WorldWideScience

Sample records for anemometry

  1. Thermal Anemometry Grid Sensor

    OpenAIRE

    Arlit, Martin; Schleicher, Eckhard; Hampel, Uwe

    2017-01-01

    A novel thermal anemometry grid sensor was developed for the simultaneous measurement of cross-sectional temperature and axial velocity distribution in a fluid flow. The sensor consists of a set of platinum resistors arranged in a regular grid. Each platinum resistor allows the simultaneous measurement of fluid temperature via electrical resistance and flow velocity via constant voltage thermal anemometry. Cross-sectional measurement was enabled by applying a special multiplexing-excitation s...

  2. Thermal Anemometry Grid Sensor.

    Science.gov (United States)

    Arlit, Martin; Schleicher, Eckhard; Hampel, Uwe

    2017-07-19

    A novel thermal anemometry grid sensor was developed for the simultaneous measurement of cross-sectional temperature and axial velocity distribution in a fluid flow. The sensor consists of a set of platinum resistors arranged in a regular grid. Each platinum resistor allows the simultaneous measurement of fluid temperature via electrical resistance and flow velocity via constant voltage thermal anemometry. Cross-sectional measurement was enabled by applying a special multiplexing-excitation scheme. In this paper, we present the design and characterization of a prototypical sensor for measurements in a range of very low velocities.

  3. Flow tilt angles near forest edges - Part 2: Lidar anemometry

    DEFF Research Database (Denmark)

    Dellwik, Ebba; Mann, Jakob; Bingöl, Ferhat

    2010-01-01

    A novel way of estimating near-surface mean flow tilt angles from ground based Doppler lidar measurements is presented. The results are compared with traditional mast based in-situ sonic anemometry. The tilt angle assessed with the lidar is based on 10 or 30 min mean values of the velocity field......) a fetch-limited beech forest site taken at 48–175 m a.g.l. (above ground level), (2) a reference site in flat agricultural terrain and (3) a second reference site in complex terrain are presented. The method to derive flow tilt angles and mean vertical velocities from lidar has several advantages compared...... alignment error at a multitude of heights. Disadvantages with estimating vertical velocities from a lidar compared to mast-based measurements are potentially slightly increased levels of statistical errors due to limited sampling time, because the sampling is disjunct, and a requirement for homogeneous flow...

  4. Wind turbine power performance measurement with the use of spinner anemometry

    DEFF Research Database (Denmark)

    Demurtas, Giorgio

    The spinner anemometer was patented by DTU in 2004 and licenced to ROMO Wind in 2011. By 2015 the spinner anemometer was installed on several hundred wind turbines for yaw misalignment measurements. The goal of this PhD project was to investigate the feasibility of use of spinner anemometry...... is now used as default in commercial calibrations. To evaluate the power performance of a wind turbine with the use of spinner anemometry, an experiment was organized in collaboration with Romo Wind and Vattenfall. A met-mast was installed close to two wind turbines equipped with spinner anemometers...

  5. Basic ideas and concepts in hot wire anemometry: an experimental approach for introductory physics students

    Science.gov (United States)

    El Abed, Mohamed

    2016-01-01

    The purpose of hot wire anemometry is to measure the speed of an air stream. The classical method is based on the measure of the value of a temperature dependant resistor inserted in a Wheatstone bridge (Lomas 1986 Fundamentals of Hot Wire Anemometry (Cambridge: Cambridge University Press)). In this paper we exhibit the physics behind this method and show that by using a wire whose resistance does not vary on the field of temperature explored (from 20 °C to 200 °C), it is however possible to make accurate measurements. Finally, limitations of the method are discussed.

  6. Technical Training on High-Order Spectral Analysis and Thermal Anemometry Applications

    Science.gov (United States)

    Maslov, A. A.; Shiplyuk, A. N.; Sidirenko, A. A.; Bountin, D. A.

    2003-01-01

    The topics of thermal anemometry and high-order spectral analyses were the subject of the technical training. Specifically, the objective of the technical training was to study: (i) the recently introduced constant voltage anemometer (CVA) for high-speed boundary layer; and (ii) newly developed high-order spectral analysis techniques (HOSA). Both CVA and HOSA are relevant tools for studies of boundary layer transition and stability.

  7. Laser Doppler anemometry measurements in a circulating fluidized bed of metal particles

    DEFF Research Database (Denmark)

    Ibsen, Claus Hübbe; Solberg, Tron; Hjertager, Bjørn Helge

    2002-01-01

    of the solid phase from which the particle kinetic stresses were determined. The measured velocity profiles are in agreement with previous data from the full-scale boiler, i.e. showing a flat profile over the core region of the riser with a pronounced wall layer. The particle kinetic stresses are found......Laser Doppler Anemometry (LDA) measurements were performed in a 1/9 scale model of a 12 MW circulating fluidized bed (CFB) boiler. The model was operated according to scaling laws. The 2D-LDA system used was positioned in two different ways to obtain the three velocity components u, v and w...

  8. Determination of air and hydrofoil pressure coefficient by laser doppler anemometry

    Directory of Open Access Journals (Sweden)

    Ristić Slavica S.

    2010-01-01

    Full Text Available Some results of experiments performed in water cavitation tunnel are presented. Pressure coefficient (Cp was experimentally determined by Laser Doppler Anemometry (LDA measurements. Two models were tested: model of airplane G4 (Super Galeb and hydrofoil of high speed axial pump. These models are not prepared for conventional pressure measurements, so that LDA is applied for Cp determination. Numerical results were obtained using a code for average Navier-Stokes equations solutions. Comparisons between computational and experimental results prove the effectiveness of the LDA. The advantages and disadvantages of LDA application are discussed. Flow visualization was made by air bubbles.

  9. Thermography and Sonic Anemometry to Analyze Air Heaters in Mediterranean Greenhouses

    Directory of Open Access Journals (Sweden)

    Araceli Peña

    2012-10-01

    Full Text Available The present work has developed a methodology based on thermography and sonic anemometry for studying the microclimate in Mediterranean greenhouses equipped with air heaters and polyethylene distribution ducts to distribute the warm air. Sonic anemometry allows us to identify the airflow pattern generated by the heaters and to analyze the temperature distribution inside the greenhouse, while thermography provides accurate crop temperature data. Air distribution by means of perforated polyethylene ducts at ground level, widely used in Mediterranean-type greenhouses, can generate heterogeneous temperature distributions inside the greenhouse when the system is not correctly designed. The system analyzed in this work used a polyethylene duct with a row of hot air outlet holes (all of equal diameter that expel warm air toward the ground to avoid plant damage. We have observed that this design (the most widely used in Almería’s greenhouses produces stagnation of hot air in the highest part of the structure, reducing the heating of the crop zone. Using 88 kW heating power (146.7 W∙m−2 the temperature inside the greenhouse is maintained 7.2 to 11.2 °C above the outside temperature. The crop temperature (17.6 to 19.9 °C was maintained above the minimum recommended value of 10 °C.

  10. Thermography and sonic anemometry to analyze air heaters in Mediterranean greenhouses.

    Science.gov (United States)

    López, Alejandro; Valera, Diego L; Molina-Aiz, Francisco; Peña, Araceli

    2012-10-16

    The present work has developed a methodology based on thermography and sonic anemometry for studying the microclimate in Mediterranean greenhouses equipped with air heaters and polyethylene distribution ducts to distribute the warm air. Sonic anemometry allows us to identify the airflow pattern generated by the heaters and to analyze the temperature distribution inside the greenhouse, while thermography provides accurate crop temperature data. Air distribution by means of perforated polyethylene ducts at ground level, widely used in Mediterranean-type greenhouses, can generate heterogeneous temperature distributions inside the greenhouse when the system is not correctly designed. The system analyzed in this work used a polyethylene duct with a row of hot air outlet holes (all of equal diameter) that expel warm air toward the ground to avoid plant damage. We have observed that this design (the most widely used in Almería's greenhouses) produces stagnation of hot air in the highest part of the structure, reducing the heating of the crop zone. Using 88 kW heating power (146.7 W ∙ m(-2)) the temperature inside the greenhouse is maintained 7.2 to 11.2 °C above the outside temperature. The crop temperature (17.6 to 19.9 °C) was maintained above the minimum recommended value of 10 °C.

  11. Laser Doppler anemometry measurements of steady flow through two bi-leaflet prosthetic heart valves

    Directory of Open Access Journals (Sweden)

    Ovandir Bazan

    2013-12-01

    Full Text Available INTRODUCTION: In vitro hydrodynamic characterization of prosthetic heart valves provides important information regarding their operation, especially if performed by noninvasive techniques of anemometry. Once velocity profiles for each valve are provided, it is possible to compare them in terms of hydrodynamic performance. In this first experimental study using laser doppler anemometry with mechanical valves, the simulations were performed at a steady flow workbench. OBJECTIVE: To compare unidimensional velocity profiles at the central plane of two bi-leaflet aortic prosthesis from St. Jude (AGN 21 - 751 and 21 AJ - 501 models exposed to a steady flow regime, on four distinct sections, three downstream and one upstream. METHODS: To provide similar conditions for the flow through each prosthesis by a steady flow workbench (water, flow rate of 17L/min. and, for the same sections and sweeps, to obtain the velocity profiles of each heart valve by unidimensional measurements. RESULTS: It was found that higher velocities correspond to the prosthesis with smaller inner diameter and instabilities of flow are larger as the section of interest is closer to the valve. Regions of recirculation, stagnation of flow, low pressure, and flow peak velocities were also found. CONCLUSIONS: Considering the hydrodynamic aspect and for every section measured, it could be concluded that the prosthesis model AGN 21 - 751 (RegentTM is superior to the 21 AJ - 501 model (Master Series. Based on the results, future studies can choose to focus on specific regions of the these valves.

  12. Laser Doppler anemometry measurements of steady flow through two bi-leaflet prosthetic heart valves

    Science.gov (United States)

    Bazan, Ovandir; Ortiz, Jayme Pinto; Vieira Junior, Francisco Ubaldo; Vieira, Reinaldo Wilson; Antunes, Nilson; Tabacow, Fabio Bittencourt Dutra; Costa, Eduardo Tavares; Petrucci Junior, Orlando

    2013-01-01

    Introduction In vitro hydrodynamic characterization of prosthetic heart valves provides important information regarding their operation, especially if performed by noninvasive techniques of anemometry. Once velocity profiles for each valve are provided, it is possible to compare them in terms of hydrodynamic performance. In this first experimental study using laser doppler anemometry with mechanical valves, the simulations were performed at a steady flow workbench. Objective To compare unidimensional velocity profiles at the central plane of two bi-leaflet aortic prosthesis from St. Jude (AGN 21 - 751 and 21 AJ - 501 models) exposed to a steady flow regime, on four distinct sections, three downstream and one upstream. Methods To provide similar conditions for the flow through each prosthesis by a steady flow workbench (water, flow rate of 17L/min. ) and, for the same sections and sweeps, to obtain the velocity profiles of each heart valve by unidimensional measurements. Results It was found that higher velocities correspond to the prosthesis with smaller inner diameter and instabilities of flow are larger as the section of interest is closer to the valve. Regions of recirculation, stagnation of flow, low pressure, and flow peak velocities were also found. Conclusions Considering the hydrodynamic aspect and for every section measured, it could be concluded that the prosthesis model AGN 21 - 751 (RegentTM) is superior to the 21 AJ - 501 model (Master Series). Based on the results, future studies can choose to focus on specific regions of the these valves. PMID:24598950

  13. Spinner Anemometry

    DEFF Research Database (Denmark)

    Pedersen, T.F.; Sørensen, Niels; Madsen, H.A.

    2007-01-01

    on most wind turbines, and integrate the spinner into a hybrid wind measurement system. The concept includes fixed wind speed measurements on the spinner for determination of wind speed, wind direction and wind inclination angle as seen by the rotor. The concept also utilizes the rotor rotation...

  14. Applying hot-wire anemometry to directly measure the water balance in a proton exchange membrane fuel cell

    DEFF Research Database (Denmark)

    Al Shakhshir, Saher; Andreasen, Søren Juhl; Berning, Torsten

    2016-01-01

    In order to better understand and more accurately measure the water balance in a proton exchange membrane fuel cell, our group has recently proposed to apply hot wire anemometry in the fuel cell's anode outlet. It was theoretically shown that the electrical signal obtained from the hot wire senso...

  15. Accurate measurements of local skin friction coefficient using hot-wire anemometry

    Science.gov (United States)

    Hutchins, Nick; Choi, Kwing-So

    2002-05-01

    The practicality and accuracy of many existing methods of local skin friction measurement suffer when the boundary layer flow under consideration is non-canonical. Such shortcomings are exacerbated in three-dimensional flows, by the necessity to map local cf over a wider area in order to characterise fully the contribution to global skin friction. These problems have led the authors to seek novel experimental methods of cf measurement. The technique proposed herein utilises velocity measurements made using hot-wire anemometry combined with accurate positioning of the sensor element in respect to the test surface. In essence it is proposed that the local skin friction can be evaluated via a single velocity measurement made at a known wall-normal distance within the linear region of the viscous sublayer. This technique relies on accurate probe positioning, and two methods of achieving this are outlined. A study of the hot-wire characteristics in near-wall proximity has revealed a previously unnoticed feature corresponding to probe-wall contact. It is shown that this anomaly can be used as a positional flag to accurately locate the aerodynamic origin of the hot-wire sensor. A second technique using a laser triangulation displacement sensor is also outlined. Both positional techniques are shown to offer positioning to a sufficient level of accuracy for the proposed cf measurement technique. Single-point local cf measurement is tested experimentally, demonstrating the improved repeatability and standard error as predicted by initial error analysis. In this way it is shown that a single 90 s velocity sample coupled with accurate wall positioning can define local cf to a standard error of σcf≈1.0%. Analysis of error contributions reveals that longer sampling periods can realise even greater accuracy. The proposed technique is also used to measure local cf in a three-dimensional boundary layer where micro-vortex generators have introduced large-scale spanwise

  16. Hot-Film and Hot-Wire Anemometry for a Boundary Layer Active Flow Control Test

    Science.gov (United States)

    Lenahan, Keven C.; Schatzman, David M.; Wilson, Jacob Samuel

    2013-01-01

    Unsteady active flow control (AFC) has been used experimentally for many years to minimize bluff-body drag. This technology could significantly improve performance of rotorcraft by cleaning up flow separation. It is important, then, that new actuator technologies be studied for application to future vehicles. A boundary layer wind tunnel was constructed with a 1ft-x-3ft test section and unsteady measurement instrumentation to study how AFC manipulates the boundary layer to overcome adverse pressure gradients and flow separation. This unsteady flow control research requires unsteady measurement methods. In order to measure the boundary layer characteristics, both hot-wire and hot-film Constant Temperature Anemometry is used. A hot-wire probe is mounted in the flow to measure velocity while a hot-film array lays on the test surface to measure skin friction. Hot-film sensors are connected to an anemometer, a Wheatstone bridge circuit with an output that corresponds to the dynamic flow response. From this output, the time varying flow field, turbulence, and flow reversal can be characterized. Tuning the anemometers requires a fan test on the hot-film sensors to adjust each output. This is a delicate process as several variables drastically affect the data, including control resistance, signal input, trim, and gain settings.

  17. Simultaneous measurement of acoustic and streaming velocities in a standing wave using laser Doppler anemometry

    Science.gov (United States)

    Thompson, Michael W.; Atchley, Anthony A.

    2005-04-01

    Laser Doppler anemometry (LDA) with burst spectrum analysis (BSA) is used to study the acoustic streaming generated in a cylindrical standing-wave resonator filled with air. The air column is driven sinusoidally at a frequency of approximately 310 Hz and the resultant acoustic-velocity amplitudes are less than 1.3 m/s at the velocity antinodes. The axial component of fluid velocity is measured along the resonator axis, across the diameter, and as a function of acoustic amplitude. The velocity signals are postprocessed using the Fourier averaging method [Sonnenberger et al., Exp. Fluids 28, 217-224 (2000)]. Equations are derived for determining the uncertainties in the resultant Fourier coefficients. The time-averaged velocity-signal components are seen to be contaminated by significant errors due to the LDA/BSA system. In order to avoid these errors, the Lagrangian streaming velocities are determined using the time-harmonic signal components and the arrival times of the velocity samples. The observed Lagrangian streaming velocities are consistent with Rott's theory [N. Rott, Z. Angew. Math. Phys. 25, 417-421 (1974)], indicating that the dependence of viscosity on temperature is important. The onset of streaming is observed to occur within approximately 5 s after switching on the acoustic field. .

  18. Comparison of Global Sizing Velocimetry and Phase Doppler Anemometry measurements of alternative jet fuel sprays

    Science.gov (United States)

    Sadr, Reza; Kannaiyan, Kumaran

    2013-11-01

    Atomization plays a crucial precursor role in liquid fuel combustion that directly affects the evaporation, mixing, and emission levels. Laser diagnostic techniques are often used to study the spray characteristics of liquid fuels. The objective of this work is to compare the spray measurements of Gas-to Liquid (GTL) jet fuels obtained using Global Sizing Velocimetry (GSV) and Phase Doppler Anemometry (PDA) techniques at global and local levels, respectively. The chemical and physical properties of GTL fuels are different from conventional jet fuels, owing to the difference in their production methodology. In this work, the experimental facility, the measurement techniques, and spray characteristics of two different GTL fuels are discussed and compared with those of Jet A-1 fuel. Results clearly demonstrate that although the global measurement gives an overall picture of the spray, fine details are obtained only through local measurements and complement in gaining more inferences into the spray characteristics. The results also show a close similarity in spray characteristics between GTL and Jet A-1 fuels. Funded by Qatar Science and Technology Park.

  19. Experimental Study of the Twin Turbulent Water Jets Using Laser Doppler Anemometry for Validating Numerical Models

    International Nuclear Information System (INIS)

    Wang Huhu; Lee Saya; Hassan, Yassin A.; Ruggles, Arthur E.

    2014-01-01

    The design of next generation (Gen. IV) high-temperature nuclear reactors including gas-cooled and sodium-cooled ones involves massive numerical works especially the Computational Fluid Dynamics (CFD) simulations. The high cost of large-scale experiments and the inherent uncertainties existing in the turbulent models and wall functions of any CFD codes solving Reynolds-averaged Navier-Stokes (RANS) equations necessitate the high-spacial experimental data sets for benchmarking the simulation results. In Gen. IV conceptual reactors, the high- temperature flows mix in the upper plenum before entering the secondary cooling system. The mixing condition should be accurately estimated and fully understood as it is related to the thermal stresses induced in the upper plenum and the magnitudes of output power oscillations due to any changes of primary coolant temperature. The purpose of this study is to use Laser Doppler Anemometry (LDA) technique to measure the flow field of two submerged parallel jets issuing from two rectangular channels. The LDA data sets can be used to validate the corresponding simulation results. The jets studied in this work were at room temperature. The turbulent characteristics including the distributions of mean velocities, turbulence intensities, Reynolds stresses were studied. Uncertainty analysis was also performed to study the errors involved in this experiment. The experimental results in this work are valid for benchmarking any steady-state numerical simulations using turbulence models to solve RANS equations. (author)

  20. Sonic anemometry and sediment traps to evaluate the effectiveness of windbreaks in preventing wind erosion

    Directory of Open Access Journals (Sweden)

    Alejandro López

    Full Text Available ABSTRACT The present work analyzes the effectiveness of windbreaks against wind erosion through the study of streamline patterns and turbulent flow by means of sonic anemometry and sediment traps. To this end, windbreaks composed of plastic meshes (7.5 m long and 0.7 m tall were used. Windbreaks are a good means to reduce wind erosion, as they produce a positive effect on the characteristics of air currents that are related to wind erosion processes. Due to their ease of installation and dismantling, plastic meshes are widely used in areas where they are not required permanently. In our study, the use of a mesh of 13 × 30 threads cm−2 and 39 % porosity resulted in an average reduction of 85 % in face velocity at a height of 0.4 m and a distance of 1 m from the windbreak. The turbulence intensity i increased behind the windbreak because the reduction of mean of air speed on the leeside caused by the flow of air through the windbreak. Fluctuation levels, however, remained stable. The mean values of turbulence kinetic energy k decreased by 65 % to 86 % at a distance of 1 m from the windbreak and at a height of 0.4 m. The windbreak reduces erosion and sediment transportation 2 m downwind (2.9 times the windbreak height. Nevertheless, sediment transportation was not reduced at a height of 1.0 m and the effect of the windbreak was not observed at a distance of 6 m downwind (8.6 m times the windbreak height.

  1. Airflow Measurement of the Car HVAC Unit Using Hot-wire Anemometry

    Directory of Open Access Journals (Sweden)

    Fojtlín Miloš

    2016-01-01

    Full Text Available Thermal environment in a vehicular cabin significantly influence drivers’ fatigue and passengers’ thermal comfort. This environment is traditionally managed by HVAC cabin system that distributes air and modifies its properties. In order to simulate cabin thermal behaviour, amount of the air led through car vents must be determined. The aim of this study was to develop methodology to measure airflow from the vents, and consequently calculate corresponding air distribution coefficients. Three climatic cases were selected to match European winter, summer, and spring / fall conditions. Experiments were conducted on a test vehicle in a climatic chamber. The car HVAC system was set to automatic control mode, and the measurements were executed after the system stabilisation—each case was independently measured three times. To be able to evaluate precision of the method, the airflow was determined at the system inlet (HVAC suction and outlet (each vent, and the total airflow values were compared. The airflow was calculated by determining a mean value of the air velocity multiplied by an area of inlet / outlet cross-section. Hot-wire anemometry was involved to measure the air velocity. Regarding the summer case, total airflow entering the cabin was around 57 l s-1 with 60 % of the air entering the cabin through dashboard vents; no air was supplied to the feet compartment. The remaining cases had the same total airflow of around 42 l s-1, and the air distribution was focused mainly on feet and windows. The inlet and outlet airflow values show a good match with a maximum mass differential of 8.3 %.

  2. Airflow Measurement of the Car HVAC Unit Using Hot-wire Anemometry

    Science.gov (United States)

    Fojtlín, Miloš; Planka, Michal; Fišer, Jan; Pokorný, Jan; Jícha, Miroslav

    2016-03-01

    Thermal environment in a vehicular cabin significantly influence drivers' fatigue and passengers' thermal comfort. This environment is traditionally managed by HVAC cabin system that distributes air and modifies its properties. In order to simulate cabin thermal behaviour, amount of the air led through car vents must be determined. The aim of this study was to develop methodology to measure airflow from the vents, and consequently calculate corresponding air distribution coefficients. Three climatic cases were selected to match European winter, summer, and spring / fall conditions. Experiments were conducted on a test vehicle in a climatic chamber. The car HVAC system was set to automatic control mode, and the measurements were executed after the system stabilisation—each case was independently measured three times. To be able to evaluate precision of the method, the airflow was determined at the system inlet (HVAC suction) and outlet (each vent), and the total airflow values were compared. The airflow was calculated by determining a mean value of the air velocity multiplied by an area of inlet / outlet cross-section. Hot-wire anemometry was involved to measure the air velocity. Regarding the summer case, total airflow entering the cabin was around 57 l s-1 with 60 % of the air entering the cabin through dashboard vents; no air was supplied to the feet compartment. The remaining cases had the same total airflow of around 42 l s-1, and the air distribution was focused mainly on feet and windows. The inlet and outlet airflow values show a good match with a maximum mass differential of 8.3 %.

  3. Employing Hot Wire Anemometry to Directly Measure the Water Balance of a Proton Exchange Membrane Fuel Cell

    DEFF Research Database (Denmark)

    Shakhshir, Saher Al; Berning, Torsten

    Proton exchange membrane fuel cells (PEMFC’s) are currently being commercialized for various applications ranging from automotive to stationary such as powering telecom back-up units. In PEMFC’s, oxygen from air is internally combined with hydrogen to form water and produce electricity and waste......-hoc and real time electrical signal of the fuel cell water balance by employing hot wire anemometry. The hot wire sensor is placed into a binary mixture of hydrogen and water vapour, and the voltage signal received gives valuable insight into heat and mass transfer phenomena in a PEMFC. A central question...

  4. Measurement of acoustic streaming in a standing wave using laser Doppler anemometry

    Science.gov (United States)

    Thompson, Michael W.

    Laser Doppler anemometry (LDA) with burst spectrum analysis (BSA) is used to study the acoustic streaming generated in a cylindrical standing-wave resonator filled with air. The air column is driven sinusoidally at a frequency of approximately 310 Hz, and the resultant acoustic-velocity amplitudes are less than 1.3 m/s at the velocity antinodes. The axial component of fluid velocity is measured along the resonator axis, across the diameter, and as a function of acoustic amplitude. The velocity signals are post-processed using the Fourier averaging method [Sonnenberger et al., Exp. Fluids 28, 217--224 (2000)]. Equations are derived for determining the uncertainties in the resultant Fourier coefficients. The time-averaged velocity-signal components are seen to be contaminated by significant errors due to the LDA/BSA system. In order to avoid these errors, the Lagrangian streaming velocities are determined using the time-harmonic signal components and the arrival times of the velocity samples. The observed Lagrangian streaming velocities are consistent with Rott's theory [N. Rott, J. Appl. Math. Phys. (ZAMP) 25, 417--421 (1974)], indicating that the dependence of viscosity on temperature is important. The onset of streaming is observed to occur within approximately 5 s after switching on the acoustic field. The influences of a thermoacoustically induced axial temperature gradient and fluid inertia on the streaming are investigated using this same method. The axial component of Lagrangian streaming velocity is measured along the resonator axis and across the diameter at acoustic-velocity amplitudes of 2.7 m/s, 4.3 m/s, 6.1 m/s, and 8.6 m/s at the velocity antinodes. Measurements are repeated with the resonator either wrapped in foam insulation, surrounded by a water jacket, or suspended within an air-filled tank, in order to vary the magnitude of the axial temperature gradient. A significant correlation is observed between the temperature gradient and the behavior of

  5. Capillary blood cell velocity in periulcerous regions of the lower leg measured by laser Doppler anemometry.

    Science.gov (United States)

    Stücker, Markus; Huntermann, Christina; Bechara, Falk Georges; Hoffmann, Klaus; Altmeyer, Peter

    2004-08-01

    The capillary blood flow of the nailfold can be measured by means of modern non-invasive techniques like the videocapillary microscope in vivo. To quantify the capillary blood cell velocity, apart from the nailfold capillaries, we used a new technique, the so-called laser Doppler anemometry (LDA). The present study investigated how far laser Doppler fluxmetry (LDF), transcutaneous partial pressure of oxygen (tcpO2), and LDA are capable of quantifying differences of cutaneous microcirculation between patients with leg ulcera and a healthy control group. The effects of intravenous prostaglandin E1 and pentoxifylline were also investigated. Ten patients with venous leg ulcers and 10 patients with mixed venous/arterial ulcers were investigated with LDF, tcpO2, and LDA before and after injection of prostaglandin E1 and pentoxifylline. We measured the resting capillary blood cell velocity (rCBV), the maximum hyperemia, and the time to peak capillary blood cell velocity (tpCBV) during hyperemia after 4 min of suprasystolic occlusion and compared them with the results of a contol group of 20 patients. Laser Doppler flow was increased in all patients during resting period, whereas the tcpO2 was significantly decreased. LDF did not show an extension of tpCBV during reactive hyperemia after suprasystolic occlusion compared to the control group (73.6+/-31.1 vs. 164.1+/-52.5 s, P=0.003). TcpO2 revealed significantly decreased tpCBV in patients with venous and mixed venous/arterial ulcers (90.1+/-61.7 vs. 162.7+/-65.5 s, P0.8). After application of prostaglandin E1, LDA revealed a significant increase of erythrocyte velocity (0.5+/-0.18 to 0.74+/-0.28 mm/s [P=0,01]), whereas pentoxifylline had no significant effect. Capillary density increased significantly after application of prostaglandin E1 (5,1+/-2.7/mm2 to 8.9+/-3/mm2 [P=0.001]) and pentoxifylline (5.3+/- 1.8/mm2 to 8+/-2.1/mm2 [P=0.006]). The LDA is an important additional investigation tool for cutaneous microcirculation.

  6. Employing Hot Wire Anemometry to Directly Measure the Water Balance of a Commercial Proton Exchange Membrane Fuel Cell Stack

    DEFF Research Database (Denmark)

    Shakhshir, Saher Al; Berning, Torsten

    2016-01-01

    Proton exchange membrane fuel cells (PEMFC’s) are currently being commercialized for various applications ranging from automotive (e.g. the Toyota Mirai) to stationary such as powering telecom backup units. In PEMFC’s, oxygen from air is internally combined with hydrogen to form water and produce...... and increased degradation rates. Clearly, a fundamental understanding of all aspects of water management in PEMFC is imperative. This includes the fuel cell water balance, i.e. which fraction of the product water leaves the fuel cell via the anode channels versus the cathode channel. Our research group...... is currently developing a novel technique to obtain an ad-hoc and real time electrical signal of the fuel cell water balance by employing hot wire anemometry. In this work, the hot wire sensor is placed in the anode outlet of a commercial air-cooled fuel cell stack by Ballard Power Systems, and the voltage...

  7. Experimental Investigations of Compressible Turbulent Boundary Layers with the Use of Nano-Scale Thermal Anemometry Probes (NSTAP)

    Science.gov (United States)

    Kokmanian, Katherine; Duvvuri, Subrahmanyam; Hultmark, Marcus

    2017-11-01

    Nano-Scale Thermal Anemometry Probes (NSTAP) have been designed, tested and used in a wide variety of incompressible flows. These sensors are capable of measuring streamwise velocity fluctuations with an order of magnitude better resolution, both temporal and spatial, compared to conventional hot-wires, due to their miniature size and minute thermal mass (the heating element is only 60 microns long, 2 microns wide and 100 nm thick). Here we report recent efforts to redesign the NSTAP to withstand supersonic flow conditions. Work has been performed in Princeton's micro-nano fabrication laboratory in order to modify both the 2D layout and the 3D shapes of these sensors. The supersonic version of the NSTAP is evaluated in collaboration with Bundeswehr University. The ultimate objective of this work is to measure both fluctuating mass flow rate and total temperature in compressible turbulent boundary layers, by combining two supersonic sensors which operate at different overheat ratios. AFOSR FA9550-16-1-0170 (Program manager: Ivett Leyva).

  8. Structure of a swirl-stabilized spray flame by imaging, laser Doppler velocimetry, and phase Doppler anemometry

    Science.gov (United States)

    Edwards, C. F.; Rudoff, R. C.

    1991-01-01

    Data are presented which describe the mean structure of a steady, swirl-stabilized, kerosene spray flame in the near-injector region of a research furnace. The data presented include ensemble-averaged results of schlieren, luminosity, and extinction imaging, measurement of the gas phase velocity field by laser Doppler velocimetry, and characterization of the condensed phase velocity by phase Doppler anemometry. The results of these studies define six key regions in the flame: the dense spray region; the rich, two-phase, fuel jet; the main air jet; the internal product recirculation zone; the external product recirculation zone; and the gaseous diffusion flame zone. The first five of these regions form a conical mixing layer which prepares the air and fuel for combustion. The air and fuel jets comprise the central portion of this mixing layer and are bounded on either side by the hot product gases of the internal and external recirculation zones. Entrainment of these product gases into the air/fuel streams provides the energy required to evaporate the fuel spray and initiate combustion. Intermittency of the internal recirculation and spray jet flows accounts for unexpected behavior observed in the aerodynamics of the two phases. The data reported herein are part of the database being accumulated on this spray flame for the purpose of detailed comparison with numerical modeling.

  9. Investigation of the flow inside an urban canopy immersed into an atmospheric boundary layer using laser Doppler anemometry

    Science.gov (United States)

    Herpin, Sophie; Perret, Laurent; Mathis, Romain; Tanguy, Christian; Lasserre, Jean-Jacques

    2018-05-01

    Laser Doppler anemometry (LDA) is used to investigate the flow inside an idealized urban canopy consisting of a staggered array of cubes with a 25% density immersed into an atmospheric boundary layer with a Reynolds number of δ ^+=32{,}300. The boundary layer thickness to cube height ratio (δ /h=22.7) is large enough to be representative of atmospheric surface layer in neutral conditions. The LDA measurements give access to pointwise time-resolved data at several positions inside the canopy (z=h/4, h/2, and h). Synchronized hot-wire measurements above the canopy (inertial region and roughness sublayer) are also realized to get access to interactions between the different flow regions. The wall-normal mean velocity profile and Reynolds stresses show a good agreement with available data in the literature, although some differences are observed on the standard deviation of the spanwise component. A detailed spectral and integral time scale analysis inside the canopy is then carried out. No clear footprint of a periodic vortex shedding on the sides of the cubes could be identified on the power spectra, owing to the multiple cube-to-cube interactions occuring within a canopy with a building density in the wake interference regime. Results also suggest that interactions between the most energetics scales of the boundary layer and those related to the cube canopy take place, leading to a broadening of the energy peak in the spectra within the canopy. This is confirmed by the analysis of coherence results between the flow inside and above the canopy. It is shown that linear interactions mechanisms are significant, but reduced compared to smooth-wall boundary-layer flow. To our knowledge, this is the first time such results are shown on the dynamics of the flow inside an urban canopy.

  10. Study of cyclic and steady particle motion in a realistic human airway model using phase-Doppler anemometry

    Directory of Open Access Journals (Sweden)

    Jícha Miroslav

    2012-04-01

    Full Text Available Transport and deposition of particles in human airways has been of research interest for many years. Various experimental methods such as constant temperature anemometry, particle image velocimetry and laser-Doppler based techniques were employed for study of aerosol transport in the past. We use Phase-Doppler Particle Analyser (P/DPA for time resolved size and velocity measurement of liquid aerosol particles in a size range 1 to 8 μm. The di-2ethylhexyl sabacate (DEHS particles were produced by condensation monodisperse aerosol generator. A thin-wall transparent model of human airways with non-symmetric bifurcations and non-planar geometry containing parts from throat to 3rd-4th generation of bronchi was fabricated for the study. Several cyclic (sinusoidal breathing regimes were simulated using pneumatic breathing mechanism. Analogous steady-flow regimes were also investigated and used for comparison. An analysis of the particle velocity data was performed with aim to gain deeper understanding of the transport phenomena in the realistic bifurcating airway system. Flows of particles of different sizes in range 1 – 10 μm was found to slightly differ for extremely high Stokes numbers. Differences in steady and cyclic turbulence intensities were documented in the paper. Systematically higher turbulence intensity was found for cyclic flows and mainly in the expiration breathing phase. Negligible differences were found for behaviour of different particle size classes in the inspected range 1 to 8 μm. Possibility of velocity spectra estimation of air flow using the P/DPA data is discussed.

  11. Applying hot-wire anemometry to directly measure the water balance in a proton exchange membrane fuel cell for a pre-humidified hydrogen stream

    DEFF Research Database (Denmark)

    Berning, Torsten; Shakhshir, Saher Al

    2016-01-01

    was originally believed to be limited to the fuel cell anode operating on dry hydrogen. In the current work, it is expanded for the case of a pre-humidified hydrogen stream. In addition, useful correlations are derived that link the fuel cell water balance with the anode side inlet and outlet thermodynamic state......In a recent publication it has been shown how the water balance in a proton exchange membrane fuel cell can be determined employing hot wire anemometry. The hot wire sensor has to be placed into the anode outlet pipe of the operating fuel cell, and the voltage signal E that is read from the sensor...... has to be divided by a pre-determined voltage signal E0 that has been obtained for a stream of dry hydrogen where the molar flow rate corresponds to a total current I of the fuel cell stack and a stoichiometric flow ratio, ξ. Because the last two properties are usually continuously known in fuel cell...

  12. Sonic anemometry of planetary atmospheres

    Science.gov (United States)

    Cuerva, Alvaro; Sanz-Andrés, Angel; Lorenz, Ralph D.

    2004-02-01

    Sonic anemometers are robust, fast and reliable wind sensors which are able to measure the complete wind speed vector at high sampling rates. All these characteristics make sonic anemometers to be ideal candidates for atmospheric applications. Since sonic anemometers have not moving parts and they can be designed to have loss mass and power consumption, they have become adequate for planetary exploration purposes, both for atmosphere studies and for flying robot control. However, some challenges must be undertaken before implementing their use. Problems such as sound attenuation in different atmospheres, sensor/air acoustic impedance matching as well as flow/fluid dependence of sonic measurements have to be considered when these sensors are used in other atmospheres.

  13. Automation of the positioning of a laser anemometer flow rate measurement bench; Automatisation du positionnement d`un banc de mesure de vitesses d`ecoulements par anemometrie laser

    Energy Technology Data Exchange (ETDEWEB)

    Gobillot, G

    1998-01-24

    The laser anemometry technique is commonly used by the Core Hydraulics Laboratory of the CEA for the determination of the field of flow rates inside fuel rod bundles. The adjustment of measurement point coordinates represents an important part of the velocimetry campaign. In order to increase the number of measurements and the preciseness of the positioning operation, the automation of these preliminary tasks was decided. This work describes first the principle of Doppler laser velocimetry, the components of the measurement system and their functioning conditions. Then, the existing software for tuning and measurement is presented. A new software, called PAMELA, for the automatic positioning of the laser anemometer using a moving table with 5 degrees of freedom, has been developed and tested. This software, written with the LabView language, advises the operator, drives the bench and executes the tunings with a greater precision than manually. (J.S.) 16 refs.

  14. Dead time effects in laser Doppler anemometry measurements

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Buchhave, Preben; George, William K.

    2014-01-01

    We present velocity power spectra computed by the so-called direct method from burst-type laser Doppler anemometer (LDA) data, both measured in a turbulent round jet and generated in a computer. Using today’s powerful computers, we have been able to study more properties of the computed spectra......, however, are assumed to be measured for each data point. In addition, the detector and processor used in the current study introduce a certain amount of fixed processing and data transfer times, which further contribute to the distortion of the computed spectrum. However, we show an excellent agreement...... between a measured spectrum and our modeled LDA data, thereby confirming the validity of our model for the LDA burst processor....

  15. Improvement of Wind Farm Performance by Means of Spinner Anemometry

    DEFF Research Database (Denmark)

    Friis Pedersen, Troels; Demurtas, Giorgio; Gottschall, Julia

    powerful microprocessor and heating was added to the sonic sensor arms plus a range of smaller redesigns. Software was revised with an improved internal calibration procedure. The improved system was tested on a 2MW wind turbine at Tjæreborg wind farm. Measurements on this turbine includes calibration of K...

  16. Flow tilt angles near forest edges - Part 1: Sonic anemometry

    DEFF Research Database (Denmark)

    Dellwik, Ebba; Mann, Jakob; Larsen, Klaus Steenberg

    2010-01-01

    An analysis of flow tilt angles from a fetch-limited beech forest site with clearings is presented in the context of vertical advection of carbon dioxide. Flow angles and vertical velocities from two sonic anemometers by different manufacturers were analyzed. Instead of using rotations, where zero...... distortion and vertical alignment, it was only possible to a limited extent to relate sonic anemometer flow tilt angles to upwind forest edges, but the results by the lidar indicated that an internal boundary layer affect flow tilt angles at 21m above the forest. This is in accordance with earlier studies...

  17. New measurement technique for turbulent flow as a replacement for hot-wire anemometry

    Science.gov (United States)

    Puczylowski, Jaroslaw; Hölling, Michael; Peinke, Joachim

    2011-11-01

    We present latest developments of the 2d-Laser Cantilever Anemometer (2d-LCA), a sensor, which has been developed for highly resolved measurements of turbulent flows. Its measuring principle allows for high temporal resolutions of beyond 50kHz at spatial scales in sub millimeter range. This performance is achieved by measuring the deformation of a tiny cantilever via laser pointer, which experiences drag forces caused by the flow. The cantilever features two deformation modes, i.e. bending and twisting, whereas the latter occurs only for oblique inflow. Thus the sensor is capable of measuring two velocity components. Latest developments focus on the design of the cantilever. For example, an additional structure for a better sensitivity towards cross winds and an improved reflection pad were realized. Further improvements concern the laser beam guiding within the sensor. Beside this we are in the process of setting up advanced electronics and new types of PSD-elements with the goal of increasing the sensitivity. Comparison measurements between the re-designed 2d-LCA and older versions were performed and showed improvements relating signal quality and reliability. Further measurements in turbulent flow with an x-wire as a reference confirmed the ability of the new sensor to carry out measurements at comparable high resolutions.

  18. Determination of temperature fluctuations at high temperature by hot-wire anemometry

    International Nuclear Information System (INIS)

    Gokalp, Iskender; Bisch, Christian

    1978-01-01

    Thermal sensibility coefficients of a hot-wire are experimentally obtained for flow temperatures attaining 400 0 C. The linear evolution of the voltage signal of the hot-wire with temperature, observed earlier for flow temperatures not surpassing 60 0 C, is confirmed up to 400 0 C. The coefficients are then used for determining, in a hot turbulent flow, the temperature fluctuation evolution with flow mean temperature [fr

  19. Laser Anemometry and Viscous Computation of the Flow Through an Annular Turbine Cascade

    Science.gov (United States)

    1994-03-01

    USING ŖX, D[D, 7X, 7M. DWJOOD, 8X, 7MD. DDDD)" P,VO, Phub (WAE, SPAN) 1053 PRINTER IS CZRT 1054 PRINT USING ŖX,DOD,7X,7MD.D[OMXMD,8X,7M.DD. D" P...1087 prat=Riub (WAME, SPAN) /Ptot (ME, SPAN) 1088 beta::(P1(WA[,SPAN) -P23 (WAKE,SPAN) )/P1 (WAKE,SPAN) 1089 dIr (5* (Pl (MAKE, SPAN)/ Phub (WAKE, SPAN

  20. Distributed Anemometry via High-Definition Fiber Optic Sensing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna is developing a distributed anemometer that can directly measure flow field velocity profiles using high-definition fiber optic sensing (HD-FOS). The concept is...

  1. Applying hot wire anemometry to directly measure the water balance in a proton exchange membrane fuel cell - Part 1

    DEFF Research Database (Denmark)

    Berning, Torsten; Al Shakhshir, Saher

    2015-01-01

    for all current densities. Therefore, only one curve-fit equation will be required. The voltage curve E0 is an arbitrary calibration curve, and this can be conveniently chosen to be the voltage signal for a dry hydrogen stream at a given temperature and various flow rates which can be easily measured....

  2. Employing Hot Wire Anemometry to Directly Measure the Water Balance in a Proton Exchange membrane Fuel Cell

    DEFF Research Database (Denmark)

    Shakhshir, Saher Al; Hussain, Nabeel; Berning, Torsten

    2015-01-01

    Water management in proton exchange membrane fuel cells (PEMFC’s) remains a critical problem for their durability, cost, and performance. Because the anode side of this fuel cell has the tendency to become dehydrated, measuring the water balance can be an important diagnosis tool during fuel cell...... operation. The water balance indicates how much of the product water leaves at the anode side versus the cathode side. Previous methods of determining the fuel cell water balance often relied on condensing the water in the exhaust gas streams and weighing the accumulated mass which is a time consuming...... can be directly converted into the fuel cell water balance. In this work, experimental ex-situ results are presented and the elegance and usefulness of this method is demonstrated....

  3. Application of low-coherence optical fiber Doppler anemometry to fluid-flow measurement: optical system considerations

    Science.gov (United States)

    Boyle, William J. O.; Grattan, Kenneth T. V.; Palmer, Andrew W.; Meggitt, B. T.

    1991-08-01

    A fiber optic Doppler anemometric (FODA) sensor using an optical delay cavity technique and having the advantage of detecting velocity rather than simple speed is outlined. In this sensor the delay in a sensor cavity formed from light back-reflected from a fiber tip (Fresnel reflection) and light back-reflected from particles flowing in a fluid is balanced by the optical delay when light from this sensor cavity passes through a reference cavity formed by a combination of the zero and first diffraction orders produced by a Bragg cell inserted into the optical arrangement. The performance of an experimental sensor based on this scheme is investigated, and velocity measurements using the Doppler shift data from moving objects are presented. The sensitivity of the scheme is discussed, with reference to the other techniques of fluid flow measurement.

  4. The Effect of Nitrogen Cross-Over on Water Balance Measurements in Proton Exchange Membrane Fuel Cell Using Constant Temperature Anemometry

    DEFF Research Database (Denmark)

    Al Shakhshir, Saher; Berning, Torsten; Kær, Søren Knudsen

    2016-01-01

    by introducing 1% of nitrogen concentration to the dry and humidified hydrogen flow simulating the PEMFC anode outlet. The hot wire voltage is measured with and without nitrogen and it was slightly lower with the presence of nitrogen. The effect of the voltage reduction on the measured water balance is small...

  5. Comparison of slant-path scintillometry, sonic anemometry and high-speed videography for vertical profiling of turbulence in the atmospheric surface layer

    CSIR Research Space (South Africa)

    Griffith, DJ

    2013-09-01

    Full Text Available of techniques as well as to obtain representative turbulence profile data for temperate grassland. A key element of the experimental layout is to place a sonic anemometer 15 m above ground at the centre of a 1 km slant-path extending from ground level to a...

  6. Development of a "Digital Bridge" Thermal Anemometer for Turbulence Measurements, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermal anemometry (a.k.a. hot-wire anemometry) has been a key experimental technique in fluid mechanics for many decades. Due to the small physical size and high...

  7. Development of a "Digital Bridge" Thermal Anemometer for Turbulence Measurements, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermal anemometry (a.k.a. hot-wire anemometry) has been a key experimental technique in fluid mechanics for many decades. Due to the small physical size and high...

  8. Development and application of out-of-focus imaging in order to characterize heat and mass exchanges in two-phase flows; Comparaison de diagnostics optiques granulometriques: imagerie en defaut de mise au point - anemometrie phase doppler

    Energy Technology Data Exchange (ETDEWEB)

    Lemaitre, P.; Porcheron, E.; Marchand, D.; Nuboer, A.; Bouilloux, L.; Vendel, J

    2007-07-01

    The aim of this paper is to present the capacity of the out-of-focus imaging in order to measure droplets size in presence of heat and mass exchanges. It is supported with optical simulations first based on geometrical optics, and then with the Lorenz-Mie theory. Finally, this technique is applied in presence of heat and mass transfers in the TOSQAN experiment. (authors)

  9. Calibration and Optimization of Constant Voltage Hot-Wire Anemometer in Hypersonic Flows

    National Research Council Canada - National Science Library

    Chokani, Ndaona

    2003-01-01

    ...) and constant voltage (CVA) anemometry. The performance of both anemometers is systematically made by operating the same hot-wire under identical conditions and applying post-test software corrections to the fluctuating measurements...

  10. Determination of the turbulent viscosity inside a strongly heated rectangular jet: experimental and numerical studies; Determination de la viscosite turbulente dans un jet rectangulaire fortement chauffe: etudes experimentale et numerique

    Energy Technology Data Exchange (ETDEWEB)

    Sarh, B.; Gokalp, I.; Sanders, H. [Centre National de la Recherche Scientifique (CNRS), 45 - Orleans-la-Source (France)

    1997-12-31

    In the framework of the studies carried out by the LCSR on variable density flows and diffusion turbulent flames, this paper deals with the study of the influence of density variation on the characteristics of a heated rectangular turbulent jet emerging in a stagnant surrounding atmosphere and more particularly on the determination of turbulent viscosity. The dynamical field is measured using laser-Doppler anemometry while the thermal field is measured using cold wire anemometry. A numerical predetermination of the characteristics of this jet, based on a k-{epsilon} modeling, is carried out. (J.S.) 6 refs.

  11. Experimental techniques in unsteady flows

    Science.gov (United States)

    Oldfield, M. L. G.

    1990-12-01

    Notes for four lectures intended as a practical user guide to some unsteady aerodynamic flow experimental measurement techniques are presented. Unsteady flows to be measured, including frequency and length scale, large scale unsteadiness, turbulence, boundary layer transition, shear layers and wakes, periodically time varying flows, shock waves and vortex flows, are explained. Wind tunnel requirements, intrusive measurements by hot wire and film anemometry and pressure probes, and surface measurements are described. Optical techniques covered include Schlieren photography, shadowgraph, holography, laser anemometry and flow tracing. Instrumentation and data acquisition and processing of unsteady data, using frequency analysis by fast Fourier transforms, convolution and correlation are described.

  12. Power curve measurement with Spinner Anemometer according to IEC 61400-12-2

    DEFF Research Database (Denmark)

    Demurtas, Giorgio

    of drawbacks that makes use of the standard with respect to nacelle anemometry difficult to apply in the field [3] [4]. An option in the standard is to use spinner anemometry, a type of wind sensor that measures wind speed on the spinner in front of the rotor. The report is based on spinner anemometer...... measurements from two adjacent wind turbines and a met-mast. Due to the site layout, it is possible with the met-mast to measure the power curve of both turbines. The report also presents a method for evaluation of uncertainty related to the spinner anemometer....

  13. A 4-spot time-of-flight anemometer for small centrifugal compressor velocity measurements

    Science.gov (United States)

    Wernet, Mark P.; Skoch, Gary J.

    1992-01-01

    The application of laser anemometry techniques in turbomachinery facilities is a challenging dilemma requiring an anemometer system with special qualities. Here, we describe the use of a novel laser anemometry technique applied to a small 4.5 kg/s, 4:1 pressure ratio centrifugal compressor. Sample velocity profiles across the blade pitch are presented for a single location along the rotor. The results of the intra-blade passage velocity measurements will ultimately be used to verify CFD 3-D viscous code predictions.

  14. ACCUWIND - Accurate wind speed measurements in wind energy - Summary report

    DEFF Research Database (Denmark)

    Friis Pedersen, Troels; Dahlberg, J.-Å.; Cuerva, A.

    2006-01-01

    been used by meteorologists for turbulencemeasurements, but have also found a role on wind turbine nacelles for wind speed and yaw control purposes. The report on cup and sonic anemometry deals with establishment of robustness in assessment and classification by focus on methods and proceduresfor...

  15. Optical Air Flow Measurements in Flight (Mesures optiques de l’ecoulement aerodynamique en vol)

    Science.gov (United States)

    2003-12-01

    Fabacher; “Laser anemometry for flight test,” Proceedings ETTC 󈨟 , 25–26 June 1991, Toulouse, France, pp. 3–4. 53. Alonso, F.; “ Anemometric ...B. Hays; “Observations of winds with an incoherent lidar detector,” Appl. Optics, Vol. 31, No. 22, 1992, pp. 4509–4514. Alonso, F.; “ Anemometric

  16. Features of the development of round jets for different initial conditions and in the presence of obstacles

    Science.gov (United States)

    Kozlov, V. V.; Litvinenko, M. V.; Litvinenko, Yu. A.; Kozlov, G. V.

    2016-10-01

    The goal of this work is an experimental study of the influence of the initial conditions (nozzle configuration, mean velocity profile at the nozzle exit, surface roughness, and jet diameter) on the flow structure in a round jet by various methods: hot-wire anemometry, smoke visualization, and particle image velocimetry (PIV).

  17. Experimental and numerical study of wave-induced backfilling beneath submarine pipelines

    DEFF Research Database (Denmark)

    Bayraktar, Deniz; Ahmad, Joseph; Eltard-Larsen, Bjarke

    2016-01-01

    This paper presents results of complementary experimental and numerical studies involving wave-induced backfilling of current-generated scour holes beneath submarine pipelines. The laboratory experiments are conducted in a wave-plus-current flume, utilizing Laser Doppler Anemometry to measure...

  18. Processor operated correlator with applications to laser Doppler signals

    DEFF Research Database (Denmark)

    Bisgaard, C.; Johnsen, B.; Hassager, Ole

    1984-01-01

    A 64-channel correlator is designed with application to the processing of laser Doppler anemometry signals in the range 200 Hz to 250 kHz. The correlator is processor operated to enable the consecutive sampling of 448 correlation functions at a rate up to 500 Hz. Software is described to identify...

  19. Prediction of flow in mix-proof valve by use of CFD - Validation by LDA

    DEFF Research Database (Denmark)

    Jensen, Bo Boye Busk; Friis, Alan

    2004-01-01

    was done on a spherical shaped mix-proof valve (MPV). Flow were predicted by Computational Fluid Dynamics (CFD) and validated by data obtained from experiments using laser sheet visualization and laser Doppler anemometry. Correction of the measured velocities and probe location was required as refraction...

  20. A study of dilute to dense flow in a circulating fluidized bed

    DEFF Research Database (Denmark)

    Ibsen, Claus Hübbe; Solberg, Tron; Hjertager, Bjørn H.

    2001-01-01

    This work concerns a experimental and numerical study on how the amount of particles influences the flow in the CFB. Experiments are performed with a 1D Laser and Phase doppler anemometry, whereby data of axial velocity, RMS velocity and particle diameter is obtained. The numerical simulations ar...

  1. LDA-PIV Diagnostics and 3D Simulation of Oscillating Swirl Flow in a Closed Cylindrical Container

    DEFF Research Database (Denmark)

    Naumov, Igor; Okulov, V. L.; Meyer, Knud Erik

    2003-01-01

    Results on unsteady vortex breakdown are obained simultaneously using two diagnostics methods: a) determination of velocity fields by particle tracks (Particle Image Velocimeter - PIV), b) determination of velocity fields by Laser Doppler Anemometry (LDA), are presented.The experiments data are i...

  2. A micro-scale hot wire anemometer based on low stress (Ni/W) multi-layers deposited on nano-crystalline diamond for air flow sensing

    Czech Academy of Sciences Publication Activity Database

    Talbi, A.; Gimeno, L.; Gerbedoen, J.-C.; Viard, R.; Soltani, A.; Mortet, Vincent; Preobrazhensky, V.; Merlen, A.; Pernod, P.

    2015-01-01

    Roč. 25, č. 2 (2015), s. 1-8, č. článku 125029. ISSN 0960-1317 Institutional support: RVO:68378271 Keywords : hot wire * nano-crystalline diamond * active flow control * anemometry Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.768, year: 2015

  3. Turbulence and drag control in jet and wake flows

    Indian Academy of Sciences (India)

    Structures of plane and circular jets were modified by using active, passive and an active–passive (hybrid) combination to investigate the phenomenon of turbulence control using hot-wire anemometry. Active control was achieved by exciting the flow by using either an acoustic speaker or vibrating piezoceramic elements, ...

  4. Experimental investigation of three-dimensional flow instabilities in a rotating lid-driven cavity

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Naumov, I.; Mikkelsen, Robert Flemming

    2006-01-01

    liquid. For the first time the onset of three-dimensionality and transition are analysed by combining the high spatial resolution of Particle Image Velocimetry (PIV) and the temporal accuracy of Laser Doppler Anemometry (LDA). A detailed mapping of the transition from steady and axisymmetric flow...

  5. Laminar separation bubbles: Dynamics and control

    Indian Academy of Sciences (India)

    An adverse pressure gradient was imposed on the plate by appropriately contouring the top wall. Single component stationary hotwire anemometry was employed for velocity measurements. Surface and smoke flow visualisation techniques were employed to measure the length and average height (maximum height of the ...

  6. Korekce vlivu oscilací a zvuku na údaje termoanemometru při měření v provozních podmínkách

    Czech Academy of Sciences Publication Activity Database

    Jonáš, Pavel; Mazur, Oton; Hanus, D.

    2003-01-01

    Roč. 10, č. 1 (2003), s. 23-26 ISSN 1211-877X R&D Projects: GA MŠk LN00B051 Institutional research plan: CEZ:AV0Z2076919 Keywords : hot-wire anemometry * corrections Subject RIV: BK - Fluid Dynamics

  7. Underestimates of sensible heat flux due to vertical velocity measurement errors in non-orthogonal sonic anemometers

    Science.gov (United States)

    John M. Frank; William J. Massman; Brent E. Ewers

    2013-01-01

    Sonic thermometry and anemometry are fundamental to all eddy-covariance studies of surface energy balance. Recent studies have suggested that sonic anemometers with non-orthogonal transducers can underestimate vertical wind velocity (w) and sensible heat flux (H) when compared to orthogonal designs. In this study we tested whether a non-orthogonal sonic anemometer (...

  8. All sonic anemometers need to correct for transducer and structural shadowing in their velocity measurements

    Science.gov (United States)

    John M. Frank; William J. Massman; Edward Swiatek; Herb A. Zimmerman; Brent E. Ewers

    2016-01-01

    Sonic anemometry is fundamental to all eddy-covariance studies of surface energy and ecosystem carbon and water balance. Recent studies have shown that some nonorthogonal anemometers underestimate vertical wind. Here it is hypothesized that this is due to a lack of transducer and structural shadowing correction. This is tested with a replicated intercomparison...

  9. Offshore and onshore wind turbine wake meandering studied in an ABL wind tunnel

    DEFF Research Database (Denmark)

    Barlas, Emre; Buckingham, Sophia; Glabeke, Gertjan

    2015-01-01

    Scaled wind turbine models have been installed in the VKI L1-B atmospheric boundary layer wind tunnel at offshore and onshore conditions. Time-resolved measurements were carried out with three component hot wire anemometry and stereo-PIV in the middle vertical plane of the wake up to eleven turbine...... spectrum, present in the entire wake mainly for offshore inflow condition. It was found that the Strouhal number, based on the rotor diameter and the wind velocity at hub height, was in the order of 0.25. Below the meandering frequency, turbulence power spectrum decreased, whereas above it increased. Wake...... diameter downstream. The results show an earlier wake recovery for the onshore case. The effect of inflow conditions and the wind turbine’s working conditions on wake meandering was investigated. Wake meandering was detected by hot wire anemometry through a low frequency peak in the turbulent power...

  10. Visualization of synthetic jet formation in air

    Czech Academy of Sciences Publication Activity Database

    Trávníček, Zdeněk; Broučková, Zuzana; Kordík, Jozef; Vít, T.

    2015-01-01

    Roč. 18, č. 4 (2015), s. 595-609 ISSN 1343-8875 R&D Projects: GA ČR GA14-08888S Institutional support: RVO:61388998 Keywords : synthetic jet * flow visualization * hot-wire anemometry Subject RIV: JU - Aeronautics, Aerodynamics, Aircrafts Impact factor: 0.720, year: 2015 http://link.springer.com/article/10.1007/s12650-015-0273-2

  11. A Novel Method to Predict Circulation Control Noise

    Science.gov (United States)

    2016-03-17

    sea-based vehicles as t heir sonar sys- tems can be limited by self noise. In addition, stealth is vital to missions of many underwater craft and...anemom-:Jtry. Hotwire anemometry operates on the principle relating the thermal loss of a heated resistance sensor to the convective effects of the...limit to this however , as thermal changes of the probe supports can influence measurements if a certain temperature is exceeded. In addition, it is

  12. Measurement of Mixing Rate between Fuel Subchannels: Development of a new Experimental Technique

    International Nuclear Information System (INIS)

    Silin, Nicolas; Barbero, Jose; Bubach, Ernesto; Juanico, Luis

    2000-01-01

    A superficial heater of nickel applied over a ceramic substrate was designed and constructed, together with a system of high sensitivity to measure temperature differentials. The use of both techniques was evaluated and it might allow for the wider use of the method of differential thermal analysis to quantify the turbulent mixing between coupled hydraulic subchannels in fuel elements. Even more, the method presents important advantages as compared to the more complicated techniques known (laser Doppler anemometry)

  13. Measurement and Image Processing Techniques for Particle Image Velocimetry Using Solid-Phase Carbon Dioxide

    Science.gov (United States)

    2014-03-27

    2.11 Wall regions, layers and their defining properties . . . . . . . . . . . . . . . . 28 2.12 Sno -Gun II system with various nozzles and metering...Computational fluid dynamics CMOS Complementary metal-oxide semiconductor CTA Constant-temperature anemometry DEHS Di-Ethyl-Hexyl-Sebacat EWT Educational wind...device (CCD) or complementary metal-oxide- semiconductor (CMOS) camera. Using a correlation technique, the near-instantaneous velocity and other fluid

  14. The performance of hexagonally arranged hybrid synthetic jets

    Czech Academy of Sciences Publication Activity Database

    Hsu, S.S.; Kordík, Jozef; Trávníček, Zdeněk; Wang, A. B.

    2012-01-01

    Roč. 19, č. 1 (2012), s. 1-13 ISSN 1065-3090 R&D Projects: GA AV ČR(CZ) IAA200760801 Keywords : synthetic jet * visualization * hot-wire anemometry Subject RIV: BK - Fluid Dynamics http://www.begellhouse.com/journals/52b74bd3689ab10b,4c521b7653a68556,7cb255847238a443.html

  15. Formation Criterion for Axisymmetric Synthetic Jets at High Stokes Numbers

    Czech Academy of Sciences Publication Activity Database

    Trávníček, Zdeněk; Broučková, Zuzana; Kordík, Jozef

    2012-01-01

    Roč. 50, č. 9 (2012), s. 2012-2017 ISSN 0001-1452 R&D Projects: GA AV ČR(CZ) IAA200760801; GA ČR(CZ) GCP101/11/J019 Institutional research plan: CEZ:AV0Z20760514 Keywords : synthetic jet * power spectral density * hot-wire anemometry Subject RIV: BK - Fluid Dynamics Impact factor: 1.080, year: 2012 http://arc.aiaa.org/doi/abs/10.2514/1.J051649

  16. Application of Rayleigh Scattering to Turbulent Flow with Heat Transfer and Combustion.

    Science.gov (United States)

    1987-12-11

    premixed conical flame produced by a Bunsen -type burner . For the most part, ethylene-air flames were chosen for the investigations. RESEARCH RESULTS The...A turbulent premixed ethylene/air conical flame in a large Bunsen type burner has been studied using a two-component laser Doppler anemometry (LDA...density function (pdf). In the oblique flame region above the burner exit, the overall characteristics of the conditioned velocity statistics are

  17. Holographic-interferometric and thermoanemometric study of a thermoacoustic prime mover

    Czech Academy of Sciences Publication Activity Database

    Trávníček, Zdeněk; Wang, A. B.; Lédl, Vít; Vít, Tomáš; Chen, Y. Ch.; Maršík, František

    2013-01-01

    Roč. 29, č. 1 (2013), s. 59-66 ISSN 1727-7191 R&D Projects: GA ČR(CZ) GCP101/11/J019 Institutional research plan: CEZ:AV0Z20760514 Institutional support: RVO:61388998 ; RVO:61389021 Keywords : thermoacoustics * holographic interferometry * hot-wire anemometry Subject RIV: BJ - Thermodynamics; BJ - Thermodynamics (UFP-V) Impact factor: 0.314, year: 2013 http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8832965

  18. A regular Strouhal number for large-scale instability in the far wake of a rotor

    DEFF Research Database (Denmark)

    Okulov, Valery; Naumov, Igor V.; Mikkelsen, Robert Flemming

    2014-01-01

    The flow behind a model of a wind turbine rotor is investigated experimentally in a water flume using particle image velocimetry (PIV) and laser Doppler anemometry (LDA). The study performed involves a three-bladed wind turbine rotor designed using the optimization technique of Glauert (Aerodynamic...... visualizations and a reconstruction of the flow field using LDA and PIV measurements it is found that the wake dynamics is associated with a precession (rotation) of the helical vortex core....

  19. The improvement of the hot-wire anemometer measurement procedure in the LP stage of a full scale steam turbine

    Czech Academy of Sciences Publication Activity Database

    Jonáš, Pavel; Mazur, Oton; Řehák, Vratislav; Uruba, Václav

    2003-01-01

    Roč. 43, č. 113 (2003), s. 191-200 ISSN 0079-3205. [International conference on Turbines of Large Output. Gdańsk, 22.09.2003-24.09.2003] R&D Projects: GA AV ČR IBS2076010; GA ČR GA101/01/0449 Institutional research plan: CEZ:AV0Z2076919 Keywords : CTA anemometry * wet-steam flow structure * LP-stage of full scale turbine Subject RIV: BK - Fluid Dynamics

  20. Power spectral density of velocity fluctuations estimated from phase Doppler data

    Directory of Open Access Journals (Sweden)

    Jicha Miroslav

    2012-04-01

    Full Text Available Laser Doppler Anemometry (LDA and its modifications such as PhaseDoppler Particle Anemometry (P/DPA is point-wise method for optical nonintrusive measurement of particle velocity with high data rate. Conversion of the LDA velocity data from temporal to frequency domain – calculation of power spectral density (PSD of velocity fluctuations, is a non trivial task due to nonequidistant data sampling in time. We briefly discuss possibilities for the PSD estimation and specify limitations caused by seeding density and other factors of the flow and LDA setup. Arbitrary results of LDA measurements are compared with corresponding Hot Wire Anemometry (HWA data in the frequency domain. Slot correlation (SC method implemented in software program Kern by Nobach (2006 is used for the PSD estimation. Influence of several input parameters on resulting PSDs is described. Optimum setup of the software for our data of particle-laden air flow in realistic human airway model is documented. Typical character of the flow is described using PSD plots of velocity fluctuations with comments on specific properties of the flow. Some recommendations for improvements of future experiments to acquire better PSD results are given.

  1. Wind measurements for wind energy applications. A review

    DEFF Research Database (Denmark)

    Mortensen, N.G.

    1994-01-01

    A review is given of the error sources and uncertainties in cup and sonic anemometry. In both cases the effects of the tower, boom and other mounting arrangements, as well as the siting of the anemometer, should be considered carefully. Cup anemometer measurements are inherently biased due...... to the turbulent nature of the wind, but these errors can be neglected in many applications if a well-designed, fast-responding anemometer is used. The response characteristics of sonic anemometers are fairly complicated. Based on wind tunnel investigations and field comparisons some of the associated errors...

  2. Funnel-shaped vortical structures in wall turbulence

    International Nuclear Information System (INIS)

    Kaftori, D.; Hetsroni, G.; Banerjee, S.

    1994-01-01

    The structure of the turbulent boundary layer in a horizontal open channel was investigated experimentally by means of laser Doppler anemometry (LDA) and by flow visualization synchronized with the LDA. These experiments indicate that the dominant structures in the wall region are large scale streamwise vortices which originate at the wall and grow and expand into the outer flow region. The shape of the vortices is that of an expanding spiral, wound around a funnel which is laid sideways in the direction of flow. Most of the observations of wall turbulence phenomena made over the years, such as quasistreamwise vortices, ejections, and sweeps seem to be part of these funnel-shaped vortices

  3. Hot-wire measurement in turbulent flow behind a parallel-line heat source

    Czech Academy of Sciences Publication Activity Database

    Antoš, Pavel; Uruba, Václav

    2012-01-01

    Roč. 12, č. 1 (2012), s. 493-494 ISSN 1617-7061. [Annual Meeting of the International Association of Applied Mathematics and Mechanics /83./. Darmstadt, 26.03.2012-30.03.2012] R&D Projects: GA ČR GPP101/10/P556; GA ČR GAP101/12/1271 Institutional research plan: CEZ:AV0Z20760514 Keywords : nonisotermal flow * hot wire anemometry Subject RIV: BK - Fluid Dynamics http://onlinelibrary.wiley.com/doi/10.1002/pamm.201210235/abstract

  4. Sound propagation over screened ground under upwind conditions

    DEFF Research Database (Denmark)

    Rasmussen, Karsten Bo

    1996-01-01

    A screen on an absorbing ground is investigated experimentally and theoretically under upwind conditions. The experimental data are the result of scale model experiments in a 1:25 scale model. The sound propagation is measured using a triggered spark source with signal spectrum averaging...... in the frequency domain. The meteorological data representing the wind conditions have been determined by means of hot-wire anemometry in positions on both sides of the screen as well as directly over the screen. The theoretical model used for comparison is a hybrid approach. The sound field without a barrier...

  5. Effectiveness of horizontal air flow fans supporting natural ventilation in a Mediterranean multi-span greenhouse

    OpenAIRE

    López,Alejandro; Valera,Diego Luis; Molina-Aiz,Francisco Domingo; Peña,Araceli

    2013-01-01

    Natural ventilation is the most important method of climate control in Mediterranean greenhouses. In this study, the microclimate and air flow inside a Mediterranean greenhouse were evaluated by means of sonic anemometry. Experiments were carried out in conditions of moderate wind (≈ 4.0 m s-1), and at low wind speed (≈ 1.8 m s-1) the natural ventilation of the greenhouse was supplemented by two horizontal air flow fans. The greenhouse is equipped with a single roof vent opening t...

  6. Experimental Study of Tip Vortex Flow from a Periodically Pitched Airfoil Section

    Science.gov (United States)

    Zaman, Khairul; Fagan, Amy; Mankbadi, Mina

    2016-01-01

    An experimental investigation of tip vortex flow from a NACA0012 airfoil, pitched periodically at various frequencies, is conducted in a low-speed wind tunnel. Initially, data for stationary airfoil held fixed at various angles-of-attack are gathered. Flow visualization pictures as well as detailed cross-sectional properties areobtained at various streamwise locations using hot-wire anemometry. Data include mean velocity, streamwise vorticity as well as various turbulent stresses. Preliminary data are also acquired for periodically pitched airfoil. These results are briefly presented in this extended abstract.

  7. Turbulent pipe flow at extreme Reynolds numbers.

    Science.gov (United States)

    Hultmark, M; Vallikivi, M; Bailey, S C C; Smits, A J

    2012-03-02

    Both the inherent intractability and complex beauty of turbulence reside in its large range of physical and temporal scales. This range of scales is captured by the Reynolds number, which in nature and in many engineering applications can be as large as 10(5)-10(6). Here, we report turbulence measurements over an unprecedented range of Reynolds numbers using a unique combination of a high-pressure air facility and a new nanoscale anemometry probe. The results reveal previously unknown universal scaling behavior for the turbulent velocity fluctuations, which is remarkably similar to the well-known scaling behavior of the mean velocity distribution.

  8. Flow velocities and bed shear stresses in a stone cover under an oscillatory flow

    DEFF Research Database (Denmark)

    Stenanato, F.; Nielsen, Anders Wedel; Sumer, B. Mutlu

    2010-01-01

    layers of stones. The flow velocities in the pores of the stones were measured using LDA (Laser Doppler Anemometer). In addition to the velocity measurements, the bed shear stresses were also measured using a hotfilm (Constant Temperature Anemometry). It is found that the boundary layer of the outer flow...... current boundary layer without any externally generated turbulence. The bd shear stress is found to be very low, more than ten times smaller than in the case of a smooth base bottom without stone cover....

  9. Instrumentation techniques for studying heterogeneous combustion

    Science.gov (United States)

    Chigier, N. A.

    1977-01-01

    Velocity measurements in flames and the simultaneous measurement of droplet size and velocity with the aid of laser anemometry are considered along with methods of particle size measurement and techniques based on laser Raman spectroscopy. Attention is given to high-speed photography and holography, computer compensated thermocouples, and the determination of turbulence characteristics. The employment of suction probes is also discussed, taking into account sampling methods, the effects of temperature change in sampling probes on particle formation, and the chemical analysis of samples.

  10. Laser sheet dropsizing based on two-dimensional Raman and Mie scattering.

    Science.gov (United States)

    Malarski, Anna; Schürer, Benedikt; Schmitz, Ingo; Zigan, Lars; Flügel, Alexandre; Leipertz, Alfred

    2009-04-01

    The imaging and quantification of droplet sizes in sprays is a challenging task for optical scientists and engineers. Laser sheet dropsizing (LSDS) combines the two-dimensional information of two different optical processes, one that is proportional to the droplet volume and one that depends on the droplet surface, e.g., Mie scattering. Besides Mie scattering, here we use two-dimensional Raman scattering as the volume-dependent measurement technique. Two different calibration strategies are presented and discussed. Two-dimensional droplet size distributions in a spray have been validated in comparison with the results of point-resolved phase Doppler anemometry (PDA) measurements.

  11. Workshop on Coherent Structure of Turbulent Boundary Layers.

    Science.gov (United States)

    1978-11-01

    closely the actual anemometry signal signatures of specific coherent motions and structures. There are several ways one can approach this; one " insane ...Side View, Vf 0. 23 U t+ 0 60 40 20 0 Figure 6b. Side View, Vf= 0.23 U +re t = 10 68 C. R. SMITH K 604-- 40 y + 20 0 Figure 6c. Side View, Ve 0.23 U...re t =20 60 40 20 Figure 6d. Side View, Vfef 0.23 U_ t +=27 69 C. R. SMITH +60 40 20+ 20 Figure 6e. Side View, Ve 0.23 U +re t =38 60 40 20 0 Figure

  12. Validation of Boundary Conditions for CFD Simulations on Ventilated Rooms

    DEFF Research Database (Denmark)

    Topp, Claus; Jensen, Rasmus Lund; Pedersen, D.N.

    2001-01-01

    The application of Computational Fluid Dynamics (CFD) for ventilation research and design of ventilation systems has increased during the recent years. This paper provides an investigation of direct description of boundary conditions for a complex inlet diffuser and a heated surface. A series...... of full-scale experiments in a room ventilated by the mixing principle have been performed for validation of the models. The experimental results include measurements of temperature as well as measurements of velocity and turbulence by Laser Doppler Anemometry (LDA). A simple model of the complex inlet...

  13. Experimental study of biogas combustion using a gas turbine configuration

    Energy Technology Data Exchange (ETDEWEB)

    Lafay, Y.; Taupin, B.; Martins, G.; Cabot, G.; Renou, B.; Boukhalfa, A. [CNRS UMR 6614, Universite et INSA de ROUEN, Site universitaire du Madrillet, Saint Etienne du Rouvray (France)

    2007-08-15

    The aim of the present work is to compare stability combustion domains, flame structures and dynamics between CH{sub 4}/air flames and a biogas/air flames (issued from waste methanisation) in a lean gas turbine premixed combustion conditions. Velocity profiles are obtained by Laser Doppler Anemometry measurements. CH* chemiluminescence measurements and temporal acquisition of chamber pressure are performed in order to describe flame structure and instabilities. Changes in flame structure and dynamics when fuel composition is varying are found to strongly depend on laminar flame speed. No clear correlation between the unstable flame and the reaction zone penetration in the corner recirculation can be found. (orig.)

  14. DENSITY AND VELOCITY MEASUREMENTS IN TURBULENT HE-AIR BOUNDARY LAYERS

    Directory of Open Access Journals (Sweden)

    A SOUDANI

    2003-06-01

    Full Text Available A turbulent  boundary layer with large density variations has been generated by tangential injection of air or helium Into a boundary layer of air-helium mixture. Instrumentation based on thermo- anemometry has been successfully developed for the investigation of this flow  Analysis or the mean and fluctuating density fields shows that the flow is mainly governed by the ratio of the injection to the external velocity and that the density ratio plays a secondary role in the mixing processes. However, a sight enhancement of turbulent activity is observed when helium is injected.

  15. Time-dependent measurements over membrane plates at low Reynolds number

    Science.gov (United States)

    Hubner, James; Scott, Kyle; Timpe, Amory; Ukeiley, Lawrence

    2010-11-01

    A segment of low Reynolds number aerodynamic research employs biomimetics for optimization of airfoil shapes to micro air vehicle (MAV) flight. Many of these efforts focus on thin, flexible membrane airfoils inspired by small birds, bats and insects. This design approach, mimicking low Reynolds number flyers (Re hot-wire anemometry) and surface deflection (laser vibrometry) measurements over rigid plates and flexible membranes at incidence to the free stream flow. A range of flow Reynolds numbers are examined, from 10,000 to 50,000, in which vibration initiates and grow with increasing velocity.

  16. Advancements in Wind Energy Metrology - UPWIND 1A2.3

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Troels F.; Wagner, R.

    2011-02-15

    enough for inclusion in the IEC standard. In relation to the coming IEC standard on performance verification with the use of nacelle anemometry, IEC61400-12-2-CD, nacelle anemometry has been studied, both with experiments and in theory. An alternative to nacelle anemometry has been developed, the socalled spinner anemometer. This type of sensor measures yaw-error with high absolute accuracy, and avoids the draw-backs of nacelle anemometry because the spinner anemometer is positioned in front of the rotor. Advances in classic mast measurement technologies have also been made. A mast flow distortion correction method has been developed to improve classical state of the art mast measurements. Finally, an optical method for measurements of turbine vibrations is considered. (Author)

  17. Scalar fluctuations in turbulent combustion - An experimental study

    Science.gov (United States)

    Ballal, D. R.; Chen, T. H.; Yaney, P. P.

    1986-01-01

    Temperature and velocity fluctuations data were gathered for turbulent premixed combustion to evaluate a model for scalar transport and scalar dissipation. The data were collected using laser Raman spectroscopy and laser Doppler anemometry with a premixed CH4-air flame from a Bunsen burner. Mean temperature profiles were generated and the pdf's temperature fluctuations were calculated. A wrinkled laminar flame structure was noted in the reaction zone, where the scalar field was anisotropic and where the temperature fluctuations exhibited peak values. The Bray, Moss and Libby model (1985) was successful in predicting the temperature fluctuation intensity and the dissipation ratios, the latter reaching peak values in the flame tip region.

  18. Spatial perturbation of a wing-tip vortex using pulsed span-wise jets

    Science.gov (United States)

    Heyes, A. L.; Smith, D. A. R.

    The separation distance required between transport aircraft to avoid wake vortices remains a limiting factor on airport capacity. The dissipation of the wake can be accelerated by perturbing co-operative instabilities between multiple pairs of vortices. This paper presents the results of a preliminary experimental investigation into the use of pulsed span-wise air jets in the wing tip to perturb a single tip vortex in the very near field. Velocity measurements were made using PIV and hot-wire anemometry. The results demonstrate that the vortex position can be modulated at frequencies up to 50 Hz and, as such, the method shows promise for forcing instability in multiple vortex wakes.

  19. A - a view in the invisible

    Directory of Open Access Journals (Sweden)

    Ristić Slavica

    2013-01-01

    Full Text Available Flow visualization is an important topic in, experimental and computational fluid dynamics and has been the subject of research for many years. This paper presents an overview of flow visualization techniques. The physical basis and applications of different visualization methods for subsonic, transonic and supersonic flow in wind and water tunnels are described: direct injection methods, (smoke, dye, fog and different small particles, gas and hydrogen bubbles, , flow visualization by tufts, oil, liquid crystals, pressure and temperature sensitive paints, shadow, schlieren, interferometry, Laser Doppler Anemometry, Particle Image Velocimetry and other special techniques. Almost all presented photos have been recorded during tests in laboratories of MTI Belgrade.

  20. Turbulent Burning Velocities and Flame Straining in Explosions

    Science.gov (United States)

    Abdel-Gayed, R. G.; Al-Khishali, K. J.; Bradley, D.

    1984-02-01

    Turbulent burning velocities have been measured in an explosion bomb equipped with four high speed fans. Turbulent parameters were measured by laser doppler anemometry. The turbulent Reynolds numbers were significantly higher than in most previous measurements and high rates of strain were achieved until, ultimately, several of the flames quenched. Results are presented in terms of previously used dimensionless parameters plus a Lewis number and a dimensionless activation energy. The two-eddy theory of burning can allow for flame straining reductions in laminar burning velocity and experimental values of u_t/u_1 were compared with those from such a theory.

  1. Low intake valve lift in a port fuel-injected engine

    Energy Technology Data Exchange (ETDEWEB)

    Begg, S.M.; Hindle, M.P.; Cowell, T.; Heikal, M.R. [The Sir Harry Ricardo Laboratories, Centre for Automotive Engineering, Cockcroft Building, University of Brighton, Lewes Road, Brighton, East Sussex, BN2 4GJ (United Kingdom)

    2009-12-15

    A phenomenological study of the airflow and fuel spray interaction in a variable valve gasoline engine is presented. Experiments were performed in a steady-state flow rig fitted with a modified production cylinder head. The intake valve lift was varied manually. The mass flow rates of air and fuel through the test rig were adjusted to match typical engine operating conditions. Particle Image Velocimetry (PIV) and Laser Doppler Anemometry (LDA) measurements of the airflow showed the breakdown of a single, forward tumbling vortex-like structure into a pair of high-speed, turbulent jets at low valve lifts. Two transitional phases in the flow at the valve gap were identified for valve lifts less than 1.5 mm and greater than 3 mm. At the lower limit, a jet flapping instability was recorded. A port fuel injector (PFI) spray was characterised in a quiescent, chamber and within the test rig. High Speed Photography (HSP) and Phase Doppler Anemometry (PDA) were used to measure the effects of varying valve lift upon the fuel droplet characteristics. The in-cylinder measurements showed a reduction in mean droplet diameter of up to 50%, close to the valve gap, for peak valve lifts of less than 3 mm. (author)

  2. Development of instrumentation for measurements of two components of velocity with a single sensing element

    Science.gov (United States)

    Byers, C. P.; Fu, M. K.; Fan, Y.; Hultmark, M.

    2018-02-01

    A novel method of obtaining two orthogonal velocity components with high spatial and temporal resolution is investigated. Both components are obtained utilizing a single sensing nanoribbon by combining the two independent operating modes of classic hot wire anemometry and the newly discovered elastic filament velocimetry (EFV). In contrast to hot wire anemometry, EFV measures fluid velocity through correlating the fluid forcing with the internal strain of the wire. In order to utilize both modes of operation, a system that switches between the two operating modes is built and characterized, and the theoretically predicted sensing response time in water is compared to experimental results. The sensing system is capable of switching between the two modes of operation at a frequency of 100 kHz with minimal attenuation with an uncompensated repetition rate up to 3 kHz or up to 10 kHz utilizing modest signal compensation. While further characterization of the sensor performance in air is needed, this methodology enables a technique for obtaining well-resolved yet cost-efficient directional measurements of flow velocities which, for example, can be used for distributed measurements of velocity or measurements of turbulent stresses with excellent spatial resolution.

  3. Air speed and velocity measurements in a room with a sidewall jet

    Directory of Open Access Journals (Sweden)

    M. Hurnik

    2015-12-01

    Full Text Available In mixing ventilation systems, diffusers are often located on side walls and supply quasi-free air jets above the occupied zone. The data presented in this paper shows a new CFD 3D benchmark with two well-defined characteristic zones in the room, i.e., the quasi-free jet zone and the occupied zone. Measurement methods adequate for air velocity and speed measurement were applied: laser Doppler anemometry for the axial velocity component in the jet and low velocity thermal anemometry for the air speed in the occupied zone. Measurements were performed in a physical scale model (1:5 of the room. The kinematic similarity criterion was fulfilled by the equality of the Reynolds numbers in the model and in the prototype. To identify boundary conditions, additional measurements were carried out in the inlet region (as close as possible to the supply opening. The CFD results validation and reporting methods applicable for the benchmark data are proposed in Hurnik et al. (2015 [1].

  4. On the use of nuclear magnetic resonance to characterize vertical two-phase bubbly flows

    International Nuclear Information System (INIS)

    Lemonnier, H.; Jullien, P.

    2011-01-01

    Research highlights: → We provide a complete theory of the PGSE measurement in single and two-phase flow. → Friction velocity can be directly determinated from measured velocity distributions. → Fast determination of moments shorten PGSE process with small loss of accuracy. → Turbulent diffusion measurements agree well with known trends and existing models. → We think NMR can be a tool to benchmark thermal anemometry in two-phase flow. - Abstract: Since the pioneering work of who showed that NMR can be used to measure accurately the mean liquid velocity and void fraction in two-phase pipe flow, it has been shown that NMR signal can also characterize the turbulent eddy diffusivity and velocity fluctuations. In this paper we provide an in depth validation of these statements together with a clarification of the nature of the mean velocity that is actually measured by NMR PFGSE sequence. The analysis shows that the velocity gradient at the wall is finely space-resolved and allows the determination of the friction velocity in single-phase flows. Next turbulent diffusion measurements in two-phase flows are presented, analyzed and compared to existing data and models. It is believed that NMR velocity measurement is sufficiently understood that it can be utilized to benchmark thermal anemometry in two-phase flows. Theoretical results presented in this paper also show how this can be undertaken.

  5. Measurement in multiphase reacting flows

    Science.gov (United States)

    Chigier, N. A.

    1979-01-01

    A survey is presented of diagnostic techniques and measurements made in multiphase reacting flows. The special problems encountered by the presence of liquid droplets, soot and solid particles in high temperature chemically reacting turbulent environments are outlined. The principal measurement techniques that have been tested in spray flames are spark photography, laser anemometry, thermocouples and suction probes. Spark photography provides measurement of drop size, drop size distribution, drop velocity, and angle of flight. Photographs are analysed automatically by image analysers. Photographic techniques are reliable, inexpensive and proved. Laser anemometers have been developed for simultaneous measurement of velocity and size of individual particles in sprays under conditions of vaporization and combustion. Particle/gas velocity differentials, particle Reynolds numbers, local drag coefficients and direct measurement of vaporization rates can be made by laser anemometry. Gas temperature in sprays is determined by direct in situ measurement of time constants immediately prior to measurement with compensation and signal analysis by micro-processors. Gas concentration is measured by suction probes and gas phase chromatography. Measurements of particle size, particle velocity, gas temperature, and gas concentration made in airblast and pressure atomised liquid spray flames are presented.

  6. An Experimental and Computational Study of Multiphase Flow Behaviour in Circulating Fluidized Beds

    Energy Technology Data Exchange (ETDEWEB)

    Mathiesen, Vidar

    1997-12-31

    Gas/solid flows have been studied extensively, mainly because they are important in nuclear, chemical and petroleum industries. This thesis describes an experiment done at two different circulating fluidized bed systems. Laser Doppler anemometry (LDA) and phase Doppler anemometry (PDA) were used to measure mean and fluctuating velocity, diameter and solids concentration. A typical core-annulus flow was obtained in both cases. The measurements show a relative mean velocity as well as a relative fluctuating velocity between different particle sizes. An axial segregation by size and its variation with the superficial gas velocity are demonstrated. Significant radial segregation is found in both risers. A three-dimensional Computational Fluid Dynamics model was developed based on Eulerian description of the phases where the kinetic theory of granular flow is the basis of the turbulence modelling in the solid phases. There are one gas phase and any number of solid phases. Simulations of flow behaviour in two- and three-dimensions agree well with experiments and the model is able to handle axial segregation by size for different superficial gas velocities and particle size distributions. 107 refs., 79 figs., 6 tabs.

  7. Finite mixture model applied in the analysis of a turbulent bistable flow on two parallel circular cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Paula, A.V. de, E-mail: vagtinski@mecanica.ufrgs.br [PROMEC – Programa de Pós Graduação em Engenharia Mecânica, UFRGS – Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Möller, S.V., E-mail: svmoller@ufrgs.br [PROMEC – Programa de Pós Graduação em Engenharia Mecânica, UFRGS – Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil)

    2013-11-15

    This paper presents a study of the bistable phenomenon which occurs in the turbulent flow impinging on circular cylinders placed side-by-side. Time series of axial and transversal velocity obtained with the constant temperature hot wire anemometry technique in an aerodynamic channel are used as input data in a finite mixture model, to classify the observed data according to a family of probability density functions. Wavelet transforms are applied to analyze the unsteady turbulent signals. Results of flow visualization show that the flow is predominantly two-dimensional. A double-well energy model is suggested to describe the behavior of the bistable phenomenon in this case. -- Highlights: ► Bistable flow on two parallel cylinders is studied with hot wire anemometry as a first step for the application on the analysis to tube bank flow. ► The method of maximum likelihood estimation is applied to hot wire experimental series to classify the data according to PDF functions in a mixture model approach. ► Results show no evident correlation between the changes of flow modes with time. ► An energy model suggests the presence of more than two flow modes.

  8. The effect of surface roughness on the turbulence structure of a plane wall jet

    Science.gov (United States)

    Rostamy, N.; Bergstrom, D. J.; Sumner, D.; Bugg, J. D.

    2011-08-01

    In this paper, an experimental investigation of the turbulence characteristics of a plane wall jet over smooth and rough surfaces, using laser Doppler anemometry (LDA), is reported. The Reynolds number based on the slot height and exit velocity of the jet was approximately Re = 7500. A 36-grit sheet was used as the rough surface, creating a transitionally rough flow regime (44surface roughness on the Reynolds stress profiles. Comparisons between the present results and other LDA and hot-wire anemometry studies for a smooth surface indicate a similar behavior for the Reynolds stress profiles. However, the magnitudes of the peak values of the Reynolds stress were higher than in most previous studies due to the lower slot Reynolds number. The present results indicate that surface roughness does not appear to significantly modify the Reynolds stress profiles in the outer region of the jet except for a reduction in the level. In contrast, surface roughness modifies both the shape and magnitudes of the Reynolds stress profiles in the inner layer. Due to the much higher friction velocity for a rough surface, the magnitudes of both the streamwise and wall-normal Reynolds stress decrease in the inner region when normalized using inner scales compared to the smooth-wall values.

  9. Time-Resolved PIV for Space-Time Correlations in Hot Jets

    Science.gov (United States)

    Wernet, Mark P.

    2007-01-01

    Temporally Resolved Particle Image Velocimetry (TR-PIV) is being used to characterize the decay of turbulence in jet flows a critical element for understanding the acoustic properties of the flow. A TR-PIV system, developed in-house at the NASA Glenn Research Center, is capable of acquiring planar PIV image frame pairs at up to 10 kHz. The data reported here were collected at Mach numbers of 0.5 and 0.9 and at temperature ratios of 0.89 and 1.76. The field of view of the TR-PIV system covered 6 nozzle diameters along the lip line of the 50.8 mm diameter jet. The cold flow data at Mach 0.5 were compared with hotwire anemometry measurements in order to validate the new TR-PIV technique. The axial turbulence profiles measured across the shear layer using TR-PIV were thinner than those measured using hotwire anemometry and remained centered along the nozzle lip line. The collected TR-PIV data illustrate the differences in the single point statistical flow properties of cold and hot jet flows. The planar, time-resolved velocity records were then used to compute two-point space-time correlations of the flow at the Mach 0.9 flow condition. The TR-PIV results show that there are differences in the convective velocity and growth rate of the turbulent structures between cold and hot flows at the same Mach number.

  10. Molecular Rayleigh Scattering Diagnostic for Dynamic Temperature, Velocity, and Density Measurements

    Science.gov (United States)

    Mielke, Amy R.; Elam, Kristie A.; Sung, Chi-Jen

    2006-01-01

    A molecular Rayleigh scattering technique is developed to measure dynamic gas temperature, velocity, and density in unseeded turbulent flows at sampling rates up to 16 kHz. A high power CW laser beam is focused at a point in an air jet plume and Rayleigh scattered light is collected and spectrally resolved. The spectrum of the light, which contains information about the temperature and velocity of the flow, is analyzed using a Fabry-Perot interferometer. The circular interference fringe pattern is divided into four concentric regions and sampled at 1 and 16 kHz using photon counting electronics. Monitoring the relative change in intensity within each region allows for measurement of gas temperature and velocity. Independently monitoring the total scattered light intensity provides a measure of gas density. A low speed heated jet is used to validate the measurement of temperature fluctuations and an acoustically excited nozzle flow is studied to validate velocity fluctuation measurements. Power spectral density calculations of the property fluctuations, as well as mean and fluctuating quantities are presented. Temperature fluctuation results are compared with constant current anemometry measurements and velocity fluctuation results are compared with constant temperature anemometry measurements at the same locations.

  11. The use of real-time off-site observations as a methodology for increasing forecast skill in prediction of large wind power ramps one or more hours ahead of their impact on a wind plant.

    Energy Technology Data Exchange (ETDEWEB)

    Martin Wilde, Principal Investigator

    2012-12-31

    ABSTRACT Application of Real-Time Offsite Measurements in Improved Short-Term Wind Ramp Prediction Skill Improved forecasting performance immediately preceding wind ramp events is of preeminent concern to most wind energy companies, system operators, and balancing authorities. The value of near real-time hub height-level wind data and more general meteorological measurements to short-term wind power forecasting is well understood. For some sites, access to onsite measured wind data - even historical - can reduce forecast error in the short-range to medium-range horizons by as much as 50%. Unfortunately, valuable free-stream wind measurements at tall tower are not typically available at most wind plants, thereby forcing wind forecasters to rely upon wind measurements below hub height and/or turbine nacelle anemometry. Free-stream measurements can be appropriately scaled to hub-height levels, using existing empirically-derived relationships that account for surface roughness and turbulence. But there is large uncertainty in these relationships for a given time of day and state of the boundary layer. Alternatively, forecasts can rely entirely on turbine anemometry measurements, though such measurements are themselves subject to wake effects that are not stationary. The void in free-stream hub-height level measurements of wind can be filled by remote sensing (e.g., sodar, lidar, and radar). However, the expense of such equipment may not be sustainable. There is a growing market for traditional anemometry on tall tower networks, maintained by third parties to the forecasting process (i.e., independent of forecasters and the forecast users). This study examines the value of offsite tall-tower data from the WINDataNOW Technology network for short-horizon wind power predictions at a wind farm in northern Montana. The presentation shall describe successful physical and statistical techniques for its application and the practicality of its application in an operational

  12. Local parameters of air–water two-phase flow at a vertical T-junction

    Energy Technology Data Exchange (ETDEWEB)

    Monrós-Andreu, G., E-mail: gmonros@uji.es; Martínez-Cuenca, R., E-mail: rcuenca@uji.es; Torró, S., E-mail: torro@uji.es; Chiva, S., E-mail: schiva@uji.es

    2017-02-15

    Significant experimental work and modeling about vertical T-junction as a phase separator has been done for churn and annular flows, but a survey on the literature reveals a lack of experimental data regarding bubbly flow nor any phenomenological explanation to their behavior. The objective of this work is to extend the understanding of these junctions by obtaining complete datasets, i.e. of both gas and liquid, of the phase splitting process in bubbly flow conditions by means of conductivity needle probes, Laser Doppler anemometry and visual inspection. Measurements and observations of the phase split, as well as the vortex structure in a vertical T-junction with equal pipe diameters (52 mm inner diameter), are reported. Results suggest a relationship between the vortex structure and the efficiency of the junction as phase separator.

  13. Vortex breakdown in closed containers with polygonal cross sections

    International Nuclear Information System (INIS)

    Naumov, I. V.; Dvoynishnikov, S. V.; Kabardin, I. K.; Tsoy, M. A.

    2015-01-01

    The vortex breakdown bubble in the confined flow generated by a rotating lid in closed containers with polygonal cross sections was analysed both experimentally and numerically for the height/radius aspect ratio equal to 2. The stagnation point locations of the breakdown bubble emergence and the corresponding Reynolds number were determined experimentally and in addition computed numerically by STAR-CCM+ CFD software for square, pentagonal, hexagonal, and octagonal cross section configurations. The flow pattern and the velocity were observed and measured by combining the seeding particle visualization and the temporal accuracy of laser Doppler anemometry. The vortex breakdown size and position on the container axis were determined for Reynolds numbers, ranging from 1450 to 2400. The obtained results were compared with the flow structure in the closed container of cubical and cylindrical configurations. It is shown that the measured evolution of steady vortex breakdown is in close agreement with the numerical results

  14. A low speed two-dimensional study of flow separation on the GA(W)-1 airfoil with 30-percent chord Fowler flap

    Science.gov (United States)

    Seetharam, H. C.; Wentz, W. H., Jr.

    1977-01-01

    Measurements of flow fields with low speed turbulent boundary layers were made for the GA(W)-1 airfoil with a 0.30 c Fowler flap deflected 40 deg at angles of attack of 2.7 deg, 7.7 deg, and 12.8 deg, at a Reynolds number of 2.2 million, and a Mach number of 0.13. Details of velocity and pressure fields associated with the airfoil flap combination are presented for cases of narrow, optimum and wide slot gaps. Extensive flow field turbulence surveys were also conducted employing hot-film anemometry. For the optimum gap setting, the boundaries of the regions of flow reversal within the wake were determined by this technique for two angles of attack. Local skin friction distributions for the basic airfoil and the airfoil with flap (optimum gap) were obtained using the razor blade technique.

  15. ICALEO '89 - Optical methods in flow and particle diagnostics; Proceedings of the Meeting, Orlando, FL, Oct. 15-20, 1989

    Science.gov (United States)

    Long, Marshall B.

    Various papers on optical methods in flow and particle diagnostics are presented. Individual topics addressed include: swirl effects on confined flows in a model of a dump combustor, new analog optical method for data evaluation in laser Doppler anemometry, catadioptric optics for laser Doppler velocimeter applications, mapping of velocity flow field using the laser two-focus technique, engineering applications of particle image velocimeters, quantitative fluid flow analysis by laser velocimetry and numerical processing, optical analysis of particle image velocimetry data. Also discussed are: measuring turbulence in reversing flows by particle image velocimeter, two-color particle velocimetry, data evaluation in particle image velocimetry using spatial light modulator, statistical investigation of errors in particle image velocimetry, optimization of particle image velocimeters, visualization of internal structure in volumetric data, scalar measurements in two, three, and four dimensions.

  16. Toward the Experimental Characterization of an Unmanned Air System Flow Field

    Science.gov (United States)

    Velarde, John-Michael; Connors, Jacob; Glauser, Mark

    2017-11-01

    The velocity flow field around a small unmanned air system (sUAS) is investigated in a series of experiments at Syracuse University. Experiments are conducted in the 2'x2' sub-sonic wind tunnel at Syracuse University and the Indoor Flow Lab. The goal of these experiments is to gain a better understanding of the rich, turbulent flow field that a sUAS creates. Comparison to large, multi-rotor manned vehicles is done to gain a better understanding of the flow physics that could be occurring with the sUAS. Regions of investigation include the downwash, above the vehicle, and far downstream. Characterization of the flow is performed using hotwire anemometry. Investigation of several locations around the sUAS show that dominant frequencies exist within the flow field. Analysis of the flow field using power spectral density will be presented as well as looking at which parameters have an effect on these dominant frequencies.

  17. Prediction of flow in mix-proof valve by use of CFD - Validation by LDA

    DEFF Research Database (Denmark)

    Jensen, Bo Boye Busk; Friis, Alan

    2004-01-01

    was done on a spherical shaped mix-proof valve (MPV). Flow were predicted by Computational Fluid Dynamics (CFD) and validated by data obtained from experiments using laser sheet visualization and laser Doppler anemometry. Correction of the measured velocities and probe location was required as refraction......This study forms the basis to achieve quantitative knowledge on the link between hydrodynamics and good hygienic design of closed processing equipment. Knowledge offlowpatterns and parameters in process equipment are required to investigate effects of hydrodynamics on cleaning processes. This study......-wall region is shown. Fully 3D flow patterns were identified and valuable information was obtained for further investigations concerning prediction of cleanability in the MPV based on knowledge of the hydrodynamics herein....

  18. Development of Streamwise Counter-Rotating Vortices in Flat Plate Boundary Layer Pre-set by Leading Edge Patterns

    KAUST Repository

    Hasheminejad, S.M.

    2017-04-03

    Development of streamwise counter-rotating vortices induced by leading edge patterns with different pattern shape is investigated using hot-wire anemometry in the boundary layer of a flat plate. A triangular, sinusoidal and notched patterns with the same pattern wavelength λ of 15mm and the same pattern amplitude A of 7.5mm were examined for free-stream velocity of 3m/s. The results show a good agreement with earlier studies. The inflection point on the velocity profile downstream of the trough of the patterns at the beginning of the vortex formation indicates that the vortices non-linearly propagate downstream. An additional vortex structure was also observed between the troughs of the notched pattern.

  19. Quantitative, three-dimensional diagnostics of multiphase drop fragmentation via digital in-line holography.

    Science.gov (United States)

    Gao, Jian; Guildenbecher, Daniel R; Reu, Phillip L; Kulkarni, Varun; Sojka, Paul E; Chen, Jun

    2013-06-01

    Quantitative application of digital in-line holography (DIH) to characterize multiphase fragmentation is demonstrated. DIH is applied to record sequential holograms of the breakup of an ethanol droplet in an aerodynamic flow field. Various stages of the breakup process are recorded, including deformation, bag growth, bag breakup, and rim breakup. A recently proposed hybrid method is applied to extract the three-dimensional (3D) location and size of secondary droplets as well as the 3D morphology of the rim. Particle matching between sequential frames is used to determine the velocity. Coincidence with the results obtained from phase Doppler anemometry measurement demonstrates the accuracy of measurement by DIH and the hybrid method.

  20. Computational and Experimental Study of Sprays from the Breakup of Water Sheets

    DEFF Research Database (Denmark)

    Madsen, Jesper

    of droplet breakup and droplet-droplet collisions. The model is applied to calculate local values of droplet sizes and velocities produced by diesel-type, Y-jet, and hollow-cone sprays. The droplet velocity results for the diesel-type spray are well predicted. The droplet size and velocity results for the Y...... chamber. The CFD results compare favorably with experimental data of tangential and axial velocity distributions in the swirl chamber and static wall pressure. Experiments are carried out in order to obtain local quantities in water sprays from production-scale pressure-swirl and Y-jet atomizers. A two......-component phase Doppler anemometry (PDA) system is used for obtaining local values of droplet velocities and sizes. Experimental studies are conducted in sprays produced by nine different single-hole Y-jet atomizers with different operating conditions. Experiments concerned with the effects of atomizer geometry...

  1. Measurement of Turbulent Skin Friction Drag Coefficients Produced by Distributed Surface Roughness of Pristine Marine Coatings

    DEFF Research Database (Denmark)

    Zafiryadis, Frederik; Meyer, Knud Erik; Gökhan Ergin, F.

    Skin friction drag coefficients are determined for marine antifouling coatings in pristine condition by use of Constant Temperature Anemometry (CTA) with uni-directionalhot-wires. Mean flow behaviour for varying surface roughness is analysed in zero pressure gradient, flat plate, turbulentboundary...... drag coefficients as well as roughness Reynolds numbers for the various marine coatings across the range of Rex by fitting of the van Driest profile. The results demonstrate sound agreement with the present ITTC method for determining skin friction coefficients for practically smooth surfaces at low...... layers for Reynolds numbers from Rex =1:91x105 to Rex = 9:54x105. The measurements were conducted at the Technical University of Denmark in a closed-loop wind tunnel redesigned for investigations as this. Ensemble averages of the boundary layer velocity profiles allowed for determination of skin friction...

  2. Bubbly flow pressure drop in a T junction

    International Nuclear Information System (INIS)

    Boulanger, Fabien

    1991-01-01

    This research thesis reports a theoretical and experimental study of pressure evolution in the singularity of a T junction carrying a bubbly flow. The various involved phenomena are studied in the case of a single-phase flow. Thus, within the heart of the junction, the detailed study of the energy assessment leads to a kinetic modelling of pressure variations. In downstream branches, an integral model allows the prediction of flow restoration. A systematic experimental validation has been performed by using a two-component laser anemometry system, and through the determination of pressure lines. Then, the study has been extended to the case of bubbly flows. Obtained results are compared with experimental values of pressure evolution. By associating a phase segregation existing model, the problem of a bubbly flow in a T junction is then fully addressed [fr

  3. Comparing Pulsed Doppler LIDAR with SODAR and Direct Measurements for Wind Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, N. D.; Jonkman, B. J.; Scott, G. N.; Pichugina, Y. L.

    2007-07-01

    There is a pressing need for good wind-speed measurements at greater and greater heights to assess the availability of the resource in terms of power production and to identify any frequently occurring atmospheric structural characteristics that may create turbulence that impacts the operational reliability and lifetime of wind turbines and their components. In this paper, we summarize the results of a short study that compares the relative accuracies of wind speeds derived from a high-resolution pulsed Doppler LIDAR operated by the National Oceanic and Atmospheric Administration (NOAA) and a midrange Doppler SODAR with wind speeds measured by four levels of tower-based sonic anemometry up to a height of 116 m.

  4. Experimental Study of Boundary Layer Flow Control Using an Array of Ramp-Shaped Vortex Generators

    Science.gov (United States)

    Hirt, Stefanie M.; Zaman, Khairul B.M.Q.; Bencic, Tomothy J.

    2012-01-01

    The objective of this study was to obtain a database on the flowfield past an array of vortex generators (VGs) in a turbulent boundary layer. All testing was carried out in a low speed wind tunnel with a flow velocity of 29 ft/sec, giving a Reynolds number of 17,500 based on the width of the VG. The flowfield generated by an array of five ramp-shaped vortex generators was examined with hot wire anemometry and smoke flow visualization. The magnitude and extent of the velocity increase near the wall, the penetration of the velocity deficit into the core flow, and the peak streamwise vorticity are examined. Influence of various parameters on the effectiveness of the array is considered on the basis of the ability to pull high momentum fluid into the near wall region.

  5. The distribution of wall shear stress downstream of a change in roughness

    International Nuclear Information System (INIS)

    Loureiro, J.B.R.; Sousa, F.B.C.C.; Zotin, J.L.Z.; Silva Freire, A.P.

    2010-01-01

    In the present work, six different experimental techniques are used to characterize the non-equilibrium flow downstream of a rough-to-smooth step change in surface roughness. Over the rough surface, wall shear stress results obtained through the form drag and the Reynolds stress methods are shown to be mutually consistent. Over the smooth surface, reference wall shear stress data is obtained through two optical methods: linear velocity profiles obtained through laser-Doppler anemometry and a sensor surface, the diverging fringe Doppler sensor. The work shows that the two most commonly used methods to determine the wall shear stress, the log-law gradient method and the Reynolds shear stress method, are completely inappropriate in the developing flow region. Preston tubes, on the other hand, are shown to perform well in the region of a non-equilibrium flow.

  6. An experimental study of high contraction ratio, subsonic wind tunnel inlets

    Science.gov (United States)

    Caylor, M. J.; Batill, S. M.

    1984-01-01

    The inlet or contraction section has significant impact on the performance and operating characteristics of any subsonic wind tunnel. Previous experimental studies have been conducted to examine specific aspects of inlet performance and design. This work builds on this earlier experience by performing a comprehensive experimental analysis of a member of a family of high contraction ratio inlets used on indraft type wind tunnels. Quantitative flow field measurements were made using wall static ports, a five-hole pressure probe, and a hot wire anemometry system. Smoke flow visualization techniques were used to examine the inlet flow in a more qualitative manner and to correlate with quantitative measurements. This experimental investigation has provided insight into some of the many problems associated with inlet flows.

  7. Wind turbine performance: Methods and criteria for reliability of measured power curves

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, D.A. [Advanced Wind Turbines Inc., Seattle, WA (United States)

    1996-12-31

    In order to evaluate the performance of prototype turbines, and to quantify incremental changes in performance through field testing, Advanced Wind Turbines (AWT) has been developing methods and requirements for power curve measurement. In this paper, field test data is used to illustrate several issues and trends which have resulted from this work. Averaging and binning processes, data hours per wind-speed bin, wind turbulence levels, and anemometry methods are all shown to have significant impacts on the resulting power curves. Criteria are given by which the AWT power curves show a high degree of repeatability, and these criteria are compared and contrasted with current published standards for power curve measurement. 6 refs., 5 figs., 5 tabs.

  8. Two Stroke Diesel Engines for Large Ship Propulsion

    DEFF Research Database (Denmark)

    Haider, Sajjad

    on characterizing the confined swirling flow during the scavenging process. A simplified experimental model of an engine cylinder is developed. Smoke visualization results show that at fully open intake port there is a well-defined vortex core. The core size increases in a hollow conical shape along the flow...... downstream. As the port closes, the mixing of smoke particles in the core with surrounding regions is enhanced. The hollow conical smoke pattern disappears and resembles to a jet. Laser Doppler Anemometry measurements are conducted in the swirl generator and at the entrance to the test cylinder. The results...... experiment, the intake port is kept fully open and three different cylinder lengths are investigated. The results indicate that the incylinder flow is a concentrated vortex decaying downstream due to wall friction. The mean axial velocity has a wake-like profile. The radial velocity is very small compared...

  9. Micro analysis of fringe field formed inside LDA measuring volume

    International Nuclear Information System (INIS)

    Ghosh, Abhijit; Nirala, A K

    2016-01-01

    In the present study we propose a technique for micro analysis of fringe field formed inside laser Doppler anemometry (LDA) measuring volume. Detailed knowledge of the fringe field obtained by this technique allows beam quality, alignment and fringe uniformity to be evaluated with greater precision and may be helpful for selection of an appropriate optical element for LDA system operation. A complete characterization of fringes formed at the measurement volume using conventional, as well as holographic optical elements, is presented. Results indicate the qualitative, as well as quantitative, improvement of fringes formed at the measurement volume by holographic optical elements. Hence, use of holographic optical elements in LDA systems may be advantageous for improving accuracy in the measurement. (paper)

  10. MEASUREMENTS IN A LIQUID ATOMISER SPRAY USING THE PHASE-DOPPLER PARTICLE ANALYSER

    Directory of Open Access Journals (Sweden)

    R HADEF

    2000-12-01

    Full Text Available Experiments have been carried out at atmospheric conditions using a water atomiser spray. A phase Doppler anemometry was used to perform the measurements of the droplets size, their velocity and concentration, and photographs were taken.  The results showed that the small particles with low turbulence occupied the central core of the jet displaying a Gaussian profile for the axial velocity component.  The large particles were defected towards the outer edges of the jet, due to their higher initial momentum, and displayed relatively high levels of turbulence. The variables measured show that their spatial distributions were nearly symmetrical about the x-axis and although the number density of the droplets is very high in the centred region, most of the pulverised liquid was present in the edges of the spray.

  11. Hess Tower field study: sonic measurements at a former building-integrated wind farm site

    Science.gov (United States)

    Araya, Daniel

    2017-11-01

    Built in 2010, Hess Tower is a 29-story office building located in the heart of downtown Houston, TX. Unique to the building is a roof structure that was specifically engineered to house ten vertical-axis wind turbines (VAWTs) to partially offset the energy demands of the building. Despite extensive atmospheric boundary layer (ABL) wind tunnel tests to predict the flow conditions on the roof before the building was constructed, the Hess VAWTs were eventually removed after allegedly one of the turbines failed and fell to the ground. This talk presents in-situ sonic anemometry measurements taken on the roof of Hess Tower at the former turbine locations. We compare this wind field characterization to the ABL wind tunnel data to draw conclusions about building-integrated wind farm performance and prediction capability.

  12. On the Evolution of the Integral Length Scale in the Wake of Wind Turbines and within Wind Farms

    Science.gov (United States)

    Liu, Huiwen; Jin, Yaqing; Hayat, Imran; Chamorro, Leonardo P.

    2017-11-01

    Wind tunnel experiments were performed to characterize the evolution of integral length scale in the wake of a single turbine, and around wind farms. Hotwire anemometry was used to obtain high-resolution measurements of the streamwise velocity fluctuation at various locations. Negligible and high freestream turbulence levels were considered in the case of single turbine. The integral length scale along the rotor axis is found to grow nearly linearly with distance independent of the incoming turbulence levels, and appears to reach the incoming level in the high turbulence case at about 35-40 rotor diameters downstream. In the wind farm, results suggest that the distribution of integral length scale can be roughly described by a power-law growth with distance within consecutive turbines. Approximately past the third row, the integral length scale appears to reach equilibrium of the spatial distribution.

  13. Velocity profiles in idealized model of human respiratory tract

    Directory of Open Access Journals (Sweden)

    Jicha M.

    2013-04-01

    Full Text Available This article deals with numerical simulation focused on velocity profiles in idealized model of human upper airways during steady inspiration. Three r gimes of breathing were investigated: Resting condition, Deep breathing and Light activity which correspond to most common regimes used for experiments and simulations. Calculation was validated with experimental data given by Phase Doppler Anemometry performed on the model with same geometry. This comparison was made in multiple points which form one cross-section in trachea near first bifurcation of bronchial tree. Development of velocity profile in trachea during steady inspiration was discussed with respect for common phenomenon formed in trachea and for future research of transport of aerosol particles in human respiratory tract.

  14. In-cylinder velocity field measurements in a motored diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Cipolla, G.; Puglisi, A.; Vafidis, C.

    1987-01-01

    Measurements of three velocity components and of the corresponding turbulent fluctuations are reported obtained by laser Doppler anemometry in the cylinder of a FIAT-IVECO 8140 DI Diesel engine motored at 1000 rpm with a 16:1 compression ratio. The results show that the air swirl velocities at inlet valve closure are axially stratified while the intake-generated axial flow structures persist, although decaying, up to 70/sup 0/ BTDC when the squish effect transforms the in-cylinder flow structure. The presence of a flow towards the piston crevice is detected at 20/sup 0/ BTDC while at TDC of compression the formation of, at least, one toroidal vortex in the axial plane inside the piston bowl is detected. The findings of this investigation are compared with similar measurements in simplified engine configurations and reveal a satisfactory qualitative as well as quantitative agreement.

  15. Experimental analysis of the velocity field in an anular channel with helicoidal wire

    International Nuclear Information System (INIS)

    Lemos, M.J.S. de.

    1979-06-01

    In general, nuclear reactor fuel elements are rod bundles with coolant flowing axially among them. LMFBR's (Liquid Metal Fast Breeder Reactor) have wire wrapped fuel rods, with the wire working as spacer and mixer. The present work consists in the experimental analysis of the velocity field created by a typical LMFBR fuel rod placed in a cylinder, yielding an annular channel with helicoidal wire. Using hot wire anemometry, the main and secondary velocity fields were measured. The range for Re was from 2.2x 10 4 to 6.1x 10 4 , for air. The aspect ratio, P/D, and the lead-to-diameter ratio, 1/D, were 1.2 and 15, respectively. (Author) [pt

  16. Full-Volume, Three-Dimensional, Transient Measurements of Bubbly Flows Using Particle Tracking Velocimetry and Shadow Image Velocimetry Coupled with Pattern Recognition Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Yassin Hassan

    2001-11-30

    Develop a state-of-the-art non-intrusive diagnostic tool to perform simultaneous measurements of both the temporal and three-dimensional spatial velocity of the two phases of a bubbly flow. These measurements are required to provide a foundation for studying the constitutive closure relations needed in computational fluid dynamics and best-estimate thermal hydraulic codes employed in nuclear reactor safety analysis and severe accident simulation. Such kinds of full-field measurements are not achievable through the commonly used point-measurement techniques, such as hot wire, conductance probe, laser Doppler anemometry, etc. The results can also be used in several other applications, such as the dynamic transport of pollutants in water or studies of the dispersion of hazardous waste.

  17. ULTRAPLATE 24 month report and cost statement

    DEFF Research Database (Denmark)

    Jensen, Jens Dahl

    2003-01-01

    the tasks concluded so far, R&D in basic ultrasonic technologies and the feasibility of using them constructively in electrodeposition (WP 1) has been successfully concluded. An iterative study on process-microstructure-property relations for electrodeposits (WP 2), revealed improved filling behaviour of Ni......-electrodeposits in 3D-substrate structures with the use of high frequency ultrasound. The use of standing ultrasonic waves has been observed to have a strong influence on the composition of electrodeposited alloys. In the case of soft magnetic Ni-Fe alloys, which served as a model system, the composition...... as a model system for the investigation of the effects of low frequency (25 kHz) ultrasound. Analysis techniques used so far in the iterative studies (WP2) include Laser-Doppler Anemometry measurements, X-ray fluorescence analysis, light optical microscopy (LOM), Scanning Electron Microscopy (SEM...

  18. Velocity-intermittency structure for wake flow of the pitched single wind turbine under different inflow conditions

    Science.gov (United States)

    Crist, Ryan; Cal, Raul Bayoan; Ali, Naseem; Rockel, Stanislav; Peinke, Joachim; Hoelling, Michael

    2017-11-01

    The velocity-intermittency quadrant method is used to characterize the flow structure of the wake flow in the boundary layer of a wind turbine array. Multifractal framework presents the intermittency as a pointwise Hölder exponent. A 3×3 wind turbine array tested experimentally provided a velocity signal at a 21×9 downstream location, measured via hot-wire anemometry. The results show a negative correlation between the velocity and the intermittency at the hub height and bottom tip, whereas the top tip regions show a positive correlation. Sweep and ejection based on the velocity and intermittency are dominant downstream from the rotor. The pointwise results reflect large-scale organization of the flow and velocity-intermittency events corresponding to a foreshortened recirculation region near the hub height and the bottom tip.

  19. Survey of the mixing-layer experiments WAMIX and NAMIX

    International Nuclear Information System (INIS)

    Sigg, B.; Widmer, S.; Dury, T.V.

    1993-01-01

    A survey is given of work in progress in the Thermal-Hydraulics Laboratory on the water and sodium mixing-layer experiments WAMIX and NAMIX, as well as related developments of computational methods. This report describes the test rigs and experimental techniques, states the objectives of the research programme, presents design requirements for NAMIX together with initial results from WAMIX, and discusses questions of sensitivity of experiments and code calculations to external factors, such as inlet and boundary conditions, and noise. The use of visualisation techniques and Ultrasonic Doppler Anemometry in WAMIX has proved to be very helpful for the design of NAMIX. Furthermore, it is shown that the effect of external factors should be carefully analysed in order to obtain optimum performance of experiments and calculations. (author) 5 figs., 26 refs

  20. Full-Volume, Three-Dimensional, Transient Measurements of Bubbly Flows Using Particle Tracking Velocimetry and Shadow Image Velocimetry Coupled with Pattern Recognition Techniques

    International Nuclear Information System (INIS)

    Yassin Hassan

    2001-01-01

    Develop a state-of-the-art non-intrusive diagnostic tool to perform simultaneous measurements of both the temporal and three-dimensional spatial velocity of the two phases of a bubbly flow. These measurements are required to provide a foundation for studying the constitutive closure relations needed in computational fluid dynamics and best-estimate thermal hydraulic codes employed in nuclear reactor safety analysis and severe accident simulation. Such kinds of full-field measurements are not achievable through the commonly used point-measurement techniques, such as hot wire, conductance probe, laser Doppler anemometry, etc. The results can also be used in several other applications, such as the dynamic transport of pollutants in water or studies of the dispersion of hazardous waste

  1. Large-scale transport across narrow gaps in rod bundles

    Energy Technology Data Exchange (ETDEWEB)

    Guellouz, M.S.; Tavoularis, S. [Univ. of Ottawa (Canada)

    1995-09-01

    Flow visualization and how-wire anemometry were used to investigate the velocity field in a rectangular channel containing a single cylindrical rod, which could be traversed on the centreplane to form gaps of different widths with the plane wall. The presence of large-scale, quasi-periodic structures in the vicinity of the gap has been demonstrated through flow visualization, spectral analysis and space-time correlation measurements. These structures are seen to exist even for relatively large gaps, at least up to W/D=1.350 (W is the sum of the rod diameter, D, and the gap width). The above measurements appear to compatible with the field of a street of three-dimensional, counter-rotating vortices, whose detailed structure, however, remains to be determined. The convection speed and the streamwise spacing of these vortices have been determined as functions of the gap size.

  2. Experimental and numerical results on three-dimensional instabilities in a rotating disk-tall cylinder flow

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Gelfgat, A. Yu; Naumov, I. V.

    2009-01-01

    for each mode. The onset of three-dimensional flow behavior is measured by combining the high spatial resolution of particle image velocimetry and the temporal accuracy of laser Doppler anemometry. The results are compared to the numerical stability analysis. The measured onset of three dimensionality......The three-dimensional axisymmetry-breaking instability of axisymmetric flow between a rotating lid and a stationary cylinder is analyzed both numerically and experimentally for the case of tall cylinders with the height/radius aspect ratio between 3.3 and 5.5. A complete stability diagram...... for the primary three-dimensional instability is obtained experimentally and computed numerically. The instability sets in due to different three-dimensional disturbance modes that are characterized by different azimuthal wavenumbers. The critical Reynolds numbers and associated frequencies are identified...

  3. Measurement of droplet dynamics across grid spacer in mist cooling of subchannel of PWR

    International Nuclear Information System (INIS)

    Lee, S.L.; Sheen, H.J.; Cho, S.K.; Issapour, I.

    1984-01-01

    An experiment was conducted of the dynamics and heat transfer of a droplet-vapor mist flow across a test grid spacer in a flow channel of 2 x 2 electrically heated simulation fuel rods. Embedded thermocouples were used to measure the rod cladding temperature and an unshielded Chromel-Alumel thermocouple was transversed in the center of the subchannel to measure the temperature of the water and steam coolant phases at various axial locations. Thermocouples were also embedded in the test grid spacer. Optical measurements of the size and velocity distributions of droplets and the velocity distribution of the superheated steam were made by special laser-Doppler anemometry techniques through quartz glass windows immediately upstream and downstream of the test grid spacer. Experiments over a range of steam and injected water flow rates and rod heat flux have been performed and some representative results and discussions are presented

  4. Measuring wind on Mars: an overview of in situ sensing techniques

    Science.gov (United States)

    Wilson, C. F.

    2005-08-01

    Measurement of near-surface winds on Mars is doubly useful. It is scientifically important in that the near-surface winds control surface-atmosphere exchanges of water, dust, heat, and momentum; and vital for the safe landing of spacecraft. However, in situ measurement of wind is difficult due to the low density of the Martian atmosphere. There is an unusually broad variety of wind sensing techniques which are viable for use on Mars. Most past sensors have been of the hot-wire or hot-film type; however, dynamic pressure anemometers (e.g. windsocks or vanes) and ion drift anemometers have also been included on past missions. Two further promising techniques being developed for future Mars missions are ultrasonic and laser-doppler anemometry. We review the current status of sensors based on the different techniques, and suggest which may be most appropriate for the achievement of different science goals.

  5. Comparing DNS and Experiments of Subcritical Flow Past an Isolated Surface Roughness Element

    Science.gov (United States)

    Doolittle, Charles; Goldstein, David

    2009-11-01

    Results are presented from computational and experimental studies of subcritical roughness within a Blasius boundary layer. This work stems from discrepancies presented by Stephani and Goldstein (AIAA Paper 2009-585) where DNS results did not agree with hot-wire measurements. The near wake regions of cylindrical surface roughness elements corresponding to roughness-based Reynolds numbers Rek of about 202 are of specific concern. Laser-Doppler anemometry and flow visualization in water, as well as the same spectral DNS code used by Stephani and Goldstein are used to obtain both quantitative and qualitative comparisons with previous results. Conclusions regarding previous studies will be presented alongside discussion of current work including grid resolution studies and an examination of vorticity dynamics.

  6. Near-wall structure of a turbulent boundary layer with riblets

    Science.gov (United States)

    Choi, Kwing-So

    1989-11-01

    A detailed wind tunnel study has been carried out on the near-wall turbulence structure over smooth and riblet wall surfaces under zero pressure gradient. Time-average quantities as well as conditionally sampled profiles were obtained using hot-wire/film anemometry, along with a simultaneous flow visualization using the smoke-wire technique and a sheet of laser light. The experimental results indicated a significant change of the structure in the turbulent boundary layer near the riblet surface. The change was confined within a small volume of the flow close to the wall surface. A conceptual model for the sequence of the bursts was then proposed based on an extensive study of the flow visualization, and was supported by the results of conditionally sampled velocity fields. A possible mechanism of turbulent drag reduction by riblets is discussed.

  7. High-pressure effects on the structure and the dynamic of turbulent lean premixed methane-air flames; Etude des effets de la haute pression sur la structure et la dynamique des flammes turbulentes de premelange pauvre de methane-air

    Energy Technology Data Exchange (ETDEWEB)

    Lachaux, Th.

    2004-06-01

    This experimental study aims to show the influence of pressure on a turbulent lean premixed methane-air flame stabilized on a Bunsen type burner. The mean flow velocity and the equivalence ratio of the reactants are set at 2.1 m/s and 0.6. Velocity field and turbulence scales are determined using laser Doppler anemometry. Rayleigh scattering measurements give information on the flame front fluctuations. From 2D Mie scattering images, flame curvature, orientation angle, wrinkling length, density and combustion intensity are obtained. Flame surface density and combustion intensity are compared to the values obtained from the BML model. When pressure rises, both Taylor and Kolmogorov scales decrease with the kinematic viscosity but the integral scale remains constant. Moreover the structures of the flame front become smaller and sharper, increasing the flame surface density. (author)

  8. Antimicrobial activity of cream incorporated with silver nanoparticles biosynthesized from Withania somnifera.

    Science.gov (United States)

    Marslin, Gregory; Selvakesavan, Rajendran K; Franklin, Gregory; Sarmento, Bruno; Dias, Alberto C P

    2015-01-01

    We report on the antimicrobial activity of a cream formulation of silver nanoparticles (AgNPs), biosynthesized using Withania somnifera extract. Aqueous extracts of leaves promoted efficient green synthesis of AgNPs compared to fruits and root extracts of W. somnifera. Biosynthesized AgNPs were characterized for their size and shape by physical-chemical techniques such as UV-visible spectroscopy, laser Doppler anemometry, transmission electron microscopy, scanning electron microscopy, atomic force microscopy, X-ray diffraction, and X-ray energy dispersive spectroscopy. After confirming the antimicrobial potential of AgNPs, they were incorporated into a cream. Cream formulations of AgNPs and AgNO3 were prepared and compared for their antimicrobial activity against human pathogens (Staphylococcus aureus, Pseudomonas aeruginosa, Proteus vulgaris, Escherichia coli, and Candida albicans) and a plant pathogen (Agrobacterium tumefaciens). Our results show that AgNP creams possess significantly higher antimicrobial activity against the tested organisms.

  9. Interfacial shear modeling in two-phase annular flow

    International Nuclear Information System (INIS)

    Kumar, R.; Edwards, D.P.

    1996-07-01

    A new interfacial shear stress model called the law of the interface model, based on the law of the wall approach in turbulent flows, has been developed and locally applied in a fully developed, adiabatic, two-phase annular flow in a duct. Numerical results have been obtained using this model in conjunction with other models available in the literature that are required for the closure of the continuity and momentum equations. These results have been compared with droplet velocity data (using laser Doppler velocimetry and hot film anemometry), void fraction data (using gamma densitometry) and pressure drop data obtained in a R-134A refrigerant test facility. Droplet velocity results match the experimental data well, however, the prediction of the void fraction is less accurate. The poor prediction of void fraction, especially for the low void fraction cases, appears to be due to the lack of a good mechanistic model for entrainment

  10. The effect of fan-induced turbulence on the combustion of hydrogen-air mixtures

    International Nuclear Information System (INIS)

    Kumar, R.K.; Tamm, H.

    1984-01-01

    The effect of fan-induced turbulence on the combustion of hydrogen-air mixtures has been studied in a 2.3-m diameter sphere over a hydrogen concentration range of 4 to 42% (by volume). Two fans were used to produce the turbulence, which was measured at various lacations by hot-wire anemometry. For low hydrogen concentrations (< 7%), turbulence increases the rate and extent of combustion; for large turbulence intensities the extent of combustion approaches 100%, and combustion times are reduced by factors of 8 to 10 from those observed under quiescent conditions. At high hydrogen concentrations, the effect of turbulence on combustion time is less pronounced than at low hydrogen concentrations. Flame-generated turbulence has a significant effect on the combustion rate. (orig.)

  11. Experimental control of a fluidic pinball using genetic programming

    Science.gov (United States)

    Raibaudo, Cedric; Zhong, Peng; Noack, Bernd R.; Martinuzzi, Robert J.

    2017-11-01

    The wake stabilization of a triangular cluster of three rotating cylinders was investigated in the present study. Experiments were performed at Reynolds number Re 6000, and compared with URANS-2D simulations at same flow conditions. 2D2C PIV measurements and constant temperature anemometry were used to characterize the flow without and with actuation. Open-loop actuation was first considered for the identification of particular control strategies. Machine learning control was also implemented for the experimental study. Linear genetic programming has been used for the optimization of open-loop parameters and closed-loop controllers. Considering a cost function J based on the fluctuations of the velocity measured by the hot-wire sensor, significant performances were achieved using the machine learning approach. The present work is supported by the senior author's (R. J. Martinuzzi) NSERC discovery Grant. C. Raibaudo acknowledges the financial support of the University of Calgary Eyes-High PDF program.

  12. Errors in mean and fluctuating velocity due to PIV bias and precision uncertainties

    International Nuclear Information System (INIS)

    Wilson, B.; Smith, B.L.

    2011-01-01

    Particle Image Velocimetry is a powerful fluid velocity measurement tool that has recently become important for CFD validation experiments. Knowledge of experimental uncertainty is important to CFD validation, but the uncertainty of PIV is very complex and not well understood. Previous work has shown that PIV measurements can become 'noisy' in regions of high shear as well as regions of small displacement. This paper aims to demonstrate the impact of these effects on validation data by comparing PIV data to data acquired using hot-wire anemometry, which does not suffer from the same issues. It is confirmed that shear and insufficient particle displacements can result in elevated measurements of turbulence levels. (author)

  13. Investigation of a piezoelectric droplet delivery method for fuel injection and physical property evaluation

    Science.gov (United States)

    Zhao, Wei; Menon, Shyam

    2017-11-01

    A piezoelectric droplet generator is investigated to deliver liquid hydrocarbon fuels to a micro-combustor application. Besides fuel delivery, the setup is intended to measure fuel physical properties such as viscosity and surface tension. These properties are highly relevant to spray generation in internal combustion engines. Accordingly, a drop-on-demand piezoelectric dispenser is used to generate fuel droplet trains, which are studied using imaging and Phase Doppler Particle Anemometry (PDPA). The diagnostics provide information regarding droplet size and velocity and their evolution over time. The measurements are correlated with results from one-dimensional (1D) models that incorporate sub-models for piezo-electric actuation and droplet vaporization. By validating the 1D models for fuels with known physical properties, a technique is developed that has the capability to meter low-vapor pressure liquid fuels to the microcombustor and use information from the droplet train to calculate physical properties of novel fuels.

  14. New laser technology to determine present weather parameters

    Science.gov (United States)

    Ellis, R. A.; Sandford, A. P.; Jones, G. E.; Richards, J.; Petzing, J.; Coupland, J. M.

    2006-07-01

    Present weather sensors are becoming increasingly important as a means to augment networks of automated weather stations and extend the capability of manned observations. The classification of hydrometeors is one of the principal tasks that is addressed by present weather sensors. In this paper, we discuss a new laser-based technology for this purpose. The system improves upon current precipitation monitors by using a derivative of phase Doppler anemometry techniques to accurately determine particle speed and size. The instrument is also capable of distinguishing between liquid droplets and solid polycrystalline hydrometeors and can be used to estimate visibility. The incorporation of this technology into a meteorological station with other sensors, such as temperature and relative humidity probes, leads to the accurate classification of particle type. The example data shown are taken from tests in Leicestershire, England and Utah, USA and show the differences between solid and liquid precipitation events.

  15. Experimental study of the stabilization process of a non-premixed flame via the destabilization analysis of the blue ring flame

    Energy Technology Data Exchange (ETDEWEB)

    Pinguet, Guillaume; Escudie, Dany [Centre de Thermique de Lyon (CETHIL) UMR 5008 CNRS-INSA-UCBL, INSA de Lyon, 20 av. A. Einstein, 69621 Villeurbanne cedex (France)

    2007-04-15

    The flame stabilization phenomenon remains a crucial issue. The experimental study of flame stabilization behind a tulip-shaped flame-holder is addressed in this paper. The process leading to the transition between specific modes - the blue ring flame and the instable ring - of a non-premixed flame stabilized on a tulip-shaped bluff-body is detailed. The aim of this study is to provide an accurate description of the destabilization of specific combustion modes, which enables a further understanding of the entire stabilization mechanism. The aerodynamic and mixing fields are described by laser Doppler anemometry and concentration measurements by sampling probe respectively. The behaviour of shear layers developing at the wake and jet boundaries are characterized by means of a spectral analysis of the fluctuating radial velocity. Results show that the destabilization process is related to the intensification of hot gas recirculation, inducing an upheaval of the dynamical condition of stabilization and a transition of mixing phenomena. (author)

  16. Characterization of the unsteady flow in the nacelle region of a modern wind turbine

    DEFF Research Database (Denmark)

    Zahle, Frederik; Sørensen, Niels N.

    2011-01-01

    A three-dimensional Navier–Stokes solver has been used to investigate the flow in the nacelle region of a wind turbine where anemometers are typically placed to measure the flow speed and the turbine yaw angle. A 500 kW turbine was modelled with rotor and nacelle geometry in order to capture...... the complex separated flow in the blade root region of the rotor. A number of steady state and unsteady simulations were carried out for wind speeds ranging from 6 m s−1 to 16 m s−1 as well as two yaw and tilt angles. The flow in the nacelle region was found to be highly unsteady, dominated by unsteady vortex...... anemometry showed significant dependence on both yaw and tilt angles with yaw errors of up to 10 degrees when operating in a tilted inflow. Copyright © 2010 John Wiley & Sons, Ltd....

  17. Laser transit anemometer software development program

    Science.gov (United States)

    Abbiss, John B.

    1989-01-01

    Algorithms were developed for the extraction of two components of mean velocity, standard deviation, and the associated correlation coefficient from laser transit anemometry (LTA) data ensembles. The solution method is based on an assumed two-dimensional Gaussian probability density function (PDF) model of the flow field under investigation. The procedure consists of transforming the data ensembles from the data acquisition domain (consisting of time and angle information) to the velocity space domain (consisting of velocity component information). The mean velocity results are obtained from the data ensemble centroid. Through a least squares fitting of the transformed data to an ellipse representing the intersection of a plane with the PDF, the standard deviations and correlation coefficient are obtained. A data set simulation method is presented to test the data reduction process. Results of using the simulation system with a limited test matrix of input values is also given.

  18. Application of laser-optical diagnostics for the support of direct-injection gasoline combustion process development; Einsatz laseroptischer Messverfahren zur Unterstuetzung der Entwicklung von Brennverfahren mit Benzin-Direkteinspritzung

    Energy Technology Data Exchange (ETDEWEB)

    Hentschel, W.; Meyer, H.; Stiebels, B. [Volkswagenwerk AG, Wolfsburg (Germany). Abt. Forschung und Entwicklung

    2000-07-01

    The development of direct-injection gasoline engines at Volkswagen was supported strictly from the beginning by the means of optical diagnostics and CFD-simulations. Basic phenomena, such as the formation of the in-cylinder flow field, the penetration of the spray formed by a hollow-cone swirl-type injector at high fuel pressure, the interaction of spray and flow and the formation of an ignitable mixture were analysed in details. The paper describes the laser-optical techniques-particle-image-velocimetry, laser-Doppler-anemometry, videostroboscopy, high-speed cinematography and laser-induced fluorescence - which were used during the development of the DI gasoline combustion process. Examples taken from engines with optical access to the combustion chamber demonstrate the capability of the techniques and pinpoint where the design of the combustion process benefits from experimental and simulation investigations. (orig.) [German] Die Entwicklung von Ottomotoren mit Benzin-Direkteinspritzung wurde bei Volkswagen von Beginn an konsequent durch den Einsatz optischer Messverfahren und CFD-Simulationen unterstuetzt. Damit konnten grundlegende Phaenomene, wie die Ausbildung des Stroemungsfeldes im Motorbrennraum, die Ausbreitung des durch einen Hohlkegel-Drallinjektor unter hohem Druck eingespritzten Kraftstoffs sowie die Wechselwirkung der Luftstroemung im Zylinder mit den Einspritzstrahlen und die Bildung einer zuendfaehigen Ladungswolke detailliert untersucht werden. Das Paper beschreibt die laseroptischen Messverfahren - Particle-Image-Velocimetry, Laser-Doppler-Anemometry, Video-Stroboskopie, Hochgeschwindikgkeits-Kinematographie und Laserinduzierte Fluoreszenz - die bei der Brennverfahrensentwicklung eingesetzt werden und zeigt anhand einer Reihe von konkreten Beispielen, wo Antworten auf Grundsatzfragen zur Auslegung des Brennverfahrens durch Messergebnisse an optisch zugaenglichen Motoren und durch CFD-Simulationen erarbeitet werden koennen. (orig.)

  19. A comparison of near-surface potential temperature variance budgets for unstable atmospheric flows over vegetated and non-vegetated flat surfaces and a gentle slope

    Science.gov (United States)

    Hang, C.; Nadeau, D.; Pardyjak, E.; Parlange, M. B.

    2017-12-01

    Over the past decades, researchers have made much progress toward a fundamental understanding of the budgets of turbulence variables over flat and homogeneous terrain, and only more recently over complex terrain. However, temperature variance budgets, which are parameterized in most meteorological models, are still poorly understood even under relatively idealized conditions. In this work, we rely on near-surface turbulence observations collected as part of the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) program. Data collected in May 2013 in western Utah at three field sites subjected to similar large-scale forcing are analyzed: a desert playa (dry lakebed), characterized by a at surface devoid of vegetation; a vegetated site, characterized by at valley oor covered with greasewood vegetation, and a mountain terrain site with a slope angle of 2 -4° and covered by high-elevation vegetation. The analysis reveals the presence of a 5-m layer where the production and dissipation terms of potential temperature variance (θ2) drop rapidly below this level. During convective periods, vertical advection and turbulent transport of θ2 can often be non-negligible, in particular at Playa and Slope sites. In addition, within the 5-m layer, turbulent transport of θ2 acts as a sink term at all sites of interest. Neither the ratio of turbulent transport to production nor the ratio of production to dissipation show a stability dependence during the unstable periods studied. A short-period comparison of dissipation rates calculated using dissipation-scale resolving hot-wire/cold-wire anemometry and several common indirect methods using sonic anemometry is presented for data acquired at Playa site. The results indicates that the dissipation rates from all methods follow similar trends, however the magnitudes can differ by a factor of 2 - 3.

  20. Experimental study of the hydrodynamics and cluster formation in a Circulating Fluidized Bed. Annual report, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Gautam, M.; Johnson, E.

    1991-01-01

    A novel non-invasive gas-solid flow measuring technique being developed and tested for studying the hydrodynamics inside the riser of a Circulating Fluidized Bed (CFB). First of the two aims of the overall program, namely, design, development and testing of the technique to characterize the particle and gas velocities in two-phase flows was accomplished in the past year. The ``fringe-model`` laser Doppler anemometry concept has been modified and extended by using particles coated with a fluorescent dye and introducing a narrow band pass filter in the receiving optics. The technique permits optical discrimination between the scattered light (laser wavelength from undyed particles) and the fluorescence emission (longer wavelength). Results from extensive testing of various dye-solvent combinations, counter processor settings, signal-to noise optimization and subsequent flow measurements in the test section have shown that the technique can effectively discriminate between two classes of particles--the smaller seed particles for the gas phase data and the larger bed particles. Use of a two-watt Argon-Ion laser assisted in the non-intrusive probing of the gas-solid flow and in enhancing the signal-to-noise ratio. An uncertainty analysis of LDA measurements is presented. Design of the cold flow CFB model, presently under fabrication, is outlined in this report. The Plexiglas CFB model will be employed for the riser core-annular flow studies using the fluorescence-emission based laser-Doppler anemometry. The results from this study will present a unique detailed description of the complex gas-solid behavior in the CFB riser.

  1. Experimental study of the hydrodynamics and cluster formation in a Circulating Fluidized Bed

    Energy Technology Data Exchange (ETDEWEB)

    Gautam, M.; Johnson, E.

    1991-01-01

    A novel non-invasive gas-solid flow measuring technique being developed and tested for studying the hydrodynamics inside the riser of a Circulating Fluidized Bed (CFB). First of the two aims of the overall program, namely, design, development and testing of the technique to characterize the particle and gas velocities in two-phase flows was accomplished in the past year. The fringe-model'' laser Doppler anemometry concept has been modified and extended by using particles coated with a fluorescent dye and introducing a narrow band pass filter in the receiving optics. The technique permits optical discrimination between the scattered light (laser wavelength from undyed particles) and the fluorescence emission (longer wavelength). Results from extensive testing of various dye-solvent combinations, counter processor settings, signal-to noise optimization and subsequent flow measurements in the test section have shown that the technique can effectively discriminate between two classes of particles--the smaller seed particles for the gas phase data and the larger bed particles. Use of a two-watt Argon-Ion laser assisted in the non-intrusive probing of the gas-solid flow and in enhancing the signal-to-noise ratio. An uncertainty analysis of LDA measurements is presented. Design of the cold flow CFB model, presently under fabrication, is outlined in this report. The Plexiglas CFB model will be employed for the riser core-annular flow studies using the fluorescence-emission based laser-Doppler anemometry. The results from this study will present a unique detailed description of the complex gas-solid behavior in the CFB riser.

  2. Validation of a Computational Model for the SLS Core Stage Oxygen Tank Diffuser Concept and the Low Profile Diffuser - An Advanced Development Design for the SLS

    Science.gov (United States)

    Brodnick, Jacob; Richardson, Brian; Ramachandran, Narayanan

    2015-01-01

    The Low Profile Diffuser (LPD) project originated as an award from the Marshall Space Flight Center (MSFC) Advanced Development (ADO) office to the Main Propulsion Systems Branch (ER22). The task was created to develop and test an LPD concept that could produce comparable performance to a larger, traditionally designed, ullage gas diffuser while occupying a smaller volume envelope. Historically, ullage gas diffusers have been large, bulky devices that occupy a significant portion of the propellant tank, decreasing the tank volume available for propellant. Ullage pressurization of spacecraft propellant tanks is required to prevent boil-off of cryogenic propellants and to provide a positive pressure for propellant extraction. To achieve this, ullage gas diffusers must slow hot, high-pressure gas entering a propellant tank from supersonic speeds to only a few meters per second. Decreasing the incoming gas velocity is typically accomplished through expansion to larger areas within the diffuser which has traditionally led to large diffuser lengths. The Fluid Dynamics Branch (ER42) developed and applied advanced Computational Fluid Dynamics (CFD) analysis methods in order to mature the LPD design from and initial concept to an optimized test prototype and to provide extremely accurate pre-test predictions of diffuser performance. Additionally, the diffuser concept for the Core Stage of the Space Launch System (SLS) was analyzed in a short amount of time to guide test data collection efforts of the qualification of the device. CFD analysis of the SLS diffuser design provided new insights into the functioning of the device and was qualitatively validated against hot wire anemometry of the exterior flow field. Rigorous data analysis of the measurements was performed on static and dynamic pressure data, data from two microphones, accelerometers and hot wire anemometry with automated traverse. Feasibility of the LPD concept and validation of the computational model were

  3. A laser-based study of kerosine evaporation and -mixing for lean prevaporized combustion at elevated pressure; Lasermesstechnische Untersuchung der Kerosinverdampfung und -mischung fuer die magere Vormischverbrennung unter erhoehtem Druck

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, M.

    1999-05-01

    The evaporation and mixing of a kerosine spray in the turbulent airstream of a prevaporizer is investigated at conditions prevailing in the combustion chamber of gas turbines. An experiment is described that allows to study an evaporating fuel spray downstream a prefilming airblast atomizer with Phase-Doppler anemometry, laser-induced fluorescence and an infrared light absorption technique. At an air pressure of 9 bars, an air temperature of 750 K, a mean air velocity of 120 m/s and a fuel flow rate of 1 g/s the kerosine spray evaporates completely without autoignition. At this operating condition the parameters air pressure, air temperature and air turbulence are varied. The influence of these parametric variations on the dropsize distribution, the evaporation rate and the concentration profiles of liquid and evaporated fuel is presented and discussed. (orig.) [German] Die Verdampfung und Vermischung eines Kerosinsprays in der turbulenten Luftstroemung eines Vorverdampfers wird unter Bedingungen untersucht, die in Brennkammern fuer Gasturbinen vorherrschen. Ein Experiment wird vorgestellt, welches es erlaubt, ein verdampfendes Kraftstoffspray stromab eines ebenen Luftstromzerstaeubers mit Filmleger mittels der Phasen-Doppler-Anemometrie, Laser-induzierter Fluoreszenz und einer Infrarotabsorptionsmesstechnik zu untersuchen. Bei einem Luftdruck von 9 bar, einer Vorwaermetemperatur der Luft von 750 K, einer mittleren Luftgeschwindigkeit von 120 m/s und einem Kraftstoffmassenstrom von 1 g/s verdampft das Kerosinspray vollstaendig, ohne die Selbstzuendungszeit zu erreichen. Bei dieser Betriebsbedingung werden die Parameter Luftdruck, Lufttemperatur und Turbulenzgrad variiert. Der Einfluss dieser Parameter auf das Tropfengroessenspektrum, den Verdampfungsgrad und die Konzentrationsprofile des fluessigen sowie des verdampften Kraftstoffs wird dargestellt und diskutiert. (orig.)

  4. Temporally resolved PIV for space time correlations in both cold and hot jet flows

    Science.gov (United States)

    Wernet, Mark P.

    2007-05-01

    Temporally resolved particle image velocimetry (TR-PIV) is the newest and most exciting tool recently developed to support our continuing efforts to characterize and improve our understanding of the decay of turbulence in jet flows—a critical element for understanding the acoustic properties of the flow. A new TR-PIV system has been developed at the NASA Glenn Research Center which is capable of acquiring planar PIV image frame pairs at up to 25 kHz. The data reported here were collected at Mach numbers of 0.5 and 0.9 and at temperature ratios of 0.89 and 1.76. The field of view of the TR-PIV system covered six nozzle diameters along the lip line of the 50.8 mm diameter jet. The cold flow data at Mach 0.5 were compared with hotwire anemometry measurements in order to validate the new TR-PIV technique. The axial turbulence profiles measured across the shear layer using TR-PIV were thinner than those measured using hotwire anemometry and remained centred along the nozzle lip line. The collected TR-PIV data illustrate the differences in the single point statistical flow properties of cold and hot jet flows. The planar, time-resolved velocity records were then used to compute two-point space-time correlations of the flow at the Mach 0.9 flow condition. The TR-PIV results show that there are differences in the convective velocity and growth rate of the turbulent structures between cold and hot flows at the same Mach number.

  5. High-resolution hot-film measurement of surface heat flux to an impinging jet

    Science.gov (United States)

    O'Donovan, T. S.; Persoons, T.; Murray, D. B.

    2011-10-01

    To investigate the complex coupling between surface heat transfer and local fluid velocity in convective heat transfer, advanced techniques are required to measure the surface heat flux at high spatial and temporal resolution. Several established flow velocity techniques such as laser Doppler anemometry, particle image velocimetry and hot wire anemometry can measure fluid velocities at high spatial resolution (µm) and have a high-frequency response (up to 100 kHz) characteristic. Equivalent advanced surface heat transfer measurement techniques, however, are not available; even the latest advances in high speed thermal imaging do not offer equivalent data capture rates. The current research presents a method of measuring point surface heat flux with a hot film that is flush mounted on a heated flat surface. The film works in conjunction with a constant temperature anemometer which has a bandwidth of 100 kHz. The bandwidth of this technique therefore is likely to be in excess of more established surface heat flux measurement techniques. Although the frequency response of the sensor is not reported here, it is expected to be significantly less than 100 kHz due to its physical size and capacitance. To demonstrate the efficacy of the technique, a cooling impinging air jet is directed at the heated surface, and the power required to maintain the hot-film temperature is related to the local heat flux to the fluid air flow. The technique is validated experimentally using a more established surface heat flux measurement technique. The thermal performance of the sensor is also investigated numerically. It has been shown that, with some limitations, the measurement technique accurately measures the surface heat transfer to an impinging air jet with improved spatial resolution for a wide range of experimental parameters.

  6. Curcumin Encapsulated into Methoxy Poly(Ethylene Glycol) Poly(ε-Caprolactone) Nanoparticles Increases Cellular Uptake and Neuroprotective Effect in Glioma Cells.

    Science.gov (United States)

    Marslin, Gregory; Sarmento, Bruno Filipe Carmelino Cardoso; Franklin, Gregory; Martins, José Alberto Ribeiro; Silva, Carlos Jorge Ribeiro; Gomes, Andreia Ferreira Castro; Sárria, Marisa Passos; Coutinho, Olga Maria Fernandes Pereira; Dias, Alberto Carlos Pires

    2017-03-01

    Curcumin is a natural polyphenolic compound isolated from turmeric ( Curcuma longa ) with well-demonstrated neuroprotective and anticancer activities. Although curcumin is safe even at high doses in humans, it exhibits poor bioavailability, mainly due to poor absorption, fast metabolism, and rapid systemic elimination. To overcome these issues, several approaches, such as nanoparticle-mediated targeted delivery, have been undertaken with different degrees of success. The present study was conducted to compare the neuroprotective effect of curcumin encapsulated in poly( ε -caprolactone) and methoxy poly(ethylene glycol) poly( ε -caprolactone) nanoparticles in U251 glioblastoma cells. Prepared nanoparticles were physically characterized by laser doppler anemometry, transmission electron microscopy, and X-ray diffraction. The results from laser doppler anemometry confirmed that the size of poly( ε -caprolactone) and poly(ethylene glycol) poly( ε -caprolactone) nanoparticles ranged between 200-240 nm for poly( ε -caprolactone) nanoparticles and 30-70 nm for poly(ethylene glycol) poly( ε -caprolactone) nanoparticles, and transmission electron microscopy images revealed their spherical shape. Treatment of U251 glioma cells and zebrafish embryos with poly( ε -caprolactone) and poly(ethylene glycol) poly( ε -caprolactone) nanoparticles loaded with curcumin revealed efficient cellular uptake. The cellular uptake of poly(ethylene glycol) poly( ε -caprolactone) nanoparticles was higher in comparison to poly( ε -caprolactone) nanoparticles. Moreover, poly(ethylene glycol) poly( ε -caprolactone) di-block copolymer-loaded curcumin nanoparticles were able to protect the glioma cells against tBHP induced-oxidative damage better than free curcumin. Together, our results show that curcumin-loaded poly(ethylene glycol) poly( ε -caprolactone) di-block copolymer nanoparticles possess significantly stronger neuroprotective effect in U251 human glioma cells compared to

  7. The vertical structure of airflow turbulence characteristics within a boundary layer during wind blown sand transport over a beach

    Science.gov (United States)

    Lee, Z. S.; Baas, A. C.; Jackson, D.; Cooper, J. A.; Lynch, K.; Delgado-Fernandez, I.; Beyers, M.

    2010-12-01

    Recent studies have suggested the significant role of boundary layer turbulence and coherent flow structures on sand transport by wind over beaches and desert dunes. Widespread use of sonic anemometry and high-frequency sand transport sensors and traps have facilitated a move beyond the basic monitoring of shear velocities and bulk sediment transport to more detailed measurements at much higher spatio-temporal resolutions. In this paper we present results of a small-scale point-location field study of boundary layer turbulence and shear stresses conducted under obliquely onshore winds over a beach at Magilligan Strand, Northern Ireland. High-frequency (25 Hz) 3D wind vector measurements were collected at five different heights between 0.13 and 1.67 metres above the bed using sonic anemometry for durations of several hours, and the associated sand transport response was measured using an array of Safires. The wind data are used to investigate the vertical structure of Reynolds shear stresses and burst-sweep event characteristics, as well as a comparison with the standard logarithmic (law-of-the-wall) wind profile. The study explores the identification and selection of a characteristic event duration based on integral time-scales as well as spectral analysis, and includes an assessment of the issues involved with data rotations for yaw, pitch, and roll corrections relative to flow streamlines, and the subsequently derived turbulence parameters based on fluctuating vector components (u’, v’, w’). Results show how the contributions to shear stress and the average pitch of bursts and sweeps changes as a function of height above the bed, indicating the transformation of top-down turbulent eddies as they travel toward the surface. A comparison between the turbulence data and the synchronous sand transport events, meanwhile, reveals the potential effects of enhanced saltation layer roughness feedback on eddies close to the bed.

  8. Time Resolved PIV for Space-Time Correlations in Hot Jets

    Science.gov (United States)

    Wernet, Mark P.

    2007-01-01

    Temporally Resolved Particle Image Velocimetry (TR-PIV) is the newest and most exciting tool recently developed to support our continuing efforts to characterize and improve our understanding of the decay of turbulence in jet flows -- a critical element for understanding the acoustic properties of the flow. A new TR-PIV system has been developed at the NASA Glenn Research Center which is capable of acquiring planar PIV image frame pairs at up to 25 kHz. The data reported here were collected at Mach numbers of 0.5 and 0.9 and at temperature ratios of 0.89 and 1.76. The field of view of the TR-PIV system covered 6 nozzle diameters along the lip line of the 50.8 mm diameter jet. The cold flow data at Mach 0.5 were compared with hotwire anemometry measurements in order to validate the new TR-PIV technique. The axial turbulence profiles measured across the shear layer using TR-PIV were thinner than those measured using hotwire anemometry and remained centered along the nozzle lip line. The collected TR-PIV data illustrate the differences in the single point statistical flow properties of cold and hot jet flows. The planar, time-resolved velocity records were then used to compute two-point space-time correlations of the flow at the Mach 0.9 flow condition. The TR-PIV results show that there are differences in the convective velocity and growth rate of the turbulent structures between cold and hot flows at the same Mach number

  9. Streamline correction for the analysis of boundary layer turbulence

    Science.gov (United States)

    Lee, Zoë S.; Baas, Andreas C. W.

    2012-10-01

    Improvements in the design and affordability of ultrasonic anemometers have provided significant contributions to aeolian research, by facilitating high frequency monitoring of three dimensional wind velocities. From these data it is possible to calculate quasi-instantaneous Reynolds stresses to evaluate boundary layer turbulence, moving beyond time-averaged measures, such as shear velocity (U*). As ultrasonic anemometry is used more frequently in aeolian geomorphology it is important to question accepted conventions concerning data processing and analysis. This paper examines data processing questions associated with the application of ultrasonic anemometry to field studies in aeolian geomorphology, through an investigation of three streamline correction routines, the two-step, three-step and planar-fit methods, on data recorded on a gently sloping beach at Magilligan Strand, Northern Ireland in May 2010. The planar-fit technique has not previously been used in aeolian geomorphology. Results are compared with data that have been corrected only for wind direction (yaw). The effects that these different methods have on quadrant analysis and Reynolds stress calculation are discussed. Streamline correction is applied as a time-variable procedure using a characteristic timescale of 8 s following analysis of the resultant wind speed energy spectrum. It is found that Reynolds shear stress is dependent on streamline correction method, with run mean estimates of resultant horizontal shear stress ranging from 0.05 to 0.11 N m- 2 depending on the technique. The two-step method consistently maximises the shear stress and when the resultant horizontal shear is calculated, it produces the most robust estimate for application to aeolian research. In contrast, the different methods have little effect on the identification or sequencing of turbulent structures using quadrant analysis. Streamline correction is an essential processing step when using Reynolds decomposition, however

  10. Turbulence Measurements on a Flap-Edge Model

    Science.gov (United States)

    Moriarty, Patrick; Bradshaw, Peter; Cantwell, Brian; Ross, James

    1998-01-01

    Turbulence measurements have been made on a flap-edge and leading-edge slat model using hot-wire anemometry, and, later, particle image velocimetry. The properties of hot-wire anemometry were studied using facilities at NASA Ames Research Center. Hot-film probes were used because of their durability, but cross-films were limited by non-linear end effects. As a warm-up exercise, hot-film probes were used to measure velocities in the farfield wake of a cylinder with an airfoil in the near-field wake. The airfoil reduced the drag coefficient of the system by 10%. A single-wire hot-film probe was used to measure velocity profiles over the top of a NACA 63(sub 2)-215 Mod. B wing with a Fowler flap and leading,-edge slat. Results showed the size of slat wake was dependent upon the slat deflection angle. Velocity increased through the slat gap with increased deflection. The acoustically modified slat decreased the chance of separation. Measurements were taken at the flap edge with a single hot-film. Trends in the data indicate velocity and turbulence levels increase at the flap edge. The acoustically modified flap modifies the mean flow near the flap edge. Correlations were made between the hot-film signal and the unsteady pressure transducers on the wing which were published in a NASA CDTM. The principles of Particle Image Velocimetry (PIV) were studied at Florida State University. Spectral PIV was used to measure the spectra of a subsonic jet. Measured frequencies were close to the predicted frequency of jet shedding. Spectral PIV will be used to measure the spectra of the slat flow in the second 7 x lO-ft. wind tunnel test. PIV has an advantage that it can measure velocity and spectra of the entire flowfield instantaneously. However, problems arise when trying, to store this massive amount of PIV data. Support for this research has continued through a NASA Graduate Student Program Fellowship which will end in June 1999. The thesis should be completed by this time.

  11. Turbulence in rough-wall boundary layers: universality issues

    Science.gov (United States)

    Amir, Mohammad; Castro, Ian P.

    2011-08-01

    Wind tunnel measurements of turbulent boundary layers over three-dimensional rough surfaces have been carried out to determine the critical roughness height beyond which the roughness affects the turbulence characteristics of the entire boundary layer. Experiments were performed on three types of surfaces, consisting of an urban type surface with square random height elements, a diamond-pattern wire mesh and a sand-paper type grit. The measurements were carried out over a momentum thickness Reynolds number ( Re θ) range of 1,300-28,000 using two-component Laser Doppler anemometry (LDA) and hot-wire anemometry (HWA). A wide range of the ratio of roughness element height h to boundary layer thickness δ was covered (0.04 ≤ h/δ ≤ 0.40). The results confirm that the mean profiles for all the surfaces collapse well in velocity defect form up to surprisingly large values of h/δ, perhaps as large as 0.2, but with a somewhat larger outer layer wake strength than for smooth-wall flows, as previously found. At lower h/δ, at least up to 0.15, the Reynolds stresses for all surfaces show good agreement throughout the boundary layer, collapsing with smooth-wall results outside the near-wall region. With increasing h/δ, however, the turbulence above the near-wall region is gradually modified until the entire flow is affected. Quadrant analysis confirms that changes in the rough-wall boundary layers certainly exist but are confined to the near-wall region at low h/δ; for h/δ beyond about 0.2 the quadrant events show that the structural changes extend throughout much of the boundary layer. Taken together, the data suggest that above h/δ ≈ 0.15, the details of the roughness have a weak effect on how quickly (with rising h/δ) the turbulence structure in the outer flow ceases to conform to the classical boundary layer behaviour. The present results provide support for Townsend's wall similarity hypothesis at low h/δ and also suggest that a single critical roughness

  12. A framework about flow measurements by LDA–PDA as a spatio-temporal average: application to data post-processing

    International Nuclear Information System (INIS)

    Calvo, Esteban; García, Juan A; García, Ignacio; Aísa, Luis; Santolaya, José Luis

    2012-01-01

    Phase Doppler anemometry (PDA) is a well-established technique to study two-phase flows and its principles are also used in laser Doppler anemometry (LDA) for measurements of fluid velocity. Raw measurements of individual particle data require post-processing to obtain useful and consistent information (moments of velocity, particle concentration and flux, velocity autocorrelation, etc). This is called in this paper the reconstruction of statistical information. In the 1970s, several basic algorithms to perform the statistical reconstruction were developed for LDA measurements (such as the transit time method, the inverse velocity method, etc). With the advent of PDA, the scientific community developed reconstruction algorithms to obtain mean variables of the dispersed phase. All these basic algorithms were expounded as unconnected methods, following independent threads not integrated into a general framework. Assuming that the PDA works under ideal conditions (all particles that cross the probe volume are validated), this paper provides a general formulation and fully systematizes a large set of previous statistical reconstruction methods. In this paper, the statistical reconstruction of both the dispersed and the continuous phase is unified: the continuous phase post-processing emerges as the same reconstruction method of the dispersed phase. The general framework proposed offers many advantages. First, some previous calculation methods of particle concentration turn out to be particular cases of this general formulation. Second, it provides an easy way to deduce unbiased estimators of any statistical parameter of the flow. Third, a wide set of new post-processing methods are proposed to be tested by any member of the scientific community. In the fourth place, the generalized integral method to compute the particle concentration also gives information about the probe volume geometry and two new auto-calibration algorithms are proposed: the integral calibration

  13. Development of Pre-set Counter-rotating Streamwise Vortices in Wavy Channel

    KAUST Repository

    Budiman, A.C.

    2015-10-23

    Development of counter-rotating streamwise vortices in a rectangular channel with one-sided wavy surface has been experimentally quantified using hot-wire anemometry. The wavy surface has fixed amplitude of 3.75 mm. The counter-rotating vortices are pre-set by means of a sawtooth pattern cut at the leading edge of the wavy surface. Variations of the central streamwise velocity Uc with a channel gap H = 35 mm and 50 mm (corresponding to a Reynolds number from 1600 to 4400) change the instability of the flow which can be distinguished from the velocity contours at a certain spanwise plane. The streamwise velocity contours and turbulence intensity for Reynolds number Re = 3100 and H = 35 mm show the disappearance of the mushroom-like vortices prior to turbulence near the second peak of the wavy surface, while for higher Re, this phenomenon occurs earlier. Under certain conditions, for example, for Re = 4400 and H = 50 mm, the splitting of the vortices can also be observed.

  14. LDA measurements in the Francis-99 draft tube cone

    International Nuclear Information System (INIS)

    Sundstrom, L R J; Amiri, K; Cervantes, M J; Bergan, C; Dahlhaug, O G

    2014-01-01

    Velocity measurements were performed in the draft tube cone of a 1:5.1 scaled model of the Tokke hydropower plant, Norway; also known as the Francis-99 model. Results from the laser Doppler anemometry measurements undertaken at three operating points will be used as validation data for an upcoming workshop on the state of the art of Francis turbine numerical simulation. With the turbine operating at the best efficiency point, a sensitivity analysis of the flow parameters head, flow rate and runner rotational speed shows that the effects on the dimensionless velocity profiles are small as long as n ED and Q ED are held constant. The results indicate a well-functioning turbine at the best efficiency point and high load. At the part load operating point, a vortex breakdown occurs which distorts the velocity profiles and significantly lowers the turbine's hydraulic efficiency. Frequency spectrums of each LDA signal at part load reveals a peak which is asynchronous to that of the runner angular speed. The peaks might be related to the precession of a rotating vortex rope but the characteristics of the LDA signals are different compared to previous studies involving rotating vortex ropes

  15. Control of leading edge vortex breakdown by blowing

    Science.gov (United States)

    Visser, K. D.; Iwanski, K. P.; Nelson, R. C.; Ng, T. T.

    1988-01-01

    An investigation into the effects of using a jet of air to control the vortex breakdown position on a 70 degree delta wing is presented. The specific objectives focused on optimizing the blowing positions in terms of maximum lift increments obtained for minimum blowing rates. The tests were conducted at chord Reynolds numbers of 150,000, 200,000, and 250,000 at angles of incidence of 30 and 35 degrees. Visualization and force data is presented to show the effect of the jet on the wing aerodynamic characteristics. The results indicate a jet position located at and aligned parallel to the leading edge to be the optimum. Nearness to the apex and tangency to the upper surface were also crucial factors. The influence of the jet on the leading edge vortex structure was examined using laser Doppler anemometry. Velocity surveys through the vortex showed that at high blowing rates the parallel velocity in the outer swirling region of the vortex increased and the normal velocity decreased. This resulted in a decrease in the swirling angle in the outer region. The peak core velocity was reduced and the vortex breakdown was delayed.

  16. Direct Measurement Sensor of the Boundary Shear Stress in Fluid Flow

    Science.gov (United States)

    Badescu, Mircea; Bao, Xiaoqi; Bar-Cohen, Yoseph; Chang, Zensheu; Kerenyi, Kornel; Lih, Shyh-Shiuh; Sherrit, Stewart; Trease, Brian P.; Widholm, Scott

    2010-01-01

    The flow fields and boundary erosion that are associated with scour at bridge piers are very complex. Direct measurement of the boundary shear stress and boundary pressure fluctuations in experimental scour research has always been a challenge and high spatial resolution and fidelity have been almost impossible. Most researchers have applied an indirect process to determine shear stress using precise measured velocity profiles. Laser Doppler Anemometry and Particle Image Velocimetry are common techniques used to accurately measure velocity profiles. These methods are based on theoretical assumptions to estimate boundary shear stress. In addition, available turbulence models cannot very well account for the effect of bed roughness which is fundamentally important for any CFD simulation. The authors have taken on the challenge to advance the magnitude level to which direct measurements of the shear stress in water flow can be performed. This paper covered the challenges and the efforts to develop a higher accuracy and small spatial resolution sensor. Also, preliminary sensor designs and test results are presented.

  17. Evaluation and accuracy of the local velocity data measurements in an agitated vessel

    Directory of Open Access Journals (Sweden)

    Kysela Bohuš

    2014-03-01

    Full Text Available Velocity measurements of the flow field in an agitated vessel are necessary for the improvement and better understanding of the mixing processes. The obtained results are used for the calculations of the impeller pumping capacity, comparison of the power consumption etc. We performed various measurements of the local velocities in an agitated vessel final results of which should be processed for several purposes so it was necessary to make an analysis of the obtained data suitability and their quality. Analysed velocity data were obtained from the LDA (Laser Doppler Anemometry and PIV (Particle Image Velocimetry measurements performed on a standard equipment where the flat bottomed vessel with four baffles was agitated by the six-blade Rushton turbine. The results from both used methods were compared. The frequency analyses were examined as well as the dependency of the data rates, time series lengths etc. The demands for the data processed in the form of the ensemble-averaged results were also established.

  18. Time-resolved flow reconstruction with indirect measurements using regression models and Kalman-filtered POD ROM

    Science.gov (United States)

    Leroux, Romain; Chatellier, Ludovic; David, Laurent

    2018-01-01

    This article is devoted to the estimation of time-resolved particle image velocimetry (TR-PIV) flow fields using a time-resolved point measurements of a voltage signal obtained by hot-film anemometry. A multiple linear regression model is first defined to map the TR-PIV flow fields onto the voltage signal. Due to the high temporal resolution of the signal acquired by the hot-film sensor, the estimates of the TR-PIV flow fields are obtained with a multiple linear regression method called orthonormalized partial least squares regression (OPLSR). Subsequently, this model is incorporated as the observation equation in an ensemble Kalman filter (EnKF) applied on a proper orthogonal decomposition reduced-order model to stabilize it while reducing the effects of the hot-film sensor noise. This method is assessed for the reconstruction of the flow around a NACA0012 airfoil at a Reynolds number of 1000 and an angle of attack of {20}°. Comparisons with multi-time delay-modified linear stochastic estimation show that both the OPLSR and EnKF combined with OPLSR are more accurate as they produce a much lower relative estimation error, and provide a faithful reconstruction of the time evolution of the velocity flow fields.

  19. Review of air flow measurement techniques

    Energy Technology Data Exchange (ETDEWEB)

    McWilliams, Jennifer

    2002-12-01

    Airflow measurement techniques are necessary to determine the most basic of indoor air quality questions: ''Is there enough fresh air to provide a healthy environment for the occupants of the building?'' This paper outlines airflow measurement techniques, but it does not make recommendations for techniques that should be used. The airflows that will be discussed are those within a room or zone, those between rooms or zones, such as through doorways (open or closed) or passive vents, those between the building and outdoors, and those through mechanical air distribution systems. Techniques that are highlighted include particle streak velocimetry, hot wire anemometry, fan pressurization (measuring flow at a given pressure), tracer gas, acoustic methods for leak size determination, the Delta Q test to determine duct leakage flows, and flow hood measurements. Because tracer gas techniques are widely used to measure airflow, this topic is broken down into sections as follows: decay, pulse injection, constant injection, constant concentration, passive sampling, and single and multiple gas measurements for multiple zones.

  20. Development and application of laser Fourier densitometry for turbulence study at supersonic regimes

    International Nuclear Information System (INIS)

    Gemaux, Geraldine

    1990-01-01

    The Laser Fourier Densitometry (LFD) is an optical method appropriate for turbulent compressible flow observations. It use the Rayleigh scattering ant its heterodyne detection. This new method is non intrusive and needs no seeding. It provides an instantaneous signal proportional to the space Fourier transform amplitude of index distribution for a wave vector k defined by the optical arrangement. A compact optical bench, developed at Ecole Polytechnique (Paris) has been set, for the first time, in supersonic research facilities. The measurements are performed in two supersonic wake configurations (Mach numbers of 1.6 and 4.2), and also in a shock-wave/boundary layer interaction. These include wave number and frequential spectra of density fluctuations, acoustic waves, variations with position. Complementary measurements by hot wire anemometry allow to analyze velocity-temperature links and to perform comparisons and analysis of LFD results. Finally, the LFD bench is used as detector of laminar/turbulent transition in a hypersonic boundary layer. (author) [fr

  1. Experimental measurement and computational fluid dynamics simulation of mixing in a stirred tank: a review

    Directory of Open Access Journals (Sweden)

    K. Kiriamiti

    2010-02-01

    Full Text Available Stirred tanks are typically used in many reactions. The quality of mixing generated by the impellers can be determined using either experimental and simulation methods, or both methods. The experimental techniques have evolved from traditional approaches, such as the application of hot-wire anemometry, to more modern ones like laser Doppler velocimetry (LDV. Similarly, computational fluid dynamics (CFD simulation techniques have attracted a lot of attention in recent years in the study of the hydrodynamics in stirred tanks, compared to the empirical modelling approach. Studies have shown that the LDV technique can provide very detailed information on the spatio-temporal variations in a tank, but the method is costly. For this reason, CFD simulation techniques may be employed to provide such data at a lower cost. In recent years, both integrated experimental and CFD approaches have been used to determine flow field and to design various systems. Both CFD and LDV data reveal the existence of flow maldistribution caused by system design features, and these in turn show that the configurations that have, over the years, been regarded as standard may not provide the optimal operating conditions with regards to the system homogeneity and power consumption. The current trends in CFD studies point towards an increasing application of more refined grids, such as in large eddy simulation, to capture turbulent structures at microscales. This trend will further improve the quality of the simulation results for processes such as precipitation, in which micromixing and reaction kinetics are important.

  2. Mean and Turbulent Flow Statistics in a Trellised Agricultural Canopy

    Science.gov (United States)

    Miller, Nathan E.; Stoll, Rob; Mahaffee, Walter F.; Pardyjak, Eric R.

    2017-10-01

    Flow physics is investigated in a two-dimensional trellised agricultural canopy to examine that architecture's unique signature on turbulent transport. Analysis of meteorological data from an Oregon vineyard demonstrates that the canopy strongly influences the flow by channelling the mean flow into the vine-row direction regardless of the above-canopy wind direction. Additionally, other flow statistics in the canopy sub-layer show a dependance on the difference between the above-canopy wind direction and the vine-row direction. This includes an increase in the canopy displacement height and a decrease in the canopy-top shear length scale as the above-canopy flow rotates from row-parallel towards row-orthogonal. Distinct wind-direction-based variations are also observed in the components of the stress tensor, turbulent kinetic energy budget, and the energy spectra. Although spectral results suggest that sonic anemometry is insufficient for resolving all of the important scales of motion within the canopy, the energy spectra peaks still exhibit dependencies on the canopy and the wind direction. These variations demonstrate that the trellised-canopy's effect on the flow during periods when the flow is row-aligned is similar to that seen by sparse canopies, and during periods when the flow is row-orthogonal, the effect is similar to that seen by dense canopies.

  3. Three-Dimensional Mapping of Air Flow at an Urban Canyon Intersection

    Science.gov (United States)

    Carpentieri, Matteo; Robins, Alan G.; Baldi, Sandro

    2009-11-01

    In this experimental work both qualitative (flow visualisation) and quantitative (laser Doppler anemometry) methods were applied in a wind tunnel in order to describe the complex three-dimensional flow field in a real environment (a street canyon intersection). The main aim was an examination of the mean flow, turbulence and flow pathlines characterising a complex three-dimensional urban location. The experiments highlighted the complexity of the observed flows, particularly in the upwind region of the intersection. In this complex and realistic situation some details of the upwind flow, such as the presence of two tall towers, play an important role in defining the flow field within the intersection, particularly at roof level. This effect is likely to have a strong influence on the mass exchange mechanism between the canopy flow and the air aloft, and therefore the distribution of pollutants. This strong interaction between the flows inside and outside the urban canopy is currently neglected in most state-of-the-art local scale dispersion models.

  4. Investigation of Cooling Water Injection into Supersonic Rocket Engine Exhaust

    Science.gov (United States)

    Jones, Hansen; Jeansonne, Christopher; Menon, Shyam

    2017-11-01

    Water spray cooling of the exhaust plume from a rocket undergoing static testing is critical in preventing thermal wear of the test stand structure, and suppressing the acoustic noise signature. A scaled test facility has been developed that utilizes non-intrusive diagnostic techniques including Focusing Color Schlieren (FCS) and Phase Doppler Particle Anemometry (PDPA) to examine the interaction of a pressure-fed water jet with a supersonic flow of compressed air. FCS is used to visually assess the interaction of the water jet with the strong density gradients in the supersonic air flow. PDPA is used in conjunction to gain statistical information regarding water droplet size and velocity as the jet is broken up. Measurement results, along with numerical simulations and jet penetration models are used to explain the observed phenomena. Following the cold flow testing campaign a scaled hybrid rocket engine will be constructed to continue tests in a combusting flow environment similar to that generated by the rocket engines tested at NASA facilities. LaSPACE.

  5. Estimation of LDA signal frequency using the autocovariance (ACV) lag ratio method

    Science.gov (United States)

    Matovic, D.; Tropea, C.

    1989-08-01

    An algorithm to realize the ACV lag ratio method is introduced and applied to real Doppler signals as acquired using a transient recorder, and processed on a digital computer. Measurements using other time domain and frequency domain estimation techniques are also performed on the same data sets and compared using basic statistical parameters. Results are presented for comparisons with an estimate based on the power spectral density, since the time domain estimates investigated are unable to achieve meaningful results for signals with high noise content. The prospects of implementing the ACV lag ratio method in a dedicated processor are discussed and the potential advantages of such a processor are summarized. For applications in phase/Doppler anemometry, the cross-correlation of the two Doppler signals rather than the autocorrelation can be computed without having to modify the algorithm for frequency determination. Once the frequency is known, the phase difference can be immediately computed by examining the shift of the cross-correlation function maximum away from lag time zero. Thus both particle velocity and size can be recovered with no additional computation.

  6. Effects of finite hot-wire spatial resolution on turbulence statistics and velocity spectra in a round turbulent free jet

    Science.gov (United States)

    Sadeghi, Hamed; Lavoie, Philippe; Pollard, Andrew

    2018-03-01

    The effect of finite hot-wire spatial resolution on turbulence statistics and velocity spectra in a round turbulent free jet is investigated. To quantify spatial resolution effects, measurements were taken using a nano-scale thermal anemometry probe (NSTAP) and compared to results from conventional hot-wires with sensing lengths of l=0.5 and 1 mm. The NSTAP has a sensing length significantly smaller than the Kolmogorov length scale η for the present experimental conditions, whereas the sensing lengths for the conventional probes are larger than η. The spatial resolution is found to have a significant impact on the dissipation both on and off the jet centreline with the NSTAP results exceeding those obtained from the conventional probes. The resolution effects along the jet centreline are adequately predicted using a Wyngaard-type spectral technique (Wyngaard in J Sci Instr 1(2):1105-1108,1968), but additional attenuation on the measured turbulence quantities are observed off the centreline. The magnitude of this attenuation is a function of both the ratio of wire length to Kolmogorov length scale and the magnitude of the shear. The effect of spatial resolution is noted to have an impact on the power-law decay parameters for the turbulent kinetic energy that is computed. The effect of spatial filtering on the streamwise dissipation energy spectra is also considered. Empirical functions are proposed to estimate the effect of finite resolution, which take into account the mean shear.

  7. Holographic interferometry of high pressure

    International Nuclear Information System (INIS)

    McIlwain, M.E.

    1987-01-01

    Measurements in turbulent flows have been historically performed using various types of probes and optical diagnostic methods. In general, probes suffer from plasma perturbation effects and are single point determination methods. Optical methods appear to be better suited to determinations in turbulent flows, however interpretation of the resulting data can often be complex. Methods such as laser Doppler anemometry, which relies on entrained particles, suffers from the fact that particles small enough to be swept along by the plasma are usually melted or sublimed in the plasma. Light refraction or diffraction methods such as shadow photography, interferometry, and holography have also been used to observe plasma flows. These methods typically suffer from the difficulty of interpreting line of sight images and obtaining quantitative data. A new method based on multi-pass holographic interferometry will be discussed. This method has certain advantages which can significantly simplify the complexity of line of sight interferometry image deconvolution. When the method employs high speed cinematography, time resolved images of the plasma flow can be obtained. This method has been applied to both transferred and non-transferred arcs and various types of DC-plasma torch produced jets. These studies and conclusions as to the usefulness of the technique are presented

  8. Mean droplet size and local velocity in horizontal isothermal free jets of air and water, respectively, viscous liquid in quiescent ambient air

    Energy Technology Data Exchange (ETDEWEB)

    Al Rabadi, S.; Friedel, L. [Fluid Mechanics Institute, Technical University of Hamburg-Harburg (Germany); Al Salaymeh, A. [Mechanical Engineering Department, University of Jordan (Jordan)

    2007-01-15

    Measurements using two-dimensional Phase Doppler Anemometry as well as high speed cinematography in free jets at several nozzle exit pressures and mass flow rates, show that the Sauter mean droplet diameter decreases with increasing air and liquid-phase mass flow ratio due to the increase of the air stream impact on the liquid phase. This leads to substantial liquid fragmentation, respectively primary droplet breakup, and hence, satellite droplet formation with small sizes. This trend is also significant in the case of a liquid viscosity higher than that of water. The increased liquid viscosity stabilizes the droplet formation and breakup by reducing the rate of surface perturbations and consequently droplet distortions, ultimately also leading, in total, to the formation of smaller droplets. The droplet velocity decreases with the nozzle downstream distance, basically due to the continual air entrainment and due to the collisions between the droplets. The droplet collisions may induce further liquid fragmentation and, hence, formation of a number of relatively smaller droplets respectively secondary breakup, or may induce agglomeration to comparatively larger liquid fragments that may rain out of the free jet. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  9. Wind turbine power performance verification in complex terrain and wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Friis Pedersen, T.; Gjerding, S.; Ingham, P.; Enevoldsen, P.; Kjaer Hansen, J.; Kanstrup Joergensen, H.

    2002-04-01

    The IEC/EN 61400-12 Ed 1 standard for wind turbine power performance testing is being revised. The standard will be divided into four documents. The first one of these is more or less a revision of the existing document on power performance measurements on individual wind turbines. The second one is a power performance verification procedure for individual wind turbines. The third is a power performance measurement procedure of whole wind farms, and the fourth is a power performance measurement procedure for non-grid (small) wind turbines. This report presents work that was made to support the basis for this standardisation work. The work addressed experience from several national and international research projects and contractual and field experience gained within the wind energy community on this matter. The work was wide ranging and addressed 'grey' areas of knowledge regarding existing methodologies, which has then been investigated in more detail. The work has given rise to a range of conclusions and recommendations regarding: guaranties on power curves in complex terrain; investors and bankers experience with verification of power curves; power performance in relation to regional correction curves for Denmark; anemometry and the influence of inclined flow. (au)

  10. Boron nitride nanotubes coated with organic hydrophilic agents: Stability and cytocompatibility studies

    International Nuclear Information System (INIS)

    Ferreira, Tiago Hilário; Soares, Daniel Crístian Ferreira; Moreira, Luciana Mara Costa; Ornelas da Silva, Paulo Roberto; Gouvêa dos Santos, Raquel; Barros de Sousa, Edésia Martins

    2013-01-01

    In the present study, Boron Nitride Nanotubes (BNNTs) were synthesized and functionalized with organic hydrophilic agents constituted by glucosamine (GA), polyethylene glycol (PEG) 1000 , and chitosan (CH) forming new singular systems. Their size, distribution, and homogeneity were determined by photon correlation spectroscopy, while their surface charge was determined by laser Doppler anemometry. The morphology and structural organization were evaluated by Transmission Electron Microscopy. The functionalization was evaluated by Thermogravimetry analysis and Fourier Transformer Infrared Spectroscopy. The results showed that BNNTs were successfully obtained and functionalized, reaching a mean size and dispersity deemed adequate for in vitro studies. The in vitro stability tests also revealed a good adhesion of functionalized agents on BNNT surfaces. Finally, the in vitro cytocompatibility of functionalized BNNTs against MCR-5 cells was evaluated, and the results revealed that none of the different functionalization agents disturbed the propagation of normal cells up to the concentration of 50 μg/mL. Furthermore, in this concentration, no significantly chromosomal or morphologic alterations or increase in ROS (Reactive Oxygen Species) could be observed. Thus, findings from the present study reveal an important stability and cytocompatibility of functionalized BNNTs as new potential drugs or radioisotope nanocarriers to be applied in therapeutic procedures. - Highlights: • BNNTs were synthesized and functionalized with organic hydrophilic agents. • Hydrophilic molecules do not alter the biocompatibility profile of BNNTs. • No significantly chromosomal or morphologic alterations in ROS could be observed

  11. Boron nitride nanotubes coated with organic hydrophilic agents: Stability and cytocompatibility studies

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Tiago Hilário; Soares, Daniel Crístian Ferreira; Moreira, Luciana Mara Costa; Ornelas da Silva, Paulo Roberto [Serviço de Nanotecnologia, Centro de Desenvolvimento da Tecnologia Nuclear CDTN/CNEN, Avenida Presidente Antônio Carlos, 6.627, Campus da UFMG, Pampulha, CEP 31270-901 Belo Horizonte, Minas Gerais (Brazil); Gouvêa dos Santos, Raquel [Laboratório de Radiobiologia, Centro de Desenvolvimento da Tecnologia Nuclear CNEN/CDTN, Av. Presidente Antônio Carlos 6.627, Campus da UFMG, Pampulha, 31270-901 Belo Horizonte, Minas Gerais (Brazil); Barros de Sousa, Edésia Martins, E-mail: sousaem@cdtn.br [Serviço de Nanotecnologia, Centro de Desenvolvimento da Tecnologia Nuclear CDTN/CNEN, Avenida Presidente Antônio Carlos, 6.627, Campus da UFMG, Pampulha, CEP 31270-901 Belo Horizonte, Minas Gerais (Brazil)

    2013-12-01

    In the present study, Boron Nitride Nanotubes (BNNTs) were synthesized and functionalized with organic hydrophilic agents constituted by glucosamine (GA), polyethylene glycol (PEG){sub 1000}, and chitosan (CH) forming new singular systems. Their size, distribution, and homogeneity were determined by photon correlation spectroscopy, while their surface charge was determined by laser Doppler anemometry. The morphology and structural organization were evaluated by Transmission Electron Microscopy. The functionalization was evaluated by Thermogravimetry analysis and Fourier Transformer Infrared Spectroscopy. The results showed that BNNTs were successfully obtained and functionalized, reaching a mean size and dispersity deemed adequate for in vitro studies. The in vitro stability tests also revealed a good adhesion of functionalized agents on BNNT surfaces. Finally, the in vitro cytocompatibility of functionalized BNNTs against MCR-5 cells was evaluated, and the results revealed that none of the different functionalization agents disturbed the propagation of normal cells up to the concentration of 50 μg/mL. Furthermore, in this concentration, no significantly chromosomal or morphologic alterations or increase in ROS (Reactive Oxygen Species) could be observed. Thus, findings from the present study reveal an important stability and cytocompatibility of functionalized BNNTs as new potential drugs or radioisotope nanocarriers to be applied in therapeutic procedures. - Highlights: • BNNTs were synthesized and functionalized with organic hydrophilic agents. • Hydrophilic molecules do not alter the biocompatibility profile of BNNTs. • No significantly chromosomal or morphologic alterations in ROS could be observed.

  12. Surface obstacles in pulsatile flow

    Science.gov (United States)

    Carr, Ian A.; Plesniak, Michael W.

    2016-11-01

    Flows past obstacles mounted on flat surfaces have been widely studied due to their ubiquity in nature and engineering. For nearly all of these studies, the freestream flow over the obstacle was steady, i.e. constant velocity unidirectional flow. Unsteady, pulsatile flows occur frequently in biology, geophysics, biomedical engineering, etc. Our study is aimed at extending the comprehensive knowledge base that exists for steady flows to considerably more complex pulsatile flows. Beyond the important practical applications, characterizing the vortex and wake dynamics of flows around surface obstacles embedded in pulsatile flows can provide insights into the underlying physics in all wake and junction flows. In this study, we experimentally investigated the wake of four canonical surface obstacles: hemisphere, cube, and circular cylinders with aspect ratio of 1:1 and 2:1. Phase-averaged PIV and hot-wire anemometry are used to characterize the dynamics of coherent structures in the wake and at the windward junction of the obstacles. Complex physics occur during the deceleration phase of the pulsatile inflow. We propose a framework for understanding these physics based on self-induced vortex propagation, similar to the phenomena exhibited by vortex rings. This material is based in part upon work supported by the National Science Foundation under Grant Number CBET-1236351, and GW Centeor Biomimetics and Bioinspired Engineering (COBRE).

  13. Boron nitride nanotubes radiolabeled with ⁹⁹mTc: preparation, physicochemical characterization, biodistribution study, and scintigraphic imaging in Swiss mice.

    Science.gov (United States)

    Soares, Daniel Crístian Ferreira; Ferreira, Tiago Hilário; Ferreira, Carolina de Aguiar; Cardoso, Valbert Nascimento; de Sousa, Edésia Martins Barros

    2012-02-28

    In the present study, boron nitride nanotubes (BNNTs) were synthesized from an innovative process and functionalized with a glycol chitosan polymer in CDTN (Centro de Desenvolvimento da Tecnologia Nuclear) laboratories. As a means of studying their in vivo biodistribution behavior, these nanotubes were radiolabeled with (99m)Tc and injected in mice. Their size, distribution, and homogeneity were determined by photon correlation spectroscopy (PCS), while their zeta potential was determined by laser Doppler anemometry. The morphology and structural organization were evaluated by scanning electron microscopy (SEM). The functionalization in the nanotubes was evaluated by thermogravimetry analysis (TGA) and Fourier transformer infrared spectroscopy. The results showed that BNNTs were obtained and functionalized successfully, reaching a mean size and dispersity deemed adequate for in vivo studies. The BNNTs were also evaluated by ex vivo biodistribution studies and scintigraphic imaging in healthy mice. The results showed that nanostructures, after 24h, having accumulated in the liver, spleen and gut, and eliminated via renal excretion. The findings from this study reveal a potential application of functionalized BNNTs as new potential drugs or radioisotope nanocarriers to be applied in therapeutic procedures. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Liquid velocity in upward and downward air-water flows

    International Nuclear Information System (INIS)

    Sun Xiaodong; Paranjape, Sidharth; Kim, Seungjin; Ozar, Basar; Ishii, Mamoru

    2004-01-01

    Local characteristics of the liquid phase in upward and downward air-water two-phase flows were experimentally investigated in a 50.8-mm inner-diameter round pipe. An integral laser Doppler anemometry (LDA) system was used to measure the axial liquid velocity and its fluctuations. No effect of the flow direction on the liquid velocity radial profile was observed in single-phase liquid benchmark experiments. Local multi-sensor conductivity probes were used to measure the radial profiles of the bubble velocity and the void fraction. The measurement results in the upward and downward two-phase flows are compared and discussed. The results in the downward flow demonstrated that the presence of the bubbles tended to flatten the liquid velocity radial profile, and the maximum liquid velocity could occur off the pipe centerline, in particular at relatively low flow rates. However, the maximum liquid velocity always occurred at the pipe center in the upward flow. Also, noticeable turbulence enhancement due to the bubbles in the two-phase flows was observed in the current experimental flow conditions. Furthermore, the distribution parameter and the void-weighted area-averaged drift velocity were obtained based on the definitions

  15. Convection of wall shear stress events in a turbulent boundary layer

    Science.gov (United States)

    Pabon, Rommel; Mills, David; Ukeiley, Lawrence; Sheplak, Mark

    2017-11-01

    The fluctuating wall shear stress is measured in a zero pressure gradient turbulent boundary layer of Reτ 1700 simultaneously with velocity measurements using either hot-wire anemometry or particle image velocimetry. These experiments elucidate the patterns of large scale structures in a single point measurement of the wall shear stress, as well as their convection velocity at the wall. The wall shear stress sensor is a CS-A05 one-dimensional capacitice floating element from Interdisciplinary Consulting Corp. It has a nominal bandwidth from DC to 5 kHz and a floating element size of 1 mm in the principal sensing direction (streamwise) and 0.2 mm in the cross direction (spanwise), allowing the large scales to be well resolved in the current experimental conditions. In addition, a two sensor array of CS-A05 aligned in the spanwise direction with streamwise separations O (δ) is utilized to capture the convection velocity of specific scales of the shear stress through a bandpass filter and peaks in the correlation. Thus, an average wall normal position for the corresponding convecting event can be inferred at least as high as the equivalent local streamwise velocity. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138.

  16. Sauter mean diameter statistics of the starch dispersion atomized with hydraulic nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Naz, Muhammad Yasin, E-mail: yasin603@yahoo.com; Ariwahjoedi, Bambang, E-mail: bambang-ariwahjoedi@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Sulaiman, Shaharin Anwar, E-mail: shaharin@petronas.com.my [Department Mechanical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2015-07-22

    In the reported research work, the microscopic droplet velocity at different axial and radial locations downstream to the nozzle exit was studied by using a non-intrusive Laser Doppler Anemometry (LDA) techniques. These velocity measurements made in the viscous fluid spray sterams were used to predict the different breakup regimes in the flow. It was noticed that the droplet velocity decreased sharply downstream to the nozzle exit, whereas steady decrease in velocity was seen along the radial directions. For shorter injection time periods, the velocity downstream to the nozzle was not following the general breakup model. However, along the radial direction it exactly followed the discussed model. Along the spray centerline, the velocity was decreasing sharply even at far points from the nozzle exit. It was difficult to identify the core region, transition region and fully developed spray region in the flow. It revealed that the jet breakup was not completed yet and further disintegration was taking place along the spray centerline for shorter injection periods below 250 ms.

  17. Combined free-stream disturbance measurements and receptivity studies in hypersonic wind tunnels by means of a slender wedge probe and direct numerical simulation

    Science.gov (United States)

    Wagner, Alexander; Schülein, Erich; Petervari, René; Hannemann, Klaus; Ali, Syed R. C.; Cerminara, Adriano; Sandham, Neil D.

    2018-05-01

    Combined free-stream disturbance measurements and receptivity studies in hypersonic wind tunnels were conducted by means of a slender wedge probe and direct numerical simulation. The study comprises comparative tunnel noise measurements at Mach 3, 6 and 7.4 in two Ludwieg tube facilities and a shock tunnel. Surface pressure fluctuations were measured over a wide range of frequencies and test conditions including harsh test environments not accessible to measurement techniques such as pitot probes and hot-wire anemometry. Quantitative results of the tunnel noise are provided in frequency ranges relevant for hypersonic boundary layer transition. In combination with the experimental studies, direct numerical simulations of the leading-edge receptivity to fast and slow acoustic waves were performed for the slender wedge probe at conditions corresponding to the experimental free-stream conditions. The receptivity to fast acoustic waves was found to be characterized by an early amplification of the induced fast mode. For slow acoustic waves an initial decay was found close to the leading edge. At all Mach numbers, and for all considered frequencies, the leading-edge receptivity to fast acoustic waves was found to be higher than the receptivity to slow acoustic waves. Further, the effect of inclination angles of the acoustic wave with respect to the flow direction was investigated. The combined numerical and experimental approach in the present study confirmed the previous suggestion that the slow acoustic wave is the dominant acoustic mode in noisy hypersonic wind tunnels.

  18. Study of Pumping Capacity of Pitched Blade Impellers

    Directory of Open Access Journals (Sweden)

    I. Fořt

    2002-01-01

    Full Text Available A study was made of the pumping capacity of pitched blade impellers in a cylindrical pilot plant vessel with four standard radial baffles at the wall under a turbulent regime of flow. The pumping capacity was calculated from the radial profile of the axial flow, under the assumption of axial symmetry of the discharge flow. The mean velocity was measured using laser Doppler anemometry in a transparent vessel of diameter T = 400 mm, provided with a standard dished bottom. Three and six blade pitched blade impellers (the pitch angle varied within the interval a Îá24°; 45°ń of impeller/vessel diameter ratio D/T = 0.36, as well as a three blade pitched blade impeller with folded blades of the same diameter, were tested. The calculated results were compared with the results of experiments mentioned in the literature, above all in cylindrical vessels with a flat bottom. Both arrangements of the agitated system were described by the impeller energetic efficiency, i.e, a criterion including in dimensionless form both the impeller energy consumption (impeller power input and the impeller pumping effect (impeller pumping capacity. It follows from the results obtained with various geometrical configurations that the energetic efficiency of pitched blade impellers is significantly lower for configurations suitable for mixing solid-liquid suspensions (low impeller off bottom clearances than for blending miscible liquids in mixing (higher impeller off bottom clearances.

  19. Boundary Layer Flow Control by an Array of Ramp-Shaped Vortex Generators

    Science.gov (United States)

    Zaman, K. B. M. Q.; Hirt, S. M.; Bencic, T. J.

    2012-01-01

    Flow field survey results for the effect of ramp-shaped vortex generators (VG) on a turbulent boundary layer are presented. The experiments are carried out in a low-speed wind tunnel and the data are acquired primarily by hot-wire anemometry. Distributions of mean velocity and turbulent stresses as well as streamwise vorticity, on cross-sectional planes at various downstream locations, are obtained. These detailed flow field properties, including the boundary layer characteristics, are documented with the primary objective of aiding possible computational investigations. The results show that VG orientation with apex upstream, that produces a downwash directly behind it, yields a stronger pair of streamwise vortices. This is in contrast to the case with apex downstream that produces a pair of vortices of opposite sense. Thus, an array of VG s with the former orientation, usually considered for film-cooling application, may also be superior for mixing enhancement and boundary layer separation control. The data files can be found on a supplemental CD.

  20. Alternative methods of estimating hub-height wind speed for small wind turbine performance evaluation

    Science.gov (United States)

    Ziter, Brett

    Current industry standards for evaluating wind turbine power performance require erecting a meteorological mast on site to obtain reference measurements of hub-height wind speed. New considerations for small wind turbines (SWTs) offer the alternative of using an anemometer extending from a lower elevation on the turbine tower. In either case, SWT owners face questions and impracticalities when applying this standard in-situ. Alternative methods of predicting hub-height wind speed for SWT performance evaluation have been assessed experimentally using a Bergey XL.1 SWT collocated with a meteorological mast. Findings indicate that vertical extrapolation can increase the accuracy of tower-mounted anemometry for predicting hub-height wind speed. It is recommended to use concurrent wind speed measurements from anemometers at two elevations to develop site-specific wind shear parameters. Three-dimensional wind speed data from a sonic anemometer were used alongside a theoretical model to determine the optimal location for the topmost anemometer but results were inconclusive.

  1. Experimental investigation of acoustic agglomeration systems for fine particle control. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, D.T.; Lee, P.; Wegrzyn, J.; Chou, K.H.; Cheng, M.T.; Patel, S.

    1979-10-01

    The feasibility of using an acoustic agglomerator (AA) as a preconditioner in the upstream of conventional devices such as an electrostatic precipitator, a scrubber, a filter, or a cyclone are investigated. The objective is to agglomerate all finer particles into coarser ones in an acoustic agglomerator and then remove them more effectively by one of the conventional devices. Laboratory-scale experiments were performed using NH/sub 4/Cl and fly ash redispersed aerosols. Turbulence caused by intensive sound fields under standing-wave condition has been found to be extremely effective for aerosol agglomeration. The nature and the energy dissipation rate of the acoustic turbulence are determined by using hot-film (or hot-wire) anemometry and Fast Fourier Transform (FFT) data processing equipment. The root-mean-square turbulent velocity, which is directly proportional to acoustic agglomeration rate, is experimentally found to have a I/sup 1/2/(I: acoustic intensity) dependence, but is relatively independent of the acoustic frequency. The results obtained from this program show that acoustic agglomeration is effective as a particle pre-conditioner which can increase approximately one order of magnitude in mean particle diameter (2..mu..m ..-->.. 20..mu..m). As a flow-through standing wave device, it can be used to facilitate the removal of dust particles in a subsequent inertia base separation device.

  2. CFD simulations of a hydrocyclone in absence of an air core

    Directory of Open Access Journals (Sweden)

    Delgadillo J.A.

    2012-01-01

    Full Text Available Computational Fluid Dynamics (CFD is a versatile means to predict the characteristics of flow in fluid mechanics problems under a wide range of design and operating conditions . Applying the CFD in many engineering fields alleviates the problem of the usual engineering design. Recent advance in computational methods and computer technology make CFD an efficient means to study the dynamics of many physical systems. CFD simulations use three dimensional grid and the Reynolds Stress Model (RSM to investigate the flow without air core in a 6˝ hydrocyclone have been conducted using FLUENT. The numerical results are compared with the experimental data related to the Laser Doppler Anemometry (LDA measurements of velocity. In the experimental study, a new procedure is developed to reorient the laser beams that permit one to measure two velocity components at a single point using LDA. The conclusion developed from these experiments enables one to use the LDA directly in the hydrocyclone wall without recourse to auxiliary attachments such as an enclosing box that usually used to minimize the refraction effects of laser beams which are caused by the curved solid wall of the hydrocyclone and the refractive index of the test medium.

  3. Analysis of transient flows in gasoline direct injection systems: effects on unsteady air entrainment by the spray; Analyse des ecoulements transitoires dans les systemes d'injection directe essence: effets sur l'entrainement d'air instationnaire du spray

    Energy Technology Data Exchange (ETDEWEB)

    Delay, G.

    2005-03-15

    The aim of this study is to determine instantaneous liquid flow rate oscillations effect on non stationary air entrainment of an injector conical spray (Gasoline Direct Injection). The tools we use are either experimental or numerical ones. An instantaneous flow rate determination method is used. It is based on pulsated flows physics and only requires the velocity at the centerline of a pipe mounted just before the injector. So, it is possible to 'rebuild' the instantaneous velocity distributions and then to get the instantaneous liquid flow rate (Laser Doppler Anemometry measurements). A mechanical and hydraulics modeling software (AMESim) is necessary to get injector outlet flow rate. Simulations are validated by both 'rebuilding' method results and common rail pressure measurements. Fluorescent Particle Image Velocimetry (FPIV), suited to dense two -phase flows, is used to measure air flow around and inside the conical spray. Velocity measurements close to the spray frontier are used to compute instantaneous air entrainment. Considering droplets momentum exchange with air and thanks to droplets diameters and liquid velocities measurements at the nozzle exit, a transient air entrainment model is proposed according to FPIV measurements. (author)

  4. Sauter mean diameter statistics of the starch dispersion atomized with hydraulic nozzle

    Science.gov (United States)

    Naz, Muhammad Yasin; Sulaiman, Shaharin Anwar; Ariwahjoedi, Bambang

    2015-07-01

    In the reported research work, the microscopic droplet velocity at different axial and radial locations downstream to the nozzle exit was studied by using a non-intrusive Laser Doppler Anemometry (LDA) techniques. These velocity measurements made in the viscous fluid spray sterams were used to predict the different breakup regimes in the flow. It was noticed that the droplet velocity decreased sharply downstream to the nozzle exit, whereas steady decrease in velocity was seen along the radial directions. For shorter injection time periods, the velocity downstream to the nozzle was not following the general breakup model. However, along the radial direction it exactly followed the discussed model. Along the spray centerline, the velocity was decreasing sharply even at far points from the nozzle exit. It was difficult to identify the core region, transition region and fully developed spray region in the flow. It revealed that the jet breakup was not completed yet and further disintegration was taking place along the spray centerline for shorter injection periods below 250 ms.

  5. Spatially-resolved, three-dimensional spray characterization of impinging jets by digital in-line holography

    Science.gov (United States)

    Gao, Jian; Rodrigues, Neil; Sojka, Paul; Chen, Jun

    2014-11-01

    The impinging jet injector is a preferred method for the atomization of liquid rocket propellants. The majority of experimental studies in literature are not spatially-resolved due to the limitations of widely available point-wise and two-dimensional (2D) diagnostic techniques such as phase Doppler anemometry (PDA), which requires significant experimental repetitions to give spatially-resolved measurements. In the present study, digital in-line holography (DIH) is used to provide spatially-resolved, three-dimensional (3D) characteristics of impinging jet sprays. A double-exposure DIH setup is configured to measure droplet 3D, three-component velocity as well as the size distribution. The particle information is extracted by the hybrid method, which is recently proposed as a particle detection method. To enlarge the detection volume, two parallel, collimated laser beams are used to simultaneously probe the spray at two locations, and two identical cameras are used to record the corresponding holograms. Such a setup has a detection volume of approximately 20 cm by 3.6 cm by 4.8 cm. Sprays of both Newtonian and non-Newtonian liquids corresponding to regimes at relatively lower jet Reynolds and Weber numbers are investigated. Measurements from DIH are further verified by comparison with experimental data obtained from shadowgraph and PDA. It is revealed that DIH is particularly suitable to provide spatially-resolved, 3D measurements of impinging jet sprays that are not particularly dense.

  6. Chemical and physical reactions under thermal plasmas conditions

    International Nuclear Information System (INIS)

    Fauchais, P.; Vardelle, A.; Vardelle, M.; Coudert, J.F.

    1987-01-01

    Basic understanding of the involved phenomena lags far behind industrial development that requires now a better knowledge of the phenomena to achieve a better control of the process allowing to improve the quality of the products. Thus the authors try to precise what is their actual knowledge in the fields of: plasma generators design; plasma flow models with the following key points: laminar or turbulent flow, heat transfer to walls, 2D or 3D models, non equilibrium effects, mixing problems when chemical reactions are to be taken into account with very fast kinetics, electrode regions, data for transport properties and kinetic rates; nucleation problems; plasma flow characteristics measurements: temperature or temperatures and population of excited states (automatized emission spectroscopy, LIF, CARS) as well as flow velocity (LDA with small particles, Doppler effects...); plasma and particles momentum and heat transfer either with models taking into account particles size and injection velocity distributions, heat propagation, vaporization, Kundsen effect, turbulences ... or with measurements: particles velocity and flux distributions (Laser Anemometry) as well as surface temperature distributions (two colour pyrometry in flight statistical or not)

  7. An Inter-Comparison Study of Multi- and DBS Lidar Measurements in Complex Terrain

    Directory of Open Access Journals (Sweden)

    Lukas Pauscher

    2016-09-01

    Full Text Available Wind measurements using classical profiling lidars suffer from systematic measurement errors in complex terrain. Moreover, their ability to measure turbulence quantities is unsatisfactory for wind-energy applications. This paper presents results from a measurement campaign during which multiple WindScanners were focused on one point next to a reference mast in complex terrain. This multi-lidar (ML technique is also compared to a profiling lidar using the Doppler beam swinging (DBS method. First- and second-order statistics of the radial wind velocities from the individual instruments and the horizontal wind components of several ML combinations are analysed in comparison to sonic anemometry and DBS measurements. The results for the wind speed show significantly reduced scatter and directional error for the ML method in comparison to the DBS lidar. The analysis of the second-order statistics also reveals a significantly better correlation for the ML technique than for the DBS lidar, when compared to the sonic. However, the probe volume averaging of the lidars leads to an attenuation of the turbulence at high wave numbers. Also the configuration (i.e., angles of the WindScanners in the ML method seems to be more important for turbulence measurements. In summary, the results clearly show the advantages of the ML technique in complex terrain and indicate that it has the potential to achieve significantly higher accuracy in measuring turbulence quantities for wind-energy applications than classical profiling lidars.

  8. Is the nacelle mounted anemometer an acceptable option in performance testing?

    Energy Technology Data Exchange (ETDEWEB)

    Dahlberg, J.A. [FFA, The Aeronautical Research Inst. of Sweden, Bromma (Sweden); Frandsen, S.; Madsen, H.A; Antoniou, I.; Friis Pedersen, T. [Risoe National Lab., Roskilde (Denmark); Hunter, R. [RES, Renewable Energy Systems, Glasgow, Scotland (United Kingdom); Klug, H. [DEWI, Wilhelmshaven (Germany)

    1999-03-01

    Although the nacelle anemometer method has been used for power verification purposes for several years, it is only relatively recently that a full understanding of its limitations has emerged. the technique is totally dependent upon the assumption that the nacelle to free wind speed relationship established for a reference turbine in free air can be applied universally to other turbines. Facts emerged from research projects have shown that this assumption is unjustified. In the present paper facts are presented of which some have not been identified nor presented before. E.g. the effect related to wake conditions is novel as a phenomena and the size of the effect can be considerable. The analysis shows that the total error caused by the effects considered in this paper can, in the worst case reach unacceptable high values, 24%, but by taking precautionary measures the errors can be kept at acceptable low levels, 4%. It is found probable that the future use of nacelle anemometry for power performance verification will be subject to strong restrictions. (au)

  9. Velocity and size distribution measurement of suspension droplets using PDPA technique

    Science.gov (United States)

    Amiri, Shahin; Akbarnozari, Ali; Moreau, Christian; Dolatabadi, Ali

    2015-11-01

    The creation of fine and uniform droplets from a bulk of liquid is a vital process in a variety of engineering applications, such as atomization in suspension plasma spray (SPS) in which the submicron coating materials are injected to the plasma gas through the suspension droplets. The size and velocity of these droplets has a great impact on the interaction of the suspension with the gas flow emanating from a plasma torch and can consequently affect the mechanical and chemical properties of the resultant coatings. In the current study, an aqueous suspension of small glass particles (2-8 μm) was atomized by utilizing an effervescent atomizer of 1 mm orifice diameter which involves bubbling gas (air) directly into the liquid stream. The gas to liquid ratio (GLR) was kept constant at 6% throughout this study. The mass concentration of glass particles varied in the range between 0.5 to 5% in order to investigate the effect of suspension viscosity and surface tension on the droplet characteristics, such as velocity and size distributions. These characteristics were simultaneously measured by using a non-intrusive optical technique, Phase Doppler Particle Anemometry (PDPA), which is based on the light signal scattered from the droplets moving in a measurement volume. The velocity and size distribution of suspension droplets were finally compared to those of distilled water under identical conditions. The results showed a different atomization behaviors due to the reduction in surface tension of the suspension spray.

  10. Experimental Measurement of Small Scale Multirotor Flows

    Science.gov (United States)

    Connors, Jacob; Weiner, Joseph; Velarde, John-Michael; Glauser, Mark

    2017-11-01

    Work is being done to create a multirotor Unmanned Air Vehicle (UAV) based anemometer system that would allow for measurement of velocity and spectra in the atmospheric boundary layer. The flow from the UAV's rotors will impact such measurements and hence must be filtered. This study focuses on measuring the fluctuations of the velocity field in the flow both above and below various UAVs to determine first, the feasibility of the creation of the filter, and second, the optimal placement of the system on the body of the UAV. These measurements are taking place in both Syracuse University's subsonic wind tunnel and Skytop Turbulence Lab's Indoor Flow Lab. Constant Temperature Anemometry is being used to measure these velocity field fluctuations across a variety of UAVs with differing characteristics such as size, number of propellers, and rotor blade type. The data from these experiments is being used to define a method to estimate the filter band required to isolate noise from wake effects, and determine ideal sensor placement based on characteristics of the vehicle's design alone. The authors would like to thank The Center for Advanced Systems and Engineering (CASE) at Syracuse University for funding and supporting this work.

  11. Streamwise Evolution of Statistical Events in a Model Wind-Turbine Array

    Science.gov (United States)

    Viestenz, Kyle; Cal, Raúl Bayoán

    2016-02-01

    Hot-wire anemometry data, obtained from a wind-tunnel experiment containing a 3 × 3 model wind-turbine array, are used to conditionally average the Reynolds stresses. Nine profiles at the centreline behind the array are analyzed to characterize the turbulent velocity statistics of the wake flow. Quadrant analysis yields statistical events occurring in the wake of the wind farm where quadrants 2 and 4 produce ejections and sweeps, respectively. The scaled difference between these two events is expressed via the Δ R0 parameter and is based on the Δ S0 quantity as introduced by M. R. Raupach (J Fluid Mech 108:363-382, 1981). Δ R0 attains a maximum value at hub height and changes sign near the top of the rotor. The ratio of quadrant events of upward momentum flux to those of the downward flux, known as the exuberance, is examined and reveals the effect of root vortices persisting to eight rotor diameters downstream. These events are then associated with the triple correlation term present in the turbulent kinetic energy equation of the fluctuations where it is found that ejections play the dual role of entraining mean kinetic energy while convecting turbulent kinetic energy out of the turbine canopy. The development of these various quantities possesses significance in closure models, and is assessed in light of wake remediation, energy transport and power fluctuations, where it is found that the maximum fluctuation is about 30% of the mean power produced.

  12. Effects of Freestream Turbulence in a Model Wind Turbine Wake

    Directory of Open Access Journals (Sweden)

    Yaqing Jin

    2016-10-01

    Full Text Available The flow structure in the wake of a model wind turbine is explored under negligible and high turbulence in the freestream region of a wind tunnel at R e ∼ 7 × 10 4 . Attention is placed on the evolution of the integral scale and the contribution of the large-scale motions from the background flow. Hotwire anemometry was used to obtain the streamwise velocity at various streamwise and spanwise locations. The pre-multiplied spectral difference of the velocity fluctuations between the two cases shows a significant energy contribution from the background turbulence on scales larger than the rotor diameter. The integral scale along the rotor axis is found to grow linearly with distance, independent of the incoming turbulence levels. This scale appears to reach that of the incoming flow in the high turbulence case at x / d ∼ 35–40. The energy contribution from the turbine to the large-scale flow structures in the low turbulence case increases monotonically with distance. Its growth rate is reduced past x / d ∼ 6–7. There, motions larger than the rotor contribute ∼ 50 % of the total energy, suggesting that the population of large-scale motions is more intense in the intermediate field. In contrast, the wake in the high incoming turbulence is quickly populated with large-scale motions and plateau at x / d ∼ 3 .

  13. Measurements of wakes originated from 2-bladed and 3-bladed rotors

    Science.gov (United States)

    Wu, Yu-Ting; Lyu, Shao-Dong; Chen, Bo-Wei

    2016-04-01

    Measurements of wakes originated from 2-bladed and 3-bladed rotors were carried out using a hot-wire probe system in an open jet wind tunnel. Hot-wire anemometry was adopted to characterize the spanwise profiles of mean wind speed, turbulence intensity and momentum flux for downwind locations at 0.5, 1, 2, 3, and 4 rotor diameters. The results showed that the 2-bladed rotor spun faster than the 3-bladed one, where the ratio of the two blade angular velocities was 1.065:1 under the same inflow condition with a uniform distribution of 5.4 m/s flow velocity. The turbulence flow statistics of the rotor wakes showed that the wake originated from the 3-bladed rotor has larger velocity deficit, streamwise turbulence intensity, momentum flux magnitude, but smaller spanwise turbulence intensity. The velocity spectrum showed peaks associated with the presence of the blade-induced tip vortices in the near wake region (approximately within 3 rotor diameters).

  14. Investigations of the Gas-Liquid Multiphase System Involving Macro-Instability in a Baffled Stirred Tank Reactor

    Directory of Open Access Journals (Sweden)

    Shuo Zhang

    2016-01-01

    Full Text Available Bubble Sauter Mean Diameter (SMD in gas-liquid multiphase system is of particular interest and the quantification of gas characteristics is still a challenge today. In this contribution, multiphase Computational Fluid Dynamic (CFD simulations are combined with Population Balance Model (PBM to investigate the bubble SMD in baffled stirred tank reactor (STR. Hereby, special attention is given to the phenomenon known as the fluid macro-instability (MI, which is a large-scale low-frequency fluid velocity variation in baffled STRs, since the fluid MIs have a dominating influence on the bubble breakage and coalescence processes. The simulations, regarding the fluid velocity, are validated with Laser Doppler Anemometry (LDA experiments, in which the instant radial velocity is analyzed through Fast Fourier Transform (FFT spectrum. The frequency peaks of the fluid MIs are found both in the simulation and in the experiment with a high degree of accuracy. After the validation, quantitative predictions of overall bubble SMD with and without MIs are carried out. Due to the accurate prediction of the fluid field, the influence of the fluid MI to bubble SMD is presented. This result provides more adequate information for engineers working in the field of estimating bubble SMDs in baffled STRs.

  15. Flat Plate Boundary Layer Stimulation Using Trip Wires and Hama Strips

    Science.gov (United States)

    Peguero, Charles; Henoch, Charles; Hrubes, James; Fredette, Albert; Roberts, Raymond; Huyer, Stephen

    2017-11-01

    Water tunnel experiments on a flat plate at zero angle of attack were performed to investigate the effect of single roughness elements, i.e., trip wires and Hama strips, on the transition to turbulence. Boundary layer trips are traditionally used in scale model testing to force a boundary layer to transition from laminar to turbulent flow at a single location to aid in scaling of flow characteristics. Several investigations of trip wire effects exist in the literature, but there is a dearth of information regarding the influence of Hama strips on the flat plate boundary layer. The intent of this investigation is to better understand the effects of boundary layer trips, particularly Hama strips, and to investigate the pressure-induced drag of both styles of boundary layer trips. Untripped and tripped boundary layers along a flat plate at a range of flow speeds were characterized with multiple diagnostic measurements in the NUWC/Newport 12-inch water tunnel. A wide range of Hama strip and wire trip thicknesses were used. Measurements included dye flow visualization, direct skin friction and parasitic drag force, boundary layer profiles using LDV, wall shear stress fluctuations using hot film anemometry, and streamwise pressure gradients. Test results will be compared to the CFD and boundary layer model results as well as the existing body of work. Conclusions, resulting in guidance for application of Hama strips in model scale experiments and non-dimensional predictions of pressure drag will be presented.

  16. A qualitative and quantitative laser-based computer-aided flow visualization method. M.S. Thesis, 1992 Final Report

    Science.gov (United States)

    Canacci, Victor A.; Braun, M. Jack

    1994-01-01

    The experimental approach presented here offers a nonintrusive, qualitative and quantitative evaluation of full field flow patterns applicable in various geometries in a variety of fluids. This Full Flow Field Tracking (FFFT) Particle Image Velocimetry (PIV) technique, by means of particle tracers illuminated by a laser light sheet, offers an alternative to Laser Doppler Velocimetry (LDV), and intrusive systems such as Hot Wire/Film Anemometry. The method makes obtainable the flow patterns, and allows quantitative determination of the velocities, accelerations, and mass flows of an entire flow field. The method uses a computer based digitizing system attached through an imaging board to a low luminosity camera. A customized optical train allows the system to become a long distance microscope (LDM), allowing magnifications of areas of interest ranging up to 100 times. Presented in addition to the method itself, are studies in which the flow patterns and velocities were observed and evaluated in three distinct geometries, with three different working fluids. The first study involved pressure and flow analysis of a brush seal in oil. The next application involved studying the velocity and flow patterns in a cowl lip cooling passage of an air breathing aircraft engine using water as the working fluid. Finally, the method was extended to a study in air to examine the flows in a staggered pin arrangement located on one side of a branched duct.

  17. submitter Superconducting instrumentation for high Reynolds turbulence experiments with low temperature gaseous helium

    CERN Document Server

    Pietropinto, S; Baudet, C; Castaing, B; Chabaud, B; Gagne, Y; Hébral, B; Ladam, Y; Lebrun, P; Pirotte, O; Roche, P

    2003-01-01

    Turbulence is of common experience and of high interest for industrial applications, despite its physical grounds is still not understood. Cryogenic gaseous helium gives access to extremely high Reynolds numbers (Re). We describe an instrumentation hosted in CERN, which provides a 6 kW @ 4.5 K helium refrigerator directly connected to the experiment. The flow is a round jet; the flow rates range from 20 g/s up to 260 g/s at 4.8 K and about 1.2 bar, giving access to the highest controlled Re flow ever developed. The experimental challenge lies in the range of scales which have to be investigated: from the smallest viscous scale η, typically 1 μm at Re=107 to the largest L∼10 cm. The corresponding frequencies: f=v/η can be as large as 1 MHz. The development of an original micrometric superconducting anemometer using a hot spot and its characteristics will be discussed together with its operation and the perspectives associated with superconducting anemometry.

  18. Jet flow and premixed jet flame control by plasma swirler

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gang, E-mail: ligang@iet.cn [Key laboratory of light duty gas turbine, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China); Jiang, Xi [School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Zhao, Yujun [School of Mechanism, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Liu, Cunxi [Key laboratory of light duty gas turbine, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China); Chen, Qi [School of Mechanism, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Xu, Gang; Liu, Fuqiang [Key laboratory of light duty gas turbine, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China)

    2017-04-04

    A swirler based on dielectric barrier discharge plasma actuators is designed and its effectiveness in both jet flow and premixed jet flame control is demonstrated. In contrast to traditional spanwise-oriented actuators, plasma actuators are placed along the axial direction of the injector to induce a circumferential velocity to the main flow and create a swirl flow without any insertion or moving part. In the DBD plasma swirl injector, the discharge does not ignite the mixture nor does it induce flashback. Flame visualization is obtained by cameras while velocity profiles are obtained by Laser Doppler Anemometry measurements. The results obtained indicate the effectiveness of the new design. - Highlights: • The discharge does not ignite the mixture nor does it induce flashback. • The prominent advantage of this novel plasma swirler is its swirl number adjustable without any mechanical movement. • The frequency of the plasma swirler is adjustable. • The plasma swirler can be used as an oscillator to the reactants. • The plasma swirler can be used alone or combine with other traditional swirlers.

  19. Toward modern inhalational bacteriophage therapy: nebulization of bacteriophages of Burkholderia cepacia complex.

    Science.gov (United States)

    Golshahi, Laleh; Seed, Kimberley D; Dennis, Jonathan J; Finlay, Warren H

    2008-12-01

    Antibiotic-resistant bacterial infections have renewed interest in finding substitute methods of treatment. The purpose of the present in vitro study was to investigate the possibility of respiratory delivery of a Burkholderia cepacia complex (BCC) bacteriophage by nebulized aerosol administration. Bacteriophages in isotonic saline were aerosolized with Pari LC star and eFlow nebulizers, at titers with mean value (standard deviation) of 2.15 x 10(8) (1.63 x 10(8)) plaque-forming unit (PFU)/mL in 2.5-mL nebulizer fills. The breathing pattern of an adult was simulated using a pulmonary waveform generator. During breath simulation, the size distributions of the nebulized aerosol were measured using phase doppler anemometry (PDA). Efficiency of nebulizer delivery was subsequently determined by collection of aerosol on low resistance filters and measurement of bacteriophage titers. These filter titers were used as input data to a mathematical lung deposition model to predict regional deposition of bacteriophages in the lung and initial bacteriophage titers in the liquid surface layer of each conducting airway generation. The results suggest that BCC bacteriophages can be nebulized successfully within a reasonable delivery time and predicted titers in the lung indicate that this method may hold potential for treatment of bacterial lung infections common among cystic fibrosis patients.

  20. Producing Turbulent Wind Tunnel Inflows Relevant to Wind Turbines using an Active Grid

    Science.gov (United States)

    Rumple, Christopher; Welch, Matthew; Naughton, Jonathan

    2017-11-01

    The rise of industries like wind energy have provided motivation for generating realistic turbulent inflows in wind tunnels. Facilities with the ability to produce such inflows can study the interaction between the inflow turbulence and the flow of interest such as a wind turbine wake. An active grid - a system of actively driven elements - has gained increasing acceptance in turbulence research over the last 20 years. The ability to tailor the inflow turbulence quantities (e.g. turbulence intensities, integral length scale, and turbulence spectrum) is a driving reason for the growing use of active grids. An active grid with 40 independent axes located within the forward contraction of a low speed wind tunnel is used to explore the range of turbulent inflows possible using hot-wire anemometry to characterize the turbulence. Motor control algorithms (i.e. user waveform inputs) used to produce various turbulent inflows will be presented. Wind data available from meteorological towers are used to develop relevant inflows for wind turbines to demonstrate the usefulness of the active grid. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award # DE-SC0012671.

  1. Classification of Rotor Induced Shearing Events in the Near Wake of a Wind Turbine Array Boundary Layer

    Science.gov (United States)

    Smith, Sarah; Viggiano, Bianca; Ali, Naseem; Cal, Raul Bayoan

    2017-11-01

    Flow perturbation induced by a turbine rotor imposes considerable turbulence and shearing effects in the near wake of a turbine, altering the efficiency of subsequent units within a wind farm array. Previous methods have characterized near wake vorticity of a turbine and recovery distance of various turbine array configurations. This study aims to build on previous analysis with respect to a turbine rotor within an array and develop a model to examine stress events and energy contribution in the near wake due to rotational effects. Hot wire anemometry was employed downstream of a turbine centrally located in the third row of a 3x3 array. Data considered points planar to the rotor and included simultaneous streamwise and wall-normal velocities as well as concurrent streamwise and transverse velocities. Conditional analysis of Reynolds stresses induced by the rotor agree with former near wake research, and examination of stresses in terms of streamwise and transverse velocity components depicts areas of significant rotational effects. Continued analysis includes spectral decomposition and conditional statistics to further characterize shearing events at various points considering the swept area of the rotor.

  2. Development Activities on an Advanced Propellant Flow Control Unit

    Science.gov (United States)

    Noci, G.; Siciliano, P.; Fallerini, L.; Kutufa, N.; Rivetti, A.; Galassi, C.; Bruschi, P.; Piotto, M.

    2004-10-01

    A new generation of propellant control equipment for electric propulsion systems is needed in order to improve performance and operating ranges, symplify h/w configuration, reduce mass and dimensions, eliminate mass flow ripple, reduce time response. In this frame, the development of key components, their assembly and experimental investigation/ validation is on-going at Alenia Spazio-Laben/Business Unit Proel Tecnologie ( Proel in the following ) in the frame of an ESA GSTP program. The new components shall support different EP technologies, future EP multi-tasking capability and wide operating ranges. This paper reports about the development effort, its achievements and perspectives. 1. ABBREVIATIONS AND ACRONYMS BOL Beginning of Life CMBR Ceramic multilayer bender ring CTA Constant Temperature Anemometry. DUT Device under test EOL End of Life EP Electric Propulsion GEO Geosyncrhonous Earth Orbit GFCU Gas Flow Control Unit GIT Gridded ion thruster HET Hall Effect Thrusters LEO Low Earth Orbit LPC Low pressure capillary MEOP Maximum Expected Operating Pressure MFS Mass Flow rate Sensor NSSK North-South Station Keeping Pred Reduced pressure Ptank Tank pressure RMT Radiofrequency Magnetic Thruster RMTA Radiofrequency Magnetic Thruster Assembly ROOV Regulation and On-Off Valve SoW Statement of Work SPT Stationary Plasma Thruster.

  3. An investigation of the flow characteristics in the blade endwall corner region

    Science.gov (United States)

    Hazarika, Birinchi K.; Raj, Rishi S.

    1987-01-01

    Studies were undertaken to determine the structure of the flow in the blade end wall corner region simulated by attaching two uncambered airfoils on either side of a flat plate with a semicircular leading edge. Detailed measurements of the corner flow were obtained with conventional pressure probes, hot wire anemometry, and flow visualization. The mean velocity profiles and six components of the Reynolds stress tensor were obtained with an inclined single sensor hot wire probe whereas power spectra were obtained with a single sensor oriented normal to the flow. Three streamwise vortices were identified based on the surface streamlines, distortion of total pressure profiles, and variation of mean velocity components in the corner. A horseshoe vortex formed near the leading edge of the airfoil. Within a short distance downstream, a corner vortex was detected between the horseshoe vortex and the surfaces forming the corner. A third vortex was formed at the rear portion of the corner between the corner vortex and the surface of the flat plate. Turbulent shear stress and production of turbulence are negligibly small. A region of negative turbulent shear stress was also observed near the region of low turbulence intensity from the vicinity of the flat plate.

  4. Velocity profile of water vapor inside a cavity with two axial inlets and two outlets

    Science.gov (United States)

    Guadarrama-Cetina, José; Ruiz Chavarría, Gerardo

    2014-03-01

    To study the dynamics of Breath Figure phenomenon, a control of both the rate of flow and temperature of water vapor is required. The experimental setup widely used is a non hermetically closed chamber with cylindrical geometry and axial inlets and outlets. In this work we present measurements in a cylindrical chamber with diameter 10 cm and 1.5 cm height, keeping a constant temperature (10 °C). We are focused in the velocity field when a gradient of the temperatures is produced between the base plate and the vapor. With a flux of water vapor of 250 mil/min at room temperature (21 °C), the Reynolds number measured in one inlet is 755. Otherwise, the temperatures of water vapor varies from 21 to 40 °C. The velocity profile is obtained by hot wire anemometry. We identify the stagnations and the possibly instabilities regions for an empty plate and with a well defined shape obstacle as a fashion sample. Facultad de Ciencias, UNAM.

  5. Study of droplet entrainment from bubbling surface in a bubble column

    International Nuclear Information System (INIS)

    Ramirez de Santiago, M.

    1991-05-01

    In a bubble column droplets are ejected from the free surface by bubble bursting or splashing. Depending on their size, the droplets are partly carried away by the streaming gas or fall back to the bubbling surface by gravity force. Experiments have been carried out to determine the void fraction in the column by means of an optical probe. In the interfacial zone the bubble bursting process was captured with a high-speed video camera. Simultaneous measurements were made of size and velocity of droplets at several distances from the bubbling surface with a Phase-Doppler Anemometry. The bubble column can be divided into three regions: A lower zone with a flat profile of the local void fraction, a central zone where the flow regime is steady and an upper zone where the local void fraction grows rapidly. A two-parameter log-normal distribution function was proposed in order to describe the polydisperse distribution of droplet-size. Results were obtained concerning the entrainment, concentration, volume fraction and interfacial area of droplets. Finally, it was found that the turbulence intensity affects the droplet terminal velocity for droplets smaller than the Kolmogorov microscale [fr

  6. A novel approach for quantifying the zero-plane displacement of rough-wall boundary layers

    Science.gov (United States)

    Ferreira, Manuel; Rodriguez-Lopez, Eduardo; Ganapathisubramani, Bharath; Aerodynamics; Flight Mechanics Team

    2017-11-01

    Indirect methods of wall shear stress (WSS) estimation are frequently used to characterise rough wall boundary-layer flows. The zero-plane displacement, hypothesised to be the vertical location where it acts, is often treated as a fitting parameter. However, it would be preferrable to measure both these quantities directly, especially for surfaces with large roughness elements where established scaling and similarity laws may not hold. In this talk we present a novel floating element balance that is able to measure not only the WSS but also the wall normal location at which it acts. While allowing compensation for mild static pressure gradients by means of a first-order analytical model. Its architecture is based on a parallel-shift linkage and it's fitted with custom built force transducers and a data acquisition system especially designed to achieve high Signal-to-Noise Ratios (SNR). The smooth-wall boundary-layer flow is used as benchmark to assess the accuracy of this balance. The values of skin friction coefficient show an agreement with hot-wire anemometry to within 2 % at a local Reynolds number Reθ = 4 ×103 up to 104. A rough surface of regularly distributed large elements is used to investigate the ability to infer the zero-plane displacement.

  7. Experimental study of crossflow instability on a Mach 6 yawed cone

    Science.gov (United States)

    Craig, Stuart; Saric, William

    2014-11-01

    Boundary-layer stability and transition represents a key challenge for the designer of hypersonic vehicles, which typically feature highly-swept and conical features inclined to the free stream. The transition process on each of these geometries is typically dominated by the three-dimensional crossflow instability. In order to advance the goal of a physics-based transition prediction method, crossflow experiments were undertaken in the Mach 6 Quiet Tunnel at Texas A&M University. Detailed boundary-layer measurements were performed on a 7-degree cone at a 6-degree angle of incidence using constant-temperature hot-wire anemometry (CTA) to produce boundary-layer contours at constant axial location. These contours illustrate the characteristic streamwise vortex pattern and mean-flow distortion characteristic of crossflow-dominated flows. Additionally, the high frequency response of the CTA system allows for analysis of the spectral content of the flow. These measurements show a high degree of qualitative agreement with analogous studies performed in low-speed flows.

  8. Turbulence structure of the atmosphere in a region of complex terrain and near to a major industrial installation

    International Nuclear Information System (INIS)

    Robinson, L.; Teasdale, I.

    1996-01-01

    The Sellafield nuclear reprocessing plant in Cumbria discharges a variety of pollutants to both the marine environment and the atmosphere. Understanding the dispersion of this effluence is of prime importance for the industry, which must demonstrate safety to national regulatory bodies. Accurate modelling of the air flow in the region is one of the key ingredients towards correct prediction of the ground level concentrations of emissions. Work is being carried out to assess the suitability of the computer code FLOWSTAR for the task of predicting the atmospheric flow. Its predictions include means of the turbulent statistics within the boundary layer of the atmosphere. This paper will concentrate on the comparison of the predictions of these turbulence statistics at key points with the values measured by sonic anemometry. It is the turbulence, quantified by the standard deviations σ u , σ v and σ w of the wind vector's components that is responsible for the local dispersion of pollution and for inducing many other boundary layer changes. The high frequency variation in the wind vector brings about the necessity for rapid response equipment such as the sonic anemometer

  9. Air-water flow in a vertical pipe: experimental study of air bubbles in the vicinity of the wall

    Science.gov (United States)

    Descamps, M. N.; Oliemans, R. V. A.; Ooms, G.; Mudde, R. F.

    2008-08-01

    This study deals with the influence of bubbles on a vertical air-water pipe flow, for gas-lift applications. The effect of changing the bubble size is of particular interest as it has been shown to affect the pressure drop over the pipe. Local measurements on the bubbles characteristics in the wall region were performed, using standard techniques, such as high-speed video recording and optical fibre probe, and more specific techniques, such as two-phase hot film anemometry for the wall shear stress and conductivity measurement for the thickness of the liquid film at the wall. The injection of macroscopic air bubbles in a pipe flow was shown to increase the wall shear stress. Bubbles travelling close to the wall create a periodic perturbation. The injection of small bubbles amplifies this effect, because they tend to move in the wall region; hence, more bubbles are travelling close to the wall. A simple analysis based on a two-fluid set of equations emphasised the importance of the local gas fraction fluctuations on the wall shear stress.

  10. Large Scale Organization of a Near Wall Turbulent Boundary Layer

    Science.gov (United States)

    Stanislas, Michel; Dekou Tiomajou, Raoul Florent; Foucaut, Jean Marc

    2016-11-01

    This study lies in the context of large scale coherent structures investigation in a near wall turbulent boundary layer. An experimental database at high Reynolds numbers (Re θ = 9830 and Re θ = 19660) was obtained in the LML wind tunnel with stereo-PIV at 4 Hz and hot wire anemometry at 30 kHz. A Linear Stochastic Estimation procedure, is used to reconstruct a 3 component field resolved in space and time. Algorithms were developed to extract coherent structures from the reconstructed field. A sample of 3D view of the structures is depicted in Figure 1. Uniform momentum regions are characterized with their mean hydraulic diameter in the YZ plane, their life time and their contribution to Reynolds stresses. The vortical motions are characterized by their position, radius, circulation and vorticity in addition to their life time and their number computed at a fixed position from the wall. The spatial organization of the structures was investigated through a correlation of their respective indicative functions in the spanwise direction. The simplified large scale model that arise is compared to the ones available in the literature. Streamwise low (green) and high (yellow) uniform momentum regions with positive (red) and negative (blue) vortical motions. This work was supported by Campus International pour la Sécurité et l'Intermodalité des Transports.

  11. The anemodata 1-IIE. Automatic system for wind data acquisition; El anemodata 1-IIE. Sistema automatico para la adquisicion de datos de viento

    Energy Technology Data Exchange (ETDEWEB)

    Borja, Marco Antonio; Parkman Cuellar, Pablo A. [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1986-12-31

    Wind is an inexhaustible energy source. To study its behavior in order to develop research projects and apply new technologies connected to its maximum development is one of the activities carried on at the Instituto de Investigaciones Electricas (IIE). As a part of such activities, the equipment Anemodata-1-IIE was designed and built for the wind velocity and direction data acquisition. The Anemodata-1-IIE is the result of the work that the Departamento de Fuentes no Convencionales (Non-Conventional Energy Sources of the Energy Sources Department) carries on regarding the development of electric equipment for the anemometry. [Espanol] Una fuente inagotable de energia es el viento. Estudiar su comportamiento para desarrollar proyectos de investigacion y aplicar nuevas tecnologias vinculadas con su maximo aprovechamiento es una de las actividades que se realizan en el Instituto de Investigaciones Electricas (IIE). Como parte de dichas actividades, se diseno y construyo el equipo Anemodata-1-IIE para la adquisicion de datos de velocidad y direccion del viento. El anemodata-1-IIE es un resultado de los trabajos que el Departamento de Fuentes no Convencionales, de la division de Fuentes de Energia, lleva a cabo en torno al desarrollo de equipo electrico para anemometria.

  12. Pressure and velocity profiles in a static mechanical hemilarynx model

    Science.gov (United States)

    Alipour, Fariborz; Scherer, Ronald C.

    2002-12-01

    This study examined pressure and velocity profiles in a hemilarynx mechanical model of phonation. The glottal section had parallel walls and was fabricated from hard plastic. Twelve pressure taps were created in the vocal fold surface and connected to a differential pressure transducer through a pressure switch. The glottal gap was measured with feeler gauges and the uniform glottal duct was verified by use of a laser system. Eight pressure transducers were placed in the flat wall opposite the vocal fold. Hot-wire anemometry was used to obtain velocity profiles upstream and downstream of the glottis. The results indicate that the pressure distribution on the vocal fold surface was consistent with pressure change along a parallel duct, whereas the pressures on the opposite flat wall typically were lower (by 8%-40% of the transglottal pressure just past mid-glottis). The upstream velocity profiles were symmetric regardless of the constriction shape and size. The jet flow downstream of the glottis was turbulent even for laminar upstream conditions. The front of the jet was consistently approximately 1.5 mm from the flat wall for glottal gaps of 0.4, 0.8 and 1.2 mm. The turbulence intensity also remained approximately at the same location of about 4 mm from the flat wall for the two larger gaps.

  13. An inclined wall jet: Mean flow characteristics and effects of acoustic excitation

    Science.gov (United States)

    Lai, J. C. S.; Lu, D.

    2000-12-01

    The mean velocity field of a 30° inclined wall jet has been investigated using both hot-wire and laser Doppler anemometry (LDA). Provided that the nozzle aspect ratio is greater than 30 and the inclined wall angle (β) is less than 50°, LDA measurements for various β show that the reattachment length is independent of the nozzle aspect ratio and the nozzle exit Reynolds number (in the range 6670-13,340). There is general agreement between the reattachment lengths determined by LDA and those determined using wall surface oil film visualisation technique. The role of coherent structures arising from initial instabilities of a 30° wall jet has been explored by hot-wire spectra measurements. Results indicate that the fundamental vortex roll-up frequency in both the inner and outer shear layer corresponds to a Strouhal number (based on nozzle exit momentum thickness and velocity) of 0.012. The spatial development of instabilities in the jet has been studied by introducing acoustic excitation at a frequency corresponding to the shear layer mode. The formation of the fundamental and its first subharmonic has been identified in the outer shear layer. However, the development of the first subharmonic in the inner shear layer has been severely suppressed. Distributions of mean velocities, turbulence intensities and Reynolds shear stress indicate that controlled acoustic excitation enhances the development of instabilities and promotes jet reattachment to the wall, resulting in a substantially reduced recirculation flow region.

  14. Closed-loop-manipulated wake of a stationary square cylinder

    Science.gov (United States)

    Zhang, M. M.; Zhou, Y.; Cheng, L.

    2005-07-01

    Vortex shedding from a fixed rigid square cylinder in a cross flow was manipulated by perturbing the cylinder surface using piezo-ceramic actuators, which were activated by a feedback hot-wire signal via a proportional integral derivative (PID) controller. The manipulated flow was measured at a Reynolds number (Re) of 7,400 using particle image velocimetry (PIV), laser-induced fluorescence (LIF) flow visualisation, two-component laser Doppler anemometry (LDA), hot wires and load cells. It is observed that the vortex circulation, fluctuating streamwise velocity, lift and drag coefficients and mean drag coefficient may decrease by 71%, 40%, 51%, 42% and 20%, respectively, compared with the unperturbed flow, if the perturbation velocity of the cylinder surface is anti-phased with the flow lateral velocity associated with vortex shedding. On the other hand, these quantities may increase by 152%, 90%, 60%, 67% and 37%, respectively, given in-phased cylinder surface perturbation and vortex shedding. Similar effects are obtained at Re=3,200 and 9,500, respectively. The relationship between the perturbation and flow modification is examined, which provides insight into the physics behind the observation.

  15. Measurements of surface shear stresses under a three-dimensional turbulent boundary layer using oil-film laser interferometry

    Science.gov (United States)

    Ailinger, K. G.; Simpson, R. L.

    1990-04-01

    Measurements of surface shear stress magnitude and direction are reported for a three-dimensional, pressure driven, turbulent boundary layer around a wing body junction. Measurements were made using a dual-beam oil film laser interferometer at 56 locations. An iterative procedure was developed which increased the precision of the data extracted from the data records. Skin friction directions computed using a least square error fit were compared to angles obtained from surface oil flows, hot wire anemometry, and LDV measurements. Also, the magnitude of the skin friction coefficients were compared to independently obtained skin friction coefficients. The data agreed to within experimental error outside the effects from the vortex legs present along the side of the wing-body. No accurate data was available for quantitative comparison under the effects of the vortex, but the magnitudes followed the qualitative trends expected. This method failed badly in the region of large three-dimensional effects and requires further study in this area of application.

  16. The connection between hydrodynamic stability of gas flow in spin coating and coated film uniformity

    Science.gov (United States)

    Öztekin, Alparslan; Bornside, David E.; Brown, Robert A.; Seidel, Philip K.

    1995-03-01

    The thickness uniformity of a spin-cast film is governed by the air flow through the spin coater, particularly the boundary layer flow above the surface of the spinning wafer, which controls solvent evaporation from the dry film. Laser Doppler velocimetry (LDV) and hot wire anemometry (HWA) are used to map the flow field throughout an industrial spin coater and to study flow instabilities in the boundary layer for various combinations of wafer spin speed and exhaust flow rate. The flow field measured by LDV compares well with a numerical simulation of laminar, axisymmetric, and steady air flow throughout the coating bowl. However, Ekman spiral flow instabilities of both type I (positive spiral angle) and type II (negative spiral angle) were found by HWA in the boundary layer near the surface of the spinning wafer. The type-II spirals form at Reynolds number in the range 2000-2500 and the type-I spirals form at Reynolds number in the range 80 000-85 000. It is the type-II spirals that are responsible for disrupting the air flow in the boundary layer flow and that cause nonuniform drying of spin-cast films.

  17. Characteristics of a separating confluent boundary layer and the downstream wake

    Science.gov (United States)

    Adair, Desmond; Horne, W. Clifton

    1987-12-01

    Measurements of pressure and velocity characteristics are presented and analyzed for flow over and downstream of a NACA 4412 airfoil equipped with a NACA 4415 single-slotted flap at high angle of attack and close to maximum lift. The flow remained attached over the main element while a large region of recirculating flow occurred over the aft 61 percent of the flap. The airfoil configuration was tested at a Mach number of 0.09 and a chord Reynolds number of 1.8x10 to the 6th power in the NASA Ames Research Center 7- by 10-Foot Wind Tunnel. Measurement of mean and fluctuation velocities were obtained in regions of recirculation and high turbulence intensity using 3-D laser velocimetry. In regions where the flow had a preferred direction and relatively low turbulence intensity, hot-wire anemometry was used. Emphasis was placed on obtaining characteristics in the confluent boundary layer, the region of recirculating flow, and in the downstream wake. Surface pressure measurements were made on the main airfoil, flap, wind tunnel roof and floor. It is thought likely that because the model is large when compared to the wind tunnel cross section, the wind tunnel floor and ceiling interference should be taken into account when the flow field is calculated.

  18. Experimental Study on the Wake Meandering Within a Scale Model Wind Farm Subject to a Wind-Tunnel Flow Simulating an Atmospheric Boundary Layer

    Science.gov (United States)

    Coudou, Nicolas; Buckingham, Sophia; Bricteux, Laurent; van Beeck, Jeroen

    2018-04-01

    The phenomenon of meandering of the wind-turbine wake comprises the motion of the wake as a whole in both horizontal and vertical directions as it is advected downstream. The oscillatory motion of the wake is a crucial factor in wind farms, because it increases the fatigue loads, and, in particular, the yaw loads on downstream turbines. To address this phenomenon, experimental investigations are carried out in a wind-tunnel flow simulating an atmospheric boundary layer with the Coriolis effect neglected. A 3 × 3 scaled wind farm composed of three-bladed rotating wind-turbine models is subject to a neutral boundary layer over a slightly-rough surface, i.e. corresponding to offshore conditions. Particle-image-velocimetry measurements are performed in a horizontal plane at hub height in the wakes of the three wind turbines occupying the wind-farm centreline. These measurements allow determination of the wake centrelines, with spectral analysis indicating the characteristic wavelength of the wake-meandering phenomenon. In addition, measurements with hot-wire anemometry are performed along a vertical line in the wakes of the same wind turbines, with both techniques revealing the presence of wake meandering behind all three turbines. The spectral analysis performed with the spatial and temporal signals obtained from these two measurement techniques indicates a Strouhal number of ≈ 0.20 - 0.22 based on the characteristic wake-meandering frequency, the rotor diameter and the flow speed at hub height.

  19. Comparison of PIV and Hot-Wire statistics of turbulent boundary layer

    International Nuclear Information System (INIS)

    Dróżdż, A; Uruba, V

    2014-01-01

    The paper shows a cross checking of turbulent boundary layer measurements using large field of view PIV and hot-wire anemometry techniques. The time-resolved PIV method was used for the experiments. The measuring plane was oriented perpendicularly to the wall and parallel to the mean flow. Hot wire measurement has been performed using the special probe with perpendicular hot wire. The HW point measurements were performed in the same place as PIV experiments. The hot-wire probe has the wire length of l + < 20 in considered range of Reynolds numbers. Various evaluation methods were applied on PIV data. The profiles of statistical characteristics of streamwise velocity components were evaluated from the data. Mean values, standard deviations as well as skewness and kurtosis coefficients were compared for a few values of Re θ . Reynolds number ranges from 1000 to 5500. The result shows that with the increasing Reynolds number the attenuation of fluctuations maximum in PIV measurements occurs with respect to Hot-Wire measurements, however representation of velocity fluctuations using the PIV method is satisfactory. The influence of wall-normal fluctuation component on Hot-Wire near wall peak was also investigated.

  20. NOVEL METHODS FOR AXIAL FAN IMPELLER GEOMETRY ANALYSIS AND EXPERIMENTAL INVESTIGATIONS OF THE GENERATED SWIRL TURBULENT FLOW

    Directory of Open Access Journals (Sweden)

    Zoran D Protić

    2010-01-01

    Full Text Available Geometry analysis of the axial fan impeller, experimentally obtained operating characteristics and experimental investigations of the turbulent swirl flow generated behind the impeller are presented in this paper. Formerly designed and manufactured, axial fan impeller blade geometry (originally designed by Prof. Dr-Ing. Z. Protić† has been digitized using a three-dimensional (3D scanner. In parallel, the same impeller has been modeled by beta version software for modeling axial turbomachines, based on modified classical calculation. These results were compared. Then, the axial fan operating characteristics were measured on the standardized test rig in the Laboratory for Hydraulic Machinery and Energy Systems, Faculty of Mechanical Engineering, University of Belgrade. Optimum blade impeller position was determined on the basis of these results. Afterwards, the impeller with optimum angle, without outlet vanes, was positioned in a circular pipe. Rotational speed has been varied in the range from 500 till 2500rpm. Reynolds numbers generated in this way, calculated for axial velocity component, were in the range from 0,8·105 till 6·105. LDA (Laser Doppler Anemometry measurements and stereo PIV (Particle Image Velocimetry measurements of the 3D velocity field in the swirl turbulent fluid flow behind the axial fan have been performed for each regime. Obtained results point out extraordinary complexity of the structure of generated 3D turbulent velocity fields.

  1. Uncertainty on PIV mean and fluctuating velocity due to bias and random errors

    International Nuclear Information System (INIS)

    Wilson, Brandon M; Smith, Barton L

    2013-01-01

    Particle image velocimetry is a powerful and flexible fluid velocity measurement tool. In spite of its widespread use, the uncertainty of PIV measurements has not been sufficiently addressed to date. The calculation and propagation of local, instantaneous uncertainties on PIV results into the measured mean and Reynolds stresses are demonstrated for four PIV error sources that impact uncertainty through the vector computation: particle image density, diameter, displacement and velocity gradients. For the purpose of this demonstration, velocity data are acquired in a rectangular jet. Hot-wire measurements are compared to PIV measurements with velocity fields computed using two PIV algorithms. Local uncertainty on the velocity mean and Reynolds stress for these algorithms are automatically estimated using a previously published method. Previous work has shown that PIV measurements can become ‘noisy’ in regions of high shear as well as regions of small displacement. This paper also demonstrates the impact of these effects by comparing PIV data to data acquired using hot-wire anemometry, which does not suffer from the same issues. It is confirmed that flow gradients, large particle images and insufficient particle image displacements can result in elevated measurements of turbulence levels. The uncertainty surface method accurately estimates the difference between hot-wire and PIV measurements for most cases. The uncertainty based on each algorithm is found to be unique, motivating the use of algorithm-specific uncertainty estimates. (paper)

  2. Surface obstacles in pulsatile flow

    Science.gov (United States)

    Carr, Ian A.; Plesniak, Michael W.

    2017-11-01

    Flows past obstacles mounted on flat surfaces have been widely studied due to their ubiquity in nature and engineering. For nearly all of these studies, the freestream flow over the obstacle was steady, i.e., constant velocity, unidirectional flow. Unsteady, pulsatile flows occur frequently in biology, geophysics, biomedical engineering, etc. Our study is aimed at extending the comprehensive knowledge base that exists for steady flows to considerably more complex pulsatile flows. Characterizing the vortex and wake dynamics of flows around surface obstacles embedded in pulsatile flows can provide insights into the underlying physics in all wake and junction flows. In this study, we experimentally investigate the wake of two canonical obstacles: a cube and a circular cylinder with an aspect ratio of unity. Our previous studies of a surface-mounted hemisphere in pulsatile flow are used as a baseline for these two new, more complex geometries. Phase-averaged PIV and hot-wire anemometry are used to characterize the dynamics of coherent structures in the wake and at the windward junction of the obstacles. Complex physics occur during the deceleration phase of the pulsatile inflow. We propose a framework for understanding these physics based on self-induced vortex propagation, similar to the phenomena exhibited by vortex rings.

  3. The evolution of whole field optical diagnostics for external transonic testing

    Science.gov (United States)

    Fry, K. A.; Bryanston-Cross, P.

    1992-09-01

    The diagnostic use of quantitative laser flow visualization techniques has increased rapidly over recent years. The limitations imposed by conventional single point techniques such as laser Doppler anemometry are addressed and how they have been overcome by the development of a new family of whole field measurement techniques is demonstrated. In particular near instantaneous whole field velocity data was obtained in a relatively hostile, industrial 2.74 m x 2.44 m transonic wind tunnel (TWT) at the Aircraft Research Association (ARA). The techniques were evaluated for their suitability for making quantitative measurements in the wing/pylon region of a model wing and engine combination. Three optical diagnostic techniques were successfully developed within the context of the ARA facility. The first technique, laser light sheet (LLS), combines the operation of a pulse laser and video capture system to provide a 'real time' visualization of the flow, whereas a second pulse laser technique, Particle Image Velocimetry (PIV) can be used to make specific quantitative whole field instantaneous velocity measurements. The third method, holography, was used to produce a stored three dimensional visualization of the unsteady and shock wave features of the transonic flow in the gully region. A description is made of their installation and operation, and examples are presented of current test results.

  4. Bluff Body Flow Control Using Dielectric Barrier Discharge Plasma Actuators

    Science.gov (United States)

    Thomas, Flint; Kozlov, Alexey

    2008-11-01

    The results of an experimental investigation involving the use of dielectric barrier discharge plasma actuators to control bluff body flow is presented. The motivation for the work is plasma landing gear noise control for commercial transport aircraft. For these flow control experiments, the cylinder in cross-flow is chosen for study since it represents a generic flow geometry that is similar in all essential aspects to a landing gear strut. The current work is aimed both at extending the plasma flow control concept to Reynolds numbers typical of landing approach and take-off and on the development of optimum plasma actuation strategies. The cylinder wake flow with and without actuation are documented in detail using particle image velocimetry (PIV) and constant temperature hot-wire anemometry. The experiments are performed over a Reynolds number range extending to ReD=10^5. Using either steady or unsteady plasma actuation, it is demonstrated that even at the highest Reynolds number Karman shedding is totally eliminated and turbulence levels in the wake decrease by more than 50%. By minimizing the unsteady flow separation from the cylinder and associated large-scale wake vorticity, the radiated aerodynamic noise is also reduced.

  5. Analysis of wake vortices of a medium range twin-propeller military cargo aircraft using statistically designed experiments

    Science.gov (United States)

    Sahin, Burhan

    An experimental study was initiated to analyze the trajectories of the streamwise vortices behind the wing tip and flap of a medium range and propeller driven twin-engine military cargo aircraft. The model used for the experimental study was a generic, high wing and half model of a propeller driven aircraft and mounted within Old Dominion University's Low Speed Wind Tunnel where the wind tunnel flow speed was set to constant value of 9 m/sec. The main purpose of the study was to reach regression models for the motion and vorticity strength of both vortices under varying factors such as angle of attack, flap angle, propeller pitch angle and downstream distance. Velocity measurements of the flow fields were accomplished using both Particle Image Velocimetry (PIV) and Hotwire Anemometry (HWA) to yield average velocities, turbulence levels, vorticity strengths and Reynolds shear stresses in the wake of the model. The results of measurements showed that the vertical motions, horizontal motions, and vorticity strengths of both vortices as well as the shortest distance between both vortices depend on the aforementioned factors and the interactions of some factors. It can be concluded that propeller pitch angle mainly affects the behaviors of the vortices as much as angle of attack to the extent that their second order terms take place in some of the regression models.

  6. Three-dimensional investigation of the two-phase flow structure in a bubbly pipe flow

    International Nuclear Information System (INIS)

    Hassan, Y.A.; Schmidl, W.D.; Ortiz-Villafuerte, J.

    1997-01-01

    Particle Image Velocimetry (PIV) is a non-intrusive measurement technique, which can be used to study the structure of various fluid flows. PIV is used to measure the time varying full field velocity data of a particle-seeded flow field within either a two-dimensional plane or three-dimensional volume. PIV is a very efficient measurement technique since it can obtain both qualitative and quantitative spatial information about the flow field being studied. This information can be further processed into information such as vorticity and pathlines. Other flow measurement techniques (Laser Doppler Velocimetry, Hot Wire Anemometry, etc...) only provide quantitative information at a single point. PIV can be used to study turbulence structures if a sufficient amount of data can be acquired and analyzed, and it can also be extended to study two-phase flows if both phases can be distinguished. In this study, the flow structure around a bubble rising in a pipe filled with water was studied in three-dimensions. The velocity of the rising bubble and the velocity field of the surrounding water was measured. Then the turbulence intensities and Reynolds stresses were calculated from the experimental data. (author)

  7. Antimicrobial activity of cream incorporated with silver nanoparticles biosynthesized from Withania somnifera

    Directory of Open Access Journals (Sweden)

    Marslin G

    2015-09-01

    Full Text Available Gregory Marslin,1 Rajendran K Selvakesavan,1 Gregory Franklin,1 Bruno Sarmento,2,3 Alberto CP Dias11Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB-UM, AgroBioPlant Group, Department of Biology, University of Minho, Braga, Portugal; 2Instituto de Engenharia Biomédica (INEB, University of Porto, Porto, Portugal; 3CESPU, Instituto Universitário de Ciências da Saúde, Gandra, PortugalAbstract: We report on the antimicrobial activity of a cream formulation of silver nanoparticles (AgNPs, biosynthesized using Withania somnifera extract. Aqueous extracts of leaves promoted efficient green synthesis of AgNPs compared to fruits and root extracts of W. somnifera. Biosynthesized AgNPs were characterized for their size and shape by physical-chemical techniques such as UV-visible spectroscopy, laser Doppler anemometry, transmission electron microscopy, scanning electron microscopy, atomic force microscopy, X-ray diffraction, and X-ray energy dispersive spectroscopy. After confirming the antimicrobial potential of AgNPs, they were incorporated into a cream. Cream formulations of AgNPs and AgNO3 were prepared and compared for their antimicrobial activity against human pathogens (Staphylococcus aureus, Pseudomonas aeruginosa, Proteus vulgaris, Escherichia coli, and Candida albicans and a plant pathogen (Agrobacterium tumefaciens. Our results show that AgNP creams possess significantly higher antimicrobial activity against the tested organisms.Keywords: Withania somnifera, green synthesis, silver nanoparticles cream, antimicrobial activity

  8. Self-assembled biodegradable amphiphilic PEG-PCL-lPEI triblock copolymers at the borderline between micelles and nanoparticles designed for drug and gene delivery.

    Science.gov (United States)

    Endres, Thomas K; Beck-Broichsitter, Moritz; Samsonova, Olga; Renette, Thomas; Kissel, Thomas H

    2011-10-01

    Amphiphilic PEG-PCL-PEI triblock copolymers self-assemble into nano-scaled, positively charged, multifunctional carriers, suitable for drug and gene delivery. A set of block copolymers with varying hydrophilic/hydrophobic ratio (systematically altered at the borderline of micelle and particle forming polymers) was synthesized, characterized and assembled into carriers. A detailed structural characterization in the liquid state of these assemblies was carried out: carrier size was determined using dynamic light scattering, cryogenic scanning electron microscopy and atomic force microscopy. Nuclear magnetic resonance analyses elucidated carrier's core-shell structure. ζ-potential and thickness of the hydrophilic outer polymer shell were determined by laser Doppler anemometry. Subsequently the impact of carrier's structure on its features (stability and toxicity) was investigated. Polymers hydrophilic in nature formed small (polymers aggregated to larger particle-like assemblies (>100 nm). Monitoring carrier size as a function of initial polymer concentration clarified different assembly mechanisms. Shell thickness, colloidal stability and toxicity were found to depend on the length of the hydrophilic polymer block. Due to controllable size, charge, stability and toxicity, this class of novel carriers is a promising candidate for prospective co-delivery of drugs and nucleic acids. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Investigations of the gas-side heat transfer and flow characteristics of steam generators in AGR stations

    International Nuclear Information System (INIS)

    Lis, J.

    1984-01-01

    This paper describes the experimental and analytical investigations of the gas-side heat transfer and flow characteristics of steam generators in the AGR stations carried out by CERL. The majority of the experimental work on heat transfer and flow characteristics of close-packed tube arrangements in cross-flow of gases is carried out in a pressurised heat exchanger rig. The rig is operated on-line by a dedicated PDP 11/40 computer over the range of Reynolds number 10 4 to 3x10 5 . Atmospheric wind tunnels employing either small or large scale models of the specific sections of steam generators are used for a variety of supplementary and development studies. Various measurements techniques and, in particular, LDA and hot wire anemometry employed in these studies are described. The more important aspects of various investigations are illustrated by typical results. In order to ensure the efficient operation and integrity of steam generators under asymmetric boundary conditions a MIX suite of 2-dimensional codes has been developed. The codes calculate the gas and water/steam flow and temperature distributions in each channel of the steam generator taking into account thermal mixing in the gas as it passes through the generator. Application of the MIX codes to the solution of various operational problems is illustrated by typical examples and the continuing exercise of validating the codes against plant operational data is discussed. (author)

  10. Flow Characterization of a Detonation Gun Facility and First Coating Experiments

    Science.gov (United States)

    Henkes, C.; Olivier, H.

    2014-06-01

    A computer-controlled detonation gun based spraying device has been designed and tested to obtain particle velocities over 1200 m/s. The device is able to be operated in two modes based on different flow-physical principles. In one mode, the device functions like a conventional detonation gun in which the powder is accelerated in a blast wave. In the other mode, an extension of the facility with a nozzle uses the detonated gas for an intermittently operated shock tunnel process in which the particles are injected into and accelerated by a quasi-steady high enthalpy nozzle flow with high reservoir conditions. Presented are experimental results of the operation without nozzle in which the device generates moderate to high particle velocities in an intermittent process with a frequency of 5 Hz. A hydrogen/oxygen mixture and Cu and WC-Co (88/12) powders are used in the experiments. Operation performance and tube outflow are characterized by time-resolved Schlieren images and pressure measurements. The particle velocities in the outflow are obtained by laser Doppler anemometry. Different substrate/powder combinations (Al/Cu, Steel/Cu, Al/WC-Co, and Steel/WC-Co) have been investigated by light microscopy and measurements of microhardness.

  11. Removal of pedestals and directional ambiguity of optical anemometer signals.

    Science.gov (United States)

    Durst, F; Zaré, M

    1974-11-01

    Laser Doppler anemometry permits, in principle, the measurement of both magnitude and direction of components of a particle's velocity vector. Most exiting anemometers, however, permit measurements only with a directional ambiguity of 180 degrees , resulting in errors in certain flow fields. Available methods of eliminating the directional ambiguity of Laser Doppler anemometers are reviewed, covering frequency shifting of the incident and scattered light beams, the use of beams with different polarization properties, and employment of multicolor laser beams. The advantages and disadvantages of existing methods are summarized, and suggestions for alterations are made. Different techniques used to remove the pedestal of laser Doppler anemometer signals are also reviewed. Optical techniques should be employed in any advanced optical anemometer system to avoid dynamic range limitations by electronic bandpass filters. Suggestions are made for advanced optical anemometers employing multielement avalanche photodiodes that can be used for simultaneous measurements of two velocity components. These anemometers incorporate devices to sense the direction of the velocity components and to eliminate optically the pedestal of laser Doppler signals.

  12. Laser Doppler anemometer measurements of pulsatile flow in a model carotid bifurcation.

    Science.gov (United States)

    Ku, D N; Giddens, D P

    1987-01-01

    Hemodynamics at the human carotid bifurcation is important to the understanding of atherosclerotic plaque initiation and progression as well as to the diagnosis of clinically important disease. Laser Doppler anemometry was performed in a large scale model of an average human carotid. Pulsatile waveforms and physiologic flow divisions were incorporated. Disturbance levels and shear stresses were computed from ensemble averages of the velocity waveform measurements. Flow in the common carotid was laminar and symmetric. Flow patterns in the sinus, however, were complex and varied considerably during the cycle. Strong helical patterns and outer wall flow separation waxed and waned during each systole. The changing flow patterns resulted in an oscillatory shear stress at the outer wall ranging from -13 to 9 dyn cm-2 during systole with a time-averaged mean of only -0.5 dyn cm-2. This contrasts markedly with an inner wall shear stress range of 17-50, (mean 26) dyn cm-2. The region of transient separation was confined to the carotid sinus outer wall with no reverse velocities detected in the distal internal carotid. Notable disturbance velocities were also time-dependent, occurring only during the deceleration phase of systole and the beginning of diastole. The present pulsatile flow studies have aided in identifying hemodynamic conditions which correlate with early intimal thickening and predict the physiologic level of flow disturbances in the bulb of undiseased internal carotid arteries.

  13. Three-dimensional visualization of velocity profiles in the ascending aorta in dogs, measured with a hot-film anemometer.

    Science.gov (United States)

    Paulsen, P K; Hasenkam, J M

    1983-01-01

    Three-dimensional blood velocity profiles were registered in the ascending aorta of dogs approximately 2 and 5 cm above the aortic valves by means of constant temperature hot-film anemometry. The velocity was measured at 41 predetermined points of measurement evenly distributed over the cross-sectional area. Later data analyses using a three-dimensional plotting system, visualized velocity profiles at 200 time intervals during one mean heart cycle. The overall appearance of the profiles was that of a flat transitional flow with a slight skewness. The highest velocity was found nearer to the posterior and left vessel wall. The skewness started during top systole and persisted to the beginning of diastole. Furthermore, many small velocity fluctuations were seen during top systole, but they might also be caused by secondary rotational flow phenomena. This new three-dimensional and dynamic method for visualizing velocity profiles seems to offer advantages, as it demonstrates the total velocity profile all over the cross-sectional area.

  14. Errors analysis in the evaluation of particle concentration by PDA on a turbulent two-phase jet: application for cross section and transit time methods

    Energy Technology Data Exchange (ETDEWEB)

    Calvo, Esteban; Garcia, Juan A.; Garcia, Ignacio; Aisa, Luis A. [University of Zaragoza, Area de Mecanica de Fluidos, Centro Politecnico Superior, Zaragoza (Spain)

    2009-09-15

    Phase-Doppler anemometry (PDA) is a powerful tool for two-phase flow measurements and testing. Particle concentration and mass flux can also be evaluated using the raw particle data supplied by this technique. The calculation starts from each particle velocity, diameter, transit time data, and the total measurement time. There are two main evaluation strategies. The first one uses the probe volume effective cross section, and it is usually simplified assuming that particles follow quasi one-directional trajectories. In the text, it will be called the cross section method. The second one includes a set of methods which will be denoted as ''Generalized Integral Methods'' (GIM). Concentration algorithms such as the transit time method (TTM) and the integral volume method (IVM) are particular cases of the GIM. In any case, a previous calibration of the measurement volume geometry is necessary to apply the referred concentration evaluation methods. In this study, concentrations and mass fluxes both evaluated by the cross-section method and the TTM are compared. Experimental data are obtained from a particle-laden jet generated by a convergent nozzle. Errors due to trajectory dispersion, burst splitting, and multi-particle signals are discussed. (orig.)

  15. Dynamics of fluid mixing in separated flows

    Science.gov (United States)

    Leder, A.

    1991-05-01

    Separated flows at high Re (>103) are highly turbulent. In some situations the turbulence generation and mixing processes associated with flow separation are desirable, e.g., in heat exchangers or in many chemical engineering applications. In others, e.g., stalled airfoils, separation must be avoided as it causes loss in pressure and kinetic energy. To control the phenomenon effectively, physical mechanisms of flow separation and related aspects, such as the growth of flow instabilities in shear layers, the process of vortex formation, and the dynamics of fluid mixing in recirculating flow regions, must be understood. In many cases numerical procedures, e.g., Navier-Stokes calculations including k-ɛ turbulence modeling, fail to predict real physical mechanisms in separated flows.1,2 Separated flows in the lee of bluff bodies have been studied for many years.3,4 However, accurate measurements of the magnitude and direction of velocities and the magnitude of the terms of the Reynolds stress tensor have been restricted by the unsuitability of the hot-wire anemometer in recirculating flows. The development of the pulsed-wire anemometer, flying hot-wire anemometer, and laser-Doppler anemometry (LDA) allows more reliable measurements also in turbulent separated flows.5-8 The aim of this paper is to investigate the dynamics of undisturbed fluid mixing in separated regions of 2-D, incompressible flows with visualization techniques and LDA. Measurements were performed with a vertical flat plate model, mounted in a closed-circuit wind tunnel at low blockage ratio. Because of the noninvasive character, optical techniques like LDA are more suitable to analyze complex fluid motions than pulsed-wire and flying-wire anemometry. The LDA system used to investigate turbulent flow structures consists of a two-channel version operating in backscatter mode and a specifically developed phase detector to extract phase-averaged information from recorded measurement ensembles.9 Endplates

  16. Comprehensive Renewable Energy Feasibility Study for Sealaska Corporation

    Energy Technology Data Exchange (ETDEWEB)

    Robert Lynette; John Wade: Larry Coupe

    2006-06-30

    The purposes of this project were: (1) to conduct a comprehensive feasibility study to determine the potential sustainability of wind and/or small hydroelectric power plants on Southeast Alaska native village lands, and (2) to provide the villages with an understanding of the requirements, costs, and benefits of developing and operating wind or small hydroelectric power plants. The program was sponsored by the Tribal Energy program, Office of Energy Efficiency and Renewable Energy, US Department of Energy. The Contractor was Sealaska Corporation, the Regional Native Corporation for Southeast Alaska that includes 12 village/urban corporations. Most villages are isolated from any central electric transmission and use diesel-electric systems for power generation, making them prime candidates for deploying renewable energy sources. Wind Energy - A database was assembled for all of the candidate sites in SE Alaska, including location, demographics, electricity supply and demand, existing and planned transmission interties with central generation, topographical maps, macro wind data, and contact personnel. Field trips were conducted at the five candidate villages that were deemed most likely to have viable wind resources. Meetings were held with local village and utility leaders and the requirements, costs, and benefits of having local renewable energy facilities were discussed. Two sites were selected for anemometry based on their needs and the probability of having viable wind resources – Yakutat and Hoonah. Anemometry was installed at both sites and at least one year of wind resource data was collected from the sites. This data was compared to long-term data from the closest weather stations. Reports were prepared by meteorologist John Wade that contains the details of the measured wind resources and energy production projections. Preliminary financial analysis of hypothetical wind power stations were prepared to gauge the economic viability of installing such

  17. Impinging jet spray formation using non-Newtonian liquids

    Science.gov (United States)

    Rodrigues, Neil S.

    and drop velocity mean values and distribution of several non-Newtonian liquids using a like-on-like impinging jet doublet. The drop size and drop velocity are important areas of study because of the effect on mass transfer and mass dispersal. Phase Doppler Anemometry (PDA) is used to measure the drop diameter and drop velocity. The drop diameter is measured by finding a phase difference between two signals. The drop velocity is measured using Laser Doppler Anemometry (LDA), which is based on the Doppler shift. Parametric studies are conducted based on dimensionless groups, impinging jet geometry, and spatial position. The investigated non-Newtonian liquids collapse onto a single mean diameter versus Reynolds number curve. However, this behavior is not observed for the gels due to differences in surface tension and molecular structure. In general, increasing the inertial force results in smaller drops and greater drop velocities. The different geometric parameters are observed to have varying degrees of influence, based on the propellant simulant considered. Larger drops with lower axial velocities are generally observed with increasing transverse distances from the centerline of the impinging jet spray.

  18. Numerical and experimental studies of droplet-gas flow

    Energy Technology Data Exchange (ETDEWEB)

    Joesang, Aage Ingebret

    2002-07-01

    This thesis considers droplet-gas flow by the use of numerical methods and experimental verification. A commercial vane separator was studied both numerical and by experiment. In addition some efforts are put into the numerical analysis of cyclones. The experimental part contains detailed measurements of the flow field between a pair of vanes in a vane separator and droplet size measurements. LDA (Laser Doppler Anemometry) was used to measure the velocity in two dimensions and corresponding turbulence quantities. The results from the LDA measurements are considered to be of high quality and are compared to numerical results obtained from a CFD (Computational Fluid Dynamics) analysis. The simulation showed good agreement between the numerical and experimental results. Combinations of different turbulence models; the standard k-epsilon model and the Reynold Stress Mode, different schemes; first order and higher order scheme and different near wall treatment of the turbulence; the Law of the wall and the Two-Layer Zonal model were used in the simulations. The Reynold Stress Model together with a higher order scheme performed rather poorly. The recirculation in parts of the separator was overpredicted in this case. For the other cases the overall predictions are satisfactory. PDA (Phase Doppler Anemometry) measurements were used to study the changes in the droplet size distribution through the vane separator. The PDA measurements show that smaller droplets are found at the outlet than present at the inlet. In the literature there exists different mechanisms for explaining the re-entrainment and generation of new droplets. The re-entrainments mechanisms are divided into four groups where droplet-droplet interaction, droplet break-up, splashing of impinging droplet and re-entrainment from the film are defined as the groups of re-entrainment mechanisms. Models for these groups are found in the literature and these models are tested for re-entrainment using the operational

  19. Synthesis and characterization of nano structures of Silica SBA-16 containing Gadolinium-159 as potential nanoparticulated system for cancer therapy

    International Nuclear Information System (INIS)

    Oliveira, Andre Felipe de

    2013-01-01

    Cancer is a leading cause of death worldwide, and malignant neoplasms of the lung, stomach, liver, colon and breast in greater numbers. And recently observed in the literature a large number of reviews where new materials, especially nanoparticle, has been studied as drug carriers and radioisotopes applied to cancer treatment. How mesoporous materials based on silica, thanks to its huge surface area and biocompatibility, have been studied intensively providing broad applications in various areas, the use of nanostructured silica SBA-16 might be a carrier specific radioisotope accumulate in the cells malignant. Thus the aim of this study is to develop in vitro studies using SBA-16 can selectively concentrate in malignant cells therapeutic amounts of the radioisotope Gadolinium-159 escorting them to death. This work was performed orderly synthesis of mesoporous silica, SBA-16 and incorporating the complex Gd-DTPA-BMA, as well as chemical and structural characterization. The techniques used to analyze the occurrence of the incorporation of the gadolinium complex in the silica matrix were elemental analysis (CHN), atomic emission spectroscopy (ICP-AES), infrared spectroscopy (FTIR), nitrogen adsorption (BET), small-angle X-ray scattering (SAXS) and thermogravimetric analysis (TG). To analyze the morphology of pure silica used the scanning electron microscopy (SEM) and transmission electron microscopy (TEM). By photon correlation spectroscopy (PCS) it was possible to obtain a measure of mean particle size, the polydispersity index (PDI) of the silica SBA-16, and the zeta potential by laser Doppler anemometry (LDA). The results of incorporation analyzed by ICP-AES indicated that the material SBA-16 had a higher rate of incorporation of gadolinium (93%). The release kinetics in simulated body fluid, showed considerable stability and low release (1%). The mesoporous silica SBA-16 showed cell viability in direct contact with cell culture. Samples with gadolinium

  20. Development of high, medium and low oil content hydro cyclones; Desenvolvimento de hidrociclones para altos, medios e baixos teores de oleo

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Carlos Alberto Capela; Marins, Luiz Philipe Martinez; Melo, Darley Carrijo de; Silva, Fabricio Soares da [Centro de Pesquisas da Petrobras (CENPES). Gerencia de Tecnologia de Processamento e Avaliacao de Petroleo (Brazil)], e-mails: capela@petrobras.com.br, philipe@petrobras.com.br, darley@petrobras.com.br, fabriciosoares@petrobras.com.br; Oliveira Junior, Joao Americo Aguirre [Engineering Simulation and Scientific Software (ESSS), Florianopolis, SC (Brazil)], e-mail: aguirre@esss.com.br; Souza, Marcos Aurelio de; Barca, Luiz Fernando [Universidade Federal de Itajuba. Instituto de Engenharia Mecanica, MG (Brazil)], e-mails: maurelio@unifei.edu.br, barca@unifei.edu.br; Souza, Adriana Margarida Rodrigues Ferreira de [Fundacao Gorceix (Brazil)], e-mail: adrianamargarida.gorceix@petrobras.com.br; Almeida, Cristina Santos de [Universidade Federal do Rio de Janeiro. Fundacao de Coordenacao de Projetos, Pesquisa e Estudos Tecnologicos (COPPETEC/UFRJ). Escola de Quimica, RJ (Brazil)], e-mail: cristinaalmeida.coppetec@petrobras.com.br

    2008-12-15

    This paper is intended to describe the steps and present the results of a Research and Development (P and D) project aimed at developing and qualifying hydro cyclones for oil and water primary separation by PETROBRAS. The hydro cyclones families for high, medium and low oil content, respectively named as ATO, MTO and BTO were developed in this project and are currently in the patent filing phase. The members of each one of them were initially conceived and analyzed by means of numeric simulations (CFD). The set-ups for these simulations were based on experimental investigation supplemental papers of the fluid-dynamics in hydro cyclones, with the use of Laser Doppler Anemometry (LDA and PIV) in acrylic models. After the selection of the geometries for optimum performance at the CFD, actual size steel prototypes were designed and built for each one of the aforementioned hydro cyclones families. It was also designed and built a two-skid mounted system and one control rack which comprise a Mobile Lab for Hydro cyclone Tests (LMTH, being the acronym in Portuguese) with which field tests were carried out (Buracica Field, Bahia) in the prototypes. As the last phase of the Research and Development (R and D) project, it was prepared a computer routine which allows the performance of a project of a compact separation system for any specific application, using the hydro cyclones of the families aforementioned in series in the streams rich in water. This routine enables, from the features of the fluids in the application in particular, to select the most appropriate hydro cyclone to be used, obtain their corresponding operating conditions and also to obtain an estimate of the minimum performance range expected in the application under analysis. (author)

  1. An international SUrvey on non-iNvaSive tecHniques to assess the mIcrocirculation in patients with RayNaud's phEnomenon (SUNSHINE survey).

    Science.gov (United States)

    Ingegnoli, Francesca; Ughi, Nicola; Dinsdale, Graham; Orenti, Annalisa; Boracchi, Patrizia; Allanore, Yannick; Foeldvari, Ivan; Sulli, Alberto; Cutolo, Maurizio; Smith, Vanessa; Herrick, Ariane L

    2017-11-01

    To canvas opinion concerning the role of non-invasive techniques in the assessment of patients with Raynaud's phenomenon (Rp) in clinical and research settings: four nailfold capillaroscopy methods [videocapillaroscopy (NVC), dermoscopy, stereomicroscopy, digital USB microscopy], four laser Doppler methods (laser Doppler flowmetry, imaging, anemometry/velocimetry, laser speckle contrast analysis), thermographic imaging, and upper limb arterial Doppler ultrasound. Emails with a link to the survey were sent to physicians from the European Scleroderma Trials and Research group (EUSTAR), the EULAR Study Group on Microcirculation in Rheumatic Diseases (SG_MC/RD) and members of the pediatric rheumatology Email board. The main descriptive analysis related to physicians looking after adult patients, with some analysis also of opinions from paediatric rheumatologists. 106 'adult physicians' responded (a response rate of 25.8%), of whom 68.9% were European, and 81.1% practising for more than 10 years. Nineteen paediatricians responded. The most widely available technique was NVC (72.7%). Nailfold capillaroscopy was most frequently performed by the physician him/herself, using different types of equipment relating to availability. Most rheumatologists reported high levels of appropriateness for NVC in both clinical and research settings for global assessment and differential diagnosis of Rp. Other techniques were less used. Of all the different techniques, nailfold capillaroscopy was the one most used in both clinical and research settings by adult physicians, the majority of whom use NVC in their everyday practice. The low proportion of clinicians using other techniques suggests that these are currently mainly research tools, available only in specialist centres.

  2. Development of a representative model of a wind turbine in order to study the installation of several machines on a wind park

    International Nuclear Information System (INIS)

    Jourieh, M.

    2007-12-01

    This thesis is devoted to the study of aerodynamics in wind turbines. It is divided into two main parts, one is experimental, and the other deals with modelling and numerical simulation. The velocity field downstream from a three-bladed wind turbine with a horizontal axis is explored in the wind tunnel at ENSAM-Paris. Two measurement techniques are used: hot wire anemometry and Particle Image Velocimetry (PIV). Experimental work gives a clear idea of the structure of the near wake and provides useful data to validate the numerical simulations and the hybrid models which are studied in this thesis. In the work concerning numerical simulation, two hybrid models are defined and implemented: a model of actuator disc and a model of actuator cylinder, coupled with a simulation based on the numerical resolution of the Navier-Stokes equations. These models are validated by the power of the wind turbine and on the velocity field in the near wake of the rotor. The numerical results are compared with the experimental data resulting from the tests carried out by the NREL for NREL phase II and VI cases. The experimental and numerical velocity fields are also compared in the wake of a wind turbine Rutland 503. In both validation cases, power and wake, the experimental data are in accordance with the results provided by the hybrid models. After this validation, the interaction between several wind turbines is studied and quantified. The tested hybrid models are also used to study the interaction between identical wind turbines placed one behind the other. The obtained results highlight the effect of spacing between the machines as well as the effect of free stream velocity. (author)

  3. Long Hole Film Cooling Dataset for CFD Development . Part 1; Infrared Thermography and Thermocouple Surveys

    Science.gov (United States)

    Shyam, Vikram; Thurman, Douglas; Poinsatte, Phillip; Ameri, Ali; Eichele, Peter; Knight, James

    2013-01-01

    An experiment investigating flow and heat transfer of long (length to diameter ratio of 18) cylindrical film cooling holes has been completed. In this paper, the thermal field in the flow and on the surface of the film cooled flat plate is presented for nominal freestream turbulence intensities of 1.5 and 8 percent. The holes are inclined at 30deg above the downstream direction, injecting chilled air of density ratio 1.0 onto the surface of a flat plate. The diameter of the hole is 0.75 in. (0.01905 m) with center to center spacing (pitch) of 3 hole diameters. Coolant was injected into the mainstream flow at nominal blowing ratios of 0.5, 1.0, 1.5, and 2.0. The Reynolds number of the freestream was approximately 11,000 based on hole diameter. Thermocouple surveys were used to characterize the thermal field. Infrared thermography was used to determine the adiabatic film effectiveness on the plate. Hotwire anemometry was used to provide flowfield physics and turbulence measurements. The results are compared to existing data in the literature. The aim of this work is to produce a benchmark dataset for Computational Fluid Dynamics (CFD) development to eliminate the effects of hole length to diameter ratio and to improve resolution in the near-hole region. In this report, a Time-Filtered Navier Stokes (TFNS), also known as Partially Resolved Navier Stokes (PRNS), method that was implemented in the Glenn-HT code is used to model coolant-mainstream interaction. This method is a high fidelity unsteady method that aims to represent large scale flow features and mixing more accurately.

  4. Long-range distributed optical fiber hot-wire anemometer based on chirped-pulse ΦOTDR.

    Science.gov (United States)

    Garcia-Ruiz, Andres; Dominguez-Lopez, Alejandro; Pastor-Graells, Juan; Martins, Hugo F; Martin-Lopez, Sonia; Gonzalez-Herraez, Miguel

    2018-01-08

    We demonstrate a technique allowing to develop a fully distributed optical fiber hot-wire anemometer capable of reaching a wind speed uncertainty of ≈ ±0.15m/s (±0.54km/h) at only 60 mW/m of dissipated power in the sensing fiber, and within only four minutes of measurement time. This corresponds to similar uncertainty values than previous papers on distributed optical fiber anemometry but requires two orders of magnitude smaller dissipated power and covers at least one order of magnitude longer distance. This breakthrough is possible thanks to the extreme temperature sensitivity and single-shot performance of chirped-pulse phase-sensitive optical time domain reflectometry (ΦOTDR), together with the availability of metal-coated fibers. To achieve these results, a modulated current is fed through the metal coating of the fiber, causing a modulated temperature variation of the fiber core due to Joule effect. The amplitude of this temperature modulation is strongly dependent on the wind speed at which the fiber is subject. Continuous monitoring of the temperature modulation along the fiber allows to determine the wind speed with singular low power injection requirements. Moreover, this procedure makes the system immune to temperature drifts of the fiber, potentially allowing for a simple field deployment. Being a much less power-hungry scheme, this method also allows for monitoring over much longer distances, in the orders of 10s of km. We expect that this system can have application in dynamic line rating and lateral wind monitoring in railway catenary wires.

  5. Influence of Nozzle Exit Conditions on the Near-Field Development of High Subsonic and Underexpanded Axisymmetric Jets

    Directory of Open Access Journals (Sweden)

    Miles T. Trumper

    2018-03-01

    Full Text Available Detailed knowledge of jet plume development in the near-field (the first 10–15 nozzle exit diameters for a round jet is important in aero-engine propulsion system design, e.g., for jet noise and plume infrared (IR signature assessment. Nozzle exit Mach numbers are often high subsonic but improperly expanded (e.g., shock-containing plumes also occur; high Reynolds numbers (O (106 are typical. The near-field is obviously influenced by nozzle exit conditions (velocity/turbulence profiles so knowledge of exit boundary layer characteristics is desirable. Therefore, an experimental study was carried out to provide detailed data on nozzle inlet and exit conditions and near-field development for convergent round nozzles operated at Nozzle Pressure Ratios (NPRs corresponding to high subsonic and supersonic (underexpanded jet plumes. Both pneumatic probe and Laser Doppler Anemometry (LDA measurements were made. The data revealed that internal nozzle acceleration led to a dramatic reduction in wall boundary layer thickness and a more laminar-like profile shape. The addition of a parallel wall extension to the end of the nozzle allowed the boundary layer to return to a turbulent state, increasing its thickness, and removing vena contracta effects. Differences in nozzle exit boundary layers exerted a noticeable influence but only in the first few diameters of plume development. The addition of the exit extension removed the vena contracta effects of the convergence only design. At underexpanded NPRs, this change to nozzle geometry modified the shock cell pattern and shortened the potential core length of the jet.

  6. Pulsating flow in a planar diffuser upstream of automotive catalyst monoliths

    International Nuclear Information System (INIS)

    Mat Yamin, A.K.; Benjamin, S.F.; Roberts, C.A.

    2013-01-01

    Highlights: ► Pulsating flow is studied across catalyst monoliths placed downstream of a wide-angled diffuser. ► The ratio of pulse period to residence time within the diffuser (J factor) characterises the flow field. ► Increasing J resulted in greater flow maldistribution in the monoliths. ► Steady flow produces the highest maldistribution for a given Re. -- Abstract: The flow distribution across automotive exhaust catalysts has a significant effect on their conversion efficiency. The exhaust gas is pulsating and flow distribution is a function of engine operating condition, namely speed (frequency) and load (flow rate). This study reports on flow measurements made across catalyst monoliths placed downstream of a wide-angled planar diffuser presented with pulsating flow. Cycle-resolved particle image velocimetry (PIV) measurements were made in the diffuser and hot wire anemometry (HWA) downstream of the monoliths. The ratio of pulse period to residence time within the diffuser (defined as the J factor) characterises the flow distribution. During acceleration the flow remained attached to the diffuser walls for some distance before separating near the diffuser inlet later in the cycle. Two cases with J ∼ 3.5 resulted in very similar flow fields with the flow able to reattach downstream of the separation bubbles. With J = 6.8 separation occurred earlier with the flow field resembling, at the time of deceleration, the steady flow field. Increasing J from 3.5 to 6.8 resulted in greater flow maldistribution within the monoliths; steady flow producing the highest maldistribution in all cases for the same Re

  7. PLA-PEG nanocapsules radiolabeled with 99mTechnetium-HMPAO: release properties and physicochemical characterization by atomic force microscopy and photon correlation spectroscopy.

    Science.gov (United States)

    Pereira, Maira Alves; Mosqueira, Vanessa Carla Furtado; Vilela, José Mário Carneiro; Andrade, Margareth Spangler; Ramaldes, Gilson Andrade; Cardoso, Valbert Nascimento

    2008-01-01

    The present work describes the preparation, characterization and labelling of conventional and surface-modified nanocapsules (NC) with 99m Tc-HMPAO. The size, size distribution and homogeneity were determined by photon correlation spectroscopy (PCS) and zeta potential by laser doppler anemometry. The morphology and the structural organization were evaluated by atomic force microscopy (AFM). The stability and release profile of the NC were determined in vitro in plasma. The results showed that the use of methylene blue induces significant increase in the encapsulation efficiency of 99m Tc-HMPAO, from 24.4 to 49.8% in PLA NC and 22.37 to 52.93% in the case of PLA-PEG NC (P<0.05) by improving the complex stabilization. The average diameter of NC calculated by PCS varied from 216 to 323 nm, while the average diameter determined by AFM varied from 238 to 426 nm. The AFM analysis of diameter/height ratios suggested a greater homogeneity of the surface-modified PLA-PEG nanocapsules compared to PLA NC concerning their flattening properties. The in vitro release of the 99m Tc-HMPAO in plasma medium was faster for the conventional PLA NC than for the surface-modified NC. For the latter, 60% of the radioactivity remained associated with NC, even after 12h of incubation. The results suggest that the surface-modified 99m Tc-HMPAO-PLA-PEG NC was more stable against label leakage in the presence of proteins and could present better performance as radiotracer in vivo.

  8. Characterizing developing adverse pressure gradient flows subject to surface roughness

    Science.gov (United States)

    Brzek, Brian; Chao, Donald; Turan, Özden; Castillo, Luciano

    2010-04-01

    An experimental study was conducted to examine the effects of surface roughness and adverse pressure gradient (APG) on the development of a turbulent boundary layer. Hot-wire anemometry measurements were carried out using single and X-wire probes in all regions of a developing APG flow in an open return wind tunnel test section. The same experimental conditions (i.e., T ∞, U ref, and C p) were maintained for smooth, k + = 0, and rough, k + = 41-60, surfaces with Reynolds number based on momentum thickness, 3,000 carefully designed such that the x-dependence in the flow field was known. Despite this fact, only a very small region of the boundary layer showed a balance of the various terms in the integrated boundary layer equation. The skin friction computed from this technique showed up to a 58% increase due to the surface roughness. Various equilibrium parameters were studied and the effect of roughness was investigated. The generated flow was not in equilibrium according to the Clauser (J Aero Sci 21:91-108, 1954) definition due to its developing nature. After a development region, the flow reached the equilibrium condition as defined by Castillo and George (2001), where Λ = const, is the pressure gradient parameter. Moreover, it was found that this equilibrium condition can be used to classify developing APG flows. Furthermore, the Zagarola and Smits (J Fluid Mech 373:33-79, 1998a) scaling of the mean velocity deficit, U ∞δ*/δ, can also be used as a criteria to classify developing APG flows which supports the equilibrium condition of Castillo and George (2001). With this information a ‘full APG region’ was defined.

  9. ADVANCED COMPUTATIONAL MODEL FOR THREE-PHASE SLURRY REACTORS

    International Nuclear Information System (INIS)

    Ahmadi, Goodarz

    2004-01-01

    In this project, an Eulerian-Lagrangian formulation for analyzing three-phase slurry flows in a bubble column was developed. The approach used an Eulerian analysis of liquid flows in the bubble column, and made use of the Lagrangian trajectory analysis for the bubbles and particle motions. The bubble-bubble and particle-particle collisions are included the model. The model predictions are compared with the experimental data and good agreement was found An experimental setup for studying two-dimensional bubble columns was developed. The multiphase flow conditions in the bubble column were measured using optical image processing and Particle Image Velocimetry techniques (PIV). A simple shear flow device for bubble motion in a constant shear flow field was also developed. The flow conditions in simple shear flow device were studied using PIV method. Concentration and velocity of particles of different sizes near a wall in a duct flow was also measured. The technique of Phase-Doppler anemometry was used in these studies. An Eulerian volume of fluid (VOF) computational model for the flow condition in the two-dimensional bubble column was also developed. The liquid and bubble motions were analyzed and the results were compared with observed flow patterns in the experimental setup. Solid-fluid mixture flows in ducts and passages at different angle of orientations were also analyzed. The model predictions were compared with the experimental data and good agreement was found. Gravity chute flows of solid-liquid mixtures were also studied. The simulation results were compared with the experimental data and discussed A thermodynamically consistent model for multiphase slurry flows with and without chemical reaction in a state of turbulent motion was developed. The balance laws were obtained and the constitutive laws established

  10. Local measurement and numerical calculation on turbulent two-phase flow in a vertical pipe with sudden expansion

    International Nuclear Information System (INIS)

    Kondo, Koichi; Yoshida, Kenji; Okawa, Tomio; Kataoka, Isao

    2004-01-01

    Experiment and numerical calculation were carried out for upward, turbulent bubbly two-phase flow in a vertical pipe with an axisymmetric sudden expansion, which is one of the typical multi-dimensional channel geometries. The void fraction, the liquid velocity and turbulent intensity along the flow direction below and the above the sudden expansion point were measured for various turbulent flow conditions by using a point-electrode resistivity probe and a hot-film anemometry probe. They showed quite complicated behaviors depending upon flow rates of gas and liquid phases and bubble size. In particular, the geometry of sudden expansion affected on the bubble behaviors in multi-dimensional two-phase flow, such as the bubble-stagnation, the bubble-deformation, the enhancement and suppression effects due to the two-phase turbulence etc. Through the measurements, fundamental parameters of the two-phase flow were clarified for the sudden expansion channel. Moreover, a three-dimensional one-way bubble tracking simulation of a single bubble behavior in turbulent flow field along the downstream of the sudden expansion was also demonstrated where equation of motion of bubble was solved by assuming appropriate constitutive models and turbulence model. Based on the trajectories of large number of bubbles, the void fraction distribution was predicted in this calculation. It concretely revealed that the lift force and the two-phase turbulence model were the most important parameters in determining the multi-dimensional void fraction distribution and the calculation should be considered by using the measured experimental data. (author)

  11. PIV and LDA measurements of the wake behind a wind turbine model

    Science.gov (United States)

    Naumov, I. V.; Mikkelsen, R. F.; Okulov, V. L.; Sørensen, J. N.

    2014-06-01

    In the present work we review the results of a series of measurements of the flow behind a model scale of a horizontal axis wind turbine rotor carried out at the water flume at Technical University of Denmark (DTU). The rotor is three-bladed and designed using Glauert theory for tip speed ratio λ =5 with a constant design lift coefficient along the span, CLdesign= 0.8. The measurements include dye visualization, Particle Image Velocimetry and Laser Doppler Anemometry. The wake instability has been studied in the range λ =3 - 9 at different cross-sections from the very near wake up to 10 rotor diameters downstream from the rotor. The initial flume flow was subject to a very low turbulence level with a uniform velocity profile, limiting the influence of external disturbances on the development of the inherent vortex instability. Using PIV measurements and visualizations, special attention was paid to detect and categorize different types of wake instabilities and the development of the flow in the near and the far wake. In parallel to PIV, LDA measurements provided data for various rotor regimes, revealing the existence of three main regular frequencies governing the development of different processes and instabilities in the rotor wake. In the far wake a constant frequency corresponding to the Strouhal number was found for the long-scale instabilities. This Strouhal number is in good agreement with the well-known constant that usually characterizes the oscillation in wakes behind bluff bodies. From associated visualizations and reconstructions of the flow field, it was found that the dynamics of the far wake is associated with the precession (rotation) of a helical vortex core. The data indicate that Strouhal number of this precession is independent of the rotor angular speed.

  12. Mechanism of drag reduction for circular cylinders with patterned surface

    International Nuclear Information System (INIS)

    Butt, U.; Jehring, L.; Egbers, C.

    2014-01-01

    Highlights: • Reduced drag of patterned cylinders over a wide range of Re numbers. • Hexagonal patterns cannot be characterized as roughness structures. • Hexagonal bumps affect the flow like spherical dimples of smaller k/d ratio do. • Main separation is delayed caused by a partial separation. • Angle of a separation line is not constant over the length of cylinder. -- Abstract: In this paper, the flow over cylinders with a patterned surface (k/d = 1.98 × 10 −2 ) is investigated in a subsonic wind tunnel over Reynolds numbers ranging from 3.14 × 10 4 to 2.77 × 10 5 by measuring drag, flow visualization and measuring velocity profiles above the surface of the cylinders, to observe the effect of hexagonal patterns on the flow of air. These patterns can also be referred as hexagonal dimples or bumps depending on their configuration. The investigations revealed that a patterned cylinder with patterns pressed outwards has a drag coefficient of about 0.65 times of a smooth one. Flow visualization techniques including surface oil-film technique and velocity profile measurement were employed to elucidate this effect, and hence present the mechanism of drag reduction. The measurement of velocity profiles using hot-wire anemometry above the surface reveal that a hexagonal bump cause local separation generating large turbulence intensity along the separating shear layer. Due to this increased turbulence, the flow reattaches to the surface with higher momentum and become able to withstand the pressure gradient delaying the main separation significantly. Besides that, the separation does not appear to occur in a straight line along the length of the cylinder as in case of most passive drag control methods, but follow exactly the hexagonal patterns forming a wave with its crest at 115° and trough at 110°, in contrast to the laminar separation line at 85° for a smooth cylinder

  13. Development of a representative model of a wind turbine in order to study the installation of several machines on a wind park; Developpement d'un modele representatif d'une eolienne afin d'etudier l'implantation de plusieurs machines sur un parc eolien

    Energy Technology Data Exchange (ETDEWEB)

    Jourieh, M

    2007-12-15

    This thesis is devoted to the study of aerodynamics in wind turbines. It is divided into two main parts, one is experimental, and the other deals with modelling and numerical simulation. The velocity field downstream from a three-bladed wind turbine with a horizontal axis is explored in the wind tunnel at ENSAM-Paris. Two measurement techniques are used: hot wire anemometry and Particle Image Velocimetry (PIV). Experimental work gives a clear idea of the structure of the near wake and provides useful data to validate the numerical simulations and the hybrid models which are studied in this thesis. In the work concerning numerical simulation, two hybrid models are defined and implemented: a model of actuator disc and a model of actuator cylinder, coupled with a simulation based on the numerical resolution of the Navier-Stokes equations. These models are validated by the power of the wind turbine and on the velocity field in the near wake of the rotor. The numerical results are compared with the experimental data resulting from the tests carried out by the NREL for NREL phase II and VI cases. The experimental and numerical velocity fields are also compared in the wake of a wind turbine Rutland 503. In both validation cases, power and wake, the experimental data are in accordance with the results provided by the hybrid models. After this validation, the interaction between several wind turbines is studied and quantified. The tested hybrid models are also used to study the interaction between identical wind turbines placed one behind the other. The obtained results highlight the effect of spacing between the machines as well as the effect of free stream velocity. (author)

  14. Soft Interfaces

    International Nuclear Information System (INIS)

    Strzalkowski, Ireneusz

    1997-01-01

    This book presents an extended form of the 1994 Dirac Memorial Lecture delivered by Pierre Gilles de Gennes at Cambridge University. The main task of the presentation is to show the beauty and richness of structural forms and phenomena which are observed at soft interfaces between two media. They are much more complex than forms and phenomena existing in each phase separately. Problems are discussed including both traditional, classical techniques, such as the contact angle in static and dynamic partial wetting, as well as the latest research methodology, like 'environmental' scanning electron microscopes. The book is not a systematic lecture on phenomena but it can be considered as a compact set of essays on topics which particularly fascinate the author. The continuum theory widely used in the book is based on a deep molecular approach. The author is particularly interested in a broad-minded rheology of liquid systems at interfaces with specific emphasis on polymer melts. To study this, the author has developed a special methodology called anemometry near walls. The second main topic presented in the book is the problem of adhesion. Molecular processes, energy transformations and electrostatic interaction are included in an interesting discussion of the many aspects of the principles of adhesion. The third topic concerns welding between two polymer surfaces, such as A/A and A/B interfaces. Of great worth is the presentation of various unsolved, open problems. The kind of topics and brevity of description indicate that this book is intended for a well prepared reader. However, for any reader it will present an interesting picture of how many mysterious processes are acting in the surrounding world and how these phenomena are perceived by a Nobel Laureate, who won that prize mainly for his investigations in this field. (book review)

  15. Comparison of numerical simulations to experiments for atomization in a jet nebulizer.

    Science.gov (United States)

    Lelong, Nicolas; Vecellio, Laurent; Sommer de Gélicourt, Yann; Tanguy, Christian; Diot, Patrice; Junqua-Moullet, Alexandra

    2013-01-01

    The development of jet nebulizers for medical purposes is an important challenge of aerosol therapy. The performance of a nebulizer is characterized by its output rate of droplets with a diameter under 5 µm. However the optimization of this parameter through experiments has reached a plateau. The purpose of this study is to design a numerical model simulating the nebulization process and to compare it with experimental data. Such a model could provide a better understanding of the atomization process and the parameters influencing the nebulizer output. A model based on the Updraft nebulizer (Hudson) was designed with ANSYS Workbench. Boundary conditions were set with experimental data then transient 3D calculations were run on a 4 µm mesh with ANSYS Fluent. Two air flow rate (2 L/min and 8 L/min, limits of the operating range) were considered to account for different turbulence regimes. Numerical and experimental results were compared according to phenomenology and droplet size. The behavior of the liquid was compared to images acquired through shadowgraphy with a CCD Camera. Three experimental methods, laser diffractometry, phase Doppler anemometry (PDA) and shadowgraphy were used to characterize the droplet size distributions. Camera images showed similar patterns as numerical results. Droplet sizes obtained numerically are overestimated in relation to PDA and diffractometry, which only consider spherical droplets. However, at both flow rates, size distributions extracted from numerical image processing were similar to distributions obtained from shadowgraphy image processing. The simulation then provides a good understanding and prediction of the phenomena involved in the fragmentation of droplets over 10 µm. The laws of dynamics apply to droplets down to 1 µm, so we can assume the continuity of the distribution and extrapolate the results for droplets between 1 and 10 µm. So, this model could help predicting nebulizer output with defined geometrical and

  16. Comparison of numerical simulations to experiments for atomization in a jet nebulizer.

    Directory of Open Access Journals (Sweden)

    Nicolas Lelong

    Full Text Available The development of jet nebulizers for medical purposes is an important challenge of aerosol therapy. The performance of a nebulizer is characterized by its output rate of droplets with a diameter under 5 µm. However the optimization of this parameter through experiments has reached a plateau. The purpose of this study is to design a numerical model simulating the nebulization process and to compare it with experimental data. Such a model could provide a better understanding of the atomization process and the parameters influencing the nebulizer output. A model based on the Updraft nebulizer (Hudson was designed with ANSYS Workbench. Boundary conditions were set with experimental data then transient 3D calculations were run on a 4 µm mesh with ANSYS Fluent. Two air flow rate (2 L/min and 8 L/min, limits of the operating range were considered to account for different turbulence regimes. Numerical and experimental results were compared according to phenomenology and droplet size. The behavior of the liquid was compared to images acquired through shadowgraphy with a CCD Camera. Three experimental methods, laser diffractometry, phase Doppler anemometry (PDA and shadowgraphy were used to characterize the droplet size distributions. Camera images showed similar patterns as numerical results. Droplet sizes obtained numerically are overestimated in relation to PDA and diffractometry, which only consider spherical droplets. However, at both flow rates, size distributions extracted from numerical image processing were similar to distributions obtained from shadowgraphy image processing. The simulation then provides a good understanding and prediction of the phenomena involved in the fragmentation of droplets over 10 µm. The laws of dynamics apply to droplets down to 1 µm, so we can assume the continuity of the distribution and extrapolate the results for droplets between 1 and 10 µm. So, this model could help predicting nebulizer output with defined

  17. Breakup and coalescence characteristics of a hollow cone swirling spray

    Science.gov (United States)

    Saha, Abhishek; Lee, Joshua D.; Basu, Saptarshi; Kumar, Ranganathan

    2012-12-01

    This paper deals with an experimental study of the breakup characteristics of water emanating from hollow cone hydraulic injector nozzles induced by pressure-swirling. The experiments were conducted using two nozzles with different orifice diameters 0.3 mm and 0.5 mm and injection pressures (0.3-4 MPa) which correspond to Rep = 7000-26 000. Two types of laser diagnostic techniques were utilized: shadowgraph and phase Doppler particle anemometry for a complete study of the atomization process. Measurements that were made in the spray in both axial and radial directions indicate that both velocity and average droplet diameter profiles are highly dependent on the nozzle characteristics, Weber number and Reynolds number. The spatial variation of diameter and velocity arises principally due to primary breakup of liquid films and subsequent secondary breakup of large droplets due to aerodynamic shear. Downstream of the nozzle, coalescence of droplets due to collision was also found to be significant. Different types of liquid film breakup were considered and found to match well with the theory. Secondary breakup due to shear was also studied theoretically and compared to the experimental data. Coalescence probability at different axial and radial locations was computed to explain the experimental results. The spray is subdivided into three zones: near the nozzle, a zone consisting of film and ligament regime, where primary breakup and some secondary breakup take place; a second zone where the secondary breakup process continues, but weakens, and the centrifugal dispersion becomes dominant; and a third zone away from the spray where coalescence is dominant. Each regime has been analyzed in detail, characterized by timescale and Weber number and validated using experimental data.

  18. Direct microscopic image and measurement of the atomization process of a port fuel injector

    Science.gov (United States)

    Esmail, Mohamed; Kawahara, Nobuyuki; Tomita, Eiji; Sumida, Mamoru

    2010-07-01

    The main objective of this study is to observe and investigate the phenomena of atomization, i.e. the fuel break-up process very close to the nozzle exit of a practical port fuel injector (PFI). In order to achieve this objective, direct microscopic images of the atomization process were obtained using an ultra-high-speed video camera that could record 102 frames at rates of up to 1 Mfps, coupled with a long-distance microscope and Barlow lens. The experiments were carried out using a PFI in a closed chamber at atmospheric pressure. Time-series images of the spray behaviour were obtained with a high temporal resolution using backlighting. The direct microscopic images of a liquid column break-up were compared with experimental results from laser-induced exciplex fluorescence (LIEF), and the wavelength obtained from the experimental results compared with that predicated from the Kelvin-Helmholtz break-up model. The droplet size diameters from a ligament break-up were compared with results predicated from Weber's analysis. Furthermore, experimental results of the mean droplet diameter from a direct microscopic image were compared with the results obtained from phase Doppler anemometry (PDA) experimental results. Three conclusions were obtained from this study. The atomization processes and detailed characterizations of the break-up of a liquid column were identified; the direct microscopic image results were in good agreement with the results obtained from LIEF, experimental results of the wavelength were in good agreement with those from the Kelvin-Helmholtz break-up model. The break-up process of liquid ligaments into droplets was investigated, and Weber's analysis of the predicated droplet diameter from ligament break-up was found to be applicable only at larger wavelengths. Finally, the direct microscopic image method and PDA method give qualitatively similar trends for droplet size distribution and quantitatively similar values of Sauter mean diameter.

  19. The influence of gas phase velocity fluctuations on primary atomization and droplet deformation

    Science.gov (United States)

    Kourmatzis, A.; Masri, A. R.

    2014-02-01

    The effects of grid-generated velocity fluctuations on the primary atomization and subsequent droplet deformation of a range of laminar liquid jets are examined using microscopic high-speed backlit imaging of the break-up zone and laser Doppler anemometry of the gas phase separately. This is done for fixed gas mean flow conditions in a miniature wind tunnel experiment utilizing a selection of fuels, turbulence-generating grids and two syringe sizes. The constant mean flow allows for an isolated study of velocity fluctuation effects on primary atomization in a close approximation to homogeneous decaying turbulence. The qualitative morphology of the primary break-up region is examined over a range of turbulence intensities, and spectral analysis is performed in order to ascertain the break-up frequency which, for a case of no grid, compares well with the existing literature. The addition of velocity fluctuations tends to randomize the break-up process. Slightly downstream of the break-up region, image processing is conducted in order to extract a number of metrics, which do not depend on droplet sphericity, and these include droplet aspect ratio and orientation, the latter quantity being somewhat unconventional in spray characterization. A turbulent Weber number which takes into account gas phase fluctuations is utilized to characterize the resulting droplet shapes, in addition to a mean Weber number . Above a a clear positive relationship exists between the mean aspect ratio of droplets and the turbulent Weber number where is varied by altering all relevant variables including the velocity root mean square, the initial droplet diameter, the surface tension and the density.

  20. What Happens Inside a Fuel Cell? Developing an Experimental Functional Map of Fuel Cell Performance

    KAUST Repository

    Brett, Daniel J. L.

    2010-08-20

    Fuel cell performance is determined by the complex interplay of mass transport, energy transfer and electrochemical processes. The convolution of these processes leads to spatial heterogeneity in the way that fuel cells perform, particularly due to reactant consumption, water management and the design of fluid-flow plates. It is therefore unlikely that any bulk measurement made on a fuel cell will accurately represent performance at all parts of the cell. The ability to make spatially resolved measurements in a fuel cell provides one of the most useful ways in which to monitor and optimise performance. This Minireview explores a range of in situ techniques being used to study fuel cells and describes the use of novel experimental techniques that the authors have used to develop an \\'experimental functional map\\' of fuel cell performance. These techniques include the mapping of current density, electrochemical impedance, electrolyte conductivity, contact resistance and CO poisoning distribution within working PEFCs, as well as mapping the flow of reactant in gas channels using laser Doppler anemometry (LDA). For the high-temperature solid oxide fuel cell (SOFC), temperature mapping, reference electrode placement and the use of Raman spectroscopy are described along with methods to map the microstructural features of electrodes. The combination of these techniques, applied across a range of fuel cell operating conditions, allows a unique picture of the internal workings of fuel cells to be obtained and have been used to validate both numerical and analytical models. © 2010 Wiley-VCH Verlag GmbH& Co. KGaA, Weinheim.

  1. Measuring the human body's microclimate using a thermal manikin.

    Science.gov (United States)

    Voelker, C; Maempel, S; Kornadt, O

    2014-12-01

    The human body is surrounded by a microclimate, which results from its convective release of heat. In this study, the air temperature and flow velocity of this microclimate were measured in a climate chamber at various room temperatures, using a thermal manikin simulating the heat release of the human being. Different techniques (Particle Streak Tracking, thermography, anemometry, and thermistors) were used for measurement and visualization. The manikin surface temperature was adjusted to the particular indoor climate based on simulations with a thermoregulation model (UCBerkeley Thermal Comfort Model). We found that generally, the microclimate is thinner at the lower part of the torso, but expands going up. At the head, there is a relatively thick thermal layer, which results in an ascending plume above the head. However, the microclimate shape strongly depends not only on the body segment, but also on boundary conditions: The higher the temperature difference between the surface temperature of the manikin and the air temperature, the faster the airflow in the microclimate. Finally, convective heat transfer coefficients strongly increase with falling room temperature, while radiative heat transfer coefficients decrease. The type of body segment strongly influences the convective heat transfer coefficient, while only minimally influencing the radiative heat transfer coefficient. The findings of this study generate a better understanding of the human body’s microclimate, which is important in fields such as thermal comfort, HVAC, or indoor air quality. Additionally, the measurements can be used by CFD users for the validation of their simulations. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. An investigation of fluid flow during induction stroke of a water analog model of an IC engine using an innovative optical velocimetry concept: LIPA

    Science.gov (United States)

    Stier, Bernd; Falco, R. E.

    1994-01-01

    Optical measurements on an axisymmetrical quartz component engine research model were made to evaluate the flow field encountered during induction. The measurement technique is LIPA (Laser Induced Photochemical Anemometry), a non-intrusive velocimetry concept that provides an investigator of fluid flow with a tool to attain planar information about three-dimensional velocity and vorticity vectors in a single measurement step. The goal of this investigation is to further develop this measurement technique and apply it to study the induction stroke of a water analog model of a four-stroke internal combustion engine. The research conducted in the water analog model is a fundamental scientific inquiry into the flow fields that develop in the induction stroke of an engine at idling engine speeds. As this is the first investigation of its kind using LIPA technique, our goal has been to quantify, in a preliminary manner, the flow field features that develop during the intake stroke. In the process a more comprehensive understanding of the flow field features was developed, and tied to the quantification. The study evaluated the flow field of the intake stroke by estimating fields of velocity and vorticity. On the basis of these data, information about fluid dynamics during induction at engine speeds of 10, 20, and 30 RPM (corresponding to 170, 340, and 510 RPM respectively, when air is the flowing medium) for three different valve lifts was obtained. The overall development of the flow field, its energy content (kinetic, fluctuation) for the different settings of the engine parameters, vorticity information, and cyclic variations have been quantified. These have been discussed in terms of mixing performance.

  3. Experimental and computational studies of thermal mixing in next generation nuclear reactors

    Science.gov (United States)

    Landfried, Douglas Tyler

    The Very High Temperature Reactor (VHTR) is a proposed next generation nuclear power plant. The VHTR utilizes helium as a coolant in the primary loop of the reactor. Helium traveling through the reactor mixes below the reactor in a region known as the lower plenum. In this region there exists large temperature and velocity gradients due to non-uniform heat generation in the reactor core. Due to these large gradients, concern should be given to reducing thermal striping in the lower plenum. Thermal striping is the phenomena by which temperature fluctuations in the fluid and transferred to and attenuated by surrounding structures. Thermal striping is a known cause of long term material failure. To better understand and predict thermal striping in the lower plenum two separate bodies of work have been conducted. First, an experimental facility capable of predictably recreating some aspects of flow in the lower plenum is designed according to scaling analysis of the VHTR. Namely the facility reproduces jets issuing into a crossflow past a tube bundle. Secondly, extensive studies investigate the mixing of a non-isothermal parallel round triple-jet at two jet-to-jet spacings was conducted. Experimental results were validation with an open source computational fluid dynamics package, OpenFOAMRTM. Additional care is given to understanding the implementation of the realizable k-a and Launder Gibson RSM turbulence Models in OpenFOAMRTM. In order to measure velocity and temperature in the triple-jet experiment a detailed investigation of temperature compensated hotwire anemometry is carried out with special concern being given to quantify the error with the measurements. Finally qualitative comparisons of trends in the experimental results and the computational results is conducted. A new and unexpected physical behavior was observed in the center jet as it appeared to spread unexpectedly for close spacings (S/Djet = 1.41).

  4. Turbulent Flow Inside and Above a Wind Farm: A Wind-Tunnel Study

    Directory of Open Access Journals (Sweden)

    Leonardo P. Chamorro

    2011-11-01

    Full Text Available Wind-tunnel experiments were carried out to better understand boundary layer effects on the flow pattern inside and above a model wind farm under thermally neutral conditions. Cross-wire anemometry was used to characterize the turbulent flow structure at different locations around a 10 by 3 array of model wind turbines aligned with the mean flow and arranged in two different layouts (inter-turbine separation of 5 and 7 rotor diameters in the direction of the mean flow by 4 rotor diameters in its span. Results suggest that the turbulent flow can be characterized in two broad regions. The first, located below the turbine top tip height, has a direct effect on the performance of the turbines. In that region, the turbulent flow statistics appear to reach equilibrium as close as the third to fourth row of wind turbines for both layouts. In the second region, located right above the first one, the flow adjusts slowly. There, two layers can be identified: an internal boundary layer where the flow is affected by both the incoming wind and the wind turbines, and an equilibrium layer, where the flow is fully adjusted to the wind farm. An adjusted logarithmic velocity distribution is observed in the equilibrium layer starting from the sixth row of wind turbines. The effective surface roughness length induced by the wind farm is found to be higher than that predicted by some existing models. Momentum recovery and turbulence intensity are shown to be affected by the wind farm layout. Power spectra show that the signature of the tip vortices, in both streamwise and vertical velocity components, is highly affected by both the relative location in the wind farm and the wind farm layout.

  5. Experimental study of the characteristics of the flow in the first rows of tube banks

    International Nuclear Information System (INIS)

    Olinto, Claudio R.; Indrusiak, Maria Luiza S.; Endres, Luiz Augusto M.; Moeller, Sergio V.

    2009-01-01

    This paper presents the experimental study of the flow instabilities in the first rows of tube banks. The study is performed using hot wire anemometry technique in an aerodynamic channel as well as flow visualizations in a water channel. In the wind channel three tube banks with square arrangement and pitch to diameter ratios P/D = 1.26, 1.4 and 1.6 were studied. The Reynolds number range for the velocities measurements, computed with the tube diameter and the flow velocity in the narrow gap between tubes was 7 x 10 4 -8 x 10 4 . Continuous and discrete wavelets were applied to decompose the velocity results, thus allowing the analysis of phenomena in time-frequency domain. Visualizations in a water channel complemented the analysis of the hot wire results. For this purpose, dye was injected in the flow in the water channel with a tube bank with P/D = 1.26. The range of the Reynolds number of the experiments was 3 x 10 4 -4 x 10 4 . The main results show the presence of instabilities, generated after the second row of the tube bank, which propagates to the interior of the bank. In the resulting flow, the three orthogonal components are equally significant. The three-dimensional behavior of the flow is responsible for a mass redistribution inside the bank that leads to velocity values not expected for the studied geometry, according to the known literature. The resulting flow process can be interpreted as a secondary flow which is characteristic of tube banks.

  6. Vortex Ring Formation Characteristics in Synthetic Jet due to Changes of Excitation Frequency in the ½-Ball Cavity Actuator

    Science.gov (United States)

    Kosasih, Engkos A.; Harinaldi; Trisno, Ramon

    2017-04-01

    A jet flow that contains vortex ring has a large energy compared to a regular jet. As one of the causes of the aerodynamic drag to the vehicle, the flow separation that occurs behind the bluff body must be controlled, so that aerodynamic drag can be significantly reduced. This study is a basic work on the development of turbulent flow separation control for aerodynamic purpose, especially in the design of the vehicle body. The main objective of this study is to analyze the performance of the synthetic jet (SJA) as one of flow control tool to reduce separation area. To get the maximum performance of the synthetic jet actuator, the research starts by characterizing the actuator. Characterization of ½ ball-shaped cavity is done with excitation frequency changes and orifice diameter of 3, 5 and 8 mm. The study was conducted using computational and experimental methods. The experimental data was obtained by testing synthetic jet actuator with providing sinusoidal signal to drive the membrane and at the orifice end a hotwire probe that is set and plugged into a CTA (Constant Temperature Anemometry) to obtain the speed velocity of the exhaust jet. Computational methods used a commercial CFD software (FLUENT 6.3) with a Reynolds Stress Model as a model of turbulence. Each of these calculations or measurements was conducted under the same conditions. The research result is displayed in frequency testing curve to get the maximum velocity of the jet stream. The results are further indicative of the synthetic jet actuator capability to generate vortex rings. In the experimental results, the determination of ring vortex formation taken from the calculation of the flow velocity, while the CFD simulations, the formation of vortex rings can be seen from the visualization of the flow contour. Vortex ring formed from this ½ -ball cavity, occurred at 3 mm and 5 mm orifice diameter, while the 8 mm orifice diameter cavity cannot form a ring vortex.

  7. That hemodynamics and not material mismatch is of primary concern in bypass graft failure: an experimental argument.

    Science.gov (United States)

    O'Brien, Thomas; Morris, Liam; Walsh, Michael; McGloughlin, Tim

    2005-10-01

    The long term patency of end-to-side peripheral artery bypasses are low due to failure of the graft generally at the distal end of the bypass. Both material mismatch between the graft and the host artery and junction hemodynamics are cited as being major factors in disease formation at the junction. This study uses experimental methods to investigate the major differences in fluid dynamics and wall mechanics at the proximal and distal ends for rigid and compliant bypass grafts. Injection moulding was used to produce idealized transparent and compliant models of the graft/ artery junction configuration. An ePTFE graft was then used to stiffen one of the models. These models were then investigated using two-dimensional video extensometry and one-dimensional laser Doppler anemometry to determine the junction deformations and fluid velocity profiles for the rigid and complaint graft anastomotic junctions. Junction strains were evaluated and generally found to be under 5% with a peak stain measured in the stiff graft model junction of 8.3% at 100 mmHg applied pressure. Hemodynamic results were found to yield up to 40% difference in fluid velocities for the stiff/compliant comparison but up to 80% for the proximal/distal end comparisons. Similar strain conditions were assumed for the proximal and distal models while significant differences were noted in their associated hemodynamic changes. In contrasting the fluid dynamics and wall mechanics for the proximal and distal anastomoses, it is evident from the results of this study, that junction hemodynamics are the more variable factor.

  8. Effectiveness of horizontal air flow fans supporting natural ventilation in a Mediterranean multi-span greenhouse

    Directory of Open Access Journals (Sweden)

    Alejandro López

    2013-08-01

    Full Text Available Natural ventilation is the most important method of climate control in Mediterranean greenhouses. In this study, the microclimate and air flow inside a Mediterranean greenhouse were evaluated by means of sonic anemometry. Experiments were carried out in conditions of moderate wind (≈ 4.0 m s-1, and at low wind speed (≈ 1.8 m s-1 the natural ventilation of the greenhouse was supplemented by two horizontal air flow fans. The greenhouse is equipped with a single roof vent opening to the windward side and two side vents, the windward one being blocked by another greenhouse close to it, while the leeward one is free of obstacles. When no fans are used, air enters through the roof vent and exits through both side vents, thus flowing contrary to the thermal effect which causes hot air to rise and impairing the natural ventilation of the greenhouse. Using fans inside the greenhouse helps the air to circulate and mix, giving rise to a more homogeneous inside temperature and increasing the average value of normalized air velocity by 365 %. These fans also increase the average values of kinetic turbulence energy inside the greenhouse by 550 % compared to conditions of natural ventilation. As the fans are placed 4 m away from the side vents, their effect on the entrance of outside air is insufficient and they do not help to reduce the inside temperature on hot days with little wind. It is therefore recommended to place the fans closer to the side vents to allow an additional increase of the air exchange rate of greenhouses.

  9. Flame structure, spectroscopy and emissions quantification of rapeseed biodiesel under model gas turbine conditions

    International Nuclear Information System (INIS)

    Chong, Cheng Tung; Hochgreb, Simone

    2017-01-01

    Highlights: • Rapeseed biodiesel shows extended flame reaction zone with no soot formation. • RME spray flame shows higher droplet number density and volume flux than diesel. • RME droplet size and velocity distribution are similar to diesel. • Blending 50% RME with diesel reduces soot formation non-linearly. • RME shows lower NO x and higher CO emissions level compared to diesel. - Abstract: The spray combustion characteristics of rapeseed biodiesel/methyl esters (RME) and 50% RME/diesel blend were investigated and compared with conventional diesel fuel, using a model swirl flame burner. The detailed database with well-characterised boundary conditions can be used as validation targets for flame modelling. An airblast, swirl-atomized liquid fuel spray was surrounded by air preheated to 350 °C at atmospheric pressure. The reacting droplet distribution within the flame was determined using phase Doppler particle anemometry. For both diesel and RME, peak droplet concentrations are found on the outside of the flame region, with large droplets migrating to the outside via swirl, and smaller droplets located around the centreline region. However, droplet concentrations and sizes are larger for RME, indicating a longer droplet evaporation timescale. This delayed droplet vaporisation leads to a different reaction zone relative to diesel, with an extended core reaction. In spite of the longer reaction zone, RME flames displayed no sign of visible soot radiation, unlike the case of diesel spray flame. Blending 50% RME with diesel results in significant reduction in soot radiation. Finally, RME emits 22% on average lower NO x emissions compared to diesel under lean burning conditions.

  10. ADVANCED COMPUTATIONAL MODEL FOR THREE-PHASE SLURRY REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Goodarz Ahmadi

    2004-10-01

    In this project, an Eulerian-Lagrangian formulation for analyzing three-phase slurry flows in a bubble column was developed. The approach used an Eulerian analysis of liquid flows in the bubble column, and made use of the Lagrangian trajectory analysis for the bubbles and particle motions. The bubble-bubble and particle-particle collisions are included the model. The model predictions are compared with the experimental data and good agreement was found An experimental setup for studying two-dimensional bubble columns was developed. The multiphase flow conditions in the bubble column were measured using optical image processing and Particle Image Velocimetry techniques (PIV). A simple shear flow device for bubble motion in a constant shear flow field was also developed. The flow conditions in simple shear flow device were studied using PIV method. Concentration and velocity of particles of different sizes near a wall in a duct flow was also measured. The technique of Phase-Doppler anemometry was used in these studies. An Eulerian volume of fluid (VOF) computational model for the flow condition in the two-dimensional bubble column was also developed. The liquid and bubble motions were analyzed and the results were compared with observed flow patterns in the experimental setup. Solid-fluid mixture flows in ducts and passages at different angle of orientations were also analyzed. The model predictions were compared with the experimental data and good agreement was found. Gravity chute flows of solid-liquid mixtures were also studied. The simulation results were compared with the experimental data and discussed A thermodynamically consistent model for multiphase slurry flows with and without chemical reaction in a state of turbulent motion was developed. The balance laws were obtained and the constitutive laws established.

  11. Modelling of turbulence and combustion for simulation of gas explosions in complex geometries

    Energy Technology Data Exchange (ETDEWEB)

    Arntzen, Bjoern Johan

    1998-12-31

    This thesis analyses and presents new models for turbulent reactive flows for CFD (Computational Fluid Dynamics) simulation of gas explosions in complex geometries like offshore modules. The course of a gas explosion in a complex geometry is largely determined by the development of turbulence and the accompanying increased combustion rate. To be able to model the process it is necessary to use a CFD code as a starting point, provided with a suitable turbulence and combustion model. The modelling and calculations are done in a three-dimensional finite volume CFD code, where complex geometries are represented by a porosity concept, which gives porosity on the grid cell faces, depending on what is inside the cell. The turbulent flow field is modelled with a k-{epsilon} turbulence model. Subgrid models are used for production of turbulence from geometry not fully resolved on the grid. Results from laser doppler anemometry measurements around obstructions in steady and transient flows have been analysed and the turbulence models have been improved to handle transient, subgrid and reactive flows. The combustion is modelled with a burning velocity model and a flame model which incorporates the burning velocity into the code. Two different flame models have been developed: SIF (Simple Interface Flame model), which treats the flame as an interface between reactants and products, and the {beta}-model where the reaction zone is resolved with about three grid cells. The flame normally starts with a quasi laminar burning velocity, due to flame instabilities, modelled as a function of flame radius and laminar burning velocity. As the flow field becomes turbulent, the flame uses a turbulent burning velocity model based on experimental data and dependent on turbulence parameters and laminar burning velocity. The laminar burning velocity is modelled as a function of gas mixture, equivalence ratio, pressure and temperature in reactant. Simulations agree well with experiments. 139

  12. A review of solid-fluid selection options for optical-based measurements in single-phase liquid, two-phase liquid-liquid and multiphase solid-liquid flows

    Science.gov (United States)

    Wright, Stuart F.; Zadrazil, Ivan; Markides, Christos N.

    2017-09-01

    Experimental techniques based on optical measurement principles have experienced significant growth in recent decades. They are able to provide detailed information with high-spatiotemporal resolution on important scalar (e.g., temperature, concentration, and phase) and vector (e.g., velocity) fields in single-phase or multiphase flows, as well as interfacial characteristics in the latter, which has been instrumental to step-changes in our fundamental understanding of these flows, and the development and validation of advanced models with ever-improving predictive accuracy and reliability. Relevant techniques rely upon well-established optical methods such as direct photography, laser-induced fluorescence, laser Doppler velocimetry/phase Doppler anemometry, particle image/tracking velocimetry, and variants thereof. The accuracy of the resulting data depends on numerous factors including, importantly, the refractive indices of the solids and liquids used. The best results are obtained when the observational materials have closely matched refractive indices, including test-section walls, liquid phases, and any suspended particles. This paper reviews solid-liquid and solid-liquid-liquid refractive-index-matched systems employed in different fields, e.g., multiphase flows, turbomachinery, bio-fluid flows, with an emphasis on liquid-liquid systems. The refractive indices of various aqueous and organic phases found in the literature span the range 1.330-1.620 and 1.251-1.637, respectively, allowing the identification of appropriate combinations to match selected transparent or translucent plastics/polymers, glasses, or custom materials in single-phase liquid or multiphase liquid-liquid flow systems. In addition, the refractive indices of fluids can be further tuned with the use of additives, which also allows for the matching of important flow similarity parameters such as density and viscosity.

  13. Offset Stream Technology Test-Summary of Results

    Science.gov (United States)

    Brown, Clifford A.; Bridges, James E.; Henderson, Brenda

    2007-01-01

    Statistical jet noise prediction codes that accurately predict spectral directivity for both cold and hot jets are highly sought both in industry and academia. Their formulation, whether based upon manipulations of the Navier-Stokes equations or upon heuristic arguments, require substantial experimental observation of jet turbulence statistics. Unfortunately, the statistics of most interest involve the space-time correlation of flow quantities, especially velocity. Until the last 10 years, all turbulence statistics were made with single-point probes, such as hotwires or laser Doppler anemometry. Particle image velocimetry (PIV) brought many new insights with its ability to measure velocity fields over large regions of jets simultaneously; however, it could not measure velocity at rates higher than a few fields per second, making it unsuitable for obtaining temporal spectra and correlations. The development of time-resolved PIV, herein called TR-PIV, has removed this limitation, enabling measurement of velocity fields at high resolution in both space and time. In this paper, ground-breaking results from the application of TR-PIV to single-flow hot jets are used to explore the impact of heat on turbulent statistics of interest to jet noise models. First, a brief summary of validation studies is reported, undertaken to show that the new technique produces the same trusted results as hotwire at cold, low-speed jets. Second, velocity spectra from cold and hot jets are compared to see the effect of heat on the spectra. It is seen that heated jets possess 10 percent more turbulence intensity compared to the unheated jets with the same velocity. The spectral shapes, when normalized using Strouhal scaling, are insensitive to temperature if the stream-wise location is normalized relative to the potential core length. Similarly, second order velocity correlations, of interest in modeling of jet noise sources, are also insensitive to temperature as well.

  14. Effect of Temperature on Jet Velocity Spectra

    Science.gov (United States)

    Bridges, James E.; Wernet, Mark P.

    2007-01-01

    Statistical jet noise prediction codes that accurately predict spectral directivity for both cold and hot jets are highly sought both in industry and academia. Their formulation, whether based upon manipulations of the Navier-Stokes equations or upon heuristic arguments, require substantial experimental observation of jet turbulence statistics. Unfortunately, the statistics of most interest involve the space-time correlation of flow quantities, especially velocity. Until the last 10 years, all turbulence statistics were made with single-point probes, such as hotwires or laser Doppler anemometry. Particle image velocimetry (PIV) brought many new insights with its ability to measure velocity fields over large regions of jets simultaneously; however, it could not measure velocity at rates higher than a few fields per second, making it unsuitable for obtaining temporal spectra and correlations. The development of time-resolved PIV, herein called TR-PIV, has removed this limitation, enabling measurement of velocity fields at high resolution in both space and time. In this paper, ground-breaking results from the application of TR-PIV to single-flow hot jets are used to explore the impact of heat on turbulent statistics of interest to jet noise models. First, a brief summary of validation studies is reported, undertaken to show that the new technique produces the same trusted results as hotwire at cold, low-speed jets. Second, velocity spectra from cold and hot jets are compared to see the effect of heat on the spectra. It is seen that heated jets possess 10 percent more turbulence intensity compared to the unheated jets with the same velocity. The spectral shapes, when normalized using Strouhal scaling, are insensitive to temperature if the stream-wise location is normalized relative to the potential core length. Similarly, second order velocity correlations, of interest in modeling of jet noise sources, are also insensitive to temperature as well.

  15. Pollutant Plume Dispersion over Hypothetical Urban Areas based on Wind Tunnel Measurements

    Science.gov (United States)

    Mo, Ziwei; Liu, Chun-Ho

    2017-04-01

    Gaussian plume model is commonly adopted for pollutant concentration prediction in the atmospheric boundary layer (ABL). However, it has a number of limitations being applied to pollutant dispersion over complex land-surface morphology. In this study, the friction factor (f), as a measure of aerodynamic resistance induced by rough surfaces in the engineering community, was proposed to parameterize the vertical dispersion coefficient (σz) in the Gaussian model. A series of wind tunnel experiments were carried out to verify the mathematical hypothesis and to characterize plume dispersion as a function of surface roughness as well. Hypothetical urban areas, which were assembled in the form of idealized street canyons of different aspect (building-height-to-street-width) ratios (AR = 1/2, 1/4, 1/8 and 1/12), were fabricated by aligning identical square aluminum bars at different separation apart in cross flows. Pollutant emitted from a ground-level line source into the turbulent boundary layer (TBL) was simulated using water vapour generated by ultrasonic atomizer. The humidity and the velocity (mean and fluctuating components) were measured, respectively, by humidity sensors and hot-wire anemometry (HWA) with X-wire probes in streamwise and vertical directions. Wind tunnel results showed that the pollutant concentration exhibits the conventional Gaussian distribution, suggesting the feasibility of using water vapour as a passive scalar in wind tunnel experiments. The friction factor increased with decreasing aspect ratios (widening the building separation). It was peaked at AR = 1/8 and decreased thereafter. Besides, a positive correlation between σz/xn (x is the distance from the pollutant source) and f1/4 (correlation coefficient r2 = 0.61) was observed, formulating the basic parameterization of plume dispersion over urban areas.

  16. Introduction of Two Novel Stiffness Parameters and Interpretation of Air Puff-Induced Biomechanical Deformation Parameters With a Dynamic Scheimpflug Analyzer.

    Science.gov (United States)

    Roberts, Cynthia J; Mahmoud, Ashraf M; Bons, Jeffrey P; Hossain, Arif; Elsheikh, Ahmed; Vinciguerra, Riccardo; Vinciguerra, Paolo; Ambrósio, Renato

    2017-04-01

    To investigate two new stiffness parameters and their relationships with the dynamic corneal response (DCR) parameters and compare normal and keratoconic eyes. Stiffness parameters are defined as Resultant Pressure at inward applanation (A1) divided by corneal displacement. Stiffness parameter A1 uses displacement between the undeformed cornea and A1 and stiffness parameter highest concavity (HC) uses displacement from A1 to maximum deflection during HC. The spatial and temporal profiles of the Corvis ST (Oculus Optikgeräte, Wetzlar, Germany) air puff were characterized using hot wire anemometry. An adjusted air pressure impinging on the cornea at A1 (adjAP1) and an algorithm to biomechanically correct intraocular pressure based on finite element modelling (bIOP) were used for Resultant Pressure calculation (adjAP1 - bIOP). Linear regression analyses between DCR parameters and stiffness parameters were performed on a retrospective dataset of 180 keratoconic eyes and 482 normal eyes. DCR parameters from a subset of 158 eyes of 158 patients in each group were matched for bIOP and compared using t tests. A P value of less than .05 was considered statistically significant. All DCR parameters evaluated showed significant differences between normal and keratoconic eyes, except peak distance. Keratoconic eyes had lower stiffness parameter values, thinner pachymetry, shorter applanation lengths, greater absolute values of applanation velocities, earlier A1 times and later second applanation times, greater HC deformation amplitudes and HC deflection amplitudes, and lower HC radius of concave curvature (greater concave curvature). Most DCR parameters showed a significant relationship with both stiffness parameters in both groups. Keratoconic eyes demonstrated less resistance to deformation than normal eyes with similar IOP. The stiffness parameters may be useful in future biomechanical studies as potential biomarkers. [J Refract Surg. 2017;33(4):266-273.]. Copyright 2017

  17. The influence of surface roughness on supersonic high Reynolds number turbulent boundary layer flow

    Science.gov (United States)

    Latin, Robert Michael

    A comprehensive study of rough-wall high-speed (M = 2.9) high Reynolds number (Re/m = 1.9e7) turbulent boundary layer flow was performed consisting of experimental, analytical, and numerical methods. Six wall topologies consisting of a smooth and five rough surfaces (two- and three-dimensional machined roughness plates; and 80, 36. and 20 grit sand-grain roughened plates) were studied. A confocal laser scan microscope was used to measure the topography of the sand-grain roughnesses. The experimental measurement techniques included a convention Pitot pressure probe, laser Doppler velocimetry, hot-wire anemometry, color schlieren and laser sheet Mie scattering images. Mean measurements included velocity, Mach number, density, and mass flux. Turbulent measurements included velocity and mass flux turbulence intensities, kinematic Reynolds shear stress, compressible Reynolds shear stress in two planes, and the traverse apparent mass flux. Kinematic turbulent flow statistical properties were found to scale by local mean quantities and displayed a weak dependence on surface roughness. Turbulent flow statistical properties with the explicit appearance of density did not scale by local mean quantities, and had a strong linear dependence on roughness. Surface roughness also had a significant effect on the flow structure size, angles, and energy spectra. A theoretical analysis was performed and a new integral method for the estimation of skin friction was developed. The skin friction estimates were within 4% of compressible semi-empirical relations. A numerical study was performed which used a parabolized Navier-Stokes solver with two algebraic turbulence models and the Rotta model for surface roughness. A new method for the estimation of momentum loss improved the numerical flow predictability. The algebraic turbulence models predicted qualitatively correct profile shapes and accurately predicted the kinematic and compressible Reynolds shear stress levels for all but the

  18. Characteristics of merging shear layers and turbulent wakes of a multi-element airfoil

    Science.gov (United States)

    Adair, Desmond; Horne, W. Clifton

    1988-02-01

    Flow characteristics in the vicinity of the trailing edge of a single-slotted airfoil flap are presented and analyzed. The experimental arrangement consisted of a NACA 4412 airfoil equipped with a NACA 4415 flap whose angle of deflection was 21.8 deg. The flow remained attached over the model surfaces except in the vicinity of the flap trailing edge where a small region of boundary-layer separation extended over the aft 7 percent of flap chord. The flow was complicated by the presence of a strong, initially inviscid jet emanating from the slot between airfoil and flap, and a gradual merging of the main airfoil wake and flap suction-side boundary layer. Downstream of the flap, the airfoil and flap wakes fully merged to form an asymmetrical curved wake. The airfoil configuration was tested at an angle of attack of 8.2 deg, at a Mach number of 0.09, and a chord based Reynolds number of 1.8 x 10 to the 6th power in the Ames Research Center 7- by 10-Foot Wind Tunnel. Surface pressure measurements were made on the airfoil and flap and on the wind tunnel roof and floor. It was estimated that the wall interference increased the C sub L by 7 percent and decreased the C sub M by 4.5 percent. Velocity characteristics were quantified using hot-wire anemometry in regions of flow with preferred direction and low turbulence intensity. A 3-D laser velocimeter was used in regions of flow recirculation and relatively high turbulence intensity.

  19. Flow characteristics and scaling past highly porous wall-mounted fences

    Science.gov (United States)

    Rodríguez-López, Eduardo; Bruce, Paul J. K.; Buxton, Oliver R. H.

    2017-07-01

    An extensive characterization of the flow past wall-mounted highly porous fences based on single- and multi-scale geometries has been performed using hot-wire anemometry in a low-speed wind tunnel. Whilst drag properties (estimated from the time-averaged momentum equation) seem to be mostly dependent on the grids' blockage ratio; wakes of different size and orientation bars seem to generate distinct behaviours regarding turbulence properties. Far from the near-grid region, the flow is dominated by the presence of two well-differentiated layers: one close to the wall dominated by the near-wall behaviour and another one corresponding to the grid's wake and shear layer, originating from between this and the freestream. It is proposed that the effective thickness of the wall layer can be inferred from the wall-normal profile of root-mean-square streamwise velocity or, alternatively, from the wall-normal profile of streamwise velocity correlation. Using these definitions of wall-layer thickness enables us to collapse different trends of the turbulence behaviour inside this layer. In particular, the root-mean-square level of the wall shear stress fluctuations, longitudinal integral length scale, and spanwise turbulent structure is shown to display a satisfactory scaling with this thickness rather than with the whole thickness of the grid's wake. Moreover, it is shown that certain grids destroy the spanwise arrangement of large turbulence structures in the logarithmic region, which are then re-formed after a particular streamwise extent. It is finally shown that for fences subject to a boundary layer of thickness comparable to their height, the effective thickness of the wall layer scales with the incoming boundary layer thickness. Analogously, it is hypothesized that the growth rate of the internal layer is also partly dependent on the incoming boundary layer thickness.

  20. Synthesis and characterization of nano structures of Silica SBA-16 containing Gadolinium-159 as potential nanoparticulated system for cancer therapy; Sintese e caracterizacao de nanoestruturas de Silica SBA-16 contendo Gadolinio-159 como potencial sistema nanoparticulado para o tratamento do cancer

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Andre Felipe de

    2013-07-01

    Cancer is a leading cause of death worldwide, and malignant neoplasms of the lung, stomach, liver, colon and breast in greater numbers. And recently observed in the literature a large number of reviews where new materials, especially nanoparticle, has been studied as drug carriers and radioisotopes applied to cancer treatment. How mesoporous materials based on silica, thanks to its huge surface area and biocompatibility, have been studied intensively providing broad applications in various areas, the use of nanostructured silica SBA-16 might be a carrier specific radioisotope accumulate in the cells malignant. Thus the aim of this study is to develop in vitro studies using SBA-16 can selectively concentrate in malignant cells therapeutic amounts of the radioisotope Gadolinium-159 escorting them to death. This work was performed orderly synthesis of mesoporous silica, SBA-16 and incorporating the complex Gd-DTPA-BMA, as well as chemical and structural characterization. The techniques used to analyze the occurrence of the incorporation of the gadolinium complex in the silica matrix were elemental analysis (CHN), atomic emission spectroscopy (ICP-AES), infrared spectroscopy (FTIR), nitrogen adsorption (BET), small-angle X-ray scattering (SAXS) and thermogravimetric analysis (TG). To analyze the morphology of pure silica used the scanning electron microscopy (SEM) and transmission electron microscopy (TEM). By photon correlation spectroscopy (PCS) it was possible to obtain a measure of mean particle size, the polydispersity index (PDI) of the silica SBA-16, and the zeta potential by laser Doppler anemometry (LDA). The results of incorporation analyzed by ICP-AES indicated that the material SBA-16 had a higher rate of incorporation of gadolinium (93%). The release kinetics in simulated body fluid, showed considerable stability and low release (1%). The mesoporous silica SBA-16 showed cell viability in direct contact with cell culture. Samples with gadolinium

  1. Measurements of liquid-phase turbulence in gas–liquid two-phase flows using particle image velocimetry

    International Nuclear Information System (INIS)

    Zhou, Xinquan; Doup, Benjamin; Sun, Xiaodong

    2013-01-01

    Liquid-phase turbulence measurements were performed in an air–water two-phase flow loop with a circular test section of 50 mm inner diameter using a particle image velocimetry (PIV) system. An optical phase separation method-–planar laser-induced fluorescence (PLIF) technique—which uses fluorescent particles and an optical filtration technique, was employed to separate the signals of the fluorescent seeding particles from those due to bubbles and other noises. An image pre-processing scheme was applied to the raw PIV images to remove the noise residuals that are not removed by the PLIF technique. In addition, four-sensor conductivity probes were adopted to measure the radial distribution of the void fraction. Two benchmark tests were performed: the first was a comparison of the PIV measurement results with those of similar flow conditions using thermal anemometry from previous studies; the second quantitatively compared the superficial liquid velocities calculated from the local liquid velocity and void fraction measurements with the global liquid flow rate measurements. The differences of the superficial liquid velocity obtained from the two measurements were bounded within ±7% for single-phase flows and two-phase bubbly flows with the area-average void fraction up to 18%. Furthermore, a preliminary uncertainty analysis was conducted to investigate the accuracy of the two-phase PIV measurements. The systematic uncertainties due to the circular pipe curvature effects, bubble surface reflection effects and other potential uncertainty sources of the PIV measurements were discussed. The purpose of this work is to facilitate the development of a measurement technique (PIV-PLIF) combined with image pre-processing for the liquid-phase turbulence in gas–liquid two-phase flows of relatively high void fractions. The high-resolution data set can be used to more thoroughly understand two-phase flow behavior, develop liquid-phase turbulence models, and assess high

  2. BADANIE ŚLADU AERODYNAMICZNEGO MODELU OBLODZONEGO CIĘGNA MOSTU PODWIESZONEGO

    Directory of Open Access Journals (Sweden)

    Piotr GÓRSKI

    2016-07-01

    Full Text Available W niniejszym artykule przedstawiono sposób i wyniki badania płaskiego przepływu powietrza w śladzie aerodynamicznym za nieruchomym modelem oblodzonego cięgna mostu podwieszonego w zakresie liczby Reynoldsa od 2,7·104 do 6,4·104, przy średniej intensywności turbulencji 3%.Badania wykonano w tunelu aerodynamicznym z komorą klimatyczną Laboratorium Czeskiej Akademii Nauk w Telč. W komorze klimatycznej przeprowadzono doświadczalne oblodzenie modelu cięgna mostowego o osi nachylonej pod kątem 300 do płaszczyzny poziomej. Kształt oblodzonej powierzchni cięgna zarejestrowano metodą fotogrametrii cyfrowej. Do badań w komorze aerodynamicznej wykonano nowy model oblodzonego cięgna metodą druku 3D.Badanie śladu aerodynamicznego wykonano z zastosowaniem optycznej wizualizacji PIV (ang. Particle Image Velocimetry, zwanej cyfrową anemometrią obrazową. Na podstawie wizualizacji ustalone zostały prędkości i kierunki przepływu poszczególnych strug powietrza, parametry geometryczne ścieżki wirowej i lokalizacja punktów oderwania od modelu warstwy przyściennej powietrza. Otrzymane wyniki pozwoliły na poznanie zjawisk zachodzących podczas opływu powietrza wokół modelu oblodzonego cięgna.

  3. Combined aerodynamic and electrostatic atomization of dielectric liquid jets

    Science.gov (United States)

    Kourmatzis, Agissilaos; Ergene, Egemen L.; Shrimpton, John S.; Kyritsis, Dimitrios C.; Mashayek, Farzad; Huo, Ming

    2012-07-01

    The electrical and atomization performance of a plane-plane charge injection atomizer using a dielectric liquid, and operating at pump pressures ranging from 15 to 35 bar corresponding to injection velocities of up to 50 m/s, is explored via low current electrical measurements, spray imaging and phase Doppler anemometry. The work is aimed at understanding the contribution of electrostatic charging relevant to typical higher pressure fuel injection systems such as those employed in the aeronautical, automotive and marine sectors. Results show that mean-specific charge increases with injection velocity significantly. The effect of electrostatic charge is advantageous at the 15-35 bar range, and an arithmetic mean diameter D 10 as low as 0.2 d is achievable in the spray core and lower still in the periphery where d is the orifice diameter. Using the data available from this higher pressure system and from previous high Reynolds number systems (Shrimpton and Yule Exp Fluids 26:460-469, 1999), the promotion of primary atomization has been analysed by examining the effect that charge has on liquid jet surface and liquid jet bulk instability. The results suggest that for the low charge density Q v ~ 2 C/m3 cases under consideration here, a significant increase in primary atomization is observed due to a combination of electrical and aerodynamic forces acting on the jet surface, attributed to the significantly higher jet Weber number ( We j) when compared to low injection pressure cases. Analysis of Sauter mean diameter results shows that for jets with elevated specific charge density of the order Q v ~ 6 C/m3, the jet creates droplets that a conventional turbulent jet would, but with a significantly lower power requirement. This suggests that `turbulent' primary atomization, the turbulence being induced by electrical forces, may be achieved under injection pressures that would produce laminar jets.

  4. Features and optimization approaches of the entrance section cooling gas flow of the IFMIF high flux test module

    Energy Technology Data Exchange (ETDEWEB)

    Arbeiter, F.; Gordeev, S.; Heinzel, V.; Ihli, T.; Leichtle, D. [Forschungszentrum Karlsruhe (Germany). Inst. fuer Reaktorsicherheit; Moeslang, A. [Forschungszentrum Karlsruhe (Germany). Inst. fuer Materialforschung

    2007-07-01

    The International Fusion Materials Irradiation Facility (IFMIF) is devised to contribute experimental evidence to an irradiated material properties database for candidate materials exposed to irradiation spectra and doses relevant for future fusion power reactors. Due to neutron fluxes generated by high energy deuterons reacting in a liquid lithium target, damage rates of 20-50 displacements per atom in one full power year can be achieved in steel specimens inside a volume of approximately 0.5 litres. The design of the High Flux Test Module developed at the Forschungszentrum Karlsruhe (FZK) allows for maximizing the space available in the high flux neutron field for material irradiation, while at the same time allowing precise adherence of the irradiation temperature of the specimen stacks. Since enhancement of the neutron irradiation requires to locate the specimens as close as possible to the neutron source, the design proposes thin container structures (obeying mechanical constraints), and flat coolant channels between the rigs. A helium gas flow is designated to remove the heat from the rigs to keep the required irradiation temperature, which may be chosen between 250-650 C. As a result of the thin container walls and the small channel dimensions, the helium cooling gas flow is characterized by low pressure, transitional Reynolds numbers and intermediate Mach numbers. Dedicated experimental investigations on such minichannel cooling gas flows have been conducted with the ITHEX helium loop facility. Results obtained by Laser Doppler Anemometry indicate a complex three dimensional evolution of the transitional laminarturbulent flow field in the hydraulic entrance section. In the short cooling channels, a relevant portion of the flow alongside the rigs is influenced by this developing region. Detailed knowledge of the flow development and the resulting heat transfer coefficients is necessary to optimize the flow channel inlet design and to avoid in

  5. Features and optimization approaches of the entrance section cooling gas flow of the IFMIF High Flux Test Module

    Energy Technology Data Exchange (ETDEWEB)

    Arbeiter, F. [Institut fuer Reaktorsicherheit, Forschungszentrum Karlsruhe, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)], E-mail: arbeiter@irs.fzk.de; Gordeev, S.; Heinzel, V.; Ihli, T.; Leichtle, D. [Institut fuer Reaktorsicherheit, Forschungszentrum Karlsruhe, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Moeslang, A. [Institut fuer Materialforschung I, Forschungszentrum Karlsruhe, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Slobotchouk, V. [Institut fuer Reaktorsicherheit, Forschungszentrum Karlsruhe, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2008-12-15

    The International Fusion Materials Irradiation Facility (IFMIF) is devised to contribute experimental evidence to an irradiated material properties database for candidate materials exposed to irradiation spectra and doses relevant for future fusion power reactors. Due to neutron fluxes generated by high-energy deuterons reacting in a liquid lithium target, damage rates of 20-50 displacements per atom in one full power year can be achieved in steel specimens inside a volume of approximately 0.5 L. The design of the high flux test module developed at the Forschungszentrum Karslruhe (FZK) allows for maximizing the space available in the high flux neutron field for material irradiation, while at the same time allowing precise adherence of the irradiation temperature of the specimen stacks. Since enhancement of the neutron irradiation requires placement of the specimens as close as possible to the neutron source, the design proposes thin container structures (obeying mechanical constraints) and flat coolant channels between the rigs. A helium gas flow is designated to remove the heat from the rigs to keep the required irradiation temperature, which may be chosen between 250 and 650 deg. C. As a result of the thin container walls and the small channel dimensions, the helium cooling gas flow is characterized by low pressure, transitional Reynolds numbers and intermediate Mach numbers. Dedicated experimental investigations on such minichannel cooling gas flows have been conducted with the ITHEX helium loop facility. Results obtained by laser Doppler anemometry indicate a complex three-dimensional evolution of the transitional laminar-turbulent flow field in the hydraulic entrance section. In the short cooling channels, a relevant portion of the flow alongside the rigs is influenced by this developing region. Detailed knowledge of the flow development and the resulting heat transfer coefficients is necessary to optimize the flow channel inlet design and to avoid

  6. Experimental investigation of a forced response condition in a multistage compressor

    Science.gov (United States)

    Murray, William Louis, III

    The objective of this research is twofold. Firstly, the design, development, and construction of a test facility for a Honeywell APU-style centrifugal compressor was implemented, as well as the design and construction of an inlet flow experiment. Secondly, the aeromechanical response of an embedded stage in the Purdue 3-Stage axial research compressor was analyzed through a suite of different measurement techniques in the fulfillment of the end of the GUIde IV Consortium contract. The purpose of the first phase of Honeywell work was to comprehensively measure the flow field of an APU-style centrifugal compressor inlet through the use of Laser Doppler Velocimetry (LDV). A portion of a Honeywell supplied inlet was modified to provide optical access to the elbow, and a gas ejector system was designed and constructed to provide the same suction to the inlet that it would see during operation with the compressor. A performance and health monitoring electronics system was designed and purchased to support the testing of the Honeywell inlet ejector system and eventually it will be used for testing with a centrifugal compressor. Additionally, a secondary air and oil system has been designed and is currently being constructed in the test cell in preparation for the arrival of the Honeywell compressor this summer. An embedded rotor stage in the Purdue 3-stage compressor, with a Campbell diagram crossing of the 1T vibratory mode was analyzed with a suite of measurement systems. In addition to steady state compressor performance measurements, other types of measurements were used to characterize the aerodynamic forcing function for this forced response condition including: NSMS, high-frequency pressure transducers mounted in the casing and in a downstream stator, and cross-film thermal anemometry. Rotor geometry was measured by Aerodyne using an in-situ laser scanning technique. Vibrometry testing was performed at WPAFB to characterize safe operating speeds for stator

  7. Hydraulic modeling of the flows with counter-rotating coaxial layers

    Directory of Open Access Journals (Sweden)

    Zuykov Andrey L'vovich

    2014-07-01

    Full Text Available The article is devoted to hydraulic modeling of flows with counter-rotating coaxial layers. Dynamic similarity criteria of such flows were found by the inspection analysis of the Reynolds equations. It was found that the hydrodynamic similarity criteria for physical modeling of unsteady turbulent circular-longitudinal flows with counter-rotating coaxial layers of viscous incompressible fluid are: Strouhal number - the ratio of forces of local and convective inertia, Rossby number characterizes the ratio of the azimuthal and axial velocity, Froude number - the ratio of forces of convective inertia to the forces of gravity, Euler number - the ratio of pressure forces to the convective forces of inertia, Weber number - the ratio of the convective inertia forces to surface tension forces, Reynolds number - the ratio of the convective inertia forces to the forces of molecular viscosity, Karman number - the ratio of dispersion velocity vector of fluid particles to the flow velocity. The limit value of the Reynolds number was found at the lower boundary conditions of automodel zone of such flow. It is shown that Weber and Rossby criteria for physical modeling of such flows are not determinative. It was found out that turbulent circular-longitudinal flow with counter-rotating coaxial layers are not modeled using Karman criterion. In this connection, there is a need to conduct experimental methodological research of turbulent flows with counter-rotating coaxial layers on stands equipped means of three-dimensional laser Doppler anemometry. Integral criteria of dynamic similarity of circular-longitudinal flows was considered - Heeger-Baer number (swirl number and Abramovich number, characterizing the ratio of the angular momentum and momentum of such flows. In comparison with the swirl number, Heeger-Baer number is more preferable. Abramovich number is equal to the geometric characteristics of the local swirler as similarity criterion of circular

  8. Wind tunnel study of the wind turbine interaction with a boundary-layer flow: Upwind region, turbine performance, and wake region

    Science.gov (United States)

    Bastankhah, M.; Porté-Agel, F.

    2017-06-01

    Comprehensive wind tunnel experiments were carried out to study the interaction of a turbulent boundary layer with a wind turbine operating under different tip-speed ratios and yaw angles. Force and power measurements were performed to characterize the variation of thrust force (both magnitude and direction) and generated power of the wind turbine under different operating conditions. Moreover, flow measurements, collected using high-resolution particle-image velocimetry as well as hot-wire anemometry, were employed to systematically study the flow in the upwind, near-wake, and far-wake regions. These measurements provide new insights into the effect of turbine operating conditions on flow characteristics in these regions. For the upwind region, the results show a strong lateral asymmetry under yawed conditions. For the near-wake region, the evolution of tip and root vortices was studied with the use of both instantaneous and phase-averaged vorticity fields. The results suggest that the vortex breakdown position cannot be determined based on phase-averaged statistics, particularly for tip vortices under turbulent inflow conditions. Moreover, the measurements in the near-wake region indicate a complex velocity distribution with a speed-up region in the wake center, especially for higher tip-speed ratios. In order to elucidate the meandering tendency of far wakes, particular focus was placed on studying the characteristics of large turbulent structures in the boundary layer and their interaction with wind turbines. Although these structures are elongated in the streamwise direction, their cross sections are found to have a size comparable to the rotor area, so that they can be affected by the presence of the turbine. In addition, the study of spatial coherence in turbine wakes reveals that any statistics based on streamwise velocity fluctuations cannot provide reliable information about the size of large turbulent structures in turbine wakes due to the effect of wake

  9. The Spatio-temporal Statistical Structure and Ergodic Behaviour of Scalar Turbulence Within a Rod Canopy

    Science.gov (United States)

    Ghannam, Khaled; Poggi, Davide; Porporato, Amilcare; Katul, Gabriel G.

    2015-12-01

    the flow field. Also, a local advection velocity of dominant eddies is inferred using lagged cross-correlations of scalar concentration time series at different spatial locations. The computed probability density function of this advection velocity agrees well with the laser Doppler anemometry measurements for the same rod canopy.

  10. An Investigation into the Mechanics of Windblown Dust Entrainment from Nickel Slag Surfaces Resembling Armoured Desert Pavements

    Science.gov (United States)

    Sanderson, Robert Steven

    The purpose of this thesis is to investigate the dynamics of PM 10 emission from a nickel slag stockpile that closely resembles a desert pavement in physical characteristics. In the field, it was observed that slag surfaces develop by natural processes into a well-armoured surface over some period of time. The surface then consists of two distinct layers; a surficial armour layer containing only non-erodible gravel and cobble-sized clasts, and an underlying dust-laden layer, which contains a wide size range of slag particles, from clay-sized to cobble-sized. This surficial armour layer protects the underlying fines from wind entrainment, at least under typical wind conditions; however, particle emissions still do occur under high wind speeds. The dynamics of particle entrainment from within these surfaces are investigated herein. It is shown that the dynamics of the boundary layer flow over these lag surfaces are influenced by the inherent roughness and permeability of the surficial armour layer, such that the flow resembles those observed over and within vegetation canopies, and those associated with permeable gravel-bed river channels. Restriction of air flow within the permeable surface produces a high-pressure zone within the pore spaces, resulting in a Kelvin-Helmholtz shear instability, which triggers coherent motions in the form of repeating burst-sweep cycles. Using Laser Doppler Anemometry (LDA), it is demonstrated that the lower boundary layer is characterized by both Q4 sweeping motions and Q2 bursting motions, while the upper boundary layer is dominated by Q2 bursts. Pore air motions within the slag material were measured using buried pressure ports. It is shown that the mean pressure gradient which forms within the slag material results in net upward displacement of air, or wind pumping. However, this net upward motion is a result of rapid oscillatory motions which are directly driven by coherent boundary layer motions. It is also demonstrated that

  11. Laser diagnosis and plasma technology: fundamentals for reduction of emissions and fuel consumption in DI internal combustion engines. Spray/wall-interaction under diesel engine conditions. Final report; Laserdiagnostische und plasmatechnologische Grundlagen zur Verminderung von Emissionen und Kraftstoffverbrauch von DI-Verbrennungsmotoren. Spray/Wand-Wechselwirkung bei der motorischen Einspritzung. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Renz, U.; Meingast, U.

    2001-02-01

    Spray/wall-interaction under diesel engine conditions is not yet investigated extensively in detail with high spatial resolution and high time resolution as those experiments require extremely accurate techniques. Numerical modelling to predict fluiddynamic and heat transfer processes are validated mostly under non engine conditions. The processes during spray/wall interaction under internal combustion engine conditions were investigated experimentally in an injection chamber using enhanced laser optical methods. To enable validation and development of numerical spray/wall models the data was collected under well known and reproducible conditions. Microscopic visualisation tools, Phase-Doppler Anemometry (PDA) to measure droplet diameter and velocity as well as fluorescence based film measurement technique and high speed surface thermocouples to determine the wall heat flux were used. The numerical predictions of the spray wall interaction using Computational Fluid Dynamics (CFD) including two spray/wall models from the literature show qualitatively good agreement with the experiments. However, quantitatively some insufficiencies are observed because the models base on experiments under atmospheric conditions disregarding the influences of high pressure and high temperature. Here more detailed investigation is necessary in the future. The present results build up a comprehensive basis to validate future models and their interaction. Progress was done in using measurement techniques to investigate complex mechanisms under challenging conditions. (orig.) [German] Die Spray/Wand Wechselwirkung unter dieselmotorischen Bedingungen ist bisher nicht mit hoher Zeit- und Ortsaufloesung umfassend charakterisiert worden, weil deren Untersuchung hohe Anforderungen an die Messtechniken stellt. Numerische Modelle zur Vorhersage der Stroemungs- und Waermetransportvorgaenge sind nur teilweise unter reale Bedingungen verifiziert worden. Die Vorgaenge beim Auftreffen eines

  12. Development and operation of an integrated sampling probe and gas analyzer for turbulent mixing studies in complex supersonic flows

    Science.gov (United States)

    Wiswall, John D.

    For many aerospace applications, mixing enhancement between co-flowing streams has been identified as a critical and enabling technology. Due to short fuel residence times in scramjet combustors, combustion is limited by the molecular mixing of hydrogen (fuel) and air. Determining the mixedness of fuel and air in these complex supersonic flowfields is critical to the advancement of novel injection schemes currently being developed at UTA in collaboration with NASA Langley and intended to be used on a future two-stage to orbit (~Mach 16) hypersonic air-breathing vehicle for space access. Expanding on previous work, an instrument has been designed, fabricated, and tested in order to measure mean concentrations of injected helium (a passive scalar used instead of hazardous hydrogen) and to quantitatively characterize the nature of the high-frequency concentration fluctuations encountered in the compressible, turbulent, and high-speed (up to Mach 3.5) complex flows associated with the new supersonic injection schemes. This important high-frequency data is not yet attainable when employing other techniques such as Laser Induced Fluorescence, Filtered Rayleigh Scattering or mass spectroscopy in the same complex supersonic flows. The probe operates by exploiting the difference between the thermodynamic properties of two species through independent massflow measurements and calibration. The probe samples isokinetically from the flowfield's area of interest and the helium concentration may be uniquely determined by hot-film anemometry and internally measured stagnation conditions. The final design has a diameter of 0.25" and is only 2.22" long. The overall accuracy of the probe is 3% in molar fraction of helium. The frequency response of mean concentration measurements is estimated at 103 Hz, while high-frequency hot-film measurements were conducted at 60 kHz. Additionally, the work presents an analysis of the probe's internal mixing effects and the effects of the spatial

  13. Advanced computational model for three-phase slurry reactors

    International Nuclear Information System (INIS)

    Goodarz Ahmadi

    2001-10-01

    In the second year of the project, the Eulerian-Lagrangian formulation for analyzing three-phase slurry flows in a bubble column is further developed. The approach uses an Eulerian analysis of liquid flows in the bubble column, and makes use of the Lagrangian trajectory analysis for the bubbles and particle motions. An experimental set for studying a two-dimensional bubble column is also developed. The operation of the bubble column is being tested and diagnostic methodology for quantitative measurements is being developed. An Eulerian computational model for the flow condition in the two-dimensional bubble column is also being developed. The liquid and bubble motions are being analyzed and the results are being compared with the experimental setup. Solid-fluid mixture flows in ducts and passages at different angle of orientations were analyzed. The model predictions were compared with the experimental data and good agreement was found. Gravity chute flows of solid-liquid mixtures is also being studied. Further progress was also made in developing a thermodynamically consistent model for multiphase slurry flows with and without chemical reaction in a state of turbulent motion. The balance laws are obtained and the constitutive laws are being developed. Progress was also made in measuring concentration and velocity of particles of different sizes near a wall in a duct flow. The technique of Phase-Doppler anemometry was used in these studies. The general objective of this project is to provide the needed fundamental understanding of three-phase slurry reactors in Fischer-Tropsch (F-T) liquid fuel synthesis. The other main goal is to develop a computational capability for predicting the transport and processing of three-phase coal slurries. The specific objectives are: (1) To develop a thermodynamically consistent rate-dependent anisotropic model for multiphase slurry flows with and without chemical reaction for application to coal liquefaction. Also establish the

  14. UAV multirotor platform for accurate turbulence measurements in the atmosphere

    Science.gov (United States)

    Carbajo Fuertes, Fernando; Wilhelm, Lionel; Sin, Kevin Edgar; Hofer, Matthias; Porté-Agel, Fernando

    2017-04-01

    One of the most challenging tasks in atmospheric field studies for wind energy is to obtain accurate turbulence measurements at any location inside the region of interest for a wind farm study. This volume would ideally include from several hundred meters to several kilometers around it and from ground height to the top of the boundary layer. An array of meteorological masts equipped with several sonic anemometers to cover all points of interest would be the best in terms of accuracy and data availability, but it is an obviously unfeasible solution. On the other hand, the evolution of wind LiDAR technology allows to measure at any point in space but unfortunately it involves two important limitations: the first one is the relatively low spatial and temporal resolution when compared to a sonic anemometer and the second one is the fact that the measurements are limited to the velocity component parallel to the laser beam (radial velocity). To overcome the aforementioned drawbacks, a UAV multirotor platform has been developed. It is based on a state-of-the-art octocopter with enough payload to carry laboratory-grade instruments for the measurement of time-resolved atmospheric pressure, three-component velocity vector and temperature; and enough autonomy to fly from 10 to 20 minutes, which is a standard averaging time in most atmospheric measurement applications. The UAV uses a gyroscope, an accelerometer, a GPS and an algorithm has been developed and integrated for the correction of any orientation and movement. This UAV platform opens many possibilities for the study of features that have been almost exclusively studied until now in wind tunnel such as wind turbine blade tip vortex characteristics, near-wake to far-wake transition, momentum entrainment from the higher part of the boundary layer in wind farms, etc. The validation of this new measurement technique has been performed against sonic anemometry in terms of wind speed and temperature time series as well as

  15. Effect of Trailing Edge Flow Injection on Fan Noise and Aerodynamic Performance

    Science.gov (United States)

    Fite, E. Brian; Woodward, Richard P.; Podboy, Gary G.

    2006-01-01

    An experimental investigation using trailing edge blowing for reducing fan rotor/guide vane wake interaction noise was completed in the NASA Glenn 9- by 15-foot Low Speed Wind Tunnel. Data were acquired to measure noise, aerodynamic performance, and flow features for a 22" tip diameter fan representative of modern turbofan technology. The fan was designed to use trailing edge blowing to reduce the fan blade wake momentum deficit. The test objective was to quantify noise reductions, measure impacts on fan aerodynamic performance, and document the flow field using hot-film anemometry. Measurements concentrated on approach, cutback, and takeoff rotational speeds as those are the primary conditions of acoustic interest. Data are presented for a 2% (relative to overall fan flow) trailing edge injection rate and show a 2 dB reduction in Overall Sound Power Level (OAPWL) at all fan test speeds. The reduction in broadband noise is nearly constant and is approximately 1.5 dB up to 20 kHz at all fan speeds. Measurements of tone noise show significant variation, as evidenced by reductions of up to 6 dB in the 2 BPF tone at 6700 rpm.: and increases of nearly 2 dB for the 4 BPF tone at approach speed. Aerodynamic performance measurements show the fan with 2 % injection has an overall efficiency that is comparable to the baseline fan and operates, as intended, with nearly the same pressure ratio and mass flow parameters. Hot-film measurements obtained at the approach operating condition indicate that mean blade wake filling in the tip region was not as significant as expected. This suggests that additional acoustic benefits could be realized if the trailing edge blowing could be modified to provide better filling of the wake momentum deficit. Nevertheless, the hot-film measurements indicate that the trailing edge blowing provided significant reductions in blade wake turbulence. Overall, these results indicate that further work may be required to fully understand the proper

  16. Development, characterization, and skin delivery studies of related ultradeformable vesicles: transfersomes, ethosomes, and transethosomes

    Directory of Open Access Journals (Sweden)

    Ascenso A

    2015-09-01

    Full Text Available Andreia Ascenso,1 Sara Raposo,1 Cátia Batista,2 Pedro Cardoso,2 Tiago Mendes,2 Fabíola Garcia Praça,3 Maria Vitória Lopes Badra Bentley,3 Sandra Simões1 1Instituto de Investigação do Medicamento (iMed.ULisboa, 2Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal; 3Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Monte Alegre, Ribeirão Preto, São Paulo, Brazil Abstract: Ultradeformable vesicles (UDV have recently become a promising tool for the development of improved and innovative dermal and transdermal therapies. The aim of this work was to study three related UDV: transfersomes, ethosomes, and transethosomes for the incorporation of actives of distinct polarities, namely, vitamin E and caffeine, and to evaluate the effect of the carrier on skin permeation and penetration. These actives were incorporated in UDV formulations further characterized for vesicles imaging by transmission electron microscopy; mean vesicle size and polydispersity index by photon correlation spectroscopy; zeta potential by laser-Doppler anemometry; deformability by pressure-driven transport; and incorporation efficiency (IE after actives quantification by high-performance liquid chromatography. Topical delivery studies were performed in order to compare UDV formulations regarding the release, skin permeation, and penetration profiles. All UDV formulations showed size values within the expected range, except transethosomes prepared by “transfersomal method”, for which size was smaller than 100 nm in contrast to that obtained for vesicles prepared by “ethosomal method”. Zeta potential was negative and higher for formulations containing sodium cholate. The IE was much higher for vitamin E- than caffeine-loaded UDV as expected. For flux measurements, the following order was obtained: transethosomes (TE > ethosomes (E ≥ transfersomes (T. This result was consistent with the release and skin penetration

  17. Investigation of the turbulent swirl flow in pipe generated by axial fans using PIV and LDA methods

    Directory of Open Access Journals (Sweden)

    Čantrak Đorđe S.

    2015-01-01

    Full Text Available In this paper is presented experimental investigation of the turbulent swirl flow in pipe generated by axial fans. Two various models of industrial axial fans are used. One of these is axial fan W30, model AP 400, Minel, Serbia and has seven blades and outer diameter 0.397m. Second axial fan SP30 is model TGT/2-400-6, S&P, Spain, has six blades and outer diameter 0.386m. This results with greater clearance in the second case. Blades were adjusted for both fans at the angle of 30° at the outer diameter. Test rig length is 27.74-D, where D is average inner diameter app. 0.4 m. Measurements are performed in two measuring sections downstream the axial fans (z/D = 3.35 and z/D = 26.31 with one-component laser Doppler anemometry (LDA system and stereo particle image velocimetry (SPIV. Obtained Reynolds numbers, calculated on the basis of the average axial velocity (Um in the first measuring section are for fan SP30 Re = 226757, while for fan W30 Re = 254010. Integral flow parameters are determined such as average circulation and swirl number. Significant downstream axial velocity transformation occurs for both fans, while circumferential velocity is decreased, but non-dimensional velocity profile remains the same. Circumferential velocity distribution for both fans in the central zone corresponds to the solid body, while in r/R > 0.4, where D = 2R, distribution is more uniform. Radial velocity in the case of fan SP30 has almost zero values in the measuring section z/D = 3.35, while its values are significantly increased in the downstream section with the maximum in the vortex core region. On the contrary radial velocity decreases downstream for fan W30 and has also maximum value in the vortex core region for both measuring sections. Level of turbulence, skewness and flatness factors are calculated on the basis of the experimental data. The highest levels of turbulence for circumferential velocity are reached in the vortex core region for both fans

  18. CFD for Nuclear Reactor Safety Applications (CFD4NRS-4) - Workshop Proceedings

    International Nuclear Information System (INIS)

    2014-01-01

    Following the CFD4NRS workshops held in Garching, Germany (Sept. 2006), Grenoble, France (Sep. 2008) and Washington D.C., USA (Sept. 2010), this Workshop is intended to extend the forum created for numerical analysts and experimentalists to exchange information in the application of CFD and CMFD to NRS issues and in guiding nuclear reactor design thinking. The workshop includes single-phase and multi-phase CFD applications, and offers the opportunity to present new experimental data for CFD validation. More emphasis has been given to the experiments, especially on two-phase flow, for advanced CMFD modelling for which sophisticated measurement techniques are required. Understanding of the physics has been depen before starting numerical analysis. Single-phase and multi-phase CFD simulations with a focus on validation were performed in areas such as: single-phase heat transfer, boiling flows, free-surface flows, direct contact condensation and turbulent mixing. These relate to NRS-relevant issues, such as pressurised thermal shock, critical heat flux, pool heat exchangers, boron dilution, hydrogen distribution in containments, thermal striping, etc. The use of systematic error quantification and the application of BPGs were strongly encouraged. Experiments providing data suitable for CFD or CMFD validation were also presented. These included local measurements using multi-sensor probes, laser-based techniques (LDV, PIV or LIF), hot-film/wire anemometry, imaging, or other advanced measuring techniques. There were over 150 registered participants at the CFD4NRS-4 workshop. The programme consisted of 48 technical papers. Of these, 44 were presented orally and 4 as posters. An additional 8 posters related to the OECD/NEA-KAERI sponsored CFD benchmark exercise on turbulent mixing in a rod bundle with spacers (MATiS-H) were presented and a special session was allocated for 6 video presentations. In addition, five keynote lectures were given by distinguished experts. The

  19. Hydrodynamic force microscopy

    Science.gov (United States)

    Ulrich, Elaine Schmid

    Microfluidic networks and microporous materials have long been of interest in areas such as hydrology, petroleum engineering, chemical and electrochemical engineering, medicine and biochemical engineering. With the emergence of new processes in gas separation, cell sorting, ultrafiltration, and advanced materials synthesis, the importance of building a better qualitative and quantitative understanding of these key technologies has become apparent. However, microfluidic measurement and theory is still relatively underdeveloped, presenting a significant obstacle to the systematic design of microfluidic devices and materials. Theoretical challenges arise from the breakdown of classical viscous flow models as the flow dimensions approach the mean free path of individual molecules. Experimental challenges arise from the lack of flow profilometry techniques at sub-micron length scales. Here we present an extension of scanning probe microscopy techniques, which we have termed Hydrodynamic Force Microscopy (HFM). HFM exploits fluid drag to profile microflows and to map the permeability of microporous materials. In this technique, an atomic force microscope (AFM) cantilever is scanned close to a microporous sample surface. The hydrodynamic interactions arising from a pressure-driven flow through the sample are then detected by mapping the deflection of an AFM cantilever. For gas flows at atmospheric pressure, HFM has been shown to achieve a velocity sensitivity of 1 cm/s with a spatial resolution of ˜ 10 nm. This compares very favorably to established techniques such as hot-wire and laser Doppler anemometry, whose spatial resolutions typically exceed 1 mum and which may rely on the use of tracer particles or flow markers1. We demonstrate that HFM can successfully profile Poiseuille flows inside pores as small as 100 nm and can distinguish Poiseuille flow from uniform flow for short entry lengths. HFM detection of fluid jets escaping from porous samples can also reveal a

  20. On the early stages of wind wave under non-stationary wind conditions.

    Science.gov (United States)

    Robles-Diaz, Lucia; Ocampo-Torres, Francisco J.; Branger, Hubert

    2017-04-01

    Most efforts in the study of the generation and evolution of wind waves have been conducted under constant wind. The balance of the transfer of different properties has been studied mainly for situations where the wave has already reached the equilibrium with the constant wind conditions. The purpose of these experiments is to study the early stages of the generation of waves under non-stationary wind conditions and to determine a balance in the exchange at the air-water interface for non-equilibrium wind conditions. A total of 16 experiments with a characteristic acceleration and deceleration rate of wind speed were conducted in a large wind-wave facility of Institut Pythéas (Marseille-France). The wave tank is 40 m long, 2.7 m wide and 1 m deep. The air section is 50 m long, 3 m wide and 1.8 m height. The momentum fluxes were estimated from hot wire anemometry at station 7. Also, the free surface displacement was measured along the channel tank at 11 stations where resistance wires were installed, except at stations 1, 2, and 7 where capacitance wires were installed. The sampling frequency for wind velocity and surface displacement measurements was 256 Hz. During experiments the wind intensity was abruptly increased with a constant acceleration rate over time, reaching a constant maximum intensity of 13 m/s. This constant velocity remains some time until the intensity is again reduced suddenly. We observed that wind drag coefficient values are higher for the experiments that present the lower acceleration rate; some field data from previous studies is presented for reference (Large and Pond 1981; Ocampo-Torres et al. 2011; Smith 1980; Yelland and Taylor 1996). The empirical grow curves show that in the experiments with lower acceleration, the wave field is more developed, showing higher dimensional energy and lower dimensional peak frequency. In the evolution of the spectral wave energy, there is first high frequency energy saturation, followed by a downshift of

  1. Characterization of Aerodynamic Forcing Functions for Embedded Rotor Resonant Response in a Multistage Compressor

    Science.gov (United States)

    Kormanik, Nicholas J., III

    There are two main objectives associated with this research: The first portion examines the flow field within the embedded stage of the Purdue 3-Stage Axial Compressor and the aerodynamics responsible for exciting a forced response condition on an embedded rotor. The second portion focuses on the upgrades made to the facility to accommodate a new compressor design, as well as the basic performance characteristics that were acquired for the baseline model. With the first phase of this research endeavor, the first chord-wise bending vibratory mode was examined with a standard stator 1 (S1) blade-count configuration (44 vanes). Next, a reduced S1 blade-count configuration (38 vanes) was implemented to observe how a reduced vane count might impact the forced response at the first torsion vibratory mode. To capture these aerodynamic considerations, stagnation pressure and thermal anemometry probes were used throughout the embedded stage to provide a detailed picture of the influence associated with rotor and stator wakes. These data were also used to observe the potential field effects from the downstream blade-rows. The overall purpose of this campaign was to provide accurate and reliable dataset that could be used to further enhance and validate the computational aeromechanics tools used by the GUIde V consortium, the sponsors for this research. The second phase of this involves the redesign of the Purdue 3-Stage Axial Compressor Facility to accommodate a new compressor, designed by Rolls-Royce, that requires higher mass flow rates, pressure ratios, speeds, and temperatures. Along with many of the mechanical upgrades associated with an adaptation of the driveline and throttle system, health-monitoring upgrades were made to improve the safety and integrity of the compressor system, particularly with respect to temperature and vibrations. Instrumentation improvements include new pressure transducers to observe higher pressures and mass flow rates and the implementation

  2. Collaborative framework for PIV uncertainty quantification: the experimental database

    International Nuclear Information System (INIS)

    Neal, Douglas R; Sciacchitano, Andrea; Scarano, Fulvio; Smith, Barton L

    2015-01-01

    The uncertainty quantification of particle image velocimetry (PIV) measurements has recently become a topic of great interest as shown by the recent appearance of several different methods within the past few years. These approaches have different working principles, merits and limitations, which have been speculated upon in subsequent studies. This paper reports a unique experiment that has been performed specifically to test the efficacy of PIV uncertainty methods. The case of a rectangular jet, as previously studied by Timmins et al (2012) and Wilson and Smith (2013b), is used. The novel aspect of the experiment is simultaneous velocity measurements using two different time-resolved PIV systems and a hot-wire anemometry (HWA) system. The first PIV system, called the PIV measurement system (‘PIV-MS’), is intended for nominal measurements of which the uncertainty is to be evaluated. It is based on a single camera and features a dynamic velocity range (DVR) representative of typical PIV experiments. The second PIV system, called the ‘PIV-HDR’ (high dynamic range) system, features a significantly higher DVR obtained with a higher digital imaging resolution. The hot-wire is placed in close proximity to the PIV measurement domain. The three measurement systems were carefully set to simultaneously measure the flow velocity at the same time and location. The comparison between the PIV-HDR system and the HWA provides an estimate of the measurement precision of the reference velocity for evaluation of the instantaneous error in the measurement system. The discrepancy between the PIV-MS and the reference data provides the measurement error, which is later used to assess the different uncertainty quantification methods proposed in the literature. A detailed comparison of the uncertainty estimation methods based on the present datasets is presented in a second paper from Sciacchitano et al (2015). Furthermore, this database offers the potential to be used for

  3. Parametrizing Evaporative Resistance for Heterogeneous Sparse Canopies through Novel Wind Tunnel Experimentation

    Science.gov (United States)

    Sloan, B.; Ebtehaj, A. M.; Guala, M.

    2017-12-01

    The understanding of heat and water vapor transfer from the land surface to the atmosphere by evapotranspiration (ET) is crucial for predicting the hydrologic water balance and climate forecasts used in water resources decision-making. However, the complex distribution of vegetation, soil and atmospheric conditions makes large-scale prognosis of evaporative fluxes difficult. Current ET models, such as Penman-Monteith and flux-gradient methods, are challenging to apply at the microscale due to ambiguity in determining resistance factors to momentum, heat and vapor transport for realistic landscapes. Recent research has made progress in modifying Monin-Obukhov similarity theory for dense plant canopies as well as providing clearer description of diffusive controls on evaporation at a smooth soil surface, which both aid in calculating more accurate resistance parameters. However, in nature, surfaces typically tend to be aerodynamically rough and vegetation is a mixture of sparse and dense canopies in non-uniform configurations. The goal of our work is to parameterize the resistances to evaporation based on spatial distributions of sparse plant canopies using novel wind tunnel experimentation at the St. Anthony Falls Laboratory (SAFL). The state-of-the-art SAFL wind tunnel was updated with a retractable soil box test section (shown in Figure 1), complete with a high-resolution scale and soil moisture/temperature sensors for recording evaporative fluxes and drying fronts. The existing capabilities of the tunnel were used to create incoming non-neutral stability conditions and measure 2-D velocity fields as well as momentum and heat flux profiles through PIV and hotwire anemometry, respectively. Model trees (h = 5 cm) were placed in structured and random configurations based on a probabilistic spacing that was derived from aerial imagery. The novel wind tunnel dataset provides the surface energy budget, turbulence statistics and spatial soil moisture data under varying

  4. Computational Fluid Dynamics (CFD) in Nuclear Reactor Safety (NRS) - Proceedings of the workshop on Experiments and CFD Code Application to Nuclear Reactor Safety (XCFD4NRS)

    International Nuclear Information System (INIS)

    2008-01-01

    distribution, thermal striping, etc. Discussion of validation of the CFD tool, use of systematic error quantification and Best Practice Guidelines (BPGs) was encouraged and considered in the paper review process. - Experiments providing data suitable for CFD validation, specifically in the area of NRS. These should focus on local measurements using multi-sensor optical or electrical probes, laser-doppler velocimetry, hot-film/wire anemometry, particle image velocimetry and laser induced fluorescence. There were over 140 participants to the XCFD4NRS workshop to hear 5 invited talks, 3 talks on OECD-CSNI activity related to CFD, 44 technical papers, and to see 15 posters. The objectives that 2/3 of the papers be concerned with two-phase issues and 1/3 dedicated to experimental techniques and CFD grade experimental data were reached. Selected papers from the workshop were published in a special issue of the Nuclear Engineering and Design (NED) Journal. The other papers and the slides of the presentations are available in this document

  5. Flexible Micropost Arrays for Shear Stress Measurement

    Science.gov (United States)

    Wohl, Christopher J.; Palmieri, Frank L.; Hopkins, John W.; Jackson, Allen M.; Connell, John W.; Lin, Yi; Cisotto, Alexxandra A.

    2015-01-01

    Increased fuel costs, heightened environmental protection requirements, and noise abatement continue to place drag reduction at the forefront of aerospace research priorities. Unfortunately, shortfalls still exist in the fundamental understanding of boundary-layer airflow over aerodynamic surfaces, especially regarding drag arising from skin friction. For example, there is insufficient availability of instrumentation to adequately characterize complex flows with strong pressure gradients, heat transfer, wall mass flux, three-dimensionality, separation, shock waves, and transient phenomena. One example is the acoustic liner efficacy on aircraft engine nacelle walls. Active measurement of shear stress in boundary layer airflow would enable a better understanding of how aircraft structure and flight dynamics affect skin friction. Current shear stress measurement techniques suffer from reliability, complexity, and airflow disruption, thereby compromising resultant shear stress data. The state-of-the-art for shear stress sensing uses indirect or direct measurement techniques. Indirect measurements (e.g., hot-wire, heat flux gages, oil interferometry, laser Doppler anemometry, small scale pressure drag surfaces, i.e., fences) require intricate knowledge of the studied flow, restrictive instrument arrangements, large surface areas, flow disruption, or seeding material; with smaller, higher bandwidth probes under development. Direct measurements involve strain displacement of a sensor element and require no prior knowledge of the flow. Unfortunately, conventional "floating" recessed components for direct measurements are mm to cm in size. Whispering gallery mode devices and Fiber Bragg Gratings are examples of recent additions to this type of sensor with much smaller (?m) sensor components. Direct detection techniques are often single point measurements and difficult to calibrate and implement in wind tunnel experiments. In addition, the wiring, packaging, and installation

  6. Averaging interval selection for the calculation of Reynolds shear stress for studies of boundary layer turbulence.

    Science.gov (United States)

    Lee, Zoe; Baas, Andreas

    2013-04-01

    It is widely recognised that boundary layer turbulence plays an important role in sediment transport dynamics in aeolian environments. Improvements in the design and affordability of ultrasonic anemometers have provided significant contributions to studies of aeolian turbulence, by facilitating high frequency monitoring of three dimensional wind velocities. Consequently, research has moved beyond studies of mean airflow properties, to investigations into quasi-instantaneous turbulent fluctuations at high spatio-temporal scales. To fully understand, how temporal fluctuations in shear stress drive wind erosivity and sediment transport, research into the best practice for calculating shear stress is necessary. This paper builds upon work published by Lee and Baas (2012) on the influence of streamline correction techniques on Reynolds shear stress, by investigating the time-averaging interval used in the calculation. Concerns relating to the selection of appropriate averaging intervals for turbulence research, where the data are typically non-stationary at all timescales, are well documented in the literature (e.g. Treviño and Andreas, 2000). For example, Finnigan et al. (2003) found that underestimating the required averaging interval can lead to a reduction in the calculated momentum flux, as contributions from turbulent eddies longer than the averaging interval are lost. To avoid the risk of underestimating fluxes, researchers have typically used the total measurement duration as a single averaging period. For non-stationary data, however, using the whole measurement run as a single block average is inadequate for defining turbulent fluctuations. The data presented in this paper were collected in a field study of boundary layer turbulence conducted at Tramore beach near Rosapenna, County Donegal, Ireland. High-frequency (50 Hz) 3D wind velocity measurements were collected using ultrasonic anemometry at thirteen different heights between 0.11 and 1.62 metres above

  7. An Experimental Investigation of the Flow Physics Associated With End Wall Losses and Large Rotor Tip Clearances as Found in the Rear Stages of a High Pressure Compressor

    Science.gov (United States)

    Berdanier, Reid A.; Key, Nicole L.

    2015-01-01

    The focus of this work was to characterize the fundamental flow physics and the overall performance effects due to increased rotor tip clearance heights in axial compressors. Data have been collected in the three-stage axial research compressor at Purdue University with a specific focus on analyzing the multistage effects resulting from the tip leakage flow. Three separate rotor tip clearance heights were studied with nominal tip clearance heights of 1.5%, 3.0%, and 4.0% based on a constant annulus height. Overall compressor performance was investigated at four corrected speedlines (100%, 90%, 80%, and 68%) for each of the three tip clearance configurations using total pressure and total temperature rakes distributed throughout the compressor. The results have confirmed results from previous authors showing a decrease of total pressure rise, isentropic efficiency, and stall margin which is approximately linear with increasing tip clearance height. The stall inception mechanisms have also been evaluated at the same corrected speeds for each of the tip clearance configurations. Detailed flow field measurements have been collected at two loading conditions, nominal loading (NL) and high loading (HL), on the 100% corrected speedline for the smallest and largest tip clearance heights (1.5% and 4.0%). Steady detailed radial traverses of total pressure at the exit of each stator row have been supported by flow visualization techniques to identify regions of flow recirculation and separation. Furthermore, detailed radial traverses of time-resolved total pressures at the exit of each rotor row have been measured with a fast-response pressure probe. These data have helped to quantify the size of the leakage flow at the exit of each rotor. Thermal anemometry has also been implemented to evaluate the time-resolved three-dimensional components of velocity throughout the compressor and calculate blockage due to the rotor tip leakage flow throughout the compressor. These

  8. An Experimental Characterization of Tip Leakage Flows and Corresponding Effects on Multistage Compressor Performance

    Science.gov (United States)

    Berdanier, Reid Adam

    measurements collected at these part-speed and off-design conditions provides a unique data set for calibrating computational models and predictive algorithms. Further investigations with detailed steady total pressure traverses provide additional insight to tip leakage flow effects on stator performance. A series of data on the 100% corrected speedline further characterize the tip leakage flow using time-resolved measurements from a combination of instrumentation techniques. An array of high-frequency-response piezoresistive pressure transducers installed over the rotors allows quantification of tip leakage flow trajectories. These data, along with measurements from a fast-response total pressure probe downstream of the rotors, evaluate the development of tip leakage flows and assess the corresponding effects of upstream stator wakes. Finally, thermal anemometry measurements collected using the single slanted hot-wire technique evaluate three-dimensional velocity components throughout the compressor. These data facilitate calculations of several flow metrics, including a blockage parameter and phase-locked streamwise vorticity.

  9. NEPTUNE: A new software platform for advanced nuclear thermal hydraulics

    International Nuclear Information System (INIS)

    Guelfi, A.; Boucker, M.; Herard, J.M.; Peturaud, P.; Bestion, D.; Boudier, P.; Hervieu, E.; Fillion, P.; Grandotto, M.

    2007-01-01

    -specific developments, the generalized use of multi scale calculations is also expected to be a major means to meet the industrial needs. The coexistence of different simulation scales together with the fast growth of computing power multiplies the computation possibilities. In particular, thanks to the recent progress of CFD tools, one can imagine local zooms in some critical parts of the reactor components. The NEPTUNE multi scale platform will offer advanced coupling functionalities based on state-of-the-art software architecture and new numerical coupling techniques. Finally, despite the existence of a huge worldwide database of,two-phase flow experiments, the validation of new physical models (more local, more complex) requires new experimental data. That is the reason why for several years we have been developing new instrumentation techniques such as four-sensor optical probes, X-ray tomography, and hot-wire anemometry. These techniques will be used for new experimental programs (currently being launched) that have been defined in connection with the high priority industrial applications (departure from nucleate boiling, pressurized thermal shock, loss-of coolant accident, etc.). (authors)

  10. Application de l'A.D.L, pour la mesure du champ de vitesses instationnaires de llecoulement a Ilechappement d'un moteur a combustion interne

    Science.gov (United States)

    Boutrif, M. S.; Thelliez, M.

    1993-01-01

    We present experimental results of instantaneous velocity measurement, which were obtained by application of the laser Doppler anemometry (L.D.A.) at the exhaust pipe of a reciprocating engine under real working conditions. First of all, we show that the instantaneous velocity is monodimensional along a straight exhaust pipe, and that the boundary layer develops within a 2mm thickness. We also show that the cylinder discharges in two phases : the blow down period and the final part of exhaust stroke. We also make obvious, that the flow escapes very quickly : its velocity varies between - 100m/s and 200m/s within a period shorter than 1ms ; thereby, we do record the acoustic resonance phenomenon, when the engine speed is greater than 3 000rpm. Finally, we show that in the exhaust pipe the apparent fluctuation - i.e. the cyclic dispersion and the actual turbulence - may reach 15%. Nous présentons des résultats expérimentaux du champ de vitesses instationnaires, obtenus par adaptation et application de la vélocimétrie laser interférentielle communément appelée à effet Doppler (L.D.A.), à l'échappement d'un moteur altematif à combustion inteme en fonctionnement nominal. Tout d'abord, nous montrons que dans un tube d'échappement long et droit, la vitesse instantanée est bien monodimensionnelle et que l'écoulement occupe la quasitotalité de la section droite géométrique du tube (une couche limite d'épaisseur inférieure à 2mm se développe très près de la paroi du tube). Nous pouvons également décrire la vidange du cylindre du moteur étudié en deux phases principales : bouffée d'échappement et refoulement des gaz brûlés par le piston. Nous mettons de même en évidence l'état très pulsé de l'écoulement, puisqu'en un intervalle de temps inférieur à 1ms, la vitesse de l'écoulement varie de - 100m/s à 200m/s ; nous enregistrons ainsi l'apparition du phénomène de résonance acoustique à des vitesses de rotation supérieures à 3 500

  11. Computational Fluid Dynamics (CFD) for Nuclear Reactor Safety Applications - Workshop Proceedings, CFD4NRS-3 - Experimental Validation and Application of CFD and CMFD Codes to Nuclear Reactor Safety Issues

    International Nuclear Information System (INIS)

    2012-01-01

    The purpose of the workshop was to provide a forum for numerical analysts and experimentalists to exchange information in the field of NRS-related activities relevant to CFD validation, with the objective of providing input to WGAMA CFD experts to create a practical, state-of-the-art, web-based assessment matrix on the use of CFD for NRS applications. The workshop included single-phase and multiphase CFD applications as well as new experimental techniques, including the following: Single-phase and two-phase CFD simulations with an emphasis on validation were sought in areas such as boiling flows, free-surface flows, direct contact condensation, and turbulent mixing. These should relate to NRS-relevant issues such as pressurized thermal shock, critical heat flux, pool heat exchangers, boron dilution, hydrogen distribution, and thermal striping. The use of systematic error quantification and Best Practice Guidelines (BPGs) was encouraged. Experiments providing data suitable for CFD validation-specifically in the area of NRS-including local measurement devices such as multi-sensor optical or electrical probes, Laser Doppler Velocimetry (LDV), hot-film/wire anemometry, Particle Image Velocimetry (PIV), Laser-Induced Fluorescence (LIF), and other innovative techniques. There were over 200 registered participants at the CFD4NRS-3 workshop. The program consisted of about 75 technical papers. Of these, 57 were oral presentations and 19 were posters. An additional 20 posters related to the OECD/NEA-sponsored CFD benchmark exercise on thermal fatigue in a T-Junction were presented. In addition, five keynote lectures were given by distinguished experts. This is about a 30 pc increase with respect to the previous XCFD4NRS workshop held in Grenoble in 2008, and a 70 pc increase compared to the first CFD4NRS workshop held in Garching in 2006. This confirms that there is a real and growing need for such workshops. The papers presented in the conference tackled different topics

  12. The Impact of Urbanization on the Regional Aeolian Dynamics of an Arid Coastal Dunefield

    Science.gov (United States)

    Smith, Alexander; Jackson, Derek; Cooper, Andrew

    2016-04-01

    The anthropogenic impact on the geomorphology of many landscapes are inextricably connected but are often neglected due to the difficulty in making a direct link between the quasi natural and human processes that impact the environment. This research focuses on the Maspalomas dunefield, located on the southern coast of Gran Canaria, in the Canary Island Archipelago. The tourism industry in Maspalomas has led to intensive urbanization since the early 1960's over an elevated alluvial terrace that extends into the dunefield. Urbanization has had a substantial impact on both the regional airflow conditions and the geomorphological development of this transverse dune system. As a result airflow and sediment has been redirected in response to the large scale construction efforts. In situ data was collected during field campaigns using high resolution three-dimensional anemometry to identify the various modifications within the dunefield relative to incipient regional airflow conditions. The goal is to analyse the flow conditions near the urbanized terrace in relation to areas that are located away from the influence of the buildings and to verify numerical modelling results. Computational Fluid Dynamics (CFD) modelling is used in order to expand the areal extent of analysis by providing an understanding of relevant flow dynamics (e.g. flow velocity, directionality, turbulence, shear stresses, etc.) at the mesoscale. An integrative three dimensional model for CFD simulations was created to address the impact of both the urban area (i.e. hotels, commercial centers, and residential communities) as well as the dune terrain on regional flow conditions. Early modelling results show that there is significant flow modification around the urban terrace with streamline compression, acceleration, and deflection of flow on the windward side of the development. Consequently downwind of the terrace there is an area of highly turbulent flow conditions and well developed separation and

  13. Variable-viscosity mixing in the very near field of a round jet

    Science.gov (United States)

    Talbot, B.; Danaila, L.; Renou, B.

    2013-07-01

    One of the persistent challenges in turbulent mixing is understanding of the phenomenology associated with heterogeneous mixtures of gases. The turbulence in single, homogeneous fluid has drawn much attention. However, heterogeneous mixing of gases is prevalent in real flows, whether nonreactive or reactive. This paper is dedicated to advancing our understanding of the turbulent mixing phenomenology in a round jet flow of propane issuing in an oxidizer. The ratio of the propane/oxidizer kinematic viscosities is 1/5.5, whereas their densities are nearly equal. Therefore, the main physical property that differentiates the two fluids is their viscosity. The focus of this paper is on the role played by the viscosity gradients on the turbulent flow, over the first several diameters. The addressed questions concern a comparison between the present flow, which is a variable-viscosity flow (hereafter, VVF), and an air jet flow issuing in the air (constant-viscosity flow, hereafter CVF). The comparison is made at the same initial conditions, i.e. the same jet momentum per surface unit, M0 = ρ0U20 = 130 and 360 kg m-1 s-2 (U0 is the injection velocity and ρ0 is the fluid density). For doing so, an experiment has been designed and both the velocity and the scalar fields have been measured by using a technique based on hot-wire anemometry and Rayleigh light scattering, as well as laser Doppler velocimetry which provides two velocity components. The comparison criteria between the VVF and CVF are the instantaneous aspect of the turbulent velocity field, the axial mean velocity (\\overline U ) and the rms (root mean squares) of the two measured velocity fluctuations. The one-point kinetic energy budget, which involves the mean energy dissipation rate, is developed and the expression of the mean energy dissipation rate is revisited. The latter involves additional terms reflecting the velocity-viscosity gradient correlation. This contribution is positive, thus enhancing the real

  14. Proceedings of the workshop on Benchmarking of CFD Codes for Application to Nuclear Reactor Safety (CFD4NRS)

    International Nuclear Information System (INIS)

    2007-01-01

    -film/wire anemometry, particle image velocimetry, laser induced fluorescence, etc. A particular point of scrutiny for papers in this category was whether an assessment of error bounds and measurement uncertainties was included. There were 98 registered participants to the workshop to hear 5 invited talks and 39 technical papers. It was pointed out that 2/3 of the papers accepted for CFD4NRS were concerned with single-phase calculations and experiments, while 1/3 were dedicated to multi-phase issues. The ratio probably reflects the degree of maturity of CFD in the respective areas, but nonetheless suggests a growing acknowledgement of the role of multi-phase CFD in nuclear NRS issues. Clear recommendations to come out of the workshop for the continuing use of CFD methods in NRS issues are listed below: - Best Practice Guidelines should be followed as far as practical to ensure that CFD simulation results are free of numerical errors, and that the physical models employed are well validated against data appropriate to the flow regimes and physical phenomena being investigated. - Experimental data used for code validation should include estimates of measurement uncertainties, and should include detailed information concerning initial and boundary conditions. - Experimenters involved in producing data for validating CFD models and/or applications should collaborate actively with CFD practitioners in advance of setting up their instrumentation. This interface is vital in ensuring that the information needed to set up the CFD simulation will actually be available, the selection of 'target variables' (i.e. the most significant measurements against which to compare code predictions) is optimal, and the frequency of data acquisition is appropriate to the time-scale(s) of significant fluid-dynamic/heat-transfer/phase-exchange events. - This workshop proved to be a very valuable means to assess the status of CFD code validation and application

  15. Flow evolution of a turbulent submerged two-dimensional rectangular free jet of air. Average Particle Image Velocimetry (PIV) visualizations and measurements

    International Nuclear Information System (INIS)

    Gori, Fabio; Petracci, Ivano; Angelino, Matteo

    2013-01-01

    Highlights: • Zone of flow establishment contains a newly identified undisturbed region of flow. • In the undisturbed region of flow the velocity profile is similar to the exit one. • In undisturbed region of flow the height of average PIV visualizations is constant. • In the undisturbed region of flow the turbulence on the centerline is equal to exit. • Length of undisturbed region of flow decreases with Reynolds number increase. -- Abstract: The paper presents average flow visualizations and measurements, obtained with the Particle Image Velocimetry (PIV) technique, of a submerged rectangular free jet of air in the range of Reynolds numbers from Re = 35,300 to Re = 2200, where the Reynolds number is defined according to the hydraulic diameter of a rectangular slot of height H. According to the literature, just after the exit of the jet there is a zone of flow, called zone of flow establishment, containing the region of mixing fluid, at the border with the stagnant fluid, and the potential core, where velocity on the centerline maintains a value almost equal to the exit one. After this zone is present the zone of established flow or fully developed region. The goal of the paper is to show, with average PIV visualizations and measurements, that, before the zone of flow establishment is present a region of flow, never mentioned by the literature and called undisturbed region of flow, with a length, L U , which decreases with the increase of the Reynolds number. The main characteristics of the undisturbed region is the fact that the velocity profile maintains almost equal to the exit one, and can also be identified by a constant height of the average PIV visualizations, with length, L CH , or by a constant turbulence on the centerline, with length L CT . The average PIV velocity and turbulence measurements are compared to those performed with the Hot Film Anemometry (HFA) technique. The average PIV visualizations show that the region of constant height has

  16. Interaction of turbulent length scales with wind turbine blades

    Science.gov (United States)

    Torres-Nieves, Sheilla N.

    wind turbine blade as a consequence of its geometry) on the behavior of turbulent boundary layers and to identify and quantify the length scales that are affected by these external conditions. Laser Doppler and hot-wire anemometry measurements, for smooth and rough surfaces, confirmed that FST and FPG cause a reduction in the wake of the boundary layer. Moreover, results show a discrepancy in the behavior of the stream-wise and wall-normal variances due to free-stream turbulence. As a result, the addition of FST increases the anisotropy in the body of the boundary layer. For FPG flows, a budget analysis of the Reynolds stresses shows that turbulent transport and pressure strain terms are responsible for the increase in the stream-wise Reynolds stress component when FST is present. Second-order structure functions and energy spectra are examined to identify and quantify which turbulence length-scales contribute mostly to the increased anisotropy, and to compare these effects to the case of a zero pressure gradient (ZPG) boundary layer. For ZPG flows, it is shown that the anisotropy created by adding nearly isotropic turbulence in the free-stream resides mostly in the larger scales of the flow, in a range between r/delta95 = 3 and 10. With an imposed FPG, the effect of FST resides in the very-largest length scales of the flow, r ≥ 4.3delta95, corresponding to scales of the same size, and even larger, than the integral scale of the outer free-stream turbulence. However, the free-stream turbulence is not increasing the anisotropy to the extent that it did for the ZPG case. The effects of surface roughness on the different length scales of the flow, when a FPG and additional levels of FST are present, are also examined. Second-order structure functions and energy spectra analysis suggests that for highly turbulent favorable pressure gradient flows, the effect of roughness at the surface is felt, not only by the small length scales of the flow, but also by large (e.g. r

  17. A simple probabilistic model of initiation of motion of poorly-sorted granular mixtures subjected to a turbulent flow

    Science.gov (United States)

    Ferreira, Rui M. L.; Ferrer-Boix, Carles; Hassan, Marwan

    2015-04-01

    Reynolds number ranged between 220 and 376. Instantaneous velocities were measured with 2-component Laser Doppler Anemometry. The results of the probabilist model exhibit a general good agreement with the laboratory data. However the probability of entrainment of the smallest size fractions is systematically underestimated. This may be caused by phenomena that is absent from the model, for instance the increased magnitude of hydrodynamic actions following the displacement of a larger sheltering grain and the fact that the collective entrainment of smaller grains following one large turbulent event is not accounted for. This work was partially funded by FEDER, program COMPETE, and by national funds through Portuguese Foundation for Science and Technology (FCT) project RECI/ECM-HID/0371/2012.

  18. Influence of Freestream and Forced Disturbances on the Shear Layers of a Square Prism

    Science.gov (United States)

    Lander, Daniel Chapman

    Flow around the square prism, an archetypal bluff body, has applications in all areas of fluid mechanics: vibration, mixing, combustion and noise production to name a few. It also has distinct importance to wind loading on architectural and industrial structures such as tall buildings, bridges, and towers. The von-Karman (VK) vortex street is a major reason for its significance: a flow phenomenon which has received intense scrutiny from scientific and engineering communities for more than 100 years! However, the characteristics of the shear layers separating from the sharp edges, essential to the vortex shedding, have received comparatively little attention. This is surprising considering the Kelvin-Helmholtz (KH) instability of shear layers produce the first signatures of turbulence in the wake. Furthermore, the shear layers are conduits for the passage of vorticity between the boundary layer and the turbulent wake. Many details of their structure and role in the shedding process remain unexplored. This dissertation aims to address this deficiency. Specifically, this project considered the influence of three variables on the characteristics of the transition-to-turbulence in the square prism shear layers. These are: (1) Reynolds number; (2) freestream disturbances and (3) forced disturbances. In each case, the dynamics of the shear layer-wake interaction were considered. Particle image velocimetry and constant temperature anemometry measurements were used to document the shear layer during inception and evolution as it passes into the wake. With increasing Reynolds number, ReD = UinfinityD/nu, in the range 16,700-148,000, the transition-to-turbulence in the initially laminar shear layer moves toward separation. A coordinate system local to the time-averaged shear layer axis was used such that the tangent and normal velocities, turbulent stresses and gradient quantities could be obtained for the curved shear layer. Characteristic frequencies, lengths and transition

  19. Coastal Ohio Wind Project

    Energy Technology Data Exchange (ETDEWEB)

    Gorsevski, Peter [Bowling Green State Univ., OH (United States); Afjeh, Abdollah [Univ. of Toledo, OH (United States); Jamali, Mohsin [Univ. of Toledo, OH (United States); Bingman, Verner [Bowling Green State Univ., OH (United States)

    2014-04-04

    The Coastal Ohio Wind Project intends to address problems that impede deployment of wind turbines in the coastal and offshore regions of Northern Ohio. The project evaluates different wind turbine designs and the potential impact of offshore turbines on migratory and resident birds by developing multidisciplinary research, which involves wildlife biology, electrical and mechanical engineering, and geospatial science. Firstly, the project conducts cost and performance studies of two- and three-blade wind turbines using a turbine design suited for the Great Lakes. The numerical studies comprised an analysis and evaluation of the annual energy production of two- and three-blade wind turbines to determine the levelized cost of energy. This task also involved wind tunnel studies of model wind turbines to quantify the wake flow field of upwind and downwind wind turbine-tower arrangements. The experimental work included a study of a scaled model of an offshore wind turbine platform in a water tunnel. The levelized cost of energy work consisted of the development and application of a cost model to predict the cost of energy produced by a wind turbine system placed offshore. The analysis found that a floating two-blade wind turbine presents the most cost effective alternative for the Great Lakes. The load effects studies showed that the two-blade wind turbine model experiences less torque under all IEC Standard design load cases considered. Other load effects did not show this trend and depending on the design load cases, the two-bladed wind turbine showed higher or lower load effects. The experimental studies of the wake were conducted using smoke flow visualization and hot wire anemometry. Flow visualization studies showed that in the downwind turbine configuration the wake flow was insensitive to the presence of the blade and was very similar to that of the tower alone. On the other hand, in the upwind turbine configuration, increasing the rotor blade angle of attack