WorldWideScience

Sample records for anemometers

  1. A Martian acoustic anemometer.

    Science.gov (United States)

    Banfield, Don; Schindel, David W; Tarr, Steve; Dissly, Richard W

    2016-08-01

    An acoustic anemometer for use on Mars has been developed. To understand the processes that control the interaction between surface and atmosphere on Mars, not only the mean winds, but also the turbulent boundary layer, the fluxes of momentum, heat and molecular constituents between surface and atmosphere must be measured. Terrestrially this is done with acoustic anemometers, but the low density atmosphere on Mars makes it challenging to adapt such an instrument for use on Mars. This has been achieved using capacitive transducers and pulse compression, and was successfully demonstrated on a stratospheric balloon (simulating the Martian environment) and in a dedicated Mars Wind Tunnel facility. This instrument achieves a measurement accuracy of ∼5 cm/s with an update rate of >20 Hz under Martian conditions.

  2. Cup Anemometer Overspeeding

    DEFF Research Database (Denmark)

    Busch, N. E.; Kristensen, Leif

    1976-01-01

    Statistical considerations are applied to a general equation of motion for cup anemometers in a turbulent wind. It is shown that the relative overspeeding ΔS/S can be expressed as ΔS/S = Ih2 · Js(l0/Λs) + cIw2, where Is and Iw are the horizontal and the vertical turbulence intensifies, respectively....... The function Js depends on the shape of the spectrum of horizontal turbulent energy, l0 is the distance constant for the anemometer, and Λs is a characteristic length scale of the horizontal turbulence. The constant c is of order unity. If Λs is suitably chosen as the scale of the energy-containing eddies...

  3. Thermal Remote Anemometer Device

    Science.gov (United States)

    Heyman, Joseph S.; Heath, D. Michele; Winfree, William P.; Miller, William E.; Welch, Christopher S.

    1988-01-01

    Thermal Remote Anemometer Device developed for remote, noncontacting, passive measurement of thermal properties of sample. Model heated locally by scanning laser beam and cooled by wind in tunnel. Thermal image of model analyzed to deduce pattern of airflow around model. For materials applications, system used for evaluation of thin films and determination of thermal diffusivity and adhesive-layer contact. For medical applications, measures perfusion through skin to characterize blood flow and used to determine viabilities of grafts and to characterize tissues.

  4. Field calibration of cup anemometers

    DEFF Research Database (Denmark)

    Schmidt Paulsen, Uwe; Mortensen, Niels Gylling; Hansen, Jens Carsten

    2007-01-01

    A field calibration method and results are described along with the experience gained with the method. The cup anemometers to be calibrated are mounted in a row on a 10-m high rig and calibrated in the free wind against a reference cup anemometer. The method has been reported [1] to improve...... the statistical bias on the data relative to calibrations carried out in a wind tunnel. The methodology is sufficiently accurate for calibration of cup anemometers used for wind resource assessments and provides a simple, reliable and cost-effective solution to cup anemometer calibration, especially suited...

  5. Laser Anemometer For Turbine Research

    Science.gov (United States)

    Seasholtz, Richard G.; Goldman, Louis J.

    1988-01-01

    Three velocity components measured through one port. Laser anemometer combines conventional interference-fringe anemometer configuration with Fabry-Perot interferometer to enable simultaneous measurement of radial and transverse velocities. Transverse-velocity axis rotated, enabling measurement of both transverse-velocity components. Does not require large optical-access port for measurement of radial velocity.

  6. Thermal transient anemometer

    Science.gov (United States)

    Bailey, James L.; Vresk, Josip

    1989-01-01

    A thermal transient anemometer having a thermocouple probe which is utilized to measure the change in temperature over a period of time to provide a measure of fluid flow velocity. The thermocouple probe is located in the fluid flow path and pulsed to heat or cool the probe. The cooling of the heated probe or the heating of the cooled probe from the fluid flow over a period of time is measured to determine the fluid flow velocity. The probe is desired to be locally heated near the tip to increase the efficiency of devices incorporating the probe.

  7. Field calibration of cup anemometers

    DEFF Research Database (Denmark)

    Kristensen, L.; Jensen, G.; Hansen, A.

    2001-01-01

    An outdoor calibration facility for cup anemometers, where the signals from 10 anemometers of which at least one is a reference can be can be recorded simultaneously, has been established. The results are discussed with special emphasis on the statisticalsignificance of the calibration expressions....... It is concluded that the method has the advantage that many anemometers can be calibrated accurately with a minimum of work and cost. The obvious disadvantage is that the calibration of a set of anemometersmay take more than one month in order to have wind speeds covering a sufficiently large magnitude range...

  8. Calibration Fixture For Anemometer Probes

    Science.gov (United States)

    Lewis, Charles R.; Nagel, Robert T.

    1993-01-01

    Fixture facilitates calibration of three-dimensional sideflow thermal anemometer probes. With fixture, probe oriented at number of angles throughout its design range. Readings calibrated as function of orientation in airflow. Calibration repeatable and verifiable.

  9. A satellite anemometer

    Science.gov (United States)

    Hanson, W. B.; Heelis, R. A.

    1995-01-01

    This report describes the design, development, and testing of components of a satellite anemometer, an instrument for measuring neutral winds in the upper atmosphere from a satellite platform. The device, which uses four nearly identical pressure sensors, measures the angle of arrival of the bulk neutral flow in the satellite frame of reference. It could also be used in a feedback loop to control spacecraft attitude with respect to the ram velocity direction. We have now developed miniaturized ionization pressure gauges that will work well from the slip flow region near 115 km up to the base of the exosphere, which covers the entire altitude range currently being considered for Tether. Laboratory tests have demonstrated a very linear response to changes in ram angle out to +/- 20 deg. (transverse wind component of 2.7 km s(exp -1)) from the ram, and a monotonic response to out beyond 45 deg. Pitch (vertical wind) and yaw (horizontal wind) can be sampled simultaneously and meaningfully up to 10 Hz. Angular sensitivity of 30 arc seconds (approximately 1 ms(exp -1) is readily attainable, but absolute accuracy for winds will be approximately 1 deg (130 m/s) unless independent attitude knowledge is available. The critical elements of the design have all been tested in the laboratory.

  10. Heat-resistant anemometers for fire research

    Science.gov (United States)

    John R. Murray; Clive M. Countryman

    1968-01-01

    Heat-resistant anemometers have been developed for measuring horizontal and vertical air flow in fire behavior studies. The anemometers will continue to produce data as long as the anemometer body is less than 650°F. They can survive brief immersion in flame without major damage. These air-flow sensors have aluminum bodies and rotor hubs and stainless steel...

  11. Wind Speed Measurement by Paper Anemometer

    Science.gov (United States)

    Zhong, Juhua; Cheng, Zhongqi; Guan, Wenchuan

    2011-01-01

    A simple wind speed measurement device, a paper anemometer, is fabricated based on the theory of standing waves. In providing the working profile of the paper anemometer, an experimental device is established, which consists of an anemometer sensor, a sound sensor, a microphone, paper strips, a paper cup, and sonic acquisition software. It shows…

  12. On cup anemometer rotor aerodynamics.

    Science.gov (United States)

    Pindado, Santiago; Pérez, Javier; Avila-Sanchez, Sergio

    2012-01-01

    The influence of anemometer rotor shape parameters, such as the cups' front area or their center rotation radius on the anemometer's performance was analyzed. This analysis was based on calibrations performed on two different anemometers (one based on magnet system output signal, and the other one based on an opto-electronic system output signal), tested with 21 different rotors. The results were compared to the ones resulting from classical analytical models. The results clearly showed a linear dependency of both calibration constants, the slope and the offset, on the cups' center rotation radius, the influence of the front area of the cups also being observed. The analytical model of Kondo et al. was proved to be accurate if it is based on precise data related to the aerodynamic behavior of a rotor's cup.

  13. Microsensor Hot-Film Anemometer

    Science.gov (United States)

    Mcginley, Catherine B.; Stephens, Ralph; Hopson, Purnell; Bartlett, James E.; Sheplak, Mark; Spina, Eric F.

    1995-01-01

    Improved hot-film anemometer developed for making high-bandwidth turbulence measurements in moderate-enthalpy supersonic and hypersonic flows (e.g., NASP inlets and control surfaces, HSCT jet exhaust). Features include low thermal inertia, ruggedness, and reduced perturbation of flow.

  14. 1991 LLWAS anemometer test program

    Science.gov (United States)

    1992-01-01

    Performance tests of anemometers under icing and snow conditions were conducted during 1990-1991 on the test field at : Rochester, MN and in icing chambers and wind tunnels at Sterling, VA. These tests were done for the FAA LLWAS program : to test se...

  15. Anemometer performance at fire-weather stations.

    Science.gov (United States)

    Donald A. Haines; John S. Frost

    1984-01-01

    A survey of 142 fire-weather stations in the Northeastern United States showed that, although maintenance was generally satisfactory, calibration or testing of anemometers was virtually nonexistent. We tested these anemometers using portable equipment that we designed and found the deviations from true wind speed.

  16. Konstant-Temperatur-Anemometer mit Temperaturkompensation

    OpenAIRE

    Mayer, E.

    1986-01-01

    Das temperaturkompensierte Konstant-Temperatur-Anemometer erlaubt eine richtungsunabhaengige und rauscharme Messung geringer Luftgeschwindigkeit mittels in einer Bruecke angeordneten Heissleitern. Das Anemometer ist fuer Grenzschichtmessungen aufgrund der geringen Abmessungen besonders geeignet. Dies wird erreicht durch besondere Auswahl der unterschiedlichen Kenndatenkombination von Spannungs-Strom-Kennlinie, Widerstandswerten, Widerstands-Temperatur-Kennlinien des Mess- und Kompensationshei...

  17. Laser transit anemometer experiences in supersonic flow

    Science.gov (United States)

    Hunter, William W., Jr.; Humphreys, William M., Jr.

    1988-01-01

    The purpose of this paper is to present examples of velocity measurements obtained in supersonic flow fields with the laser transit anemometer system. Velocity measurements of a supersonic jet exhausting in a transonic flow field, a cone boundary survey in a Mach 4 flow field, and a determination of the periodic disturbance frequencies of a sonic nozzle flow field are presented. Each of the above three cases also serves to illustrate different modes of laser transit anemometer operation. A brief description of the laser transit anemometer system is also presented.

  18. ACCUWIND - Methods for classification of cup anemometers

    Energy Technology Data Exchange (ETDEWEB)

    Dahlberg, J.Aa.; Friis Pedersen, T.; Busche, P.

    2006-05-15

    Errors associated with the measurement of wind speed are the major sources of uncertainties in power performance testing of wind turbines. Field comparisons of well-calibrated anemometers show significant and not acceptable difference. The European CLASSCUP project posed the objectives to quantify the errors associated with the use of cup anemometers, and to develop a classification system for quantification of systematic errors of cup anemometers. This classification system has now been implemented in the IEC 61400-12-1 standard on power performance measurements in annex I and J. The classification of cup anemometers requires general external climatic operational ranges to be applied for the analysis of systematic errors. A Class A category classification is connected to reasonably flat sites, and another Class B category is connected to complex terrain, General classification indices are the result of assessment of systematic deviations. The present report focuses on methods that can be applied for assessment of such systematic deviations. A new alternative method for torque coefficient measurements at inclined flow have been developed, which have then been applied and compared to the existing methods developed in the CLASSCUP project and earlier. A number of approaches including the use of two cup anemometer models, two methods of torque coefficient measurement, two angular response measurements, and inclusion and exclusion of influence of friction have been implemented in the classification process in order to assess the robustness of methods. The results of the analysis are presented as classification indices, which are compared and discussed. (au)

  19. Industry guidelines for the calibration of maximum anemometers

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, B.H. [AWS Scientific, Inc., Albany, NY (United States)

    1996-12-31

    The purpose of this paper is to report on a framework of guidelines for the calibration of the Maximum Type 40 anemometer. This anemometer model is the wind speed sensor of choice in the majority of wind resource assessment programs in the U.S. These guidelines were established by the Utility Wind Resource Assessment Program. In addition to providing guidelines for anemometers, the appropriate use of non-calibrated anemometers is also discussed. 14 refs., 1 tab.

  20. Liquid Flow Meter based on a Thermal Anemometer Microsensor

    OpenAIRE

    Oleg Sazhin

    2016-01-01

    An analytical model of a thermal anemometer sensor is developed. A thermal anemometer microsensor utilizing doped polycrystalline silicon is created. A liquid flow meter prototype based on a thermal anemometer microsensor is designed. Results of the flow meter testing are presented.

  1. Flow distortion on boom mounted cup anemometers

    DEFF Research Database (Denmark)

    Lindelöw, Per Jonas Petter; Friis Pedersen, Troels; Gottschall, Julia

    In this report we investigate on wind direction dependent errors in the measurement of the horizontal wind speed by boom mounted cup anemometers. The boom mounting on the studied lattice tower is performed according to IEC standard design rules, yet, larger deviations than predicted by flow models...... are observed. The errors on the measurements are likely caused by an underestimation of the flow distortions around the tower. In this paper an experimental method for deriving a correction formula and an in-field calibration is suggested. The method is based on measurements with two cup anemometers mounted...... in the measurement of wind turbine power performance, wind resource assessment and for providing purposeful in-field comparisons between different sensors, e.g. lidar anemometers. With the proposed method, direction dependent errors can be extracted and the mast flow distortion effect on the wind measurements...

  2. Rugged constant-temperature thermal anemometer.

    Science.gov (United States)

    Palma, J; Labbé, R

    2016-12-01

    Here we report a robust thermal anemometer which can be easily built. It was conceived to measure outdoor wind speeds and for airspeed monitoring in wind tunnels and other indoor uses. It works at a constant, low temperature of approximately 90 °C, so that an independent measurement of the air temperature is required to give a correct speed reading. Despite the size and high thermal inertia of the probe, the test results show that this anemometer is capable of measuring turbulent fluctuations up to ∼100 Hz in winds of ∼14 m/s, which corresponds to a scale similar to the length of the probe.

  3. A Procedure for Classification of Cup-Anemometers

    DEFF Research Database (Denmark)

    Friis Pedersen, Troels; Paulsen, Uwe Schmidt

    1997-01-01

    The paper proposes a classification procedure for cup-anemometers based on similar principles as for power converters. A range of operational parameters are established within which the response of the cup-anemometer is evaluated. The characteristics of real cup-anemometers are fitted...... to a realistic 3D cup-anemometer model. Afterwards, the model is used to calculate the response under the range of operational conditions which are set up for the classification. Responses are compared to the normal linear calibration relationship, derived from Wind tunnel calibrations. Results of the 3D cup-anemometer...

  4. Improved Circuit For Hot-Film Anemometer

    Science.gov (United States)

    Gray, David L.

    1993-01-01

    Circuit suitable for automation or computer control of setup and operation. Hot-film or hot-wire anemometer circuit features individual current drives for two arms of wheatstone bridge, plus other features that provide improved calibration and automated or computer-controlled operation.

  5. Hot-wire anemometer for spirography.

    Science.gov (United States)

    Plakk, P; Liik, P; Kingisepp, P H

    1998-01-01

    The use of a constant temperature hot-wire anemometer flow sensor for spirography is reported. The construction, operating principles and calibration procedure of the apparatus are described, and temperature compensation method is discussed. Frequency response is studied. It is shown that this hot-wire flow transducer satisfies common demands with respect to accuracy, response time and temperature variations.

  6. A simple nasal anemometer for clinical purposes.

    Science.gov (United States)

    Hutters, B; Brøndsted, K

    1992-01-01

    There is a need for clinical methods which give more direct information about the behaviour of the velopharyngeal mechanism in natural speech than do the examination methods normally applied to patients suffering from velopharyngeal insufficiency. One possibility is the recording of nasal airflow in order to detect nasal emission of air. The purpose of the present study is to examine the qualities and the characteristics of a simple and cheap nasal anemometer. As this type of flowmeter is considered less reliable than most other flowmeters, its limitations must be clearly understood and accounted for in drawing conclusions. Therefore, nasal airflow in speech obtained with this flowmeter is discussed in relation to nasal airflow obtained by the more reliable pneumotachograph and in relation to nasal airflow data found in the literature. The tests made here suggest that, at least for the type of speech material and measurements used in the present study, reliable nasal airflow data can be obtained by the anemometer.

  7. Development of a classification system for cup anemometers - CLASSCUP

    DEFF Research Database (Denmark)

    Friis Pedersen, Troels

    2003-01-01

    classification system. A classification method for cup anemometers has been developed, which proposes general external operational ranges to be used. Anormal category range connected to ideal sites of the IEC power performance standard was made, and another extended category range for complex terrain...... the objectives to quantify the errors associated with the use of cup anemometers, and to determine the requirements for an optimum design of a cup anemometer, and to develop a classification system forquantification of systematic errors of cup anemometers. The present report describes this proposed...... was proposed. General classification indices were proposed for all types of cup anemometers. As a resultof the classification, the cup anemometer will be assigned to a certain class: 0.5, 1, 2, 3 or 5 with corresponding intrinsic errors (%) as a vector instrument (3D) or as a horizontal instrument (2D...

  8. Quality, precision and accuracy of the maximum No. 40 anemometer

    Energy Technology Data Exchange (ETDEWEB)

    Obermeir, J. [Otech Engineering, Davis, CA (United States); Blittersdorf, D. [NRG Systems Inc., Hinesburg, VT (United States)

    1996-12-31

    This paper synthesizes available calibration data for the Maximum No. 40 anemometer. Despite its long history in the wind industry, controversy surrounds the choice of transfer function for this anemometer. Many users are unaware that recent changes in default transfer functions in data loggers are producing output wind speed differences as large as 7.6%. Comparison of two calibration methods used for large samples of Maximum No. 40 anemometers shows a consistent difference of 4.6% in output speeds. This difference is significantly larger than estimated uncertainty levels. Testing, initially performed to investigate related issues, reveals that Gill and Maximum cup anemometers change their calibration transfer functions significantly when calibrated in the open atmosphere compared with calibration in a laminar wind tunnel. This indicates that atmospheric turbulence changes the calibration transfer function of cup anemometers. These results call into question the suitability of standard wind tunnel calibration testing for cup anemometers. 6 refs., 10 figs., 4 tabs.

  9. New method to calibrate a spinner anemometer

    DEFF Research Database (Denmark)

    Demurtas, Giorgio; Friis Pedersen, Troels

    2014-01-01

    The spinner anemometer is a wind sensor, based on three one dimensional sonic sensor probes, mounted on the wind turbine spinner, and an algorithm to convert the wind speeds measured by the three sonic sensors to horizontal wind speed, yaw misalignment and flow inclination angle. The conversion a...... wind speed measurement at hub height. The present paper describes both procedures, exemplified and applied to a 500 kW wind turbine....

  10. Laboratory Investigations of Stationary Methane Anemometer

    Science.gov (United States)

    Kruczkowski, Janusz; Krawczyk, Jerzy; Ostrogórski, Piotr

    2017-12-01

    This paper presents a new stationary device that can perform simultaneous measurements of air flow velocity and methane concentration in a mine heading (stationary methane anemometer). The test station is designed to use the instrument to test the effect of various parameters on the air-methane stream. The air velocities and methane concentrations were fed to the measuring area via an injector and recorded. The results present numerical simulations of flow phenomena that occurred during measurement experiments.

  11. Drag Force Anemometer Used in Supersonic Flow

    Science.gov (United States)

    Fralick, Gustave C.

    1998-01-01

    To measure the drag on a flat cantilever beam exposed transversely to a flow field, the drag force anemometer (beam probe) uses strain gauges attached on opposite sides of the base of the beam. This is in contrast to the hot wire anemometer, which depends for its operation on the variation of the convective heat transfer coefficient with velocity. The beam probe retains the high-frequency response (up to 100 kHz) of the hot wire anemometer, but it is more rugged, uses simpler electronics, is relatively easy to calibrate, is inherently temperature compensated, and can be used in supersonic flow. The output of the probe is proportional to the velocity head of the flow, 1/2 rho u(exp 2) (where rho is the fluid density and u is the fluid velocity). By adding a static pressure tap and a thermocouple to measure total temperature, one can determine the Mach number, static temperature, density, and velocity of the flow.

  12. Validation of 3D sonic-anemometer against cup anemometer response

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose; Larsen, Gunner Chr.; Courtney, Michael

    2004-01-01

    Determination and validation of wind turbine power curves traditionally rely on single point wind speed measurements recorded with a calibrated cup-anemometer. The power curve verification process, which is typically performed in different terrain types, does not always result in satisfactory...... agreement between measures- and predicted power curves. The observed disagreement is premarily believed to relate to the cup-anemometers being sensitive to tilted flow i.e. that the measurement of the horizontal flow component is sensible to flow in a plane perpendicular to the horizontal plane. Furthermore......, the limited cup-anemometer response due to high turbulence can explain some of the diviations. The present paper investigates this problem, by analysing full-scale time series data extracted from "Database on Wind Characteristics" (http://www.winddata.com/), which represents a wide range of sites. Basically...

  13. Distance constant of the Risø cup anemometer

    DEFF Research Database (Denmark)

    Kristensen, L.; Frost Hansen, O.

    2002-01-01

    The theory for cup-anemometer dynamics is presented in some detail and two methods of obtaining the distance constant lo are discussed. The first method is based on wind tunnel measurements: with a constant wind speed the cup anemometer is released from alocked position of the rotor...... and the increasing rotation rate recorded. It is concluded that the rapid increase in rotation rate makes the method very inaccurate. The second method consists of an analysis of turbulent, atmospheric of wind speed asmeasured by the cup anemometer and a fast-responding sonic anemometer with a spatial eddy...

  14. Influence of blockage effect on measurement by vane anemometers

    Directory of Open Access Journals (Sweden)

    Sluse Jan

    2017-01-01

    Full Text Available The article deals with influence of blockage effect caused by vane anemometer in the wind tunnel by measurement via this anemometer. The influences will be represented by correction coefficient. The first part of this article is focused on the design of the impeller of vane anemometers. The impellers are printed on 3D printer with variable parameters. The anemometer is fixed in an open section of the wind tunnel with closed loop and the velocity profile is measured by Laser Doppler velocimetry (LDV in front and behind it for all impellers. The experimental data are compared with the numerical simulation in OpenFOAM. The results are correction coefficients.

  15. Feature Extraction and Pattern Identification for Anemometer Condition Diagnosis

    Directory of Open Access Journals (Sweden)

    Longji Sun

    2012-01-01

    Full Text Available Cup anemometers are commonly used for wind speed measurement in the wind industry. Anemometer malfunctions lead to excessive errors in measurement and directly influence the wind energy development for a proposed wind farm site. This paper is focused on feature extraction and pattern identification to solve the anemometer condition diagnosis problem of the PHM 2011 Data Challenge Competition. Since the accuracy of anemometers can be severely affected by the environmental factors such as icing and the tubular tower itself, in order to distinguish the cause due to anemometer failures from these factors, our methodologies start with eliminating irregular data (outliers under the influence of environmental factors. For paired data, the relation between the relative wind speed difference and the wind direction is extracted as an important feature to reflect normal or abnormal behaviors of paired anemometers. Decisions regarding the condition of paired anemometers are made by comparing the features extracted from training and test data. For shear data, a power law model is fitted using the preprocessed and normalized data, and the sum of the squared residuals (SSR is used to measure the health of an array of anemometers. Decisions are made by comparing the SSRs of training and test data. The performance of our proposed methods is evaluated through the competition website. As a final result, our team ranked the second place overall in both student and professional categories in this competition.

  16. Field intercomparison of prevailing sonic anemometers

    Science.gov (United States)

    Mauder, Matthias; Zeeman, Matthias J.

    2018-01-01

    Three-dimensional sonic anemometers are the core component of eddy covariance systems, which are widely used for micrometeorological and ecological research. In order to characterize the measurement uncertainty of these instruments we present and analyse the results from a field intercomparison experiment of six commonly used sonic anemometer models from four major manufacturers. These models include Campbell CSAT3, Gill HS-50 and R3, METEK uSonic-3 Omni, R. M. Young 81000 and 81000RE. The experiment was conducted over a meadow at the TERENO/ICOS site DE-Fen in southern Germany over a period of 16 days in June of 2016 as part of the ScaleX campaign. The measurement height was 3 m for all sensors, which were separated by 9 m from each other, each on its own tripod, in order to limit contamination of the turbulence measurements by adjacent structures as much as possible. Moreover, the high-frequency data from all instruments were treated with the same post-processing algorithm. In this study, we compare the results for various turbulence statistics, which include mean horizontal wind speed, standard deviations of vertical wind velocity and sonic temperature, friction velocity, and the buoyancy flux. Quantitative measures of uncertainty, such as bias and comparability, are derived from these results. We find that biases are generally very small for all sensors and all computed variables, except for the sonic temperature measurements of the two Gill sonic anemometers (HS and R3), confirming a known transducer-temperature dependence of the sonic temperature measurement. The best overall agreement between the different instruments was found for the mean wind speed and the buoyancy flux.

  17. Field intercomparison of prevailing sonic anemometers

    Directory of Open Access Journals (Sweden)

    M. Mauder

    2018-01-01

    Full Text Available Three-dimensional sonic anemometers are the core component of eddy covariance systems, which are widely used for micrometeorological and ecological research. In order to characterize the measurement uncertainty of these instruments we present and analyse the results from a field intercomparison experiment of six commonly used sonic anemometer models from four major manufacturers. These models include Campbell CSAT3, Gill HS-50 and R3, METEK uSonic-3 Omni, R. M. Young 81000 and 81000RE. The experiment was conducted over a meadow at the TERENO/ICOS site DE-Fen in southern Germany over a period of 16 days in June of 2016 as part of the ScaleX campaign. The measurement height was 3 m for all sensors, which were separated by 9 m from each other, each on its own tripod, in order to limit contamination of the turbulence measurements by adjacent structures as much as possible. Moreover, the high-frequency data from all instruments were treated with the same post-processing algorithm. In this study, we compare the results for various turbulence statistics, which include mean horizontal wind speed, standard deviations of vertical wind velocity and sonic temperature, friction velocity, and the buoyancy flux. Quantitative measures of uncertainty, such as bias and comparability, are derived from these results. We find that biases are generally very small for all sensors and all computed variables, except for the sonic temperature measurements of the two Gill sonic anemometers (HS and R3, confirming a known transducer-temperature dependence of the sonic temperature measurement. The best overall agreement between the different instruments was found for the mean wind speed and the buoyancy flux.

  18. ACCUWIND - Methods for classification of cup anemometers

    DEFF Research Database (Denmark)

    Dahlberg, J.-Å.; Friis Pedersen, Troels; Busche, P.

    2006-01-01

    of assessment of systematic deviations. The present report focuses on methods that can beapplied for assessment of such systematic deviations. A new alternative method for torque coefficient measurements at inclined flow have been developed, which have then been applied and compared to the existing methods...... developed in the CLASSCUP projectand earlier. A number of approaches including the use of two cup anemometer models, two methods of torque coefficient measurement, two angular response measurements, and inclusion and exclusion of influence of friction have been implemented in theclassification process...

  19. Mobile fiber-optic laser Doppler anemometer.

    Science.gov (United States)

    Stieglmeier, M; Tropea, C

    1992-07-20

    A laser Doppler anemometer (LDA) has been developed that combines the compactness and low power consumption of laser diodes and avalanche photodiodes with the flexibility and possibility of miniaturization by using fiber-optic probes. The system has been named DFLDA for laser diode fiber LDA and is especially suited for mobile applications, for example, in trains, airplanes, or automobiles. Optimization considerations of fiber-optic probes are put forward and several probe examples are described in detail. Measurement results from three typical applications are given to illustrate the use of the DFLDA. Finally, a number of future configurations of the DFLDA concept are discussed.

  20. Method for fabricating a microscale anemometer

    Science.gov (United States)

    Liu, Chang (Inventor); Chen, Jack (Inventor)

    2008-01-01

    Method for fabricating a microscale anemometer on a substrate. A sacrificial layer is formed on the substrate, and a metal thin film is patterned to form a sensing element. At least one support for the sensing element is patterned. The sacrificial layer is removed, and the sensing element is lifted away from the substrate by raising the supports, thus creating a clearance between the sensing element and the substrate to allow fluid flow between the sensing element and the substrate. The supports are raised preferably by use of a magnetic field applied to magnetic material patterned on the supports.

  1. Three-component laser anemometer measurement systems

    Science.gov (United States)

    Goldman, Louis J.

    1991-01-01

    A brief overview of the different laser anemometer (LA) optical designs available is presented. Then, the LA techniques that can be used to design a three-component measurement system for annular geometries are described. Some of the facility design considerations unique to these LA systems are also addressed. Following this, the facilities and the LA systems that were used to successfully measure the three components of velocity in the blading of annular-flow machines are reviewed. Finally, possible LA system enhancements and future research directions are presented.

  2. Can a cup anemometer 'underspeed'? A heretical question

    DEFF Research Database (Denmark)

    Kristensen, L.

    2002-01-01

    An analysis of cup-anemometer dynamics has been carried out in order to determine whether the mean-wind velocity can have a negative bias. This would be contrary to the general belief that cup anemometers always overspeed. Compared to prior analyses, the effect of a possible nonlinearity of the c......An analysis of cup-anemometer dynamics has been carried out in order to determine whether the mean-wind velocity can have a negative bias. This would be contrary to the general belief that cup anemometers always overspeed. Compared to prior analyses, the effect of a possible nonlinearity...... of the calibration function is included. The conclusion is that neither longitudinal nor lateral velocity fluctuations can contribute significantly to a negative bias. However, if a cup anemometer has an angular response that falls below the ideal cosine response, there will, as demonstrated in the concluding...

  3. Wind Powering America Anemometer Loan Program: A Retrospective

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, T.

    2013-05-01

    This white paper details the history, mechanics, status, and impact of the Native American Anemometer Loan Program (ALP) conducted by the U.S. Department of Energy's Wind Powering America (WPA) initiative. Originally conceived in 2000 and terminated (as a WPA activity) at the end of FY 2011, the ALP has resulted in the installation of anemometers at 90 locations. In addition, the ALP provided support for the installation of anemometers at 38 additional locations under a related ALP administered by the Western Area Power Administration.

  4. Optimization of Wind Turbine Operation by Use of Spinner Anemometer

    DEFF Research Database (Denmark)

    Friis Pedersen, Troels; Sørensen, Niels N.; Vita, Luca

    A prototype spinner anemometer was developed from a standard scientific sonic anemometer with specially designed 1D sonic sensors. A model spinner anemometer was tested in wind tunnel with two sensor head configurations. The tests showed that the sonic sensors responded with a high influence factor...... that the calculations were almost insensitive to rotation and to wind speeds. For all flow angles up to 60º the azimuth variation was a pure sinus. The shape of the responses was found to be described with a simple function that over one revolution decreases the average value with a cosine to the flow angle...

  5. Influence of small-scale turbulence on cup anemometer calibrations

    Science.gov (United States)

    Marraccini, M.; Bak-Kristensen, K.; Horn, A.; Fifield, E.; Hansen, S. O.

    2017-11-01

    The paper presents and discusses the calibration results of cup anemometers under different levels of small-scale turbulence. Small-scale turbulence is known to govern the curvature of shear layers around structures and is not related to the traditional under and over speeding of cup anemometers originating from large-scale turbulence components. The paper has shown that the small-scale turbulence has a significant effect on the calibration results obtained for cup anemometers. At 10m/s the rotational speed seems to change by approx. 0.5% due to different simulations of the small-scale turbulence. The work which this paper is based on, is part of the TrueWind research project, aiming to increase accuracy of mast top-mounted cup anemometer measurements.

  6. Calibration of Anemometers used in the Ship Survivability Enhancement Program

    National Research Council Canada - National Science Library

    Gamble, G

    1998-01-01

    .... Temperature, smoke density and air velocity data were recorded. Air velocity was measured with the use of bidirectional anemometer sensors, connected to Air Monitor Corporation Veltron 5000AZ series differential pressure transmitters...

  7. Hot-Film Anemometer For Boundary-Flow Transitions

    Science.gov (United States)

    Chiles, Harry R.; Johnson, J. Blair

    1988-01-01

    Temperature-compensated instrument yields data at subsonic and supersonic speeds. Modifications in new anemometer include addition of temperature-compensation resistor and resistors Rs and Rp series and parallel with compensation device.

  8. Distance constant of the Risø cup anemometer

    OpenAIRE

    Kristensen, L.; Frost Hansen, O.

    2002-01-01

    The theory for cup-anemometer dynamics is presented in some detail and two methods of obtaining the distance constant lo are discussed. The first method is based on wind tunnel measurements: with a constant wind speed the cup anemometer is released from alocked position of the rotor and the increasing rotation rate recorded. It is concluded that the rapid increase in rotation rate makes the method very inaccurate. The second method consists of an analysis of turbulent, atmospheric of wind spe...

  9. Removal of pedestals and directional ambiguity of optical anemometer signals.

    Science.gov (United States)

    Durst, F; Zaré, M

    1974-11-01

    Laser Doppler anemometry permits, in principle, the measurement of both magnitude and direction of components of a particle's velocity vector. Most exiting anemometers, however, permit measurements only with a directional ambiguity of 180 degrees , resulting in errors in certain flow fields. Available methods of eliminating the directional ambiguity of Laser Doppler anemometers are reviewed, covering frequency shifting of the incident and scattered light beams, the use of beams with different polarization properties, and employment of multicolor laser beams. The advantages and disadvantages of existing methods are summarized, and suggestions for alterations are made. Different techniques used to remove the pedestal of laser Doppler anemometer signals are also reviewed. Optical techniques should be employed in any advanced optical anemometer system to avoid dynamic range limitations by electronic bandpass filters. Suggestions are made for advanced optical anemometers employing multielement avalanche photodiodes that can be used for simultaneous measurements of two velocity components. These anemometers incorporate devices to sense the direction of the velocity components and to eliminate optically the pedestal of laser Doppler signals.

  10. A Remotely Deployable Wind Sonic Anemometer

    Directory of Open Access Journals (Sweden)

    Muhammad Awais

    2017-12-01

    Full Text Available Communication and computing shape up base for explosion of Internet of Things (IoT era. Humans can efficiently control the devices around their environment as per requirements because of IoT, the communication between different devices brings more flexibility in surrounding. Useful data is also gathered from some of these devices to create Big Data; where, further analysis assist in making life easier by developing good business models corresponding to user needs, enhance scientific research, formulating weather prediction or monitoring systems and contributing in other relative fields as well. Thus, in this research a remotely deployable IoT enabled Wind Sonic Anemometer has been designed and deployed to calculate average wind speed, direction, and gust. The proposed design is remotely deployable, user-friendly, power efficient and cost-effective because of opted modules i.e., ultrasonic sensors, GSM module, and solar panel. The testbed was also deployed at the roof of Computer & Information Systems Engineering (CIS department, NED UET. Further, its calibration has been carried out by using long short-term memory (LSTM, a deep learning technique; where ground truth data has been gathered from mechanical wind speed sensor (NRG-40 H deployed at top of Industrial & Manufacturing (IM department of NED UET. The obtained results are satisfactory and the performance of designed sensor is also good under various weather conditions.

  11. Classification of operational characteristics of commercial cup-anemometers

    Energy Technology Data Exchange (ETDEWEB)

    Friis Pedersen, T.; Schmidt Paulsen, U. [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)

    1999-03-01

    The present classification of cup-anemometers is based on a procedure for classification of operational characteristics of cup-anemometers that was proposed at the EWEC `97 conference in Dublin 1997. Three definitions of wind speed are considered. The average longitudinal wind speed (ID), the average horizontal wind speed (2D) and the average vector wind speed (3D). The classification is provided in these terms, and additionally, the turbulence intensities, which are defined from the same wind speed definitions. The commercial cup-anemometers have all been calibrated in wind tunnel for the normal calibrations and angular characteristics. Friction was measured by blywheel testing, where the surrounding temperatures were varied over a wide range. The characteristics of the cup-anemometers have been fitted to the heuristic dynamic model, and the response has been calculated in time domain for prescribed ranges of external operational conditions. The results are presented in ranges of maximum deviations of `measured` average wind speed. For each definition of wind speed and turbulence intensity, the cup-anemometers are ranked according to the most precise instrument. Finally, the most important systematic error sources are commented. (au)

  12. Comparison of velocity measurements by high temperature anemometer and laser-doppler anemometer with results of CFD-simulation

    Directory of Open Access Journals (Sweden)

    Zimmel M.

    2002-01-01

    Full Text Available In the present work, results of gas velocity measurements with a newly developed vane anemometer (HTA - High Tem per a ture Anemometer are compared with re sults of measurements obtained from Laser-Doppler Anemometer (LDA. The measurements were carried out at the combustion test rig of ALSTOM Combustion Services Ltd. in Derby/UK, and demonstrate the usability and accuracy of the HTA under severe conditions. The test rig was provided with a triple register low NOx coal burner firing pulverised Colombian blended coal at a constant thermal load of 30 MW. Although the environment was both very hot (up to 1350 °C and dust laden, the vane anemometer worked with an accuracy comparable to the reference LDA measurement. Since the anemometer represents a relatively simple to use and low cost option compared with LDA, it is seen as aviable alternative for gas velocity measurements in difficult environments. The measurement results are also demonstrated to compare favourably with the results from CFD calculations of the flow in the combustion chamber of the test rig.

  13. Determining the Velocity Fine Structure by a Laser Anemometer with Fixed Orientation

    DEFF Research Database (Denmark)

    Kristensen, Leif; Kirkegaard, Peter; Mikkelsen, Torben

    We have studied the velocity structure functions and spectra which can be determined by a CW-laser anemometer and a (pulsed) lidar anemometer. We have found useful theoretical expressions for both types of anemometers and compared their filtering of the alongbeam turbulent velocity. The purpose has...

  14. Nacelle power curve measurement with spinner anemometer and uncertainty evaluation

    DEFF Research Database (Denmark)

    Demurtas, Giorgio; Friis Pedersen, Troels; Wagner, Rozenn

    2016-01-01

    The objective of this investigation was to verify the feasibility of using the spinner anemometer calibration and nacelle transfer function determined on one reference turbine, to assess the power performance of a second identical turbine. An experiment was set up with a met-mast in a position...... suitable to measure the power curve of the two wind turbines, both equipped with a spinner anemometer. An IEC 61400-12-1 compliant power curve was then measured for both turbines using the met-mast. The NTF (Nacelle Transfer Function) was measured on the reference turbine and then applied to both turbines...... to calculate the free wind speed. For each of the two wind turbines, the power curve (PC) was measured with the met-mast and the nacelle power curve (NPC) with the spinner anemometer. Four power curves (two PC and two NPC) were compared in terms of AEP (Annual Energy Production) for a Rayleigh wind speed...

  15. Fourier analysis of the aerodynamic behavior of cup anemometers

    International Nuclear Information System (INIS)

    Pindado, Santiago; Pérez, Imanol; Aguado, Maite

    2013-01-01

    The calibration results (the transfer function) of an anemometer equipped with several cup rotors were analyzed and correlated with the aerodynamic forces measured on the isolated cups in a wind tunnel. The correlation was based on a Fourier analysis of the normal-to-the-cup aerodynamic force. Three different cup shapes were studied: typical conical cups, elliptical cups and porous cups (conical-truncated shape). Results indicated a good correlation between the anemometer factor, K, and the ratio between the first two coefficients in the Fourier series decomposition of the normal-to-the-cup aerodynamic force. (paper)

  16. Characterisation and classification of RISØ P2546 cup anemometer

    DEFF Research Database (Denmark)

    Friis Pedersen, Troels

    2004-01-01

    The characteristics of the RISØ P2546 cup anemometer were investigated in detail by wind tunnel and laboratory tests. The characteristics include accredited calibration, tilt response measurements for tilt angles between -40° to 40°, gust responsemeasurements at 8m/s and turbulence intensities...... of 10%, 16% and 23%, step response measurements at step wind speeds 3,7, 8, 11,9 and 15,2m/s, measurement of torque characteristics at 8m/s, rotor inertia measurements and measurements of friction ofbearings at temperatures -20°C to 40°C. Characteristics were fitted to a time domain cup anemometer model...

  17. Characterisation and classification of RISØ P2546 cup anemometer

    DEFF Research Database (Denmark)

    Friis Pedersen, Troels

    2003-01-01

    The characteristics of the RISØ P2546 cup anemometer were investigated in detail by wind tunnel and laboratory tests. The characteristics include accredited calibration, tilt response measurements for tilt angles between -40° to 40°, gust responsemeasurements at 8m/s and turbulence intensities...... of 10%, 16% and 23%, step response measurements at step wind speeds 3,7, 8, 11,9 and 15,2m/s, measurement of torque characteristics at 8m/s, rotor inertia measurements and measurements of friction ofbearings at temperatures -20°C to 40°C. Characteristics were fitted to a time domain cup anemometer model...

  18. Flush-mounted hot film anemometer accuracy in pulsatile flow.

    Science.gov (United States)

    Nandy, S; Tarbell, J M

    1986-08-01

    The accuracy of a flush-mounted hot film anemometer probe for wall shear stress measurements in physiological pulsatile flows was evaluated in fully developed pulsatile flow in a rigid straight tube. Measured wall shear stress waveform based on steady flow anemometer probe calibrations were compared to theoretical wall shear stress waveforms based on well-established theory and measured flow rate waveforms. The measured and theoretical waveforms were in close agreement during systole (average deviation of 14 percent at peak systole). As expected, agreement was poor during diastole because of flow reversal and diminished frequency response at low shear rate.

  19. The cup anemometer, a fundamental meteorological instrument for the wind energy industry. Research at the IDR/UPM Institute.

    Science.gov (United States)

    Pindado, Santiago; Cubas, Javier; Sorribes-Palmer, Félix

    2014-11-12

    The results of several research campaigns investigating cup anemometer performance carried out since 2008 at the IDR/UPM Institute are included in the present paper. Several analysis of large series of calibrations were done by studying the effect of the rotor's geometry, climatic conditions during calibration, and anemometers' ageing. More specific testing campaigns were done regarding the cup anemometer rotor aerodynamics, and the anemometer signals. The effect of the rotor's geometry on the cup anemometer transfer function has been investigated experimentally and analytically. The analysis of the anemometer's output signal as a way of monitoring the anemometer status is revealed as a promising procedure for detecting anomalies.

  20. An innovative method to calibrate a spinner anemometer without the use of yaw position sensor

    DEFF Research Database (Denmark)

    Demurtas, Giorgio; Janssen, Nick Gerardus Cornelis

    2016-01-01

    A spinner anemometer can be used to measure the yaw misalignment and flow inclination experienced by a wind turbine. Previous calibration methods used to calibrate a spinner anemometer for flow angle measurements were based on measurements of a spinner anemometer with default settings (arbitrary...... values, generally k1,d  =  1 and k2,d  =  1) and a reference yaw misalignment signal measured with a yaw position sensor. The yaw position sensor is normally present in wind turbines for control purposes; however, such a signal is not always available for a spinner anemometer calibration. Therefore......, an additional yaw position sensor was installed prior to the spinner anemometer calibration. An innovative method to calibrate the spinner anemometer without a yaw positions sensor was then developed. It was noted that a non-calibrated spinner anemometer that overestimates (underestimates) the inflow angle...

  1. Research on the Plasma Anemometer Based on AC Glow Discharge

    Directory of Open Access Journals (Sweden)

    Bing Yu

    2017-01-01

    Full Text Available A new plasma anemometer based on AC glow discharge is designed in this article. Firstly, theoretical analysis of plasma anemometer working principle is introduced to prove the feasibility of the experimental measurement method. Then the experiments are carried out to study the effects of different parameters on the static discharge characteristics of the plasma anemometer system, by which the system optimization methods are obtained. Finally, several groups of appropriate parameters are selected to build the plasma anemometer system based on resistance capacitance coupling negative feedback AC glow discharge, and different airflow speeds are applied to obtain the achievable velocity measurement range. The results show that there is a linear relationship between airflow velocity and discharge current in an allowable error range, which can be applied for airflow velocity measurement. Negative feedback coupling module, which is composed of the coupling resistance and the coupling capacitance, has good effects on improving the system stability. The measurement range of the airflow velocity is significantly increased when the electrode gap is 3 mm, coupling resistance is 470 Ω, and coupling capacitance is 220 pF.

  2. Influence of the Meteorology Mast on a Cup Anemometer

    DEFF Research Database (Denmark)

    Hansen, Martin O. L.; Pedersen, B.M.

    1999-01-01

    The actuator disc model is applied on lattice-type meteorological masts to estimate the influence of the tower on the accuracy of the measured wind speed. Combining the results with corrections for the boom, on which the anemometer is mounted, good agreement is found for measurements made...

  3. Characterisation and classification of RISOe P2546 cup anemometer

    Energy Technology Data Exchange (ETDEWEB)

    Friis Pedersen, T.

    2004-03-01

    The characteristics of the RISOe P2546 cup anemometer were investigated in detail, and all data presented in figures and tables. The characteristics include: wind tunnel calibrations, including an accredited calibration; tilt response meas-urements for tilt angles from -40 deg. C to 40 deg. C; gust response measurements at 8m/s, 10,5m/s and 13m/s and turbulence intensities of 10%, 16% and 23%; step response measurements at step wind speeds 4, 8, 12 and 15m/s; measurement of torque characteristics at 8m/s; rotor inertia measurements and measurements of friction of bearings at temperatures -20 deg. C to 40 deg. C. The characteristics are fitted to a time domain cup anemometer model, and the cup anemometer is put into the CLASSCUP classification scheme. The characteristics are also compared to the requirements to cup anemometers in the Danish wind turbine certification system and the CD and CDV of the revision of the standard IEC 61400-12. (au)

  4. Spectral Coherence Along a Lidar-Anemometer Beam

    DEFF Research Database (Denmark)

    Kristensen, Leif; Kirkegaard, Peter; Mann, Jakob

    The theory of measuring the spectral coherence by means of a lidar anemometer has been outlined. It is based on the assumption that the turbulent velocity field can be considered statistically locally isotropic and on the validity of Taylor’s hypothesis. This implies that the longitudinal coherence...

  5. Constant-bandwidth constant-temperature hot-wire anemometer.

    Science.gov (United States)

    Ligeza, P

    2007-07-01

    A constant-temperature anemometer (CTA) enables the measurement of fast-changing velocity fluctuations. In the classical solution of CTA, the transmission band is a function of flow velocity. This is a minor drawback when the mean flow velocity does not significantly change, though it might lead to dynamic errors when flow velocity varies over a considerable range. A modification is outlined, whereby an adaptive controller is incorporated in the CTA system such that the anemometer's transmission band remains constant in the function of flow velocity. For that purpose, a second feedback loop is provided, and the output signal from the anemometer will regulate the controller's parameters such that the transmission bandwidth remains constant. The mathematical model of a CTA that has been developed and model testing data allow a through evaluation of the proposed solution. A modified anemometer can be used in measurements of high-frequency variable flows in a wide range of velocities. The proposed modification allows the minimization of dynamic measurement errors.

  6. A new approach to correct yaw misalignment in the spinning ultrasonic anemometer

    Science.gov (United States)

    Ghaemi-Nasab, M.; Davari, Ali R.; Franchini, S.

    2018-01-01

    Single-axis ultrasonic anemometers are the modern instruments for accurate wind speed measurements. Despite their widespread and ever increasing applications, little attention has been paid up to now to spinning ultrasonic anemometers that can accurately measure both the wind speed and its direction in a single and robust apparatus. In this study, intensive wind-tunnel tests were conducted on a spinning single-axis ultrasonic anemometer to investigate the yaw misalignment in ultrasonic wind speed measurements during the yaw rotation. The anemometer was rotating inside the test section with various angular velocities, and the experiments were performed at several combinations of wind speed and anemometer angular velocity. The instantaneous angular position of the ultrasonic signal path with wind direction was measured using an angular position sensor. For a spinning anemometer, the circulatory wake and the associated flow distortion, along with the Doppler effect, impart a phase shift in the signals measured by the anemometer, which should be added to the position data for correcting the yaw misalignment. In this paper, the experimental data are used to construct a theoretical model, based on a response surface method, to correct the phase shift for various wind speeds and anemometer rotational velocities. This model is shown to successfully correct the velocity indicated by the spinning anemometer for the phase shift due to the rotation, and can easily be used in the calibration process for such anemometers.

  7. Boundary layer height estimation by sodar and sonic anemometer measurements

    International Nuclear Information System (INIS)

    Contini, D; Cava, D; Martano, P; Donateo, A; Grasso, F M

    2008-01-01

    In this paper an analysis of different methods for the calculation of the boundary layer height (BLH) using sodar and ultrasonic anemometer measurements is presented. All the methods used are based on single point surface measurements. In particular the automatic spectral routine developed for Remtech sodar is compared with the results obtained with the parameterization of the vertical velocity variance, with the calculation of a prognostic model and with a parameterization based on horizontal velocity spectra. Results indicate that in unstable conditions the different methods provide similar pattern, with BLH relatively low, even if the parameterization of the vertical velocity variance is affected by a large scatter that limits its efficiency in evaluating the BLH. In stable nocturnal conditions the performances of the Remtech routine are lower with respect to the ones in unstable conditions. The spectral method, applied to sodar or sonic anemometer data, seems to be the most promising in order to develop an efficient routine for BLH determination

  8. All semiconductor laser Doppler anemometer at 1.55 microm.

    Science.gov (United States)

    Hansen, René Skov; Pedersen, Christian

    2008-10-27

    We report to our best knowledge the first all semiconductor Laser Doppler Anemometer (LIDAR) for wind speed determination. We will present the design and first experimental results on a focusing coherent cw laser Doppler anemometer for measuring atmospheric wind velocities in the 10 meters to 300 meters distance range. Especially, we will demonstrate that both the output power as well as the demanding coherence properties required from the laser source can be accomplished by an all semiconductor laser. Preliminary tests at a distance of 40 meters indicate a typical signal to noise ratio of 9 dB. This result is obtained at a clear day with an up-date rate of 12 Hz.

  9. Method of Assembling a Silicon Carbide High Temperature Anemometer

    Science.gov (United States)

    Okojie, Robert S. (Inventor); Fralick, Gustave C. (Inventor); Saad, George J. (Inventor)

    2004-01-01

    A high temperature anemometer includes a pair of substrates. One of the substrates has a plurality of electrodes on a facing surface, while the other of the substrates has a sensor cavity on a facing surface. A sensor is received in the sensor cavity, wherein the sensor has a plurality of bondpads, and wherein the bondpads contact the plurality of electrodes when the facing surfaces are mated with one another. The anemometer further includes a plurality of plug-in pins, wherein the substrate with the cavity has a plurality of trenches with each one receiving a plurality of plug-in pins. The plurality of plug-in pins contact the plurality of electrodes when the substrates are mated with one another. The sensor cavity is at an end of one of the substrates such that the sensor partially extends from the substrate. The sensor and the substrates are preferably made of silicon carbide.

  10. Calibration data for improved correction of UVW propeller anemometers

    Science.gov (United States)

    Connell, J. R.; Morris, V. R.

    1991-10-01

    Wind turbine test programs sponsored by the US DOE in the late 1980s called for measurement of three-dimensional turbulent wind with an accuracy not previously required. The Pacific Northwest Laboratory identified the need for more complete, more highly resolved, and more accurate calibrations to provide the new level of measurement capability. The UVW propeller anemometer, became the object of a unique calibration effort at a large wind tunnel at Colorado State University. A UVW anemometer, with all three propellers active, was installed in the wind tunnel on a digitally stepped two-axis rotary platform placed just below the tunnel floor. The azimuth and elevation of the anemometer in a steady wind at each of a selected set of speeds was stepped through a complete test program using a digital computer as controller and a digital data acquisition system to sample and filter the data. Tests were run using polypropylene and carbon fiber propellers. In addition, the effects of attaching 'shaft extensions' to the polypropylene propellers were measured. Calibrations for the polypropylene four-blade propeller provide an improved level of detail and repeatability. The UVW propeller anemometer is quite accurate at all wind angles and speeds to be experienced in wind energy studies, including winds blowing at right angles to the axis of rotation of a propeller. The new correction factors derived from these data eliminate previous difficulties in accuracy and speed of data reduction from voltages to wind speed components. Calibration data for a carbon fiber thermoplastic propeller are presented with resolution similar to that for the polypropylene propellers.

  11. 3-D laser anemometer measurements in an annular seal

    Science.gov (United States)

    Morrison, G. L.; Tatterson, G. B.; Johnson, M. C.

    1988-01-01

    The flow field inside an annular seal with a 0.00127 m clearance was measured using a 3-D laser Doppler anemometer system. Through the use of this system, the mean velocity vector and the entire Reynolds stress tensor distributions were measured for the entire length of the seal (0.0373 m). The seal was operated at a Reynolds number of 27,000 and a Taylor number of 6,600.

  12. Stationarity: Insights toward Determining a Sonic Anemometer's Coordinate System

    Science.gov (United States)

    Pan, Y.; Patton, E. G.

    2017-12-01

    The steady-state planar averaged mean momentum budget equation above horizontally homogeneous roughness elements predicts that the magnitude of mean vertical turbulent momentum flux should remain constant with height. However, during the Canopy Horizontal Array Turbulence Study (CHATS), data sampled on a vertical tower show more than 30% variability for mean vertical turbulent momentum flux between canopy top and three canopy heights. This large variability results from the data preparation procedure used to determine the sonic anemometer's coordinate system. Specifically, the planar fit technique employs mean velocities during time periods of fixed length (e.g., 30 minutes), regardless of the stationarity of the time periods used in performing the planar fit. A newly constructed statistical technique objectively determines both the occurrence and duration of stationary episodes, which enables a more rigorous approach to estimate a sonic anemometer's coordinate system. Applying the planar fit technique to stationary mean velocities yields new estimates of the sonic coordinate system which consequently yields mean vertical turbulent momentum flux estimates with only 10% variability above the canopy. The improvement in determining the sonic anemometer's coordinate system also yields significant improvements in estimating scalar fluxes.

  13. Nacelle power curve measurement with spinner anemometer and uncertainty evaluation

    Directory of Open Access Journals (Sweden)

    G. Demurtas

    2017-03-01

    Full Text Available The objective of this investigation was to verify the feasibility of using the spinner anemometer calibration and nacelle transfer function determined on one reference wind turbine, in order to assess the power performance of a second identical turbine. An experiment was set up with a met mast in a position suitable to measure the power curve of the two wind turbines, both equipped with a spinner anemometer. An IEC 61400-12-1-compliant power curve was then measured for both wind turbines using the met mast. The NTF (nacelle transfer function was measured on the reference wind turbine and then applied to both turbines to calculate the free wind speed. For each of the two wind turbines, the power curve (PC was measured with the met mast and the nacelle power curve (NPC with the spinner anemometer. Four power curves (two PCs and two NPCs were compared in terms of AEP (annual energy production for a Rayleigh wind speed probability distribution. For each wind turbine, the NPC agreed with the corresponding PC within 0.10 % of AEP for the reference wind turbine and within 0.38 % for the second wind turbine, for a mean wind speed of 8 m s−1.

  14. The Cup Anemometer, a Fundamental Meteorological Instrument for the Wind Energy Industry. Research at the IDR/UPM Institute

    OpenAIRE

    Pindado Carrion, Santiago; Cubas Cano, Javier; Sorribes Palmer, Felix

    2014-01-01

    The results of several research campaigns investigating cup anemometer performance carried out since 2008 at the IDR/UPM Institute are included in the present paper. Several analysis of large series of calibrations were done by studying the effect of the rotor's geometry, climatic conditions during calibration, and anemometers' ageing. More specific testing campaigns were done regarding the cup anemometer rotor aerodynamics, and the anemometer signals. The effect of the rotor's geometry on th...

  15. An innovative method to calibrate a spinner anemometer without the use of yaw position sensor

    Directory of Open Access Journals (Sweden)

    G. Demurtas

    2016-09-01

    Full Text Available A spinner anemometer can be used to measure the yaw misalignment and flow inclination experienced by a wind turbine. Previous calibration methods used to calibrate a spinner anemometer for flow angle measurements were based on measurements of a spinner anemometer with default settings (arbitrary values, generally k1,d  =  1 and k2,d  =  1 and a reference yaw misalignment signal measured with a yaw position sensor. The yaw position sensor is normally present in wind turbines for control purposes; however, such a signal is not always available for a spinner anemometer calibration. Therefore, an additional yaw position sensor was installed prior to the spinner anemometer calibration. An innovative method to calibrate the spinner anemometer without a yaw positions sensor was then developed. It was noted that a non-calibrated spinner anemometer that overestimates (underestimates the inflow angle will also overestimate (underestimate the wind speed when there is a yaw misalignment. The new method leverages the non-linearity of the spinner anemometer algorithm to find the calibration factor Fα by an optimization process that minimizes the dependency of the wind speed on the yaw misalignment. The new calibration method was found to be rather robust, with Fα values within ±2.7 % of the mean value for four successive tests at the same rotor position.

  16. Effects of turbulence and flow inclination on the performance of cup anemometers in the field

    DEFF Research Database (Denmark)

    Papadopoulos, K.H.; Stefantos, N.C.; Schmidt Paulsen, U.

    2001-01-01

    Four commercial and one research cup anemometers were comparatively tested in a complex terrain site to quantify the effects of turbulence and flow inclination on the wind speed measurements. The difference of the mean wind speed reading between the anemometers was as much as 2% for wind directio...

  17. Simulation and measurement of the stationary and transient characteristics of the hot sphere anemometer

    NARCIS (Netherlands)

    Loomans, M.G.L.C.; Schijndel, A.W.M. van

    2002-01-01

    The omni-directional hot sphere anemometer, that applies a separate reference point for the temperature correction, currently is the most practical device that is used for the measurement of indoor air flows. The anemometer has been investigated, experimentally and numerically, with regard to

  18. All semiconductor laser Doppler anemometer at 1.55 μm

    DEFF Research Database (Denmark)

    Hansen, Rene Skov; Pedersen, Christian

    2008-01-01

    We report to our best knowledge the first all semiconductor Laser Doppler Anemometer (LIDAR) for wind speed determination. We will present the design and first experimental results on a focusing coherent cw laser Doppler anemometer for measuring atmospheric wind velocities in the 10 meters to 300...

  19. Database of ground-based anemometer measurements of wake vortices at Kennedy Airport

    Science.gov (United States)

    1997-07-01

    A 7OO foot array of horizontal and vertical single-axis anemometers was installed at New York's Kennedy Airport on 30-foot poles under the approach to Runway 31R. Although the original purpose for the anemometers was to track the lateral position of ...

  20. SiC-Based Miniature High-Temperature Cantilever Anemometer

    Science.gov (United States)

    Okojie, Robert S.; Fralick, Gustave; Saad, George J.

    2004-01-01

    The figure depicts a miniature cantilever-type anemometer that has been developed as a prototype of compact, relatively nonintrusive anemometers that can function at temperatures up to 600 C and that can be expected to be commercially mass-producible at low cost. The design of this anemometer, and especially the packaging aspect of the design, is intended to enable measurement of turbulence in the high-temperature, high-vibration environment of a turbine engine or in any similar environment. The main structural components of the anemometer include a single-crystal SiC cantilever and two polycrystalline SiC clamping plates, all made from chemical-vapor-deposited silicon carbide. Fabrication of these components from the same basic material eliminates thermal-expansion mismatch, which has introduced spurious thermomechanical stresses in cantilever-type anemometers of prior design. The clamping plates are heavily oxidized to improve electrical insulation at high temperature. A cavity that serves as a receptacle for the clamped end of the cantilever is etched into one end of one clamping plate. Trenches that collectively constitute a socket for a multipin electrical plug (for connection to external electronic circuitry) are etched into the opposite end of this clamping plate. Metal strips for electrical contact are deposited on one face of the other clamping plate. Piezoresistive single-crystal SiC thin-film strain gauges are etched in the n-type SiC epilayer in a Wheatstone-bridge configuration. Metal contact pads on the cantilever that extend into the clamping-receptacle area, are obtained by deposition and patterning using standard semiconductor photolithography and etching methods. The cantilever and the two clamping plates are assembled into a sandwich structure that is then clamped in a stainless-steel housing. The Wheatstone- bridge carrying SiC cantilever with the metal contact pads on the piezoresistors is slid into the receptacle in the bottom clamping plate

  1. Spectral coherence along a lidar-anemometer beam

    Energy Technology Data Exchange (ETDEWEB)

    Kristensen, Leif; Kirkegaard, P.; Mann, J.; Mikkelsen, Torben; Nielsen, Morten; Sjoeholm, M.

    2010-10-15

    The theory of measuring the spectral coherence by means of a lidar anemometer has been outlined. It is based on the assumption that the turbulent velocity field can be considered statistically locally isotropic and on the validity of Taylor's hypothesis. This implies that the longitudinal coherence cannot be predicted realistically. Special emphasis has been placed on the effect of line average along the beam. One section has been devoted to the effect of spectral aliasing, which may cause severe problems in the interpretation of measured data. This work is considered the theoretical background for the understanding of the coherences calculated on basis of real date. (Author)

  2. [How reliable is a hot-wire anemometer?].

    Science.gov (United States)

    von Rechenberg, H; Konder, H; Höser, K; Lennartz, H

    1985-08-01

    To examine the advantage of hot-wire anemometer for clinical use, we have checked two types of this tools with respect to reliability and validity. It was found that electronic suppression of noise caused a distortion of the measurements. Furthermore changes of transducers were also responsible for deviations from true values. We require of the manufacturer to indicate the threshold of perception and the coefficient of variation for repeated measurements with several transducers. We recommend a simple rule which permits an estimation of the limits of reliable measurements for clinical use depending on the threshold of the equipment and on the parameters of ventilation.

  3. Laser Doppler anemometer measurements using nonorthogonal velocity components: error estimates.

    Science.gov (United States)

    Orloff, K L; Snyder, P K

    1982-01-15

    Laser Doppler anemometers (LDAs) that are arranged to measure nonorthogonal velocity components (from which orthogonal components are computed through transformation equations) are more susceptible to calibration and sampling errors than are systems with uncoupled channels. In this paper uncertainty methods and estimation theory are used to evaluate, respectively, the systematic and statistical errors that are present when such devices are applied to the measurement of mean velocities in turbulent flows. Statistical errors are estimated for two-channel LDA data that are either correlated or uncorrelated. For uncorrelated data the directional uncertainty of the measured velocity vector is considered for applications where mean streamline patterns are desired.

  4. Construction and experimental testing of the constant-bandwidth constant-temperature anemometer.

    Science.gov (United States)

    Ligeza, P

    2008-09-01

    A classical constant-temperature hot-wire anemometer enables the measurement of fast-changing flow velocity fluctuations, although its transmission bandwidth is a function of measured velocity. This may be a source of significant dynamic errors. Incorporation of an adaptive controller into the constant-temperature system results in hot-wire anemometer operating with a constant transmission bandwidth. The construction together with the results of experimental testing of a constant-bandwidth hot-wire anemometer prototype are presented in this article. During the testing, an approximately constant transmission bandwidth of the anemometer was achieved. The constant-bandwidth hot-wire anemometer can be used in measurements of high-frequency variable flows characterized by a wide range of velocity changes.

  5. ACCUWIND - Classification of five cup anemometers according to IEC 61400-12-1

    DEFF Research Database (Denmark)

    Friis Pedersen, Troels; Dahlberg, J.-Å.; Busche, P.

    2006-01-01

    -gust tests, torque coefficient curve measurements for non-tilted conditions; rotor inertia measurements and measurements of friction of bearings at temperatures -10°C to 40°C. The characteristics are fitted to twodifferent time domain cup anemometer models, and simulations of the cup anemometers are made......The characteristics of five cup anemometers were investigated in detail, and data are presented in figures and tables. The characteristics include: normal wind tunnel calibrations; angular response measurements at 5, 8 and 11m/s; torque coefficient curvemeasurements from combined tilt and ramp...

  6. Direct measurement of the spectral transfer function of a laser based anemometer

    DEFF Research Database (Denmark)

    Angelou, Nikolas; Mann, Jakob; Sjöholm, Mikael

    2012-01-01

    The effect of a continuous-wave (cw) laser based anemometer's probe volume on the measurement of wind turbulence is studied in this paper. Wind speed time series acquired by both a remote sensing cw laser anemometer, whose line-of-sight was aligned with the wind direction, and by a reference sensor...... (sonic anemometer) located in the same direction, were used. The spectral transfer function, which describes the attenuation of the power spectral density of the wind speed turbulence, was calculated and found to be in good agreement with the theoretical exponential function, which is based...

  7. Deviation of Cup and Propeller Anemometer Calibration Results with Air Density

    Directory of Open Access Journals (Sweden)

    Santiago Pindado

    2012-03-01

    Full Text Available The effect of air density variations on the calibration constants of several models of anemometers has been analyzed. The analysis was based on a series of calibrations between March 2003 and February 2011. Results indicate a linear behavior of both calibration constants with the air density. The effect of changes in air density on the measured wind speed by an anemometer was also studied. The results suggest that there can be an important deviation of the measured wind speed with changes in air density from the one at which the anemometer was calibrated, and therefore the need to take this effect into account when calculating wind power estimations.

  8. Measurements of enlarged blood pump models using Laser Doppler Anemometer.

    Science.gov (United States)

    Chua, L P; Yu, S C; Leo, H L

    2000-01-01

    In an earlier study (Chua et al., 1998, 1999a), a 5:1 enlarged model of the Kyoto-NTN Magnetically Suspended Centrifugal Blood Pump (Akamatsu et al., 1995) with five different impeller blade profiles was designed and constructed. Their respective flow characteristics with respect to (1) the three different blade profile designs: forward, radial, and backward, (2) the number of blades used, and (3) the rotating speed were investigated. Among the five impeller designs, the results obtained suggested that impellers A and C designs should be adopted if higher head is required. Impellers A and C therefore were selected for the flow in between their blades to be measured using Laser Doppler Anemometer (LDA), so as to have a better understanding of the flow physics with respect to the design parameters.

  9. Laser anemometer signals: visibility characteristics and application to particle sizing.

    Science.gov (United States)

    Adrian, R J; Orloff, K L

    1977-03-01

    The signal visibility characteristics of a dual beam laser anemometer operated in a backscatter mode have been investigated both experimentally and analytically. The analysis is based on Mie's electromagnetic scattering theory for spherical particles and is exact within the limitations of the scattering theory. It is shown that the signal visibility is a function of the ratio of the particle diameter to the fringe spacing in a certain, restricted case; but more generally it also depends on the Mie scattering size parameter, refractive index, the illuminating beam polarization, and the size, shape, and location of the light collecting aperture. The character of backscatter signal visibility differs significantly from the forward scatter case, and it is concluded that backscatter measurements of particle diameters using the visibility sizing technique may not always be possible. Restrictions on the forward scatter application of the visibility sizing method are also discussed.

  10. 3-D laser anemometer measurements in a labyrinth seal

    Science.gov (United States)

    Morrison, G. L.; Tatterson, G. B.; Johnson, M. C.

    1988-01-01

    The flow field inside a seven cavity labyrinth seal with a 0.00127 m clearance was measured using a 3-D laser Doppler anemometer system. Through the use of this system, the mean velocity vector and the entire Reynolds stress tensor distributions were measured for the first, third, fifth, and seventh cavities of the seal. There was one large recirculation region present in the cavity for the flow condition tested, Re = 28,000 and Ta = 7,000. The axial and radial mean velocities as well as all of the Reynolds stress term became cavity independent by the third cavity. The azimuthal mean velocity varied from cavity to cavity with its magnitude increasing as the flow progressed downstream.

  11. Laser Doppler anemometer studies in unsteady ventricular flows.

    Science.gov (United States)

    Phillips, W M; Furkay, S S; Pierce, W S

    1979-01-01

    The laser Doppler technique was employed to obtain intraventricular velocity distributions on the basis of in vivo confirmation of previous in vitro flow visualization predictions. The quasi-steady assumption required for quantification of flow visualization results is unsatisfactory in regions of high acceleration and fluctuating velocities are unavailable via such techniques. Mean and fluctuating velocity profiles were obtained in a pneumatically driven prosthetic ventricle with the laser Doppler anemometer and stress levels estimated. The preliminary data presented here illustrates that the technique can be applied to such flows. The measurement and data reduction schemes are applicable to a wide range of simulated cardiovascular flows. The particular application to prosthetic ventricle design should minimize the number of in vivo experiments required to develop a satisfactory blood pump and aid in tailoring pump actuation protocols for minimum thromboembolic complications.

  12. Comparison of different methods for the determination of dynamic characteristics of low velocity anemometers

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Popiolek, Z.

    2004-01-01

    different and insufficient for describing the frequency response of all low velocity thermal anemometers. Therefore the upper frequency, determined in tests with sinusoidal velocity fluctuations, is recommended to be used in indoor climate standards as a single parameter describing the dynamic......Three methods for determining the dynamic characteristics of low velocity thermal anemometers were compared. They were: step-up velocity change and step-down velocity change methods and a method based on sinusoidal type velocity fluctuations. Two low velocity thermal anemometers...... with omnidirectional velocity sensors were tested. The results identify differences in frequency response of low velocity anemometers determined by the three methods. The time constant and the response time determined by the step-up velocity change method and the step-down velocity change method may be substantially...

  13. The Constitution and Operation of the Constant Temperature Anemometer(CTA:IFA 300)

    Energy Technology Data Exchange (ETDEWEB)

    Nam, H. Y.; Kim, J. M.; Choi, B. H.; Choi, J. H.; Jeong, J. Y.; Kim, B. H.; Kim, T. J.; Cha, J. E.; Kim, H. R

    2005-09-15

    This study shows the constitution and application method on constant temperature anemometer(CTA-Model : IFA 300 by TSI Co.). Especially, the software instruction(Thermal Pro Ver. 4.55) was re-adjusted for users.

  14. Calibration and Optimization of Constant Voltage Hot-Wire Anemometer in Hypersonic Flows

    National Research Council Canada - National Science Library

    Chokani, Ndaona

    2003-01-01

    ...) and constant voltage (CVA) anemometry. The performance of both anemometers is systematically made by operating the same hot-wire under identical conditions and applying post-test software corrections to the fluctuating measurements...

  15. Zoom lens compensator for a cylindrical window in laser anemometer uses

    Science.gov (United States)

    Wernet, Mark P.; Seasholtz, Richard G.

    1987-01-01

    In laser anemometer systems, the flow fields under study are typically enclosed by a window. Aberration of a flat window can be corrected by a shift of the object distance. A zooming correction lens elimates the astigmatism caused by a thick cylindrical window and yields diffraction-limited performance for a monochromatic laser anemometer system. The effects of residual anamorphic distortion are discussed, and procedures for correcting these effects are presented.

  16. An Auto-Associative Residual Processing and K-means Clustering Approach for Anemometer Health Assessment

    Directory of Open Access Journals (Sweden)

    David Siegel

    2011-01-01

    Full Text Available This paper presents a health assessment methodology, as well as specific residual processing and figure of merit algorithms for anemometers in two different configurations. The methodology and algorithms are applied to data sets provided by the Prognostics and Health Management Society 2011 Data Challenge. The two configurations consist of the “paired” data set in which two anemometers are positioned at the same height, and the “shear” data set which includes an array of anemometers at different heights. Various wind speed statistics, wind direction, and ambient temperature information are provided, in which the objective is to classify the anemometer health status during a set of samples from a 5 day period. The proposed health assessment methodology consists of a set of data processing steps that include: data filtering and pre-processing, a residual or difference calculation, and a k-means clustering based figure of merit calculation. The residual processing for the paired data set was performed using a straightforward difference calculation, while the shear data set utilized an additional set of algorithm processing steps to calculate a weighted residual value for each anemometer. The residual processing algorithm for the shear data set used a set of auto-associative neural network models to learn the underlying correlation relationship between the anemometer sensors and to calculate a weighted residual value for each of the anemometer wind speed measurements. A figure of merit value based on the mean value of the smaller of the two clusters for the wind speed residual is used to determine the health status of each anemometer. Overall, the proposed methodology and algorithms show promise, in that the results from this approach resulted in the top score for the PHM 2011 Data Challenge Competition. Using different clustering algorithms or density estimation methods for the figure of merit calculation is being considered for future work.

  17. Cup anemometer response to the wind turbulence-measurement of the horizontal wind variance

    Directory of Open Access Journals (Sweden)

    S. Yahaya

    2004-11-01

    Full Text Available This paper presents some dynamic characteristics of an opto-electronic cup anemometer model in relation to its response to the wind turbulence. It is based on experimental data of the natural wind turbulence measured both by an ultrasonic anemometer and two samples of the mentioned cup anemometer. The distance constants of the latter devices measured in a wind tunnel are in good agreement with those determined by the spectral analysis method proposed in this study. In addition, the study shows that the linear compensation of the cup anemometer response, beyond the cutoff frequency, is limited to a given frequency, characteristic of the device. Beyond this frequency, the compensation effectiveness relies mainly on the wind characteristics, particularly the direction variability and the horizontal turbulence intensity. Finally, this study demonstrates the potential of fast cup anemometers to measure some turbulence parameters (like wind variance with errors of the magnitude as those deriving from the mean speed measurements. This result proves that fast cup anemometers can be used to assess some turbulence parameters, especially for long-term measurements in severe climate conditions (icing, snowing or sandy storm weathers.

  18. A.C. Plasma Anemometer for Axial Compressor Stall Warning

    Science.gov (United States)

    Matlis, Eric; Cameron, Joshua; Morris, Scott; Corke, Thomas

    2007-11-01

    Compressor sections of turbo jet engines are subject to stall and surge as a result of flow instabilities that occur upstream of the compressor rotor. One of the instability modes that contributes to compressor surge is the so-called `spike' mode of stall inception. It has been shown that this mode of instability can be predicted before onset by performing real-time statistical auto-correlation measurements of the blade-passing pressure characteristic at the mid-chord location of the rotor. These measurements are performed with pressure sensors or hot-wires that are too fragile for a full-scale compressor. We have developed a sensor that can survive the vibration and temperatures of a full-scale rig while providing the bandwidth necessary to resolve the blade passage signature required by this coherence technique. This sensor, called the Plasma Anemometer, provides high-bandwith point measurements of velocity or pressure fluctuations with unparalleled mechanical robustness and resistance to vibration and thermal effects.

  19. Highly resolved measurements of atmospheric turbulence with the new 2d-Atmospheric Laser Cantilever Anemometer

    International Nuclear Information System (INIS)

    Jeromin, A; Schaffarczyk, A P; Puczylowski, J; Peinke, J; Hölling, M

    2014-01-01

    For the investigation of atmospheric turbulent flows on small scales a new anemometer was developed, the so-called 2d-Atmospheric Laser Cantilever Anemometer (2d-ALCA). It performs highly resolved measurements with a spatial resolution in millimeter range and temporal resolution in kHz range, thus detecting very small turbulent structures. The anemometer is a redesign of the successfully operating 2d-LCA for laboratory application. The new device was designed to withstand hostile operating environments (rain and saline, humid air). In February 2012, the 2d-ALCA was used for the first time in a test field. The device was mounted in about 53 m above ground level on a lattice tower near the German North Sea coast. Wind speed was measured by the 2d-ALCA at 10 kHz sampling rate and by cup anemometers at 1 Hz. The instantaneous wind speed ranged from 8 m/s to 19 m/s at an average turbulence level of about 7 %. Wind field characteristics were analyzed based on cup anemometer as well as 2d-ALCA. The combination of both devices allowed the study of atmospheric turbulence over several magnitudes in turbulent scales

  20. A Comparison of Wind Readings from LIDAR, Hot Wire, and Propeller and Vane Anemometers over Time Periods Relevant to Fire Control Applications

    Science.gov (United States)

    2015-04-02

    Anemometers over Time Periods Relevant to Fire Control Applications 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...Distribution is unlimited 1 Aknowledgements The author wishes to express his gratitude to the ALAS-MC program for funding this effort...Propeller & Vane Anemometer at 0m Range Gate . 10 LIDAR Anemometer vs Propeller and Vane Anemometer at 400m /375m Range Gate ................. 11 Capturing

  1. Applying Weibull Distribution and Discriminant Function Techniques to Predict Damage Cup Anemometers in the 2011 PHM Competition

    Directory of Open Access Journals (Sweden)

    Joshua Cassity

    2012-01-01

    Full Text Available Cup anemometers are frequently employed in the wind power industry for wind resource assessment at prospective wind farm sites. In this paper, we demonstrate a method for identifying faulty three cup anemometers. This method is applicable to cases where data is available from two or more anemometers at equal height and cases where data is available from anemometers at different heights. It is based on examining the Weibull parameters of the distribution generated from the difference between the anemometer’s reported measurements and utilizing a discriminant function technique to separate out the data corresponding to bad cup anemometers. For anemometers at different heights, only data from the same height pair combinations are compared. In addition, various preprocessing techniques are discussed to improve performance of the algorithm. These include removing data that corresponds to poor wind directions for comparing the anemometers and removing data that corresponds to frozen anemometers. These methods are employed on the data from the PHM 2011 Data Competition with results presented.

  2. Underestimates of sensible heat flux due to vertical velocity measurement errors in non-orthogonal sonic anemometers

    Science.gov (United States)

    John M. Frank; William J. Massman; Brent E. Ewers

    2013-01-01

    Sonic thermometry and anemometry are fundamental to all eddy-covariance studies of surface energy balance. Recent studies have suggested that sonic anemometers with non-orthogonal transducers can underestimate vertical wind velocity (w) and sensible heat flux (H) when compared to orthogonal designs. In this study we tested whether a non-orthogonal sonic anemometer (...

  3. A computer controlled signal preprocessor for laser fringe anemometer applications

    Science.gov (United States)

    Oberle, Lawrence G.

    1987-01-01

    The operation of most commercially available laser fringe anemometer (LFA) counter-processors assumes that adjustments are made to the signal processing independent of the computer used for reducing the data acquired. Not only does the researcher desire a record of these parameters attached to the data acquired, but changes in flow conditions generally require that these settings be changed to improve data quality. Because of this limitation, on-line modification of the data acquisition parameters can be difficult and time consuming. A computer-controlled signal preprocessor has been developed which makes possible this optimization of the photomultiplier signal as a normal part of the data acquisition process. It allows computer control of the filter selection, signal gain, and photo-multiplier voltage. The raw signal from the photomultiplier tube is input to the preprocessor which, under the control of a digital computer, filters the signal and amplifies it to an acceptable level. The counter-processor used at Lewis Research Center generates the particle interarrival times, as well as the time-of-flight of the particle through the probe volume. The signal preprocessor allows computer control of the acquisition of these data.Through the preprocessor, the computer also can control the hand shaking signals for the interface between itself and the counter-processor. Finally, the signal preprocessor splits the pedestal from the signal before filtering, and monitors the photo-multiplier dc current, sends a signal proportional to this current to the computer through an analog to digital converter, and provides an alarm if the current exceeds a predefined maximum. Complete drawings and explanations are provided in the text as well as a sample interface program for use with the data acquisition software.

  4. Studies on Cup Anemometer Performances Carried out at IDR/UPM Institute. Past and Present Research

    Directory of Open Access Journals (Sweden)

    Elena Roibas-Millan

    2017-11-01

    Full Text Available In the present work, the research derived from a wide experience on cup anemometer calibration works at IDR/UPM Institute (Instituto Universitario de Microgravedad “Ignacio Da Riva” is summarized. This research started in 2008, analyzing large series of calibrations, and is focused on two main aspects: (1 developing a procedure to predict the degradation level of these wind sensors when working on the field and (2 modeling cup anemometer performances. The wear and tear level of this sensor is evaluated studying the output signal and its main frequencies through Fourier analysis. The modeling of the cup anemometer performances is carried out analyzing first the cup aerodynamics. As a result of this process, carried out through several testing and analytical studies since 2010, a new analytical method has been developed. This methodology might represent an alternative to the classic approach used in the present standards of practice such as IEC 64000-12.

  5. Direct measurement of the spectral transfer function of a laser based anemometer.

    Science.gov (United States)

    Angelou, Nikolas; Mann, Jakob; Sjöholm, Mikael; Courtney, Michael

    2012-03-01

    The effect of a continuous-wave (cw) laser based anemometer's probe volume on the measurement of wind turbulence is studied in this paper. Wind speed time series acquired by both a remote sensing cw laser anemometer, whose line-of-sight was aligned with the wind direction, and by a reference sensor (sonic anemometer) located in the same direction, were used. The spectral transfer function, which describes the attenuation of the power spectral density of the wind speed turbulence, was calculated and found to be in good agreement with the theoretical exponential function, which is based on the properties of the probe volume of a focused Gaussian laser beam. Parameters such as fluctuations of the wind direction, as well as the overestimation of the laser Doppler spectrum threshold, were found to affect the calculation of the spectral transfer function by introducing high frequency noise.

  6. Optimization of Single-Sensor Two-State Hot-Wire Anemometer Transmission Bandwidth.

    Science.gov (United States)

    Ligęza, Paweł

    2008-10-28

    Hot-wire anemometric measurements of non-isothermal flows require the use of thermal compensation or correction circuitry. One possible solution is a two-state hot-wire anemometer that uses the cyclically changing heating level of a single sensor. The area in which flow velocity and fluid temperature can be measured is limited by the dimensions of the sensor's active element. The system is designed to measure flows characterized by high velocity and temperature gradients, although its transmission bandwidth is very limited. In this study, we propose a method to optimize the two-state hot-wire anemometer transmission bandwidth. The method is based on the use of a specialized constanttemperature system together with variable dynamic parameters. It is also based on a suitable measurement cycle paradigm. Analysis of the method was undertaken using model testing. Our results reveal a possible significant broadening of the two-state hot-wire anemometer's transmission bandwidth.

  7. The Cup Anemometer, a Fundamental Meteorological Instrument for the Wind Energy Industry. Research at the IDR/UPM Institute

    Directory of Open Access Journals (Sweden)

    Santiago Pindado

    2014-11-01

    Full Text Available The results of several research campaigns investigating cup anemometer performance carried out since 2008 at the IDR/UPM Institute are included in the present paper. Several analysis of large series of calibrations were done by studying the effect of the rotor’s geometry, climatic conditions during calibration, and anemometers’ ageing. More specific testing campaigns were done regarding the cup anemometer rotor aerodynamics, and the anemometer signals. The effect of the rotor’s geometry on the cup anemometer transfer function has been investigated experimentally and analytically. The analysis of the anemometer’s output signal as a way of monitoring the anemometer status is revealed as a promising procedure for detecting anomalies.

  8. A Bayesian model to estimate the true 3-D shadowing correction in sonic anemometers

    Science.gov (United States)

    Frank, J. M.; Massman, W. J.; Ewers, B. E.

    2015-12-01

    Sonic anemometers are the principal instruments used in micrometeorological studies of turbulence and ecosystem fluxes. Recent studies have shown the most common designs underestimate vertical wind measurements because they lack a correction for transducer and structural shadowing; there is no consensus describing a true correction. We introduce a novel Bayesian analysis with the potential to resolve the three-dimensional (3-D) correction by optimizing differences between anemometers mounted simultaneously vertical and horizontal. The analysis creates a geodesic grid around the sonic anemometer, defines a state variable for the 3-D correction at each point, and assigns each a prior distribution based on literature with ±10% uncertainty. We use the Markov chain Monte Carlo (MCMC) method to update and apply the 3-D correction to a dataset of 20-Hz sonic anemometer measurements, calculate five-minute standard deviations of the Cartesian wind components, and compare these statistics between vertical and horizontal anemometers. We present preliminary analysis of the CSAT3 anemometer using 642 grid points (±4.5° resolution) from 423 five-minute periods (8,964,000 samples) collected during field experiments in 2011 and 2013. The 20-Hz data was not equally distributed around the grid; half of the samples occurred in just 8% of the grid points. For populous grid points (weighted by the abundance of samples) the average correction increased from prior to posterior (+5.4±10.0% to +9.1±9.5%) while for desolate grid points (weighted by the sparseness of samples) there was minimal change (+6.4±10.0% versus +6.6±9.8%), demonstrating that with a sufficient number of samples the model can determine the true correction is ~67% higher than proposed in recent literature. Future adaptions will increase the grid resolution and sample size to reduce the uncertainty in the posterior distributions and more precisely quantify the 3-D correction.

  9. Fiber-Optic Anemometer Based on Silicon Fabry-Perot Interferometer

    Science.gov (United States)

    2015-11-05

    oplir ;;nemom tor bm;o~n sil•r.on Fabry Perot •ntorfcromeler AUTHOR(s) LEGAL NAMLS(s) OF RECORD (First, 1.11, Last), CODE, (Afflliat.on If not NRL...f, oo •• " • ~ OII Ct’ THIS f’ORM CANCELS AND SUPERSEOES All. P~EVIOUS \\I!:RSI Fiber-optic anemometer based on silicon Fabry -Pérot...monitoring, etc. In this paper, we propose a new anemometer which consists of a Fabry -Pérot interferometer (FPI) implemented using a thin silicon mounted

  10. Power curve measurement with Spinner Anemometer according to IEC 61400-12-2

    DEFF Research Database (Denmark)

    Demurtas, Giorgio

    of drawbacks that makes use of the standard with respect to nacelle anemometry difficult to apply in the field [3] [4]. An option in the standard is to use spinner anemometry, a type of wind sensor that measures wind speed on the spinner in front of the rotor. The report is based on spinner anemometer...... measurements from two adjacent wind turbines and a met-mast. Due to the site layout, it is possible with the met-mast to measure the power curve of both turbines. The report also presents a method for evaluation of uncertainty related to the spinner anemometer....

  11. Mathematical analysis of the effect of rotor geometry on cup anemometer response.

    Science.gov (United States)

    Sanz-Andrés, Ángel; Pindado, Santiago; Sorribes-Palmer, Félix

    2014-01-01

    The calibration coefficients of two commercial anemometers equipped with different rotors were studied. The rotor cups had the same conical shape, while the size and distance to the rotation axis varied. The analysis was based on the 2-cup positions analytical model, derived using perturbation methods to include second-order effects such as pressure distribution along the rotating cups and friction. The comparison with the experimental data indicates a nonuniform distribution of aerodynamic forces on the rotating cups, with higher forces closer to the rotating axis. The 2-cup analytical model is proven to be accurate enough to study the effect of complex forces on cup anemometer performance.

  12. Calibration of a spinner anemometer for flow angle measurements by use of wind turbine yawing

    DEFF Research Database (Denmark)

    Demurtas, Giorgio; Friis Pedersen, Troels

    The present report describes a method to calibrate a spinner anemometer ow angle measurements. The turbine is yawed several times (5 times approximately 60 with respect to the wind direction) in steady wind (> 6 m/s) and measurements of yaw position (measured by a yaw position sensor) and yaw...... misalignment (measured by the spinner anemometer under calibration) are recorded. The tangent of the two angles is plotted in a scatter plot. A linear fitting is made, and the slope coefficient is the correction factor Fα. The method applied to a Nordtank 500kW wind turbine erected at the Risø test site...

  13. A laser fluorescence anemometer system for the Langley 16- by 24-inch water tunnel

    Science.gov (United States)

    Owen, F. K.; Orngard, Gary M.; Neuhart, Dan H.

    1991-01-01

    A laser fluorescence anemometer which comprises a three-component laser Doppler velocimeter system with a fourth channel to measure fluorescent dye concentration has been installed in the NASA Langley 16- by 24-in water tunnel. The system includes custom designed optics, data acquisition, and traverse control instruments and a custom software package. Feasibility studies demonstrated how water tunnels can be used in conjunction with advanced optical techniques to provide nonintrusive detailed flow field measurements of complex fluid flows with a minimum of expense. The measurements show that the laser fluorescence anemometer can provide new insight into the structure, entrainment, control and of mixing vortical and shear layer flows.

  14. Summary of the steps involved in the calibration of a Spinner anemometer

    DEFF Research Database (Denmark)

    Demurtas, Giorgio; Friis Pedersen, Troels

    The present report is a practical guide that summarizes the steps involved in the calibration of a spinner anemometer. For each step is brie y recalled the objective, which document describes the procedure to use, and what actions must follow the calibration.......The present report is a practical guide that summarizes the steps involved in the calibration of a spinner anemometer. For each step is brie y recalled the objective, which document describes the procedure to use, and what actions must follow the calibration....

  15. Motion-Corrected 3D Sonic Anemometer for Tethersondes and Other Moving Platforms

    Science.gov (United States)

    Bognar, John

    2012-01-01

    To date, it has not been possible to apply 3D sonic anemometers on tethersondes or similar atmospheric research platforms due to the motion of the supporting platform. A tethersonde module including both a 3D sonic anemometer and associated motion correction sensors has been developed, enabling motion-corrected 3D winds to be measured from a moving platform such as a tethersonde. Blimps and other similar lifting systems are used to support tethersondes meteorological devices that fly on the tether of a blimp or similar platform. To date, tethersondes have been limited to making basic meteorological measurements (pressure, temperature, humidity, and wind speed and direction). The motion of the tethersonde has precluded the addition of 3D sonic anemometers, which can be used for high-speed flux measurements, thereby limiting what has been achieved to date with tethersondes. The tethersonde modules fly on a tether that can be constantly moving and swaying. This would introduce enormous error into the output of an uncorrected 3D sonic anemometer. The motion correction that is required must be implemented in a low-weight, low-cost manner to be suitable for this application. Until now, flux measurements using 3D sonic anemometers could only be made if the 3D sonic anemometer was located on a rigid, fixed platform such as a tower. This limited the areas in which they could be set up and used. The purpose of the innovation was to enable precise 3D wind and flux measurements to be made using tether - sondes. In brief, a 3D accelerometer and a 3D gyroscope were added to a tethersonde module along with a 3D sonic anemometer. This combination allowed for the necessary package motions to be measured, which were then mathematically combined with the measured winds to yield motion-corrected 3D winds. At the time of this reporting, no tethersonde has been able to make any wind measurement other than a basic wind speed and direction measurement. The addition of a 3D sonic

  16. Dynamic characteristics of a simple constant-temperature hot-wire anemometer.

    Science.gov (United States)

    Lu, S S

    1979-06-01

    A simple constant-temperatue hot-wire anemometer has been analyzed and tested in a shock tube and by electronic tests. In the derivation of the governing equations, the finite open-loop gain of an operational amplifier is considered. The measured values of the natural frequency and the damping coefficient for the anemometer system are in satisfactory agreement with the theory. For short probe cables, the frequency response is found to be limited by the finite open-loop gain of the amplifier.

  17. Broadening of the Measured Frequency Spectrum in a Differential Laser Anemometer due to Interference Plane Gradients

    DEFF Research Database (Denmark)

    Hanson, Steen Grüner

    1973-01-01

    It is shown how an inaccurate alignment of a differential laser anemometer may cause a significant broadening of the Doppler spectrum. The reason is the appearance of gradients in the interference pattern in the measuring volume. The phenomenon was investigated theoretically, and a method...

  18. Development and calibration of a self-recording cup anemometer for ...

    African Journals Online (AJOL)

    The design, development and calibration of a digital wind speed measuring device (cup anemometer) has been carried out. The instrument design consists of six electronics block stages: Power stage which supplies power through either a direct current (DC) or an alternating current (AC), input (sensor) stage which senses ...

  19. Total uncertainty of low velocity thermal anemometers for measurement of indoor air movements

    DEFF Research Database (Denmark)

    Jørgensen, F.; Popiolek, Z.; Melikov, Arsen Krikor

    2004-01-01

    For a specific thermal anemometer with omnidirectional velocity sensor the expanded total uncertainty in measured mean velocity Û(Vmean) and the expanded total uncertainty in measured turbulence intensity Û(Tu) due to different error sources are estimated. The values are based on a previously dev...

  20. Time-of-Flight Laser Anemometer for Velocity Measurements in the Atmosphere

    DEFF Research Database (Denmark)

    Lading, Lars; Jensen, A. Skov; Fog, C.

    1978-01-01

    In the system described, a 1W CW Ar II laser operates over a range of 70 m with spatial and temporal resolutions of mm and 10-100 m sec, respectively. Mean wind velocities obtained with a cup-anemometer agree within 10%...

  1. A Raman anemometer for component-selective velocity measurements of particles in a flow

    NARCIS (Netherlands)

    Florisson, O.; de Mul, F.F.M.; de Winter, H.G.

    1981-01-01

    An anemometer for the measurement of the velocity of particles of different components in a flow, separate and apart from that of the flow itself, is described. As a component-selective mechanism Raman scattering is used. The velocity is measured by relating the autocorrelated scattering signal to

  2. Eddy-correlation measurements above a maize crop using a simple cruciform hot-wire anemometer

    NARCIS (Netherlands)

    Bottemanne, F.A.

    1979-01-01

    For measurements of the vertical transport of heat and momentum in the turbulent and slightly unstable boundary layer above a maize crop eddy-correlation techniques were applied. In addition to a vertical Gill-propellor anemometer and a Gill-propellor bivane, a cruciform hot-wire probe, mounted on a

  3. A digital technique for linearising the output of a turbine anemometer.

    Science.gov (United States)

    Crane, R A; Stuttard, B

    1976-01-01

    A technique is described by which it is possible, using digital integrated circuits, to linearise the output of transducers which produce their output in serial digital form. The linearisation technique is used to improve the performance of an anemometer used in the measurement of pulmonary function. The new technique makes possible accurate paediatric measurements using transducers previously intended for adults.

  4. Comparison of 3D turbulence measurements using three staring wind lidars and a sonic anemometer

    DEFF Research Database (Denmark)

    Mann, Jakob; Cariou, J.-P.; Courtney, Michael

    2008-01-01

    Three pulsed lidars were used in staring, non-scanning mode, placed so that their beams crossed close to a 3D sonic anemometer. The goal is to compare lidar volume averaged wind measurement with point measurement reference sensors and to demonstrate the feasibility of performing 3D turbulence...

  5. All-optical fiber anemometer based on laser heated fiber Bragg gratings.

    Science.gov (United States)

    Gao, Shaorui; Zhang, A Ping; Tam, Hwa-Yaw; Cho, L H; Lu, Chao

    2011-05-23

    A fiber-optic anemometer based on fiber Bragg gratings (FBGs) is presented. A short section of cobalt-doped fiber was utilized to make a fiber-based "hot wire" for wind speed measurement. Fiber Bragg gratings (FBGs) were fabricated in the cobalt-doped fiber using 193 nm laser pulses to serve as localized temperature sensors. A miniature all-optical fiber anemometer is constructed by using two FBGs to determine the dynamic thermal equilibrium between the laser heating and air flow cooling through monitoring the FBGs' central wavelengths. It was demonstrated that the sensitivity of the sensor can be adjusted through the power of pump laser or the coating on the FBG. Experimental results reveal that the proposed FBG-based anemometer exhibits very good performance for wind speed measurement. The resolution of the FBG-based anemometer is about 0.012 m/s for wind speed range between 2.0 m/s and 8.0 m/s.

  6. Comparison of 3D turbulence measurements using three staring wind lidars and a sonic anemometer

    DEFF Research Database (Denmark)

    Mann, Jakob; Cariou, Jean-Pierre; Courtney, Michael

    2009-01-01

    to a 3D sonic anemometer mounted at 78 m above the ground. The results show generally very good correlation between the lidar and the sonic times series, except that the variance of the velocity measured by the lidar is attenuated due to spatial filtering. The amount of attenuation can however...

  7. MEASUREMENT OF MOTION CORRECTED WIND VELOCITY USING AN AEROSTAT LOFTED SONIC ANEMOMETER

    Science.gov (United States)

    An aerostat-lofted, sonic anemometer was used to determine instantaneous 3 dimensional wind velocities at altitudes relevant to fire plume dispersion modeling. An integrated GPS, inertial measurement unit, and attitude heading and reference system corrected the wind data for th...

  8. All sonic anemometers need to correct for transducer and structural shadowing in their velocity measurements

    Science.gov (United States)

    John M. Frank; William J. Massman; Edward Swiatek; Herb A. Zimmerman; Brent E. Ewers

    2016-01-01

    Sonic anemometry is fundamental to all eddy-covariance studies of surface energy and ecosystem carbon and water balance. Recent studies have shown that some nonorthogonal anemometers underestimate vertical wind. Here it is hypothesized that this is due to a lack of transducer and structural shadowing correction. This is tested with a replicated intercomparison...

  9. Laser Anemometer Measurements of the Three-Dimensional Rotor Flow Field in the NASA Low-Speed Centrifugal Compressor

    Science.gov (United States)

    Hathaway, Michael D.; Chriss, Randall M.; Strazisar, Anthony J.; Wood, Jerry R.

    1995-01-01

    A laser anemometer system was used to provide detailed surveys of the three-dimensional velocity field within the NASA low-speed centrifugal impeller operating with a vaneless diffuser. Both laser anemometer and aerodynamic performance data were acquired at the design flow rate and at a lower flow rate. Floor path coordinates, detailed blade geometry, and pneumatic probe survey results are presented in tabular form. The laser anemometer data are presented in the form of pitchwise distributions of axial, radial, and relative tangential velocity on blade-to-blade stream surfaces at 5-percent-of-span increments, starting at 95-percent-of-span from the hub. The laser anemometer data are also presented as contour and wire-frame plots of throughflow velocity and vector plots of secondary velocities at all measurement stations through the impeller.

  10. Assessment of wind conditions at a fjord inlet by complementary use of sonic anemometers and lidars

    DEFF Research Database (Denmark)

    Jakobsen, Jasna Bogunovic; Cheynet, Etienne; Snæbjörnsson, Jonas

    2015-01-01

    . In a pilot study in Lysefjord, Norway, a pulsed long-range lidar and two short-range WindScanners were installed at the bridge site, together with a long-term monitoring system based on sonic anemometers. The deployment of the two types of lidars is described in more details and the complementary value......Wind velocity measurement devices based on the remote optical sensing, lidars, are extensively applied in wind energy research and wind farm operation. The present paper demonstrates the relevance and potential of lidar measurements for other windsensitive structures such as long-span bridges...... of the data from all three types of the instruments is illustrated. The emphasis is on the lidars’ potential to map the wind conditions along the whole span of a bridge in a complex terrain, as opposed to ”point” measurements achievable by sonic anemometers. The challenging balance between the spatial...

  11. Characteristics of Turbulent Airflow Deduced from Rapid Surface Thermal Fluctuations: An Infrared Surface Anemometer

    Science.gov (United States)

    Aminzadeh, Milad; Breitenstein, Daniel; Or, Dani

    2017-12-01

    The intermittent nature of turbulent airflow interacting with the surface is readily observable in fluctuations of the surface temperature resulting from the thermal imprints of eddies sweeping the surface. Rapid infrared thermography has recently been used to quantify characteristics of the near-surface turbulent airflow interacting with the evaporating surfaces. We aim to extend this technique by using single-point rapid infrared measurements to quantify properties of a turbulent flow, including surface exchange processes, with a view towards the development of an infrared surface anemometer. The parameters for the surface-eddy renewal (α and β ) are inferred from infrared measurements of a single-point on the surface of a heat plate placed in a wind tunnel with prescribed wind speeds and constant mean temperatures of the surface. Thermally-deduced parameters are in agreement with values obtained from standard three-dimensional ultrasonic anemometer measurements close to the plate surface (e.g., α = 3 and β = 1/26 (ms)^{-1} for the infrared, and α = 3 and β = 1/19 (ms)^{-1} for the sonic-anemometer measurements). The infrared-based turbulence parameters provide new insights into the role of surface temperature and buoyancy on the inherent characteristics of interacting eddies. The link between the eddy-spectrum shape parameter α and the infrared window size representing the infrared field of view is investigated. The results resemble the effect of the sampling height above the ground in sonic anemometer measurements, which enables the detection of larger eddies with higher values of α . The physical basis and tests of the proposed method support the potential for remote quantification of the near-surface momentum field, as well as scalar-flux measurements in the immediate vicinity of the surface.

  12. Laser transit anemometer measurements of a JANNAF nozzle base velocity flow field

    Science.gov (United States)

    Hunter, William W., Jr.; Russ, C. E., Jr.; Clemmons, J. I., Jr.

    1990-01-01

    Velocity flow fields of a nozzle jet exhausting into a supersonic flow were surveyed. The measurements were obtained with a laser transit anemometer (LTA) system in the time domain with a correlation instrument. The LTA data is transformed into the velocity domain to remove the error that occurs when the data is analyzed in the time domain. The final data is shown in velocity vector plots for positions upstream, downstream, and in the exhaust plane of the jet nozzle.

  13. Implementation of a new type of time-of-flight laser anemometer.

    Science.gov (United States)

    Wernet, M P; Edwards, R V

    1986-03-01

    A new time-of-flight (TOF) laser anemometer system utilizing a spatial lead-lag filter for bipolar pulse generation has been constructed and tested. This new TOF has been modified to enable measurements in turbulent flows near walls. Good results have been obtained as close as 100 microm from a surface, with a 140-mm focal length final lens. Lading's theory for the behavior of the measurement variance has been confirmed for this configuration.

  14. A high-performance constant-temperature hot-wire anemometer

    Science.gov (United States)

    Watmuff, Jonathan H.

    1994-01-01

    A high-performance constant-temperature hot-wire anemometer has been designed based on a system theory analysis that can be extended to arbitrary order. A motivating factor behind the design was to achieve the highest possible frequency response while ensuring overall system stability. Based on these considerations, the design of the circuit and the selection of components is discussed in depth. Basic operating instructions are included in an operator's guide. The analysis is used to identify operating modes, observed in all anemometers, that are misleading in the sense that the operator can be deceived by interpreting an erroneous frequency response. Unlike other anemometers, this instrument provides front panel access to all the circuit parameters which affect system stability and frequency response. Instructions are given on how to identify and avoid these rather subtle and undesirable operating modes by appropriate adjustment of the controls. Details, such as fabrication drawings and a parts list, are provided to enable others to construct the instrument.

  15. Four spot laser anemometer and optical access techniques for turbine applications

    Science.gov (United States)

    Wernet, Mark P.

    1987-01-01

    A time-of-flight anemometer (TOFA) system utilizing a spatial lead-lag filter for bipolar pulse generation has been constructed and tested. This system, called a four-spot laser anemometer, was specifically designed for use in high-speed, turbulent flows in the presence of walls or surfaces. The TOFA system uses elliptical spots to increase the flow acceptance angle to be comparable with that of a fringe-type anemometer. The tightly focused spots used in the four spot yield excellent flare light rejection capabilities. Good results have been obtained to 75 microns normal to a surface, with an f/2.5 collection lens. This system is being evaluated for use in a warm turbine facility. Results from both a particle-lag velocity experiment and boundary layer profiles will be discussed. In addition, an analysis of the use of curved windows in a turbine casing will be presented. Curved windows, matching the inner radius of the turbine casing, preserve the flow conditions, but introduce astigmatic aberrations. A correction optic was designed that virtually eliminates these astigmatic aberrations throughout the intrablade survey region for normal incidence.

  16. Experimental study of wind tunnel performance by a two-component laserDopplerAnemometer

    Directory of Open Access Journals (Sweden)

    M Pourmahabadian

    2005-10-01

    Full Text Available Background and Aims: This survey studies the wind tunnel performance by a two- componentlaser Doppler Anemometer, so some experiments were carried out to assess the performance of awind tunnel.Method: The tunnel was capable to produce air velocity of up to 40 m/s.. Measurements ofvelocity profiles have been made actors the test section of wind tunnel through the using a twocomponentfiber optic Laser Doppler anemometer. Measurements of velocity profiles andturbulence intensities have been made across the test section of the wind tunnel using a twocomponentfiber optic Laser Doppler anemometer (I.D.A for wind speeds ranging from 1 to3m/s.Results: Performance rests of velocity profiles at a given flow rate and various position of aerosolgenerator showed that although uniformity of flow dependent to the place of an atomizer (asaerosol generator but the variation of wind speed across the test section meets the wind speedrequirements, as specified by US EPAfor 3m/s only.Conclusion:At time which particles velocity reach to less than one micron, the air velocity relateson the similarity of particles and

  17. On the use of hot-sphere anemometers in a highly transient flow in a double-skin facade

    DEFF Research Database (Denmark)

    Jensen, Rasmus Lund; Kalyanova, Olena; Hyldgård, Carl-Erik

    2007-01-01

    measured by the anemometer. Temperature compensation is the working principle of anemometers. The ability to compensate for different temperatures when exposed to solar radiation is investigated in a controlled environment using a powerful lamp as a radiant heat source. In the double-skin façade, both...... from the measurement of air velocity in the occupied zone. The velocity is higher and the flow is more transient, the anemometer is subjected to high loads of direct solar radiation and wide temperature ranges and, finally, the direction of the flow is important. The flow in the double-skin façade......Hot-sphere anemometers are widely used for measurement of air velocity in the occupied zone. In this paper, the ability of hot-sphere anemometers to measure transient flow in a double-skin façade is investigated. When hot-spheres are used in a double-skin façade, the conditions are very different...

  18. On the Use of Hot-Sphere Anemometers in a Highly Transient Flow in a Double-Skin Facade

    DEFF Research Database (Denmark)

    Jensen, Rasmus Lund; Kalyanova, Olena; Hyldgård, Carl-Erik

    2007-01-01

    Hot-sphere anemometers are widely used for measurement of air velocity in the occupied zone. In this paper, the ability of hot-sphere anemometers to measure transient flow in a double-skin façade is investigated. When hot-spheres are used in a double-skin façade, the conditions are very different...... from the measurement of air velocity in the occupied zone. The velocity is higher and the flow is more transient, the anemometer is subjected to high loads of direct solar radiation and wide temperature ranges and, finally, the direction of the flow is important. The flow in the double-skin façade...... measured by the anemometer. Temperature compensation is the working principle of anemometers. The ability to compensate for different temperatures when exposed to solar radiation is investigated in a controlled environment using a powerful lamp as a radiant heat source. In the double-skin façade, both...

  19. Evaluation of Probe-Induced Flow Distortion of Campbell CSAT3 Sonic Anemometers by Numerical Simulation

    Science.gov (United States)

    Huq, Sadiq; De Roo, Frederik; Foken, Thomas; Mauder, Matthias

    2017-10-01

    The Campbell CSAT3 sonic anemometer is one of the most popular instruments for turbulence measurements in basic micrometeorological research and ecological applications. While measurement uncertainty has been characterized by field experiments and wind-tunnel studies in the past, there are conflicting estimates, which motivated us to conduct a numerical experiment using large-eddy simulation to evaluate the probe-induced flow distortion of the CSAT3 anemometer under controlled conditions, and with exact knowledge of the undisturbed flow. As opposed to wind-tunnel studies, we imposed oscillations in both the vertical and horizontal velocity components at the distinct frequencies and amplitudes found in typical turbulence spectra in the surface layer. The resulting flow-distortion errors for the standard deviations of the vertical velocity component range from 3 to 7%, and from 1 to 3% for the horizontal velocity component, depending on the azimuth angle. The magnitude of these errors is almost independent of the frequency of wind speed fluctuations, provided the amplitude is typical for surface-layer turbulence. A comparison of the corrections for transducer shadowing proposed by both Kaimal et al. (Proc Dyn Flow Conf, 551-565, 1978) and Horst et al. (Boundary-Layer Meteorol 155:371-395, 2015) show that both methods compensate for a larger part of the observed error, but do not sufficiently account for the azimuth dependency. Further numerical simulations could be conducted in the future to characterize the flow distortion induced by other existing types of sonic anemometers for the purposes of optimizing their geometry.

  20. Flowfield characterisation in the wake of a low-velocity heated sphere anemometer

    Energy Technology Data Exchange (ETDEWEB)

    Olim, A.M. [Associacao para o Desenvolvimento da Aerodinamica Industrial (ADAI), Coimbra (Portugal); Riethmuller, M.L. [Von Karman Institute for Fluid Dynamics (VKI), St. Genese (Belgium); Gameiro da Silva, M.C. [Departamento de Engenharia Mecanica, Faculdade de Ciencias e Tecnologia, Universidade de Coimbra Polo II, Coimbra (Portugal)

    2002-06-01

    Heated sphere anemometers (HSA) are the most widely used instruments for low-velocity measurements in the heating, ventilation and air-conditioning industry. Experiments were conducted to characterise the flowfield around the spherically shaped sensor and upper probe assembly of a HSA. Particle image velocimetry was the main quantitative experimental technique. Measurements of the flowfield around a HSA probe and a 2:1 scaled-up model were performed in a uniform isothermal axisymmetrical jet air flow at Re around 350, based on sensor diameter, for different pitch angle incident flows. Additionally, extensive flow visualisation studies around scaled-up models of the HSA probe were performed. (orig.)

  1. A 4-spot time-of-flight anemometer for small centrifugal compressor velocity measurements

    Science.gov (United States)

    Wernet, Mark P.; Skoch, Gary J.

    1992-01-01

    The application of laser anemometry techniques in turbomachinery facilities is a challenging dilemma requiring an anemometer system with special qualities. Here, we describe the use of a novel laser anemometry technique applied to a small 4.5 kg/s, 4:1 pressure ratio centrifugal compressor. Sample velocity profiles across the blade pitch are presented for a single location along the rotor. The results of the intra-blade passage velocity measurements will ultimately be used to verify CFD 3-D viscous code predictions.

  2. Planarised optical fiber composite using flame hydrolysis deposition demonstrating an integrated FBG anemometer.

    Science.gov (United States)

    Holmes, Christopher; Gates, James C; Smith, Peter G R

    2014-12-29

    This paper reports for the first time a planarised optical fiber composite formed using Flame Hydrolysis Deposition (FHD). As a way of format demonstration a Micro-Opto-Electro-Mechanical (MOEMS) hot wire anemometer is formed using micro-fabrication processing. The planarised device is rigidly secured to a silicon wafer using optical quality doped silica that has been deposited using flame hydrolysis and consolidated at high temperature. The resulting structure can withstand temperatures exceeding 580K and is sensitive enough to resolve free and forced convection interactions at low fluid velocity.

  3. Fiber-optic laser-Doppler anemometer microscope applied to the cerebral microcirculation in rats.

    Science.gov (United States)

    Seki, J; Sasaki, Y; Oyama, T; Yamamoto, J

    1996-01-01

    We have applied our developed fiber-optic laser-Doppler anemometer microscope (FLDAM) for the study of the cerebral microcirculation in the rat. The red cell velocity in single pial microvessels was successfully measured through a closed cranial window for the vessel diameter range from 7.8 to 230 microns. The temporal resolution of the FLDAM was sufficiently high to detect the pulsation in the arterioles. Arterio-venous distributions of the temporal mean red cell velocity and wall shear rate are also described.

  4. The hot-film anemometer--a method for blood velocity determination. I. In vitro comparison with the electromagnetic blood flowmeter.

    Science.gov (United States)

    Paulsen, P K

    1980-01-01

    In an invitro flowmodel a constrant temperature hot-film anemometer was tested, using conical needle and catheter-mounted probes. Calibration, linearization and zero-point determination as well as sensitivity change with hematocrit, angulation, flow direction and dirt deposits on the film are described. Curves were compared with those obtained simultaneously from an electromagnetic flowmeter. The hog-film anemometer was direction-insensitive and signals were seen 0.01--0.03 sec before the flowmeter signals. The frequency response of the anemometer was sufficiently higher to register turbulent flow. In 27 simultaneous measurements the mean anemometer results were 6 +/- 8% (+/- SD) higher than the flowmeter results and the peak results correspondingly 16 +/- 6%. Both differences was significant (p anemometer curves were comparable to electromagnetic flowmeter curves. However, certain differences were demonstrated.

  5. Laser transit anemometer measurements on a slender cone in the Langley unitary plan wind tunnel

    Science.gov (United States)

    Humphreys, William M., Jr.; Hunter, William W., Jr.; Covell, Peter F.; Nichols, Cecil E., Jr.

    1990-01-01

    A laser transit anemometer (LTA) system was used to probe the boundary layer on a slender (5 degree half angle) cone model in the Langley unitary plan wind tunnel. The anemometer system utilized a pair of laser beams with a diameter of 40 micrometers spaced 1230 micrometers apart to measure the transit times of ensembles of seeding particles using a cross-correlation technique. From these measurements, boundary layer profiles around the model were constructed and compared with CFD calculations. The measured boundary layer profiles representing the boundary layer velocity normalized to the edge velocity as a function of height above the model surface were collected with the model at zero angle of attack for four different flow conditions, and were collected in a vertical plane that bisected the model's longitudinal center line at a location 635 mm from the tip of the forebody cone. The results indicate an excellent ability of the LTA system to make velocity measurements deep into the boundary layer. However, because of disturbances in the flow field caused by onboard seeding, premature transition occurred implying that upstream seeding is mandatory if model flow field integrity is to be maintained. A description and results of the flow field surveys are presented.

  6. A Hot-Polymer Fiber Fabry–Perot Interferometer Anemometer for Sensing Airflow

    Science.gov (United States)

    Lee, Cheng-Ling; Liu, Kai-Wen; Luo, Shi-Hong; Wu, Meng-Shan; Ma, Chao-Tsung

    2017-01-01

    This work proposes the first hot-polymer fiber Fabry–Perot interferometer (HPFFPI) anemometer for sensing airflow. The proposed HPFFPI is based on a single-mode fiber (SMF) endface that is attached to a UV-cured polymer to form an ultracompact fiber Fabry–Perot microcavity. The proposed polymer microcavity was heated using a low-cost chip resistor with a controllable dc driving power to achieve a desired polymer’s steady-state temperature (T) that exceeds the T of the surrounding environment. The polymer is highly sensitive to variations of T with high repeatability. When the hot polymer was cooled by the measured flowing air, the wavelength fringes of its optical spectra shifted. The HPFFPI anemometers have been experimentally evaluated for different cavity lengths and heating power values. Experimental results demonstrate that the proposed HPFFPI responses well in terms of airflow measurement. A high sensitivity of 1.139 nm/(m/s) and a good resolution of 0.0088 m/s over the 0~2.54 m/s range of airflow were achieved with a cavity length of 10 μm and a heating power of 0.402 W. PMID:28869510

  7. Theoretical simulation of a 2 micron airborne solid state laser anemometer

    Science.gov (United States)

    Imbert, Beatrice; Cariou, Jean-Pierre

    1992-01-01

    In the near future, military aircraft will need to know precisely their true airspeed in order to optimize flight conditions. In comparison with classical anemometer probes, an airborne Doppler lidar allows measurement of the air velocity without influence from aircraft aerodynamic disturbance. While several demonstration systems of heterodyne detection using a CO2 laser have been reported, improvements in the technology of solid state lasers have recently opened up the possibility that these devices can be used as an alternative to CO2 laser systems. In particular, a diode pumped Tm:Ho:YAG laser allows a reliable compact airborne system with an eye safe wavelength (lambda = 2.09 microns) to be achieved. The theoretical study of performances of a coherent lidar using a solid state diode pumped Tm:Ho:YAG laser, caled SALSA, for measuring aircraft airspeed relative to atmospheric aerosols is described. A computer simulation was developed in order to modelize the Doppler anemometer in the function of atmospheric propagation and optical design. A clever analysis of the power budget on the detector area allows optical characteristic parameters of the system to be calculated, and then it can be used to predict performances of the Doppler system. Estimating signal to noise ratios (SNR) and heterodyne efficiency provides the available energy of speed measurement as well as a useful measurement of the alignment of the backscattered and reference fields on the detector.

  8. A Hot-Polymer Fiber Fabry-Perot Interferometer Anemometer for Sensing Airflow.

    Science.gov (United States)

    Lee, Cheng-Ling; Liu, Kai-Wen; Luo, Shi-Hong; Wu, Meng-Shan; Ma, Chao-Tsung

    2017-09-02

    This work proposes the first hot-polymer fiber Fabry-Perot interferometer (HPFFPI) anemometer for sensing airflow. The proposed HPFFPI is based on a single-mode fiber (SMF) endface that is attached to a UV-cured polymer to form an ultracompact fiber Fabry-Perot microcavity. The proposed polymer microcavity was heated using a low-cost chip resistor with a controllable dc driving power to achieve a desired polymer's steady-state temperature (T) that exceeds the T of the surrounding environment. The polymer is highly sensitive to variations of T with high repeatability. When the hot polymer was cooled by the measured flowing air, the wavelength fringes of its optical spectra shifted. The HPFFPI anemometers have been experimentally evaluated for different cavity lengths and heating power values. Experimental results demonstrate that the proposed HPFFPI responses well in terms of airflow measurement. A high sensitivity of 1.139 nm/(m/s) and a good resolution of 0.0088 m/s over the 0~2.54 m/s range of airflow were achieved with a cavity length of 10 μm and a heating power of 0.402 W.

  9. Sonic anemometer (co) sine response and flux measurement I. The potential for (co)sine error to affect sonic anemometer-based flux measurements. Agriculture and Forest Meteorology 119

    NARCIS (Netherlands)

    Gash, J.H.C.; Dolman, A.J.

    2003-01-01

    The potential for sonic anemometer (co)sine errors to affect eddy flux measurements is investigated. Similarity theory is used to show that the standard deviation of the instantaneous angle between the wind vector and the horizontal (the angle of attack), depends on surface roughness, measurement

  10. Using a Swinging Vane Anemometer to Measure Airflow. Module 14. Vocational Education Training in Environmental Health Sciences.

    Science.gov (United States)

    Consumer Dynamics Inc., Rockville, MD.

    This module, one of 25 on vocational education training for careers in environmental health occupations, contains self-instructional materials on using a swinging vane anemometer to measure airflow. Following guidelines for students and instructors and an introduction that explains what the student will learn are three lessons: (1) naming each…

  11. Note: Signal conditioning of a hot-film anemometer for a periodic flow rate monitoring system.

    Science.gov (United States)

    Mantovani, Federico; Tagliaferri, Cristian

    2011-12-01

    A flow monitoring system based on a constant temperature hot-film anemometer is presented. The device has been designed to monitor a dispensing process of extremely low quantities of adhesive material. The monitoring device presented in this paper is useful in industrial applications where exact flow speed tracking is not needed, but reliability and tolerance to parameters variability are essential. During the design of the device, problems related to the physical characteristic of the calorimetric sensor, in particular its thermal capacitance, and to the periodic nature of the monitored flow have been taken into account and suitable solutions have been implemented. The schematic representation of the monitoring device together with the experimental results obtained by monitoring fluids with different physical characteristics are presented.

  12. Laser anemometer measurements in a transonic axial-flow fan rotor

    Science.gov (United States)

    Strazisar, Anthony J.; Wood, Jerry R.; Hathaway, Michael D.; Suder, Kenneth L.

    1989-01-01

    Laser anemometer surveys were made of the 3-D flow field in NASA rotor 67, a low aspect ratio transonic axial-flow fan rotor. The test rotor has a tip relative Mach number of 1.38. The flowfield was surveyed at design speed at near peak efficiency and near stall operating conditions. Data is presented in the form of relative Mach number and relative flow angle distributions on surfaces of revolution at nine spanwise locations evenly spaced from hub to tip. At each spanwise location, data was acquired upstream, within, and downstream of the rotor. Aerodynamic performance measurements and detailed rotor blade and annulus geometry are also presented so that the experimental results can be used as a test case for 3-D turbomachinery flow analysis codes.

  13. Spectrum analysis of turbulence in the canine ascending aorta measured with a hot-film anemometer.

    Science.gov (United States)

    Yamaguchi, T; Kikkawa, S; Tanishita, K; Sugawara, M

    1988-01-01

    We measured turbulence velocity in the canine ascending aorta using a hot-film anemometer. Blood flow velocity was measured at various points across the ascending aorta approximately 1.5-2 times the diameter downstream from the aortic valve. The turbulence spectrum was calculated and its characteristics were examined in connection with the mean Reynolds number and/or measuring positions. In the higher wave number range the values of the turbulence spectra were higher at larger mean Reynolds number. In the higher wave number range, the values of the turbulence spectra were higher at points closer to the centerline of the aorta, when the mean Reynolds number was relatively large. The patterns of the turbulence spectra at various points outside the boundary layer on the aortic wall were similar.

  14. Improvement of vertical velocity statistics measured by a Doppler lidar through comparison with sonic anemometer observations

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, Timothy A.; Newman, Jennifer F.; Klein, Petra M.; Chilson, Phillip B.; Wharton, Sonia

    2016-01-01

    Since turbulence measurements from Doppler lidars are being increasingly used within wind energy and boundary-layer meteorology, it is important to assess and improve the accuracy of these observations. While turbulent quantities are measured by Doppler lidars in several different ways, the simplest and most frequently used statistic is vertical velocity variance (w'2) from zenith stares. However, the competing effects of signal noise and resolution volume limitations, which respectively increase and decrease w'2, reduce the accuracy of these measurements. Herein, an established method that utilises the autocovariance of the signal to remove noise is evaluated and its skill in correcting for volume-averaging effects in the calculation of w'2 is also assessed. Additionally, this autocovariance technique is further refined by defining the amount of lag time to use for the most accurate estimates of w'2. Through comparison of observations from two Doppler lidars and sonic anemometers on a 300 m tower, the autocovariance technique is shown to generally improve estimates of w'2. After the autocovariance technique is applied, values of w'2 from the Doppler lidars are generally in close agreement (R2≈0.95-0.98) with those calculated from sonic anemometer measurements.

  15. Fiber-optic anemometer based on single-walled carbon nanotube coated tilted fiber Bragg grating.

    Science.gov (United States)

    Zhang, Yang; Wang, Fang; Liu, Zigeng; Duan, Zhihui; Cui, Wenli; Han, Jie; Gu, Yiying; Wu, Zhenlin; Jing, Zhenguo; Sun, Changsen; Peng, Wei

    2017-10-02

    In this work, a novel and simple optical fiber hot-wire anemometer based on single-walled carbon nanotubes (SWCNTs) coated tilted fiber Bragg grating (TFBG) is proposed and demonstrated. For the hot-wire wind speed sensor design, TFBG is an ideal in-fiber sensing structure due to its unique features. It is utilized as both light coupling and temperature sensing element without using any geometry-modified or uncommon fiber, which simplifies the sensor structure. To further enhance the thermal conversion capability, SWCNTs are coated on the surface of the TFBG instead of traditional metallic materials, which have excellent thermal characteristics. When a laser light is pumped into the sensor, the pump light propagating in the core will be easily coupled into cladding of the fiber via the TFBG and strongly absorbed by the SWCNTs thin film. This absorption acts like a hot-wire raising the local temperature of the fiber, which is accurately detected by the TFBG resonance shift. In the experiments, the sensor's performances were investigated and controlled by adjusting the inherent angle of the TFBG, the thickness of SWCNTs film, and the input power of the pump laser. It was demonstrated that the developed anemometer exhibited significant light absorption efficiency up to 93%, and the maximum temperature of the local area on the fiber was heated up to 146.1°C under the relatively low pump power of 97.76 mW. The sensitivity of -0.3667 nm/(m/s) at wind speed of 1.0 m/s was measured with the selected 12° TFBG and 1.6 μm film.

  16. A directional cylindrical anemometer with four sets of differential pressure sensors.

    Science.gov (United States)

    Liu, C; Du, L; Zhao, Z

    2016-03-01

    This paper presents a solid-state directional anemometer for simultaneously measuring the speed and direction of a wind in a plane in a speed range 1-40 m/s. This instrument has a cylindrical shape and works by detecting the pressure differences across diameters of the cylinder when exposed to wind. By analyzing our experimental data in a Reynolds number regime 1.7 × 10(3)-7 × 10(4), we figure out the relationship between the pressure difference distribution and the wind velocity. We propose a novel and simple solution based on the relationship and design an anemometer which composes of a circular cylinder with four sets of differential pressure sensors, tubes connecting these sensors with the cylinder's surface, and corresponding circuits. In absence of moving parts, this instrument is small and immune of friction. It has simple internal structures, and the fragile sensing elements are well protected. Prototypes have been fabricated to estimate performance of proposed approach. The power consumption of the prototype is less than 0.5 W, and the sample rate is up to 31 Hz. The test results in a wind tunnel indicate that the maximum relative speed measuring error is 5% and the direction error is no more than 5° in a speed range 2-40 m/s. In theory, it is capable of measuring wind up to 60 m/s. When the air stream goes slower than 2 m/s, the measuring errors of directions are slightly greater, and the performance of speed measuring degrades but remains in an acceptable range of ±0.2 m/s.

  17. The hot-film anemometer--a method for blood velocity determination. II. In vivo comparison with the electromagnetic blood flowmeter.

    Science.gov (United States)

    Paulsen, P K

    1980-01-01

    Using a constant temperature hot-film anemometer and an electromagnetic blood flowmeter, volumetric flows and velocity profiles were registered in the pulmonary artery, ascending aorta, abdominal aorta and superior vena cava of mongrel dogs. The anemometer registered in 3 out of 4 dogs in the ascending aorta and in 4 out of 5 dogs in the pulmonary artery. The flow profile in these two vessels was flat with a slight deviation with the highest velocity nearer to the posterior wall. In the abdominal aorta the flow profile was sinusoid and in the superior vena cava irregular. In 22 simultaneous measurements anemometer mean results were 97 +/- 23% (+/- SD) of flowmeter results and peak results correspondingly 113 +/- 23%. None of these differences were significant. It is stressed that both qualitatively and quantitatively hot-film anemometer results are comparable to electromagnetic flowmeter results. However, certain differences have been demonstrated.

  18. Three component laser anemometer measurements in an annular cascade of core turbine vanes with contoured end wall

    Science.gov (United States)

    Goldman, Louis J.; Seasholtz, Richard G.

    1988-01-01

    The three mean velocity components were measured in a full-scale annular turbine stator cascade with contoured hub end wall using a newly developed laser anemometer system. The anemometer consists of a standard fringe configuration using fluorescent seed particles to measure the axial and tangential components. The radial component is measured with a scanning confocal Fabry-Perot interferometer. These two configurations are combined in a single optical system that can operate simultaneously in a backscatter mode through a single optical access port. Experimental measurements were obtained both within and downstream of the stator vane row and compared with calculations from a three-dimensional inviscid computer program. In addition, detailed calibration procedures are described that were used, prior to the experiment, to accurately determine the laser beam probe volume location relative to the cascade hardware.

  19. Hot wire anemometer measurements in the unheated air flow tests of the SRB nozzle-to-case joint

    Science.gov (United States)

    Ramachandran, N.

    1988-01-01

    Hot-Wire Anemometer measurements made in the Solid Rocket Booster (SRB) nozzle-to-case joint are discussed. The study was undertaken to glean additional information on the circumferential flow induced in the SRB nozzle joint and the effect of this flow on the insulation bonding flaws. The tests were conducted on a full-scale, 2-D representation of a 65-in long segment of the SRB nozzle joint, with unheated air as the working fluid. Both the flight Mach number and Reynolds number were matched simultaneously and different pressure gradients imposed along the joint face were investigated. Hot-wire anemometers were used to obtain velocity data for different joint gaps and debond configurations. The procedure adopted for hot-wire calibration and use is outlined and the results from the tests summarized.

  20. A novel design and analysis of a MEMS ceramic hot-wire anemometer for high temperature applications

    International Nuclear Information System (INIS)

    Nagaiah, N R; Sleiti, A K; Rodriguez, S; Kapat, J S; An, L; Chow, L

    2006-01-01

    This paper attempts to prove the feasibility of high temperature MEMS hot-wire anemometer for gas turbine environment. No such sensor exists at present. Based on the latest improvement in a new type of Polymer-Derived Ceramic (PDC) material, the authors present a Novel design, structural and thermal analysis of MEMS hot-wire anemometer (HWA) based on PDC material, and show that such a sensor is indeed feasible. This MEMS Sensor is microfabricated by using three types of PDC materials such as SiAlCN, SiCN (lightly doped) and SiCN (heavily doped) for sensing element (hot-wire), support prongs and connecting leads respectively. This novel hot wire anemometer can perform better than a conventional HWA in which the hot wire is made of tungsten or platinum-iridium. This type of PDC-HWA can be used in harsh environment due to its high temperature resistance, tensile strength and resistance to oxidation. This HWA is fabricated using microstereolithography as a novel microfabrication technique to manufacture the proposed MEMS Sensor

  1. Turbulent characteristics of a semiarid atmospheric surface layer from cup anemometers – effects of soil tillage treatment (Northern Spain

    Directory of Open Access Journals (Sweden)

    S. Yahaya

    Full Text Available This paper deals with the characteristics of turbulent flow over two agricultural plots with various tillage treatments in a fallow, semiarid area (Central Aragon, Spain. The main dynamic characteristics of the Atmospheric Surface Layer (ASL measured over the experimental site (friction velocity, roughness length, etc., and energy budget, have been presented previously (Frangi and Richard, 2000. The current study is based on experimental measurements performed with cup anemometers located in the vicinity of the ground at 5 different levels (from 0.25 to 4 m and sampled at 1 Hz. It reveals that the horizontal wind variance, the Eulerian integral scales, the frequency range of turbulence and the turbulent kinetic energy dissipation rate are affected by the surface roughness. In the vicinity of the ground surface, the horizontal wind variance logarithmically increases with height, directly in relation to the friction velocity and the roughness length scale. It was found that the time integral scale (and subsequently the length integral scale increased with the surface roughness and decreased with the anemometer height. These variations imply some shifts in the meteorological spectral gap and some variations of the spectral peak length scale. The turbulent energy dissipation rate, affected by the soil roughness, shows a z-less stratification behaviour under stable conditions. In addition to the characterization of the studied ASL, this paper intends to show which turbulence characteristics, and under what conditions, are accessible through the cup anemometer.

    Key words. Meteorology and atmospheric dynamics (climatology, turbulence, instruments and techniques

  2. Turbulent characteristics of a semiarid atmospheric surface layer from cup anemometers – effects of soil tillage treatment (Northern Spain

    Directory of Open Access Journals (Sweden)

    S. Yahaya

    2003-10-01

    Full Text Available This paper deals with the characteristics of turbulent flow over two agricultural plots with various tillage treatments in a fallow, semiarid area (Central Aragon, Spain. The main dynamic characteristics of the Atmospheric Surface Layer (ASL measured over the experimental site (friction velocity, roughness length, etc., and energy budget, have been presented previously (Frangi and Richard, 2000. The current study is based on experimental measurements performed with cup anemometers located in the vicinity of the ground at 5 different levels (from 0.25 to 4 m and sampled at 1 Hz. It reveals that the horizontal wind variance, the Eulerian integral scales, the frequency range of turbulence and the turbulent kinetic energy dissipation rate are affected by the surface roughness. In the vicinity of the ground surface, the horizontal wind variance logarithmically increases with height, directly in relation to the friction velocity and the roughness length scale. It was found that the time integral scale (and subsequently the length integral scale increased with the surface roughness and decreased with the anemometer height. These variations imply some shifts in the meteorological spectral gap and some variations of the spectral peak length scale. The turbulent energy dissipation rate, affected by the soil roughness, shows a z-less stratification behaviour under stable conditions. In addition to the characterization of the studied ASL, this paper intends to show which turbulence characteristics, and under what conditions, are accessible through the cup anemometer.Key words. Meteorology and atmospheric dynamics (climatology, turbulence, instruments and techniques

  3. Physical and logistical considerations of using ultrasonic anemometers in aeolian sediment transport research

    Science.gov (United States)

    Walker, Ian J.

    2005-05-01

    Recently, ultrasonic anemometers (UAs) have become available for precise, high-frequency measurement of three-dimensional velocity and turbulence properties. Except for a few wind tunnel and computational fluid dynamics (CFD) simulations, advances in aeolian sediment transport and bedform research have been limited to field studies using instrumentation that is either incapable of measuring turbulence (e.g., cup anemometers) or unable to withstand sediment-laden airflow (e.g., hotfilms). In contrast, extensive progress has occurred in fluvial research where turbulence instrumentation has been available for some time. This paper provides a pragmatic discussion on using UAs in aeolian research. Recent advances using this technology are reviewed and key physical and logistical considerations for measuring airflow properties and near-surface shear stress using UAs over complex terrain are discussed. Physical considerations include limitations of applying boundary layer theory to flow over natural surfaces such as non-logarithmic velocity profiles resulting from roughness- and topographically induced effects and the inability of instrumentation to measure within the thin constant-stress region. These constraints hinder accurate shear velocity ( u*), shear stress and sand transport estimation. UAs allow measurement of turbulent Reynolds stress (RS) that, in theory, should equal profile-derived shear stress. Discrepancies often exist between these quantities however due to three-dimensional (spanwise) flow components and rapid distortion effects (i.e., unbalanced production and dissipation of turbulence) common in flow over complex terrain. While the RS approach yields information on turbulent contributions to near-surface stress generation, little evidence exists showing that RS is a better measure of forces responsible for sediment transport. Consequently, predictive equations for sediment transport using RS do not exist. There is also a need to identify the role of

  4. Using sonic anemometer temperature to measure sensible heat flux in strong winds

    Directory of Open Access Journals (Sweden)

    S. P. Burns

    2012-09-01

    Full Text Available Sonic anemometers simultaneously measure the turbulent fluctuations of vertical wind (w' and sonic temperature (Ts', and are commonly used to measure sensible heat flux (H. Our study examines 30-min heat fluxes measured with a Campbell Scientific CSAT3 sonic anemometer above a subalpine forest. We compared H calculated with Ts to H calculated with a co-located thermocouple and found that, for horizontal wind speed (U less than 8 m s−1, the agreement was around ±30 W m−2. However, for U ≈ 8 m s−1, the CSAT H had a generally positive deviation from H calculated with the thermocouple, reaching a maximum difference of ≈250 W m−2 at U ≈ 18 m s−1. With version 4 of the CSAT firmware, we found significant underestimation of the speed of sound and thus Ts in high winds (due to a delayed detection of the sonic pulse, which resulted in the large CSAT heat flux errors. Although this Ts error is qualitatively similar to the well-known fundamental correction for the crosswind component, it is quantitatively different and directly related to the firmware estimation of the pulse arrival time. For a CSAT running version 3 of the firmware, there does not appear to be a significant underestimation of Ts; however, a Ts error similar to that of version 4 may occur if the CSAT is sufficiently out of calibration. An empirical correction to the CSAT heat flux that is consistent with our conceptual understanding of the Ts error is presented. Within a broader context, the surface energy balance is used to evaluate the heat flux measurements, and the usefulness of side-by-side instrument comparisons is discussed.

  5. A Novel Low-Power-Consumption All-Fiber-Optic Anemometer with Simple System Design.

    Science.gov (United States)

    Zhang, Yang; Wang, Fang; Duan, Zhihui; Liu, Zexu; Liu, Zigeng; Wu, Zhenlin; Gu, Yiying; Sun, Changsen; Peng, Wei

    2017-09-14

    A compact and low-power consuming fiber-optic anemometer based on single-walled carbon nanotubes (SWCNTs) coated tilted fiber Bragg grating (TFBG) is presented. TFBG as a near infrared in-fiber sensing element is able to excite a number of cladding modes and radiation modes in the fiber and effectively couple light in the core to interact with the fiber surrounding mediums. It is an ideal in-fiber device used in a fiber hot-wire anemometer (HWA) as both coupling and sensing elements to simplify the sensing head structure. The fabricated TFBG was immobilized with an SWCNT film on the fiber surface. SWCNTs, a kind of innovative nanomaterial, were utilized as light-heat conversion medium instead of traditional metallic materials, due to its excellent infrared light absorption ability and competitive thermal conductivity. When the SWCNT film strongly absorbs the light in the fiber, the sensor head can be heated and form a "hot wire". As the sensor is put into wind field, the wind will take away the heat on the sensor resulting in a temperature variation that is then accurately measured by the TFBG. Benefited from the high coupling and absorption efficiency, the heating and sensing light source was shared with only one broadband light source (BBS) without any extra pumping laser complicating the system. This not only significantly reduces power consumption, but also simplifies the whole sensing system with lower cost. In experiments, the key parameters of the sensor, such as the film thickness and the inherent angle of the TFBG, were fully investigated. It was demonstrated that, under a very low BBS input power of 9.87 mW, a 0.100 nm wavelength response can still be detected as the wind speed changed from 0 to 2 m/s. In addition, the sensitivity was found to be -0.0346 nm/(m/s) under the wind speed of 1 m/s. The proposed simple and low-power-consumption wind speed sensing system exhibits promising potential for future long-term remote monitoring and on-chip sensing in

  6. Three-dimensional laser anemometer measurements in a linear turbine vane cascade

    Science.gov (United States)

    Zimmerman, D. R.

    Laser anemometer (LDA) measurements are presented which were made in a transparent test-section containing a linear cascade of four C3X turbine vanes. The velocity components corresponding to the 'axial' and 'circumferential' components were measured with the 0.4880 (blue) and 0.4765 micrometer (violet) wavelengths from an argon-ion laser. The blue and violet beams were transmitted through the transparent sidewalls. The 'radial' velocity component was measured with the 0.5145 micrometer (green) wavelength from the same laser. The green beams, aimed downstream through the inlet, were brought into position with a fiber optic cable and an optical train identical to the blue and violet optics. The three-color, six-beam, mutually-orthogonal LDA was brought to a common focal point. The optics were fixed in space and the test section was mounted on a milling machine. The data acquisition by three photomultipliers and three frequency counters was controlled by a coincidence timer and a microcomputer.

  7. Is the nacelle mounted anemometer an acceptable option in performance testing?

    Energy Technology Data Exchange (ETDEWEB)

    Dahlberg, J.A. [FFA, The Aeronautical Research Inst. of Sweden, Bromma (Sweden); Frandsen, S.; Madsen, H.A; Antoniou, I.; Friis Pedersen, T. [Risoe National Lab., Roskilde (Denmark); Hunter, R. [RES, Renewable Energy Systems, Glasgow, Scotland (United Kingdom); Klug, H. [DEWI, Wilhelmshaven (Germany)

    1999-03-01

    Although the nacelle anemometer method has been used for power verification purposes for several years, it is only relatively recently that a full understanding of its limitations has emerged. the technique is totally dependent upon the assumption that the nacelle to free wind speed relationship established for a reference turbine in free air can be applied universally to other turbines. Facts emerged from research projects have shown that this assumption is unjustified. In the present paper facts are presented of which some have not been identified nor presented before. E.g. the effect related to wake conditions is novel as a phenomena and the size of the effect can be considerable. The analysis shows that the total error caused by the effects considered in this paper can, in the worst case reach unacceptable high values, 24%, but by taking precautionary measures the errors can be kept at acceptable low levels, 4%. It is found probable that the future use of nacelle anemometry for power performance verification will be subject to strong restrictions. (au)

  8. Investigation on Characterizing Heated Pulsating Flows with Hot Wire Anemometers - A Hands-On Approach

    Directory of Open Access Journals (Sweden)

    Marius Alexandru PANAIT

    2014-06-01

    Full Text Available The pulsating heated flows are traditionally a difficult subject to treat with conventional hot wire or film methods. Special factors that complicate matters are flow reversal and non linear flow effects of vortices and wire probe wake disturbances on the heat transfer to the hot film or wire sensor in heated pulsating flows. The presence of these strongly nonlinear and unknown terms leads to great difficulties in calibration of hot film probes in this particular regime. The paper analyses the current state of matters in the field and reports a series of solutions that have been practically tested in a case of a high speed pulsated heated flow. Normally such measurements are made in a non-contact fashion using a LDV system or various visualization techniques but there have been recent attempts to use a constant temperature hot wire anemometer system (CTA.To obtain meaningful calibration for hot wire films in hot pulsating flows, a comparison system on other principles (LDV was used, as well as a specially designed nozzle to replace the calibrator unit that could not be operated with heated fluid due to structural integrity reasons. The method as described below works well for the expected speed range that could be generated using the special nozzle.

  9. Fast-response fiber-optic anemometer with temperature self-compensation.

    Science.gov (United States)

    Liu, Guigen; Hou, Weilin; Qiao, Wei; Han, Ming

    2015-05-18

    We report a novel fiber-optic anemometer with self-temperature compensation capability based on a Fabry-Pérot interferometer (FPI) formed by a thin silicon film attached to the end face of a single-mode fiber. Guided in the fiber are a visible laser beam from a 635 nm diode laser used to heat the FPI and a white-light in the infrared wavelength range as the signal light to interrogate the optical length of the FPI. Cooling effects on the heated sensor head by wind is converted to a wavelength blueshift of the reflection spectral fringes of the FPI. Self-temperature-compensated measurement of wind speed is achieved by recording the difference in fringe wavelengths when the heating laser is turned on and then off. Large thermal-optic coefficient and thermal expansion coefficient of silicon render a high sensitivity that can also be easily tuned by altering the heating laser power. Furthermore, the large thermal diffusivity and the small mass of the thin silicon film endow a fast sensor response.

  10. Laser anemometer measurements and computations in an annular cascade of high turning core turbine vanes

    Science.gov (United States)

    Goldman, Louis J.; Seasholtz, Richard G.

    1992-01-01

    An advanced laser anemometer (LA) was used to measure the axial and tangential velocity components in an annular cascade of turbine stator vanes designed for a high bypass ratio engine. These vanes were based on a redesign of the first-stage stator, of a two-stage turbine, that produced 75 degrees of flow turning. Tests were conducted on a 0.771 scale model of the engine size stator. The advanced LA fringe system was designed to employ thinner than usual laser beams resulting in a 50-micron-diameter probe volume. Window correction optics were used to ensure that the laser beams did not uncross in passing through the curved optical access port. Experimental LA measurements of velocity and turbulence were obtained both upstream, within, and downstream of the stator vane row at the design exit critical velocity ratio of 0.896 at the hub. Static pressures were also measured on the vane surface. The measurements are compared, where possible with calculations from a 3-D inviscid flow analysis. The data are presented in both graphic and tabulated form so that they may be readily used to compare against other turbomachinery computations.

  11. Evaluation of probe-induced flow distortion of Campbell CSAT3 sonic anemometers by numerical simulation

    Science.gov (United States)

    Mauder, M.; Huq, S.; De Roo, F.; Foken, T.; Manhart, M.; Schmid, H. P. E.

    2017-12-01

    The Campbell CSAT3 sonic anemometer is one of the most widely used instruments for eddy-covariance measurement. However, conflicting estimates for the probe-induced flow distortion error of this instrument have been reported recently, and those error estimates range between 3% and 14% for the measurement of vertical velocity fluctuations. This large discrepancy between the different studies can probably be attributed to the different experimental approaches applied. In order to overcome the limitations of both field intercomparison experiments and wind tunnel experiments, we propose a new approach that relies on virtual measurements in a large-eddy simulation (LES) environment. In our experimental set-up, we generate horizontal and vertical velocity fluctuations at frequencies that typically dominate the turbulence spectra of the surface layer. The probe-induced flow distortion error of a CSAT3 is then quantified by this numerical wind tunnel approach while the statistics of the prescribed inflow signal are taken as reference or etalon. The resulting relative error is found to range from 3% to 7% and from 1% to 3% for the standard deviation of the vertical and the horizontal velocity component, respectively, depending on the orientation of the CSAT3 in the flow field. We further demonstrate that these errors are independent of the frequency of fluctuations at the inflow of the simulation. The analytical corrections proposed by Kaimal et al. (Proc Dyn Flow Conf, 551-565, 1978) and Horst et al. (Boundary-Layer Meteorol, 155, 371-395, 2015) are compared against our simulated results, and we find that they indeed reduce the error by up to three percentage points. However, these corrections fail to reproduce the azimuth-dependence of the error that we observe. Moreover, we investigate the general Reynolds number dependence of the flow distortion error by more detailed idealized simulations.

  12. Laser Anemometer Measurements of the Flow Field in a 4:1 Pressure Ratio Centrifugal Impeller

    Science.gov (United States)

    Skoch, G. J.; Prahst, P. S.; Wernet, M. P.; Wood, J. R.; Strazisar, A. J.

    1997-01-01

    A laser-doppler anemometer was used to obtain flow-field velocity measurements in a 4:1 pressure ratio, 4.54 kg/s (10 lbm/s), centrifugal impeller, with splitter blades and backsweep, which was configured with a vaneless diffuser. Measured through-flow velocities are reported for ten quasi-orthogonal survey planes at locations ranging from 1% to 99% of main blade chord. Measured through-flow velocities are compared to those predicted by a 3-D viscous steady flow analysis (Dawes) code. The measurements show the development and progression through the impeller and vaneless diffuser of a through-flow velocity deficit which results from the tip clearance flow and accumulation of low momentum fluid centrifuged from the blade and hub surfaces. Flow traces from the CFD analysis show the origin of this deficit which begins to grow in the inlet region of the impeller where it is first detected near the suction surface side of the passage. It then moves toward the pressure side of the channel, due to the movement of tip clearance flow across the impeller passage, where it is cut by the splitter blade leading edge. As blade loading increases toward the rear of the channel the deficit region is driven back toward the suction surface by the cross-passage pressure gradient. There is no evidence of a large wake region that might result from flow separation and the impeller efficiency is relatively high. The flow field in this impeller is quite similar to that documented previously by NASA Lewis in a large low-speed backswept impeller.

  13. Two-component laser Doppler anemometer for measurement of velocity and turbulent shear stress near prosthetic heart valves.

    Science.gov (United States)

    Woo, Y R; Yoganathan, A P

    1985-01-01

    The velocity and turbulent shear stress measured in the immediate vicinity of prosthetic heart valves play a vital role in the design and evaluation of these devices. In the past hot wire/film and one-component laser Doppler anemometer (LDA) systems were used extensively to obtain these measurements. Hot wire/film anemometers, however, have some serious disadvantages, including the inability to measure the direction of the flow, the disturbance of the flow field caused by the probe, and the need for frequent calibration. One-component LDA systems do not have these problems, but they cannot measure turbulent shear stresses directly. Since these measurements are essential and are not available in the open literature, a two-component LDA system for measuring velocity and turbulent shear stress fields under pulsatile flow conditions was assembled under an FDA contract. The experimental methods used to create an in vitro data base of velocity and turbulent shear stress fields in the immediate vicinity of prosthetic heart valves of various designs in current clinical use are also discussed.

  14. An Analysis of Peak Wind Speed Data from Collocated Mechanical and Ultrasonic Anemometers

    Science.gov (United States)

    Short, David A.; Wells, Leonard; Merceret, Francis J.; Roeder, William P.

    2007-01-01

    This study compared peak wind speeds reported by mechanical and ultrasonic anemometers at Cape Canaveral Air Force Station and Kennedy Space Center (CCAFS/KSC) on the east central coast of Florida and Vandenberg Air Force Base (VAFB) on the central coast of California. Launch Weather Officers, forecasters, and Range Safety analysts need to understand the performance of wind sensors at CCAFS/KSC and VAFB for weather warnings, watches, advisories, special ground processing operations, launch pad exposure forecasts, user Launch Commit Criteria (LCC) forecasts and evaluations, and toxic dispersion support. The legacy CCAFS/KSC and VAFB weather tower wind instruments are being changed from propeller-and-vane (CCAFS/KSC) and cup-and-vane (VAFB) sensors to ultrasonic sensors under the Range Standardization and Automation (RSA) program. Mechanical and ultrasonic wind measuring techniques are known to cause differences in the statistics of peak wind speed as shown in previous studies. The 45th Weather Squadron (45 WS) and the 30th Weather Squadron (30 WS) requested the Applied Meteorology Unit (AMU) to compare data between the RSA ultrasonic and legacy mechanical sensors to determine if there are significant differences. Note that the instruments were sited outdoors under naturally varying conditions and that this comparison was not designed to verify either technology. Approximately 3 weeks of mechanical and ultrasonic wind data from each range from May and June 2005 were used in this study. The CCAFS/KSC data spanned the full diurnal cycle, while the VAFB data were confined to 1000-1600 local time. The sample of 1-minute data from numerous levels on five different towers on each range totaled more than 500,000 minutes of data (482,979 minutes of data after quality control). The ten towers were instrumented at several levels, ranging from 12 ft to 492 ft above ground level. The ultrasonic sensors were collocated at the same vertical levels as the mechanical sensors and

  15. A Comparison of Wind Speed Data from Mechanical and Ultrasonic Anemometers

    Science.gov (United States)

    Short, D.; Wells, L.; Merceret, F.; Roeder, W. P.

    2006-01-01

    This study compared the performance of mechanical and ultrasonic anemometers at the Eastern Range (ER; Kennedy Space Center and Cape Canaveral Air Force Station on Florida's Atlantic coast) and the Western Range (WR; Vandenberg Air Force Base on California's Pacific coast). Launch Weather Officers, forecasters, and Range Safety analysts need to understand the performance of wind sensors at the ER and WR for weather warnings, watches, advisories, special ground processing operations, launch pad exposure forecasts, user Launch Commit Criteria (LCC) forecasts and evaluations, and toxic dispersion support. The current ER and WR weather tower wind instruments are being changed from the current propeller-and-vane (ER) and cup-and-vane (WR) sensors to ultrasonic sensors through the Range Standardization and Automation (RSA) program. The differences between mechanical and ultrasonic techniques have been found to cause differences in the statistics of peak wind speed in previous studies. The 45th Weather Squadron (45 WS) and the 30th Weather Squadron (30 WS) requested the Applied Meteorology Unit (AMU) to compare data between RSA and current sensors to determine if there are significant differences. Approximately 3 weeks of Legacy and RSA wind data from each range were used in the study, archived during May and June 2005. The ER data spanned the full diurnal cycle, while the WR data was confined to 1000-1600 local time. The sample of 1-minute data from numerous levels on 5 different towers on each range totaled more than 500,000 minutes of data (482,979 minutes of data after quality control). The 10 towers were instrumented at several levels, ranging from 12 ft to 492 ft above ground level. The RSA sensors were collocated at the same vertical levels as the present sensors and typically within 15 ft horizontally of each another. Data from a total of 53 RSA ultrasonic sensors, collocated with present sensors were compared. The 1-minute average wind speed/direction and the 1

  16. A Bayesian model to correct underestimated 3-D wind speeds from sonic anemometers increases turbulent components of the surface energy balance

    Science.gov (United States)

    John M. Frank; William J. Massman; Brent E. Ewers

    2016-01-01

    Sonic anemometers are the principal instruments in micrometeorological studies of turbulence and ecosystem fluxes. Common designs underestimate vertical wind measurements because they lack a correction for transducer shadowing, with no consensus on a suitable correction. We reanalyze a subset of data collected during field experiments in 2011 and 2013 featuring two or...

  17. Real-time fiber-optic anemometer based on a laser-heated few-layer graphene in an aligned graded-index fiber.

    Science.gov (United States)

    Gao, Ran; Lu, Danfeng; Cheng, Jin; Qi, Zhi-Mei

    2017-07-15

    A real-time all-fiber anemometer based on laser-heated few-layer graphene in aligned graded-index fibers has been proposed and experimentally demonstrated. The proposed fiber-optic anemometer was composed of a pair of all-fiber collimators by using aligned graded-index fibers that was coated with the few-layer graphene. The few-layer graphene was heated through a heating light from a 532-nm laser, which changed the optical transmittance of signal light with the wavelength of 1550 nm. The wind speed can be measured through the transmission power of the signal light based on the wind cooling effects on the heated few-layer graphene, acting as a "hot-wire" anemometer. The experimental results show that the maximum sensitivity of the anemometer reaches -22.03  μW/(m/s), and a fast response time of as 0.064 s can be achieved. The proposed fiber sensor can be used for the real-time measurement of wind speed in the fields of environmental monitoring, oil exploration, oceanography research, etc.

  18. The measurement of sperm motility by the fibre optic Doppler anemometer as a prediction of bovine fertility

    Science.gov (United States)

    Bullock, J. G.; Ross, D. A.

    The fibre optic Doppler anemometer (FODA) has been used to develop an accurate quantitative method of routinely assessing bull fertility. This method is of importance to the artificial insemination industry because the present qualitative estimation, performed by viewing semen using a microscope, can only set broad limits of quality. Laser light from the FODA was directed into diluted semen samples and the back scattered light was measured. A digital correlator was used to calculate the signal correlation of the back scattered light. The resultant data curves were interpreted in terms of the collective motility and swimming speed of the spermatozoa using a microcomputer. These two parameters are accepted as being indicative of fertility. The accuracy of this method is demonstrated by examination of results obtained in an experiment where enzymes, thought to alter fertility, were added to semen. The effect of the enzymes on the swimming speed and motility was clearly demonstrated.

  19. Steady flow in a model of the human carotid bifurcation. Part II--laser-Doppler anemometer measurements.

    Science.gov (United States)

    Bharadvaj, B K; Mabon, R F; Giddens, D P

    1982-01-01

    The evidence for hypothesizing a relationship between hemodynamics and atherogenesis as well as the motivation for selecting the carotid bifurcation for extensive fluid dynamic studies has been discussed in Part I of this two-paper sequence. Part II deals with velocity measurements within the bifurcation model described by Fig. 1 and Table 1 of the previous paper. A plexiglass model conforming to the dimensions of the average carotid bifurcation was machined and employed for velocity measurements with a laser-Doppler anemometer (LDA). The objective of this phase of the study was to obtain quantitative information on the velocity field and to estimate levels and directions of wall shear stress in the region of the bifurcation.

  20. Measurement of turbulence intensity in the center of the canine ascending aorta with a hot-film anemometer.

    Science.gov (United States)

    Yamaguchi, T; Kikkawa, S; Yoshikawa, T; Tanishita, K; Sugawara, M

    1983-05-01

    The blood flow velocity near the central axis of the canine ascending aorta was measured with a hot-film anemometer. The cardiac output and the heart rate were controlled at will by means of an extracorporeal circulation and by atrial pacing. The turbulent component of the blood flow velocity was calculated using an ensemble average technique. Ensemble average turbulent intensity was also calculated to show the time course of turbulence in the aorta. The ratio of the mean turbulence intensity to the time mean sectional average velocity in the aorta was constant in most animals regardless of the changes in fluid mechanical parameters. The correlation between the frequency parameter and the relative mean turbulence intensity was weakly positive. The power spectrum of the turbulence was also calculated.

  1. Laser transit anemometer and Pitot probe comparative measurements in a sharp cone boundary layer at Mach 4

    Science.gov (United States)

    Hunter, W. W., Jr.; Ocheltree, S. L.; Russ, C. E., Jr.

    1991-01-01

    Laser transit anemometer (LTA) measurements of a 7 degree sharp cone boundary layer were conducted in the Air Force/AEDC Supersonic Tunnel A Mach 4 flow field. These measurements are compared with Pitot probe measurements and tricone theory provided by AEDC staff. Measurements were made both in laminar and turbulent boundary layers of the model. Comparison of LTA measurements with theory showed agreement to better than 1 percent for the laminar boundary layer cases. This level of agreement was obtained after small position corrections, 0.01 to 0.6 mm, were applied to the experimental data sets. Pitot probe data when compared with theory also showed small positioning errors. The Pitot data value was also limited due to probe interference with the flow near the model. The LTA turbulent boundary layer data indicated a power law dependence of 6.3 to 6.9. The LTA data was analyzed in the time (Tau) domain in which it was obtained and in the velocity domain. No significant differences were noted between Tau and velocity domain results except in one turbulent boundary layer case.

  2. Unsteady fluid dynamics of several mechanical prosthetic heart valves using a two component laser Doppler anemometer system.

    Science.gov (United States)

    Akutsu, T; Modi, V J

    1997-10-01

    Five typical mechanical heart valves (Starr-Edwards, Björk-Shiley convexo-concave (c-c), Björk-Shiley monostrut, Bicer-Val, and St. Jude Medical) were tested in the mitral position under the pulsatile flow condition. The test program included measurements of velocity and turbulent stresses at 5 downstream locations. The study was carried out using a sophisticated cardiac simulator in conjunction with a highly sensitive 2 component laser Doppler anemometer (LDA) system. The continuous monitoring of parametric time histories revealed useful details about the complex flow and helped to establish the locations and times of the peak parameter values. Based upon the nondimensional presentation of data, the following general conclusions can be made. First, all the 5 valve designs created elevated turbulent stresses during the accelerating and peak flow phases, presenting the possibility of thromboembolism and perhaps hemolysis. Second, the difference in valve configuration seemed to affect the flow characteristics; third, the bileaflet design of the St. Jude valve appeared to create a lower turbulence stress level.

  3. Laser anemometer measurements and computations for transonic flow conditions in an annular cascade of high turning core turbine vanes

    Science.gov (United States)

    Goldman, Louis J.

    1993-01-01

    An advanced laser anemometer (LA) was used to measure the axial and tangential velocity components in an annular cascade of turbine stator vanes operating at transonic flow conditions. The vanes tested were based on a previous redesign of the first-stage stator in a two-stage turbine for a high-bypass-ratio engine. The vanes produced 75 deg of flow turning. Tests were conducted on a 0.771-scale model of the engine-sized stator. The advanced LA fringe system employed an extremely small 50-micron diameter probe volume. Window correction optics were used to ensure that the laser beams did not uncross in passing through the curved optical access port. Experimental LA measurements of velocity and turbulence were obtained at the mean radius upstream of, within, and downstream of the stator vane row at an exit critical velocity ratio of 1.050 at the hub. Static pressures were also measured on the vane surface. The measurements are compared, where possible, with calculations from a three-dimensional inviscid flow analysis. Comparisons were also made with the results obtained previously when these same vanes were tested at the design exit critical velocity ratio of 0.896 at the hub. The data are presented in both graphical and tabulated form so that they can be readily compared against other turbomachinery computations.

  4. Long-range distributed optical fiber hot-wire anemometer based on chirped-pulse ΦOTDR.

    Science.gov (United States)

    Garcia-Ruiz, Andres; Dominguez-Lopez, Alejandro; Pastor-Graells, Juan; Martins, Hugo F; Martin-Lopez, Sonia; Gonzalez-Herraez, Miguel

    2018-01-08

    We demonstrate a technique allowing to develop a fully distributed optical fiber hot-wire anemometer capable of reaching a wind speed uncertainty of ≈ ±0.15m/s (±0.54km/h) at only 60 mW/m of dissipated power in the sensing fiber, and within only four minutes of measurement time. This corresponds to similar uncertainty values than previous papers on distributed optical fiber anemometry but requires two orders of magnitude smaller dissipated power and covers at least one order of magnitude longer distance. This breakthrough is possible thanks to the extreme temperature sensitivity and single-shot performance of chirped-pulse phase-sensitive optical time domain reflectometry (ΦOTDR), together with the availability of metal-coated fibers. To achieve these results, a modulated current is fed through the metal coating of the fiber, causing a modulated temperature variation of the fiber core due to Joule effect. The amplitude of this temperature modulation is strongly dependent on the wind speed at which the fiber is subject. Continuous monitoring of the temperature modulation along the fiber allows to determine the wind speed with singular low power injection requirements. Moreover, this procedure makes the system immune to temperature drifts of the fiber, potentially allowing for a simple field deployment. Being a much less power-hungry scheme, this method also allows for monitoring over much longer distances, in the orders of 10s of km. We expect that this system can have application in dynamic line rating and lateral wind monitoring in railway catenary wires.

  5. Fiber-optic laser-Doppler anemometer microscope developed for the measurement of microvascular red cell velocity.

    Science.gov (United States)

    Seki, J

    1990-11-01

    A fiber-optic laser-Doppler anemometer microscope (FLDAM) was developed and its applicability to the study of microvascular blood flow was examined by measuring red cell velocities in vivo and in vitro. The FLDAM consists of an intravital microscope equipped with a fringe-mode back-scatter LDA. A data processing method of the Doppler signal which used frequency averaging over the entire frequency range of the power spectrum was developed. Spatial resolution of the FLDAM varied from 17 to 200 microns with 50X to 5X objectives. In vitro experiments showed that the red cell velocity obtained by the FLDAM was equal to the mean flow velocity, within the accuracy of the measurements, for tube diameters from 35 to 100 microns, mean velocity from 0.7 to 17 mm/sec, and feed hematocrit of 20%, when 10X or 20X objectives were used. In vivo red cell velocity measurements conducted with the FLDAM in microvessels of rat mesentery with diameters from 6.5 to 49 microns showed that red cell velocities were about 1/1.6 times smaller than those obtained by the two-slit technique, which also suggests that the velocity obtained by the FLDAM corresponds to the mean flow velocity. This relationship was also established from theoretical considerations for the case where the FLDAM sampling volume covers the entire vessel cross section. Furthermore the frequency response of the FLDAM was established to be about 20 Hz, which was sufficient for measurement of pulsatile velocities in rat mesenteric microvessels.

  6. Formation of high quality interference fringes from both sides of a suitably designed hololens in the laser Doppler anemometer measurement volume

    Science.gov (United States)

    Ghosh, Abhijit; Nirala, A. K.

    2017-11-01

    We report, for the first time to the best of our knowledge, the formation of high quality, evenly spaced, undistorted fringes in the measurement volume of a laser Doppler anemometer from both sides of a suitably designed hololens. Experiments are performed for the analysis of fringes formed at the measurement volume by real time monitoring and actual fringe field analysis techniques. The results indicate the qualitative as well as quantitative improvement of 66.58 % in overall average normalised standard deviations of the width of the fringes formed by the proposed imaging configuration than that of the conventional imaging configuration.

  7. De gloeidraad anemometer

    NARCIS (Netherlands)

    Delfos, R.; van Woerkom, P.T.L.M.; Ankersmit, W.; Hagman, R.; Heijmans, H.G.; Olsder, G.J.; van de Schootbrugge, G.

    2017-01-01

    Stromingsleer is de naam van het vakgebied dat ‘stromende media’ beschrijft. Dat medium kan lucht of water zijn, maar ook olie, mayonaise, of lucht-watermengsels. Als we het vakgebied wat ruimer nemen dan stromen zand- of suikerkorrels ook. Kortom, alles stroomt, of zoals Heraclitus het rond 500

  8. 1.5 μm lidar anemometer for true air speed, angle of sideslip, and angle of attack measurements on-board Piaggio P180 aircraft

    International Nuclear Information System (INIS)

    Augere, B; Besson, B; Fleury, D; Goular, D; Planchat, C; Valla, M

    2016-01-01

    Lidar (light detection and ranging) is a well-established measurement method for the prediction of atmospheric motions through velocity measurements. Recent advances in 1.5 μm Lidars show that the technology is mature, offers great ease of use, and is reliable and compact. A 1.5 μm airborne Lidar appears to be a good candidate for airborne in-flight measurement systems. It allows measurements remotely, outside aircraft aerodynamic disturbance, and absolute air speed (no need for calibration) with great precision in all aircraft flight domains. In the framework of the EU AIM2 project, the ONERA task has consisted of developing and testing a 1.5 μm anemometer sensor for in-flight airspeed measurements. The objective of this work is to demonstrate that the 1.5 μm Lidar sensor can increase the quality of the data acquisition procedure for aircraft flight test certification. This article presents the 1.5 μm anemometer sensor dedicated to in-flight airspeed measurements and describes the flight tests performed successfully on-board the Piaggio P180 aircraft. Lidar air data have been graphically compared to the air data provided by the aircraft flight test instrumentation (FTI) in the reference frame of the Lidar sensor head. Very good agreement of true air speed (TAS) by a fraction of ms −1 , angle of sideslip (AOS), and angle of attack (AOA) by a fraction of degree were observed. (special issue article)

  9. A novel five-wire micro anemometer with 3D directionality for low speed air flow detection and acoustic particle velocity detecting capability

    Science.gov (United States)

    Li, Zhe; Chang, Wenhan; Gao, Chengchen; Hao, Yilong

    2018-04-01

    In this paper, a novel five-wire micro-fabricated anemometer with 3D directionality based on calorimetric principle is proposed, which is capable of measuring low speed airflow. This structure is realized by vertically bonding two different dies, which can be fabricated on the same wafer resulting in a simple fabrication process. Experiments on speed lower than 200 mm s‑1 are conducted, showing good repeatability and directionality. The speed of airflow is controlled by the volumetric flow rate. The measured velocity sensitivity is 9.4 mV · s m‑1, with relative direction sensitivity of 37.1 dB. The deviation between the expected and the measured directivity is analyzed by both theories and simulations. A correction procedure is proposed and turns out to be useful to eliminate this deviation. To further explore the potential of our device, we expose it to acoustic plane waves in a standing wave tube, showing consistent planar directivity of figure of eight. The measured velocity sensitivity at 1 kHz and 120 dBC is 4.4 mV · s m‑1, with relative direction sensitivity of 27.0 dB. By using the correction method proposed above, the maximum angle error is about  ±2°, showing its good directionality accuracy.

  10. Validation of a CFD model by using 3D sonic anemometers to analyse the air velocity generated by an air-assisted sprayer equipped with two axial fans.

    Science.gov (United States)

    García-Ramos, F Javier; Malón, Hugo; Aguirre, A Javier; Boné, Antonio; Puyuelo, Javier; Vidal, Mariano

    2015-01-22

    A computational fluid dynamics (CFD) model of the air flow generated by an air-assisted sprayer equipped with two axial fans was developed and validated by practical experiments in the laboratory. The CFD model was developed by considering the total air flow supplied by the sprayer fan to be the main parameter, rather than the outlet air velocity. The model was developed for three air flows corresponding to three fan blade settings and assuming that the sprayer is stationary. Actual measurements of the air velocity near the sprayer were taken using 3D sonic anemometers. The workspace sprayer was divided into three sections, and the air velocity was measured in each section on both sides of the machine at a horizontal distance of 1.5, 2.5, and 3.5 m from the machine, and at heights of 1, 2, 3, and 4 m above the ground The coefficient of determination (R2) between the simulated and measured values was 0.859, which demonstrates a good correlation between the simulated and measured data. Considering the overall data, the air velocity values produced by the CFD model were not significantly different from the measured values.

  11. Validation of a CFD Model by Using 3D Sonic Anemometers to Analyse the Air Velocity Generated by an Air-Assisted Sprayer Equipped with Two Axial Fans

    Directory of Open Access Journals (Sweden)

    F. Javier García-Ramos

    2015-01-01

    Full Text Available A computational fluid dynamics (CFD model of the air flow generated by an air-assisted sprayer equipped with two axial fans was developed and validated by practical experiments in the laboratory. The CFD model was developed by considering the total air flow supplied by the sprayer fan to be the main parameter, rather than the outlet air velocity. The model was developed for three air flows corresponding to three fan blade settings and assuming that the sprayer is stationary. Actual measurements of the air velocity near the sprayer were taken using 3D sonic anemometers. The workspace sprayer was divided into three sections, and the air velocity was measured in each section on both sides of the machine at a horizontal distance of 1.5, 2.5, and 3.5 m from the machine, and at heights of 1, 2, 3, and 4 m above the ground The coefficient of determination (R2 between the simulated and measured values was 0.859, which demonstrates a good correlation between the simulated and measured data. Considering the overall data, the air velocity values produced by the CFD model were not significantly different from the measured values.

  12. Effects of intracranial pressure on the pial microcirculation in rats studied by a fiber-optic laser-Doppler anemometer microscope.

    Science.gov (United States)

    Seki, J; Sasaki, Y; Oyama, T; Yamamoto, J

    1999-01-01

    The fiber-optic laser-Doppler anemometer microscope (FLDAM) developed in our laboratory was applied to measure red cell velocity in individual pial microvessels in rats to determine the effect of intracranial pressure (ICP) on the pial microcirculation. The red cell velocity and the vessel diameter of pial microvessels were measured through a closed cranial window at controlled values of ICP between 0 and 50 mmHg. As ICP increased from 0 to 50 mmHg, the average relative diameter of venules with respect to the diameter at an ICP of 5 mmHg decreased from 1.18 +/- 0.12 (mean +/- SD) to 0.74 +/- 0.08 and the average relative velocity increased from 0.80 +/- 0.20 to 1.83 +/- 0.42 monotonically. The changes in diameter and velocity of arterioles with ICP were small, and they were not significantly different from those values at an ICP of 5 mmHg except for the diameter at an ICP of 20 mmHg. The mean volume flow rates calculated assuming a circular vessel cross-section did not show any statistically significant change with ICP between 0 and 50 mmHg in both arterioles and venules, which supports the concept of autoregulation.

  13. Analysis of the air flow generated by an air-assisted sprayer equipped with two axial fans using a 3D sonic anemometer.

    Science.gov (United States)

    García-Ramos, F Javier; Vidal, Mariano; Boné, Antonio; Malón, Hugo; Aguirre, Javier

    2012-01-01

    The flow of air generated by a new design of air assisted sprayer equipped with two axial fans of reversed rotation was analyzed. For this goal, a 3D sonic anemometer has been used (accuracy: 1.5%; measurement range: 0 to 45 m/s). The study was divided into a static test and a dynamic test. During the static test, the air velocity in the working vicinity of the sprayer was measured considering the following machine configurations: (1) one activated fan regulated at three air flows (machine working as a traditional sprayer); (2) two activated fans regulated at three air flows for each fan. In the static test 72 measurement points were considered. The location of the measurement points was as follow: left and right sides of the sprayer; three sections of measurement (A, B and C); three measurement distances from the shaft of the machine (1.5 m, 2.5 m and 3.5 m); and four measurement heights (1 m, 2 m, 3 m and 4 m). The static test results have shown significant differences in the module and the vertical angle of the air velocity vector in function of the regulations of the sprayer. In the dynamic test, the air velocity was measured at 2.5 m from the axis of the sprayer considering four measurement heights (1 m, 2 m, 3 m and 4 m). In this test, the sprayer regulations were: one or two activated fans; one air flow for each fan; forward speed of 2.8 km/h. The use of one fan (back) or two fans (back and front) produced significant differences on the duration of the presence of wind in the measurement point and on the direction of the air velocity vector. The module of the air velocity vector was not affected by the number of activated fans.

  14. Analysis of the Air Flow Generated by an Air-Assisted Sprayer Equipped with Two Axial Fans Using a 3D Sonic Anemometer

    Directory of Open Access Journals (Sweden)

    Javier Aguirre

    2012-06-01

    Full Text Available The flow of air generated by a new design of air assisted sprayer equipped with two axial fans of reversed rotation was analyzed. For this goal, a 3D sonic anemometer has been used (accuracy: 1.5%; measurement range: 0 to 45 m/s. The study was divided into a static test and a dynamic test. During the static test, the air velocity in the working vicinity of the sprayer was measured considering the following machine configurations: (1 one activated fan regulated at three air flows (machine working as a traditional sprayer; (2 two activated fans regulated at three air flows for each fan. In the static test 72 measurement points were considered. The location of the measurement points was as follow: left and right sides of the sprayer; three sections of measurement (A, B and C; three measurement distances from the shaft of the machine (1.5 m, 2.5 m and 3.5 m; and four measurement heights (1 m, 2 m, 3 m and 4 m. The static test results have shown significant differences in the module and the vertical angle of the air velocity vector in function of the regulations of the sprayer. In the dynamic test, the air velocity was measured at 2.5 m from the axis of the sprayer considering four measurement heights (1 m, 2 m, 3 m and 4 m. In this test, the sprayer regulations were: one or two activated fans; one air flow for each fan; forward speed of 2.8 km/h. The use of one fan (back or two fans (back and front produced significant differences on the duration of the presence of wind in the measurement point and on the direction of the air velocity vector. The module of the air velocity vector was not affected by the number of activated fans.

  15. Automation of the positioning of a laser anemometer flow rate measurement bench; Automatisation du positionnement d`un banc de mesure de vitesses d`ecoulements par anemometrie laser

    Energy Technology Data Exchange (ETDEWEB)

    Gobillot, G

    1998-01-24

    The laser anemometry technique is commonly used by the Core Hydraulics Laboratory of the CEA for the determination of the field of flow rates inside fuel rod bundles. The adjustment of measurement point coordinates represents an important part of the velocimetry campaign. In order to increase the number of measurements and the preciseness of the positioning operation, the automation of these preliminary tasks was decided. This work describes first the principle of Doppler laser velocimetry, the components of the measurement system and their functioning conditions. Then, the existing software for tuning and measurement is presented. A new software, called PAMELA, for the automatic positioning of the laser anemometer using a moving table with 5 degrees of freedom, has been developed and tested. This software, written with the LabView language, advises the operator, drives the bench and executes the tunings with a greater precision than manually. (J.S.) 16 refs.

  16. Measurement of the local void fraction in two-phase air-water flow with a hot-film anemometer; Mesure du taux de vide local en ecoulement diphasique eau-air par un anemometre a film chaud

    Energy Technology Data Exchange (ETDEWEB)

    Delhaye, J. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1968-07-01

    The experimental knowledge of the local void-fraction is basic for the derivation of the constitutive equations of two-phase flows. This report deals with measurements of the local void-fraction based on the use of a constant temperature hot-film anemometer associated with a multichannel analyser. After determining the void-fraction profile along a diameter of a vertical pipe (40 mm I.D.), in which air and water flow upwards, we compare the void-fraction averaged over the diameter with the average value measured directly by a {gamma}-ray method. Two runs were made in bubble flow and a third in slug flow. The two methods give results in a good agreement especially for bubble flow. The void-fraction averaged over the cross-section was also calculated from the different profiles and compared in a good manner with the experimental results of R. ROUMY. For bubble flow we verified the theory of S.G. BANKOFF about the shape of the void-fraction profiles. (author) [French] Nous proposons une methode de mesure du taux de vide local a en ecoulement diphasique, basee sur l'emploi d'un anemometre a film chaud a temperature constante dont on etudie la repartition du signal en amplitude dans un analyseur multicanaux. Ayant trace un profil de taux de vide local suivant un diametre d'une conduite verticale de section circulaire parcourue par un ecoulement ascendant d'eau et d'air, nous avons compare la moyenne de {alpha} sur ce diametre a la valeur obtenue par une methode d'absorption de rayons {gamma}. Les essais ont ete faits en ecoulements a bulles et a bouchons. Les deux methodes donnent des resultats concordants en particulier pour les ecoulements a bulles. Le taux de vide moyenne dans la section, calcule a partir des differents profils, a egalement ete compare avec succes aux resultats experimentaux de R. ROUMY. Dans l'etude de la structure radiale des ecoulements a bulles, nous avons verifie l'hypothese de S.G. BAJMKOFF. (auteur)

  17. Arkansas' Anemometer Loan Program

    Energy Technology Data Exchange (ETDEWEB)

    Fernando Vego

    2012-10-11

    The measurement campaign had one year duration from 04/01/2011 to 03/31/2012 and was taken at 20m and 34m with NRG instrumentation. The data was analyzed weekly to check inconsistencies and validity and processed using Excel, Flexpro and Windographer standard Edition Version 2.04. The site analyzed is located in the Waldron, Arkansas in Scott County. It is an open site for most of the direction sectors with immediate roughness class of 1.5. It has seasonally directional winds, of which the most energetic come from the southern direction. The vertical wind profile shows moderate wind shear that varies by season as well.

  18. Laser transit anemometer software development program

    Science.gov (United States)

    Abbiss, John B.

    1989-01-01

    Algorithms were developed for the extraction of two components of mean velocity, standard deviation, and the associated correlation coefficient from laser transit anemometry (LTA) data ensembles. The solution method is based on an assumed two-dimensional Gaussian probability density function (PDF) model of the flow field under investigation. The procedure consists of transforming the data ensembles from the data acquisition domain (consisting of time and angle information) to the velocity space domain (consisting of velocity component information). The mean velocity results are obtained from the data ensemble centroid. Through a least squares fitting of the transformed data to an ellipse representing the intersection of a plane with the PDF, the standard deviations and correlation coefficient are obtained. A data set simulation method is presented to test the data reduction process. Results of using the simulation system with a limited test matrix of input values is also given.

  19. Vortex Anemometer Using MEMS Cantilever Sensor

    CERN Document Server

    Zylka, P; Zylka, Pawel; Modrzynski, Pawel

    2010-01-01

    This paper presents construction and performance of a novel hybrid microelectromechanical system (MEMS) vortex flowmeter. A miniature cantilever MEMS displacement sensor was used to detect frequency of vortices development. 3-mm-long silicon cantilever, protruding directly out of a trailing edge of a trapezoidal glass-epoxy composite bluff body was put into oscillatory motion by vortices shed alternately from side surfaces of the obstacle. Verified linearmeasurement range of the device extended from 5 to 22 m/s; however, it could be broadened in absence of external 50-Hz mains electrical interfering signal which required bandpass frequency-domain digital sensor signal processing. The MEMS vortex sensor proved its effectiveness in detection of semilaminar airflow velocity distribution in a 40-mm-diameter tubular pipe.

  20. Microscale out-of-plane anemometer

    Science.gov (United States)

    Liu, Chang (Inventor); Chen, Jack (Inventor)

    2005-01-01

    A microscale out-of-plane thermal sensor. A resistive heater is suspended over a substrate by supports raised with respect to the substrate to provide a clearance underneath the resistive heater for fluid flow. A preferred fabrication process for the thermal sensor uses surface micromachining and a three-dimensional assembly to raise the supports and lift the resistive heater over the substrate.

  1. Micro-sensor thin-film anemometer

    Science.gov (United States)

    Sheplak, Mark (Inventor); McGinley, Catherine B. (Inventor); Spina, Eric F. (Inventor); Stephens, Ralph M. (Inventor); Hopson, Jr., Purnell (Inventor); Cruz, Vincent B. (Inventor)

    1996-01-01

    A device for measuring turbulence in high-speed flows is provided which includes a micro-sensor thin-film probe. The probe is formed from a single crystal of aluminum oxide having a 14.degree. half-wedge shaped portion. The tip of the half-wedge is rounded and has a thin-film sensor attached along the stagnation line. The bottom surface of the half-wedge is tilted upward to relieve shock induced disturbances created by the curved tip of the half-wedge. The sensor is applied using a microphotolithography technique.

  2. An integrated silicon double bridge anemometer

    NARCIS (Netherlands)

    van Putten, A.F.P.

    1983-01-01

    Since 1974, silicon has been used for making flow sensors, though a lot of problems with respect to drift in time and temperature behaviour had to be solved. This is especially the case when the chip is operating at elevated temperatures. Heat conduction plays a vital role in the general heat

  3. Testing of the anemometer circuit: Data report

    Science.gov (United States)

    Moen, Michael J.

    1992-01-01

    The following text discusses results from the electronic step testing and the beginning of velocity step testing in the shock tube. It should be kept in mind that frequency response is always measured as the time from the beginning of the event to the minimum (positive inflection) of the 'bucket' that immediately follows the response. This report is not a complete account of the results from square wave testing. Some data is still in the process of being analyzed and efforts are being made to fit the data to both Freymuth's third order theory and modelled responses from SPICE circuit simulation software.

  4. Reviews Book: Voyage to the Heart of the Matter: The ATLAS Experiment at CERN Equipment: SEP Spectroscope Books: Quantum Gods / The Universe Places to visit: The Royal Institution of Great Britain Book: What is this Thing Called Science? Book: Don't be Such a Scientist: Talking Substance in the Age of Style Equipment: La Crosse Anemometer Book: Wonder and Delight Web Watch

    Science.gov (United States)

    2010-05-01

    WE RECOMMEND SEP Spectroscope Flatpacked classroom equipment for pupils aged 10 and over Quantum Gods Book attacks spiritualism and religion with physics The Universe Study of whether physics alone can explain origin of universe La Crosse Anemometer Handheld monitor is packed with useful features Wonder and Delight Essays in science education in honour of Eric Rogers WORTH A LOOK Voyage to the Heart of the Matter: The ATLAS Experiment at CERN Pop-up book explains background to complex physics The Royal Institution of Great Britain RI museum proves interesting but not ideal for teaching What is this Thing Called Science? Theory and history of science in an opinionated study Don't be Such a Scientist: Talking Substance in the Age of Style Explanation of how science is best communicated to the public WEB WATCH Particle physics simulations vary in complexity, usefulness and how well they work

  5. Calibration of a spinner anemometer for wind speed measurements

    DEFF Research Database (Denmark)

    Demurtas, Giorgio; Friis Pedersen, Troels; Zahle, Frederik

    2016-01-01

    constant related to wind speed measurements. The first and preferred method is based on the definition of the calibration constant and uses wind speed measurements during the stopped condition of the wind turbine. Two alternative methods that did not require the turbine to be stopped were investigated: one...

  6. Calibration of a spinner anemometer for yaw misalignment measurements

    DEFF Research Database (Denmark)

    Friis Pedersen, Troels; Demurtas, Giorgio; Zahle, Frederik

    2015-01-01

    method used a hub height met-mast wind vane as reference. The fifth method used computational fluid dynamics simulations. Method 1 utilizing yawing of the wind turbine in and out of the wind in stopped condition was the preferred method for calibration of kα. The uncertainty of the yaw misalignment...... calibration was found to be 10%, giving an uncertainty of 1° at a yaw misalignment of 10°. © 2014 The Authors. Wind Energy published by John Wiley & Sons, Ltd....

  7. Method of Forming Micro-Sensor Thin-Film Anemometer

    Science.gov (United States)

    Sheplak, Mark (Inventor); McGinley, Catherine B. (Inventor); Spina, Eric F. (Inventor); Stephens, Ralph M. (Inventor); Hopson, Purnell, Jr. (Inventor); Cruz, Vincent B. (Inventor)

    2000-01-01

    A device for measuring turbulence in high-speed flows is provided which includes a micro- sensor thin-film probe. The probe is formed from a single crystal of aluminum oxide having a 14 deg half-wedge shaped portion. The tip of the half-wedge is rounded and has a thin-film sensor attached along the stagnation line. The bottom surface of the half-wedge is tilted upward to relieve shock induced disturbances created by the curved tip of the half-wedge. The sensor is applied using a microphotolithography technique.

  8. Anemometer array and meteorological data : May 1998 SOCRATES test

    Science.gov (United States)

    1999-06-01

    In support of the Federal Aviation Administration, the Volpe National Transportation Systems Center (Volpe Center) is conducting an evaluation of a laser based system concept called SOCRATES to determine its possible application in detecting potentia...

  9. Design and Calibration of an Inexpensive Digital Anemometer

    Science.gov (United States)

    Hernandez-Walls, R.; Rojas-Mayoral, E.; Baez-Castillo, L.; Rojas-Mayoral, B.

    2008-01-01

    An inexpensive and easily implemented device to measure wind velocity is proposed. This prototype has the advantage of being able to measure both the speed and the direction of the wind in two dimensions. The device utilizes a computational interface commonly referred to as a "mouse." The mouse proposed for this prototype contains an…

  10. Development and calibration of a self-recording cup anemometer for ...

    African Journals Online (AJOL)

    UFUOMA

    Input unit/sensor. The input circuit comprises of phototransistor and a light emitting diode (LED) was connected in series with a 500 kΩ variable resistor to the power supply (Vcc) and 100 kΩ fixed to the GND voltage while the photocell was connected to both Vcc and GND. Also, a 10. kΩ resistor was connected in series to ...

  11. Determining the Velocity Fine Structure by a Laser Anemometer in VAD operation

    DEFF Research Database (Denmark)

    Kristensen, Leif; Kirkegaard, Peter; Mikkelsen, Torben

    . Then it is necessary to “create” a mean wind by turning the laser beam. Since the instrument is not moved the beam will describe a cone which could be a VAD-scanning. In any case the measured velocity components will not be parallel and this implies that the measured structure function will contain a term which...... is proportional to the total variance. The theoretical expression for the line-filtered structure function is derived in two equivalent ways, one in physical space and one in wave-number space, of which the last can be reliably evaluated by numerical integration. Also a practical approximate equation, derived...

  12. Acquisition of Turbulence Data Using the DST Group Constant-Temperature Hot-Wire Anemometer System

    Science.gov (United States)

    2015-10-01

    Defence Science and Technology Group 506 Lorimer St Fishermans Bend , Victoria 3207 Australia Telephone: 1300 333 362 Fax: (03) 9626 7999...to both tensile and torsional loading. He joined the Aeronautical Research Laboratories (now called the Defence Science and Technology Group) in...the temperature becomes too high. A resistance ratio of 2 is generally used for Wollaston wire. The resistance of the wire and the leads combined

  13. Evaluation of Tower Shadowing on Anemometer Measurements at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Bruggeman, David Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-14

    The objective of this study is to evaluate the effect of tower shadowing from the meteorology towers at LANL during 2014. This study is in response to the Department of Energy Meteorological Coordinating Council visit in 2015 that recommended an evaluation of any biases in the wind data introduced by the tower and boom alignment at all meteorology towers.

  14. Development of a "Digital Bridge" Thermal Anemometer for Turbulence Measurements, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermal anemometry (a.k.a. hot-wire anemometry) has been a key experimental technique in fluid mechanics for many decades. Due to the small physical size and high...

  15. Development of a "Digital Bridge" Thermal Anemometer for Turbulence Measurements, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermal anemometry (a.k.a. hot-wire anemometry) has been a key experimental technique in fluid mechanics for many decades. Due to the small physical size and high...

  16. A differential anemometer for measuring the turning tendency of insects in stationary flight.

    Science.gov (United States)

    Roeder, K D

    1966-09-30

    A pair of thermistors forming part of a direct current bridge circuit was mounted in the wake of a moth in stationary flight. Differential changes in the thermistors' resistance provided a sensitive index of changes in the direction of the airstream as the insect made attempts to turn away from a source of ultrasonic pulses.

  17. Hot Wire Anemometer Turbulence Measurements in the wind Tunnel of LM Wind Power

    DEFF Research Database (Denmark)

    Fischer, Andreas

    Flow measurements were carried out in the wind tunnel of LM Wind Power A/S with a Dantec Streamline CTA system to characterize the flow turbulence. Besides the free tunnel flow with empty test section we also investigated the tunnel flow when two grids with different mesh size were introduced dow...

  18. The effects of feedback amplifier characteristics on constant temperature hot-wire anemometer systems

    Science.gov (United States)

    Watmuff, J. H.

    1989-01-01

    The 3rd-order analysis of Perry and Morrison (1971) was extended to 7th-order by Watmuff (1987) by including both the bridge-capacitance and the frequency-response characteristics of the feedback amplifier. In this paper, the bridge capacitance has been excluded from the analysis. The influence of the gain K, roll-off frequency f(A), and offset voltage E(qi) of the feedback amplifier are examined in more detail together with their interactions with the bridge inductance.

  19. Cantilever anemometer based on a superconducting micro-resonator: application to superfluid turbulence.

    Science.gov (United States)

    Salort, J; Monfardini, A; Roche, P-E

    2012-12-01

    We present a new type of cryogenic local velocity probe that operates in liquid helium (1 K < T < 4.2 K) and achieves a spatial resolution of ≈ 0.1 mm. The operating principle is based on the deflection of a micro-machined silicon cantilever which reflects the local fluid velocity. Deflection is probed using a superconducting niobium micro-resonator sputtered on the sensor and used as a strain gauge. We present the working principle and the design of the probe, as well as calibration measurements and velocity spectra obtained in a turbulent helium flow above and below the superfluid transition.

  20. Measurement of air velocity in animal occupied zones using an ultrasonic anemometer

    NARCIS (Netherlands)

    Wagenberg, van A.V.; Leeuw, de M.T.J.

    2003-01-01

    The air velocity in the animal occupied zone (AOZ) of a pig facility influences the thermal comfort of pigs and is affected by the ventilation system in the building. Little is known about the relationship between the air velocity in the AOZ and the ventilation system design. This article describes

  1. Laser Doppler anemometer measurements of pulsatile flow in a model carotid bifurcation.

    Science.gov (United States)

    Ku, D N; Giddens, D P

    1987-01-01

    Hemodynamics at the human carotid bifurcation is important to the understanding of atherosclerotic plaque initiation and progression as well as to the diagnosis of clinically important disease. Laser Doppler anemometry was performed in a large scale model of an average human carotid. Pulsatile waveforms and physiologic flow divisions were incorporated. Disturbance levels and shear stresses were computed from ensemble averages of the velocity waveform measurements. Flow in the common carotid was laminar and symmetric. Flow patterns in the sinus, however, were complex and varied considerably during the cycle. Strong helical patterns and outer wall flow separation waxed and waned during each systole. The changing flow patterns resulted in an oscillatory shear stress at the outer wall ranging from -13 to 9 dyn cm-2 during systole with a time-averaged mean of only -0.5 dyn cm-2. This contrasts markedly with an inner wall shear stress range of 17-50, (mean 26) dyn cm-2. The region of transient separation was confined to the carotid sinus outer wall with no reverse velocities detected in the distal internal carotid. Notable disturbance velocities were also time-dependent, occurring only during the deceleration phase of systole and the beginning of diastole. The present pulsatile flow studies have aided in identifying hemodynamic conditions which correlate with early intimal thickening and predict the physiologic level of flow disturbances in the bulb of undiseased internal carotid arteries.

  2. Influence of red blood cell concentrations on the measurement of turbulence using hot-film anemometer.

    Science.gov (United States)

    Sallam, A M; Hwang, N H

    1983-11-01

    Measurement of local velocity fluctuations was made with an L-shaped conical hot-film probe in a submerged circular jet. The experiment was carried out in solutions of washed human red blood cells (RBC) in a phosphate buffer solution (PBS), at hematocrit concentrations (Ht percent) of 10, 19, 29, and 38 percent. The viscosity of the testing solutions was kept at 3.2 c.p. by adding proper amount of dextran. The experiment was conducted at Reynolds numbers (NR) 674, 963, 1255 and 1410, based on the jet exit velocity and exit diameter. Statistical analyses were performed on the recorded instantaneous velocity signals to obtain the root-mean-square (rms) values, the probability density functions (PDF) and the power spectral density functions (PSDF) of the signals. Within the range tested, we noticed an incidental rise in rms values at 19 to 29 Ht percent for NR = 963 similar to those reported earlier in the literature. Further analyses using PDF and PSDF, however, showed neither a trend nor any physical significance of this rise. Based on the analyses of both the PDF and the PSDF, we believe that the incidental rise in rms value can be partially attributed to the high spikes registered by the probe in a high RBC concentrations fluid flow. The bombardment of RBC on the probe thermal boundary layer may cause a characteristic change in the probe response to certain flow phenomenon, at least within the Reynolds number range used in this study.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Measurement of gas flow velocity: anemometer with a vibrating hot wire.

    Science.gov (United States)

    Kiełbasa, Jan

    2010-01-01

    I propose a new method to measure velocity of a gas flow, which utilizes the time derivative of the voltage observed on a vibrating hot-wire sensor. The wire vibrates with an amplitude a and a frequency f, and is kept perpendicular to the gas flow direction in the plane containing the flow velocity vector v(g). When the parameters of vibrations are tuned, the number of zeros per vibration period of the hot-wire voltage function changes. I demonstrate that at the point of change, the unknown gas velocity is directly expressed by the parameters of vibrations v(g)=2pifa. Therefore, the velocity can be measured without any prior calibration of the hot-wire speed-voltage curve and the method can be used for gases of slowly changing temperature or composition.

  4. Note: Improving long-term stability of hot-wire anemometer sensors by means of annealing.

    Science.gov (United States)

    Lundström, H

    2015-08-01

    Annealing procedures for hot-wire sensors of platinum and platinum-plated tungsten have been investigated experimentally. It was discovered that the two investigated sensor metals behave quite differently during the annealing process, but for both types annealing may improve long-term stability considerably. Measured drift of sensors both without and with prior annealing is presented. Suggestions for suitable annealing temperatures and times are given.

  5. Tensosensitivity of the Hot-Wire Probe

    National Research Council Canada - National Science Library

    Pak, A

    2002-01-01

    ...., on the anemometer type. In a constant current anemometer, it is possible to measure and separate out the noise moving to the electric circuit of the anemometer, it is not the case with hot-wire anemometers of other types...

  6. Investigation of noise in Lightwave Synthesized Frequency Sweeper seeded LIDAR anemometers from leakage through the Acousto Optic Modulators

    DEFF Research Database (Denmark)

    Pedersen, Anders Tegtmeier; Lindelöw, Per Jonas Petter

    2009-01-01

    Train (FSPT) modulated lidars the leakage will give rise to rapidly growing noise in the bins which corresponds to the signal from low radial wind velocities. It is likely that noise canceling techniques similar to those used for RIN removal has to be deployed for measurements of low wind velocities....

  7. The improvement of the hot-wire anemometer measurement procedure in the LP stage of a full scale steam turbine

    Czech Academy of Sciences Publication Activity Database

    Jonáš, Pavel; Mazur, Oton; Řehák, Vratislav; Uruba, Václav

    2003-01-01

    Roč. 43, č. 113 (2003), s. 191-200 ISSN 0079-3205. [International conference on Turbines of Large Output. Gdańsk, 22.09.2003-24.09.2003] R&D Projects: GA AV ČR IBS2076010; GA ČR GA101/01/0449 Institutional research plan: CEZ:AV0Z2076919 Keywords : CTA anemometry * wet-steam flow structure * LP-stage of full scale turbine Subject RIV: BK - Fluid Dynamics

  8. Three-dimensional visualization of velocity profiles in the ascending aorta in dogs, measured with a hot-film anemometer.

    Science.gov (United States)

    Paulsen, P K; Hasenkam, J M

    1983-01-01

    Three-dimensional blood velocity profiles were registered in the ascending aorta of dogs approximately 2 and 5 cm above the aortic valves by means of constant temperature hot-film anemometry. The velocity was measured at 41 predetermined points of measurement evenly distributed over the cross-sectional area. Later data analyses using a three-dimensional plotting system, visualized velocity profiles at 200 time intervals during one mean heart cycle. The overall appearance of the profiles was that of a flat transitional flow with a slight skewness. The highest velocity was found nearer to the posterior and left vessel wall. The skewness started during top systole and persisted to the beginning of diastole. Furthermore, many small velocity fluctuations were seen during top systole, but they might also be caused by secondary rotational flow phenomena. This new three-dimensional and dynamic method for visualizing velocity profiles seems to offer advantages, as it demonstrates the total velocity profile all over the cross-sectional area.

  9. Investigation of optical turbulence in the atmospheric surface layer using scintillometer measurements along a slant path and comparison to ultrasonic anemometer measurements

    CSIR Research Space (South Africa)

    Sprung, D

    2014-09-01

    Full Text Available and Fast Fourier transformation on the data. For wavelengths in the visible and near infrared CT² is proportional Cn 2 and Cn 2 can be determined using following formula 13 22 2 62 )102.79( Tn CT pC   (3... increased again and reached values of Cn 2 of about 5 *10-13 m-2/3. After that time the optical turbulence mostly stayed below 2*10-13 m-2/3. Close to the ground at this measurement height the turbulence seemed to be intermittent, expressed by the strong...

  10. A micro-scale hot wire anemometer based on low stress (Ni/W) multi-layers deposited on nano-crystalline diamond for air flow sensing

    Czech Academy of Sciences Publication Activity Database

    Talbi, A.; Gimeno, L.; Gerbedoen, J.-C.; Viard, R.; Soltani, A.; Mortet, Vincent; Preobrazhensky, V.; Merlen, A.; Pernod, P.

    2015-01-01

    Roč. 25, č. 2 (2015), s. 1-8, č. článku 125029. ISSN 0960-1317 Institutional support: RVO:68378271 Keywords : hot wire * nano-crystalline diamond * active flow control * anemometry Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.768, year: 2015

  11. Acoustic and Laser Doppler Anemometer Results for Confluent, 22-Lobed, and Unique-Lobed Mixer Exhaust Systems for Subsonic Jet Noise Reduction

    Science.gov (United States)

    Salikuddin, M.; Martens, S.; Shin, H.; Majjigi, R. K.; Krejsa, Gene (Technical Monitor)

    2002-01-01

    The objective of this task was to develop a design methodology and noise reduction concepts for high bypass exhaust systems which could be applied to both existing production and new advanced engine designs. Special emphasis was given to engine cycles with bypass ratios in the range of 4:1 to 7:1, where jet mixing noise was a primary noise source at full power takeoff conditions. The goal of this effort was to develop the design methodology for mixed-flow exhaust systems and other novel noise reduction concepts that would yield 3 EPNdB noise reduction relative to 1992 baseline technology. Two multi-lobed mixers, a 22-lobed axisymmetric and a 21-lobed with a unique lobe, were designed. These mixers along with a confluent mixer were tested with several fan nozzles of different lengths with and without acoustic treatment in GEAE's Cell 41 under the current subtask (Subtask C). In addition to the acoustic and LDA tests for the model mixer exhaust systems, a semi-empirical noise prediction method for mixer exhaust system is developed. Effort was also made to implement flowfield data for noise prediction by utilizing MGB code. In general, this study established an aero and acoustic diagnostic database to calibrate and refine current aero and acoustic prediction tools.

  12. Acoustic and Laser Doppler Anemometer Results for Confluent and 12-Lobed E(exp 3) Mixer Exhaust Systems for Subsonic Jet Noise Reduction

    Science.gov (United States)

    Salikuddin, M.; Babbit, R. R.; Shin, H.; Wisler, S.; Janardan, B. A.; Majjigi, R. K.; Bridges, James (Technical Monitor)

    2002-01-01

    The research described in this report has been funded by NASA Glenn Research Center as part of the Advanced Subsonic Technologies (AST) initiative. The program operates under the Large Engine Technologies (LET) as Task Order #3 1. Task Order 31 is a three year research program divided into three subtasks. Subtask A develops the experimental acoustic and aerodynamic subsonic mixed flow exhaust system databases. Subtask B seeks to develop and assess CFD-based aero-acoustic methods for subsonic mixed flow exhaust systems. Subtask B relies on the data obtained from Subtask A to direct and calibrate the aero-acoustic methods development. Subtask C then seeks to utilize both the aero-acoustic data bases developed in Subtask A and the analytical methods developed in Subtask B to define improved subsonic mixed-flow exhaust systems. The mixed flow systems defined in Subtask C will be experimentally demonstrated for improved noise reduction in a scale model aero-acoustic test conducted similarly to the test performed in Subtask A. The overall object of this Task Order is to develop and demonstrate the technology to define a -3EPNdB exhaust system relative to 1992 exhaust system technology.

  13. Impact of assimilating met-tower, turbine nacelle anemometer and other intensified wind farm observation systems on 0 - 12h wind energy prediction using the NCAR WRF-RTFDDA model

    Science.gov (United States)

    Liu, Y.; Cheng, W.; Liu, Y. W.; Wiener, G.; Frehlich, R.; Mahoney, W.; Warner, T.; Himelic, J.; Parks, K.; Early, S.

    2010-09-01

    In collaboration with Xcel Energy and Vasaila Inc., the National Center for Atmospheric Research (NCAR) conducts modeling study to evaluate the existing and the enhanced intensive observation systems for wind power nowcasting and short-range forecasting at a northern Colorado wind farm. The NCAR WRF (Weather Research and Forecasting model) based Real-Time Four-Dimensional Data Assimilation (RTFDDA) and forecasting system, which has been employed to support Xcel Energy operational wind forecast, was used in this study. The observational data include ten met-towers, a 915Hz wind profiler, a sodar and a Windcube Doppler lidar, besides the in-farm met-towers and wind speed and power reports from more than 300 of wind turbines. The WRF-RTFDDA 4-dimensioanl data assimilation algorithm allows to spread and propagate observation information in the WRF model space (x, y, z and time) with weighting functions built according to the observation location and time. The WRF-RTFDDA was set up to run with four nested domains with grid increments of 30, 10, 3.333 and 1.111km respectively. The standard and diverse non-conventional observations are assimilated on coarse grid domains along with the special wind farm observations. In this study, we investigate a) spread of surface observations in PBL according to PBL depth and regimes, b) optimization of horizontal influence radii and steep-terrain adjustment, and c) impact of different observation platforms and data types on 0 - 12 h wind prediction . It is found that PBL mixing and thermodynamic structures are greatly influenced by the PBL parameterization formulation. The range of the data assimilation effect on forecasts relies on weather and PBL regimes. In most cases, assimilation of in-farm and near-farm observations improves up to 12-hour wind power prediction and assimilation of in-farm data can significantly improves 0 - 6 hour forecasts.

  14. Velocity Measurement Systems for a Low-speed Wind Tunnel

    Science.gov (United States)

    2015-04-29

    SECURITY CLASSIFICATION OF: Funds were provided by the ARO for the purchase of TSI hot-wire anemometer equipment and a Dantec particle- image...Velocity Measurement Systems for a Low-speed Wind Tunnel Report Title Funds were provided by the ARO for the purchase of TSI hot-wire anemometer equipment...Funds were provided by the Army Research Office for the purchase of TSI hot-wire anemometer equipment and a Dantec particle-image velocimetry system

  15. Wind measurements for wind energy applications. A review

    DEFF Research Database (Denmark)

    Mortensen, N.G.

    1994-01-01

    A review is given of the error sources and uncertainties in cup and sonic anemometry. In both cases the effects of the tower, boom and other mounting arrangements, as well as the siting of the anemometer, should be considered carefully. Cup anemometer measurements are inherently biased due...... to the turbulent nature of the wind, but these errors can be neglected in many applications if a well-designed, fast-responding anemometer is used. The response characteristics of sonic anemometers are fairly complicated. Based on wind tunnel investigations and field comparisons some of the associated errors...

  16. Design and Study of a Low-Cost Laboratory Model Digital Wind Power Meter

    Science.gov (United States)

    Radhakrishnan, Rugmini; Karthika, S.

    2010-01-01

    A vane-type low-cost laboratory model anemometer cum power meter is designed and constructed for measuring low wind energy created from accelerating fluids. The constructed anemometer is a device which records the electrical power obtained by the conversion of wind power using a wind sensor coupled to a DC motor. It is designed for its…

  17. On the influence of spatial heterogeneity on an internal boundary ...

    Indian Academy of Sciences (India)

    solar radiation (short wave-incoming, short wave- reflected, long wave-incoming, long wave-outgoing) and a Gill propeller anemometer mounted at. 5m height measures the three wind compo- nents. The data from the slow instruments, viz., wind speed (cup anemometer), direction (vane), air temperature (PT1000), humidity ...

  18. Full-Scale Spectrum of Boundary-Layer Winds

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Larsen, Søren Ejling; Lundtang Petersen, Erik

    2016-01-01

    Extensive mean meteorological data and high frequency sonic anemometer data from two sites in Denmark, one coastal onshore and one offshore, have been used to study the full-scale spectrum of boundary-layer winds, over frequencies f from about 1 yr−1 to10 Hz. 10-min cup anemometer data are used t...

  19. How well can we measure the vertical wind speed? Implications for fluxes of energy and mass

    Science.gov (United States)

    John Kochendorfer; Tilden P. Meyers; John Frank; William J. Massman; Mark W. Heuer

    2012-01-01

    Sonic anemometers are capable of measuring the wind speed in all three dimensions at high frequencies (10­50 Hz), and are relied upon to estimate eddy-covariance-based fluxes of mass and energy over a wide variety of surfaces and ecosystems. In this study, wind-velocity measurement errors from a three-dimensional sonic anemometer with a nonorthogonal transducer...

  20. Inertial-Dissipation flux measurements over south Bay of Bengal ...

    Indian Academy of Sciences (India)

    The data were collected on ORV Sagar Kanya during BOBMEX-Pilot cruise during the period 23rd October 1998 to 12th November 1998 over south Bay of Bengal. The fluxes are estimated using the data collected through fast response sensors namely Gill anemometer, Sonic anemometer and IR Hygrometer. In this paper ...

  1. Wind turbine power performance measurement with the use of spinner anemometry

    DEFF Research Database (Denmark)

    Demurtas, Giorgio

    The spinner anemometer was patented by DTU in 2004 and licenced to ROMO Wind in 2011. By 2015 the spinner anemometer was installed on several hundred wind turbines for yaw misalignment measurements. The goal of this PhD project was to investigate the feasibility of use of spinner anemometry...... is now used as default in commercial calibrations. To evaluate the power performance of a wind turbine with the use of spinner anemometry, an experiment was organized in collaboration with Romo Wind and Vattenfall. A met-mast was installed close to two wind turbines equipped with spinner anemometers...

  2. Aerodynamical errors on tower mounted wind speed measurements due to the presence of the tower

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, H. [Uppsala Univ. (Sweden). Dept. of Meteorology; Dahlberg, J.Aa. [Aeronautical Research Inst. of Sweden, Bromma (Sweden)

    1996-12-01

    Field measurements of wind speed from two lattice towers showed large differences for wind directions where the anemometers of both towers should be unaffected by any upstream obstacle. The wind speed was measured by cup anemometers mounted on booms along the side of the tower. A simple wind tunnel test indicates that the boom, for the studied conditions, could cause minor flow disturbances. A theoretical study, by means of simple 2D flow modelling of the flow around the mast, demonstrates that the tower itself could cause large wind flow disturbances. A theoretical study, based on simple treatment of the physics of motion of a cup anemometer, demonstrates that a cup anemometer is sensitive to velocity gradients across the cups and responds clearly to velocity gradients in the vicinity of the tower. Comparison of the results from the theoretical study and field tests show promising agreement. 2 refs, 8 figs

  3. Wind Data from Kennedy Airport

    National Research Council Canada - National Science Library

    Abramson, Steve

    1997-01-01

    .... Although the original purpose for the anemometers was to track the lateral position of wake vortices, the measurements also provide a database of wind and turbulence that can be used for other purposes...

  4. Wind Data from Memphis Airport

    National Research Council Canada - National Science Library

    Burnham, David

    1997-01-01

    .... Although the original purpose for the anemometers was to track the lateral position of wake vortices, the measurements also provide a database of wind and turbulence that can be used for other purposes...

  5. Automatic tracking of wake vortices using ground-wind sensor data

    Science.gov (United States)

    1977-01-03

    Algorithms for automatic tracking of wake vortices using ground-wind anemometer : data are developed. Methods of bad-data suppression, track initiation, and : track termination are included. An effective sensor-failure detection-and identification : ...

  6. Acoustic and wind speed data analysis as an environmental issue

    International Nuclear Information System (INIS)

    Whitson, R.J.; MacKinnon, A.

    1995-01-01

    This paper examines how the output from a cup anemometer, used for wind speed measurement, can be recorded on magnetic tape and analysed using instrumentation normally employed to measure acoustic data. The purpose of this being to allow true simultaneous analysis of acoustic and wind speed data. NEL's NWTC (National Wind Turbine Centre) Anemometer Calibration Facility is used to compare pulsed and analogue outputs from a typical anemometer to the data obtained from a pitot/static tube for a range of different wind speeds. The usefulness of 1/24- and 1/12-octave analysis is examined and accuracy limits are derived for the 'acoustic' approach to wind speed measurement. The allowable positions for anemometer locations are also discussed with reference to currently available standards and recommended practices. (Author)

  7. Distributed Anemometry via High-Definition Fiber Optic Sensing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna is developing a distributed anemometer that can directly measure flow field velocity profiles using high-definition fiber optic sensing (HD-FOS). The concept is...

  8. Experimental Investigation of Pitch Control Enhancement to the Flapping Wing Micro Air Vehicle

    National Research Council Canada - National Science Library

    Kian, Chin C

    2006-01-01

    .... The MAV without the main fixed-wing is placed in a laminar flow field within a low speed wind tunnel with the wake after the flapping wings characterized with a constant temperature anemometer...

  9. Turbulence Instrumentation for Stratospheric Airships

    National Research Council Canada - National Science Library

    Duell, Mark L; Saupe, Lawrence M; Barbeau, Brent E; Robinson, Kris D; Jumper, George Y

    2007-01-01

    .... The High Altitude Airship is designed to investigate these phenomena. In order to sense atmospheric turbulence at altitudes of the expected flight of the High Altitude Airship of around 65,000ft, a prototype ionic anemometer was constructed...

  10. A Method to Estimate Local Towed Array Angles Using Flush Mounted Hot Film Wall Shear Sensors

    National Research Council Canada - National Science Library

    Keith, William L; Cipolla, Kimberly M

    2008-01-01

    A towed array is provided with hot-film sensors and anemometer circuitry to calculate the angle of inclination of the towed array in real time during deployment of the towed array in a sea water environment...

  11. Accurate Monitoring and Fault Detection in Wind Measuring Devices through Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Komal Saifullah Khan

    2014-11-01

    Full Text Available Many wind energy projects report poor performance as low as 60% of the predicted performance. The reason for this is poor resource assessment and the use of new untested technologies and systems in remote locations. Predictions about the potential of an area for wind energy projects (through simulated models may vary from the actual potential of the area. Hence, introducing accurate site assessment techniques will lead to accurate predictions of energy production from a particular area. We solve this problem by installing a Wireless Sensor Network (WSN to periodically analyze the data from anemometers installed in that area. After comparative analysis of the acquired data, the anemometers transmit their readings through a WSN to the sink node for analysis. The sink node uses an iterative algorithm which sequentially detects any faulty anemometer and passes the details of the fault to the central system or main station. We apply the proposed technique in simulation as well as in practical implementation and study its accuracy by comparing the simulation results with experimental results to analyze the variation in the results obtained from both simulation model and implemented model. Simulation results show that the algorithm indicates faulty anemometers with high accuracy and low false alarm rate when as many as 25% of the anemometers become faulty. Experimental analysis shows that anemometers incorporating this solution are better assessed and performance level of implemented projects is increased above 86% of the simulated models.

  12. High resolution climatological wind measurements for wind energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, H. [Uppsala Univ. (Sweden). Dept. of Meteorology

    1996-12-01

    Measurements with a combined cup anemometer/wind vane instrument, developed at the Department of Meteorology in Uppsala, is presented. The instrument has a frequency response of about 1 Hz, making it suitable not only for mean wind measurements, but also for studies of atmospheric turbulence. It is robust enough to be used for climatological purposes. Comparisons with data from a hot-film anemometer show good agreement, both as regards standard deviations and the spectral decomposition of the turbulent wind signal. The cup anemometer/wind vane instrument is currently used at three sites within the Swedish wind energy research programme. These measurements are shortly described, and a few examples of the results are given. 1 ref, 10 figs

  13. Hot film wall shear instrumentation for compressible boundary layer transition research

    Science.gov (United States)

    Schneider, Steven P.

    1992-01-01

    Experimental and analytical studies of hot film wall shear instrumentation were performed. A new hot film anemometer was developed and tested. The anemometer performance was not quite as good as that of commercial anemometers, but the cost was much less and testing flexibility was improved. The main focus of the project was a parametric study of the effect of sensor size and substrate material on the performance of hot film surface sensors. Both electronic and shock-induced flow experiments were performed to determine the sensitivity and frequency response of the sensors. The results are presented in Michael Moen's M.S. thesis, which is appended. A condensed form of the results was also submitted for publication.

  14. Sonic anemometry of planetary atmospheres

    Science.gov (United States)

    Cuerva, Alvaro; Sanz-Andrés, Angel; Lorenz, Ralph D.

    2004-02-01

    Sonic anemometers are robust, fast and reliable wind sensors which are able to measure the complete wind speed vector at high sampling rates. All these characteristics make sonic anemometers to be ideal candidates for atmospheric applications. Since sonic anemometers have not moving parts and they can be designed to have loss mass and power consumption, they have become adequate for planetary exploration purposes, both for atmosphere studies and for flying robot control. However, some challenges must be undertaken before implementing their use. Problems such as sound attenuation in different atmospheres, sensor/air acoustic impedance matching as well as flow/fluid dependence of sonic measurements have to be considered when these sensors are used in other atmospheres.

  15. Atmospheric turbulence affects wind turbine nacelle transfer functions

    Directory of Open Access Journals (Sweden)

    C. M. St. Martin

    2017-06-01

    Full Text Available Despite their potential as a valuable source of individual turbine power performance and turbine array energy production optimization information, nacelle-mounted anemometers have often been neglected because complex flows around the blades and nacelle interfere with their measurements. This work quantitatively explores the accuracy of and potential corrections to nacelle anemometer measurements to determine the degree to which they may be useful when corrected for these complex flows, particularly for calculating annual energy production (AEP in the absence of other meteorological data. Using upwind meteorological tower measurements along with nacelle-based measurements from a General Electric (GE 1.5sle model, we calculate empirical nacelle transfer functions (NTFs and explore how they are impacted by different atmospheric and turbulence parameters. This work provides guidelines for the use of NTFs for deriving useful wind measurements from nacelle-mounted anemometers. Corrections to the nacelle anemometer wind speed measurements can be made with NTFs and used to calculate an AEP that comes within 1 % of an AEP calculated with upwind measurements. We also calculate unique NTFs for different atmospheric conditions defined by temperature stratification as well as turbulence intensity, turbulence kinetic energy, and wind shear. During periods of low stability as defined by the Bulk Richardson number (RB, the nacelle-mounted anemometer underestimates the upwind wind speed more than during periods of high stability at some wind speed bins below rated speed, leading to a steeper NTF during periods of low stability. Similarly, during periods of high turbulence, the nacelle-mounted anemometer underestimates the upwind wind speed more than during periods of low turbulence at most wind bins between cut-in and rated wind speed. Based on these results, we suggest different NTFs be calculated for different regimes of atmospheric stability and turbulence

  16. Inter comparison of two commercially available SODARS

    DEFF Research Database (Denmark)

    Ejsing Jørgensen, Hans; Antoniou, I.

    2002-01-01

    In the present work two SODARs of the phased array type are compared indirectly using the top anemometer readings from the Risoe 125m instrumented meteorology mast. The two SODARs are the AeroVironment 4000 and the Metek DSDPA.90-24.......In the present work two SODARs of the phased array type are compared indirectly using the top anemometer readings from the Risoe 125m instrumented meteorology mast. The two SODARs are the AeroVironment 4000 and the Metek DSDPA.90-24....

  17. A Tall-Tower Instrument for Mean and Fluctuating Velocity, Fluctuating Temperature and Sensible Heat Flux Measurements

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Thomson, D. W.

    1979-01-01

    For an ongoing elevated-source, urban-scale tracer experiment, an instrument system to measure the three-dimensional wind velocity and the turbulent sensible heat flux was developed. The wind velocity was measured with a combination of cup anemometer, propeller (vertical) and vane sensor. The tem......For an ongoing elevated-source, urban-scale tracer experiment, an instrument system to measure the three-dimensional wind velocity and the turbulent sensible heat flux was developed. The wind velocity was measured with a combination of cup anemometer, propeller (vertical) and vane sensor...

  18. Calibration of scanning Lidar

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Courtney, Michael

    This report describes the tests carried out on a scanning lidar at the DTU Test Station for large wind turbines, Høvsøre. The tests were divided in two parts. In the first part, the purpose was to obtain wind speed calibrations at two heights against two cup anemometers mounted on a mast. Additio......This report describes the tests carried out on a scanning lidar at the DTU Test Station for large wind turbines, Høvsøre. The tests were divided in two parts. In the first part, the purpose was to obtain wind speed calibrations at two heights against two cup anemometers mounted on a mast...

  19. Flow tilt angles near forest edges - Part 1: Sonic anemometry

    DEFF Research Database (Denmark)

    Dellwik, Ebba; Mann, Jakob; Larsen, Klaus Steenberg

    2010-01-01

    An analysis of flow tilt angles from a fetch-limited beech forest site with clearings is presented in the context of vertical advection of carbon dioxide. Flow angles and vertical velocities from two sonic anemometers by different manufacturers were analyzed. Instead of using rotations, where zero...... distortion and vertical alignment, it was only possible to a limited extent to relate sonic anemometer flow tilt angles to upwind forest edges, but the results by the lidar indicated that an internal boundary layer affect flow tilt angles at 21m above the forest. This is in accordance with earlier studies...

  20. Comparison test of WLS200S-22 (Final)

    DEFF Research Database (Denmark)

    Wagner, Rozenn

    This report presents the result of the test on a sector scanning Windcube WLS200S simulating offshore measurements from a coastal site. A comparison is made between the lidar measurements and those of a cup anemometer and a vane mounted on an on-shore met mast at a distance of 1.6 km.......This report presents the result of the test on a sector scanning Windcube WLS200S simulating offshore measurements from a coastal site. A comparison is made between the lidar measurements and those of a cup anemometer and a vane mounted on an on-shore met mast at a distance of 1.6 km....

  1. Evaluation Of Wind Energy Potential In Zaria Metropolis | Olatunji ...

    African Journals Online (AJOL)

    Meteorological data were acquired from the Nigerian College of Aviation Technology Zaria. The station is located at Longitude 07o 41' E, Latitude 11o08' N and elevation of 686 m above sea level. Diurnal wind speeds and directions were recorded with Wind Vane and Anemometer from 1995 through 2004. The readings ...

  2. Analysis of Signal-to-Noise Ratio of the Laser Doppler Velocimeter

    DEFF Research Database (Denmark)

    Lading, Lars

    1973-01-01

    The signal-to-shot-noise ratio of the photocurrent of a laser Doppler anemometer is calculated as a function of the parameters which describe the system. It is found that the S/N is generally a growing function of receiver area, that few large particles are better than many small ones, and that g...

  3. Addressing Spatial Variability of Surface-Layer Wind with Long-Range WindScanners

    DEFF Research Database (Denmark)

    Berg, Jacob; Vasiljevic, Nikola; Kelly, Mark C.

    2015-01-01

    This paper presents an analysis of mean wind measurements from a coordinated system of long-range WindScanners. From individual scan patterns the mean wind field was reconstructed over a large area, and hence it highlights the spatial variability. From comparison with sonic anemometers, the quality...

  4. EffeCts of Direct sUn Drying of Maize Grains on Perforated and ...

    African Journals Online (AJOL)

    cup anemometer (M/16008, CASSELA, LON-. DON), ambient temperature by mercury-in-glass thennometer and relative humidity by'measuring wet-bulb and dry-bulb temperatures using a'sling hygrometer. All the parameters were measured for both simulated and field coilditioI}s except wind velocity that was measured ...

  5. Untitled

    Indian Academy of Sciences (India)

    Was measured by a hot-wire anemometer and occasionally checked using a pitot tube manometer. The second air bearing system was used during these tests. The effectiveness of the damper in suppressing rigid body rotational motion in one degree of freedom is similar to the two-dimensional plunging motion in spite of.

  6. Assessment of Air Quality and Noise around Okrika Communities ...

    African Journals Online (AJOL)

    The quality of air and noise levels around Okirika communities in River State were determined using portable hand held air monitors for air pollutants and anemometer for meteorological parameters. The parameters measured were suspended particulate matter, nitrogen dioxide, sulphur dioxide, hydrogen sulphide, ...

  7. The Frequency of Growing Season Frost in the Subalpine Environment (Medicine Bow Mountains, Southeastern Wyoming), The Interaction of Leaf Morphology and Infrared Radiational Cooling and the Effects of Freezing on Native Vegetation

    Science.gov (United States)

    1995-05-01

    inexpensive heated thermistor anemometer. Agric For Meteorol 8:395-405 Billings WD 1969. Vegetational pattern near timberline as affected by fire -snowdrift...Morawetz W and Gottsberger G 1977. Frost damage of cerrado plants in Botucatu, Brazil, as related to the geographical distribution of the species

  8. Analysis of Ground-Wind Vortex Sensing System Data from O'Hare International Airport

    Science.gov (United States)

    1980-09-01

    From July 1976 through September 1977, aircraft wake vortex data were collected on the approach to runways 14R, 27R, and 32L at O'Hare International Airport. The vortices from over 21,000 aircraft were tracked using the propeller anemometer Ground-Wi...

  9. Wind data from Kennedy Airport

    Science.gov (United States)

    1997-06-01

    A 700-foot array of horizontal and vertical single-axle anemometers was installed at New York's Kennedy Airport on 30-foot poles under the approach to Runway 31R. One-minute average measurements were recorded continuously, with a few breaks, from Sep...

  10. Wind data from Memphis airport

    Science.gov (United States)

    1997-06-01

    A 1300-foot array of horizontal and vertical single-axis anemometers was installed at the Memphis, TN Airport on 10- and 13-foot poles under the approach to Runway 727. One-minute average measurements were recorded continuously from mid August 1995 t...

  11. Experimental and theoretical study of the atmospheric boundary layer over the paris area; Etude experimentale et theorique de la couche limite atmospherique en agglomeration parisienne

    Energy Technology Data Exchange (ETDEWEB)

    Menut, L

    1997-12-15

    This thesis studied the urban boundary layer dynamic behaviour over the Paris area by comparing urban (Paris) and suburban (Palaiseau) dynamic data such as lidars, sodars, sonic anemometers. All the data were obtained during the ECLAP experiment, specifically performed to characterize the differences between a city and its near environment. (author)

  12. Low-energy house in Sisimiut - Measurement equipment

    DEFF Research Database (Denmark)

    Andersen, Philip Hvidthøft Delff; Rode, Carsten; Madsen, Henrik

    on the power generated by the solar thermal system. A weather station equipped with thermometer, pyranometer and anemometer is installed on the building as well. Finally, it is described how to retrieve data from an SQL server which is configured to take monthly backups. R functions have been implemented...

  13. Alternative methods of estimating hub-height wind speed for small wind turbine performance evaluation

    Science.gov (United States)

    Ziter, Brett

    Current industry standards for evaluating wind turbine power performance require erecting a meteorological mast on site to obtain reference measurements of hub-height wind speed. New considerations for small wind turbines (SWTs) offer the alternative of using an anemometer extending from a lower elevation on the turbine tower. In either case, SWT owners face questions and impracticalities when applying this standard in-situ. Alternative methods of predicting hub-height wind speed for SWT performance evaluation have been assessed experimentally using a Bergey XL.1 SWT collocated with a meteorological mast. Findings indicate that vertical extrapolation can increase the accuracy of tower-mounted anemometry for predicting hub-height wind speed. It is recommended to use concurrent wind speed measurements from anemometers at two elevations to develop site-specific wind shear parameters. Three-dimensional wind speed data from a sonic anemometer were used alongside a theoretical model to determine the optimal location for the topmost anemometer but results were inconclusive.

  14. Evaluation of the watchdog weather station to reduce drift from MDOT spray trucks.

    Science.gov (United States)

    2015-09-01

    Wind speed data collected with the Spectrum Watchdog Sprayer Station were compared to data : recorded with a Young 05103-5 anemometer at the Rodney R. Foil Plant Science Research : Center on the Mississippi State University campus June and July, 2014...

  15. The calibration of (multi-) hot-wire probes. 1. Temperature calibration

    NARCIS (Netherlands)

    Dijk, van A.; Nieuwstadt, F.T.M.

    2004-01-01

    We study the performance of the classical relation for the correction for ambient temperature drift of the signal of a hot-wire anemometer and the influence of practical assumptions. It is shown that most methods to estimate the operational temperature via the temperature/resistance coefficient lead

  16. Extension of PIRATA in the tropical South-East Atlantic: an initial one ...

    African Journals Online (AJOL)

    ... as an anemometer, air temperature, humidity and short-wave solar radiation probes, and a rain gauge. The initial results from the first year of data collected by the buoy are presented with a view to providing scientific and societal motivation for the continuation of the extension of PIRATA in the tropical South-East Atlantic.

  17. LBA-ECO CD-10 CO2 Profiles at km 67 Tower Site, Tapajos National Forest

    Data.gov (United States)

    National Aeronautics and Space Administration — Eddy fluxes of CO2 and H2O are measured at two levels (58m and 47m) using tower-mounted closed-path Licor 6262 analyzers and Campbell CSAT3 sonic anemometers. A...

  18. Comparison of slant-path scintillometry, sonic anemometry and high-speed videography for vertical profiling of turbulence in the atmospheric surface layer

    CSIR Research Space (South Africa)

    Griffith, DJ

    2013-09-01

    Full Text Available of techniques as well as to obtain representative turbulence profile data for temperate grassland. A key element of the experimental layout is to place a sonic anemometer 15 m above ground at the centre of a 1 km slant-path extending from ground level to a...

  19. Telltale wind indicator for the Mars Phoenix lander

    DEFF Research Database (Denmark)

    Gunnlaugsson, H.P.; Honstein-Rathlou, C.; Merrison, J.P.

    2008-01-01

    The Telltale wind indicator is a mechanical anemometer designed to operate on the Martian surface as part of the meteorological package on the NASA Phoenix lander. It consists of a lightweight cylinder suspended by Kevlar fibers and is deflected under the action of wind. Imaging of the Telltale...

  20. Insensitivity of single particle time domain measurements to laser velocimeter 'Doppler ambiguity.'

    Science.gov (United States)

    Johnson, D. A.

    1973-01-01

    It is shown that single particle time domain measurements in high speed gas flows obtained by a laser velocimeter technique developed for use in wind tunnels are not affected by the so-called 'Doppler ambiguity.' A comparison of hot-wire anemometer and laser velocimeter measurements taken under similar flow conditions is used for the demonstration.

  1. Field test of an all-semiconductor laser-based coherent continuous-wave Doppler lidar for wind energy applications

    DEFF Research Database (Denmark)

    Sjöholm, Mikael; Dellwik, Ebba; Hu, Qi

    comparison campaigns with ultrasonic anemometer (METEK USA-1, Germany) measurements at a distance of about 80 meters from the lidar instrument. The influence of the finite spatial sampling volume at this range on the measured wind spectra is demonstrated. The sampling volume in the latest version...

  2. Towards airflow sensors with energy harvesting and wireless transmitting properties

    DEFF Research Database (Denmark)

    Blaszczyk, Tomasz; Sørensen, John Aasted; Lynggaard, Per

    2018-01-01

    to traditional anemometers, ultrasonic measurement or expensive LIDAR (Light Imaging, Detection and Ranging) systems. This paper presents the initial design considerations for a low-cost combined air speed and wind direction sensor, which harvests energy to drive it and to power the wireless transmission...

  3. Micrometeorological Characterization of the Mace Head Field Station during PARFORCE

    NARCIS (Netherlands)

    Kunz, G.J.; Leeuw, G. de

    2000-01-01

    Micrometeorological flux packages, consisting of 3D ultrasonic anemometers and an IR water vapour sensor, each sampling at a rate of 20 Hz, were used to characterise turbulent transport properties at the Mace Head Research Station during PARFORCE experiments in 1998 and 1999. Micrometeorological

  4. Spatial averaging-effects on turbulence measured by a continuous-wave coherent lidar

    DEFF Research Database (Denmark)

    Sjöholm, Mikael; Mikkelsen, Torben; Mann, Jakob

    2009-01-01

    -mounted sonic anemometer at 78 meters height over homogeneous terrain at the test station for large wind turbines at Høvsøre in Western Jutland, Denmark are presented for various backscattering and cloud conditions. Good agreement is found between lidar-measured spectra and spectra predicted by applying...

  5. Thermal flow micro sensors

    NARCIS (Netherlands)

    Elwenspoek, Michael Curt

    1999-01-01

    A review is given on sensors fabricated by silicon micromachining technology using the thermal domain for the measurement of fluid flow. Attention is paid especially to performance and geometry of the sensors. Three basic types of thermal flow sensors are discussed: anemometers, calorimetric flow

  6. Measurement of rotor centre flow direction and turbulence in wind farm environment

    DEFF Research Database (Denmark)

    Friis Pedersen, Troels; Demurtas, Giorgio; Sommer, A.

    2014-01-01

    The measurement of inflow to a wind turbine rotor was made with a spinner anemometer on a 2 MW wind turbine in a wind farm of eight wind turbines. The wind speed, yaw misalignment and flow inclination angle was measured during a five months measurement campaign. Angular measurements were calibrat...

  7. Flow Pattern in Ventilated Rooms with Large Depth and Width

    DEFF Research Database (Denmark)

    Yue, Zou; Nielsen, Peter V.

    In this paper both model experiments and Computational Fluid Dynamics (CFD) are employed to study the isothennal flow pattern in the ventilated room with different UH and inlet velocities. The maximum size of the model is 1.4* 0.72*0.0714m and the measurement is made by a Laser Doppler anemometer....

  8. Power curve investigation

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Vesth, Allan

    This report describes the analysis carried out with data from a given turbine in a wind farm and a chosen period. The purpose of the analysis is to correlate the power output of the wind turbine to the wind speed measured by a nacelle-mounted anemometer. The measurements and analysis are not perf...

  9. Inclined test of nacelle wind lidar

    DEFF Research Database (Denmark)

    Courtney, Michael

    A nacelle wind lidar, placed at ground level, is tested by inclining the laser beams to bisect a measurement mast at a known distance and height. The horizontal wind speed reported by the lidar is compared to a reference cup anemometer mounted on the mast at the comparison height....

  10. reduced-to-sea-level value of microwave radio refractivity over three ...

    African Journals Online (AJOL)

    Ogunjo Samuel

    In this study, in–situ measurement of atmospheric pressure, temperature and relative humidity using. Wireless Weather Stations ... Alausa et al: Transfer factor of radionuclides from soil-to-palm oil… www.njpap.futa.edu.ng. 20 .... dose, solar radiation, anemometer, the sensor interface module (SIM), among others.

  11. Measurements of Ocean Surface Turbulence and Wave-Turbulence Interactions (PREPRINT)

    Science.gov (United States)

    2008-02-19

    ßux data. The eddy covariance sys- tem included a three-axis anemometer/thermometer (Campbell CSAT 3), an open path infrared hygrometer/CO2 sensor...the original instrumentation. We thank the staff of the SIO Marine Development Shop for the fabrication of custom equipment. We thank Bill Gaines, Tom

  12. The Bolund experiment - design of measurement campaign using CFD

    DEFF Research Database (Denmark)

    Bechmann, Andreas; Johansen, Jeppe; Sørensen, Niels N.

    the upcoming measurement campaign. The simulation results are used for estimating rational positions of measuring masts and instrumentation. A total of ten measuring masts are proposed consisting of two 16 m masts, six 9 m masts and two 5 m masts. The masts are instrumented with 12 cup anemometers for mean...

  13. Measurement of cavitation induced wall shear stress

    NARCIS (Netherlands)

    Dijkink, R.J.; Ohl, C.D.

    2008-01-01

    The wall shear stress from cavitation bubbles collapsing close to a rigid boundary is measured with a constant temperature anemometer. The bubble is created with focused laser light, and its dynamics is observed with high-speed photography. By correlating the frames, a hydrophone signal, and the

  14. Flow distortion at a dense forest edge

    DEFF Research Database (Denmark)

    Dellwik, Ebba; Bingöl, Ferhat; Mann, Jakob

    2014-01-01

    The flow near tall forest edges is complex, yet poorly described. A field experiment using two meteorological masts equipped with sonic anemometers and a horizontally staring lidar was performed upwind and downwind of the interface between an open flat farmland and a tall (hc = 24 m) beech forest...

  15. On the length-scale of the wind profile

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Gryning, Sven-Erik; Mann, Jakob

    2010-01-01

    We present the results of an analysis of simultaneous sonic anemometer observations of wind speed and velocity spectra over flat and homogeneous terrain from 10 up to 160 m height performed at the National Test Station for Wind Turbines at Høvsøre, Denmark. The mixing length, l, derived from the ...

  16. Reply to comment by Mauder on "How well can we measure the vertical wind speed? Implications for fluxes of energy and mass"

    Science.gov (United States)

    John Kochendorfer; Tilden P. Meyers; John M. Frank; William J. Massman; Mark W. Heuer

    2013-01-01

    In Kochendorfer et al. (Boundary-Layer Meteorol 145:383-398, 2012, hereafter K2012) the vertical wind speed (w) measured by a non-orthogonal three-dimensional sonic anemometer was shown to be underestimated by 12%. Turbulent statistics and eddycovariance fluxes estimated using w were also affected by this underestimate in w. Methodologies used in K2012 are clarified...

  17. Spectral tensor parameters for wind turbine load modeling from forested and agricultural landscapes

    DEFF Research Database (Denmark)

    Chougule, Abhijit S.; Mann, Jakob; Segalini, A.

    2015-01-01

    A velocity spectral tensor model was evaluated from the single-point measurements of wind speed. The model contains three parameters representing the dissipation rate of specific turbulent kinetic energy, a turbulence length scale and the turbulence anisotropy. Sonic anemometer measurements taken...

  18. Variation of boundary-layer wind spectra with height

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Petersen, Erik L.; Larsen, Søren Ejling

    2018-01-01

    This study revisits the height dependence of the wind speed power spectrum from the synoptic scale to the spectral gap. Measurements from cup anemometers and sonics at heights of 15 m to 244 m are used. The measurements are from one land site, one coastal land‐based site and three offshore sites ...

  19. Generic Methodology for Field Calibration of Nacelle-Based Wind Lidars

    DEFF Research Database (Denmark)

    Borraccino, Antoine; Courtney, Michael; Wagner, Rozenn

    2016-01-01

    by the geometry of the scanning trajectory and the lidar inclination. The line-of-sight velocity is calibrated in atmospheric conditions by comparing it to a reference quantity based on classic instrumentation such as cup anemometers and wind vanes. The generic methodology was tested on two commercially developed...

  20. African Journal of Environmental Science and Technology - Vol 5 ...

    African Journals Online (AJOL)

    Development and calibration of a self-recording cup anemometer for wind speed measurement · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. JT Fasinmirin, PG Oguntunde, KO Ladipo, L Dalbianco, 212-217 ...

  1. The dependence of optical turbulence on thermal and mechanical forces over the sea

    NARCIS (Netherlands)

    Eijk, A.M.J. van; Sprung, D.; Sucher, E.; Eisele, C.; Seiffer, D.; Stein, K.

    2016-01-01

    Optical turbulence for over-water conditions was investigated in a long-term experiment over False Bay near Cape Town, South Africa. A sonic anemometer and two boundary-layer scintillometers were deployed to access in-situ turbulence as well as the integrated turbulence over two 1.8 and 8.7 km

  2. Aerodynamic characteristics of spruce forest stand - comparison of two methods

    Czech Academy of Sciences Publication Activity Database

    Hurtalová, T.; Havránková, Kateřina; Janouš, Dalibor; Matejka, F.

    2002-01-01

    Roč. 5, č. 3 (2002), s. 17-22 ISSN 1335-339X R&D Projects: GA ČR GA526/00/0485 Institutional research plan: CEZ:AV0Z6087904 Keywords : wind speed profile * sonic anemometer * friction velocity Subject RIV: DG - Athmosphere Sciences, Meteorology

  3. Author Details

    African Journals Online (AJOL)

    recording cup anemometer for wind speed measurement. Abstract PDF. ISSN: 1996-0786. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's Partners · Terms ...

  4. Turbulence Amplification with Incidence at the Leading Edge of a Compressor Cascade

    Directory of Open Access Journals (Sweden)

    Garth V. Hobson

    1999-01-01

    Full Text Available Detailed measurements, with a two-component laser-Doppler velocimeter and a thermal anemometer were made near the suction surface leading edge of controlled-diffusion airfoils in cascade. The Reynolds number was near 700,000, Mach number equal to 0.25, and freestream turbulence was at 1.5% ahead of the cascade.

  5. make up.contents pg

    African Journals Online (AJOL)

    spamer

    inland, at an elevation of 125 m, and the anemometer is 4 m above ground level and 30 m from the main building. There was no obstruction to the flow of air, except from the lighthouse itself when rare easterly winds blew. Unfortunately, the records for one complete year. (1975) and parts of four other years were misplaced.

  6. A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide

    NARCIS (Netherlands)

    Moncrieff, J.B.; Massheder, J.M.; Bruin, de H.; Elbers, J.A.; Friborg, T.; Heusinkveld, B.; Kabat, P.; Scott, S.; Soegaard, H.; Verhoef, A.

    1997-01-01

    An eddy covariance system is described which has been developed jointly at a number of European laboratories and which was used widely in HAPEX-Sahel. The system uses commercially available instrumentation: a three-axis sonic anemometer and an IR gas analyser which is used in a closed-path mode,

  7. Meso- and Micro-scale modelling in China: Wind measurements at 12 meteorological stations in NE China (Dongbei)

    DEFF Research Database (Denmark)

    Lindelöw-Marsden, Petter; Enevoldsen, Karen

    This report is part of the presentation of the results obtained during the CMA component of the Wind Energy Development (WED) program. It describes the techniques and results of the project “A02 Measurements” which produced wind measurements from mast mounted anemometers and vanes in Dongbei...

  8. Updates from the AmeriFlux Management Project Tech Team

    Science.gov (United States)

    Biraud, S.; Chan, S.; Dengel, S.; Polonik, P.; Hanson, C. V.; Billesbach, D. P.; Torn, M. S.

    2017-12-01

    The goal of AmeriFlux is to develop a network of long-term flux sites for quantifying and understanding the role of the terrestrial biosphere in global climate and environmental change. The AmeriFlux Management Program (AMP) Tech Team at LBNL strengthens the AmeriFlux Network by (1) standardizing operational practices, (2) developing calibration and maintenance routines, and (3) setting clear data quality goals. In this poster we will present results and recent progress in three areas: IRGA intercomparison experiment in cooperation with UC Davis, and main manufacturers of sensors used in the AmeriFlux network (LI-COR, Picarro, and Campbell Scientific). Gill sonic anemometers characterization in collaboration with John Frank and Bill Massman (US Forest Service) following the discovery of a significant firmware problem in commonly used Gill Sonic anemometer, Unmanned aerial systems (UAS), and sensors systematically used at AmeriFlux sites to improve site characterization.

  9. Offshore wind profiling using light detection and ranging measurements

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Hasager, Charlotte Bay; Gryning, Sven-Erik

    2009-01-01

    The advantages and limitations of the ZephlR (R), a continuous-wave, focused light detection and ranging (LiDAR) wind profiler, to observe offshore winds and turbulence characteristics were tested during a 6 month campaign at the tronsformer/platform of Hams Rev, the world's largest wind form....... The LiDAR system is a ground-based sensing technique which avoids the use of high and costly meteorological masts. Three different inflow conditions were selected to perform LiDAR wind profiling. Comparisons of LiDAR mean wind speeds against cup anemometers from different masts showed high correlations...... for the open sea sectors and good agreement with their longitudinal turbulence characteristics. Cup anemometer mean wind speed profiles were extended with LiDAR profiles up to 161 m on each inflow sector. The extension resulted in a good profile match for the three surrounding masts. These extended profiles...

  10. Power curve investigation

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Gómez Arranz, Paula

    This report describes the analysis carried out with data from a given turbine in a wind farm and a chosen period. The purpose of the analysis is to correlate the power output of the wind turbine to the wind speed measured by a nacelle-mounted anemometer. The measurements and analysis are not perf......This report describes the analysis carried out with data from a given turbine in a wind farm and a chosen period. The purpose of the analysis is to correlate the power output of the wind turbine to the wind speed measured by a nacelle-mounted anemometer. The measurements and analysis...... are not performed according to IEC 61400-12-1 [1]. Therefore, the results presented in this report cannot be considered a power curve according to the reference standard, and are referred to as “power curve investigation” instead. The measurements have been performed by a customer and the data analysis has been...

  11. CFD Calculations of the Flow Around a Wind Turbine Nacelle

    International Nuclear Information System (INIS)

    Varela, J.; Bercebal, D.

    1999-01-01

    The purpose of this work is to identify the influence of a MADE AE30 wind turbine nacelle on the site calibration anemometer placed on the upper back of the nacelle by means of flow simulations around the nacelle using FLUENT, a Commercial Computational Fluid Dynamics code (CFD), which provides modeling capabilities for the simulation of wide range laminar and turbulent fluid flow problems. Different 2D and 3D simulations were accomplished in order to estimate the effects of the complex geometry on the flow behavior. The speed up and braking values of the air flow at the anemometer position are presented for different flow conditions. Finally some conclusions about the accuracy of results are mentioned. (Author) 5 refs

  12. Preliminary proposal for the study of the turbulence of the wind the roofs of the buildings

    International Nuclear Information System (INIS)

    Fariñas Wong, Ernesto Yoel; Cabeza Fereira, Javier Enrique; Baracaldo, Hector; Fleck, Brian; Fernandez Bonilla, Alexeis

    2017-01-01

    The research is aimed at identifying the best safety conditions, efficiency for the use of renewable technologies in urban environments, anemometers of vanes and sonic are applied near the edge and at low height of the floor in the highest building of the INETC in order to know Wind behavior close to the edge as well as vertical wind potentialities and turbulent wind behavior. The data obtained from 3D sonic anemometers and weather vane shall be extrapolated to relate it to the data base of the Davis reference meteorological station, located in the undisturbed stream. The wind data will be linked to the effort and load regime that will be recorded at the same time on solar panels and their support structure, which will be done by means of extensive gauges metric. The meteorological data and the load stresses will be related to three-dimensional numerical simulations obtained by computational fluid mechanics numerical tests. (author)

  13. Measuring wind on Mars: an overview of in situ sensing techniques

    Science.gov (United States)

    Wilson, C. F.

    2005-08-01

    Measurement of near-surface winds on Mars is doubly useful. It is scientifically important in that the near-surface winds control surface-atmosphere exchanges of water, dust, heat, and momentum; and vital for the safe landing of spacecraft. However, in situ measurement of wind is difficult due to the low density of the Martian atmosphere. There is an unusually broad variety of wind sensing techniques which are viable for use on Mars. Most past sensors have been of the hot-wire or hot-film type; however, dynamic pressure anemometers (e.g. windsocks or vanes) and ion drift anemometers have also been included on past missions. Two further promising techniques being developed for future Mars missions are ultrasonic and laser-doppler anemometry. We review the current status of sensors based on the different techniques, and suggest which may be most appropriate for the achievement of different science goals.

  14. An investigation of the open-loop amplification of Reynolds number dependent processes by wave distortion

    Science.gov (United States)

    Purdy, K. R.; Ventrice, M. B.; Fang, J.

    1972-01-01

    Analytical and experimental studies were initiated to determine if the response of a constant temperature hot wire anemometer to acoustic oscillations could serve as an analog to the response of the drop vaporization burning rate process to acoustic oscillations, and, perhaps, also as an analog to any Reynolds number dependent process. The motivation behind this study was a recent analytical study which showed that distorted acoustic oscillations could amplify the open-loop response of vaporization limited combustion. This type of amplification may be the cause of unstable combustion in liquid propellant rocket engines. The analytical results obtained for the constant temperature anemometer are similar in nature to those previously obtained for vaporization limited combustion and indicate that the response is dependent on the amount and type of distortion as well as other factors, such as sound pressure level, Mach number and hot wire temperature. Preliminary results indicate qualitative agreement between theory and experiment.

  15. Cooling methods for power plants

    International Nuclear Information System (INIS)

    Gaspersic, B.; Fabjan, L.; Petelin, S.

    1977-01-01

    There are some results of measurements carried out on the wet cooling tower 275 MWe at TE Sostanj and on the experimental cooling tower at Jozef Stefan Institute, as well. They are including: the measurements of the output air conditions, the measurements of the cross current of water film and vapour-air flowing through two plates, and the distribution of velocity in boundary layer measured by anemometer

  16. Turbulent Boundary Layers - Experiments, Theory and Modelling

    Science.gov (United States)

    1980-01-01

    1979 "Calcul des transferts thermiques entre film chaud et substrat par un modele ä deux dimensions", Int. J. Heat Mass Transfer ^2, p. 111-119...surface heat transfer a to the surface shear Cu/ ; here, corrections are compulsory because the wall shear,stress fluctuations are large (the r.m.s...technique is the mass transfer analogue of the constant temperature anemometer when the chemical reaction at the electrode embedded in the wall is

  17. CFD validation by measurement of specialized ventilation equipments on duct tract

    Directory of Open Access Journals (Sweden)

    Sehnalek Stanislav

    2017-01-01

    Full Text Available This article describes measurement of HVAC distribution box on air duct track in Laboratory of Environmental Engineering (LEE. Firstly, the paper describes the LEE and then measurement apparatus with description of calculation methods. Then follows specification of sample with introduction to newly developed equipment for positioning of the anemometer. The evaluation of results of measurements with CFD comparison follows. The article is concluded with discussion over measured data with an outline for further research.

  18. Thin film diamond microstructure applications

    Science.gov (United States)

    Roppel, T.; Ellis, C.; Ramesham, R.; Jaworske, D.; Baginski, M. E.; Lee, S. Y.

    1991-01-01

    Selective deposition and abrasion, as well as etching in atomic oxygen or reduced-pressure air, have been used to prepare patterned polycrystalline diamond films which, on further processing by anisotropic Si etching, yield the microstructures of such devices as flow sensors and accelerometers. Both types of sensor have been experimentally tested in the respective functions of hot-wire anemometer and both single- and double-hinged accelerometer.

  19. Tall Tower Wind Energy Monitoring and Numerical Model Validation in Northern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Koracin, D. [Desert Research Inst. (DRI), Las Vegas, NV (United States); Kaplan, M. [Desert Research Inst. (DRI), Las Vegas, NV (United States); Smith, C. [Desert Research Inst. (DRI), Las Vegas, NV (United States); McCurdy, G. [Desert Research Inst. (DRI), Las Vegas, NV (United States); Wolf, A. [Desert Research Inst. (DRI), Las Vegas, NV (United States); McCord, T. [Desert Research Inst. (DRI), Las Vegas, NV (United States); King, K. [Desert Research Inst. (DRI), Las Vegas, NV (United States); Belu, R. [Drexel Univ., Philadelphia, PA (United States); Horvath, K. [Croatian Meteorological and Hydrological Service, Zagreb (Croatia)

    2015-10-01

    The main objectives of this project were to conduct a tall-tower and sodar field campaign in complex terrain, investigate wind properties relevant to wind energy assessment, and evaluate high-resolution models with fixed and adaptive grid structures. Two 60-m towers at Virginia Peak ridges near Washoe Valley, Nevada, were instrumented with cup and vane anemometers as well as sonic anemometers, and an acoustic sounder (hereafter sodar) was installed near one of the towers. The towers were located 2,700 m apart with a vertical distance of 140 m elevation between their bases. Each tower had a downhill exposure of rolling complex terrain, with the nearby valley floor 3,200 m to the west and 800 m below the summit. Cup anemometers were installed at both towers at 20, 40, and 60 m, wind vanes at 20 and 60 m, and sonic anemometers at 20 and 60 m. The sodar measurements were nominally provided every 10 m in vertical distance from 40 to 200 m with the quality of the data generally decreasing with height. Surface air temperature, atmospheric pressure, and radiation measurements were conducted at 1.5 m AGL at both of the towers. Although the plan was to conduct a 1-year period of data collection, we extended the period (October 5, 2012 through February 24, 2014) to cover for possible data loss from instrument or communication problems. We also present a preliminary analysis of the towers and sodar data, including a detailed inventory of available and missing data as well as outliers. The analysis additionally includes calculation of the Weibull parameters, turbulence intensity, and initial computation of wind power density at various heights.

  20. Flow Control for Unsteady and Separated Flows and Turbulent Mixing

    Science.gov (United States)

    1988-10-31

    conditions from surface pressure measurements complemented by advanced flow visulalization and the use of this information to provide active control of the...frequencies and phases were scheduled as functions of the measured jet speed. This was easily done since the information for the schedule had been well...points around the circumference of the jet exit using hot wire anemometers. If this does not give sufficient information for control, other sensors

  1. Coupling of Waves, Turbulence and Thermodynamics Across the Marginal Ice Zone

    Science.gov (United States)

    2015-09-30

    MIZ study with a bulk meteorology package, a shortwave incident radiation sensor, and a 3D acoustic anemometer providing atmospheric boundary layer... shortwave solar sensors allow direct estimates of inbound solar energy to be calculated and compared with observations and a 1D model of upper ocean...momentum near the top of the ocean mixed layer to determine entrainment fluxes and summer time solar heating fluxes over annual time scales (Stanton et

  2. Technical Training on High-Order Spectral Analysis and Thermal Anemometry Applications

    Science.gov (United States)

    Maslov, A. A.; Shiplyuk, A. N.; Sidirenko, A. A.; Bountin, D. A.

    2003-01-01

    The topics of thermal anemometry and high-order spectral analyses were the subject of the technical training. Specifically, the objective of the technical training was to study: (i) the recently introduced constant voltage anemometer (CVA) for high-speed boundary layer; and (ii) newly developed high-order spectral analysis techniques (HOSA). Both CVA and HOSA are relevant tools for studies of boundary layer transition and stability.

  3. Stratus 9/VOCALS: Ninth Setting of the Stratus Ocean Reference Station & VOCALS Regional Experiment. Cruise RB-08-06, September 29-December 2, 2008. Leg 1: Charleston-Arica, September 29-November 3, 2008, Leg 2: Arica-Arica, November 9?December 2, 2008

    Science.gov (United States)

    2009-04-01

    were found to meet expectations. The buoy spin is a procedure to check the compass on the buoy. A visual reference direction is first set using an...external compass. The buoy is then oriented successively at 8 different angles and the vanes of the anemometers are visually oriented towards the...signals for immediate dissemination to Sistema Nacional de Alarma de Maremotos (SNAM) in SHOA, via internet. The buoy, installed on the ocean’s

  4. A 10-gram Vision-based Flying Robot

    OpenAIRE

    Zufferey, Jean-Christophe; Klaptocz, Adam; Beyeler, Antoine; Nicoud, Jean-Daniel; Floreano, Dario

    2007-01-01

    We aim at developing ultralight autonomous microflyers capable of freely flying within houses or small built environments while avoiding collisions. Our latest prototype is a fixed-wing aircraft weighing a mere 10 g, flying around 1.5 m/s and carrying the necessary electronics for airspeed regulation and lateral collision avoidance. This microflyer is equipped with two tiny camera modules, two rate gyroscopes, an anemometer, a small microcontroller, and a Bluetooth rad...

  5. A 10-gram Microflyer for Vision-based Indoor Navigation

    OpenAIRE

    Zufferey, Jean-Christophe; Klaptocz, Adam; Beyeler, Antoine; Nicoud, Jean-Daniel; Floreano, Dario

    2006-01-01

    We aim at developing ultralight autonomous microflyers capable of navigating within houses or small built environments. Our latest prototype is a fixed-wing aircraft weighing a mere 10 g, flying around 1.5 m/s and carrying the necessary electronics for airspeed regulation and collision avoidance. This microflyer is equipped with two tiny camera modules, two rate gyroscopes, an anemometer, a small microcontroller, and a Bluetooth radio module. In-flight tests are carried out ...

  6. Uncertainties in surface mass and energy flux estimates due to different eddy covariance sensors and technical set-up

    Science.gov (United States)

    Arriga, Nicola; Fratini, Gerardo; Forgione, Antonio; Tomassucci, Michele; Papale, Dario

    2010-05-01

    Eddy covariance is a well established and widely used methodology for the measurement of turbulent fluxes of mass and energy in the atmospheric boundary layer, in particular to estimate CO2/H2O and heat exchange above ecologically relevant surfaces (Aubinet 2000, Baldocchi 2003). Despite its long term application and theoretical studies, many issues are still open about the effect of different experimental set-up on final flux estimates. Open issues are the evaluation of the performances of different kind of sensors (e.g. open path vs closed path infra-red gas analysers, vertical vs horizontal mounting ultrasonic anemometers), the quantification of the impact of corresponding physical corrections to be applied to get robust flux estimates taking in account all processes concurring to the measurement (e.g. the so-called WPL term, signal attenuation due to air sampling system for closed path analyser, relative position of analyser and anemometer) and the differences between several data transmission protocols used (analogue, digital RS-232, SDM). A field experiment was designed to study these issues using several instruments among those most used within the Fluxnet community and to compare their performances under conditions supposed to be critical: rainy and cold weather conditions for open-path analysers (Burba 2008), water transport and absorption at high air relative humidity conditions for closed-path systems (Ibrom, 2007), frequency sampling limits and recorded data robustness due to different transmission protocols (RS232, SDM, USB, Ethernet) and finally the effect of the displacement between anemometer and analyser using at least two identical analysers placed at different horizontal and vertical distances from the anemometer. Aim of this experiment is to quantify the effect of several technical solutions on the final estimates of fluxes measured at a point in the space and if they represent a significant source of uncertainty for mass and energy cycle

  7. A method for estimating the turbulent kinetic energy dissipation rate from a vertically pointing Doppler lidar, and independent evaluation from balloon-borne in situ measurements

    OpenAIRE

    O'Connor, Ewan J.; Illingworth, Anthony J.; Brooks, Ian M.; Westbrook, Christopher D.; Hogan, Robin J.; Davies, Fay; Brooks, Barbara J.

    2010-01-01

    A method of estimating dissipation rates from a vertically pointing Doppler lidar with high temporal and spatial resolution has been evaluated by comparison with independent measurements derived from a balloon-borne sonic anemometer. This method utilizes the variance of the mean Doppler velocity from a number of sequential samples and requires an estimate of the horizontal wind speed. The noise contribution to the variance can be estimated from the observed signal-to-noise ratio and removed w...

  8. Analysis of Separated Flow over Blocked Surface

    Directory of Open Access Journals (Sweden)

    Onur YEMENİCİ

    2013-04-01

    Full Text Available In this study, the separated flow over flat and blocked surfaces was investigated experimentally. Velocity and turbulence intensity measurements were carried out by a constanttemperature hot wire anemometer and static pressure measurements by a micro-manometer. The flow separations and reattachments were occurred before the first block, on the first block, between blocks and after the last block, and the presence of the blocks significantly increased the turbulent intensity

  9. Flight Test Measurement Techniques for Laminar Flow. Volume 23(Les techniques de mesure en vol des ecoulements laminaires)

    Science.gov (United States)

    2003-10-01

    Maddalon, D. V.; Fisher, D. F.; Jennett , L. A.; Fischer, M. C .; “Simulated Airline Service Experience With Laminar-Flow Control Leading-Edge Systems...Width of disturbance or step, calibration constant in King’s Law CD Drag coefficient CL Lift coefficient Cp Pressure coefficient c Wing or HLF...nacelle fan cowl chord length Cd Section drag coefficient C ’ƒ Skin friction coefficient Cl Section lift coefficient dB Decibel E Anemometer output

  10. СИСТЕМА АВТОМАТИЗИРОВАННОГО КОНТРОЛЯ И ПРОГНОЗИРОВАНИЯ ОСТОЙЧИВОСТИ МАЛОМЕРНОГО СУДНА

    Directory of Open Access Journals (Sweden)

    ТИМЧЕНКО Виктор Леонидович

    2014-05-01

    Full Text Available Based multifunctional anemometer system, block modeling of sea waves and a system of sensors (inclinometers developed an automated system that allows to forecast parameters of rolling small vessel on a given interval of pre-emption, whereby the skipper receives information on the projected values of the roll angles, which will reduce the level of accidents operating small vessels in adverse weather conditions.

  11. Excitation of localized wave packet in swept-wing supersonic boundary layer

    Directory of Open Access Journals (Sweden)

    Yatskikh Aleksey

    2017-01-01

    Full Text Available The evolution of the artificial wave packet in swept-wing supersonic boundary layer was experimentally studied at M = 2. The localized disturbances were generated by a pulse glow discharge. Measurements were provided by a hot-wire anemometer. The spatial structure of the wave packet was studied. It was found that the wave packet has an asymmetric shape. In addition, the velocity of the propagation downstream of the wave packet was estimated.

  12. Assessment of Planetary-Boundary-Layer Schemes in the Weather Research and Forecasting Model Within and Above an Urban Canopy Layer

    Science.gov (United States)

    Ferrero, Enrico; Alessandrini, Stefano; Vandenberghe, Francois

    2018-03-01

    We tested several planetary-boundary-layer (PBL) schemes available in the Weather Research and Forecasting (WRF) model against measured wind speed and direction, temperature and turbulent kinetic energy (TKE) at three levels (5, 9, 25 m). The Urban Turbulence Project dataset, gathered from the outskirts of Turin, Italy and used for the comparison, provides measurements made by sonic anemometers for more than 1 year. In contrast to other similar studies, which have mainly focused on short-time periods, we considered 2 months of measurements (January and July) representing both the seasonal and the daily variabilities. To understand how the WRF-model PBL schemes perform in an urban environment, often characterized by low wind-speed conditions, we first compared six PBL schemes against observations taken by the highest anemometer located in the inertial sub-layer. The availability of the TKE measurements allows us to directly evaluate the performances of the model; results of the model evaluation are presented in terms of quantile versus quantile plots and statistical indices. Secondly, we considered WRF-model PBL schemes that can be coupled to the urban-surface exchange parametrizations and compared the simulation results with measurements from the two lower anemometers located inside the canopy layer. We find that the PBL schemes accounting for TKE are more accurate and the model representation of the roughness sub-layer improves when the urban model is coupled to each PBL scheme.

  13. Turbulence assessment at potential turbine sites

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, A. [Univ. of Hawaii, Honolulu, HI (United States)

    1996-12-31

    As opposed to a fixed anemometer, the Tala kite is free to move in the air. The motion of the kite is not random, it moves with or against the speed gradient towards the center of passing turbulence events of higher or lower speeds thus allowing the kite to measure event maximum or minimum speed rather than the speed at some unknown distance from the event center like a fixed anemometer. This behavior is confirmed both by a theoretical aerodynamics analysis of the kite motion and by data from a field study where kite and hot film anemometer (HFA) events, defined by the rain flow count method, were compared with flap events on a rotating turbine blade. The HFAs simulated too few events lasting too long while the kites reproduced both the number of events and event periods remarkably close. It is concluded that the kite is the optimal tool for measuring turbulence at potential turbine sites. Kite turbulence can form the bases for economic return estimates and an example is given where less windy sites could be more economical than other more turbulent higher speed sites. 13 refs., 8 figs.

  14. Comparing Multiple Evapotranspiration-calculating Methods, Including Eddy Covariance and Surface Renewal, Using Empirical Measurements from Alfalfa Fields in the Sacramento-San Joaquin River Delta

    Science.gov (United States)

    Clay, J.; Kent, E. R.; Leinfelder-Miles, M.; Lambert, J. J.; Little, C.; Paw U, K. T.; Snyder, R. L.

    2016-12-01

    Eddy covariance and surface renewal measurements were used to estimate evapotranspiration (ET) over a variety of crop fields in the Sacramento-San Joaquin River Delta during the 2016 growing season. However, comparing and evaluating multiple measurement systems and methods for determining ET was focused upon at a single alfalfa site. The eddy covariance systems included two systems for direct measurement of latent heat flux: one using a separate sonic anemometer and an open path infrared gas analyzer and another using a combined system (Campbell Scientific IRGASON). For these methods, eddy covariance was used with measurements from the Campbell Scientific CSAT3, the LI-COR 7500a, the Campbell Scientific IRGASON, and an additional R.M. Young sonic anemometer. In addition to those direct measures, the surface renewal approach included several energy balance residual methods in which net radiation, ground heat flux, and sensible heat flux (H) were measured. H was measured using several systems and different methods, including using multiple fast-response thermocouple measurements and using the temperatures measured by the sonic anemometers. The energy available for ET was then calculated as the residual of the surface energy balance equation. Differences in ET values were analyzed between the eddy covariance and surface renewal methods, using the IRGASON-derived values of ET as the standard for accuracy.

  15. Numerical Prediction of a Bi-Directional Micro Thermal Flow Sensors

    Directory of Open Access Journals (Sweden)

    M. Al-Amayrah

    2011-09-01

    Full Text Available Thermal flow sensors such as hot-wire anemometer (HWA can be used to measure the flow velocity with certain accuracy. However, HWA can measure the flow velocity without determining the flow direction. Pulsed-Wire Anemometer (PWA with 3 wires can be used to measure flow velocity and flow directions. The present study aims to develop a numerical analysis of unsteady flow around a pulsed hot-wire anemometer using three parallel wires. The pulsed wire which is called the heated wire is located in the middle and the two sensor wires are installed upstream and downstream of the pulsed wire. 2-D numerical models were built and simulated using different wires arrangements. The ratio of the separation distance between the heated wire and sensor wire (x to the diameter of the heated wire (D ratios (x/D was varied between 3.33 and 183.33. The output results are plotted as a function of Peclet number (convection time / diffusion time. It was found that as the ratio of x/D increases, the sensitivity of PWA device to the time of flight decreases. But at the same the reading of the time of flight becomes more accurate, because the effects of the diffusion and wake after the heated wire decrease. Also, a very good agreement has been obtained between the present numerical simulation and the previous experimental data.

  16. Monitoring Air Circulation Under Reduced Pressures

    Science.gov (United States)

    Rygalov, Vadim

    Adequate air circulation is required for controlled environments to maintain uniform temperature and humidity control, and hence the ability to measure air flow accurately is important. Human and associated life support habitats (e.g.,. plant production systems) for future space missions will likely be operated at pressures less than 100 kPa to minimize gas leakage and structural mass. Under such reduced pressures, the outputs from conventional anemometers for monitoring air flow can change and require re-calibration. These effects of atmospheric pressure on different types of air flow measurements are not completely understood; hence we compared the performance of several air flow sensors across a range of hypobaric pressures. Sensors included a propeller type anemometer, a hot-wire anemometer, and a Pitot-tube based device. Theoretical schematics (including mathematical models) underlying these measurements were developed. Results demonstrated that changes in sensor outputs were predictable based on their operating principles, and that corrections could be developed for sensors calibrated under normal Earth atmosphere pressure ( 100 kPa) and then used at different pressures. The potential effects of hypobaric atmospheres and their altered air flows on plant physiology are also discussed.

  17. Stratospheric Flight of Three Mars Surface Instrument Prototypes

    Science.gov (United States)

    Hudson, T. L.; Neidholdt, E.; Banfield, D. J.; Kokorowski, M.; Kobie, B.; Diaz, E.; Gordon, S.; Doan, D.; Salami, M.

    2012-12-01

    The Analog Site Testbed for Readiness Advancement (ASTRA) is a high-altitude balloon platform for the testing of Mars surface instrument systems. In September 2012 three prototype instruments, a mass spectrometer and two anemometers, were taken to the 6 mbar pressure level of Earth's stratosphere (~34.5 km) above New Mexico to demonstrate their current capabilities and identify the critical path-to-flight steps for future advancement. Each of the instrument systems deployed on ASTRA were rated at TRL 4 at the start of the project. Through laboratory development, environmental testing, and the ASTRA balloon flight, each has advanced to an overall system TRL of 5, with specific subsystems reaching TRL 6. The results from the Rapid Acquisition Mass Spectrometer (RAMS), the Hot-Wire Anemometer (HWA), and the Single-Axis Sonic Anemometer (SASA) from the mid-September flight are presented, with focus given to both scientific results of the terrestrial atmospheric investigations, and the engineering and technical performance of the individual instrument systems and the balloon platform. The RAMS instrument has unique ion-imaging optics which permit the acquisition of a complete mass spectrum in a single CCD frame (~50 ms minimum). This allows RAMS to see rapid fluctuations in atmospheric constituents (necessary for the study of, for instance, vapor fluxes to and from the Mars surface) and has potential applications for laser ablation mass spectroscopy. The HWA is the latest generation of hot-wire anemometer, with heritage from the Mars Pathfinder MET instrument, and the ATMIS sensors developed for the Mars Polar Lander and the NetLander project. In addition to wind speed, a thermocouple cage around the hot filament detects heat plume direction, thus permitting 2-D wind vectors to be established. The SASA is a proof-of-capability device for an eventual three-axis sonic anemometer design. Developed under PIDDP funding by Dr. Don Banfield of Cornell (thus a contributed

  18. Momentum and particle transport in a nonhomogenous canopy

    Science.gov (United States)

    Gould, Andrew W.

    Turbulent particle transport through the air plays an important role in the life cycle of many plant pathogens. In this study, data from a field experiment was analyzed to explore momentum and particle transport within a grape vineyard. The overall goal of these experiments was to understand how the architecture of a sparse agricultural canopy interacts with turbulent flow and ultimately determines the dispersion of airborne fungal plant pathogens. Turbulence in the vineyard canopy was measured using an array of four sonic anemometers deployed at heights z/H 0.4, 0.9, 1.45, and 1.95 where z is the height of the each sonic and H is the canopy height. In addition to turbulence measurements from the sonic anemometers, particle dispersion was measured using inert particles with the approximate size and density of powdery mildew spores and a roto-rod impaction trap array. Measurements from the sonic anemometers demonstrate that first and second order statistics of the wind field are dependent on wind direction orientation with respect to vineyard row direction. This dependence is a result of wind channeling which transfers energy between the velocity components when the wind direction is not aligned with the rows. Although the winds have a strong directional dependence, spectra analysis indicates that the structure of the turbulent flow is not fundamentally altered by the interaction between wind direction and row direction. Examination of a limited number of particle release events indicates that the wind turning and channeling observed in the momentum field impacts particle dispersion. For row-aligned flow, particle dispersion in the direction normal to the flow is decreased relative to the plume spread predicted by a standard Gaussian plume model. For flow that is not aligned with the row direction, the plume is found to rotate in the same manner as the momentum field.

  19. Field Micrometeorological Measurements, Process-Level Studies and Modeling of Methane and Carbon Dioxide Fluxes in a Boreal Wetland Ecosystem

    Science.gov (United States)

    Verma, S. B.; Arkebauer, T. J.; Ullman, F. G.; Valentine, D. W.; Parton, W. J.; Schimel, D. S.

    1998-01-01

    The main instrumentation platform consisted of eddy correlation sensors mounted on a scaffold tower at a height of 4.2 m above the peat surface. The sensors were attached to a boom assembly which could be rotated into the prevailing winds. The boom assembly was mounted on a movable sled which, when extended, allowed sensors to be up to 2 m away from the scaffolding structure to minimize flow distortion. When retracted, the sensors could easily be installed, serviced or rotated. An electronic level with linear actuators allowed the sensors to be remotely levelled once the sled was extended. Two instrument arrays were installed. A primary (fast-response) array consisted of a three-dimensional sonic anemometer, a methane sensor (tunable diode laser spectrometer), a carbon dioxide/water vapor sensor, a fine wire thermocouple and a backup one-dimensional sonic anemometer. The secondary array consisted of a one-dimensional sonic anemometer, a fine wire thermocouple and a Krypton hygrometer. Descriptions of these sensors may be found in other reports (e.g., Verma; Suyker and Verma). Slow-response sensors provided supporting measurements including mean air temperature and humidity, mean horizontal windspeed and direction, incoming and reflected solar radiation, net radiation, incoming and reflected photosynthetically active radiation (PAR), soil heat flux, peat temperature, water-table elevation and precipitation. A data acquisition system (consisting of an IBM compatible microcomputer, amplifiers and a 16 bit analog-to-digital converter), housed in a small trailer, was used to record the fast response signals. These signals were low-pass filtered (using 8-pole Butterworth active filters with a 12.5 Hz cutoff frequency) and sampled at 25 Hz. Slow-response signals were sampled every 5 s using a network of CR21X (Campbell Scientific, Inc., Logan Utah) data loggers installed in the fen. All signals were averaged over 30-minute periods (runs).

  20. Towards airflow sensors with energy harvesting and wireless transmitting properties

    DEFF Research Database (Denmark)

    Blaszczyk, Tomasz; Sørensen, John Aasted; Lynggaard, Per

    2018-01-01

    to traditional anemometers, ultrasonic measurement or expensive LIDAR (Light Imaging, Detection and Ranging) systems. This paper presents the initial design considerations for a low-cost combined air speed and wind direction sensor, which harvests energy to drive it and to power the wireless transmission......The rapidly growing demand for even more detailed low-cost measurements of weather and environmental conditions, including wind flow, asks for self-sustained energy solutions that eliminate the need for external recharge or replacement of batteries. Today’s wind measurement market is limited...... of system configurations and measurements. An energy-budget for this transmission is included....

  1. Lidar profilers in the context of wind energy–a verification procedure for traceable measurements

    DEFF Research Database (Denmark)

    Gottschall, Julia; Courtney, Michael; Wagner, Rozenn

    2012-01-01

    for lidar profilers that enables us to achieve the required traceability. The procedure is based on a direct comparison of the measurements from the lidar and reference sensors mounted on a mast at various height levels. First, the data are corrected and filtered to obtain a representative data set ensuring......, the existing standards only permit the use of cup anemometers as standard instruments. The main issue preventing the use of remote sensors in such standards is the need to maintain the traceability of the measurements in the international standard system. In this paper, we describe a verification procedure...

  2. Investigation of turbulence measurements with a continuous wave, conically scanning LiDAR

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Mikkelsen, Torben; Courtney, Michael

    averaging is done in two steps: 1) the weighted averaging of the wind speed in the probe volume of the laser beam; 2) the averaging of the wind speeds occurring on the circular path described by the conically scanning lidar. Therefore the standard deviation measured by a lidar resolves only the turbulence...... of a continuous wave, conically scanning Zephir lidar. First, the wind speed standard deviation measured by such a lidar gives on average 80% of the standard deviation measured by a cup anemometer. This difference is due to the spatial averaging inherently made by a cw conically scanning lidar. The spatial...

  3. Use of the WEST-1 wind turbine simulator to predict blade fatigue load distribution

    Science.gov (United States)

    Janetzke, D. C.

    1983-01-01

    To test the ability of WEST-1 to predict blade fatigue load distribution, actual wind signals were fed into the simulator and the response data were recorded and processed in the same manner as actual wind turbine data. The WEST-1 simulator was operated in a stable, unattended mode for six hours. The probability distribution of the cyclic flatwise bending moment for the blade was comparable to that for an actual wind turbine in winds with low turbulence. The input from a stationary anemometer was found to be inadequate for use in the prediction of fatigue load distribution for blade design purposes and modifications are necessary.

  4. Development of semiconductor laser based Doppler lidars for wind-sensing applications

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Hu, Qi; Pedersen, Christian

    2015-01-01

    We summarize the progress we have made in the development of semiconductor laser (SL) based Doppler lidar systems for remote wind speed and direction measurements. The SL emitter used in our wind-sensing lidar is an integrated diode laser with a tapered (semiconductor) amplifier. The laser source...... based wind sensors have a strong potential in a number of applications such as wind turbine control, wind resource assessment, and micrometeorology (e.g. as alternative to the construction of meteorological towers with anemometers and wind vanes)....

  5. Improved interpretation and validation of CFD predictions

    DEFF Research Database (Denmark)

    Popiolek, Z.; Melikov, Arsen Krikor

    2004-01-01

    The mean velocity in rooms predicted by CFD simulations based on RANS equations differs from the mean (in time) magnitude of the velocity, i.e. the mean speed, in rooms measured by low velocity thermal anemometers with omnidirectional sensor. This discrepancy results in incorrect thermal comfort...... assessment by the CFD predictions as well as incorrect validation of the predicted velocity field. In this paper the discrepancies are discussed and identified, and a method for estimating of the mean speed based on the CFD predictions of mean velocity and kinetic turbulence energy is suggested. The method...

  6. Geographically distributed environmental sensor system

    Science.gov (United States)

    French, Patrick; Veatch, Brad; O'Connor, Mike

    2006-10-03

    The present invention is directed to a sensor network that includes a number of sensor units and a base unit. The base station operates in a network discovery mode (in which network topology information is collected) in a data polling mode (in which sensed information is collected from selected sensory units). Each of the sensor units can include a number of features, including an anemometer, a rain gauge, a compass, a GPS receiver, a barometric pressure sensor, an air temperature sensor, a humidity sensor, a level, and a radiant temperature sensor.

  7. Characteristics of airflow turbulence behind HEPA filter

    International Nuclear Information System (INIS)

    Fujii, S.; Yuasa, K.; Arai, Y.; Watanabe, T.; Suwa, Y.

    1994-01-01

    The characteristics of airflow turbulence in unidirectional cleanroom are described in this paper. First, the airflow turbulence distribution is measured in a cleanbooth with a hot-wire anemometer. Through the analysis of turbulence intensity, the shape of pleated HEPA filter is found out to be an important factor of eddy generation in airflow, Secondly, turbulence distribution behind HEPA filter is measured in detail. It concludes that the shear stress, caused by the airflow difference between pleated concave and convex part of HEPA filter, makes eddy generation in airflow behind HEPA filter

  8. Turbulent energy losses during orchard heating

    Energy Technology Data Exchange (ETDEWEB)

    Bland, W.L.

    1979-01-01

    Two rapid-response drag anemometers and low time constant thermocouples, all at 4 m above a heated orchard floor, sampled wind component in the vertical direction and temperature at 30 Hz. The turbulent heat flux calculated revealed not more than 10% of the heat lost from the orchard was via turbulent transort. The observations failed to support previous estimates that at least a third of the energy applied was lost through turbulent transport. Underestimation of heat loss due to mean flow and a newly revealed flux due to spatial variations in the mean flow may explain the unaccounted for loss.

  9. In vitro calibration of a system for measurement of in vivo convective heat transfer coefficient in animals

    OpenAIRE

    Webster John G; Chachati Louay; Tangwongsan Chanchana; Farrell Patrick V

    2006-01-01

    Abstract Background We need a sensor to measure the convective heat transfer coefficient during ablation of the heart or liver. Methods We built a minimally invasive instrument to measure the in vivo convective heat transfer coefficient, h in animals, using a Wheatstone-bridge circuit, similar to a hot-wire anemometer circuit. One arm is connected to a steerable catheter sensor whose tip is a 1.9 mm × 3.2 mm thin film resistive temperature detector (RTD) sensor. We used a circulation system t...

  10. Turbulence measurements using six lidar beams

    DEFF Research Database (Denmark)

    Sathe, Ameya; Mann, Jakob

    2012-01-01

    components of the Reynolds stress tensor, which arises because, in a VAD scan the lidar beams are combined to obtain different components of the wind field. In this work we demonstrate theoretically, how the contamination by the cross components can be avoided by using the measured variances of the line......The use of wind lidars for measuring wind has increased significantly for wind energy purposes. The mean wind speed measurement using the velocity azimuth display (VAD) technique can now be carried out as reliably as the traditional instruments like the cup and sonic anemometers. Using the VAD...

  11. Power curve measurement with a nacelle mounted lidar

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Friis Pedersen, Troels; Courtney, Michael

    2014-01-01

    Nacelle-based lidars are an attractive alternative to conventional mast base reference wind instrumentation where the erection of a mast is expensive, for example offshore. In this paper, the use of this new technology for the specific application of wind turbine power performance measurement...... is tested. A pulsed lidar prototype, measuring horizontally, was installed on the nacelle of a multi-megawatt wind turbine. A met mast with a top-mounted cup anemometer standing at two rotor diameters in front of the turbine was used as a reference. After a data-filtering step, the comparison of the 10 min...

  12. Aircraft Ship Operations (Le Couple Aeronef-Navire dan les Operations)

    Science.gov (United States)

    1991-11-01

    These shipborne helicopters and STOVL aircraft can make vital contributions in a wide range of roles and I would like to take a couple of minutes to...d’exploitation, qui observe les doux ca- donne donc one certain* souplesse d’emploi m~res. 11 d~ signo le cible au t~l~mbtre Sur deautres naviros et...prior to helicopter tests. The aim of this test is to 3 establish the magnitude of errors P/uw in the ship’s anemometer system. Such information is vital

  13. Errors in second moments estimated from monostatic Doppler sodar winds. II. Application to field measurements

    DEFF Research Database (Denmark)

    Gaynor, J. E.; Kristensen, Leif

    1986-01-01

    For pt.I see ibid., vol.3, no.3, p.523-8 (1986). The authors use the theoretical results presented in part I to correct turbulence parameters derived from monostatic sodar wind measurements in an attempt to improve the statistical comparisons with the sonic anemometers on the Boulder Atmospheric ...... and after the application of the spatial and temporal volume separation correction, are presented. The improvement appears to be significant. The effects of correcting for pulse volume averaging derived in part I are also discussed...

  14. Lidar for Wind and Optical Turbulence Profiling

    Directory of Open Access Journals (Sweden)

    Fastig Shlomo

    2018-01-01

    Full Text Available A field campaign for the comparison investigation of systems to measure wind and optical turbulence profiles was conducted in northern Germany. The experimental effort was to compare the performance of the LIDAR, SODAR-RASS and ultrasonic anemometers for the measurement of the above mentioned atmospheric parameters. Soreq's LIDAR is a fiber laser based system demonstrator for the vertical profiling of the wind and turbulence, based on the correlation of aerosol density variations. It provides measurements up to 350m with 20m resolution.

  15. Shot peening speed measurements using lidar technology

    DEFF Research Database (Denmark)

    Angelou, Nikolas; Zhang, Xiaodan; Sjöholm, Mikael

    The shot peening technique is used for the surface modification of metallic components that are part of wind turbines, such as gears, bolts and blade coatings to prevent erosion. An important parameter of this technique is the dynamic energy of emitted shots. In this context the objective...... of this project is to present a proof of concept measurement method for the evaluation of the speed of the shots. A remote sensing laser anemometer was selected as a probing instrument of the peening shots’ speed since it avoids any disturbances to the flow from the presence of an in-situ instrument. Furthermore...

  16. Development of Data Acquisition System for Wind Energy Applications

    OpenAIRE

    西本,澄

    1992-01-01

    A Data acquisiton system developed for wind energy applications will be described in this paper. This system is composed of an anemometer with two blades downwind and a computer which processes wind data. Wind energy calculated from an average wind speed is inaccurate, since wind power increases with the cube of wind velocity. To decide the design and the site for a wind turbine system, it is very important to consider wind data on a long term basis, that is the total wind energy and distribu...

  17. NREL Large-Scale Turbine Inflow and Response Experiment--Preliminary Results: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, N.; Hand, M.; Larwood, S.; McKenna, E.

    2002-01-01

    The accurate numerical dynamic simulation of new large-scale wind turbine designs operating over a wide range of inflow environments is critical because it is usually impractical to test prototypes in a variety of locations. Large turbines operate in a region of the atmospheric boundary layer that currently may not be adequately simulated by present turbulence codes. In this paper, we discuss the development and use of a 42-m (137-ft) planar array of five, high-resolution sonic anemometers upwind of a 600-kW wind turbine at the National Wind Technology Center (NWTC).

  18. Lidar Scanning of Momentum Flux in the Marine Boundary Layer

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Mann, Jakob; Courtney, Michael

    Momentum flux measurements are important for describing the wind profile in the atmospheric boundary layer, modeling the atmospheric flow over water, the accounting of exchange processes between air and sea, etc. It is also directly related to the friction velocity, which is a velocity scale...... turbulence measurements from a sonic anemometer, showing high agreement. In this study, a conical scanning lidar is used to derive the momentum flux, which compares well to the estimations from the bulk-derived method, but it also shows a filtering effect due to the large spatial-averaging volume...

  19. Flow velocities and bed shear stresses in a stone cover under an oscillatory flow

    DEFF Research Database (Denmark)

    Stenanato, F.; Nielsen, Anders Wedel; Sumer, B. Mutlu

    2010-01-01

    layers of stones. The flow velocities in the pores of the stones were measured using LDA (Laser Doppler Anemometer). In addition to the velocity measurements, the bed shear stresses were also measured using a hotfilm (Constant Temperature Anemometry). It is found that the boundary layer of the outer flow...... current boundary layer without any externally generated turbulence. The bd shear stress is found to be very low, more than ten times smaller than in the case of a smooth base bottom without stone cover....

  20. Spatially-resolved measurements of soot size and population in a swirl-stabilized combustor

    OpenAIRE

    Wood, CP; Smith, RA; Samuelsen, GS

    1985-01-01

    Isooctane, and mixtures of isooctane with various ring and aromatic compounds blended to yield the same smoke point were separately injected through a twin-fluid atomizer into a turbulent, swirl-stabilized model combustor. A nonintrusive optical probe based on larege angle (60°, 20°) intensity ratio scattering was used to yield a point measurement of soot particulate in the size range of 0.08 to 0.38 μm. The velocity and temperature fields were characterized by a two-color laser anemometer an...

  1. Note: Using a Kösters prism to create a fringe pattern.

    Science.gov (United States)

    Capellmann, R F; Bewerunge, J; Platten, F; Egelhaaf, S U

    2017-05-01

    The interference of two crossed laser beams results in a standing wave. Such fringe patterns are exploited in different instruments such as interferometers or laser-Doppler anemometers. We create a fringe pattern in the sample plane of a microscope using a compact apparatus based on a Kösters prism. The fringe pattern is shown to be spatially and temporally very stable, covers a large area, and its spacing is easily tunable. In addition, we exploit it to impose a sinusoidal potential on colloidal particles.

  2. Airflow patterns in a slot-ventilated enclosure partially loaded with empty slotted boxes

    International Nuclear Information System (INIS)

    Tapsoba, Mitoubkieta; Moureh, Jean; Flick, Denis

    2007-01-01

    A reduced-scale model and CFD predictions were used to investigate experimentally and numerically the airflow patterns within a ceiling-slot ventilated enclosure loaded by slotted boxes. The experiments were carried out with a laser Doppler anemometer. This paper concerns the air velocity characteristics within the jet and outside the boxes. Results make it possible to highlight the confinement effect due to enclosure and the influence of load porosity on the jet penetration, its development and hence the heterogeneity of ventilation within the enclosure. The numerical predictions obtained with the computational fluid dynamics Fluent package using the RSM turbulence model show rather good agreement with experimental data

  3. Network Wind Power Over the Pacific Northwest. Progress Report, October 1979-September 1980.

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Robert W.; Hewson, E. Wendell

    1980-10-01

    The research in FY80 is composed of six primary tasks. These tasks include data collection and analysis, wind flow studies around an operational wind turbine generator (WTG), kite anemometer calibration, wind flow analysis and prediction, the Klickitat County small wind energy conversion system (SWECS) program, and network wind power analysis. The data collection and analysis task consists of four sections, three of which deal with wind flow site surveys and the fourth with collecting and analyzing wind data from existing data stations. This report also includes an appendix which contains mean monthly wind speed data summaries, wind spectrum summaries, time series analysis plots, and high wind summaries.

  4. Ocean Wind and Wave Measurements Using X-Band Marine Radar: A Comprehensive Review

    OpenAIRE

    Weimin Huang; Xinlong Liu; Eric W. Gill

    2017-01-01

    Ocean wind and wave parameters can be measured by in-situ sensors such as anemometers and buoys. Since the 1980s, X-band marine radar has evolved as one of the remote sensing instruments for such purposes since its sea surface images contain considerable wind and wave information. The maturity and accuracy of X-band marine radar wind and wave measurements have already enabled relevant commercial products to be used in real-world applications. The goal of this paper is to provide a comprehensi...

  5. Estimation of turbulent energy dissipation in the boundary layer using Smoke Image Velocimetry

    Science.gov (United States)

    Mikheev, N. I.; Goltsman, A. E.; Saushin, I. I.; Dushina, O. A.

    2017-08-01

    Turbulent energy dissipation in the turbulent boundary layer has been estimated experimentally. Dissipation has been derived from dynamics of two-component instantaneous velocity vector fields measured by an optical method. Smoke Image Velocimetry technique based on digital processing of smoke visualization of flow and adapted to relatively large smoke displacement between two consecutive video frames has been employed. The obtained dissipation profiles have been compared with measurements by multi-sensor hot-wire anemometers, stereo PIV, Tomo-3D-PTV with VIC+, and DNS results.

  6. An introduction to turbulence and its measurement

    CERN Document Server

    Bradshaw, P

    1971-01-01

    An Introduction to Turbulence and Its Measurement is an introductory text on turbulence and its measurement. It combines the physics of turbulence with measurement techniques and covers topics ranging from measurable quantities and their physical significance to the analysis of fluctuating signals, temperature and concentration measurements, and the hot-wire anemometer. Examples of turbulent flows are presented. This book is comprised of eight chapters and begins with an overview of the physics of turbulence, paying particular attention to Newton's second law of motion, the Newtonian viscous f

  7. Accuracy limitations for low velocity measurements and draft assessment in rooms

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Popiolek, Zbigniew J.; Silva, M.G.

    2007-01-01

    . In this paper, the combined impact of error sources on the accuracy of mean speed, standard deviation of speed, and turbulence intensity that may occur during measurements with LVTAs is analyzed. The minimum uncertainty that is realistically achievable in practice is identified. The requirements for low......, the definition of realistic requirements in thermal comfort standards as well as validation of CFD predictions is made possible.......-velocity anemometers prescribed in the present standards are critically reviewed and revised New requirements that will decrease the uncertainty of low-velocity measurements are suggested for inclusion in future ventilation standards. The uncertainty in determination of draft discomfort is defined. Thus...

  8. Errors in second moments estimated from monostatic Doppler sodar winds. II. Application to field measurements

    DEFF Research Database (Denmark)

    Gaynor, J. E.; Kristensen, Leif

    1986-01-01

    For pt.I see ibid., vol.3, no.3, p.523-8 (1986). The authors use the theoretical results presented in part I to correct turbulence parameters derived from monostatic sodar wind measurements in an attempt to improve the statistical comparisons with the sonic anemometers on the Boulder Atmospheric...... Observatory tower. The approximate magnitude of the error due to spatial and temporal pulse volume separation is presented as a function of mean wind angle relative to the sodar configuration and for several antenna pulsing orders. Sodar-derived standard deviations of the lateral wind component, before...

  9. The Effect of a Finite Measurement Volume on Power Spectra from a Burst Type LDA

    DEFF Research Database (Denmark)

    Buchhave, Preben; Velte, Clara Marika; K. George, William

    2014-01-01

    We analyze the effects of a finite size measurement volume on the power spectrum computed fromdata acquired with a burst-type laser Doppler anemometer. The finite measurement volume causes temporal distortions in acquisition of the data resulting in phenomena such as finite processing time and dead...... time.We compare analytical expressions for the bias and distortion of the velocity power spectrum computed from computer-generated data. We then compare the spectrum from the computer-generated data and a power spectrum from a measurement on a free turbulent jet in air and conclude that we have a valid...

  10. Field performance of an all-semiconductor laser coherent Doppler lidar

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Pedersen, Christian

    2012-01-01

    We implement and test what, to our knowledge, is the first deployable coherent Doppler lidar (CDL) system based on a compact, inexpensive all-semiconductor laser (SL). To demonstrate the field performance of our SL-CDL remote sensor, we compare a 36 h time series of averaged radial wind speeds...... measured by our instrument at an 80 m distance to those simultaneously obtained from an industry-standard sonic anemometer (SA). An excellent degree of correlation (R2=0.994 and slope=0.996) is achieved from a linear regression analysis of the CDL versus SA wind speed data. The lidar system is capable...

  11. Investigation of the Development of Laminar Boundary-Layer Instabilities along a Blunted Cone

    Science.gov (United States)

    1988-12-01

    taps, having approximate diameters of 0.064 in., were connected by tubing either to one-psid Druck ® or 2.5-psid ESP transducers of the Tunnel B...surveys of the model boundary layer using a 15-psid Druck transducer calibrated for 10- psid fu l l scale. The small size of the pi tot probe (Section...of freedom greater than 3D . Estimates of the measured data uncertainties for this test, including the basic hot-wire anemometer measurements

  12. Air mass flow estimation in turbocharged diesel engines from in-cylinder pressure measurement

    Energy Technology Data Exchange (ETDEWEB)

    Desantes, J.M.; Galindo, J.; Guardiola, C.; Dolz, V. [CMT - Motores Termicos, Universidad Politecnica de Valencia (Spain)

    2010-01-15

    Air mass flow determination is needed for the control of current internal combustion engines. Current methods are based on specific sensors (as hot wire anemometers) or indirect estimation through manifold pressure. With the availability of cylinder pressure sensors for engine control, methods based on them can be used for replacing or complementing standard methods. Present paper uses in cylinder pressure increase during the intake stroke for inferring the trapped air mass. The method is validated on two different turbocharged diesel engines and compared with the standard methods. (author)

  13. Experimental determination of the free-stream disturbance field in a short-duration supersonic wind tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, J. [Institut fuer Aerodynamik und Gasdynamik, Universitaet Stuttgart, Pfaffenwaldring 21, 70550, Stuttgart (Germany); ALSTOM (Switzerland) Ltd., Brown Bovery Strasse 7, 5401, Baden (Switzerland); Knauss, H.; Wagner, S. [Institut fuer Aerodynamik und Gasdynamik, Universitaet Stuttgart, Pfaffenwaldring 21, 70550, Stuttgart (Germany)

    2003-10-01

    The free-stream disturbance field in a short-duration supersonic wind tunnel is investigated at a nominal Mach number of Ma=2.54. A specially designed constant-temperature anemometer is used to be able to draw a complete fluctuation diagram within one wind tunnel run (testing time: 120 ms). It is shown that the disturbance field is dominated by acoustic waves radiated from the turbulent boundary layer on the nozzle and the sidewalls, like in conventional supersonic wind tunnels. The acoustic field appears to be composed of highly localized shivering Mach waves superimposed on a background of eddy Mach waves. (orig.)

  14. Efficiency of small wind generator powered water pumping systems; Rendimento de unidade de bombeamento de agua acionada por gerador eolico de pequeno porte

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Mendeleyev Guerreiro; Carvalho, Paulo Cesar Marques de; Costa, Levy Ferreira [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Engenharia Eletrica; Borges Neto, Manuel Rangel [Centro Federal de Educacao Tecnologica de Petrolina (CEFET), PE (Brazil)

    2008-07-01

    The present paper aims to evaluate the efficiency of a small wind generator powered water pumping system; the generator is a permanent magnet generator of 1 kw of axial flow, using three fiber glass blades with 2.46 m diameter. The used centrifugal pump is connected to a 0.5 c v motor, three-phase, frequency of 60 Hz, rotational speed of 3450 rpm. For the efficiency evaluation a shell anemometer, a flow and pressure sensor were used, connected to a data logger to the collection and storage of the data. An energy analyzer was also used to collect the current, voltage and power generated from the wind generator. (author)

  15. Analysis of solar radiation and other variables for the evaluation of locations of thermo solar power stations; Analisis de radiacion solar y otras vairables para la evaluacion de emplazamientos de centrales termosolares

    Energy Technology Data Exchange (ETDEWEB)

    Montero, I.; Miranda, M. T.; Rojas, S.; Bolinaga, B.; Tierra, C.; Pico, J. del

    2008-07-01

    This paper presents the characteristics of various measuring weather stations located in future CCP thermal plants, showing the different systems they are equipped with, among others, pyrheliometer, pyrano meter, anemometers, thermo-hygrometer and data transmission system. Some results of solar radiation and other climate variables obtained in these stations are presented and analyzed in relation to existing data in the area, taking into account different external parameters that can influence the direct radiation obtained and, therefore, the future operation of the thermal plant. (Author)

  16. Features of round air jet flowing at low Reynolds numbers

    Science.gov (United States)

    Lemanov, V. V.; Sharov, K. A.; Gorinovich, N. V.

    2018-03-01

    The laminar-turbulent transition in a round jet flowing from a cylindrical channel with the diameter of 3.2 mm was studied experimentally. In experiments, the range of Reynolds numbers determined by the mean-flow velocity was Re = Ud/ν = 700-12000. The measurements were carried out using a PIV system and one-component hot-wire anemometer. The profiles of average velocities and their pulsations in the zone of laminar-turbulent transition were obtained along with axial distributions of longitudinal velocity and pulsations of longitudinal velocity.

  17. Investigating the round air jet dynamics at low Reynolds numbers

    Directory of Open Access Journals (Sweden)

    Lemanov Vadim

    2017-01-01

    Full Text Available The laminar-turbulent transition in a round jet flowing from a cylindrical channel with the diameter of 3.2 mm was studied experimentally. In experiments, the range of Reynolds numbers determined by the mean-flow velocity was Re = Ud/v = 700-12000. The measurements were carried out using a PIV system and one-component hot-wire anemometer. The profiles of average velocities and their pulsations in the zone of laminar-turbulent transition were obtained, as well as axial distributions of longitudinal velocity and pulsations of longitudinal velocity.

  18. Winds at the Phoenix landing site

    DEFF Research Database (Denmark)

    Holstein-Rathlou, C.; Gunnlaugsson, H.P.; Merrison, J.P.

    2010-01-01

    Wind speeds and directions were measured on the Phoenix Lander by a mechanical anemometer, the so-called Telltale wind indicator. Analysis of images of the instrument taken with the onboard imager allowed for evaluation of wind speeds and directions. Daily characteristics of the wind data...... and frost formation are described and discussed. Two different mechanisms of dust lifting affecting the Phoenix site are proposed based on observations made with Mars Color Imager on Mars Reconnaissance Orbiter and the Telltale. The first is related to evaporation of the seasonal CO2 ice and is observed up...

  19. Can Wind Lidars Measure Turbulence?

    DEFF Research Database (Denmark)

    Sathe, Ameya; Mann, Jakob; Gottschall, Julia

    2011-01-01

    and conical scanning. The predictions are compared with the measurements from the ZephIR, WindCube, and sonic anemometers at a flat terrain test site under different atmospheric stability conditions. The sonic measurements are used at several heights on a meteorological mast in combination with lidars...... errors also vary with atmospheric stability and are low for unstable conditions. In general, for both lidars, the model agrees well with the measurements at all heights and under different atmospheric stability conditions. For the ZephIR, the model results are improved when an additional low-pass filter...

  20. 3D heterostructures and systems for novel MEMS/NEMS

    Directory of Open Access Journals (Sweden)

    Victor Yakovlevich Prinz, Vladimir Alexandrovich Seleznev, Alexander Victorovich Prinz and Alexander Vladimirovich Kopylov

    2009-01-01

    Full Text Available In this review, we consider the application of solid micro- and nanostructures of various shapes as building blocks for micro-electro-mechanical or nano-electro-mechanical systems (MEMS/NEMS. We provide examples of practical applications of structures created by MEMS/NEMS fabrication. Novel devices are briefly described, such as a high-power electrostatic nanoactuator, a fast-response tubular anemometer for measuring gas and liquid flows, a nanoprinter, a nanosyringe and optical MEMS/NEMS. The prospects are described for achieving NEMS with tunable quantum properties.

  1. Heat Transfer Enhancement in Turbulent Flows by Blocked Surfaces

    Directory of Open Access Journals (Sweden)

    Onur YEMENİCİ

    2013-04-01

    Full Text Available In this study, the heat transfer analyses over flat and blocked surfaces were carried out in turbulent flow under the influence of the block height. A constant-temperature hot wire anemometer was used to the velocity and turbulent intensity measurements, while temperature values were measured by copper-constantan thermocouples. The average Stanton numbers for block heights of 15 and 25 mm were higher than those of flat surface by %38 and %84, respectively. The results showed that the presence of the blocks increased the heat transfer and the enhancement rose with block heights

  2. Preliminary experimental investigation of boundary layer in decelerating flow

    Directory of Open Access Journals (Sweden)

    Příhoda J.

    2013-04-01

    Full Text Available Investigations of characteristics of turbulence inside boundary layer under decelerating flow were studied by means of constant temperature anemometer. The decelerating flow was simulated in the closed circuit wind tunnel 0.9 m × 0.5 m at IT AS CR. The free stream turbulence was either natural o risen up by square mesh plane grid. The details of experimental settings and measurement procedures of the instantaneous longitudinal velocity component are described and the distributions of intensity, skewness and kurtosis of turbulent fluctuations are discussed in the contribution.

  3. Rotary slanted single wire CTA – a useful tool for 3D flows investigations

    Directory of Open Access Journals (Sweden)

    Jonáš P.

    2013-04-01

    Full Text Available The procedure is described of experimental investigation of a statistically stationary generally nonisothermal 3D flow by means of a constant temperature anemometer (CTA using single slanted heated wire, rotary round the fixed axis. The principle of this procedure is quite clear. The change of the heated wire temperature modifies ratio of CTA sensitivities to temperature and velocity fluctuations. Turning the heated wire through a proper angle changes the sensitivity to components of the instantaneous velocity vector. Some recommendations are presented based on long time experiences, e.g. on the choice of probe, on the probe calibration, to the measurement organization and to the evaluation of results.

  4. The solar energy in Colombia, Atlas of solar radiation of Colombia

    International Nuclear Information System (INIS)

    Rodriguez P, F.

    1995-01-01

    This study was made by means of the Agreement inter-institutional subscribed between Mines Ministry and Energy, HIMAT and INEA and was published by CARBOCOL. In the evaluation of solar energy potential, the information of the radiometric net of the HIMAT taken in 203 stations distributed throughout all Country from 1980 until 1990, it was had in account. A meteorological station is an observation point where are located different instruments and equipment that serve to measure and study meteorological parameter as solar radiation (radiometer actinograph), Solar sheen (Campbell Stoke), Temperature (Thermograph), Moisture (hydrographer), Wind (Anemograph Anemometer) and Precipitation (Pluviograph)

  5. Evaluating wind power potential in the Spanish Antarctic Base (BAE); Evaluacion del Potencial Eolico en la Base Antartica Espanola Juan Carlos I

    Energy Technology Data Exchange (ETDEWEB)

    Arribas de Paz, L. M.; Garcia Barquero, C.; Navarro Montesinos, J.; Cuerva Tejero, A.; Cruz Cruz, I.; Roque Lopez, V.; Marti Perez, I. [Ciemat. Madrid (Spain)

    2000-07-01

    The objective of the work is to model wind field in the surroundings of the Spanish Antarctic Base (BAE in the following). The need of such a work comes from the necessity of an energy source able to supply the energy demand in the BAE during the Antarctic winter. When the BAE is in operation (in the Antarctic summer) the energy supply comes from a diesel engine. In the Antartic winter the base is closed, but the demand of energy supply is growing up every year because of the increase in the number of technical and scientific machines that remain in the BAE taking different measurements. For this purpose the top of a closed hill called Pico Radio, not perturbed by close obstacles, has been chosen as the better site for the measurements. The measurement station is made up with a sonic an-emometer and a small wind generator to supply the energy needed by the sensors head heating of the anemometer. this way, it will be also used as a proof for the suitability of a wind generator in the new chosen site, under those special climactic conditions. (Author) 3 refs.

  6. Turbine Inflow Characterization at the National Wind Technology Center: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, A.; Schreck, S.; Scott, G.; Kelley, N.; Lundquist, J.

    2012-01-01

    Utility-scale wind turbines operate in dynamic flows that can vary significantly over timescales from less than a second to several years. To better understand the inflow to utility-scale turbines, two inflow towers were installed and commissioned at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center near Boulder, Colorado, in 2011. These towers are 135 m tall and instrumented with a combination of sonic anemometers, cup anemometers, wind vanes, and temperature measurements to characterize the inflow wind speed and direction, turbulence, stability and thermal stratification to two utility-scale turbines. Herein, we present variations in mean and turbulent wind parameters with height, atmospheric stability, and as a function of wind direction that could be important for turbine operation as well as persistence of turbine wakes. Wind speed, turbulence intensity, and dissipation are all factors that affect turbine performance. Our results shown that these all vary with height across the rotor disk, demonstrating the importance of measuring atmospheric conditions that influence wind turbine performance at multiple heights in the rotor disk, rather than relying on extrapolation from lower levels.

  7. Rancang Bangun Alat Ukur Kelajuan Udara Tipe Thermal Terintegrasi Termometer Udara Berbasis Sensor LM35 dan PT100

    Directory of Open Access Journals (Sweden)

    Laila Katriani

    2017-11-01

    INTEGRATED WITH AIR THERMOMETER USING  LM35 SENSOR AND PT100 SENSOR This research aimed to design a thermal type anemometer integrated with air thermometer using Lm35 sensor and PT100 sensor. The study began in Mei until Oktober 2016. The study was conducted at the Laboratory of Electronics and Instrumentation, Department of Physics Education, State University of Yogyakarta. The design of the thermal type anemometer consists of two stages, namely, the design of the hardware and software design. Hardware design consists of a sensor system design (LM35 and PT100,  LM317 design, system design for data processing and display. Software design using C language. Based on the results of tests that had been done, shows that the sensor output LM35, whic is voltage is proportional to temperature changes, which had a sensitivity of 0.009 volts / ºC and initial output voltage of the sensor when the temperature reach 0 °C is 0,041 volts. PT100 sensor output, which is resistance is proportional to temperature changes, which had sensitivity of 0.391 Ω/oC and initial output resistance of the sensor when temperature reach 28 °C is 100,8 Ω. Error percent of thermal-type air speed measuring instrument testing is 4%.

  8. Evaluation of turbulent dissipation rate retrievals from Doppler Cloud Radar

    Directory of Open Access Journals (Sweden)

    M. D. Shupe

    2012-06-01

    Full Text Available Turbulent dissipation rate retrievals from cloud radar Doppler velocity measurements are evaluated using independent, in situ observations in Arctic stratocumulus clouds. In situ validation data sets of dissipation rate are derived using sonic anemometer measurements from a tethered balloon and high frequency pressure variation observations from a research aircraft, both flown in proximity to stationary, ground-based radars. Modest biases are found among the data sets in particularly low- or high-turbulence regimes, but in general the radar-retrieved values correspond well with the in situ measurements. Root mean square differences are typically a factor of 4–6 relative to any given magnitude of dissipation rate. These differences are no larger than those found when comparing dissipation rates computed from tethered-balloon and meteorological tower-mounted sonic anemometer measurements made at spatial distances of a few hundred meters. Temporal lag analyses suggest that approximately half of the observed differences are due to spatial sampling considerations, such that the anticipated radar-based retrieval uncertainty is on the order of a factor of 2–3. Moreover, radar retrievals are clearly able to capture the vertical dissipation rate structure observed by the in situ sensors, while offering substantially more information on the time variability of turbulence profiles. Together these evaluations indicate that radar-based retrievals can, at a minimum, be used to determine the vertical structure of turbulence in Arctic stratocumulus clouds.

  9. Wind resource in the urban environment

    Directory of Open Access Journals (Sweden)

    Derek Joseph Kearney

    2013-10-01

    Full Text Available Renewable energy technologies, such as wind turbines, have to be considered for new building over 1000m2 under the Energy Performance of Buildings Directive (2002. Accurate assessment of the wind resource is a key component in the success of a wind installation. Designers, planners and architects also need wind data from urban areas to support low-energy building design, natural ventilation, air quality, pollution control, insurance and wind engineering. Over the last six years instrumentation has been installed at the Dublin Institute of Technology (DIT in two separate locations to monitor the wind. The data has shown that the wind resource will vary quite considerably on a given site and this is due to local variations in topography, and other factors associated with wind and turbulence in the built environment. Difficulties were encountered in measuring the wind and turbulence on site. IEC 61400-12-1: 2005 states that “... analytical tools (anemometers presently available offer little help in identifying the impact of these variables, and experimental methods encounter equally-serious difficulties.” The practical experience of measuring wind in the urban environment informed the development of a prototype anemometer that may be capable of digitally mapping accurate real-time three-dimensional data on wind speed, wind direction and, uniquely in the field of wind instrumentation, wind turbulence.

  10. Evaluating Wind Power Potential in the Spanish Antarctic Base (BAE)

    International Nuclear Information System (INIS)

    Arribas, L.M.; Garcia Barquero, C; Navarro, J.; Cuerva, A.; Cruz, I.; Roque, V.; Marti, I.

    2000-01-01

    The objective of the work is to model wind field in the surroundings of the Spanish Antarctic Base (BAE in the following). The need of such a work comes from the necessity of an energy source able to supply the energy demand in the BAE during the Antarctic winter. When the BAE is in operation (in the Antarctic summer) the energy supply comes from a diesel engine. In the Antarctic winter the base is closed, but the demand of energy supply is growing up every year because of the increase in the number of technical and scientific machines that remain in the BAE taking different measurements. For this purpose the top of a closed hill called Pico Radio, not perturbed by close obstacles, has been chosen as the better site for the measurements. The measurement station is made up with a sonic anemometer and a small wind generator to supply the energy needed by the sensors head heating of the anemometer. This way, it will be also used as a proof for the suitability of a wind generator in the new chosen site, under those special climatic conditions.(Author) 3 refs

  11. Hot-Film and Hot-Wire Anemometry for a Boundary Layer Active Flow Control Test

    Science.gov (United States)

    Lenahan, Keven C.; Schatzman, David M.; Wilson, Jacob Samuel

    2013-01-01

    Unsteady active flow control (AFC) has been used experimentally for many years to minimize bluff-body drag. This technology could significantly improve performance of rotorcraft by cleaning up flow separation. It is important, then, that new actuator technologies be studied for application to future vehicles. A boundary layer wind tunnel was constructed with a 1ft-x-3ft test section and unsteady measurement instrumentation to study how AFC manipulates the boundary layer to overcome adverse pressure gradients and flow separation. This unsteady flow control research requires unsteady measurement methods. In order to measure the boundary layer characteristics, both hot-wire and hot-film Constant Temperature Anemometry is used. A hot-wire probe is mounted in the flow to measure velocity while a hot-film array lays on the test surface to measure skin friction. Hot-film sensors are connected to an anemometer, a Wheatstone bridge circuit with an output that corresponds to the dynamic flow response. From this output, the time varying flow field, turbulence, and flow reversal can be characterized. Tuning the anemometers requires a fan test on the hot-film sensors to adjust each output. This is a delicate process as several variables drastically affect the data, including control resistance, signal input, trim, and gain settings.

  12. An Examination of the Quality of Wind Observations with Smartphones

    Science.gov (United States)

    Hintz, Kasper; Vedel, Henrik; Muñoz-Gomez, Juan; Woetmann, Niels

    2017-04-01

    Over the last years, the number of devices connected to the internet has increased significantly making it possible for internal and external sensors to communicate via the internet, opening up many possibilities for additional data for use in the atmospheric sciences. Vaavud has manufactured small anemometer devices which can measure wind speed and wind direction when connected to a smartphone. This work examines the quality of such crowdsourced Handheld Wind Observations (HWO). In order to examine the quality of the HWO, multiple idealised measurement sessions were performed at different sites in different atmospheric conditions. In these sessions, a high-precision ultrasonic anemometer was installed to work as a reference measurement. The HWO are extrapolated to 10 m in order to compare these to the reference observations. This allows us to examine the effect of stability correction in the surface layer and the quality of height extrapolated HWO. The height extrapolation is done using the logarithmic wind profile law with and without stability correction. Furthermore, this study examines the optimal ways of using traditional observations and numerical models to validate HWO. In order to do so, a series of numerical reanalysis have been run for a period of 5 months to quantise the effect of including crowdsourced HWO in a traditional observation dataset.

  13. Optimization Controller for Mechatronic Sun Tracking System to Improve Performance

    Directory of Open Access Journals (Sweden)

    Mustafa Engin

    2013-01-01

    Full Text Available An embedded system that contains hardware and software was developed for two-axis solar tracking system to improve photovoltaic panel utilization. The hardware section of the embedded system consists of a 32-bit ARM core microcontroller, motor driver circuits, a motion control unit, pyranometer, GPS receiver, and an anemometer. The real-time control algorithm enables the solar tracker to operate automatically without external control as a stand-alone system, combining the advantages of the open-loop and the closed-loop control methods. The pyranometer is employed to continuously send radiation data to the controller if the measured radiation is above the lower radiation limit the photovoltaic panel can generate power, guaranteeing the solar tracking process to be highly efficient. The anemometer is utilized in the system to ensure that the solar tracking procedure halts under high wind speed conditions to protect the entire system. Latitude, longitude, altitude, date, and real-time clock data are provided by GPS receiver. The algorithm calculates solar time using astronomical equations with GPS data and converts it to pulse-width modulated motor control signal. The overall objective of this study is to develop a control algorithm that improves performance and reliability of the two-axis solar tracker, focusing on optimization of the controller board, drive hardware, and software.

  14. MPPT for PM wind generator using gradient approximation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Ying-Yi; Lu, Shiue-Der; Chiou, Ching-Sheng [Department of Electrical Engineering, Chung Yuan Christian University, 200, Chung-Pei Road, Chung Li 320 (China)

    2009-01-15

    This paper applies new maximum-power-point tracking (MPPT) algorithms to a wind-turbine generator system (WTGS). In this paper, the WTGS is a direct-drive system and includes the wind-turbine, permanent-magnet (PM) synchronous generator, three-phase full bridge rectifier, buck-boost converter and load. The new MPPT method uses gradient approximation (GA) algorithm. Three methods based on GA for achieving MPPT are discussed in this paper: (1) full-sensor control with anemometer and tachometer, (2) rule-based method and (3) adaptive duty cycle method. The third method has merits of no PID parameters, proportional constant, anemometer, tachometer and characteristics of WTGS required. This method enables the permanent-magnet synchronous generator (PMSG) to operate at variable speeds to achieve good performance. Simulation results show that the tip-speed ratio (TSR) and power coefficient obtained by the adaptive duty cycle method with GA can be almost identical to the optimal values. (author)

  15. Analysis of the wind data and estimation of the resultant air concentration rates

    International Nuclear Information System (INIS)

    Hu, Shze Jer; Katagiri, Hiroshi; Kobayashi, Hideo

    1988-09-01

    Statistical analyses and comparisons of the meteorological wind data obtained by the propeller and supersonic anemometers for the year of 1987 in the Japan Atomic Energy Research Institute, Tokai, were performed. For wind speeds less than 1 m/s, the propeller readings are generally 0.5 m/s less than those of the supersonic readings. The resultant average air concentration and ground level γ exposure rates due to the radioactive releases for the normal operation of a nuclear plant are over-estimated when calculated using the propeller wind data. As supersonic anemometer can give accurate wind speed to as low as 0.01 m/s, it should be used to measure the low wind speed. The difference in the average air concentrations and γ exposure rates calculated using the two different sets of wind data, is due to the influence of low wind speeds at calm. If the number at calm is large, actual low wind speeds and wind directions should be used in the statistical analysis of atmospheric dispersion to give a more accurate and realistic estimation of the air concentrations and γ exposure rates due to the normal operation of a nuclear plant. (author). 4 refs, 3 figs, 9 tabs

  16. Atmospheric Turbulence Estimates from a Pulsed Lidar

    Science.gov (United States)

    Pruis, Matthew J.; Delisi, Donald P.; Ahmad, Nash'at N.; Proctor, Fred H.

    2013-01-01

    Estimates of the eddy dissipation rate (EDR) were obtained from measurements made by a coherent pulsed lidar and compared with estimates from mesoscale model simulations and measurements from an in situ sonic anemometer at the Denver International Airport and with EDR estimates from the last observation time of the trailing vortex pair. The estimates of EDR from the lidar were obtained using two different methodologies. The two methodologies show consistent estimates of the vertical profiles. Comparison of EDR derived from the Weather Research and Forecast (WRF) mesoscale model with the in situ lidar estimates show good agreement during the daytime convective boundary layer, but the WRF simulations tend to overestimate EDR during the nighttime. The EDR estimates from a sonic anemometer located at 7.3 meters above ground level are approximately one order of magnitude greater than both the WRF and lidar estimates - which are from greater heights - during the daytime convective boundary layer and substantially greater during the nighttime stable boundary layer. The consistency of the EDR estimates from different methods suggests a reasonable ability to predict the temporal evolution of a spatially averaged vertical profile of EDR in an airport terminal area using a mesoscale model during the daytime convective boundary layer. In the stable nighttime boundary layer, there may be added value to EDR estimates provided by in situ lidar measurements.

  17. Measured and predicted rotor performance for the SERI advanced wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Tangler, J.; Smith, B.; Kelley, N.; Jager, D.

    1992-02-01

    Measured and predicted rotor performance for the SERI advanced wind turbine blades were compared to assess the accuracy of predictions and to identify the sources of error affecting both predictions and measurements. An awareness of these sources of error contributes to improved prediction and measurement methods that will ultimately benefit future rotor design efforts. Propeller/vane anemometers were found to underestimate the wind speed in turbulent environments such as the San Gorgonio Pass wind farm area. Using sonic or cup anemometers, good agreement was achieved between predicted and measured power output for wind speeds up to 8 m/sec. At higher wind speeds an optimistic predicted power output and the occurrence of peak power at wind speeds lower than measurements resulted from the omission of turbulence and yaw error. In addition, accurate two-dimensional (2-D) airfoil data prior to stall and a post stall airfoil data synthesization method that reflects three-dimensional (3-D) effects were found to be essential for accurate performance prediction. 11 refs.

  18. Eddy covariance flux measurements over a man made lake during the ALEX 2014 field campaign in South Portugal

    Science.gov (United States)

    Salgado, R.; Potes, M.; Albino, A.; Rodrigues, C. M.

    2014-12-01

    Energy, vapor, CO2 and momentum exchanges between water and air were measured using the new IRGASON eddy covariance system, an integrated open-path CO2 /H2O Gas Analyser and 3D Sonic Anemometer, installed on a instrumented floating platform (Figure 1) in the Alqueva reservoir, a large man made lake (area of 250 km2) in South Portugal. Radiation sensors were also mounted on the raft in order to measure near surface up and down radiative fluxes, while the water temperature profile below the platform were continuously archived. An accelerometer was mounted on the support bar near the sonic anemometer in order to correct the vertical component of the wind due to the the raft swing. The measurements were performed during the ALqueva hydro-meteorological EXperiment, ALEX 2014, between June and September 2014. ALEX 2014 ( http://www.alex2014.cge.uevora.pt) was an integrated field campaign with measurements of chemical, physical and biological parameters at different experimental sites in the reservoir and in its surrounding area. Worldwide, there are few reported flux measurements over lakes. This set of observations contribute to improve the characterization of the exchanges between a lake and the atmosphere in a semi-arid climate. The eddy covariance estimates of lake evaporation are compared against other methods.

  19. Design of Meteorological Element Detection Platform for Atmospheric Boundary Layer Based on UAV

    Directory of Open Access Journals (Sweden)

    Yonghong Zhang

    2017-01-01

    Full Text Available Among current detection methods of the atmospheric boundary layer, sounding balloon has disadvantages such as low recovery and low reuse rate, anemometer tower has disadvantages such as fixed location and high cost, and remote sensing detection has disadvantages such as low data accuracy. In this paper, a meteorological element sensor was carried on a six-rotor UAV platform to achieve detection of meteorological elements of the atmospheric boundary layer, and the influence of different installation positions of the meteorological element sensor on the detection accuracy of the meteorological element sensor was analyzed through many experiments. Firstly, a six-rotor UAV platform was built through mechanical structure design and control system design. Secondly, data such as temperature, relative humidity, pressure, elevation, and latitude and longitude were collected by designing a meteorological element detection system. Thirdly, data management of the collected data was conducted, including local storage and real-time display on ground host computer. Finally, combined with the comprehensive analysis of the data of automatic weather station, the validity of the data was verified. This six-rotor UAV platform carrying a meteorological element sensor can effectively realize the direct measurement of the atmospheric boundary layer and in some cases can make up for the deficiency of sounding balloon, anemometer tower, and remote sensing detection.

  20. Improved observations of turbulence dissipation rates from wind profiling radars

    Directory of Open Access Journals (Sweden)

    K. McCaffrey

    2017-07-01

    Full Text Available Observations of turbulence dissipation rates in the planetary boundary layer are crucial for validation of parameterizations in numerical weather prediction models. However, because dissipation rates are difficult to obtain, they are infrequently measured through the depth of the boundary layer. For this reason, demonstrating the ability of commonly used wind profiling radars (WPRs to estimate this quantity would be greatly beneficial. During the XPIA field campaign at the Boulder Atmospheric Observatory, two WPRs operated in an optimized configuration, using high spectral resolution for increased accuracy of Doppler spectral width, specifically chosen to estimate turbulence from a vertically pointing beam. Multiple post-processing techniques, including different numbers of spectral averages and peak processing algorithms for calculating spectral moments, were evaluated to determine the most accurate procedures for estimating turbulence dissipation rates using the information contained in the Doppler spectral width, using sonic anemometers mounted on a 300 m tower for validation. The optimal settings were determined, producing a low bias, which was later corrected. Resulting estimations of turbulence dissipation rates correlated well (R2 = 0. 54 and 0. 41 with the sonic anemometers, and profiles up to 2 km from the 449 MHz WPR and 1 km from the 915 MHz WPR were observed.

  1. Application of short-range dual-Doppler lidars to evaluate the coherence of turbulence

    Science.gov (United States)

    Cheynet, Etienne; Jakobsen, Jasna Bogunović; Snæbjörnsson, Jónas; Mikkelsen, Torben; Sjöholm, Mikael; Mann, Jakob; Hansen, Per; Angelou, Nikolas; Svardal, Benny

    2016-12-01

    Two synchronized continuous wave scanning lidars are used to study the coherence of the along-wind and across-wind velocity components. The goal is to evaluate the potential of the lidar technology for application in wind engineering. The wind lidars were installed on the Lysefjord Bridge during four days in May 2014 to monitor the wind field in the horizontal plane upstream of the bridge deck. Wind records obtained by five sonic anemometers mounted on the West side of the bridge are used as reference data. Single- and two-point statistics of wind turbulence are studied, with special emphasis on the root-coherence and the co-coherence of turbulence. A four-parameter decaying exponential function has been fitted to the measured co-coherence, and a good agreement is observed between data obtained by the sonic anemometers and the lidars. The root-coherence of turbulence is compared to theoretical models. The analytical predictions agree rather well with the measured coherence for the along-wind component. For increasing wavenumbers, larger discrepancies are, however, noticeable between the measured coherence and the theoretical predictions. The WindScanners are observed to slightly overestimate the integral length scales, which could not be explained by the laser beam averaging effect alone. On the other hand, the spatial averaging effect does not seem to have any significant effect on the coherence.

  2. Comparative study of the behavior of wind-turbines in a wind farm

    Energy Technology Data Exchange (ETDEWEB)

    Migoya, Emilio; Crespo, Antonio; Garcia, Javier; Manuel, Fernando; Jimenez, Angel [Universidad Politecnica de Madrid (UPM), Madrid (Spain). Departamento de Ingenieria Energetica y Fluidomecanica, Laboratorio de Mecanica de Fluidos; Moreno, Fermin [Comision Nacional de la Energia, Madrid (Spain); Costa, Alexandre [Energia Eolica, Division de Energias Renovables, CIEMAT, Madrid (Spain)

    2007-10-15

    The Sotavento wind farm is an experimental wind farm which has different types of wind turbines. It is located in an area whose topography is moderately complex, and where wake effects can be significant. One of the objectives of Sotavento wind farm is to compare the performances of the different machines; particularly regarding power production, maintenance and failures. However, because of wakes and topography, the different machines are not working under identical conditions. Two linearized codes have been used to estimate topography effects: UPMORO and WAsP. For wind directions in which topography is abrupt, the non-linear flow equations have been solved with the commercial code FLUENT, although the results are only qualitatively used. For wake effects, the UPMPARK code has been applied. As a result, the incident velocity over each wind turbine is obtained, and the power production is estimated by means of the power curve of each machine. Experimental measurements give simultaneously the wind characteristics at the measuring stations, the wind velocity, at the nacelle anemometer, and the power production of each wind turbine. These experimental results are employed to validate the numerical predictions. The main objective of this work is to deduce and validate a relationship between the wind characteristics measured in the anemometers and the wind velocity and the power output in each machine. (author)

  3. Turbulence measurements in the compressor exit flow of a General Electric CF6-50 engine

    Science.gov (United States)

    Taylor, J. R.

    1979-01-01

    Ruggedized cooled film probes were used to measure CF6-50 compressor exit turbulence properties at three different engine idle condition test points. The turbulence probe was coupled to a constant temperature anemometer and signal conditioning system. An on-line readout system connected to the anemometer was used to check the data as it was acquired. At engine idle conditions, the turbulence intensity ranged from 4.8 percent to 5.6 percent and the length scale ranged from 5.64 cm to 6.95 cm. The length scale values are somewhat larger than the passage height at the measurement plane (5.54 cm), which indicates that the shape of the turbulent eddies are elongated in the axial direction. The microscale values range from about 0.73 cm to about 0.98 cm. Power spectral density distributions show that a large proportion of the turbulent energy at the measurement plane is concentrated at frequencies below one kilohertz.

  4. Advancements in Wind Energy Metrology - UPWIND 1A2.3

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Troels F.; Wagner, R.

    2011-02-15

    An overview of wind related metrology research made at Risoe DTU over the period of the UPWIND project is given. A main part of the overview is devoted to development of the Lidar technology with several sub-chapters considering different topics of the research. Technical problems are not rare for this new technology, and testing against a traditional met mast have shown to be efficient for gaining confidence with the ground based Lidar technology and for trust in accuracy of measurements. In principle, Lidar measurements could be traceable through the fundamental measurement principles, but at this stage of development it is not found feasible. Instead, traceability is secured through comparison with met masts that are traceable through wind tunnel calibrations of cup anemometers. The ground based Lidar measurement principle works almost acceptable in flat terrain. In complex terrain and close to woods the measurement volume is disturbed because the flow is no longer horizontally homogeneous. These conditions require special attention and correction methods. Due to the large measurement volume, ground based Lidars perform a spatial averaging which has the effect of a low pass filter on turbulence measurements. Theory and measurements seem to be in good agreement. Lidar measurements from a rotating spinner have been performed. The analysis show good perspectives for scanning the incoming wind, which may lead to better controlled wind turbines. Lidars have also been used to scan the wake of wind turbines. These measurements document the meandering wake pattern. The second part of the overview considers power performance measurements. A new investigation on the influence of wind shear points to a revision of the definition of a power curve. A new measurement method has been developed which has a good chance of being implemented in the present revision of the IEC performance standard. Also, a turbulence normalization method has been tested but not found efficient

  5. Physical modeling of flow over an axisymmetric knoll under neutral atmospheric conditions

    International Nuclear Information System (INIS)

    Cliff, W.C.; Smith, J.D.

    1980-02-01

    A glass-walled hydraulic (water) flume was used to model physically air flow near an axisymmetric knoll in a neutral atmospheric boundary layer. The knoll was a 1:250 scale model. An upstream velocity profile (1/7 power law), characteristic of a neutral atmospheric boundary layer, was produced by locating a 10-cm-high (4-in.) trip near the flume entrance and by appropriately roughening the flume floor. Mean velocity, rms velocity, and turbulence intensity profiles were measured at locations near the knoll using an existing laser Doppler anemometer system. The flow accelerated over the knoll and produced a relatively uniform velocity profile at the crest. The measured velocity profile was in close agreement with a theoretical velocity profile developed using potential flow theory and an upstream power law velocity profile. The turbulence intensity decreased at the crest of the knoll as a result of the flow acceleration

  6. Comparison of mesoscale model and tower measurements of surface fluxes during Winter Icing and Storms Program/Atmospheric Radiation Measurement 91

    International Nuclear Information System (INIS)

    Oncley, S.P.; Dudhia, J.

    1994-01-01

    This study is an evaluation of the ability of the Pennsylvania State University/National Center for Atmospheric Research (NCAR) mesoscale model (MM4) to determine surface fluxes to see if measured fluxes should be assimilated into model runs. Fluxes were compared from a high-resolution (5 km grid spacing) MM4 run during one day of the Winter Icing and Storms Programs/Atmospheric Radiation Measurement (WISP/ARM) experiment (over NE Colorado in winter 1991) with direct flux measurements made from a tower over a representative site by a three-dimensional sonic anemometer and fast response temperature and humidity sensors. This tower was part of the NCAR Atmosphere-Surface Turbulent Exchange Research (ASTER) facility. Also, mean values were compared to check whether any differences were due to the model parameterization or model variables

  7. Assessing the local windfield with instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Zambrano, T.G.

    1980-10-01

    This report concerns the development and testing of a technique for the initial screening and evaluation of potential sites for wind-energy conversion systems (WECS). The methodology was developed through a realistic siting exercise. The siting exercise involved measurements of winds along the surface and winds aloft using a relatively new instrument system, the Tethered Aerodynamic Lifting Anemometer (TALA) kite; notation of ecological factors such as vegetation flagging, soil erosion and site exposure, and verification of an area best suited for wind-energy development by establishing and maintaining a wind monitoring network. The siting exercise was carried out in an approximately 100-square-mile region of the Tehachapi Mountains of Southern California. The results showed that a comprehensive site survey involving field measurements, ecological survey, and wind-monitoring can be an effective tool for preliminary evaluation of WECS sites.

  8. Low-energy house in Sisimiut - Measurement equipment

    Energy Technology Data Exchange (ETDEWEB)

    Hvidthoeft Delff Andersen, P.; Rode, C.; Madsen, Henrik

    2013-08-15

    This paper documents the measurement equipment in a low-energy house in Sisimiut, Greenland. Detailed measurements are being taken on energy consumption, indoor temperatures, floor heating, ventilation, open/closed state of doors and windows, and indoors climate. Equipped with a central control unit, experiments can be designed in order to study heat dynamics of the building. It is described how to plan and execute such experiments in one apartment in the building. The building also features both a solar thermal system and extra buffer tank facilitating testing of storage strategies on the power generated by the solar thermal system. A weather station equipped with thermometer, pyranometer and anemometer is installed on the building as well. Finally, it is described how to retrieve data from an SQL server which is configured to take monthly backups. R functions have been implemented to fetch and prepare the data for time series analysis. Examples are given on the use of these. (Author)

  9. Experimental studies of flow separation and stalling on two-dimensional airfoils at low speeds. Phase 2: Studies with Fowler flap extended

    Science.gov (United States)

    Seetharam, H. C.; Wentz, W. H., Jr.

    1975-01-01

    Results were given on experimental studies of flow separation and stalling on a two-dimensional GA(W)-1 17 percent thick airfoil with an extended Fowler flap. Experimental velocity profiles obtained from a five tube probe survey with optimum flap gap and overlap setting (flap at 40 deg) are shown at various stations above, below, and behind the airfoil/flap combination for various angles of attack. The typical zones of steady flow, intermittent turbulence, and large scale turbulence were obtained from a hot wire anemometer survey and are depicted graphically for an angle of attack of 12.5 deg. Local skin friction distributions were obtained and are given for various angles of attack. Computer plots of the boundary layer profiles are shown for the case of the flap at 40 deg. Static pressure contours are also given. A GA(W)-2 section model was fabricated with 30 percent Fowler flaps and with pressure tabs.

  10. Study of natural convection heat transfer characteristics. (1) Influence of ventilation duct height

    International Nuclear Information System (INIS)

    Wakamatsu, Mitsuo; Iwaki, Chikako; Ikeda, Tatsumi; Morooka, Shinichi; Ikeda, Hiroshi; Nakada, Kotaro; Masaki, Yoshikazu

    2008-01-01

    Natural cooling system has been investigated in waste storage. It is important to evaluate the flow by natural draft enough to removal the decay heat from the waste. In this study, we carried out the fundamental experiment of ventilation duct height effect for natural convection on vertical cylindrical heater in atmospheric air. The scale of test facility is about 4m height with single heater. The heating value is varied in the range of 33-110W, where Rayleigh number is over 10 10 . Natural convection flow rate were calculated by measured velocity with thermo anemometer in the inlet duct. The temperature of the cylindrical heater wall and fluid were measured with thermocouples. It was found that the heat transfer coefficient difference between long duct and short duct is small in this experiment. (author)

  11. Flux footprints for a tall tower in a land–water mosaic area: A case study of the area around the Risø tower

    DEFF Research Database (Denmark)

    Sogachev, Andrey; Dellwik, Ebba

    2017-01-01

    in the area surrounding the 122-m tower at Risø (Denmark), which is a mosaic of water, agricultural areas and forests. These heterogeneities are clearly reflected in the tower-based observations of the turbulence statistics from a profile of six sonic anemometers and are also reproduced by the flow model....... Using the two-dimensional mode of the model, in combination with the footprint estimator, we calculate the scalar flux footprints for the 122m eddy-covariance location and compare these results to analytical footprint estimators, which are only valid for homogeneous terrain, but are commonly applied...... also for heterogeneous terrain. Whereas the results by the analytical footprint estimator indicate smooth source areas regardless of the surface heterogeneities, the footprint estimator based on the micro-scale model indicates source hotspots, which have a stronger weight in the footprint. The hotspots...

  12. On the hysteresis of the sea surface and its applicability to wave height predictions

    Science.gov (United States)

    Parsons, C. L.

    1977-01-01

    Because of the low dissipation rate of wave energy on the ocean's surface, the wave height at some location and time must be dependent upon wind fields in existence there at previous times and upon swell propagated there from other regions. To study these relationships, significant wave height (SWH) measurements from the Geos-3 radar altimeter are used in conjunction with anemometer windspeed measurements from weather ships, L, C, and R. During the passage of large cyclonic disturbances near the fixed locations of these vessels in the North Atlantic in February 1976, distinct hysteresis profiles that characterize the sea's memory during generation and dissipation conditions are observed. Examples are given that demonstrate the influences of cyclone intensity, movement, velocity, and shape on the configuration of these profiles.

  13. Sodar detection of mixing height in flat and mountainous terrain

    Energy Technology Data Exchange (ETDEWEB)

    Hennemuth, B [Consulting Meteorologist, Hamburg (Germany); Kirtzel, H-Juergen [METEK GmbH, Elmshorn (Germany)], E-mail: barbara.hennemuth@zmaw.de

    2008-05-01

    The atmospheric boundary layer plays an important role in air pollution and dispersion problems because the transport processes are managed within this layer and its top limits the vertical exchange of pollutants. A method for the derivation of the mixing height from measurements of sodar, RASS and sonic anemometer-thermometer is presented for flat terrain. It does not only use vertical profiles of measured parameters but also bulk information like histograms and time evolution. Results from a two-years period are verified by radiosonde-derived mixing height values and show the potential of the combination of the three systems to monitor the mixing height. Difficulties arise at locations in mountainous terrain where thermal wind regimes dominate which are highly non-local. An additional problem is a strong local heat source at an industrial site where even the definition of the mixing height is unclear.

  14. Reduction of noise and bias in randomly sampled power spectra

    DEFF Research Database (Denmark)

    Buchhave, Preben; Velte, Clara Marika

    2015-01-01

    by modifications of the ideal Poisson sample rate caused by dead time effects and correlations between velocity and sample rate. The noise and dead time effects for finite records are shown to tend to previous results for infinite time records and ensemble averages. For finite records, we show that the measured...... sampling function can be used to correct the spectra for noise and dead time effects by a deconvolution process. We also describe a novel version of a power spectral estimator based on a fast slotted autocovariance algorithm.......We consider the origin of noise and distortion in power spectral estimates of randomly sampled data, specifically velocity data measured with a burst-mode laser Doppler anemometer. The analysis guides us to new ways of reducing noise and removing spectral bias, e.g., distortions caused...

  15. Aerodynamic and acoustic environment of a highly supersonic hot jet; Environnement aerodynamique et acoustique d'un jet chaud et fortement supersonique

    Energy Technology Data Exchange (ETDEWEB)

    Varnier, J.; Gely, D. [Office National d' Etudes et de Recherches Aerospatiales (ONERA), Dept. DSNA, 92 - Chatillon (France); Foulon, H. [CEAT, 86 - Poitiers (France)

    2001-07-01

    In the context of the spatial launchers, the prediction of noise radiated by highly supersonic hot jets is generally made from empirical methods. More recently, simulation methods based on computational fluid dynamics have been developed. In the two cases, in order to specify the parameters of the computer codes, it is necessary to know the actual aerodynamic and acoustic data of the flow. In the MARTEL facilities of CNES, ONERA has carried out tests with a 1200 m/s hot jet, free or impinging on a large plate. Acoustic near field and aerodynamic configuration of the free jet and of the wall jet have been characterized by measurements. Particularly, the supersonic core length and the location of the sound power peak on the jet axis have been determined. Other measurements, made with anemometers and wind cocks in the vicinity of the jet and of the plate, have allowed to characterize the drive of the ambient air by the jet. (authors)

  16. Climate change and ice hazards in the Beaufort Sea

    DEFF Research Database (Denmark)

    Barber, D. G.; McCullough, G.; Babb, D.

    2014-01-01

    Recent reductions in the summer extent of sea ice have focused the world’s attention on the effects of climate change. Increased CO2-derived global warming is rapidly shrinking the Arctic multi-year ice pack. This shift in ice regimes allows for increasing development opportunities for large oil...... will be a much more complex task than modeling average ice circulation. Given the observed reduction in sea ice extent and thickness this rather counterintuitive situation, associated with a warming climate, poses significant hazards to Arctic marine oil and gas development and marine transportation. Accurate...... forecasting of hazardous ice motion will require improved real-time surface wind and ocean current forecast models capable of ingesting local satellite-derived wind data and/or local, closely-spaced networks of anemometers and improved methods of determining high-frequency components of surface ocean current...

  17. Estimation of turbulence intensity using rotor effective wind speed in Lillgrund and Horns Rev-I offshore wind farms

    DEFF Research Database (Denmark)

    Gögmen, Tuhfe; Giebel, Gregor

    2016-01-01

    varies over the extent of the wind farm. This paper describes a method to estimate the TI at individual turbine locations by using the rotor effective wind speed calculated via high frequency turbine data. The method is applied to Lillgrund and Horns Rev-I offshore wind farms and the results are compared...... with TI derived from the meteorological mast, nacelle mounted anemometer on the turbines and estimation based on the standard deviation of power. The results show that the proposed TI estimation method is in the best agreement with the meteorological mast. Therefore, the rotor effective wind speed...... is shown to be applicable for the TI assessment in real-time wind farm calculations under different operational conditions. Furthermore, the TI in the wake is seen to follow the same trend with the estimated wake deficit which enables to quantify the turbulence in terms of the wake loss locally inside...

  18. Advanced Exploration Technologies: Micro and Nano Technologies Enabling Space Missions in the 21st Century

    Science.gov (United States)

    Krabach, Timothy

    1998-01-01

    Some of the many new and advanced exploration technologies which will enable space missions in the 21st century and specifically the Manned Mars Mission are explored in this presentation. Some of these are the system on a chip, the Computed-Tomography imaging Spectrometer, the digital camera on a chip, and other Micro Electro Mechanical Systems (MEMS) technology for space. Some of these MEMS are the silicon micromachined microgyroscope, a subliming solid micro-thruster, a micro-ion thruster, a silicon seismometer, a dewpoint microhygrometer, a micro laser doppler anemometer, and tunable diode laser (TDL) sensors. The advanced technology insertion is critical for NASA to decrease mass, volume, power and mission costs, and increase functionality, science potential and robustness.

  19. An accurate quantification of the flow structure along the acoustic signal cycle in a forced two-phase jet

    Directory of Open Access Journals (Sweden)

    Calvo Bernad Esteban

    2014-03-01

    Full Text Available This paper provides an experimental study of an acoustically forced two-phase air jet generated by a convergent nozzle. The used particles are transparent glass spheres with diameters between 2 and 50 μm (which gives Stokes number of order 1 and the selected forcing frequency (f=400 Hz induces a powerful nearly periodic flow pattern. Measurements were done by a two-colour Phase-Doppler Anemometer. The experimental setup is computer-controlled to provide an accurate control with a high long-term stability. Measurements cover the whole forcing signal cycle. Raw measurements were carefully post-processed to avoid bias induced by the forcing and the instrument setup, as well as obtain right mean values of the dispersed flow. The effect of the forcing and the particle load allows authors to establish the effect of the acoustic forcing and the particle load on the jet.

  20. High order items of turbulent velocity fluctuations in the Kenics static mixer

    Science.gov (United States)

    Meng, HuiBo; Yu, YanFang; Wu, JianHua

    2008-12-01

    The turbulent flow characteristic of flowing velocity field in the Kenics static mixer (KSM) was studied by measuring the time series of pulsant velocity with Laser Doppler Anemometer. The probability density functions of the Cartesian velocity fluctuations were obtained and compared with the corresponding normal distributions. The deviation from the normal distribution described by skewness and flatness factors was analyzed quantitatively. The experimental results indicate that the value of Skewness fluctuates from -2.79 to 3.12 which mean that the distribution of velocity field is not a normal distribution, and the existence of coherent structure is pointed out by the distribution of Flatness of pulsant velocity with a range of 3~9.5.

  1. Determining the power-law wind-profile exponent under near-neutral stability conditions at sea

    Science.gov (United States)

    Hsu, S. A.; Meindl, Eric A.; Gilhousen, David B.

    1994-01-01

    On the basis of 30 samples from near-simultaneous overwater measurements by pairs of anemometers located at different heights in the Gulf of Mexico and off the Chesapeake Bay, Virginia, the mean and standard deviation for the exponent of the power-law wind profile over the ocean under near-neutral atmospheric stability conditions were determined to be 0.11 +/- 0.03. Because this mean value is obtained from both deep and shallow water environments, it is recommended for use at sea to adjust the wind speed measurements at different heights to the standard height of 10 m above the mean sea surface. An example to apply this P value to estimate the momentum flux or wind stress is provided.

  2. A multiple-fan active control wind tunnel for outdoor wind speed and direction simulation

    Science.gov (United States)

    Wang, Jia-Ying; Meng, Qing-Hao; Luo, Bing; Zeng, Ming

    2018-03-01

    This article presents a new type of active controlled multiple-fan wind tunnel. The wind tunnel consists of swivel plates and arrays of direct current fans, and the rotation speed of each fan and the shaft angle of each swivel plate can be controlled independently for simulating different kinds of outdoor wind fields. To measure the similarity between the simulated wind field and the outdoor wind field, wind speed and direction time series of two kinds of wind fields are recorded by nine two-dimensional ultrasonic anemometers, and then statistical properties of the wind signals in different time scales are analyzed based on the empirical mode decomposition. In addition, the complexity of wind speed and direction time series is also investigated using multiscale entropy and multivariate multiscale entropy. Results suggest that the simulated wind field in the multiple-fan wind tunnel has a high degree of similarity with the outdoor wind field.

  3. Experimental verification of air flow rate measurement for representative isokinetic air sampling in ventilation stacks

    International Nuclear Information System (INIS)

    Okruhlica, P.; Mrtvy, M.; Kopecky, Z.

    2008-01-01

    Nuclear facilities are obliged to monitor their discharge's influence on environment. Main monitored factions in NPP's ventilation stacks are usually noble gasses, particulates and iodine. These factions are monitored in air sampled from ventilation stack by means of sampling rosette and bypass followed with on-line measuring monitors and balance sampling devices with laboratory evaluations. Correct air flow rate measurement and representative iso-kinetic air sampling system is essential for physical correct and metrological accurate evaluation of discharge influence on environment. Pairs of measuring sensors (Anemometer, pressure gauge, thermometer and humidity meter) are symmetrically placed in horizontal projection of stack on positions based on measured air flow velocity distribution characteristic, Analogically diameter of sampling rosette nozzles and their placement in the middle of 6- 7 annuluses are calculated for assurance of representative iso-kinetic sampling. (authors)

  4. Numerical and experimental investigation of flow and scour around a half-buried sphere

    DEFF Research Database (Denmark)

    Dixen, Martin; Sumer, B. Mutlu; Fredsøe, Jørgen

    2013-01-01

    The paper describes the results of a numerical and experimental investigation of flow and scour around a half-buried sphere exposed to a steady current. Hot-film bed shear stress and Laser Doppler Anemometer measurements were made with a half sphere mounted on the smooth bed in an open channel....... The hydrodynamic model is a 3-D general purpose N–S flow solver. The k-omega SST turbulence model was used for closure. The flow model was used to study the horseshoe vortex and lee-wake vortex flow processes around the sphere. The flow model was coupled with a morphologic model to calculate scour around the half-buried...

  5. Computation of three-dimensional, rotational flow through turbomachinery blade rows for improved aerodynamic design studies

    Science.gov (United States)

    Subramanian, S. V.; Bozzola, R.; Povinelli, L. A.

    1986-01-01

    The performance of a three dimensional computer code developed for predicting the flowfield in stationary and rotating turbomachinery blade rows is described in this study. The four stage Runge-Kutta numerical integration scheme is used for solving the governing flow equations and yields solution to the full, three dimensional, unsteady Euler equations in cylindrical coordinates. This method is fully explicit and uses the finite volume, time marching procedure. In order to demonstrate the accuracy and efficiency of the code, steady solutions were obtained for several cascade geometries under widely varying flow conditions. Computed flowfield results are presented for a fully subsonic turbine stator and a low aspect ratio, transonic compressor rotor blade under maximum flow and peak efficiency design conditions. Comparisons with Laser Anemometer measurements and other numerical predictions are also provided to illustrate that the present method predicts important flow features with good accuracy and can be used for cost effective aerodynamic design studies.

  6. Application of lidars for assessment of wind conditions on a bridge site

    DEFF Research Database (Denmark)

    Jakobsen, J. B.; Cheynet, Etienne; Snæbjörnsson, Jonas

    2015-01-01

    Wind measurement techniques based on remote optical sensing, extensively applied in wind energy, have been exploited in civil engineering only in a limited number of studies. The present paper introduces a novel application of wind lidars in bridge engineering, and presents the findings from...... characterization. The paper presents a promising comparison of the measurements obtained by the three different sets of instruments, and discusses their complementary value....... the pilot measurement campaign on the Lysefjord Bridge in the South-West Norway. A single long-range pulsed WindScanner lidar and two short-range continuous-wave WindScanner lidars were deployed, in addition to five sonic anemometers installed on the bridge itself, the latter for long-term wind...

  7. In-situ measurement system

    Science.gov (United States)

    Lord, David E.

    1983-01-01

    A multipurpose in situ underground measurement system comprising a plurality of long electrical resistance elements in the form of rigid reinforcing bars, each having an open loop "hairpin" configuration of shorter length than the other resistance elements. The resistance elements are arranged in pairs in a unitized structure, and grouted in place in the underground volume. The electrical resistance of each element and the difference in electrical resistance of the paired elements are obtained, which difference values may be used in analytical methods involving resistance as a function of temperature. A scanner sequentially connects the resistance-measuring apparatus to each individual pair of elements. A source of heating current is also selectively connectable for heating the elements to an initial predetermined temperature prior to electrical resistance measurements when used as an anemometer.

  8. In situ measurement system

    Science.gov (United States)

    Lord, D.E.

    1980-11-24

    A multipurpose in situ underground measurement system comprising a plurality of long electrical resistance elements in the form of rigid reinforcing bars, each having an open loop hairpin configuration of shorter length than the other resistance elements. The resistance elements are arranged in pairs in a unitized structure, and grouted in place in the underground volume. Measurement means are provided for obtaining for each pair the electrical resistance of each element and the difference in electrical resistance of the paired elements, which difference values may be used in analytical methods involving resistance as a function of temperature. A scanner means sequentially connects the resistance-measuring apparatus to each individual pair of elements. A source of heating current is also selectively connectable for heating the elements to an initial predetermined temperature prior to electrical resistance measurements when used as an anemometer.

  9. Sound Radiation of Aerodynamically Excited Flat Plates into Cavities

    Directory of Open Access Journals (Sweden)

    Johannes Osterziel

    2017-10-01

    Full Text Available Flow-induced vibrations and the sound radiation of flexible plate structures of different thickness mounted in a rigid plate are experimentally investigated. Therefore, flow properties and turbulent boundary layer parameters are determined through measurements with a hot-wire anemometer in an aeroacoustic wind tunnel. Furthermore, the excitation of the vibrating plate is examined by laser scanning vibrometry. To describe the sound radiation and the sound transmission of the flexible aluminium plates into cavities, a cuboid-shaped room with adjustable volume and 34 flush-mounted microphones is installed at the non flow-excited side of the aluminium plates. Results showed that the sound field inside the cavity is on the one hand dependent on the flow parameters and the plate thickness and on the other hand on the cavity volume which indirectly influences the level and the distribution of the sound pressure behind the flexible plate through different excited modes.

  10. The impact of size and shape of particles of undergrowth and herbs mixtures on aerodynamic properties

    Directory of Open Access Journals (Sweden)

    Marian Panasiewicz

    2014-09-01

    Full Text Available The impact of the size and shape of a selected group of herbs (dried juniper berries Juniperus communis, dry blueberries Vaccinium myrtillus, petals of cornflower Centaurea cyanus on the value of the volatility coefficient, the coefficient of sphericity and the critical speed was analysed in the presented research. A laboratory anemometer to measure the speed of air was used. The determination of the volatility coefficient of particular size fractions was conducted on the basis of critical speed values, calculated as an average established after five measurements. The established aerodynamic properties of particular mixtures allow the determination and the assessment of differences among fractions of valuable resources and different impurities. The presented data might constitute a basis to determine the scope of differences among them and establish interrelations which allow the application of proper parameters for the pneumatic separation process in practice.

  11. Surface Stress with Non-stationary Weak Winds and Stable Stratification

    Science.gov (United States)

    Mahrt, L.; Thomas, Christoph K.

    2016-04-01

    The behaviour of turbulent transport in the weak-wind, stably-stratified, boundary layer over land is examined in terms of the non-stationarity of the wind field using measurements from three field programs. These field programs include towers ranging from 12 to 20 m in height and an extensive horizontal network of sonic anemometers. The relationship of the friction velocity to the stratification and non-stationary submeso motions is investigated from several points of view and nominally quantified. The relationship of the turbulence to the stratification is less systematic than expected partly due to enhancement of the turbulence by submeso motions. Cause and effect relationships are difficult to isolate because the non-stationary momentum flux significantly modifies the profile of the non-stationary mean flow. The link between the turbulence and accelerations at the surface is examined in terms of the changing vertical structure of the wind profile and sudden increases in the downward transport of momentum.

  12. Boundary layer transition determination for periodic and static flows using phase-averaged pressure data

    Science.gov (United States)

    Gardner, A. D.; Richter, K.

    2015-06-01

    A method of boundary layer transition measurement is presented for wind tunnel models instrumented with surface pressure taps. The measurement relies on taking a number of theoretically identical measurements at different times and then analysing the standard deviation of the pressures. Due to the slight unsteady movement of the transition position, a peak in the standard deviation of pressure is found at the transition position, and this is correlated with measurements of the transition position with an infrared camera and hot-film anemometers. In contrast to microphone measurements, it is shown that the transition detection works for data which have been low-pass filtered with a cut-off of 1 Hz. The application to static and dynamic transition measurements on static and periodically pitching helicopter rotor blade airfoils at Mach 0.3-0.5 is demonstrated.

  13. Dead time effects in laser Doppler anemometry measurements

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Buchhave, Preben; George, William K.

    2014-01-01

    We present velocity power spectra computed by the so-called direct method from burst-type laser Doppler anemometer (LDA) data, both measured in a turbulent round jet and generated in a computer. Using today’s powerful computers, we have been able to study more properties of the computed spectra......, however, are assumed to be measured for each data point. In addition, the detector and processor used in the current study introduce a certain amount of fixed processing and data transfer times, which further contribute to the distortion of the computed spectrum. However, we show an excellent agreement...... between a measured spectrum and our modeled LDA data, thereby confirming the validity of our model for the LDA burst processor....

  14. Heat and momentum transfer from an atmospheric argon hydrogen plasma jet to spherical particles

    International Nuclear Information System (INIS)

    Vaessen, P.H.M.

    1984-01-01

    In this thesis the author describes the energy and momentum transfer from the plasma jet to the spray particles. This is done both experimentally and theoretically. Also the internal energy process of the recombining plasma is discussed. All elastic and inelastic collisional and radiative processes, as well as transport effects within the plasma are considered. In the next section, the so called passive spectroscopy is treated. It describes the diagnostics of electron density and temperature measurement, as well as the investigation on heat content of the particles. Spatially resolved electron density and temperature profiles are presented. Next, the active spectroscopy, i.e. the laser Doppler anemometer is dealt with. With this diagnostic, axial spray-particle velocities inside the plasma jet were determined. The author also presents heat and momentum transfer modelling of the plasma, related to the plasma particle interaction. Finally, a one dimensional model verification is made, using the experimentally determined particle velocity and plasma temperature profiles. (Auth.)

  15. Characterization and Prediction of the Volume Flow Rate Aerating a Cross Ventilated Bilding by Means of Experimental Techniques and Numerical Approaches

    DEFF Research Database (Denmark)

    Larsen, Tine Steen; Nikolopoulos, N.; Nikolopoulos, A.

    2011-01-01

    anemometers across the openings, whilst the numerical methodology is based on the time-dependant solution of the governing Navier-Stokes equations. The experimental data are compared to the corresponding numerical results, revealing the unsteady character of the flow field especially at large incidence angles......The paper presents an extensive experimental and numerical study on a cross-ventilated building providing important features of the induced flow patterns at the two openings as a function of the free stream wind velocity’s magnitude and its incidence angle. The experimental data are measured via....... Furthermore, additional information regarding the flow field near the opening edges, not easily extracted by experimental methods, provide an in depth sight in the main characteristics of the flow field both at the openings but also inside the building. Finally, a new methodology for the approximation...

  16. Effects of Bell Speed and Flow Rate on Evaporation of Water Spray from a Rotary Bell Atomizer

    Directory of Open Access Journals (Sweden)

    Rajan Ray

    2015-05-01

    Full Text Available A phase doppler anemometer (PDA was used to determine the effects of evaporation on water spray for three rotary bell atomizer operational variable parameters: shaping air, bell speed and liquid flow. Shaping air was set at either 200 standard liters per minute (L/min or 300 L/min, bell speed was set to 30, 40 or 50 thousand rotations per minute (krpm and water flow rate was varied between 100, 200 or 300 cubic centimeters per minute (cm3/min. The total evaporation between 22.5 and 37.5 cm from the atomizer (cm3/s was calculated for all the combinations of those variables. Evaporation rate increased with higher flow rate and bell speed but no statistically significant effects were obtained for variable shaping air on interactions between parameters.

  17. Measurements of a Separating Turbulent Boundary Layer.

    Science.gov (United States)

    1980-04-01

    wire, and cross hot-wire anemometers. Note displaced ordinates. 26 M.. + 1226 2E I @ ~12: 3T :’+ , I 4,4 + I -= ++ + + nI 4, + I + 4+ I 4P z Figue lOa...PtAXJNE FRO SWUMR 9 SW nba aa 𔃽 1 Y/MELT’q Figure 40(a). Angle of principal axis of stress to the flow direction, e = 1/2 tan(-2uv/(u’ 2 -V vs. y...MIRETIM~ _ U2 a~p U 6 a2u Pm 0 au2 I x clP zzI lbI lb Pb -x " Nba : 2Xl P pu IIP !a x L:.a U! a 142 F la ft 5L(C Wti ENTU m b r-.A RC Ef I N T HE X -3IRECTI

  18. The microburst - Hazard to aircraft

    Science.gov (United States)

    Mccarthy, J.; Serafin, R.

    1984-01-01

    In encounters with microbursts, low altitude aircraft first encounter a strong headwind which increases their wing lift and altitude; this phenomenon is followed in short succession by a decreasing headwind component, a downdraft, and finally a strong tailwind that catastrophically reduces wing lift and precipitates a crash dive. It is noted that the potentially lethal low altitude wind shear of a microburst may lie in apparently harmless, rain-free air beneath a cloud base. Occasionally, such tell-tale signs as localized blowing of ground dust may be sighted in time. Microbursts may, however, occur in the heavy rain of a thunderstorm, where they will be totally obscured from view. Wind shear may be detected by an array of six anemometers and vanes situated in the vicinity of an airport, and by Doppler radar equipment at the airport or aboard aircraft.

  19. Feasibility of remote evaporation and precipitation estimates. [by stereo images

    Science.gov (United States)

    Sadeh, W. Z.

    1974-01-01

    Remote sensing by means of stereo images obtained from flown cameras and scanners provides the potential to monitor the dynamics of pollutant mixing over large areas. Moreover, stereo technology may permit monitoring of pollutant concentration and mixing with sufficient detail to ascertain the structure of a polluted air mass. Consequently, stereo remote systems can be employed to supply data to set forth adequate regional standards on air quality. A method of remote sensing using stereo images is described. Preliminary results concerning the planar extent of a plume based on comparison with ground measurements by an alternate method, e.g., remote hot-wire anemometer technique, are supporting the feasibility of using stereo remote sensing systems.

  20. Coastal Boundary Layer Characteristics of Wind, Turbulence, and Surface Roughness Parameter over the Thumba Equatorial Rocket Launching Station, India

    Directory of Open Access Journals (Sweden)

    K. V. S. Namboodiri

    2014-01-01

    Full Text Available The study discusses the features of wind, turbulence, and surface roughness parameter over the coastal boundary layer of the Peninsular Indian Station, Thumba Equatorial Rocket Launching Station (TERLS. Every 5 min measurements from an ultrasonic anemometer at 3.3 m agl from May 2007 to December 2012 are used for this work. Symmetries in mesoscale turbulence, stress off-wind angle computations, structure of scalar wind, resultant wind direction, momentum flux (M, Obukhov length (L, frictional velocity (u*, w-component, turbulent heat flux (H, drag coefficient (CD, turbulent intensities, standard deviation of wind directions (σθ, wind steadiness factor-σθ relationship, bivariate normal distribution (BND wind model, surface roughness parameter (z0, z0 and wind direction (θ relationship, and variation of z0 with the Indian South West monsoon activity are discussed.

  1. Modelling of extreme gusts for design calculations (NewGust)

    Energy Technology Data Exchange (ETDEWEB)

    Bierbooms, W.; Po-Wen Cheng [Delft Univ. of Technology, Inst. for Wind Energy, Delft (Netherlands); Larsen, G. [Risoe National Lab., Roskilde (Denmark); Juul Pedersen, B. [Vestas Wind Systems A/S, Lem (Denmark); Hansen, K. [Tecnical Univ. of Denmark (Denmark)

    1999-03-01

    The main objective of the NewGust project is to come to a realistic and verified description of extreme gusts based on the stochastic properties of wind. In this paper the first results of the project are presented. Theoretical considerations indicate that the shape of extreme gusts is very sharp. Based on simulated wind time series, mean gust shapes (for several amplitudes and mean wind speeds) are determined and compared with the theoretical curves. The resemblance turned out to be very good. Furthermore, the influence of the sampling rate and the dynamics of a cup anemometer on the empirical mean gust shape are examined. The promising results are confirmed by a (preliminary) verification based on measured wind time series, available from the database on wind characteristics. The mean shape of gusts, of certain amplitude, together with their probability of occurrence can be used to obtain the distribution of the extreme response of wind turbines to gust loading. (au)

  2. Laser Doppler technology applied to atmospheric environmental operating problems

    Science.gov (United States)

    Weaver, E. A.; Bilbro, J. W.; Dunkin, J. A.; Jeffreys, H. B.

    1976-01-01

    Carbon dioxide laser Doppler ground wind data were very favorably compared with data from standard anemometers. As a result of these measurements, two breadboard systems were developed for taking research data: a continuous wave velocimeter and a pulsed Doppler system. The scanning continuous wave laser Doppler velocimeter developed for detecting, tracking and measuring aircraft wake vortices was successfully tested at an airport where it located vortices to an accuracy of 3 meters at a range of 150 meters. The airborne pulsed laser Doppler system was developed to detect and measure clear air turbulence (CAT). This system was tested aboard an aircraft, but jet stream CAT was not encountered. However, low altitude turbulence in cumulus clouds near a mountain range was detected by the system and encountered by the aircraft at the predicted time.

  3. Full scale measurements and simulations of the wind speed in the close proximity of the building skin

    Directory of Open Access Journals (Sweden)

    Ponechal Radoslav

    2017-01-01

    Full Text Available 36 meteorological stations are located on the facade of the Research Centre building´s from 2016. Weather stations measure basic climate parameters and wind velocity and direction using a powerful ultra-sonic anemometers. These are located on the walls of the building oriented to four cardinal points at different heights and positions on the façade. The location selections were made with use of CFD simulation which analysed flow around the building. Thus they give faithful image of wind flow near the façade of five-storey office building. Such detailed measurements make it possible to achieve high accurate calibration of CFD models and measurements in the wind tunnel. This paper describes these meteorological stations in detail. First outputs from measurement in autumn are published and analysed.

  4. METEO-P/H: Measuring ambient pressure and relative humidity on the ExoMars 2020 landing site

    Science.gov (United States)

    Nikkanen, T. T.; Genzer, M.; Hieta, M.; Harri, A.-M.; Haukka, H.; Polkko, J.; Kynkäänniemi, T.

    2017-09-01

    Finnish Meteorological Institute (FMI) has designed and is in the process of building and testing a pressure and humidity measurement device for the ExoMars 2020 lander. The ExoMars 2020 mission consists of the Russian Roscosmos Surface Platform (SP) and the European Space Agency (ESA) Rover. The Surface Platform will perform the Entry, Descent and Landing for the lander combo and start stationary science operations after landing, while the Rover will drive off the SP to explore the landing site surroundings and soil. The FMI measurement device is installed on the Surface Platform to give continuous measurements from a stationary location. The METEO-P pressure device and METEO-H humidity device are part of the METEO meteorological science package, which also includes a thermometer and an anemometer from IKI, Russia, as well as the RDM Radiation and dust sensors, and the AMR magnetic field sensors from INTA, Spain.

  5. Wind Field Reconstruction from Nacelle-Mounted Lidars Short Range Measurements

    DEFF Research Database (Denmark)

    Borraccino, Antoine; Schlipf, David; Haizmann, Florian

    2017-01-01

    IR Dual Mode). The reconstructed wind speed was within 0.5 % of the wind speed measured with a mast-top-mounted cup anemometer at 2.5 rotor diameters upstream of the turbine. The technique described in this paper overcomes measurement range limitations of the currently available nacelle lidar technology.......Profiling nacelle lidars probe the wind at several heights and several distances upstream of the rotor. The development of such lidar systems is relatively recent, and it is still unclear how to condense the lidar raw measurements into useful wind field characteristics such as speed, direction......, vertical and longitudinal gradients (wind shear). In this paper, we demonstrate an innovative method to estimate wind field characteristics using nacelle lidar measurements taken within the induction zone. Model-fitting wind field reconstruction techniques are applied to nacelle lidar measurements taken...

  6. Note: A thermally stable tension meter for atmospheric soundings using kites.

    Science.gov (United States)

    Walesby, K T; Harrison, R G

    2010-07-01

    Kites offer considerable potential as wind speed sensors--a role distinct from their traditional use as instrument-carrying platforms. In the sensor role, wind speed is measured by kite-line tension. A kite tether line tension meter is described here, using strain gauges mounted on an aluminum ring in a Wheatstone bridge electronic circuit. It exhibits a linear response to tension (19.5 mV N(-1)) with good thermal stability (mean drift of -0.18 N degrees C(-1) over 5-45 degrees C temperature range) and a rapid time response (0.2 s or better). Field comparisons of tether line tension for a Rokkaku kite with a fixed tower sonic anemometer show an approximately linear tension-wind speed relationship over the range 1-6 ms(-1).

  7. Windcube + FCR test at Hrgud, Bosnia and Herzegovina

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Bejdic, Jasmin

    Velocity azimuth display (VAD) scanning lidars cannot measure the wind speed accurately in complex terrain because the fundamental assumption that the wind speed is horizontally homogeneous is violated. Leosphere provides an online correction, the Flow Complexity Recognition (FCR), in order...... by about 1.5%; but this deviation was fairly independent from the wind direction. This measurement campaign also highlighted a couple of important technical points, such as the importance of well protecting the lidar power supply in order to avoid any damage of the instruments, due to lightning hits...... place in a complex site, Hrgud, in Bosnia and Herzegovina, provided by ERS and where the reference met mast was erected and instrumented by COWI. The lidar uncorrected wind speed was lower than that measured by the cup anemometer at the same height by about 4.1%. This deviation is sensitive to the wind...

  8. Drag reduction in a turbulent boundary layer on a flexible sheet undergoing a spanwise traveling wave motion

    Science.gov (United States)

    Itoh, Motoyuki; Tamano, Shinji; Yokota, Kazuhiko; Taniguchi, Shinya

    The effect of a spanwise traveling-wave motion on a zero-pressure-gradient turbulent boundary layer over a flexible sheet was investigated at low Reynolds numbers using a single hot-wire anemometer for turbulence statistics and two laser displacement sensors for displacements of the flexible sheet. It was found that the log-law region of the mean velocity on the flexible sheet was slightly narrower compared with a rigid wall. The energy spectra of streamwise velocity fluctuations on the flexible sheet undergoing the spanwise traveling-wave motion were smaller in a region of frequency which corresponded to the bursting frequency in the canonical wall turbulence. This indicates that the bursting event near the flexible sheet was directly affected by the surface wave motion. It was revealed that a drag reduction of up to 7.5% could be obtained by the spanwise traveling-wave motion, estimating the friction coefficients through the growth rate of the momentum thickness.

  9. Study of evaporation from He II free surface induced by thermal shock wave

    Science.gov (United States)

    Murakami, M.; Maki, M.; Fujiyama, J.; Furukawa, T.

    2002-05-01

    Experimental study on evaporation phenomena in superfluid helium (He II, Tsurface. The gas-dynamic phenomena were visualized with the laser holographic interferometer (LHI) and were measured with superconductive thermometers and pressure transducers as well as with the newly developed superconductive hot-wire anemometer. The whole gasdynamic field was seen to consist of an evaporation shock wave, a uniform flow region and a Knudsen layer. The condensation coefficient of He II is obtained from the comparison of the experimental data with the slip boundary condition at evaporating interface derived from the kinetic theory of gases. It was demonstrated that a He II environment could offer an ideal situation for experimental gas-dynamic studies, and such experimental techniques as LHI and a hot-wire fully developed in conventional fluid-dynamics were of use even in cryogenic environment.

  10. Propagation of a Free Flame in a Turbulent Gas Stream

    Science.gov (United States)

    Mickelsen, William R; Ernstein, Norman E

    1956-01-01

    Effective flame speeds of free turbulent flames were measured by photographic, ionization-gap, and photomultiplier-tube methods, and were found to have a statistical distribution attributed to the nature of the turbulent field. The effective turbulent flame speeds for the free flame were less than those previously measured for flames stabilized on nozzle burners, Bunsen burners, and bluff bodies. The statistical spread of the effective turbulent flame speeds was markedly wider in the lean and rich fuel-air-ratio regions, which might be attributed to the greater sensitivity of laminar flame speed to flame temperature in those regions. Values calculated from the turbulent free-flame-speed analysis proposed by Tucker apparently form upper limits for the statistical spread of free-flame-speed data. Hot-wire anemometer measurements of the longitudinal velocity fluctuation intensity and longitudinal correlation coefficient were made and were employed in the comparison of data and in the theoretical calculation of turbulent flame speed.

  11. A case study of air quality above an urban roof top vegetable farm.

    Science.gov (United States)

    Tong, Zheming; Whitlow, Thomas H; Landers, Andrew; Flanner, Benjamin

    2016-01-01

    The effect of elevation and rooftop configuration on local air quality was investigated at the Brooklyn Grange rooftop farm during a short-term observational campaign. Using multiple particle counters and sonic anemometers deployed along vertical gradients, we found that PM2.5 concentration decayed with height above the street. Samples adjacent to the street had the highest average PM2.5 concentration and frequent stochastic spikes above background. Rooftop observations 26 m above ground showed 7-33% reductions in average PM2.5 concentration compared with the curbside and had far fewer spikes. A relationship between the vertical extinction rate of PM2.5 and atmospheric stability was found whereby less unstable atmosphere and greater wind shear led to greater PM2.5 extinction due to damped vertical motion of air. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Microclimate Influence on Bird Arrival Behavior Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Herman, R. [Radford Univ., VA (United States); O’Brien, S. [Radford Univ., VA (United States)

    2016-03-01

    Using our own prototype sensor arrays that were deployed to collect microclimate data, we were able to visualize distinct differences in temperature, wind speed, and humidity over very small ranges of distance. We collected data across four polygons within the Barrow Environmental Observatory site. Our prototype microclimate arrays were based on an Arduino microcontroller, DS18B20 temperature sensors, DHT11 relative humidity/temperature sensors, and Vernier anemometers. Data were obtained in a small grid pattern with four sensors spaced 60 cm apart along the x-axis, and moved at 60 cm increments along a y-line across a polygon. Overlaying bird nest location with such data has allowed us to better answer our research question, “How do Arctic birds choose where to nest to maximize fitness in harsh Arctic environments?”

  13. Multi-Sensor Integration to Map Odor Distribution for the Detection of Chemical Sources

    Directory of Open Access Journals (Sweden)

    Xiang Gao

    2016-07-01

    Full Text Available This paper addresses the problem of mapping odor distribution derived from a chemical source using multi-sensor integration and reasoning system design. Odor localization is the problem of finding the source of an odor or other volatile chemical. Most localization methods require a mobile vehicle to follow an odor plume along its entire path, which is time consuming and may be especially difficult in a cluttered environment. To solve both of the above challenges, this paper proposes a novel algorithm that combines data from odor and anemometer sensors, and combine sensors’ data at different positions. Initially, a multi-sensor integration method, together with the path of airflow was used to map the pattern of odor particle movement. Then, more sensors are introduced at specific regions to determine the probable location of the odor source. Finally, the results of odor source location simulation and a real experiment are presented.

  14. Effect of bubble size on internal characteristics of upward bubble flow

    International Nuclear Information System (INIS)

    Matsui, Goichi; Kumazawa, Toshio; Yamashita, Yutaka.

    1987-01-01

    Bubble flow characteristics were investigated experimentally in nitrogen gas-water in a spuare channel using a laser Doppler anemometer and a double-sensor conductance probe under the same flow rate conditions. The size of the bubbles was controlled by changing the mixing conditions and by adding a surface active agent to water. Thus, four sets of experiments were conducted. Experimental results show that the reduction in bubble size flattens the gas-phase distribution and increases the number density of bubbles. The reduction in bubble size leads to a decrease in turbulence and an increase in water and bubble velocities, but an extreme reduction does not bring about a further increase in both velocities, although it leads to a further decrease in turbulence. Turbulence suppression was observed in layer-type bubble flows. This type of flow has a peculiar profile of water velocity. (author)

  15. Studies using wind tunnel to simulate the Atmospheric Boundary Layer at the Alcântara Space Center

    Directory of Open Access Journals (Sweden)

    Luciana P. Bassi Marinho

    2009-01-01

    Full Text Available The Alcântara Space Center (ASC region has a peculiar topography due to the existence of a coastal cliff, which modifies the atmospheric boundary layer characteristic in a way that can affect rocket launching operations. Wind tunnel measurements can be an important tool for the understanding of turbulence and wind flow pattern characteristics in the ASC neighborhood, along with computational fluid dynamics and observational data. The purpose of this paper is to describe wind tunnel experiments that have been carried out by researchers from the Brazilian Institutions IAE, ITA and INPE. The technologies of Hot-Wire Anemometer and Particle Image Velocimetry (PIV have been used in these measurements, in order to obtain information about wind flow patterns as velocity fields and vorticity. The wind tunnel measurements are described and the results obtained are presented.

  16. Remotely measuring the wind using turbine-mounted lidars: Application to power performance testing

    DEFF Research Database (Denmark)

    Borraccino, Antoine

    of the wind field reconstruction methods. Two wind models were developed in this thesis. The first one employs lidar measurement at a single distance – but several heights –, accounts for shear through a power law profile, and estimates hub height wind speed, direction and the shear exponent. The second model...... combines the wind model with a simple one-dimensional induction model. The lidar inputs were line-of-sight velocity measurements taken at multiple distances close to the rotor, from 0.5 to 1.25 rotor diameters. Using the combined wind-induction model, hub height free stream wind characteristics...... uncertainties were also quantified. Further, the annual energy production (AEP) was computed for a range of annual mean wind speeds. At 8ms−1, the lidar-estimated AEP was within 1% to the one obtained with the cup anemometer. The combined wind-induction reconstruction technique represents a paradigm shift...

  17. Characterization of the unsteady flow in the nacelle region of a modern wind turbine

    DEFF Research Database (Denmark)

    Zahle, Frederik; Sørensen, Niels N.

    2011-01-01

    A three-dimensional Navier–Stokes solver has been used to investigate the flow in the nacelle region of a wind turbine where anemometers are typically placed to measure the flow speed and the turbine yaw angle. A 500 kW turbine was modelled with rotor and nacelle geometry in order to capture...... the complex separated flow in the blade root region of the rotor. A number of steady state and unsteady simulations were carried out for wind speeds ranging from 6 m s−1 to 16 m s−1 as well as two yaw and tilt angles. The flow in the nacelle region was found to be highly unsteady, dominated by unsteady vortex...... anemometry showed significant dependence on both yaw and tilt angles with yaw errors of up to 10 degrees when operating in a tilted inflow. Copyright © 2010 John Wiley & Sons, Ltd....

  18. Options of microclimate optimization in stable objects with respect to thermal comfort

    Directory of Open Access Journals (Sweden)

    Anna Šimková

    2013-05-01

    Full Text Available The study was carried out at the farm in Petrovice. Dairy cows and heifers were included in the experiment. The relative humidity, temperature, cooling value environment and flow rate in stables were measured. The flow rate was measured by the handheld anemometer. The relative humidity and the temperature were obtained by the data logger with sensors. The cooling value environment was obtained by the psychrometer. The rectal temperature was measured simultaneously as further value. It was rated 3 different groups of dairy cows and heifers in 2 stables. The aim of this work was finding how this values impact thermal comfort of the animals. The temperature is the most significant factor because it is very variable value. The animals immediately react for change of this. All these measured values are important for optimal welfare of animals. They influence the productivity of dairy cows and heifers, milk quality, reproduction and health of animals.

  19. A new method for aerodynamic test of high altitude propellers

    Directory of Open Access Journals (Sweden)

    Xiying Gong

    Full Text Available A ground test system is designed for aerodynamic performance tests of high altitude propellers. The system is consisted of stable power supply, servo motors, two-component balance constructed by tension-compression sensors, ultrasonic anemometer, data acquisition module. It is loaded on a truck to simulate propellers’ wind-tunnel test for different wind velocities at low density circumstance. The graphical programming language LABVIEW for developing virtual instrument is used to realize the test system control and data acquisition. Aerodynamic performance test of a propeller with 6.8 m diameter was completed by using this system. The results verify the feasibility of the ground test method. Keywords: High altitude propeller, Ground test, Virtual instrument control system

  20. Wind Speed Analysis using Weibull Distribution in the Region Blang Bintang Aceh Besar

    Directory of Open Access Journals (Sweden)

    Khairiaton Khairiaton

    2016-11-01

    Study of the wind speeds in the region Blang Bintang, Aceh Besar district has been done to asses the potential of wind power instalation. The wind speed data was obtained from anemometer which has been instaling in that area. The datas were analyze by the Weibull distribution within the range for the years of  2012 to 2015. The results show that the shape parameter (k is small, the value is around 1.4 and the scale parameter (c tends to be stable, within the value of 4. Based on the value of k and c give that the wind speed in 2012 is equal to 1 ms-1 with a probability of 15%, in 2013 and 2014give the same value at 0.5 ms-1 with a probability of 21% and 19%, respectively while for 2015 is 1 ms-1 as much as 17%.

  1. APLIKASI PENATAAN PARKIR BASEMENT MOBIL DENGAN POLA PETAK PARKIR 900 MENINGKATKAN KEPUASAN PENGGUNA PARKIR MALL RAMAYANA DENPASAR

    Directory of Open Access Journals (Sweden)

    I Ketut Sutapa

    2017-06-01

    Full Text Available Mall Ramayana Denpasar sebagai pusat perbelanjaan memiliki fasilitas parkir baik di dalam maupun di luar gedung. Untuk meningkatkan kepuasan pengguna parkir, maka dilakukan pemberlakuan pola petak parkir mobil dengan sudut 900  melalui penerapan teknologi tepat guna dengan pendekatan sistemik, holistik, interdisipliner dan partisipatori. Pengukuran kondisi lingkungan (suhu, kelembaban, kebisingan, intensitas cahaya dilakukan menggunakan alat environment meter  dan anemometer (kecepatan angin. Data yang diperoleh selanjutnya dianalisis secara deskriptif dan diuji normalitasnya dengan uji Shapiro-Wilk  dan uji beda dengan One Way Anova, sedangkan yang tidak berdistribusi normal menggunakan uji Wilcoxon pada tingkat kemaknaan 5%. Hasil penelitian yang telah dilakukan terhadap perbaikan basement parkir mobil menunjukkan terjadinya peningkatan terhadap kepuasan ditinjau dari penurunan beban kerja sebesar 17,57%, penurunan penggunaan energi otot sebesar 29,96%, peningkatan kemudahan parkir sebesar 35,79%, peningkatan kenyamanan parkir  sebesar  54,63%, dan peningkatan produktivitas parkir sebesar 29,50%.

  2. Temperature sensing in underground facilities by Raman optical frequency domain reflectometry using fiber-optic communication cables

    Directory of Open Access Journals (Sweden)

    M. Brüne

    2018-02-01

    Full Text Available Gaining information on climatic conditions in subway tunnels is the key to predicting the propagation of smoke or toxic gases in these infrastructures in the case of a fire or a terrorist attack. As anemometer measurements are not economically suitable, the employment of alternative monitoring methods is necessary. High-resolution temperature sensing with Raman optical frequency domain reflectometry (OFDR using optical communication fiber cables shows great potential as it allows the surveillance of several kilometers of underground transport facilities without the need for installing sensing equipment in the tunnels. This paper presents first results of a study using this approach for monitoring subway tunnels. In the Berlin subway, temperature data gathered from newly installed as well as pre-installed communication cables were evaluated and compared to reference data from temperature loggers. Results are very promising as high correlations between all data can be achieved showing the potential of this approach.

  3. Vortex rope patterns at different load of hydro turbine model

    Directory of Open Access Journals (Sweden)

    Skripkin Sergey

    2017-01-01

    Full Text Available Operation of hydraulic turbines beyond optimal conditions leads to formation of precessing vortex core in a draft tube that generates powerful pressure pulsations in a hydraulic system. In case of resonance it leads to stability decreasing of hydraulic unit and electrical grid on the whole. In present work, such regimes are explored in a conical part of simplified turbine model. Studies are performed at constant flowrate Q = 70 m3/h and varying the runner rotational speed to explore different loads of the hydroturbine unit. The experiments involve pressure measurements, high speed-visualization and velocity measurements by means of laser Doppler anemometer technique. Interesting finding is related with abrupt increasing precession frequency at low swirl parameter of flow near optimal regime.

  4. Characteristics of the near-surface turbulence during a bora event

    Directory of Open Access Journals (Sweden)

    Ž. Večenaj

    2010-01-01

    Full Text Available During a bora event, the turbulence is strongly developed in the lee of the Dinaric Alps at the eastern Adriatic coast. In order to study its properties, a 3-D ultrasonic anemometer operating at 4 Hz sampling frequency was placed in the town of Senj at 13 m above ground. The strong bora case that occurred on 7 January and lasted till 11 January 2006 is analyzed here. This data set is used for evaluation of the turbulent kinetic energy, TKE, and its dissipation rate, ε. The computation of ε is performed using the inertial dissipation method. The empirical length scale parameter for this event is estimated with respect to ε and TKE. Some considerations about defining turbulent perturbations of the bora wind velocity are also pointed out.

  5. Wind Field of a Nonmesocyclone Anticyclonic Tornado Crossing the Hong Kong International Airport

    Directory of Open Access Journals (Sweden)

    Karen A. Kosiba

    2014-01-01

    Full Text Available A nonmesocyclone tornado traversed the Hong Kong International Airport on September 6, 2004 directly impacting a surface weather station. This allowed for 1-second 10-meter above ground level (AGL wind observations through the core of the tornado. Integration of these 10-meter AGL wind data with Ground-Based Velocity Track (GBVTD wind retrievals derived from LIDAR data provided a time history of the three-dimensional wind field of the tornado. These data indicate a progressive decrease in radial inflow with time and little to no radial inflow near the time the tornado crosses the surface weather station. Anemometer observations suggest that the tangential winds approximate a modified-Rankine vortex outside the radius of maximum winds, suggesting that frictionally induced radial inflow was confined below 10 m AGL. The radial-height distribution of angular momentum depicts an increase in low-level angular momentum just prior to the tornado reaching its maximum intensity.

  6. Mapping flow distortion on oceanographic platforms using computational fluid dynamics

    Directory of Open Access Journals (Sweden)

    N. O'Sullivan

    2013-10-01

    Full Text Available Wind speed measurements over the ocean on ships or buoys are affected by flow distortion from the platform and by the anemometer itself. This can lead to errors in direct measurements and the derived parametrisations. Here we computational fluid dynamics (CFD to simulate the errors in wind speed measurements caused by flow distortion on the RV Celtic Explorer. Numerical measurements were obtained from the finite-volume CFD code OpenFOAM, which was used to simulate the velocity fields. This was done over a range of orientations in the test domain from −60 to +60° in increments of 10°. The simulation was also set up for a range of velocities, ranging from 5 to 25 m s−1 in increments of 0.5 m s−1. The numerical analysis showed close agreement to experimental measurements.

  7. Isothermal modeling of aerodynamic structure of the swirling flow in a two-stage burner

    Directory of Open Access Journals (Sweden)

    Yusupov Roman

    2017-01-01

    Full Text Available The work deals with the experimental study of the aerodynamic structure of a swirling flow in the isothermal model of two-stage vortex combustion chamber. The main attention is focused on the process of flow mixing of two successively connected tangential swirlers of the first and second stages of the working section. Data on flow visualization are presented for two patterns of flow swirling. Time-averaged profiles of the axial and tangential velocity components are obtained with the help of laser-Doppler anemometer. In the case of flow co-swirling between two stages of the working section, instability of a secondary flow in the form of precessing vortex was distinguished. For the regime with counter flow swirling, effective mixing of the swirl flows was found; this was reflected by formation of the flow with uniform distribution of axial velocity over the cross-section.

  8. Comparison of indirect methods for the estimation of Boundary Layer height over flat-terrain in a coastal site

    Directory of Open Access Journals (Sweden)

    Daniele Contini

    2009-06-01

    Full Text Available In this paper an analysis of different indirect methods for the calculation of the boundary layer height (BLH using sodar, ultrasonic anemometer and a prognostic model based on single point surface measurements is presented. In particular the automatic spectral routine developed for Remtech sodar is compared with the results obtained with the parameterization of the vertical velocity variance of a minisodar, with the calculation of a prognostic model, with a parameterization based on horizontal velocity spectra and with the BLH evaluated from the intensity of minisodar echoes in stable conditions. The data of a radiosonde system taken in a nearby site was also analysed to get an independent evaluation of BLH for comparison. There is a significant scatter in the data for both the evaluation through the variance of vertical wind speed and the spectral analysis of the horizontal wind velocity although created by different effects. In unstable conditions the different methods give a similar pattern even if the prognostic model in some days predicts a significantly higher BLH with respect to the other methods. In stable nocturnal conditions the performances of the Remtech routine are worse than those in unstable conditions with an evident overestimation of the BLH that it is likely related to the overestimation of vertical turbulence and to the use of multiple range gates in the algorithm. Taking as reference the evaluation of BLH of the sodar, the spectral method applied to ultrasonic anemometer data seems to be affected by the lowest biases and it is a possible candidate, for the development of automatic routines for operational evaluation of BLH possibly with a different parameterisation for stable and unstable cases.

  9. Operation in the turbulent jet field of a linear array of multiple rectangular jets using a two-dimensional jet (Variation of mean velocity field

    Directory of Open Access Journals (Sweden)

    Fujita Shigetaka

    2016-01-01

    Full Text Available The mean flowfield of a linear array of multiple rectangular jets run through transversely with a two-dimensional jet, has been investigated, experimentally. The object of this experiment is to operate both the velocity scale and the length scale of the multiple rectangular jets using a two-dimensional jet. The reason of the adoption of this nozzle exit shape was caused by the reports of authors in which the cruciform nozzle promoted the inward secondary flows strongly on both the two jet axes. Aspect ratio of the rectangular nozzle used in this experiment was 12.5. Reynolds number based on the nozzle width d and the exit mean velocity Ue (≅ 39 m / s was kept constant 25000. Longitudinal mean velocity was measured using an X-array Hot-Wire Probe (lh = 3.1 μm in diameter, dh = 0.6 mm effective length : dh / lh = 194 operated by the linearized constant temperature anemometers (DANTEC, and the spanwise and the lateral mean velocities were measured using a yaw meter. The signals from the anemometers were passed through the low-pass filters and sampled using A.D. converter. The processing of the signals was made by a personal computer. Acquisition time of the signals was usually 60 seconds. From this experiment, it was revealed that the magnitude of the inward secondary flows on both the y and z axes in the upstream region of the present jet was promoted by a two-dimensional jet which run through transversely perpendicular to the multiple rectangular jets, therefore the potential core length on the x axis of the present jet extended 2.3 times longer than that of the multiple rectangular jets, and the half-velocity width on the rectangular jet axis of the present jet was suppressed 41% shorter compared with that of the multiple rectangular jets.

  10. Design and use of a sparged platform for energy flux measurements over lakes

    Science.gov (United States)

    Gijsbers, S.; Wenker, K.; van Emmerik, T.; de Jong, S.; Annor, F.; Van De Giesen, N.

    2012-12-01

    Energy flux measurements over lakes or reservoirs demand relatively stable platforms. Platforms can not be stabilized by fixing them on the bottom of the lake when the water body is too deep or when water levels show significant fluctuations. We present the design and first operational results of a sparged platform. The structure consists of a long PVC pipe, the sparge, which is closed at the bottom. On the PVC pipe rests an aluminum frame platform that carries instrumentation and solar power panel. In turn, the platform rests partially on a large inflated tire. At the bottom of the PVC pipe, lead weights and batteries were placed to ensure a very low point of gravity to minimize wave impact on the platform movement. The tire ensures a large second moment of the water plane. The overall volume of displacement is small in this sparged design. The combination of large second momentum of the water plane and small displacement ensure a high placement of the metacenter. The distance between the point of gravity and the metacenter is relatively long and the weight is large due to the weights and batteries. This ensures that the eigenfrequency of the platform is very low. The instrumentation load consisted of a WindMaster Pro (sonic anemometer for 3D wind speed and air temperature to perform eddy covariance measurements of sensible heat flux), a NR Lite (net radiometer), and air temperature and relative humidity sensors. The platform had a wind vane and the sparge could turn freely around its anchor cable to ensure that the anemometer always faced upwind. A compass in the logger completed this setup. The stability was measured with an accelerometer. In addition to the design and its stability, some first energy flux results will be presented.

  11. Using of standard marine radar for determination of a water surface and an atmosphere near-surface layer parameters

    Science.gov (United States)

    Bogatov, Nikolay A.; Bakhanov, Victor V.; Ermoshkin, Aleksei V.; Kazakov, Vasily I.; Kemarskaya, Olga N.; Titov, Victor I.; Troitskaya, Yulia I.

    2014-10-01

    At present time radar methods of the seas and oceans diagnostics are actively developing. Using of the radar stations based on satellites and planes allows to receive information on a sea surface and a atmosphere near-surface layer with coverage of big water surface areas independently of day time. The developed methods of satellite radio images processing can be applied to marine radar stations. In Institute of Applied Physics RAS works on sea surface diagnostics systems development on the basis of standard marine radar are actively conducted. Despite smaller coverage of the territory in comparison with satellite data, marine radar have possibility to record spatially temporary radar images and to receive information on a surrounding situation quickly. This work deals with results of the researches which were conducted within the international expedition in the Atlantic Ocean in the autumn of 2012 on a route Rotterdam (Netherlands) - Ushuaya (Argentina) - Antarctica — Ushuaya. During this expedition a complex measurements of a sea surface, a atmosphere near-surface layer parameters and subsurface currents in the wide range of hydroweather conditions, including the storm were carried out. The system developed in IAP RAS on the basis of a marine radar ICOM MR-1200RII and the ADC (Analog Digital Converter) block for data recording on the personal computer was used. Display of a non-uniform near-surface current on sea surface radar images in storm conditions is shown. By means of the high-speed anemometer and meteorological station the measurements of the atmosphere parameters were carried out. Comparison of the anemometer data with calculated from radar images is carried out. Dependence of radar cross section from wind speed in the wide range of wind speeds, including storm conditions is investigated. Possibility of marine radar using for surface waves intensity and ice situation estimates also as icebergs detection is shown.

  12. An experimental study of mixed convection; Contribution a l'etude experimentale de la convection mixte

    Energy Technology Data Exchange (ETDEWEB)

    Saez, M.

    1998-10-20

    The aim of our study is to establish a reliable database for improving thermal hydraulic codes, in the field of turbulent flows with buoyancy forces. The flow considered is mixed convection in the Reynolds and Richardson number range: Re = 10{sup 3} to 6.10{sup 4} and Ri = 10{sup -4} to 1. Experiments are carried out in an upward turbulent flow between vertical parallel plates at different wall temperatures. Part 1 gives a detailed database of turbulent mixed flow of free and forced convection. Part 2 presents the installation and the calibration system intended for probes calibration. Part 3 describes the measurement technique (constant temperature probe and cold-wire probe) and the method for measuring the position of the hot-wire anemometer from the wall surface. The measurement accuracy is within 0.001 mm in the present system. Part 4 relates the development of a method for near wall measurements. This correction procedure for hot-wire anemometer close to wall has been derived on the basis of a two-dimensional numerical study. The method permits to obtain a quantitative correction of the wall influence on hot-wires and takes into account the velocity profile and the effects the wall material has on the heat loss. Part 5 presents the experimental data obtained in the channel in forced and mixed convection. Results obtained in the forced convection regime serve as a verification of the measurement technique close to the wall and give the conditions at the entrance of the test section. The effects of the buoyancy force on the mean velocity and temperature profiles are confirmed. The buoyancy strongly affects the fluid structure and deforms the distribution of mean velocity. The velocity profiles are asymmetric. The second section of part 5 gives an approach of analytical wall functions with buoyancy forces, on the basis of the experimental data obtained in the test section. (author)

  13. Wind Ressources in Complex Terrain investigated with Synchronized Lidar Measurements

    Science.gov (United States)

    Mann, J.; Menke, R.; Vasiljevic, N.

    2017-12-01

    The Perdigao experiment was performed by a number of European and American universities in Portugal 2017, and it is probably the largest field campaign focussing on wind energy ressources in complex terrain ever conducted. 186 sonic anemometers on 50 masts, 20 scanning wind lidars and a host of other instruments were deployed. The experiment is a part of an effort to make a new European wind atlas. In this presentation we investigate whether scanning the wind speed over ridges in this complex terrain with multiple Doppler lidars can lead to an efficient mapping of the wind resources at relevant positions. We do that by having pairs of Doppler lidars scanning 80 m above the ridges in Perdigao. We compare wind resources obtained from the lidars and from the mast-mounted sonic anemometers at 80 m on two 100 m masts, one on each of the two ridges. In addition, the scanning lidar measurements are also compared to profiling lidars on the ridges. We take into account the fact that the profiling lidars may be biased due to the curvature of the streamlines over the instrument, see Bingol et al, Meteorolog. Z. vol. 18, pp. 189-195 (2009). We also investigate the impact of interruptions of the lidar measurements on the estimated wind resource. We calculate the relative differences of wind along the ridge from the lidar measurements and compare those to the same obtained from various micro-scale models. A particular subject investigated is how stability affects the wind resources. We often observe internal gravity waves with the scanning lidars during the night and we quantify how these affect the relative wind speed on the ridges.

  14. The surface renewal method for better spatial resolution of evapotranspiration measurements

    Science.gov (United States)

    Suvocarev, K.; Fischer, M.; Massey, J. H.; Reba, M. L.; Runkle, B.

    2017-12-01

    Evaluating feasible irrigation strategies when water is scarce requires measurements or estimations of evapotranspiration (ET). Direct observations of ET from agricultural fields are preferred, and micrometeorological methods such as eddy covariance (EC) provide a high quality, continuous time series of ET. However, when replicates of the measurements are needed to compare irrigation strategies, the cost of such experiments is often prohibitive and limits experimental scope. An alternative micrometeorological approach to ET, the surface renewal (SR) method, may be reduced to a thermocouple and a propeller anemometer (Castellvi and Snyder, 2009). In this case, net radiation, soil and sensible heat flux (H) are measured and latent heat flux (an energy equivalent for ET) is estimated as the residual of the surface energy-balance equation. In our experiment, thermocouples (Type E Fine-Wire Thermocouple, FW3) were deployed next to the EC system and combined with mean horizontal wind speed measurements to obtain H using SR method for three weeks. After compensating the temperature signal for non-ideal frequency response in the wavelet half-plane and correcting the sonic anemometer for the flow distortion (Horst et al., 2015), the SR H fluxes compared well to those measured by EC (r2 = 0.9, slope = 0.92). This result encouraged us to install thermocouples over 16 rice fields under different irrigation treatments (continuous cascade flood, continuous multiple inlet rice irrigation, alternate wetting and drying, and furrow irrigation). The EC measurements with net radiometer and soil heat flux plates are deployed at three of these fields to provide a direct comparison. The measurement campaign will finish soon and the data will be processed to evaluate the SR approach for ET estimation. The results will be used to show better spatial resolution of ET measurements to support irrigation decisions in agricultural crops.

  15. Arctic Observing Experiment - An Assessment of Instruments Used to Monitor the Polar Environments

    Science.gov (United States)

    Rigor, I. G.; Johnson, J.; Clemente-Colon, P.; Nghiem, S. V.; Hall, D. K.; Woods, J. E.; Valentic, T. A.; Henderson, G. R.; Marshall, C.; Gallage, C.; Zook, J.; Davis, Z.

    2014-12-01

    To understand and predict weather and climate require an accurate observing network that measures the fundamental meteorological parameters: temperature, air pressure, and wind. Measuring these parameters autonomously in the polar regions is especially challenging. To assess the accuracy of polar measurement networks, we established the Arctic Observing Experiment (AOX) test site in March 2013 at the Department of Energy (DOE) Atmospheric Radiation and Meteorology (ARM) site in Barrow, Alaska. We deployed a myriad of data loggers and autonomous buoys, which represent most of the instruments that are commonly deployed by the International Arctic Buoy Programme (IABP) to measure temperature, air pressure and wind. Estimates of temperature over this area have also been analyzed from satellites (e.g., using the Moderate-resolution Imaging Spectroradiometer (MODIS) ice-surface temperature (IST)) product, and can complement data from in-situ sensors and provide consistent measurements under clear-sky conditions. Preliminary results reveal that some of the buoys are susceptible to solar heating, icing can block barometers for short periods, and frosting may insulate air temperature sensors and freeze-lock anemometers. Some of these issues may be addressed by simply painting the buoys white to reduce solar heating of the buoys, and using better temperature shields and barometer ports. Nevertheless, frosting of ultrasonic and mechanical anemometers remains a significant challenge. These results will be useful to initiate a protocol to obtain accurate and consistent measurements from the IABP, the Arctic Observing Network (AON), the International Program for Antarctic Buoys, and the Southern Ocean Observing System to monitor polar environments.

  16. Nitric oxide fluxes from an agricultural soil using a flux-gradient method

    Science.gov (United States)

    Taylor, N. M.; Wagner-Riddle, C.; Thurtell, G. W.; Beauchamp, E. G.

    1999-05-01

    Soil emission of nitric oxide may be a significant source of NOx in rural areas. Agricultural practices may enhance these emissions by addition of nitrogen fertilizers. A system that enables continuous measurement of NO fluxes from agricultural surfaces using the flux-gradient method was developed. Hourly differences in NO concentrations in air sampled at two intake heights (0.6 and 1 m) were determined using a chemiluminescence analyzer. Eddy diffusivities were determined using wind profiles (cup anemometers), and stability corrections calculated using a 5 cm path sonic anemometer. Fast switching of sampling between air intake heights (every 30 s) and determination of concentration values at a frequency of 2 Hz minimized the errors due to fluctuations in background concentration. Low travel times for air samples in the tubing (˜8 s) were estimated to result in small errors in flux values (chemical reactions. The overall resolution of the system was estimated as ˜1 ng N m-2s-1. NO fluxes from a bare soil were measured quasi-continuously from January to June 1995 at Elora, Canada, comprising a total of 1833 hourly values. Daily NO fluxes before nitrogen fertilization were small, increasing after nitrogen fertilizer was added (>10 ng N m-2 s-1). Monthly NO fluxes estimated were similar to those observed in previous studies. The designed system could be easily modified to measure NOx and NO fluxes by using an additional chemiluminescence analyzer. The system also could be adapted to measure fluxes sequentially from various plots, enabling testing of agricultural practices on NO emissions.

  17. An experimental study of mixed convection

    International Nuclear Information System (INIS)

    Saez, Manuel

    1998-01-01

    The aim of our study is to establish a reliable data base for improving thermal-hydraulic codes, in the field of turbulent flows with buoyancy forces. The flow considered is mixed convection in the Reynolds and Richardson number range: Re=10 3 to 6*10 4 and Ri=10 -4 to 1. Experiments are carried out in an upward turbulent flow between vertical parallel plates at different wall temperatures. Part 1 gives a detailed data base of turbulent mixed flow of free and forced convection. Part II presents the installation and the calibration system intended for probes calibration. Part III describes the measurement technique (constant-temperature probe and cold-wire probe) and the method for measuring the position of the hot-wire anemometer from the wall surface. The measurement accuracy is within 0.001 mm in the present system. Part IV relates the development of a method for near wall measurements. This correction procedure for hot-wire anemometer close to wall has been derived on the basis of a two-dimensional numerical study. The method permits to obtain a quantitative correction of the wall influence on hot-wires and takes into account the velocity profile and the effects the wall material has on the heat loss. Part V presents the experimental data obtained in the channel in forced and mixed convection. Results obtained in the forced convection regime serve as a verification of the measurement technique close to the wall and give the conditions at the entrance of the test section. The effects of the buoyancy force on the mean velocity and temperature profiles are confirmed. The buoyancy strongly affects the flow structure and deforms the distribution of mean velocity. The velocity profiles are asymmetric. The second section of part V gives an approach of analytical wall functions with buoyancy forces, on the basis of the experimental data obtained in the test section. (author) [fr

  18. Analysis of the Uncertainty in Wind Measurements from the Atmospheric Radiation Measurement Doppler Lidar during XPIA: Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Newsom, Rob [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-03-01

    In March and April of 2015, the ARM Doppler lidar that was formerly operated at the Tropical Western Pacific site in Darwin, Australia (S/N 0710-08) was deployed to the Boulder Atmospheric Observatory (BAO) for the eXperimental Planetary boundary-layer Instrument Assessment (XPIA) field campaign. The goal of the XPIA field campaign was to investigate methods of using multiple Doppler lidars to obtain high-resolution three-dimensional measurements of winds and turbulence in the atmospheric boundary layer, and to characterize the uncertainties in these measurements. The ARM Doppler lidar was one of many Doppler lidar systems that participated in this study. During XPIA the 300-m tower at the BAO site was instrumented with well-calibrated sonic anemometers at six levels. These sonic anemometers provided highly accurate reference measurements against which the lidars could be compared. Thus, the deployment of the ARM Doppler lidar during XPIA offered a rare opportunity for the ARM program to characterize the uncertainties in their lidar wind measurements. Results of the lidar-tower comparison indicate that the lidar wind speed measurements are essentially unbiased (~1cm s-1), with a random error of approximately 50 cm s-1. Two methods of uncertainty estimation were tested. The first method was found to produce uncertainties that were too low. The second method produced estimates that were more accurate and better indicators of data quality. As of December 2015, the first method is being used by the ARM Doppler lidar wind value-added product (VAP). One outcome of this work will be to update this VAP to use the second method for uncertainty estimation.

  19. Evaluation of turbulence measurement techniques from a single Doppler lidar

    Science.gov (United States)

    Bonin, Timothy A.; Choukulkar, Aditya; Brewer, W. Alan; Sandberg, Scott P.; Weickmann, Ann M.; Pichugina, Yelena L.; Banta, Robert M.; Oncley, Steven P.; Wolfe, Daniel E.

    2017-08-01

    Measurements of turbulence are essential to understand and quantify the transport and dispersal of heat, moisture, momentum, and trace gases within the planetary boundary layer (PBL). Through the years, various techniques to measure turbulence using Doppler lidar observations have been proposed. However, the accuracy of these measurements has rarely been validated against trusted in situ instrumentation. Herein, data from the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) are used to verify Doppler lidar turbulence profiles through comparison with sonic anemometer measurements. For 17 days at the end of the experiment, a single scanning Doppler lidar continuously cycled through different turbulence measurement strategies: velocity-azimuth display (VAD), six-beam scans, and range-height indicators (RHIs) with a vertical stare.Measurements of turbulence kinetic energy (TKE), turbulence intensity, and stress velocity from these techniques are compared with sonic anemometer measurements at six heights on a 300 m tower. The six-beam technique is found to generally measure turbulence kinetic energy and turbulence intensity the most accurately at all heights (r2 ≈ 0.78), showing little bias in its observations (slope of ≈ 0. 95). Turbulence measurements from the velocity-azimuth display method tended to be biased low near the surface, as large eddies were not captured by the scan. None of the methods evaluated were able to consistently accurately measure the shear velocity (r2 = 0.15-0.17). Each of the scanning strategies assessed had its own strengths and limitations that need to be considered when selecting the method used in future experiments.

  20. State of the Art and Trends in Wind Resource Assessment

    Directory of Open Access Journals (Sweden)

    Oliver Probst

    2010-06-01

    Full Text Available Given the significant rise of the utilization of wind energy the accurate assessment of the wind potential is becoming increasingly important. Direct applications of wind assessment techniques include the creation of wind maps on a local scale (typically 5 20 km and the micrositing of wind turbines, the estimation of vertical wind speed variations, prospecting on a regional scale (>100 km, estimation of the long-term wind resource at a given site, and forecasting. The measurement of wind speed and direction still widely relies on cup anemometers, though sonic anemometers are becoming increasingly popular. Moreover, remote sensing by Doppler techniques using the backscattering of either sonic beams (SODAR or light (LIDAR allowing for vertical profiling well beyond hub height are quickly moving into the mainstream. Local wind maps are based on the predicted modification of the regional wind flow pattern by the local atmospheric boundary layer which in turn depends on both topographic and roughness features and the measured wind rose obtained from one or several measurement towers within the boundaries of the planned development site. Initial models were based on linearized versions of the Navier-Stokes equations, whereas more recently full CFD models have been applied to wind farm micrositing. Linear models tend to perform well for terrain slopes lower than about 25% and have the advantage of short execution times. Long-term performance is frequently estimated from correlations with nearby reference stations with concurrent information and continuous time series over a period of at least 10 years. Simple methods consider only point-to-point linear correlations; more advanced methods like multiple regression techniques and methods based on the theory of distributions will be discussed. Both for early prospecting in regions where only scarce or unreliable reference information is available, wind flow modeling on a larger scale (mesoscale is becoming

  1. An experimental study of flow patterns and endwall heat transfer upstream of a surface-mounted rectangular obstruction in a turbulent boundary layer

    Science.gov (United States)

    Chen, Quan

    1991-02-01

    A seven-phase experimental investigation documented the three-dimensional separation region in front of a surface-mounted rectangular obstruction. The obstruction was centered between sidewalls of a wind tunnel in a turbulent approaching boundary layer. The major feature of this flow was a horseshoe vortex system near the junction. Real-time vortex structures were visualized with a laser sheet. Interior velocity, turbulence intensity and velocity power spectrum measurements were obtained with a Laser Doppler Anemometer (LDA) and a hot-wire anemometer. Ink dot surface flow visualizations and pressure measurements were acquired on the endwall under the vortex system. Endwall heat transfer coefficients were nonintrusively measured by an infrared imaging system. Laser sheet flow visualizations indicated a vortex system with randon oscillations. In the time-averaged sense, ink-dot flow visualizations, LDA measurements and endwall pressure measurements indicated a well defined primary vortex. The separation region was 70 percent larger, in the streamwise direction, than that in front of a cylinder with a diameter the same as the obstruction width. The time-averaged primary vortex center, where maximum values of turbulence intensity were measured, was located farther away from the obstruction leading edge at higher freestream velocities. Endwall heat transfer coefficient distribution measurements on the endwall surface revealed that the obstruction established a complex heat transfer pattern. Local heat transfer rates as much as 80 percent greater than the undisturbed two-dimensional level were recorded upstream of the obstruction along the test section centerline. A local heat transfer coefficient peak was associated with the local maximum turbulence intensity measured near the endwall by LDA.

  2. Exploring the influence of surface waves in the carbon dioxide transfer velocity between the ocean and atmosphere in the coastal region

    Science.gov (United States)

    Ocampo-Torres, Francisco Javier; Francisco Herrera, Carlos; Gutiérrez-Loza, Lucía; Osuna, Pedro

    2016-04-01

    Field measurements have been carried out in order to better understand the possible influence of ocean surface waves in the transfer of carbon dioxide between the ocean and atmosphere in the coastal zone. The CO2 fluxes are being analysed and results are shown in a contribution by Gutiérrez-Loza et al., in this session. Here we try to highlight the findings regarding the transfer velocity (kCO2) once we have incorporated direct measurements of carbon dioxide concentration in the water side. In this study direct measurements of CO2 fluxes were obtained with an eddy covariance tower located in the shoreline equipped with an infrared open-path gas analyzer (LI-7500, LI-COR) and a sonic anemometer (R3-100 Professional Anemometer, Gill Instruments), both at about 13 m above the mean sea level, and sampling at 20 Hz. For some period of time simultaneous information of waves was recorded with a sampling rate of 2 Hz using an Acoustic Doppler Current Profiler (Workhorse Sentinel, Teledyne RD Instruments) at 10 m depth and 350 m away from the tower. Besides, recently the concentration of CO2 in water has also been recorded making use of a SAMI-CO2 instrument. A subtle effect of the wave field is detected in the estimated kCO2. Looking into details of the surface currents being detected very near the air-sea interface through an ADPC, a certain association can be found with the gas transfer velocity. Furthermore, some of the possible effects of breaking wave induced turbulence in the coastal zone is to be addressed. This work represents a RugDiSMar Project (CONACYT 155793) contribution. The support from CB-2011-01-168173 CONACYT project is greatly acknowledged.

  3. Comparing the Heat Stress Index of HSI and WBGT in BakeryWorkplaces in Hamadan

    Directory of Open Access Journals (Sweden)

    S. Mahdavi

    2006-10-01

    Full Text Available Background and aims   Thermal stress is one of the important issues of physical stress in workplaces. Bakery workers that are one of widely population that under occupation heat stress. In this study, heat stress indexes consist of HSI and WBGT in worker positions in total of 88  bakeries in Hamadan city was assessed.   Methods   In this study 88 bakery workplace was considered. Measuring of air variables to obtain  of HSI and WBGTheat stress indices was performed by axial fan anemometer, WBGTmeter and  hygrometer made in CASELLA CompanyIn this study 88 bakery workplace was considered.   Measuring of air variables to obtain of HSI and WBGTheat stress indices was performed by axial fan anemometer, WBGTmeter and hygrometer made in CASELLACompany.   Results   Results showed that the average HSI index (214.2 ± 43.7 % and the average work experience were (28.57±1.97 C. Analyzing of results showed that Pearson's correlation of coefficient between HSI and WBGT was equal to 0.509. Depending of HSI to air velocity was considerable (r = -0.811 that was not expected.   Conclusion   Values of HSI index had a wide scatter in variances in study fields comparing of  WBGTindex that had a minimal scatter, whereas those are measuring of variables and computing of indexes were same workplaces. Finally, although both heat indexes showed exceeded values form criteria, but calibration between HSI and WBGT in this study, showed that, the HSI index  had any weakness.    

  4. Generic Methodology for Field Calibration of Nacelle-Based Wind Lidars

    Directory of Open Access Journals (Sweden)

    Antoine Borraccino

    2016-11-01

    Full Text Available Nacelle-based Doppler wind lidars have shown promising capabilities to assess power performance, detect yaw misalignment or perform feed-forward control. The power curve application requires uncertainty assessment. Traceable measurements and uncertainties of nacelle-based wind lidars can be obtained through a methodology applicable to any type of existing and upcoming nacelle lidar technology. The generic methodology consists in calibrating all the inputs of the wind field reconstruction algorithms of a lidar. These inputs are the line-of-sight velocity and the beam position, provided by the geometry of the scanning trajectory and the lidar inclination. The line-of-sight velocity is calibrated in atmospheric conditions by comparing it to a reference quantity based on classic instrumentation such as cup anemometers and wind vanes. The generic methodology was tested on two commercially developed lidars, one continuous wave and one pulsed systems, and provides consistent calibration results: linear regressions show a difference of ∼0.5% between the lidar-measured and reference line-of-sight velocities. A comprehensive uncertainty procedure propagates the reference uncertainty to the lidar measurements. At a coverage factor of two, the estimated line-of-sight velocity uncertainty ranges from 3.2% at 3 m · s − 1 to 1.9% at 16 m · s − 1 . Most of the line-of-sight velocity uncertainty originates from the reference: the cup anemometer uncertainty accounts for ∼90% of the total uncertainty. The propagation of uncertainties to lidar-reconstructed wind characteristics can use analytical methods in simple cases, which we demonstrate through the example of a two-beam system. The newly developed calibration methodology allows robust evaluation of a nacelle lidar’s performance and uncertainties to be established. Calibrated nacelle lidars may consequently be further used for various wind turbine applications in confidence.

  5. SENSOR ULTRASONIK SEBAGAI ALAT PENGUKUR KECEPATAN ALIRAN UDARA DALAM PIPA

    Directory of Open Access Journals (Sweden)

    K.G. Suastika

    2013-07-01

    Full Text Available ABSTRAKEra perkembangan teknologi saat ini telah banyak ditemukan alat-alat inovasi terbaru terutama pada penggunaan gelombang ultrasonik. Gelombang ultrasonik merupakan gelombang bunyi yang frekuensinya di atas 20.000 Hz dan biasanya digunakan dalam bidang kelautan (SONAR, kedokteran (USG maupun dalam bidang industri. Penelitian yang dilakukan adalah penelitian tentang pengukuran kecepatan aliran udara dalam pipa menggunakan sensor ultrasonik dan gelombang ultrasonik yang digunakan pada penelitian ini adalah gelombang ultrasonik yang memiliki frekuensi kerja sebesar 300 kHz. Prinsip pengukuran yang digunakan dalam penelitian ini menggunakan metode waktu tempuh gelombang ultrasonik (time of flight dengan memanfaatkan perubahan karakteristik gelombang ultrasonik ketika melewati kondisi aliran udara yang berbeda yaitu upstream dan downstream. Selain itu, sebagai pembanding (tingkat akurasi dalam penelitian ini digunakan alat pengukur kecepatan aliran udara standar yaitu anemometer. Dari hasil penelitian didapat bahwa tingkat akurasi sebesar 99% dan dengan korelasi sebesar 0,99 (korelasi sangat tinggi. Berdasarkan hasil tersebut, dapat disimpulkan bahwa sensor ultrasonik valid dan dapat digunakan sebagai perangkat pengukur kecepatan aliran udara dalam pipa. ABSTRACTThe newest innovation instruments applying ultrasonic wave have been found in this technology era. Ultrasonic wave is the sound of wave is the sound wave having frequency above 20.000 Hz and is usually used in oceanic field (SONAR, medical (USG and industrial fields. This research measured the air velocity in pipe by using ultrasonic sensor. The ultrasonic wave used was the one which has frequency of 300 kHz. The Principle of measurement applied the method of elapsed time of ultrasonic wave (time of flight by considering the change of ultrasonic wave when passing different air flow condition: upstream and downstream. Besides, the anemometer was used as the accuracy comparator. The

  6. Dynamics of fluid mixing in separated flows

    Science.gov (United States)

    Leder, A.

    1991-05-01

    Separated flows at high Re (>103) are highly turbulent. In some situations the turbulence generation and mixing processes associated with flow separation are desirable, e.g., in heat exchangers or in many chemical engineering applications. In others, e.g., stalled airfoils, separation must be avoided as it causes loss in pressure and kinetic energy. To control the phenomenon effectively, physical mechanisms of flow separation and related aspects, such as the growth of flow instabilities in shear layers, the process of vortex formation, and the dynamics of fluid mixing in recirculating flow regions, must be understood. In many cases numerical procedures, e.g., Navier-Stokes calculations including k-ɛ turbulence modeling, fail to predict real physical mechanisms in separated flows.1,2 Separated flows in the lee of bluff bodies have been studied for many years.3,4 However, accurate measurements of the magnitude and direction of velocities and the magnitude of the terms of the Reynolds stress tensor have been restricted by the unsuitability of the hot-wire anemometer in recirculating flows. The development of the pulsed-wire anemometer, flying hot-wire anemometer, and laser-Doppler anemometry (LDA) allows more reliable measurements also in turbulent separated flows.5-8 The aim of this paper is to investigate the dynamics of undisturbed fluid mixing in separated regions of 2-D, incompressible flows with visualization techniques and LDA. Measurements were performed with a vertical flat plate model, mounted in a closed-circuit wind tunnel at low blockage ratio. Because of the noninvasive character, optical techniques like LDA are more suitable to analyze complex fluid motions than pulsed-wire and flying-wire anemometry. The LDA system used to investigate turbulent flow structures consists of a two-channel version operating in backscatter mode and a specifically developed phase detector to extract phase-averaged information from recorded measurement ensembles.9 Endplates

  7. Averaging interval selection for the calculation of Reynolds shear stress for studies of boundary layer turbulence.

    Science.gov (United States)

    Lee, Zoe; Baas, Andreas

    2013-04-01

    It is widely recognised that boundary layer turbulence plays an important role in sediment transport dynamics in aeolian environments. Improvements in the design and affordability of ultrasonic anemometers have provided significant contributions to studies of aeolian turbulence, by facilitating high frequency monitoring of three dimensional wind velocities. Consequently, research has moved beyond studies of mean airflow properties, to investigations into quasi-instantaneous turbulent fluctuations at high spatio-temporal scales. To fully understand, how temporal fluctuations in shear stress drive wind erosivity and sediment transport, research into the best practice for calculating shear stress is necessary. This paper builds upon work published by Lee and Baas (2012) on the influence of streamline correction techniques on Reynolds shear stress, by investigating the time-averaging interval used in the calculation. Concerns relating to the selection of appropriate averaging intervals for turbulence research, where the data are typically non-stationary at all timescales, are well documented in the literature (e.g. Treviño and Andreas, 2000). For example, Finnigan et al. (2003) found that underestimating the required averaging interval can lead to a reduction in the calculated momentum flux, as contributions from turbulent eddies longer than the averaging interval are lost. To avoid the risk of underestimating fluxes, researchers have typically used the total measurement duration as a single averaging period. For non-stationary data, however, using the whole measurement run as a single block average is inadequate for defining turbulent fluctuations. The data presented in this paper were collected in a field study of boundary layer turbulence conducted at Tramore beach near Rosapenna, County Donegal, Ireland. High-frequency (50 Hz) 3D wind velocity measurements were collected using ultrasonic anemometry at thirteen different heights between 0.11 and 1.62 metres above

  8. Multifractal Analysis of the Small Time-Scale Boundary-Layer Characteristics of the Wind: the Anisotropy and Extremes

    Science.gov (United States)

    Fitton, G. F.; Tchiguirinskaia, I.; Schertzer, D. J.; Lovejoy, S.

    2012-12-01

    Under various physical conditions (mean temperature and velocity gradients, stratification and rotation) atmospheric turbulent flows remain intrinsically anisotropic. The immediate vicinity of physical boundaries rises to a greater complexity of the anisotropy effects. In this paper we address the issue of the scaling anisotropy of the wind velocity fields within the atmospheric boundary layer (ABL). Under the universal multifractal (UM) framework we compare the small time-scale (0.1 to 1,000 seconds) boundary-layer characteristics of the wind for two different case studies. The first case study consisted of a single mast located within a wind farm in Corsica, France. Three sonic anemometers were installed on the mast at 22, 23 and 43m, measuring three-dimensional wind velocity data at 10Hz. Wakes, complex terrain and buoyancy forces influenced the measurements. The second case study (GROWIAN experiment in Germany) consisted of an array of propeller anemometers measuring wind speed inflow data at 2.5Hz over flat terrain. The propeller anemometers were positioned vertically at 10, 50, 75, 100, 125 and 150m with four horizontal measurements taken at 75, 100 and 125m. The spatial distribution allowed us to calculate the horizontal and vertical shear structure functions of the horizontal wind. Both case studies are within a kilometre from the sea. For the first case study (10Hz measurements in a wind farm test site) the high temporal resolution of the data meant we observed Kolmogorov scaling from 0.2 seconds (with intermittency correction) right up to 1,000 seconds at which point a scaling break occurred. After the break we observed a scaling power law of approximately 2, which is in agreement with Bolgiano-Obukhov scaling theory with intermittency correction. However, for the second case study (2.5Hz on flat terrain) we only observed Kolmogorov scaling from 6.4 seconds (also with intermittency correction). The spectra of horizontal velocity components remain

  9. Expanding Spatial and Temporal Coverage of Arctic CH4 and CO2 Fluxes

    Science.gov (United States)

    Murphy, P.; Oechel, W. C.; Moreaux, V.; Losacco, S.; Zona, D.

    2013-12-01

    Carbon storage and exchange in Arctic ecosystems is the subject of intensive study focused on determining rates, controls, and mechanisms of CH4 and CO2 fluxes. The Arctic contains more than 1 Gt of Carbon in the upper meter of soil, both in the active layer and permafrost (Schuur et al., 2008; Tarnocai et al., 2009). However, the annual pattern and controls on the release of CH4 is inadequately understood in Arctic tundra ecosystems. Annual methane budgets are poorly understood, and very few studies measure fluxes through the freeze-up cycle during autumn months (Mastepanov et al., 2008; Mastepanov et al., 2010; Sturtevant et al., 2012). There is no known, relatively continuous, CH4 flux record for the Arctic. Clearly, the datasets that currently exist for budget calculations and model parameterization and verification are inadequate. This is likely due to the difficult nature of flux measurements in the Arctic. In September 2012, we initiated a research project towards continuous methane flux measurements along a latitudinal transect in Northern Alaska. The eddy-covariance (EC) technique is challenging in such extreme weather conditions due to the effects of ice formation and precipitation on instrumentation, including gas analyzers and sonic anemometers. The challenge is greater in remote areas of the Arctic, when low power availability and limited communication can lead to delays in data retrieval or data loss. For these reasons, a combination of open- and closed-path gas analyzers, and several sonic anemometers (including one with heating), have been installed on EC towers to allow for cross-comparison and cross-referencing of calculated fluxes. Newer instruments for fast CH4 flux determination include: the Los Gatos Research Fast Greenhouse Gas Analyzer and the Li-Cor LI-7700. We also included the self-heated Metek Class-A uSonic-3 Anemometer as a new instrument. Previously existing instruments used for comparison include the Li-Cor LI-7500; Li-Cor LI-7200

  10. An error reduction algorithm to improve lidar turbulence estimates for wind energy

    Directory of Open Access Journals (Sweden)

    J. F. Newman

    2017-02-01

    Full Text Available Remote-sensing devices such as lidars are currently being investigated as alternatives to cup anemometers on meteorological towers for the measurement of wind speed and direction. Although lidars can measure mean wind speeds at heights spanning an entire turbine rotor disk and can be easily moved from one location to another, they measure different values of turbulence than an instrument on a tower. Current methods for improving lidar turbulence estimates include the use of analytical turbulence models and expensive scanning lidars. While these methods provide accurate results in a research setting, they cannot be easily applied to smaller, vertically profiling lidars in locations where high-resolution sonic anemometer data are not available. Thus, there is clearly a need for a turbulence error reduction model that is simpler and more easily applicable to lidars that are used in the wind energy industry. In this work, a new turbulence error reduction algorithm for lidars is described. The Lidar Turbulence Error Reduction Algorithm, L-TERRA, can be applied using only data from a stand-alone vertically profiling lidar and requires minimal training with meteorological tower data. The basis of L-TERRA is a series of physics-based corrections that are applied to the lidar data to mitigate errors from instrument noise, volume averaging, and variance contamination. These corrections are applied in conjunction with a trained machine-learning model to improve turbulence estimates from a vertically profiling WINDCUBE v2 lidar. The lessons learned from creating the L-TERRA model for a WINDCUBE v2 lidar can also be applied to other lidar devices. L-TERRA was tested on data from two sites in the Southern Plains region of the United States. The physics-based corrections in L-TERRA brought regression line slopes much closer to 1 at both sites and significantly reduced the sensitivity of lidar turbulence errors to atmospheric stability. The accuracy of machine

  11. On the spatial coherence of temperature within and above a vineyard under drainage conditions

    Science.gov (United States)

    Everard, K.; Giometto, M. G.; Christen, A.; Oldroyd, H. J.; Parlange, M. B.

    2017-12-01

    We show that turbulent exchange within vineyards under nighttime drainage conditions is controlled by large-scale coherent structures arising from a mixing-layer type instability at the canopy top, h. A combination of measurements and large-eddy simulations (LESs) are here used to characterize the onset and development of such structures as a function of the approaching wind angle over an organized canopy during drainage flows. Measurements were carried out over a west-facing 7° vineyard slope near Oliver, BC, Canada in the Okanagan Valley between July 5 and July 22, 2016. The vineyard canopy had an average height of h = 2.3 m, with parallel rows oriented in the local downslope direction (i.e. east-west). The set-up consisted of an array of five vertically arranged ultrasonic anemometers at z/h = 0.19, 0.39, 0.65, 1.02, and 2.06, and a 2-D grid of 40 fine-wire thermocouples arranged at the same heights as the ultrasonic anemometer array on 8 separate masts extending in the upslope direction at locations up to x/h = 13.91 from the flux tower. To complement observations, pressure-driven open-channel flow LESs are performed over a regular domain where vegetation is accounted for via a space dependent drag force. The drainage flow regime is emulated via a tuned pressure-gradient forcing, and different approaching wind angles are considered. Linear stability analyses show that the most unstable mode at the canopy top strongly depends on the approaching wind angle. Space-lagged correlations from measurements show that the lifetime of such eddies within the canopy also depends on the approaching wind direction, with longer lifetimes observed when wind angles are directed along the vine-rows. LESs are compared with measured quantities to ensure matching, and then used to investigate in detail the influence of the above-canopy wind vectors on eddy lifetimes. The impact of the observed coherent structures on momentum and heat exchange coefficients are also discussed.

  12. Atmospheric boundary layer characteristics based on the observations at the Climate Change Tower in Ny Alesund( Svalbard).

    Science.gov (United States)

    Schiavon, Mario; Mazzola, Mauro; Lupi, Angelo; Drofa, Oxana; Tampieri, Francesco; Pelliccioni, Armando; Choi, Taejin; Vitale, Vito; Viola, Angelo P.

    2017-04-01

    At high latitudes, the Atmospheric Boundary Layer ( ABL) is often characterized by extremely stable vertical stratification since the surface radiative cooling determines inversions in temperature profiles especially during the polar night over land, ice and snow surfaces. Improvements are required in the theoretical understanding of the turbulent behavior of the high-latitude ABL. The parameterizations of surface-atmosphere exchanges employed in numerical weather prediction and climate models have also to be tested in the Arctic area. Moreover, the boundary layer structure and dynamics influence the vertical distribution of aerosol. The main issue is related to the height of PBL: the question is whether some decoupling occurs between the surface layer and the atmosphere aloft when the PBL is shallow or the mechanical mixing due to the synoptic circulation provides an overall vertical homogeneity of the concentration of the aerosol irrespective of the stability conditions. In this aim, the work investigates the features of the high-latitude ABL with particular attention to its vertical structure, the relationships among the main turbulent statistics (in a similarity approach) and their variation with the ABL state. The used data refer to measurements collected since 2012 to 2016 by slow and fast response sensors deployed at the 34 m high Amundsen-Nobile Climate Change Tower (CCT) installed at Ny-Ålesund, Svalbard. Data from four conventional Young anemometers and Väisäla thermo-hygrometers at 2, 4.8, 10.3 and 33.4 m a.g.l., alternated by three lined up sonic anemometers at 3.7, 7.5 and 21 m a.g.l., are used in the analysis. The presented results highlight that the performance of the commonly adopted ABL similarity schemes (e.g. flux-gradient relationships and parameterizations for the stable ABL height) depends upon the ABL state, determined mainly by the wind speed and the shape of the profiles of second order moments (the two being related) . For neutral or

  13. An experimental methodology to quantify the spray cooling event at intermittent spray impact

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Antonio L.N. [Instituto Superior Tecnico, Mechanical Engineering Department, Center for Innovation, Technology and Policy Research, IN Av. Rovisco Pais 1049-001, Lisbon Codex (Portugal)]. E-mail: moreira@dem.ist.utl.pt; Carvalho, Joao [Instituto Superior Tecnico, Mechanical Engineering Department, Center for Innovation, Technology and Policy Research, IN Av. Rovisco Pais 1049-001, Lisbon Codex (Portugal); Panao, Miguel R.O. [Instituto Superior Tecnico, Mechanical Engineering Department, Center for Innovation, Technology and Policy Research, IN Av. Rovisco Pais 1049-001, Lisbon Codex (Portugal)

    2007-04-15

    The present paper describes an experimental methodology devised to study spray cooling with multiple-intermittent sprays as those found in fuel injection systems of spark-ignition and diesel engines, or in dermatologic surgery applications. The spray characteristics and the surface thermal behaviour are measured by combining a two-component phase-Doppler anemometer with fast response surface thermocouples. The hardware allows simultaneous acquisition of Doppler and thermocouple signals which are processed in Matlab to estimate the time-varying heat flux and fluid-dynamic characteristics of the spray during impact. The time resolution of the acquisition system is limited by the data rate of validation of the phase-Doppler anemometer, but it has been shown to be accurate for the characterization of spray-cooling processes with short spurt durations for which the transient period of spray injection plays an important role. The measurements are processed in terms of the instantaneous heat fluxes, from which phase-average values of the boiling curves are obtained. Two of the characteristic parameters used in the thermal analysis of stationary spray cooling events, the critical heat flux (CHF) and Leidenfrost phenomenon, are then inferred in terms of operating conditions of the multiple-intermittent injections, such as the frequency, duration and pressure of injection. An integral method is suggested to describe the overall process of heat transfer, which accounts for the fluid-dynamic heterogeneities induced by multiple and successive droplet interactions within the area of spray impact. The method considers overall boiling curves dependant on the injection conditions and provides an empirical tool to characterize the heat transfer processes on the impact of multiple-intermittent sprays. The methodology is tested in a preliminary study of the effect of injection conditions on the heat removed by a fuel spray striking the back surface of the intake valve as in spark

  14. Optimizing Lidar Scanning Strategies for Wind Energy Measurements (Invited)

    Science.gov (United States)

    Newman, J. F.; Bonin, T. A.; Klein, P.; Wharton, S.; Chilson, P. B.

    2013-12-01

    Environmental concerns and rising fossil fuel prices have prompted rapid development in the renewable energy sector. Wind energy, in particular, has become increasingly popular in the United States. However, the intermittency of available wind energy makes it difficult to integrate wind energy into the power grid. Thus, the expansion and successful implementation of wind energy requires accurate wind resource assessments and wind power forecasts. The actual power produced by a turbine is affected by the wind speeds and turbulence levels experienced across the turbine rotor disk. Because of the range of measurement heights required for wind power estimation, remote sensing devices (e.g., lidar) are ideally suited for these purposes. However, the volume averaging inherent in remote sensing technology produces turbulence estimates that are different from those estimated by a sonic anemometer mounted on a standard meteorological tower. In addition, most lidars intended for wind energy purposes utilize a standard Doppler beam-swinging or Velocity-Azimuth Display technique to estimate the three-dimensional wind vector. These scanning strategies are ideal for measuring mean wind speeds but are likely inadequate for measuring turbulence. In order to examine the impact of different lidar scanning strategies on turbulence measurements, a WindCube lidar, a scanning Halo lidar, and a scanning Galion lidar were deployed at the Southern Great Plains Atmospheric Radiation Measurement (ARM) site in Summer 2013. Existing instrumentation at the ARM site, including a 60-m meteorological tower and an additional scanning Halo lidar, were used in conjunction with the deployed lidars to evaluate several user-defined scanning strategies. For part of the experiment, all three scanning lidars were pointed at approximately the same point in space and a tri-Doppler analysis was completed to calculate the three-dimensional wind vector every 1 second. In another part of the experiment, one of

  15. PENGARUH BENTUK ATAP BANGUNAN TRADISIONAL DI JAWA TENGAH UNTUK PENINGKATAN KENYAMANAN (Sebuah pencarian model arsitektur tropis untuk aplikasi desain arsitektur

    Directory of Open Access Journals (Sweden)

    Ridwan Sanjaya

    2006-01-01

    Full Text Available In the architectural development recently, form of Java traditional roof is still commonly interested. While it is full of philosophic value, form of Java traditional roof also varies. On the other hand, Java traditional architecture concerns deeply in environmental aspect, which is formed in macro and micro concept as well, in order to become harmony and be comfort to dwell in. However, in the development and the application to modern buildings, which uses modern building materials, the thermal comfort aspect and the sturdy of construction are not considered. Therefore, it is necessary to understand well the basic concept of the forming traditional architecture in the context of trophical architecture and the sturdy of construction.This research aims to give descriptions to society, students and architects, in order to understand the importantance of thermal comfort, which can be achieved by well-designed roof.To achieve the expected result, the research is approached through analizing the sturdy of construction, to the original traditional buildings and the modern buildings using the Java traditional roof as well. The thermal comfort analysis is done with some equipments such as digital thermometer, digital hygrometer and digital anemometer. The research result is design recommendation to adjust the modern material to the form of Java traditional roof. By computer program using Visual Basic, it is expected that the research will be easily understood by society and it can be applied in building design. Abstract in Bahasa Indonesia : Dalam perkembangan arsitektur saat ini, bentuk atap tradisional Jawa masih diminati oleh masyarakat. Selain sarat muatan filosofis, bentuk atap tradisional juga bervariasi. Di sisi lain, arsitektur tradisional Jawa sangat memperhatikan aspek lingkungan, yang tertuang dalam konsep makro dan mikro kosmosnya, sehingga selaras dan nyaman untuk dihuni. Namun dalam perkembangan dan penerapan pada bangunan modern, yang

  16. UAV multirotor platform for accurate turbulence measurements in the atmosphere

    Science.gov (United States)

    Carbajo Fuertes, Fernando; Wilhelm, Lionel; Sin, Kevin Edgar; Hofer, Matthias; Porté-Agel, Fernando

    2017-04-01

    One of the most challenging tasks in atmospheric field studies for wind energy is to obtain accurate turbulence measurements at any location inside the region of interest for a wind farm study. This volume would ideally include from several hundred meters to several kilometers around it and from ground height to the top of the boundary layer. An array of meteorological masts equipped with several sonic anemometers to cover all points of interest would be the best in terms of accuracy and data availability, but it is an obviously unfeasible solution. On the other hand, the evolution of wind LiDAR technology allows to measure at any point in space but unfortunately it involves two important limitations: the first one is the relatively low spatial and temporal resolution when compared to a sonic anemometer and the second one is the fact that the measurements are limited to the velocity component parallel to the laser beam (radial velocity). To overcome the aforementioned drawbacks, a UAV multirotor platform has been developed. It is based on a state-of-the-art octocopter with enough payload to carry laboratory-grade instruments for the measurement of time-resolved atmospheric pressure, three-component velocity vector and temperature; and enough autonomy to fly from 10 to 20 minutes, which is a standard averaging time in most atmospheric measurement applications. The UAV uses a gyroscope, an accelerometer, a GPS and an algorithm has been developed and integrated for the correction of any orientation and movement. This UAV platform opens many possibilities for the study of features that have been almost exclusively studied until now in wind tunnel such as wind turbine blade tip vortex characteristics, near-wake to far-wake transition, momentum entrainment from the higher part of the boundary layer in wind farms, etc. The validation of this new measurement technique has been performed against sonic anemometry in terms of wind speed and temperature time series as well as

  17. N2O eddy covariance fluxes: From field measurements to flux calculation

    Science.gov (United States)

    Lognoul, Margaux; Debacq, Alain; Heinesch, Bernard; Aubinet, Marc

    2017-04-01

    From March to October 2016, we performed eddy covariance measurements in a sugar beet crop at the Lonzée Terrestrial Observatory (LTO, candidate ICOS site) in Belgium. N2O and H2O atmospheric concentrations were measured at 10 Hz using a quantum-cascade laser spectrometer (Aerodyne Research, Inc.) and combined to wind speed 3D components measured with a sonic anemometer (Gill HS-50). Flux computation was carried out using the EddyPro Software (LI-COR) with a focus on adaptations needed for tracers like N2O. Data filtering and quality control were performed according to Vickers and Mahrt (1997) and Mauder and Foken (2004). The flags were adapted to N2O time series. In this presentation, different computation steps will be presented. More specifically: 1) Considering that a large proportion of N2O fluxes are small (within ± 0.5 nmol m-2 s-1), the classical stationarity test might lead to excessive data filtering and in such case, some searchers have chosen to use the running mean (RM) as a detrend method over block averaging (BA) and to filter data otherwise. For our dataset, BA mean fluxes combined to the stationarity test did not significantly differ from RM fluxes when the averaging window was 300s or larger, but were significantly larger otherwise, suggesting that significant eddies occurred at the 5-min timescale and that they were not accounted for with a shorter averaging window. 2) The determination of time-lag in the case of N2O fluxes can become tricky for two reasons : (1) the signal amplitude can differ from one time period to the next, making it difficult to use the method of covariance maximization and (2) an additional clock drift can appear if the spectrometer is not logging on the same computer than the anemometer. In our case, the N2O signal was strong enough to solve both problems and to perform time-lag compensation according to the covariance maximization, with a default value equal to the mode of the lag distribution. The automatic time

  18. Volumetric LiDAR scanning of a wind turbine wake and comparison with a 3D analytical wake model

    Science.gov (United States)

    Carbajo Fuertes, Fernando; Porté-Agel, Fernando

    2016-04-01

    A correct estimation of the future power production is of capital importance whenever the feasibility of a future wind farm is being studied. This power estimation relies mostly on three aspects: (1) a reliable measurement of the wind resource in the area, (2) a well-established power curve of the future wind turbines and, (3) an accurate characterization of the wake effects; the latter being arguably the most challenging one due to the complexity of the phenomenon and the lack of extensive full-scale data sets that could be used to validate analytical or numerical models. The current project addresses the problem of obtaining a volumetric description of a full-scale wake of a 2MW wind turbine in terms of velocity deficit and turbulence intensity using three scanning wind LiDARs and two sonic anemometers. The characterization of the upstream flow conditions is done by one scanning LiDAR and two sonic anemometers, which have been used to calculate incoming vertical profiles of horizontal wind speed, wind direction and an approximation to turbulence intensity, as well as the thermal stability of the atmospheric boundary layer. The characterization of the wake is done by two scanning LiDARs working simultaneously and pointing downstream from the base of the wind turbine. The direct LiDAR measurements in terms of radial wind speed can be corrected using the upstream conditions in order to provide good estimations of the horizontal wind speed at any point downstream of the wind turbine. All this data combined allow for the volumetric reconstruction of the wake in terms of velocity deficit as well as turbulence intensity. Finally, the predictions of a 3D analytical model [1] are compared to the 3D LiDAR measurements of the wind turbine. The model is derived by applying the laws of conservation of mass and momentum and assuming a Gaussian distribution for the velocity deficit in the wake. This model has already been validated using high resolution wind-tunnel measurements

  19. High pressure annular two-phase flow in a narrow duct. Part 1: Local measurements in the droplet field, and Part 2: Three-field modeling

    Energy Technology Data Exchange (ETDEWEB)

    Trabold, T.A.; Kumar, R. [Lockheed Martin Corp., Schenectady, NY (United States)

    1999-07-01

    In Part 1, detailed measurements were made in a high pressure, adiabatic (boiled at the inlet) annular flow in a narrow, high aspect ratio duct using a gamma densitometer, hot-film anemometer and high-speed video photography. Measurements of void fraction, droplet frequency, velocity, drop size, and interfacial area concentration have been made to support the three field computational capability. An important aspect of this testing is the use of a modeling fluid (R-134a) in a vertical duct which permits visual access in annular flow. This modeling fluid accurately simulates the low liquid-to-vapor density ratio of steam-water flows at high pressures. These measurements have been taken in a narrow duct of hydraulic diameter 4.85 mm, and a cross-section aspect ratio of 22.5. However, the flow displays profiles of various shapes not only in the narrow dimension, but also in the width dimension. In particular, the shape of the droplet profiles depends on the entrained droplet flux from the edges in the vapor core. The average diameter from these profiles compare well with the models developed in the literature. Interfacial area concentration for these low density ratio flows is higher than the highest concentration reported for air-water flows. Video records show that along with the bow-shaped waves, three-dimensional {lambda}-shaped waves appear in annular flows for high flow rates. Part 2 outlines the development of a three-field modeling approach in annular flow and the predictive capability of an analysis code. Models have been developed here or adapted from the literature for the thin film near the wall as well as the droplets in the vapor core, and have been locally applied in a fully developed, two-phase adiabatic boiling annular flow in a duct heated at the inlet at high pressure. Numerical results have been obtained using these models that are required for the closure of the continuity and momentum equations. The two-dimensional predictions are compared with

  20. Turbulent Fogwater Flux Measurements Above A Forest

    Science.gov (United States)

    Burkard, R.; Eugster, W.; Buetzberger, P.; Siegwolf, R.

    Many forest ecosystems in elevated regions receive a significant fraction of their wa- ter and nutrient input by the interception of fogwater. Recently, several studies have demonstrated the suitability of the eddy covariance technique for the direct measure- ment of turbulent liquid water fluxes. Since summer 2001 a fogwater flux measure- ment equipment has been running at a montane site above a mixed forest canopy in Switzerland. The measurement equipment consists of a high-speed size-resolving droplet spectrometer and a three-dimensional ultrasonic anemometer. The chemical composition of the fogwater was determined from samples collected with a modified Caltech active strand collector. The deposition of nutrients by fog (occult deposition) was calculated by multiplying the total fogwater flux (total of measured turbulent and calculated gravitational flux) during each fog event by the ionic concentrations found in the collected fogwater. Several uncertainties still exist as far as the accuracy of the measurements is con- cerned. Although there is no universal statistical approach for testing the quality of the liquid water flux data directly, results of independent data quality checks of the two time series involved in the flux computation and accordingly the two instruments (ultrasonic anemometer and the droplet spectrometer) are presented. Within the measurement period, over 80 fog events with a duration longer than 2.5 hours were analyzed. An enormous physical and chemical heterogeneity among these fog events was found. We assume that some of this heterogeneity is due to the fact that fog or cloud droplets are not conservative entities: the turbulent flux of fog droplets, which can be referred to as the liquid water flux, is affected by phase change processes and coagulation. The measured coexistence of upward fluxes of small fog droplets (di- ameter < 10 µm) with the downward transport of larger droplets indicates the influ- ence of such processes. With the