation. These results, together with PEF's inherent advantages, suggest that PEF may be a superior alternative to bovine thrombin activation of PRP for therapeutic applications.

  8. Collagen can selectively trigger a platelet secretory phenotype via glycoprotein VI.

    Directory of Open Access Journals (Sweden)

    Véronique Ollivier

    Full Text Available Platelets are not only central actors of hemostasis and thrombosis but also of other processes including inflammation, angiogenesis, and tissue regeneration. Accumulating evidence indicates that these "non classical" functions of platelets do not necessarily rely on their well-known ability to form thrombi upon activation. This suggests the existence of non-thrombotic alternative states of platelets activation. We investigated this possibility through dose-response analysis of thrombin- and collagen-induced changes in platelet phenotype, with regards to morphological and functional markers of platelet activation including shape change, aggregation, P-selectin and phosphatidylserine surface expression, integrin activation, and release of soluble factors. We show that collagen at low dose (0.25 µg/mL selectively triggers a platelet secretory phenotype characterized by the release of dense- and alpha granule-derived soluble factors without causing any of the other major platelet changes that usually accompany thrombus formation. Using a blocking antibody to glycoprotein VI (GPVI, we further show that this response is mediated by GPVI. Taken together, our results show that platelet activation goes beyond the mechanisms leading to platelet aggregation and also includes alternative platelet phenotypes that might contribute to their thrombus-independent functions.

  9. Syndecan-4 shedding impairs macrovascular angiogenesis in diabetes mellitus

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ran; Xie, Jun; Wu, Han; Li, Guannan; Chen, Jianzhou; Chen, Qinhua; Wang, Lian; Xu, Biao, E-mail: xubiao@medmail.com.cn

    2016-05-20

    Purpose: Syndecan-4 (synd4) is a ubiquitous heparan sulfate proteoglycan cell surface receptor that modulates cell proliferation, migration, mechanotransduction, and endocytosis. The extracellular domain of synd4 sheds heavily in acute inflammation, but the shedding of synd4 in chronic inflammation, such as diabetes mellitus (DM), is still undefined. We investigated the alterations of synd4 endothelial expression in DM and the influence of impaired synd4 signaling on angiogenesis in human umbilical vein endothelial cells (HUVECs), diabetic rats, synd4 null mice, and db/db mice. Material and methods: HUVECs were incubated with advanced glycation end products (AGEs). Western blot analysis was used to determine synd4 protein expression and ELISA was used to detect soluble synd4 fragments. The concentration of synd4 in the aortic endothelia of diabetic rats was detected by immunohistochemical staining. Aortic ring assays were performed to study the process of angiogenesis in the diabetic rats and in synd4 null and db/db mice. Recombinant adenoviruses containing the synd4 gene or null were constructed to enhance synd4 aortic expression in db/db mice. Results: Western blot analysis showed decreased expression of the synd4 extracellular domain in HUVECs, and ELISA detected increased soluble fragments of synd4 in the media. Synd4 endothelial expression in the aortas of diabetic rats was decreased. Aortic ring assay indicated impaired angiogenesis in synd4 null and db/db mice, which was partially reversed by synd4 overexpression in db/db mice. Conclusion: Synd4 shedding from vascular endothelial cells played an important role in the diabetes-related impairment of angiogenesis. -- Highlights: •Synd4 shedding from endothelial cells is accelerated under the stimulation of AGEs. •Extracellular domain of synd4 is diminished in the endothelium of DM rats. •Aortic rings of synd4 null mice showed impaired angiogenesis. •Overexpression of synd4 partly rescues macrovascular

  10. Platelet growth factors from allogeneic platelet-rich plasma for clinical improvement in split-thickness skin graft.

    Science.gov (United States)

    Sonker, Atul; Dubey, Anju; Bhatnagar, Ankur; Chaudhary, Rajendra

    2015-01-01

    Platelets are a source of numerous growth factors which facilitate repair and healing. Thus platelet rich plasma has been increasingly used as a treatment modality in the field of reconstructive surgeries for wound healing. This preliminary study was carried out to explore whether platelet growth factors from platelet rich plasma could be used for enhancement of split thickness skin graft survival. Twenty patients (13 males and 7 females) requiring split thickness skin graft for various clinical reasons were enrolled in the study. Platelet rich plasma was collected by apheresis and frozen at -80° C. It was thawed at room temperature immediately before its intended application. PRP was applied only on one half of the wound, while another half served as control. Patient was followed for 6 weeks. The effect was assessed at first dressing in terms of graft uptake and subsequently as time taken for complete healing. There was 100% uptake of the graft in the area where platelet rich plasma was applied. In the control area, there was complete graft loss in 4 cases, partial loss in 7 cases and complete uptake in 9 cases. This study demonstrated promising results on application of PRP to split thickness skin grafts. Further randomized studies with greater sample size may be undertaken to establish platelet rich plasma as a validated treatment modality.

  11. Platelet-rich plasma preparation for regenerative medicine: optimization and quantification of cytokines and growth factors.

    Science.gov (United States)

    Amable, Paola Romina; Carias, Rosana Bizon Vieira; Teixeira, Marcus Vinicius Telles; da Cruz Pacheco, Italo; Corrêa do Amaral, Ronaldo José Farias; Granjeiro, José Mauro; Borojevic, Radovan

    2013-06-07

    Platelet-rich plasma (PRP) is nowadays widely applied in different clinical scenarios, such as orthopedics, ophthalmology and healing therapies, as a growth factor pool for improving tissue regeneration. Studies into its clinical efficiency are not conclusive and one of the main reasons for this is that different PRP preparations are used, eliciting different responses that cannot be compared. Platelet quantification and the growth factor content definition must be defined in order to understand molecular mechanisms behind PRP regenerative strength. Standardization of PRP preparations is thus urgently needed. PRP was prepared by centrifugation varying the relative centrifugal force, temperature, and time. Having quantified platelet recovery and yield, the two-step procedure that rendered the highest output was chosen and further analyzed. Cytokine content was determined in different fractions obtained throughout the whole centrifugation procedure. Our method showed reproducibility when applied to different blood donors. We recovered 46.9 to 69.5% of total initial platelets and the procedure resulted in a 5.4-fold to 7.3-fold increase in platelet concentration (1.4 × 10(6) to 1.9 × 10(6) platelets/μl). Platelets were highly purified, because only platelets after activation with calcium and calcium/thrombin. High concentrations of platelet-derived growth factor, endothelial growth factor and transforming growth factor (TGF) were secreted, together with the anti-inflammatory and proinflammatory cytokines interleukin (IL)-4, IL-8, IL-13, IL-17, tumor necrosis factor (TNF)-α and interferon (IFN)-α. No cytokines were secreted before platelet activation. TGF-β3 and IFNγ were not detected in any studied fraction. Clots obtained after platelet coagulation retained a high concentration of several growth factors, including platelet-derived growth factor and TGF. Our study resulted in a consistent PRP preparation method that yielded a cytokine and growth factor pool

  12. The influence of platelet-rich fibrin on angiogenesis in guided bone regeneration using xenogenic bone substitutes: a study of rabbit cranial defects.

    Science.gov (United States)

    Yoon, Jong-Suk; Lee, Sang-Hwa; Yoon, Hyun-Joong

    2014-10-01

    The purpose of this study was to investigate the influence of platelet-rich fibrin (PRF) on angiogenesis and osteogenesis in guided bone regeneration (GBR) using xenogenic bone in rabbit cranial defects. In each rabbit, 2 circular bone defects, one on either side of the midline, were prepared using a reamer drill. Each of the experimental sites received bovine bone with PRF, and each of the control sites received bovine bone alone. The animals were sacrificed at 1 week (n = 4), 2 weeks (n = 3) and 4 weeks (n = 3). Biopsy samples were examined histomorphometrically by light microscopy, and expression of vascular endothelial growth factor (VEGF) was determined by immunohistochemical staining. At all experimental time points, immunostaining intensity for VEGF was consistently higher in the experimental group than in the control group. However, the differences between the control group and the experimental group were not statistically significant in the histomorphometrical and immunohistochemical examinations. The results of this study suggest that PRF may increase the number of marrow cells. However, PRF along with xenogenic bone substitutes does not show a significant effect on bony regeneration. Further large-scale studies are needed to confirm our results. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  13. Platelet-rich plasma preparation for regenerative medicine: optimization and quantification of cytokines and growth factors

    Science.gov (United States)

    2013-01-01

    Introduction Platelet-rich plasma (PRP) is nowadays widely applied in different clinical scenarios, such as orthopedics, ophthalmology and healing therapies, as a growth factor pool for improving tissue regeneration. Studies into its clinical efficiency are not conclusive and one of the main reasons for this is that different PRP preparations are used, eliciting different responses that cannot be compared. Platelet quantification and the growth factor content definition must be defined in order to understand molecular mechanisms behind PRP regenerative strength. Standardization of PRP preparations is thus urgently needed. Methods PRP was prepared by centrifugation varying the relative centrifugal force, temperature, and time. Having quantified platelet recovery and yield, the two-step procedure that rendered the highest output was chosen and further analyzed. Cytokine content was determined in different fractions obtained throughout the whole centrifugation procedure. Results Our method showed reproducibility when applied to different blood donors. We recovered 46.9 to 69.5% of total initial platelets and the procedure resulted in a 5.4-fold to 7.3-fold increase in platelet concentration (1.4 × 106 to 1.9 × 106 platelets/μl). Platelets were highly purified, because only blood cells and leukocytes was present in the final PRP preparation. We also quantified growth factors, cytokines and chemokines secreted by the concentrated platelets after activation with calcium and calcium/thrombin. High concentrations of platelet-derived growth factor, endothelial growth factor and transforming growth factor (TGF) were secreted, together with the anti-inflammatory and proinflammatory cytokines interleukin (IL)-4, IL-8, IL-13, IL-17, tumor necrosis factor (TNF)-α and interferon (IFN)-α. No cytokines were secreted before platelet activation. TGF-β3 and IFNγ were not detected in any studied fraction. Clots obtained after platelet coagulation retained a high concentration of

  14. Platelets promote osteosarcoma cell growth through activation of the platelet-derived growth factor receptor-Akt signaling axis

    OpenAIRE

    Takagi, Satoshi; Takemoto, Ai; Takami, Miho; Oh-hara, Tomoko; Fujita, Naoya

    2014-01-01

    The interactions of tumor cells with platelets contribute to the progression of tumor malignancy, and the expression levels of platelet aggregation-inducing factors positively correlate with the metastatic potential of osteosarcoma cells. However, it is unclear how tumor-platelet interaction contributes to the proliferation of osteosarcomas. We report here that osteosarcoma-platelet interactions induce the release of platelet-derived growth factor (PDGF) from platelets, which promotes the pro...

  15. Concentration of platelets and growth factors in platelet-rich plasma from Goettingen minipigs.

    Science.gov (United States)

    Jungbluth, Pascal; Grassmann, Jan-Peter; Thelen, Simon; Wild, Michael; Sager, Martin; Windolf, Joachim; Hakimi, Mohssen

    2014-01-01

    In minipigs little is known about the concentration of growth factors in plasma, despite their major role in several patho-physiological processes such as healing of fractures. This prompted us to study the concentration of platelets and selected growth factors in plasma and platelet-rich plasma (PRP) preparation of sixteen Goettingen minipigs. Platelet concentrations increased significantly in PRP in comparison to native blood plasma. Generally, significant increase in the concentration of all growth factors tested was observed in the PRP in comparison to the corresponding plasma or serum. Five of the plasma samples examined contained detectable levels of bone morphogenic protein 2 (BMP-2) whereas eleven of the plasma or serum samples contained minimal amounts of vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF-bb) respectively. On the other hand variable concentrations of bone morphogenic protein 7 (BMP-7) and transforming growth factor β1 (TGF-β1) were measured in all plasma samples. In contrast, all PRP samples contained significantly increased amounts of growth factors. The level of BMP-2, BMP-7, TGF-β1, VEGF and PDGF-bb increased by 17.6, 1.5, 7.1, 7.2 and 103.3 fold, in comparison to the corresponding non-enriched preparations. Moreover significant positive correlations were found between platelet count and the concentrations of BMP-2 (r=0.62, pplatelet-rich plasma of minipigs which might thus serve as a source of autologous growth factors.

  16. Platelet factor XIII increases the fibrinolytic resistance of platelet-rich clots by accelerating the crosslinking of alpha 2-antiplasmin to fibrin

    Science.gov (United States)

    Reed, G. L.; Matsueda, G. R.; Haber, E.

    1992-01-01

    Platelet clots resist fibrinolysis by plasminogen activators. We hypothesized that platelet factor XIII may enhance the fibrinolytic resistance of platelet-rich clots by catalyzing the crosslinking of alpha 2-antiplasmin (alpha 2AP) to fibrin. Analysis of plasma clot structure by polyacrylamide gel electrophoresis and immunoblotting revealed accelerated alpha 2AP-fibrin crosslinking in platelet-rich compared with platelet-depleted plasma clots. A similar study of clots formed with purified fibrinogen (depleted of factor XIII activity), isolated platelets, and specific factor XIII inhibitors indicated that this accelerated crosslinking was due to the catalytic activity of platelet factor XIII. Moreover, when washed platelets were aggregated by thrombin, there was evidence of platelet factor XIII-mediated crosslinking between platelet alpha 2AP and platelet fibrin(ogen). Specific inhibition (by a monoclonal antibody) of the alpha 2AP associated with washed platelet aggregates accelerated the fibrinolysis of the platelet aggregate. Thus in platelet-rich plasma clots, and in thrombin-induced platelet aggregates, platelet factor XIII actively formed alpha 2AP-fibrin crosslinks, which appeared to enhance the resistance of platelet-rich clots to fibrinolysis.

  17. Platelets promote osteosarcoma cell growth through activation of the platelet-derived growth factor receptor-Akt signaling axis.

    Science.gov (United States)

    Takagi, Satoshi; Takemoto, Ai; Takami, Miho; Oh-Hara, Tomoko; Fujita, Naoya

    2014-08-01

    The interactions of tumor cells with platelets contribute to the progression of tumor malignancy, and the expression levels of platelet aggregation-inducing factors positively correlate with the metastatic potential of osteosarcoma cells. However, it is unclear how tumor-platelet interaction contributes to the proliferation of osteosarcomas. We report here that osteosarcoma-platelet interactions induce the release of platelet-derived growth factor (PDGF) from platelets, which promotes the proliferation of osteosarcomas. Co-culture of platelets with MG63 or HOS osteosarcoma cells, which could induce platelet aggregation, enhanced the proliferation of each cell line in vitro. Analysis of phospho-antibody arrays revealed that co-culture of MG63 cells with platelets induced the phosphorylation of platelet derived growth factor receptor (PDGFR) and Akt. The addition of supernatants of osteosarcoma-platelet reactants also increased the growth of MG63 and HOS cells as well as the level of phosphorylated-PDGFR and -Akt. Sunitinib or LY294002, but not erlotinib, significantly inhibited the platelet-induced proliferation of osteosarcoma cells, indicating that PDGF released from platelets plays an important role in the proliferation of osteosarcomas by activating the PDGFR and then Akt. Our results suggest that inhibitors that specifically target osteosarcoma-platelet interactions may eradicate osteosarcomas. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  18. Inhibition of platelet-derived growth factor signaling prevents muscle fiber growth during skeletal muscle hypertrophy.

    Science.gov (United States)

    Sugg, Kristoffer B; Korn, Michael A; Sarver, Dylan C; Markworth, James F; Mendias, Christopher L

    2017-03-01

    The platelet-derived growth factor receptors alpha and beta (PDGFRα and PDGFRβ) mark fibroadipogenic progenitor cells/fibroblasts and pericytes in skeletal muscle, respectively. While the role that these cells play in muscle growth and development has been evaluated, it was not known whether the PDGF receptors activate signaling pathways that control transcriptional and functional changes during skeletal muscle hypertrophy. To evaluate this, we inhibited PDGFR signaling in mice subjected to a synergist ablation muscle growth procedure, and performed analyses 3 and 10 days after induction of hypertrophy. The results from this study indicate that PDGF signaling is required for fiber hypertrophy, extracellular matrix production, and angiogenesis that occur during muscle growth. © 2017 Federation of European Biochemical Societies.

  19. Quantification of platelets and platelet derived growth factors from platelet-rich-plasma (PRP) prepared at different centrifugal force (g) and time.

    Science.gov (United States)

    Arora, Satyam; Doda, Veena; Kotwal, Urvershi; Dogra, Mitu

    2016-02-01

    Platelet derived biomaterials represent a key source of cytokines and growth factors extensively used for tissue regeneration; wound healing and tissue repair. Our study was to quantify platelets and growth factors released by PRP when prepared at different centrifugal force (g) and time. Our study was approved by the institutional ethical committee. One hundred millilitres of whole blood (WB) was collected in bag with CPDA as the anticoagulant(AC); (14 mL for 100 mL WB ratio). Nine aliquots of 10 mL each were made from the bag and set of three aliquots were made a group. PRP was prepared at varying centrifugal force (group A: -110 g, group B: -208 g & group C: -440 g) & time (1: -5 min, 2: -10 min & 3: -20 min). Contents of each PRP prepared were analysed. Commercial sandwich ELISA kits were used to quantify the concentrations of CD62P (Diaclone SAS; France), Platelet derived growth factors-AB (Qayee-Bio; China), transforming growth factor-β1 (DRG; Germany) and vascular endothelial growth factor (Boster Immuno Leader; USA) released in each PRP prepared. Eight volunteers were enrolled in the study (24-30 years). The baseline blood counts of all the volunteers were comparable (p ≥ 0.05). Mean ± SD of platelet yield of all nine groups ranged from 17.2 ± 4.2% to 78.7 ± 5.7%. Each PRP was activated with calcified thromboplastin to quantify the growth factors released by them. Significantly higher (p < 0.05) transforming growth factor-β1 and vascular endothelial growth factor were released compared to the baseline. Our study highlights the variation in both force (g) and time results in changes at cellular level and growth factor concentrations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Role of tumor necrosis factor-alpha and platelet-activating factor in neoangiogenesis induced by synovial fluids of patients with rheumatoid arthritis.

    Science.gov (United States)

    Lupia, E; Montrucchio, G; Battaglia, E; Modena, V; Camussi, G

    1996-08-01

    The aim of the present study was to investigate in vivo in a mouse model the stimulation of neoangiogenesis by synovial fluids of patients with rheumatoid arthritis (RA) and to determine the role of tumor necrosis factor (TNF)-alpha and platelet-activating factor (PAF) in the formation of new vessels. Angiogenesis was studied in a mouse model in which Matrigel, injected subcutaneously, was used as a vehicle for the delivery of potential angiogenic stimuli. Synovial fluids of patients with RA but not with osteoarthritis (OA) were shown to induce neoangiogenesis. Since synovial fluid of patients with RA contained significantly higher levels of TNF-alpha-like bioactivity and of PAF than that of patients with OA, the role of these mediators was evaluated by using an anti-TNF-alpha neutralizing monoclonal antibody (mAb) and a PAF receptor antagonist, WEB 2170. When added to Matrigel, anti-TNF-alpha mAb and particularly WEB 2170 significantly reduced neoangiogenesis induced by synovial fluids of RA patients. Moreover, PAF extracted and purified from synovial fluid induced angiogenesis. These results suggest that the neoangiogenesis observed in rheumatoid synovitis may be due, at least in part, to the angiogenic effect of locally produced TNF-alpha and PAF.

  1. Releasing growth factors from activated human platelets after chitosan stimulation: a possible bio-material for platelet-rich plasma preparation.

    Science.gov (United States)

    Shen, E-Chin; Chou, Tz-Chong; Gau, Ching-Hwa; Tu, Hsiao-Pei; Chen, Yen-Teen; Fu, Earl

    2006-10-01

    Thrombin is commonly used for activating the platelets and releasing the growth factors on the application of platelet-rich plasma (PRP). We have previously reported that chitosan can enhance rabbit platelet aggregation. In this study, the effects of chitosan on the subsequent growth factors release after human platelets activation were examined to evaluate the possibility of chitosan being used as a substitute for thrombin during PRP preparation. Human platelet activation was determined by aggregation, adhesion and alpha-granule membrane glycoprotein expression. Platelet aggregation was measured by the turbidimetric method, the adhesion was directly examined on chitosan-coated glass plates under light microscope and scanning electron microscope (SEM), and the alpha-granule membrane glycoprotein was detected by fluorescent isothiocyanate (FITC)-conjugated anti-CD61 antibody through flow cytometry. The subsequent epidermal growth factor (EGF), platelet-derived growth factor (PDGF)-AB and transforming growth factor (TGF)-beta1 release from platelets were assayed by ELISA after mixing with chitosan. The enhancing effects on the platelet adhesion and the aggregation from chitosan were observed. Under both microscopes, the adhesive platelets on the chitosan-coated plates were not only greater in number but also earlier in activation than those on the control plates. With flow cytometry, increased glycoprotein IIIa expression in platelets was detected after chitosan treatment. Greater concentrations of growth factors were measured from PRP after chitosan treatment than after the solvent treatment. Because of the observations of growth factors releasing from activated human platelets after chitosan stimulation, we suggest that chitosan may be an appropriate substitute for thrombin in PRP preparation.

  2. Hypoxia-Inducible Factor-1 in Physiological and Pathophysiological Angiogenesis: Applications and Therapies

    Science.gov (United States)

    Zimna, Agnieszka; Kurpisz, Maciej

    2015-01-01

    The cardiovascular system ensures the delivery of oxygen and nutrients to all cells, tissues, and organs. Under extended exposure to reduced oxygen levels, cells are able to survive through the transcriptional activation of a series of genes that participate in angiogenesis, glucose metabolism, and cell proliferation. The oxygen-sensitive transcriptional activator HIF-1 (hypoxia-inducible factor-1) is a key transcriptional mediator of the response to hypoxic conditions. The HIF-1 pathway was found to be a master regulator of angiogenesis. Whether the process is physiological or pathological, HIF-1 seems to participate in vasculature formation by synergistic correlations with other proangiogenic factors such as VEGF (vascular endothelial growth factor), PlGF (placental growth factor), or angiopoietins. Considering the important contributions of HIF-1 in angiogenesis and vasculogenesis, it should be considered a promising target for treating ischaemic diseases or cancer. In this review, we discuss the roles of HIF-1 in both physiological/pathophysiological angiogenesis and potential strategies for clinical therapy. PMID:26146622

  3. Angiogenesis is not impaired in connective tissue growth factor (CTGF) knock-out mice

    NARCIS (Netherlands)

    Kuiper, Esther J.; Roestenberg, Peggy; Ehlken, Christoph; Lambert, Vincent; van Treslong-de Groot, Henny Bloys; Lyons, Karen M.; Agostini, Hans-Jürgen T.; Rakic, Jean-Marie; Klaassen, Ingeborg; van Noorden, Cornelis J. F.; Goldschmeding, Roel; Schlingemann, Reinier O.

    2007-01-01

    Connective tissue growth factor (CTGF) is a member of the CCN family of growth factors. CTGF is important in scarring, wound healing, and fibrosis. It has also been implicated to play a role in angiogenesis, in addition to vascular endothelial growth factor (VEGF). In the eye, angiogenesis and

  4. Therapeutic Effect of Platelet-Rich Plasma in Rat Spinal Cord Injuries

    Directory of Open Access Journals (Sweden)

    Nan-Fu Chen

    2018-04-01

    Full Text Available Platelet-rich plasma (PRP is prepared by centrifuging fresh blood in an anticoagulant state, and harvesting the platelet-rich portion or condensing platelets. Studies have consistently demonstrated that PRP concentrates are an abundant source of growth factors, such as platelet-derived growth factor (PDGF, transforming growth factor β (TGF-β, insulin-like growth factor 1 (IGF-1, and epithelial growth factor (EGF. The complex mechanisms underlying spinal cord injury (SCI diminish intrinsic repair and neuronal regeneration. Several studies have suggested that growth factor-promoted axonal regeneration can occur for an extended period after injury. More importantly, the delivery of exogenous growth factors contained in PRP, such as EGF, IGF-1, and TGF-β, has neurotrophic effects on central nervous system (CNS injuries and neurodegenerative diseases. However, only a few studies have investigated the effects of PRP on CNS injuries or neurodegenerative diseases. According to our review of relevant literature, no study has investigated the effect of intrathecal (i.t. PRP injection into the injured spinal cord and activation of intrinsic mechanisms. In the present study, we directly injected i.t. PRP into rat spinal cords and examined the effects of PRP on normal and injured spinal cords. In rats with normal spinal cords, PRP induced microglia and astrocyte activation and PDGF-B and ICAM-1 expression. In rats with SCIs, i.t. PRP enhanced the locomotor recovery and spared white matter, promoted angiogenesis and neuronal regeneration, and modulated blood vessel size. Furthermore, a sustained treatment (a bolus of PRP followed by a 1/3 dose of initial PRP concentration exerted more favorable therapeutic effects than a single dose of PRP. Our findings suggest by i.t. PRP stimulate angiogenesis, enhancing neuronal regeneration after SCI in rats. Although PRP induces minor inflammation in normal and injured spinal cords, it has many advantages. It is an

  5. Ultrastructure and growth factor content of equine platelet-rich fibrin gels.

    Science.gov (United States)

    Textor, Jamie A; Murphy, Kaitlin C; Leach, J Kent; Tablin, Fern

    2014-04-01

    To compare fiber diameter, pore area, compressive stiffness, gelation properties, and selected growth factor content of platelet-rich fibrin gels (PRFGs) and conventional fibrin gels (FGs). PRFGs and conventional FGs prepared from the blood of 10 healthy horses. Autologous fibrinogen was used to form conventional FGs. The PRFGs were formed from autologous platelet-rich plasma of various platelet concentrations (100 × 10³ platelets/μL, 250 × 10³ platelets/μL, 500 × 10³ platelets/μL, and 1,000 × 10³ platelets/μL). All gels contained an identical fibrinogen concentration (20 mg/mL). Fiber diameter and pore area were evaluated with scanning electron microscopy. Maximum gelation rate was assessed with spectrophotometry, and gel stiffness was determined by measuring the compressive modulus. Gel weights were measured serially over 14 days as an index of contraction (volume loss). Platelet-derived growth factor-BB and transforming growth factor-β1 concentrations were quantified with ELISAs. Fiber diameters were significantly larger and mean pore areas were significantly smaller in PRFGs than in conventional FGs. Gel weight decreased significantly over time, differed significantly between PRFGs and conventional FGs, and was significantly correlated with platelet concentration. Platelet-derived growth factor-BB and transforming growth factor-β1 concentrations were highest in gels and releasates derived from 1,000 × 10³ platelets/μL. The inclusion of platelets in FGs altered the architecture and increased the growth factor content of the resulting scaffold. Platelets may represent a useful means of modifying these gels for applications in veterinary and human regenerative medicine.

  6. Angiogenic and angiostatic factors in the molecular control of angiogenesis.

    Science.gov (United States)

    Distler, J H W; Hirth, A; Kurowska-Stolarska, M; Gay, R E; Gay, S; Distler, O

    2003-09-01

    The vascular system that ensures an adequate blood flow is required to provide the cells with sufficient supply of nutrients and oxygen. Two different mechanisms of the formation of new vessels can be distinguished: vasculogenesis, the formation of the first primitive vascular plexus de novo and angiogenesis, the formation of new vessels from preexisting ones. Both processes are regulated by a delicate balance of pro- and anti-angiogenic factors. Physiologically, angiostatic mediators outweigh the angiogenic molecules and angiogenesis does not occur. Under certain conditions such as tumor formation or wound healing, the positive regulators of angiogenesis predominate and the endothelium becomes activated. Angiogenesis is initiated by vasodilatation and an increased permeability. After destabilization of the vessel wall, endothelial cells proliferate, migrate and form a tube, which is finally stabilized by pericytes and smooth muscle cells. Numerous soluble growth factors and inhibitors, cytokines and proteases as well as extracellular matrix proteins and adhesion molecules strictly control this multi-step process. The properties and interactions of angiogenic molecules such as VEGFs, FGFs, angiopoietins, PDGF, angiogenin, angiotropin, HGF, CXC chemokines with ELR motif, PECAM-1, integrins and VE-cadherin as well as angiostatic key players such as angiostatin, endostatin, thrombospondin, CXC chemokines without ELR motif, PEDF are discussed in this review with respect to their molecular impact on angiogenesis.

  7. Of von Willebrand factor and platelets.

    Science.gov (United States)

    Bryckaert, Marijke; Rosa, Jean-Philippe; Denis, Cécile V; Lenting, Peter J

    2015-01-01

    Hemostasis and pathological thrombus formation are dynamic processes that require multiple adhesive receptor-ligand interactions, with blood platelets at the heart of such events. Many studies have contributed to shed light on the importance of von Willebrand factor (VWF) interaction with its platelet receptors, glycoprotein (GP) Ib-IX-V and αIIbβ3 integrin, in promoting primary platelet adhesion and aggregation following vessel injury. This review will recapitulate our current knowledge on the subject from the rheological aspect to the spatio-temporal development of thrombus formation. We will also discuss the signaling events generated by VWF/GPIb-IX-V interaction, leading to platelet activation. Additionally, we will review the growing body of evidence gathered from the recent development of pathological mouse models suggesting that VWF binding to GPIb-IX-V is a promising target in arterial and venous pathological thrombosis. Finally, the pathological aspects of VWF and its impact on platelets will be addressed.

  8. Vascular endothelial growth factors and angiogenesis in eye disease

    NARCIS (Netherlands)

    Witmer, A. N.; Vrensen, G. F. J. M.; van Noorden, C. J. F.; Schlingemann, R. O.

    2003-01-01

    The vascular endothelial growth factor (VEGF) family of growth factors controls pathological angiogenesis and increased vascular permeability in important eye diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD). The purpose of this review is to develop new insights

  9. Effect of montelukast on platelet activating factor- and tachykinin induced mucus secretion in the rat

    Directory of Open Access Journals (Sweden)

    Groneberg David A

    2008-02-01

    Full Text Available Abstract Background Platelet activating factor and tachykinins (substance P, neurokinin A, neurokinin B are important mediators contributing to increased airway secretion in the context of different types of respiratory diseases including acute and chronic asthma. Leukotriene receptor antagonists are recommended as add-on therapy for this disease. The cys-leukotriene-1 receptor antagonist montelukast has been used in clinical asthma therapy during the last years. Besides its inhibitory action on bronchoconstriction, only little is known about its effects on airway secretions. Therefore, the aim of this study was to evaluate the effects of montelukast on platelet activating factor- and tachykinin induced tracheal secretory activity. Methods The effects of montelukast on platelet activating factor- and tachykinin induced tracheal secretory activity in the rat were assessed by quantification of secreted 35SO4 labelled mucus macromolecules using the modified Ussing chamber technique. Results Platelet activating factor potently stimulated airway secretion, which was completely inhibited by the platelet activating factor receptor antagonist WEB 2086 and montelukast. In contrast, montelukast had no effect on tachykinin induced tracheal secretory activity. Conclusion Cys-leukotriene-1 receptor antagonism by montelukast reverses the secretagogue properties of platelet activating factor to the same degree as the specific platelet activating factor antagonist WEB 2086 but has no influence on treacheal secretion elicited by tachykinins. These results suggest a role of montelukast in the signal transduction pathway of platelet activating factor induced secretory activity of the airways and may further explain the beneficial properties of cys-leukotriene-1 receptor antagonists.

  10. Platelet-activating factor increases platelet-dependent glycoconjugate secretion from tracheal submucosal gland

    International Nuclear Information System (INIS)

    Sasaki, T.; Shimura, S.; Ikeda, K.; Sasaki, H.; Takishima, T.

    1989-01-01

    Using isolated glands from feline trachea, we examined the effect of platelet-activating factor (PAF) on radiolabeled glycoconjugate release and glandular contraction by measuring induced tension in the absence or presence of platelets. PAF alone did not produce any significant glandular contraction nor any significant change in glycoconjugate release from isolated glands. In the presence of purified platelets containing no plasma, PAF (10(-8) to 10(-5) M) produced significant glycoconjugate secretion in a dose-dependent fashion, but it produced no significant glandular contraction. PAF-evoked glycoconjugate secretion was time dependent, reaching a peak response of 277% of control 15-30 min after the exposure of isolated glands to 10(-5) M PAF in the presence of platelets and returning to 135% of controls at 2 h. Platelets alone did not produce any significant stimulation in glycoconjugate release. CV-3988, a known PAF antagonist, inhibited the secretory response to PAF. Methysergide, a known antagonist to receptors for 5-hydroxytryptamine, did not alter PAF-evoked glycoconjugate secretion. Both indomethacin and SQ 29,548, a thromboxane receptor antagonist, abolished the PAF-evoked glycoconjugate secretion from isolated submucosal glands. Epithiomethanothromboxane A2, a stable thromboxane A2 analogue, produced a significant increase in glycoconjugate secretion in a dose-dependent fashion. These findings indicate that PAF increases glycoconjugate release in the presence of platelets and that the increase is dependent on some aspect of platelet function, namely thromboxane generation

  11. Neonatal Platelet Transfusions and Future Areas of Research.

    Science.gov (United States)

    Sola-Visner, Martha; Bercovitz, Rachel S

    2016-10-01

    Thrombocytopenia affects approximately one fourth of neonates admitted to neonatal intensive care units, and prophylactic platelet transfusions are commonly administered to reduce bleeding risk. However, there are few evidence-based guidelines to inform clinicians' decision-making process. Developmental differences in hemostasis and differences in underlying disease processes make it difficult to apply platelet transfusion practices from other patient populations to neonates. Thrombocytopenia is a risk factor for common preterm complications such as intraventricular hemorrhage; however, a causal link has not been established, and platelet transfusions have not been shown to reduce risk of developing intraventricular hemorrhage. Platelet count frequently drives the decision of whether to transfuse platelets, although there is little evidence to demonstrate what a safe platelet nadir is in preterm neonates. Current clinical assays of platelet function often require large sample volumes and are not valid in the setting of thrombocytopenia; however, evaluation of platelet function and/or global hemostasis may aid in the identification of neonates who are at the highest risk of bleeding. Although platelets' primary role is in establishing hemostasis, platelets also carry pro- and antiangiogenic factors in their granules. Aberrant angiogenesis underpins common complications of prematurity including intraventricular hemorrhage and retinopathy of prematurity. In addition, platelets play an important role in host immune defenses. Infectious and inflammatory conditions such as sepsis and necrotizing enterocolitis are commonly associated with late-onset thrombocytopenia in neonates. Severity of thrombocytopenia is correlated with mortality risk. The nature of this association is unclear, but preclinical data suggest that thrombocytopenia contributes to mortality rather than simply being a proxy for disease severity. Neonates are a distinct patient population in whom

  12. Heparin-independent, PF4-dependent binding of HIT antibodies to platelets: implications for HIT pathogenesis.

    Science.gov (United States)

    Padmanabhan, Anand; Jones, Curtis G; Bougie, Daniel W; Curtis, Brian R; McFarland, Janice G; Wang, Demin; Aster, Richard H

    2015-01-01

    Antibodies specific for platelet factor 4 (PF4)/heparin complexes are the hallmark of heparin-induced thrombocytopenia and thrombosis (HIT), but many antibody-positive patients have normal platelet counts. The basis for this is not fully understood, but it is believed that antibodies testing positive in the serotonin release assay (SRA) are the most likely to cause disease. We addressed this issue by characterizing PF4-dependent binding of HIT antibodies to intact platelets and found that most antibodies testing positive in the SRA, but none of those testing negative, bind to and activate platelets when PF4 is present without any requirement for heparin (P HIT antibodies recognize PF4 in a complex with heparin, only a subset of these antibodies recognize more subtle epitopes induced in PF4 when it binds to CS, the major platelet glycosaminoglycan. Antibodies having this property could explain "delayed HIT" seen in some individuals after discontinuation of heparin and the high risk for thrombosis that persists for weeks in patients recovered from HIT. © 2015 by The American Society of Hematology.

  13. Decrease in platelet activating factor stimulated phosphoinositide turnover during storage of human platelets in plasma

    International Nuclear Information System (INIS)

    Carter, M.G.; Shukla, S.D.

    1987-01-01

    Human platelet concentrate from the American Red Cross Blood Center was stored at 24 degree C in a shaker and aliquots were taken out at time intervals aseptically. Platelet activating factor (PAF) stimulated turnover of phosphoinositide (PPI) was monitored by assaying 32 P incorporation into phosphoinositides using platelet rich plasma (PRP). Platelets in PRP were incubated with 1 x 10 -7 M PAF at 37 degree C with gentle shaking and after 5 min their lipids were extracted and analysed by TLC for 32 P-phosphoinositides. The percent stimulation of 32 P incorporation by PAF (over control) into PPI was approximately 250, 100, 60, 25 and 20 on days 1, 2, 3, 5 and 6, respectively. This indicated a dramatic decrease in PAF responsive turnover of platelet PPI during storage. These findings have important implications in relation to PAF receptor activity and viability of platelets at different periods of storage

  14. Increased expression of CYP4Z1 promotes tumor angiogenesis and growth in human breast cancer

    International Nuclear Information System (INIS)

    Yu, Wei; Chai, Hongyan; Li, Ying; Zhao, Haixia; Xie, Xianfei; Zheng, Hao; Wang, Chenlong; Wang, Xue; Yang, Guifang; Cai, Xiaojun; Falck, John R.; Yang, Jing

    2012-01-01

    Cytochrome P450 (CYP) 4Z1, a novel CYP4 family member, is over-expressed in human mammary carcinoma and associated with high-grade tumors and poor prognosis. However, the precise role of CYP4Z1 in tumor progression is unknown. Here, we demonstrate that CYP4Z1 overexpression promotes tumor angiogenesis and growth in breast cancer. Stable expression of CYP4Z1 in T47D and BT-474 human breast cancer cells significantly increased mRNA expression and production of vascular endothelial growth factor (VEGF)-A, and decreased mRNA levels and secretion of tissue inhibitor of metalloproteinase-2 (TIMP-2), without affecting cell proliferation and anchorage-independent cell growth in vitro. Notably, the conditioned medium from CYP4Z1-expressing cells enhanced proliferation, migration and tube formation of human umbilical vein endothelial cells, and promoted angiogenesis in the zebrafish embryo and chorioallantoic membrane of the chick embryo. In addition, there were lower levels of myristic acid and lauric acid, and higher contents of 20-hydroxyeicosatetraenoic acid (20-HETE) in CYP4Z1-expressing T47D cells compared with vector control. CYP4Z1 overexpression significantly increased tumor weight and microvessel density by 2.6-fold and 1.9-fold in human tumor xenograft models, respectively. Moreover, CYP4Z1 transfection increased the phosphorylation of ERK1/2 and PI3K/Akt, while PI3K or ERK inhibitors and siRNA silencing reversed CYP4Z1-mediated changes in VEGF-A and TIMP-2 expression. Conversely, HET0016, an inhibitor of the CYP4 family, potently inhibited the tumor-induced angiogenesis with associated changes in the intracellular levels of myristic acid, lauric acid and 20-HETE. Collectively, these data suggest that increased CYP4Z1 expression promotes tumor angiogenesis and growth in breast cancer partly via PI3K/Akt and ERK1/2 activation. -- Highlights: ► CYP4Z1 overexpression promotes human breast cancer growth and angiogenesis. ► The pro-angiogenic effects of CYP4Z1 have

  15. Increased expression of CYP4Z1 promotes tumor angiogenesis and growth in human breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Wei [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Chai, Hongyan [Center for Gene Diagnosis, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Li, Ying; Zhao, Haixia; Xie, Xianfei; Zheng, Hao; Wang, Chenlong; Wang, Xue [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Yang, Guifang [Department of Pathology, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Cai, Xiaojun [Department of Ophthalmology, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Falck, John R. [Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390 (United States); Yang, Jing, E-mail: yangjingliu@yahoo.com.cn [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China)

    2012-10-01

    Cytochrome P450 (CYP) 4Z1, a novel CYP4 family member, is over-expressed in human mammary carcinoma and associated with high-grade tumors and poor prognosis. However, the precise role of CYP4Z1 in tumor progression is unknown. Here, we demonstrate that CYP4Z1 overexpression promotes tumor angiogenesis and growth in breast cancer. Stable expression of CYP4Z1 in T47D and BT-474 human breast cancer cells significantly increased mRNA expression and production of vascular endothelial growth factor (VEGF)-A, and decreased mRNA levels and secretion of tissue inhibitor of metalloproteinase-2 (TIMP-2), without affecting cell proliferation and anchorage-independent cell growth in vitro. Notably, the conditioned medium from CYP4Z1-expressing cells enhanced proliferation, migration and tube formation of human umbilical vein endothelial cells, and promoted angiogenesis in the zebrafish embryo and chorioallantoic membrane of the chick embryo. In addition, there were lower levels of myristic acid and lauric acid, and higher contents of 20-hydroxyeicosatetraenoic acid (20-HETE) in CYP4Z1-expressing T47D cells compared with vector control. CYP4Z1 overexpression significantly increased tumor weight and microvessel density by 2.6-fold and 1.9-fold in human tumor xenograft models, respectively. Moreover, CYP4Z1 transfection increased the phosphorylation of ERK1/2 and PI3K/Akt, while PI3K or ERK inhibitors and siRNA silencing reversed CYP4Z1-mediated changes in VEGF-A and TIMP-2 expression. Conversely, HET0016, an inhibitor of the CYP4 family, potently inhibited the tumor-induced angiogenesis with associated changes in the intracellular levels of myristic acid, lauric acid and 20-HETE. Collectively, these data suggest that increased CYP4Z1 expression promotes tumor angiogenesis and growth in breast cancer partly via PI3K/Akt and ERK1/2 activation. -- Highlights: ► CYP4Z1 overexpression promotes human breast cancer growth and angiogenesis. ► The pro-angiogenic effects of CYP4Z1 have

  16. Inhibition of VEGF-dependent angiogenesis by the anti-CD82 monoclonal antibody 4F9 through regulation of lipid raft microdomains

    International Nuclear Information System (INIS)

    Nomura, Sayaka; Iwata, Satoshi; Hatano, Ryo; Komiya, Eriko; Dang, Nam H.; Iwao, Noriaki; Ohnuma, Kei; Morimoto, Chikao

    2016-01-01

    CD82 (also known as KAI1) belongs to the tetraspanin superfamily of type III transmembrane proteins, and is involved in regulating cell adhesion, migration and proliferation. In contrast to these well-established roles of CD82 in tumor biology, its function in endothelial cell (EC) activity and tumor angiogenesis is yet to be determined. In this study, we show that suppression of CD82 negatively regulates vascular endothelial growth factor (VEGF)-induced angiogenesis. Moreover, we demonstrate that the anti-CD82 mAb 4F9 effectively inhibits phosphorylation of VEGF receptor 2 (VEGFR2), which is the principal mediator of the VEGF-induced angiogenic signaling process in tumor angiogenesis, by regulating the organization of the lipid raft microdomain signaling platform in human EC. Our present work therefore suggests that CD82 on EC is a potential target for anti-angiogenic therapy in VEGFR2-dependent tumor angiogenesis. -- Highlights: •Knockdown of CD82 decreases EC migration, proliferation and angiogenesis. •Anti-CD82 mAb 4F9 inhibits EC migration, proliferation and angiogenesis. •4F9 inhibits VEGFR2 phosphorylation via control of CD82 distribution in lipid rafts.

  17. Inhibition of VEGF-dependent angiogenesis by the anti-CD82 monoclonal antibody 4F9 through regulation of lipid raft microdomains

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Sayaka; Iwata, Satoshi; Hatano, Ryo [Division of Clinical Immunology, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639 (Japan); Komiya, Eriko [Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421 (Japan); Dang, Nam H. [Division of Hematology/Oncology, University of Florida, 1600 SW Archer Road- Box 100278, Room MSB M410A, Gainesville, FL, 32610 (United States); Iwao, Noriaki [Department of Hematology, School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421 (Japan); Ohnuma, Kei, E-mail: kohnuma@juntendo.ac.jp [Department of Rheumatology and Allergy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639 (Japan); Morimoto, Chikao [Division of Clinical Immunology, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639 (Japan); Department of Rheumatology and Allergy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639 (Japan)

    2016-05-20

    CD82 (also known as KAI1) belongs to the tetraspanin superfamily of type III transmembrane proteins, and is involved in regulating cell adhesion, migration and proliferation. In contrast to these well-established roles of CD82 in tumor biology, its function in endothelial cell (EC) activity and tumor angiogenesis is yet to be determined. In this study, we show that suppression of CD82 negatively regulates vascular endothelial growth factor (VEGF)-induced angiogenesis. Moreover, we demonstrate that the anti-CD82 mAb 4F9 effectively inhibits phosphorylation of VEGF receptor 2 (VEGFR2), which is the principal mediator of the VEGF-induced angiogenic signaling process in tumor angiogenesis, by regulating the organization of the lipid raft microdomain signaling platform in human EC. Our present work therefore suggests that CD82 on EC is a potential target for anti-angiogenic therapy in VEGFR2-dependent tumor angiogenesis. -- Highlights: •Knockdown of CD82 decreases EC migration, proliferation and angiogenesis. •Anti-CD82 mAb 4F9 inhibits EC migration, proliferation and angiogenesis. •4F9 inhibits VEGFR2 phosphorylation via control of CD82 distribution in lipid rafts.

  18. Platelet activation in outpatients undergoing esophagogastroduodenoscopy

    International Nuclear Information System (INIS)

    Sagripanti, A.; Polloni, A.; Materazzi, F.; Ferdeghini, M.; Pinori, E.; Bianchi, R.

    1989-01-01

    To evaluate the influence of emotional stress on platelet function mesured by radioimmunoassay in plasma two platelet factor 4, in a series of outpatients undergoing esophagogastroduodenoscopy for upper digestive complaints has been measured. The plasma levels of β-thromboglobulin and platelet factor 4, determined just before the instrumental examination, were significantly more elevated as compared to basal values, checked a week later. These results provide evidence of enhanced in vivo platelet release reaction during emotional stress

  19. Platelet-derived stromal cell-derived factor-1 is required for the transformation of circulating monocytes into multipotential cells.

    Directory of Open Access Journals (Sweden)

    Noriyuki Seta

    Full Text Available BACKGROUND: We previously described a primitive cell population derived from human circulating CD14(+ monocytes, named monocyte-derived multipotential cells (MOMCs, which are capable of differentiating into mesenchymal and endothelial lineages. To generate MOMCs in vitro, monocytes are required to bind to fibronectin and be exposed to soluble factor(s derived from circulating CD14(- cells. The present study was conducted to identify factors that induce MOMC differentiation. METHODS: We cultured CD14(+ monocytes on fibronectin in the presence or absence of platelets, CD14(- peripheral blood mononuclear cells, platelet-conditioned medium, or candidate MOMC differentiation factors. The transformation of monocytes into MOMCs was assessed by the presence of spindle-shaped adherent cells, CD34 expression, and the potential to differentiate in vitro into mesenchymal and endothelial lineages. RESULTS: The presence of platelets or platelet-conditioned medium was required to generate MOMCs from monocytes. A screening of candidate platelet-derived soluble factors identified stromal cell-derived factor (SDF-1 as a requirement for generating MOMCs. Blocking an interaction between SDF-1 and its receptor CXCR4 inhibited MOMC generation, further confirming SDF-1's critical role in this process. Finally, circulating MOMC precursors were found to reside in the CD14(+CXCR4(high cell population. CONCLUSION: The interaction of SDF-1 with CXCR4 is essential for the transformation of circulating monocytes into MOMCs.

  20. Angiogenesis and expression of vascular endothelial growth factor, tumour necrosis factor-α and hypoxia inducible factor-1α in canine renal cell carcinoma.

    Science.gov (United States)

    Yhee, J Y; Yu, C H; Kim, J H; Im, K S; Kim, N H; Brodersen, B W; Doster, A R; Sur, J-H

    2012-01-01

    The aim of the present study was to determine the distribution and characteristics of microvessels in various histological types of canine renal cell carcinoma (RCC). The study compared microvessel density (MVD) and distribution of blood vessels according to histological type and evaluated the presence of angiogenesis-related proteins. Nine archival samples of canine RCC were studied. MVD was calculated as the mean number of blood vessels per mm(2). The diameter of blood vessels was calculated by determining either the length of the long axis of blood vessels (diameter(max)) or the mean distance from the centre of each blood vessel to the tunica adventia (diameter(mean)). A significant difference in MVD was evident between RCCs and normal kidneys (46.6 ± 28.0 versus 8.4 ± 2.2 microvessels/mm(2)). Diameter(max) in canine RCCs (34.1 ± 14.7 μm) was also significantly different from normal canine kidney (23.2 ± 3.4 μm). Vascular endothelial growth factor (VEGF) was expressed by tumour cells and vascular endothelial cells and tumour necrosis factor (TNF)-α expression was observed in vascular endothelial cells in both neoplastic and normal kidney. Although VEGF is involved in angiogenesis and correlates with tumour stage of development, no correlation was found between VEGF expression and MVD. Tumour-associated macrophages expressing TNF-α and hypoxia inducible factor 1α were identified in peritumoural tissue and may play an important role in angiogenesis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Intra-plaque production of platelet-activating factor correlates with neoangiogenesis in human carotid atherosclerotic lesions.

    Science.gov (United States)

    Lupia, Enrico; Pucci, Angela; Peasso, Paolo; Merlo, Maurizio; Baron, Paolo; Zanini, Cristina; Del Sorbo, Lorenzo; Rizea-Savu, Simona; Silvestro, Luigi; Forni, Marco; Emanuelli, Giorgio; Camussi, Giovanni; Montrucchio, Giuseppe

    2003-09-01

    Platelet-activating factor (PAF) is a phospholipid mediator synthesized by activated inflammatory and endothelial cells. Recently PAF has been shown to contribute to neoangiogenesis in several experimental models. Here we evaluated the presence of PAF and its potential role in neovascularization within human atherosclerotic plaques. The amount of PAF extracted from 18 carotid plaques (266.65+/-40.07 pg/100 mg dry tissue; mean +/- SE) was significantly higher than that extracted from 18 normal arterial specimens (6 from carotid artery and 12 from aorta) (4.72+/-2.31 pg/100 mg dry tissue; mean +/- SE). The levels of PAF significantly correlated with the infiltration of CD68-positive monocytes and the extent of neovascularization, detected as von Willebrand Factor-positive cells. The amount of PAF also correlated with the area occupied by TNF-alpha-expressing cells. The absence of enhanced level of PAF in the circulation of atherosclerotic patients suggests a local production of this mediator within the plaque. The lipid extracts of atherosclerotic plaques containing high levels of PAF-bioactivity, but not those of control arteries, were angiogenic in a murine Matrigel model. WEB 2170, a specific PAF receptor antagonist, significantly prevented angiogenesis induced by the lipid extracts of atherosclerotic plaques. Our results indicate a local production of PAF within the atherosclerotic plaques and suggest that it may contribute to intra-plaque neoangiogenesis.

  2. Identification of a second putative receptor of platelet activating factor on human polymorphonuclear leukocytes

    International Nuclear Information System (INIS)

    Hwang, S.B.

    1987-01-01

    Due to multiple molecular species of platelet activating factor (PAF) and the existence of high affinity binding sites in a variety of cells and tissues, possible existence of PAF receptor subtypes has been suggested. This report shows differences between specific PAF receptors on human leukocytes and platelets. Human PMN leukocyte membranes showed high affinity binding sites for PAF with an equilibrium dissociation constant (Kd) of 4.7 (+/- 1.4) x 10 -10 M. The maximal number (B/sub max/) of receptor sites was estimated to be 3.13 (+/- 1.4) x 10 -13 mol/mg protein. They compared the relative potencies of several PAF agonists and receptor antagonists between human platelet and human leukocyte membranes. One antagonist (Ono-6240) was found to be 8 times less potent at inhibiting the [ 3 H]PAF specific receptor binding to human leukocytes than to human platelets. Mg 2+ , Ca 2+ and K + ions potentiated the [ 3 H]PAF specific binding in both systems. Na + ions inhibited the [ 3 H]PAF specific binding to human platelets but showed no effects in human leukocytes. K + ions decreased the Mg 2+ -potentiated [ 3 H]PAF binding in human leukocytes but showed no effects in human platelets. These results suggest that the PAF specific receptors in human leukocytes are different structurally and possibly functionally from the receptors identified in human platelets

  3. Heritability of circulating growth factors involved in the angiogenesis in healthy human population.

    Science.gov (United States)

    Pantsulaia, I; Trofimov, S; Kobyliansky, E; Livshits, G

    2004-09-21

    The present study examined the extent of genetic and environmental influences on the populational variation of circulating growth factors (VEGF, EGF) involved in angiogenesis in healthy and ethnically homogeneous Caucasian families. The plasma levels of each of the studied biochemical indices were determined by enzyme-linked immunoassay in 478 healthy individuals aged 18-75 years. Quantitative genetic analysis showed that the VEGF and EGF variation was appreciably attributable to genetic effects, with heritability estimates of 79.9% and 48.4%, respectively. Yet, common environmental factors, shared by members of the same household, also played a significant role (P growth factor-beta 1 (TGF-beta 1) or tissue inhibitors of matrix metalloproteinases 1 (TIMP-1), likewise relevant for angiogenesis. Bivariate analysis revealed significant phenotypic correlations (P < 0.002) between all pairs of variables, thus indicating the possible existence of common genetic and environmental factors. The analysis suggested that the pleiotropic genetic effects were consistently the primary (or even the sole) source of correlation between all pairs of studied molecules. The results of our study affirm the existence of specific and common genetic pathways that commonly determine the greater part of the circulating variation of these molecules.

  4. Growth factor and pro-inflammatory cytokine contents in platelet-rich plasma (PRP), plasma rich in growth factors (PRGF), advanced platelet-rich fibrin (A-PRF), and concentrated growth factors (CGF).

    Science.gov (United States)

    Masuki, Hideo; Okudera, Toshimitsu; Watanebe, Taisuke; Suzuki, Masashi; Nishiyama, Kazuhiko; Okudera, Hajime; Nakata, Koh; Uematsu, Kohya; Su, Chen-Yao; Kawase, Tomoyuki

    2016-12-01

    The development of platelet-rich fibrin (PRF) drastically simplified the preparation procedure of platelet-concentrated biomaterials, such as platelet-rich plasma (PRP), and facilitated their clinical application. PRF's clinical effectiveness has often been demonstrated in pre-clinical and clinical studies; however, it is still controversial whether growth factors are significantly concentrated in PRF preparations to facilitate wound healing and tissue regeneration. To address this matter, we performed a comparative study of growth factor contents in PRP and its derivatives, such as advanced PRF (A-PRF) and concentrated growth factors (CGF). PRP and its derivatives were prepared from the same peripheral blood samples collected from healthy donors. A-PRF and CGF preparations were homogenized and centrifuged to produce extracts. Platelet and white blood cell counts in A-PRF and CGF preparations were determined by subtracting those counts in red blood cell fractions, supernatant acellular serum fractions, and A-PRF/CGF exudate fractions from those counts of whole blood samples. Concentrations of growth factors (TGF-β1, PDGF-BB, VEGF) and pro-inflammatory cytokines (IL-1β, IL-6) were determined using ELISA kits. Compared to PRP preparations, both A-PRF and CGF extracts contained compatible or higher levels of platelets and platelet-derived growth factors. In a cell proliferation assay, both A-PRF and CGF extracts significantly stimulated the proliferation of human periosteal cells without significant reduction at higher doses. These data clearly demonstrate that both A-PRF and CGF preparations contain significant amounts of growth factors capable of stimulating periosteal cell proliferation, suggesting that A-PRF and CGF preparations function not only as a scaffolding material but also as a reservoir to deliver certain growth factors at the site of application.

  5. Influence of storage conditions on the release of growth factors in platelet-rich blood derivatives

    Directory of Open Access Journals (Sweden)

    Düregger Katharina

    2016-09-01

    Full Text Available Thrombocytes can be concentrated in blood derivatives and used as autologous transplants e.g. for wound treatment due to the release of growth factors such as platelet derived growth factor (PDGF. Conditions for processing and storage of these platelet-rich blood derivatives influence the release of PDGF from the platelet-bound α-granules into the plasma. In this study Platelet rich plasma (PRP and Platelet concentrate (PC were produced with a fully automated centrifugation system. Storage of PRP and PC for 1 h up to 4 months at temperatures between −20°C and +37°C was applied with the aim of evaluating the influence on the amount of released PDGF. Storage at −20°C resulted in the highest release of PDGF in PRP and a time dependency was determined: prolonged storage up to 1 month in PRP and 10 days in PC increased the release of PDGF. Regardless of the storage conditions, the release of PDGF per platelet was higher in PC than in PRP.

  6. Mechanical strain stimulates vasculogenesis and expression of angiogenesis guidance molecules of embryonic stem cells through elevation of intracellular calcium, reactive oxygen species and nitric oxide generation.

    Science.gov (United States)

    Sharifpanah, Fatemeh; Behr, Sascha; Wartenberg, Maria; Sauer, Heinrich

    2016-12-01

    Differentiation of embryonic stem (ES) cells may be regulated by mechanical strain. Herein, signaling molecules underlying mechanical stimulation of vasculogenesis and expression of angiogenesis guidance cues were investigated in ES cell-derived embryoid bodies. Treatment of embryoid bodies with 10% static mechanical strain using a Flexercell strain system significantly increased CD31-positive vascular structures and the angiogenesis guidance molecules plexinB1, ephrin B2, neuropilin1 (NRP1), semaphorin 4D (sem4D) and robo4 as well as vascular endothelial growth factor (VEGF), fibroblast growth factor-2 (FGF-2) and platelet-derived growth factor-BB (PDGF-BB) as evaluated by Western blot and real time RT-PCR. In contrast ephrin type 4 receptor B (EphB4) expression was down-regulated upon mechanical strain, indicating an arterial-type differentiation. Robo1 protein expression was modestly increased with no change in mRNA expression. Mechanical strain increased intracellular calcium as well as reactive oxygen species (ROS) and nitric oxide (NO). Mechanical strain-induced vasculogenesis was abolished by the NOS inhibitor L-NAME, the NADPH oxidase inhibitor VAS2870, upon chelation of intracellular calcium by BAPTA as well as upon siRNA inactivation of ephrin B2, NRP1 and robo4. BAPTA blunted the strain-induced expression of angiogenic growth factors, the increase in NO and ROS as well as the expression of NRP1, sem4D and plexinB1, whereas ephrin B2, EphB4 as well as robo1 and robo4 expression were not impaired. Mechanical strain stimulates vasculogenesis of ES cells by the intracellular messengers ROS, NO and calcium as well as by upregulation of angiogenesis guidance molecules and the angiogenic growth factors VEGF, FGF-2 and PDGF-BB. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Negative feedback regulation of human platelets via autocrine activation of the platelet-derived growth factor alpha-receptor.

    Science.gov (United States)

    Vassbotn, F S; Havnen, O K; Heldin, C H; Holmsen, H

    1994-05-13

    Human platelets contain platelet-derived growth factor (PDGF) in their alpha-granules which is released during platelet exocytosis. We show by immunoprecipitation and 125I-PDGF binding experiments that human platelets have functionally active PDGF alpha-receptors, but not beta-receptors. The PDGF alpha-receptor (PDGFR-alpha) was identified as a 170-kDa glycosylated protein-tyrosine kinase as found in other cell types. Stimulation of platelets with 0.1 unit/ml thrombin resulted in a significant increase (2-5-fold) of the tyrosine phosphorylation of the PDGFR-alpha, as determined by immunoprecipitation with phosphotyrosine antiserum as well as with PDGFR-alpha antiserum. The observed thrombin-induced autophosphorylation of the PDGFR-alpha was inhibited by the addition of a neutralizing monoclonal PDGF antibody. Thus, our results suggest that the platelet PDGFR-alpha is stimulated in an autocrine manner by PDGF secreted during platelet activation. Preincubation of platelets with PDGF inhibited thrombin-induced platelet aggregation and secretion of ATP + ADP and beta-hexosaminidase. Thrombin-induced platelet aggregation was also reversed when PDGF was added 30 s after thrombin stimulation. Inhibition of the autocrine PDGF pathway during platelet activation by the PDGF antibody led to a potentiation of thrombin-induced beta-hexosaminidase secretion. Thus, the PDGFR-alpha takes part in a negative feedback regulation during platelet activation. Our demonstration of PDGF alpha-receptors on human platelets and its inhibitory function during platelet activation identifies a new possible role of PDGF in the regulation of thrombosis.

  8. Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets

    Science.gov (United States)

    Möhle, Robert; Green, David; Moore, Malcolm A. S.; Nachman, Ralph L.; Rafii, Shahin

    1997-01-01

    We have shown that coculture of bone marrow microvascular endothelial cells with hematopoietic progenitor cells results in proliferation and differentiation of megakaryocytes. In these long-term cultures, bone marrow microvascular endothelial cell monolayers maintain their cellular integrity in the absence of exogenous endothelial growth factors. Because this interaction may involve paracrine secretion of cytokines, we evaluated megakaryocytic cells for secretion of vascular endothelial growth factor (VEGF). Megakaryocytes (CD41a+) were generated by ex vivo expansion of hematopoietic progenitor cells with kit-ligand and thrombopoietin for 10 days and further purified with immunomagnetic microbeads. Using reverse transcription–PCR, we showed that megakaryocytic cell lines (Dami, HEL) and purified megakaryocytes expressed mRNA of the three VEGF isoforms (121, 165, and 189 amino acids). Large quantities of VEGF (>1 ng/106 cells/3 days) were detected in the supernatant of Dami cells, ex vivo-generated megakaryocytes, and CD41a+ cells isolated from bone marrow. The constitutive secretion of VEGF by CD41a+ cells was stimulated by growth factors of the megakaryocytic lineage (interleukin 3, thrombopoietin). Western blotting of heparin–Sepharose-enriched supernatant mainly detected the isoform VEGF165. In addition, immunohistochemistry showed intracytoplasmic VEGF in polyploid megakaryocytes. Thrombin stimulation of megakaryocytes and platelets resulted in rapid release of VEGF within 30 min. We conclude that human megakaryocytes produce and secrete VEGF in an inducible manner. Within the bone marrow microenvironment, VEGF secreted by megakaryocytes may contribute to the proliferation of endothelial cells. VEGF delivered to sites of vascular injury by activated platelets may initiate angiogenesis. PMID:9012841

  9. The proangiogenic phenotype of tumor-derived endothelial cells is reverted by the overexpression of platelet-activating factor acetylhydrolase.

    Science.gov (United States)

    Doublier, Sophie; Ceretto, Monica; Lupia, Enrico; Bravo, Stefania; Bussolati, Benedetta; Camussi, Giovanni

    2007-10-01

    We previously reported that human tumor-derived endothelial cells (TEC) have an angiogenic phenotype related to the autocrine production of several angiogenic factors. The purpose of the present study was to evaluate whether an enhanced synthesis of platelet-activating factor (PAF) might contribute to the proangiogenic characteristics of TEC and whether its inactivation might inhibit angiogenesis. To address the potential role of PAF in the proangiogenic characteristics of TEC, we engineered TEC to stably overexpress human plasma PAF-acetylhydrolase (PAF-AH), the major PAF-inactivating enzyme, and we evaluated in vitro and in vivo angiogenesis. TECs were able to synthesize a significantly enhanced amount of PAF compared with normal human microvascular endothelial cells when stimulated with thrombin, vascular endothelial growth factor, or soluble CD154. Transfection of TEC with PAF-AH (TEC-PAF-AH) significantly inhibited apoptosis resistance and spontaneous motility of TEC. In addition, PAF and vascular endothelial growth factor stimulation enhanced the motility and adhesion of TEC but not of TEC-PAF-AH. In vitro, TEC-PAF-AH lost the characteristic ability of TEC to form vessel-like structures when plated on Matrigel. Finally, when cells were injected s.c. within Matrigel in severe combined immunodeficiency mice or coimplanted with a renal carcinoma cell line, the overexpression of PAF-AH induced a significant reduction of functional vessel formation. These results suggest that inactivation of PAF, produced by TEC, by the overexpression of plasma PAF-AH affects survival, migration, and the angiogenic response of TEC both in vitro and in vivo.

  10. Purification of human platelet-derived growth factor

    International Nuclear Information System (INIS)

    Raines, E.W.; Ross, R.

    1985-01-01

    The paper describes a method for purification of human platelet-derived growth factor (PDGF) from outdated platelet-rich plasma (PRP) using commonly available laboratory reagents and yielding a mitogen purified 800,000-fold over the starting material. [ 3 H]thymidine incorporation into DNA of cultured cells responsive to PDGF represents the most readily available method to follow its purification and define the biological activity of a purified preparation. Other assays to quantitate PDGF include radioreceptor assay and radioimmunoassay

  11. Exercise and the platelet activator calcium chloride both influence the growth factor content of platelet-rich plasma (PRP): overlooked biochemical factors that could influence PRP treatment

    NARCIS (Netherlands)

    Hamilton, Bruce; Tol, Johannes L.; Knez, Wade; Chalabi, Hakim

    2015-01-01

    There is strong evidence that exercise affects platelet haemostasis factors, but this potential effect on growth factor concentrations in platelet-rich plasma (PRP) has never been studied. In addition, there is a paucity of studies focusing on the effects of activating agents used in conjunction

  12. Composition of growth factors and cytokines in lysates obtained from fresh versus stored pathogen-inactivated platelet units.

    Science.gov (United States)

    Sellberg, Felix; Berglund, Erik; Ronaghi, Martin; Strandberg, Gabriel; Löf, Helena; Sommar, Pehr; Lubenow, Norbert; Knutson, Folke; Berglund, David

    2016-12-01

    Platelet lysate is a readily available source of growth factors, and other mediators, which has been used in a variety of clinical applications. However, the product remains poorly standardized and the present investigation evaluates the composition of platelet lysate obtained from either fresh or stored pathogen-inactivated platelet units. Platelet pooled units (n = 10) were obtained from healthy blood donors and tested according to standard procedures. All units were pathogen inactivated using amotosalen hydrochloride and UVA exposure. Platelet lysate was subsequently produced at two separate time-points, either from fresh platelet units or after 5 days of storage, by repeated freeze-thaw cycles. The following mediators were determined at each time-point: EGF, FGF-2, VEGF, IGF-1, PDGF-AB/BB, BMP-2, PF4, TGF-β isoform 1, IL-1β, IL-2, IL-6, IL-10, IL-12p70, 1L-17A, TNF-α, and IFN-γ. The concentration of growth factors and cytokines was affected by time in storage. Notably, TGF-β, PDGF-AB/BB, and PF4 showed an increase of 27.2% (p product, which potentially may influence the clinical effects. Copyright © 2016. Published by Elsevier Ltd.

  13. Platelet-Derived Microvesicles in Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Maria T. K. Zaldivia

    2017-11-01

    Full Text Available Microvesicles (MVs circulating in the blood are small vesicles (100–1,000 nm in diameter derived from membrane blebs of cells such as activated platelets, endothelial cells, and leukocytes. A growing body of evidence now supports the concept that platelet-derived microvesicles (PMVs, the most abundant MVs in the circulation, are important regulators of hemostasis, inflammation, and angiogenesis. Compared with healthy individuals, a large increase of circulating PMVs has been observed, particularly in patients with cardiovascular diseases. As observed in MVs from other parent cells, PMVs exert their biological effects in multiple ways, such as triggering various intercellular signaling cascades and by participating in transcellular communication by the transfer of their “cargo” of cytoplasmic components and surface receptors to other cell types. This review describes our current understanding of the potential role of PMVs in mediating hemostasis, inflammation, and angiogenesis and their consequences on the pathogenesis of cardiovascular diseases, such as atherosclerosis, myocardial infarction, and venous thrombosis. Furthermore, new developments of the therapeutic potential of PMVs for the treatment of cardiovascular diseases will be discussed.

  14. Response to platelet-activating factor in human platelets stored and aged in plasma. Decrease in aggregation, phosphoinositide turnover, and receptor affinity

    International Nuclear Information System (INIS)

    Shukla, S.D.; Morrison, W.J.; Klachko, D.M.

    1989-01-01

    Human platelet concentrates were stored in polyolefin bags at 22 to 24 degrees C on a horizontal shaker for up to 8 days. At different intervals, aliquots of platelet-rich plasma (PRP) were removed aseptically and five variables, i.e., platelet counts, morphology, platelet-activating factor (PAF)-stimulated aggregation, phosphoinositide turnover, and [3H]PAF binding to platelet receptors, were studied. The number of platelets did not change during the 8 days of storage. Scanning electron microscopy of the platelets revealed a gradual morphologic change from biconcave flat discs to irregular, crenated forms. The PAF-induced aggregation of platelets declined with time of storage. A decrease to 50 percent of the Day 1 aggregatory response to PAF was evident on Day 2, and there was a further decline to about 20 percent by Day 6. Similarly, PAF receptor-coupled phosphoinositide turnover, as monitored by 32P incorporation into individual phosphoinositides, decreased dramatically with storage. After 2 to 3 days of storage, the phosphoinositide turnover was reduced to 50 percent of the original response, and it continued to decline to about 25 percent of original response by Day 5 or 6. The binding of [3H]PAF to washed human platelets indicated subtle changes between Days 2 and 4, which became more noticeable by Day 6. These results have raised the possibility of changes in the number of the receptors and/or their affinity for the ligand during storage. We conclude that although the number of platelets was maintained during storage for 8 days, a general deterioration of their responses to PAF occurred at the levels of cell surface receptor, transmembrane signaling (phosphoinositide turnover), and response (aggregation)

  15. The content of bone morphogenetic proteins in platelets varies greatly between different platelet donors

    International Nuclear Information System (INIS)

    Kalen, Anders; Wahlstroem, Ola; Linder, Cecilia Halling; Magnusson, Per

    2008-01-01

    Platelet derivates and platelet rich plasma have been used to stimulate bone formation and wound healing because of the rich content of potent growth factors. However, not all reports have been conclusive since some have not been able to demonstrate a positive effect. We investigated the interindividual variation of bone morphogenetic proteins (BMPs) in platelets from healthy donors, and the pH-dependent effect on the release of BMPs in preparations of lysed platelets in buffer (LPB). Platelet concentrates from 31 healthy donors were prepared in pH 4.3 and pH 7.4 buffers and investigated with respect to BMP-2, -4, -6, and -7. BMP-2 and BMP-4 were significantly more common in acidic LPBs in comparison with neutral preparations. We also observed a considerable variation among platelet donors with respect to the release of BMPs at pH 4.3 and 7.4. In conclusion, a considerable variation was found among platelet donors, which may be of importance considering the ambiguous results previously reported on osteoblast proliferation and differentiation

  16. Scutellarin promotes in vitro angiogenesis in human umbilical vein endothelial cells

    International Nuclear Information System (INIS)

    Gao, Zhong-Xiu-Zi; Huang, Da-Yong; Li, Hai-Xia; Zhang, Li-Na; Lv, Yan-Hong; Cui, Hai-Dong; Zheng, Jin-Hua

    2010-01-01

    Research highlights: → It has been shown that scutellarin exhibits a variety of pharmacological actions, including anti-oxidative, anti-inflammatory, vasodilator as well as cardiovascular and cerebrovascular ischemia protective effects, indicating beneficial vascular effects of scutellarin. Therefore, it is speculated that scutellarin may be able to stimulate angiogenesis, which could be beneficial in the treatment of ischemic disease, wound healing and tissue regeneration. → The purpose of the present study was to elucidate the direct angiogenic actions of scutellarin on human umbilical vein endothelial cells (HUVECs) in vitro. → Our results showed that scutellarin to directly induce in vitro angiogenesis, which is closely correlated with upregulated MMP-2 expression, suggesting a potential for increasing angiogenesis. -- Abstract: Angiogenesis is critical to a wide range of physiological and pathological processes. Scutellarin, a major flavonoid of a Chinese herbal medicine Erigeron breviscapus (Vant.) Hand. Mazz. has been shown to offer beneficial effects on cardiovascular and cerebrovascular functions. However, scutellarin's effects on angiogenesis and underlying mechanisms are not fully elucidated. Here, we studied angiogenic effects of scutellarin on human umbilical vein endothelial cells (HUVECs) in vitro. Scutellarin was found by MTT assay to induce proliferation of HUVECs. In scutellarin-treated HUVECs, a dramatic increase in migration was measured by wound healing assay; Transwell chamber assay found significantly more invading cells in scutellarin-treated groups. Scutellarin also promoted capillary-like tube formation in HUVECs on Matrigel, and significantly upregulated platelet endothelial cell adhesion molecule-1 at both mRNA and protein levels. Scutellarin's angiogenic mechanism was investigated in vitro by measuring expression of angiogenic factors associated with cell migration and invasion. Scutellarin strongly induced MMP-2 activation and m

  17. Scutellarin promotes in vitro angiogenesis in human umbilical vein endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhong-Xiu-Zi [Department of Anatomy, Basic Medical Science College, Harbin Medical University, Harbin (China); Huang, Da-Yong [Department of Oncology, The Second Clinical Hospital, Harbin Medical University, Harbin (China); Li, Hai-Xia; Zhang, Li-Na; Lv, Yan-Hong; Cui, Hai-Dong [Department of Anatomy, Basic Medical Science College, Harbin Medical University, Harbin (China); Zheng, Jin-Hua, E-mail: jhzhenghrbmu@yahoo.cn [Department of Anatomy, Basic Medical Science College, Harbin Medical University, Harbin (China)

    2010-09-10

    Research highlights: {yields} It has been shown that scutellarin exhibits a variety of pharmacological actions, including anti-oxidative, anti-inflammatory, vasodilator as well as cardiovascular and cerebrovascular ischemia protective effects, indicating beneficial vascular effects of scutellarin. Therefore, it is speculated that scutellarin may be able to stimulate angiogenesis, which could be beneficial in the treatment of ischemic disease, wound healing and tissue regeneration. {yields} The purpose of the present study was to elucidate the direct angiogenic actions of scutellarin on human umbilical vein endothelial cells (HUVECs) in vitro. {yields} Our results showed that scutellarin to directly induce in vitro angiogenesis, which is closely correlated with upregulated MMP-2 expression, suggesting a potential for increasing angiogenesis. -- Abstract: Angiogenesis is critical to a wide range of physiological and pathological processes. Scutellarin, a major flavonoid of a Chinese herbal medicine Erigeron breviscapus (Vant.) Hand. Mazz. has been shown to offer beneficial effects on cardiovascular and cerebrovascular functions. However, scutellarin's effects on angiogenesis and underlying mechanisms are not fully elucidated. Here, we studied angiogenic effects of scutellarin on human umbilical vein endothelial cells (HUVECs) in vitro. Scutellarin was found by MTT assay to induce proliferation of HUVECs. In scutellarin-treated HUVECs, a dramatic increase in migration was measured by wound healing assay; Transwell chamber assay found significantly more invading cells in scutellarin-treated groups. Scutellarin also promoted capillary-like tube formation in HUVECs on Matrigel, and significantly upregulated platelet endothelial cell adhesion molecule-1 at both mRNA and protein levels. Scutellarin's angiogenic mechanism was investigated in vitro by measuring expression of angiogenic factors associated with cell migration and invasion. Scutellarin strongly

  18. Involvement of nuclear factor κB in platelet CD40 signaling

    International Nuclear Information System (INIS)

    Hachem, Ahmed; Yacoub, Daniel; Zaid, Younes; Mourad, Walid; Merhi, Yahye

    2012-01-01

    Highlights: ► sCD40L induces TRAF2 association to CD40 and NF-κB activation in platelets. ► IκBα phosphorylation downstream of CD40L/CD40 signaling is independent of p38 MAPK phosphorylation. ► IκBα is required for sCD40L-induced platelet activation and potentiation of aggregation. -- Abstract: CD40 ligand (CD40L) is a thrombo-inflammatory molecule that predicts cardiovascular events. Platelets constitute the major source of soluble CD40L (sCD40L), which has been shown to potentiate platelet activation and aggregation, in a CD40-dependent manner, via p38 mitogen activated protein kinase (MAPK) and Rac1 signaling. In many cells, the CD40L/CD40 dyad also induces activation of nuclear factor kappa B (NF-κB). Given that platelets contain NF-κB, we hypothesized that it may be involved in platelet CD40 signaling and function. In human platelets, sCD40L induces association of CD40 with its adaptor protein the tumor necrosis factor receptor associated factor 2 and triggers phosphorylation of IκBα, which are abolished by CD40L blockade. Inhibition of IκBα phosphorylation reverses sCD40L-induced IκBα phosphorylation without affecting p38 MAPK phosphorylation. On the other hand, inhibition of p38 MAPK phosphorylation has no effect on IκBα phosphorylation, indicating a divergence in the signaling pathway originating from CD40 upon its ligation. In functional studies, inhibition of IκBα phosphorylation reverses sCD40L-induced platelet activation and potentiation of platelet aggregation in response to a sub-threshold concentration of collagen. This study demonstrates that the sCD40L/CD40 axis triggers NF-κB activation in platelets. This signaling pathway plays a critical role in platelet activation and aggregation upon sCD40L stimulation and may represent an important target against thrombo-inflammatory disorders.

  19. Autologous blood preparations rich in platelets, fibrin and growth factors.

    Science.gov (United States)

    Fioravanti, C; Frustaci, I; Armellin, E; Condò, R; Arcuri, C; Cerroni, L

    2015-01-01

    Bone regeneration is often needed prior to dental implant treatment due to the lack of adequate quantity and quality after infectious diseases. The greatest regenerative power was obtained with autologous tissue, primarily the bone alive, taken from the same site or adjacent sites, up to the use centrifugation of blood with the selection of the parts with the greatest potential regenerative. In fact, various techniques and technologies were chronologically successive to cope with an ever better preparation of these concentrates of blood. Our aim is to review these advances and discuss the ways in which platelet concentrates may provide such unexpected beneficial therapeutic effects. The research has been carried out in the MEDLINE and Cochrane Central Register of Controlled Trials database by choosing keywords as "platelet rich plasma", "platelet rich fibrin", "platelet growth factors", and "bone regeneration" and "dentistry". Autologous platelet rich plasma is a safe and low cost procedure to deliver growth factors for bone and soft tissue healing. The great heterogeneity of clinical outcomes can be explained by the different PRP products with qualitative and quantitative difference among substance.

  20. Effects of different concentrations of Platelet-rich Plasma and Platelet-Poor Plasma on vitality and differentiation of autologous Adipose tissue-derived stem cells.

    Science.gov (United States)

    Felthaus, Oliver; Prantl, Lukas; Skaff-Schwarze, Mona; Klein, Silvan; Anker, Alexandra; Ranieri, Marco; Kuehlmann, Britta

    2017-01-01

    Autologous fat grafts and adipose-derived stem cells (ASCs) can be used to treat soft tissue defects. However, the results are inconsistent and sometimes comprise tissue resorption and necrosis. This might be due to insufficient vascularization. Platelet-rich plasma (PRP) is a source of concentrated autologous platelets. The growth factors and cytokines released by platelets can facilitate angiogenesis. The simultaneous use of PRP might improve the regeneration potential of fat grafts. The optimal ratio has yet to be elucidated. A byproduct of PRP preparation is platelet-poor plasma (PPP). In this study we investigated the influence of different concentrations of PRP on the vitality and differentiation of ASCs. We processed whole blood with the Arthrex Angel centrifuge and isolated ASCs from the same donor. We tested the effects of different PRP and PPP concentrations on the vitality using resazurin assays and the differentiation of ASCs using oil-red staining. Both cell vitality and adipogenic differentiation increase to a concentration of 10% to 20% PRP. With a PRP concentration of 30% cell vitality and differentiation decrease. Both PRP and PPP can be used to expand ASCs without xenogeneic additives in cell culture. A PRP concentration above 20% has inhibitory effects.

  1. Molecular Therapeutic Targets for Glioma Angiogenesis

    Directory of Open Access Journals (Sweden)

    Shingo Takano

    2010-01-01

    Full Text Available Due to the prominent angiogenesis that occurs in malignant glioma, antiangiogenic therapy has been attempted. There have been several molecular targets that are specific to malignant gliomas, as well as more broadly in systemic cancers. In this review, I will focus on some topics related to molecular therapeutic targets for glioma angiogenesis. First, important angiogenic factors that could be considered molecular targets are VEGF, VEGF-induced proteins on endothelial cells, tissue factor, osteopontin, v3 integrin, and thymidine phosphorylase as well as endogenous inhibitors, soluble Flt1, and thrombospondin 1. Second, hypoxic areas are also decreased by metronomic CPT11 treatment as well as temozolomide. Third, glioma-derived endothelial cells that are genetically and functionally distinct from normal endothelial cells should be targeted, for example, with SDF-1 and CXCR7 chemokine. Fourth, endothelial progenitor cells (EPCs likely contribute towards glioma angiogenesis in the brain and could be useful as a drug delivery tool. Finally, blockade of delta-like 4 (Dll4 results in a nonfunctioning vasculature and could be another important target distinct from VEGF.

  2. Lipoxin A4 and platelet activating factor are involved in E. coli or LPS-induced lung inflammation in CFTR-deficient mice.

    Directory of Open Access Journals (Sweden)

    Haiya Wu

    Full Text Available CFTR (cystic fibrosis transmembrane conductance regulator is expressed by both neutrophils and platelets. Lack of functional CFTR could lead to severe lung infection and inflammation. Here, we found that mutation of CFTR (F508del or inhibition of CFTR in mice led to more severe thrombocytopenia, alveolar neutrocytosis and bacteriosis, and lower lipoxin A4/MIP-2 (macrophage inhibitory protein-2 or lipoxin A4/neutrophil ratios in the BAL (bronchoalveolar lavage during acute E. coli pneumonia. In vitro, inhibition of CFTR promotes MIP-2 production in LPS-stimulated neutrophils; however, lipoxin A4 could dose-dependently suppress this effect. In LPS-induced acute lung inflammation, blockade of PSGL-1 (P-selectin glycoprotein ligand-1 or P-selectin, antagonism of PAF by WEB2086, or correction of mutated CFTR trafficking by KM11060 could significantly increase plasma lipoxin A4 levels in F508del relevant to wildtype mice. Concurrently, F508del mice had higher plasma platelet activating factor (PAF levels and PAF-AH activity compared to wildtype under LPS challenge. Inhibiting hydrolysis of PAF by a specific PAF-AH (PAF-acetylhydrolase inhibitor, MAFP, could worsen LPS-induced lung inflammation in F508del mice compared to vehicle treated F508del group. Particularly, depletion of platelets in F508del mice could significantly decrease plasma lipoxin A4 and PAF-AH activity and deteriorate LPS-induced lung inflammation compared to control F508del mice. Taken together, lipoxin A4 and PAF are involved in E. coli or LPS-induced lung inflammation in CFTR-deficient mice, suggesting that lipoxin A4 and PAF might be therapeutic targets for ameliorating CFTR-deficiency deteriorated lung inflammation.

  3. Chitosan inhibits platelet-mediated clot retraction, increases platelet-derived growth factor release, and increases residence time and bioactivity of platelet-rich plasma in vivo.

    Science.gov (United States)

    Deprés-Tremblay, Gabrielle; Chevrier, Anik; Tran-Khanh, Nicolas; Nelea, Monica; Buschmann, Michael D

    2017-11-10

    Platelet-rich plasma (PRP) has been used to treat different orthopedic conditions, however, the clinical benefits of using PRP remain uncertain. Chitosan (CS)-PRP implants have been shown to improve meniscus, rotator cuff and cartilage repair in pre-clinical models. The purpose of this current study was to investigate in vitro and in vivo mechanisms of action of CS-PRP implants. Freeze-dried formulations containing 1% (w/v) CS (80% degree of deacetylation and number average molar mass 38 kDa), 1% (w/v) trehalose as a lyoprotectant and 42.2 mM calcium chloride as a clot activator were solubilized in PRP. Gravimetric measurements and molecular/cellular imaging studies revealed that clot retraction is inhibited in CS-PRP hybrid clots through physical coating of platelets, blood cells and fibrin strands by chitosan, which interferes with platelet aggregation and platelet-mediated clot retraction. Flow cytometry and ELISA assays revealed that platelets are activated and granules secreted in CS-PRP hybrid clots and that cumulative release of platelet-derived growth factor (PDGF-AB) and epidermal growth factor is higher from CS-PRP hybrid clots compared to PRP clots in vitro. Finally, CS-PRP implants resided for up to 6 weeks in a subcutaneous implantation model and induced cell recruitment and granulation tissue synthesis, confirming greater residency and bioactivity compared to PRP in vivo.

  4. Equid herpesvirus type 1 activates platelets.

    Directory of Open Access Journals (Sweden)

    Tracy Stokol

    Full Text Available Equid herpesvirus type 1 (EHV-1 causes outbreaks of abortion and neurological disease in horses. One of the main causes of these clinical syndromes is thrombosis in placental and spinal cord vessels, however the mechanism for thrombus formation is unknown. Platelets form part of the thrombus and amplify and propagate thrombin generation. Here, we tested the hypothesis that EHV-1 activates platelets. We found that two EHV-1 strains, RacL11 and Ab4 at 0.5 or higher plaque forming unit/cell, activate platelets within 10 minutes, causing α-granule secretion (surface P-selectin expression and platelet microvesiculation (increased small events double positive for CD41 and Annexin V. Microvesiculation was more pronounced with the RacL11 strain. Virus-induced P-selectin expression required plasma and 1.0 mM exogenous calcium. P-selectin expression was abolished and microvesiculation was significantly reduced in factor VII- or X-deficient human plasma. Both P-selectin expression and microvesiculation were re-established in factor VII-deficient human plasma with added purified human factor VIIa (1 nM. A glycoprotein C-deficient mutant of the Ab4 strain activated platelets as effectively as non-mutated Ab4. P-selectin expression was abolished and microvesiculation was significantly reduced by preincubation of virus with a goat polyclonal anti-rabbit tissue factor antibody. Infectious virus could be retrieved from washed EHV-1-exposed platelets, suggesting a direct platelet-virus interaction. Our results indicate that EHV-1 activates equine platelets and that α-granule secretion is a consequence of virus-associated tissue factor triggering factor X activation and thrombin generation. Microvesiculation was only partly tissue factor and thrombin-dependent, suggesting the virus causes microvesiculation through other mechanisms, potentially through direct binding. These findings suggest that EHV-1-induced platelet activation could contribute to the thrombosis

  5. A Switch in the Dynamics of Intra-Platelet VEGF-A from Cancer to the Later Phase of Liver Regeneration after Partial Hepatectomy in Humans.

    Directory of Open Access Journals (Sweden)

    Bibek Aryal

    Full Text Available Liver regeneration (LR involves an early inductive phase characterized by the proliferation of hepatocytes, and a delayed angiogenic phase distinguished by the expansion of non-parenchymal compartment. The interest in understanding the mechanism of LR has lately shifted from the proliferation and growth of parenchymal cells to vascular remodeling during LR. Angiogenesis accompanied by LR exerts a pivotal role to accomplish the process. Vascular endothelial growth factor (VEGF has been elucidated as the most dynamic regulator of angiogenesis. From this perspective, platelet derived/Intra-platelet (IP VEGF-A should be associated with LR.Thirty-seven patients diagnosed with hepatocellular carcinoma and undergoing partial hepatectomy (PH were enrolled in the study. Serum and IP VEGF-A was monitored preoperatively and at four weeks of PH. Liver volumetry was determined on computer models derived from computed tomography (CT scan.Serum and IP VEGF-A was significantly elevated at four weeks of PH. Preoperative IP VEGF-A was higher in patients with advanced cancer and vascular invasion. Postoperative IP VEGF-A was higher after major liver resection. There was a statistically significant correlation between postoperative IP VEGF-A and the future remnant liver volume. Moreover, the soluble vascular endothelial growth factor receptor-1 (sVEGFR1 was distinctly down-regulated suggesting a fine-tuned angiogenesis at the later phase of LR.IP VEGF-A is overexpressed during later phase of LR suggesting its implications in inducing angiogenesis during LR.

  6. Epidermal growth factor receptor inhibition reduces angiogenesis via hypoxia-inducible factor-1α and Notch1 in head neck squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Wei-Ming Wang

    Full Text Available Angiogenesis, a marker of cancer development, affects response to radiotherapy sensibility. This preclinical study aims to understand the receptor tyrosine kinase-mediated angiogenesis in head neck squamous cell carcinoma (HNSCC. The receptor tyrosine kinase activity in a transgenic mouse model of HNSCC was assessed. The anti-tumorigenetic and anti-angiogenetic effects of cetuximab-induced epidermal growth factor receptor (EGFR inhibition were investigated in xenograft and transgenic mouse models of HNSCC. The signaling transduction of Notch1 and hypoxia-inducible factor-1α (HIF-1α was also analyzed. EGFR was overexpressed and activated in the Tgfbr1/Pten deletion (2cKO mouse model of HNSCC. Cetuximab significantly delayed tumor onset by reducing tumor angiogenesis. This drug exerted similar effects on heterotopic xenograft tumors. In the human HNSCC tissue array, increased EGFR expression correlated with increased HIF-1α and micro vessel density. Cetuximab inhibited tumor-induced angiogenesis in vitro and in vivo by significantly downregulating HIF-1α and Notch1. EGFR is involved in the tumor angiogenesis of HNSCC via the HIF-1α and Notch1 pathways. Therefore, targeting EGFR by suppressing hypoxia- and Notch-induced angiogenesis may benefit HNSCC therapy.

  7. Effect of ionizing radiation on platelet function in vitro

    International Nuclear Information System (INIS)

    Kalovidouris, A.E.; Papayannis, A.G.

    1981-01-01

    The effect of ionizing radiation on platelet function was investigated in vitro. Platelet-rich plasma (300x10 9 /l) was irradiated with doses of 1, 4, 10, 20 and 50 Gy. Platelet function tests were performed on both irradiated and control (non-irradiated) platelet samples. The platelet function tests were (1) platelet aggregation by ADP (1, 2, 4 μmol final concentration), adrenaline and collagen, (2) ADP-release from platelets, (3) clot retraction and (4) platelet factor-3 availability. It was found that roentgen irradiation of platelets in vitro did not affect these platelet function tests. (Auth.)

  8. Conversion of 1-alkyl-2-acetyl-sn-glycerols to platelet activating factor and related phospholipids by rabbit platelets

    International Nuclear Information System (INIS)

    Blank, M.L.; Lee, T.; Cress, E.A.; Malone, B.; Fitzgerald, V.; Snyder, F.

    1984-01-01

    The metabolic pathway for 1-alkyl-2-acetyl-sn-glycerols, a recently discovered biologically active neutral lipid class, was elucidated in experiments conducted with rabbit platelets. The total lipid extract obtained from platelets incubated with 1-[1-,2- 3 H]alkyl-2-acetyl-sn-glycerols or 1-alkyl-2-[ 3 H]acetyl-sn-glycerols contained at least six metabolic products. The six metabolites, identified on the basis of chemical and enzymatic reactions combined with thin-layer or high-performance liquid chromatographic analyses, corresponded to 1-alkyl-sn-glycerols, 1-alkyl-2-acetyl-sn-glycero-3-phosphates, 1-alkyl-2-acyl(long-chain)-sn-glycero-3-phosphoethanolamines, 1-alkyl-2-acetyl-sn-glycero-3-phosphoethanolamines, 1-alkyl-2-acyl(long-chain)-sn-glycero-3-phosphocholines, and 1-alkyl-2-actyl-sn-glycero-3-phosphocholines (platelet activating factor). These results indicate that the metabolic pathway for alkylacetylglycerols involves reaction steps catalyzed by the following enzymatic activities: choline- and ethanolamine- phosphotransferases, acetyl-hydrolase, an acyltransferase, and a phosphotransferase. The step responsible for the biosynthesis of platelet activating factor would appear to be the most important reaction in this pathway and this product could explain the hypotensive activities previously described for alkylacetyl-(or propionyl)-glycerols. Of particular interest was the preference exhibited for the utilization of the 1-hexadecyl-2-acetyl-sn-glycerol species in the formation of platelet activating factor

  9. Involvement of nuclear factor {kappa}B in platelet CD40 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Hachem, Ahmed [Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, 5000 Belanger, Montreal, Quebec, Canada H1T 1C8 (Canada); Yacoub, Daniel [Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, 5000 Belanger, Montreal, Quebec, Canada H1T 1C8 (Canada); Centre Hospitalier Universite de Montreal, 264 boul. Rene-Levesque est, Montreal, Quebec, Canada H2X 1P1 (Canada); Zaid, Younes [Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, 5000 Belanger, Montreal, Quebec, Canada H1T 1C8 (Canada); Mourad, Walid [Universite de Montreal, Department of Medicine, 2900 boul. Edouard-Montpetit, Montreal, Quebec, Canada H3T 1J4 (Canada); Centre Hospitalier Universite de Montreal, 264 boul. Rene-Levesque est, Montreal, Quebec, Canada H2X 1P1 (Canada); Merhi, Yahye, E-mail: yahye.merhi@icm-mhi.org [Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, 5000 Belanger, Montreal, Quebec, Canada H1T 1C8 (Canada); Universite de Montreal, Department of Medicine, 2900 boul. Edouard-Montpetit, Montreal, Quebec, Canada H3T 1J4 (Canada)

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer sCD40L induces TRAF2 association to CD40 and NF-{kappa}B activation in platelets. Black-Right-Pointing-Pointer I{kappa}B{alpha} phosphorylation downstream of CD40L/CD40 signaling is independent of p38 MAPK phosphorylation. Black-Right-Pointing-Pointer I{kappa}B{alpha} is required for sCD40L-induced platelet activation and potentiation of aggregation. -- Abstract: CD40 ligand (CD40L) is a thrombo-inflammatory molecule that predicts cardiovascular events. Platelets constitute the major source of soluble CD40L (sCD40L), which has been shown to potentiate platelet activation and aggregation, in a CD40-dependent manner, via p38 mitogen activated protein kinase (MAPK) and Rac1 signaling. In many cells, the CD40L/CD40 dyad also induces activation of nuclear factor kappa B (NF-{kappa}B). Given that platelets contain NF-{kappa}B, we hypothesized that it may be involved in platelet CD40 signaling and function. In human platelets, sCD40L induces association of CD40 with its adaptor protein the tumor necrosis factor receptor associated factor 2 and triggers phosphorylation of I{kappa}B{alpha}, which are abolished by CD40L blockade. Inhibition of I{kappa}B{alpha} phosphorylation reverses sCD40L-induced I{kappa}B{alpha} phosphorylation without affecting p38 MAPK phosphorylation. On the other hand, inhibition of p38 MAPK phosphorylation has no effect on I{kappa}B{alpha} phosphorylation, indicating a divergence in the signaling pathway originating from CD40 upon its ligation. In functional studies, inhibition of I{kappa}B{alpha} phosphorylation reverses sCD40L-induced platelet activation and potentiation of platelet aggregation in response to a sub-threshold concentration of collagen. This study demonstrates that the sCD40L/CD40 axis triggers NF-{kappa}B activation in platelets. This signaling pathway plays a critical role in platelet activation and aggregation upon sCD40L stimulation and may represent an important target against thrombo

  10. Hypoxia, hypoxia-inducible transcription factor, and macrophages in human atherosclerotic plaques are correlated with intraplaque angiogenesis

    NARCIS (Netherlands)

    Sluimer, Judith C.; Gasc, Jean-Marie; van Wanroij, Job L.; Kisters, Natasja; Groeneweg, Mathijs; Sollewijn Gelpke, Maarten D.; Cleutjens, Jack P.; van den Akker, Luc H.; Corvol, Pierre; Wouters, Bradly G.; Daemen, Mat J.; Bijnens, Ann-Pascale J.

    2008-01-01

    We sought to examine the presence of hypoxia in human carotid atherosclerosis and its association with hypoxia-inducible transcription factor (HIF) and intraplaque angiogenesis. Atherosclerotic plaques develop intraplaque angiogenesis, which is a typical feature of hypoxic tissue and expression of

  11. Regulation of angiogenesis in human skeletal muscle with specific focus on pro- angiogenic and angiostatic factors

    DEFF Research Database (Denmark)

    Høier, Birgitte

    It is well established that acute exercise promotes an angiogenic response and that a period of exercise training results in capillary growth. Skeletal muscle angiogenesis is a complex process that requires a coordinated interplay of multiple factors and compounds to ensure proper vascular function....... The angiogenic process is initiated through changes in mechanical and/or metabolic factors during exercise and when exercise is repeated these stimuli may result in capillary growth if needed. The present PhD thesis is based on six studies in which the regulation of angiogenesis in skeletal muscle...... was studied in peripheral arterial disease. Vascular endothelial growth factor (VEGF) is the most important factor in exercise-induced angiogenesis and is located primarily in muscle cells but also in endothelial cells, pericytes, and in the extracellular matrix. VEGF protein secretion to the interstitium...

  12. Enhanced angiogenesis and osteogenesis in critical bone defects by the controlled release of BMP-2 and VEGF: implantation of electron beam melting-fabricated porous Ti6Al4V scaffolds incorporating growth factor-doped fibrin glue

    International Nuclear Information System (INIS)

    Lv, Jia; Xiu, Peng; Tan, Jie; Cai, Hong; Liu, Zhongjun; Jia, Zhaojun

    2015-01-01

    Electron beam melting (EBM)-fabricated porous titanium implants possessing low elastic moduli and tailored structures are promising biomaterials for orthopedic applications. However, the bio-inert nature of porous titanium makes reinforcement with growth factors (GFs) a promising method to enhance implant in vivo performance. Bone-morphogenic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) are key factors of angiogenesis and osteogenesis. Therefore, the present study is aimed at evaluating EBM-fabricated porous titanium implants incorporating GF-doped fibrin glue (FG) as composite scaffolds providing GFs for improvement of angiogenesis and osteogenesis in rabbit femoral condyle defects. BMP-2 and VEGF were added into the constituent compounds of FG, and then this GF-doped FG was subsequently injected into the porous scaffolds. In five groups of implants, angiogenesis and osteogenesis were evaluated at 4 weeks post-implantation using Microfil perfusion and histological analysis: eTi (empty scaffolds), cTi (containing undoped FG), BMP/cTi (containing 50 μg rhBMP-2), VEGF/cTi (containing 0.5 μg VEGF) and Dual/cTi (containing 50 μg rhBMP-2 and 0.5 μg VEGF). The results demonstrate that these composite implants are biocompatible and provide the desired gradual release of the bioactive growth factors. Incorporation of GF delivery, whether a single factor or dual factors, significantly enhanced both angiogenesis and osteogenesis inside the porous scaffolds. However, the synergistic effect of the dual factors combination was observable on angiogenesis but absent on osteogenesis. In conclusion, fibrin glue is a biocompatible material that could be employed as a delivery vehicle in EBM-fabricated porous titanium for controlled release of BMP-2 and VEGF. Application of this method for loading a porous titanium scaffold to incorporate growth factors is a convenient and promising strategy for improving osteogenesis of critical-sized bone defects

  13. Platelet Proteome and Tumor Dormancy: Can Platelets Content Serve as Predictive Biomarkers for Exit of Tumors from Dormancy?

    Energy Technology Data Exchange (ETDEWEB)

    Almog, Nava, E-mail: nava.almog@tufts.edu; Klement, Giannoula Lakka, E-mail: nava.almog@tufts.edu [Center of Cancer Systems Biology, Caritas St. Elizabeth' s Medical Center, Tufts University School of Medicine, Boston, MA (United States)

    2010-05-11

    Although tumor dormancy is highly prevalent, the underling mechanisms are still mostly unknown. It is unclear which lesions will progress and become a disseminated cancer, and which will remain dormant and asymptomatic. Yet, an improved ability to predict progression would open the possibility of timely treatment and improvement in outcomes. We have recently described the ability of platelets to selectively uptake angiogenesis regulators very early in tumor growth, and proposed their use as an early marker of malignancy. In this review we will summarize current knowledge about these processes and will discuss the possibility of using platelet content to predict presence of occult tumors.

  14. Do methodological differences account for the current controversy on tissue factor expression in platelets?

    Science.gov (United States)

    Brambilla, Marta; Rossetti, Laura; Zara, Chiara; Canzano, Paola; Giesen, Peter L A; Tremoli, Elena; Camera, Marina

    2018-06-01

    Tissue factor (TF), the key activator of the blood coagulation cascade and of thrombus formation, is also expressed by circulating human platelets. Despite the documented in-depth characterization of platelet TF carried out in the past 15 years, some authors still fail to identify TF in platelets, especially when assessment in platelet-rich plasma (PRP) or washed platelets is carried out. This study aims to extend the characterization of the subset of TF-positive platelets in PRP from healthy subjects and to verify how different centrifugation forces, used to prepare the PRP, could affect the analysis of TF-positive platelets. Data indicate that large-size platelets express significantly higher amount of TF compared to small-size cells, in terms of both TF protein and TF mRNA. Upon stimulation, large platelets readily expose on the cell membrane TF, which is functionally active, i.e., able to generate factor Xa (FXa) as well as thrombin. By contrast, TF activity in small platelets is almost completely quenched by tissue factor pathway inhibitor (TFPI), becoming indeed detectable only after treatment with an anti-TFPI antibody. Our data highlight that particular attention must be paid to the preparation and collection of the PRP since such preanalytical variables may influence the platelet recovery and in turn affect subsequent analysis, whether it is flow cytometry, functional activity tests, proteome, or transcriptome analysis. Indeed, the TF-positive subset of large platelets can easily be lost if centrifugation protocols are not optimized, thus erroneously leading to a false-negative result.

  15. Growth factor and proteinase profile of Vivostat® platelet-rich fibrin linked to tissue repair.

    Science.gov (United States)

    Agren, M S; Rasmussen, K; Pakkenberg, B; Jørgensen, B

    2014-07-01

    Autologous platelet-rich fibrin (PRF(®)) is prepared by the automatic Vivostat(®) system. Conflicting results with Vivostat PRF in acute wound healing prompted us to examine its cellular and biomolecular composition. Specifically, platelets, selected growth factors and matrix metalloproteinase (MMP)-9 were quantified using novel analytical methods. Ten healthy non-thrombocytopenic volunteers donated blood for generation of intermediate fibrin-I and final PRF. Anticoagulated whole blood and serum procured in parallel served as baseline controls. Leucocyte, erythrocyte and platelet counts in whole blood and fibrin-I were determined by automated haematology analyser. Platelet concentration in PRF was quantified manually by stereologic analysis of Giemsa-stained tissue sections, and the total content of five growth factors and MMP-9 by enzyme-linked immunosorbent assays. The number of leucocytes and erythrocytes was reduced (P platelets increased (P fibrin-I versus whole blood. PRF contained 982 ± 206 × 10(9) platelets/l representing 3·9-fold (P platelet-derived growth factor (PDGF)-AB [2·5-fold, P PDGF-BB [1·6-fold, P vascular endothelial growth factor > basic fibroblast growth factor [75-fold, P platelet enrichment and biomolecular constituents may guide clinicians in their optimal use of Vivostat PRF for tissue regenerative applications. © 2013 International Society of Blood Transfusion.

  16. Platelet-activating factor (PAF) receptor-binding antagonist activity of Malaysian medicinal plants.

    Science.gov (United States)

    Jantan, I; Rafi, I A A; Jalil, J

    2005-01-01

    Forty-nine methanol extracts of 37 species of Malaysian medicinal plants were investigated for their inhibitory effects on platelet-activating factor (PAF) binding to rabbit platelets, using 3H-PAF as a ligand. Among them, the extracts of six Zingiberaceae species (Alpinia galanga Swartz., Boesenbergia pandurata Roxb., Curcuma ochorrhiza Val., C. aeruginosa Roxb., Zingiber officinale Rosc. and Z. zerumbet Koenig.), two Cinnamomum species (C. altissimum Kosterm. and C. pubescens Kochummen.), Goniothalamus malayanus Hook. f. Momordica charantia Linn. and Piper aduncum L. are potential sources of new PAF antagonists, as they showed significant inhibitory effects with IC50 values ranging from 1.2 to 18.4 microg ml(-1).

  17. Multiple native-like conformations trapped via self-association-induced hydrophobic collapse of the 33-residue beta-sheet domain from platelet factor 4.

    OpenAIRE

    Ilyina, E; Mayo, K H

    1995-01-01

    Native platelet factor 4 (PF4) (70 residues) has a hydrophobic three-stranded anti-parallel beta-sheet domain on to which is folded an amphipathic C-terminal alpha-helix and an aperiodic N-terminal domain. The 33-amino acid beta-sheet domain from PF4 (residues 23-55) has been synthesized and studied by c.d. and n.m.r. At 10 degrees C and low concentration, peptide 23-55 appears to exist in aqueous solution in a random-coil distribution of highly flexible conformational states. Some preferred ...

  18. The SDF-1–CXCR4 signaling pathway: a molecular hub modulating neo-angiogenesis

    Science.gov (United States)

    Petit, Isabelle; Jin, David; Rafii, Shahin

    2010-01-01

    Pro-angiogenic bone marrow (BM) cells include subsets of hematopoietic cells that provide vascular support and endothelial progenitor cells (EPCs), which under certain permissive conditions could differentiate into functional vascular cells. Recent evidence demonstrates that the chemokine stromal-cell derived factor-1 (SDF-1, also known as CXCL12) has a major role in the recruitment and retention of CXCR4+ BM cells to the neo-angiogenic niches supporting revascularization of ischemic tissue and tumor growth. However, the precise mechanism by which activation of CXCR4 modulates neo-angiogenesis is not clear. SDF-1 not only promotes revascularization by engaging with CXCR4 expressed on the vascular cells but also supports mobilization of pro-angiogenic CXCR4+VEGFR1+ hematopoietic cells, thereby accelerating revascularization of ischemic organs. Here, we attempt to define the multiple functions of the SDF-1–CXCR4 signaling pathway in the regulation of neo-vascularization during acute ischemia and tumor growth. In particular, we introduce the concept that, by modulating plasma SDF-1 levels, the CXCR4 antagonist AMD3100 acutely promotes, while chronic AMD3100 treatment inhibits, mobilization of pro-angiogenic cells. We will also discuss strategies to modulate the mobilization of essential subsets of BM cells that participate in neo-angiogenesis, setting up the stage for enhancing revascularization or targeting tumor vessels by exploiting CXCR4 agonists and antagonists, respectively. PMID:17560169

  19. Pharmacological modulation of human platelet leukotriene C4-synthase.

    Science.gov (United States)

    Sala, A; Folco, G; Henson, P M; Murphy, R C

    1997-03-21

    The aim of this study was to test if human platelet leukotriene C4-synthase (LTC4-S) is pharmacologically different from cloned and expressed LTC4-S and, in light of the significant homologies between 5-lipoxygenase activating protein (FLAP) and LTC4-S, if different potencies of leukotriene synthesis inhibitors acting through binding with FLAP (FLAP inhibitors) reflect in different potencies as LTC4-S inhibitors. Leukotriene C4 (LTC4) synthesis by washed human platelets supplemented with synthetic leukotriene A4 (LTA4) was studied in the absence and presence of two different, structurally unrelated FLAP inhibitors (MK-886 and BAY-X1005) as well as a direct 5-lipoxygenase inhibitor (zileuton). LTC4 production was analyzed by RP-HPLC coupled to diode array detection. We report that human platelet LTC4-S was inhibited by MK-886 and BAY-X1005 (IC50 of 4.7 microM and 91.2 microM, respectively), but not by zileuton (inactive up to 300 microM); all 3 compounds were able to inhibit 5-lipoxygenase metabolite biosynthesis in intact human polymorphonuclear leukocytes (IC50 of 0.044 microM, 0.85 microM, and 1.5 microM, respectively). Platelet LTC4-S does not appear pharmacologically different from expression cloned LTC4-S. LTC4-S inhibition by FLAP inhibitors is in agreement with the significant homology reported for expression-cloned LTC4-S with FLAP, Furthermore, functional homology of the binding sites for inhibitors on LTC4-S and FLAP is suggested by the conservation of the relative potencies of MK-886 and BAY-X1005 vs FLAP-dependent 5-lipoxygenase activity and LTC4-S inhibition: MK-886 was 19.3-fold more potent than BAY-X1005 as FLAP inhibitor and 19.6-fold more potent than BAY-X1005 as LTC4-S inhibitor.

  20. Folate Deficiency Could Restrain Decidual Angiogenesis in Pregnant Mice

    Directory of Open Access Journals (Sweden)

    Yanli Li

    2015-08-01

    Full Text Available The mechanism of birth defects induced by folate deficiency was focused on mainly in fetal development. Little is known about the effect of folate deficiency on the maternal uterus, especially on decidual angiogenesis after implantation which establishes vessel networks to support embryo development. The aim of this study was to investigate the effects of folate deficiency on decidual angiogenesis. Serum folate levels were measured by electrochemiluminescence. The status of decidual angiogenesis was examined by cluster designation 34 (CD34 immunohistochemistry and the expression of angiogenic factors, including vascular endothelial growth factor A (VEGFA, placental growth factor (PLGF, and VEGF receptor 2 (VEGFR2 were also tested. Serum levels of homocysteine (Hcy, follicle stimulating hormone (FSH, luteinizing hormone (LH, prolactin (PRL, progesterone (P4, and estradiol (E2 were detected by Enzyme-linked immunosorbent assay. The folate-deficient mice had a lower folate level and a higher Hcy level. Folate deficiency restrained decidual angiogenesis with significant abnormalities in vascular density and the enlargement and elongation of the vascular sinus. It also showed a reduction in the expressions of VEGFA, VEGFR2, and PLGF. In addition, the serum levels of P4, E2, LH, and PRL were reduced in folate-deficient mice, and the expression of progesterone receptor (PR and estrogen receptor α (ERα were abnormal. These results indicated that folate deficiency could impaire decidual angiogenesis and it may be related to the vasculotoxic properties of Hcy and the imbalance of the reproductive hormone.

  1. [Platelet function in acute myeloid leukemia. II. Aggregation of isolated platelets].

    Science.gov (United States)

    Zawilska, K; Komarnicki, M; Mańka, B

    1978-01-01

    In 22 patients with acute myeloid leukaemia (17 cases of myeloblastic leukaemia, 4 cases of myelomonocytic leukaemia and 1 case of undifferentiated-cell leukaemia) platelets were isolated from the plasma by the method of Nicholls and Hampton as modified by Levy-Toledano by centrifugation in albumin gradient. The aim of platelet isolation was their "concentration" in cases of thrombocytopenia to values making possible aggregation tests, and platelet separation from the influence of plasma factors. Then aggregation of isolated platelets caused by ADP was studied. In 16 out of 22 patients a fall of aggregation was observed, with the mean values of aggregation rate and intensity were significantly lower. Parallelly done determinations of aggregating activity released from the platelets by thrombin showed lower values as compared with platelets from healthy subjects. In might be thought, in this connection, that the demonstrated reduction of isolated platelets is associated with a diminution of the nucleotide pool or disturbances of the platelet release reaction. The disturbances of the platelet release reaction. The disturbances of aggregation of isolated platelets and reduction of the aggregating activity were most pronounced in acute myelomonocytic leukaemia.

  2. Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes

    Science.gov (United States)

    Jin, David K; Shido, Koji; Kopp, Hans-Georg; Petit, Isabelle; Shmelkov, Sergey V; Young, Lauren M; Hooper, Andrea T; Amano, Hideki; Avecilla, Scott T; Heissig, Beate; Hattori, Koichi; Zhang, Fan; Hicklin, Daniel J; Wu, Yan; Zhu, Zhenping; Dunn, Ashley; Salari, Hassan; Werb, Zena; Hackett, Neil R; Crystal, Ronald G; Lyden, David; Rafii, Shahin

    2009-01-01

    The mechanisms through which hematopoietic cytokines accelerate revascularization are unknown. Here, we show that the magnitude of cytokine-mediated release of SDF-1 from platelets and the recruitment of nonendothelial CXCR4+VEGFR1+ hematopoietic progenitors, ‘hemangiocytes,’ constitute the major determinant of revascularization. Soluble Kit-ligand (sKitL), thrombopoietin (TPO, encoded by Thpo) and, to a lesser extent, erythropoietin (EPO) and granulocyte-macrophage colony-stimulating factor (GM-CSF) induced the release of SDF-1 from platelets, enhancing neovascularization through mobilization of CXCR4+VEGFR1+ hemangiocytes. Although revascularization of ischemic hindlimbs was partially diminished in mice deficient in both GM-CSF and G-CSF (Csf2−/−Csf3−/−), profound impairment in neovascularization was detected in sKitL-deficient Mmp9−/− as well as thrombocytopenic Thpo−/− and TPO receptor–deficient (Mpl−/−) mice. SDF-1–mediated mobilization and incorporation of hemangiocytes into ischemic limbs were impaired in Thpo−/−, Mpl−/− and Mmp9−/− mice. Transplantation of CXCR4+VEGFR1+ hemangiocytes into Mmp9−/− mice restored revascularization, whereas inhibition of CXCR4 abrogated cytokine- and VEGF-A–mediated mobilization of CXCR4+VEGFR1+ cells and suppressed angiogenesis. In conclusion, hematopoietic cytokines, through graded deployment of SDF-1 from platelets, support mobilization and recruitment of CXCR4+VEGFR1+ hemangiocytes, whereas VEGFR1 is essential for their angiogenic competency for augmenting revascularization. Delivery of SDF-1 may be effective in restoring angiogenesis in individuals with vasculopathies. PMID:16648859

  3. Immunohistochemical Analysis of Platelet Extract Effects on Liver Injury Induced by CCl4 in Male Rats

    OpenAIRE

    Zahra Hesami; Maryam Ayatollahi; Bita Geramizadeh; Akram Jamshidzadeh; Akbar Vahdati

    2016-01-01

    Backgrounds & objectives: Liver damage results in a large accumulation of external cellular matrix that affects the function of this important body organ in a long term and finally stops its function completely. The growth factors existing in platelet extract are more cost-effective, available, and stable than recombinant ones. To determine whether the platelet extract effects on histological changes in liver injury induced by carbon tetrachloride (CCl4), we used immunohistochemical analysis ...

  4. Infiltration of plasma rich in growth factors enhances in vivo angiogenesis and improves reperfusion and tissue remodeling after severe hind limb ischemia.

    Science.gov (United States)

    Anitua, Eduardo; Pelacho, Beatriz; Prado, Roberto; Aguirre, José Javier; Sánchez, Mikel; Padilla, Sabino; Aranguren, Xabier L; Abizanda, Gloria; Collantes, María; Hernandez, Milagros; Perez-Ruiz, Ana; Peñuelas, Ivan; Orive, Gorka; Prosper, Felipe

    2015-03-28

    PRGF is a platelet concentrate within a plasma suspension that forms an in situ-generated fibrin-matrix delivery system, releasing multiple growth factors and other bioactive molecules that play key roles in tissue regeneration. This study was aimed at exploring the angiogenic and myogenic effects of PRGF on in vitro endothelial cells (HUVEC) and skeletal myoblasts (hSkMb) as well as on in vivo mouse subcutaneously implanted matrigel and on limb muscles after a severe ischemia. Human PRGF was prepared and characterized. Both proliferative and anti-apoptotic responses to PRGF were assessed in vitro in HUVEC and hSkMb. In vivo murine matrigel plug assay was conducted to determine the angiogenic capacity of PRGF, whereas in vivo ischemic hind limb model was carried out to demonstrate PRGF-driven vascular and myogenic regeneration. Primary HUVEC and hSkMb incubated with PRGF showed a dose dependent proliferative and anti-apoptotic effect and the PRGF matrigel plugs triggered an early and significant sustained angiogenesis compared with the control group. Moreover, mice treated with PRGF intramuscular infiltrations displayed a substantial reperfusion enhancement at day 28 associated with a fibrotic tissue reduction. These findings suggest that PRGF-induced angiogenesis is functionally effective at expanding the perfusion capacity of the new vasculature and attenuating the endogenous tissue fibrosis after a severe-induced skeletal muscle ischemia. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Comparative Studies of Vertebrate Platelet Glycoprotein 4 (CD36

    Directory of Open Access Journals (Sweden)

    Roger S. Holmes

    2012-09-01

    Full Text Available Platelet glycoprotein 4 (CD36 (or fatty acyl translocase [FAT], or scavenger receptor class B, member 3 [SCARB3] is an essential cell surface and skeletal muscle outer mitochondrial membrane glycoprotein involved in multiple functions in the body. CD36 serves as a ligand receptor of thrombospondin, long chain fatty acids, oxidized low density lipoproteins (LDLs and malaria-infected erythrocytes. CD36 also influences various diseases, including angiogenesis, thrombosis, atherosclerosis, malaria, diabetes, steatosis, dementia and obesity. Genetic deficiency of this protein results in significant changes in fatty acid and oxidized lipid uptake. Comparative CD36 amino acid sequences and structures and CD36 gene locations were examined using data from several vertebrate genome projects. Vertebrate CD36 sequences shared 53–100% identity as compared with 29–32% sequence identities with other CD36-like superfamily members, SCARB1 and SCARB2. At least eight vertebrate CD36 N-glycosylation sites were conserved which are required for membrane integration. Sequence alignments, key amino acid residues and predicted secondary structures were also studied. Three CD36 domains were identified including cytoplasmic, transmembrane and exoplasmic sequences. Conserved sequences included N- and C-terminal transmembrane glycines; and exoplasmic cysteine disulphide residues; TSP-1 and PE binding sites, Thr92 and His242, respectively; 17 conserved proline and 14 glycine residues, which may participate in forming CD36 ‘short loops’; and basic amino acid residues, and may contribute to fatty acid and thrombospondin binding. Vertebrate CD36 genes usually contained 12 coding exons. The human CD36 gene contained transcription factor binding sites (including PPARG and PPARA contributing to a high gene expression level (6.6 times average. Phylogenetic analyses examined the relationships and potential evolutionary origins of the vertebrate CD36 gene with vertebrate

  6. Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine

    Directory of Open Access Journals (Sweden)

    Mikaël M Martino

    2015-04-01

    Full Text Available Blood vessel growth plays a key role in regenerative medicine, both to restore blood supply to ischemic tissues and to ensure rapid vascularization of clinical-size tissue-engineered grafts. For example, vascular endothelial growth factor (VEGF is the master regulator of physiological blood vessel growth and is one of the main molecular targets of therapeutic angiogenesis approaches. However, angiogenesis is a complex process and there is a need to develop rational therapeutic strategies based on a firm understanding of basic vascular biology principles, as evidenced by the disappointing results of initial clinical trials of angiogenic factor delivery. In particular, the spatial localization of angiogenic signals in the extracellular matrix is crucial to ensure the proper assembly and maturation of new vascular structures. Here we discuss the therapeutic implications of matrix interactions of angiogenic factors, with a special emphasis on VEGF, as well as provide an overview of current approaches, based on protein and biomaterial engineering that mimic the regulatory functions of extracellular matrix to optimize the signaling microenvironment of vascular growth factors.

  7. Quantitative description of thermodynamic and kinetic properties of the platelet factor 4/heparin bonds

    Science.gov (United States)

    Nguyen, Thi-Huong; Greinacher, Andreas; Delcea, Mihaela

    2015-05-01

    Heparin is the most important antithrombotic drug in hospitals. It binds to the endogenous tetrameric protein platelet factor 4 (PF4) forming PF4/heparin complexes which may cause a severe immune-mediated adverse drug reaction, so-called heparin-induced thrombocytopenia (HIT). Although new heparin drugs have been synthesized to reduce such a risk, detailed bond dynamics of the PF4/heparin complexes have not been clearly understood. In this study, single molecule force spectroscopy (SMFS) is utilized to characterize the interaction of PF4 with heparins of defined length (5-, 6-, 8-, 12-, and 16-mers). Analysis of the force-distance curves shows that PF4/heparin binding strength rises with increasing heparin length. In addition, two binding pathways in the PF4/short heparins (=8-mers) are identified. We provide a model for the PF4/heparin complexes in which short heparins bind to one PF4 tetramer, while long heparins bind to two PF4 tetramers. We propose that the interaction between long heparins and PF4s is not only due to charge differences as generally assumed, but also due to hydrophobic interaction between two PF4s which are brought close to each other by long heparin. This complicated interaction induces PF4/heparin complexes more stable than other ligand-receptor interactions. Our results also reveal that the boundary between antigenic and non-antigenic heparins is between 8- and 12-mers. These observations are particularly important to understand processes in which PF4-heparin interactions are involved and to develop new heparin-derived drugs.Heparin is the most important antithrombotic drug in hospitals. It binds to the endogenous tetrameric protein platelet factor 4 (PF4) forming PF4/heparin complexes which may cause a severe immune-mediated adverse drug reaction, so-called heparin-induced thrombocytopenia (HIT). Although new heparin drugs have been synthesized to reduce such a risk, detailed bond dynamics of the PF4/heparin complexes have not been clearly

  8. Comparison of point-of-care methods for preparation of platelet concentrate (platelet-rich plasma).

    Science.gov (United States)

    Weibrich, Gernot; Kleis, Wilfried K G; Streckbein, Philipp; Moergel, Maximilian; Hitzler, Walter E; Hafner, Gerd

    2012-01-01

    This study analyzed the concentrations of platelets and growth factors in platelet-rich plasma (PRP), which are likely to depend on the method used for its production. The cellular composition and growth factor content of platelet concentrates (platelet-rich plasma) produced by six different procedures were quantitatively analyzed and compared. Platelet and leukocyte counts were determined on an automatic cell counter, and analysis of growth factors was performed using enzyme-linked immunosorbent assay. The principal differences between the analyzed PRP production methods (blood bank method of intermittent flow centrifuge system/platelet apheresis and by the five point-of-care methods) and the resulting platelet concentrates were evaluated with regard to resulting platelet, leukocyte, and growth factor levels. The platelet counts in both whole blood and PRP were generally higher in women than in men; no differences were observed with regard to age. Statistical analysis of platelet-derived growth factor AB (PDGF-AB) and transforming growth factor β1 (TGF-β1) showed no differences with regard to age or gender. Platelet counts and TGF-β1 concentration correlated closely, as did platelet counts and PDGF-AB levels. There were only rare correlations between leukocyte counts and PDGF-AB levels, but comparison of leukocyte counts and PDGF-AB levels demonstrated certain parallel tendencies. TGF-β1 levels derive in substantial part from platelets and emphasize the role of leukocytes, in addition to that of platelets, as a source of growth factors in PRP. All methods of producing PRP showed high variability in platelet counts and growth factor levels. The highest growth factor levels were found in the PRP prepared using the Platelet Concentrate Collection System manufactured by Biomet 3i.

  9. A Mouse Model of the Cornea Pocket Assay for Angiogenesis Study

    Science.gov (United States)

    Tang, Zhongshu; Zhang, Fan; Li, Yang; Arjunan, Pachiappan; Kumar, Anil; Lee, Chunsik; Li, Xuri

    2011-01-01

    A normal cornea is clear of vascular tissues. However, blood vessels can be induced to grow and survive in the cornea when potent angiogenic factors are administered 1. This uniqueness has made the cornea pocket assay one of the most used models for angiogenesis studies. The cornea composes multiple layers of cells. It is therefore possible to embed a pellet containing the angiogenic factor of interest in the cornea to investigate its angiogenic effect 2,3. Here, we provide a step by step demonstration of how to (I) produce the angiogenic factor-containing pellet (II) embed the pellet into the cornea (III) analyze the angiogenesis induced by the angiogenic factor of interest. Since the basic fibroblast growth factor (bFGF) is known as one of the most potent angiogenic factors 4, it is used here to induce angiogenesis in the cornea. PMID:21876523

  10. Pharmacological inhibition of heparin-binding EGF-like growth factor promotes peritoneal angiogenesis in a peritoneal dialysis rat model.

    Science.gov (United States)

    Li, Zhenyuan; Yan, Hao; Yuan, Jiangzi; Cao, Liou; Lin, Aiwu; Dai, Huili; Ni, Zhaohui; Qian, Jiaqi; Fang, Wei

    2018-04-01

    Molecular mechanisms of peritoneal dialysis (PD) ultrafiltration failure, peritoneal neo-angiogenesis, and fibrosis remain to be determined. We aimed to determine the role of heparin-binding EGF-like growth factor (HB-EGF) inhibition on angiogenesis of peritoneal membrane in a PD rat model. 32 male Wistar rats were assigned into (1) control group; (2) uremic non-PD group: subtotal nephrectomy-induced uremic rats without PD; (3) uremic rats subjected to PD: uremic rats that were dialyzed with Dianeal ® for 4 weeks; (4) CRM 197 group: dialyzed uremic rats were supplemented with CRM197, a specific HB-EGF inhibitor. Peritoneal transport function was examined by peritoneal equilibration test. Expression of HB-EGF and EGFR in peritoneal samples were examined by real-time PCR, immunohistochemical staining, and western blot. Progressive angiogenesis and fibrosis were observed in uremic PD rats, and there were associated with decreased net ultrafiltration (nUF), increased permeability of peritoneal membrane, and reduced expression of HB-EGF and EGFR protein and mRNA in uremic PD rats compared to uremic non-PD or control groups (both p CRM197 significantly induced peritoneal membrane permeability, decreased nUF, increased higher vessel density, and reduced pericyte count compared to that of uremic PD rats. The levels of HB-EGF and EGFR expression negatively correlated with vessel density in peritoneal membrane (both p < 0.001). PD therapy was associated with peritoneal angiogenesis, functional deterioration, and downregulation of HB-EGF/EGFR. Pharmacological inhibition of HB-EGF promoted PD-induced peritoneal angiogenesis and fibrosis and ultrafiltration decline, suggesting that HB-EGF downregulation contributes to peritoneal functional deterioration in the uremic PD rat model.

  11. Platelet activation and inflammation markers as emerging risk ...

    African Journals Online (AJOL)

    Platelet activation and inflammation markers were assessed by measuring plasma levels of sP-selectin, platelet factor 4 (PF4), IL-6 and tumor necrosis factor alpha (TNF-α). Results: HIV infected patients had higher levels of sP- selectin, PF4 and IL-6 than uninfected controls (p<0.001). ART naïve subjects had higher levels ...

  12. Observations on human smooth muscle cell cultures from hyperplastic lesions of prosthetic bypass grafts: Production of a platelet-derived growth factor-like mitogen and expression of a gene for a platelet-derived growth factor receptor--a preliminary study

    International Nuclear Information System (INIS)

    Birinyi, L.K.; Warner, S.J.; Salomon, R.N.; Callow, A.D.; Libby, P.

    1989-01-01

    Prosthetic bypass grafts placed to the distal lower extremity often fail because of an occlusive tissue response in the perianastomotic region. The origin of the cells that comprise this occlusive lesion and the causes of the cellular proliferation are not known. To increase our understanding of this process we cultured cells from hyperplastic lesions obtained from patients at the time of reexploration for lower extremity graft failure, and we studied their identity and growth factor production in tissue culture. These cultures contain cells that express muscle-specific actin isoforms, shown by immunohistochemical staining, consistent with vascular smooth muscle origin. These cultures also released material that stimulated smooth muscle cell growth. A portion of this activity was similar to platelet-derived growth factor, since preincubation with antibody-to-human platelet-derived growth factor partially blocked the mitogenic effect of medium conditioned by human anastomotic hyperplastic cells. These conditioned media also contained material that competed with platelet-derived growth factor for its receptor, as measured in a radioreceptor assay. Northern blot analysis showed that these cells contain messenger RNA that encodes the A chain but not the B chain of platelet-derived growth factor. In addition, these cells contain messenger RNA that encodes a platelet-derived growth factor receptor. We conclude that cultured smooth muscle cells from human anastomotic hyperplastic lesions express genes for platelet-derived growth factor A chain and a platelet-derived growth factor receptor and secrete biologically active molecules similar to platelet-derived growth factor

  13. Platelet-collagen adhesion enhances platelet aggregation induced by binding of VWF to platelets

    International Nuclear Information System (INIS)

    Laduca, F.M.; Bell, W.R.; Bettigole, R.E.

    1987-01-01

    Ristocetin-induced platelet aggregation (RIPA) was evaluated in the presence of platelet-collagen adhesion. RIPA of normal donor platelet-rich plasma (PRP) demonstrated a primary wave of aggregation mediated by the binding of von Willebrand factor (VWF) to platelets and a secondary aggregation wave, due to a platelet-release reaction, initiated by VWF-platelet binding and inhibitable by acetylsalicylic acid (ASA). An enhanced RIPA was observed in PRP samples to which collagen had been previously added. These subthreshold concentrations of collagen, which by themselves were insufficient to induce aggregation, caused measurable platelet-collagen adhesion. Subthreshold collagen did not cause microplatelet aggregation, platelet release of [ 3 H]serotonin, or alter the dose-responsive binding of 125 I-labeled VWF to platelets, which occurred with increasing ristocetin concentrations. However, ASA inhibition of the platelet release reaction prevented collagen-enhanced RIPA. These results demonstrate that platelet-collagen adhesion altered the platelet-release reaction induced by the binding of VWF to platelets causing a platelet-release reaction at a level of VWF-platelet binding not normally initiating a secondary aggregation. These findings suggest that platelet-collagen adhesion enhances platelet function mediated by VWF

  14. Relationship between platelet phospholipid FA and mean platelet volume in healthy men.

    Science.gov (United States)

    Li, Duo; Turner, Alan; Sinclair, Andrew J

    2002-09-01

    Increased mean platelet volume (MPV) has been suggested as an independent risk factor for acute myocardial infarction and the increased reactivity of large platelets. The aim of this study was to investigate the correlation between platelet phospholipid (PL) PUFA composition and MPV in 139 free-living healthy men ages 20-55 yr (vegans, n = 18; ovolacto vegetarians, n = 43; moderate meat-eaters, n = 60; and high meateaters, n = 18). Each subject completed a semiquantitative Food Frequency Questionnaire and gave a blood sample. Platelet PL FA composition and MPV were determined by standard methods. MPV was significantly greater in the vegans than in the ovolacto vegetarian, moderate, or high meat-eater groups (P vegan and ovolacto vegetarian groups had significantly higher platelet PL 18:2n-6 and 22:4n-6, and lower 20:5n-3 and 22:6n-3 compared with the moderate and high meat-eater groups. The vegans demonstrated a significant reduction in 20:4n-6 and 22:5n-3 compared with the ovolacto vegetarian, high meat-eater, and moderate meat-eater groups. Bivariate analysis results showed that MPV was significantly positively correlated with platelet PL 18:2n-6 (P = 0.048) and negatively correlated with 20:3n-6 (P = 0.02), 20:5n-3 (P = 0.005), and 22:5n-3 (P< 0.0001), respectively. In a multiple linear regression analysis, after controlling for potential confounding factors such as dietary group, age, exercise, body mass index, and dietary polyunsaturated and saturated fat, cholesterol, carbohydrate, and fiber intake, the MPV was still strongly negatively correlated with platelet PL 20:3n-6 (P = 0.003) and 22:5n-3 (P = 0.001). The present data suggest that 22:5n-3 and 20:3n-6 may play a role in the structural function of the platelet membrane.

  15. Changes of platelet GMP-140 in diabetic nephropathy and its multi-factor regression analysis

    International Nuclear Information System (INIS)

    Wang Zizheng; Du Tongxin; Wang Shukui

    2001-01-01

    The relation of platelet GMP-140 and its related factors with diabetic nephropathy was studied. 144 patients of diabetic mellitus without nephropathy (group without DN, mean suffering duration of 25.5 +- 18.6 months); 80 with diabetic nephropathy (group DN, mean suffering duration of 58.7 +- 31.6 months) and 50 normal controls were chosen in the research. Platelet GMP-140, plasma α 1 -MG, β 2 -MG, and 24 hour urine albumin (ALB), IgG, α 1 -MG, β 2 -MG were detected by RIA, while HBA 1 C via chromatographic separation and FBG, PBG, Ch, TG, HDL, FG via biochemical methods. All the data had been processed with software on computer with t-test and linear regression, and multi-factor analysis were done also. The levels of platelet GMP-140, FG, DBP, TG, HBA 1 C and PBG in group DN were significantly higher than those of group without DN and normal control (P 0.05), while they were higher than those of normal controls. Multi-factor analysis of platelet GMP-140 with TG, DBP and HBA 1 C were performed in 80 patients with DN (P 1 C are the independent factors enhancing the activation of platelets. The disturbance of lipid metabolism in type II diabetic mellitus may also enhance the activation of platelets. Elevation of blood pressure may accelerate the initiation and deterioration of DN in which change of platelet GMP-140 is an independent factor. Elevation of HBA 1 C and blood glucose are related closely to the diabetic nephropathy

  16. Safety of recombinant human platelet-derived growth factor-BB in Augment® Bone Graft

    Directory of Open Access Journals (Sweden)

    Luis A Solchaga

    2012-12-01

    Full Text Available This article discusses nonclinical and clinical data regarding the safety of recombinant human platelet-derived growth factor-BB as a component of the Augment® Bone Graft (Augment. Augment is a bone graft substitute intended to be used as an alternative to autologous bone graft in the fusion of hindfoot and ankle joints. Nonclinical studies included assessment of the pharmacokinetic profile of intravenously administered recombinant human platelet-derived growth factor-BB in rat and dog, effects of intravenous administration of recombinant human platelet-derived growth factor-BB in a reproductive and development toxicity study in rats, and chronic toxicity and carcinogenicity of Augment in a 12-month implantation model. These studies showed that systemic exposure was brief and clearance was rapid. No signs of toxicity, carcinogenicity, or tumor promotion were observed even with doses far exceeding the maximum clinical dose. Results of clinical trials (605 participants and commercial use of recombinant human platelet-derived growth factor-BB containing products indicate that these products are not associated with increased incidence of adverse events or cancer. The safety data presented provide evidence that recombinant human platelet-derived growth factor-BB is a safe therapeutic when used in combination products as a single administration during surgical procedures for bone repair and fusion. There is no evidence associating use of recombinant human platelet-derived growth factor-BB in Augment with chronic toxicity, carcinogenicity, or tumor promotion.

  17. Acetylbritannilactone Modulates Vascular Endothelial Growth Factor Signaling and Regulates Angiogenesis in Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Jingshan Zhao

    Full Text Available The present study was conducted to determine the effects of 1-O-acetylbritannilactone (ABL, a compound extracted from Inula britannica L., on vascular endothelial growth factor (VEGF signaling and angiogenesis in endothelial cells (ECs. We showed that ABL promotes VEGF-induced cell proliferation, growth, migration, and tube formation in cultured human ECs. Furthermore, the modulatory effect of ABL on VEGF-induced Akt, MAPK p42/44, and p38 phosphorylation, as well as on upstream VEGFR-2 phosphorylation, were associated with VEGF-dependent Matrigel angiogenesis in vivo. In addition, animals treated with ABL (26 mg/kg/day recovered blood flow significantly earlier than control animals, suggesting that ABL affects ischemia-mediated angiogenesis and arteriogenesis in vivo. Finally, we demonstrated that ABL strongly reduced the levels of VEGFR-2 on the cell surface, enhanced VEGFR-2 endocytosis, which consistent with inhibited VE-cadherin, a negative regulator of VEGF signaling associated with VEGFR-2 complex formation, but did not alter VE-cadherin or VEGFR-2 expression in ECs. Our results suggest that ABL may serve as a novel therapeutic intervention for various cardiovascular diseases, including chronic ischemia, by regulating VEGF signaling and modulating angiogenesis.

  18. The Effects of Smoking on Platelet Count, Mean Platelet Volume and Cardiovascular Risk Factors: A Case-control Study

    Directory of Open Access Journals (Sweden)

    Ruhuşen Kutlu

    2017-12-01

    Full Text Available Aim: Smoking and cholesterol levels are two important components of atherosclerosis. Mean platelet volume (MPV is an indicator of platelet function and activation and a potential marker of cardiovascular disease. In this study, we aimed to investigate the effects of cigarette-smoking on platelet count, MPV and cardiovascular risk factors. Methods: This research was planned as a case-control study. Patients who attended our family medicine outpatient clinic were included in the study. Sociodemographic characteristics, smoking status, hematological and biochemical parameters of the patients were recorded. Results: The mean age of 880 patients who participated in the study was 35.85±11.6 years (17-77. 54.5% (n=480 of participants were smokers and 45.5% (n=400 were non-smokers. The number of smokers among working individuals was higher than in non-workers. The white blood cell, hemoglobin, hematocrit, red blood cell, mean corpuscular volume and MPV values in the smokers were higher than in the non-smokers, while platelet count was higher in non-smokers (p<0.001. There was a statistically significant relationship between MPV levels and the number of daily cigarette smoking among smokers (p=0.014. Conclusion: MPV levels in smokers were significantly higher than in non-smokers. Platelet count and MPV levels should be investigated in larger patient groups in terms of atherosclerosis and other defined cardiovascular risk factors. It is therefore should take its rightful place in clinical practice.

  19. A bioactive molecule in a complex wound healing process: platelet-derived growth factor.

    Science.gov (United States)

    Kaltalioglu, Kaan; Coskun-Cevher, Sule

    2015-08-01

    Wound healing is considered to be particularly important after surgical procedures, and the most important wounds related to surgical procedures are incisional, excisional, and punch wounds. Research is ongoing to identify methods to heal non-closed wounds or to accelerate wound healing; however, wound healing is a complex process that includes many biological and physiological events, and it is affected by various local and systemic factors, including diabetes mellitus, infection, ischemia, and aging. Different cell types (such as platelets, macrophages, and neutrophils) release growth factors during the healing process, and platelet-derived growth factor is a particularly important mediator in most stages of wound healing. This review explores the relationship between platelet-derived growth factor and wound healing. © 2014 The International Society of Dermatology.

  20. Effects of platelet-poor plasma, platelet-rich plasma, and platelet-rich fibrin on healing of extraction sockets with buccal dehiscence in dogs.

    Science.gov (United States)

    Hatakeyama, Ichiro; Marukawa, Eriko; Takahashi, Yukinobu; Omura, Ken

    2014-02-01

    Alveolar bone resorption generally occurs during healing after tooth extraction. This study aimed to evaluate the effects of platelet-poor plasma (PPP), platelet-rich plasma (PRP), and platelet-rich fibrin (PRF) on healing in a ridge-augmentation model of the canine socket with dehiscence of the buccal wall. The third mandibular premolars of 12 beagle dogs were extracted and a 3 mm buccal dehiscence from the alveolar crest to the buccal wall of the extraction socket was created. These sockets were then divided into four groups on the basis of the material used to fill the sockets: PPP, PRP, PRF, and control (no graft material) groups. Results were evaluated at 4 and 8 weeks after surgery. The ultrastructural morphology and constructs of each blood product were studied by a scanning electron microscope (SEM) or calculating concentrations of platelets, fibrinogen, platelet-derived growth factor, and transforming growth factor-β. A total of five microcomputed tomography images of specimens were selected for measurement, and the area occupied by the newly formed bone as well as the horizontal bone width were measured. Moreover, decalcified tissue specimens from each defect were analyzed histologically. The median area of new bone at 4 and 8 weeks and median horizontal bone width at 8 weeks were the highest in the PPP group. However, bone maturation in the PRF and the PRP groups was more progressed than that in the PPP and control groups. By SEM findings, the PRF group showed a more highly condensed fibrin fiber network that was regularly arranged when compared with the PPP and PRP groups. The growth factors released from platelets in PRP indicated higher concentrations than that in PRF. Under more severe conditions for bone formation, as in this experiment, the growth factors released from platelets had a negative effect on bone formation. This study showed that PPP is an effective material for the preservation of sockets with buccal dehiscence.

  1. Down-regulation of hypoxia-inducible factor-1 alpha and vascular endothelial growth factor by HEXIM1 attenuates myocardial angiogenesis in hypoxic mice.

    Science.gov (United States)

    Yoshikawa, Noritada; Shimizu, Noriaki; Ojima, Hidenori; Kobayashi, Hiroshi; Hosono, Osamu; Tanaka, Hirotoshi

    2014-10-24

    Pulmonary hypertension (PH) sustains elevation of pulmonary vascular resistance and ultimately leads to right ventricular (RV) hypertrophy and failure and death. Recently, proangiogenic factors hypoxia-inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF) have been known to promote left ventricular myocardial angiogenesis and lead to cardiac hypertrophy, and this would be involved in RV hypertrophy of PH patients. Previously, we revealed that overexpression of HEXIM1 prevents endothelin-1-induced cardiomyocyte hypertrophy and hypertrophic genes expression, and that cardiomyocyte-specific HEXIM1 transgenic mice ameliorates RV hypertrophy in hypoxia-induced PH model. Given these results, here we analyzed the effect of HEXIM1 on the expression of HIF-1α and VEGF and on myocardial angiogenesis of RV in PH. We revealed that overexpression of HEXIM1 prevented hypoxia-induced expression of HIF-1α protein and its target genes including VEGF in the cultured cardiac myocytes and fibroblasts, and that cardiomyocyte-specific HEXIM1 transgenic mice repressed RV myocardial angiogenesis in hypoxia-induced PH model. Thus, we conclude that HEXIM1 could prevent RV hypertrophy, at least in part, via suppression of myocardial angiogenesis through down-regulation of HIF-1α and VEGF in the myocardium under hypoxic condition. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Aging impairs transcriptional regulation of vascular endothelial growth factor in human microvascular endothelial cells: implications for angiogenesis and cell survival.

    Science.gov (United States)

    Ahluwalia, A; Jones, M K; Szabo, S; Tarnawski, A S

    2014-04-01

    In some tissues, aging impairs angiogenesis and reduces expression of vascular endothelial growth factor A (VEGF), a fundamental regulator of angiogenesis. We previously examined angiogenesis in aging and young gastric mucosa in vivo and in vitro and showed that an imbalance between expressions of VEGF (pro-angiogenic factor) and endostatin (anti-angiogenic protein) results in an aging-related impairment of angiogenesis in rats. However, the human relevance of these findings, and whether these mechanisms apply to endothelial cells derived from other tissues, is not clear. Since P-STAT3 and P-CREB are transcription factors that, in association with HIF-1α, can activate VEGF gene expression in some cells (e.g., liver cancer cells, vascular smooth muscle cells), we examined the expression of these two proteins in human dermal microvascular endothelial cells (HMVECs) derived from aging and neonatal individuals. We examined and quantified in vitro angiogenesis, expression of VEGF, P-STAT3, P-CREB and importin-α in HMVECs isolated from neonates (neonatal) and a 66 year old subject (aging). We also examined the effects of treatment with exogenous VEGF and endostatin on in vitro angiogenesis in these cells. Endothelial cells isolated from aging individuals had impaired angiogenesis (vs. neonatal endothelial cells) and reduced expression of VEGF mRNA and protein. Aged HMVECs also had reduced importin-α expression, and reduced expression and nuclear translocation of P-STAT3 and P-CREB. Reduced VEGF gene expression in aged HMVECs strongly correlated with the decreased levels of P-STAT3, P-CREB and importin-α in these cells. Our study clearly demonstrates that endothelial cells from aging individuals have impaired angiogenesis and reduced expression of VEGF likely due to impaired nuclear transport of P-STAT3 and P-CREB transcription factors in these cells.

  3. The Platelet Aggregation-Inducing Factor Aggrus/Podoplanin Promotes Pulmonary Metastasis

    Science.gov (United States)

    Kunita, Akiko; Kashima, Takeshi G.; Morishita, Yasuyuki; Fukayama, Masashi; Kato, Yukinari; Tsuruo, Takashi; Fujita, Naoya

    2007-01-01

    Tumor cell-induced platelet aggregation has been reported to facilitate hematogenous metastasis. Aggrus/podoplanin is a platelet aggregation-inducing factor that is up-regulated in a number of human cancers and has been implicated in tumor progression. We studied herein the role of Aggrus in tumor growth, metastasis, and survival in vivo. Aggrus expression in Chinese hamster ovary cells promoted pulmonary metastasis in both an experimental and a spontaneous mouse model. No differences in the size of metastatic foci or in primary tumor growth were found in either set of mice. Aggrus-expressing cells, which were covered with platelets, arrested in the lung microvasculature 30 minutes after injection. In addition, lung metastasis resulting from Aggrus expression decreased the survival of the mice. By generating several Aggrus point mutants, we revealed that point mutation at the platelet aggregation-stimulating domain of Aggrus (Thr34 and Thr52) obliterated both platelet aggregation and metastasis. Furthermore, administration of aspirin to mice reduced the number of metastatic foci. These results indicate that Aggrus contributes to the establishment of metastasis by promoting platelet aggregation without affecting subsequent growth. Thus, Aggrus could serve as an ideal therapeutic target for drug development to block metastasis. PMID:17392172

  4. Role of Microvessel Density and Vascular Endothelial Growth Factor in Angiogenesis of Hematological Malignancies

    Directory of Open Access Journals (Sweden)

    Rashika Chand

    2016-01-01

    Full Text Available Angiogenesis plays an important role in progression of tumor with vascular endothelial growth factor (VEGF being key proangiogenic factor. It was intended to study angiogenesis in different hematological malignancies by quantifying expression of VEGF and MVD in bone marrow biopsy along with serum VEGF levels and observing its change following therapy. The study included 50 cases of hematological malignancies which were followed for one month after initial therapy along with 30 controls. All of them were subjected to immunostaining by anti-VEGF and factor VIII antibodies on bone marrow biopsy along with the measurement of serum VEGF levels. Significantly higher pretreatment VEGF scores, serum VEGF levels, and MVD were observed in cases as compared to controls (p<0.05. The highest VEGF score and serum VEGF were observed in chronic myeloid leukemia and maximum MVD in Non-Hodgkin’s Lymphoma. Significant decrease in serum VEGF levels after treatment was observed in all hematological malignancies except for AML. To conclude angiogenesis plays an important role in pathogenesis of all the hematological malignancies as reflected by increased VEGF expression and MVD in bone marrow biopsy along with increased serum VEGF level. The decrease in serum VEGF level after therapy further supports this view and also lays the importance of anti angiogenic therapy.

  5. Three-dimensional structure and cytokine distribution of platelet-rich fibrin.

    Science.gov (United States)

    Bai, Meng-Yi; Wang, Ching-Wei; Wang, Jyun-Yi; Lin, Ming-Fang; Chan, Wing P

    2017-02-01

    Previous reports have revealed that several cytokines (including platelet-derived growth factor-BB, transforming growth factors-β1 and insulin-like growth factor-1) can enhance the rate of bone formation and synthesis of extracellular matrix in orthopaedics or periodontology. This study aimed to determine the concentration of cytokines within platelet-rich fibrin microstructures and investigate whether there are differences in the different portions of platelet-rich fibrin, which has implications for proper clinical use of platelet-rich fibrin gel. Whole blood was obtained from six New Zealand rabbits (male, 7 to 39 weeks old, weight 2.7-4 kg); it was then centrifuged for preparation of platelet-rich fibrin gels and harvest of plasma. The resultant platelet-rich fibrin gels were used for cytokine determination, histological analyses and scanning electron microscopy. All plasmas obtained were subject to the same cytokine determination assays for the purpose of comparison. Cytokines platelet-derived growth factor-BB and transforming growth factor-β1 formed concentration gradients from high at the red blood cell end of the platelet-rich fibrin gel (p=1.88×10-5) to low at the plasma end (p=0.19). Insulin-like growth factor-1 concentrations were similar at the red blood cell and plasma ends. The porosities of the platelet-rich fibrin samples taken in sequence from the red blood cell end to the plasma end were 6.5% ± 4.9%, 24.8% ± 7.5%, 30.3% ± 8.5%, 41.4% ± 12.3%, and 40.3% ± 11.7%, respectively, showing a gradual decrease in the compactness of the platelet-rich fibrin network. Cytokine concentrations are positively associated with platelet-rich fibrin microstructure and portion in a rabbit model. As platelet-rich fibrin is the main entity currently used in regenerative medicine, assessing cytokine concentration and the most valuable portion of PRF gels is essential and recommended to all physicians.

  6. Three-dimensional structure and cytokine distribution of platelet-rich fibrin

    Directory of Open Access Journals (Sweden)

    Meng-Yi Bai

    Full Text Available OBJECTIVES: Previous reports have revealed that several cytokines (including platelet-derived growth factor-BB, transforming growth factors-β1 and insulin-like growth factor-1 can enhance the rate of bone formation and synthesis of extracellular matrix in orthopaedics or periodontology. This study aimed to determine the concentration of cytokines within platelet-rich fibrin microstructures and investigate whether there are differences in the different portions of platelet-rich fibrin, which has implications for proper clinical use of platelet-rich fibrin gel. METHODS: Whole blood was obtained from six New Zealand rabbits (male, 7 to 39 weeks old, weight 2.7-4 kg; it was then centrifuged for preparation of platelet-rich fibrin gels and harvest of plasma. The resultant platelet-rich fibrin gels were used for cytokine determination, histological analyses and scanning electron microscopy. All plasmas obtained were subject to the same cytokine determination assays for the purpose of comparison. RESULTS: Cytokines platelet-derived growth factor-BB and transforming growth factor-β1 formed concentration gradients from high at the red blood cell end of the platelet-rich fibrin gel (p=1.88×10-5 to low at the plasma end (p=0.19. Insulin-like growth factor-1 concentrations were similar at the red blood cell and plasma ends. The porosities of the platelet-rich fibrin samples taken in sequence from the red blood cell end to the plasma end were 6.5% ± 4.9%, 24.8% ± 7.5%, 30.3% ± 8.5%, 41.4% ± 12.3%, and 40.3% ± 11.7%, respectively, showing a gradual decrease in the compactness of the platelet-rich fibrin network. CONCLUSION: Cytokine concentrations are positively associated with platelet-rich fibrin microstructure and portion in a rabbit model. As platelet-rich fibrin is the main entity currently used in regenerative medicine, assessing cytokine concentration and the most valuable portion of PRF gels is essential and recommended to all physicians.

  7. Studies on the Biological Effects of Ozone: 10. Release of Factors from Ozonated Human Platelets

    Directory of Open Access Journals (Sweden)

    G. Valacchi

    1999-01-01

    Full Text Available In a previous work we have shown that heparin, in the presence of ozone (O3, promotes a dose-dependent platelet aggregation, while after Ca2+ chelation with citrate, platelet aggregation is almost negligible. These results led us to think that aggregation may enhance the release of platelet components. We have here shown that indeed significantly higher amount of platelet-derived growth factor (PDGF, transforming growth factor β1 (TGF-β1 and interleukin-8(IL-8 are released in a dose-dependent manner after ozonation of heparinised platelet-rich plasma samples. These findings may explain the enhanced healing of torpid ulcers in patients with chronic limbischemia treated with O3 autohaemoteraphy (O3-AHT.

  8. Characterization of cutaneous vascular permeability induced by platelet-activating factor in guinea pigs and rats and its inhibition by a platelet-activating factor receptor antagonist

    International Nuclear Information System (INIS)

    Hwang, S.B.; Li, C.L.; Lam, M.H.; Shen, T.Y.

    1985-01-01

    Mechanisms of platelet-activating factor (PAF)-induced increases of cutaneous vascular permeability in guinea pigs and in rats were further explored. PAF so far is the most potent vasoactive mediator, being more than 1000-fold more potent than histamine and bradykinin in both species. In guinea pigs, there is a time delay of 5 to 10 minutes before PAF action, whereas, in the rat, the increased vasopermeability occurs immediately following the intradermal PAF injection. Relative vasoactive potencies of PAF and several structure-related analogues in both species correlate very well with their relative inhibition of the binding of 3 H-PAF to specific receptor sites on isolated rabbit platelet plasma membranes and their aggregatory abilities of rabbit platelets. Furthermore, the PAF-induced cutaneous vascular permeability is inhibitable by a competitive specific PAF receptor antagonist, kadsurenone, suggesting that binding of PAF to its specific receptor site is the first step to initiate its action of increased cutaneous vascular permeability. Several pure cyclooxygenase inhibitors, including indomethacin, diflunisal, and flurbiprofen, and the dual cyclooxygenase/lipoxygenase inhibitor, BW755C, but not the histamine antagonists, inhibit the PAF-induced vasopermeability in guinea pigs. The inhibition by indomethacin or BW755C can be fully reversed by coinjection intradermally with PAF and prostaglandin E1 but not leukotriene B4. Also, prostaglandin E1 but not leukotriene B4 enhances the guinea pig in vivo response to PAF in this model. However, in rats, none of the cyclooxygenase inhibitors, histamine antagonists, or BW755C inhibit the PAF effect of cutaneous phenomena

  9. Platelet-activating factor induces TLR4 expression in intestinal epithelial cells: implication for the pathogenesis of necrotizing enterocolitis.

    Directory of Open Access Journals (Sweden)

    Antoine Soliman

    Full Text Available Necrotizing enterocolitis (NEC is a leading cause of morbidity and mortality in neonatal intensive care units, however its pathogenesis is not completely understood. We have previously shown that platelet activating factor (PAF, bacteria and TLR4 are all important factors in the development of NEC. Given that Toll-like receptors (TLRs are expressed at low levels in enterocytes of the mature gastrointestinal tract, but were shown to be aberrantly over-expressed in enterocytes in experimental NEC, we examined the regulation of TLR4 expression and signaling by PAF in intestinal epithelial cells using human and mouse in vitro cell lines, and the ex vivo rat intestinal loop model. In intestinal epithelial cell (IEC lines, PAF stimulation yielded upregulation of both TLR4 mRNA and protein expression and led to increased IL-8 secretion following stimulation with LPS (in an otherwise LPS minimally responsive cell line. PAF stimulation resulted in increased human TLR4 promoter activation in a dose dependent manner. Western blotting and immunohistochemical analysis showed PAF induced STAT3 phosphorylation and nuclear translocation in IEC, and PAF-induced TLR4 expression was inhibited by STAT3 and NFκB Inhibitors. Our findings provide evidence for a mechanism by which PAF augments inflammation in the intestinal epithelium through abnormal TLR4 upregulation, thereby contributing to the intestinal injury of NEC.

  10. Anti-Platelet Factor 4/Heparin Antibody Formation Occurs Endogenously and at Unexpected High Frequency in Polycythemia Vera

    Directory of Open Access Journals (Sweden)

    Sara C. Meyer

    2017-01-01

    Full Text Available Background. Myeloproliferative neoplasms (MPN encounter thromboses due to multiple known risk factors. Heparin-induced thrombocytopenia (HIT is a thrombotic syndrome mediated by anti-platelet factor 4 (PF4/heparin antibodies with undetermined significance for thrombosis in MPN. We hypothesized that anti-PF4/heparin Ab might occur in MPN and promote thrombosis. Methods. Anti-PF4/heparin antibodies were analyzed in 127 MPN patients including 76 PV and 51 ET. Screening, validation testing, and isotype testing of anti-PF4/heparin Ab were correlated with disease characteristics. Results. Anti-PF4/heparin antibodies were detected in 21% of PV and 12% of ET versus 0.3–3% in heparin-exposed patients. Validation testing confirmed anti-PF4/heparin immunoglobulins in 15% of PV and 10% of ET. Isotype testing detected 9.2% IgG and 5.3% IgM in PV and exclusively IgM in ET. IgG-positive PV patients encountered thromboses in 57.1% suggesting anti-PF4/heparin IgG may contribute to higher risk for thrombosis in MPN. Overall, 45% of PV patients experienced thromboses with 11.8% positive for anti-PF4/heparin IgG versus 7.1% in PV without thrombosis. Conclusion. Anti-PF4/heparin antibodies occur endogenously and more frequently in MPN than upon heparin exposure. Thrombotic risk increases in anti-PF4/heparin IgG-positive PV reflecting potential implications and calling for larger, confirmatory cohorts. Anti-PF4/heparin IgG should be assessed upon thrombosis in PV to facilitate avoidance of heparin in anti-PF4/heparin IgG-positive PV.

  11. Platelet "first responders" in wound response, cancer, and metastasis.

    Science.gov (United States)

    Menter, David G; Kopetz, Scott; Hawk, Ernest; Sood, Anil K; Loree, Jonathan M; Gresele, Paolo; Honn, Kenneth V

    2017-06-01

    Platelets serve as "first responders" during normal wounding and homeostasis. Arising from bone marrow stem cell lineage megakaryocytes, anucleate platelets can influence inflammation and immune regulation. Biophysically, platelets are optimized due to size and discoid morphology to distribute near vessel walls, monitor vascular integrity, and initiate quick responses to vascular lesions. Adhesion receptors linked to a highly reactive filopodia-generating cytoskeleton maximizes their vascular surface contact allowing rapid response capabilities. Functionally, platelets normally initiate rapid clotting, vasoconstriction, inflammation, and wound biology that leads to sterilization, tissue repair, and resolution. Platelets also are among the first to sense, phagocytize, decorate, or react to pathogens in the circulation. These platelet first responder properties are commandeered during chronic inflammation, cancer progression, and metastasis. Leaky or inflammatory reaction blood vessel genesis during carcinogenesis provides opportunities for platelet invasion into tumors. Cancer is thought of as a non-healing or chronic wound that can be actively aided by platelet mitogenic properties to stimulate tumor growth. This growth ultimately outstrips circulatory support leads to angiogenesis and intravasation of tumor cells into the blood stream. Circulating tumor cells reengage additional platelets, which facilitates tumor cell adhesion, arrest and extravasation, and metastasis. This process, along with the hypercoagulable states associated with malignancy, is amplified by IL6 production in tumors that stimulate liver thrombopoietin production and elevates circulating platelet numbers by thrombopoiesis in the bone marrow. These complex interactions and the "first responder" role of platelets during diverse physiologic stresses provide a useful therapeutic target that deserves further exploration.

  12. Immunohistochemical examination of effects of kefir, koumiss and commercial probiotic capsules on platelet derived growth factor-c and platelet derived growth factor receptor-alpha expression in mouse liver and kidney.

    Science.gov (United States)

    Bakir, B; Sari, E K; Aydin, B D; Yildiz, S E

    2015-04-01

    We investigated using immunohistochemistry the effects of kefir, koumiss and commercial probiotic capsules on the expression of platelet derived growth factor-c (PDGF-C) and platelet derived growth factor receptor-alpha (PDGFR-α) in mouse liver and kidney. Mice were assigned to four groups: group 1 was given commercial probiotic capsules, group 2 was given kefir, group 3 was given koumiss and group 4 was untreated. After oral administration for 15 days, body weights were recorded and liver and kidney tissue samples were obtained. Hematoxylin and eosin staining was used to examine histology. PDGF-C and PDGFR-α in liver and kidney were localized using the streptavidin-biotin peroxidase complex method (ABC). We found that the weights of the mice in the kefir, koumiss and commercial probiotic capsules groups increased compared to the control group. No differences in liver and kidney histology were observed in any of the experimental groups. Kefir, koumiss and the commercial probiotic preparation increased PDGF-C and PDGFR-α expression.

  13. Release kinetics of platelet-derived and plasma-derived growth factors from autologous plasma rich in growth factors.

    Science.gov (United States)

    Anitua, Eduardo; Zalduendo, Mari Mar; Alkhraisat, Mohammad Hamdan; Orive, Gorka

    2013-10-01

    Many studies have evaluated the biological effects of platelet rich plasma reporting the final outcomes on cell and tissues. However, few studies have dealt with the kinetics of growth factor delivery by plasma rich in growth factors. Venous blood was obtained from three healthy volunteers and processed with PRGF-Endoret technology to prepare autologous plasma rich in growth factors. The gel-like fibrin scaffolds were then incubated in triplicate, in a cell culture medium to monitor the release of PDGF-AB, VEGF, HGF and IGF-I during 8 days of incubation. A leukocyte-platelet rich plasma was prepared employing the same technology and the concentrations of growth factors and interleukin-1β were determined after 24h of incubation. After each period, the medium was collected, fibrin clot was destroyed and the supernatants were stored at -80°C until analysis. The growth factor delivery is diffusion controlled with a rapid initial release by 30% of the bioactive content after 1h of incubation and a steady state release when almost 70% of the growth factor content has been delivered. Autologous fibrin matrix retained almost 30% of the amount of the growth factors after 8 days of incubation. The addition of leukocytes to the formula of platelet rich plasma did not increase the concentration of the growth factors, while it drastically increased the presence of pro-inflammatory IL-1β. Further studies employing an in vitro inflammatory model would be interesting to study the difference in growth factors and pro-inflammatory cytokines between leukocyte-free and leukocyte-rich platelet rich plasma. Copyright © 2013 Elsevier GmbH. All rights reserved.

  14. Apurinic/apyrimidinic endonuclease 1 regulates angiogenesis in a transforming growth factor β-dependent manner in human osteosarcoma.

    Science.gov (United States)

    Jiang, Xuan; Shan, Jinlu; Dai, Nan; Zhong, Zhaoyang; Qing, Yi; Yang, Yuxing; Zhang, Shiheng; Li, Chongyi; Sui, Jiangdong; Ren, Tao; Li, Mengxia; Wang, Dong

    2015-10-01

    Angiogenesis plays an important role in tumor growth and metastasis and has been reported to be inversely correlated with overall survival of osteosarcoma patients. It has been shown that apurinic/apyrimidinic endonuclease 1 (APE1), a dually functional protein possessing both base excision repair and redox activities, is involved in tumor angiogenesis, although these mechanisms are not fully understood. Our previous study showed that the expression of transforming growth factor β (TGFβ) was significantly reduced in APE1-deficient osteosarcoma cells. Transforming growth factor β promotes cancer metastasis through various mechanisms including immunosuppression, angiogenesis, and invasion. In the current study, we initially revealed that APE1, TGFβ, and microvessel density (MVD) have pairwise correlation in osteosarcoma tissue samples, whereas TGFβ, tumor size, and MVD were inversely related to the prognosis of the cohort. We found that knocking down APE1 in osteosarcoma cells resulted in TGFβ downregulation. In addition, APE1-siRNA led to suppression of angiogenesis in vitro based on HUVECs in Transwell and Matrigel tube formation assays. Reduced secretory protein level of TGFβ of culture medium also resulted in decreased phosphorylation of Smad3 of HUVECs. In a mouse xenograft model, siRNA-mediated silencing of APE1 downregulated TGFβ expression, tumor size, and MVD. Collectively, the current evidence indicates that APE1 regulates angiogenesis in osteosarcoma by controlling the TGFβ pathway, suggesting a novel target for anti-angiogenesis therapy in human osteosarcoma. © 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  15. An allometric approach of tumor-angiogenesis.

    Science.gov (United States)

    Szasz, Oliver; Vincze, Gyula; Szigeti, Gyula Peter; Benyo, Zoltan; Szasz, Andras

    2018-07-01

    Angiogenesis is one of the main supporting factors of tumor-progression. It is a complex set of interactions together with hypoxia and inflammation, regulating tumor growth. The objective of this study is to examine the effect of angiogenesis with an allometric approach applied to angiogenesis and the regulating factors. The results show that allometry has the potential to describe this aspect, including the sigmoid-like transport function. There are particular conditions under which the complex control maximizes the relative tumor mass. Linear growth of malignancy diameter with an allometric approach was proven. Copyright © 2018. Published by Elsevier Ltd.

  16. Coupling growth-factor engineering with nanotechnology for therapeutic angiogenesis.

    Science.gov (United States)

    Sinha Roy, Rituparna; Soni, Shivani; Harfouche, Rania; Vasudevan, Pooja R; Holmes, Oliver; de Jonge, Hugo; Rowe, Arthur; Paraskar, Abhimanyu; Hentschel, Dirk M; Chirgadze, Dimitri; Blundell, Tom L; Gherardi, Ermanno; Mashelkar, Raghunath A; Sengupta, Shiladitya

    2010-08-03

    Therapeutic angiogenesis is an emerging paradigm for the management of ischemic pathologies. Proangiogenic Therapy is limited, however, by the current inability to deliver angiogenic factors in a sustained manner at the site of pathology. In this study, we investigated a unique nonglycosylated active fragment of hepatocyte growth factor/scatter factor, 1K1, which acts as a potent angiogenic agent in vitro and in a zebrafish embryo and a murine matrigel implant model. Furthermore, we demonstrate that nanoformulating 1K1 for sustained release temporally alters downstream signaling through the mitogen activated protein kinase pathway, and amplifies the angiogenic outcome. Merging protein engineering and nanotechnology offers exciting possibilities for the treatment of ischemic disease, and furthermore allows the selective targeting of downstream signaling pathways, which translates into discrete phenotypes.

  17. Progesterone in Breast Cancer Angiogenesis

    OpenAIRE

    Botelho, Monica C.; Soares, Raquel; Alves, Helena

    2015-01-01

    The involvement of steroid hormones in breast carcinogenesis is well established. Recent evidence suggests that angiogenesis can be regulated by hormones. Both oestrogen and progesterone have been implicated in the angiogenic process of hormone-dependent cancers, such as breast cancer. Vascular Endothelial Growth Factor (VEGF) is a growth factor involved in angiogenesis in breast cancer that is up-regulated by estrogens. In our study we evaluated the role of progesterone in the expression of ...

  18. Association assessment of platelet derived growth factor B gene ...

    African Journals Online (AJOL)

    Background: Coronary artery disease (CAD) is the most frequent cause of morbidity and mortality in the world and it is known as a multifactorial disorder which is influenced by both genetic and environmental factors. Based on different assays, the platelet derived growth factor B (PDGF-B) gene is shown to be amongst the ...

  19. An Evaluation of the Accuracy of the Subtraction Method Used for Determining Platelet Counts in Advanced Platelet-Rich Fibrin and Concentrated Growth Factor Preparations

    Directory of Open Access Journals (Sweden)

    Taisuke Watanabe

    2017-01-01

    Full Text Available Platelet concentrates should be quality-assured of purity and identity prior to clinical use. Unlike for the liquid form of platelet-rich plasma, platelet counts cannot be directly determined in solid fibrin clots and are instead calculated by subtracting the counts in other liquid or semi-clotted fractions from those in whole blood samples. Having long suspected the validity of this method, we herein examined the possible loss of platelets in the preparation process. Blood samples collected from healthy male donors were immediately centrifuged for advanced platelet-rich fibrin (A-PRF and concentrated growth factors (CGF according to recommended centrifugal protocols. Blood cells in liquid and semi-clotted fractions were directly counted. Platelets aggregated on clot surfaces were observed by scanning electron microscopy. A higher centrifugal force increased the numbers of platelets and platelet aggregates in the liquid red blood cell fraction and the semi-clotted red thrombus in the presence and absence of the anticoagulant, respectively. Nevertheless, the calculated platelet counts in A-PRF/CGF preparations were much higher than expected, rendering the currently accepted subtraction method inaccurate for determining platelet counts in fibrin clots. To ensure the quality of solid types of platelet concentrates chairside in a timely manner, a simple and accurate platelet-counting method should be developed immediately.

  20. Temporal growth factor release from platelet-rich plasma, trehalose lyophilized platelets, and bone marrow aspirate and their effect on tendon and ligament gene expression.

    Science.gov (United States)

    McCarrel, Taralyn; Fortier, Lisa

    2009-08-01

    Platelet-rich plasma (PRP) has generated substantial interest for tendon and ligament regeneration because of the high concentrations of growth factors in platelet alpha-granules. This study compared the temporal release of growth factors from bone marrow aspirate (BMA), PRP, and lyophilized platelet product (PP), and measured their effects on tendon and ligament gene expression. Blood and BMA were collected and processed to yield PRP and plasma. Flexor digitorum superficialis tendon (FDS) and suspensory ligament (SL) explants were cultured in 10% plasma in DMEM (control), BMA, PRP, or PP. TGF-beta1 and PDGF-BB concentrations were determined at 0, 24, and 96 h of culture using ELISA. Quantitative RT-PCR for collagen types I and III (COL1A1, COL3A1), cartilage oligomeric matrix protein (COMP), decorin, and matrix metalloproteinases-3 and 13 (MMP-3, MMP-13) was performed. TGF-beta1 and PDGF-BB concentrations were highest in PRP and PP. Growth factor quantity was unchanged in BMA, increased in PRP, and decreased in PP over 4 days. TGF-beta1 and platelet concentrations were positively correlated. Lyophilized PP and PRP resulted in increased COL1A1:COL3A1 ratio, increased COMP, and decreased MMP-13 expression. BMA resulted in decreased COMP and increased MMP-3 and MMP-13 gene expression. Platelet concentration was positively correlated with COL1A1, ratio of COL1A1:COL3A1, and COMP, and negatively correlated with COL3A1, MMP-13, and MMP-3. White blood cell concentration was positively correlated with COL3A1, MMP3, and MMP13, and negatively correlated with a ratio of COL1A1:COL3A1, COMP, and decorin. These findings support further in vivo investigation of PRP and PP for treatment of tendonitis and desmitis. Copyright 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  1. Angiogenesis and Its Therapeutic Opportunities

    Directory of Open Access Journals (Sweden)

    So Young Yoo

    2013-01-01

    Full Text Available Angiogenesis plays critical roles in human physiology that range from reproduction and fetal growth to wound healing and tissue repair. The sophisticated multistep process is tightly regulated in a spatial and temporal manner by “on-off switch signals” between angiogenic factors, extracellular matrix components, and endothelial cells. Uncontrolled angiogenesis may lead to several angiogenic disorders, including vascular insufficiency (myocardial or critical limb ischemia and vascular overgrowth (hemangiomas, vascularized tumors, and retinopathies. Thus, numerous therapeutic opportunities can be envisaged through the successful understanding and subsequent manipulation of angiogenesis. Here, we review the clinical implications of angiogenesis and discuss pro- and antiangiogenic agents that offer potential therapy for cancer and other angiogenic diseases.

  2. Bone Morphogenic Protein 4-Smad-Induced Upregulation of Platelet-Derived Growth Factor AA Impairs Endothelial Function.

    Science.gov (United States)

    Hu, Weining; Zhang, Yang; Wang, Li; Lau, Chi Wai; Xu, Jian; Luo, Jiang-Yun; Gou, Lingshan; Yao, Xiaoqiang; Chen, Zhen-Yu; Ma, Ronald Ching Wan; Tian, Xiao Yu; Huang, Yu

    2016-03-01

    Bone morphogenic protein 4 (BMP4) is an important mediator of endothelial dysfunction in cardio-metabolic diseases, whereas platelet-derived growth factors (PDGFs) are major angiogenic and proinflammatory mediator, although the functional link between these 2 factors is unknown. The present study investigated whether PDGF mediates BMP4-induced endothelial dysfunction in diabetes mellitus. We generated Ad-Bmp4 to overexpress Bmp4 and Ad-Pdgfa-shRNA to knockdown Pdgfa in mice through tail intravenous injection. SMAD4-shRNA lentivirus, SMAD1-shRNA, and SMAD5 shRNA adenovirus were used for knockdown in human and mouse endothelial cells. We found that PDGF-AA impaired endothelium-dependent vasodilation in aortas and mesenteric resistance arteries. BMP4 upregulated PDGF-AA in human and mouse endothelial cells, which was abolished by BMP4 antagonist noggin or knockdown of SMAD1/5 or SMAD4. BMP4-impared relaxation in mouse aorta was also ameliorated by PDGF-AA neutralizing antibody. Tail injection of Ad-Pdgfa-shRNA ameliorates endothelial dysfunction induced by Bmp4 overexpression (Ad-Bmp4) in vivo. Serum PDGF-AA was elevated in both diabetic patients and diabetic db/db mice compared with nondiabetic controls. Pdgfa-shRNA or Bmp4-shRNA adenovirus reduced serum PDGF-AA concentration in db/db mice. PDGF-AA neutralizing antibody or tail injection with Pdgfa-shRNA adenovirus improved endothelial function in aortas and mesenteric resistance arteries from db/db mice. The effect of PDGF-AA on endothelial function in mouse aorta was also inhibited by Ad-Pdgfra-shRNA to inhibit PDGFRα. The present study provides novel evidences to show that PDGF-AA impairs endothelium-dependent vasodilation and PDGF-AA mediates BMP4-induced adverse effect on endothelial cell function through SMAD1/5- and SMAD4-dependent mechanisms. Inhibition of PGDF-AA ameliorates vascular dysfunction in diabetic mice. © 2016 American Heart Association, Inc.

  3. Cancer gene therapy targeting angiogenesis: An updated Review

    Science.gov (United States)

    Liu, Ching-Chiu; Shen, Zan; Kung, Hsiang-Fu; Lin, Marie CM

    2006-01-01

    Since the relationship between angiogenesis and tumor growth was established by Folkman in 1971, scientists have made efforts exploring the possibilities in treating cancer by targeting angiogenesis. Inhibition of angiogenesis growth factors and administration of angiogenesis inhibitors are the basics of anti-angiogenesis therapy. Transfer of anti-angiogenesis genes has received attention recently not only because of the advancement of recombinant vectors, but also because of the localized and sustained expression of therapeutic gene product inside the tumor after gene transfer. This review provides the up-to-date information about the strategies and the vectors studied in the field of anti-angiogenesis cancer gene therapy. PMID:17109514

  4. Sphingosine 1-phosphate (S1P) suppresses the collagen-induced activation of human platelets via S1P4 receptor.

    Science.gov (United States)

    Onuma, Takashi; Tanabe, Kumiko; Kito, Yuko; Tsujimoto, Masanori; Uematsu, Kodai; Enomoto, Yukiko; Matsushima-Nishiwaki, Rie; Doi, Tomoaki; Nagase, Kiyoshi; Akamatsu, Shigeru; Tokuda, Haruhiko; Ogura, Shinji; Iwama, Toru; Kozawa, Osamu; Iida, Hiroki

    2017-08-01

    Sphingosine 1-phosphate (S1P) is as an extracellular factor that acts as a potent lipid mediator by binding to specific receptors, S1P receptors (S1PRs). However, the precise role of S1P in human platelets that express S1PRs has not yet been fully clarified. We previously reported that heat shock protein 27 (HSP27) is released from human platelets accompanied by its phosphorylation stimulated by collagen. In the present study, we investigated the effect of S1P on the collagen-induced platelet activation. S1P pretreatment markedly attenuated the collagen-induced aggregation. Co-stimulation with S1P and collagen suppressed collagen-induced platelet activation, but the effect was weaker than that of S1P-pretreatment. The collagen-stimulated secretion of platelet-derived growth factor (PDGF)-AB and the soluble CD40 ligand (sCD40L) release were significantly reduced by S1P. In addition, S1P suppressed the collagen-induced release of HSP27 as well as the phosphorylation of HSP27. S1P significantly suppressed the collagen-induced phosphorylation of p38 mitogen-activated protein kinase. S1P increased the levels of GTP-bound Gαi and GTP-bound Gα13 coupled to S1PPR1 and/or S1PR4. CYM50260, a selective S1PR4 agonist, but not SEW2871, a selective S1PR1 agonist, suppressed the collagen-stimulated platelet aggregation, PDGF-AB secretion and sCD40L release. In addition, CYM50260 reduced the release of phosphorylated-HSP27 by collagen as well as the phosphorylation of HSP27. The selective S1PR4 antagonist CYM50358, which failed to affect collagen-induced HSP27 phosphorylation, reversed the S1P-induced attenuation of HSP27 phosphorylation by collagen. These results strongly suggest that S1P inhibits the collagen-induced human platelet activation through S1PR4 but not S1PR1. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Endoglin inhibition leads to intussusceptive angiogenesis via activation of factors related to COUP-TFII signaling pathway.

    Directory of Open Access Journals (Sweden)

    Ruslan Hlushchuk

    Full Text Available Angiogenesis is a highly coordinated, extremely complex process orchestrated by multiple signaling molecules and blood flow conditions. While sprouting mode of angiogenesis is very well investigated, the molecular mechanisms underlying intussusception, the second mode of angiogenesis, remain largely unclear. In the current study two molecules involved in vascular growth and differentiation, namely endoglin (ENG/CD105 and chicken ovalbumin upstream promoter transcription factor II (COUP-TFII were examined to unravel their specific roles in angiogenesis. Down- respectively up-regulation of both molecules tightly correlates with intussusceptive microvascular growth. Upon ENG inhibition in chicken embryo model, formation of irregular capillary meshwork accompanied by increased expression of COUP-TFII could be observed. This dynamic expression pattern of ENG and COUP-TFII during vascular development and remodeling correlated with formation of pillars and progression of intussusceptive angiogenesis. Similar findings could be observed in mammalian model of acute rat Thy1.1 glomerulonephritis, which was induced by intravenous injection of anti-Thy1 antibody and has shown upregulation of COUP-TFII in initial phase of intussusception, while ENG expression was not disturbed compared to the controls but decreased over the time of pillar formation. In this study, we have shown that ENG inhibition and at the same time up-regulation of COUP-TFII expression promotes intussusceptive angiogenesis.

  6. Role and mechanism of arsenic in regulating angiogenesis.

    Directory of Open Access Journals (Sweden)

    Ling-Zhi Liu

    Full Text Available Arsenic is a wide spread carcinogen associated with several kinds of cancers including skin, lung, bladder, and liver cancers. Lung is one of the major targets of arsenic exposure. Angiogenesis is the pivotal process during carcinogenesis and chronic pulmonary diseases, but the role and mechanism of arsenic in regulating angiogenesis remain to be elucidated. In this study we show that short time exposure of arsenic induces angiogenesis in both human immortalized lung epithelial cells BEAS-2B and adenocarcinoma cells A549. To study the molecular mechanism of arsenic-inducing angiogenesis, we find that arsenic induces reactive oxygen species (ROS generation, which activates AKT and ERK1/2 signaling pathways and increases the expression of hypoxia-inducible factor 1 (HIF-1 and vascular endothelial growth factor (VEGF. Inhibition of ROS production suppresses angiogenesis by decreasing AKT and ERK activation and HIF-1 expression. Inhibition of ROS, AKT and ERK1/2 signaling pathways is sufficient to attenuate arsenic-inducing angiogenesis. HIF-1 and VEGF are downstream effectors of AKT and ERK1/2 that are required for arsenic-inducing angiogenesis. These results shed light on the mechanism of arsenic in regulating angiogenesis, and are helpful to develop mechanism-based intervention to prevent arsenic-induced carcinogenesis and angiogenesis in the future.

  7. Human tumor cells induce angiogenesis through positive feedback between CD147 and insulin-like growth factor-I.

    Directory of Open Access Journals (Sweden)

    Yanke Chen

    Full Text Available Tumor angiogenesis is a complex process based upon a sequence of interactions between tumor cells and endothelial cells. Previous studies have shown that CD147 was correlated with tumor angiogenesis through increasing tumor cell secretion of vascular endothelial growth factor (VEGF and matrix metalloproteinases (MMPs. In this study, we made a three-dimensional (3D tumor angiogenesis model using a co-culture system of human hepatocellular carcinoma cells SMMC-7721 and humanumbilical vein endothelial cells (HUVECs in vitro. We found that CD147-expressing cancer cells could promote HUVECs to form net-like structures resembling the neo-vasculature, whereas the ability of proliferation, migration and tube formation of HUVECs was significantly decreased in tumor conditioned medium (TCM of SMMC-7721 cells transfected with specific CD147-siRNA. Furthermore, by assaying the change of pro-angiogenic factors in TCM, we found that the inhibition of CD147 expression led to significant decrease of VEGF and insulin-like growth factor-I (IGF-I secretion. Interestingly, we also found that IGF-I up-regulated the expression of CD147 in both tumor cells and HUVECs. These findings suggest that there is a positive feedback between CD147 and IGF-I at the tumor-endothelial interface and CD147 initiates the formation of an angiogenesis niche.

  8. Markers of angiogenesis and epidermal growth factor receptor signalling in patients with pancreatic and gastroesophageal junction cancer

    DEFF Research Database (Denmark)

    Rohrberg, Kristoffer Staal; Skov, Birgit Guldhammer; Lassen, Ulrik

    2010-01-01

    The epidermal growth factor receptor (EGFR) and angiogenesis are well established targets in anti-cancer therapy. Several targeted anti-cancer therapies are in clinical trials in pancreatic and gastroesophageal (GEJ) cancer. However, many patients do not respond to these targeted therapies...... in pancreatic and GEJ cancer patients, and could be investigated further as predictive biomarkers in such patients treated with EGFR or angiogenesis targeted therapies....

  9. The glycoprotein Ib-IX-V complex contributes to tissue factor-independent thrombin generation by recombinant factor VIIa on the activated platelet surface

    NARCIS (Netherlands)

    Weeterings, Cees; de Groot, Philip G.; Adelmeijer, Jelle; Lisman, Ton

    2008-01-01

    Several lines of evidence suggest that recombinant factor VIIa (rFVIIa) is able to activate factor X on an activated platelet, in a tissue factor-independent manner. We hypothesized that, besides the anionic surface, a receptor on the activated platelet surface is involved in this process. Here, we

  10. Angiogenesis is inhibitory for mammalian digit regeneration

    Science.gov (United States)

    Yu, Ling; Yan, Mingquan; Simkin, Jennifer; Ketcham, Paulina D.; Leininger, Eric; Han, Manjong

    2014-01-01

    Abstract The regenerating mouse digit tip is a unique model for investigating blastema formation and epimorphic regeneration in mammals. The blastema is characteristically avascular and we previously reported that blastema expression of a known anti‐angiogenic factor gene, Pedf, correlated with a successful regenerative response (Yu, L., Han, M., Yan, M., Lee, E. C., Lee, J. & Muneoka, K. (2010). BMP signaling induces digit regeneration in neonatal mice. Development, 137, 551–559). Here we show that during regeneration Vegfa transcripts are not detected in the blastema but are expressed at the onset of differentiation. Treating the amputation wound with vascular endothelial growth factor enhances angiogenesis but inhibits regeneration. We next tested bone morphogenetic protein 9 (BMP9), another known mediator of angiogenesis, and found that BMP9 is also a potent inhibitor of digit tip regeneration. BMP9 induces Vegfa expression in the digit stump suggesting that regenerative failure is mediated by enhanced angiogenesis. Finally, we show that BMP9 inhibition of regeneration is completely rescued by treatment with pigment epithelium‐derived factor. These studies show that precocious angiogenesis is inhibitory for regeneration, and provide compelling evidence that the regulation of angiogenesis is a critical factor in designing therapies aimed at stimulating mammalian regeneration. PMID:27499862

  11. Hepatocellular hypoxia-induced vascular endothelial growth factor expression and angiogenesis in experimental biliary cirrhosis.

    Science.gov (United States)

    Rosmorduc, O; Wendum, D; Corpechot, C; Galy, B; Sebbagh, N; Raleigh, J; Housset, C; Poupon, R

    1999-10-01

    We tested the potential role of vascular endothelial growth factor (VEGF) and of fibroblast growth factor-2 (FGF-2) in the angiogenesis associated with experimental liver fibrogenesis induced by common bile duct ligation in Sprague-Dawley rats. In normal rats, VEGF and FGF-2 immunoreactivities were restricted to less than 3% of hepatocytes. One week after bile duct ligation, hypoxia was demonstrated by the immunodetection of pimonidazole adducts unevenly distributed throughout the lobule. After 2 weeks, hypoxia and VEGF expression were detected in >95% of hepatocytes and coexisted with an increase in periportal vascular endothelial cell proliferation, as ascertained by Ki67 immunolabeling. Subsequently, at 3 weeks the density of von Willebrand-labeled vascular section in fibrotic areas significantly increased. Semiquantitative reverse transcription polymerase chain reaction showed that VEGF(120) and VEGF(164) transcripts, that correspond to secreted isoforms, increased within 2 weeks, while VEGF(188) transcripts remained unchanged. FGF-2 mainly consisting of a 22-kd isoform, according to Western blot, was identified by immunohistochemistry in 49% and 100% of hepatocytes at 3 and 7 weeks, respectively. Our data provide evidence that in biliary-type liver fibrogenesis, angiogenesis is stimulated primarily by VEGF in response to hepatocellular hypoxia while FGF-2 likely contributes to the maintenance of angiogenesis at later stages.

  12. In vivo studies on the binding of heparin and its fractions with platelet factor 4

    International Nuclear Information System (INIS)

    Walz, D.A.; Hung, G.L.

    1985-01-01

    PF4 has a half-life in plasma of less than 3 minutes, and its rapid clearance appears to be a function of binding to the vascular endothelium. Once bound to the endothelium, PF4 can be released by heparin in a time-dependent manner; recovery is greater the sooner heparin is administered following PF4 infusion. This heparin-induced release of PF4 can be abolished if the heparin is first complexed with hexadimethrine bromide. Likewise, this heparin-induced release of PF4 is dependent upon the type of heparin used; low molecular weight heparin fractions and fragments do not cause the PF4 rebound seen with intact heparin. Thus, it would appear that low molecular weight forms of heparin are advantageous in that their in vivo administration would not be mediated by such platelet modulators as PF4

  13. Robo4 maintains vessel integrity and inhibits angiogenesis by interacting with UNC5B.

    Science.gov (United States)

    Koch, Alexander W; Mathivet, Thomas; Larrivée, Bruno; Tong, Raymond K; Kowalski, Joe; Pibouin-Fragner, Laurence; Bouvrée, Karine; Stawicki, Scott; Nicholes, Katrina; Rathore, Nisha; Scales, Suzie J; Luis, Elizabeth; del Toro, Raquel; Freitas, Catarina; Bréant, Christiane; Michaud, Annie; Corvol, Pierre; Thomas, Jean-Léon; Wu, Yan; Peale, Franklin; Watts, Ryan J; Tessier-Lavigne, Marc; Bagri, Anil; Eichmann, Anne

    2011-01-18

    Robo4 is an endothelial cell-specific member of the Roundabout axon guidance receptor family. To identify Robo4 binding partners, we performed a protein-protein interaction screen with the Robo4 extracellular domain. We find that Robo4 specifically binds to UNC5B, a vascular Netrin receptor, revealing unexpected interactions between two endothelial guidance receptors. We show that Robo4 maintains vessel integrity by activating UNC5B, which inhibits signaling downstream of vascular endothelial growth factor (VEGF). Function-blocking monoclonal antibodies against Robo4 and UNC5B increase angiogenesis and disrupt vessel integrity. Soluble Robo4 protein inhibits VEGF-induced vessel permeability and rescues barrier defects in Robo4(-/-) mice, but not in mice treated with anti-UNC5B. Thus, Robo4-UNC5B signaling maintains vascular integrity by counteracting VEGF signaling in endothelial cells, identifying a novel function of guidance receptor interactions in the vasculature. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Immunohistochemical Analysis of Platelet Extract Effects on Liver Injury Induced by CCl4 in Male Rats

    Directory of Open Access Journals (Sweden)

    Zahra Hesami

    2016-01-01

    Full Text Available Backgrounds & objectives: Liver damage results in a large accumulation of external cellular matrix that affects the function of this important body organ in a long term and finally stops its function completely. The growth factors existing in platelet extract are more cost-effective, available, and stable than recombinant ones. To determine whether the platelet extract effects on histological changes in liver injury induced by carbon tetrachloride (CCl4, we used immunohistochemical analysis in male rats. Methods: In this project the 28 male Wistar rats (250-300 g were randomly divided into 4 groups, each consisting of 7 animals. The rats were divided into four experimental groups as follows: the first group (sham intraperitoneally received only olive oil as the solvent of carbon tetrachloride; second group (CCl4 intraperitoneally received carbon tetrachloride dissolved in olive oil (ratio of about 1: 1 at a concentration of 1 ml/kg and a twice a week for eight weeks; third group subcutaneously received only platelet extract at a concentration of 0.5 ml/kg twice a week for three weeks; and fourth group received both CCl4 intraperitoneally for eight weeks and platelet extract subcutaneously for last three weeks. After 8 weeks of trial blood and liver sampling were done. Blood samples sent for enzymatic (AST, ALT tests and liver samples tested for histological and immunohistochemical studies. The data were analyzed using  one-way ANOVA followed by Tukey test by Graph pad Prism 5 software and data were considered significant at p≤ 0.05. Results: The results show that platelet extract causes a significant (p≤ 0.001 decrease in liver enzymes and albumin improves the function of liver. The level of alfa smooth muscle actin (α-SMA as an index of hepatic stellate cell activation was decreased by platelet extract administration which eventually reduced the necrosis and fibrosis induced by carbon tetrachloride in studied rats

  15. The clinical significance and risk factors of anti-platelet factor 4/heparin antibody on maintenance hemodialysis patients: a two-year prospective follow-up.

    Directory of Open Access Journals (Sweden)

    Delong Zhao

    Full Text Available BACKGROUND: Heparin-induced thrombocytopenia is an immune response mediated by anti-PF4/heparin antibody, which is clinically characterized by thrombocytopenia and thromboembolic events. In this study, a prospective and multi-center clinical investigation 1 determined the positive rate of anti-PF4/heparin antibody in maintenance hemodialysis patients in China, 2 identified the related risk factors, and 3 further explored the effect of the anti-PF4/heparin antibody on bleeding, thromboembolic events, and risk of death in the patients. METHODS: The serum anti-PF4/heparin antibody was measured in 661 patients from nine hemodialysis centers, detected by IgG-specific ELISA and followed by confirmation with excess heparin. Risk factors of these patients were analyzed. Based on a two-year follow-up, the association between the anti-PF4/heparin antibody and bleeding, thromboembolic events, and risk of death in the patients was investigated. RESULTS: 1 The positivity rate of the anti-PF4/heparin antibody in maintenance hemodialysis patients was 5.6%. With diabetes as an independent risk factor, the positivity rate of the anti-PF4/heparin antibody decreased in the patients undergoing weekly dialyses ≥3 times. 2 The positivity rate of the anti-PF4/heparin antibody was not related to the occurrence of clinical thromboembolic events and was not a risk factor for death within two years in maintenance hemodialysis patients. 3 Negativity for the anti-PF4/heparin antibody combined with a reduction of the platelet count or combined with the administration of antiplatelet drugs yielded a significant increase in bleeding events. However, the composite determination of the anti-PF4/heparin antibody and thrombocytopenia, as well as the administration of antiplatelet drugs, was not predictive for the risk of thromboembolic events in the maintenance hemodialysis patients. CONCLUSIONS: A single detection of the anti-PF4/heparin antibody did not predict the occurrence

  16. Quality assessment of platelet concentrates prepared by platelet rich plasma-platelet concentrate, buffy coat poor-platelet concentrate (BC-PC and apheresis-PC methods

    Directory of Open Access Journals (Sweden)

    Singh Ravindra

    2009-01-01

    Full Text Available Background: Platelet rich plasma-platelet concentrate (PRP-PC, buffy coat poor-platelet concentrate (BC-PC, and apheresis-PC were prepared and their quality parameters were assessed. Study Design: In this study, the following platelet products were prepared: from random donor platelets (i platelet rich plasma - platelet concentrate (PRP-PC, and (ii buffy coat poor- platelet concentrate (BC-PC and (iii single donor platelets (apheresis-PC by different methods. Their quality was assessed using the following parameters: swirling, volume of the platelet concentrate, platelet count, WBC count and pH. Results: A total of 146 platelet concentrates (64 of PRP-PC, 62 of BC-PC and 20 of apheresis-PC were enrolled in this study. The mean volume of PRP-PC, BC-PC and apheresis-PC was 62.30±22.68 ml, 68.81±22.95 ml and 214.05±9.91 ml and ranged from 22-135 ml, 32-133 ml and 200-251 ml respectively. The mean platelet count of PRP-PC, BC-PC and apheresis-PC was 7.6±2.97 x 1010/unit, 7.3±2.98 x 1010/unit and 4.13±1.32 x 1011/unit and ranged from 3.2-16.2 x 1010/unit, 0.6-16.4 x 1010/unit and 1.22-8.9 x 1011/unit respectively. The mean WBC count in PRP-PC (n = 10, BC-PC (n = 10 and apheresis-PC (n = 6 units was 4.05±0.48 x 107/unit, 2.08±0.39 x 107/unit and 4.8±0.8 x 106/unit and ranged from 3.4 -4.77 x 107/unit, 1.6-2.7 x 107/unit and 3.2 - 5.2 x 106/unit respectively. A total of 26 units were analyzed for pH changes. Out of these units, 10 each were PRP-PC and BC-PC and 6 units were apheresis-PC. Their mean pH was 6.7±0.26 (mean±SD and ranged from 6.5 - 7.0 and no difference was observed among all three types of platelet concentrate. Conclusion: PRP-PC and BC-PC units were comparable in terms of swirling, platelet count per unit and pH. As expected, we found WBC contamination to be less in BC-PC than PRP-PC units. Variation in volume was more in BC-PC than PRP-PC units and this suggests that further standardization is required for preparation of BC

  17. Placental Growth Factor Contributes to Liver Inflammation, Angiogenesis, Fibrosis in Mice by Promoting Hepatic Macrophage Recruitment and Activation

    Directory of Open Access Journals (Sweden)

    Xi Li

    2017-07-01

    Full Text Available Placental growth factor (PlGF, a member of the vascular endothelial growth factor (VEGF family, mediates wound healing and inflammatory responses, exerting an effect on liver fibrosis and angiogenesis; however, the precise mechanism remains unclear. The aims of this study are to identify the role of PlGF in liver inflammation and fibrosis induced by bile duct ligation (BDL in mice and to reveal the underlying molecular mechanism. PlGF small interfering RNA (siRNA or non-targeting control siRNA was injected by tail vein starting 2 days after BDL. Liver inflammation, fibrosis, angiogenesis, macrophage infiltration, and hepatic stellate cells (HSCs activation were examined. Our results showed that PlGF was highly expressed in fibrotic livers and mainly distributed in activated HSCs and macrophages. Furthermore, PlGF silencing strongly reduced the severity of liver inflammation and fibrosis, and inhibited the activation of HSCs. Remarkably, PlGF silencing also attenuated BDL-induced hepatic angiogenesis, as evidenced by attenuated liver endothelial cell markers CD31 and von Willebrand factor immunostaining and genes or protein expression. Interestingly, these pathological ameliorations by PlGF silencing were due to a marked reduction in the numbers of intrahepatic F4/80+, CD68+, and Ly6C+ cell populations, which were reflected by a lower expression of these macrophage marker molecules in fibrotic livers. In addition, knockdown of PlGF by siRNA inhibited macrophages activation and substantially suppressed the expression of pro-inflammatory cytokines and chemokines in fibrotic livers. Mechanistically, evaluation of cultured RAW 264.7 cells revealed that VEGF receptor 1 (VEGFR1 mainly involved in mediating the role of PlGF in macrophages recruitment and activation, since using VEGFR1 neutralizing antibody blocking PlGF/VEGFR1 signaling axis significantly inhibited macrophages migration and inflammatory responses. Together, these findings indicate

  18. Nano-fibrin stabilized CaSO4 crystals incorporated injectable chitin composite hydrogel for enhanced angiogenesis & osteogenesis.

    Science.gov (United States)

    Arun Kumar, R; Sivashanmugam, A; Deepthi, S; Bumgardner, Joel D; Nair, Shantikumar V; Jayakumar, R

    2016-04-20

    Calcium sulfate (CaSO4), an excellent biodegradable bone forming agent that is an ideal choice as additive in gels, however, its disadvantage being poor gel rheology and angiogenesis. Here, we have synthesized chitin-CaSO4-nano-fibrin based injectable gel system which shows improved rheology and angiogenic potential. Rheological studies showed that the composite gel was a shear thinning gel with elastic modulus of 15.4±0.275kPa; a 1.67 fold increase over chitin control. SEM and XRD analyses revealed the effect of nano-fibrin (nFibrin) in transforming CaSO4 crystal shape from needle to hexagonal. It also masked the retarding effect of CaSO4 towards in vitro early cell attachment and angiogenesis using rabbit adipose derived mesenchymal stem cells (rASCs) and HUVECs, respectively. rASCs osteogenesis was confirmed by spectrophotometric endpoint assay, which showed 6-fold early increase in alkaline phosphatase levels and immuno-cytochemistry analysis. These in vitro results highlight the potential of injectable chitin-CaSO4-nFibrin gel for osteo-regeneration via enhanced angiogenesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Extracorporeal Shockwave Therapy Increases Growth Factor Release from Equine Platelet-Rich Plasma In Vitro

    Directory of Open Access Journals (Sweden)

    Kathryn A. Seabaugh

    2017-12-01

    Full Text Available IntroductionExtracorporeal shockwave therapy (ESWT and platelet-rich plasma (PRP are common treatments for soft tissue injuries in horses. Shockwave triggers cell specific responses to promote healing. Growth factors released from PRP also promote healing. It has been hypothesized that greater growth factor release would amplify the healing process. The combination of ESWT and PRP could promote healing in injured tendons and ligaments in the horse. The objective of this study was to determine if application of shockwaves to PRP samples increases the concentration of transforming growth factor-β1 (TGF-β1 and platelet-derived growth factor ββ (PDGF-ββ released from the platelets in vitro.Materials and methodsPRP was produced from blood drawn from six horses. The PRP from each horse was exposed to the following treatments: (1 positive control (freeze-thaw cycle, (2 untreated negative control, or shockwaves with either (3 a “standard probe” (ESWT-S with a 2 cm focal width and medium energy density or (4 a “power probe” (ESWT-P with a 1 cm focal width and high energy density. After each treatment, the samples were centrifuged, and the supernatant was harvested. The supernatant was then used for growth factor quantification via commercially available ELISA kits for TGF-β1 and PDGF-ββ.ResultsConcentrations of TGF-β1 and PDGF-ββ in PRP that underwent a freeze-thaw cycle were significantly increased compared with all other treatments. Both ESWT-S and ESWT-P resulted in significantly increased TGF-β1 concentrations, 46 and 33%, respectively, when compared with the negative control. Both ESWT-S and ESWT-P resulted in significantly increased PDGF-ββ concentrations, 219 and 190%, respectively, when compared with the negative control.DiscussionThese data indicate that the application of ESWT to PRP increases the expression of growth factors in vitro. This suggests that the combination therapy of local PRP injection followed by ESWT

  20. Influence of cardiopulmonary bypass on the interaction of recombinant factor VIIa with activated platelets

    DEFF Research Database (Denmark)

    Kjalke, M.; Runge, M.; Rojkjaer, R.

    2009-01-01

    Recombinant factor VIIa (rFVIIa) interacts preferentially with coated platelets characterized by a high exposure of phosphatidyl serine (PS), FV, FVIII, FIX, and FX binding, and fibrinogen. Cardiopulmonary bypass (CPB) is known to impair platelet function. In this study, the influence of CPB...

  1. Growth differentiation factor-15 (GDF-15) suppresses in vitro angiogenesis through a novel interaction with connective tissue growth factor (CCN2).

    Science.gov (United States)

    Whitson, Ramon J; Lucia, Marshall Scott; Lambert, James R

    2013-06-01

    Growth differentiation factor-15 (GDF-15) and the CCN family member, connective tissue growth factor (CCN2), are associated with cardiac disease, inflammation, and cancer. The precise role and signaling mechanism for these factors in normal and diseased tissues remains elusive. Here we demonstrate an interaction between GDF-15 and CCN2 using yeast two-hybrid assays and have mapped the domain of interaction to the von Willebrand factor type C domain of CCN2. Biochemical pull down assays using secreted GDF-15 and His-tagged CCN2 produced in PC-3 prostate cancer cells confirmed a direct interaction between these proteins. To investigate the functional consequences of this interaction, in vitro angiogenesis assays were performed. We demonstrate that GDF-15 blocks CCN2-mediated tube formation in human umbilical vein endothelial (HUVEC) cells. To examine the molecular mechanism whereby GDF-15 inhibits CCN2-mediated angiogenesis, activation of αV β3 integrins and focal adhesion kinase (FAK) was examined. CCN2-mediated FAK activation was inhibited by GDF-15 and was accompanied by a decrease in αV β3 integrin clustering in HUVEC cells. These results demonstrate, for the first time, a novel signaling pathway for GDF-15 through interaction with the matricellular signaling molecule CCN2. Furthermore, antagonism of CCN2 mediated angiogenesis by GDF-15 may provide insight into the functional role of GDF-15 in disease states. Copyright © 2012 Wiley Periodicals, Inc.

  2. Platelet size does not correlate with platelet age.

    Science.gov (United States)

    Thompson, C B; Love, D G; Quinn, P G; Valeri, C R

    1983-08-01

    The relationship between platelet size and in vivo aging was investigated in the baboon using size-dependent platelet subpopulations separated by counterflow centrifugation. The separation characteristics, size, lactate dehydrogenase (LDH) activity, and dense-body content of the baboon platelet subpopulations were similar to those previously observed in studies of human platelets. Three independent labeling techniques were used: (1) in vivo labeling with 75Se-methionine, (2) in vitro labeling with 51Cr, and (3) in vivo labeling with 14C-serotonin. Maximal incorporation of all three labels showed a close correlation between the mean platelet volume (MPV) of each fraction and the platelet radioactivity. The onset of incorporation and rate of accumulation of 75Se-methionine were comparable in all fractions when corrected for differences in volume, suggesting that platelet size heterogeneity was present from the time of release of the platelets from the bone marrow. Survival studies using 51Cr and 14C-serotonin showed no translocation of the label from one fraction to another in the circulation over time. In vivo survival values for the three radionuclides showed a slight but significant correlation between the lifespan and the MPV of the fractions. The data suggest that large platelets were not younger platelets, but rather platelets with a longer life-span. Platelet size heterogeneity is the result of production factors in the bone marrow and not maturation in the circulation.

  3. Platelet size does not correlate with platelet age

    International Nuclear Information System (INIS)

    Thompson, C.B.; Love, D.G.; Quinn, P.G.; Valeri, C.R.

    1983-01-01

    The relationship between platelet size and in vivo aging was investigated in the baboon using size-dependent platelet subpopulations separated by counterflow centrifugation. The separation characteristics, size, lactate dehydrogenase (LDH) activity, and dense-body content of the baboon platelet subpopulations were similar to those previously observed in studies of human platelets. Three independent labeling techniques were used: (1) in vivo labeling with 75 Se-methionine, (2) in vitro labeling with 51 Cr, and (3) in vivo labeling with 14C-serotonin. Maximal incorporation of all three labels showed a close correlation between the mean platelet volume (MPV) of each fraction and the platelet radioactivity. The onset of incorporation and rate of accumulation of 75 Se-methionine were comparable in all fractions when corrected for differences in volume, suggesting that platelet size heterogeneity was present from the time of release of the platelets from the bone marrow. Survival studies using 51 Cr and 14 C-serotonin showed no translocation of the label from one fraction to another in the circulation over time. In vivo survival values for the three radionuclides showed a slight but significant correlation between the lifespan and the MPV of the fractions. The data suggest that large platelets were not younger platelets, but rather platelets with a longer life-span. Platelet size heterogeneity is the result of production factors in the bone marrow and not maturation in the circulation

  4. Nilotinib Enhances Tumor Angiogenesis and Counteracts VEGFR2 Blockade in an Orthotopic Breast Cancer Xenograft Model with Desmoplastic Response

    Directory of Open Access Journals (Sweden)

    Sara Zafarnia

    2017-11-01

    Full Text Available Vascular endothelial growth factor (VEGF/VEGF receptor (VEGFR-targeted therapies predominantly affect nascent, immature tumor vessels. Since platelet-derived growth factor receptor (PDGFR blockade inhibits vessel maturation and thus increases the amount of immature tumor vessels, we evaluated whether the combined PDGFR inhibition by nilotinib and VEGFR2 blockade by DC101 has synergistic therapy effects in a desmoplastic breast cancer xenograft model. In this context, besides immunohistological evaluation, molecular ultrasound imaging with BR55, the clinically used VEGFR2-targeted microbubbles, was applied to monitor VEGFR2-positive vessels noninvasively and to assess the therapy effects on tumor angiogenesis. DC101 treatment alone inhibited tumor angiogenesis, resulting in lower tumor growth and in significantly lower vessel density than in the control group after 14 days of therapy. In contrast, nilotinib inhibited vessel maturation but enhanced VEGFR2 expression, leading to markedly increased tumor volumes and a significantly higher vessel density. The combination of both drugs led to an almost similar tumor growth as in the DC101 treatment group, but VEGFR2 expression and microvessel density were higher and comparable to the controls. Further analyses revealed significantly higher levels of tumor cell–derived VEGF in nilotinib-treated tumors. In line with this, nilotinib, especially in low doses, induced an upregulation of VEGF and IL-6 mRNA in the tumor cells in vitro, thus providing an explanation for the enhanced angiogenesis observed in nilotinib-treated tumors in vivo. These findings suggest that nilotinib inhibits vessel maturation but counteracts the effects of antiangiogenic co-therapy by enhancing VEGF expression by the tumor cells and stimulating tumor angiogenesis.

  5. Reduction of relative centrifugation force within injectable platelet-rich-fibrin (PRF) concentrates advances patients' own inflammatory cells, platelets and growth factors: the first introduction to the low speed centrifugation concept.

    Science.gov (United States)

    Choukroun, J; Ghanaati, S

    2018-02-01

    The aim of this study was to analyze systematically the influence of the relative centrifugation force (RCF) on leukocytes, platelets and growth factor release within fluid platelet-rich fibrin matrices (PRF). Systematically using peripheral blood from six healthy volunteers, the RCF was reduced four times for each of the three experimental protocols (I-III) within the spectrum (710-44 g), while maintaining a constant centrifugation time. Flow cytometry was applied to determine the platelets and leukocyte number. The growth factor concentration was quantified 1 and 24 h after clotting using ELISA. Reducing RCF in accordance with protocol-II (177 g) led to a significantly higher platelets and leukocytes numbers compared to protocol-I (710 g). Protocol-III (44 g) showed a highly significant increase of leukocytes and platelets number in comparison to -I and -II. The growth factors' concentration of VEGF and TGF-β1 was significantly higher in protocol-II compared to -I, whereas protocol-III exhibited significantly higher growth factor concentration compared to protocols-I and -II. These findings were observed among 1 and 24 h after clotting, as well as the accumulated growth factor concentration over 24 h. Based on the results, it has been demonstrated that it is possible to enrich PRF-based fluid matrices with leukocytes, platelets and growth factors by means of a single alteration of the centrifugation settings within the clinical routine. We postulate that the so-called low speed centrifugation concept (LSCC) selectively enriches leukocytes, platelets and growth factors within fluid PRF-based matrices. Further studies are needed to evaluate the effect of cell and growth factor enrichment on wound healing and tissue regeneration while comparing blood concentrates gained by high and low RCF.

  6. The measurement of platelet activation by radioimmunoassay in asthma

    International Nuclear Information System (INIS)

    Wu Guoxin; Sun Jian; Li Jianyong; Ruan Changgeng

    1992-02-01

    Radioimmunoassay with specific monoclonal antibody was used to evaluate the platelet activation in 14 cases of acute bronchial asthma. The result showed that the number of molecules of alpha-granule membrane protein (GMP-140) which was exposed on the surface of platelet following secretion significantly increased on the surface of platelet and in plasma, while the number of molecules of glycoprotein (GP) I b and GPIII a did not change significantly; the concentration of thromboxane B 2 in plasma was raised, while the concentration of 6-keto-PGF 1a was within the normal limits; the concentrations of β-thromboglobulin (β-TG) and platelet factor 4(PF 4 ) in plasma increased significantly; the number of platelets decreased. These results strongly confirmed that the degree of platelet activation was enhanced during acute asthmatic attack. The significance of platelet activation in the pathogenesis of asthma should be further investigated

  7. Galactosylation does not prevent the rapid clearance of long-term, 4 degrees C-stored platelets

    DEFF Research Database (Denmark)

    Wandall, Hans H; Hoffmeister, Karin M; Sørensen, Anne Louise

    2007-01-01

    platelets. Based on this finding, we developed a similar glycosylation process by adding UDP-galactose to human apheresis platelets. A phase 1 clinical trial was conducted transfusing radiolabeled autologous apheresis platelets stored for 48 hours at 4 degrees C with or without pretreatment with UDP...

  8. N-methyl-N-nitro-N-nitrosoguanidine-mediated ING4 downregulation contributed to the angiogenesis of transformed human gastric epithelial cells.

    Science.gov (United States)

    Chen, Yansu; Fu, Rui; Xu, Mengdie; Huang, Yefei; Sun, Guixiang; Xu, Lichun

    2018-04-15

    Angiogenesis is associated with the progression and mortality of gastric cancer. Epidemiological evidences indicate that long-term N-nitroso compounds (NOCs) exposure predominantly contributes to the mortality of gastric cancer. Therefore, further reduced mortality of gastric cancer demands to explore the exact mechanisms of NOCs induced angiogenesis. As a tumor suppressor gene, inhibitor of growth protein 4 (ING4) plays an important role in pathological angiogenesis. In this study, we will investigate ING4 expression level in human gastric epithelial cells after the long-term low dose exposure of N-methyl-N-nitro-N-nitrosoguanidine (MNNG) and the pathological impact of MNNG-reduced ING4 on angiogenesis of transformed cells. The soft agar colony formation assay, Western blotting, immunofluorescence and wound healing assay were used to evaluate the characteristics of transformed cells. HUVEC growth and tube formation assays were performed to test the angiogenic abilities. EMSA, luciferase reporter gene assay, real-time PCR and Western blotting were used to explore the exact mechanism. By establishing transformed human gastric epithelial cells via chronic low dose treatment, a gradually ING4 downregulation was observed in the later-stage of MNNG-induced cell transformation. Moreover, we demonstrated that MNNG exposure-reduced ING4 expression significantly resulted into aggravating angiogenesis through increasing the phosphorylation level of NF-κB p65 and subsequently DAN binding activity and regulating the expressions of NF-κB p65 downstream pro-angiogenic genes, MMP-2 and MMP-9. Our findings provided a significant mechanistic insight into angiogenesis of MNNG-transformed human gastric epithelial cell and supported the concept that ING4 may be a relevant therapeutic target for gastric cancer. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Alternatives to allogeneic platelet transfusion.

    Science.gov (United States)

    Desborough, Michael J R; Smethurst, Peter A; Estcourt, Lise J; Stanworth, Simon J

    2016-11-01

    Allogeneic platelet transfusions are widely used for the prevention and treatment of bleeding in thrombocytopenia. Recent evidence suggests platelet transfusions have limited efficacy and are associated with uncertain immunomodulatory risks and concerns about viral or bacterial transmission. Alternatives to transfusion are a well-recognised tenet of Patient Blood Management, but there has been less focus on different strategies to reduce bleeding risk by comparison to platelet transfusion. Direct alternatives to platelet transfusion include agents to stimulate endogenous platelet production (thrombopoietin mimetics), optimising platelet adhesion to endothelium by treating anaemia or increasing von Willebrand factor levels (desmopressin), increasing formation of cross-linked fibrinogen (activated recombinant factor VII, fibrinogen concentrate or recombinant factor XIII), decreasing fibrinolysis (tranexamic acid or epsilon aminocaproic acid) or using artificial or modified platelets (cryopreserved platelets, lyophilised platelets, haemostatic particles, liposomes, engineered nanoparticles or infusible platelet membranes). The evidence base to support the use of these alternatives is variable, but an area of active research. Much of the current randomised controlled trial focus is on evaluation of the use of thrombopoietin mimetics and anti-fibrinolytics. It is also recognised that one alternative strategy to platelet transfusion is choosing not to transfuse at all. © 2016 John Wiley & Sons Ltd.

  10. Staurosporine potentiates platelet activating factor stimulated phospholipase C activity in rabbit platelets but does not block desensitization by platelet activating factor

    International Nuclear Information System (INIS)

    Morrison, W.J.; Dhar, A.; Shukla, S.D.

    1989-01-01

    The possible involvement of protein kinase C activation in regulating PAF-stimulated PLC activity was studied in rabbit platelets. PAF stimulated incorporation of 32 P into proteins and caused [ 3 H]InsP 3 levels to increase about 260% of control. These responses were compared after platelets were pretreated with either PAF, phorbol 12-myristate 13-acetate (PMA) or staurosporine and also after pretreatments with staurosporine followed by PAF or PMA. Pretreating platelets with staurosporine potentiated PAF-stimulated [ 3 H]InsP 3 levels by 54% and blocked protein phosphorylation. Pretreatments with PAF and PMA caused PAF-stimulated [ 3 H]InsP 3 levels to decrease to 115 and 136%, respectively. Staurosporine pretreatment blocked the decrease caused by the PMA pretreatment but not that by PAF. This study demonstrates that PAF-stimulated PLC activity is negatively affected by protein kinase C (PKC) activation and that inhibition of PKC activity did not prevent desensitization of PLC by PAF

  11. Platelet activating factor activity in the phospholipids of bovine spermatozoa

    Energy Technology Data Exchange (ETDEWEB)

    Parks, J.E.; Hough, S.; Elrod, C. (Cornell Univ., Ithaca, NY (USA))

    1990-11-01

    Platelet activating factor (PAF) has been detected in sperm from several mammalian species and can affect sperm motility and fertilization. Because bovine sperm contain a high percentage of ether-linked phospholipid precursors required for PAF synthesis, a study was undertaken to determine the PAF activity of bovine sperm phospholipids. Total lipids of washed, ejaculated bull sperm were extracted, and phospholipids were fractionated by thin-layer chromatography. Individual phospholipid fractions were assayed for PAF activity on the basis of (3H)serotonin release from equine platelets. PAF activity was detected in the PAF fraction (1.84 pmol/mumol total phospholipid) and in serine/inositol (PS/PI), choline (CP), and ethanolamine phosphoglyceride (EP) and cardiolipin (CA) fractions. Activity was highest in the CP fraction (8.05 pmol/mumol total phospholipid). Incomplete resolution of PAF and neutral lipids may have contributed to the activity in the PS/PI and CA fractions, respectively. Phospholipids from nonsperm sources did not stimulate serotonin release. Platelet activation by purified PAF and by sperm phospholipid fractions was inhibited by the receptor antagonist SRI 63-675. These results indicate that bovine sperm contain PAF and that other sperm phospholipids, especially CP and EP, which are high in glycerylether components, are capable of receptor-mediated platelet activation.

  12. Evaluation of Functionalized Porous Titanium Implants for Enhancing Angiogenesis in Vitro

    Directory of Open Access Journals (Sweden)

    Laura Roland

    2016-04-01

    Full Text Available Implant constructs supporting angiogenesis are favorable for treating critically-sized bone defects, as ingrowth of capillaries towards the center of large defects is often insufficient. Consequently, the insufficient nutritional supply of these regions leads to impaired bone healing. Implants with specially designed angiogenic supporting geometry and functionalized with proangiogenic cytokines can enhance angiogenesis. In this study, Vascular Endothelial Growth Factor (VEGF and High Mobility Group Box 1 (HMGB1 were used for incorporation into poly-ε-caprolactone (PCL-coated porous titanium implants. Bioactivity of released factors and influence on angiogenesis of functionalized implants were evaluated using a migration assay and angiogenesis assays. Both implants released angiogenic factors, inducing migration of endothelial cells. Also, VEGF-functionalized PCL-coated titanium implants enhanced angiogenesis in vitro. Both factors were rapidly released in high doses from the implant coating during the first 72 h.

  13. Effects of sodium citrate and acid citrate dextrose solutions on cell counts and growth factor release from equine pure-platelet rich plasma and pure-platelet rich gel.

    Science.gov (United States)

    Giraldo, Carlos E; Álvarez, María E; Carmona, Jorge U

    2015-03-14

    There is a lack information on the effects of the most commonly used anticoagulants for equine platelet rich plasmas (PRPs) elaboration on cell counts and growth factor release from platelet rich gels (PRGs). The aims of this study were 1) to compare the effects of the anticoagulants sodium citrate (SC), acid citrate dextrose solution A (ACD-A) and ACD-B on platelet (PLT), leukocyte (WBC) and on some parameters associated to platelet activation including mean platelet volume (MPV) and platelet distribution width (PDW) between whole blood, pure PRP (P-PRP) and platelet-poor plasma (PPP); 2) to compare transforming growth factor beta 1 (TGF-β(1)) and platelet-derived growth factor isoform BB (PDGF-BB) concentrations in supernatants from pure PRG (P-PRG), platelet-poor gel (PPG), P-PRP lysate (positive control) and plasma (negative control); 3) to establish the possible correlations between all the studied cellular and molecular parameters. In all cases the three anticoagulants produced P-PRPs with significantly higher PLT counts compared with whole blood and PPP. The concentrations of WBCs were similar between P-PRP and whole blood, but significantly lower in PPP. The type of anticoagulant did not significantly affect the cell counts for each blood component. The anticoagulants also did not affect the MPV and PDW parameters. Independently of the anticoagulant used, all blood components presented significantly different concentrations of PDGF-BB and TGF-β(1). The highest growth factor (GF) concentrations were observed from P-PRP lysates, followed by PRG supernatants, PPP lysates, PPG supernatants and plasma. Significant correlations were observed between PLT and WBC counts (ρ = 0.80), PLT count and TGF-β(1) concentration (ρ = 0.85), PLT count and PDGF-BB concentration (ρ = 0.80) and PDGF-BB and TGF-β(1) concentrations (ρ = 0.75). The type of anticoagulant was not correlated with any of the variables evaluated. The anticoagulants did not

  14. Biologic effects of platelet-derived growth factor receptor α blockade in uterine cancer.

    Science.gov (United States)

    Roh, Ju-Won; Huang, Jie; Hu, Wei; Yang, XiaoYun; Jennings, Nicholas B; Sehgal, Vasudha; Sohn, Bo Hwa; Han, Hee Dong; Lee, Sun Joo; Thanapprapasr, Duangmani; Bottsford-Miller, Justin; Zand, Behrouz; Dalton, Heather J; Previs, Rebecca A; Davis, Ashley N; Matsuo, Koji; Lee, Ju-Seog; Ram, Prahlad; Coleman, Robert L; Sood, Anil K

    2014-05-15

    Platelet-derived growth factor receptor α (PDGFRα) expression is frequently observed in many kinds of cancer and is a candidate for therapeutic targeting. This preclinical study evaluated the biologic significance of PDGFRα and PDGFRα blockade (using a fully humanized monoclonal antibody, 3G3) in uterine cancer. Expression of PDGFRα was examined in uterine cancer clinical samples and cell lines, and biologic effects of PDGFRα inhibition were evaluated using in vitro (cell viability, apoptosis, and invasion) and in vivo (orthotopic) models of uterine cancer. PDGFRα was highly expressed and activated in uterine cancer samples and cell lines. Treatment with 3G3 resulted in substantial inhibition of PDGFRα phosphorylation and of downstream signaling molecules AKT and mitogen-activated protein kinase (MAPK). Cell viability and invasive potential of uterine cancer cells were also inhibited by 3G3 treatment. In orthotopic mouse models of uterine cancer, 3G3 monotherapy had significant antitumor effects in the PDGFRα-positive models (Hec-1A, Ishikawa, Spec-2) but not in the PDGFRα-negative model (OVCA432). Greater therapeutic effects were observed for 3G3 in combination with chemotherapy than for either drug alone in the PDGFRα-positive models. The antitumor effects of therapy were related to increased apoptosis and decreased proliferation and angiogenesis. These findings identify PDGFRα as an attractive target for therapeutic development in uterine cancer. ©2014 American Association for Cancer Research.

  15. Regulation of platelet activating factor receptor coupled phosphoinositide-specific phospholipase C activity

    International Nuclear Information System (INIS)

    Morrison, W.J.

    1988-01-01

    The major objectives of this study were two-fold. The first was to establish whether binding of platelet activating factor (PAF) to its receptor was integral to the stimulation of polyphosphoinositide-specific phospholipase C (PLC) in rabbit platelets. The second was to determine regulatory features of this receptor-coupled mechanism. [ 3 H]PAF binding demonstrated two binding sites, a high affinity site with a inhibitory constant (Ki) of 2.65 nM and a low affinity site with a Ki of 0.80 μM. PAF receptor coupled activation of phosphoinositide-specific PLC was studied in platelets which were made refractory, by short term pretreatments, to either PAF or thrombin. Saponin-permeabilized rabbit platelets continue to regulate the mechanism(s) coupling PAF receptors to PLC stimulation. However, TRPγS and GDPβS, which affect guanine nucleotide regulatory protein functions, were unable to modulate the PLC activity to any appreciable extent as compared to PAF. The possible involvement of protein kinase C (PKC) activation in regulating PAF-stimulated PLC activity was studied in rabbit platelets pretreated with staurosporine followed by pretreatments with PAF or phorbol 12-myristate 13-acetate (PMA)

  16. Mechanisms of andrographolide-induced platelet apoptosis in human platelets: regulatory roles of the extrinsic apoptotic pathway.

    Science.gov (United States)

    Lien, Li-Ming; Su, Cheng-Chen; Hsu, Wen-Hsien; Lu, Wan-Jung; Chung, Chi-Li; Yen, Ting-Lin; Chiu, Hou-Chang; Sheu, Joen-Rong; Lin, Kuan-Hung

    2013-11-01

    Andrographolide, a novel nuclear factor-κB (NF-κB) inhibitor, is isolated from the leaves of Andrographis paniculata. Platelet activation is relevant to a variety of coronary heart diseases. Our recent studies revealed that andrographolide possesses potent antiplatelet activity by inhibition of the p38 MAPK/(●) HO-NF-κB-ERK2 cascade. Although platelets are anucleated cells, apoptotic machinery apparatus recently has been found to regulate platelet activation and limit platelet lifespan. Therefore, we further investigated the regulatory effects of andrographolide on platelet apoptotic events. In this study, apoptotic signaling events for caspase-3, -8, and Bid were time (10-60 min)- and dose (25-100 μΜ)-dependently activated by andrographolide in human platelets. Andrographolide could also disrupt mitrochondrial membrane potential. In addition, caspase-8 inhibitor (z-IETD-fmk, 50 μΜ) was found to reverse andrographolide-induced caspase-8 activation, whereas the antagonistic anti-Fas receptor (ZB4, 500 ng/mL) and anti-tumor necrosis factor-R1 (H398, 10 µg/mL) monoclonal antibodies did not. In conclusion, this study for the first time demonstrated that andrographolide might limit platelet lifespan by initiating the caspase-8-dependent extrinsic apoptotic pathway, in spite of no direct evidence that death receptors are involved in this process proved. Overall, the various medicinal properties of andrographolide suggest its potential value in treating patients with thromboembolic disorders. Copyright © 2012 John Wiley & Sons, Ltd.

  17. Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice

    DEFF Research Database (Denmark)

    Koenen, Rory R; von Hundelshausen, Philipp; Nesmelova, Irina V

    2009-01-01

    Atherosclerosis is characterized by chronic inflammation of the arterial wall due to chemokine-driven mononuclear cell recruitment. Activated platelets can synergize with chemokines to exacerbate atherogenesis; for example, by deposition of the chemokines platelet factor-4 (PF4, also known as CXC...

  18. Antagonism of Sorafenib and Regorafenib actions by platelet factors in hepatocellular carcinoma cell lines

    International Nuclear Information System (INIS)

    D’Alessandro, Rosalba; Refolo, Maria G; Lippolis, Catia; Giannuzzi, Grazia; Carella, Nicola; Messa, Caterina; Cavallini, Aldo; Carr, Brian I

    2014-01-01

    Platelets are frequently altered in hepatocellular carcinoma (HCC) patients. Platelet lysates (hPL) can enhance HCC cell growth and decrease apoptosis. The aims were to evaluate whether hPL can modulate the actions of Sorafenib or Regorafenib, two clinical HCC multikinase antagonists. Several human HCC cell lines were grown in the presence and absence of Sorafenib or Regorafenib, with or without hPL. Growth was measured by MTT assay, apoptosis was assessed by Annexin V and by western blot, and autophagy and MAPK growth signaling were also measured by western blot, and migration and invasion were measured by standard in vitro assays. Both Sorafenib and Regorafenib-mediated inhibition of cell growth, migration and invasion were all antagonized by hPL. Drug-mediated apoptosis and decrease in phospho-ERK levels were both blocked by hPL, which also increased anti-apoptotic phospho-STAT, Bax and Bcl-xL levels. Preliminary data, obtained with epidermal growth factor (EGF) and insulin-like growth factor-I (IGF-I), included in hPL, revealed that these factors were able to antagonized Sorafenib in a proliferation assay, in particular when used in combination. Platelet factors can antagonize Sorafenib or Regorafenib-mediated growth inhibition and apoptosis in HCC cells. The modulation of platelet activity or numbers has the potential to enhance multikinase drug actions

  19. Cytokine, chemokine, and growth factor profile of platelet-rich plasma.

    Science.gov (United States)

    Mussano, F; Genova, T; Munaron, L; Petrillo, S; Erovigni, F; Carossa, S

    2016-07-01

    During wound healing, biologically active molecules are released from platelets. The rationale of using platelet-rich plasma (PRP) relies on the concentration of bioactive molecules and subsequent delivery to healing sites. These bioactive molecules have been seldom simultaneously quantified within the same PRP preparation. In the present study, the flexible Bio-Plex system was employed to assess the concentration of a large range of cytokines, chemokines, and growth factors in 16 healthy volunteers so as to determine whether significant baseline differences may be found. Besides IL-1b, IL-1ra, IL-4, IL-6, IL-8, IL-12, IL-13, IL-17, INF-γ, TNF-α, MCP-1, MIP-1a, RANTES, bFGF, PDGF, and VEGF that were already quantified elsewhere, the authors reported also on the presence of IL-2, IL-5, IL-7, IL-9, IL-10, IL-15 G-CSF, GM-CSF, Eotaxin, CXCL10 chemokine (IP-10), and MIP 1b. Among the most interesting results, it is convenient to mention the high concentrations of the HIV-suppressive and inflammatory cytokine RANTES and a statistically significant difference between males and females in the content of PDGF-BB. These data are consistent with previous reports pointing out that gender, diet, and test system affect the results of platelet function in healthy subjects, but seem contradictory when compared to other quantification assays in serum and plasma. The inconsistencies affecting the experimental results found in literature, along with the variability found in the content of bioactive molecules, urge further research, hopefully in form of randomized controlled clinical trials, in order to find definitive evidence of the efficacy of PRP treatment in various pathologic and regenerative conditions.

  20. Evidence that tumor necrosis factor-related apoptosis inducing ligand (TRAIL) inhibits angiogenesis by inducing vascular endothelial cell apoptosis

    International Nuclear Information System (INIS)

    Chen, Pei-Lin; Easton, Alexander S.

    2010-01-01

    Tumor necrosis factor (TNF) and its related ligands TNF-related apoptosis inducing ligand (TRAIL) and Fas ligand (FasL) play roles in the regulation of vascular responses, but their effect on the formation of new blood vessels (angiogenesis) is unclear. Therefore, we have examined the effects of these ligands on angiogenesis modeled with primary cultures of human umbilical vein endothelial cells (HUVEC). To examine angiogenesis in the context of the central nervous system, we have also modeled cerebral angiogenesis with the human brain endothelial cell line hCMEC/D3. Parameters studied were bromodeoxyuridine (BrdU) incorporation and cell number (MTT) assay (to assess endothelial proliferation), scratch assay (migration) and networks on Matrigel (tube formation). In our hands, neither TRAIL nor FasL (1, 10, and 100 ng/ml) had an effect on parameters of angiogenesis in the HUVEC model. In hCMEC/D3 cells by contrast, TRAIL inhibited all parameters (10-100 ng/ml, 24 h). This was due to apoptosis, since its action was blocked by the pan-caspase inhibitor zVADfmk (5 x 10 -5 mol/l) and TRAIL increased caspase-3 activity 1 h after application. However FasL (100 ng/ml) increased BrdU uptake without other effects. We conclude that TRAIL has different effects on in vitro angiogenesis depending on which model is used, but that FasL is generally ineffective when applied in vitro. The data suggest that TRAIL primarily influences angiogenesis by the induction of vascular endothelial apoptosis, leading to vessel regression.

  1. Green tea and its anti-angiogenesis effects.

    Science.gov (United States)

    Rashidi, Bahman; Malekzadeh, Mehrnoush; Goodarzi, Mohammad; Masoudifar, Aria; Mirzaei, Hamed

    2017-05-01

    The development of new blood vessels from a pre-existing vasculature (also known as angiogenesis) is required for many physiological processes including embryogenesis and post-natal growth. However, pathological angiogenesis is also a hallmark of cancer and many ischaemic and inflammatory diseases. The pro-angiogenic members of the VEGF family (vascular endothelial growth factor family), VEGF-A, VEGF-B, VEGF-C, VEGF-D and placental growth factor (PlGF), and the related receptors, VEGFR-1, VEGFR-2 and VEGFR-3 have a central and decisive role in angiogenesis. Indeed, they are the targets for anti-angiogenic drugs currently approved. Green tea (from the Camellia sinensis plant) is one of the most popular beverages in the world. It is able to inhibit angiogenesis by different mechanisms such as microRNAs (miRNAs). Green tea and its polyphenolic substances (like catechins) show chemo-preventive and chemotherapeutic features in various types of cancer and experimental models for human cancers. The tea catechins, including (-)-epigallocatechin-3-gallate (EGCG), have multiple effects on the cellular proteome and signalome. Note that the polyphenolic compounds from green tea are able to change the miRNA expression profile associated with angiogenesis in various cancer types. This review focuses on the ability of the green tea constituents to suppress angiogenesis signaling and it summarizes the mechanisms by which EGCG might inhibit the VEGF family. We also highlighted the miRNAs affected by green tea which are involved in anti-angiogenesis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Cinnamic aldehyde suppresses hypoxia-induced angiogenesis via inhibition of hypoxia-inducible factor-1α expression during tumor progression.

    Science.gov (United States)

    Bae, Woom-Yee; Choi, Jae-Sun; Kim, Ja-Eun; Jeong, Joo-Won

    2015-11-01

    During tumor progression, hypoxia-inducible factor 1 (HIF-1) plays a critical role in tumor angiogenesis and tumor growth by regulating the transcription of several genes in response to a hypoxic environment and changes in growth factors. This study was designed to investigate the effects of cinnamic aldehyde (CA) on tumor growth and angiogenesis and the mechanisms underlying CA's anti-angiogenic activities. We found that CA administration inhibits tumor growth and blocks tumor angiogenesis in BALB/c mice. In addition, CA treatment decreased HIF-1α protein expression and vascular endothelial growth factor (VEGF) expression in mouse tumors and Renca cells exposed to hypoxia in vitro. Interestingly, CA treatment did not affect the stability of von Hippel-Lindau protein (pVHL)-associated HIF-1α and CA attenuated the activation of mammalian target of rapamycin (mTOR) pathway. Collectively, these findings strongly indicate that the anti-angiogenic activity of CA is, at least in part, regulated by the mTOR pathway-mediated suppression of HIF-1α protein expression and these findings suggest that CA may be a potential drug for human cancer therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Exendin-4 in combination with adipose-derived stem cells promotes angiogenesis and improves diabetic wound healing.

    Science.gov (United States)

    Seo, Eunhui; Lim, Jae Soo; Jun, Jin-Bum; Choi, Woohyuk; Hong, In-Sun; Jun, Hee-Sook

    2017-02-15

    Diminished wound healing is a major complication of diabetes mellitus and can lead to foot ulcers. However, there are limited therapeutic methods to treat this condition. Exendin-4 (Ex-4), a glucagon-like peptide-1 receptor agonist, is known to have many beneficial effects on diabetes. In addition, mesenchymal stem cells are known to have wound healing effects. We investigated the effects of Ex-4 in combination with human adipose tissue-derived stem cells (ADSCs) on diabetic wound healing in a diabetic animal model. Diabetic db/db (blood glucose levels, >500 mg/dl) or C57BL/6 mice were subjected to wounding on the skin of the back. One day after wounding, each wound received ADSCs (2.5 × 10 5 cells) injected intradermally around the wound and/or Ex-4 (50 μl of 100 nM Ex-4) topically applied on the wound with a fine brush daily. Wound size was monitored and wound histology was examined. Human endothelial cells and keratinocyte cells were used to assess angiogenesis and vascular endothelial growth factor expression in vitro. Topical administration of Ex-4 or injection of ADSCs resulted in a rapid reduction of wound size in both diabetic and normoglycemic animals compared with vehicle treatment. Histological analysis also showed rapid skin reconstruction in Ex-4-treated or ADSC-injected wounds. A combination of Ex-4 and ADSCs showed a significantly better therapeutic effect over either treatment alone. In vitro angiogenesis assays showed that both Ex-4 and ADSC-conditioned media (CM) treatment improved migration, invasion and proliferation of human endothelial cells. ADSC-CM also increased migration and proliferation of human keratinocytes. In addition, both Ex-4 and ADSC-CM increased the expression of vascular endothelial growth factor. Co-culture with ADSCs increased migration and proliferation of these cells similar to that found after ADSC-CM treatment. We suggest that Ex-4 itself is effective for the treatment of diabetic skin wounds, and a combination of

  4. Angiogenesis Dysregulation in Term Asphyxiated Newborns Treated with Hypothermia

    Science.gov (United States)

    Shaikh, Henna; Boudes, Elodie; Khoja, Zehra; Shevell, Michael; Wintermark, Pia

    2015-01-01

    Background Neonatal encephalopathy following birth asphyxia is a major predictor of long-term neurological impairment. Therapeutic hypothermia is currently the standard of care to prevent brain injury in asphyxiated newborns but is not protective in all cases. More robust and versatile treatment options are needed. Angiogenesis is a demonstrated therapeutic target in adult stroke. However, no systematic study examines the expression of angiogenesis-related markers following birth asphyxia in human newborns. Objective This study aimed to evaluate the expression of angiogenesis-related protein markers in asphyxiated newborns developing and not developing brain injury compared to healthy control newborns. Design/Methods Twelve asphyxiated newborns treated with hypothermia were prospectively enrolled; six developed eventual brain injury and six did not. Four healthy control newborns were also included. We used Rules-Based Medicine multi-analyte profiling and protein array technologies to study the plasma concentration of 49 angiogenesis-related proteins. Mean protein concentrations were compared between each group of newborns. Results Compared to healthy newborns, asphyxiated newborns not developing brain injury showed up-regulation of pro-angiogenic proteins, including fatty acid binding protein-4, glucose-6-phosphate isomerase, neuropilin-1, and receptor tyrosine-protein kinase erbB-3; this up-regulation was not evident in asphyxiated newborns eventually developing brain injury. Also, asphyxiated newborns developing brain injury showed a decreased expression of anti-angiogenic proteins, including insulin-growth factor binding proteins -1, -4, and -6, compared to healthy newborns. Conclusions These findings suggest that angiogenesis pathways are dysregulated following birth asphyxia and are putatively involved in brain injury pathology and recovery. PMID:25996847

  5. Angiogenesis dysregulation in term asphyxiated newborns treated with hypothermia.

    Directory of Open Access Journals (Sweden)

    Henna Shaikh

    Full Text Available Neonatal encephalopathy following birth asphyxia is a major predictor of long-term neurological impairment. Therapeutic hypothermia is currently the standard of care to prevent brain injury in asphyxiated newborns but is not protective in all cases. More robust and versatile treatment options are needed. Angiogenesis is a demonstrated therapeutic target in adult stroke. However, no systematic study examines the expression of angiogenesis-related markers following birth asphyxia in human newborns.This study aimed to evaluate the expression of angiogenesis-related protein markers in asphyxiated newborns developing and not developing brain injury compared to healthy control newborns.Twelve asphyxiated newborns treated with hypothermia were prospectively enrolled; six developed eventual brain injury and six did not. Four healthy control newborns were also included. We used Rules-Based Medicine multi-analyte profiling and protein array technologies to study the plasma concentration of 49 angiogenesis-related proteins. Mean protein concentrations were compared between each group of newborns.Compared to healthy newborns, asphyxiated newborns not developing brain injury showed up-regulation of pro-angiogenic proteins, including fatty acid binding protein-4, glucose-6-phosphate isomerase, neuropilin-1, and receptor tyrosine-protein kinase erbB-3; this up-regulation was not evident in asphyxiated newborns eventually developing brain injury. Also, asphyxiated newborns developing brain injury showed a decreased expression of anti-angiogenic proteins, including insulin-growth factor binding proteins -1, -4, and -6, compared to healthy newborns.These findings suggest that angiogenesis pathways are dysregulated following birth asphyxia and are putatively involved in brain injury pathology and recovery.

  6. Increasing platelet concentrations in leukocyte-reduced platelet-rich plasma decrease collagen gene synthesis in tendons.

    Science.gov (United States)

    Boswell, Stacie G; Schnabel, Lauren V; Mohammed, Hussni O; Sundman, Emily A; Minas, Tom; Fortier, Lisa A

    2014-01-01

    Platelet-rich plasma (PRP) is used for the treatment of tendinopathy. There are numerous PRP preparations, and the optimal combination of platelets and leukocytes is not known. Within leukocyte-reduced PRP (lrPRP), there is a plateau effect of platelet concentration, with increasing platelet concentrations being detrimental to extracellular matrix synthesis. Controlled laboratory study. Different formulations of lrPRP with respect to the platelet:leukocyte ratio were generated from venous blood of 8 horses. Explants of the superficial digital flexor tendon were cultured in lrPRP products for 96 hours. Platelet-derived growth factor-BB (PDGF-BB), tumor necrosis factor-α (TNF-α), transforming growth factor-β1 (TGF-β1), and interleukin-1β (IL-1β) concentrations were determined in the media by enzyme-linked immunosorbent assay. Gene expression in tendon tissue for collagen type I and III (COL1A1 and COL3A1, respectively), matrix metalloproteinase-3 and -13 (MMP-3 and MMP-13, respectively), cartilage oligomeric matrix protein (COMP), and IL-1β was determined. Data were divided into 3 groups of lrPRP based on the ratio of platelets:leukocytes and evaluated to determine the effect of platelet concentration. Complete blood counts verified leukocyte reduction and platelet enrichment in all PRP preparations. In the lrPRP preparation, the anabolic growth factors PDGF-BB and TGF-β1 were increased with increasing platelet concentrations, and the catabolic cytokine IL-1β was decreased with increasing platelet concentrations. Increasing the platelet concentration resulted in a significant reduction in COL1A1 and COL3A1 synthesis in tendons. Increasing the platelet concentration within lrPRP preparations results in the delivery of more anabolic growth factors and less proinflammatory cytokines, but the biological effect on tendons is diminished metabolism as indicated by a decrease in the synthesis of both COL1A1 and COL3A1. Together, this information suggests that

  7. Isthmin is a novel secreted angiogenesis inhibitor that inhibits tumour growth in mice

    Science.gov (United States)

    Xiang, Wei; Ke, Zhiyuan; Zhang, Yong; Ho-Yuet Cheng, Grace; Irwan, Ishak Darryl; Sulochana, K N; Potturi, Padma; Wang, Zhengyuan; Yang, He; Wang, Jingyu; Zhuo, Lang; Kini, R Manjunatha; Ge, Ruowen

    2011-01-01

    Abstract Anti-angiogenesis represents a promising therapeutic strategy for the treatment of various malignancies. Isthmin (ISM) is a gene highly expressed in the isthmus of the midbrain–hindbrain organizer in Xenopus with no known functions. It encodes a secreted 60 kD protein containing a thrombospondin type 1 repeat domain in the central region and an adhesion-associated domain in MUC4 and other proteins (AMOP) domain at the C-terminal. In this work, we demonstrate that ISM is a novel angiogenesis inhibitor. Recombinant mouse ISM inhibited endothelial cell (EC) capillary network formation on Matrigel through its C-terminal AMOP domain. It also suppressed vascular endothelial growth factor (VEGF)-basic fibroblast growth factor (bFGF) induced in vivo angiogenesis in mouse. It mitigated VEGF-stimulated EC proliferation without affecting EC migration. Furthermore, ISM induced EC apoptosis in the presence of VEGF through a caspase-dependent pathway. ISM binds to αvβ5 integrin on EC surface and supports EC adhesion. Overexpression of ISM significantly suppressed mouse B16 melanoma tumour growth through inhibition of tumour angiogenesis without affecting tumour cell proliferation. Knockdown of isthmin in zebrafish embryos using morpholino antisense oligonucleotides led to disorganized intersegmen-tal vessels in the trunk. Our results demonstrate that ISM is a novel endogenous angiogenesis inhibitor with functions likely in physiological as well as pathological angiogenesis. PMID:19874420

  8. Decellularized heart ECM hydrogel using supercritical carbon dioxide for improved angiogenesis.

    Science.gov (United States)

    Seo, Yoojin; Jung, Youngmee; Kim, Soo Hyun

    2018-02-01

    Initial angiogenesis within the first 3 days is critical for healing ischemic diseases such as myocardial infarction. Recently, decellularized extracellular matrix (dECM) has been reported to provide tissue-derived ECM components and can be used as a scaffold for cell delivery for angiogenesis in tissue engineering. Decellularization by various detergents such as sodium dodecyl sulfate (SDS) and triton X-100 can remove the cell nuclei in tissue organs. However, this leads to ECM structure denaturation, decreased presence of various ECM proteins and cytokines, and loss of mechanical properties. To overcome these limitations, in this study, we developed a supercritical carbon dioxide and ethanol co-solvent (scCO 2 -EtOH) decellularization method, which is a detergent-free system that prevents ECM structure disruption and retains various angiogenic proteins in the heart dECM, and tested on rat heart tissues. The heart tissue was placed into the scCO 2 reactor and decellularized at 37 °C and 350 bar. After scCO 2 -EtOH treatment, the effects were evaluated by DNA, collagen, and glycosaminoglycan (GAG) quantification and hematoxylin and eosin and immunofluorescence staining to determine the absence of nucleic acids and preservation of heart ECM components. Similar to the native group, the scCO 2 -EtOH group contained more ECM components such as collagen, GAGs, collagen I, laminin, and fibronectin and angiogenic factors including vascular endothelial growth factor, fibroblast growth factor, and platelet-derived growth factor and others in comparison to the detergent group. In addition, to estimate angiogenesis of the dECM hydrogels, the neutralized dECM solution was injected in a rat subcutaneous layer (n = 6 in each group: collagen, scCO 2 -EOH, and detergent group), after which the solution naturally formed gelation in the subcutaneous layer. After 3 days, the gels were harvested and estimated by immunofluorescence staining and the ImageJ program for

  9. A New Platelet-Aggregation-Inhibiting Factor Isolated from Bothrops moojeni Snake Venom

    Directory of Open Access Journals (Sweden)

    Bruna Barbosa de Sousa

    2017-01-01

    Full Text Available This work reports the purification and functional characterization of BmooPAi, a platelet-aggregation-inhibiting factor from Bothrops moojeni snake venom. The toxin was purified by a combination of three chromatographic steps (ion-exchange on DEAE-Sephacel, molecular exclusion on Sephadex G-75, and affinity chromatography on HiTrap™ Heparin HP. BmooPAi was found to be a single-chain protein with an apparent molecular mass of 32 kDa on 14% SDS-PAGE, under reducing conditions. Sequencing of BmooPAi by Edman degradation revealed the amino acid sequence LGPDIVPPNELLEVM. The toxin was devoid of proteolytic, haemorrhagic, defibrinating, or coagulant activities and induced no significant oedema or hyperalgesia. BmooPAi showed a rather specific inhibitory effect on ristocetin-induced platelet aggregation in human platelet-rich plasma, whereas it had little or no effect on platelet aggregation induced by collagen and adenosine diphosphate. The results presented in this work suggest that BmooPAi is a toxin comprised of disintegrin-like and cysteine-rich domains, originating from autolysis/proteolysis of PIII SVMPs from B. moojeni snake venom. This toxin may be of medical interest because it is a platelet aggregation inhibitor, which could potentially be developed as a novel therapeutic agent to prevent and/or treat patients with thrombotic disorders.

  10. Association of preoperative radiation effect with tumor angiogenesis and vascular endothelial growth factor in oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Shintani, Satoru; Kiyota, Akihisa; Mihara, Mariko; Nakahara, Yuuji; Terakado, Nagaaki; Ueyama, Yoshiya; Matsumura, Tomohiro

    2000-01-01

    This study examined the relationship between tumor angiogenesis and the radiation-induced response, evaluated based on pathological changes, in oral squamous cell carcinoma patients treated with preoperative radiation therapy. Forty-one cases of squamous cell carcinoma treated with preoperative radiation therapy were investigated. Tumor angiogenesis was assessed by scoring the intratumor microvessel density (IMVD). Expression of vascular endothelial growth factor (VEGF) was also evaluated before and after preoperative radiotherapy. There was no correlation between IMVD in the specimens before therapy and the pathological response to radiation therapy. However, radiation therapy decreased IMVD in the specimens after therapy. A significant association was observed between VEGF expression and resistance to radiation therapy: only 4 of the 21 patients whose tumors exhibited a high level (2+ or 3+) of VEGF staining experienced a major (3+ or 4+) pathological response to radiation therapy. Furthermore, an increasing level of VEGF expression after radiation therapy was observed in non-effective (0 to 2+) response cases. These results suggest that VEGF expression and the induction of this protein are related to radiosensitivity and could be used to predict the effects of preoperative radiation therapy on oral squamous cell carcinoma. (author)

  11. Association of Factor V Secretion with Protein Kinase B Signaling in Platelets from Horses with Atypical Equine Thrombasthenia.

    Science.gov (United States)

    Norris, J W; Pombo, M; Shirley, E; Blevins, G; Tablin, F

    2015-01-01

    Two congenital bleeding diatheses have been identified in Thoroughbred horses: Glanzmann thrombasthenia (GT) and a second, novel diathesis associated with abnormal platelet function in response to collagen and thrombin stimulation. Platelet dysfunction in horses with this second thrombasthenia results from a secretory defect. Two affected and 6 clinically normal horses. Ex vivo study. Washed platelets were examined for (1) expression of the αIIb-β3 integrin; (2) fibrinogen binding capacity in response to ADP and thrombin; (3) secretion of dense and α-granules; (4) activation of the mammalian target of rapamycin (mTOR)-protein kinase B (AKT) signaling pathway; and (5) cellular distribution of phosphatidylinositol-4-phosphate-3-kinase, class 2B (PIK3C2B) and SH2 containing inositol-5'-phosphatase 1 (SHIP1). Platelets from affected horses expressed normal amounts of αIIb-β3 integrin and bound fibrinogen normally in response to ADP, but bound 80% less fibrinogen in response to thrombin. α-granules only released 50% as much Factor V as control platelets, but dense granules released their contents normally. Protein kinase B (AKT) phosphorylation was reduced after thrombin activation, but mTOR Complex 2 (mTORC2) and phosphoinositide-dependent kinase 1 (PDK1) signaling were normal. SH2-containing inositol-5'-phosphatase 1 (SHIP1) did not localize to the cytoskeleton of affected platelets and was decreased overall consistent with reduced AKT phosphorylation. Defects in fibrinogen binding, granule secretion, and signal transduction are unique to this thrombasthenia, which we designate as atypical equine thrombasthenia. Copyright © The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of American College of Veterinary Internal Medicine.

  12. Angiogenesis with intramyocardial administration of basic fibroblast growth factor in canine ischemic myocardium

    International Nuclear Information System (INIS)

    Sun Lijun; Liu Ying; Zhao Haitao; Huan Yi; Ge Yali; Gao Fabao

    2004-01-01

    Objective: To evaluate the effect of intramyocardial administration of basic fibroblast growth factor on angiogenesis of infarcted myocardium in dogs. Methods: Twenty-four mongrel dogs were randomized into control group and therapeutic group. Acute myocardial infarction was made by ligation of the left anterior descending coronary artery distal to its first diagonal branch. As soon as coronary artery was occluded, 50 mg of basic fibroblast growth factor in 15 ml of saline was injected into the infarcted and border zone in therapeutic group, whereas 15 ml saline alone was used in the same way in control dogs. Every 3 dogs in each group was studied on the 1 st day, the 3 rd day, the 10 th day, and the 17 th day, respectively. Electron microscope was used to observe the growth of capillaries. Angiogenesis was evaluated by immunohistochemical studies with VIII factor. With sensitivity encoded technique, cine MR and MR perfusion imaging were performed on each dog within 3 hours after surgery and before euthanasia to evaluate cardiac function and the characteristics of myocardial perfusion. Results: In therapeutic group, LVEF improved markedly since the 10 th day (on the 10 th day: control group 24.09 ± 3.32, therapeutic group 45.71 ± 6.27; on the 17 th day: control group 31.46 ± 4.60, therapeutic group 53.46 ± 5.24). Hypoenhancement on first pass and hyperenhancement on delayed phase appeared in infarcted myocardium. There were significant differences for the time of upslope, peak time of signal intensity, upslope curves ratio, and contrast enhancement ratio between infarcted and normal myocardium. The size of infarcted myocardium was markedly decreased on the 17 th day [control group (9.04 ± 1.59)%, therapeutic group (4.07 ± 1.20)%]. The capillaries grew actively in therapeutic group and microvessel density was higher in therapeutic group than in control group except the first day (control group and therapeutic group respectively on the 3 rd day: 92.3 ± 11

  13. Biodegradable electrospun nanofibers coated with platelet-rich plasma for cell adhesion and proliferation

    International Nuclear Information System (INIS)

    Diaz-Gomez, Luis; Alvarez-Lorenzo, Carmen; Concheiro, Angel; Silva, Maite; Dominguez, Fernando; Sheikh, Faheem A.; Cantu, Travis; Desai, Raj; Garcia, Vanessa L.; Macossay, Javier

    2014-01-01

    Biodegradable electrospun poly(ε-caprolactone) (PCL) scaffolds were coated with platelet-rich plasma (PRP) to improve cell adhesion and proliferation. PRP was obtained from human buffy coat, and tested on human adipose-derived mesenchymal stem cells (MSCs) to confirm cell proliferation and cytocompatibility. Then, PRP was adsorbed on the PCL scaffolds via lyophilization, which resulted in a uniform sponge-like coating of 2.85 (S.D. 0.14) mg/mg. The scaffolds were evaluated regarding mechanical properties (Young's modulus, tensile stress and tensile strain), sustained release of total protein and growth factors (PDGF-BB, TGF-β1 and VEGF), and hemocompatibility. MSC seeded on the PRP–PCL nanofibers showed an increased adhesion and proliferation compared to pristine PCL fibers. Moreover, the adsorbed PRP enabled angiogenesis features observed as neovascularization in a chicken chorioallantoic membrane (CAM) model. Overall, these results suggest that PRP–PCL scaffolds hold promise for tissue regeneration applications. - Highlights: • Platelet-rich plasma (PRP) can be adsorbed on electrospun fibers via lyophilization. • PRP coating enhanced mesenchymal stem cell adhesion and proliferation on scaffolds. • PRP-coated scaffolds showed sustained release of growth factors. • Adsorbed PRP provided angiogenic features. • PRP-poly(ε-caprolactone) scaffolds hold promise for tissue regeneration applications

  14. Biodegradable electrospun nanofibers coated with platelet-rich plasma for cell adhesion and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Gomez, Luis [Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15872 Santiago de Compostela (Spain); Instituto de Ortopedia y Banco de Tejidos Musculoesqueléticos, Universidad de Santiago de Compostela, 15872 Santiago de Compostela (Spain); Alvarez-Lorenzo, Carmen, E-mail: carmen.alvarez.lorenzo@usc.es [Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15872 Santiago de Compostela (Spain); Concheiro, Angel [Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15872 Santiago de Compostela (Spain); Silva, Maite [Instituto de Ortopedia y Banco de Tejidos Musculoesqueléticos, Universidad de Santiago de Compostela, 15872 Santiago de Compostela (Spain); Dominguez, Fernando [Fundación Publica Galega de Medicina Xenómica, Santiago de Compostela (Spain); Sheikh, Faheem A.; Cantu, Travis; Desai, Raj; Garcia, Vanessa L. [Department of Chemistry, University of Texas Pan American, Edinburg, TX 78541 (United States); Macossay, Javier, E-mail: jmacossay@utpa.edu [Department of Chemistry, University of Texas Pan American, Edinburg, TX 78541 (United States)

    2014-07-01

    Biodegradable electrospun poly(ε-caprolactone) (PCL) scaffolds were coated with platelet-rich plasma (PRP) to improve cell adhesion and proliferation. PRP was obtained from human buffy coat, and tested on human adipose-derived mesenchymal stem cells (MSCs) to confirm cell proliferation and cytocompatibility. Then, PRP was adsorbed on the PCL scaffolds via lyophilization, which resulted in a uniform sponge-like coating of 2.85 (S.D. 0.14) mg/mg. The scaffolds were evaluated regarding mechanical properties (Young's modulus, tensile stress and tensile strain), sustained release of total protein and growth factors (PDGF-BB, TGF-β1 and VEGF), and hemocompatibility. MSC seeded on the PRP–PCL nanofibers showed an increased adhesion and proliferation compared to pristine PCL fibers. Moreover, the adsorbed PRP enabled angiogenesis features observed as neovascularization in a chicken chorioallantoic membrane (CAM) model. Overall, these results suggest that PRP–PCL scaffolds hold promise for tissue regeneration applications. - Highlights: • Platelet-rich plasma (PRP) can be adsorbed on electrospun fibers via lyophilization. • PRP coating enhanced mesenchymal stem cell adhesion and proliferation on scaffolds. • PRP-coated scaffolds showed sustained release of growth factors. • Adsorbed PRP provided angiogenic features. • PRP-poly(ε-caprolactone) scaffolds hold promise for tissue regeneration applications.

  15. Several adaptor proteins promote intracellular localisation of the transporter MRP4/ABCC4 in platelets and haematopoietic cells.

    Science.gov (United States)

    Schaletzki, Yvonne; Kromrey, Marie-Luise; Bröderdorf, Susanne; Hammer, Elke; Grube, Markus; Hagen, Paul; Sucic, Sonja; Freissmuth, Michael; Völker, Uwe; Greinacher, Andreas; Rauch, Bernhard H; Kroemer, Heyo K; Jedlitschky, Gabriele

    2017-01-05

    The multidrug resistance protein 4 (MRP4/ABCC4) has been identified as an important transporter for signalling molecules including cyclic nucleotides and several lipid mediators in platelets and may thus represent a novel target to interfere with platelet function. Besides its localisation in the plasma membrane, MRP4 has been also detected in the membrane of dense granules in resting platelets. In polarised cells it is localised at the basolateral or apical plasma membrane. To date, the mechanism of MRP4 trafficking has not been elucidated; protein interactions may regulate both the localisation and function of this transporter. We approached this issue by searching for interacting proteins by in vitro binding assays, followed by immunoblotting and mass spectrometry, and by visualising their co-localisation in platelets and haematopoietic cells. We identified the PDZ domain containing scaffold proteins ezrin-binding protein 50 (EBP50/NHERF1), postsynaptic density protein 95 (PSD95), and sorting nexin 27 (SNX27), but also the adaptor protein complex 3 subunit β3A (AP3B1) and the heat shock protein HSP90 as putative interaction partners of MRP4. The knock-down of SNX27, PSD95, and AP3B1 by siRNA in megakaryoblastic leukaemia cells led to a redistribution of MRP4 from intracellular structures to the plasma membrane. Inhibition of HSP90 led to a diminished expression and retention of MRP4 in the endoplasmic reticulum. These results indicate that MRP4 localisation and function are regulated by multiple protein interactions. Changes in the adaptor proteins can hence lead to altered localisation and function of the transporter.

  16. Effect of two different preparations of platelet-rich plasma on synoviocytes.

    Science.gov (United States)

    Assirelli, Elisa; Filardo, Giuseppe; Mariani, Erminia; Kon, Elizaveta; Roffi, Alice; Vaccaro, Franca; Marcacci, Maurilio; Facchini, Andrea; Pulsatelli, Lia

    2015-09-01

    To analyse the modifications induced by two different platelet-rich plasma (PRP) preparations on osteoarthritis (OA) synoviocytes, by documenting changes in gene expression of factors involved in joint physiopathology. OA synoviocytes were cultured for 7 days in medium with different concentrations of either P-PRP (a pure platelet concentrate without leucocytes but with a limited number of platelets), L-PRP (a higher platelet concentrate containing leucocytes) or platelet-poor plasma (PPP). Gene expression of interleukin (IL)-1beta, IL-6, IL-8/CXCL8, tumour necrosis factor alpha, IL-10, IL-4, IL-13, metalloproteinase-13, tissue inhibitor of metalloproteinase (TIMP)-1, (TIMP)-3, (TIMP)-4, vascular endothelial growth factor, transforming growth factor beta1, fibroblast growth factor (FGF)-2, hepatocyte growth factor (HGF), hyaluronic acid (HA) synthases (HAS)-1, (HAS)-2, and (HAS)-3 was analysed by RT-PCR. HA production was determined in culture supernatants by ELISA. IL-1β, IL-8 and FGF-2 were significantly induced by L-PRP compared to both P-PRP and PPP; HGF was down-modulated by L-PRP versus both P-PRP and PPP, and an inverse dose-response influence was shown for all preparations. Expression level of TIMP-4 was lower in the presence of L-PRP compared with P-PRP. HA production and HAS gene expression did not seem to be modulated by PRP. L-PRP is able to sustain the up-regulation of proinflammatory factors, (IL-1beta, IL-8 and FGF-2), together with a down-modulation of HGF and TIMP-4 expression, two factors that have been recognized as anti-catabolic mediators in cartilage, thus supporting the need to further optimize the PRP preparations to be applied in clinical practice.

  17. CCL5 promotes vascular endothelial growth factor expression and induces angiogenesis by down-regulating miR-199a in human chondrosarcoma cells.

    Science.gov (United States)

    Liu, Guan-Ting; Huang, Yuan-Li; Tzeng, Huey-En; Tsai, Chun-Hao; Wang, Shih-Wei; Tang, Chih-Hsin

    2015-02-28

    Chondrosarcoma is a primary malignant bone cancer, with a potent capacity to invade locally and cause distant metastasis. Angiogenesis is a critical step in tumor growth and metastasis. Chemokine CCL5 (previously called RANTES) has been shown to facilitate tumor progression and metastasis. However, the relationship of CCL5 with vascular endothelial growth factor (VEGF) expression and angiogenesis in human chondrosarcoma is mostly unknown. In this study, CCL5 increased VEGF expression and also promoted chondrosarcoma medium-mediated angiogenesis in vitro as well as angiogenesis effects in the chick chorioallantoic membrane and Matrigel plug nude mice model in vivo. MicroRNA analysis was performed in CCL5-treated chondrosarcoma cells versus control cells to investigate the mechanism of CCL5-mediated promotion of chondrosarcoma angiogenesis. Among the miRNAs regulated by CCL5, miR-199a was the most downregulated miRNA after CCL5 treatment. In addition, co-transfection with miR-199a mimic reversed the CCL5-mediated VEGF expression and angiogenesis in vitro and in vivo. Moreover, overexpression of CCL5 increased tumor-associated angiogenesis and tumor growth by downregulating miR-199a in the xenograft tumor angiogenesis model. Taken together, these results demonstrated that CCL5 promotes VEGF-dependent angiogenesis in human chondrosarcoma cells by downregulating miR-199a. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Selection of donor platelets for alloimmunized patients using a platelet-associated IgG assay

    International Nuclear Information System (INIS)

    Myers, T.J.; Kim, B.K.; Steiner, M.; Baldini, M.G.

    1981-01-01

    A quantitative immunofluorescence platelet-associated immunoglobulin-G (PA-IgG) assay was used to detect alloimmunity to platelets in 8/12 multitransfused patients and to perform platelet crossmatching in the 8 alloimmunized patients. The correct separation of multitransfused patients into alloimmune and nonalloimmune groups was substantiated with chromium-51-labeled platelet survival studies. For 5 alloimmunized patients, compatible and incompatible donor platelets were demonstrated by PA-IgG crossmatching and were confirmed by platelet survival studies. With the other 3 alloimmunized patients, only Pa-IgG incompatible donor platelets were found. Survival studies with 5 of these incompatible donor platelets showed markedly reduced survival times on 4 occasions. Pa-IgG compatible donor platelets survived 3.5 to 8.7 days, while Pa-IgG incompatible platelets showed survival times of 0.1 to 2.4 days

  19. Angiogenesis in vestibular schwannomas: expression of extracellular matrix factors MMP-2, MMP-9, and TIMP-1

    DEFF Research Database (Denmark)

    Møller, Martin Nue; Werther, Kim; Nalla, Amarnadh

    2010-01-01

    Vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs) are potent mediators of tumor angiogenesis. It has been demonstrated that vestibular schwannoma VEGF expression correlates with tumor growth pattern, whereas knowledge on the expression of MMPs is lacking. This study...

  20. Over-expression of thymosin β4 in granulomatous lung tissue with active pulmonary tuberculosis.

    Science.gov (United States)

    Kang, Yun-Jeong; Jo, Jin-Ok; Ock, Mee Sun; Yoo, Young-Bin; Chun, Bong-Kwon; Oak, Chul-Ho; Cha, Hee-Jae

    2014-05-01

    Recent studies have shown that thymosin β4 (Tβ4) stimulates angiogenesis by inducing vascular endothelial growth factor (VEGF) expression and stabilizing hypoxia inducible factor-1α (HIF-1α) protein. Pulmonary tuberculosis (TB), a type of granulomatous disease, is accompanied by intense angiogenesis and VEGF levels have been reported to be elevated in serum or tissue inflamed by pulmonary tuberculosis. We investigated the expression of Tβ4 in granulomatous lung tissues at various stages of active pulmonary tuberculosis, and we also examined the expression patterns of VEGF and HIF-1α to compare their Tβ4 expression patterns in patients' tissues and in the tissue microarray of TB patients. Tβ4 was highly expressed in both granulomas and surrounding lymphocytes in nascent granulomatous lung tissue, but was expressed only surrounding tissues of necrotic or caseous necrotic regions. The expression pattern of HIF-1α was similar to that of Tβ4. VEGF was expressed in both granulomas and blood vessels surrounding granulomas. The expression pattern of VEGF co-localized with CD31 (platelet endothelial cell adhesion molecule, PECAM-1), a blood endothelial cell marker, and partially co-localized with Tβ4. However, the expression of Tβ4 did not co-localize with alveolar macrophages. Stained alveolar macrophages were present surrounding regions of granuloma highly expressing Tβ4. We also analyzed mRNA expression in the sputum of 10 normal and 19 pulmonary TB patients. Expression of Tβ4 was significantly higher in patients with pulmonary tuberculosis than in normal controls. These data suggest that Tβ4 is highly expressed in granulomatous lung tissue with active pulmonary TB and is associated with HIF-1α- and VEGF-mediated inflammation and angiogenesis. Furthermore, the expression of Tβ4 in the sputum of pulmonary tuberculosis patients can be used as a potential marker for diagnosis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Platelet-rich fibrin or platelet-rich plasma – which one is better? an opinion

    Directory of Open Access Journals (Sweden)

    Shweta Bansal

    2017-01-01

    Full Text Available The healing of hard and soft tissue in mediated by a wide range of intracellular and extracellular events that are regulated by signaling proteins. Platelets can play a crucial role in periodontal regeneration as they are the reservoirs of growth factors and cytokines which are the key factors for regeneration of bone and maturation of soft tissue. Platelet-rich plasma (PRP is first generation platelet concentrate. However, the short duration of cytokine release and its poor mechanical properties have resulted in search of new material. Platelet-rich fibrin (PRF is a natural fibrin-based biomaterial prepared from an anticoagulant-free blood harvest without any artificial biochemical modification (no bovine thrombin is required that allows obtaining fibrin membranes enriched with platelets and growth factors. The slow polymerization during centrifugation, fibrin-based structure, ease of preparation, minimal expense makes PRF somewhat superior in some aspect to PRP.

  2. Angiogenesis and anti-angiogenesis: Perspectives for the treatment of solid tumors

    NARCIS (Netherlands)

    Hinsbergh, V.W.M. van; Collen, A.; Koolwijk, P.

    1999-01-01

    Angiogenesis is the formation of new blood vessels from preexisting ones. Many solid tumors depend on an extensive newly formed vascular network to become nourished and to expand. Tumor cells induce the formation of an extensive but aberrant vascular network by the secretion of angiogenic factors. A

  3. Platelets stimulate fibroblast-mediated contraction of collagen gels

    Directory of Open Access Journals (Sweden)

    Lundahl Joachim

    2003-10-01

    Full Text Available Abstract Background Platelets are thought to play a role in a variety of inflammatory conditions in the lung, some of which may lead to fibrosis. In the current study we tested the hypothesis that whole platelets and platelet lysate can mediate remodelling of extracellular matrix in vitro by affecting fibroblast-mediated contraction of a collagen gel. We also sought to determine to what extent platelet-derived growth factor (PDGF and transforming growth factor-β (TGF-β contribute to this effect. Methods Washed platelets, isolated from healthy blood donors, and platelet lysate (freezing and thawing, were cast together with human lung fibroblasts in three-dimensional collagen gels. The gels were then released and cultured for four days. PDGF and TGF-β1 concentrations were measured in culture supernatants by ELISA. Results Both platelets and platelet lysate augmented fibroblast-mediated gel contraction in a time and concentration dependent manner (19.9% ± 0.1 (mean ± SEM of initial area vs. 48.0% ± 0.4 at 48 hours; P 1 and PDGF-AA/AB were released in co-culture. PDGF-AA/AB had a maximum release at 24 hours whereas TGF-β1 release increased with longer culture periods. Neutralising antibodies to these mediators partially inhibited platelet-induced gel contraction. Conclusion We conclude that platelets may promote remodelling of extracellular matrix in vitro and that PDGF and TGF-β partially mediate this effect, also indicating a role for other mediators. The findings may be an important mechanism in regulating repair processes after injury.

  4. Further studies on the relationship between platelet buoyant density and platelet age

    International Nuclear Information System (INIS)

    Boneu, B.; Vigoni, F.; Boneu, A.; Caranobe, C.; Sie, P.

    1982-01-01

    The relationship between platelet buoyant density and platelet age was investigated in eight human subjects submitted to an autologous chromium labeled platelet survival study. Platelets were isolated after isopycnic centrifugation using eight discontinuous isoosmotic stractan gradients (five subjects), or various continuous and linear isoosmolar gradients (three subjects). A paradoxical radioactivity enrichment of the dense platelets and a premature loss of radioactivity in the light platelets were observed. These results are explained by a shift of the radioactivity distribution curve toward higher densities during the 3-4 days after platelet injection, while the standard deviation of the distribution was conserved throughout the platelet life span. These results suggest that young platelets are heterogeneous and slightly less dense than the total platelet population

  5. Collagen induced aggregation of platelets and release of 14C serotonin from platelets depending on temperature and pH during in vitro storage of platelets

    International Nuclear Information System (INIS)

    Krause, J.

    1978-01-01

    The paper investigates collagen-induced platelet aggregation and 14 C serotonin release in dependence of age, temperature, and pH value during the storage of the conserved platelets. The optimum pH (with adjusted CO 2 /air mixture) for platelet storage is found to be pH 6.9. The optimum temperature for platelet storage is 4-8 0 C. After 12, 24, or 48 hours of storage at pH 6.9 and 4-8 0 C and subsequent heating of the platelet-rich plasma to 37 0 C for 30 minutes, the values determined for collagen-induced platelet aggregation and 14 C serotonin release rarely differed from the initial values before storage. Cold-induced spontaneous platelet aggregation and serotonin release of the platelets stored at 4-8 0 C can be avoided by 30-60 minutes pre-incubation of the platelets at 37 0 C before transfusions. The in vitro findings for collagen-induced platelet aggregation and 14 C serotonin release indicate that platelet storage for 24-48 hours at pH 6.9 and 4-8 0 C may be permissible also for clinical purposes. The problem remains open whether the clinical effect of these platelets is still sufficient after 48 hours of storage, but literature findings suggest that this may well be the case. (orig.) [de

  6. Vascular grading of angiogenesis

    DEFF Research Database (Denmark)

    Hansen, S; Grabau, D A; Sørensen, Flemming Brandt

    2000-01-01

    The study aimed to evaluate the prognostic value of angiogenesis by vascular grading of primary breast tumours, and to evaluate the prognostic impact of adding the vascular grade to the Nottingham Prognostic Index (NPI). The investigation included 836 patients. The median follow-up time was 11...... years and 4 months. The microvessels were immunohistochemically stained by antibodies against CD34. Angiogenesis was graded semiquantitatively by subjective scoring into three groups according to the expected number of microvessels in the most vascular tumour area. The vascular grading between observers...... for 24% of the patients, who had a shift in prognostic group, as compared to NPI, and implied a better prognostic dissemination. We concluded that the angiogenesis determined by vascular grading has independent prognostic value of clinical relevance for patients with breast cancer....

  7. Vascular grading of angiogenesis

    DEFF Research Database (Denmark)

    Hansen, S; Grabau, D A; Sørensen, Flemming Brandt

    2000-01-01

    The study aimed to evaluate the prognostic value of angiogenesis by vascular grading of primary breast tumours, and to evaluate the prognostic impact of adding the vascular grade to the Nottingham Prognostic Index (NPI). The investigation included 836 patients. The median follow-up time was 11...... years and 4 months. The microvessels were immunohistochemically stained by antibodies against CD34. Angiogenesis was graded semiquantitatively by subjective scoring into three groups according to the expected number of microvessels in the most vascular tumour area. The vascular grading between observers...... impact for 24% of the patients, who had a shift in prognostic group, as compared to NPI, and implied a better prognostic dissemination. We concluded that the angiogenesis determined by vascular grading has independent prognostic value of clinical relevance for patients with breast cancer....

  8. Hypoxia-induced mitogenic factor enhances angiogenesis by promoting proliferation and migration of endothelial cells

    International Nuclear Information System (INIS)

    Tong Qiangsong; Zheng Liduan; Li Bo; Wang Danming; Huang Chuanshu; Matuschak, George M.; Li Dechun

    2006-01-01

    Our previous studies have indicated that hypoxia-induced mitogenic factor (HIMF) has angiogenic properties in an in vivo matrigel plug model and HIMF upregulates expression of vascular endothelial growth factor (VEGF) in mouse lungs and cultured lung epithelial cells. However, whether HIMF exerts angiogenic effects through modulating endothelial cell function remains unknown. In this study, mouse aortic rings cultured with recombinant HIMF protein resulted in enhanced vascular sprouting and increased endothelial cell spreading as confirmed by Dil-Ac-LDL uptake, von Willebrand factor and CD31 staining. In cultured mouse endothelial cell line SVEC 4-10, HIMF dose-dependently enhanced cell proliferation, in vitro migration and tubulogenesis, which was not attenuated by SU1498, a VEGFR2/Flk-1 receptor tyrosine kinase inhibitor. Moreover, HIMF stimulation resulted in phosphorylation of Akt, p38 and ERK1/2 kinases in SVEC 4-10 cells. Treatment of mouse aortic rings and SVEC 4-10 cells with LY294002, but not SB203580, PD098059 or U0126, abolished HIMF-induced vascular sprouting and angiogenic responses. In addition, transfection of a dominant-negative mutant of phosphatidylinositol 3-kinase (PI-3K), Δp85, blocked HIMF-induced phosphorylation of Akt, endothelial activation and tubulogenesis. These results indicate that HIMF enhances angiogenesis by promoting proliferation and migration of endothelial cells via activation of the PI-3K/Akt pathways

  9. Abnormal megakaryocyte development and platelet function in Nbeal2(-/-) mice.

    Science.gov (United States)

    Kahr, Walter H A; Lo, Richard W; Li, Ling; Pluthero, Fred G; Christensen, Hilary; Ni, Ran; Vaezzadeh, Nima; Hawkins, Cynthia E; Weyrich, Andrew S; Di Paola, Jorge; Landolt-Marticorena, Carolina; Gross, Peter L

    2013-11-07

    Gray platelet syndrome (GPS) is an inherited bleeding disorder associated with macrothrombocytopenia and α-granule-deficient platelets. GPS has been linked to loss of function mutations in NEABL2 (neurobeachin-like 2), and we describe here a murine GPS model, the Nbeal2(-/-) mouse. As in GPS, Nbeal2(-/-) mice exhibit splenomegaly, macrothrombocytopenia, and a deficiency of platelet α-granules and their cargo, including von Willebrand factor (VWF), thrombospondin-1, and platelet factor 4. The platelet α-granule membrane protein P-selectin is expressed at 48% of wild-type levels and externalized upon platelet activation. The presence of P-selectin and normal levels of VPS33B and VPS16B in Nbeal2(-/-) platelets suggests that NBEAL2 acts independently of VPS33B/VPS16B at a later stage of α-granule biogenesis. Impaired Nbeal2(-/-) platelet function was shown by flow cytometry, platelet aggregometry, bleeding assays, and intravital imaging of laser-induced arterial thrombus formation. Microscopic analysis detected marked abnormalities in Nbeal2(-/-) bone marrow megakaryocytes, which when cultured showed delayed maturation, decreased survival, decreased ploidy, and developmental abnormalities, including abnormal extracellular distribution of VWF. Our results confirm that α-granule secretion plays a significant role in platelet function, and they also indicate that abnormal α-granule formation in Nbeal2(-/-) mice has deleterious effects on megakaryocyte survival, development, and platelet production.

  10. Potential Angiogenic Role of Platelet-Activating Factor in Human Breast Cancer

    Science.gov (United States)

    Montrucchio, Giuseppe; Sapino, Anna; Bussolati, Benedetta; Ghisolfi, Gianpiero; Rizea-Savu, Simona; Silvestro, Luigi; Lupia, Enrico; Camussi, Giovanni

    1998-01-01

    This study investigated the presence of platelet-activating factor (PAF) in the lipid extracts of 18 primary breast carcinomas and 20 control breast tissues. The amount of PAF detected in breast carcinomas was significantly higher than in controls. The mass spectrometric analysis of PAF-bioactive lipid extract from breast carcinomas showed the presence of several molecular species of PAF, including C16-alkylPAF, C18-lysophosphatidylcholine (LPC), C16-LPC, lyso-PAF, and C16-acylPAF. The amount of bioactive PAF extracted from breast specimens significantly correlated with tumor vascularization revealed by the number of CD34- and CD31-positive cells. As C16-alkylPAF was previously shown to induce angiogenesis in vivo, we evaluated whether the thin layer chromatography-purified lipid extracts of breast specimens elicited neoangiogenesis in a murine model of subcutaneous Matrigel injection. The lipid extracts from specimens of breast carcinoma containing high levels of PAF bioactivity, but not from breast carcinomas containing low levels of PAF bioactivity or from normal breast tissue, induced a significant angiogenic response. This angiogenic response was significantly inhibited by the PAF receptor antagonist WEB 2170. T47D and MCF7 breast cancer cell lines, but not an immortalized nontumor breast cell line (MCF10), released PAF in the culture medium. A significant in vivo neoangiogenic response, inhibited by WEB 2170, was elicited by T47D and MCF7 but not by MCF10 culture medium. These results indicate that an increased concentration of PAF is present in tumors with high microvessel density and that PAF may account for the neoangiogenic activity induced in mice by the lipid extracts obtained from breast cancer. A contribution of PAF in the neovascularization of human breast cancer is suggested. PMID:9811351

  11. Generation of Platelet Microparticles after Cryopreservation of Apheresis Platelet Concentrates Contributes to Hemostatic Activity

    Directory of Open Access Journals (Sweden)

    İbrahim Eker

    2017-03-01

    Full Text Available Objective: In the last decade, substantial evidence has accumulated about the use of cryopreserved platelet concentrates, especially in trauma. However, little reference has been made in these studies to the morphological and functional changes of platelets. Recently platelets have been shown to be activated by cryopreservation processes and to undergo procoagulant membrane changes resulting in the generation of platelet-derived microparticles (PMPs, platelet degranulation, and release of platelet-derived growth factors (PDGFs. We assessed the viabilities and the PMP and PDGF levels of cryopreserved platelets, and their relation with thrombin generation. Materials and Methods: Apheresis platelet concentrates (APCs from 20 donors were stored for 1 day and cryopreserved with 6% dimethyl sulfoxide. Cryopreserved APCs were kept at -80 °C for 1 day. Thawed APCs (100 mL were diluted with 20 mL of autologous plasma and specimens were analyzed for viabilities and PMPs by flow cytometry, for thrombin generation by calibrated automated thrombogram, and for PDGFs by enzyme-linked immunosorbent assay testing. Results: The mean PMP and PDGF levels in freeze-thawed APCs were significantly higher (2763±399.4/μL vs. 319.9±80.5/μL, p<0.001 and 550.9±73.6 pg/mL vs. 96.5±49 pg/mL, p<0.001, respectively, but the viability rates were significantly lower (68.2±13.7% vs. 94±7.5%, p<0.001 than those of fresh APCs. The mean endogenous thrombin potential (ETP of freeze-thawed APCs was significantly higher than that of the fresh APCs (3406.1±430.4 nM.min vs. 2757.6±485.7 nM.min, p<0.001. Moreover, there was a significant positive poor correlation between ETP levels and PMP levels (r=0.192, p=0.014. Conclusion: Our results showed that, after cryopreservation, while levels of PMPs were increasing, significantly higher and earlier thrombin formation was occurring in the samples analyzed despite the significant decrease in viability. Considering the damage caused

  12. Isthmin is a novel secreted angiogenesis inhibitor that inhibits tumour growth in mice.

    Science.gov (United States)

    Xiang, Wei; Ke, Zhiyuan; Zhang, Yong; Cheng, Grace Ho-Yuet; Irwan, Ishak Darryl; Sulochana, K N; Potturi, Padma; Wang, Zhengyuan; Yang, He; Wang, Jingyu; Zhuo, Lang; Kini, R Manjunatha; Ge, Ruowen

    2011-02-01

    Anti-angiogenesis represents a promising therapeutic strategy for the treatment of various malignancies. Isthmin (ISM) is a gene highly expressed in the isthmus of the midbrain-hindbrain organizer in Xenopus with no known functions. It encodes a secreted 60 kD protein containing a thrombospondin type 1 repeat domain in the central region and an adhesion-associated domain in MUC4 and other proteins (AMOP) domain at the C-terminal. In this work, we demonstrate that ISM is a novel angiogenesis inhibitor. Recombinant mouse ISM inhibited endothelial cell (EC) capillary network formation on Matrigel through its C-terminal AMOP domain. It also suppressed vascular endothelial growth factor (VEGF)-basic fibroblast growth factor (bFGF) induced in vivo angiogenesis in mouse. It mitigated VEGF-stimulated EC proliferation without affecting EC migration. Furthermore, ISM induced EC apoptosis in the presence of VEGF through a caspase-dependent pathway. ISM binds to αvβ(5) integrin on EC surface and supports EC adhesion. Overexpression of ISM significantly suppressed mouse B16 melanoma tumour growth through inhibition of tumour angiogenesis without affecting tumour cell proliferation. Knockdown of isthmin in zebrafish embryos using morpholino antisense oligonucleotides led to disorganized intersegmental vessels in the trunk. Our results demonstrate that ISM is a novel endogenous angiogenesis inhibitor with functions likely in physiological as well as pathological angiogenesis. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  13. In vitro function of random donor platelets stored for 7 days in composol platelet additive solution

    Directory of Open Access Journals (Sweden)

    Gupta Ashish

    2011-01-01

    Full Text Available Background and Aim: Platelets are routinely isolated from whole blood and stored in plasma for 5 days. The present study was done to assess the in vitro function of random donor platelets stored for 7 days in composol platelet additive solution at 22°C. Materials and Methods: The study sample included 30 blood donors of both sex in State Blood Bank, CSM Medical University, Lucknow. Random donor platelets were prepared by platelet rich plasma method. Whole blood (350 ml was collected in anticoagulant Citrate Phosphate Dextrose Adenine triple blood bags. Random donor platelets were stored for 7 days at 22°C in platelet incubators and agitators, with and without additive solution. Results: Platelet swirling was present in all the units at 22°C on day 7, with no evidence of bacterial contamination. Comparison of the mean values of platelet count, platelet factor 3, lactate dehydrogenase, pH, glucose and platelet aggregation showed no significant difference in additive solution, whereas platelet factor 3, glucose and platelet aggregation showed significant difference (P < 0.001 on day 7 without additive solution at 22°C. Conclusion: Our study infers that platelet viability and aggregation were best maintained within normal levels on day 7 of storage in platelet additive solution at 22°C. Thus, we may conclude that in vitro storage of random donor platelets with an extended shelf life of 7 days using platelet additive solution may be advocated to improve the inventory of platelets.

  14. In vitro function of random donor platelets stored for 7 days in composol platelet additive solution

    Directory of Open Access Journals (Sweden)

    Gupta Ashish

    2011-01-01

    Full Text Available Background and Aim: Platelets are routinely isolated from whole blood and stored in plasma for 5 days. This study was done to assess the in vitro function of random donor platelets stored for 7 days in composol platelet additive solution at 22°C. Materials and Methods: The study sample included 30 blood donors of both sex in State Blood Bank, C S M Medical University, Lucknow. Random donor platelets were prepared by the platelet-rich plasma method. Whole blood (350 ml was collected in anticoagulant Citrate Phosphate Dextrose Adenine triple blood bags. Random donor platelets were stored for 7 days at 22°C in platelet incubators and agitators with and without additive solution. Results: Platelet swirling was present in all the units at 22°C on day 7 with no evidence of bacterial contamination. Comparison of the mean values of platelet count, platelet factor 3, lactate dehydrogenase, pH, glucose and platelet aggregation showed no significant difference in additive solution while platelet factor 3, glucose and platelet aggregation showed significant difference (P < 0.001 on day 7 without additive solution at 22°C. Conclusion: Our study infers that the platelet viability and aggregation were the best maintained within normal levels on day 7 of storage in platelet additive solution at 22°C. Thus, we may conclude that in vitro storage of random donor platelets with an extended shelf life of 7 days using platelet additive solution may be advocated to improve the inventory of platelets.

  15. [Assessment study on a set of platelet-rich plasma preparation].

    Science.gov (United States)

    Li, Ming; Zhang, Changqing; Yuan, Ting; Chen, Shengbao; Lü, Ruju

    2011-01-01

    To calculate the recovery rate and enrichment factor and to analyse the correlation by measuring the concentrations of platelets, leukocyte, and growth factors in platelet-rich plasma (PRP) so as to evaluate the feasibility and stability of a set of PRP preparation. The peripheral blood (40 mL) was collected from 30 volunteers accorded with the inclusion criteria, and then 4 mL PRP was prepared using the package produced by Shandong Weigao Group Medical Polymer Company Limited. Automatic hematology analyzer was used to count the concentrations of platelets and leukocyte in whole blood and PRP. The enrichment factor and recovery rate of platelets or leukocyte were calculated; the platelet and leukocyte concentrations of male and female volunteers were measured, respectively. The concentrations of platelet-derived growth factor (PDGF), transforming growth factor beta (TGF-beta), and vascular endothelial growth factor (VEGF) were assayed by ELISA. The platelet concentrations of whole blood and PRP were (131.40 +/- 29.44) x 10(9)/L and (819.47 +/- 136.32) x 10(9)/L, respectively, showing significant difference (t = 27.020, P = 0.000). The recovery rate of platelets was 60.85% +/- 8.97%, and the enrichment factor was 6.40 +/- 1.06. The leukocyte concentrations of whole blood and PRP were (5.57 +/- 1.91) x 10(12)/L and (32.20 +/- 10.42) x 10(12)/L, respectively, showing significant difference (t = 13.780, P = 0.000). The recovery rate of leukocyte was 58.30% +/- 19.24%, and the enrichment factor was 6.10 +/- 1.93. The concentrations of platelets and leukocyte in PRP were positively correlated with the platelet concentration (r = 0.652, P = 0.000) and leukocyte concentration (r = 0.460, P = 0.011) in whole blood. The concentrations of platelet and leukocyte in PRP between male and female were not significantly different (P > 0.05). The concentrations of PDGF, TGF-beta, and VEGF in PRP were (698.15 +/- 64.48), (681.36 +/- 65.90), and (1071.55 +/- 106.04) ng/mL, which were

  16. Platelet concentration of plateletrich plasma from dogs, obtained through three centrifugation speeds

    Directory of Open Access Journals (Sweden)

    Vanessa Couto de Magalhães Ferraz

    2007-12-01

    Full Text Available The platelets release at least 4 growth factors (Platelet Derived Growth Factor. ²1 and ²2 Transforming Growth Factors and Insulin-like Growth Factor which are responsible for the migration and activation of cells that will start the reparation of soft tissues and bones. The Platelet Rich Plasma is an autogenous source for Growth Factors, obtained by platelet concentration by centrifuging total blood. This study aimed the comparison of platelet concentrations in plasma centrifuged in three different centrifugation speeds (1300, 1600 e 3200rpm, for the production of platelet rich plasma. Blood was drowned from 15 dogs, 40ml of each, and these were divided into four groups and centrifuged at 800rpm. Then the first group was centrifuged at 1300rpm, the second at 1600rpm, the third at 3200rpm and the last was used as control, named plasma. The mean percentage increase in the platelet concentration for each technique was: 1300 - 183%, 1600 - 210% and 3200 - 222%. But in centrifugation at 3200 rpm, platelets presented altered morphology and different sizes in every sample studied, which was understood as severe cell damage. It was concluded that the best technique for the preparation of the platelet rich plasma in dogs consisted of the previous centrifugation of the blood at 800rpm for ten minutes, and then the plasma should be separated. This plasma is then submitted to a second centrifugation of 1600rpm for 10 minutes, and the platelet poor plasma is separated and discharged.

  17. Growth factor and proteinase profile of Vivostat® platelet-rich fibrin linked to tissue repair

    DEFF Research Database (Denmark)

    Ågren, Sven Per Magnus; Rasmussen, Karina; Pakkenberg, Bente

    2014-01-01

    . Leucocyte, erythrocyte and platelet counts in whole blood and fibrin-I were determined by automated haematology analyser. Platelet concentration in PRF was quantified manually by stereologic analysis of Giemsa-stained tissue sections, and the total content of five growth factors and MMP-9 by enzyme......·001]. MMP-9 was reduced 139-fold (P tissue regenerative applications....

  18. Decidualized Human Endometrial Stromal Cells Mediate Hemostasis, Angiogenesis, and Abnormal Uterine Bleeding

    Science.gov (United States)

    Lockwood, Charles J.; Krikun, Graciela; Hickey, Martha; Huang, S. Joseph; Schatz, Frederick

    2011-01-01

    Factor VII binds trans-membrane tissue factor to initiate hemostasis by forming thrombin. Tissue factor expression is enhanced in decidualized human endometrial stromal cells during the luteal phase. Long-term progestin only contraceptives elicit: 1) abnormal uterine bleeding from fragile vessels at focal bleeding sites, 2) paradoxically high tissue factor expression at bleeding sites; 3) reduced endometrial blood flow promoting local hypoxia and enhancing reactive oxygen species levels; and 4) aberrant angiogenesis reflecting increased stromal cell-expressed vascular endothelial growth factor, decreased Angiopoietin-1 and increased endothelial cell-expressed Angiopoietin-2. Aberrantly high local vascular permeability enhances circulating factor VII to decidualized stromal cell-expressed tissue factor to generate excess thrombin. Hypoxia-thrombin interactions augment expression of vascular endothelial growth factor and interleukin-8 by stromal cells. Thrombin, vascular endothelial growth factor and interlerukin-8 synergis-tically augment angiogenesis in a milieu of reactive oxygen species-induced endothelial cell activation. The resulting enhanced vessel fragility promotes abnormal uterine bleeding. PMID:19208784

  19. Platelet Concentrates: Past, Present and Future

    OpenAIRE

    Prakash, Shobha; Thakur, Aditi

    2011-01-01

    Platelets play a crucial role in hemostasis and wound healing, platelet growth factors are well known source of healing cytokines. Numerous techniques of autologous platelet concentrates have been developed and applied in oral and maxillofacial surgery. This review describes the evolution of the first and second generation of platelet concentrates (platelet rich plasma and platelet rich fibrin respectively) from their fore runner-fibrin sealants.

  20. Modified expression of surface glyconjugates in stored human platelets

    International Nuclear Information System (INIS)

    Dhar, A.; Ganguly, P.

    1987-01-01

    Platelets are anucleated cells which play an important part in blood coagulation and thrombosis. These cells may be stored in the blood bank for only 4/5 days. In order to improve the storage of platelets, it is essential to first understand the changes in these cells due to storage. In this work, human platelets were stored in autologous plasma at 4 0 or 22 0 and their surface changes were monitored with three lectins - wheat germ afflutinin (WGA), concanavalin A (Con A) and lentil lectin (LL). Blood was drawn from healthy donors and platelet rich plasma (PRP) was collected by slow speed centrifugation. Platelets stored at either temperature for different times showed increased sensitivity to agglutination by WGA after 34-48 hrs. Lectins, Con A and LL, which were not agglutinating to fresh platelets readily caused agglutination after 48-72 hrs. The platelets stored for 25 hrs or longer period were insensitive to thrombin but showed enhanced aggregation with WGA. Labelling of surface glycoconjugates of stored platelets with 3 H-boro-hydride revealed progressive loss of a glycoprotein of Mr 150,000 (GPIb infinity) together with the appearance of components of Mr 69,000; Mr 60,000; Mr 25,000. New high molecular weight glycoproteins were also detected only in stored platelets. The author studies clearly indicate that modification or altered expression of platelets surface glycoproteins may be one factor of storage related dysfunction of platelets

  1. Modified expression of surface glyconjugates in stored human platelets

    Energy Technology Data Exchange (ETDEWEB)

    Dhar, A.; Ganguly, P.

    1987-05-01

    Platelets are anucleated cells which play an important part in blood coagulation and thrombosis. These cells may be stored in the blood bank for only 4/5 days. In order to improve the storage of platelets, it is essential to first understand the changes in these cells due to storage. In this work, human platelets were stored in autologous plasma at 4/sup 0/ or 22/sup 0/ and their surface changes were monitored with three lectins - wheat germ afflutinin (WGA), concanavalin A (Con A) and lentil lectin (LL). Blood was drawn from healthy donors and platelet rich plasma (PRP) was collected by slow speed centrifugation. Platelets stored at either temperature for different times showed increased sensitivity to agglutination by WGA after 34-48 hrs. Lectins, Con A and LL, which were not agglutinating to fresh platelets readily caused agglutination after 48-72 hrs. The platelets stored for 25 hrs or longer period were insensitive to thrombin but showed enhanced aggregation with WGA. Labelling of surface glycoconjugates of stored platelets with /sup 3/H-boro-hydride revealed progressive loss of a glycoprotein of Mr 150,000 (GPIb infinity) together with the appearance of components of Mr 69,000; Mr 60,000; Mr 25,000. New high molecular weight glycoproteins were also detected only in stored platelets. The author studies clearly indicate that modification or altered expression of platelets surface glycoproteins may be one factor of storage related dysfunction of platelets.

  2. Exposure to acrolein by inhalation causes platelet activation

    International Nuclear Information System (INIS)

    Sithu, Srinivas D.; Srivastava, Sanjay; Siddiqui, Maqsood A.; Vladykovskaya, Elena; Riggs, Daniel W.; Conklin, Daniel J.; Haberzettl, Petra; O'Toole, Timothy E.; Bhatnagar, Aruni; D'Souza, Stanley E.

    2010-01-01

    Acrolein is a common air pollutant that is present in high concentrations in wood, cotton, and tobacco smoke, automobile exhaust and industrial waste and emissions. Exposure to acrolein containing environmental pollutants such as tobacco smoke and automobile exhaust has been linked to the activation of the coagulation and hemostasis pathways and thereby to the predisposition of thrombotic events in human. To examine the effects of acrolein on platelets, adult male C57Bl/6 mice were subjected acute (5 ppm for 6 h) or sub-chronic (1 ppm, 6 h/day for 4 days) acrolein inhalation exposures. The acute exposure to acrolein did not cause pulmonary inflammation and oxidative stress, dyslipidemia or induce liver damage or muscle injury. Platelet GSH levels in acrolein-exposed mice were comparable to controls, but acrolein-exposure increased the abundance of protein-acrolein adducts in platelets. Platelets isolated from mice, exposed to both acute and sub-chronic acrolein levels, showed increased ADP-induced platelet aggregation. Exposure to acrolein also led to an increase in the indices of platelet activation such as the formation of platelet-leukocyte aggregates in the blood, plasma PF4 levels, and increased platelet-fibrinogen binding. The bleeding time was decreased in acrolein exposed mice. Plasma levels of PF4 were also increased in mice exposed to environmental tobacco smoke. Similar to inhalation exposure, acrolein feeding to mice also increased platelet activation and established a pro-thrombotic state in mice. Together, our data suggest that acrolein is an important contributing factor to the pro-thrombotic risk in human exposure to pollutants such as tobacco smoke or automobile exhaust, or through dietary consumption.

  3. Exposure to acrolein by inhalation causes platelet activation

    Energy Technology Data Exchange (ETDEWEB)

    Sithu, Srinivas D [Department of Physiology and Biophysics, University of Louisville, Louisville, KY 40202 (United States); Diabetes and Obesity Center, University of Louisville, Louisville, KY 40202 (United States); Srivastava, Sanjay; Siddiqui, Maqsood A; Vladykovskaya, Elena; Riggs, Daniel W; Conklin, Daniel J; Haberzettl, Petra; O' Toole, Timothy E; Bhatnagar, Aruni [Diabetes and Obesity Center, University of Louisville, Louisville, KY 40202 (United States); D' Souza, Stanley E., E-mail: sedsou01@louisville.ed [Department of Physiology and Biophysics, University of Louisville, Louisville, KY 40202 (United States)

    2010-10-15

    Acrolein is a common air pollutant that is present in high concentrations in wood, cotton, and tobacco smoke, automobile exhaust and industrial waste and emissions. Exposure to acrolein containing environmental pollutants such as tobacco smoke and automobile exhaust has been linked to the activation of the coagulation and hemostasis pathways and thereby to the predisposition of thrombotic events in human. To examine the effects of acrolein on platelets, adult male C57Bl/6 mice were subjected acute (5 ppm for 6 h) or sub-chronic (1 ppm, 6 h/day for 4 days) acrolein inhalation exposures. The acute exposure to acrolein did not cause pulmonary inflammation and oxidative stress, dyslipidemia or induce liver damage or muscle injury. Platelet GSH levels in acrolein-exposed mice were comparable to controls, but acrolein-exposure increased the abundance of protein-acrolein adducts in platelets. Platelets isolated from mice, exposed to both acute and sub-chronic acrolein levels, showed increased ADP-induced platelet aggregation. Exposure to acrolein also led to an increase in the indices of platelet activation such as the formation of platelet-leukocyte aggregates in the blood, plasma PF4 levels, and increased platelet-fibrinogen binding. The bleeding time was decreased in acrolein exposed mice. Plasma levels of PF4 were also increased in mice exposed to environmental tobacco smoke. Similar to inhalation exposure, acrolein feeding to mice also increased platelet activation and established a pro-thrombotic state in mice. Together, our data suggest that acrolein is an important contributing factor to the pro-thrombotic risk in human exposure to pollutants such as tobacco smoke or automobile exhaust, or through dietary consumption.

  4. Platelet-Released Growth Factors Induce Differentiation of Primary Keratinocytes

    OpenAIRE

    Bayer, Andreas; Tohidnezhad, Mersedeh; Lammel, Justus; Lippross, Sebastian; Behrendt, Peter; Klüter, Tim; Pufe, Thomas; Jahr, Holger; Cremer, Jochen; Rademacher, Franziska; Gläser, Regine; Harder, Jürgen

    2017-01-01

    Autologous thrombocyte concentrate lysates, for example, platelet-released growth factors, (PRGFs) or their clinically related formulations (e.g., Vivostat PRF?) came recently into the physicians' focus as they revealed promising effects in regenerative and reparative medicine such as the support of healing of chronic wounds. To elucidate the underlying mechanisms, we analyzed the influence of PRGF and Vivostat PRF on human keratinocyte differentiation in vitro and on epidermal differentiatio...

  5. Angiogenesis in vestibular schwannomas

    DEFF Research Database (Denmark)

    Møller, Martin Nue; Werther, Kim; Nalla, Amarnadh

    2010-01-01

    Vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs) are potent mediators of tumor angiogenesis. It has been demonstrated that vestibular schwannoma VEGF expression correlates with tumor growth pattern, whereas knowledge on the expression of MMPs is lacking. This study...

  6. Synthesis and secretion of platelet-derived growth factor by human breast cancer cell lines

    International Nuclear Information System (INIS)

    Bronzert, D.A.; Pantazis, P.; Antoniades, H.N.; Kasid, A.; Davidson, N.; Dickson, R.B.; Lippman, M.E.

    1987-01-01

    The authors report that human breast cancer cells secrete a growth factor that is biologically and immunologically similar to platelet-derived growth factor (PDGF). Serum-free medium conditioned by estrogen-independent MDA-MB-231 or estrogen-dependent MCF-7 cells contains a mitogenic or competence activity that is capable of inducing incorporation of [ 3 H] thymidine into quiescent Swiss 3T3 cells in the presence of platelet-poor plasma. Like authentic PDGF, the PDGF-like activity produced by breast cancer cells is stable after acid and heat treatment (95 0 C) and inhibited by reducing agents. The mitogenic activity comigrates with a material of ≅30 kDa on NaDodSO 4 /polyacrylamide gels. Immunoprecipitation with PDGF antiserum of proteins from metabolically labeled cell lysates and conditioned medium followed by analysis on nonreducing NaDodSO 4 /polyacrylamide gels identified proteins of 30 and 34 kDa. Upon reduction, the 30- and 34-kDa bands were converted to 15- and 16-kDa bands suggesting that the immunoprecipitated proteins were made up of two disulfide-linked polypeptides similar to PDGF. Hybridization studies with cDNA probes for the A chain PDGF and the B chain of PDGF/SIS identified transcripts for both PDGF chains in the MCF-7 and MDA-MB-231 cells. The data summarized above provide conclusive evidence for the synthesis and hormonally regulated secretion of a PDGF-like mitogen by breast carcinoma cells. Production of a PDGF-like growth factor by breast cancer cell lines may be important in mediating paracrine stimulation of tumor growth

  7. Protease-Activated Receptor 4 Variant p.Tyr157Cys Reduces Platelet Functional Responses and Alters Receptor Trafficking.

    Science.gov (United States)

    Norman, Jane E; Cunningham, Margaret R; Jones, Matthew L; Walker, Mary E; Westbury, Sarah K; Sessions, Richard B; Mundell, Stuart J; Mumford, Andrew D

    2016-05-01

    Protease-activated receptor 4 (PAR4) is a key regulator of platelet reactivity and is encoded by F2RL3, which has abundant rare missense variants. We aimed to provide proof of principle that rare F2LR3 variants potentially affect platelet reactivity and responsiveness to PAR1 antagonist drugs and to explore underlying molecular mechanisms. We identified 6 rare F2RL3 missense variants in 236 cardiac patients, of which the variant causing a tyrosine 157 to cysteine substitution (Y157C) was predicted computationally to have the greatest effect on PAR4 structure. Y157C platelets from 3 cases showed reduced responses to PAR4-activating peptide and to α-thrombin compared with controls, but no reduction in responses to PAR1-activating peptide. Pretreatment with the PAR1 antagonist vorapaxar caused lower residual α-thrombin responses in Y157C platelets than in controls, indicating greater platelet inhibition. HEK293 cells transfected with a PAR4 Y157C expression construct had reduced PAR4 functional responses, unchanged total PAR4 expression but reduced surface expression. PAR4 Y157C was partially retained in the endoplasmic reticulum and displayed an expression pattern consistent with defective N-glycosylation. Mutagenesis of Y322, which is the putative hydrogen bond partner of Y157, also reduced PAR4 surface expression in HEK293 cells. Reduced PAR4 responses associated with Y157C result from aberrant anterograde surface receptor trafficking, in part, because of disrupted intramolecular hydrogen bonding. Characterization of PAR4 Y157C establishes that rare F2RL3 variants have the potential to markedly alter platelet PAR4 reactivity particularly after exposure to therapeutic PAR1 antagonists. © 2016 American Heart Association, Inc.

  8. Signal transduction by the platelet-derived growth factor receptor

    International Nuclear Information System (INIS)

    Williams, L.T.; Escobedo, J.A.; Keating, M.T.; Coughlin, S.R.

    1988-01-01

    The mitogenic effects of platelet-derived growth factor (PDGF) are mediated by the PDGF receptor. The mouse PDGF receptor was recently purified on the basis of its ability to become tyrosine phosphorylated in response to the A-B human platelet form of PDGF, and the receptor amino acid sequence was determined from a full-length cDNA clone. Both the human and mouse receptor cDNA sequences have been expressed in Chinese hamster ovary fibroblast (CHO) cells that normally lack PDGF receptors. This paper summarizes recent results using this system to study signal transduction by the PDGF receptor. Some of the findings show that the KI domain of the PDGF receptor plays an important role in the stimulation of DNA synthesis by PDGF. Surprisingly, the kinase insert region is not essential for PDGF stimulation of PtdIns turnover, pH change, increase in cellular calcium, and receptor autophosphorylation. In addition, PDGF stimulates a conformational change in the receptor

  9. Novel direct factor Xa inhibitory compounds from Tenebrio molitor with anti-platelet aggregation activity.

    Science.gov (United States)

    Lee, Wonhwa; Kim, Mi-Ae; Park, InWha; Hwang, Jae Sam; Na, MinKyun; Bae, Jong-Sup

    2017-11-01

    Tenebrio molitor is an edible insect that has antimicrobial, anticancer, and antihypertensive effects. The aim of this study was to identify the unreported bioactive compounds from T. molitor larvae with inhibitory activities against factor Xa (FXa) and platelet aggregation. Isolated compounds were evaluated for their anti-FXa and anti-platelet aggregation properties by monitoring clotting time, platelet aggregation, FXa activity, and thrombus formation. A diketopiperazine (1, cyclo( L -Pro- L -Tyr)) and a phenylethanoid (2, N-acetyltyramine) were isolated and inhibited the catalytic activity of FXa in a mixed inhibition model and inhibited platelet aggregation induced by adenosine diphosphate (ADP) and U46619. They inhibited ADP- and U46619-induced phosphorylation of myristoylated alanine-rich C kinase substrate (MARCKS) and the expression of P-selectin and PAC-1 in platelets. They also improved the production of nitric oxide and inhibited the oversecretion of endothelin-1 compared to that of the ADP- or U46619-treated group. In an animal model of arterial and pulmonary thrombosis, the isolated compounds showed enhanced antithrombotic effects. They also elicited anticoagulant effects in mice. Compounds 1-2 inhibited ADP-, collagen-, or U46619-induced platelet aggregation and showed similar anti-thrombotic efficacy to rivaroxaban, a positive control. Therefore, 1-2 could serve as candidates and provide scaffolds for the development of new anti-FXa and anti-platelet drugs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Platelet-Derived Short-Chain Polyphosphates Enhance the Inactivation of Tissue Factor Pathway Inhibitor by Activated Coagulation Factor XI.

    Directory of Open Access Journals (Sweden)

    Cristina Puy

    Full Text Available Factor (F XI supports both normal human hemostasis and pathological thrombosis. Activated FXI (FXIa promotes thrombin generation by enzymatic activation of FXI, FIX, FX, and FV, and inactivation of alpha tissue factor pathway inhibitor (TFPIα, in vitro. Some of these reactions are now known to be enhanced by short-chain polyphosphates (SCP derived from activated platelets. These SCPs act as a cofactor for the activation of FXI and FV by thrombin and FXIa, respectively. Since SCPs have been shown to inhibit the anticoagulant function of TFPIα, we herein investigated whether SCPs could serve as cofactors for the proteolytic inactivation of TFPIα by FXIa, further promoting the efficiency of the extrinsic pathway of coagulation to generate thrombin.Purified soluble SCP was prepared by size-fractionation of sodium polyphosphate. TFPIα proteolysis was analyzed by western blot. TFPIα activity was measured as inhibition of FX activation and activity in coagulation and chromogenic assays. SCPs significantly accelerated the rate of inactivation of TFPIα by FXIa in both purified systems and in recalcified plasma. Moreover, platelet-derived SCP accelerated the rate of inactivation of platelet-derived TFPIα by FXIa. TFPIα activity was not affected by SCP in recalcified FXI-depleted plasma.Our data suggest that SCP is a cofactor for TFPIα inactivation by FXIa, thus, expanding the range of hemostatic FXIa substrates that may be affected by the cofactor functions of platelet-derived SCP.

  11. Novel endogenous angiogenesis inhibitors and their therapeutic potential.

    Science.gov (United States)

    Rao, Nithya; Lee, Yu Fei; Ge, Ruowen

    2015-10-01

    Angiogenesis, the formation of new blood vessels from the pre-existing vasculature is essential for embryonic development and tissue homeostasis. It also plays critical roles in diseases such as cancer and retinopathy. A delicate balance between pro- and anti-angiogenic factors ensures normal physiological homeostasis. Endogenous angiogenesis inhibitors are proteins or protein fragments that are formed in the body and have the ability to limit angiogenesis. Many endogenous angiogenesis inhibitors have been discovered, and the list continues to grow. Endogenous protein/peptide inhibitors are relatively less toxic, better tolerated and have a lower risk of drug resistance, which makes them attractive as drug candidates. In this review, we highlight ten novel endogenous protein angiogenesis inhibitors discovered within the last five years, including ISM1, FKBPL, CHIP, ARHGAP18, MMRN2, SOCS3, TAp73, ZNF24, GPR56 and JWA. Although some of these proteins have been well characterized for other biological functions, we focus on their new and specific roles in angiogenesis inhibition and discuss their potential for therapeutic application.

  12. Kruppel-like factor 2 inhibit the angiogenesis of cultured human liver sinusoidal endothelial cells through the ERK1/2 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xiao-Qing, E-mail: zeng.xiaoqing@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Li, Na, E-mail: Linala.2009@163.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Pan, Du-Yi, E-mail: lasikesmi@hotmail.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Miao, Qing, E-mail: sadsadvenus@163.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Ma, Gui-Fen, E-mail: ma.guifen@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Liu, Yi-Mei, E-mail: liuyimei1988@163.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Tseng, Yu-Jen, E-mail: dianatseng14@gmail.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Li, Feng, E-mail: li.feng2@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Xu, Li-Li, E-mail: xu.lili3@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Chen, Shi-Yao, E-mail: chen.shiyao@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Institute of Endoscopic Research of Zhongshan Hospital, Fudan University, Shanghai (China)

    2015-09-04

    Kruppel-like factor 2 (KLF2) is a crucial anti-angiogenic factor. However, its precise role in hepatic angiogenesis induced by liver sinusoidal endothelial cells (LSECs) remain unclear. This study was aimed to evaluate the effect of KLF2 on angiogenesis of LSECs and to explore the corresponding mechanism. Cultured human LSECs were infected with different lentiviruses to overexpress or suppress KLF2 expression. The CCK-8 assay, transwell migration assay and tube formation test, were used to investigate the roles of KLF2 in the proliferation, migration and vessel tube formation of LSECs, respectively. The expression and phosphorylation of ERK1/2 were detected by western blot. We discovered that the up-regulation of KLF2 expression dramatically inhibited proliferation, migration and tube formation in treated LSECs. Correspondingly, down-regulation of KLF2 expression significantly promoted proliferation, migration and tube formation in treated LSECs. Additionally, KLF2 inhibited the phosphorylation of ERK1/2 pathway, followed by the function of KLF2 in the angiogenesis of LSECs disrupted. In conclusion, KLF2 suppressed the angiogenesis of LSECs through inhibition of cell proliferation, migration, and vessel tube formation. These functions of KLF2 may be mediated through the ERK1/2 signaling pathway. - Highlights: • Overexpression of KLF2 inhibits the proliferation and migration of LSECs. • Overexpression of KLF2 inhibits the angiogenesis of LSECs. • ERK1/2 signaling pathway involved in the anti-angiogenic process of KLF2 on LSECs.

  13. Clot lysis time in platelet-rich plasma: method assessment, comparison with assays in platelet-free and platelet-poor plasmas, and response to tranexamic acid.

    Science.gov (United States)

    Panes, Olga; Padilla, Oslando; Matus, Valeria; Sáez, Claudia G; Berkovits, Alejandro; Pereira, Jaime; Mezzano, Diego

    2012-01-01

    Fibrinolysis dysfunctions cause bleeding or predisposition to thrombosis. Platelets contain several factors of the fibrinolytic system, which could up or down regulate this process. However, the temporal relationship and relative contributions of plasma and platelet components in clot lysis are mostly unknown. We developed a clot lysis time (CLT) assay in platelet-rich plasma (PRP-CLT, with and without stimulation) and compared it to a similar one in platelet-free plasma (PFP) and to another previously reported test in platelet-poor plasma (PPP). We also studied the differential effects of a single dose of tranexamic acid (TXA) on these tests in healthy subjects. PFP- and PPP-CLT were significantly shorter than PRP-CLT, and the three assays were highly correlated (p plasma PAI-1, von Willebrand factor, fibrinogen, LDL-cholesterol, and triglycerides (p platelet aggregation/secretion, platelet counts, and pro-coagulant tests to explore factor X activation by platelets, PRP clotting time, and thrombin generation in PRP. Among all the studied variables, PFP-CLT was independently associated with plasma PAI-1, LDL-cholesterol, and triglycerides and, additionally, stimulated PRP-CLT was also independently associated with plasma fibrinogen. A single 1 g dose of TXA strikingly prolonged all three CLTs, but in contrast to the results without the drug, the lysis times were substantially shorter in non-stimulated or stimulated PRP than in PFP and PPP. This standardized PRP-CLT may become a useful tool to study the role of platelets in clot resistance and lysis. Our results suggest that initially, the platelets enmeshed in the clot slow down the fibrinolysis process. However, the increased clot resistance to lysis induced by TXA is overcome earlier in platelet-rich clots than in PFP or PPP clots. This is likely explained by the display of platelet pro-fibrinolytic effects. Focused research is needed to disclose the mechanisms for the relationship between CLT and plasma

  14. [Inhibitory mechanism of ifenprodil tartrate on rabbit platelet aggregation].

    Science.gov (United States)

    Irino, O; Saitoh, K; Hayashi, T; Ohkubo, K

    1985-05-01

    The effects of dl-erythro-4-benzyl-alpha-(4-hydroxyphenyl)-beta-methyl-l-piperidine-eth anol tartrate (ifenprodil tartrate) on rabbit platelet aggregation in vitro and ex vivo were studied. Ifenprodil tartrate inhibited platelet aggregation in vitro induced by ADP, collagen and epinephrine. It also inhibited 5-hydroxytryptamine (5-HT) uptake into platelets and 5-HT release from platelets. Since these inhibitory effects of ifenprodil tartrate on the functions of rabbit platelets were similar to the effects of imipramine, the effects of ifenprodil tartrate may be due to the stabilizing action of ifenprodil tartrate on the platelet membrane. The platelet aggregation by ADP was significantly inhibited in rabbits after oral administration of ifenprodil tartrate, the maximal plasma level of ifenprodil being reached at 20 ng/ml ex vivo, while the maximal level was only 1/40 of the minimal concentration of ifenprodil tartrate necessary to inhibit platelet aggregation in vitro. These results indicate that factors other than ifenprodil tartrate acting directly on the platelets (e.g., PGI2 which is an endogenous inhibitor of platelet aggregation) are involved in inducing the inhibitory effects of ifenprodil tartrate on platelet aggregation ex vivo. The effects of ifenprodil tartrate on both PGI2 release from the aorta and the inhibitory effects of PGI2 on platelet aggregation in vitro were investigated: PGI2 was found to intensify the inhibitory effects of ifenprodil tartrate on platelet aggregation in vitro, but there was little effect, if any, on PGI2 release. Therefore, it is considered that the ex vivo effects of ifenprodil tartrate might be due to its interaction with endogenous PGI2 in the blood.

  15. Hypoxia-Inducible Factor-1 as Regulator of Angiogenesis in Rheumatoid Arthritis - Therapeutic Implications

    NARCIS (Netherlands)

    Westra, J.; Molema, G.; Kallenberg, C. G. M.

    Angiogenesis plays an important role in the pathogenesis of inflammatory diseases, including rheumatoid arthritis ( RA). The site and extent of inflammation and subsequent joint destruction in the rheumatoid synovium is dependent on the development of new vasculature. Inhibition of angiogenesis,

  16. The vascular permeabilizing factors histamine and serotonin induce angiogenesis through TR3/Nur77 and subsequently truncate it through thrombospondin-1

    Science.gov (United States)

    Qin, Liuliang; Zhao, Dezheng; Xu, Jianfeng; Ren, Xianghui; Terwilliger, Ernest F.; Parangi, Sareh; Lawler, Jack; Dvorak, Harold F.

    2013-01-01

    Angiogenesis plays an important role in cancer and in many other human diseases. Vascular endothelial growth factor-A (VEGF-A), the best known angiogenic factor, was originally discovered as a potent vascular permeability factor (VPF), suggesting that other vascular permeabilizing agents, such as histamine and serotonin, might also have angiogenic activity. We recently demonstrated that, like VEGF-A, histamine and serotonin up-regulate the orphan nuclear receptor and transcription factor TR3 (mouse homolog Nur77) and that TR3/Nur77 is essential for their vascular permeabilizing activities. We now report that histamine and serotonin are also angiogenic factors that, at low micromolar concentrations, induce endothelial cell proliferation, migration and tube formation in vitro, and angiogenesis in vivo. All of these responses are mediated through specific histamine and serotonin receptors, are independent of VEGF-A, and are directly dependent on TR3/Nur77. Initially, the angiogenic response closely resembled that induced by VEGF-A, with generation of “mother” vessels. However, after ∼10 days, mother vessels began to regress as histamine and serotonin, unlike VEGF-A, up-regulated the potent angiogenesis inhibitor thrombospondin-1, thereby triggering a negative feedback loop. Thus, histamine and serotonin induce an angiogenic response that fits the time scale of acute inflammation. PMID:23315169

  17. Tissue regenerating functions of coagulation factor XIII

    DEFF Research Database (Denmark)

    Soendergaard, C; Kvist, P H; Seidelin, J B

    2013-01-01

    The protransglutaminase factor XIII (FXIII) has recently gained interest within the field of tissue regeneration, as it has been found that FXIII significantly influences wound healing by exerting a multitude of functions. It supports haemostasis by enhancing platelet adhesion to damaged......-receptor 2 and the αVβ3 integrin is important for angiogenesis supporting formation of granulation tissue. Chronic inflammatory conditions involving bleeding and activation of the coagulation cascade have been shown to lead to reduced FXIII levels in plasma. Of particular importance for this review...

  18. Gamma-glutamyl-transpeptidase to platelet ratio is not superior to APRI,FIB-4 and RPR for diagnosing liver fibrosis in CHB patients in China

    OpenAIRE

    Huang, Rui; Wang, Guiyang; Tian, Chen; Liu, Yong; Jia, Bei; Wang, Jian; Yang, Yue; Li, Yang; Sun, Zhenhua; Yan, Xiaomin; Xia, Juan; Xiong, Yali; Song, Peixin; Zhang, Zhaoping; Ding, Weimao

    2017-01-01

    The gamma-glutamyl transpeptidase to platelet ratio (GPR) is a novel index to estimate liver fibrosis in chronic hepatitis B (CHB). Few studies compared diagnostic accuracy of GPR with other non-invasive fibrosis tests based on blood parameters. We analyzed diagnostic values of GPR for detecting liver fibrosis and compared diagnostic performances of GPR with APRI (aspartate aminotransferase-to-platelet ratio index), FIB-4 (fibrosis index based on the four factors), NLR (neutrophil-to-lymphocy...

  19. Platelets and hemophilia: A review of the literature.

    Science.gov (United States)

    Riedl, Julia; Ay, Cihan; Pabinger, Ingrid

    2017-07-01

    Hemophilia A and B are inherited bleeding disorders due to deficiencies of the clotting factors VIII and IX, respectively. The severity of the disease correlates with remaining factor levels, although individual differences in bleeding tendency are seen despite similar factor levels. While thrombin generation is severely impaired in persons with hemophilia, primary hemostasis, i.e. platelet function, has been generally considered to be normal. However, some studies reported prolonged bleeding times in hemophilia, suggesting that also primary hemostasis is affected. In several other studies different aspects of platelet function in hemophilia have been investigated in more detail and various alterations were discovered, such as increased platelet P-selectin expression, a lower number of procoagulant, so-called 'coated' platelets, lower aggregation upon co-incubation with tissue factor, or reduced platelet contractile forces during clot formation in comparison to healthy individuals. An influence of platelet function on clinical phenotype was suggested, which might contribute in part to variations in bleeding tendency in hemophilic patients with similar factor levels. However, the available evidence is currently limited and no clear correlations between platelet function parameters and clinical phenotypes have been demonstrated. The impact of alterations of platelet function in hemophilia remains to be better defined. Another interesting role of platelets in hemophilia has been reported recently by establishing a novel gene-therapeutic strategy using platelets as a delivery system for FVIII, showing promising results in animal models. This review gives an overview on the currently published literature on platelet function and the potential roles of platelets in hemophilia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Glucose Transporter 3 Potentiates Degranulation and Is Required for Platelet Activation.

    Science.gov (United States)

    Fidler, Trevor P; Middleton, Elizabeth A; Rowley, Jesse W; Boudreau, Luc H; Campbell, Robert A; Souvenir, Rhonda; Funari, Trevor; Tessandier, Nicolas; Boilard, Eric; Weyrich, Andrew S; Abel, E Dale

    2017-09-01

    On activation, platelets increase glucose uptake, glycolysis, and glucose oxidation and consume stored glycogen. This correlation between glucose metabolism and platelet function is not well understood and even less is known about the role of glucose metabolism on platelet function in vivo. For glucose to enter a cell, it must be transported through glucose transporters. Here we evaluate the contribution of GLUT3 (glucose transporter 3) to platelet function to better understand glucose metabolism in platelets. Platelet-specific knockout of GLUT3 was generated by crossing mice harboring GLUT3 floxed allele to a PF4 (platelet factor 4)-driven Cre recombinase. In platelets, GLUT3 is localized primarily on α-granule membranes and under basal conditions facilitates glucose uptake into α-granules to be used for glycolysis. After activation, platelets degranulate and GLUT3 translocates to the plasma membrane, which is responsible for activation-mediated increased glucose uptake. In vivo, loss of GLUT3 in platelets increased survival in a collagen/epinephrine model of pulmonary embolism, and in a K/BxN model of autoimmune inflammatory disease, platelet-specific GLUT3 knockout mice display decreased disease progression. Mechanistically, loss of GLUT3 decreased platelet degranulation, spreading, and clot retraction. Decreased α-granule degranulation is due in part to an impaired ability of GLUT3 to potentiate exocytosis. GLUT3-mediated glucose utilization and glycogenolysis in platelets promotes α-granule release, platelet activation, and postactivation functions. © 2017 American Heart Association, Inc.

  1. Identification of functional VEGF receptors on human platelets.

    Science.gov (United States)

    Selheim, Frode; Holmsen, Holm; Vassbotn, Flemming S

    2002-02-13

    Platelets secrete platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF) upon stimulation. We have demonstrated that platelets have functionally active PDGF alpha-receptors, a transmembrane tyrosine kinase involved in negative feedback regulation. Here we demonstrate the presence of the related VEGF receptors fms-like tyrosine kinase-1 and kinase-insert domain region on human platelets. VEGF itself did not cause platelet aggregation. However, addition of exogenous VEGF to SFRLLN or thrombin-stimulated platelets potentiated platelet aggregation. Moreover, thrombin-induced phosphoinositide 3-kinase and mitogen-activated protein kinase activity were enhanced in the presence of VEGF.

  2. MAC-1 Glycoprotein Family mediates adherence of neutrophils to endothelial cells stimulated by leukotriene B/sub 4/ and platelet activating factor

    Energy Technology Data Exchange (ETDEWEB)

    Tonnesen, M.G.; Anderson, D.C.; Springer, T.A.; Knedler, A.; Avdi, N.; Henson, P.M.

    1986-03-01

    The process of neutrophil (N) adhesion to and migration through endothelium (EC), an early event in the induction of the acute inflammatory response, has been attributed to the generation of extravascular chemoattractant peptides and lipids. Although both leukotriene B/sub 4/ (LTB/sub 4/) and platelet activating factor (PAF) enhance N adherence to EC, the mechanisms involved in this interaction are still not completely understood. Since the MAC-1 Glycoprotein (GP) Family has recently been shown to be required for a variety of adherence-dependent functions of stimulated N, the authors questioned whether these adherence-associated GP might be involved in N adherence to EC stimulated by LTB/sub 4/ or PAF. Using a microtiter adherence assay with /sup 111/In labeled N, they assessed the ability of N from patients with MAC-1, LFA-1 Deficiency to adhere to monolayers of human omental microvascular or umbilical vein EC as well as to serum-coated plastic. Patient N exhibited markedly diminished adherence in response to LTB/sub 4/ or PAF compared to normal controls. LTB/sub 4/ and PAF enhanced expression of the MAC-1 GP Family on the surface of normal N as determined by flow cytofluorimetry using a monoclonal antibody (TS1/18) to the GP common beta subunit. In addition TS1/18 (20 ..mu..g/ml) completely inhibited N adherence stimulated by either LTB/sub 4/ (10/sup -8/M) or PAF(10/sup -11/M). Thus, the MAC-1 GP Family appears to be important in chemotactic factor regulation of N adherence to EC.

  3. Hypothermia and Platelet Dysfunction

    National Research Council Canada - National Science Library

    Michelson, A

    1994-01-01

    ... (the GPIIb-IIIa complex). Circulating platelets are normally in a resting state and, despite the presence of platelet surface GPIb-IX and GPIIb-IIIa complexes, they bind neither plasma von Willebrand factor nor plasma fibrinogen...

  4. Targeting factor VIII expression to platelets for hemophilia A gene therapy does not induce an apparent thrombotic risk in mice.

    Science.gov (United States)

    Baumgartner, C K; Mattson, J G; Weiler, H; Shi, Q; Montgomery, R R

    2017-01-01

    Essentials Platelet-Factor (F) VIII gene therapy is a promising treatment in hemophilia A. This study aims to evaluate if platelet-FVIII expression would increase the risk for thrombosis. Targeting FVIII expression to platelets does not induce or elevate thrombosis risk. Platelets expressing FVIII are neither hyper-activated nor hyper-responsive. Background Targeting factor (F) VIII expression to platelets is a promising gene therapy approach for hemophilia A, and is successful even in the presence of inhibitors. It is well known that platelets play important roles not only in hemostasis, but also in thrombosis and inflammation. Objective To evaluate whether platelet-FVIII expression might increase thrombotic risk and thereby compromise the safety of this approach. Methods In this study, platelet-FVIII-expressing transgenic mice were examined either in steady-state conditions or under prothrombotic conditions induced by inflammation or the FV Leiden mutation. Native whole blood thrombin generation assay, rotational thromboelastometry analysis and ferric chloride-induced vessel injury were used to evaluate the hemostatic properties. Various parameters associated with thrombosis risk, including D-dimer, thrombin-antithrombin complexes, fibrinogen, tissue fibrin deposition, platelet activation status and activatability, and platelet-leukocyte aggregates, were assessed. Results We generated a new line of transgenic mice that expressed 30-fold higher levels of platelet-expressed FVIII than are therapeutically required to restore hemostasis in hemophilic mice. Under both steady-state conditions and prothrombotic conditions induced by lipopolysaccharide-mediated inflammation or the FV Leiden mutation, supratherapeutic levels of platelet-expressed FVIII did not appear to be thrombogenic. Furthermore, FVIII-expressing platelets were neither hyperactivated nor hyperactivatable upon agonist activation. Conclusion We conclude that, in mice, more than 30-fold higher levels of

  5. Bioactivity and stability of endogenous fibrogenic factors in platelet-rich fibrin

    DEFF Research Database (Denmark)

    Lundquist, R.; Dziegiel, M.H.; Agren, M.S.

    2008-01-01

    Platelet-rich fibrin (PRF) is an autologous fibrin sealant (FS) enriched with a platelet concentrate (> 1,000,000 platelets/microL) produced by the automated Vivostat system and used to enhance wound healing. The effects of PRF were compared with supernatant from thrombin-activated platelet conce...

  6. Hypothermia and Platelet Dysfunction

    National Research Council Canada - National Science Library

    Michelson, Alan

    1993-01-01

    ... (the OPlib-Illa complex).3 Circulating platelets are normally in a resting state and, despite the presence of platelet surface GPTh-IX and OPlib-Illa complexes, they bind neither plasma von Willebrand factor nor plasma fibrinogen...

  7. Platelet-rich preparations to improve healing. Part II: platelet activation and enrichment, leukocyte inclusion, and other selection criteria.

    Science.gov (United States)

    Davis, Vicki L; Abukabda, Alaeddin B; Radio, Nicholas M; Witt-Enderby, Paula A; Clafshenkel, William P; Cairone, J Vito; Rutkowski, James L

    2014-08-01

    Multiple platelet-rich preparations have been reported to improve wound and bone healing, such as platelet-rich plasma (PRP) and platelet rich fibrin (PRF). The different methods employed during their preparation are important, as they influence the quality of the product applied to a wound or surgical site. Besides the general protocol for preparing the platelet-rich product (discussed in Part 1 of this review), multiple choices need to be considered during its preparation. For example, activation of the platelets is required for the release and enmeshment of growth factors, but the method of activation may influence the resulting matrix, growth factor availability, and healing. Additionally, some methods enrich leukocytes as well as platelets, but others are designed to be leukocyte-poor. Leukocytes have many important roles in healing and their inclusion in PRP results in increased platelet concentrations. Platelet and growth factor enrichment reported for the different types of platelet-rich preparations are also compared. Generally, TGF-β1 and PDGF levels were higher in preparations that contain leukocytes compared to leukocyte-poor PRP. However, platelet concentration may be the most reliable criterion for comparing different preparations. These and other criteria are described to help guide dental and medical professionals, in large and small practices, in selecting the best procedures for their patients. The healing benefits of platelet-rich preparations along with the low risk and availability of simple preparation procedures should encourage more clinicians to incorporate platelet-rich products in their practice to accelerate healing, reduce adverse events, and improve patient outcomes.

  8. Abnormal platelet-derived growth factor signaling accounting for lung hypoplasia in experimental congenital diaphragmatic hernia.

    Science.gov (United States)

    Dingemann, Jens; Doi, Takashi; Ruttenstock, Elke; Puri, Prem

    2010-10-01

    The pathogenesis of pulmonary hypoplasia in congenital diaphragmatic hernia (CDH) is not fully understood. Platelet-derived growth factor A (PDGFA) and platelet-derived growth factor receptor α (PDGFRα) play a crucial role in lung development. It has been reported that PDGF induces H(2)O(2)-production and that oxidative stress may be an important mechanism for the impaired lung development in the nitrofen rat model. We hypothesized that pulmonary expression of PDGFA and PDGFRα is altered in the nitrofen induced CDH model. Pregnant rats received 100 mg nitrofen or vehicle on gestational day 9 (D9) and were sacrificed on D15, D18 or D21. RNA was extracted from fetal left lungs and mRNA levels of PDGFA and PDGFRα were determined using real-time polymerase chain reaction. Immunohistochemistry for protein expression of PDGFA and PDGFRα was performed. Pulmonary H(2)O(2) was measured colorimetrically. mRNA levels of PDGFRα at D15 (4.50 ± 0.87) and PDGFA at D18 (2.90 ± 1.38) were increased in the nitrofen group (P stress during lung development. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Probiotic yeast inhibits VEGFR signaling and angiogenesis in intestinal inflammation.

    Directory of Open Access Journals (Sweden)

    Xinhua Chen

    Full Text Available Saccharomyces boulardii (Sb can protect against intestinal injury and tumor formation, but how this probiotic yeast controls protective mucosal host responses is unclear. Angiogenesis is an integral process of inflammatory responses in inflammatory bowel diseases (IBD and required for mucosal remodeling during restitution. The aim of this study was to determine whether Sb alters VEGFR (vascular endothelial growth factor receptor signaling, a central regulator of angiogenesis.HUVEC were used to examine the effects of Sb on signaling and on capillary tube formation (using the ECMatrix™ system. The effects of Sb on VEGF-mediated angiogenesis were examined in vivo using an adenovirus expressing VEGF-A(164 in the ears of adult nude mice (NuNu. The effects of Sb on blood vessel volume branching and density in DSS-induced colitis was quantified using VESsel GENeration (VESGEN software.1 Sb treatment attenuated weight-loss (p<0.01 and histological damage (p<0.01 in DSS colitis. VESGEN analysis of angiogenesis showed significantly increased blood vessel density and volume in DSS-treated mice compared to control. Sb treatment significantly reduced the neo-vascularization associated with acute DSS colitis and accelerated mucosal recovery restoration of the lamina propria capillary network to a normal morphology. 2 Sb inhibited VEGF-induced angiogenesis in vivo in the mouse ear model. 3 Sb also significantly inhibited angiogenesis in vitro in the capillary tube assay in a dose-dependent manner (p<0.01. 4 In HUVEC, Sb reduced basal VEGFR-2 phosphorylation, VEGFR-2 phosphorylation in response to VEGF as well as activation of the downstream kinases PLCγ and Erk1/2.Our findings indicate that the probiotic yeast S boulardii can modulate angiogenesis to limit intestinal inflammation and promote mucosal tissue repair by regulating VEGFR signaling.

  10. Platelet kinetics with indium-111 platelets: comparison with chromium-51 platelets

    International Nuclear Information System (INIS)

    Peters, A.M.; Lavender, J.P.

    1983-01-01

    The application of 111In-oxine to platelet labeling has contributed to the understanding of platelet kinetics along three lines: 1. It allows the measurement of new parameters of splenic function, such as the intrasplenic platelet transit time, which has shed new light on the physiology of splenic blood cell handling. 2. It facilitates the measurement of platelet life span in conditions, such as ITP, in which 51Cr may undergo undesirable elution from the platelet as a result of platelet-antibody interaction. 3. It allows the determination of the fate of platelets, that is, the site of platelet destruction in conditions in which reduced platelet life span is associated with abnormal platelet consumption, as a result of either premature destruction of ''abnormal'' platelets by the RE system, or the consumption (or destruction) of normal platelets after their interaction with an abnormal vasculature. Future research using 111In platelets may yield further valuable information on the control as well as the significance of intrasplenic platelet pooling, on the role of platelets in the development of chronic vascular lesions, and on the sites of platelet destruction in ITP. With regard to the latter, methods will have to be developed for harvesting sufficient platelets representative of the total circulating platelet population from severely thrombocytopenic patients for autologous platelet labeling. This would avoid the use of homologous platelets, which is likely to be responsible for some of the contradictory data relating to the use of radiolabeled platelet studies for the prediction of the response of patients with ITP to splenectomy

  11. [Investigation of mechanisms of action of growth factors of autologous platelet-rich plasma used to treat erectile dysfunction].

    Science.gov (United States)

    Epifanova, M V; Chalyi, M E; Krasnov, A O

    2017-09-01

    To determine the quantitative and qualitative composition of growth factors (PDGF-AA, PDGF-BB, VEGF, VEGF-D, FGF-acid, FGF-basic) and platelets in various modifications of APRP. Blood of 12 male volunteers (control group) and 12 patients with ED was used to prepare APRP and the subsequently determine the concentration of growth factors. The growth factor concentrations (FGF acid, FGF basic, PDGF-AA, PDGF-BB, VEGF, VEGF-D) was determined using a flow cytometry-based xMAP Luminex (Gen-Probe) system. Concentration of platelets in APRP obtained by two stage centrifugation, reached 1480 (1120-1644) in the control group and 1232 (956-1502) in patients with ED. The concentration of growth factors in the samples prepared without preliminary freezing was: PDGF-AA 842 (22-3700), PDGF-BB 2837 (1460-4100), FGF-basic 7.9 (0.28-127), FGF-acid 3, 4 (0.14-11), VEGF 19 (4.6-46), VEGF-D 21 (14-38). After thawing, the concentration of all growth factors in the samples increased. The study findings suggest that the mechanism of erectile function recovery following the use of APRP is through the active substances detected in APRP, i.e. FGF-basic, PDGF-AA, PDGF-BB, VEGF, VEGF-D and FGF-acid. Also, the study showed that the content of growth factors in APRP after of freezing/thawing is higher than in APRP that has not been frozen. This is due to the cell membrane destruction at extremely low temperatures during freezing.

  12. Prevalence of risk factors for platelet transfusion refractoriness in multitransfused hemato-oncological patients at tertiary care center in North India

    Directory of Open Access Journals (Sweden)

    Vijay Kumawat

    2015-01-01

    Full Text Available Background: This study was designed to determine the prevalence and assess the risk factors responsible for platelet transfusion refractoriness in hemato-oncological patients. Materials and Methods: The study included 30 patients. Twelve were clinically diagnosed as aplastic anemia and the 18 were of acute myeloid leukemia. A prospective 3 months follow-up was planned to monitor the response of platelet transfusion therapy, based on their posttransfusion corrected count increment at 1 st and 24 th h. Based on the observations, patients were categorized into refractory and nonrefractory groups. Common nonimmunological causes such as fever, sepsis, bleeding, disseminated intravascular coagulation, chemotherapy, splenomegaly, ABO mismatch, and antithymocyte globulin therapy were monitored. Among the immunological causes, presence of antihuman leukocyte antigen (HLA class I antibodies and platelet glycoprotein antibodies in patient′s serum were monitored. Results: During the study period, 17 (56.66% patients did not show desired platelet count increment. Transfusion requirements of refractory group for both red cell and platelet product were significantly higher (P < 0.05 in comparison to nonrefractory group. Among immunological causes, anti HLA class I antibodies (P < 0.013, antihuman platelet antigen-5b antibodies (P < 0.033 were significantly associated with refractoriness. Among nonimmunological causes, bleeding (P < 0.019, odd ratio 8.7, fever (P < 0.08, odd ratio 5.2, and infection (P < 0.07, odd ratio 5.4 were found to associated with refractoriness. Conclusion: Platelet refractoriness should be suspected in multitransfused patients not showing expected increment in platelet counts and thoroughly investigated to frame further guidelines in order to ensure proper management of these kind of patients.

  13. Tetrandrine Suppresses Cancer Angiogenesis and Metastasis in 4T1 Tumor Bearing Mice

    Directory of Open Access Journals (Sweden)

    Jian-Li Gao

    2013-01-01

    Full Text Available Metastasis remains the most deadly aspect of cancer and still evades direct treatment. Thus, there is a great need to develop new treatment regimens to suppress tumor cells that have escaped surgical removal or that may have already disseminated. We have found that tetrandrine (TET exhibits anticolon cancer activity. Here, we investigate the inhibition effect of TET to breast cancer metastasis, angiogenesis and its molecular basis underlying TET’s anticancer activity. We compare TET with chemotherapy drug doxorubicin in 4T1 tumor bearing BALB/c mice model and find that TET exhibits an anticancer metastatic and antiangiogenic activities better than those of doxorubicin. The lung metastatic sites were decreased by TET, which is confirmed by bioluminescence imaging in vivo. On the other hand, laser doppler perfusion imaging (LDI was used for measuring the blood flow of tumor in 4T1-tumor bearing mice. As a result, the local blood perfusion of tumor was markedly decreased by TET after 3 weeks. Mechanistically, TET treatment leads to a decrease in p-ERK level and an increase in NF-κB levels in HUVECs. TET also regulated metastatic and angiogenic related proteins, including vascular endothelial growth factor, hypoxia-inducible factor-1α, integrin β5, endothelial cell specific molecule-1, and intercellular adhesion molecule-1 in vivo.

  14. Angiogenesis and lymphangiogenesis are downregulated in primary breast cancer

    Science.gov (United States)

    Boneberg, E-M; Legler, D F; Hoefer, M M; Öhlschlegel, C; Steininger, H; Füzesi, L; Beer, G M; Dupont-Lampert, V; Otto, F; Senn, H-J; Fürstenberger, G

    2009-01-01

    Background: Angiogenesis and lymphangiogenesis are considered to play key roles in tumour growth, progression and metastasis. However, targeting tumour angiogenesis in clinical trials showed only modest efficacy. We therefore scrutinised the concept of tumour angiogenesis and lymphangiogenesis by analysing the expression of crucial markers involved in these processes in primary breast cancer. Methods: We analysed the expression of angiogenic, lymphangiogenic or antiangiogenic factors, their respective receptors and specific markers for endothelial and lymphendothelial cells by quantitative real-time RT-PCR in primary breast cancer and compared the expression profiles to non-cancerous, tumour-adjacent tissues and breast tissues from healthy women. Results: We found decreased mRNA amounts of major angiogenic and lymphangiogenic factors in tumour compared to healthy tissues, whereas antiangiogenic factors were upregulated. Concomitantly, angiogenic and lymphangiogenic receptors were downregulated in breast tumours. This antiangiogenic, antilymphangiogenic microenvironment was even more pronounced in aggressive tumours and accompanied by reduced amounts of endothelial and lymphatic endothelial cell markers. Conclusion: Primary breast tumours are not a site of highly active angiogenesis and lymphangiogenesis. Selection for tumour cells that survive with minimal vascular supply may account for this observation in clinical apparent tumours. PMID:19672262

  15. Dietary Proteins and Angiogenesis

    Directory of Open Access Journals (Sweden)

    Miguel Ángel Medina

    2014-01-01

    Full Text Available Both defective and persistent angiogenesis are linked to pathological situations in the adult. Compounds able to modulate angiogenesis have a potential value for the treatment of such pathologies. Several small molecules present in the diet have been shown to have modulatory effects on angiogenesis. This review presents the current state of knowledge on the potential modulatory roles of dietary proteins on angiogenesis. There is currently limited available information on the topic. Milk contains at least three proteins for which modulatory effects on angiogenesis have been previously demonstrated. On the other hand, there is some scarce information on the potential of dietary lectins, edible plant proteins and high protein diets to modulate angiogenesis.

  16. Mean Platelet Volume as an Indicator of Platelet Rejuvenation Following Bone Marrow Transplantation.

    Science.gov (United States)

    1986-07-01

    diameter N I Estes, 1968 Mucopolysaccharidosis diameter N I Estes, 1968 Osteogenesis imperfecta diameter N N Estes, 1968 Montreal Platelet Syndrome...6. Inherited Disorders of Connective Tissue: Platelet size was evaluated in 31 families with the following disorders: Osteogenesis imperfecta ...controlled by factors regulating the passage of platelets in and out of the pool. The splenic pool is known to be mobilized following exercise or epinephrine

  17. Vasculogenesis and Angiogenesis: Molecular and Cellular Controls

    Science.gov (United States)

    Kubis, N.; Levy, B.I.

    2003-01-01

    Summary Angiogenesis characterizes embryonic development, but also occurs in adulthood in physiological situations such as adaptation to muscle exercise, and in pathological conditions like cancer. Major advances have been made in understanding the molecular mechanisms responsible for vasculogenesis and angiogenesis, largely due to the use of “knock-out mice”, i.e. mice in which the gene coding for the protein under investigation has been inactivated. Interestingly, the same growth factors and their receptors are equally involved in the different aspects of vasculogenesis and angiogenesis during development and in adulthood. This review aims to describe in detail their respective roles and how interactions between them lead to a newly formed vessel. PMID:20591248

  18. Thrombin generation by activated factor VII on platelet activated by different agonists. Extending the cell-based model of hemostasis

    Directory of Open Access Journals (Sweden)

    Herrera Maria

    2006-04-01

    Full Text Available Abstract Background Platelet activation is crucial in normal hemostasis. Using a clotting system free of external tissue factor, we investigated whether activated Factor VII in combination with platelet agonists increased thrombin generation (TG in vitro. Methods and results TG was quantified by time parameters: lag time (LT and time to peak (TTP, and by amount of TG: peak of TG (PTG and area under thrombin formation curve after 35 minutes (AUC→35min in plasma from 29 healthy volunteers using the calibrated automated thrombography (CAT technique. TG parameters were measured at basal conditions and after platelet stimulation by sodium arachidonate (AA, ADP, and collagen (Col. In addition, the effects of recombinant activated FVII (rFVIIa alone or combined with the other platelet agonists on TG parameters were investigated. We found that LT and TTP were significantly decreased (p 35min were significantly increased (p 35min (but not PTG when compared to platelet rich plasma activated with agonists in the absence of rFVIIa. Conclusion Platelets activated by AA, ADP, Col or rFVIIa triggered TG. This effect was increased by combining rFVIIa with other agonists. Our intrinsic coagulation system produced a burst in TG independent of external tissue factor activity an apparent hemostatic effect with little thrombotic capacity. Thus we suggest a modification in the cell-based model of hemostasis.

  19. miR-326 targets antiapoptotic Bcl-xL and mediates apoptosis in human platelets.

    Directory of Open Access Journals (Sweden)

    Shifang Yu

    Full Text Available Platelets play crucial roles in hemostasis, thrombosis, wound healing, inflammation, angiogenesis, and tumor metastases. Because they are anucleated blood cells, platelets lack nuclear DNA, but they do contain mitochondrial DNA, which plays a key role in regulating apoptosis. Recent evidence has suggested that miRNAs are also involved in regulating gene expression and apoptosis in platelets. Our previous study showed that the expression of miR-326 increased visibly when apheresis platelets were stored in vitro. The antiapoptotic Bcl-2 family regulator Bcl-xL has been identified as a putative target of miR-326. In the present study, dual reporter luciferase assays were used to characterize the function of miR-326 in the regulation of the apoptosis of platelet cells. These assays demonstrated that miR-326 bound to the 3'-translated region of Bcl-xL. To directly assess the functional effects of miR-326 expression, levels of Bcl-xL and the apoptotic status of stored apheresis platelets were measured after transfection of miR-326 mimic or inhibitor. Results indicated that miR-326 inhibited Bcl-xL expression and induced apoptosis in stored platelets. Additionally, miR-326 inhibited Bcl-2 protein expression and enhanced Bak expression, possibly through an indirect mechanism, though there was no effect on the expression of Bax. The effect of miR-326 appeared to be limited to apoptosis, with no significant effect on platelet activation. These results provide new insight into the molecular mechanisms affecting differential platelet gene regulation, which may increase understanding of the role of platelet apoptosis in multiple diseases.

  20. Platelet-functionalized three-dimensional polye-epsilon-caprolactone fibrous scaffold prepared using centrifugal spinning for delivery of growth factors

    Czech Academy of Sciences Publication Activity Database

    Rampichová, Michala; Buzgo, M.; Míčková, Andrea; Vocetková, Karolína; Sovková, Věra; Lukášová, Věra; Filová, Eva; Rustichelli, Franco; Amler, Evžen

    2017-01-01

    Roč. 12, č. 2017 (2017), s. 347-361 E-ISSN 1178-2013 R&D Projects: GA ČR(CZ) GA15-15697S; GA MŠk(CZ) LO1508 Institutional support: RVO:68378041 Keywords : centrifugal spinning * 3D scaffold * platelets Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Nano-materials (production and properties) Impact factor: 4.300, year: 2016

  1. Association of Vascular Endothelial Growth Factor Expression with Tumor Angiogenesis and with Early Relapse in Primary Breast Cancer

    Science.gov (United States)

    Hoshina, Seigo; Takayanagi, Toshiaki; Tominaga, Takeshi

    1994-01-01

    Angiogenesis is an independent prognostic indicator in breast cancer. In this report, the relationship between expression of vascular endothclial growth factor (VEGF; a selective mitogen for endothelial cells) and the microvessel density was examined in 103 primary breast cancers. The expression of VEGF was evaluated by immunocytochemical staining using anti‐VEGF antibody. The microvessel density, which was determined by immunostaining for factor VIII antigen, in VEGF‐rich tumors was clearly higher than that in VEGF‐poor tumors (P<0.01). There was a good correlation between VEGF expression and the increment of microvessel density. Furthermore, postoperative survey demonstrated that the relapse‐free survival rate of VEGF‐rich tumors was significantly worse than that of VEGF‐poor tumors. It was suggested that the expression of VEGF is closely associated with the promotion of angiogenesis and with early relapse in primary breast cancer. PMID:7525523

  2. Transforming growth factor beta and platelets in allergic rhinitis and sinusitis.

    Science.gov (United States)

    Rosas, Alejandro; Valencia, Martha P; Sánchez, Manuel; Bautista, Maura; Rico, Guadalupe; Vega, Gloria B

    2011-01-01

    To determine the TGF-? concentration in plasma and platelets in patients with allergic rhinitis or rhinosinusitis. The study group included 36 adult females, 6 with clinical and laboratory diagnoses of allergic rhinitis, 18 with allergic rhinitis and sinusitis (rhino-sinusitis) and 12 clinically healthy controls. The samples were obtained from venous blood. TGF-? was measured in plasma and in the supernatant fluid of platelets by a solid phase Enzymo-immun assay, and IL-11 was quantified using a commercial enzyme-linked immunosorbent assay kit. In both patient groups platelet numbers (106/mL) were greater than in controls. Plasma concentration (pg/ml) of TGF-? in the allergic rhinitis group (276 ± 16) was lower than in control group (932 ± 99) (p platelet TGF-? concentration was smaller than in control, but only significant (p platelet number and intraplatelet TGF-? levels. The inverse correlation between intra-platelet TGF-? and circulating platelets number found in all individuals studied suggests that platelets do not alter the regulating mechanism of TGF-? production in allergy or infection.

  3. Recognition and management of platelet-refractory bleeding in patients with Glanzmann’s thrombasthenia and other severe platelet function disorders

    Directory of Open Access Journals (Sweden)

    Chitlur M

    2017-04-01

    Full Text Available Meera Chitlur,1 Madhvi Rajpurkar,1 Michael Recht,2 Michael D Tarantino,3 Donald L Yee,4 David L Cooper,5 Sriya Gunawardena5 1Carman and Ann Adams Department of Pediatrics, Wayne State University and Children’s Hospital of Michigan, Detroit, MI, USA; 2Oregon Health and Science University, Portland, OR, USA; 3Bleeding and Clotting Disorders Institute, Peoria, IL, USA; 4Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; 5Clinical Development, Medical and Regulatory Affairs, Novo Nordisk Inc., Plainsboro, NJ, USA Abstract: Patients with rare qualitative platelet disorders or platelet function disorders (PFDs may present to the hospital physician with severe bleeding episodes or excessive surgical bleeding. Although standard treatment consists of platelet transfusions, repeated transfusions may result in the development of antiplatelet antibodies (APA or clinical refractoriness, rendering further platelet therapy ineffective. In such settings, an approved treatment option for patients with Glanzmann’s thrombasthenia (GT, one of the well-known rare PFDs, is recombinant activated coagulation factor VII (rFVIIa. Data regarding the efficacy of rFVIIa in patients with GT and platelet refractoriness are available from a large patient registry, an international survey, and multiple case reports and demonstrate efficacy in patients with and without refractoriness or APA. This article reviews the rFVIIa clinical data in patients with GT and platelet refractoriness and discusses clinical implications relevant to the hospital-based physician. Because uncontrolled bleeding can be life-threatening, hospital physicians should be alert to the signs of platelet refractoriness, be able to recognize continued internal or external bleeding, and know how to adapt treatment regimens for the effective management of bleeding. The management of patients who receive rFVIIa should occur in consultation with a hematologist with experience in PFDs, and

  4. The Antimicrobial Peptide Human Beta-Defensin-3 Is Induced by Platelet-Released Growth Factors in Primary Keratinocytes

    OpenAIRE

    Andreas Bayer; Justus Lammel; Mersedeh Tohidnezhad; Sebastian Lippross; Peter Behrendt; Tim Klüter; Thomas Pufe; Jochen Cremer; Holger Jahr; Franziska Rademacher; Regine Gläser; Jürgen Harder

    2017-01-01

    Platelet-released growth factors (PRGF) and its related clinically used formulations (e.g., Vivostat Platelet-Rich Fibrin (PRF?)) contain a variety of chemokines, cytokines, and growth factors and are therefore used to support healing of chronic, hard-to-heal, or infected wounds. Human beta-defensin-3 (hBD-3) is an antimicrobial peptide inducibly expressed in human keratinocytes especially upon wounding. The potent antimicrobial activity of hBD-3 together with its wound closure-promoting acti...

  5. Antimicrobial effect of platelet-rich plasma and platelet-rich fibrin.

    Science.gov (United States)

    Badade, Pallavi S; Mahale, Swapna A; Panjwani, Alisha A; Vaidya, Prutha D; Warang, Ayushya D

    2016-01-01

    Platelet concentrates have been extensively used in a variety of medical fields to promote soft- and hard-tissue regeneration. The significance behind their use lies in the abundance of growth factors (GFs) in platelets α-granules that promote wound healing. Other than releasing a pool of GFs upon activation, platelets also have many features that indicate their role in the anti-infective host defense. The aim of this study is to evaluate the antimicrobial activities of platelet-rich plasma (PRP) and platelet-rich fibrin (PRF) against periodontal disease-associated bacteria. Blood samples were obtained from ten adult male patients. PRP and PRF were procured using centrifugation. The antimicrobial activity of PRP and PRF was evaluated by microbial culturing using bacterial strains of Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans. P. gingivalis and A. actinomycetemcomitans were inhibited by PRP but not by PRF. PRP is a potentially useful substance in the fight against periodontal pathogens. This might represent a valuable property in adjunct to the enhancement of tissue regeneration.

  6. Role of platelet-released growth factors in detoxification of reactive oxygen species in osteoblasts.

    Science.gov (United States)

    Tohidnezhad, Mersedeh; Wruck, Christoph-Jan; Slowik, Alexander; Kweider, Nisreen; Beckmann, Rainer; Bayer, Andreas; Houben, Astrid; Brandenburg, Lars-Ove; Varoga, Deike; Sönmez, Tolga-Taha; Stoffel, Marcus; Jahr, Holger; Lippross, Sebastian; Pufe, Thomas

    2014-08-01

    Oxidative stress can impair fracture healing. To protect against oxidative damage, a system of detoxifying and antioxidative enzymes works to reduce the cellular stress. The transcription of these enzymes is regulated by antioxidant response element (ARE). The nuclear factor (erythroid-derived 2)-like2 (Nrf2) plays a major role in transcriptional activation of ARE-driven genes. Recently it has been shown that vascular endothelial growth factor (VEGF) prevents oxidative damage via activation of the Nrf2 pathway in vitro. Platelet-released growth factor (PRGF) is a mixture of autologous proteins and growth factors, prepared from a determined volume of platelet-rich plasma (PRP). It has already used to enhance fracture healing in vitro. The aim of the present study was to elucidate if platelets can lead to upregulation of VEGF and if platelets can regulate the activity of Nrf2-ARE system in primary human osteoblast (hOB) and in osteoblast-like cell line (SAOS-2). Platelets and PRGF were obtained from healthy human donors. HOB and SAOS-2 osteosarcoma cell line were used. The ARE activity was analysed using a dual luciferase reporter assay system. We used Western blot to detect the nuclear accumulation of Nrf2 and the amount of cytosolic antioxidant Thioredoxin Reductase-1 (TXNRD-1), Heme Oxygenase-1 (HO-1) and NAD(P)H quinine oxidoreductase-1 (NQO1). Gene expression analysis was performed by real-time RT PCR. ELISA was used for the quantification of growth factors. The activity of ARE was increased in the presence of PRGF up to 50%. Western blotting demonstrated enhanced nuclear accumulation of Nrf2. This was followed by an increase in the protein expression of the aforementioned downstream targets of Nrf2. Real-time RT PCR data showed an upregulation in the gene expression of the VEGF after PRGF treatment. This was confirmed by ELISA, where the treatment with PRGF induced the protein level of VEGF in both cells. These results provide a new insight into PRGF's mode of

  7. Assessment of canine autologous platelet-rich plasma produced with a commercial centrifugation and platelet recovery kit.

    Science.gov (United States)

    Frye, Chris W; Enders, Andrew; Brooks, Marjory B; Struble, Angela M; Wakshlag, Joseph J

    2016-01-01

    To characterize the cellular composition (platelets, erythrocytes, and leukocytes) and confirm reproducibility of platelet enrichment, as well as determine the platelet activation status in the final product of a commercial platelet-rich plasma kit using canine blood. Venous blood from 20 sedated client-owned dogs was used to prepare platelet-rich plasma (PRP) from a commercial kit. Complete blood counts were performed to determine erythrocyte, leukocyte, and platelet numbers in both whole blood (WB) and resultant PRP. The WB and PRP samples from jugular (fast collection) and cephalic (slow collection) venipuncture were also compared. P-selectin externalization was measured in WB and PRP samples from 15 of 20 dogs. This commercial kit produced an average percent recovery in platelets of 64.7 ± 17.4; erythrocytes of 3.7 ± 0.8, and leukocytes of 31.6 ± 10.0. Neutrophil, monocyte, and lymphocyte percent recovery was 19.6 ± 7.2, 44.89 ± 19.8, and 57.5 ± 10.6, respectively. The recovery of platelets from jugular venipuncture (59.7 ± 13.6%) was lower than from cephalic recovery (68.8 ± 19.1%). The mean percent P-Selectin externalization for WB, PRP, and PRP with thrombin was 25.5 ± 30.9, 4.5 ± 6.4, and 90.6 ± 4.4 respectively. Cellular reproducibility of this kit was confirmed and platelets were concentrated within autologous serum. Additionally, measurements of P-selectin externalization showed that platelets are inactive in PRP unless stimulated to degranulate.

  8. Evaluation of platelet aggregation in platelet concentrates: storage implications

    Directory of Open Access Journals (Sweden)

    Neiva Teresinha J.C.

    2003-01-01

    Full Text Available The use of hemo-derivatives is nowadays a fundamentally important therapeutic modality in the exercise of medicine. Among the various hemo-components employed, we have the platelet concentrate (PC, indicated in cases of hemorrhagic disturbances. We previously showed that platelet function in blood donors is reduced in their screening phase and after the separation process of PCs. Currently, we are providing evidence for the existence of biochemical and functional changes in PC preparations stored for three days at temperatures of 20 ± 2 ºC. Platelet concentrates from 40 healthy donors, collected in CPD anticoagulant and PL-146 polyvinylchloride containers, were examined in order to determine the pH value, pCO2 ,pO2 and lactate concentrations. In addition, the aggregation of platelets with thrombin and collagen were examined to evaluate platelet function. A pH increase from 7.07 ± 0.04 to 7.36 ± 0.07 (p < 0.01 was observed. The pCO2 concentration decreased progressively from 69.2 ± 7.7 mmHg to 28.8 ± 6.2 mmHg (p < 0.001 during the storage period. In contrast, pO2 value increase from 103.4 ± 30.6 to 152.3 ± 24.6 mmHg (p < 0.001 was evidenced during the 48 hours of storage. The lactate concentration increased from 17.97 ± 5.2 to 57.21 ± 5.7 mg/dl (p < 0.001. Platelet aggregation using 0.25 U/ml-thrombin and 2.0 µg/ml-collagen showed significant hypofunction from 61.8 ± 2.7% to 24.8 ± 9.8% and 62.7±5.0 to 33.4± 6.2 (p < 0.001, respectively. We concluded that the evaluated biochemical parameters and the platelet function changed significantly when the platelets were kept under routine storage conditions.

  9. Prognostic implication of apoptosis and angiogenesis in cervical uteri cancer

    International Nuclear Information System (INIS)

    Zaghloul, Mohamed S.; El Naggar, Mervat; El Deeb, Amany; Khaled, Hussein; Mokhtar, Nadia

    2000-01-01

    Purpose: A retrospective study was performed to investigate the relationship between spontaneous apoptosis and angiogenesis uterine cervix squamous cell carcinoma patients. The prognostic value of each (and both) of these biologic parameters was also tested. Methods and Materials: The pathologic materials of 40 cervical uteri squamous cell carcinoma patients were examined and immunohistochemically stained to determine the tumor angiogenesis (tumor microvascular score), using factor VIII-related antigen, and their tumor apoptotic index (AI), using the TdT-mediated dUTP nick end-labeling (TUNEL) method. Three patients were Stage I, 18 were Stage II, 15 were Stage III, and 4 were Stage IV (FIGO classification). All patients were treated with radical radiotherapy and all had follow-up for more than 2 years. Results: The mean AI was 15.1 ± 12.8, with a median of 8.3. The mean tumor microvascular score was 3 9.7 ± 14.4, with a median of 3 8. The patients' age and tumor grade did not seem to significantly affect the prognosis. On the other hand, AI and angiogenesis (tumor microvascular score) were of high prognostic significance. The 3-year disease-free survival (DFS) rate for the patients having AI above the median was 78% (confidence interval [CI] 69-87%), compared to 32% (CI 22-42%) for those having AI below the median. The DFS was 18% (CI 9-27%) for patients having an angiogenesis score above the median, while it was 86% (CI 78-94%) for those patients having a score below the median. Conclusion: Determination of both tumor microvascular score and AI can identify patients with the best prognosis of 100% DFS (with low angiogenesis score and high AI). Women with a high score and low AI had the worst prognosis (DFS = 3%, CI 1-5%). Moreover, high AI can compensate partially for the aggressive behavior of tumors showing a high rate of angiogenesis.

  10. Overview of platelet physiology and laboratory evaluation of platelet function.

    Science.gov (United States)

    Rodgers, G M

    1999-06-01

    Appropriate laboratory testing for the platelet-type bleeding disorders hinges on an adequate assessment in the history and physical examination. Patients with histories and screening laboratory results consistent with coagulation disorders (hemophilia, disseminated intravascular coagulation) are not appropriate candidates for platelet function testing. In contrast, patients with a lifelong history of platelet-type bleeding symptoms and perhaps a positive family history of bleeding would be appropriate for testing. Figure 6 depicts one strategy to evaluate these patients. Platelet morphology can easily be evaluated to screen for two uncommon qualitative platelet disorders: Bernard-Soulier syndrome (associated with giant platelets) and gray platelet syndrome, a subtype of storage pool disorder in which platelet granulation is morphologically abnormal by light microscopy. If the bleeding disorder occurred later in life (no bleeding with surgery or trauma early in life), the focus should be on acquired disorders of platelet function. For those patients thought to have an inherited disorder, testing for vWD should be done initially because approximately 1% of the population has vWD. The complete vWD panel (factor VIII coagulant activity, vWf antigen, ristocetin cofactor activity) should be performed because many patients will have abnormalities of only one particular panel component. Patients diagnosed with vWD should be classified using multimeric analysis to identify the type 1 vWD patients likely to respond to DDAVP. If vWD studies are normal, platelet aggregation testing should be performed, ensuring that no antiplatelet medications have been ingested at least 1 week before testing. If platelet aggregation tests are normal and if suspicion for an inherited disorder remains high, vWD testing should be repeated. The evaluation of thrombocytopenia may require bone marrow examination to exclude primary hematologic disorders. If future studies with thrombopoietin assays

  11. Platelet count kinetics following interruption of antiretroviral treatment.

    Science.gov (United States)

    Zetterberg, Eva; Neuhaus, Jacqueline; Baker, Jason V; Somboonwit, Charurut; Llibre, Josep M; Palfreeman, Adrian; Chini, Maria; Lundgren, Jens D

    2013-01-02

    To investigate the mechanisms of platelet kinetics in the Strategies for Management of Antiretroviral Therapy (SMART) study that demonstrated excess mortality with CD4 guided episodic antiretroviral therapy (ART) drug conservation compared with continuous treatment viral suppression. Follow-up analyses of stored plasma samples demonstrated increased activation of both inflammatory and coagulation pathways after stopping ART. SMART patients from sites that determined platelets routinely. Platelet counts were retrospectively collected from 2206 patients from visits at study entry, and during follow-up. D-dimer levels were measured at study entry, month 1, and 2. Platelet levels decreased in the drug conservation group following randomization, but remained stable in the viral suppression group [median (IQR) decline from study entry to month 4: -24 000/μl (-54 000 to 4000) vs. 3000 (-22 000 to 24 000), respectively, P conservation vs. the viral suppression arm (unadjusted drug conservation/viral suppression [HR (95%CI) = 1.8 (1.2-2.7)]. The decline in platelet count among drug conservation participants on fully suppressive ART correlated with the rise in D-dimer from study entry to either month 1 or 2 (r = -0.41; P = 0.02). Among drug conservation participants who resumed ART 74% recovered to their study entry platelet levels. Interrupting ART increases the risk of thrombocytopenia, but reinitiation of ART typically reverses it. Factors contributing to declines in platelets after interrupting ART may include activation of coagulation pathways or HIV-1 replication itself. The contribution of platelets in HIV-related procoagulant activity requires further study.

  12. Angiogenesis is induced by airway smooth muscle strain.

    Science.gov (United States)

    Hasaneen, Nadia A; Zucker, Stanley; Lin, Richard Z; Vaday, Gayle G; Panettieri, Reynold A; Foda, Hussein D

    2007-10-01

    Angiogenesis is an important feature of airway remodeling in both chronic asthma and chronic obstructive pulmonary disease (COPD). Airways in those conditions are exposed to excessive mechanical strain during periods of acute exacerbations. We recently reported that mechanical strain of human airway smooth muscle (HASM) led to an increase in their proliferation and migration. Sustained growth in airway smooth muscle in vivo requires an increase in the nutritional supply to these muscles, hence angiogenesis. In this study, we examined the hypothesis that cyclic mechanical strain of HASM produces factors promoting angiogenic events in the surrounding vascular endothelial cells. Our results show: 1) a significant increase in human lung microvascular endothelial cell (HMVEC-L) proliferation, migration, and tube formation following incubation in conditioned media (CM) from HASM cells exposed to mechanical strain; 2) mechanical strain of HASM cells induced VEGF expression and release; 3) VEGF neutralizing antibodies inhibited the proliferation, migration, and tube formations of HMVEC-L induced by the strained airway smooth muscle CM; 4) mechanical strain of HASM induced a significant increase in hypoxia-inducible factor-1alpha (HIF-1alpha) mRNA and protein, a transcription factor required for VEGF gene transcription; and 5) mechanical strain of HASM induced HIF-1alpha/VEGF through dual phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) and ERK pathways. In conclusion, exposing HASM cells to mechanical strain induces signal transduction pathway through PI3K/Akt/mTOR and ERK pathways that lead to an increase in HIF-1alpha, a transcription factor required for VEGF expression. VEGF release by mechanical strain of HASM may contribute to the angiogenesis seen with repeated exacerbation of asthma and COPD.

  13. Gelatin Hydrogel Enhances the Engraftment of Transplanted Cardiomyocytes and Angiogenesis to Ameliorate Cardiac Function after Myocardial Infarction.

    Directory of Open Access Journals (Sweden)

    Kazuaki Nakajima

    Full Text Available Cell transplantation therapy will mean a breakthrough in resolving the donor shortage in cardiac transplantation. Cardiomyocyte (CM transplantation, however, has been relatively inefficient in restoring cardiac function after myocardial infarction (MI due to low engraftment of transplanted CM. In order to ameliorate engraftment of CM, the novel transplantation strategy must be invented. Gelatin hydrogel (GH is a biodegradable water-soluble polymer gel. Gelatin is made of collagen. Although we observed that collagen strongly induced the aggregation of platelets to potentially cause coronary microembolization, GH did not enhance thrombogenicity. Therefore, GH is a suitable biomaterial in the cell therapy after heart failure. To assess the effect of GH on the improvement of cardiac function, fetal rat CM (5×10(6 or 1x10(6 cells were transplanted with GH (10 mg/ml to infarcted hearts. We compared this group with sham operated rats, CM in phosphate buffered saline (PBS, only PBS, and only GH-transplanted groups. Three weeks after transplantation, cardiac function was evaluated by echocardiography. The echocardiography confirmed that transplantation of 5×10(6 CM with GH significantly improved cardiac systolic function, compared with the CM+PBS group (fractional area change: 75.1±3.4% vs. 60.7±5.9%, p<0.05, only PBS, and only GH groups (60.1±6.5%, 65.0±2.8%, p<0.05. Pathological analyses demonstrated that in the CM+GH group, CM were efficiently engrafted in infarcted myocardium (p<0.01 and angiogenesis was significantly enhanced (p<0.05 in both central and peripheral areas of the scar. Moreover, quantitative RT-PCR revealed that angiogenic cytokines, such as basic fibroblast growth factor, vascular endothelial growth factor, and hepatocyte growth factor, were significantly enriched in the CM+GH group (p<0.05. Here, we report that GH confined the CM effectively in infarcted myocardium after transplantation, and that CM transplanted with GH

  14. Study on platelet kinetics

    International Nuclear Information System (INIS)

    Yui, Tokuo

    1981-01-01

    Fundamental study: Factors influencing the labeling on human platelets were evaluated and optimal labeling conditions were chosen. Then, platelet survival times were measured and organ distribution of labeled platelets was observed in rat by four different methods. These results were compared with each other. Based on the findings of those studies, the protocol of human platelet labeling with 111 In-oxine for clinical use was established. Clinical study: In normal cases, a platelet survival time and a platelet turnover rate were quite similar to the results from 51 Cr method. In gamma camera imaging, a radioactivity on the heart decreased with the lapse of time, while that on the spleen and liver gradually increased. In patients with idiopathic thrombocytopenic purpura, platelet survival time was markedly shortened and both a platelet turnover rate and an effective production increased. In patient with congestive splenomegaly, a platelet survival time was normal, whereas a platelet pooling on the spleen markedly increased. In patients who were implanted dacron-graft for abdominal aortic aneurysm, a radioactivity accumulated to the graft and a platelet survival time shortened. In a patient with myocardial infarction, the camera imaging clearly showed the thrombus in the left ventricular aneurysm. In three patients with mitral stenosis, thrombi in left atrium were observed at the camera images. Imaging of a platelet distribution and measurement of platelet survival time using 111 In-oxine labeled platelets are considered to be an excellent method for the diagnosis and decision of treatment on various disorders with thrombocytopenia and thrombosis. (J.P.N.)

  15. Gli3 Regulation of Myogenesis Is Necessary for Ischemia-Induced Angiogenesis

    Science.gov (United States)

    Renault, Marie-Ange; Vandierdonck, Soizic; Chapouly, Candice; Yu, Yang; Qin, Gangjian; Metras, Alexandre; Couffinhal, Thierry; Losordo, Douglas W.; Yao, Qinyu; Reynaud, Annabel; Jaspard-Vinassa, Béatrice; Belloc, Isabelle; Desgranges, Claude; Gadeau, Alain-Pierre

    2015-01-01

    Rationale A better understanding of the mechanism underlying skeletal muscle repair is required to develop therapies that promote tissue regeneration in adults. Hedgehog signaling has been shown previously to be involved in myogenesis and angiogenesis: 2 crucial processes for muscle development and regeneration. Objective The objective of this study was to identify the role of the hedgehog transcription factor Gli3 in the crosstalk between angiogenesis and myogenesis in adults. Methods and Results Using conditional knockout mice, we found that Gli3 deficiency in endothelial cells did not affect ischemic muscle repair, whereas in myocytes, Gli3 deficiency resulted in severely delayed ischemia-induced myogenesis. Moreover, angiogenesis was also significantly impaired in HSA-CreERT2; Gli3Flox/Flox mice, demonstrating that impaired myogenesis indirectly affects ischemia-induced angiogenesis. The role of Gli3 in myocytes was then further investigated. We found that Gli3 promotes myoblast differentiation through myogenic factor 5 regulation. In addition, we found that Gli3 regulates several proangiogenic factors, including thymidine phosphorylase and angiopoietin-1 both in vitro and in vivo, which indirectly promote endothelial cell proliferation and arteriole formation. In addition, we found that Gli3 is upregulated in proliferating myoblasts by the cell cycle–associated transcription factor E2F1. Conclusions This study shows for the first time that Gli3-regulated postnatal myogenesis is necessary for muscle repair–associated angiogenesis. Most importantly, it implies that myogenesis drives angiogenesis in the setting of skeletal muscle repair and identifies Gli3 as a potential target for regenerative medicine. PMID:24044950

  16. Cannabidiol inhibits angiogenesis by multiple mechanisms.

    Science.gov (United States)

    Solinas, M; Massi, P; Cantelmo, A R; Cattaneo, M G; Cammarota, R; Bartolini, D; Cinquina, V; Valenti, M; Vicentini, L M; Noonan, D M; Albini, A; Parolaro, D

    2012-11-01

    Several studies have demonstrated anti-proliferative and pro-apoptotic actions of cannabinoids on various tumours, together with their anti-angiogenic properties. The non-psychoactive cannabinoid cannabidiol (CBD) effectively inhibits the growth of different types of tumours in vitro and in vivo and down-regulates some pro-angiogenic signals produced by glioma cells. As its anti-angiogenic properties have not been thoroughly investigated to date, and given its very favourable pharmacological and toxicological profile, here, we evaluated the ability of CBD to modulate tumour angiogenesis. Firstly, we evaluated the effect of CBD on human umbilical vein endothelial cell (HUVEC) proliferation and viability - through [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay and FACS analysis - and in vitro motility - both in a classical Boyden chamber test and in a wound-healing assay. We next investigated CBD effects on different angiogenesis-related proteins released by HUVECs, using an angiogenesis array kit and an ELISA directed at MMP2. Then we evaluated its effects on in vitro angiogenesis in treated HUVECs invading a Matrigel layer and in HUVEC spheroids embedded into collagen gels, and further characterized its effects in vivo using a Matrigel sponge model of angiogenesis in C57/BL6 mice. CBD induced HUVEC cytostasis without inducing apoptosis, inhibited HUVEC migration, invasion and sprouting in vitro, and angiogenesis in vivo in Matrigel sponges. These effects were associated with the down-modulation of several angiogenesis-related molecules. This study reveals that CBD inhibits angiogenesis by multiple mechanisms. Its dual effect on both tumour and endothelial cells supports the hypothesis that CBD has potential as an effective agent in cancer therapy. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  17. Effect of cigarette smoke on monocyte procoagulant activity: Focus on platelet-derived brain-derived neurotrophic factor (BDNF).

    Science.gov (United States)

    Amadio, Patrizia; Baldassarre, Damiano; Sandrini, Leonardo; Weksler, Babette B; Tremoli, Elena; Barbieri, Silvia S

    2017-01-01

    Cigarette smoke (CS) activates platelets, promotes vascular dysfunction, and enhances Tissue Factor (TF) expression in blood monocytes favoring pro-thrombotic states. Brain-derived neurotrophic factor (BDNF), a member of the family of neurotrophins involved in survival, growth, and maturation of neurons, is released by activated platelets (APLTs) and plays a role in the cardiovascular system. The effect of CS on circulating levels of BDNF is controversial and the function of circulating BDNF in atherothrombosis is not fully understood. Here, we have shown that human platelets, treated with an aqueous extract of CS (CSE), released BDNF in a dose-dependent manner. In addition, incubation of human monocytes with BDNF or with the supernatant of platelets activated with CSE increased TF activity by a Tropomyosin receptor kinase B (TrkB)-dependent mechanism. Finally, comparing serum and plasma samples of 12 male never smokers (NS) and 29 male active smokers (AS) we observed a significant increase in microparticle-associated TF activity (MP-TF) as well as BDNF in AS, while in serum, BDNF behaved oppositely. Taken together these findings suggest that platelet-derived BDNF is involved in the regulation of TF activity and that CS plays a role in this pathway by favoring a pro-atherothrombotic state.

  18. Apheresis platelet concentrates contain platelet-derived and endothelial cell-derived microparticles.

    Science.gov (United States)

    Rank, A; Nieuwland, R; Liebhardt, S; Iberer, M; Grützner, S; Toth, B; Pihusch, R

    2011-02-01

    Microparticles (MP) are membrane vesicles with thrombogenic and immunomodulatory properties. We determined MP subgroups from resting platelets, activated platelets and endothelial cells in donors and apheresis platelet concentrates (PC). MP were double stained with annexin V and CD61 (platelet-derived MP; PMP), P-selectin or CD63 (MP from activated platelets) and CD144 plus E-selectin (endothelial cell-derived MP; EMP) and detected by flow cytometry in platelet donors (n=36) and apheresis PC (n=11; Trima™). PC contained MP, mainly from resting platelets [93% (90-95)], and minor fractions of PMP from activated platelets [P-selectin(+) or CD63(+); 4·8% (3·2-7·7) and 2·6% (2·0-4·0)]. Compared to donors, levels of annexin V+ MP, PMP, P-selectin(+) and CD63(+) MP were 1·7-, 2·3-, 8·6- and 3·1-fold higher in PC (all P<0·05). During storage (1-5 days), levels of annexin V+ MP and PMP did not increase, although small increases in the fraction of P-selectin(+) or CD63(+) MP occurred (both P<0·05). PC also contained EMP, which were 2·6- to 3·7-fold enriched in PC compared to donors (P<0·05). Transfusion of apheresis PC also results in transfusion of HLA-carrying PMP and EMP. This might counteract the aim of reducing transfused HLA load by leucodepletion. The increases in PMP exposing P-selectin or CD63 reflect mild platelet activation during storage. We conclude that in leucodepleted platelet apheresis using fluidized particle bed technology, MP are harvested mainly from the donor by apheresis. Improvement in apheresis technology might reduce MP load. © 2010 The Author(s). Vox Sanguinis © 2010 International Society of Blood Transfusion.

  19. Vascular endothelial growth factor and basic fibroblast growth factor expression positively correlates with angiogenesis and peritumoural brain oedema in astrocytoma

    International Nuclear Information System (INIS)

    Jang, F.F.; Wei, W.

    2008-01-01

    Astrocytoma is the most malignant intracranial neoplasm and is characterized by high neovascularization and peritumoural brain oedema. Angiogenesis is a complicated process in oncogenesis regulated by the balance between angiogenic and antiangiogenic factors. The expression of two angiogenic growth factors, vascular endothelial growth factor and basic fibroblast growth factor were investigated using immunohistochemistry for astrocytoma from 82 patients and 11 normal human tissues. The expression of vascular endothelial growth factor and basic fibroblast growth factor positively correlate with the pathological grade of astrocytoma, microvessel density numbers and brain oedema, which may be responsible for the increased tumour neovascularization and peritumoural brain oedema. The results support the idea that inhibiting vascular endothelial growth factor and basic fibroblast growth factor are useful for the treatment of human astrocytoma and to improve patient's clinical outcomes and prognosis. (author)

  20. Modification of Pulsed Electric Field Conditions Results in Distinct Activation Profiles of Platelet-Rich Plasma.

    Science.gov (United States)

    Frelinger, Andrew L; Gerrits, Anja J; Garner, Allen L; Torres, Andrew S; Caiafa, Antonio; Morton, Christine A; Berny-Lang, Michelle A; Carmichael, Sabrina L; Neculaes, V Bogdan; Michelson, Alan D

    2016-01-01

    Activated autologous platelet-rich plasma (PRP) used in therapeutic wound healing applications is poorly characterized and standardized. Using pulsed electric fields (PEF) to activate platelets may reduce variability and eliminate complications associated with the use of bovine thrombin. We previously reported that exposing PRP to sub-microsecond duration, high electric field (SMHEF) pulses generates a greater number of platelet-derived microparticles, increased expression of prothrombotic platelet surfaces, and differential release of growth factors compared to thrombin. Moreover, the platelet releasate produced by SMHEF pulses induced greater cell proliferation than plasma. To determine whether sub-microsecond duration, low electric field (SMLEF) bipolar pulses results in differential activation of PRP compared to SMHEF, with respect to profiles of activation markers, growth factor release, and cell proliferation capacity. PRP activation by SMLEF bipolar pulses was compared to SMHEF pulses and bovine thrombin. PRP was prepared using the Harvest SmartPreP2 System from acid citrate dextrose anticoagulated healthy donor blood. PEF activation by either SMHEF or SMLEF pulses was performed using a standard electroporation cuvette preloaded with CaCl2 and a prototype instrument designed to take into account the electrical properties of PRP. Flow cytometry was used to assess platelet surface P-selectin expression, and annexin V binding. Platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), endothelial growth factor (EGF) and platelet factor 4 (PF4), and were measured by ELISA. The ability of supernatants to stimulate proliferation of human epithelial cells in culture was also evaluated. Controls included vehicle-treated, unactivated PRP and PRP with 10 mM CaCl2 activated with 1 U/mL bovine thrombin. PRP activated with SMLEF bipolar pulses or thrombin had similar light scatter profiles, consistent with the presence of platelet

  1. Modification of Pulsed Electric Field Conditions Results in Distinct Activation Profiles of Platelet-Rich Plasma.

    Directory of Open Access Journals (Sweden)

    Andrew L Frelinger

    Full Text Available Activated autologous platelet-rich plasma (PRP used in therapeutic wound healing applications is poorly characterized and standardized. Using pulsed electric fields (PEF to activate platelets may reduce variability and eliminate complications associated with the use of bovine thrombin. We previously reported that exposing PRP to sub-microsecond duration, high electric field (SMHEF pulses generates a greater number of platelet-derived microparticles, increased expression of prothrombotic platelet surfaces, and differential release of growth factors compared to thrombin. Moreover, the platelet releasate produced by SMHEF pulses induced greater cell proliferation than plasma.To determine whether sub-microsecond duration, low electric field (SMLEF bipolar pulses results in differential activation of PRP compared to SMHEF, with respect to profiles of activation markers, growth factor release, and cell proliferation capacity.PRP activation by SMLEF bipolar pulses was compared to SMHEF pulses and bovine thrombin. PRP was prepared using the Harvest SmartPreP2 System from acid citrate dextrose anticoagulated healthy donor blood. PEF activation by either SMHEF or SMLEF pulses was performed using a standard electroporation cuvette preloaded with CaCl2 and a prototype instrument designed to take into account the electrical properties of PRP. Flow cytometry was used to assess platelet surface P-selectin expression, and annexin V binding. Platelet-derived growth factor (PDGF, vascular endothelial growth factor (VEGF, endothelial growth factor (EGF and platelet factor 4 (PF4, and were measured by ELISA. The ability of supernatants to stimulate proliferation of human epithelial cells in culture was also evaluated. Controls included vehicle-treated, unactivated PRP and PRP with 10 mM CaCl2 activated with 1 U/mL bovine thrombin.PRP activated with SMLEF bipolar pulses or thrombin had similar light scatter profiles, consistent with the presence of platelet

  2. Gene therapy and angiogenesis in patients with coronary artery disease

    DEFF Research Database (Denmark)

    Kastrup, Jens

    2010-01-01

    Not all patients with severe coronary artery disease can be treated satisfactorily with current recommended medications and revascularization techniques. Various vascular growth factors have the potential to induce angiogenesis in ischemic tissue. Clinical trials have only evaluated the effect...... of VEGF and FGF in patients with coronary artery disease. The initial small and unblinded studies with either recombinant growth factor proteins or genes encoding growth factors were encouraging, demonstrating both clinical improvement and evidence of angiogenesis. However, subsequent larger double...

  3. Platelet Vascular Endothelial Growth Factor is a Potential Mediator of Transfusion-Related Acute Lung Injury.

    Science.gov (United States)

    Maloney, James P; Ambruso, Daniel R; Voelkel, Norbert F; Silliman, Christopher C

    The occurrence of non-hemolytic transfusion reactions is highest with platelet and plasma administration. Some of these reactions are characterized by endothelial leak, especially transfusion related acute lung injury (TRALI). Elevated concentrations of inflammatory mediators secreted by contaminating leukocytes during blood product storage may contribute to such reactions, but platelet-secreted mediators may also contribute. We hypothesized that platelet storage leads to accumulation of the endothelial permeability mediator vascular endothelial growth factor (VEGF), and that intravascular administration of exogenous VEGF leads to extensive binding to its lung receptors. Single donor, leukocyte-reduced apheresis platelet units were sampled over 5 days of storage. VEGF protein content of the centrifuged supernatant was determined by ELISA, and the potential contribution of VEGF from contaminating leukocytes was quantified. Isolated-perfused rat lungs were used to study the uptake of radiolabeled VEGF administered intravascularly, and the effect of unlabeled VEGF on lung leak. There was a time-dependent release of VEGF into the plasma fraction of the platelet concentrates (62 ± 9 pg/ml on day one, 149 ± 23 pg/ml on day 5; mean ± SEM, pproducts.

  4. Genetics Home Reference: gray platelet syndrome

    Science.gov (United States)

    ... disorder, platelet-type, 4 deficient alpha granule syndrome GPS grey platelet syndrome platelet alpha-granule deficiency platelet ... on PubMed Central Kahr WH, Hinckley J, Li L, Schwertz H, Christensen H, Rowley JW, Pluthero FG, ...

  5. Platelet-rich plasma derived growth factors contribute to stem cell differentiation in musculoskeletal regeneration

    Science.gov (United States)

    Qian, Yun; Han, Qixin; Chen, Wei; Song, Jialin; Zhao, Xiaotian; Ouyang, Yuanming; Yuan, Weien; Fan, Cunyi

    2017-10-01

    Stem cell treatment and platelet-rich plasma (PRP) therapy are two significant issues in regenerative medicine. Stem cells such as bone marrow mesenchymal stem cells, adipose-derived stem cells and periodontal ligament stem cells can be successfully applied in the field of tissue regeneration. PRP, a natural product isolated from whole blood, can secrete multiple growth factors (GFs) for regulating physiological activities. These GFs can stimulate proliferation and differentiation of different stem cells in injury models. Therefore, combination of both agents receives wide expectations in regenerative medicine, especially in bone, cartilage and tendon repair. In this review, we thoroughly discussed the interaction and underlying mechanisms of platelet-rich plasma derived growth factors with stem cells, and assessed their functions in cell differentiation for musculoskeletal regeneration.

  6. Melatonin as an angiogenesis inhibitor to combat cancer: Mechanistic evidence.

    Science.gov (United States)

    Goradel, Nasser Hashemi; Asghari, Mohammad Hossein; Moloudizargari, Milad; Negahdari, Babak; Haghi-Aminjan, Hamed; Abdollahi, Mohammad

    2017-11-15

    Melatonin, a pineal indolamine, participates in different body functions and is shown to possess diverse biological activities such as anti-tumor action. Angiogenesis inhibition is one of the mechanisms by which melatonin exerts its oncostatic effects. Increased angiogenesis is a major feature of tumor progression, thus angiogenesis inhibition is a critical step in cancer therapy. Melatonin employs a variety of mechanisms to target nutrients and oxygen supply to cancer cells. At the transcriptional level, hypoxia induced factor-1α (HIF-1α) and the genes under its control, such as vascular endothelial growth factor (VEGF) are the main targets of melatonin for inhibition of angiogenesis. Melatonin prevents translocation of HIF-1α into the nucleus thereby hindering VEGF expression and also prevents the formation of HIF-1α, phospho-STAT3 and CBP/p300 complex which is involved in the expression of angiogenesis-related genes. Angiostatic properties of melatonin could be also due to its ability to inhibit VEGFR2's activation and expression. Other angiostatic mechanisms of melatonin include the inhibition of endothelial cell migration, invasion, and tube formation. In the present study, we have reviewed the molecular anti-angiogenesis pathways mediated by melatonin and the responsible mechanisms in various types of cancers both in vitro and in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Clot retraction is mediated by factor XIII-dependent fibrin-αIIbβ3-myosin axis in platelet sphingomyelin-rich membrane rafts.

    Science.gov (United States)

    Kasahara, Kohji; Kaneda, Mizuho; Miki, Toshiaki; Iida, Kazuko; Sekino-Suzuki, Naoko; Kawashima, Ikuo; Suzuki, Hidenori; Shimonaka, Motoyuki; Arai, Morio; Ohno-Iwashita, Yoshiko; Kojima, Soichi; Abe, Mitsuhiro; Kobayashi, Toshihide; Okazaki, Toshiro; Souri, Masayoshi; Ichinose, Akitada; Yamamoto, Naomasa

    2013-11-07

    Membrane rafts are spatially and functionally heterogenous in the cell membrane. We observed that lysenin-positive sphingomyelin (SM)-rich rafts are identified histochemically in the central region of adhered platelets where fibrin and myosin are colocalized on activation by thrombin. The clot retraction of SM-depleted platelets from SM synthase knockout mouse was delayed significantly, suggesting that platelet SM-rich rafts are involved in clot retraction. We found that fibrin converted by thrombin translocated immediately in platelet detergent-resistant membrane (DRM) rafts but that from Glanzmann's thrombasthenic platelets failed. The fibrinogen γ-chain C-terminal (residues 144-411) fusion protein translocated to platelet DRM rafts on thrombin activation, but its mutant that was replaced by A398A399 at factor XIII crosslinking sites (Q398Q399) was inhibited. Furthermore, fibrin translocation to DRM rafts was impaired in factor XIII A subunit-deficient mouse platelets, which show impaired clot retraction. In the cytoplasm, myosin translocated concomitantly with fibrin translocation into the DRM raft of thrombin-stimulated platelets. Furthermore, the disruption of SM-rich rafts by methyl-β-cyclodextrin impaired myosin activation and clot retraction. Thus, we propose that clot retraction takes place in SM-rich rafts where a fibrin-αIIbβ3-myosin complex is formed as a primary axis to promote platelet contraction.

  8. Platelet-Derived Growth Factor-Receptor α Strongly Inhibits Melanoma Growth In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Debora Faraone

    2009-08-01

    Full Text Available Cutaneous melanoma is the most aggressive skin cancer; it is highly metastatic and responds poorly to current therapies. The expression of platelet-derived growth factor receptors (PDGF-Rs is reported to be reduced in metastatic melanoma compared with benign nevi or normal skin; we then hypothesized that PDGF-Rα may control growth of melanoma cells. We show here that melanoma cells overexpressing PDGF-Rα respond to serum with a significantly lower proliferation compared with that of controls. Apoptosis, cell cycle arrest, pRb dephosphorylation, and DNA synthesis inhibition were also observed in cells overexpressing PDGF-Rα. Proliferation was rescued by PDGF-Rα inhibitors, allowing to exclude nonspecific toxic effects and indicating that PDGF-Rα mediates autocrine antiproliferation signals in melanoma cells. Accordingly, PDGF-Rα was found to mediate staurosporine cytotoxicity. A protein array-based analysis of the mitogen-activated protein kinase pathway revealed that melanoma cells overexpressing PDGF-Rα show a strong reduction of c-Jun phosphorylated in serine 63 and of protein phosphatase 2A/Bα and a marked increase of p38γ, mitogen-activated protein kinase kinase 3, and signal regulatory protein α1 protein expression. In a mouse model of primary melanoma growth, infection with the Ad-vector overexpressing PDGF-Rα reached a significant 70% inhibition of primary melanoma growth (P < .001 and a similar inhibition of tumor angiogenesis. All together, these data demonstrate that PDGF-Rα strongly impairs melanoma growth likely through autocrine mechanisms and indicate a novel endogenous mechanism involved in melanoma control.

  9. Standardization of a method to study angiogenesis in a mouse model

    Directory of Open Access Journals (Sweden)

    DAVID FEDER

    2013-01-01

    Full Text Available In the adult organism, angiogenesis is restricted to a few physiological conditions. On the other hand, uncontrolled angiogenesis have often been associated to angiogenesis-dependent pathologies. A variety of animal models have been described to provide more quantitative analysis of in vivo angiogenesis and to characterize pro- and antiangiogenic molecules. However, it is still necessary to establish a quantitative, reproducible and specific method for studies of angiogenesis factors and inhibitors. This work aimed to standardize a method for the study of angiogenesis and to investigate the effects of thalidomide on angiogenesis. Sponges of 0.5 x 0.5 x 0.5 cm were implanted in the back of mice groups, control and experimental (thalidomide 200 mg/K/day by gavage. After seven days, the sponges were removed. The dosage of hemoglobin in sponge and in circulation was performed and the ratio between the values was tested using nonparametric Mann-Whitney test. Results have shown that sponge-induced angiogenesis quantitated by ratio between hemoglobin content in serum and in sponge is a helpful model for in vivo studies on angiogenesis. Moreover, it was observed that sponge-induced angiogenesis can be suppressed by thalidomide, corroborating to the validity of the standardized method.

  10. The Proton-Sensing G-Protein Coupled Receptor GPR4 Promotes Angiogenesis in Head and Neck Cancer.

    Directory of Open Access Journals (Sweden)

    Zhibin Jing

    Full Text Available Squamous cell carcinoma of the head and neck (SCCHN is an aggressive disease with poor survival and is the sixth most common cancer worldwide. Gastroesophageal reflux is a common event in SCCHN patients. GPR4 is a proton-sensing G-protein coupled receptor, which can be activated by acidosis. The objective of this study was to explore the role of GPR4 in acid exposure and tumor angiogenesis in SCCHN. In this study, we confirmed that overexpressing GPR4 in SCCHN cells could increase the expression and secretion of IL6, IL8 and VEGFA at pH 5.9. This effect could be inhibited by SB203580 (a p38 inhibitor. Western blot analysis indicated that phosphorylation of p38 increased in GPR4 infected cells at pH 5.9, which could be inhibited by SB203580. In tube formation assay, HMEC-1 cells were incubated with conditioned medium (CM, pH 5.9, 6.5, 7.4 derived from control and GPR4 infected SCCHN cells. Tube length was significantly increased in HMEC-1 cells incubated with CM from GPR4 infected cells compared with control cells at pH5.9, which indicated the pro-angiogenic effect of GPR4 in acidic pH. The neutralizing antibodies of IL6, IL8 and VEGFA could inhibit tube formation of HMEC-1 cells. In vivo, the effect of GPR4 on angiogenesis was investigated with the chick chorioallantoic membrane (CAM model. Control and GPR4 infected SCCHN cells were seeded onto the upper CAM surface (n = 5 in each group and 5 μL DMEM/F12 (pH 5.9, 6.5, 7.4 was added to the surface of the cell every 24 h. Four days later, the upper CAM were harvested and the ratio of the vascular area to the CAM area was quantified using Image-Pro Plus 6.0 software. GPR4 infected cells could recruit more vascular than control cells at pH5.9. In conclusion, we suggested that GPR4 induces angiogenesis via GPR4-induced p38-mediated IL6, IL8 and VEGFA secretion at acidic extracellular pH in SCCHN.

  11. Space and Time Resolved Detection of Platelet Activation and von Willebrand Factor Conformational Changes in Deep Suspensions.

    Science.gov (United States)

    Biasetti, Jacopo; Sampath, Kaushik; Cortez, Angel; Azhir, Alaleh; Gilad, Assaf A; Kickler, Thomas S; Obser, Tobias; Ruggeri, Zaverio M; Katz, Joseph

    2017-01-01

    Tracking cells and proteins' phenotypic changes in deep suspensions is critical for the direct imaging of blood-related phenomena in in vitro replica of cardiovascular systems and blood-handling devices. This paper introduces fluorescence imaging techniques for space and time resolved detection of platelet activation, von Willebrand factor (VWF) conformational changes, and VWF-platelet interaction in deep suspensions. Labeled VWF, platelets, and VWF-platelet strands are suspended in deep cuvettes, illuminated, and imaged with a high-sensitivity EM-CCD camera, allowing detection using an exposure time of 1 ms. In-house postprocessing algorithms identify and track the moving signals. Recombinant VWF-eGFP (rVWF-eGFP) and VWF labeled with an FITC-conjugated polyclonal antibody are employed. Anti-P-Selectin FITC-conjugated antibodies and the calcium-sensitive probe Indo-1 are used to detect activated platelets. A positive correlation between the mean number of platelets detected per image and the percentage of activated platelets determined through flow cytometry is obtained, validating the technique. An increase in the number of rVWF-eGFP signals upon exposure to shear stress demonstrates the technique's ability to detect breakup of self-aggregates. VWF globular and unfolded conformations and self-aggregation are also observed. The ability to track the size and shape of VWF-platelet strands in space and time provides means to detect pro- and antithrombotic processes.

  12. Mediators of ocular angiogenesis

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Keywords. ocular angiogenesis; corneal neovascularization; retinal neovascularization; diabetic retinopathy; age-related macular degeneration; retinopathy of prematurity; VEGF; PEDF; Flt-1; Flk-1; endostatin; angiopoietin; erythropoietin; Tie2; inflammation; complement; gene therapy; TLR-3; Robo4.

  13. Platelet-derived growth factor BB and DD and angiopoietin1 are altered in follicular fluid from polycystic ovary syndrome patients.

    Science.gov (United States)

    Scotti, Leopoldina; Parborell, Fernanda; Irusta, Griselda; De Zuñiga, Ignacio; Bisioli, Claudio; Pettorossi, Hernan; Tesone, Marta; Abramovich, Dalhia

    2014-08-01

    Polycystic ovary syndrome (PCOS) is the most common endocrinological pathology among women of reproductive age, and is characterized by abnormalities in ovarian angiogenesis, among other features. Consistent with this association, follicular fluid (FF) concentration and ovarian expression of vascular endothelial growth factor (VEGF) are increased in PCOS patients. In this study, we examined the protein levels of platelet-derived growth factor (PDGF) BB and DD (PDGFBB and PDGFDD), angiopoietin 1 and 2 (ANGPT1 and ANGPT2), and their soluble receptor sTIE2 in FF from PCOS and control patients undergoing assisted reproductive techniques. We also analyzed the effect of FF from PCOS and control patients on tight and adherens junction protein expression in an endothelial cell line. PDGFBB and PDGFDD were significantly lower whereas ANGPT1 concentration was significantly higher in FF from PCOS patients than from control patients. No changes were found in the concentration of ANGPT2 or sTIE2. Expression of claudin-5 was significantly increased in endothelial cells incubated for 24 hr in the presence of FF from PCOS versus from control patients, while vascular-endothelial cadherin, β-catenin, and zonula occludens 1 expression were unchanged. The changes observed in the levels of PDGF isoforms and ANGPT1 may prevent VEGF-induced vascular permeability in the PCOS ovary by regulating endothelial-cell-junction protein levels. Restoring the levels of angiogenic factors may provide new insights into PCOS treatment and the prevention of ovarian hyperstimulation syndrome in affected women. © 2014 Wiley Periodicals, Inc.

  14. Platelet Counts in Insoluble Platelet-Rich Fibrin Clots: A Direct Method for Accurate Determination

    Directory of Open Access Journals (Sweden)

    Yutaka Kitamura

    2018-02-01

    Full Text Available Platelet-rich fibrin (PRF clots have been used in regenerative dentistry most often, with the assumption that growth factor levels are concentrated in proportion to the platelet concentration. Platelet counts in PRF are generally determined indirectly by platelet counting in other liquid fractions. This study shows a method for direct estimation of platelet counts in PRF. To validate this method by determination of the recovery rate, whole-blood samples were obtained with an anticoagulant from healthy donors, and platelet-rich plasma (PRP fractions were clotted with CaCl2 by centrifugation and digested with tissue-plasminogen activator. Platelet counts were estimated before clotting and after digestion using an automatic hemocytometer. The method was then tested on PRF clots. The quality of platelets was examined by scanning electron microscopy and flow cytometry. In PRP-derived fibrin matrices, the recovery rate of platelets and white blood cells was 91.6 and 74.6%, respectively, after 24 h of digestion. In PRF clots associated with small and large red thrombi, platelet counts were 92.6 and 67.2% of the respective total platelet counts. These findings suggest that our direct method is sufficient for estimating the number of platelets trapped in an insoluble fibrin matrix and for determining that platelets are distributed in PRF clots and red thrombi roughly in proportion to their individual volumes. Therefore, we propose this direct digestion method for more accurate estimation of platelet counts in most types of platelet-enriched fibrin matrix.

  15. Hypoxia-driven angiogenesis: role of tip cells and extracellular matrix scaffolding.

    Science.gov (United States)

    Germain, Stéphane; Monnot, Catherine; Muller, Laurent; Eichmann, Anne

    2010-05-01

    Angiogenesis is a highly coordinated tissue remodeling process leading to blood vessel formation. Hypoxia triggers angiogenesis via induction of expression of growth factors such as vascular endothelial growth factor (VEGF). VEGF instructs endothelial cells to form tip cells, which lead outgrowing capillary sprouts, whereas Notch signaling inhibits sprout formation. Basement membrane deposition and mechanical cues from the extracellular matrix (ECM) induced by hypoxia may participate to coordinated vessel sprouting in conjunction with the VEGF and Notch signaling pathways. Hypoxia regulates ECM composition, deposition, posttranslational modifications and rearrangement. In particular, hypoxia-driven vascular remodeling is dynamically regulated through modulation of ECM-modifying enzyme activities that eventually affect both matricellular proteins and growth factor availability. Better understanding of the complex interplay between endothelial cells and soluble growth factors and mechanical factors from the ECM will certainly have significant implications for understanding the regulation of developmental and pathological angiogenesis driven by hypoxia.

  16. Abnormal megakaryocyte development and platelet function in Nbeal2−/− mice

    Science.gov (United States)

    Lo, Richard W.; Li, Ling; Pluthero, Fred G.; Christensen, Hilary; Ni, Ran; Vaezzadeh, Nima; Hawkins, Cynthia E.; Weyrich, Andrew S.; Di Paola, Jorge; Landolt-Marticorena, Carolina; Gross, Peter L.

    2013-01-01

    Gray platelet syndrome (GPS) is an inherited bleeding disorder associated with macrothrombocytopenia and α-granule-deficient platelets. GPS has been linked to loss of function mutations in NEABL2 (neurobeachin-like 2), and we describe here a murine GPS model, the Nbeal2−/− mouse. As in GPS, Nbeal2−/− mice exhibit splenomegaly, macrothrombocytopenia, and a deficiency of platelet α-granules and their cargo, including von Willebrand factor (VWF), thrombospondin-1, and platelet factor 4. The platelet α-granule membrane protein P-selectin is expressed at 48% of wild-type levels and externalized upon platelet activation. The presence of P-selectin and normal levels of VPS33B and VPS16B in Nbeal2−/− platelets suggests that NBEAL2 acts independently of VPS33B/VPS16B at a later stage of α-granule biogenesis. Impaired Nbeal2−/− platelet function was shown by flow cytometry, platelet aggregometry, bleeding assays, and intravital imaging of laser-induced arterial thrombus formation. Microscopic analysis detected marked abnormalities in Nbeal2−/− bone marrow megakaryocytes, which when cultured showed delayed maturation, decreased survival, decreased ploidy, and developmental abnormalities, including abnormal extracellular distribution of VWF. Our results confirm that α-granule secretion plays a significant role in platelet function, and they also indicate that abnormal α-granule formation in Nbeal2−/− mice has deleterious effects on megakaryocyte survival, development, and platelet production. PMID:23861251

  17. Transcellular lipoxygenase metabolism between monocytes and platelets

    Energy Technology Data Exchange (ETDEWEB)

    Bigby, T.D.; Meslier, N. (Univ. of California, San Francisco (USA))

    1989-09-15

    We have examined the effects of co-culture and in vitro co-stimulation on lipoxygenase metabolism in monocytes and platelets. Monocytes were obtained from the peripheral blood of normal volunteers by discontinuous gradient centrifugation and adherence to tissue culture plastic. Platelets were obtained from the platelet-rich plasma of the same donor. When 10(9) platelets and 2.5 x 10(6) monocytes were co-stimulated with 1 microM A23187, these preparations released greater quantities of 12(S)-hydroxy-10-trans-5,8,14-cis-eicosatetraenoic acid, 5(S),12-(S)dihydroxy-6,10-trans-8,14-cis-eicosatetraenoic acid, and leukotriene C4, 5(S)-hydroxy-6(R)-S-glutathionyl-7,9-trans-11,14-cis-eicosatetraenoic (LTC4) when compared with monocytes alone. Release of arachidonic acid, 5-HETE, delta 6-trans-LTB4, and delta 6-trans-12-epi-LTB4 from monocytes was decreased in the presence of platelets. A dose-response curve was constructed and revealed that the above changes became evident when the platelet number exceeded 10(7). Dual radiolabeling experiments with 3H- and 14C-arachidonic acid revealed that monocytes provided arachidonic acid, 5-HETE, and LTA4 for further metabolism by the platelet. Monocytes did not metabolize platelet intermediates detectably. In addition, as much as 1.2 microM 12(S)-hydroxy-10-trans-5,8,14-cis-eicosatetraenoic acid and 12(S)-hydroperoxy-10-trans-5,8,14-cis-eicosatetraenoic acid had no effect on monocyte lipoxygenase metabolism. Platelets were capable of converting LTA4 to LTC4, but conversion of LTA4 to LTB4 was not detected. We conclude that the monocyte and platelet lipoxygenase pathways undergo a transcellular lipoxygenase interaction that differs from the interaction of the neutrophil and platelet lipoxygenase pathways. In this interaction monocytes provide intermediate substrates for further metabolic conversion by platelets in an unidirectional manner.

  18. Proliferation-promoting effect of platelet-rich plasma on human adipose-derived stem cells and human dermal fibroblasts.

    Science.gov (United States)

    Kakudo, Natsuko; Minakata, Tatsuya; Mitsui, Toshihito; Kushida, Satoshi; Notodihardjo, Frederik Zefanya; Kusumoto, Kenji

    2008-11-01

    This study evaluated changes in platelet-derived growth factor (PDGF)-AB and transforming growth factor (TGF)-beta1 release from platelets by platelet-rich plasma activation, and the proliferation potential of activated platelet-rich plasma and platelet-poor plasma on human adipose-derived stem cells and human dermal fibroblasts. Platelet-rich plasma was prepared using a double-spin method, with the number of platelets counted in each preparation stage. Platelet-rich and platelet-poor plasma were activated with autologous thrombin and calcium chloride, and levels of platelet-released PDGF-AB and TGF-beta1 were determined by enzyme-linked immunosorbent assay. Cells were cultured for 1, 4, or 7 days in serum-free Dulbecco's Modified Eagle Medium supplemented with 5% whole blood plasma, nonactivated platelet-rich plasma, nonactivated platelet-poor plasma, activated platelet-rich plasma, or activated platelet-poor plasma. In parallel, these cells were cultured for 1, 4, or 7 days in serum-free Dulbecco's Modified Eagle Medium supplemented with 1%, 5%, 10%, or 20% activated platelet-rich plasma. The cultured human adipose-derived stem cells and human dermal fibroblasts were assayed for proliferation. Platelet-rich plasma contained approximately 7.9 times as many platelets as whole blood, and its activation was associated with the release of large amounts of PDGF-AB and TGF-beta1. Adding activated platelet-rich or platelet-poor plasma significantly promoted the proliferation of human adipose-derived stem cells and human dermal fibroblasts. Adding 5% activated platelet-rich plasma to the medium maximally promoted cell proliferation, but activated platelet-rich plasma at 20% did not promote it. Platelet-rich plasma can enhance the proliferation of human adipose-derived stem cells and human dermal fibroblasts. These results support clinical platelet-rich plasma application for cell-based, soft-tissue engineering and wound healing.

  19. Platelets subvert T cell immunity against cancer via GARP-TGFβ axis.

    Science.gov (United States)

    Rachidi, Saleh; Metelli, Alessandra; Riesenberg, Brian; Wu, Bill X; Nelson, Michelle H; Wallace, Caroline; Paulos, Chrystal M; Rubinstein, Mark P; Garrett-Mayer, Elizabeth; Hennig, Mirko; Bearden, Daniel W; Yang, Yi; Liu, Bei; Li, Zihai

    2017-05-05

    Cancer-associated thrombocytosis has long been linked to poor clinical outcome, but the underlying mechanism is enigmatic. We hypothesized that platelets promote malignancy and resistance to therapy by dampening host immunity. We show that genetic targeting of platelets enhances adoptive T cell therapy of cancer. An unbiased biochemical and structural biology approach established transforming growth factor β (TGFβ) and lactate as major platelet-derived soluble factors to obliterate CD4 + and CD8 + T cell functions. Moreover, we found that platelets are the dominant source of functional TGFβ systemically as well as in the tumor microenvironment through constitutive expression of the TGFβ-docking receptor glycoprotein A repetitions predominant (GARP) rather than secretion of TGFβ per se. Platelet-specific deletion of the GARP-encoding gene Lrrc32 blunted TGFβ activity at the tumor site and potentiated protective immunity against both melanoma and colon cancer. Last, this study shows that T cell therapy of cancer can be substantially improved by concurrent treatment with readily available antiplatelet agents. We conclude that platelets constrain T cell immunity through a GARP-TGFβ axis and suggest a combination of immunotherapy and platelet inhibitors as a therapeutic strategy against cancer. Copyright © 2017, American Association for the Advancement of Science.

  20. Platelets and infections—complex interactions with bacteria

    Directory of Open Access Journals (Sweden)

    Hind eHAMZEH-COGNASSE

    2015-02-01

    Full Text Available Platelets can be considered sentinels of vascular system due to their high number in the circulation and to the range of functional immunoreceptors they express. Platelets express a wide range of potential bacterial receptors, including complement receptors, FcγRII, Toll-Like Receptors but also integrins conventionally described in the hemostatic response, such as GPIIb-IIIa or GPIb. Bacteria bind these receptors either directly, or indirectly via fibrinogen, fibronectin, the first complement C1q, the von Willebrand Factor, etc. The fate of platelet bound bacteria is questioned. Several studies reported the ability of activated platelets to internalize bacteria such as Staphylococcus aureus or Porphyromonas gingivalis, though there is no clue on what happens thereafter. Are they sheltered from the immune system in the cytoplasm of platelets or are they lysed? Indeed, while the presence of phagolysosome has not been demonstrated in platelets, they contain antimicrobial peptides that were shown to be efficient on S. aureus. Besides, the fact that bacteria can bind to platelets via receptors involved in hemostasis suggests that they may induce aggregation; this has indeed been described for Streptococcus sanguinis, S. epidermidis or C. pneumoniae. On the other hand, platelets are able to display an inflammatory response to an infectious triggering. We, and others, have shown that platelet release soluble immunomodulatory factors upon stimulation by bacterial components. Moreover, interactions between bacteria and platelets are not limited to only these two partners. Indeed, platelets are also essential for the formation of Neutrophil Extracellular Traps by neutrophils, resulting in bacterial clearance by trapping bacteria and concentrating antibacterial factors but in enhancing thrombosis. In conclusion, the platelet-bacteria interplay is a complex game; its fine analysis is complicated by the fact that the inflammatory component adds to the

  1. ROS-induced ROS release orchestrated by Nox4, Nox2, and mitochondria in VEGF signaling and angiogenesis.

    Science.gov (United States)

    Kim, Young-Mee; Kim, Seok-Jo; Tatsunami, Ryosuke; Yamamura, Hisao; Fukai, Tohru; Ushio-Fukai, Masuko

    2017-06-01

    Reactive oxygen species (ROS) derived from NADPH oxidase (NOX) and mitochondria play a critical role in growth factor-induced switch from a quiescent to an angiogenic phenotype in endothelial cells (ECs). However, how highly diffusible ROS produced from different sources can coordinate to stimulate VEGF signaling and drive the angiogenic process remains unknown. Using the cytosol- and mitochondria-targeted redox-sensitive RoGFP biosensors with real-time imaging, here we show that VEGF stimulation in human ECs rapidly increases cytosolic RoGFP oxidation within 1 min, followed by mitochondrial RoGFP oxidation within 5 min, which continues at least for 60 min. Silencing of Nox4 or Nox2 or overexpression of mitochondria-targeted catalase significantly inhibits VEGF-induced tyrosine phosphorylation of VEGF receptor type 2 (VEGFR2-pY), EC migration and proliferation at the similar extent. Exogenous hydrogen peroxide (H 2 O 2 ) or overexpression of Nox4, which produces H 2 O 2 , increases mitochondrial ROS (mtROS), which is prevented by Nox2 siRNA, suggesting that Nox2 senses Nox4-derived H 2 O 2 to promote mtROS production. Mechanistically, H 2 O 2 increases S36 phosphorylation of p66Shc, a key mtROS regulator, which is inhibited by siNox2, but not by siNox4. Moreover, Nox2 or Nox4 knockdown or overexpression of S36 phosphorylation-defective mutant p66Shc(S36A) inhibits VEGF-induced mtROS, VEGFR2-pY, EC migration, and proliferation. In summary, Nox4-derived H 2 O 2 in part activates Nox2 to increase mtROS via pSer36-p66Shc, thereby enhancing VEGFR2 signaling and angiogenesis in ECs. This may represent a novel feed-forward mechanism of ROS-induced ROS release orchestrated by the Nox4/Nox2/pSer36-p66Shc/mtROS axis, which drives sustained activation of angiogenesis signaling program. Copyright © 2017 the American Physiological Society.

  2. Transforming growth factor β-regulated microRNA-29a promotes angiogenesis through targeting the phosphatase and tensin homolog in endothelium.

    Science.gov (United States)

    Wang, Jun; Wang, Youliang; Wang, Yu; Ma, Ying; Lan, Yu; Yang, Xiao

    2013-04-12

    The TGF-β pathway plays an important role in physiological and pathological angiogenesis. MicroRNAs (miRNAs) are a class of 18- to 25-nucleotide, small, noncoding RNAs that function by regulating gene expression. A number of miRNAs have been found to be regulated by the TGF-β pathway. However, the role of endothelial miRNAs in the TGF-β-mediated control of angiogenesis is still largely unknown. Here we investigated the regulation of endothelial microRNA-29a (miR-29a) by TGF-β signaling and the potential role of miR-29a in angiogenesis. MiR-29a was directly up-regulated by TGF-β/Smad4 signaling in human and mice endothelial cells. In a chick chorioallantoic membrane assay, miR-29a overexpression promoted the formation of new blood vessels, and miR-29a suppression completely blocked TGF-β1-stimulated angiogenesis. Consistently, miR-29a overexpression increased tube formation and migration in endothelial cultures. Mechanistically, miR-29a directly targeted the phosphatase and tensin homolog (PTEN) in endothelial cells, leading to activation of the AKT pathway. PTEN knockdown recapitulated the role of miR-29a in endothelial migration, whereas AKT inhibition completely attenuated the stimulating role of miR-29a in angiogenesis. Taken together, these results reveal a crucial role of a TGF-β-regulated miRNA in promoting angiogenesis by targeting PTEN to stimulate AKT activity.

  3. Determination of residual 4'-aminomethyl-4,5',8-trimethylpsoralen and mutagenicity testing following psoralen plus UVA treatment of platelet suspensions

    International Nuclear Information System (INIS)

    Wagner, S.J.; Robinette, D.; Dodd, R.Y.; White, R.; Wolf, L.; Chapman, J.; Lawlor, T.E.

    1993-01-01

    Psoralens and UVa light have been used in the laboratory to study the inactivation of viruses that may be infrequently present in platelet concentrates prepared for transfusion. In order to evaluate safety aspects of the treatment of platelet suspensions with 4'-aminomethyl-4,5'8-trimethylpsoralen (AMT), the authors have investigated the residual levels and mutagenic potential of AMT after UVA phototreatment. The results suggest that residual available AMT is mutagenic in the AMES test and that the observed frameshift mutations may be caused by binding of AMt or its metabolites to nucleic acids in the absence of UVA light. (Author)

  4. Quantitative gene-expression of the tumor angiogenesis markers vascular endothelial growth factor, integrin alphaV and integrin beta3 in human neuroendocrine tumors

    DEFF Research Database (Denmark)

    Oxboel, Jytte; Binderup, Tina; Knigge, Ulrich

    2009-01-01

    , in neuroendocrine tumors. We used quantitative real-time PCR for measuring mRNA gene-expression of vascular endothelial growth factor (VEGF), integrin alphaV, and integrin beta3, and CD34 for a group of patients with neuroendocrine tumors (n=13). Tissue from patients with colorectal cancer liver metastases (n=14...... compared to both colorectal liver metastases (p=0.10) and normal liver tissue (p=0.06). In neuroendocrine tumors, gene-expression was highly variable of VEGF (530-fold), integrin alphaV (23-fold) and integrin beta3 (106-fold). Quantitative gene-expression levels of the key angiogenesis molecules VEGF......Anti-angiogenesis treatment is a promising new therapy for cancer that recently has also been suggested for patients with neuroendocrine tumors. The aim of the present study was therefore to investigate the level of tumor angiogenesis, and thereby the molecular basis for anti-angiogenesis treatment...

  5. A Role for PPAR/ in Ocular Angiogenesis

    Directory of Open Access Journals (Sweden)

    David Bishop-Bailey

    2008-01-01

    Full Text Available The uses of highly selective PPAR/ ligands and PPAR/ knockout mice have shown a direct ability of PPAR/ to regulate angiogenesis in vitro and in vivo in animal models. PPAR/ ligands induce the proangiogenic growth factor VEGF in many cells and tissues, though its actions in the eye are not known. However, virtually, all tissue components of the eye express PPAR/. Both angiogenesis and in particular VEGF are not only critical for the development of the retina, but they are also a central component in many common pathologies of the eye, including diabetic retinopathy and age-related macular degeneration, the most common causes of blindness in the Western world. This review, therefore, will discuss the recent evidence of PPAR/-mediated angiogenesis and VEGF release in the context of ocular disorders.

  6. The effect of the substituted amphetamines, 2.4-methylenedioxymethamphetamine (MDMA) and P-methoxyamphetamine (PMA), on platelet aggregation

    International Nuclear Information System (INIS)

    Sluggett, A.J.; Irvine, R.J.; Bochner, F.; Rodgers, S.; Lloyd, J.V.

    2001-01-01

    Full text: Illicit substituted amphetamines such as 3,4-methylenedioxymethamphetamine (MDMA) and p-methoxyamphetamine (PMA) can cause severe toxicity. Disruption of normal coagulation mechanisms have been observed in most fatal cases. However, the precise mechanisms underlying these events are not clearly understood. MDMA and PMA are known to inhibit serotonin transporter function in the central nervous system (Daws et al 2000) and platelet serotonin transporter sites (Rudnick and Wall 1992). Serotonin is in high concentrations in platelets and activation of 5HT 2 receptors on the platelet surface potentiates aggregation of platelets. Therefore, we postulated that MDMA and PMA may have effects on coagulation via inhibition of normal platelet function. Human citrated platelets were incubated in the presence of MDMA (43- 435μM) or PMA (49-498μM) and their aggregator y response to a critical dose of adenosine diphosphate (ADP) determined. These responses were compared to the serotonin reuptake inhibitor fluoxetine (13-130μM). All 3 compounds were found to inhibit platelet aggregation. The IC50s for % aggregation at 5 minutes were MDMA 197μM ± 63μM PMA 344μM ±76μM and fluoxetine 24μM ±1 1μM (n=4). The effect of these drugs on the uptake of 14 C-5HT (0.9 μM /ml) into platelets was also determined and the IC50s observed were MDMA 62.3 μM ±11μM , PMA 24μM ±6μM and fluoxetine 2.5μM ± 0.6μM (n=4). The in vitro effects of MDMA and PMA on aggregation and uptake observed here are close to concentrations reported to have occurred in human fatalities. Therefore it is possible that direct effects of these drugs on coagulation mechanisms may contribute to the toxicity of these compounds. Copyright (2001) Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists

  7. Notch-1 mediates hypoxia-induced angiogenesis in rheumatoid arthritis.

    Science.gov (United States)

    Gao, Wei; Sweeney, Catherine; Connolly, Mary; Kennedy, Aisling; Ng, Chin Teck; McCormick, Jennifer; Veale, Douglas J; Fearon, Ursula

    2012-07-01

    To examine the effect of hypoxia on Notch-1 signaling pathway components and angiogenesis in inflammatory arthritis. The expression and regulation of Notch-1, its ligand delta-like protein 4 (DLL-4) and downstream signaling components (hairy-related transcription factor 1 [HRT-1], HRT-2), and hypoxia-inducible factor 1α (HIF-1α) under normoxic and hypoxic conditions (1-3%) were assessed in synovial tissue specimens from patients with inflammatory arthritis and controls and in human dermal microvascular endothelial cells (HDMECs) by immunohistology, dual immunofluorescence staining (Notch-1/factor VIII), Western blotting, and real-time polymerase chain reaction. In vivo synovial tissue oxygen levels (tissue PO2) were measured under direct visualization at arthroscopy. HDMEC activation under hypoxic conditions in the presence of Notch-1 small interfering RNA (siRNA), the γ-secretase inhibitor DAPT, or dimethyloxalylglycine (DMOG) was assessed by Matrigel tube formation assay, migration assay, invasion assay, and matrix metalloproteinase 2 (MMP-2)/MMP-9 zymography. Expression of Notch-1, its ligand DLL-4, and HRT-1 was demonstrated in synovial tissue, with the strongest expression localized to perivascular/vascular regions. Localization of Notch-1 to synovial endothelium was confirmed by dual immunofluorescence staining. Notch-1 intracellular domain (NICD) expression was significantly higher in synovial tissue from patients with tissue PO2 of PO2 of >20 mm Hg (>3% O2). Exposure of HDMECs to 3% hypoxia induced HIF-1α and NICD protein expression and DLL-4, HRT-1, and HRT-2 messenger RNA expression. DMOG directly induced NICD expression, while Notch-1 siRNA inhibited hypoxia-induced HIF-1α expression, suggesting that Notch-1/HIF-1α signaling is bidirectional. Finally, 3% hypoxia-induced angiogenesis, endothelial cell migration, endothelial cell invasion, and proMMP-2 and proMMP-9 activities were inhibited by Notch-1 siRNA and/or the γ-secretase inhibitor DAPT. Our

  8. Efficient inhibition of tumor angiogenesis and growth by a synthetic peptide blocking S100A4-methionine aminopeptidase 2 interaction

    Directory of Open Access Journals (Sweden)

    Takahiro Ochiya

    Full Text Available The prometastatic calcium-binding protein, S100A4, is expressed in endothelial cells, and its downregulation markedly suppresses tumor angiogenesis in a xenograft cancer model. Given that endothelial S100A4 can be a molecular target for inhibiting tumor angiogenesis, we addressed here whether synthetic peptide capable of blocking S100A4-effector protein interaction could be a novel antiangiogenic agent. To examine this hypothesis, we focused on the S100A4-binding domain of methionine aminopeptidase 2, an effector protein, which plays a role in endothelial cell growth. Overexpression of the domain in mouse endothelial MSS31 cells reduced DNA synthesis, and the corresponding synthetic peptide (named NBD indeed interacted with S100A4 and inhibited capillary formation in vitro and new blood vessel formation in vivo. Intriguingly, a single intra-tumor administration of the NBD peptide in human prostate cancer xenografts significantly reduced vascularity, resulting in tumor regression. Mechanistically, the NBD peptide enhanced assembly of nonmuscle myosin IIA filaments along with Ser1943 phosphorylation, stimulated formation of focal adhesions without phosphorylation of focal adhesion kinase, and provoked G1/S arrest of the cell cycle. Altogether, the NBD peptide is a potent inhibitor for tumor angiogenesis, and is the first example of an anticancer peptide drug developed on the basis of an endothelial S100A4-targeted strategy.

  9. Placental growth factor neutralising antibodies give limited anti-angiogenic effects in an in vitro organotypic angiogenesis model.

    Science.gov (United States)

    Brave, Sandra R; Eberlein, Cath; Shibuya, Masabumi; Wedge, Stephen R; Barry, Simon T

    2010-12-01

    Vascular Endothelial Growth Factor Receptor (VEGFR) mediated signalling drives angiogenesis. This is predominantly attributed to the activity of VEGFR-2 following binding of VEGF-A. Whether other members of the VEGFR and ligand families such as VEGFR-1 and its ligand Placental Growth Factor (PlGF) can also contribute to developmental and pathological angiogenesis is less clear. We explored the function of PlGF in VEGF-A dependent angiogenesis using an in vitro co-culture assay in which endothelial cells are cultured on a fibroblast feeder layer. In the presence of 2% FS MCDB media (containing limited growth factors) in vitro endothelial tube formation is driven by endogenous angiogenic stimuli which are produced by the fibroblast and endothelial cells. Under these conditions independent sequestration of either free VEGF-A or PlGF with polyclonal and monoclonal antibodies inhibited tube formation suggesting that both ligands are required to drive an angiogenic response. Endothelial tube formation could only be driven within this assay by the addition of exogenous VEGF-A, VEGF-E or VEGF-A/PlGF heterodimer, but not by PlGF alone, implying that activation of either VEGFR-2/VEGFR-1 heterodimers or VEGFR-2 homodimers were responsible for eliciting an angiogenic response directly, but not VEGFR-1 homodimers. In contrast to results obtained with an endogenous angiogenic drive, sequestration of PlGF did not affect endothelial tube formation when the assay was driven by 1 ng/ml exogenous VEGF-A. These data suggest that although neutralising PlGF can be shown to reduce endothelial tube formation in vitro, this effect is only observed under restricted culture conditions and is influenced by VEGF-A. Such data questions whether neutralising PlGF would have a therapeutic benefit in vivo in the presence of pathological concentrations of VEGF-A.

  10. Platelets and the innate immune system: mechanisms of bacterial-induced platelet activation.

    Science.gov (United States)

    Cox, D; Kerrigan, S W; Watson, S P

    2011-06-01

    It has become clear that platelets are not simply cell fragments that plug the leak in a damaged blood vessel; they are, in fact, also key components in the innate immune system, which is supported by the presence of Toll-like receptors (TLRs) on platelets. As the cells that respond first to a site of injury, they are well placed to direct the immune response to deal with any resulting exposure to pathogens. The response is triggered by bacteria binding to platelets, which usually triggers platelet activation and the secretion of antimicrobial peptides. The main platelet receptors that mediate these interactions are glycoprotein (GP)IIb-IIIa, GPIbα, FcγRIIa, complement receptors, and TLRs. This process may involve direct interactions between bacterial proteins and the receptors, or can be mediated by plasma proteins such as fibrinogen, von Willebrand factor, complement, and IgG. Here, we review the variety of interactions between platelets and bacteria, and look at the potential for inhibiting these interactions in diseases such as infective endocarditis and sepsis. © 2011 International Society on Thrombosis and Haemostasis.

  11. VEGF blockade inhibits angiogenesis and reepithelialization of endometrium

    OpenAIRE

    Fan, Xiujun; Krieg, Sacha; Kuo, Calvin J.; Wiegand, Stanley J.; Rabinovitch, Marlene; Druzin, Maurice L.; Brenner, Robert M.; Giudice, Linda C.; Nayak, Nihar R.

    2008-01-01

    Despite extensive literature on vascular endothelial growth factor (VEGF) expression and regulation by steroid hormones, the lack of clear understanding of the mechanisms of angiogenesis in the endometrium is a major limitation for use of antiangiogenic therapy targeting endometrial vessels. In the current work, we used the rhesus macaque as a primate model and the decidualized mouse uterus as a murine model to examine angiogenesis during endometrial breakdown and regeneration. We found that ...

  12. Generation and characterization of an anti-delta like ligand-4 Nanobody to induce non-productive angiogenesis.

    Science.gov (United States)

    Baharlou, Rasoul; Tajik, Nader; Habibi-Anbouhi, Mahdi; Shokrgozar, Mohammad Ali; Zarnani, Amir-Hassan; Shahhosseini, Fatemeh; Behdani, Mahdi

    2018-03-01

    Antibody-based targeting of angiogenesis is a key approach for cancer treatment. Delta-like ligand 4 (DLL4) plays a pivotal role in tumor neovascular development and angiogenesis during tumor progression. It forecasts the prognosis of human malignancies and blocking its signaling can help to inhibit neovascularization and tumor metastasis. Nanobodies are the smallest antigen-binding domains of heavy chain antibodies in camelidae. The aim of this study was to develop a Nanobody against DLL4 and apply binding and functional approaches to target it. In this work, a Nanobody library against human recombinant DLL4 was developed. After panning, the periplasmic-extract (PE) of individual colonies were screened through ELISA. The interactions between Nanobody and DLL4 were assessed using immunohistochemistry and FACS. The functional assessment was carried out via tube formation assay. We selected a Nanobody (3Nb3) with a high binding signal to DLL4, associated with a binding affinity of 3.6 nM. It was demonstrated that 3Nb3 binds to native DLL4 on the surface of MKN cells and gastric carcinoma tissue, and also inhibits the maturation of capillary-like structures in HUVECs. The results were indicative of the potential of Nanobody for DLL4 identification and can broaden the scope for development of cancer diagnosis and treatment techniques. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Toll-like receptor 4 promotes angiogenesis in pancreatic cancer via PI3K/AKT signaling

    International Nuclear Information System (INIS)

    Sun, Yunliang; Wu, Congshan; Ma, Jianxia; Yang, Yu; Man, Xiaohua; Wu, Hongyu; Li, Shude

    2016-01-01

    Deregulation of Toll-like receptor 4 (TLR4) is closely associated with the progression of various types of cancers, but its role in pancreatic carcinogenesis is unclear. This study aimed to investigate the role of TLR4 in the angiogenesis of pancreatic cancer and the underlying molecular mechanisms. The culture supernatant (conditioned medium) of PANC-1 cells after appropriate treatment was used for the treatment of HUVECs. The proliferation, migration and tube formation of HUVECs were assessed by MTT, Transwell and Matrigel, respectively. In pancreatic cancer tissues, TLR4, VEGF and CD31 were upregulated as determined by immunohistochemistry and the expression of TLR4 and VEGF was positively correlated with microvessel density as detected by CD31 staining. Activation of TLR4 signaling by LPS in PANC-1 cells resulted in increased VEGF and phosphorylation of AKT, which were abolished by TLR4 silencing with siRNA and PI3K/AKT signaling inhibitor LY294002. The conditioned medium from PANC-1 cells treated with LY294002 or transfected with TRL4 siRNA reduced the proliferation, migration and tube formation of HUVECs. In contrast, the conditioned medium from PANC-1 cells treated with LPS stimulated the proliferation, migration and tube formation of HUVECs, which was however significantly inhibited by pretreatment of PANC-1 cells with LY294002 or transfection with TRL4 siRNA. Our findings suggest TLR4 may promote angiogenesis in pancreatic cancer by activating the PI3K/AKT signaling pathway to induce VEGF expression.

  14. Toll-like receptor 4 promotes angiogenesis in pancreatic cancer via PI3K/AKT signaling

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yunliang; Wu, Congshan [Department of Gastroenterology, Lianyungang Ganyu People’s Hospital, Ganyu, Jiangsu (China); Ma, Jianxia, E-mail: yz_mjx@163.com [Department of Gastroenterology, Huadong Hospital, Fudan University, Shanghai (China); Yang, Yu [Department of Gastroenterology, Huadong Hospital, Fudan University, Shanghai (China); Man, Xiaohua; Wu, Hongyu; Li, Shude [Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai (China)

    2016-10-01

    Deregulation of Toll-like receptor 4 (TLR4) is closely associated with the progression of various types of cancers, but its role in pancreatic carcinogenesis is unclear. This study aimed to investigate the role of TLR4 in the angiogenesis of pancreatic cancer and the underlying molecular mechanisms. The culture supernatant (conditioned medium) of PANC-1 cells after appropriate treatment was used for the treatment of HUVECs. The proliferation, migration and tube formation of HUVECs were assessed by MTT, Transwell and Matrigel, respectively. In pancreatic cancer tissues, TLR4, VEGF and CD31 were upregulated as determined by immunohistochemistry and the expression of TLR4 and VEGF was positively correlated with microvessel density as detected by CD31 staining. Activation of TLR4 signaling by LPS in PANC-1 cells resulted in increased VEGF and phosphorylation of AKT, which were abolished by TLR4 silencing with siRNA and PI3K/AKT signaling inhibitor LY294002. The conditioned medium from PANC-1 cells treated with LY294002 or transfected with TRL4 siRNA reduced the proliferation, migration and tube formation of HUVECs. In contrast, the conditioned medium from PANC-1 cells treated with LPS stimulated the proliferation, migration and tube formation of HUVECs, which was however significantly inhibited by pretreatment of PANC-1 cells with LY294002 or transfection with TRL4 siRNA. Our findings suggest TLR4 may promote angiogenesis in pancreatic cancer by activating the PI3K/AKT signaling pathway to induce VEGF expression.

  15. Dose- and time-related platelet response with apheresis platelet concentrates and pooled platelets

    Directory of Open Access Journals (Sweden)

    Mohammad Mizanur Rahman

    2017-02-01

    Full Text Available This study was carried out to compare the post-transfusion platelet increment between the apheresis platelet concentrate (n=74 and pooled platelets (n=54. Pre- and post-transfusion platelet count of the recipient were carried out by automated hematology analyzer. In apheresis platelet concentrate group, the mean 24 hours post-transfusion platelet increment was 47 x 109/L which was statistically significant (p<0.001. On the other hand, in pooled platelets group, the mean 24 hours post–transfusions platelet count increment was 11.0 x 109/L which was also statistically significant (p<0.001. This study concluded that the transfusion of apheresis platelet concentrate was more useful than the transfusion of pooled platelets in terms of platelet count increment and requirement of donor.

  16. Differences in levels of platelet-derived microparticles in platelet components prepared using the platelet rich plasma, buffy coat, and apheresis procedures.

    Science.gov (United States)

    Noulsri, Egarit; Udomwinijsilp, Prapaporn; Lerdwana, Surada; Chongkolwatana, Viroje; Permpikul, Parichart

    2017-04-01

    There has been an increased interest in platelet-derived microparticles (PMPs) in transfusion medicine. Little is known about PMP status during the preparation of platelet concentrates for transfusion. The aim of this study is to compare the PMP levels in platelet components prepared using the buffy coat (BC), platelet-rich plasma platelet concentrate (PRP-PC), and apheresis (AP) processes. Platelet components were prepared using the PRP-PC and BC processes. Apheresis platelets were prepared using the Trima Accel and Amicus instruments. The samples were incubated with annexin A5-FITC, CD41-PE, and CD62P-APC. At day 1 after processing, the PMPs and activated platelets were determined using flow cytometry. Both the percentage and number of PMPs were higher in platelet components prepared using the Amicus instrument (2.6±1.8, 32802±19036 particles/μL) than in platelet components prepared using the Trima Accel instrument (0.5±0.4, 7568±5298 particles/μL), BC (1.2±0.6, 12,920±6426 particles/μL), and PRP-PC (0.9±0.6, 10731±5514 particles/μL). Both the percentage and number of activated platelets were higher in platelet components prepared using the Amicus instrument (33.2±13.9, 427553±196965 cells/μL) than in platelet components prepared using the Trima Accel instrument (16.2±6.1, 211209±87706 cells/μL), BC (12.9±3.2, 140624±41003 cells/μL), and PRP-PC (21.1±6.3, 265210±86257 cells/μL). The study suggests high variability of PMPs and activated platelets in platelet components prepared using different processes. This result may be important in validating the instruments involved in platelet blood collection and processing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Insulin-like growth factor binding protein-3 induces angiogenesis through IGF-I- and SphK1-dependent mechanisms.

    Science.gov (United States)

    Granata, R; Trovato, L; Lupia, E; Sala, G; Settanni, F; Camussi, G; Ghidoni, R; Ghigo, E

    2007-04-01

    Angiogenesis is critical for development and repair, and is a prominent feature of many pathological conditions. Based on evidence that insulin-like growth factor binding protein (IGFBP)-3 enhances cell motility and activates sphingosine kinase (SphK) in human endothelial cells, we have investigated whether IGFBP-3 plays a role in promoting angiogenesis. IGFBP-3 potently induced network formation by human endothelial cells on Matrigel. Moreover, it up-regulated proangiogenic genes, such as vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMP)-2 and -9. IGFBP-3 even induced membrane-type 1 MMP (MT1-MMP), which regulates MMP-2 activation. Decreasing SphK1 expression by small interfering RNA (siRNA), blocked IGFBP-3-induced network formation and inhibited VEGF, MT1-MMP but not IGF-I up-regulation. IGF-I activated SphK, leading to sphingosine-1-phosphate (S1P) formation. The IGF-I effect on SphK activity was blocked by specific inhibitors of IGF-IR, PI3K/Akt and ERK1/2 phosphorylation. The disruption of IGF-I signaling prevented the IGFBP-3 effect on tube formation, SphK activity and VEGF release. Blocking ERK1/2 signaling caused the loss of SphK activation and VEGF and IGF-I up-regulation. Finally, IGFBP-3 dose-dependently stimulated neovessel formation into subcutaneous implants of Matrigel in vivo. Thus, IGFBP-3 positively regulates angiogenesis through involvement of IGF-IR signaling and subsequent SphK/S1P activation.

  18. Aspirin inhibition of platelet deposition at angioplasty sites: demonstration by platelet scintigraphy

    International Nuclear Information System (INIS)

    Cuningham, D.A.; Kumar, B.; Siegel, B.A.; Gilula, L.A.; Totty, W.G.; Welch, M.J.

    1984-01-01

    In-111 platelet scintigraphy was used to evaluate the effects of prior aspirin administration on the accumulation of In-111-labeled autologous platelets at sites of arterial injury resulting from iliac, femoral, or popliteal transluminal angioplasty in a nonrandomized study of 17 men. The degree of platelet localization at angioplasty sites was significantly less in nine men who had received aspirin in varying doses within the 4 days before angioplasty than in eight men who had not received aspirin for at least two weeks. The results suggest that aspirin treatment before angioplasty limits the early platelet deposition at the angioplasty site in men

  19. Platelet RNA as a circulating biomarker trove for cancer diagnostics.

    Science.gov (United States)

    Best, M G; Vancura, A; Wurdinger, T

    2017-07-01

    Platelets are multifunctional cell fragments, circulating in blood in high abundance. Platelets assist in thrombus formation, sensing of pathogens entering the blood stream, signaling to immune cells, releasing vascular remodeling factors, and, negatively, enhancing cancer metastasis. Platelets are 'educated' by their environment, including in patients with cancer. Cancer cells appear to initiate intraplatelet signaling, resulting in splicing of platelet pre-mRNAs, and enhance secretion of cytokines. Platelets can induce leukocyte and endothelial cell modeling factors, for example, through adenine nucleotides (ATP), thereby facilitating extravasation of cancer cells. Besides releasing factors, platelets can also sequester RNAs and proteins released by cancer cells. Thus, platelets actively respond to queues from local and systemic conditions, thereby altering their transcriptome and molecular content. Platelets contain a rich repertoire of RNA species, including mRNAs, small non-coding RNAs and circular RNAs; although studies regarding the functionality of the various platelet RNA species require more attention. Recent advances in high-throughput characterization of platelet mRNAs revealed 10 to > 1000 altered mRNAs in platelets in the presence of disease. Hence, platelet RNA appears to be dynamically affected by pathological conditions, thus possibly providing opportunities to use platelet RNA as diagnostic, prognostic, predictive, or monitoring biomarkers. In this review, we cover the literature regarding the platelet RNA families, processing of platelet RNAs, and the potential application of platelet RNA as disease biomarkers. © 2017 International Society on Thrombosis and Haemostasis.

  20. QUANTIFICATION OF ANGIOGENESIS IN THE CHICKEN CHORIOALLANTOIC MEMBRANE (CAM

    Directory of Open Access Journals (Sweden)

    Silvia Blacher

    2011-05-01

    Full Text Available The chick chorioallantoic membrane (CAM provides a suitable in vivo model to study angiogenesis and evaluate several pro- and anti-angiogenic factors and compounds. In the present work, new developments in image analysis are used to quantify CAM angiogenic response from optical microscopic observations, covering all vascular components, from the large supplying and feeding vessels down to the capillary plexus. To validate our methodology angiogenesis is quantified during two phases of CAM development (day 7 and 13 and after treatment with an antiangiogenic modulator of the angiogenesis. Our morphometric analysis emphasizes that an accurate quantification of the CAM vasculature needs to be performed at various scales.

  1. Does platelet-rich plasma have a role in the treatment of osteoarthritis?

    Science.gov (United States)

    Ornetti, Paul; Nourissat, Geoffroy; Berenbaum, Francis; Sellam, Jérémie; Richette, Pascal; Chevalier, Xavier

    2016-01-01

    Platelet-rich plasma (PRP) has been generating considerable attention as an intra-articular treatment to alleviate the symptoms of osteoarthritis. Activated platelets release a host of soluble mediators such as growth factors and cytokines, thereby inducing complex interactions that vary across tissues within the joint. In vivo, PRP may promote chondrocyte proliferation and differentiation. The available data are somewhat conflicting regarding potential effects on synovial cells and angiogenesis modulation. PRP probably exerts an early anti-inflammatory effect, which may be chiefly mediated by inhibition of the NF-κB pathway, a hypothesis that requires confirmation by proof-of-concept studies. It is far too early to draw conclusions about the efficacy of PRP as a treatment for hip osteoarthritis. The only randomized trial versus hyaluronic acid showed no significant difference in effects, and no placebo-controlled trials are available. Most of the randomized trials in knee osteoarthritis support a slightly greater effect in alleviating the symptoms compared to visco-supplementation, most notably at the early stages of the disease, although only medium-term data are available. Many uncertainties remain, however, regarding the best administration regimen. Serious adverse effects, including infections and allergies, seem rare, although post-injection pain is more common than with other intra-articular treatments for osteoarthritis. Copyright © 2015 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.

  2. Secreted Immunomodulatory Proteins of Staphylococcus aureus Activate Platelets and Induce Platelet Aggregation.

    Science.gov (United States)

    Binsker, Ulrike; Palankar, Raghavendra; Wesche, Jan; Kohler, Thomas P; Prucha, Josephine; Burchhardt, Gerhard; Rohde, Manfred; Schmidt, Frank; Bröker, Barbara M; Mamat, Uwe; Pané-Farré, Jan; Graf, Anica; Ebner, Patrick; Greinacher, Andreas; Hammerschmidt, Sven

    2018-04-01

    Staphylococcus aureus can cause bloodstream infections associated with infective endocarditis (IE) and disseminated intravascular coagulopathy (DIC). Both complications involve platelets. In view of an increasing number of antibiotic-resistant strains, new approaches to control systemic S. aureus infection are gaining importance. Using a repertoire of 52 recombinant S. aureus proteins in flow cytometry-based platelet activation and aggregation assays, we identified, in addition to the extracellular adherence protein Eap, three secreted staphylococcal proteins as novel platelet activating proteins. Eap and the chemotaxis inhibitory protein of S. aureus (CHIPS), the formyl peptide receptor-like 1 inhibitory protein (FLIPr) and the major autolysin Atl induced P-selectin expression in washed platelets and platelet-rich plasma. Similarly, AtlA, CHIPS and Eap induced platelet aggregation in whole blood. Fluorescence microscopy illustrated that P-selectin expression is associated with calcium mobilization and re-organization of the platelet actin cytoskeleton. Characterization of the functionally active domains of the major autolysin AtlA and Eap indicates that the amidase domain of Atl and the tandem repeats 3 and 4 of Eap are crucial for platelet activation. These results provide new insights in S. aureus protein interactions with platelets and identify secreted proteins as potential treatment targets in case of antibiotic-resistant S. aureus infection. Schattauer GmbH Stuttgart.

  3. Platelets Express Activated P2Y12 Receptor in Patients With Diabetes Mellitus.

    Science.gov (United States)

    Hu, Liang; Chang, Lin; Zhang, Yan; Zhai, Lili; Zhang, Shenghui; Qi, Zhiyong; Yan, Hongmei; Yan, Yan; Luo, Xinping; Zhang, Si; Wang, Yiping; Kunapuli, Satya P; Ye, Hongying; Ding, Zhongren

    2017-08-29

    Platelets from patients with diabetes mellitus are hyperactive. Hyperactivated platelets may contribute to cardiovascular complications and inadequate responses to antiplatelet agents in the setting of diabetes mellitus. However, the underlying mechanism of hyperactivated platelets is not completely understood. We measured P2Y 12 expression on platelets from patients with type 2 diabetes mellitus and on platelets from rats with diabetes mellitus. We also assayed platelet P2Y 12 activation by measuring cAMP and VASP phosphorylation. The antiplatelet and antithrombotic effects of AR-C78511 and cangrelor were compared in rats. Finally, we explored the role of the nuclear factor-κB pathway in regulating P2Y 12 receptor expression in megakaryocytes. Platelet P2Y 12 levels are 4-fold higher in patients with type 2 diabetes mellitus compared with healthy subjects. P2Y 12 expression correlates with ADP-induced platelet aggregation (r=0.89, P diabetes mellitus is constitutively activated. Although both AR-C78511, a potent P2Y 12 inverse agonist, and cangrelor have similar antiplatelet efficacy on platelets from healthy subjects, AR-C78511 exhibits more powerful antiplatelet effects on diabetic platelets than cangrelor (aggregation ratio 36±3% versus 49±5%, respectively, P diabetes mellitus than cangrelor (thrombus weight 4.9±0.3 mg versus 8.3±0.4 mg, respectively, P diabetes mellitus. Platelet P2Y 12 receptor expression is significantly increased and the receptor is constitutively activated in patients with type 2 diabetes mellitus, which contributes to platelet hyperactivity and limits antiplatelet drug efficacy in type 2 diabetes mellitus. © 2017 American Heart Association, Inc.

  4. Intra-laboratory validation of a human cell based in vitro angiogenesis assay for testing angiogenesis modulators

    Directory of Open Access Journals (Sweden)

    Jertta-Riina Sarkanen

    2011-01-01

    Full Text Available The developed standardized human cell based in vitro angiogenesis assay was intra-laboratory validated to verify that the method is reliable and relevant for routine testing of modulators of angiogenesis e.g. pharmaceuticals and industrial chemicals. This assay is based on the earlier published method but it was improved and shown to be more sensitive and rapid than the previous assay. The performance of the assay was assessed by using 6 reference chemicals, which are widely used pharmaceuticals that inhibit angiogenesis: acetyl salicylic acid, erlotinib, 2-methoxyestradiol, levamisole, thalidomide, and anti-vascular endothelial growth factor. In the intra-laboratory validation, the sensitivity of the assay (upper and lower limits of detection and linearity of response in tubule formation, batch to batch variation in tubule formation between different Master cell bank batches, and precision as well as the reliability of the assay (reproducibility and repeatability were tested. The pre-set acceptance criteria for the intra-laboratory validation study were met. The relevance of the assay in man was investigated by comparing the effects of reference chemicals and their concentrations to the published human data. The comparison showed a good concordance, which indicates that this human cell based angiogenesis model predicts well the effects in man and has the potential to be used to supplement and/or replace of animal tests.

  5. Increased platelet expression of FcGammaRIIa and its potential impact on platelet reactivity in patients with end stage renal disease

    Directory of Open Access Journals (Sweden)

    Sobel Burton E

    2007-06-01

    Full Text Available Abstract Background Increased platelet reactivity has been implicated in cardiovascular disease – the major cause of death in patients with end stage renal disease (ESRD. FcGammaRIIA is a component of glycoprotein VI and Ib-IX-V that mediate activation of platelets by collagen and von Willebrand factor. To determine whether expression of FcGammaRIIA impacts platelet reactivity we quantified its expression and platelet reactivity in 33 patients with ESRD who were undergoing hemodialysis. Methods Blood samples were obtained from patients immediately before hemodialysis and before administration of heparin. Platelet expression of FcGammaRIIA and the activation of platelets in response to low concentrations of convulxin (1 ng/ml, selected to mimic effects of collagen, thrombin (1 nM, adenosine diphosphate (ADP, 0.2 uM, or platelet activating factor (PAF, 1 nM were determined with the use of flow cytometry in samples of whole blood anticoagulated with corn trypsin inhibitor (a specific inhibitor of Factor XIIa. Results Patients were stratified with respect to the median expression of FcGammaRIIA. Patients with high platelet expression of FcGammaRIIA exhibited 3-fold greater platelet reactivity compared with that in those with low expression in response to convulxin (p Conclusion Increased platelet reactivity in response to low concentrations of diverse agonists is associated with high expression of FcGammaRIIA and may contribute to an increased risk of thrombosis in patients with ESRD.

  6. Nephropathy in type 1 diabetes is associated with increased circulating activated platelets and platelet hyperreactivity

    DEFF Research Database (Denmark)

    Tarnow, Inge; Michelson, Alan D.; Barnard, Marc R.

    2009-01-01

    Patients with diabetes mellitus (DM) have increased platelet activation compared to non-diabetic controls. Platelet hyperreactivity has been associated with adverse cardiovascular outcomes in Type 2 DM, and with diabetic nephropathy. We investigated the relationship between platelet activation...... and nephropathy in Type 1 DM. Patients with Type 1 DM and diabetic nephropathy (n = 35), age- and sex-matched Type 1 DM patients with persistent normoalbuminuria (n = 51), and healthy age- and sex-matched controls (n = 30) were studied. Platelet surface P-selectin, platelet surface activated GPIIb/IIIa, monocyte...... controls (P = 0.0075). There were no differences between groups in activated GPIIb/IIIa or in response to TRAP at any end-point. More patients with nephropathy received aspirin (71.4%) compared to normoalbuminuric patients (27.4%) (P Type 1 diabetic nephropathy, as compared with normoalbuminuria...

  7. [Angiogenesis and endometriose].

    Science.gov (United States)

    Becker, C M; Bartley, J; Mechsner, S; Ebert, A D

    2004-08-01

    Endometriosis is considered a chronic disease of women during their reproductive phase, which resembles many signs of malignancy. So far, therapeutic options for endometriosis-associated pain and infertility are unsatisfactory and often lead to recurrence of disease after termination of treatment. Angiogenesis seems to play an important role in the pathogenesis of endometriosis. The use of angiogenesis inhibitors may add an important new tool to well-established treatment schedules. Therefore, it is very important to thoroughly investigate the role of angiogenesis in endometriosis with respect to the female reproductive system.

  8. Blood platelet kinetics and platelet transfusion.

    Science.gov (United States)

    Aster, Richard H

    2013-11-01

    The discovery of citrate anticoagulant in the 1920s and the development of plastic packs for blood collection in the 1960s laid the groundwork for platelet transfusion therapy on a scale not previously possible. A major limitation, however, was the finding that platelet concentrates prepared from blood anticoagulated with citrate were unsuitable for transfusion because of platelet clumping. We found that this could be prevented by simply reducing the pH of platelet-rich plasma to about 6.5 prior to centrifugation. We used this approach to characterize platelet kinetics and sites of platelet sequestration in normal and pathologic states and to define the influence of variables such as anticoagulant and ABO incompatibility on post-transfusion platelet recovery. The "acidification" approach enabled much wider use of platelet transfusion therapy until alternative means of producing concentrates suitable for transfusion became available.

  9. Prognostic value of pro-inflammatory cytokine and pro-angiogenesis factor in differentiating malignant from benign exudative effusion.

    Science.gov (United States)

    Elhefny, Radwa Ahmed; Shaban, Marwa Moawad; Shaker, Olfat Gamil

    2017-01-01

    The precise mechanism of pathogenesis in exudation of effusions is uncertain. Released factors in inflammation and malignancy of pleura are related to incremented permeability of the micro-pleural vessels. Angiopoietins (Ang) take part in development of angiogenesis and pleural inflammation. Interleukin-8 (IL-8) influences proliferation and tumor angiogenesis and it is expressed in cancer. The aims of this study were to investigate the relationship between inflammation, angiogenesis and etiologies of exudative effusions, and to evaluate the diagnostic value in differentiating malignant from benign. The study includes 49 pleural fluid (PF) samples. Ang-2 and IL-8 in PF and serum were estimated. Ten patients were transudative and 39 patients were exudative fluid, subdivided into 16 benign and 23 malignant effusion. Ang-2 and IL-8 either fluid level or ratio were in significantly high in exudative more than in transudative fluid (P = 0.002). Ang-2 and IL-8 in PF were in high level than in serum of exudative and transudative. Ang-2 fluid level and ratio were significantly high in benign exudative effusion (P = 0.01, P = 0.05, respectively), while IL-8 level was significantly high in malignant exudative effusion (P = 0.04). Cut-off points for PF Ang-2 and IL-8 in differentiating malignant from benign exudative were 15.67 ng/mL, 325.54 pg/mL, respectively. Our results support the evidence that angiogenesis and inflammatory pathways are linked, and that inflammation and vascular permeability of pleura constitutes the pathogenic basis of the majority of exudative effusion. © 2015 John Wiley & Sons Ltd.

  10. Evidence that platelet buoyant density, but not size, correlates with platelet age in man

    International Nuclear Information System (INIS)

    Mezzano, D.; Hwang, K.; Catalano, P.; Aster, R.H.

    1981-01-01

    Following infusion of 51Cr-labeled autologous platelets into normal subjects, high-density (HD) and low-density (LD) platelet cohorts were isolated by prolonged centrifugation in isosmotic arabino-galactan (Stractan). Specific radio-activity of LD platelets declined rapidly post-infusion (T1/2 . 1.5 days), but specific radioactivity of HD platelets remained constant or increased over a 3--4-day period and gradually declined for 6--7 days thereafter. These differences were exaggerated when platelet cohorts enriched in LD or HD cells by slow centrifugation in high-density albumin were labeled and transfused. Mean survival of a platelet cohort enriched with HD cells was significantly (P less than 0.02) shorter (7.73 days) than that of a cohort enriched with LD cells (9.33) days). In normal subjects treated with aspirin, capacity for thromboxane synthesis was regained more rapidly (P less than 0.05) in LD than in HD platelets. HD and LD platelets differed only slightly in mean volume (HD platelets . 7.57 mu3, LD platelets . 6.87 mu3, 0.05 less than P less than 0.01). We believe the most logical interpretation of these findings is that under normal conditions in man, newly formed platelets are less dense on the average than total platelets and become more dense as they age in the circulation. Thus, specific radioactivity of LD platelets declines rapidly as these platelets move into a more dense compartment and are replaced by newly formed, unlabelled cells; specific radioactivity of HD platelets remains constant or increases as labelled platelets enter this compartment in numbers equal to or greater than the number leaving it at the end of their life span. The similarity in mean volumes of LD and HD platelets suggests that platelet size is unrelated to platelet age under normal conditions

  11. Platelet count and platelet indices in women with preeclampsia.

    Science.gov (United States)

    AlSheeha, Muneera A; Alaboudi, Rafi S; Alghasham, Mohammad A; Iqbal, Javed; Adam, Ishag

    2016-01-01

    Although the exact pathophysiology of preeclampsia is not completely understood, the utility of different platelets indices can be utilized to predict preeclampsia. To compare platelet indices, namely platelet count (PC), mean platelet volume (MPV), platelet distribution width (PDW), and PC to MPV ratio in women with preeclampsia compared with healthy controls. Qassim Hospital, Kingdom of Saudi Arabia. A case-control study. Sixty preeclamptic women were the cases and an equal number of healthy pregnant women were the controls. There was no significant difference in age, parity, and body mass index between the study groups. Sixteen and 44 of the cases were severe and mild preeclampsia, respectively. There was no significant difference in PDW and MPV between the preeclamptic and control women. Both PC and PC to MPV ratios were significantly lower in the women with preeclampsia compared with the controls. There was no significant difference in the PC, PDW, MPV, and PC to MPV ratio when women with mild and severe preeclampsia were compared. Using receiver operating characteristic (ROC) curves, the PC cutoff was 248.0×10 3 /µL for diagnosis of pre-eclampsia ( P =0.019; the area under the ROC curve was 62.4%). Binary regression suggests that women with PC preeclampsia (odds ratio =2.2, 95% confidence interval =1.08-4.6, P =0.03). The PC/MPV cutoff was 31.2 for diagnosis of preeclampsia ( P =0.035, the area under the ROC curve was 62.2%). PC preeclampsia.

  12. Human Cytomegalovirus Secretome Contains Factors That Induce Angiogenesis and Wound Healing

    Energy Technology Data Exchange (ETDEWEB)

    Dumortier, Jerome; Streblow, Daniel N.; Moses, Ashlee V.; Jacobs, Jon M.; Kreklywich, Craig N.; Camp, David G.; Smith, Richard D.; Orloff, Susan L.; Nelson, Jay

    2008-07-01

    Human cytomegalovirus (HCMV) is implicated in the acceleration of a number of vascular diseases including transplant vascular sclerosis (TVS), the lesion associated with chronic rejection (CR) of solid organ transplants. Although the virus persists in the allograft throughout the course of disease, few cells are directly infected by CMV. This observation is in contrast to the global effects that CMV has on the acceleration of TVS/CR, suggesting that CMV infection indirectly promotes the vascular disease process. Recent transcriptome analysis of CMV-infected heart allografts indicates that the virus induces cytokines and growth factors associated with angiogenesis (AG) and wound healing (WH), suggesting that CMV may accelerate TVS/CR through the induction and secretion of AG/WH factors from infected cells. We analyzed virus-free supernatants from HCMV-infected cells (HCMV secretomes) for growth factors, by mass spectrometry and immunoassays, and found that the HCMV secretome contains over 1,000 cellular proteins, many of which are involved in AG/WH. Importantly, functional assays demonstrated that CMV but not herpes simplex virus secretomes not only induce AG/WH but also promote neovessel stabilization and endothelial cell survival for 2 weeks. These findings suggest that CMV acceleration of TVS occurs through virus-induced growth factors and cytokines in the CMV secretome.

  13. Key role of microRNA-15a in the KLF4 suppressions of proliferation and angiogenesis in endothelial and vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Zheng, Xuemei; Li, Aiqin; Zhao, Liang; Zhou, Tengfei; Shen, Qiang; Cui, Qinghua; Qin, Xiaomei

    2013-01-01

    Highlights: •This is the first demonstration that miR-15a is a novel target gene of KLF4. •A novel finding that KLF4 increases the expression of miR-15a in ECs and VSMCs. •The novel mechanism is that KLF4 inhibits the proliferation of ECs via miR-15a. •The novel mechanism is that KLF4 inhibits the proliferation of VSMCs via miR-15. •miR-15a mediates the anti-angiogenic activity of KLF4. -- Abstract: While recent insights indicate that the transcription factor Krüppel-like factor 4 (KLF4) is indispensable for vascular homeostasis, its exact role in proliferation and angiogenesis and how it functions remain unresolved. Thus, the aim of the present study was to evaluate the role of KLF4 in the proliferations of endothelial and vascular smooth muscle cells, as well as the angiogenesis. The overexpression of KLF4 in endothelial cells significantly impaired tube formation. KLF4 inhibited the formation of a vascular network in implanted Matrigel plugs in nude mice. Importantly, we found that KLF4 significantly upregulated the miR-15a expression in endothelial cells and vascular smooth muscle cells, and conversely, KLF4 depletion reduced the amount of miR-15a. Furthermore, KLF4 blocked cell cycle progression and decreased cyclin D1 expression in endothelial cells and vascular smooth muscle cells through the induction of miR-15a. Intriguingly, the delivery of a miR-15a antagomir to nude mice resulted in marked attenuation of the anti-angiogenic effect of KLF4. Collectively, our present study provide the first evidence that miR-15a as a direct transcriptional target of KLF4 that mediates the anti-proliferative and anti-angiogenic actions of KLF4, which indicates that KLF4 upregulation of miR-15a may represent a therapeutic option to suppress proliferative vascular disorders

  14. Key role of microRNA-15a in the KLF4 suppressions of proliferation and angiogenesis in endothelial and vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Xuemei; Li, Aiqin; Zhao, Liang; Zhou, Tengfei; Shen, Qiang [Institute of Cardiovascular Science, Peking University Health Science Center, Beijing 100191 (China); Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Peking University Health Science Center, Beijing 100191 (China); Cui, Qinghua [Department of Biomedical Informatics, Peking University Health Science Center, Beijing 100191 (China); Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Peking University Health Science Center, Beijing 100191 (China); Qin, Xiaomei, E-mail: xmqin@bjmu.edu.cn [Institute of Cardiovascular Science, Peking University Health Science Center, Beijing 100191 (China); Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Peking University Health Science Center, Beijing 100191 (China)

    2013-08-09

    Highlights: •This is the first demonstration that miR-15a is a novel target gene of KLF4. •A novel finding that KLF4 increases the expression of miR-15a in ECs and VSMCs. •The novel mechanism is that KLF4 inhibits the proliferation of ECs via miR-15a. •The novel mechanism is that KLF4 inhibits the proliferation of VSMCs via miR-15. •miR-15a mediates the anti-angiogenic activity of KLF4. -- Abstract: While recent insights indicate that the transcription factor Krüppel-like factor 4 (KLF4) is indispensable for vascular homeostasis, its exact role in proliferation and angiogenesis and how it functions remain unresolved. Thus, the aim of the present study was to evaluate the role of KLF4 in the proliferations of endothelial and vascular smooth muscle cells, as well as the angiogenesis. The overexpression of KLF4 in endothelial cells significantly impaired tube formation. KLF4 inhibited the formation of a vascular network in implanted Matrigel plugs in nude mice. Importantly, we found that KLF4 significantly upregulated the miR-15a expression in endothelial cells and vascular smooth muscle cells, and conversely, KLF4 depletion reduced the amount of miR-15a. Furthermore, KLF4 blocked cell cycle progression and decreased cyclin D1 expression in endothelial cells and vascular smooth muscle cells through the induction of miR-15a. Intriguingly, the delivery of a miR-15a antagomir to nude mice resulted in marked attenuation of the anti-angiogenic effect of KLF4. Collectively, our present study provide the first evidence that miR-15a as a direct transcriptional target of KLF4 that mediates the anti-proliferative and anti-angiogenic actions of KLF4, which indicates that KLF4 upregulation of miR-15a may represent a therapeutic option to suppress proliferative vascular disorders.

  15. Cerebral insulin, insulin signaling pathway, and brain angiogenesis.

    Science.gov (United States)

    Zeng, Yi; Zhang, Le; Hu, Zhiping

    2016-01-01

    Insulin performs unique non-metabolic functions within the brain. Broadly speaking, two major areas of these functions are those related to brain endothelial cells and the blood-brain barrier (BBB) function, and those related to behavioral effects, like cognition in disease states (Alzheimer's disease, AD) and in health. Recent studies showed that both these functions are associated with brain angiogenesis. These findings raise interesting questions such as how they are linked to each other and whether modifying brain angiogenesis by targeting certain insulin signaling pathways could be an effective strategy to treat dementia as in AD, or even to help secure healthy longevity. The two canonical downstream pathways involved in mediating the insulin signaling pathway, the phosphoinositide-3 kinase (PI3K), and mitogen-activated protein kinase (MAPK) cascades, in the brain are supposed to be similar to those in the periphery. PI3K and MAPK pathways play important roles in angiogenesis. Both are involved in stimulating hypoxia inducible factor (HIF) in angiogenesis and could be activated by the insulin signaling pathway. This suggests that PI3K and MAPK pathways might act as cross-talk between the insulin signaling pathway and the angiogenesis pathway in brain. But the cerebral insulin, insulin signaling pathway, and the detailed mechanism in the connection of insulin signaling pathway, brain angiogenesis pathway, and healthy aging or dementias are still mostly not clear and need further studies.

  16. Leukocyte- and platelet-rich fibrin (L-PRF) for long-term delivery of growth factor in rotator cuff repair: review, preliminary results and future directions.

    Science.gov (United States)

    Zumstein, Matthias A; Berger, Simon; Schober, Martin; Boileau, Pascal; Nyffeler, Richard W; Horn, Michael; Dahinden, Clemens A

    2012-06-01

    Surgical repair of the rotator cuff repair is one of the most common procedures in orthopedic surgery. Despite it being the focus of much research, the physiological tendon-bone insertion is not recreated following repair and there is an anatomic non-healing rate of up to 94%. During the healing phase, several growth factors are upregulated that induce cellular proliferation and matrix deposition. Subsequently, this provisional matrix is replaced by the definitive matrix. Leukocyte- and platelet-rich fibrin (L-PRF) contain growth factors and has a stable dense fibrin matrix. Therefore, use of LPRF in rotator cuff repair is theoretically attractive. The aim of the present study was to determine 1) the optimal protocol to achieve the highest leukocyte content; 2) whether L-PRF releases growth factors in a sustained manner over 28 days; 3) whether standard/gelatinous or dry/compressed matrix preparation methods result in higher growth factor concentrations. 1) The standard L-PRF centrifugation protocol with 400 x g showed the highest concentration of platelets and leukocytes. 2) The L-PRF clots cultured in medium showed a continuous slow release with an increase in the absolute release of growth factors TGF-β1, VEGF and MPO in the first 7 days, and for IGF1, PDGF-AB and platelet activity (PF4=CXCL4) in the first 8 hours, followed by a decrease to close to zero at 28 days. Significantly higher levels of growth factor were expressed relative to the control values of normal blood at each culture time point. 3) Except for MPO and the TGFβ-1, there was always a tendency towards higher release of growth factors (i.e., CXCL4, IGF-1, PDGF-AB, and VEGF) in the standard/gelatinous- compared to the dry/compressed group. L-PRF in its optimal standard/gelatinous-type matrix can store and deliver locally specific healing growth factors for up to 28 days and may be a useful adjunct in rotator cuff repair.

  17. Preparation of a viable population of indium-111-labelled human blood platelets

    International Nuclear Information System (INIS)

    Heyns, A.; Badenhorst, P.N.; Pieters, H.; Loetter, M.G.; Minnaar, P.C.; Duyvene de Wit, L.J.; Reenen, O.R. van; Retief, F.P.; University of the Orange Free State, Bloemfontein; University of the Orange Free State, Bloemfontein; University of the Orange Free State, Bloemfontein

    1980-01-01

    Factors influencing labelling of human platelets with 111 Indium-8-hydroxyquinoline ([ 111 In]-oxine) in a physiological saline medium were investigated. The efficiency of labelling is influenced by time of incubation, concentration of oxine, and pH of the incubating medium. It was found that a viable platelet population could be labelled under the following conditions: (1) centrifugation of platelet rich plasma in polystyrene conical tubes at 800 g for 15 min; (2) resuspension of the platelet pellet in saline, pH 5.5; (3) incubating for 30 min at 22 0 C with [ 111 In]-oxine at a concentration of 6.25 mg oxine/litre platelet suspension; (4) washing once with platelet poor autologous plasma (PPP); and (5) finally suspending the platelets in PPP. The labelled platelets aggregated normally with collagen and ADP. Electron microscopy, done immediately after labelling, showed internal organelle reorganization characteristic of activated platelets. These ultrastructural features were reversible on incubationin PPP at 37 0 C for 30 min. The 111 In is not released from aggregated platelets and the label does not elute from incubated platelets for at least five hr. We conclude that human platelets thus labelled are suitable for in vivo kinetic studies. (orig.) [de

  18. [Experimental research on the effects of different activators on the formation of platelet-rich gel and the release of bioactive substances in human platelet-rich plasma].

    Science.gov (United States)

    Yang, Y; Zhang, W; Cheng, B

    2017-01-20

    Objective: To explore the effects of calcium gluconate and thrombin on the formation of platelet-rich gel (PRG) and the release of bioactive substances in human platelet-rich plasma (PRP) and the clinical significance. Methods: Six healthy blood donors who met the inclusion criteria were recruited in our unit from May to August in 2016. Platelet samples of each donor were collected for preparation of PRP. (1) PRP in the volume of 10 mL was collected from each donor and divided into thrombin activation group (TA, added with 0.5 mL thrombin solution in dose of 100 U/mL) and calcium gluconate activation group (CGA, added with 0.5 mL calcium gluconate solution in dose of 100 g/L) according to the random number table, with 5 mL PRP in each group. Then the PRP of the two groups was activated in water bath at 37 ℃ for 1 h. The formation time of PRG was recorded, and the formation situation of PRG was observed within 1 hour of activation. After being activated for 1 h, one part of PRG was collected to observe the distribution of fibrous protein with HE staining, and another part of PRG was collected to observe platelet ultrastructure under transmission electron microscope (TEM). After being activated for 1 h, the supernatant was collected to determine the content of transforming growth factor β(1, )platelet-derived growth factor BB (PDGF-BB), vascular endothelial growth factor, basic fibroblast growth factor (bFGF), epidermal growth factor, and insulin-like growth factorⅠby enzyme-linked immunosorbent assay. (2) Another 10 mL PRP from each donor was collected and grouped as above, and the platelet suspension was obtained after two times of centrifugation and resuspension with phosphate buffered saline, respectively. And then they were treated with corresponding activator for 1 h as that in experiment (1). Nanoparticle tracking analyzer was used to detect the concentrations of microvesicles with different diameters and total microvesicles derived from platelet. Data

  19. Total glucosides of Paeonia lactiflora Pall inhibit vascular endothelial growth factor-induced angiogenesis.

    Science.gov (United States)

    Deng, Hui; Yan, Chunlin; Xiao, Tian; Yuan, Dingfen; Xu, Jinhua

    2010-02-17

    To evaluate the anti-angiogenesis effect of total glucosides of Paeonia lactiflora Pall. In this study, we determined the effect of TGP on the proliferation of human vascular endothelial cells through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and fluorescence-activated cell sorting analysis. A migration assay and a tube formation assay were used to investigate the migration properties and tube formation abilities of human vascular endothelial cells after being treated with TGP. Furthermore, the in vivo anti-angiogenic ability of TGP was determined through a chick chorioallantoic membrane assay. TGP (12.5, 62.5, and 312.5 microg/ml) resulted in a dose-dependent reduction in the proliferation of endothelial cells. This inhibition effect began 6h after treatment and lasted at least 24h. Fluorescence-activated cell sorting analysis data showed an accumulation of cells in the G0/G1 phase of the cell cycle, which exhibited apoptotic features indicative of cell death. The migration properties and tube forming abilities of endothelial cells were dramatically inhibited by the TGP extract. Our results show that TGP can inhibit angiogenesis in vitro and in vivo. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  20. Platelet size and age determine platelet function independently

    International Nuclear Information System (INIS)

    Thompson, C.B.; Jakubowski, J.A.; Quinn, P.G.; Deykin, D.; Valeri, C.R.

    1984-01-01

    A study was undertaken to examine the interaction of platelet size and age in determining in vitro platelet function. Baboon megakaryocytes were labeled in vivo by the injection of 75Se-methionine. Blood was collected when the label was predominantly associated with younger platelets (day 2) and with older platelets (day 9). Size-dependent platelet subpopulations were prepared on both days by counterflow centrifugation. The reactivity of each platelet subpopulation was determined on both days by measuring thrombin-induced aggregation. Platelets were fixed after partial aggregation had occurred by the addition of EDTA/formalin. After removal of the aggregated platelets by differential centrifugation, the supernatant medium was assayed for remaining platelets and 75Se radioactivity. Comparing day 2 and day 9, no significant difference was seen in the rate of aggregation of a given subpopulation. However, aggregation was more rapid in the larger platelet fractions than in the smaller ones on both days. A greater percentage of the 75Se radioactivity appeared in the platelet aggregates on day 2 than on day 9. This effect was independent of platelet size, as it occurred to a similar extent in the unfractionated platelets and in each of the size-dependent platelet subpopulations. The data indicate that young platelets are more active than older platelets. This study demonstrates that size and age are both determinants of platelet function, but by independent mechanisms

  1. Platelet function in dogs

    DEFF Research Database (Denmark)

    Nielsen, Line A.; Zois, Nora Elisabeth; Pedersen, Henrik D.

    2007-01-01

    Background: Clinical studies investigating platelet function in dogs have had conflicting results that may be caused by normal physiologic variation in platelet response to agonists. Objectives: The objective of this study was to investigate platelet function in clinically healthy dogs of 4...... different breeds by whole-blood aggregometry and with a point-of-care platelet function analyzer (PFA-100), and to evaluate the effect of acetylsalicylic acid (ASA) administration on the results from both methods. Methods: Forty-five clinically healthy dogs (12 Cavalier King Charles Spaniels [CKCS], 12...... applied. However, the importance of these breed differences remains to be investigated. The PFA-100 method with Col + Epi as agonists, and ADP-induced platelet aggregation appear to be sensitive to ASA in dogs....

  2. Platelet lysate obtained via plateletpheresis performed in standing and awake equine donors.

    Science.gov (United States)

    Sumner, Scarlett M; Naskou, Maria C; Thoresen, Merrilee; Copland, Ian; Peroni, John F

    2017-07-01

    Platelet preparations containing growth factors, attachment factors, and enzymes are appealing to enhance healing of injured tissues and as an alternative to xenogenic serum in cell culture media. Plateletpheresis is commonly used to collect platelets in human medicine but has not been validated in horses. Plateletpheresis to collect platelet concentrate was performed on six female, mixed breed, chemically restrained horses using commercially available apheresis equipment. Before and immediately after plateletpheresis, we performed physical examinations and collected blood for chemistry and coagulation panels and then again at 8, 16, 24, and 48 hours after the procedure. To produce platelet lysate, the platelet concentrate underwent two freeze-thaw cycles followed by centrifugation and filtration processing. The platelet lysate was then analyzed for cellular debris, fibrinogen, and growth factors. The collected platelet concentration contained a mean platelet yield of 390 × 10 3 /μL. Donor platelet count decreased from a mean of 193 × 10 3 /μL to 138 × 10 3 /μL after plateletpheresis, but no individual was at risk for hemorrhage. Pooled platelet lysate had minimal cellular residue and contained growth factor concentrations at 6.1 ng/mL for transforming growth factor-β1, at 3.5 ng/mL for platelet-derived growth factor-BB, and at 13.8 ng/mL for vascular endothelial growth factor-A. Plateletpheresis using commercially available apheresis equipment is a feasible option for collecting platelet concentrate from equine donors. The lysate generated from the apheresis product contains growth factors and has potential to be used as a fetal bovine serum substitute for cell culture. © 2017 AABB.

  3. Platelet aggregation and quality control of platelet concentrates produced in the Amazon Blood Bank

    Directory of Open Access Journals (Sweden)

    Maria José Dantas Coêlho

    2011-01-01

    Full Text Available BACKGROUND: The study of platelet aggregation is essential to assess in vitro platelet function by different platelet activation pathways. OBJECTIVE: To assess aggregation and biochemical parameters of random platelet concentrates produced at the Fundação HEMOAM using the quality control tests defined by law. METHODS: Whole blood samples from 80 donors and the respective platelet concentrate units were tested. Platelet concentrates were tested (platelet count, aggregation and pH on days 1, 3 and 5 of storage. Additionally a leukocyte count was done only on day 1 and microbiological tests on day 5 of storage. Collagen and adenosine diphosphate were used as inducing agonists for platelet aggregation testing. RESULTS: Donor whole blood had normal aggregation (aggregation with adenosine diphosphate = 67% and with collagen = 78%. The median aggregation in platelet concentrates with adenosine diphosphate was low throughout storage (18% on day 1, 7% on day 3 and 6% on day 5 and the median aggregation with collagen was normal only on day 1 and low thereafter (54.4% on day 1, 20.5% on day 3 and 9% on day 5. CONCLUSION: Although the results were within the norms required by law, platelet concentrates had low aggregation rates. We suggest the inclusion of a functional assessment test for the quality control of platelet concentrates for a more effective response to platelet replacement therapy.

  4. Vasculogenesis and angiogenesis initiation under normoxic conditions through Wnt/β-catenin pathway in gliomas.

    Science.gov (United States)

    Vallée, Alexandre; Guillevin, Rémy; Vallée, Jean-Noël

    2018-01-26

    The canonical Wnt/β-catenin pathway is up-regulated in gliomas and involved in proliferation, invasion, apoptosis, vasculogenesis and angiogenesis. Nuclear β-catenin accumulation correlates with malignancy. Hypoxia activates hypoxia-inducible factor (HIF)-1α by inhibiting HIF-1α prolyl hydroxylation, which promotes glycolytic energy metabolism, vasculogenesis and angiogenesis, whereas HIF-1α is degraded by the HIF prolyl hydroxylase under normoxic conditions. We focus this review on the links between the activated Wnt/β-catenin pathway and the mechanisms underlying vasculogenesis and angiogenesis through HIF-1α under normoxic conditions in gliomas. Wnt-induced epidermal growth factor receptor/phosphatidylinositol 3-kinase (PI3K)/Akt signaling, Wnt-induced signal transducers and activators of transcription 3 (STAT3) signaling, and Wnt/β-catenin target gene transduction (c-Myc) can activate HIF-1α in a hypoxia-independent manner. The PI3K/Akt/mammalian target of rapamycin pathway activates HIF-1α through eukaryotic translation initiation factor 4E-binding protein 1 and STAT3. The β-catenin/T-cell factor 4 complex directly binds to STAT3 and activates HIF-1α, which up-regulates the Wnt/β-catenin target genes cyclin D1 and c-Myc in a positive feedback loop. Phosphorylated STAT3 by interleukin-6 or leukemia inhibitory factor activates HIF-1α even under normoxic conditions. The activation of the Wnt/β-catenin pathway induces, via the Wnt target genes c-Myc and cyclin D1 or via HIF-1α, gene transactivation encoding aerobic glycolysis enzymes, such as glucose transporter, hexokinase 2, pyruvate kinase M2, pyruvate dehydrogenase kinase 1 and lactate dehydrogenase-A, leading to lactate production, as the primary alternative of ATP, at all oxygen levels, even in normoxic conditions. Lactate released by glioma cells via the monocarboxylate lactate transporter-1 up-regulated by HIF-1α and lactate anion activates HIF-1α in normoxic endothelial cells by

  5. Pulp tissue inflammation and angiogenesis after pulp capping with transforming growth factor β1

    Directory of Open Access Journals (Sweden)

    Sri Kunarti

    2008-06-01

    Full Text Available In Restorative dentistry the opportunity to develop biomemitic approaches has been signalled by the possible use of various biological macromolecules in direct pulp capping reparation. The presence of growth factors in dentin matrix and the putative role indicating odontoblast differentiation during embryogenesis has led to the examination on the effect of endogenous TGF-β1. TGF-β1 is one of the Growth Factors that plays an important role in pulp healing. The application of exogenous TGF-β1 in direct pulp capping treatment should be experimented in fibroblast tissue in-vivo to see the responses of inflammatory cells and development of new blood vessels. The increase in food supplies always occurs in the process of inflammation therefore the development of angiogenesis is required to fulfil the requirement. This in-vivo study done on orthodontic patients indicated for premolar extraction between 10–15 years of age. A class V cavity preparation was created in the buccal aspect 1 mm above gingival margin to pulp exposure. The cavity was slowly irrigated with saline solution and dried using a sterile small cotton pellet. The sterile absorbable collagen membrane was applied and soaked in 5 ml TGF-β1. It was covered by a Teflon pledge to separate from Glass Ionomer Cement restoration. Evaluation was performed on day 7; 14; and 21. All samples were histopathologycally examined and data was statistically analysed using one way ANOVA and Dunnet T3.There were no inflammatory symptoms in clinical examination on both Ca(OH2 and TGF-β1, but they increased the infiltration of inflammatory cells on histopathological examination. There were no significant differences (p > 0.05 between Ca(OH2 and TGF-β1 in inflammation cell and significant differences (p < 0.05 in angiogenesis on day 7 and 14. There were no significant differences (p > 0.05 in inflammation cell with in TGF-β1 groups and significant differences (p < 0.05 with in Ca(OH2 groups on day 7

  6. Rearranged EML4-ALK fusion transcripts sequester in circulating blood platelets and enable blood-based crizotinib response monitoring in non-small-cell lung cancer

    Science.gov (United States)

    Nilsson, R. Jonas A.; Karachaliou, Niki; Berenguer, Jordi; Gimenez-Capitan, Ana; Schellen, Pepijn; Teixido, Cristina; Tannous, Jihane; Kuiper, Justine L.; Drees, Esther; Grabowska, Magda; van Keulen, Marte; Heideman, Danielle A.M.; Thunnissen, Erik; Dingemans, Anne-Marie C.; Viteri, Santiago; Tannous, Bakhos A.; Drozdowskyj, Ana; Rosell, Rafael; Smit, Egbert F.; Wurdinger, Thomas

    2016-01-01

    Purpose: Non-small-cell lung cancers harboring EML4-ALK rearrangements are sensitive to crizotinib. However, despite initial response, most patients will eventually relapse, and monitoring EML4-ALK rearrangements over the course of treatment may help identify these patients. However, challenges associated with serial tumor biopsies have highlighted the need for blood-based assays for the monitoring of biomarkers. Platelets can sequester RNA released by tumor cells and are thus an attractive source for the non-invasive assessment of biomarkers. Methods: EML4-ALK rearrangements were analyzed by RT-PCR in platelets and plasma isolated from blood obtained from 77 patients with non-small-cell lung cancer, 38 of whom had EML4-ALK-rearranged tumors. In a subset of 29 patients with EML4-ALK-rearranged tumors who were treated with crizotinib, EML4-ALK rearrangements in platelets were correlated with progression-free and overall survival. Results: RT-PCR demonstrated 65% sensitivity and 100% specificity for the detection of EML4-ALK rearrangements in platelets. In the subset of 29 patients treated with crizotinib, progression-free survival was 3.7 months for patients with EML4-ALK+ platelets and 16 months for those with EML4-ALK− platelets (hazard ratio, 3.5; P = 0.02). Monitoring of EML4-ALK rearrangements in the platelets of one patient over a period of 30 months revealed crizotinib resistance two months prior to radiographic disease progression. Conclusions: Platelets are a valuable source for the non-invasive detection of EML4-ALK rearrangements and may prove useful for predicting and monitoring outcome to crizotinib, thereby improving clinical decisions based on radiographic imaging alone. PMID:26544515

  7. The Use of Recombinant Human Platelet-Derived Growth Factor for Maxillary Sinus Augmentation.

    Science.gov (United States)

    Kubota, Atsushi; Sarmiento, Hector; Alqahtani, Mohammed Saad; Llobell, Arturo; Fiorellini, Joseph P

    The maxillary sinus augmentation procedure has become a predictable treatment to regenerate bone for implant placement. The purpose of this study was to evaluate the effect of recombinant human platelet-derived growth factor BB (rhPDGF-BB) combined with a deproteinized cancellous bovine bone graft for sinus augmentation. The lateral window approach was used for maxillary sinuses with minimal residual bone. After a healing period of 4 months, dental implants were placed and then restored following a 2-month osseointegration period. The result demonstrated increased bone height and ISQ values and a 100% survival rate. This study indicates that the addition of rhPDGF-BB to deproteinized cancellous bovine bone accelerated the healing period in maxillary sinuses with minimal native bone.

  8. Relationship of ultrasonic shear wave velocity with oncogene and tumor suppressor gene expression in primary liver cancer lesions as well as angiogenesis factor contents

    Directory of Open Access Journals (Sweden)

    Xing Yin1

    2017-06-01

    Full Text Available Objective: To discuss the relationship of ultrasonic shear wave velocity (SWV with oncogene and tumor suppressor gene expression in primary liver cancer lesions as well as angiogenesis factor contents. Methods: 100 patients with primary liver cancer who underwent surgical treatment in our hospital between March 2014 and September 2016 were collected as observation group, and 50 healthy subjects who received physical examination in our hospital during the same period were collected as normal control group. The ultrasonic SWV levels of two groups of subjects were measured before the operation, and the observation groups were further divided into high SWV group and low SWV group, 50 cases in each group. Intraoperative tumor tissue samples were kept and fluorescence quantitative PCR was used to determine the mRNA expression of oncogenes and tumor suppressor genes. Enzymelinked immunosorbent assay was used to determine serum contents of angiogenesis factors in observation group before operation. Results: Hepatic ultrasonic SWV level in observation group was significantly higher than that in normal control group; proto-oncogene CK, Ki67, Gly-3, Survivin and Pokemon mRNA expression in tumor tissue of high SWV group were higher than those of low SWV group while tumor suppressor genes Tg737, p16, p27, PTEN and runx3 mRNA expression were lower than those of low SWV group; serum angiogenesis factors VEGF, MMP-9 and IGF-1R contents were higher than those in low SWV group. Conclusion: The hepatic ultrasonic SWV level increases in patients with primary liver cancer, and the SWV level is directly correlated with oncogene and tumor suppressor gene expression as well as angiogenesis factor contents.

  9. Platelet-vessel wall interaction in health and disease

    NARCIS (Netherlands)

    Löwenberg, E. C.; Meijers, J. C. M.; Levi, M. [=Marcel M.

    2010-01-01

    Upon vessel wall injury platelets rapidly adhere to the exposed subendothelial matrix which is mediated by several cellular receptors present on platelets or endothelial cells and various adhesive proteins such as von Willebrand factor, collagen and fibrinogen. Subsequent platelet activation results

  10. Platelet turnover and kinetics in immune thrombocytopenic purpura: results with autologous 111In-labeled platelets and homologous 51Cr-labeled platelets differ

    International Nuclear Information System (INIS)

    Heyns A du, P.; Badenhorst, P.N.; Loetter, M.G.P.; Pieters, H.; Wessels, P.; Kotze, H.F.

    1986-01-01

    Mean platelet survival and turnover were simultaneously determined with autologous 111In-labeled platelets (111In-AP) and homologous 51Cr-labeled platelets (51Cr-HP) in ten patients with chronic immune thrombocytopenic purpura (ITP). In vivo redistribution of the 111In-AP was quantitated with a scintillation camera and computer-assisted image analysis. The patients were divided into two groups: those with splenic platelet sequestration (spleen-liver 111In activity ratio greater than 1.4), and those with diffuse sequestration in the reticuloendothelial system. The latter patients had more severe ITP reflected by pronounced thrombocytopenia, decreased platelet turnover, and prominent early hepatic platelet sequestration. Mean platelet life span estimated with 51Cr-HP was consistently shorter than that of 111In-AP. Platelet turnover determined with 51Cr-HP was thus over-estimated. The difference in results with the two isotope labels was apparently due to greater in vivo elution of 51Cr. Although the limitations of the techniques should be taken into account, these findings indicate that platelet turnover is not always normal or increased in ITP, but is low in severe disease. We suggest that this may be ascribed to damage to megakaryocytes by antiplatelet antibody. The physical characteristics in 111In clearly make this radionuclide superior to 51Cr for the study of platelet kinetics in ITP

  11. Storage of platelets: effects associated with high platelet content in platelet storage containers.

    Science.gov (United States)

    Gulliksson, Hans; Sandgren, Per; Sjödin, Agneta; Hultenby, Kjell

    2012-04-01

    A major problem associated with platelet storage containers is that some platelet units show a dramatic fall in pH, especially above certain platelet contents. The aim of this study was a detailed investigation of the different in vitro effects occurring when the maximum storage capacity of a platelet container is exceeded as compared to normal storage. Buffy coats were combined in large-volume containers to create primary pools to be split into two equal aliquots for the preparation of platelets (450-520×10(9) platelets/unit) in SSP+ for 7-day storage in two containers (test and reference) with different platelet storage capacity (n=8). Exceeding the maximum storage capacity of the test platelet storage container resulted in immediate negative effects on platelet metabolism and energy supply, but also delayed effects on platelet function, activation and disintegration. Our study gives a very clear indication of the effects in different phases associated with exceeding the maximum storage capacity of platelet containers but throw little additional light on the mechanism initiating those negative effects. The problem appears to be complex and further studies in different media using different storage containers will be needed to understand the mechanisms involved.

  12. Responsiveness of platelets during storage studied with flow cytometry--formation of platelet subpopulations and LAMP-1 as new markers for the platelet storage lesion.

    Science.gov (United States)

    Södergren, A L; Tynngård, N; Berlin, G; Ramström, S

    2016-02-01

    Storage lesions may prevent transfused platelets to respond to agonists and arrest bleeding. The aim of this study was to evaluate and quantify the capacity of platelet activation during storage using flow cytometry and new markers of platelet activation. Activation responses of platelets prepared by apheresis were measured on days 1, 5, 7 and 12. In addition, comparisons were made for platelet concentrates stored until swirling was affected. Lysosome-associated membrane protein-1 (LAMP-1), P-selectin and phosphatidylserine (PS) exposure were assessed by flow cytometry on platelets in different subpopulations in resting state or following stimulation with platelet agonists (cross-linked collagen-related peptide (CRP-XL), PAR1- and PAR4-activating peptides). The ability to form subpopulations upon activation was significantly decreased already at day 5 for some agonist combinations. The agonist-induced exposure of PS and LAMP-1 also gradually decreased with time. Spontaneous exposure of P-selectin and PS increased with time, while spontaneous LAMP-1 exposure was unchanged. In addition, agonist-induced LAMP-1 expression clearly discriminated platelet concentrates with reduced swirling from those with retained swirling. This suggests that LAMP-1 could be a good marker to capture changes in activation capacity in stored platelets. The platelet activation potential seen as LAMP-1 exposure and fragmentation into platelet subpopulations is potential sensitive markers for the platelet storage lesion. © 2015 International Society of Blood Transfusion.

  13. Interaction between the Staphylococcus aureus extracellular adherence protein Eap and its subdomains with platelets.

    Science.gov (United States)

    Palankar, Raghavendra; Binsker, Ulrike; Haracska, Bianca; Wesche, Jan; Greinacher, Andreas; Hammerschmidt, Sven

    2018-04-18

    S. aureus associated bacteremia can lead to severe infections with high risk of mortality (e.g. sepsis, infective endocarditis). Many virulence factors and adhesins of S. aureus are known to directly interact with platelets. Extracellular adherence protein, Eap, one of the most important virulence factors in S. aureus mediated infections is a multi-tandem domain protein and has been shown to interact with almost all cell types in the human circulatory system. By using amine reactive fluorescent N-hydroxysuccinimidyl (NHS)-ester dyes and by direct detection with primary fluorescently conjugated anti-histidine (His-tag) antibodies against detect N-terminal His6, we show Eap subdomain Eap D 3 D 4 specifically interacts and rapidly activates human platelets. Furthermore, we validate our finding by using site directed directional immobilization of Eap D 3 D 4 through N-terminal His 6 on nickel (II)-nitrilotriacetic acid (Ni-NTA) functionalized bacteriomimetic microbead arrays to visualize real-time platelet activation through calcium release assay. These methods offer an easily adoptable protocols for screening of S.aureus derived virulence factors and adhesins with platelets. Copyright © 2018 Elsevier GmbH. All rights reserved.

  14. Comparative Evaluation of TRAIL, FGF-2 and VEGF-A-Induced Angiogenesis In Vitro and In Vivo.

    Science.gov (United States)

    Cartland, Siân P; Genner, Scott W; Zahoor, Amna; Kavurma, Mary M

    2016-12-02

    Tumor necrosis-factor-related apoptosis-inducing ligand (TRAIL) has been implicated in angiogenesis; the growth of new blood vessels from an existing vessel bed. Our aim was to compare pro-angiogenic responses of TRAIL, vascular endothelial growth-factor-A (VEGF-A) and fibroblast growth-factor-2 (FGF-2) either separately (10 ng/mL) or in combination, followed by the assessment of proliferation, migration and tubule formation using human microvascular endothelial-1 (HMEC-1) cells in vitro. Angiogenesis was also measured in vivo using the Matrigel plug assay. TRAIL and FGF-2 significantly augmented HMEC-1 cell proliferation and migration, with combination treatment having an enhanced effect on cell migration only. In contrast, VEGF-A did not stimulate HMEC-1 migration at 10 ng/mL. Tubule formation was induced by all three factors, with TRAIL more effective compared to VEGF-A, but not FGF-2. TRAIL at 400 ng/mL, but not VEGF-A, promoted CD31-positive staining into the Matrigel plug. However, FGF-2 was superior, stimulating cell infiltration and angiogenesis better than TRAIL and VEGF-A in vivo. These findings demonstrate that each growth factor is more effective at different processes of angiogenesis in vitro and in vivo. Understanding how these molecules stimulate different processes relating to angiogenesis may help identify new strategies and treatments aimed at inhibiting or promoting dysregulated angiogenesis in people.

  15. Angiogenesis, Cancer, and Vascular Aging

    Directory of Open Access Journals (Sweden)

    Junji Moriya

    2017-10-01

    Full Text Available Several lines of evidence have revealed that the angiogenic response to ischemic injury declines with age, which might account for the increased morbidity and mortality of cardiovascular disease (CVD among the elderly. While impairment of angiogenesis with aging leads to delayed wound healing or exacerbation of atherosclerotic ischemic diseases, it also inhibits the progression of cancer. Age-related changes of angiogenesis have been considered to at least partly result from vascular aging or endothelial cell senescence. There is considerable evidence supporting the hypothesis that vascular cell senescence contributes to the pathogenesis of age-related CVD, suggesting that vascular aging could be an important therapeutic target. Since therapeutic angiogenesis is now regarded as a promising concept for patients with ischemic CVD, it has become even more important to understand the detailed molecular mechanisms underlying impairment of angiogenesis in older patients. To improve the usefulness of therapeutic angiogenesis, approaches are needed that can compensate for impaired angiogenic capacity in the elderly while not promoting the development or progression of malignancy. In this review, we briefly outline the mechanisms of angiogenesis and vascular aging, followed by a description of how vascular aging leads to impairment of angiogenesis. We also examine potential therapeutic approaches that could enhance angiogenesis and/or vascular function in the elderly, as well as discussing the possibility of anti-senescence therapy or reversal of endothelial cell senescence.

  16. Identification of Padi2 as a novel angiogenesis-regulating gene by genome association studies in mice.

    Science.gov (United States)

    Khajavi, Mehrdad; Zhou, Yi; Birsner, Amy E; Bazinet, Lauren; Rosa Di Sant, Amanda; Schiffer, Alex J; Rogers, Michael S; Krishnaji, Subrahmanian Tarakkad; Hu, Bella; Nguyen, Vy; Zon, Leonard; D'Amato, Robert J

    2017-06-01

    Recent findings indicate that growth factor-driven angiogenesis is markedly influenced by genetic variation. This variation in angiogenic responsiveness may alter the susceptibility to a number of angiogenesis-dependent diseases. Here, we utilized the genetic diversity available in common inbred mouse strains to identify the loci and candidate genes responsible for differences in angiogenic response. The corneal micropocket neovascularization assay was performed on 42 different inbred mouse strains using basic fibroblast growth factor (bFGF) pellets. We performed a genome-wide association study utilizing efficient mixed-model association (EMMA) mapping using the induced vessel area from all strains. Our analysis yielded five loci with genome-wide significance on chromosomes 4, 8, 11, 15 and 16. We further refined the mapping on chromosome 4 within a haplotype block containing multiple candidate genes. These genes were evaluated by expression analysis in corneas of various inbred strains and in vitro functional assays in human microvascular endothelial cells (HMVECs). Of these, we found the expression of peptidyl arginine deiminase type II (Padi2), known to be involved in metabolic pathways, to have a strong correlation with a haplotype shared by multiple high angiogenic strains. In addition, inhibition of Padi2 demonstrated a dosage-dependent effect in HMVECs. To investigate its role in vivo, we knocked down Padi2 in transgenic kdrl:zsGreen zebrafish embryos using morpholinos. These embryos had disrupted vessel formation compared to control siblings. The impaired vascular pattern was partially rescued by human PADI2 mRNA, providing evidence for the specificity of the morphant phenotype. Taken together, our study is the first to indicate the potential role of Padi2 as an angiogenesis-regulating gene. The characterization of Padi2 and other genes in associated pathways may provide new understanding of angiogenesis regulation and novel targets for diagnosis and

  17. Identification of Padi2 as a novel angiogenesis-regulating gene by genome association studies in mice.

    Directory of Open Access Journals (Sweden)

    Mehrdad Khajavi

    2017-06-01

    Full Text Available Recent findings indicate that growth factor-driven angiogenesis is markedly influenced by genetic variation. This variation in angiogenic responsiveness may alter the susceptibility to a number of angiogenesis-dependent diseases. Here, we utilized the genetic diversity available in common inbred mouse strains to identify the loci and candidate genes responsible for differences in angiogenic response. The corneal micropocket neovascularization assay was performed on 42 different inbred mouse strains using basic fibroblast growth factor (bFGF pellets. We performed a genome-wide association study utilizing efficient mixed-model association (EMMA mapping using the induced vessel area from all strains. Our analysis yielded five loci with genome-wide significance on chromosomes 4, 8, 11, 15 and 16. We further refined the mapping on chromosome 4 within a haplotype block containing multiple candidate genes. These genes were evaluated by expression analysis in corneas of various inbred strains and in vitro functional assays in human microvascular endothelial cells (HMVECs. Of these, we found the expression of peptidyl arginine deiminase type II (Padi2, known to be involved in metabolic pathways, to have a strong correlation with a haplotype shared by multiple high angiogenic strains. In addition, inhibition of Padi2 demonstrated a dosage-dependent effect in HMVECs. To investigate its role in vivo, we knocked down Padi2 in transgenic kdrl:zsGreen zebrafish embryos using morpholinos. These embryos had disrupted vessel formation compared to control siblings. The impaired vascular pattern was partially rescued by human PADI2 mRNA, providing evidence for the specificity of the morphant phenotype. Taken together, our study is the first to indicate the potential role of Padi2 as an angiogenesis-regulating gene. The characterization of Padi2 and other genes in associated pathways may provide new understanding of angiogenesis regulation and novel targets for

  18. The use of platelet-rich plasma to treat chronic tendinopathies: A technical analysis.

    Science.gov (United States)

    Kaux, Jean-François; Emonds-Alt, Thibault

    2018-05-01

    Platelet-rich plasma (PRP) is blood plasma with a high concentration of autologous platelets which constitute an immense reservoir of growth factors. The clinical use of PRP is widespread in various medical applications. Although highly popular with athletes, the use of PRP for the treatment of tendinopathies remains scientifically controversial, particularly due to the diversity of products that go by the name of "PRP." To optimize its use, it is important to look at the various stages of obtaining PRP. In this literature review, we take a closer look at eight parameters which may influence the quality of PRP: 1) anticoagulants used to preserve the best platelet function, 2) the speed of centrifugation used to extract the platelets, 3) the platelet concentrations obtained, 4) the impact of the concentration of red and while blood cells on PRP actions, 5) platelet activators encouraging platelet degranulation and, hence, the release of growth factors, and 6) the use or nonuse of local anesthetics when carrying out infiltration. In addition to these parameters, it may be interesting to analyze other variables such as 7) the use of ultrasound guidance during the injection with a view to determining the influence they have on potential recovery.

  19. Platelet-rich plasma, plasma rich in growth factors and simvastatin in the regeneration and repair of alveolar bone.

    Science.gov (United States)

    Rivera, César; Monsalve, Francisco; Salas, Juan; Morán, Andrea; Suazo, Iván

    2013-12-01

    Platelet preparations promote bone regeneration by inducing cell migration, proliferation and differentiation in the area of the injury, which are essential processes for regeneration. In addition, several studies have indicated that simvastatin (SIMV), widely used for the treatment of hypercholesterolemia, stimulates osteogenesis. The objective of this study was to evaluate the effects of treatment with either platelet-rich plasma (PRP) or plasma rich in growth factors (PRGF) in combination with SIMV in the regeneration and repair of alveolar bone. The jaws of Sprague Dawley rats (n=18) were subjected to rotary instrument-induced bone damage (BD). Animals were divided into six groups: BD/H 2 O (n=3), distilled water without the drug and alveolar bone damage; BD/H 2 O/PRP (n=3), BD and PRP; BD/H 2 O/PRGF (n=3), BD and PRGF; BD/SIMV (n=3), BD and water with SIMV; BD/SIMV/PRP (n=3), BD, PRP and SIMV; and BD/SIMV/PRGF (n=3), BD, PRGF and SIMV. Conventional histological analysis (hematoxylin and eosin staining) revealed that the BD/SIMV group showed indicators for mature bone tissue, while the BD/SIMV/PRP and BD/SIMV/PRGF groups showed the coexistence of indicators for mature and immature bone tissue, with no statistical differences between the platelet preparations. Simvastatin did not improve the effect of platelet-rich plasma and plasma rich in growth factors. It was not possible to determine which platelet preparation produced superior effects.

  20. Determination of residual 4'-aminomethyl-4,5',8-trimethylpsoralen and mutagenicity testing following psoralen plus UVA treatment of platelet suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, S.J.; Robinette, D.; Dodd, R.Y. (American Red Cross Blood Services, Rockville, MD (United States). Jerome H. Holland Lab. for Biomedical Sciences); White, R.; Wolf, L.; Chapman, J. (Baxter Biotech, Round Lake, IL (United States). Fenwal Labs.); Lawlor, T.E. (Hazleton Labs., Vienna, VA (United States). Molecular and Cellular Toxicology)

    1993-05-01

    Psoralens and UVa light have been used in the laboratory to study the inactivation of viruses that may be infrequently present in platelet concentrates prepared for transfusion. In order to evaluate safety aspects of the treatment of platelet suspensions with 4'-aminomethyl-4,5'8-trimethylpsoralen (AMT), the authors have investigated the residual levels and mutagenic potential of AMT after UVA phototreatment. The results suggest that residual available AMT is mutagenic in the AMES test and that the observed frameshift mutations may be caused by binding of AMt or its metabolites to nucleic acids in the absence of UVA light. (Author).

  1. Angiogenesis and Therapeutic Approaches to NF1 Tumors

    National Research Council Canada - National Science Library

    Muir, David F

    2007-01-01

    .... Invivo and in vitro models were used to firmly conclude that Nf1 haploinsufficiency in endothelial cells results inexaggerated proliferation and angiogenesis in response to key pro-angiogenic factors...

  2. Platelet-released growth factors can accelerate tenocyte proliferation and activate the anti-oxidant response element.

    Science.gov (United States)

    Tohidnezhad, M; Varoga, D; Wruck, C J; Brandenburg, L O; Seekamp, A; Shakibaei, M; Sönmez, T T; Pufe, Thomas; Lippross, S

    2011-05-01

    Little is know about the pathophysiology of acute and degenerative tendon injuries. Although most lesions are uncomplicated, treatment is long and unsatisfactory in a considerable number of cases. Besides the common growth factors that were shown to be relevant for tendon integrity more recently protection against oxidative stress was shown to promote tendon healing. To improve tendon regeneration, many have advocated the use of platelet-rich plasma (PRP), a thrombocyte concentrate that can serve as an autologous source of growth factors. In this study, we investigated the effect of platelet-released growth factors (PRGF) on tenocytes. Tenocytes were isolated from the Achilles tendon of postnatal rats. Tenocyte cell cultures were stimulated with PRGF. We used a CyQuant assay and WST assay to analyse tendon cell growth and viability in different concentrations of PRGF. Migration and proliferation of cells grown in PRGF were assessed by a scratch test. A dual-luciferase assay was used to demonstrate the activation of the anti-oxidant response element (ARE) in tenocytes. A positive effect of PRGF could be shown on tendon cell growth and migratory capacity. PRGF activated the Nrf2-ARE pathway in a dose-dependent manner. Here, we provide evidence of a biological effect of PRGF on tenocytes by the promotion of tenocyte growth and activation of the Nrf2-ARE pathway. This is a novel aspect of the action of platelet concentrates on tendon growth.

  3. Platelet-derived growth factor (PDGF)-C inhibits neuroretinal apoptosis in a murine model of focal retinal degeneration.

    Science.gov (United States)

    Wang, Yujuan; Abu-Asab, Mones S; Yu, Cheng-Rong; Tang, Zhongshu; Shen, Defen; Tuo, Jingsheng; Li, Xuri; Chan, Chi-Chao

    2014-06-01

    Platelet-derived growth factor (PDGF)-C is a member of the PDGF family and is critical for neuronal survival in the central nervous system. We studied the possible survival and antiapoptotic effects of PDGF-C on focal retinal lesions in Ccl2(-/-)/Cx3cr1(-/-) on C57BL/6N [Crb1(rd8)] (DKO rd8) background mice, a model for progressive and focal retinal degeneration. We found no difference in transcript and protein expression of PDGF-C in the retina between DKO rd8 mice and wild type (WT, C57BL/6N). Recombinant PDGF-CC protein (500 ng/eye) was injected intravitreally into the right eye of DKO rd8 mice with phosphate-buffered saline as controls into the left eye. The retinal effects of PDGF-C were assessed by fundoscopy, ocular histopathology, A2E levels, apoptotic molecule analysis, and direct flat mount retinal vascular labeling. We found that the PDGF-CC-treated eyes showed slower progression or attenuation of the focal retinal lesions, lesser photoreceptor and retinal pigment epithelial degeneration resulting in better-preserved photoreceptor structure. Lower expression of apoptotic molecules was detected in the PDGF-CC-treated eyes than in controls. In addition, no retinal neovascularization was observed after PDGF-CC treatment. Our results demonstrate that PDGF-C potently ameliorates photoreceptor degeneration via the suppression of apoptotic pathways without inducing retinal angiogenesis. The protective effects of PDGF-C suggest a novel alternative approach for potential age-related retinal degeneration treatment.

  4. Desert hedgehog promotes ischemia-induced angiogenesis by ensuring peripheral nerve survival.

    Science.gov (United States)

    Renault, Marie-Ange; Chapouly, Candice; Yao, Qinyu; Larrieu-Lahargue, Frédéric; Vandierdonck, Soizic; Reynaud, Annabel; Petit, Myriam; Jaspard-Vinassa, Béatrice; Belloc, Isabelle; Traiffort, Elisabeth; Ruat, Martial; Duplàa, Cécile; Couffinhal, Thierry; Desgranges, Claude; Gadeau, Alain-Pierre

    2013-03-01

    Blood vessel growth and patterning have been shown to be regulated by nerve-derived signals. Desert hedgehog (Dhh), one of the Hedgehog family members, is expressed by Schwann cells of peripheral nerves. The purpose of this study was to investigate the contribution of Dhh to angiogenesis in the setting of ischemia. We induced hindlimb ischemia in wild-type and Dhh(-/-) mice. First, we found that limb perfusion is significantly impaired in the absence of Dhh. This effect is associated with a significant decrease in capillary and artery density in Dhh(-/-). By using mice in which the Hedgehog signaling pathway effector Smoothened was specifically invalidated in endothelial cells, we demonstrated that Dhh does not promote angiogenesis by a direct activation of endothelial cells. On the contrary, we found that Dhh promotes peripheral nerve survival in the ischemic muscle and, by doing so, maintains the pool of nerve-derived proangiogenic factors. Consistently, we found that denervation of the leg, immediately after the onset of ischemia, severely impairs ischemia-induced angiogenesis and decreases expression of vascular endothelial growth factor A, angiopoietin 1, and neurotrophin 3 in the ischemic muscle. This study demonstrates the crucial roles of nerves and factors regulating nerve physiology in the setting of ischemia-induced angiogenesis.

  5. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis

    International Nuclear Information System (INIS)

    Shibuya, Masabumi; Claesson-Welsh, Lena

    2006-01-01

    The VEGF/VPF (vascular endothelial growth factor/vascular permeability factor) ligands and receptors are crucial regulators of vasculogenesis, angiogenesis, lymphangiogenesis and vascular permeability in vertebrates. VEGF-A, the prototype VEGF ligand, binds and activates two tyrosine kinase receptors: VEGFR1 (Flt-1) and VEGFR2 (KDR/Flk-1). VEGFR1, which occurs in transmembrane and soluble forms, negatively regulates vasculogenesis and angiogenesis during early embryogenesis, but it also acts as a positive regulator of angiogenesis and inflammatory responses, playing a role in several human diseases such as rheumatoid arthritis and cancer. The soluble VEGFR1 is overexpressed in placenta in preeclampsia patients. VEGFR2 has critical functions in physiological and pathological angiogenesis through distinct signal transduction pathways regulating proliferation and migration of endothelial cells. VEGFR3, a receptor for the lymphatic growth factors VEGF-C and VEGF-D, but not for VEGF-A, regulates vascular and lymphatic endothelial cell function during embryogenesis. Loss-of-function variants of VEGFR3 have been identified in lymphedema. Formation of tumor lymphatics may be stimulated by tumor-produced VEGF-C, allowing increased spread of tumor metastases through the lymphatics. Mapping the signaling system of these important receptors may provide the knowledge necessary to suppress specific signaling pathways in major human diseases

  6. Suppression of tumor growth, invasion and angiogenesis of human gastric cancer by adenovirus-mediated expression of NK4

    NARCIS (Netherlands)

    Heideman, Daniëlle A. M.; van Beusechem, Victor W.; Bloemena, Elisabeth; Snijders, Peter J. F.; Craanen, Mikael E.; Offerhaus, G. Johan A.; Derksen, Patrick W. B.; de Bruin, Michiel; Witlox, M. Adhiambo; Molenaar, Bonnie; Meijer, Chris J. L. M.; Gerritsen, Winald R.

    2004-01-01

    Background To improve the prognosis of patients with gastric cancer it is important to develop novel treatment modalities targeting the malignant behavior of tumor cells. Concerning this, NK4, which acts as HGF-antagonist and angiogenesis inhibitor, might be a potential therapeutic agent for gastric

  7. A computational model of in vitro angiogenesis based on extracellular matrix fibre orientation.

    Science.gov (United States)

    Edgar, Lowell T; Sibole, Scott C; Underwood, Clayton J; Guilkey, James E; Weiss, Jeffrey A

    2013-01-01

    Recent interest in the process of vascularisation within the biomedical community has motivated numerous new research efforts focusing on the process of angiogenesis. Although the role of chemical factors during angiogenesis has been well documented, the role of mechanical factors, such as the interaction between angiogenic vessels and the extracellular matrix, remains poorly understood. In vitro methods for studying angiogenesis exist; however, measurements available using such techniques often suffer from limited spatial and temporal resolutions. For this reason, computational models have been extensively employed to investigate various aspects of angiogenesis. This paper outlines the formulation and validation of a simple and robust computational model developed to accurately simulate angiogenesis based on length, branching and orientation morphometrics collected from vascularised tissue constructs. Microvessels were represented as a series of connected line segments. The morphology of the vessels was determined by a linear combination of the collagen fibre orientation, the vessel density gradient and a random walk component. Excellent agreement was observed between computational and experimental morphometric data over time. Computational predictions of microvessel orientation within an anisotropic matrix correlated well with experimental data. The accuracy of this modelling approach makes it a valuable platform for investigating the role of mechanical interactions during angiogenesis.

  8. Inhibition of the mitogenic response to platelet-derived growth factor by terbinafine

    International Nuclear Information System (INIS)

    St Denny, I.H.; Glinka, K.G.; Nemecek, G.M.; Stuetz, A.

    1987-01-01

    Terbinafine (T;(E)-N-(6,6-dimethyl-2-hepten-4-ynyl)-N-methyl-1-naphthalenemethanamine), an antimycotic which inhibits fungal squalene epoxidase activity, was examined for its effects on platelet-derived growth factor (PDGF)-stimulated mitogenesis. The inclusion of 1.5-5μM T in fibroblast incubation media was associated with increased [ 3 H]thymidine incorporation into DNA in the presence and absence of PDGF. However, T at concentrations above 6μM reduced DNA synthesis in control and PDGF-exposed cultures to nearly undetectable levels. Under a phase-contrast microscope, fibroblasts appeared morphologically normal at T concentrations as high as 25 μM. Neither the uptake of [ 3 H]thymidine nor the specific binding of 125 I-PDGF to fibroblast receptors was significantly affected by 10 μM T. Furthermore, concentrations of T which antagonized the mitogenic response to PDGF also interfered with fibroblast growth factor-induced mitogenesis. Together, these data suggest that T has the ability to inhibit the in vitro action of PDGF via a post-receptor mechanism

  9. Inhibition of the mitogenic response to platelet-derived growth factor by terbinafine

    Energy Technology Data Exchange (ETDEWEB)

    St. Denny, I.H.; Glinka, K.G.; Nemecek, G.M. (Sandoz Research Institute, East Hanover, NJ (USA)); Stuetz, A. (Sandoz Forschungsinstitut, Vienna (Austria))

    1987-05-01

    Terbinafine (T;(E)-N-(6,6-dimethyl-2-hepten-4-ynyl)-N-methyl-1-naphthalenemethanamine), an antimycotic which inhibits fungal squalene epoxidase activity, was examined for its effects on platelet-derived growth factor (PDGF)-stimulated mitogenesis. The inclusion of 1.5-5{mu}M T in fibroblast incubation media was associated with increased ({sup 3}H)thymidine incorporation into DNA in the presence and absence of PDGF. However, T at concentrations above 6{mu}M reduced DNA synthesis in control and PDGF-exposed cultures to nearly undetectable levels. Under a phase-contrast microscope, fibroblasts appeared morphologically normal at T concentrations as high as 25 {mu}M. Neither the uptake of ({sup 3}H)thymidine nor the specific binding of {sup 125}I-PDGF to fibroblast receptors was significantly affected by 10 {mu}M T. Furthermore, concentrations of T which antagonized the mitogenic response to PDGF also interfered with fibroblast growth factor-induced mitogenesis. Together, these data suggest that T has the ability to inhibit the in vitro action of PDGF via a post-receptor mechanism.

  10. The diminished expression of proangiogenic growth factors and their receptors in gastric ulcers of cirrhotic patients.

    Science.gov (United States)

    Luo, Jiing-Chyuan; Peng, Yen-Ling; Hou, Ming-Chih; Huang, Kuang-Wei; Huang, Hui-Chun; Wang, Ying-Wen; Lin, Han-Chieh; Lee, Fa-Yauh; Lu, Ching-Liang

    2013-01-01

    The pathogenesis of the higher occurrence of peptic ulcer disease in cirrhotic patients is complex. Platelets can stimulate angiogenesis and promote gastric ulcer healing. We compared the expressions of proangiogenic growth factors and their receptors in the gastric ulcer margin between cirrhotic patients with thrombocytopenia and those of non-cirrhotic patients to elucidate possible mechanisms. Eligible cirrhotic patients (n = 55) and non-cirrhotic patients (n = 55) who had gastric ulcers were enrolled. Mucosa from the gastric ulcer margin and non-ulcer areas were sampled and the mRNA expressions of the proangiogenic growth factors (vascular endothelial growth factor [VEGF], platelet derived growth factor [PDGF], basic fibroblast growth factor [bFGF]) and their receptors (VEGFR1, VEGFR2, PDGFRA, PDGFRB, FGFR1, FGFR2) were measured and compared. Platelet count and the expressions of these growth factors and their receptors were correlated with each other. The two groups were comparable in terms of gender, ulcer size and infection rate of Helicobacter pylori. However, the cirrhotic group were younger in age, had a lower platelet count than those in the non-cirrhotic group (pexpressions of PDGFB, VEGFR2, FGFR1, and FGFR2 in gastric ulcer margin when compared with those of the non-cirrhotic patients (pexpressions of PDGFB and VEGFR2, FGFR1, and FGFR2 were well correlated with the degree of thrombocytopenia in these cirrhotic patients (ρ>0.5, pimplied that diminished activity of proangiogenic factors and their receptors may contribute to the pathogenesis of gastric ulcers in cirrhotic patients.

  11. Standardization of a Protocol for Obtaining Platelet Rich Plasma from blood Donors; a Tool for Tissue Regeneration Procedures.

    Science.gov (United States)

    Gómez, Lina Andrea; Escobar, Magally; Peñuela, Oscar

    2015-01-01

    To develop a protocol for obtaining autologous platelet rich plasma in healthy individuals and to determine the concentration of five major growth factors before platelet activation. This protocol could be integrated into the guidelines of good clinical practice and research in regenerative medicine. Platelet rich plasma was isolated by centrifugation from 38 healthy men and 42 women ranging from 18 to 59 years old. The platelet count and quantification of growth factors were analyzed in eighty samples, stratified for age and gender of the donor. Analyses were performed using parametric the t-test or Pearson's analysis for non-parametric distribution. P platelet counts from 1.6 to 4.9 times (mean = 2.8). There was no correlation between platelet concentration and the level of the following growth factors: VEGF-D (r = 0.009, p = 0.4105), VEGF-A (r = 0.0068, p = 0.953), PDGF subunit AA (p = 0.3618; r = 0.1047), PDGF-BB (p = 0.5936; r = 0.6095). In the same way, there was no correlation between donor gender and growth factor concentrations. Only TGF-β concentration was correlated to platelet concentration (r = 0.3163, p = 0.0175). The procedure used allowed us to make preparations rich in platelets, low in leukocytes and red blood cells, and sterile. Our results showed biological variations in content of growth factors in PRP. The factors influencing these results should be further studied.

  12. Platelet Count and Mean Platelet Volume in Patients with Nasal Polyposis

    Directory of Open Access Journals (Sweden)

    Asli Tanrivermis Sayit

    2014-12-01

    Full Text Available Aim: Nasal polyps (NPs are the most common reason for nasal obstruction, with a prevalence of 1-4%. Although the etiology is not clearly known, chronic infections and mechanical, immunological, and biochemical factors can play a role in the etiology. Recently, mean platelet volume (MPV was recognized as a simple inflammatory marker in the inflammatory disease. In this study, we aimed to evaluate platelet (PLT and MPV in patients with NPs. Material and Method: This study included 80 histopathologically proven patients with NPs and 80 age- and sex-matched healthy subjects as controls. The Lund-Mackay staging system was used to evalute paranasal sinus CT scans, in patients with NPs, and paranasal sinus CT scores were recorded. Values of MPV, platelet (PLT, platelet crit (PCT and platelet distribution width (PDW were assessed in NP and control groups. Results: MPV and PLT values were found to be low in patients with NPs, at 8.57±1.62 fL and 259.99±62.03 x103/µL, respectively, compared with the control groups, at 8.79±1.49fL and 270.29±61.82 x103/µL. These findings were not statistically significant. PDW values were found to be slightly high in patients with NPs, at 17.1±1.36 fL, compared with the control group, at 16.78±1.04 fL (p=0.075. But PCT values were found to be low in patients with NPs, at 0.21±0.065, compared with the control group, at 0.23±0.069 (p=0.044. This finding was statistically significant. Discussion: In our study, the MPV and PLT values were lower in patients with NPs, but the difference was not statistically significant. According to our findings, the use of MPV as an inflammation marker in patients with NPs does not seem to be reliable.

  13. The Effects of Taoren-Honghua Herb Pair on Pathological Microvessel and Angiogenesis-Associated Signaling Pathway in Mice Model of CCl4-Induced Chronic Liver Disease

    Directory of Open Access Journals (Sweden)

    Shengyan Xi

    2016-01-01

    Full Text Available Chronic liver disease is one of the most common diseases that threaten human health. Effective treatment is still lacking in western medicine. Semen Persicae (Taoren and Flos Carthami (Honghua are known to relieve acute hepatic injury and inflammation, improve microcirculation, and reduce tissue fiber. The aim of our study is to investigate the potential mechanisms of Taoren-Honghua Herb Pair (THHP in murine model of chronic liver disease caused by Carbon Tetrachloride (CCl4. Mice were randomly divided into seven groups: (1 blank, (2 model, (3 control (colchicine, 0.1 mg/kg, (4 THHP (5.53, 2.67, and 1.33 g/kg, and (5 Tao Hong Siwu Decoction (THSWD (8.50 g/kg. Histological change and microvessels density were examined by microscopy. Hepatic function, serum fibrosis related factors, and hepatic vascular endothelial growth factor (VEGF were measured with ELISA. VEGF, kinase insert domain-containing receptor (KDR, Flt-1, and Akt mRNA expression in hepatic tissue were determined with PCR. Tissues of Akt, pAkt, KDR, and Flt-1 were measured with western blotting. Data from this study showed that THHP improved hepatic function and restrained the hepatic inflammation and fibrosis. Its role in inhibiting pathological angiogenesis and hepatic fibrogenesis may be through affecting the angiogenesis-associated VEGF and its upstream and downstream signaling pathways.

  14. Celecoxib and octreotide synergistically ameliorate portal hypertension via inhibition of angiogenesis in cirrhotic rats.

    Science.gov (United States)

    Gao, Jin-Hang; Wen, Shi-Lei; Feng, Shi; Yang, Wen-Juan; Lu, Yao-Yao; Tong, Huan; Liu, Rui; Tang, Shi-Hang; Huang, Zhi-Yin; Tang, Ying-Mei; Yang, Jin-Hui; Xie, Hui-Qi; Tang, Cheng-Wei

    2016-10-01

    Abnormal angiogenesis is critical for portal hypertension in cirrhosis. Except for etiological treatment, no efficient medication or regime has been explored to treat the early stage of cirrhosis when angiogenesis is initiated or overwhelming. In this study, we explored an anti-angiogenesis effort through non-cytotoxic drugs octreotide and celecoxib to treat early stage of cirrhotic portal hypertension in an animal model. Peritoneal injection of thioacetamide (TAA) was employed to induce liver cirrhosis in rats. A combination treatment of celecoxib and octreotide was found to relieve liver fibrosis, portal venous pressure, micro-hepatic arterioportal fistulas, intrahepatic and splanchnic angiogenesis. Celecoxib and octreotide exerted their anti-angiogenesis effect via an axis of cyclooxygenase-2/prostaglandin E2/EP-2/somatostatin receptor-2, which consequently down-regulated phosphorylation of extracellular signal-regulated kinase (p-ERK)-hypoxia-inducible factor-1α (HIF-1α)-vascular endothelial growth factor (VEGF) integrated signaling pathways. In conclusions, combination of celecoxib and octreotide synergistically ameliorated liver fibrosis and portal hypertension of the cirrhotic rats induced by TAA via the inhibition of intrahepatic and extrahepatic angiogenesis. The potential mechanisms behind the regimen may due to the inactivation of p-ERK-HIF-1α-VEGF signaling pathway.

  15. Bioactivity of freeze-dried platelet-rich plasma in an adsorbed form on a biodegradable polymer material.

    Science.gov (United States)

    Nakajima, Yu; Kawase, Tomoyuki; Kobayashi, Mito; Okuda, Kazuhiro; Wolff, Larry F; Yoshie, Hiromasa

    2012-01-01

    Owing to the necessity for the immediate preparation from patients' blood, autologous platelet-rich plasma (PRP) limits its clinical applicability. To address this concern and respond to emergency care and other unpredictable uses, we have developed a freeze-dried PRP in an adsorbed form on a biodegradable polymer material (Polyglactin 910). On the polymer filaments of PRP mesh, which was prepared by coating the polymer mesh with human fresh PRP and subsequent freeze-drying, platelets were incorporated, and related growth factors were preserved at high levels. This new PRP mesh preparation significantly and reproducibly stimulated the proliferation of human periodontal ligament cells in vitro and neovascularization in a chorioallantoic membrane assay. A full-thickness skin defect model in a diabetic mouse demonstrated the PRP mesh, although prepared from human blood, substantially facilitated angiogenesis, granulation tissue formation, and re-epithelialization without inducing severe inflammation in vivo. These data demonstrate that our new PRP mesh preparation functions as a bioactive material to facilitate tissue repair/regeneration. Therefore, we suggest that this bioactive material, composed of allogeneic PRP, could be clinically used as a promising alternative in emergency care or at times when autologous PRP is not prepared immediately before application.

  16. Human platelet releasates combined with polyglycolic acid scaffold ...

    Indian Academy of Sciences (India)

    2015-02-04

    Feb 4, 2015 ... rated thanks to the development of culture conditions based ... 61. Keywords. Chondrocyte; growth factors; PGA; platelet-rich plasma; tissue engineering. Published ... PRPr was then obtained by two cycles of freezing (−20°C ..... therapies for sports muscle injuries: any evidence behind clinical practice?

  17. Ethyl p-methoxycinnamate from Kaempferia galanga inhibits angiogenesis through tyrosine kinase

    Directory of Open Access Journals (Sweden)

    Juni Ekowati

    2015-04-01

    Full Text Available Background Many tumors express on their receptor tyrosine kinases vascular endothelial growth factor activity associated with angiogenesis. Inhibition of angiogenesis through reduction of tyrosine kinase activity is a promising strategy for cancer therapy. The present study aimed to determine the mechanism and potency of ethyl p-methoxycinnamate (EPMC isolated from Kaempferia galanga as angiogenesis inhibitor. Methods A laboratory experimental study was conducted using chorio-allantoic membranes (CAMs of nine-day old chicken eggs induced by 60ng basic fibroblast growth factor (bFGF. Ethyl p-methoxycinnamate (EPMC potency was determined at dosages of 30, 60, 90 and 120 mg and compared with celecoxib 60 mg as reference drug and one negative bFGF-induced control group. Neovascularization and endothelial cell count in CAM blood vessels were evaluated. To predict the antiangiogenic mechanism of EPMC, a docking study was performed with the Molegro Virtual Docker program on tyrosine kinase as receptor (PDB 1XKK. Results Angiogenesis stimulation by bFGF was prevented significantly (p<0.05 by EPMC at dosages of 30, 60, 90 and 120 mg and this activity was dose dependent. Molecular docking showed interaction between EPMC functional groups and tyrosine kinase amino acids at Met766, Met793, Thr854, Thr790, Gln791 and Ala743. There was an association between EPMC antiangiogenic activity and docking study results. Conclusions Ethyl p-methoxycinnamate is a potential new angiogenesis inhibitor through interaction with tyrosine kinase. EPMC could be a promising therapeutic agent for treatment of angiogenesis-related diseases.

  18. Platelet destruction in autoimmune thrombocytopenic purpura: kinetics and clearance of indium-111-labeled autologous platelets

    International Nuclear Information System (INIS)

    Stratton, J.R.; Ballem, P.J.; Gernsheimer, T.; Cerqueira, M.; Slichter, S.J.

    1989-01-01

    Using autologous 111 In-labeled platelets, platelet kinetics and the sites of platelet destruction were assessed in 16 normal subjects (13 with and three without spleens), in 17 studies of patients with primary autoimmune thrombocytopenic purpura (AITP), in six studies of patients with secondary AITP, in ten studies of patients with AITP following splenectomy, and in five thrombocytopenic patients with myelodysplastic syndromes. In normal subjects, the spleen accounted for 24 +/- 4% of platelet destruction and the liver for 15 +/- 2%. Untreated patients with primary AITP had increased splenic destruction (40 +/- 14%, p less than 0.001) but not hepatic destruction (13 +/- 5%). Compared with untreated patients, prednisone treated patients did not have significantly different spleen and liver platelet sequestration. Patients with secondary AITP had similar platelet counts, platelet survivals, and increases in splenic destruction of platelets as did patients with primary AITP. In contrast, patients with myelodysplastic syndromes had a normal pattern of platelet destruction. In AITP patients following splenectomy, the five nonresponders all had a marked increase (greater than 45%) in liver destruction compared to five responders (all less than 40%). Among all patients with primary or secondary AITP, there was an inverse relationship between the percent of platelets destroyed in the liver plus spleen and both the platelet count (r = 0.75, p less than 0.001) and the platelet survival (r = 0.86, p less than 0.001). In a stepwise multiple linear regression analysis, total liver plus spleen platelet destruction, the platelet survival and the platelet turnover were all significant independent predictors of the platelet count. Thus platelet destruction is shifted to the spleen in primary and secondary AITP. Failure of splenectomy is associated with a marked elevation in liver destruction

  19. Exosomes: novel effectors of human platelet lysate activity

    Directory of Open Access Journals (Sweden)

    E Torreggiani

    2014-09-01

    Full Text Available Despite the popularity of platelet-rich plasma (PRP and platelet lysate (PL in orthopaedic practice, the mechanism of action and the effectiveness of these therapeutic tools are still controversial. So far, the activity of PRP and PL has been associated with different growth factors (GF released during platelet degranulation. This study, for the first time, identifies exosomes, nanosized vesicles released in the extracellular compartment by a number of elements, including platelets, as one of the effectors of PL activity. Exosomes were isolated from human PL by differential ultracentrifugation, and analysed by electron microscopy and Western blotting. Bone marrow stromal cells (MSC treated with three different exosome concentrations (0.6 μg, 5 μg and 50 μg showed a significant, dose-dependent increase in cell proliferation and migration compared to the control. In addition, osteogenic differentiation assays demonstrated that exosome concentration differently affected the ability of MSC to deposit mineralised matrix. Finally, the analysis of exosome protein content revealed a higher amount of basic fibroblast growth factor (bFGF, vascular endothelial growth factor (VEGF, platelet-derived growth factor (PDGF-BB and transforming growth factor beta 1 (TGF-β1 as compared to PL. In regards to RNA content, an enrichment of small RNAs in exosomes as compared to donor platelets has been found. These results suggest that exosomes consistently contribute to PL activity and could represent an advantageous nanodelivery system for cell-free regeneration therapies.

  20. Canonical hedgehog signaling augments tumor angiogenesis by induction of VEGF-A in stromal perivascular cells

    Science.gov (United States)

    Chen, Weiwei; Tang, Tracy; Eastham-Anderson, Jeff; Dunlap, Debra; Alicke, Bruno; Nannini, Michelle; Gould, Stephen; Yauch, Robert; Modrusan, Zora; DuPree, Kelly J.; Darbonne, Walter C.; Plowman, Greg; de Sauvage, Frederic J.; Callahan, Christopher A.

    2011-01-01

    Hedgehog (Hh) signaling is critical to the patterning and development of a variety of organ systems, and both ligand-dependent and ligand-independent Hh pathway activation are known to promote tumorigenesis. Recent studies have shown that in tumors promoted by Hh ligands, activation occurs within the stromal microenvironment. Testing whether ligand-driven Hh signaling promotes tumor angiogenesis, we found that Hh antagonism reduced the vascular density of Hh-producing LS180 and SW480 xenografts. In addition, ectopic expression of sonic hedgehog in low-Hh–expressing DLD-1 xenografts increased tumor vascular density, augmented angiogenesis, and was associated with canonical Hh signaling within perivascular tumor stromal cells. To better understand the molecular mechanisms underlying Hh-mediated tumor angiogenesis, we established an Hh-sensitive angiogenesis coculture assay and found that fibroblast cell lines derived from a variety of human tissues were Hh responsive and promoted angiogenesis in vitro through a secreted paracrine signal(s). Affymetrix array analyses of cultured fibroblasts identified VEGF-A, hepatocyte growth factor, and PDGF-C as candidate secreted proangiogenic factors induced by Hh stimulation. Expression studies of xenografts and angiogenesis assays using combinations of Hh and VEGF-A inhibitors showed that it is primarily Hh-induced VEGF-A that promotes angiogenesis in vitro and augments tumor-derived VEGF to promote angiogenesis in vivo. PMID:21597001

  1. Facile alkylation of 4-nitrobenzotriazole and its platelet aggregation inhibitory activity.

    Science.gov (United States)

    Singh, Dhandeep; Silakari, Om

    2017-10-15

    We explored the facile alkylation of 4-nitrobenzotriazole under basic conditions and the synthesized derivatives were tested for their potential ADP induced platelet aggregation inhibition activity in comparison with standard drug ticagrelor (selective P2Y12 inhibitor). The nitro group at 4-position is highly activating toward alkylation reactions (under strong basic conditions) and resulted in formation of degradation product like 3-nitrobenzene-1,2-diamine which make isolation of alkyl products very difficult. We optimized the reaction under mild basic condition (potassium carbonate and DMF) which is devoid of any degradation product. This is perhaps the first report of 4-nitrobenzotriazole derivatives possessing platelet aggregation inhibitory activity. Generally activity increases with increase in length of alkyl chain and 1-alkyl positional isomers were found to be more potent than 2-alkyl isomers. The benzoyl derivative was found to be the most potent [compound 22; (4-Nitro-1H-benzotriazol-1-yl)(phenyl)methanone; IC 50 =0.65±0.10mM] which may be attributed to electronegative oxygen atom and aromatic ring. Benzyl derivatives [compound 20; 1-Benzyl-4-nitro-1H-benzotriazole; IC 50 =0.81±0.08mM, compound 21; 2-Benzyl-4-nitro-2H-benzotriazole; IC 50 =0.82±0.19mM] and sulfonyl derivative [compound 23; 1-[(4-Methylphenyl)sulfonyl]-4-nitro-1H-benzotriazole; IC 50 =0.82±0.19mM] are also found to be highly active. Furthermore, all compounds possess P2Y12 binding affinity as confirmed by VASP/P2Y12 phosphorylation assay. Copyright © 2017. Published by Elsevier Ltd.

  2. Comparative Evaluation of TRAIL, FGF-2 and VEGF-A-Induced Angiogenesis In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Siân P. Cartland

    2016-12-01

    Full Text Available Tumor necrosis-factor-related apoptosis-inducing ligand (TRAIL has been implicated in angiogenesis; the growth of new blood vessels from an existing vessel bed. Our aim was to compare pro-angiogenic responses of TRAIL, vascular endothelial growth-factor-A (VEGF-A and fibroblast growth-factor-2 (FGF-2 either separately (10 ng/mL or in combination, followed by the assessment of proliferation, migration and tubule formation using human microvascular endothelial-1 (HMEC-1 cells in vitro. Angiogenesis was also measured in vivo using the Matrigel plug assay. TRAIL and FGF-2 significantly augmented HMEC-1 cell proliferation and migration, with combination treatment having an enhanced effect on cell migration only. In contrast, VEGF-A did not stimulate HMEC-1 migration at 10 ng/mL. Tubule formation was induced by all three factors, with TRAIL more effective compared to VEGF-A, but not FGF-2. TRAIL at 400 ng/mL, but not VEGF-A, promoted CD31-positive staining into the Matrigel plug. However, FGF-2 was superior, stimulating cell infiltration and angiogenesis better than TRAIL and VEGF-A in vivo. These findings demonstrate that each growth factor is more effective at different processes of angiogenesis in vitro and in vivo. Understanding how these molecules stimulate different processes relating to angiogenesis may help identify new strategies and treatments aimed at inhibiting or promoting dysregulated angiogenesis in people.

  3. Measurement of platelet aggregation, independently of patient platelet count

    DEFF Research Database (Denmark)

    Vinholt, P J; Frederiksen, H; Hvas, A-M

    2017-01-01

    with collagen-related peptide). Platelet aggregation had a negative predictive value of 100% for a bleeding tendency among patients. Conclusion The established platelet aggregation assay was applicable for thrombocytopenic patients, and improved the identification of bleeding risk.......Essentials •Platelet function may influence bleeding risk in thrombocytopenia, but useful tests are needed. •A flow cytometric platelet aggregation test independent of the patient platelet count was made. •Platelet aggregation was reduced in thrombocytopenic patients with hematological cancer....... •High platelet aggregation ruled out bleeding tendency in thrombocytopenic patients. Summary Background Methods for testing platelet aggregation in thrombocytopenia are lacking. Objective To establish a flow-cytometric test of in vitro platelet aggregation independently of the patient's platelet count...

  4. Discovery and evaluation of a series of 3-acylindole imidazopyridine platelet-activating factor antagonists.

    Science.gov (United States)

    Curtin, M L; Davidsen, S K; Heyman, H R; Garland, R B; Sheppard, G S; Florjancic, A S; Xu, L; Carrera, G M; Steinman, D H; Trautmann, J A; Albert, D H; Magoc, T J; Tapang, P; Rhein, D A; Conway, R G; Luo, G; Denissen, J F; Marsh, K C; Morgan, D W; Summers, J B

    1998-01-01

    Studies conducted with the goal of discovering a second-generation platelet-activating factor (PAF) antagonist have identified a novel class of potent and orally active antagonists which have high aqueous solubility and long duration of action in animal models. The compounds arose from the combination of the lipophilic indole portion of Abbott's first-generation PAF antagonist ABT-299 (2) with the methylimidazopyridine heterocycle moiety of British Biotechnology's BB-882 (1) and possess the positive attributes of both of these clinical candidates. Structure-activity relationship (SAR) studies indicated that modification of the indole and benzoyl spacer of lead compound 7b gave analogues that were more potent, longer-lived, and bioavailable and resulted in the identification of 1-(N, N-dimethylcarbamoyl)-4-ethynyl-3-[3-fluoro-4-[(1H-2-methylimidazo[4,5-c] pyrid-1-yl)methyl]benzoyl]indole hydrochloride (ABT-491, 22 m.HCl) which has been evaluated extensively and is currently in clinical development.

  5. Serotonin binding in vitro by releasable proteins from human blood platelets

    International Nuclear Information System (INIS)

    Heemstra, V.L.

    1983-11-01

    Among the substances released from human blood platelets are serotonin and various proteins. It was hypothesized that one of these proteins binds serotonin and that serotonin might be important to the protein's function or that the protein might be important to serotonin's function. Two platelet-specific proteins, platelet factor 4 (PF4) and β-thromboglobulin (βTG) were found to bind serotonin in vitro. Endogenous PF4 was isolated by serotonin-affinity chromatography and was identified by radioimmunoassay. Purified [ 125 I] -PF4 and native PF4 bound to and eluted from a serotonin-affinity column similarly. Ultrafiltration of the homologous protein, βTG, with [ 14 C]-serotonin demonstrated binding of about 8 moles serotonin per mole tetrameric βTG with a dissociation constant of about 4 X 10(sup-8) M. Equilibrium dialysis of PF4 with radiolabelled serotonin was attempted, but no binding constant values were obtained because serotonin apparently bound to the dialysis membrane. Since EDTA was one of the two agents that eluted PF4 from the serotonin-affinity gel, calcium binding by PF4 was investigated by equilibrium dialysis. Evidence was obtained for positively cooperative binding of calcium ions by PF4. It is concluded that PF4 and βTG bind serotonin in vitro, that they may also bind in vivo when platelets undergo release, and that the functions of serotonin, PF4 and βTG may be mediated in part by serotonin-protein associations

  6. Platelet activation and platelet-leukocyte interaction in dogs naturally infected with Babesia rossi

    DEFF Research Database (Denmark)

    Goddard, Amelia; Leisewitz, Andrew L; Kristensen, Annemarie Thuri

    2015-01-01

    EDTA as anticoagulant. Activated platelets and PLA formation were detected by measuring surface expression of P-selectin (CD62P) on platelets, monocytes and neutrophils. Of the Babesia-infected dogs, 29 survived and seven died. The percentage of CD62P-positive monocytes was significantly higher (P = 0.......036) in the Babesia-infected dogs (54%) than in healthy control dogs (35.3%). However, there were no significant differences between the Babesia-infected and control groups for CD62P-positive platelets (4.9% and 1.2%, respectively) and CD62P-positive neutrophils (28.3% and 17.9%, respectively). The percentage of CD62...... groups for the percentage of CD62P-positive platelets (survivors 4.8%; non-survivors 5.3%; controls 1.2%) or CD62P-positive neutrophils (survivors 31.6%; non-survivors 5.6%; controls 17.9%). In conclusion, Babesia-infected dogs, specifically dogs that survived, had a significantly increased percentage...

  7. Angiogenesis in Chronic Obstructive Pulmonary Disease

    OpenAIRE

    Góralczyk, Barbara; Drela, Ewelina; Góralczyk, Krzysztof; Szczypiorska, Anna; Rość, Danuta

    2012-01-01

    Angiogenesis is a very important process that occurs in both physiological and pathological states. The new blood vessels formation is characteristic for cancers, ischemic diseases and inflammatory diseases. The process is controlled by factors that stimulate and inhibit neovascularization. The next stages of the neovascularization are known as well as the role of the extracellular matrix, cells and cytokines/factors growth modulating this process. The cells of the endothelium and proangiogen...

  8. Radiolabeled platelets

    International Nuclear Information System (INIS)

    Datz, F.L.; Taylor, A.T.

    1986-01-01

    Initial interest in developing techniques to radiolabel platelets was spurred by the lack of an accurate method for measuring platelet life span in both normals and in thrombocytopenic patients. Early investigators could obtain only rough estimates of platelet life spans by monitoring the platelet counts of thrombocytopenic patients undergoing platelet transfusions. Labels were also sought that would allow imaging of platelets in vivo in order to better understand the pathophysiology of atherosclerosis, thrombophlebitis, and clotting disorders, and to improve the clinical diagnosis of these diseases. Two types of platelet labels were investigated: cohort (pulse) labels and random labels. Cohort labels are taken up by megakaryocytes in the bone marrow and incorporated in the DNA and other components of the forming platelet. In theory, only freshly released platelets of a uniform age are labeled. Random labels, on the other hand, tag platelets in the peripheral blood, labeling platelets of all ages

  9. Evaluation of two platelet-rich plasma processing methods and two platelet-activation techniques for use in llamas and alpacas.

    Science.gov (United States)

    Semevolos, Stacy A; Youngblood, Cori D; Grissom, Stephanie K; Gorman, M Elena; Larson, Maureen K

    2016-11-01

    OBJECTIVE To evaluate 2 processing methods (commercial kit vs conical tube centrifugation) for preparing platelet rich plasma (PRP) for use in llamas and alpacas. SAMPLES Blood samples (30 mL each) aseptically collected from 6 healthy llamas and 6 healthy alpacas. PROCEDURES PRP was prepared from blood samples by use of a commercial kit and by double-step conical tube centrifugation. A CBC was performed for blood and PRP samples. Platelets in PRP samples were activated by means of a freeze-thaw method with or without 23mM CaCl 2 , and concentrations of platelet-derived growth factor-BB and transforming growth factor-β 1 were measured. Values were compared between processing methods and camelid species. RESULTS Blood CBC values for llamas and alpacas were similar. The commercial kit yielded a significantly greater degree of platelet enrichment (mean increase, 8.5 fold vs 2.8 fold) and WBC enrichment (mean increase, 3.7 fold vs 1.9 fold) than did conical tube centrifugation. Llamas had a significantly greater degree of platelet enrichment than alpacas by either processing method. No difference in WBC enrichment was identified between species. Concentrations of both growth factors were significantly greater in PRP samples obtained by use of the commercial kit versus those obtained by conical tube centrifugation. CONCLUSIONS AND CLINICAL RELEVANCE For blood samples from camelids, the commercial kit yielded a PRP product with a higher platelet and WBC concentration than achieved by conical tube centrifugation. Optimal PRP platelet and WBC concentrations for various applications need to be determined for llamas and alpacas.

  10. Systemic Effects of Anti-Angiogenic Therapy

    International Nuclear Information System (INIS)

    Starlinger, P.

    2011-01-01

    Anti-angiogenic cancer therapy has gained importance within the past decades. In this context, Bevacizumab, a monoclonal antibody neutralizing vascular endothelial growth factor, has been approved for clinical use. The combination of chemotherapy with Bevacizumab has shown a remarkable benefit in several neoplastic entities. However, a notable number of patients do not respond to this therapy. Furthermore, response to therapy seems to be short-lived. The primary topic of this PhD thesis was to characterize systemic effects of anti-angiogenic therapy to possibly identify mechanisms that could explain this heterogeneity in therapy response. To this end, a carefully selected subset of angiogenesis factors were monitored in detail in the course of a clinical study of pancreatic cancer receiving gemcitabine based anti-angiogenic therapy with Bevacizumab. To enable the reliable monitoring of angiogenesis parameters, we initially defined an optimized procedure to evaluate angiogenesis factors in blood. During these investigations a remarkable association of circulating angiogenic growth factors with platelet counts and activation was observed. Strikingly, we were able to confirm this association in the clinical setting. In particular, the anti-angiogenic factor thrombospondin-1 (TSP-1) correlated with platelet counts. We further showed that the highly myelosuppressive chemotherapeutic agent gemcitabine resulted in a decrease of platelet counts and circulating TSP-1 levels. As a result, we hypothesized that the choice of chemotherapy might affect the angiogenic balance and counteract the therapeutic effect of bevacizumab. This notion was further supported by a careful evaluation of other studies reporting on the combination of Bevacizumab with thrombocytopenic chemotherapies which were generally of minor therapeutic benefit for cancer patients. To further focus on TSP-1 as an essential modulator of neovascularization and anti-angiogenic therapy we investigated TSP-1

  11. Safety assessment of bone marrow derived MSC grown in platelet-rich plasma

    Directory of Open Access Journals (Sweden)

    Shoji Fukuda

    2015-06-01

    Full Text Available The injection of endothelial progenitor cells and mononuclear cells derived from bone marrow at the ischemic region of peripheral artery disease patients is reported to be effective for therapeutic angiogenesis; however, these cell therapies require large amounts of bone marrow to obtain sufficient numbers of cells. To solve this problem, we attempted to culture bone-marrow-derived mesenchymal stem cells (BM-MSC, which are supposed to secrete several cytokines that promote angiogenesis. We also focused on using platelet-rich plasma (PRP as a supplement for cell culture instead of fetal bovine serum. Human BM-MSC obtained from healthy volunteers expanded rapidly when cultured with 10% PRP prepared from their own blood. FACS analysis revealed that these cultured human MSC were homogeneous populations, and chromosomal analysis showed a normal karyotype. Moreover, the angiogenetic effect was apparent two weeks after human BM-MSC were injected into the ischemic muscle in SCID mice. Tumor formation was not detected three months after injection into SCID mice either subcutaneously or intramuscularly. To simulate clinical settings, canine BM-MSC were grown with canine PRP and injected into their ischemic muscles. We confirmed that donor cells existed in situ two and six weeks after operation without any side effects. These results suggest that cultured human BM-MSC can be a promising cell source for therapeutic angiogenesis.

  12. Factor H C-Terminal Domains Are Critical for Regulation of Platelet/Granulocyte Aggregate Formation

    Directory of Open Access Journals (Sweden)

    Adam Z. Blatt

    2017-11-01

    Full Text Available Platelet/granulocyte aggregates (PGAs increase thromboinflammation in the vasculature, and PGA formation is tightly controlled by the complement alternative pathway (AP negative regulator, Factor H (FH. Mutations in FH are associated with the prothrombotic disease atypical hemolytic uremic syndrome (aHUS, yet it is unknown whether increased PGA formation contributes to the thrombosis seen in patients with aHUS. Here, flow cytometry assays were used to evaluate the effects of aHUS-related mutations on FH regulation of PGA formation and characterize the mechanism. Utilizing recombinant fragments of FH spanning the entire length of the protein, we mapped the regions of FH most critical for limiting AP activity on the surface of isolated human platelets and neutrophils, as well as the regions most critical for regulating PGA formation in human whole blood stimulated with thrombin receptor-activating peptide (TRAP. FH domains 19–20 were the most critical for limiting AP activity on platelets, neutrophils, and at the platelet/granulocyte interface. The role of FH in PGA formation was attributed to its ability to regulate AP-mediated C5a generation. AHUS-related mutations in domains 19–20 caused differential effects on control of PGA formation and AP activity on platelets and neutrophils. Our data indicate FH C-terminal domains are key for regulating PGA formation, thus increased FH protection may have a beneficial impact on diseases characterized by increased PGA formation, such as cardiovascular disease. Additionally, aHUS-related mutations in domains 19–20 have varying effects on control of TRAP-mediated PGA formation, suggesting that some, but not all, aHUS-related mutations may cause increased PGA formation that contributes to excessive thrombosis in patients with aHUS.

  13. Design and synthesis of novel platelet fibrinogen receptor antagonists with 2H-1,4-benzoxazine-3(4H)-one scaffold. A systematic study.

    Science.gov (United States)

    Anderluh, Marko; Cesar, Jozko; Stefanic, Petra; Kikelj, Danijel; Janes, Damjan; Murn, Jernej; Nadrah, Kristina; Tominc, Mojca; Addicks, Elisabeth; Giannis, Athanassios; Stegnar, Mojca; Dolenc, Marija Sollner

    2005-01-01

    New platelet glycoprotein IIb/IIIa (GP IIb/IIIa, integrin alpha(IIb)beta3) antagonists were prepared on a 2H-1,4-benzoxazine-3(4H)-one scaffold. Their anti-aggregatory activities in human platelet rich plasma and their affinity towards alpha(IIb)beta3 and alpha(V)beta3 integrins were assessed. Various substitution positions and side chain variations were studied. In contrast to the generally accepted model, compounds containing ethyl esters as aspartate mimetics were in general more active than the corresponding free acids. We suggest an explanation for the observed behaviour of these new compounds.

  14. Platelet proteome reveals novel pathways of platelet activation and platelet-mediated immunoregulation in dengue.

    Directory of Open Access Journals (Sweden)

    Monique Ramos de Oliveira Trugilho

    2017-05-01

    Full Text Available Dengue is the most prevalent human arbovirus disease worldwide. Dengue virus (DENV infection causes syndromes varying from self-limiting febrile illness to severe dengue. Although dengue pathophysiology is not completely understood, it is widely accepted that increased inflammation plays important roles in dengue pathogenesis. Platelets are blood cells classically known as effectors of hemostasis which have been increasingly recognized to have major immune and inflammatory activities. Nevertheless, the phenotype and effector functions of platelets in dengue pathogenesis are not completely understood. Here we used quantitative proteomics to investigate the protein content of platelets in clinical samples from patients with dengue compared to platelets from healthy donors. Our assays revealed a set of 252 differentially abundant proteins. In silico analyses associated these proteins with key molecular events including platelet activation and inflammatory responses, and with events not previously attributed to platelets during dengue infection including antigen processing and presentation, proteasome activity, and expression of histones. From these results, we conducted functional assays using samples from a larger cohort of patients and demonstrated evidence for platelet activation indicated by P-selectin (CD62P translocation and secretion of granule-stored chemokines by platelets. In addition, we found evidence that DENV infection triggers HLA class I synthesis and surface expression by a mechanism depending on functional proteasome activity. Furthermore, we demonstrate that cell-free histone H2A released during dengue infection binds to platelets, increasing platelet activation. These findings are consistent with functional importance of HLA class I, proteasome subunits, and histones that we found exclusively in proteome analysis of platelets in samples from dengue patients. Our study provides the first in-depth characterization of the platelet

  15. Post-transcriptional regulation of vascular endothelial growth factor: Implications for tumor angiogenesis

    Institute of Scientific and Technical Information of China (English)

    Peter S Yoo; Abby L Mulkeen; Charles H Cha

    2006-01-01

    Vascular endothelial growth factor (VEGF) is a potent secreted mitogen critical for physiologic and tumor angiogenesis. Regulation of VEGF occurs at several levels, including transcription, mRNA stabilization,translation, and differential cellular localization of various isoforms. Recent advances in our understanding of posttranscriptional regulation of VEGF include identification of the stabilizing mRNA binding protein, HuR, and the discovery of internal ribosomal entry sites in the 5'UTR of the VEGF mRNA. Monoclonal anti-VEGF antibody was recently approved for use in humans, but suffers from the need for high systemic doses. RNA interference (RNAi)technology is being used in vitro and in animal models with promising results. Here, we review the literature on post-transcriptional regulation of VEGF and describe recent progress in targeting these mechanisms for therapeutic benefit.

  16. Biologic variability and correlation of platelet function testing in healthy dogs.<