WorldWideScience

Sample records for androgen regulated genes

  1. Genes regulated by androgen in the rat ventral prostate

    OpenAIRE

    Wang, Zhou; Tufts, Rachel; Haleem, Riffat; Cai, Xiaoyan

    1997-01-01

    Genes that are regulated by androgen in the prostate were studied in the rat. Four of the less than 10 genes that are down-regulated by androgen in the ventral prostate of a 7-day castrated rat were identified; their mRNAs decayed with identical kinetics. Twenty-five of the estimated 56 genes that are up-regulated by androgen in the castrated prostate have been isolated. The up-regulated genes fall into two kinetic types. Early genes are significantly up-regulated by 6.5 hr whereas the delaye...

  2. Androgenic regulation of novel genes in the epididymis

    Institute of Scientific and Technical Information of China (English)

    Bernard Robaire; Shayesta Seenundun; Mahsa Hamzeh; Sophie-Anne Lamour

    2007-01-01

    The epididymis is critically dependent on the presence of the testis. Although several hormones, such as retinoids and progestins, and factors secreted directly into the epididymal lumen, such as androgen binding protein and fibroblast growth factor, might play regulatory roles in epididymal function, testosterone (T) and its metabolites,dihydrotestosterone (DHT) and estradiol (E2), are accepted as the primary regulators of epididymal structure and functions, with the former playing the greater role. To ascertain the molecular action of androgens on the epididymis,three complementary approaches were pursued to monitor changes in gene expression in response to different hormonal milieux. The first was to establish changes in gene expression along the epididymis as androgenic support is withdrawn. The second was to determine the sequence of responses that occur in an androgen deprived tissue upon re-administration of the two metabolites of T, DHT and E2. The third was to study the effects of androgen withdrawal and re-administration on gene expression in immortalized murine caput epididymidal principal cells. Specific responses were observed under each of these conditions, with an expected major difference in the panoply of genes expressed upon hormone withdrawal and re-administration; however, some key common features were the common roles of genes in insulin like growth factor/epidermal growth factor and the relatively minor and specific effects of E2 as compared to DHT. Together, these results provide novel insights into the mechanisms of androgen regulation in epididymal principal cells.

  3. Identification and characterization of the minimal androgen-regulated kidney-specific kidney androgen-regulated protein gene promoter

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The kidney androgen-regulated protein (Kap) gene is tissue specific and regulated by androgen in mouse kidney proximal tubule cells (PTCs). In the present study, we aimed to identify the minimal PTC-specific androgen-regulated Kap promoter and analyze its androgen response elements (AREs).Adeletion series of the Kap1542 promoter/luciferase constructs were assayed in opossum kidney (OK) PTCs in the presence or absence of 15 nM dihydrotestosterone (DHT). Kap 1542 and Kap637 had low activity and no androgen induction; Kap224 had a basal activity that was 4- to 5-fold higher than that of Kap 1542, but was only sfightly induced by DHT. Kap 147 had a basal activity that was 2- to 3-fold higher than that of Kap 1542 and was induced by DHT 4- to 6-fold. Kap77 abol-ished basal promoter activity but was still induced by DHT. Results showed that, in vitro, Kap147 was a minimal androgen-regulated promoter. Transient transfection in different cells demonstrated that Kap147 specifically initi-ated reporter gene expression in PTCs. Sequence analysis revealed two potential AREs located at positions -124 and -39 of Kap147. Mutational assays showed that only the ARE at -124 was involved in androgen response in OK cells. Electrophoretic mobility shift assay also verified -124 ARE bound specifically to androgen receptor. In conclusion, we defined the minimal Kap 147 promoter that may be a good model for the study of kidney PTC-specific expression and molecular mechanisms that lead to an androgen-specific responsiveness in vivo.

  4. Androgen regulation of the TMPRSS2 gene and the effect of a SNP in an androgen response element.

    Science.gov (United States)

    Clinckemalie, Liesbeth; Spans, Lien; Dubois, Vanessa; Laurent, Michaël; Helsen, Christine; Joniau, Steven; Claessens, Frank

    2013-12-01

    More than 50% of prostate cancers have undergone a genomic reorganization that juxtaposes the androgen-regulated promoter of TMPRSS2 and the protein coding parts of several ETS oncogenes. These gene fusions lead to prostate-specific and androgen-induced ETS expression and are associated with aggressive lesions, poor prognosis, and early-onset prostate cancer. In this study, we showed that an enhancer at 13 kb upstream of the TMPRSS2 transcription start site is crucial for the androgen regulation of the TMPRSS2 gene when tested in bacterial artificial chromosomal vectors. Within this enhancer, we identified the exact androgen receptor binding sequence. This newly identified androgen response element is situated next to two binding sites for the pioneer factor GATA2, which were identified by DNase I footprinting. Both the androgen response element and the GATA-2 binding sites are involved in the enhancer activity. Importantly, a single nucleotide polymorphism (rs8134378) within this androgen response element reduces binding and transactivation by the androgen receptor. The presence of this SNP might have implications on the expression and/or formation levels of TMPRSS2 fusions, because both have been shown to be influenced by androgens.

  5. Identification of testosterone-/androgen receptor-regulated genes in mouse Sertoli cells

    Institute of Scientific and Technical Information of China (English)

    Qiao-Xia Zhang; Xiao-Yan Zhang; Zhen-Ming Zhang; Wei Lu; Ling Liu; Gang Li; Zhi-Ming Cai; Yao-Ting Gui; Chawnshang Chang

    2012-01-01

    Androgen and androgen receptor (AR) play important roles in male spermatogenesis and fertility,yet detailed androgenlAR signals in Sertoli cells remain unclear.To identify AR target genes in Sertoli cells,we analyzed the gene expression profiles of testis between mice lacking AR in Sertoli cells (S-AR-/y) and their littermate wild-type (WT) mice.Digital gene expression analysis identified 2276 genes downregulated and 2865 genes upregulated in the S-AR-/y mice testis compared to WT ones.To further nail down the difference within Sertoli cells,we first constructed Sertoli cell line TM4 with stably transfected AR (named as TM4/AR) and found androgens failed to transactivate AR in Sertoli TM4 and TM4/AR cells.Interestingly,additional transient transfection of AR-cDNA resulted in significant androgen responsiveness with TM4/AR cells showing 10 times more androgen sensitivity than TM4 cells.In the condition where maximal androgen response was demonstrated,we then analyzed gene expression and found the expression levels of 2313 genes were changed more than twofold by transient transfection of AR-cDNA in the presence of testosterone.Among these genes,603 androgen-/ AR-regulated genes,including 164 upregulated and 439 downregulated,were found in both S-AR-/y mice testis and TM4/AR cells.Using informatics analysis,the gene ontology was applied to analyze these androgen-/AR-regulated genes to predict the potential roles of androgen/AR in the process of spermatogenesis.Together,using gene analysis in both S-AR-/y mice testis and TM4/AR cells may help us to better understand the androgen/AR signals in Sertoli cells and their influences in spermatogenesis.

  6. Androgen regulated genes in human prostate xenografts in mice: relation to BPH and prostate cancer.

    Directory of Open Access Journals (Sweden)

    Harold D Love

    Full Text Available Benign prostatic hyperplasia (BPH and prostate carcinoma (CaP are linked to aging and the presence of androgens, suggesting that androgen regulated genes play a major role in these common diseases. Androgen regulation of prostate growth and development depends on the presence of intact epithelial-stromal interactions. Further, the prostatic stroma is implicated in BPH. This suggests that epithelial cell lines are inadequate to identify androgen regulated genes that could contribute to BPH and CaP and which could serve as potential clinical biomarkers. In this study, we used a human prostate xenograft model to define a profile of genes regulated in vivo by androgens, with an emphasis on identifying candidate biomarkers. Benign transition zone (TZ human prostate tissue from radical prostatectomies was grafted to the sub-renal capsule site of intact or castrated male immunodeficient mice, followed by the removal or addition of androgens, respectively. Microarray analysis of RNA from these tissues was used to identify genes that were; 1 highly expressed in prostate, 2 had significant expression changes in response to androgens, and, 3 encode extracellular proteins. A total of 95 genes meeting these criteria were selected for analysis and validation of expression in patient prostate tissues using quantitative real-time PCR. Expression levels of these genes were measured in pooled RNAs from human prostate tissues with varying severity of BPH pathologic changes and CaP of varying Gleason score. A number of androgen regulated genes were identified. Additionally, a subset of these genes were over-expressed in RNA from clinical BPH tissues, and the levels of many were found to correlate with disease status. Our results demonstrate the feasibility, and some of the problems, of using a mouse xenograft model to characterize the androgen regulated expression profiles of intact human prostate tissues.

  7. Microarray analysis of androgen-regulated gene expression in testis: the use of the androgen-binding protein (ABP-transgenic mouse as a model

    Directory of Open Access Journals (Sweden)

    Grossman Gail

    2005-12-01

    Full Text Available Abstract Background Spermatogenesis is an androgen-dependent process, yet the molecular mechanisms of androgens' actions in testis are poorly understood. Transgenic mice overexpressing rat androgen-binding protein (ABP in their testes have reduced levels of intratesticular androgens and, as a result, show a progressive impairment of spermatogenesis. We used this model to characterize changes in global gene expression in testis in response to reduced bioavailability of androgens. Methods Total RNA was extracted from testes of 30-day old transgenic and wild-type control mice, converted to cRNA, labeled with biotin, and hybridized to oligonucleotide microarrays. Microarray results were confirmed by real-time reverse transcription polymerase chain reaction. Results Three-hundred-eighty-one genes (3.05% of all transcripts represented on the chips were up-regulated and 198 genes (1.59% were down-regulated by at least a factor of 2 in the androgen-deficient animals compared to controls. Genes encoding membrane proteins, intracellular signaling molecules, enzymes, proteins participating in the immune response, and those involved in cytoskeleton organization were significantly overrepresented in the up-regulated group. Among the down-regulated transcripts, those coding for extracellular proteins were overrepresented most dramatically, followed by those related to proteolysis, cell adhesion, immune response, and growth factor, cytokine, and ion channel activities. Transcripts with the greatest potential impact on cellular activities included several transcription factors, intracellular signal transducers, secreted signaling molecules and enzymes, and various cell surface molecules. Major nodes in the up-regulated network were IL-6, AGT, MYC, and A2M, those in the down-regulated network were IL-2, -4, and -10, MAPK8, SOCS1, and CREB1. Conclusion Microarray analysis followed by gene ontology profiling and connectivity analysis identified several functional

  8. A protein in rat prostatic chromatin interacting with androgen regulated gene

    Institute of Scientific and Technical Information of China (English)

    XUYOUHAI; RONGCHANG; 等

    1992-01-01

    2M NaCl-insoluble fraction of rat ventral Prostate chromatin(residual proteins)contain proteins able to interact specifically with androgen-receptor complex and is ,therefore,a part of the aceptor complex.Among residual proteins a 98 KDa protein has been found which binds significantly to a genomic fiagment containing an androgen-regulated gene coding for a 22 KDa protein The biological significance of this binding in androgen action need to be further studied.A mini-plasmid clone containing 22 KDa protein coding sequence was cloned into charon 4A genomic library from which a 5.7 Kb genomic fragment was isolated,identified by hybridization with a 5' and a 3' cDNA probes,and shown to contain the 3' flanking sequence.Restriction enzyme treatment of this fragment yielded a 4.7 Kb restriction fragmwent representing the 5' upstream region and a 1.0 Kb containing part of the coding sequence.Deletion studies indicated that the 97 KDa protein bound only to a subclone of about 300 bp segment .Furthermore,gel shifting experiment supported its DNA-protein binding.

  9. The rat androgen receptor gene promoter

    NARCIS (Netherlands)

    W.M. Baarends (Willy); A.P.N. Themmen (Axel); L.J. Blok (Leen); P. Mackenbach (Petra); A.O. Brinkmann (Albert); D.N. Meijer (Dies); P.W. Faber; J. Trapman (Jan); J.A. Grootegoed (Anton)

    1990-01-01

    markdownabstractAbstract The androgen receptor (AR) is activated upon binding of testosterone or dihydrotestosterone and exerts regulatory effects on gene expression in androgen target cells. To study transcriptional regulation of the rat AR gene itself, the 5' genomic region of this gene was clon

  10. TCTP is an androgen-regulated gene implicated in prostate cancer.

    Directory of Open Access Journals (Sweden)

    Mari Kaarbø

    Full Text Available TCTP has been implicated in a plethora of important cellular processes related to cell growth, cell cycle progression, malignant transformation and inhibition of apoptosis. In addition to these intracellular functions, TCTP has extracellular functions and plays an important role in immune cells. TCTP expression was previously shown to be deregulated in prostate cancer, but its function in prostate cancer cells is largely unknown. Here we show that TCTP expression is regulated by androgens in LNCaP prostate cancer cells in vitro as well as human prostate cancer xenografts in vivo. Knockdown of TCTP reduced colony formation and increased apoptosis in LNCaP cells, implicating it as an important factor for prostate cancer cell growth. Global gene expression profiling in TCTP knockdown LNCaP cells showed that several interferon regulated genes are regulated by TCTP, suggesting that it may have a role in regulating immune function in prostate cancer. In addition, recombinant TCTP treatment increased colony formation in LNCaP cells suggesting that secreted TCTP may function as a proliferative factor in prostate cancer. These results suggest that TCTP may have a role in prostate cancer development.

  11. Androgen-responsive gene database: integrated knowledge on androgen-responsive genes.

    Science.gov (United States)

    Jiang, Mei; Ma, Yunsheng; Chen, Congcong; Fu, Xuping; Yang, Shu; Li, Xia; Yu, Guohua; Mao, Yumin; Xie, Yi; Li, Yao

    2009-11-01

    Androgen signaling plays an important role in many biological processes. Androgen Responsive Gene Database (ARGDB) is devoted to providing integrated knowledge on androgen-controlled genes. Gene records were collected on the basis of PubMed literature collections. More than 6000 abstracts and 950 original publications were manually screened, leading to 1785 human genes, 993 mouse genes, and 583 rat genes finally included in the database. All the collected genes were experimentally proved to be regulated by androgen at the expression level or to contain androgen-responsive regions. For each gene important details of the androgen regulation experiments were collected from references, such as expression change, androgen-responsive sequence, response time, tissue/cell type, experimental method, ligand identity, and androgen amount, which will facilitate further evaluation by researchers. Furthermore, the database was integrated with multiple annotation resources, including National Center for Biotechnology Information, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes pathway, to reveal the biological characteristics and significance of androgen-regulated genes. The ARGDB web site is mainly composed of the Browse, Search, Element Scan, and Submission modules. It is user friendly and freely accessible at http://argdb.fudan.edu.cn. Preliminary analysis of the collected data was performed. Many disease pathways, such as prostate carcinogenesis, were found to be enriched in androgen-regulated genes. The discovered androgen-response motifs were similar to those in previous reports. The analysis results are displayed in the web site. In conclusion, ARGDB provides a unified gateway to storage, retrieval, and update of information on androgen-regulated genes. PMID:19762544

  12. Androgen-responsive gene database: integrated knowledge on androgen-responsive genes.

    Science.gov (United States)

    Jiang, Mei; Ma, Yunsheng; Chen, Congcong; Fu, Xuping; Yang, Shu; Li, Xia; Yu, Guohua; Mao, Yumin; Xie, Yi; Li, Yao

    2009-11-01

    Androgen signaling plays an important role in many biological processes. Androgen Responsive Gene Database (ARGDB) is devoted to providing integrated knowledge on androgen-controlled genes. Gene records were collected on the basis of PubMed literature collections. More than 6000 abstracts and 950 original publications were manually screened, leading to 1785 human genes, 993 mouse genes, and 583 rat genes finally included in the database. All the collected genes were experimentally proved to be regulated by androgen at the expression level or to contain androgen-responsive regions. For each gene important details of the androgen regulation experiments were collected from references, such as expression change, androgen-responsive sequence, response time, tissue/cell type, experimental method, ligand identity, and androgen amount, which will facilitate further evaluation by researchers. Furthermore, the database was integrated with multiple annotation resources, including National Center for Biotechnology Information, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes pathway, to reveal the biological characteristics and significance of androgen-regulated genes. The ARGDB web site is mainly composed of the Browse, Search, Element Scan, and Submission modules. It is user friendly and freely accessible at http://argdb.fudan.edu.cn. Preliminary analysis of the collected data was performed. Many disease pathways, such as prostate carcinogenesis, were found to be enriched in androgen-regulated genes. The discovered androgen-response motifs were similar to those in previous reports. The analysis results are displayed in the web site. In conclusion, ARGDB provides a unified gateway to storage, retrieval, and update of information on androgen-regulated genes.

  13. Down-regulation of Zac1 gene expression in rat white adipose tissue by androgens.

    Science.gov (United States)

    Mirowska, Agnieszka; Sledzinski, Tomasz; Smolenski, Ryszard T; Swierczynski, Julian

    2014-03-01

    ZAC1 is a zinc-finger protein transcription factor, a transcriptional cofactor for nuclear receptors, and a co-activator of nuclear receptors, which interacts with multiple signaling pathways affecting apoptosis, cell cycle arrest, and metabolism. Some data suggest that ZAC1 regulates the expression of genes associated with function of adipose tissue. Since there is no information about the levels of Zac1 gene expression in white adipose tissue (WAT), and the expression of several genes associated with metabolic function of WAT is significantly lower in male than female animals, we have examined: (a) the relative ZAC1 mRNA levels in some organs/tissues, including three main depots of WAT, in 3-month-old male rats; (b) the relative ZAC1 mRNA levels in WAT of male and female rats; (c) the effect of orchidectomy and orchidectomy with concomitant testosterone treatment on ZAC1 mRNA and protein levels; (d) the effect of ovariectomy and ovariectomy with concomitant 17β-estradiol treatment on ZAC1 mRNA levels; (e) the effect of dihydrotestosterone on ZAC1 mRNA levels in isolated adipocytes. Our results indicate that: (a) ZAC1 mRNA levels are relatively high in WAT in comparison with other organs/tissues; (b) ZAC1 mRNA levels in subcutaneous WAT are approximately 2-fold lower than in epididymal and retroperitoneal adipose tissue; (c) ZAC1 mRNA levels in WAT of adult female rats are approximately 2-fold higher than in male rats; (d) testosterone is inversely related to ZAC1 mRNA and protein levels in WAT of male rats; and (e) dihydrotestosterone decreases the ZAC1 mRNA levels in adipocytes in dose dependent manner. In conclusion, Zac1 gene is highly expressed in white adipose tissue of adult rats. Androgens could play an important role in down-regulation of the ZAC1 mRNA and protein levels in rats.

  14. Androgen regulation of the androgen receptor coregulators

    International Nuclear Information System (INIS)

    The critical role of the androgen receptor (AR) in the development of prostate cancer is well recognized. The transcriptional activity of AR is partly regulated by coregulatory proteins. It has been suggested that these coregulators could also be important in the progression of prostate cancer. The aim of this study was to identify coregulators whose expression is regulated by either the androgens and/or by the expression level of AR. We used empty vector and AR cDNA-transfected LNCaP cells (LNCaP-pcDNA3.1, and LNCaP-ARhi, respectively), and grew them for 4 and 24 hours in the presence of dihydrotestosterone (DHT) at various concentrations. The expression of 25 AR coregulators (SRC1, TIF2, PIAS1, PIASx, ARIP4, BRCA1, β-catenin, AIB3, AIB1, CBP, STAT1, NCoR1, AES, cyclin D1, p300, ARA24, LSD1, BAG1L, gelsolin, prohibitin, JMJD2C, JMJD1A, MAK, PAK6 and MAGE11) was then measured by using real-time quantitative RT-PCR (Q-RT-PCR). Five of the coregulators (AIB1, CBP, MAK, BRCA1 and β-catenin) showed more than 2-fold induction and 5 others (cyclin D1, gelsolin, prohibitin, JMJD1A, and JMJD2C) less than 2-fold induction. Overexpression of AR did not affect the expression of the coregulators alone. However, overexpression of AR enhanced the DHT-stimulated expression of MAK, BRCA1, AIB1 and CBP and reduced the level of expression of β-catenin, cyclinD1 and gelsolin. In conclusion, we identified 5 coactivators whose expression was induced by androgens suggesting that they could potentiate AR signaling. Overexpression of AR seems to sensitize cells for low levels of androgens

  15. Androgen regulation of the androgen receptor coregulators

    Directory of Open Access Journals (Sweden)

    Helenius Merja A

    2008-08-01

    Full Text Available Abstract Background The critical role of the androgen receptor (AR in the development of prostate cancer is well recognized. The transcriptional activity of AR is partly regulated by coregulatory proteins. It has been suggested that these coregulators could also be important in the progression of prostate cancer. The aim of this study was to identify coregulators whose expression is regulated by either the androgens and/or by the expression level of AR. Methods We used empty vector and AR cDNA-transfected LNCaP cells (LNCaP-pcDNA3.1, and LNCaP-ARhi, respectively, and grew them for 4 and 24 hours in the presence of dihydrotestosterone (DHT at various concentrations. The expression of 25 AR coregulators (SRC1, TIF2, PIAS1, PIASx, ARIP4, BRCA1, β-catenin, AIB3, AIB1, CBP, STAT1, NCoR1, AES, cyclin D1, p300, ARA24, LSD1, BAG1L, gelsolin, prohibitin, JMJD2C, JMJD1A, MAK, PAK6 and MAGE11 was then measured by using real-time quantitative RT-PCR (Q-RT-PCR. Results Five of the coregulators (AIB1, CBP, MAK, BRCA1 and β-catenin showed more than 2-fold induction and 5 others (cyclin D1, gelsolin, prohibitin, JMJD1A, and JMJD2C less than 2-fold induction. Overexpression of AR did not affect the expression of the coregulators alone. However, overexpression of AR enhanced the DHT-stimulated expression of MAK, BRCA1, AIB1 and CBP and reduced the level of expression of β-catenin, cyclinD1 and gelsolin. Conclusion In conclusion, we identified 5 coactivators whose expression was induced by androgens suggesting that they could potentiate AR signaling. Overexpression of AR seems to sensitize cells for low levels of androgens.

  16. Androgen receptor and its splice variant, AR-V7, differentially regulate FOXA1 sensitive genes in LNCaP prostate cancer cells.

    Science.gov (United States)

    Krause, William C; Shafi, Ayesha A; Nakka, Manjula; Weigel, Nancy L

    2014-09-01

    Prostate cancer (PCa) is an androgen-dependent disease, and tumors that are resistant to androgen ablation therapy often remain androgen receptor (AR) dependent. Among the contributors to castration-resistant PCa are AR splice variants that lack the ligand-binding domain (LBD). Instead, they have small amounts of unique sequence derived from cryptic exons or from out of frame translation. The AR-V7 (or AR3) variant is constitutively active and is expressed under conditions consistent with CRPC. AR-V7 is reported to regulate a transcriptional program that is similar but not identical to that of AR. However, it is unknown whether these differences are due to the unique sequence in AR-V7, or simply to loss of the LBD. To examine transcriptional regulation by AR-V7, we have used lentiviruses encoding AR-V7 (amino acids 1-627 of AR with the 16 amino acids unique to the variant) to prepare a derivative of the androgen-dependent LNCaP cells with inducible expression of AR-V7. An additional cell line was generated with regulated expression of AR-NTD (amino acids 1-660 of AR); this mutant lacks the LBD but does not have the AR-V7 specific sequence. We find that AR and AR-V7 have distinct activities on target genes that are co-regulated by FOXA1. Transcripts regulated by AR-V7 were similarly regulated by AR-NTD, indicating that loss of the LBD is sufficient for the observed differences. Differential regulation of target genes correlates with preferential recruitment of AR or AR-V7 to specific cis-regulatory DNA sequences providing an explanation for some of the observed differences in target gene regulation.

  17. Sex bias in CNS autoimmune disease mediated by androgen control of autoimmune regulator.

    Science.gov (United States)

    Zhu, Meng-Lei; Bakhru, Pearl; Conley, Bridget; Nelson, Jennifer S; Free, Meghan; Martin, Aaron; Starmer, Joshua; Wilson, Elizabeth M; Su, Maureen A

    2016-01-01

    Male gender is protective against multiple sclerosis and other T-cell-mediated autoimmune diseases. This protection may be due, in part, to higher androgen levels in males. Androgen binds to the androgen receptor (AR) to regulate gene expression, but how androgen protects against autoimmunity is not well understood. Autoimmune regulator (Aire) prevents autoimmunity by promoting self-antigen expression in medullary thymic epithelial cells, such that developing T cells that recognize these self-antigens within the thymus undergo clonal deletion. Here we show that androgen upregulates Aire-mediated thymic tolerance to protect against autoimmunity. Androgen recruits AR to Aire promoter regions, with consequent enhancement of Aire transcription. In mice and humans, thymic Aire expression is higher in males compared with females. Androgen administration and male gender protect against autoimmunity in a multiple sclerosis mouse model in an Aire-dependent manner. Thus, androgen control of an intrathymic Aire-mediated tolerance mechanism contributes to gender differences in autoimmunity. PMID:27072778

  18. Cyclin-dependent kinase 5 acts as a critical determinant of AKT-dependent proliferation and regulates differential gene expression by the androgen receptor in prostate cancer cells.

    Science.gov (United States)

    Lindqvist, Julia; Imanishi, Susumu Y; Torvaldson, Elin; Malinen, Marjo; Remes, Mika; Örn, Fanny; Palvimo, Jorma J; Eriksson, John E

    2015-06-01

    Contrary to cell cycle-associated cyclin-dependent kinases, CDK5 is best known for its regulation of signaling processes in differentiated cells and its destructive activation in Alzheimer's disease. Recently, CDK5 has been implicated in a number of different cancers, but how it is able to stimulate cancer-related signaling pathways remains enigmatic. Our goal was to study the cancer-promoting mechanisms of CDK5 in prostate cancer. We observed that CDK5 is necessary for proliferation of several prostate cancer cell lines. Correspondingly, there was considerable growth promotion when CDK5 was overexpressed. When examining the reasons for the altered proliferation effects, we observed that CDK5 phosphorylates S308 on the androgen receptor (AR), resulting in its stabilization and differential expression of AR target genes including several growth-priming transcription factors. However, the amplified cell growth was found to be separated from AR signaling, further corroborated by CDK5-dependent proliferation of AR null cells. Instead, we found that the key growth-promoting effect was due to specific CDK5-mediated AKT activation. Down-regulation of CDK5 repressed AKT phosphorylation by altering its intracellular localization, immediately followed by prominent cell cycle inhibition. Taken together, these results suggest that CDK5 acts as a crucial signaling hub in prostate cancer cells by controlling androgen responses through AR, maintaining and accelerating cell proliferation through AKT activation, and releasing cell cycle breaks. PMID:25851605

  19. A competitive inhibitor that reduces recruitment of androgen receptor to androgen-responsive genes.

    Science.gov (United States)

    Cherian, Milu T; Wilson, Elizabeth M; Shapiro, David J

    2012-07-01

    The androgen receptor (AR) has a critical role in the growth and progression of androgen-dependent and castration-resistant prostate cancers. To identify novel inhibitors of AR transactivation that block growth of prostate cancer cells, a luciferase-based high-throughput screen of ~160,000 small molecules was performed in cells stably expressing AR and a prostate-specific antigen (PSA)-luciferase reporter. CPIC (1-(3-(2-chlorophenoxy) propyl)-1H-indole-3-carbonitrile) was identified as a small molecule that blocks AR transactivation to a greater extent than other steroid receptors. CPIC inhibited AR-mediated proliferation of androgen-sensitive prostate cancer cell lines, with minimal toxicity in AR-negative cell lines. CPIC treatment also reduced the anchorage-independent growth of LAPC-4 prostate cancer cells. CPIC functioned as a pure antagonist by inhibiting the expression of AR-regulated genes in LAPC-4 cells that express wild-type AR and exhibited weak agonist activity in LNCaP cells that express the mutant AR-T877A. CPIC treatment did not reduce AR levels or alter its nuclear localization. We used chromatin immunoprecipitation to identify the site of action of CPIC. CPIC inhibited recruitment of androgen-bound AR to the PSA promoter and enhancer sites to a greater extent than bicalutamide. CPIC is a new therapeutic inhibitor that targets AR-mediated gene activation with potential to arrest the growth of prostate cancer.

  20. Expression of androgen receptor target genes in skeletal muscle

    Institute of Scientific and Technical Information of China (English)

    Kesha Rana; Nicole KL Lee; Jeffrey D Zajac; Helen E MacLean

    2014-01-01

    We aimed to determine the mechanisms of the anabolic actions of androgens in skeletal muscle by investigating potential androgen receptor(AR)‑regulated genes ininvitroandinvivomodels. The expression of the myogenic regulatory factormyogenin was signiifcantly decreased in skeletal muscle from testosterone‑treated orchidectomized male mice compared to control orchidectomized males, and was increased in muscle from male AR knockout mice that lacked DNA binding activity(ARΔZF2) versus wildtype mice, demonstrating thatmyogenin is repressed by the androgen/AR pathway. The ubiquitin ligaseFbxo32 was repressed by 12h dihydrotestosterone treatment in human skeletal muscle cell myoblasts, andc‑Myc expression was decreased in testosterone‑treated orchidectomized male muscle compared to control orchidectomized male muscle, and increased in AR∆ZF2 muscle. The expression of a group of genes that regulate the transition from myoblast proliferation to differentiation, Tceal7, p57Kip2, Igf2 andcalcineurin Aa, was increased in AR∆ZF2 muscle, and the expression of all butp57Kip2was also decreased in testosterone‑treated orchidectomized male muscle compared to control orchidectomized male muscle. We conclude that in males, androgens act via the AR in part to promote peak muscle mass by maintaining myoblasts in the proliferative state and delaying the transition to differentiation during muscle growth and development, and by suppressing ubiquitin ligase‑mediated atrophy pathways to preserve muscle mass in adult muscle.

  1. Expression of androgen receptor target genes in skeletal muscle

    Directory of Open Access Journals (Sweden)

    Kesha Rana

    2014-10-01

    Full Text Available We aimed to determine the mechanisms of the anabolic actions of androgens in skeletal muscle by investigating potential androgen receptor (AR-regulated genes in in vitro and in vivo models. The expression of the myogenic regulatory factor myogenin was significantly decreased in skeletal muscle from testosterone-treated orchidectomized male mice compared to control orchidectomized males, and was increased in muscle from male AR knockout mice that lacked DNA binding activity (ARΔZF2 versus wildtype mice, demonstrating that myogenin is repressed by the androgen/AR pathway. The ubiquitin ligase Fbxo32 was repressed by 12 h dihydrotestosterone treatment in human skeletal muscle cell myoblasts, and c-Myc expression was decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle, and increased in AR∆ZF2 muscle. The expression of a group of genes that regulate the transition from myoblast proliferation to differentiation, Tceal7 , p57 Kip2, Igf2 and calcineurin Aa, was increased in AR∆ZF2 muscle, and the expression of all but p57 Kip2 was also decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle. We conclude that in males, androgens act via the AR in part to promote peak muscle mass by maintaining myoblasts in the proliferative state and delaying the transition to differentiation during muscle growth and development, and by suppressing ubiquitin ligase-mediated atrophy pathways to preserve muscle mass in adult muscle.

  2. The Androgen Receptor Gene Mutations Database.

    Science.gov (United States)

    Gottlieb, B; Lehvaslaiho, H; Beitel, L K; Lumbroso, R; Pinsky, L; Trifiro, M

    1998-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. The total number of reported mutations has risen from 272 to 309 in the past year. We have expanded the database: (i) by giving each entry an accession number; (ii) by adding information on the length of polymorphic polyglutamine (polyGln) and polyglycine (polyGly) tracts in exon 1; (iii) by adding information on large gene deletions; (iv) by providing a direct link with a completely searchable database (courtesy EMBL-European Bioinformatics Institute). The addition of the exon 1 polymorphisms is discussed in light of their possible relevance as markers for predisposition to prostate or breast cancer. The database is also available on the internet (http://www.mcgill. ca/androgendb/ ), from EMBL-European Bioinformatics Institute (ftp. ebi.ac.uk/pub/databases/androgen ), or as a Macintosh FilemakerPro or Word file (MC33@musica.mcgill.ca).

  3. Androgen receptor gene polymorphism in zebra species

    Directory of Open Access Journals (Sweden)

    Hideyuki Ito

    2015-09-01

    Full Text Available Androgen receptor genes (AR have been found to have associations with reproductive development, behavioral traits, and disorders in humans. However, the influence of similar genetic effects on the behavior of other animals is scarce. We examined the loci AR glutamine repeat (ARQ in 44 Grevy's zebras, 23 plains zebras, and three mountain zebras, and compared them with those of domesticated horses. We observed polymorphism among zebra species and between zebra and horse. As androgens such as testosterone influence aggressiveness, AR polymorphism among equid species may be associated with differences in levels of aggression and tameness. Our findings indicate that it would be useful to conduct further studies focusing on the potential association between AR and personality traits, and to understand domestication of equid species.

  4. Identification of novel androgen receptor target genes in prostate cancer

    Directory of Open Access Journals (Sweden)

    Gerald William L

    2007-06-01

    Full Text Available Abstract Background The androgen receptor (AR plays critical roles in both androgen-dependent and castrate-resistant prostate cancer (PCa. However, little is known about AR target genes that mediate the receptor's roles in disease progression. Results Using Chromatin Immunoprecipitation (ChIP Display, we discovered 19 novel loci occupied by the AR in castrate resistant C4-2B PCa cells. Only four of the 19 AR-occupied regions were within 10-kb 5'-flanking regulatory sequences. Three were located up to 4-kb 3' of the nearest gene, eight were intragenic and four were in gene deserts. Whereas the AR occupied the same loci in C4-2B (castrate resistant and LNCaP (androgen-dependent PCa cells, differences between the two cell lines were observed in the response of nearby genes to androgens. Among the genes strongly stimulated by DHT in C4-2B cells – D-dopachrome tautomerase (DDT, Protein kinase C delta (PRKCD, Glutathione S- transferase theta 2 (GSTT2, Transient receptor potential cation channel subfamily V member 3 (TRPV3, and Pyrroline-5-carboxylate reductase 1 (PYCR1 – most were less strongly or hardly stimulated in LNCaP cells. Another AR target gene, ornithine aminotransferase (OAT, was AR-stimulated in a ligand-independent manner, since it was repressed by AR siRNA knockdown, but not stimulated by DHT. We also present evidence for in vivo AR-mediated regulation of several genes identified by ChIP Display. For example, PRKCD and PYCR1, which may contribute to PCa cell growth and survival, are expressed in PCa biopsies from primary tumors before and after ablation and in metastatic lesions in a manner consistent with AR-mediated stimulation. Conclusion AR genomic occupancy is similar between LNCaP and C4-2B cells and is not biased towards 5' gene flanking sequences. The AR transcriptionally regulates less than half the genes nearby AR-occupied regions, usually but not always, in a ligand-dependent manner. Most are stimulated and a few are

  5. Fenofibrate down-regulates the expressions of androgen receptor (AR) and AR target genes and induces oxidative stress in the prostate cancer cell line LNCaP

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Hu; Zhu, Chen; Qin, Chao [State Key Laboratory of Reproductive Medicine, Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing (China); Tao, Tao [Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing (China); Li, Jie; Cheng, Gong; Li, Pu; Cao, Qiang; Meng, Xiaoxin; Ju, Xiaobing; Shao, Pengfei; Hua, Lixin [State Key Laboratory of Reproductive Medicine, Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing (China); Gu, Min, E-mail: medzhao1980@163.com [State Key Laboratory of Reproductive Medicine, Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing (China); Yin, Changjun, E-mail: drcjyin@gmail.com [State Key Laboratory of Reproductive Medicine, Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing (China)

    2013-03-08

    Highlights: ► Fenofibrate induces cell cycle arrest in G1 phase and apoptosis in LNCaP cells. ► Fenofibrate reduces the expressions of androgen receptor in LNCaP cells. ► Fenofibrate induces oxidative stress in the prostate cancer cell line LNCaP. -- Abstract: Fenofibrate, a peroxisome proliferator-androgen receptor-alpha agonist, is widely used in treating different forms of hyperlipidemia and hypercholesterolemia. Recent reports have indicated that fenofibrate exerts anti-proliferative and pro-apoptotic properties. This study aims to investigate the effects of fenofibrate on the prostate cancer (PCa) cell line LNCaP. The effects of fenofibrate on LNCaP cells were evaluated by flow cytometry, reverse transcription-polymerase chain reaction, enzyme-linked immunosorbent assays, Western blot analysis, and dual-luciferase reporter assay. Fenofibrate induces cell cycle arrest in G1 phase and apoptosis in LNCaP cells, reduces the expressions of androgen receptor (AR) and AR target genes (prostate-specific antigen and TMPRSS2), and inhibits Akt phosphorylation. Fenofibrate can induce the accumulation of intracellular reactive oxygen species and malondialdehyde, and decrease the activities of total anti-oxidant and superoxide dismutase in LNCaP cells. Fenofibrate exerts an anti-proliferative property by inhibiting the expression of AR and induces apoptosis by causing oxidative stress. Therefore, our data suggest fenofibrate may have beneficial effects in fenofibrate users by preventing prostate cancer growth through inhibition of androgen activation and expression.

  6. Fenofibrate down-regulates the expressions of androgen receptor (AR) and AR target genes and induces oxidative stress in the prostate cancer cell line LNCaP

    International Nuclear Information System (INIS)

    Highlights: ► Fenofibrate induces cell cycle arrest in G1 phase and apoptosis in LNCaP cells. ► Fenofibrate reduces the expressions of androgen receptor in LNCaP cells. ► Fenofibrate induces oxidative stress in the prostate cancer cell line LNCaP. -- Abstract: Fenofibrate, a peroxisome proliferator-androgen receptor-alpha agonist, is widely used in treating different forms of hyperlipidemia and hypercholesterolemia. Recent reports have indicated that fenofibrate exerts anti-proliferative and pro-apoptotic properties. This study aims to investigate the effects of fenofibrate on the prostate cancer (PCa) cell line LNCaP. The effects of fenofibrate on LNCaP cells were evaluated by flow cytometry, reverse transcription-polymerase chain reaction, enzyme-linked immunosorbent assays, Western blot analysis, and dual-luciferase reporter assay. Fenofibrate induces cell cycle arrest in G1 phase and apoptosis in LNCaP cells, reduces the expressions of androgen receptor (AR) and AR target genes (prostate-specific antigen and TMPRSS2), and inhibits Akt phosphorylation. Fenofibrate can induce the accumulation of intracellular reactive oxygen species and malondialdehyde, and decrease the activities of total anti-oxidant and superoxide dismutase in LNCaP cells. Fenofibrate exerts an anti-proliferative property by inhibiting the expression of AR and induces apoptosis by causing oxidative stress. Therefore, our data suggest fenofibrate may have beneficial effects in fenofibrate users by preventing prostate cancer growth through inhibition of androgen activation and expression

  7. Expression of Androgen Receptor Is Negatively Regulated By p53

    Directory of Open Access Journals (Sweden)

    Fatouma Alimirah

    2007-12-01

    Full Text Available Increased expression of androgen receptor (AR in prostate cancer (PC is associated with transition to androgen independence. Because the progression of PC to advanced stages is often associated with the loss of p53 function, we tested whether the p53 could regulate the expression of AR gene. Here we report that p53 negatively regulates the expression of AR in prostate epithelial cells (PrECs. We found that in LNCaP human prostate cancer cells that express the wild-type p53 and AR and in human normal PrECs, the activation of p53 by genotoxic stress or by inhibition of p53 nuclear export downregulated the expression of AR. Furthermore, forced expression of p53 in LNCaP cells decreased the expression of AR. Conversely, knockdown of p53 expression in LNCaP cells increased the AR expression. Consistent with the negative regulation of AR expression by p53, the p53-null HCT116 cells expressed higher levels of AR compared with the isogenic HCT116 cells that express the wildtype p53. Moreover, we noted that in etoposide treated LNCaP cells p53 bound to the promoter region of the AR gene, which contains a potential p53 DNA-binding consensus sequence, in chromatin immunoprecipitation assays. Together, our observations provide support for the idea that the loss of p53 function in prostate cancer cells contributes to increased expression of AR.

  8. Androgen receptor gene mutations in 46, XY females

    Directory of Open Access Journals (Sweden)

    Mir Davood Omrani

    2006-12-01

    Full Text Available The androgen insensitivity syndrome is a heterogeneous disorder with a wide spectrum of phenotypic abnormalities, ranging from complete female to ambiguous forms that more closely resemble males. The primary abnormality is a defective androgen receptor protein due to a mutation of the androgen receptor gene. This prevents normal androgen action and thus leads to impaired virilization. A point mutation of the androgen receptor gene affecting two siblings with complete androgen insensitivity syndrome is described. On examination they both had normal external female genitalia. Genomic DNA was extracted from EDTA-preserved blood samples and isolated according to standard procedures. The androgen receptor gene was screened for mutations using an automated sequence analyzer (ABI Prism 310. Both girls possess one substitutions (G>A at position 2086 in exon 4, leading to D695N mutation. Mother was found to be a heterozygous carrier for this mutation. GTG banded karyotype of the girls showed they both have male karyotype (46, XY. In addition, the SRY gene screening showed they both have intact SRY gene. The labioscrotal folds contained palpable gonads measuring 1.5 cm in largest diameter. Ultrasound examination of the pelvis revealed absence of the uterus. Serum follicle stimulating hormone (FSH, luteinizing hormone (LH, and testosterone values were higher than normal range. To our knowledge this is the first confirmed instance of AIS due to an AR mutation occurring in familial cases in this country. Furthermore, the phenotype has complete association with this mutation. KEY WORDS: Androgen insensitivity syndrome, androgen receptor

  9. Regulation of androgen action during establishment of pregnancy.

    Science.gov (United States)

    Gibson, Douglas A; Simitsidellis, Ioannis; Saunders, Philippa T K

    2016-07-01

    During the establishment of pregnancy, the ovarian-derived hormones progesterone and oestradiol regulate remodelling of the endometrium to promote an environment that is able to support and maintain a successful pregnancy. Decidualisation is characterised by differentiation of endometrial stromal cells that secrete growth factors and cytokines that regulate vascular remodelling and immune cell influx. This differentiation process is critical for reproduction, and inadequate decidualisation is implicated in the aetiology of pregnancy disorders such as foetal growth restriction and preeclampsia. In contrast to progesterone and oestradiol, the role of androgens in regulating endometrial function is poorly understood. Androgen receptors are expressed in the endometrium, and androgens are reported to regulate both the transcriptome and the secretome of endometrial stromal cells. In androgen-target tissues, circulating precursors are activated to mediate local effects, and recent studies report that steroid concentrations detected in endometrial tissue are distinct to those detected in the peripheral circulation. New evidence suggests that decidualisation results in dynamic changes in the expression of androgen biosynthetic enzymes, highlighting a role for pre-receptor regulation of androgen action during the establishment of pregnancy. These results suggest that such enzymes could be future therapeutic targets for the treatment of infertility associated with endometrial dysfunction. In conclusion, these data support the hypothesis that androgens play a beneficial role in regulating the establishment and maintenance of pregnancy. Future studies should be focussed on investigating the safety and efficacy of androgen supplementation with the potential for utilisation of novel therapeutics, such as selective androgen receptor modulators, to improve reproductive outcomes in women.

  10. Gene expression profile of androgen modulated genes in the murine fetal developing lung

    Directory of Open Access Journals (Sweden)

    Côté Mélissa

    2010-01-01

    Full Text Available Abstract Background Accumulating evidences suggest that sex affects lung development. Indeed, a higher incidence of respiratory distress syndrome is observed in male compared to female preterm neonates at comparable developmental stage and experimental studies demonstrated an androgen-related delay in male lung maturation. However, the precise mechanisms underlying these deleterious effects of androgens in lung maturation are only partially understood. Methods To build up a better understanding of the effect of androgens on lung development, we analyzed by microarrays the expression of genes showing a sexual difference and those modulated by androgens. Lungs of murine fetuses resulting from a timely mating window of 1 hour were studied at gestational day 17 (GD17 and GD18, corresponding to the period of surge of surfactant production. Using injections of the antiandrogen flutamide to pregnant mice, we hunted for genes in fetal lungs which are transcriptionally modulated by androgens. Results Results revealed that 1844 genes were expressed with a sexual difference at GD17 and 833 at GD18. Many genes were significantly modulated by flutamide: 1597 at GD17 and 1775 at GD18. Datasets were analyzed by using in silico tools for reconstruction of cellular pathways. Between GD17 and GD18, male lungs showed an intensive transcriptional activity of proliferative pathways along with the onset of lung differentiation. Among the genes showing a sex difference or an antiandrogen modulation of their expression, we specifically identified androgen receptor interacting genes, surfactant related genes in particularly those involved in the pathway leading to phospholipid synthesis, and several genes of lung development regulator pathways. Among these latter, some genes related to Shh, FGF, TGF-beta, BMP, and Wnt signaling are modulated by sex and/or antiandrogen treatment. Conclusion Our results show clearly that there is a real delay in lung maturation between

  11. SUMOylation modulates the transcriptional activity of androgen receptor in a target gene and pathway selective manner.

    Science.gov (United States)

    Sutinen, Päivi; Malinen, Marjo; Heikkinen, Sami; Palvimo, Jorma J

    2014-07-01

    Androgen receptor (AR) plays an important regulatory role in prostate cancer. AR's transcriptional activity is regulated by androgenic ligands, but also by post-translational modifications, such as SUMOylation. To study the role of AR SUMOylation in genuine chromatin environment, we compared androgen-regulated gene expression and AR chromatin occupancy in PC-3 prostate cancer cell lines stably expressing wild-type (wt) or doubly SUMOylation site-mutated AR (AR-K386R,K520R). Our genome-wide gene expression analyses reveal that the SUMOylation modulates the AR function in a target gene and pathway selective manner. The transcripts that are differentially regulated by androgen and SUMOylation are linked to cellular movement, cell death, cellular proliferation, cellular development and cell cycle. Fittingly, SUMOylation mutant AR cells proliferate faster and are more sensitive to apoptosis. Moreover, ChIP-seq analyses show that the SUMOylation can modulate the chromatin occupancy of AR on many loci in a fashion that parallels their differential androgen-regulated expression. De novo motif analyses reveal that FOXA1, C/EBP and AP-1 motifs are differentially enriched at the wtAR- and the AR-K386R,K520R-preferred genomic binding positions. Taken together, our data indicate that SUMOylation does not simply repress the AR activity, but it regulates AR's interaction with the chromatin and the receptor's target gene selection.

  12. SIRT1 IS REQUIRED FOR ANTAGONIST-INDUCED TRANSCRIPTIONAL REPRESSION OF ANDROGEN-RESPONSIVE GENES BY THE ANDROGEN RECEPTOR

    OpenAIRE

    Dai, Yan; Ngo, Duyen; Forman, Lora W.; Qin, David C.; Jacob, Johanna; Faller, Douglas V

    2007-01-01

    Androgen antagonists or androgen deprivation is a primary therapeutic modality for the treatment of prostate cancer. Invariably, however, the disease becomes progressive and unresponsive to androgen ablation therapy (hormone refractory). The molecular mechanisms by which the androgen antagonists inhibit prostate cancer proliferation are not fully defined. In this report, we demonstrate that SIRT1, a nicotinamide adenosine dinucleotide-dependent histone deacetylase linked to the regulation of ...

  13. Androgen receptor gene mutation, rearrangement, polymorphism.

    Science.gov (United States)

    Eisermann, Kurtis; Wang, Dan; Jing, Yifeng; Pascal, Laura E; Wang, Zhou

    2013-09-01

    Genetic aberrations of the androgen receptor (AR) caused by mutations, rearrangements, and polymorphisms result in a mutant receptor that has varied functions compared to wild type AR. To date, over 1,000 mutations have been reported in the AR with most of these being associated with androgen insensitivity syndrome (AIS). While mutations of AR associated with prostate cancer occur less often in early stage localized disease, mutations in castration-resistant prostate cancer (CRPC) patients treated with anti-androgens occur more frequently with 10-30% of these patients having some form of mutation in the AR. Resistance to anti-androgen therapy usually results from gain-of-function mutations in the LBD such as is seen with bicalutamide and more recently with enzalutamide (MDV3100). Thus, it is crucial to investigate these new AR mutations arising from drug resistance to anti-androgens and other small molecule pharmacological agents.

  14. LEF1 in androgen-independent prostate cancer: regulation of androgen receptor expression, prostate cancer growth and invasion

    OpenAIRE

    Li, Yirong; Wang, Longgui; Zhang, Miao; Melamed, Jonathan; Liu, Xiaomei; Reiter, Robert; Wei, Jianjun; Peng, Yi; Zou, Xuanyi; Pellicer, Angel; Garabedian, Michael J.; Ferrari, Anna; Lee, Peng

    2009-01-01

    A major obstacle in treating prostate cancer is the development of androgen-independent disease. In this study, we examined LEF1 expression in androgen-independent cancer as well as its regulation of androgen receptor (AR) expression, prostate cancer growth and invasion in androgen-independent prostate cancer cells. Affymetrix microarray analysis of LNCaP and LNCaP-AI (androgen-independent variant LNCaP) cells revealed 100-fold increases in LEF1 expression in LNCaP-AI cells. We showed that LE...

  15. Wnt Inhibitory Factor 1 (Wif1) Is Regulated by Androgens and Enhances Androgen-Dependent Prostate Development

    OpenAIRE

    Keil, Kimberly P.; Mehta, Vatsal; Branam, Amanda M.; Abler, Lisa L.; Buresh-Stiemke, Rita A.; Joshi, Pinak S.; Schmitz, Christopher T.; Marker, Paul C.; Vezina, Chad M.

    2012-01-01

    Fetal prostate development from urogenital sinus (UGS) epithelium requires androgen receptor (AR) activation in UGS mesenchyme (UGM). Despite growing awareness of sexually dimorphic gene expression in the UGS, we are still limited in our knowledge of androgen-responsive genes in UGM that initiate prostate ductal development. We found that WNT inhibitory factor 1 (Wif1) mRNA is more abundant in male vs. female mouse UGM in which its expression temporally and spatially overlaps androgen-respons...

  16. Androgenic regulation of hedgehog signaling pathway components in prostate cancer cells

    OpenAIRE

    Chen, Mengqian; Tanner, Matthew; Levine, Alice C.; Levina, Elina; Ohouo, Patrice; Buttyan, Ralph

    2009-01-01

    Hedgehog signaling is thought to play a role in several human cancers including prostate cancer. Although prostate cancer cells express many of the gene products involved in hedgehog signaling, these cells are refractory to the canonical signaling effects of exogenous hedgehog ligands or to activated Smoothened, the hedgehog-regulated mediator of Gli transcriptional activation. Here, we show that the expression of hedgehog ligands and some hedgehog target genes are regulated by androgen in th...

  17. Androgen-Responsive MicroRNAs in Mouse Sertoli Cells

    OpenAIRE

    Subbarayalu Panneerdoss; Yao-Fu Chang; Kalyan C Buddavarapu; Hung-I Harry Chen; Gunapala Shetty; Huizhen Wang; Yidong Chen; T Rajendra Kumar; Rao, Manjeet K.

    2012-01-01

    Although decades of research have established that androgen is essential for spermatogenesis, androgen's mechanism of action remains elusive. This is in part because only a few androgen-responsive genes have been definitively identified in the testis. Here, we propose that microRNAs – small, non-coding RNAs – are one class of androgen-regulated trans-acting factors in the testis. Specifically, by using androgen suppression and androgen replacement in mice, we show that androgen regulates the ...

  18. REST mediates androgen receptor actions on gene repression and predicts early recurrence of prostate cancer

    DEFF Research Database (Denmark)

    Svensson, Charlotte; Ceder, Jens; Iglesias Gato, Diego;

    2014-01-01

    The androgen receptor (AR) is a key regulator of prostate tumorgenesis through actions that are not fully understood. We identified the repressor element (RE)-1 silencing transcription factor (REST) as a mediator of AR actions on gene repression. Chromatin immunoprecipitation showed that AR binds...

  19. Androgen insensitivity syndrome: do trinucleotide repeats in androgen receptor gene have any role?

    Institute of Scientific and Technical Information of China (English)

    Singh Rajender; Nalini J. Gupta; Baidyanath Chakravarty; Lalji Singh; Kumarasamy Thangaraj

    2008-01-01

    Aim: To investigate the role of CAG and GGN repeats as genetic background affecting androgen insensitivity syn- drome (AIS) phenotype. Methods: We analyzed lengths of androgen receptor (AR)-CAG and GGN repeats in 69 AIS cases, along with 136 unrelated normal male individuals. The lengths of repeats were analyzed using polymerase chain reaction (PCR) amplification followed by allelic genotyping to determine allele length. Results: Our study revealed significantly shorter mean lengths of CAG repeats in patients (mean 18.25 repeats, range 14-26 repeats) in comparison to the controls (mean 22.57 repeats, range 12-39 repeats) (two-tailed P < 0.0001). GGN repeats, however, did not differ significantly between patients (mean 21.48 repeats) and controls (mean 21.21 repeats) (two- tailed P = 0.474). Among patients' groups, the mean number of CAG repeats in partial androgen insensitivity cases (mean 15.83 repeats) was significantly less than in complete androgen insensitivity cases (mean 19.46 repeats) (two- tailed P < 0.0001). Conclusion: The findings suggest that shorter lengths of repeats in the AR gene might act as low penetrance genetic background in varying manifestation of androgen insensitivity. (Asian J Androl 2008 Jul; 10: 616-624)

  20. A mutation in the DNA-binding domain of the androgen receptor gene causes complete testicular feminization in a patient with receptor-positive androgen resistance.

    OpenAIRE

    M. Marcelli; Zoppi, S; Grino, P B; Griffin, J E; Wilson, J. D.; McPhaul, M J

    1991-01-01

    Androgen resistance is associated with a wide range of quantitative and qualitative defects in the androgen receptor. However, fibroblast cultures from approximately 10% of patients with the clinical, endocrine, and genetic features characteristic of androgen resistance express normal quantities of apparently normal androgen receptor in cultured genital skin fibroblasts (receptor-positive androgen resistance). We have analyzed the androgen receptor gene of one patient (P321) with receptor-pos...

  1. Androgens regulate Hedgehog signalling and proliferation in androgen-dependent prostate cells.

    Science.gov (United States)

    Sirab, Nanor; Terry, Stéphane; Giton, Frank; Caradec, Josselin; Chimingqi, Mihelaiti; Moutereau, Stéphane; Vacherot, Francis; de la Taille, Alexandre; Kouyoumdjian, Jean-Claude; Loric, Sylvain

    2012-09-15

    Prostate cancer (PCa) is androgen sensitive in its development and progression to metastatic disease. Hedgehog (Hh) pathway activation is important in the initiation and growth of various carcinomas including PCa. We and others have observed aberrations of Hh pathway during the progression of PCa to the castration-resistant state. The involvement of androgen signalling in Hh pathway activation, however, remains largely elusive. Here we investigate the direct role of androgen signalling on Hh pathway. We examined the effect of Dihydrosterone (DHT), antiandrogen, bicalutamide, and Hh pathway inhibitor, KAAD-cyclopamine in four human prostate cell lines (two cancerous: LNCaP, VCaP, and two normal: PNT2 and PNT2-ARm which harbours a mutant version of androgen receptor (AR) that is commonly found in LNCaP). Cell proliferation as well as Hh pathway members (SHH, IHH, DHH, GLI, PTCH) mRNA expression levels were assessed. We showed that KAAD-cyclopamine decreased cell proliferation of DHT-stimulated LNCaP, VCaP and PNT2-ARm cells. SHH expression was found to be downregulated by DHT in all AR posititve cells. The negative effect of DHT on SHH expression was counteracted when cells were treated by bicalutamide. Importantly, KAAD-cyclopamine treatment seemed to inhibit AR activity. Moreover, bicalutamide as well as KAAD-cyclopamine treatments induced GLI and PTCH expression in VCaP and PNT2-ARm. Our results suggest that Hh pathway activity can be regulated by androgen signalling. Specifically, we show that the DHT-induced inhibition of Hh pathway is AR dependent. The mutual interaction between these two pathways might be important in the regulation of cell proliferation in PCa.

  2. Expression of novel genes linked to the androgen-induced, proliferative shutoff in prostate cancer cells.

    Science.gov (United States)

    Geck, P; Szelei, J; Jimenez, J; Lin, T M; Sonnenschein, C; Soto, A M

    1997-01-01

    Androgens control cell numbers in the prostate through three separate pathways: (a) inhibition of cell death, (b) induction of cell proliferation (Step-1) and (c) inhibition of cell proliferation (Step-2, proliferative shutoff). The mechanisms underlying these phenomena are incompletely understood. The human prostate carcinoma LNCaP variants express these pathways as follows: LNCaP-FGC express both steps, LNCaP-LNO expresses Step-2, LNCaP-TAC expresses Step-1, and LNCaP-TJA cells express neither step. These cells facilitated the search for mediators of the androgen-induced proliferative shutoff pathway. Androgen exposure for 24 h or longer induced an irreversible proliferative shutoff in LNCaP-FGC cells. The Wang and Brown approach for identifying differentially expressed mRNAs was used to search for mediators of Step-2. Ten unique inserts were identified and from those ten, three genes were further studied. The basal expression of these genes in shutoff-negative variants was not affected by androgen exposure. They were induced by androgens in shutoff-positive LNCaP variants and the androgen receptor-transfected, shutoff-positive, MCF7-AR1 cells. These genes were induced only in the range of androgen concentrations that elicited the shutoff response. Time course analysis showed that their induction precedes the commitment point by 12-18 h. In addition, they were expressed in the normal prostate during proliferative shutoff. These features suggest that the candidate genes have a role in the regulation cascade for proliferative shutoff.

  3. Androgens.

    Science.gov (United States)

    Iyer, Rakesh; Handelsman, David J

    2016-01-01

    Androgen abuse is the most potent and prevalent form of sports doping detected. It originated from the early years of the Cold War as an epidemic confined to drug cheating within elite power sports. In the decades following the end of the Cold War, it has become disseminated into an endemic based within the illicit drug subcultures serving recreational abusers seeking cosmetic body sculpting effects. Within sports, both direct androgen abuse (administration of androgens), as well as indirect androgen abuse (administration of nonandrogenic drugs to increase endogenous testosterone), is mostly readily detectable with mass spectrometry-based anti-doping urine tests. The ongoing temptation of fame and fortune and the effectiveness of androgen abuse in power sports continue to entice cheating via renewed approaches aiming to exploit androgens. These require ongoing vigilance, inventiveness in anti-doping science, and targeting coaches as well as athletes in order to build resilience against doping and maintain fairness in elite sport. The challenge of androgen abuse in the community among recreational abusers has barely been recognized and effective approaches remain to be developed. PMID:27347677

  4. Castration induces up-regulation of intratumoral androgen biosynthesis and androgen receptor expression in an orthotopic VCaP human prostate cancer xenograft model.

    Science.gov (United States)

    Knuuttila, Matias; Yatkin, Emrah; Kallio, Jenny; Savolainen, Saija; Laajala, Teemu D; Aittokallio, Tero; Oksala, Riikka; Häkkinen, Merja; Keski-Rahkonen, Pekka; Auriola, Seppo; Poutanen, Matti; Mäkelä, Sari

    2014-08-01

    Androgens are key factors involved in the development and progression of prostate cancer (PCa), and PCa growth can be suppressed by androgen deprivation therapy. In a considerable proportion of men receiving androgen deprivation therapy, however, PCa progresses to castration-resistant PCa (CRPC), making the development of efficient therapies challenging. We used an orthotopic VCaP human PCa xenograft model to study cellular and molecular changes in tumors after androgen deprivation therapy (castration). Tumor growth was monitored through weekly serum prostate-specific antigen measurements, and mice with recurrent tumors after castration were randomized to treatment groups. Serum prostate-specific antigen concentrations showed significant correlation with tumor volume. Castration-resistant tumors retained concentrations of intratumoral androgen (androstenedione, testosterone, and 5α-dihydrotestosterone) at levels similar to tumors growing in intact hosts. Accordingly, castration induced up-regulation of enzymes involved in androgen synthesis (CYP17A1, AKR1C3, and HSD17B6), as well as expression of full-length androgen receptor (AR) and AR splice variants (AR-V1 and AR-V7). Furthermore, AR target gene expression was maintained in castration-resistant xenografts. The AR antagonists enzalutamide (MDV3100) and ARN-509 suppressed PSA production of castration-resistant tumors, confirming the androgen dependency of these tumors. Taken together, the findings demonstrate that our VCaP xenograft model exhibits the key characteristics of clinical CRPC and thus provides a valuable tool for identifying druggable targets and for testing therapeutic strategies targeting AR signaling in CRPC.

  5. The PPARγ ligand ciglitazone regulates androgen receptor activation differently in androgen-dependent versus androgen-independent human prostate cancer cells

    International Nuclear Information System (INIS)

    The androgen receptor (AR) regulates growth and progression of androgen-dependent as well as androgen-independent prostate cancer cells. Peroxisome proliferator-activated receptor gamma (PPARγ) agonists have been reported to reduce AR activation in androgen-dependent LNCaP prostate cancer cells. To determine whether PPARγ ligands are equally effective at inhibiting AR activity in androgen-independent prostate cancer, we examined the effect of the PPARγ ligands ciglitazone and rosiglitazone on C4-2 cells, an androgen- independent derivative of the LNCaP cell line. Luciferase-based reporter assays and Western blot analysis demonstrated that PPARγ ligand reduced dihydrotestosterone (DHT)-induced increases in AR activity in LNCaP cells. However, in C4-2 cells, these compounds increased DHT-induced AR driven luciferase activity. In addition, ciglitazone did not significantly alter DHT-mediated increases in prostate specific antigen (PSA) protein or mRNA levels within C4-2 cells. siRNA-based experiments demonstrated that the ciglitazone-induced regulation of AR activity observed in C4-2 cells was dependent on the presence of PPARγ. Furthermore, overexpression of the AR corepressor cyclin D1 inhibited the ability of ciglitazone to induce AR luciferase activity in C4-2 cells. Thus, our data suggest that both PPARγ and cyclin D1 levels influence the ability of ciglitazone to differentially regulate AR signaling in androgen-independent C4-2 prostate cancer cells.

  6. Nrf1 and Nrf2 transcription factors regulate androgen receptor transactivation in prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Michelle A Schultz

    Full Text Available Despite androgen deprivation therapy (ADT, persistent androgen receptor (AR signaling enables outgrowth of castration resistant prostate cancer (CRPC. In prostate cancer (PCa cells, ADT may enhance AR activity through induction of oxidative stress. Herein, we investigated the roles of Nrf1 and Nrf2, transcription factors that regulate antioxidant gene expression, on hormone-mediated AR transactivation using a syngeneic in vitro model of androgen dependent (LNCaP and castration resistant (C4-2B PCa cells. Dihydrotestosterone (DHT stimulated transactivation of the androgen response element (ARE was significantly greater in C4-2B cells than in LNCaP cells. DHT-induced AR transactivation was coupled with higher nuclear translocation of p65-Nrf1 in C4-2B cells, as compared to LNCaP cells. Conversely, DHT stimulation suppressed total Nrf2 levels in C4-2B cells but elevated total Nrf2 levels in LNCaP cells. Interestingly, siRNA mediated silencing of Nrf1 attenuated AR transactivation while p65-Nrf1 overexpression enhanced AR transactivation. Subsequent studies showed that Nrf1 physically interacts with AR and enhances AR's DNA-binding activity, suggesting that the p65-Nrf1 isoform is a potential AR coactivator. In contrast, Nrf2 suppressed AR-mediated transactivation by stimulating the nuclear accumulation of the p120-Nrf1 which suppressed AR transactivation. Quantitative RT-PCR studies further validated the inductive effects of p65-Nrf1 isoform on the androgen regulated genes, PSA and TMPRSS2. Therefore, our findings implicate differential roles of Nrf1 and Nrf2 in regulating AR transactivation in PCa cells. Our findings also indicate that the DHT-stimulated increase in p65-Nrf1 and the simultaneous suppression of both Nrf2 and p120-Nrf1 ultimately facilitates AR transactivation in CRPC cells.

  7. Up-Regulation of Hepatic Alpha-2-HS-Glycoprotein Transcription by Testosterone via Androgen Receptor Activation

    Directory of Open Access Journals (Sweden)

    Jakob Voelkl

    2014-06-01

    Full Text Available Background/Aims: Fetuin-A (alpha-2-HS-glycoprotein, AHSG, a liver borne plasma protein, contributes to the prevention of soft tissue calcification, modulates inflammation, reduces insulin sensitivity and fosters weight gain following high fat diet or ageing. In polycystic ovary syndrome, fetuin-A levels correlate with free androgen levels, an observation pointing to androgen sensitivity of fetuin-A expression. The present study thus explored whether the expression of hepatic fetuin-A is modified by testosterone. Methods: HepG2 cells were treated with testosterone and androgen receptor antagonist flutamide, and were silenced with androgen receptor siRNA. To test the in vivo relevance, male mice were subjected to androgen deprivation therapy (ADT for 7 weeks. AHSG mRNA levels were determined by quantitative RT-PCR and fetuin-A protein abundance by Western blotting. Results: In HepG2 cells, AHSG mRNA expression and fetuin-A protein abundance were both up-regulated following testosterone treatment. The human alpha-2-HS-glycoprotein gene harbors putative androgen receptor response elements in the proximal 5 kb promoter sequence relative to TSS. The effect of testosterone on AHSG mRNA levels was abrogated by silencing of the androgen receptor in HepG2 cells. Moreover, treatment of HepG2 cells with the androgen receptor antagonist flutamide in presence of endogenous ligands in the medium significantly down-regulated AHSG mRNA expression and fetuin-A protein abundance. In addition, ADT of male mice was followed by a significant decrease of hepatic Ahsg mRNA expression and fetuin-A protein levels. Conclusions: Testosterone participates in the regulation of hepatic fetuin-A expression, an effect mediated, at least partially, by androgen receptor activation.

  8. Wnt inhibitory factor 1 (Wif1) is regulated by androgens and enhances androgen-dependent prostate development.

    Science.gov (United States)

    Keil, Kimberly P; Mehta, Vatsal; Branam, Amanda M; Abler, Lisa L; Buresh-Stiemke, Rita A; Joshi, Pinak S; Schmitz, Christopher T; Marker, Paul C; Vezina, Chad M

    2012-12-01

    Fetal prostate development from urogenital sinus (UGS) epithelium requires androgen receptor (AR) activation in UGS mesenchyme (UGM). Despite growing awareness of sexually dimorphic gene expression in the UGS, we are still limited in our knowledge of androgen-responsive genes in UGM that initiate prostate ductal development. We found that WNT inhibitory factor 1 (Wif1) mRNA is more abundant in male vs. female mouse UGM in which its expression temporally and spatially overlaps androgen-responsive steroid 5α-reductase 2 (Srd5a2). Wif1 mRNA is also present in prostatic buds during their elongation and branching morphogenesis. Androgens are necessary and sufficient for Wif1 expression in mouse UGS explant mesenchyme, and testicular androgens remain necessary for normal Wif1 expression in adult mouse prostate stroma. WIF1 contributes functionally to prostatic bud formation. In the presence of androgens, exogenous WIF1 protein increases prostatic bud number and UGS basal epithelial cell proliferation without noticeably altering the pattern of WNT/β-catenin-responsive Axin2 or lymphoid enhancer binding factor 1 (Lef1) mRNA. Wif1 mutant male UGSs exhibit increased (Sfrp)2 and (Sfrp)3 expression and form the same number of prostatic buds as the wild-type control males. Collectively our results reveal Wif1 as one of the few known androgen-responsive genes in the fetal mouse UGM and support the hypothesis that androgen-dependent Wif1 expression is linked to the mechanism of androgen-induced prostatic bud formation.

  9. Prostate specific antigen gene expression in androgen insensitive prostate carcinoma subculture cell line.

    Science.gov (United States)

    Tsui, Ke-Hung; Feng, Tsui-Hsia; Chung, Li-Chuan; Chao, Chun-Hsiang; Chang, Phei-Lang; Juang, Horng-Heng

    2008-01-01

    A novel prostate cancer cell line (PC-J) was isolated from an androgen independent non-prostate specific antigen (non-PSA) producing carcinoma cell line. The homologous correlation between PC-J and PC-3 was determined by short tandem repeat analysis. The PSA promoter activity was detected by transient expression assay in the PC-J and LNCaP cells but not in androgen insensitive PC-3 cells. When the PC-J cells were cotransfected with androgen receptor, androgen receptor coactivators and PSA reporter vector cells, the reporter assays indicated that nuclear receptor coactivator 4 (NCOA4) but not androgen receptor activator 24 (ARA24) increased the sensitivity and maximum stimulation of dihydrotestosterone (DHT)-inducing PSA promoter activity. The RT-PCR assays revealed that the expression of several tumor markers, including interleukin-6, prostate stem cell antigen (PSCA), prostate epithelium-specific Ets transcription factor (PDEF) and matriptase, was lower in the PC-J cells than in the PC-3 cells. This cell model elucidated the regulation of PSA expression and enabled comparison of the gene profile at different stages of metastasis in prostatic carcinoma.

  10. Progression to metastatic stage in a cellular model of prostate cancer is associated with methylation of the androgen receptor gene and transcriptional suppression of the insulin-like growth factor-I receptor gene

    OpenAIRE

    Schayek, Hagit; Bentov, Itay; Sun, Shihua; Plymate, Stephen R; Werner, Haim

    2010-01-01

    The progression of prostate cancer from an organ-confined, androgen-sensitive disease to a metastatic one is associated with dysregulation of androgen receptor (AR)-regulated target genes and with a decrease in insulin-like growth factor-I receptor (IGF1R) expression. DNA methylation of CpG islands is an epigenetic mechanism associated with gene silencing. Recent studies have demonstrated that methylation occurs early in prostate carcinogenesis and, furthermore, may contribute to androgen ind...

  11. Changes in gene expression following androgen receptor blockade is not equivalent to androgen ablation by castration in the rat ventral prostate

    Indian Academy of Sciences (India)

    Anil M Limaye; Irfan Asangani; Thyagarajan Kalyani; Paturu Kondaiah

    2008-06-01

    Involution of the rat ventral prostate and concomitant modulation of gene expression post-castration is a well-documented phenomenon. While the rat castration model has been extensively used to study androgen regulation of gene expression in the ventral prostate, it is not clear whether all the gene expression changes post-castration are due to androgen depletion alone. To obtain insights into this, we performed differential display reverse transcriptase polymerase chain reaction (DD-RT-PCR) which resulted in the identification of castration and/or flutamide-regulated genes in the rat ventral prostate. These include clusterin, methionine adenosyl transferase II, and prostate-specific transcripts such as PBPC1BS, S100RVP and A7. While clusterin, PBPC1BS and methionine adenosyl transferase II are regulated by both castration and flutamide, S100 RVP and A7 are regulated by castration alone. Interestingly, we show that flutamide, unlike castration, does not induce apoptosis in the rat ventral prostate epithelium, which could be an underlying cause for the differential effects of castration and flutamide treatment. We propose that castration leads to enrichment and depletion of stromal and epithelial cell types, respectively, resulting in erroneous conclusions on some of the cell type-specific transcripts as being androgen regulated.

  12. A PRACTICAL APPROACH TO THE DETECTION OF ANDROGEN RECEPTOR GENE-MUTATIONS AND PEDIGREE ANALYSIS IN FAMILIES WITH X-LINKED ANDROGEN INSENSITIVITY

    NARCIS (Netherlands)

    RISSTALPERS, C; HOOGENBOEZEM, T; SLEDDENS, HFBM; VERLEUNMOOIJMAN, MCT; DEGENHART, HJ; DROP, SLS; HALLEY, DJJ; Oosterwijk, Jan; HODGINS, MB; TRAPMAN, J; BRINKMANN, AO

    1994-01-01

    Androgen insensitivity syndrome (AIS) is an X-linked disorder in which defects in the androgen receptor gene have prevented the normal development of both internal and external male structures in 46,XY individuals. This survey reports the analysis of 11 AIS subjects. The androgen receptor gene of th

  13. Hedgehog/Gli supports androgen signaling in androgen deprived and androgen independent prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Shtutman Michael

    2010-04-01

    Full Text Available Abstract Background Castration resistant prostate cancer (CRPC develops as a consequence of hormone therapies used to deplete androgens in advanced prostate cancer patients. CRPC cells are able to grow in a low androgen environment and this is associated with anomalous activity of their endogenous androgen receptor (AR despite the low systemic androgen levels in the patients. Therefore, the reactivated tumor cell androgen signaling pathway is thought to provide a target for control of CRPC. Previously, we reported that Hedgehog (Hh signaling was conditionally activated by androgen deprivation in androgen sensitive prostate cancer cells and here we studied the potential for cross-talk between Hh and androgen signaling activities in androgen deprived and androgen independent (AI prostate cancer cells. Results Treatment of a variety of androgen-deprived or AI prostate cancer cells with the Hh inhibitor, cyclopamine, resulted in dose-dependent modulation of the expression of genes that are regulated by androgen. The effect of cyclopamine on endogenous androgen-regulated gene expression in androgen deprived and AI prostate cancer cells was consistent with the suppressive effects of cyclopamine on the expression of a reporter gene (luciferase from two different androgen-dependent promoters. Similarly, reduction of smoothened (Smo expression with siRNA co-suppressed expression of androgen-inducible KLK2 and KLK3 in androgen deprived cells without affecting the expression of androgen receptor (AR mRNA or protein. Cyclopamine also prevented the outgrowth of AI cells from androgen growth-dependent parental LNCaP cells and suppressed the growth of an overt AI-LNCaP variant whereas supplemental androgen (R1881 restored growth to the AI cells in the presence of cyclopamine. Conversely, overexpression of Gli1 or Gli2 in LNCaP cells enhanced AR-specific gene expression in the absence of androgen. Overexpressed Gli1/Gli2 also enabled parental LNCaP cells to

  14. Update of the androgen receptor gene mutations database.

    Science.gov (United States)

    Gottlieb, B; Beitel, L K; Lumbroso, R; Pinsky, L; Trifiro, M

    1999-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. The total number of reported mutations has risen from 309 to 374 during the past year. We have expanded the database by adding information on AR-interacting proteins; and we have improved the database by identifying those mutation entries that have been updated. Mutations of unknown significance have now been reported in both the 5' and 3' untranslated regions of the AR gene, and in individuals who are somatic mosaics constitutionally. In addition, single nucleotide polymorphisms, including silent mutations, have been discovered in normal individuals and in individuals with male infertility. A mutation hotspot associated with prostatic cancer has been identified in exon 5. The database is available on the internet (http://www.mcgill.ca/androgendb/), from EMBL-European Bioinformatics Institute (ftp.ebi.ac.uk/pub/databases/androgen), or as a Macintosh FilemakerPro or Word file (MC33@musica.mcgill.ca).

  15. Sequence variation in the androgen receptor gene is not a common determinant of male sexual orientation.

    OpenAIRE

    Macke, J. P.; Hu, N; S. Hu; Bailey, M.; King, V L; Brown, T.; Hamer, D; Nathans, J

    1993-01-01

    To test the hypothesis that DNA sequence variation in the androgen receptor gene plays a causal role in the development of male sexual orientation, we have (1) measured the degree of concordance of androgen receptor alleles in 36 pairs of homosexual brothers, (2) compared the lengths of polyglutamine and polyglycine tracts in the amino-terminal domain of the androgen receptor in a sample of 197 homosexual males and 213 unselected subjects, and (3) screened the the entire androgen receptor cod...

  16. L712V mutation in the androgen receptor gene causes complete androgen insensitivity syndrome due to severe loss of androgen function.

    Science.gov (United States)

    Rajender, Singh; Gupta, Nalini J; Chakrabarty, Baidyanath; Singh, Lalji; Thangaraj, Kumarasamy

    2013-12-11

    Inability to respond to the circulating androgens is named as androgen insensitivity syndrome (AIS). Mutations in the androgen receptor (AR) gene are the most common cause of AIS. A cause and effect relationship between some of these mutations and the AIS phenotype has been proven by in vitro studies. Several other mutations have been identified, but need to be functionally validated for pathogenicity. Screening of the AR mutations upon presumptive diagnosis of AIS is recommended. We analyzed a case of complete androgen insensitivity syndrome (CAIS) for mutations in the AR gene. Sequencing of the entire coding region revealed C>G mutation (CTT-GTT) at codon 712 (position according to the NCBI database) in exon 4 of the gene, resulting in replacement of leucine with valine in the ligand-binding domain of the AR protein. No incidence of this mutation was observed in 230 normal male individuals analyzed for comparison. In vitro androgen binding and transactivation assays using mutant clone showed approximately 71% loss of ligand binding and about 76% loss of transactivation function. We conclude that CAIS in this individual was due to L712V substitution in the androgen receptor protein.

  17. Transcriptional regulation of myotrophic actions by testosterone and trenbolone on androgen-responsive muscle.

    Science.gov (United States)

    Ye, Fan; McCoy, Sean C; Ross, Heather H; Bernardo, Joseph A; Beharry, Adam W; Senf, Sarah M; Judge, Andrew R; Beck, Darren T; Conover, Christine F; Cannady, Darryl F; Smith, Barbara K; Yarrow, Joshua F; Borst, Stephen E

    2014-09-01

    Androgens regulate body composition and skeletal muscle mass in males, but the molecular mechanisms are not fully understood. Recently, we demonstrated that trenbolone (a potent synthetic testosterone analogue that is not a substrate for 5-alpha reductase or for aromatase) induces myotrophic effects in skeletal muscle without causing prostate enlargement, which is in contrast to the known prostate enlarging effects of testosterone. These previous results suggest that the 5α-reduction of testosterone is not required for myotrophic action. We now report differential gene expression in response to testosterone versus trenbolone in the highly androgen-sensitive levator ani/bulbocavernosus (LABC) muscle complex of the adult rat after 6weeks of orchiectomy (ORX), using real time PCR. The ORX-induced expression of atrogenes (Muscle RING-finger protein-1 [MuRF1] and atrogin-1) was suppressed by both androgens, with trenbolone producing a greater suppression of atrogin-1 mRNA compared to testosterone. Both androgens elevated expression of anabolic genes (insulin-like growth factor-1 and mechano-growth factor) after ORX. ORX-induced increases in expression of glucocorticoid receptor (GR) mRNA were suppressed by trenbolone treatment, but not testosterone. In ORX animals, testosterone promoted WNT1-inducible-signaling pathway protein 2 (WISP-2) gene expression while trenbolone did not. Testosterone and trenbolone equally enhanced muscle regeneration as shown by increases in LABC mass and in protein expression of embryonic myosin by western blotting. In addition, testosterone increased WISP-2 protein levels. Together, these findings identify specific mechanisms by which testosterone and trenbolone may regulate skeletal muscle maintenance and growth. PMID:24928725

  18. Androgen-Dependent Regulation of Human MUC1 Mucin Expression

    Directory of Open Access Journals (Sweden)

    Stephen Mitchell

    2002-01-01

    Full Text Available MUC1 mucin is transcriptionally regulated by estrogen, progesterone, and glucocorticoids. Our objective was to determine whether androgen receptor. (20AR activation regulates expression of MUC1. The following breast and prostatic cell lines were phenotyped and grouped according to AR and MUC1protein expression: 1 AR+MUCi + [DAR17+19. (20AR transfectants of DU-145, ZR-75-1, MDA-MB-453, and T47D]; 2 AR-MUCi+ [DZeoi. (20AR- vector control, DU-145, BT20, MDA-MB231, and MCF7]; 3 AIR +MUCi -. (20LNCaP and LNCaP-r. Cell proliferation was determined using the MTT assay in the presence of synthetic androgen R1881, 0.1 pM to 1 µM. Cell surface MUC1expression was determined by flow cytometry in the presence or absence of oestradiol, medroxy progesterone acetate or R1881, with and without 4 hydroxy-flutamide. (204-OH, a nonsteroidal AR antagonist. The functional significance of MUC1expression was investigated with a cell-cell aggregation assay. Only AR+ MUC1 + cell lines showed a significant increase in MUC1expression with AR activation. (20P. (20range =.01 to .0001, reversed in the presence of 4-OHF. Cell proliferation was unaffected. Increased expression of MUC1was associated with a significant. (20P. (20range =.002 to .001 reduction in cell-cell adhesion. To our knowledge, this is the first description of androgen-dependent regulation of MUC1mucin. This is also functionally associated with decreased cell-cell adhesion, a recognised feature of progressive malignancy. These findings have important implications for physiological and pathological processes.

  19. The PPAR{gamma} ligand ciglitazone regulates androgen receptor activation differently in androgen-dependent versus androgen-independent human prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Moss, Patrice E.; Lyles, Besstina E.; Stewart, LaMonica V., E-mail: lstewart@mmc.edu

    2010-12-10

    The androgen receptor (AR) regulates growth and progression of androgen-dependent as well as androgen-independent prostate cancer cells. Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) agonists have been reported to reduce AR activation in androgen-dependent LNCaP prostate cancer cells. To determine whether PPAR{gamma} ligands are equally effective at inhibiting AR activity in androgen-independent prostate cancer, we examined the effect of the PPAR{gamma} ligands ciglitazone and rosiglitazone on C4-2 cells, an androgen- independent derivative of the LNCaP cell line. Luciferase-based reporter assays and Western blot analysis demonstrated that PPAR{gamma} ligand reduced dihydrotestosterone (DHT)-induced increases in AR activity in LNCaP cells. However, in C4-2 cells, these compounds increased DHT-induced AR driven luciferase activity. In addition, ciglitazone did not significantly alter DHT-mediated increases in prostate specific antigen (PSA) protein or mRNA levels within C4-2 cells. siRNA-based experiments demonstrated that the ciglitazone-induced regulation of AR activity observed in C4-2 cells was dependent on the presence of PPAR{gamma}. Furthermore, overexpression of the AR corepressor cyclin D1 inhibited the ability of ciglitazone to induce AR luciferase activity in C4-2 cells. Thus, our data suggest that both PPAR{gamma} and cyclin D1 levels influence the ability of ciglitazone to differentially regulate AR signaling in androgen-independent C4-2 prostate cancer cells.

  20. A single nucleotide substitution introduces a premature termination codon into the androgen receptor gene of a patient with receptor-negative androgen resistance.

    OpenAIRE

    M. Marcelli; Tilley, W. D.; Wilson, C.M.; Wilson, J. D.; Griffin, J E; McPhaul, M J

    1990-01-01

    Mutations of the androgen receptor that impair the action of 5 alpha-dihydrotestosterone and testosterone result in abnormal male sexual development. The definition of the organization of the androgen receptor gene has permitted us to examine its structure in nine patients with androgen resistance that exhibit absent 5 alpha-dihydrotestosterone binding in cultured fibroblasts (receptor-negative androgen resistance). Using labeled probes specific for each individual coding exon, we find no gro...

  1. Up-regulation of Bcl-2 is required for the progression of prostate cancer cells from an androgen-dependent to an androgen-independent growth stage

    Institute of Scientific and Technical Information of China (English)

    Yuting Lin; Junichi Fukuchi; Richard A Hiipakka; John M Kokontis; Jialing Xiang

    2007-01-01

    Bcl-2 is an anti-apoptotic oncoprotein and its protein levels are inversely correlated with prognosis in many cancers.However, the role of Bcl-2 in the progression of prostate cancer is not clear. Here we report that Bcl-2 is required for the progression of LNCaP prostate cancer cells from an androgen-dependent to an androgen-independent growth stage. The mRNA and protein levels of Bcl-2 are significantly increased in androgen-independent prostate cancer cells, shRNA-mediated gene silencing of Bcl-2 in androgen-independent prostate cancer cells promotes UV-induced apoptosis and suppresses the growth of prostate tumors in vivo. Growing androgen-dependent cells under androgen-deprivation conditions results in formation of androgen-independent colonies; and the transition from androgen-dependent to androgen-independent growth is blocked by ectopic expression of the Bcl-2 antagonist Bax or Bcl-2 shRNA. Thus, our results demonstrate that Bcl-2 is not only critical for the survival of androgen-independent prostate cancer cells, but is also required for the progression of prostate cancer cells from an androgen-dependent to an androgen-independent growth stage.

  2. Lysine-Specific Demethylase 1 Has Dual Functions as a Major Regulator of Androgen Receptor Transcriptional Activity

    Directory of Open Access Journals (Sweden)

    Changmeng Cai

    2014-12-01

    Full Text Available Lysine-Specific Demethylase 1 (LSD1, KDM1A functions as a transcriptional corepressor through demethylation of histone 3 lysine 4 (H3K4 but has a coactivator function on some genes through mechanisms that are unclear. We show that LSD1, interacting with CoREST, associates with and coactivates androgen receptor (AR on a large fraction of androgen-stimulated genes. A subset of these AR/LSD1-associated enhancer sites have histone 3 threonine 6 phosphorylation (H3T6ph, and these sites are further enriched for androgen-stimulated genes. Significantly, despite its coactivator activity, LSD1 still mediates H3K4me2 demethylation at these androgen-stimulated enhancers. FOXA1 is also associated with LSD1 at AR-regulated enhancer sites, and a FOXA1 interaction with LSD1 enhances binding of both proteins at these sites. These findings show that LSD1 functions broadly as a regulator of AR function, that it maintains a transcriptional repression function at AR-regulated enhancers through H3K4 demethylation, and that it has a distinct AR-linked coactivator function mediated by demethylation of other substrates.

  3. Androgens Regulate T47D Cells Motility and Invasion through Actin Cytoskeleton Remodeling

    Science.gov (United States)

    Montt-Guevara, Maria Magdalena; Shortrede, Jorge Eduardo; Giretti, Maria Silvia; Giannini, Andrea; Mannella, Paolo; Russo, Eleonora; Genazzani, Alessandro David; Simoncini, Tommaso

    2016-01-01

    The relationship between androgens and breast cancer is controversial. Androgens have complex effects on breast cancer progression and metastasis. Moreover, androgen receptor (AR) is expressed in approximately 70 to 90% of invasive breast carcinomas, which has prognostic relevance in basal-like cancers and in triple-negative breast cancers. Recent studies have associated the actin-binding proteins of the ezrin–radixin–moesin (ERM) family with metastasis in endocrine-sensitive cancers. We studied on T47D breast cancer cells whether androgens with different characteristics, such as testosterone (T), dihydrotestosterone (DHT), and dehydroepiandrosterone (DHEA) may regulate breast cancer cell motility and invasion through the control of actin remodeling. We demonstrate that androgens promote migration and invasion in T47D via Moesin activation. We show that T and DHEA exert their actions via the AR and estrogen receptor (ER), while the non-aromatizable androgen – DHT – only recruits AR. We further report that androgen induced significant changes in actin organization with pseudopodia along with membrane ruffles formation, and this process is mediated by Moesin. Our work identifies novel mechanisms of action of androgens on breast cancer cells. Through the modulation of Moesin, androgens alter the architecture of cytoskeleton in T47D breast cancer cell and promote cell migration and invasion. These results could help to understand the biological actions of androgens on breast cancer and, eventually, to develop new strategies for breast cancer treatment. PMID:27746764

  4. Androgen receptor transcriptionally regulates μ-opioid receptor expression in rat trigeminal ganglia.

    Science.gov (United States)

    Lee, Ki Seok; Zhang, Youping; Asgar, Jamila; Auh, Q-Schick; Chung, Man-Kyo; Ro, Jin Y

    2016-09-01

    The involvement of testosterone in pain, inflammation, and analgesia has been reported, but the role of androgen receptor (AR), a steroid receptor for testosterone, is not well understood. We have previously shown that peripheral inflammation upregulates μ-opioid receptor (MOR) in rat trigeminal ganglia (TG) in a testosterone-dependent manner. In this study, we hypothesized that testosterone regulates MOR expression via transcriptional activities of AR in TG. We first examined whether AR is co-expressed with MOR in TG neurons. Our immunohistochemical experiment revealed that AR staining is detected in neurons of all sizes in TG and that a subset of AR is expressed in MOR as well as in TRPV1-positive neurons. We identified the promoter region of the rat MOR gene contains putative AR binding sites. Using chromatin immunoprecipitation assay, we demonstrated that AR directly binds to these sites in TG extracts. We confirmed with luciferase reporter assay that AR activated the MOR promoter in response to androgens in a human neuroblastoma cell line (5H-5YSY). These data demonstrated that AR functions as a transcriptional regulator of the MOR gene activity. Finally, we showed that flutamide, a specific AR antagonist, prevents complete Freund's adjuvant (CFA)-induced upregulation of MOR mRNA in TG, and that flutamide dose-dependently blocks the efficacy of DAMGO, a specific MOR agonist, on CFA-induced mechanical hypersensitivity. Our results expand the knowledge regarding the role of androgens and their receptor in pain and analgesia and have important clinical implications, particularly for inflammatory pain patients with low or compromised plasma testosterone levels. PMID:27320211

  5. Complete androgen insensitivity syndrome due to a new frameshift deletion in exon 4 of the androgen receptor gene: Functional analysis of the mutant receptor

    OpenAIRE

    Lobaccaro, J M; Lumbroso, S.; Poujol, Nicolas; Georget, V.; Brinkmann, Albert; Malpuech, Georges; Sultan, C.

    1995-01-01

    textabstractWe studied the androgen receptor gene in a large kindred with complete androgen insensitivity syndrome and negative receptor-binding activity, single-strand conformation polymorphism (SSCP) analysis and sequencing identified a 13 base pair deletion within exon 4. This was responsible for a predictive frameshift in the open reading frame and introduction of a premature stop codon at position 783 instead of 919. The deletion was reproduced in androgen receptor wildtype cDNA and tran...

  6. Complete androgen insensitivity syndrome due to a new frameshift deletion in exon 4 of the androgen receptor gene: Functional analysis of the mutant receptor

    NARCIS (Netherlands)

    J.M. Lobaccaro; S. Lumbroso; N. Poujol (Nicolas); V. Georget; A.O. Brinkmann (Albert); G. Malpuech (Georges); C. Sultan

    1995-01-01

    textabstractWe studied the androgen receptor gene in a large kindred with complete androgen insensitivity syndrome and negative receptor-binding activity, single-strand conformation polymorphism (SSCP) analysis and sequencing identified a 13 base pair deletion within exon 4. This was responsible for

  7. Photoperiod and testosterone regulate androgen receptor immunostaining in the Siberian hamster brain.

    Science.gov (United States)

    Bittman, Eric L; Ehrlich, David A; Ogdahl, Justyne L; Jetton, Amy E

    2003-09-01

    Day length regulates the effects of gonadal steroids on gonadotropin secretion and behavior in seasonal breeders. To determine whether this influence of photoperiod results from changes in androgen receptor expression in Siberian hamster brain regions that regulate neuroendocrine function, androgen receptor immunostaining was examined in castrated animals given either no androgen replacement or one of three doses of testosterone (T) resulting in physiological serum concentrations. Half of the animals were housed under inhibitory photoperiod conditions, and immunostaining was quantified 11 days later. Measurement of serum gonadotropin and prolactin concentrations confirmed that androgen exerted graded effects on pituitary function but that the animals were killed before photoperiodic influences had fully developed. T significantly increased the numbers of androgen receptor-immunoreactive cells in every brain region examined. Photoperiod exerted no significant influence on androgen receptor-immunoreactive cell number in the arcuate nucleus, bed nucleus of the stria terminalis (BNST), medial preoptic nucleus, or in medial amygdala. An interaction between T and photoperiod was observed in the BNST and in the rostral and middle portions of the arcuate nucleus. Although increasing concentrations of T resulted in more intense cellular immunostaining in the BNST and arcuate, this effect was not influenced by day length. These results indicate that relatively short-duration (11 days) exposure to inhibitory photoperiod triggers localized and regionally specific changes in androgen receptor expression.

  8. Sphingosine kinase-1 is central to androgen-regulated prostate cancer growth and survival.

    Directory of Open Access Journals (Sweden)

    Audrey Dayon

    Full Text Available BACKGROUND: Sphingosine kinase-1 (SphK1 is an oncogenic lipid kinase notably involved in response to anticancer therapies in prostate cancer. Androgens regulate prostate cancer cell proliferation, and androgen deprivation therapy is the standard of care in the management of patients with advanced disease. Here, we explored the role of SphK1 in the regulation of androgen-dependent prostate cancer cell growth and survival. METHODOLOGY/PRINCIPAL FINDINGS: Short-term androgen removal induced a rapid and transient SphK1 inhibition associated with a reduced cell growth in vitro and in vivo, an event that was not observed in the hormono-insensitive PC-3 cells. Supporting the critical role of SphK1 inhibition in the rapid effect of androgen depletion, its overexpression could impair the cell growth decrease. Similarly, the addition of dihydrotestosterone (DHT to androgen-deprived LNCaP cells re-established cell proliferation, through an androgen receptor/PI3K/Akt dependent stimulation of SphK1, and inhibition of SphK1 could markedly impede the effects of DHT. Conversely, long-term removal of androgen support in LNCaP and C4-2B cells resulted in a progressive increase in SphK1 expression and activity throughout the progression to androgen-independence state, which was characterized by the acquisition of a neuroendocrine (NE-like cell phenotype. Importantly, inhibition of the PI3K/Akt pathway--by negatively impacting SphK1 activity--could prevent NE differentiation in both cell models, an event that could be mimicked by SphK1 inhibitors. Fascinatingly, the reversability of the NE phenotype by exposure to normal medium was linked with a pronounced inhibition of SphK1 activity. CONCLUSIONS/SIGNIFICANCE: We report the first evidence that androgen deprivation induces a differential effect on SphK1 activity in hormone-sensitive prostate cancer cell models. These results also suggest that SphK1 activation upon chronic androgen deprivation may serve as a

  9. Clinical, cytogenetic and molecular analysis of androgen insensitivity syndromes from south Indian cohort and detection and in-silico characterization of androgen receptor gene mutations.

    Science.gov (United States)

    V G, Abilash; S, Radha; K M, Marimuthu; K, Thangaraj; S, Arun; S, Nishu; A, Mohana Priya; J, Meena; D, Anuradha

    2016-01-30

    Rare cases of 9 complete androgen insensitivity syndromes, 9 cases of partial androgen insensitivity syndromes and equal number of male control samples were selected for this study. Few strong variations in clinical features were noticed; Giemsa banded metaphase revealed a 46,XY karyotype and the frequency of chromosome aberrations were significantly higher when compared with control samples. DNA sequence analysis of the androgen receptor gene of androgen insensitivity syndromes revealed three missense mutations - c.C1713>G resulting in the replacement of a highly conserved histidine residue with glutamine p.(His571Glu) in DNA-binding domain, c.A1715>G resulting in the replacement of a highly conserved tyrosine residue with cysteine p.(Tyr572Cys) in DNA-binding domain and c.G2599>A resulting in the replacement of a highly conserved valine residue with methionine p.(Val867Met) in ligand-binding domain of androgen receptor gene respectively. The heterozygous type of mutations c.C1713>G and c.G2599>A observed in mothers of the patients for familial cases concluding that the mutation was inherited from the mother. The novel mutation c.C1713>G is reported first time in androgen insensitivity syndrome. In-silico analysis of mutations observed in androgen receptor gene of androgen insensitivity syndrome predicted that the substitution at Y572C and V867M could probably disrupt the protein structure and function. PMID:26688387

  10. A novel E153X point mutation in the androgen receptor gene in a patient with complete androgen insensitivity syndrome

    Institute of Scientific and Technical Information of China (English)

    SilviaBCopelli; SergeLumbmso; FrancoiseAudran; ElianaHPellizzari; JuanJHeinrich; SelvaBCigorraga; CharlesSultan; HectorEChemes

    1999-01-01

    Aim: To study a 46, XY newbom patient with a phenotype suggestive of an androgen insensitivity syndrome to confirm an anomaly in the AR gene. Methods: Genomic DNA from leukecytes was isolated in order to analyze SRY gene by PCR and sequencing of the eight exons of AR gene. Isolation of human Leydig cell mesenchymal precursorsfrom the testis was performed in order to study testosterone production and response to hCG stimulation in culture,Results: Surgical exploration disclosed two testes, no Wolffian structures and important Mullerian derivatives. The SRY gene was present in peripheral blood leukecytes. Sequencing of the AR gene evidenced a previously unreported G to T transversion in exon 1 that changed the normal gintamine 153 codon to a stop codon. Interstitial cell cultures produced sizable amounts of testosterone and were responsive to hCG stimulation. Conclusion: This E153X nonsense point mutation has not been described previously in cases of A/S, and could lead to the synthesis of a short truncated(153 vs 919 residues) non functional AR probably responsible for the phenotype of complete androgen insensitivity syndrome (CAIS). (Asian J Androl 1999 Jun; 1 : 73 - 77)

  11. ERG Cooperates with Androgen Receptor in Regulating Trefoil Factor 3 in Prostate Cancer Disease Progression

    Directory of Open Access Journals (Sweden)

    David S. Rickman

    2010-12-01

    Full Text Available To elucidate the role of ETS gene fusions in castration-resistant prostate cancer (CRPC, we characterized the transcriptome of 54 CRPC tumor samples from men with locally advanced or metastatic disease. Trefoil factor 3 (TFF3 emerged as the most highly differentially regulated gene with respect to ERG rearrangement status and resistance to hormone ablation therapy. Conventional chromatin immunoprecipitation (ChIP-polymerase chain reaction and ChIP followed by DNA sequencing (ChIP-seq revealed direct binding of ERG to ETS binding sites in the TFF3 promoter in ERG-rearranged prostate cancer cell lines. These results were confirmed in ERG-rearranged hormone-naive prostate cancer (HNPC and CRPC tissue samples. Functional studies demonstrated that ERG has an inhibitory effect on TFF3 expression in hormone-naive cancer but not in the castration-resistant state. In addition, we provide evidence suggesting an effect of androgen receptor signaling on ERG-regulated TFF3 expression. Furthermore, TFF3 overexpression enhances ERG-mediated cell invasion in CRPC prostate cancer cells. Taken together, our findings reveal a novel mechanism for enhanced tumor cell aggressiveness resulting from ERG rearrangement in the castration-resistant setting through TFF3 gene expression.

  12. ERG cooperates with androgen receptor in regulating trefoil factor 3 in prostate cancer disease progression.

    Science.gov (United States)

    Rickman, David S; Chen, Ying-Bei; Banerjee, Samprit; Pan, Yihang; Yu, Jindan; Vuong, Terry; Perner, Sven; Lafargue, Christopher J; Mertz, Kirsten D; Setlur, Sunita R; Sircar, Kanishka; Chinnaiyan, Arul M; Bismar, Tarek A; Rubin, Mark A; Demichelis, Francesca

    2010-12-01

    To elucidate the role of ETS gene fusions in castration-resistant prostate cancer (CRPC), we characterized the transcriptome of 54 CRPC tumor samples from men with locally advanced or metastatic disease. Trefoil factor 3 (TFF3) emerged as the most highly differentially regulated gene with respect to ERG rearrangement status and resistance to hormone ablation therapy. Conventional chromatin immunoprecipitation (ChIP)-polymerase chain reaction and ChIP followed by DNA sequencing (ChIP-seq) revealed direct binding of ERG to ETS binding sites in the TFF3 promoter in ERG-rearranged prostate cancer cell lines. These results were confirmed in ERG-rearranged hormone-naive prostate cancer (HNPC) and CRPC tissue samples. Functional studies demonstrated that ERG has an inhibitory effect on TFF3 expression in hormone-naive cancer but not in the castration-resistant state. In addition, we provide evidence suggesting an effect of androgen receptor signaling on ERG-regulated TFF3 expression. Furthermore, TFF3 overexpression enhances ERG-mediated cell invasion in CRPC prostate cancer cells. Taken together, our findings reveal a novel mechanism for enhanced tumor cell aggressiveness resulting from ERG rearrangement in the castration-resistant setting through TFF3 gene expression.

  13. Androgen actions on the human hair follicle: perspectives.

    Science.gov (United States)

    Inui, Shigeki; Itami, Satoshi

    2013-03-01

    Androgens stimulate beard growth but suppress hair growth in androgenetic alopecia (AGA). This condition is known as 'androgen paradox'. Human pilosebaceous units possess enough enzymes to form the active androgens testosterone and dihydrotestosterone. In hair follicles, 5α-reductase type 1 and 2, androgen receptors (AR) and AR coactivators can regulate androgen sensitivity of dermal papillae (DP). To regulate hair growth, androgens stimulate production of IGF-1 as positive mediators from beard DP cells and of TGF-β1, TGF-β2, dickkopf1 and IL-6 as negative mediators from balding DP cells. In addition, androgens enhance inducible nitric oxide synthase from occipital DP cells and stem cell factor for positive regulation of hair growth in beard and negative regulation of balding DP cells. Moreover, AGA involves crosstalk between androgen and Wnt/β-catenin signalling. Finally, recent data on susceptibility genes have provided us with the impetus to investigate the molecular pathogenesis of AGA. PMID:23016593

  14. Gene expression profiling of the androgen receptor antagonists flutamide and vinclozolin in zebrafish (Danio rerio) gonads

    International Nuclear Information System (INIS)

    The studies presented in this manuscript focus on characterization of transcriptomic responses to anti-androgens in zebrafish (Danio rerio). Research on the effects of anti-androgens in fish has been characterized by a heavy reliance on apical endpoints, and molecular mechanisms of action (MOA) of anti-androgens remain poorly elucidated. In the present study, we examined effects of a short term exposure (24-96 h) to the androgen receptor antagonists flutamide (FLU) and vinclozolin (VZ) on gene expression in gonads of sexually mature zebrafish, using commercially available zebrafish oligonucleotide microarrays (4 x 44 K platform). We found that VZ and FLU potentially impact reproductive processes via multiple pathways related to steroidogenesis, spermatogenesis, and fertilization. Observed changes in gene expression often were shared by VZ and FLU, as demonstrated by overlap in differentially-expressed genes and enrichment of several common key pathways including: (1) integrin and actin signaling, (2) nuclear receptor 5A1 signaling, (3) fibroblast growth factor receptor signaling, (4) polyamine synthesis, and (5) androgen synthesis. This information should prove useful to elucidating specific mechanisms of reproductive effects of anti-androgens in fish, as well as developing biomarkers for this important class of endocrine-active chemicals.

  15. Gene expression profiling of the androgen receptor antagonists flutamide and vinclozolin in zebrafish (Danio rerio) gonads

    Energy Technology Data Exchange (ETDEWEB)

    Martinovic-Weigelt, Dalma, E-mail: dalma@stthomas.edu [US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804 (United States); University of St. Thomas, 2115 Summit Ave, Saint Paul, MN 55105 (United States); Wang Ronglin [US Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Ecological Exposure Research Division, 26W. Martin Luther King Dr., Cincinnati, OH 45268 (United States); Villeneuve, Daniel L. [US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804 (United States); Bencic, David C.; Lazorchak, Jim [US Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Ecological Exposure Research Division, 26W. Martin Luther King Dr., Cincinnati, OH 45268 (United States); Ankley, Gerald T. [US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804 (United States)

    2011-01-25

    The studies presented in this manuscript focus on characterization of transcriptomic responses to anti-androgens in zebrafish (Danio rerio). Research on the effects of anti-androgens in fish has been characterized by a heavy reliance on apical endpoints, and molecular mechanisms of action (MOA) of anti-androgens remain poorly elucidated. In the present study, we examined effects of a short term exposure (24-96 h) to the androgen receptor antagonists flutamide (FLU) and vinclozolin (VZ) on gene expression in gonads of sexually mature zebrafish, using commercially available zebrafish oligonucleotide microarrays (4 x 44 K platform). We found that VZ and FLU potentially impact reproductive processes via multiple pathways related to steroidogenesis, spermatogenesis, and fertilization. Observed changes in gene expression often were shared by VZ and FLU, as demonstrated by overlap in differentially-expressed genes and enrichment of several common key pathways including: (1) integrin and actin signaling, (2) nuclear receptor 5A1 signaling, (3) fibroblast growth factor receptor signaling, (4) polyamine synthesis, and (5) androgen synthesis. This information should prove useful to elucidating specific mechanisms of reproductive effects of anti-androgens in fish, as well as developing biomarkers for this important class of endocrine-active chemicals.

  16. EXPRESSION OF ANDROGEN RECEPTOR IN THE DEVELOPING RAT EPIDIDYMIS AND ITS REGULATION BY ANDROGENS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective To study the distribution, developmental patterns, and hormonal control of androgen re- ceptors(AR) in the developing and ethane dimethane sulfonate(EDS) treated male SD rat epididymis. Methods The ABC technique of immunohistochemistry and image analysis were used to assess optodensity means (OPTDM) of AR, providing a measure of relative nuclear AR concentration. Results The specific AR immunostaining was observed in the nuclei of epididymal epithelium, peritubular smooth muscle cells and intertubular connective tissue cells. The rela- tive AR concentrations varied with the different segments of the epididymis in the adult rat(P<0. 05 or P<0.01). AR protein was highest in the caput (0. 763--0. 026),lowest in the corpus (0. 712±0. 025) and intermediate in the cauda (0. 736±0. 008). Levels of epididymal AR changed with development. In the cauda, AR level was highest on day 21 (0. 773±0. 028),intermediate on day 35(0. 762±0. 022),and lowest on day 90~120(0. 736±0. 008). The 90~120d group was significantly different from the 21d group (P<0. 01)and 35d group (P<0. 05). After the adult rats were treated with EDS to eradicate Leydig cells and endogenous testosterone, it was observed that the OPTDM of AR in the epididymal cauda epithelium was significantly reduced (P<0. 001), and was restored to the control level by using ex- ogenous testosterone replacement (P<0. 001). Conclusion These results suggest that the epididymal corpus depends least on androgens and the AR expression in the epididymis decreases with age and is dependent on circulating andro- gens.

  17. Genetic and Functional Analysis of Androgen Receptor Gene Mutations

    NARCIS (Netherlands)

    H.T. Brüggenwirth (Hennie)

    1998-01-01

    textabstractNuclear hormone receptors (NHRs) are intermediary factors through which extracellular signals regulate expression of genes that are involved in homeostasis, development, and differentiation (Beato et al. '995, Mangelsdorf and Evans 1995). These receptors are characterized by a modular st

  18. Sequence variation in the androgen receptor gene is not a common determinant of male sexual orientation

    Energy Technology Data Exchange (ETDEWEB)

    Macke, J.P.; Nathans, J.; King, V.L. (Johns Hopkins Univ., Baltimore, MD (United States)); Hu, N.; Hu, S.; Hamer, D.; Bailey, M. (Northwestern Univ., Evanston, IL (United States)); Brown, T. (Johns Hopkins Univ. School of Hygiene and Public Health, Baltimore, MD (United States))

    1993-10-01

    To test the hypothesis that DNA sequence variation in the androgen receptor gene plays a causal role in the development of male sexual orientation, the authors have (1) measured the degree of concordance of androgen receptor alleles in 36 pairs of homosexual brothers, (2) compared the lengths of polyglutamine and polyglycine tracts in the amino-terminal domain of the androgen receptor in a sample of 197 homosexual males and 213 unselected subjects, and (3) screened the entire androgen receptor coding region for sequence variation by PCR and denaturing gradient-gel electrophoresis (DGGE) and/or single-strand conformation polymorphism analysis in 20 homosexual males with homosexual or bisexual brothers and one homosexual male with no homosexual brothers, and screened the amino-terminal domain of the receptor for sequence variation in an additional 44 homosexual males, 37 of whom had one or more first- or second-degree male relatives who were either homosexual or bisexual. These analyses show that (1) homosexual brothers are as likely to be discordant as concordant for androgen receptor alleles; (2) there are no large-scale differences between the distributions of polyglycine or polyglutamine tract lengths in the homosexual and control groups; and (3) coding region sequence variation is not commonly found within the androgen receptor gene of homosexual men. The DGGE screen identified two rare amino acid substitutions, ser[sup 205] -to-arg and glu[sup 793]-to-asp, the biological significance of which is unknown. 32 refs., 2 figs., 2 tabs.

  19. Neural androgen receptors modulate gene expression and social recognition but not social investigation

    Directory of Open Access Journals (Sweden)

    Sara A Karlsson

    2016-03-01

    Full Text Available The role of sex and androgen receptors (ARs for social preference and social memory is rather unknown. In this study of mice we compared males, females and males lacking ARs specifically in the nervous system, ARNesDel, with respect to social preference, assessed with the three-chambered apparatus test, and social recognition, assessed with the social discrimination procedure. In the social discrimination test we also evaluated the tentative importance of the sex of the stimulus animal. Novel object recognition and olfaction were investigated to complement the results from the social tests. Gene expression analysis was performed to reveal molecules involved in the effects of sex and androgens on social behaviors. All three test groups showed social preference in the three-chambered apparatus test. In both social tests an AR-independent sexual dimorphism was seen in the persistence of social investigation of female conspecifics, whereas the social interest towards male stimuli mice was similar in all groups. Male and female controls recognized conspecifics independent of their sex, whereas ARNesDel males recognized female but not male stimuli mice. Moreover, the non-social behaviors were not affected by AR deficiency. The gene expression analyses of hypothalamus and amygdala indicated that Oxtr, Cd38, Esr1, Cyp19a1, Ucn3, Crh and Gtf2i were differentially expressed between the three groups. In conclusion, our results suggest that ARs are required for recognition of male but not female conspecifics, while being dispensable for social investigation towards both sexes. In addition, the AR seems to regulate genes related to oxytocin, estrogen and William’s syndrome.

  20. 苯丙酸诺龙对烫伤模型大鼠雄激素受体介导靶基因转录调控的影响%Effect of nandrolone phenylpropionate on androgen receptor-mediated transcriptional regulation of target genes in rat scald models

    Institute of Scientific and Technical Information of China (English)

    李凯; 岑瑛

    2015-01-01

    BACKGROUND:Moderate to severe burn and trauma, treatment of which has been paid equal attention to wound surface, is always a difficulty of clinical systemic treatment and has a poor prognosis. Anabolic hormones have acquired secure and good results in the treatment of burns in both animals and clinical patients. Although use of anabolic hormones is restricted by the doping management, but its androgen receptor and nuclear receptor coregulators are the newly emerging areas of interests in the field of gene regulation mechanism in recent years. OBJECTIVE:To investigate the effect of nandrolone phenylpropionate on androgen receptor-mediated transcriptional regulation of target gene in rat scald models. METHODS: Thirty-six rats were randomly divided into nandrolone phenylpropionate, model and control groups. In the nandrolone phenylpropionate and model groups, rats were subjected to a 20% total body surface area second-degree scald injury by hot water. Two days after model preparation, rats in these two groups were intramuscularly injected with nandrolone phenylpropionate and saline, once every other day, for a total of 21 days. RESULTS AND CONCLUSION:The gene expression levels of steroid receptor coactivator-1 and insulin-like growth factor 1 in the rat livers and gonads (testes, ovaries) were significantly different between the nandrolone phenylpropionate and model groups (P 0.05)。说明在不同组织不同生理病理条件下苯丙酸诺龙对类固醇受体辅助活化因子1、c-myc、胰岛素样生长因子1基因表达的作用是不同的。

  1. Testosterone regulates keratin 33B expression in rat penis growth through androgen receptor signaling.

    Science.gov (United States)

    Ma, Yan-Min; Wu, Kai-Jie; Dang, Qiang; Shi, Qi; Gao, Yang; Guo, Peng; Xu, Shan; Wang, Xin-Yang; He, Da-Lin; Gong, Yong-Guang

    2014-01-01

    Androgen therapy is the mainstay of treatment for the hypogonadotropic hypogonadal micropenis because it obviously enhances penis growth in prepubescent microphallic patients. However, the molecular mechanisms of androgen treatment leading to penis growth are still largely unknown. To clarify this well-known phenomenon, we successfully generated a castrated male Sprague Dawley rat model at puberty followed by testosterone administration. Interestingly, compared with the control group, testosterone treatment stimulated a dose-dependent increase of penis weight, length, and width in castrated rats accompanied with a dramatic recovery of the pathological changes of the penis. Mechanistically, testosterone administration substantially increased the expression of androgen receptor (AR) protein. Increased AR protein in the penis could subsequently initiate transcription of its target genes, including keratin 33B (Krt33b). Importantly, we demonstrated that KRT33B is generally expressed in the rat penis and that most KRT33B expression is cytoplasmic. Furthermore, AR could directly modulate its expression by binding to a putative androgen response element sequence of the Krt33b promoter. Overall, this study reveals a novel mechanism facilitating penis growth after testosterone treatment in precastrated prepubescent animals, in which androgen enhances the expression of AR protein as well as its target genes, such as Krt33b.

  2. Androgen regulation of aldehyde dehydrogenase 1A3 (ALDH1A3) in androgen responsive human prostate cancer cell LNCaP.

    Science.gov (United States)

    Previous gene array data from our laboratory identified the retinoic acid (RA) biosynthesis enzyme aldehyde dehydrogenase 1A3 (ALDH1A3) as a putative androgen-responsive gene in prostate cancer epithelial cells (LNCaP). In the present study we attempted to identify if any of the three ALDH1A/RA synt...

  3. Transcriptional network of androgen receptor in prostate cancer progression.

    Science.gov (United States)

    Takayama, Ken-ichi; Inoue, Satoshi

    2013-08-01

    The androgen receptor belongs to the nuclear receptor superfamily and functions as a ligand-dependent transcription factor. It binds to the androgen responsive element and recruits coregulatory factors to modulate gene transcription. In addition, the androgen receptor interacts with other transcription factors, such as forkhead box A1, and other oncogenic signaling pathway molecules that bind deoxyribonucleic acid and regulate transcription. Androgen receptor signaling plays an important role in the development of prostate cancer. Prostate cancer cells proliferate in an androgen-dependent manner, and androgen receptor blockade is effective in prostate cancer therapy. However, patients often progress to castration-resistant prostate cancer with elevated androgen receptor expression and hypersensitivity to androgen. Recently, comprehensive analysis tools, such as complementary DNA microarray, chromatin immunoprecipitation-on-chip and chromatin immunoprecipitation-sequence, have described the androgen-mediated diverse transcriptional program and gene networks in prostate cancer. Furthermore, functional and clinical studies have shown that some of the androgen receptor-regulated genes could be prognostic markers and potential therapeutic targets for the treatment of prostate cancer, particularly castration-resistant prostate cancer. Thus, identifying androgen receptor downstream signaling events and investigating the regulation of androgen receptor activity is critical for understanding the mechanism of carcinogenesis and progression to castration-resistant prostate cancer.

  4. Genetic and Functional Analysis of Androgen Receptor Gene Mutations

    OpenAIRE

    Brüggenwirth, Hennie

    1998-01-01

    textabstractNuclear hormone receptors (NHRs) are intermediary factors through which extracellular signals regulate expression of genes that are involved in homeostasis, development, and differentiation (Beato et al. '995, Mangelsdorf and Evans 1995). These receptors are characterized by a modular structure, with domains involved in transcription activation, DNA binding. hormone binding, and dimerization. The nuclear receptor super-family comprises three subfamilies of receptors, which might h...

  5. [Epigenetic Regulation by Androgen Receptor and Possible Function in Bone Metabolism].

    Science.gov (United States)

    Imai, Yuuki

    2016-07-01

    Epigenetic regulation underlying AR(Androgen receptor)mediated transcription is important component to understand pathophysiology of osteoporosis in men. In this commentary, it is reported recent findings related to epigenetic landscape governed by AR and its cofactors including lysine-specific demethylase 1 (LSD1), and possible implication for bone metabolism. PMID:27346313

  6. Novel mutation in the ligand-binding domain of the androgen receptor gene (1790p) associated with complete androgen insensitivity syndrome

    Institute of Scientific and Technical Information of China (English)

    Florina Raicu; Rossella Giuliani; Valentina Gatta; Chiara Palka; Paolo Guanciali Franchi; Pierluigi Lelli-Chiesa; Stefano Tumini; Liborio Stuppia

    2008-01-01

    Mutations in the X-linked androgen receptor (AR) gene cause androgen insensitivity syndrome (AIS), resulting in an impaired embryonic sex differentiation in 46,XY genetic men. Complete androgen insensitivity (CAIS) produces a female external phenotype, whereas cases with partial androgen insensitivity (PAIS) have various ambiguities of the genitalia. Mild androgen insensitivity (MAIS) is characterized by undermasculinization and gynecomastia. Here we describe a 2-month-old 46,XY female patient, with all of the characteristics of CAIS. Defects in testosterone (T) and dihydrotestosterone (DHT) synthesis were excluded. Sequencing of the AR gene showed the presence in exon 6 of a T to C transition in the second base of codon 790, nucleotide position 2369, causing a novel missense Leu790Pro mutation in the ligand-binding domain of the AR protein. The identification of a novel AR mutation in a girl with CAIS provides significant information due to the importance of missense mutations in the ligand-binding domain of the AR, which are able to induce functional abnormalities in the androgen binding capability, stabilization of active conformation, or interaction with coactivators. (Asian J Androl 2008 Jul; 10: 687-691)

  7. Complete androgen insensitivity syndrome caused by a deep intronic pseudoexon-activating mutation in the androgen receptor gene

    Science.gov (United States)

    Känsäkoski, Johanna; Jääskeläinen, Jarmo; Jääskeläinen, Tiina; Tommiska, Johanna; Saarinen, Lilli; Lehtonen, Rainer; Hautaniemi, Sampsa; Frilander, Mikko J.; Palvimo, Jorma J.; Toppari, Jorma; Raivio, Taneli

    2016-01-01

    Mutations in the X-linked androgen receptor (AR) gene underlie complete androgen insensitivity syndrome (CAIS), the most common cause of 46,XY sex reversal. Molecular genetic diagnosis of CAIS, however, remains uncertain in patients who show normal coding region of AR. Here, we describe a novel mechanism of AR disruption leading to CAIS in two 46,XY sisters. We analyzed whole-genome sequencing data of the patients for pathogenic variants outside the AR coding region. Patient fibroblasts from the genital area were used for AR cDNA analysis and protein quantification. Analysis of the cDNA revealed aberrant splicing of the mRNA caused by a deep intronic mutation (c.2450-118A>G) in the intron 6 of AR. The mutation creates a de novo 5′ splice site and a putative exonic splicing enhancer motif, which leads to the preferential formation of two aberrantly spliced mRNAs (predicted to include a premature stop codon). Patient fibroblasts contained no detectable AR protein. Our results show that patients with CAIS and normal AR coding region need to be examined for deep intronic mutations that can lead to pseudoexon activation. PMID:27609317

  8. Androgen mediated translational and postranslational regulation of IGFBP-2 in androgen-sensitive LNCaP human prostate cancer cells

    OpenAIRE

    David J. DeGraff; Aguiar, Adam A.; Chen, Qian; Adams, Lisa K.; Williams, B. Jill; Sikes, Robert A.

    2010-01-01

    The insulin-like growth factor (IGF) axis is associated intimately with prostate cancer (PCa) development, growth, survival and metastasis. In particular, increased levels of IGFBP-2 expression are associated with advanced PCa, bone metastasis, and the development of castrate resistant PCa. Previously, we reported that androgen treatment decreased intracellular and extracellular IGFBP-2 in the androgen sensitive (AS) PCa cell line, LNCaP. Nonetheless, the mechanism by which androgen treatment...

  9. Up-regulation of SOX9 in sertoli cells from testiculopathic patients accounts for increasing anti-mullerian hormone expression via impaired androgen receptor signaling.

    Directory of Open Access Journals (Sweden)

    Kuo-Chung Lan

    Full Text Available BACKGROUND: Testosterone provokes Sertoli cell maturation and represses AMH production. In adult patients with Sertoli-cells-only syndrome (SCOS and androgen insensitivity syndrome (AIS, high level of AMH expression is detected in Sertoli cells due to defect of androgen/AR signaling. OBJECTIVE: We postulated that up-regulation of SOX9 due to impairment of androgen/AR signaling in Sertoli cells might explain why high level of anti-Mullerian hormone (AMH expression occur in these testiculopathic patients. METHODS: Biological research of testicular specimens from men with azoospermia or mouse. The serum hormone levels were studied in 23 men with obstructive azoospermia, 33 men with SCOS azoospermia and 21 volunteers with normal seminograms during a period of 4 years. Immunohistochemical staining and reverse-transcription PCR were used to examine the relationships among AR, SOX9 and AMH expression in adult human and mouse testes. The ability of AR to repress the expression of SOX9 and AMH was evaluated in vitro in TM4 Sertoli cells and C3H10T1/2 cells. RESULTS: SCOS specimens showed up-regulation of SOX9 and AMH proteins but down-regulation of AR proteins in Sertoli cells. The mRNA levels of AR were significantly lower and the SOX9, AMH mRNA levels higher in all SCOS patients compared to controls (P< 0.05. The testosterone levels in the SCOS patients were within the normal range, but most were below the median of the controls. Furthermore, our in vitro cell line experiments demonstrated that androgen/AR signaling suppressed the gene and protein levels of AMH via repression of SOX9. CONCLUSIONS: Our data show that the functional androgen/AR signaling to repress SOX9 and AMH expression is essential for Sertoli cell maturation. Impairment of androgen/AR signaling promotes SOX9-mediated AMH production, accounts for impairments of Sertoli cells in SCOS azoospermic patients.

  10. The androgen-binding protein gene is expressed in male and female rat brain.

    Science.gov (United States)

    Wang, Y M; Bayliss, D A; Millhorn, D E; Petrusz, P; Joseph, D R

    1990-12-01

    Extracellular androgen-binding proteins (ABP) are thought to modulate the regulatory functions of androgens and the trans-acting nuclear androgen receptor. Testicular ABP and plasma sex hormone-binding globulin (SHBG), which is produced in liver, are encoded by the same gene. We have now found that the ABP-SHBG gene is also expressed in male and female rat brain. Immunoreactive ABP was found to be present in neuronal cell bodies throughout the brain as well as in fibers of the hypothalamic median eminence. The highest concentrations of immunoreactive cell bodies were located in the supraoptic and paraventricular nuclei. Likewise, ABP mRNA was present in all brain regions examined. Analysis of cDNA clones representing brain ABP mRNAs revealed amino acid sequence differences in brain and testicular ABPs. The protein encoded by an alternatively processed RNA has sequence characteristics suggesting that the protein could act as a competitior of ABP binding to cell surface receptors. These data and gene-sequencing experiments indicate that a specific ABP gene promoter is used for transcription initiation in brain. ABP may function in brain as an androgen carrier protein; however, in view of the widespread presence of ABP and ABP mRNA in brain, the protein may have a much broader, yet unknown, function. PMID:1701136

  11. Contributions by the CAG-repeat Polymorphism of the Androgen Receptor Gene and Circulating Androgens to Muscle Size. Odense Androgen Study - A Population-based Study of 20-29 Year-old Danish Men

    DEFF Research Database (Denmark)

    Nielsen, Torben Leo; Hagen, Claus; Wraae, Kristian;

    2007-01-01

    -29 years, who matched the background population as regards body mass index, chronic disease, medication, physical activity, smoking, and sociodemographic parameters. Genotyping was performed in 767 men, whole body DXA in 783 men, and MRI in 406 consecutively included men. Main Outcome Measures: Six......-repeat number correlated inversely with thigh and axial muscle area and with lower and upper extremity lean body mass. Except for upper extremity lean body mass, these findings remained significant in multivariate analyses controlling for circulating androgens, physical activity, smoking, alcohol intake......Context: The number of CAG-repeats within the CAG-repeat polymorphism of the androgen receptor gene is inversely correlated with the transcriptional activity of the androgen receptor. Objective: To study the effect of the CAG-repeat number and circulating androgens on muscle size, to examine...

  12. Effects of androgen receptor and androgen on gene expression in prostate stromal fibroblasts and paracrine signaling to prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Matthew J Tanner

    Full Text Available The androgen receptor (AR is expressed in a subset of prostate stromal cells and functional stromal cell AR is required for normal prostate developmental and influences the growth of prostate tumors. Although we are broadly aware of the specifics of the genomic actions of AR in prostate cancer cells, relatively little is known regarding the gene targets of functional AR in prostate stromal cells. Here, we describe a novel human prostate stromal cell model that enabled us to study the effects of AR on gene expression in these cells. The model involves a genetically manipulated variant of immortalized human WPMY-1 prostate stromal cells that overexpresses wildtype AR (WPMY-AR at a level comparable to LNCaP cells and is responsive to dihydrotestosterone (DHT stimulation. Use of WPMY-AR cells for gene expression profiling showed that the presence of AR, even in the absence of DHT, significantly altered the gene expression pattern of the cells compared to control (WPMY-Vec cells. Treatment of WPMY-AR cells, but not WPMY-Vec control cells, with DHT resulted in further changes that affected the expression of 141 genes by 2-fold or greater compared to vehicle treated WPMY-AR cells. Remarkably, DHT significantly downregulated more genes than were upregulated but many of these changes reversed the initial effects of AR overexpression alone on individual genes. The genes most highly effected by DHT treatment were categorized based upon their role in cancer pathways or in cell signaling pathways (transforming growth factor-β, Wnt, Hedgehog and MAP Kinase thought to be involved in stromal-epithelial crosstalk during prostate or prostate cancer development. DHT treatment of WPMY-AR cells was also sufficient to alter their paracrine potential for prostate cancer cells as conditioned medium from DHT-treated WPMY-AR significantly increased growth of LNCaP cells compared to DHT-treated WPMY-Vec cell conditioned medium.

  13. Differential regulation of glutathione S—transferase Yb1 mRNA levels in rat prostate,liver and brain by androgen

    Institute of Scientific and Technical Information of China (English)

    ZHANGYUAN; CHAWNSHANGCHANG; 等

    1995-01-01

    Northern blot analysis of glutathione S-transferase (GST)Yb1 mRNA in different tissues of male and female rate revealed that its tissue-specific transcription patterns were highly sex hormone related.Although the GST Yb1 mRNA could be detected in most of the tissues examined at various levels,the highest abundance was observed in the ventral prostate,uterus and liver,which were the main the ventral prostate,uterus and liver,which were the main target tissue for androgen,estrogen and glucocorticoid respectively.The effect of androgen on the transcription of GST YB1 was also tissue-specific.Since androgen with drawal by castration caused the up-regulation of GST Yb1 mRNA in the ventral prostate but down-regulation in the liver and no effect in the brain,evalution of this system for studying the regulation mechanisms of gene expression by which androgen exerts its differential effects has been discussed.

  14. Effect of androgen withdrawal on activation of ERKs and expression of cell cycle regulation molecules in human prostate carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    YE Ding-wei; LI Hui; TSENG Jane; CHAUVIN Priscilla; QIAN Song-xi; ZHENG Jia-fu; SUN Ying-hao; MA Yong-jiang

    2002-01-01

    Objective: To explore the possible mechanisms of growth regression of human androgen dependentprostate carcinoma cells caused by androgen withdrawal. Methods: After 24 h of treatment with 1×10-9mol/L dihydrotestosterone (DHT), the expression of phosphorylated ERK proteins and cell cycle regulationmolecules including CDK2, CDK4, CDK6 and P27kip1 in human androgen dependent prostate carcinoma cellline LNCaP was measured by Western blot analysis 0 h, 8 h and 24 h of after androgen withdrawal. Humanandrogen independent prostate carcinoma cell line PC-3 was also examined as control. Results: Down-regula-tion of phosphorylated ERK, CDK2, CDK4 and CDK6 and up-regulation of P27kip1 were found initially inLNCaP cell line 8 h after androgen withdrawal. The levels of phosphorylated ERK and CDKs decreased con-tinuously and reached the lowest after 24 h, while continuous elevation of P27kip1 was detected thereafter to 24h. No expression change of phosphorylated ERK, CDKs and P27kip1 were detected in PC-3 cell line. Conclu-sion: The androgen withdrawal can cause ERKs activation decrease and cell cycle regulation moleculeschanges, which may be one of the mechanisms for inhibited growth of androgen dependent prostate carcinomaafter androgen ablation by either operative or medicine methods.

  15. A large deletion/insertion-induced frameshift mutation of the androgen receptor gene in a family with a familial complete androgen insensitivity syndrome.

    Science.gov (United States)

    Cong, Peikuan; Ye, Yinghui; Wang, Yue; Lu, Lingping; Yong, Jing; Yu, Ping; Joseph, Kimani Kagunda; Jin, Fan; Qi, Ming

    2012-06-01

    Androgen insensitivity syndrome (AIS) is an X-linked recessive genetic disorder with a normal 46, XY karyotype caused by abnormality of the androgen receptor (AR) gene. One Chinese family consisting of the proband and 5 other members with complete androgen insensitivity syndrome (CAIS) was investigated. Mutation analysis by DNA sequencing on all 8 exons and flanking intron regions of the AR gene revealed a unique large deletion/insertion mutation in the family. A 287 bp deletion and 77 bp insertion (c.933_1219delins77) mutation at codon 312 resulted in a frameshift which caused a premature stop (p.Phe312Aspfs*7) of polypeptide formation. The proband's mother and grandmother were heterozygous for the mutant allele. The proband's father, uncle and grandfather have the normal allele. From the pedigree constructed from mutational analysis of the family, it is revealed that the probably pathogenic mutation comes from the maternal side.

  16. Androgen regulation of corticotropin-releasing hormone receptor 2 (CRHR2) mRNA expression and receptor binding in the rat brain

    Science.gov (United States)

    Weiser, Michael J.; Goel, Nirupa; Sandau, Ursula S.; Bale, Tracy L.; Handa, Robert J.

    2008-01-01

    vivo studies, DHT significantly increased CRHR2 mRNA expression in hippocampal neurons (p<.02) compared to vehicle treated controls. Flutamide treatment prevented the effect of DHT on CRHR2 mRNA indicating that DHT’s effect on CRHR2 expression is AR-mediated. Thus, the CRHR2 gene appears to be a target for regulation by AR and these data suggest a potential mechanism by which androgen may alter mood and anxiety-related behaviors. PMID:18706413

  17. Androgen receptor gene polymorphisms are associated with aggression in Japanese Akita Inu

    OpenAIRE

    Konno, Akitsugu; Inoue-Murayama, Miho; Hasegawa, Toshikazu

    2011-01-01

    We tested for an association between variable number of tandem repeats in the canine androgen receptor (AR) gene and personality differences in Japanese Akita Inu dogs. The polymorphic trinucleotide (CAG) repeat region coding for glutamine in exon 1 of the AR gene was genotyped using genomic DNA obtained from 171 dogs. Three alleles (23, 24 and 26 repeats) were detected, and the allele frequency differed with the coat colour. We assessed the personality profiles of 100 fawn-coloured dogs (54 ...

  18. Prolactin/Stat5 and androgen R1881 coactivate carboxypeptidase-D gene in breast cancer cells.

    Science.gov (United States)

    Koirala, Samir; Thomas, Lynn N; Too, Catherine K L

    2014-03-01

    Plasma membrane-bound carboxypeptidase-D (CPD) cleaves C-terminal arginine from extracellular substrates. In the cell, arginine is converted to nitric oxide (NO). We have reported that up-regulation of CPD mRNA/protein levels by 17β-estradiol and prolactin (PRL) in breast cancer cells, and by testosterone in prostate cancer cells, increased NO production and cell survival. The CPD promoter contains a consensus γ-interferon-activated sequence (GAS) and 3 putative androgen response elements (ARE.1, ARE.2, ARE.3) that could potentially bind PRL-activated transcription factor Stat5 (signal transducer and activator of transcription 5) and the liganded androgen receptor (AR), respectively. This study showed that synthetic androgen R1881 and PRL elevated CPD mRNA/protein levels in human MCF-7 and T47D breast cancer cells in a time-/dose-dependent manner. PRL/R1881-elevated CPD expression was blocked by actinomycin-D, and a CPD promoter construct containing these GAS and AREs was stimulated by PRL or R1881, indicating transcriptional regulation by both hormones. Luciferase reporter assays showed that GAS and the adjacent ARE.1 only were active. Mutation of GAS in the ΔGAS-CPD construct (ARE.1 intact) abolished CPD promoter activity in response to PRL and, surprisingly, to R1881 as well. ΔGAS-CPD promoter activity was restored by PRL+R1881 in combination, and enhanced by ectopic Stat5, but abolished by Stat5 gene knockdown. Chromatin immunoprecipitation analysis confirmed binding of activated Stat5 and liganded AR to GAS and ARE.1, respectively. Activated Stat5 also induced binding of unliganded AR to ARE.1, and liganded AR induced binding of unactivated Stat5 to GAS. In summary, PRL and R1881, acting through Stat5 and AR, act cooperatively to stimulate CPD gene transcription in breast cancer cells. PMID:24433040

  19. Human reporter gene assays: Transcriptional activity of the androgen receptor is modulated by the cellular environment and promoter context

    International Nuclear Information System (INIS)

    The androgen receptor (AR) is a member of the nuclear receptor superfamily and mediates the physiological effects of androgens. Androgens are essential for male development and disruption of androgen signaling may cause androgen-dependent developmental defects and/or tumors. Here we present a comparative analysis of various model systems for the investigation of endocrine active compounds in human cell lines. We generated reporter plasmids containing androgen response elements derived from the human secretory component or the rat probasin genes as well as the glucocorticoid consensus response element and compared their activities to that of the mouse mammary tumor virus promotor. Additionally, we generated an expression plasmid containing the AR cDNA derived from LNCaP cells. In 22Rv1 cells transiently transfected with human AR, all reporters displayed a dose-dependent, high activity when treated with androgens. Interestingly, the potency of testosterone and its metabolite dihydrotestosterone was very low in HepG2 but not in 22Rv1 cells, independent of the reporter used. The efficacies of the androgens tested were comparable in both cell lines but highly dependent on the reporter used. Based on these results, 22Rv1 cells provide a highly sensitive in vitro test system to analyze endocrine activities of xenobiotics. Furthermore, this study highlights the need to investigate the (anti-) androgenic activity of compounds in dependence of the cellular and promoter context

  20. Regulation of Androgen Receptor and Prostate Cancer Growth by Cyclin-dependent Kinase 5*

    OpenAIRE

    Hsu, Fu-Ning; Chen, Mei-Chih; Chiang, Ming-Ching; Lin, Eugene; Lee, Yueh-Tsung; Huang, Pao-Hsuan; Lee, Guan-Shun; Lin, Ho

    2011-01-01

    Prostate cancer is the most frequently diagnosed male malignancy. The normal prostate development and prostate cancer progression are mediated by androgen receptor (AR). Recently, the roles of cyclin-dependent kinase 5 (Cdk5) and its activator, p35, in cancer biology are explored one after another. We have previously demonstrated that Cdk5 may regulate proliferation of thyroid cancer cells. In addition, we also identify that Cdk5 overactivation can be triggered by drug treatments and leads to...

  1. Photoperiodic regulation of androgen receptor and steroid receptor coactivator-1 in Siberian hamster brain.

    Science.gov (United States)

    Tetel, Marc J; Ungar, Todd C; Hassan, Brett; Bittman, Eric L

    2004-11-24

    Seasonal changes in the neuroendocrine actions of gonadal steroid hormones are triggered by fluctuations in daylength. The mechanisms responsible for photoperiodic influences upon the feedback and behavioral effects of testosterone in Siberian hamsters are poorly understood. We hypothesized that daylength regulates the expression of androgen receptor (AR) and/or steroid receptor coactivator-1 (SRC-1) in specific forebrain regions. Hamsters were castrated and implanted with either oil-filled capsules or low doses of testosterone; half of the animals remained in 16L/8D and the rest were kept in 10L/14D for the ensuing 70 days. The number of AR-immunoreactive (AR-ir) cells was regulated by testosterone in medial amygdala and caudal arcuate, and by photoperiod in the medial preoptic nucleus and the posterodorsal medial amygdala. A significant interaction between photoperiod and androgen treatment was found in medial preoptic nucleus and posterodorsal medial amygdala. The molecular weight and distribution of SRC-1 were similar to reports in other rodent species, and short days reduced the number of SRC-1-ir cells in posteromedial bed nucleus of the stria terminalis (BNST) and posterodorsal medial amygdala. A significant interaction between androgen treatment and daylength in regulation of SRC-1-ir was found in anterior medial amygdala. The present results indicate that daylength-induced fluctuations in SRC-1 and AR expression may contribute to seasonally changing effects of testosterone.

  2. Aberrant splicing of androgenic receptor mRNA results in synthesis of a nonfunctional receptor protein in a patient with androgen insensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Ris-Stalpers, C.; Kuiper, G.G.J.M.; Faber, P.W.; van Rooij, H.C.J.; Degenhart, H.J.; Trapman, J.; Brinkmann, A.O. (Erasmus Univ., Rotterdam (Netherlands)); Schweikert, H.U. (Univ. of Bonn (Germany)); Zegers, N.D. (Medical Biological Laboratory-Organization for Applied Scientific Research, Rijswijk (Netherlands)); Hodgins, M.B. (Glasgow Univ. (United Kingdom))

    1990-10-01

    Androgen insensitivity is a disorder in which the correct androgen response in an androgen target cell is impaired. The clinical symtpoms of this X chromosome-linked syndrome are presumed to be caused by mutations in the androgen receptor gene. The authors report a G {r arrow} T mutation in the splice donor site of intron 4 of the androgen receptor gene of a 46, XY subject lacking detectable androgen binding to the receptor and with the complete form of androgen insensitivity. This point mutation completely abolishes normal RNA splicing at the exon 4/intron 4 boundary and results in the activation of a cryptic splice donor site in exon 4, which leads to the deletion of 123 nucleotides from the mRNA. Translation of the mutant mRNA results in an androgen receptor protein {approx}5 kDa smaller than the wild type. This mutated androgen receptor protein was unable to bind androgens and unable to activate transcription of an androgen-regulated reporter gene construct. This mutation in the human androgen receptor gene demonstrates the importance of an intact steroid-binding domain for proper androgen receptor functioning in vivo.

  3. Aberrant splicing of androgenic receptor mRNA results in synthesis of a nonfunctional receptor protein in a patient with androgen insensitivity

    International Nuclear Information System (INIS)

    Androgen insensitivity is a disorder in which the correct androgen response in an androgen target cell is impaired. The clinical symtpoms of this X chromosome-linked syndrome are presumed to be caused by mutations in the androgen receptor gene. The authors report a G → T mutation in the splice donor site of intron 4 of the androgen receptor gene of a 46, XY subject lacking detectable androgen binding to the receptor and with the complete form of androgen insensitivity. This point mutation completely abolishes normal RNA splicing at the exon 4/intron 4 boundary and results in the activation of a cryptic splice donor site in exon 4, which leads to the deletion of 123 nucleotides from the mRNA. Translation of the mutant mRNA results in an androgen receptor protein ∼5 kDa smaller than the wild type. This mutated androgen receptor protein was unable to bind androgens and unable to activate transcription of an androgen-regulated reporter gene construct. This mutation in the human androgen receptor gene demonstrates the importance of an intact steroid-binding domain for proper androgen receptor functioning in vivo

  4. The impact of the CAG repeat polymorphism of the androgen receptor gene on muscle and adipose tissues in 20-29-year-old Danish men: Odense Androgen Study

    DEFF Research Database (Denmark)

    Nielsen, Torben Leo; Hagen, Claus; Wraae, Kristian;

    2010-01-01

    The number of CAG repeats (CAG(n)) within the CAG repeat polymorphism of the androgen receptor gene correlates inversely with the transactivation of the receptor.......The number of CAG repeats (CAG(n)) within the CAG repeat polymorphism of the androgen receptor gene correlates inversely with the transactivation of the receptor....

  5. Expanding the therapeutic use of androgens via selective androgen receptor modulators (SARMs).

    Science.gov (United States)

    Gao, Wenqing; Dalton, James T

    2007-03-01

    Selective androgen receptor modulators (SARMs) are a novel class of androgen receptor (AR) ligands that might change the future of androgen therapy dramatically. With improved pharmacokinetic characteristics and tissue-selective pharmacological activities, SARMs are expected to greatly extend the clinical applications of androgens to osteoporosis, muscle wasting, male contraception and diseases of the prostate. Mechanistic studies with currently available SARMs will help to define the contributions of differential tissue distribution, tissue-specific expression of 5alpha-reductase, ligand-specific regulation of gene expression and AR interactions with tissue-specific coactivators to their observed tissue selectivity, and lead to even greater expansion of selective anabolic therapies.

  6. Expression, Function of the Human Androgen-Responsive Gene AD11 in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Shane W. Oram

    2007-08-01

    Full Text Available We have previously identified an androgen-responsive gene in rat prostate that shares homology with the acireductone dioxygenase (ARD/ARD′ family of metalbinding enzymes involved in methionine salvage. We found that the gene, aci-reductone dioxygenase 1 (ADI1, was downregulated in prostate cancer cells, whereas enforced expression of rat Adi1 in these cells caused apoptosis. Here we report the characterization of human ADI1 in prostate cancer. Androgens induced ADI1 expression in human prostate cancer LNCaP cells, which was not blocked by cycloheximide, indicating that ADI1 is a primary androgen-responsive gene. In human benign prostatic hyperplasia specimens, epithelial cells expressed ADI1. Immunohistochemistry of prostate tumor tissue microarrays showed that benign regions expressed more ADI1 than tumors, suggesting a suppressive role for ADI1 in prostate cancer. Bacterial lysates containing recombinant ADI1 produced a five-fold increase in aci-reductone decay over controls, demonstrating that ADI1 has ARD activity. We generated point mutations at key residues in the metal-binding site of ADI1 to disrupt ARD function, we found that these mutations did not affect intracellular localization, apoptosis, or colony formation suppression in human prostate cancer cells. Collectively, these observations argue that AD11 may check prostate cancer progression through apoptosis, that this activity does not require metal binding.

  7. Androgen regulates development of the sexually dimorphic gastrin-releasing peptide neuron system in the lumbar spinal cord: evidence from a mouse line lacking androgen receptor in the nervous system.

    Science.gov (United States)

    Sakamoto, Hirotaka; Saito, Kazuhiro; Marie-Luce, Clarisse; Raskin, Kalina; Oti, Takumi; Satoh, Keita; Tamura, Kei; Sakamoto, Tatsuya; Mhaouty-Kodja, Sakina

    2014-01-13

    Androgens including testosterone, organize the nervous system as well as masculine external and internal genitalia during the perinatal period. Androgen organization involves promotion of masculine body features, usually by acting through androgen receptors (ARs). We have recently demonstrated that the gastrin-releasing peptide (GRP) system in the lumbar spinal cord also mediates spinal centers promoting penile reflexes during male sexual behavior in rats. Testosterone may induce sexual differentiation of this spinal GRP system during development and maintain its activation in adulthood. In the present study, we examined the role of ARs in the nervous system regulating the development of the sexually dimorphic GRP system. For this purpose, we used a conditional mouse line selectively lacking the AR gene in the nervous system. AR floxed males carrying (mutants) or not (controls) the nestin-Cre transgene were castrated in adulthood and supplemented with physiological amounts of testosterone. Loss of AR expression in the nervous system resulted in a significant decrease in the number of GRP neurons compared to control littermates. Consequently, the intensity of GRP axonal projections onto the lower lumbar and upper sacral spinal cord was greater in control males than in mutant males. These results suggest that ARs expressed in the nervous system play a significant role in the development of the GRP system in the male lumbar spinal cord. The AR-deletion mutation may attenuate sexual behavior and activity of mutant males via spinal GRP system-mediated neural mechanisms.

  8. Complex structure and regulation of the ABP/SHBG gene.

    Science.gov (United States)

    Joseph, D R; Sullivan, P M; Wang, Y M; Millhorn, D E; Bayliss, D M

    1991-01-01

    Extracellular androgen-binding proteins (ABPs) are thought to modulate the regulatory functions of androgens and the trans-acting nuclear androgen receptor. Testicular ABP and plasma sex hormone-binding globulin (SHBG), which is produced in the liver, are encoded by the same gene. We report here that the ABP/SHBG gene is also expressed in fetal rat liver and adult brain. Immunoreactive ABP was localized in the brain and fetal liver and mRNAs were identified in both tissues by northern blot hybridization. Analysis of brain and fetal liver cDNA clones revealed alternatively processed RNAs with sequence characteristics suggesting the encoded proteins could act as competitors of ABP/SHBG binding to cell surface receptors. One cDNA represented a fused transcript of the ABP/SHBG gene and the histidine decarboxylase gene that was apparently formed by a trans-splicing process. Gene sequencing experiments indicate that tissue-specific ABP/SHBG gene promoter-enhancer elements are utilized in testis, brain and fetal liver. These data demonstrate that the structure, RNA transcript processing and likely regulation of the ABP/SHBG gene are very complex. PMID:1958575

  9. Pomegranate Polyphenols Downregulate Expression of Androgen Synthesizing Genes in Human Prostate Cancer Cells Overexpressing the Androgen Receptor

    OpenAIRE

    Hong, Mee Young; Seeram, Navindra P.; Heber, David

    2008-01-01

    Prostate cancer is dependent on circulating testosterone in its early stages and is treatable with radiation and surgery. However, recurrent prostate tumors advance to an androgen-independent state where they progress in the absence of circulating testosterone leading to metastasis and death. During the development of androgen independence, prostate cancer cells are known to increase intracellular testosterone synthesis which maintains cancer cell growth in the absence of significant amounts ...

  10. Pituitary androgen receptor signalling regulates prolactin but not gonadotrophins in the male mouse.

    Directory of Open Access Journals (Sweden)

    Laura O'Hara

    Full Text Available Production of the androgen testosterone is controlled by a negative feedback loop within the hypothalamic-pituitary-gonadal (HPG axis. Stimulation of testicular Leydig cells by pituitary luteinising hormone (LH is under the control of hypothalamic gonadotrophin releasing hormone (GnRH, while suppression of LH secretion by the pituitary is controlled by circulating testosterone. Exactly how androgens exert their feedback control of gonadotrophin secretion (and whether this is at the level of the pituitary, as well as the role of AR in other pituitary cell types remains unclear. To investigate these questions, we exploited a transgenic mouse line (Foxg1 Cre/+; AR fl/y which lacks androgen receptor in the pituitary gland. Both circulating testosterone and gonadotrophins are unchanged in adulthood, demonstrating that AR signalling is dispensable in the male mouse pituitary for testosterone-dependent regulation of LH secretion. In contrast, Foxg1 Cre/+; AR fl/y males have a significant increase in circulating prolactin, suggesting that, rather than controlling gonadotrophins, AR-signalling in the pituitary acts to suppress aberrant prolactin production in males.

  11. The agonistic adrenal: melatonin elicits female aggression via regulation of adrenal androgens.

    Science.gov (United States)

    Rendon, Nikki M; Rudolph, Lauren M; Sengelaub, Dale R; Demas, Gregory E

    2015-11-22

    Classic findings have demonstrated an important role for sex steroids as regulators of aggression, but this relationship is lacking within some environmental contexts. In mammals and birds, the adrenal androgen dehydroepiandrosterone (DHEA), a non-gonadal precursor of biologically active steroids, has been linked to aggression. Although females, like males, use aggression when competing for limited resources, the mechanisms underlying female aggression remain understudied. Here, we propose a previously undescribed endocrine mechanism regulating female aggression via direct action of the pineal hormone melatonin on adrenal androgens. We examined this in a solitary hamster species, Phodopus sungorus, in which both sexes are highly territorial across the seasons, and display increased aggression concomitant with decreased serum levels of sex steroids in short 'winter-like' days. Short- but not long-day females had increased adrenal DHEA responsiveness co-occurring with morphological changes in the adrenal gland. Further, serum DHEA and total adrenal DHEA content were elevated in short days. Lastly, melatonin increased DHEA and aggression and stimulated DHEA release from cultured adrenals. Collectively, these findings demonstrate that DHEA is a key peripheral regulator of aggression and that melatonin coordinates a 'seasonal switch' from gonadal to adrenal regulation of aggression by direct action on the adrenal glands.

  12. Mutations of androgen receptor gene in Brazilian patients with male pseudohermaphroditism

    Directory of Open Access Journals (Sweden)

    D.F. Cabral

    1998-06-01

    Full Text Available We describe the identification of point mutations in the androgen receptor gene in five Brazilian patients with female assignment and behavior. The eight exons of the gene were amplified by the polymerase chain reaction (PCR and analyzed for single-strand conformation polymorphism (SSCP to detect the mutations. Direct sequencing of the mutant PCR products demonstrated single transitions in three of these cases: G®A in case 1, within exon C, changing codon 615 from Arg to His; G®A in case 2, within exon E, changing codon 752 from Arg to Gln, and C®T in case 3, within exon B, but without amino acid change.

  13. Research Resource: Androgen Receptor Activity Is Regulated Through the Mobilization of Cell Surface Receptor Networks.

    Science.gov (United States)

    Hsiao, Jordy J; Ng, Brandon H; Smits, Melinda M; Martinez, Harryl D; Jasavala, Rohini J; Hinkson, Izumi V; Fermin, Damian; Eng, Jimmy K; Nesvizhskii, Alexey I; Wright, Michael E

    2015-08-01

    The aberrant expression of androgen receptor (AR)-dependent transcriptional programs is a defining pathology of the development and progression of prostate cancers. Transcriptional cofactors that bind AR are critical determinants of prostate tumorigenesis. To gain a deeper understanding of the proteins linked to AR-dependent gene transcription, we performed a DNA-affinity chromatography-based proteomic screen designed to identify proteins involved in AR-mediated gene transcription in prostate tumor cells. Functional experiments validated the coregulator roles of known AR-binding proteins in AR-mediated transcription in prostate tumor cells. More importantly, novel coregulatory functions were detected in components of well-established cell surface receptor-dependent signal transduction pathways. Further experimentation demonstrated that components of the TNF, TGF-β, IL receptor, and epidermal growth factor signaling pathways modulated AR-dependent gene transcription and androgen-dependent proliferation in prostate tumor cells. Collectively, our proteomic dataset demonstrates that the cell surface receptor- and AR-dependent pathways are highly integrated, and provides a molecular framework for understanding how disparate signal-transduction pathways can influence AR-dependent transcriptional programs linked to the development and progression of human prostate cancers.

  14. The AhR Ligand, TCDD, Regulates Androgen Receptor Activity Differently in Androgen-Sensitive versus Castration-Resistant Human Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Maryam Ghotbaddini

    2015-07-01

    Full Text Available The reported biological effects of TCDD include induction of drug metabolizing enzymes, wasting syndrome and tumor promotion. TCDD elicits most of its effects through binding the aryl hydrocarbon receptor (AhR. TCDD induced degradation of AhR has been widely reported and requires ubiquitination of the protein. The rapid depletion of AhR following TCDD activation serves as a mechanism to modulate AhR mediated gene induction. In addition to inducing AhR degradation, TCDD has been reported to induce degradation of hormone receptors. The studies reported here, evaluate the effect of TCDD exposure on androgen receptor (AR expression and activity in androgen-sensitive LNCaP and castration-resistant C4-2 prostate cancer cells. Our results show that TCDD exposure does not induce AhR or AR degradation in C4-2 cells. However, both AhR and AR are degraded in LNCaP cells following TCDD exposure. In addition, TCDD enhances AR phosphorylation and induces expression of AR responsive genes in LNCaP cells. Our data reveals that TCDD effect on AR expression and activity differs in androgen-sensitive and castration-resistant prostate cancer cell models.

  15. Nonmyocytic androgen receptor regulates the sexually dimorphic development of the embryonic bulbocavernosus muscle.

    Science.gov (United States)

    Ipulan, Lerrie Ann; Suzuki, Kentaro; Sakamoto, Yuki; Murashima, Aki; Imai, Yuuki; Omori, Akiko; Nakagata, Naomi; Nishinakamura, Ryuichi; Valasek, Petr; Yamada, Gen

    2014-07-01

    The bulbocavernosus (BC) is a sexually dimorphic muscle observed only in males. Androgen receptor knockout mouse studies show the loss of BC formation. This suggests that androgen signaling plays a vital role in its development. Androgen has been known to induce muscle hypertrophy through satellite cell activation and myonuclei accretion during muscle regeneration and growth. Whether the same mechanism is present during embryonic development is not yet elucidated. To identify the mechanism of sexual dimorphism during BC development, the timing of morphological differences was first established. It was revealed that the BC was morphologically different between male and female mice at embryonic day (E) 16.5. Differences in the myogenic process were detected at E15.5. The male BC possesses a higher number of proliferating undifferentiated myoblasts. To identify the role of androgen signaling in this process, muscle-specific androgen receptor (AR) mutation was introduced, which resulted in no observable phenotypes. Hence, the expression of AR in the BC was examined and found that the AR did not colocalize with any muscle markers such as Myogenic differentiation 1, Myogenin, and paired box transcription factor 7. It was revealed that the mesenchyme surrounding the BC expressed AR and the BC started to express AR at E15.5. AR mutation on the nonmyocytic cells using spalt-like transcription factor 1 (Sall1) Cre driver mouse was performed, which resulted in defective BC formation. It was revealed that the number of proliferating undifferentiated myoblasts was reduced in the Sall1 Cre:AR(L-/Y) mutant embryos, and the adult mutants were devoid of BC. The transition of myoblasts from proliferation to differentiation is mediated by cyclin-dependent kinase inhibitors. An increased expression of p21 was observed in the BC myoblast of the Sall1 Cre:AR(L-/Y) mutant and wild-type female. Altogether this study suggests that the nonmyocytic AR may paracrinely regulate the

  16. Validation and application of reporter gene assays for the determination of estrogenic and androgenic endocrine disruptor activity in sport supplements.

    Science.gov (United States)

    Plotan, Monika; Elliott, Christopher T; Oplatowska, Michalina; Connolly, Lisa

    2012-07-01

    Previously developed estrogen and androgen mammalian reporter gene assays (RGAs) were assessed for their potential use as a quantitative screening method in the detection of estrogenic and androgenic endocrine disruptors (EDs) in sport supplements. The validation of both RGAs coupled with dispersive solid phase extraction (dSPE) was performed in accordance with European Commission Decision EC/2002/6579 for biological screening methods. Decision limits (CCα) and detection capabilities (CCβ) were established for both the estrogen and androgen RGAs. All samples were compliant with CCα and CCβ in both bioassays. Recovery rates were 96 % for 17β-estradiol and 115 % for dihydrotestosterone as obtained in their corresponding RGA. Both estrogens and androgens were stable in samples for more than 3 weeks, when stored at -20 °C. Specificity, good repeatability (coefficients of variation (CV), 12-25 %), reproducibility and robustness of both bioassays were also observed. Four different ED modes of action were determined for estrogens and androgens in 53 sport supplements, using the validated RGAs. This study revealed that 89 % of the investigated sport supplements contained estrogenic EDs and 51 % contained androgenic compounds. In conclusion, both bioassays are suitable for sport supplement screening of estrogenic and androgenic EDs.

  17. Androgen-dependent apoptosis in male germ cells is regulated through the proto-oncoprotein Cbl

    OpenAIRE

    El Chami, Nisrine; Ikhlef, Fouziha; Kaszas, Krisztian; Yakoub, Sadok; Tabone, Eric; Siddeek, Benazir; Cunha, Stéphanie; Beaudoin, Claude; Morel, Laurent; Benahmed, Mohamed; Régnier, Daniel C.

    2005-01-01

    The proto-oncoprotein Cbl is known to control several signaling processes. It is highly expressed in the testis, and because spermatogenesis is androgen dependent, we investigated the androgen dependency expression of Cbl through its testicular sublocalization and its expression levels in rats that were exposed to the antiandrogen flutamide or were hypophysectomized. We report the androgen dependency of Cbl as it localizes in pachytene spermatocytes during androgen-dependent stages, is down-r...

  18. Proteomic analysis of androgen-regulated protein expression in a mouse fetal vas deferens cell line

    NARCIS (Netherlands)

    A. Umar (Arzu); T.M. Luider (Theo); C.A. Berrevoets (Cor); J.A. Grootegoed (Anton); A.O. Brinkmann (Albert)

    2003-01-01

    textabstractDuring sex differentiation, androgens are essential for development of the male genital tract. The Wolffian duct is an androgen-sensitive target tissue that develops into the epididymis, vas deferens, and seminal vesicle. The present study aimed to identify androgen-reg

  19. CACUL1 functions as a negative regulator of androgen receptor in prostate cancer cells.

    Science.gov (United States)

    Choi, Hanbyeul; Lee, Sang Hyup; Um, Soo-Jong; Kim, Eun-Joo

    2016-07-01

    The androgen receptor (AR) plays a critical role in the initiation and progression of prostate cancer (PCa), and thus its regulation is an important tool in PCa therapy. Here, we report that CDK2-associated cullin 1 (CACUL1) directly associates with AR and suppresses AR transcriptional activity. In addition, CACUL1 represses histone demethylase LSD1-mediated AR transactivation by competing with LSD1 for AR binding. Depletion of CACUL1 enhances the LSD1 occupancy of the AR-target promoter, accompanied by decreased accumulation of H3K9me2, a repressive transcriptional marker. CACUL1 and LSD1 oppositely regulate CDX-induced cell death in AR-positive LNCaP and metastatic castrate-resistant LNCaP-LN3 cells. These data suggest that CACUL1 impairs LSD1-mediated activation of AR, thereby implicating it as a potential antitumor target in PCa. PMID:27085459

  20. LncRNA HOTAIR Enhances the Androgen-Receptor-Mediated Transcriptional Program and Drives Castration-Resistant Prostate Cancer

    OpenAIRE

    Ali Zhang; Jonathan C. Zhao; Jung Kim; Ka-wing Fong; Yeqing Angela Yang; Debabrata Chakravarti; Yin-Yuan Mo; Jindan Yu

    2015-01-01

    SUMMARY Understanding the mechanisms of androgen receptor (AR) activation in the milieu of low androgen is critical to effective treatment of castration-resistant prostate cancer (CRPC). Here, we report HOTAIR as an androgen-repressed lncRNA, and, as such, it is markedly upregulated following androgen deprivation therapies and in CRPC. We further demonstrate a distinct mode of lncRNA-mediated gene regulation, wherein HOTAIR binds to the AR protein to block its interaction with the E3 ubiquiti...

  1. A Novel Mutation in Human Androgen Receptor Gene Causing Partial Androgen Insensitivity Syndrome in a Patient Presenting with Gynecomastia at Puberty.

    Science.gov (United States)

    Koçyiğit, Cemil; Sarıtaş, Serdar; Çatlı, Gönül; Onay, Hüseyin; Dündar, Bumin Nuri

    2016-06-01

    Partial androgen insensitivity syndrome (PAIS) typically presents with micropenis, perineoscrotal hypospadias, and a bifid scrotum with descending or undescending testes and gynecomastia at puberty. It is an X-linked recessive disorder resulting from mutations in the androgen receptor (AR) gene. However, AR gene mutations are found in less than a third of PAIS cases. A 16-year-old boy was admitted with complaints of gynecomastia and sparse facial hair. Family history revealed male relatives from maternal side with similar clinical phenotype. His external genitalia were phenotypically male with pubic hair Tanner stage IV, penoscrotal hypospadias, and a bifid scrotum with bilateral atrophic testes. He had elevated gonadotropins with a normal testosterone level. Chromosome analysis revealed a 46,XY karyotype. Due to the family history suggesting a disorder of X-linked trait, PAIS was considered and molecular analysis of AR gene was performed. DNA sequence analysis revealed a novel hemizygous mutation p.T576I (c.1727C>T) in the AR gene. The diagnosis of PAIS is based upon clinical phenotype and laboratory findings and can be confirmed by detection of a defect in the AR gene. An accurate approach including a detailed family history suggesting an X-linked trait is an important clue for a quick diagnosis. PMID:27087292

  2. Expression of a hyperactive androgen receptor leads to androgen-independent growth of prostate cancer cells.

    Science.gov (United States)

    Hsieh, Chen-Lin; Cai, Changmeng; Giwa, Ahmed; Bivins, Aaronica; Chen, Shao-Yong; Sabry, Dina; Govardhan, Kumara; Shemshedini, Lirim

    2008-07-01

    Cellular changes that affect the androgen receptor (AR) can cause prostate cancer to transition from androgen dependent to androgen independent, which is usually lethal. One common change in prostate tumors is overexpression of the AR, which has been shown to lead to androgen-independent growth of prostate cancer cells. This led us to hypothesize that expression of a hyperactive AR would be sufficient for androgen-independent growth of prostate cancer cells. To test this hypothesis, stable lune cancer prostate (LNCaP) cell lines were generated, which express a virion phosphoprotein (VP)16-AR hybrid protein that contains full-length AR fused to the strong viral transcriptional activation domain VP16. This fusion protein elicited as much as a 20-fold stronger transcriptional activity than the natural AR. Stable expression of VP16-AR in LNCaP cells yielded androgen-independent cell proliferation, while under the same growth conditions the parental LNCaP cells exhibited only androgen-dependent growth. These results show that expression of a hyperactive AR is sufficient for androgen-independent growth of prostate cancer cells. To study the molecular basis of this enhanced growth, we measured the expression of soluble guanylyl cyclase-alpha1 (sGCalpha1), a subunit of the sGC, an androgen-regulated gene that has been shown to be involved in prostate cancer cell growth. Interestingly, the expression of sGCalpha1 is androgen independent in VP16-AR-expressing cells, in contrast to its androgen-induced expression in control LNCaP cells. RNA(I)-dependent inhibition of sGCalpha1 expression resulted in significantly reduced proliferation of VP16-AR cells, implicating an important role for sGCalpha1 in the androgen-independent growth of these cells. PMID:18469090

  3. Peripheral androgen receptor gene suppression rescues disease in mouse models of spinal and bulbar muscular atrophy.

    Science.gov (United States)

    Lieberman, Andrew P; Yu, Zhigang; Murray, Sue; Peralta, Raechel; Low, Audrey; Guo, Shuling; Yu, Xing Xian; Cortes, Constanza J; Bennett, C Frank; Monia, Brett P; La Spada, Albert R; Hung, Gene

    2014-05-01

    Spinal and bulbar muscular atrophy (SBMA) is caused by the polyglutamine androgen receptor (polyQ-AR), a protein expressed by both lower motor neurons and skeletal muscle. Although viewed as a motor neuronopathy, data from patients and mouse models suggest that muscle contributes to disease pathogenesis. Here, we tested this hypothesis using AR113Q knockin and human bacterial artificial chromosome/clone (BAC) transgenic mice that express the full-length polyQ-AR and display androgen-dependent weakness, muscle atrophy, and early death. We developed antisense oligonucleotides that suppressed AR gene expression in the periphery but not the CNS after subcutaneous administration. Suppression of polyQ-AR in the periphery rescued deficits in muscle weight, fiber size, and grip strength, reversed changes in muscle gene expression, and extended the lifespan of mutant males. We conclude that polyQ-AR expression in the periphery is an important contributor to pathology in SBMA mice and that peripheral administration of therapeutics should be explored for SBMA patients.

  4. Peripheral Androgen Receptor Gene Suppression Rescues Disease in Mouse Models of Spinal and Bulbar Muscular Atrophy

    Directory of Open Access Journals (Sweden)

    Andrew P. Lieberman

    2014-05-01

    Full Text Available Spinal and bulbar muscular atrophy (SBMA is caused by the polyglutamine androgen receptor (polyQ-AR, a protein expressed by both lower motor neurons and skeletal muscle. Although viewed as a motor neuronopathy, data from patients and mouse models suggest that muscle contributes to disease pathogenesis. Here, we tested this hypothesis using AR113Q knockin and human bacterial artificial chromosome/clone (BAC transgenic mice that express the full-length polyQ-AR and display androgen-dependent weakness, muscle atrophy, and early death. We developed antisense oligonucleotides that suppressed AR gene expression in the periphery but not the CNS after subcutaneous administration. Suppression of polyQ-AR in the periphery rescued deficits in muscle weight, fiber size, and grip strength, reversed changes in muscle gene expression, and extended the lifespan of mutant males. We conclude that polyQ-AR expression in the periphery is an important contributor to pathology in SBMA mice and that peripheral administration of therapeutics should be explored for SBMA patients.

  5. Rarity of DNA sequence alterations in the promoter region of the human androgen receptor gene

    Directory of Open Access Journals (Sweden)

    D.F. Cabral

    2004-12-01

    Full Text Available The human androgen receptor (AR gene promoter lies in a GC-rich region containing two principal sites of transcription initiation and a putative Sp1 protein-binding site, without typical "TATA" and "CAAT" boxes. It has been suggested that mutations within the 5'untranslated region (5'UTR may contribute to the development of prostate cancer by changing the rates of gene transcription and/or translation. In order to investigate this question, the aim of the present study was to search for the presence of mutations or polymorphisms at the AR-5'UTR in 92 prostate cancer patients, where histological diagnosis of adenocarcinoma was established in specimens obtained from transurethral resection or after prostatectomy. The AR-5'UTR was amplified by PCR from genomic DNA samples of the patients and of 100 healthy male blood donors, included as controls. Conformation-sensitive gel electrophoresis was used for DNA sequence alteration screening. Only one band shift was detected in one individual from the blood donor group. Sequencing revealed a new single nucleotide deletion (T in the most conserved portion of the promoter region at position +36 downstream from the transcription initiation site I. Although the effect of this specific mutation remains unknown, its rarity reveals the high degree of sequence conservation of the human androgen promoter region. Moreover, the absence of detectable variation within the critical 5'UTR in prostate cancer patients indicates a low probability of its involvement in prostate cancer etiology.

  6. Development of selective androgen receptor modulators and their therapeutic applications.

    Science.gov (United States)

    Chen, Fang; Rodan, Gideon A; Schmidt, Azi

    2002-01-01

    Androgens control a broad range of physiological functions. The androgen receptor (AR), a steroid receptor that mediates the diverse biological actions of androgens, is a ligand inducible transcription factor. Abnormalities in the androgen signaling system result in many disturbances ranging from changes in gender determination and sexual development to psychiatric and emotional disorders. Androgen replacement therapy can improve many clinical conditions including hypogonadism and osteoporosis, but is limited by the lack of efficacious and safe therapeutic agents with easy delivery options. Recent progress in the area of gene regulation by steroid receptors and by selective receptor modulators provides an opportunity to examine if selective androgen receptor modulators (SARMs) could address some of the problems associated with current androgen therapy. Since the composition of the transcriptional initiation complex recruited by liganded AR determines the specificity of gene regulation, synthetic ligands aimed at initiating transcription of tissue and promoter specific genes offers hope for developing better androgen therapy. Establishment of assays that predict synthetic ligand activity is critical for SARM development. Advancement in high throughput compound screening and gene fingerprinting technologies, such as microarrays and proteomics, will facilitate and accelerate identification of effective SARMs.

  7. The androgen receptor in health and disease.

    Science.gov (United States)

    Matsumoto, Takahiro; Sakari, Matomo; Okada, Maiko; Yokoyama, Atsushi; Takahashi, Sayuri; Kouzmenko, Alexander; Kato, Shigeaki

    2013-01-01

    Androgens play pivotal roles in the regulation of male development and physiological processes, particularly in the male reproductive system. Most biological effects of androgens are mediated by the action of nuclear androgen receptor (AR). AR acts as a master regulator of downstream androgen-dependent signaling pathway networks. This ligand-dependent transcriptional factor modulates gene expression through the recruitment of various coregulator complexes, the induction of chromatin reorganization, and epigenetic histone modifications at target genomic loci. Dysregulation of androgen/AR signaling perturbs normal reproductive development and accounts for a wide range of pathological conditions such as androgen-insensitive syndrome, prostate cancer, and spinal bulbar muscular atrophy. In this review we summarize recent advances in understanding of the epigenetic mechanisms of AR action as well as newly recognized aspects of AR-mediated androgen signaling in both men and women. In addition, we offer a perspective on the use of animal genetic model systems aimed at eventually developing novel therapeutic AR ligands. PMID:23157556

  8. Rapid bursts of androgen-binding protein (Abp gene duplication occurred independently in diverse mammals

    Directory of Open Access Journals (Sweden)

    Ponting Chris P

    2008-02-01

    Full Text Available Abstract Background The draft mouse (Mus musculus genome sequence revealed an unexpected proliferation of gene duplicates encoding a family of secretoglobin proteins including the androgen-binding protein (ABP α, β and γ subunits. Further investigation of 14 α-like (Abpa and 13 β- or γ-like (Abpbg undisrupted gene sequences revealed a rich diversity of developmental stage-, sex- and tissue-specific expression. Despite these studies, our understanding of the evolution of this gene family remains incomplete. Questions arise from imperfections in the initial mouse genome assembly and a dearth of information about the gene family structure in other rodents and mammals. Results Here, we interrogate the latest 'finished' mouse (Mus musculus genome sequence assembly to show that the Abp gene repertoire is, in fact, twice as large as reported previously, with 30 Abpa and 34 Abpbg genes and pseudogenes. All of these have arisen since the last common ancestor with rat (Rattus norvegicus. We then demonstrate, by sequencing homologs from species within the Mus genus, that this burst of gene duplication occurred very recently, within the past seven million years. Finally, we survey Abp orthologs in genomes from across the mammalian clade and show that bursts of Abp gene duplications are not specific to the murid rodents; they also occurred recently in the lagomorph (rabbit, Oryctolagus cuniculus and ruminant (cattle, Bos taurus lineages, although not in other mammalian taxa. Conclusion We conclude that Abp genes have undergone repeated bursts of gene duplication and adaptive sequence diversification driven by these genes' participation in chemosensation and/or sexual identification.

  9. Identification of the molecular switch that regulates access of 5α-DHT to the androgen receptor.

    OpenAIRE

    Penning, Trevor M.; Bauman, David R.; Jin, Yi; Rizner, Tea Lanisik

    2007-01-01

    Pairs of hydroxysteroid dehydrogenases (HSDs) govern ligand access to steroid receptors in target tissues and act as molecular switches. By acting as reductases or oxidases, HSDs convert potent ligands into their cognate inactive metabolites or vice-versa. This pre-receptor regulation of steroid hormone action may have profound effects on hormonal response. We have identified the HSDs responsible for regulating ligand access to the androgen receptor (AR) in human prostate. Type 3 3α-hydroxyst...

  10. Sox2 is an androgen receptor-repressed gene that promotes castration-resistant prostate cancer.

    Directory of Open Access Journals (Sweden)

    Steven Kregel

    Full Text Available Despite advances in detection and therapy, castration-resistant prostate cancer continues to be a major clinical problem. The aberrant activity of stem cell pathways, and their regulation by the Androgen Receptor (AR, has the potential to provide insight into novel mechanisms and pathways to prevent and treat advanced, castrate-resistant prostate cancers. To this end, we investigated the role of the embryonic stem cell regulator Sox2 [SRY (sex determining region Y-box 2] in normal and malignant prostate epithelial cells. In the normal prostate, Sox2 is expressed in a portion of basal epithelial cells. Prostate tumors were either Sox2-positive or Sox2-negative, with the percentage of Sox2-positive tumors increasing with Gleason Score and metastases. In the castration-resistant prostate cancer cell line CWR-R1, endogenous expression of Sox2 was repressed by AR signaling, and AR chromatin-IP shows that AR binds the enhancer element within the Sox2 promoter. Likewise, in normal prostate epithelial cells and human embryonic stem cells, increased AR signaling also decreases Sox2 expression. Resistance to the anti-androgen MDV3100 results in a marked increase in Sox2 expression within three prostate cancer cell lines, and in the castration-sensitive LAPC-4 prostate cancer cell line ectopic expression of Sox2 was sufficient to promote castration-resistant tumor formation. Loss of Sox2 expression in the castration-resistant CWR-R1 prostate cancer cell line inhibited cell growth. Up-regulation of Sox2 was not associated with increased CD133 expression but was associated with increased FGF5 (Fibroblast Growth Factor 5 expression. These data propose a model of elevated Sox2 expression due to loss of AR-mediated repression during castration, and consequent castration-resistance via mechanisms not involving induction of canonical embryonic stem cell pathways.

  11. Inhibition of Androgen-Independent Prostate Cancer by Estrogenic Compounds Is Associated with Increased Expression of Immune-Related Genes

    Directory of Open Access Journals (Sweden)

    Ilsa M. Coleman

    2006-10-01

    Full Text Available The clinical utility of estrogens for treating prostate cancer (CaP was established in the 1940s by Huggins. The classic model of the anti-CaP activity of estrogens postulates an indirect mechanism involving the suppression of androgen production. However, clinical, preclinical studies have shown that estrogens exert growth-inhibitory effects on CaP under low-androgen conditions, suggesting additional modes whereby estrogens affect CaP cells and/or the microenvironment. Here we have investigated the activity of 17β estradiol (E2 against androgen-independent CaP, identified molecular alterations in tumors exposed to E2. E2 treatment inhibited the growth of all four androgen-independent CaP xenografts studied (LuCaP 35V, LuCaP 23.1AI, LuCaP 49, LuCaP 58 in castrated male mice. The molecular basis of growth suppression was studied by cDNA microarray analysis, which indicated that multiple pathways are altered by E2 treatment. Of particular interest are changes in transcripts encoding proteins that mediate immune responses, regulate androgen receptor signaling. In conclusion, our data show that estrogens have powerful inhibitory effects on CaP in vivo in androgendepleted environments, suggest novel mechanisms of estrogen-mediated antitumor activity. These results indicate that incorporating estrogens into CaP treatment protocols could enhance therapeutic efficacy even in cases of advanced disease.

  12. Deletion of the steroid-binding domain of the human androgen receptor gene in one family with complete androgen insensitivity syndrome: Evidence for further genetic heterogeneity in this syndrome

    International Nuclear Information System (INIS)

    The cloning of a cDNA for the human androgen receptor gene has resulted in the availability for cDNA probes that span various parts of the gene, including the entire steroid-binding domain and part of the DNA-binding domain, as well as part of the 5' region of the gene. The radiolabeled probes were used to screen for androgen receptor mutations on Southern blots prepared by restriction endonuclease digestion of genomic DNA from human subjects with complete androgen insensitivity syndrome (AIS). In this investigation, the authors considered only patients presenting complete AIS and with the androgen receptor (-) form as the most probably subjects to show a gene deletion. One subject from each of six unrelated families with the receptor (-) form of complete AIS and 10 normal subjects were studied. In the 10 normal subjects and in 5 of the 6 patients, identical DNA restriction fragment patterns were observed with EcoRI and BamHI. Analysis of other members of this family confirmed the apparent gene deletion. The data provide direct proof that complete AIS in some families can result from a deletion of the androgen receptor structural gene. However, other families do not demonstrate such a deletion, suggesting that point mutations may also result in the receptor (-) form of complete AIS, adding further to the genetic heterogeneity of this syndrome

  13. Preliminary study on androgen dependence of calcitonin gene-related peptide in rat penis

    Institute of Scientific and Technical Information of China (English)

    Zhou-Jun Shen; Shan-Wen Chen; Ying-Li Lu; Liao-Yuan Li; Xie-Lai Zhou; Ming-Guang Zhang; Zhao-Dian Chen

    2005-01-01

    Aim: To study the androgen dependence of the neurotransmitter, calcitonin gene-related peptide (CGRP) in rat penis.Methods: Forty-four Sprague-Dawley rats were randomly divided into Group A (intact controls), Group B (castrated)group were anaesthetized. Blood samples were taken for the measurement of serum testosterone and dihydrotestosterone (DHT) by means of radioimmunoassay. Penile samples were harvested for the investigation of calcitonin gene related peptide (CGRP)-immunoreactive nerve fibers with immunohistochemistry. The computer-assisted imaging analysis system was applied to calculate the area proportion of the CGRP-positive nerve fibers (CGRP-PNF) in each group.Results: 1) Both 4 and 10 weeks later, testosterone and DHT levels in Group B decreased significantly compared with those in Group A, (P<0.05, P<0.01, respectively); DHT level in Group C was also significantly decreased in comparison with that in Group A for both 4- and 10- week animals (P < 0.05); 2) There was no significant differences in area proportion of CGRP-PNF among Groups A, B and C 4 weeks after treatments (P > 0.05); However, 10weeks later, the proportion of CGRP-PNF in Groups B and C was significantly less than that in Group A (P < 0.01);3) The proportion of CGRP-PNF of 4-week animals in Groups B and C was significantly higher than that of 10-week animals (P<0.05). Conclusion: The expression of neurotransmitter, CGRP may depend on androgens, including testosterone and DHT in rat penis.

  14. ANDROGEN REGULATION OF PROSTATIC STEROID BINDING PROTEIN GENE TRANSCRIPTION

    Institute of Scientific and Technical Information of China (English)

    ZHANGYong-Lian; ZHOUZong-Xun; ZHANGYou-Duan; PARKERMalcolmG

    1989-01-01

    Prostatic steroid binding protein (PSBP) is a major protein secreted in the rat ventral prostate (V.P.) and also one of the components in seminal fluid, The potential importance of this protein in male fertility emerged from its ability of binding cholesterol which might modulate the proportion of phospholipids and cholesterol in sperm making it suitable

  15. A unique mosaic Turner syndrome patient with androgen receptor gene derived marker chromosome.

    Science.gov (United States)

    Kalkan, Rasime; Özdağ, Nermin; Bundak, Rüveyde; Çirakoğlu, Ayşe; Serakinci, Nedime

    2016-01-01

    Patients with Turner syndrome are generally characterized by having short stature with no secondary sexual characteristics. Some abnormalities, such as webbed neck, renal malformations (>50%) and cardiac defects (10%) are less common. The intelligence of these patients is considered normal. Non-mosaic monosomy X is observed in approximately 45% of postnatal patients with Turner syndrome and the rest of the patients have structural abnormalities or mosaicism involving 46,X,i(Xq), 45,X/46,XX, 45,X and other variants. The phenotype of 45,X/46,X,+mar individuals varies by the genetic continent and degree of the mosaicism. The gene content of the marker chromosome is the most important when correlating the phenotype with the genotype. Here we present an 11-year-old female who was referred for evaluation of her short stature and learning disabilities. Conventional cytogenetic investigation showed a mosaic 45,X/46,X,+mar karyotype. Fluorescence in situ hybridization showed that the marker chromosome originated from the X chromosome within the androgen receptor (AR) and X-inactive specific transcript (XIST) genes. Therefore, it is possible that aberrant activation of the marker chromosome, compromising the AR and XIST genes, may modify the Turner syndrome phenotype.

  16. A unique mosaic Turner syndrome patient with androgen receptor gene derived marker chromosome.

    Science.gov (United States)

    Kalkan, Rasime; Özdağ, Nermin; Bundak, Rüveyde; Çirakoğlu, Ayşe; Serakinci, Nedime

    2016-01-01

    Patients with Turner syndrome are generally characterized by having short stature with no secondary sexual characteristics. Some abnormalities, such as webbed neck, renal malformations (>50%) and cardiac defects (10%) are less common. The intelligence of these patients is considered normal. Non-mosaic monosomy X is observed in approximately 45% of postnatal patients with Turner syndrome and the rest of the patients have structural abnormalities or mosaicism involving 46,X,i(Xq), 45,X/46,XX, 45,X and other variants. The phenotype of 45,X/46,X,+mar individuals varies by the genetic continent and degree of the mosaicism. The gene content of the marker chromosome is the most important when correlating the phenotype with the genotype. Here we present an 11-year-old female who was referred for evaluation of her short stature and learning disabilities. Conventional cytogenetic investigation showed a mosaic 45,X/46,X,+mar karyotype. Fluorescence in situ hybridization showed that the marker chromosome originated from the X chromosome within the androgen receptor (AR) and X-inactive specific transcript (XIST) genes. Therefore, it is possible that aberrant activation of the marker chromosome, compromising the AR and XIST genes, may modify the Turner syndrome phenotype. PMID:26744914

  17. Experimental Evidence of Persistent Androgen-Receptor-Dependency in Castration-Resistant Prostate Cancer

    OpenAIRE

    Osamu Ogawa; Tomomi Kamba; Takahiro Inoue; Takashi Kobayashi

    2013-01-01

    In the majority of castration-resistant prostate cancer (CRPC), prostate-specific antigen (PSA), product of a gene that is almost exclusively regulated by the androgen receptor (AR), still acts as a serum marker reflecting disease burden, indicating that AR signaling is activated even under castrate level of serum androgen. Accumulated evidence shows that transcriptional ability of AR is activated both in ligand-dependent and -independent manners in CRPC cells. Some androgen-independent subli...

  18. Targeting Alternative Sites on the Androgen Receptor to Treat Castration-Resistant Prostate Cancer

    OpenAIRE

    Rennie, Paul S.; Artem Cherkasov; Nada Lallous; Kush Dalal

    2013-01-01

    Recurrent, metastatic prostate cancer continues to be a leading cause of cancer-death in men. The androgen receptor (AR) is a modular, ligand-inducible transcription factor that regulates the expression of genes that can drive the progression of this disease, and as a consequence, this receptor is a key therapeutic target for controlling prostate cancer. The current drugs designed to directly inhibit the AR are called anti-androgens, and all act by competing with androgens for binding to the ...

  19. Phytochrome-regulated Gene Expression

    Institute of Scientific and Technical Information of China (English)

    Peter H. Quail

    2007-01-01

    Identification of all genes involved in the phytochrome (phy)-mediated responses of plants to their light environment is an important goal in providing an overall understanding of light-regulated growth and development. This article highlights and integrates the central findings of two recent comprehensive studies in Arabidopsis that have identified the genome-wide set of phy-regulated genes that respond rapidly to red-light signals upon first exposure of dark-grown seedlings, and have tested the functional relevance to normal seedling photomorphogenesis of an initial subset of these genes. The data: (a) reveal considerable complexity in the channeling of the light signals through the different phy-family members (phyA to phyE) to responsive genes; (b) identify a diversity of transcription-factor-encoding genes as major early, if not primary, targets of phy signaling, and, therefore, as potentially important regulators in the transcriptional-network hierarchy; and (c) identify auxin-related genes as the dominant class among rapidly-regulated, hormone-related genes. However, reverse-genetic functional profiling of a selected subset of these genes reveals that only a limited fraction are necessary for optimal phy-induced seedling deetiolation.

  20. Androgen receptor and histone lysine demethylases in ovine placenta.

    Directory of Open Access Journals (Sweden)

    Ellane R Cleys

    Full Text Available Sex steroid hormones regulate developmental programming in many tissues, including programming gene expression during prenatal development. While estradiol is known to regulate placentation, little is known about the role of testosterone and androgen signaling in placental development despite the fact that testosterone rises in maternal circulation during pregnancy and in placenta-induced pregnancy disorders. We investigated the role of testosterone in placental gene expression, and focused on androgen receptor (AR. Prenatal androgenization decreased global DNA methylation in gestational day 90 placentomes, and increased placental expression of AR as well as genes involved in epigenetic regulation, angiogenesis, and growth. As AR complexes with histone lysine demethylases (KDMs to regulate AR target genes in human cancers, we also investigated if the same mechanism is present in the ovine placenta. AR co-immunoprecipitated with KDM1A and KDM4D in sheep placentomes, and AR-KDM1A complexes were recruited to a half-site for androgen response element (ARE in the promoter region of VEGFA. Androgenized ewes also had increased cotyledonary VEGFA. Finally, in human first trimester placental samples KDM1A and KDM4D immunolocalized to the syncytiotrophoblast, with nuclear KDM1A and KDM4D immunostaining also present in the villous stroma. In conclusion, placental androgen signaling, possibly through AR-KDM complex recruitment to AREs, regulates placental VEGFA expression. AR and KDMs are also present in first trimester human placenta. Androgens appear to be an important regulator of trophoblast differentiation and placental development, and aberrant androgen signaling may contribute to the development of placental disorders.

  1. Integrative transcriptomics-based identification of cryptic drivers of taxol-resistance genes in ovarian carcinoma cells: Analysis of the androgen receptor.

    Science.gov (United States)

    Sun, Nian-Kang; Huang, Shang-Lang; Lu, Hsing-Pang; Chang, Ting-Chang; Chao, Chuck C-K

    2015-09-29

    A systematic analysis of the genes involved in taxol resistance (txr) has never been performed. In the present study, we created txr ovarian carcinoma cell lines to identify the genes involved in chemoresistance. Transcriptome analysis revealed 1,194 overexpressed genes in txr cells. Among the upregulated genes, more than 12 cryptic transcription factors were identified using MetaCore analysis (including AR, C/EBPβ, ERα, HNF4α, c-Jun/AP-1, c-Myc, and SP-1). Notably, individual silencing of these transcription factors (except HNF4`)sensitized txr cells to taxol. The androgen receptor (AR) and its target genes were selected for further analysis. Silencing AR using RNA interference produced a 3-fold sensitization to taxol in txr cells, a response similar to that produced by silencing abcb1. AR silencing also downregulated the expression of prominent txr gene candidates (including abcb1, abcb6, abcg2, bmp5, fat3, fgfr2, h1f0, srcrb4d, and tmprss15). In contrast, AR activation using the agonist DHT upregulated expression of the target genes. Individually silencing seven out of nine (78%) AR-regulated txr genes sensitized txr cells to taxol. Inhibition of AKT and JNK cellular kinases using chemical inhibitors caused a dramatic suppression of AR expression. These results indicate that the AR represents a critical driver of gene expression involved in txr.

  2. Androgen receptor non-nuclear regulation of prostate cancer cell invasion mediated by Src and matriptase.

    Science.gov (United States)

    Zarif, Jelani C; Lamb, Laura E; Schulz, Veronique V; Nollet, Eric A; Miranti, Cindy K

    2015-03-30

    Castration-resistant prostate cancers still depend on nuclear androgen receptor (AR) function despite their lack of dependence on exogenous androgen. Second generation anti-androgen therapies are more efficient at blocking nuclear AR; however resistant tumors still develop. Recent studies indicate Src is highly active in these resistant tumors. By manipulating AR activity in several different prostate cancer cell lines through RNAi, drug treatment, and the use of a nuclear-deficient AR mutant, we demonstrate that androgen acting on cytoplasmic AR rapidly stimulates Src tyrosine kinase via a non-genomic mechanism. Cytoplasmic AR, acting through Src enhances laminin integrin-dependent invasion. Active Matriptase, which cleaves laminin, is elevated within minutes after androgen stimulation, and is subsequently shed into the medium. Matriptase activation and shedding induced by cytoplasmic AR is dependent on Src. Concomitantly, CDCP1/gp140, a Matriptase and Src substrate that controls integrin-based migration, is activated. However, only inhibition of Matriptase, but not CDCP1, suppresses the AR/Src-dependent increase in invasion. Matriptase, present in conditioned medium from AR-stimulated cells, is sufficient to enhance invasion in the absence of androgen. Thus, invasion is stimulated by a rapid but sustained increase in Src activity, mediated non-genomically by cytoplasmic AR, leading to rapid activation and shedding of the laminin protease Matriptase.

  3. The Androgen Receptor Regulates PPARγ Expression and Activity in Human Prostate Cancer Cells.

    Science.gov (United States)

    Olokpa, Emuejevoke; Bolden, Adrienne; Stewart, LaMonica V

    2016-12-01

    The peroxisome proliferator activated receptor gamma (PPARγ) is a ligand-activated transcription factor that regulates growth and differentiation within normal prostate and prostate cancers. However the factors that control PPARγ within the prostate cancers have not been characterized. The goal of this study was to examine whether the androgen receptor (AR) regulates PPARγ expression and function within human prostate cancer cells. qRT-PCR and Western blot analyses revealed nanomolar concentrations of the AR agonist dihydrotestosterone (DHT) decrease PPARγ mRNA and protein within the castration-resistant, AR-positive C4-2 and VCaP human prostate cancer cell lines. The AR antagonists bicalutamide and enzalutamide blocked the ability of DHT to reduce PPARγ levels. In addition, siRNA mediated knockdown of AR increased PPARγ protein levels and ligand-induced PPARγ transcriptional activity within the C4-2 cell line. Furthermore, proteasome inhibitors that interfere with AR function increased the level of basal PPARγ and prevented the DHT-mediated suppression of PPARγ. These data suggest that AR normally functions to suppress PPARγ expression within AR-positive prostate cancer cells. To determine whether increases in AR protein would influence PPARγ expression and activity, we used lipofectamine-based transfections to overexpress AR within the AR-null PC-3 cells. The addition of AR to PC-3 cells did not significantly alter PPARγ protein levels. However, the ability of the PPARγ ligand rosiglitazone to induce activation of a PPARγ-driven luciferase reporter and induce expression of FABP4 was suppressed in AR-positive PC-3 cells. Together, these data indicate AR serves as a key modulator of PPARγ expression and function within prostate tumors. J. Cell. Physiol. 231: 2664-2672, 2016. © 2016 Wiley Periodicals, Inc. PMID:26945682

  4. A role for the androgen metabolite, 5alpha androstane 3beta, 17beta diol (3β-diol) in the regulation of the hypothalamo-pituitary-adrenal axis.

    Science.gov (United States)

    Handa, Robert J; Sharma, Dharmendra; Uht, Rosalie

    2011-01-01

    Activation of the hypothalamo-pituitary-adrenal (HPA) axis is a basic reaction of animals to environmental perturbations that threaten homeostasis. These responses are ultimately regulated by neurons residing within the paraventricular nucleus (PVN) of the hypothalamus. Within the PVN, corticotrophin-releasing hormone (CRH), vasopressin (AVP), and oxytocin (OT) expressing neurons are critical as they can regulate both neuroendocrine and autonomic responses. Estradiol (E2) and testosterone (T) are well known reproductive hormones; however, they have also been shown to modulate stress reactivity. In rodent models, evidence shows that under some conditions E2 enhances stress activated adrenocorticotropic hormone (ACTH) and corticosterone secretion. In contrast, T decreases the gain of the HPA axis. The modulatory role of testosterone was originally thought to be via 5 alpha reduction to the potent androgen dihydrotestosterone (DHT) and its subsequent binding to the androgen receptor, whereas E2 effects were thought to be mediated by estrogen receptors alpha (ERalpha) and beta (ERbeta). However, DHT has been shown to be metabolized to the ERbeta agonist, 5α- androstane 3β, 17β Diol (3β-Diol). The actions of 3β-Diol on the HPA axis are mediated by ERbeta which inhibits the PVN response to stressors. In gonadectomized rats, ERbeta agonists reduce CORT and ACTH responses to restraint stress, an effect that is also present in wild-type but not ERbeta-knockout mice. The neurobiological mechanisms underlying the ability of ERbeta to alter HPA reactivity are not currently known. CRH, AVP, and OT have all been shown to be regulated by estradiol and recent studies indicate an important role of ERbeta in these regulatory processes. Moreover, activation of the CRH and AVP promoters has been shown to occur by 3β-Diol binding to ERbeta and this is thought to occur through alternate pathways of gene regulation. Based on available data, a novel and important role of 3β-Diol in

  5. A Role for the Androgen Metabolite, 5alpha Androstane 3beta, 17beta Diol (3β-Diol) in the Regulation of the Hypothalamo-Pituitary–Adrenal Axis

    Science.gov (United States)

    Handa, Robert J.; Sharma, Dharmendra; Uht, Rosalie

    2011-01-01

    Activation of the hypothalamo-pituitary–adrenal (HPA) axis is a basic reaction of animals to environmental perturbations that threaten homeostasis. These responses are ultimately regulated by neurons residing within the paraventricular nucleus (PVN) of the hypothalamus. Within the PVN, corticotrophin-releasing hormone (CRH), vasopressin (AVP), and oxytocin (OT) expressing neurons are critical as they can regulate both neuroendocrine and autonomic responses. Estradiol (E2) and testosterone (T) are well known reproductive hormones; however, they have also been shown to modulate stress reactivity. In rodent models, evidence shows that under some conditions E2 enhances stress activated adrenocorticotropic hormone (ACTH) and corticosterone secretion. In contrast, T decreases the gain of the HPA axis. The modulatory role of testosterone was originally thought to be via 5 alpha reduction to the potent androgen dihydrotestosterone (DHT) and its subsequent binding to the androgen receptor, whereas E2 effects were thought to be mediated by estrogen receptors alpha (ERalpha) and beta (ERbeta). However, DHT has been shown to be metabolized to the ERbeta agonist, 5α- androstane 3β, 17β Diol (3β-Diol). The actions of 3β-Diol on the HPA axis are mediated by ERbeta which inhibits the PVN response to stressors. In gonadectomized rats, ERbeta agonists reduce CORT and ACTH responses to restraint stress, an effect that is also present in wild-type but not ERbeta-knockout mice. The neurobiological mechanisms underlying the ability of ERbeta to alter HPA reactivity are not currently known. CRH, AVP, and OT have all been shown to be regulated by estradiol and recent studies indicate an important role of ERbeta in these regulatory processes. Moreover, activation of the CRH and AVP promoters has been shown to occur by 3β-Diol binding to ERbeta and this is thought to occur through alternate pathways of gene regulation. Based on available data, a novel and important role of 3

  6. Selective androgen receptor modulators (SARMs negatively regulate triple-negative breast cancer growth and epithelial:mesenchymal stem cell signaling.

    Directory of Open Access Journals (Sweden)

    Ramesh Narayanan

    Full Text Available The androgen receptor (AR is the most highly expressed steroid receptor in breast cancer with 75-95% of estrogen receptor (ER-positive and 40-70% of ER-negative breast cancers expressing AR. Though historically breast cancers were treated with steroidal androgens, their use fell from favor because of their virilizing side effects and the emergence of tamoxifen. Nonsteroidal, tissue selective androgen receptor modulators (SARMs may provide a novel targeted approach to exploit the therapeutic benefits of androgen therapy in breast cancer.Since MDA-MB-453 triple-negative breast cancer cells express mutated AR, PTEN, and p53, MDA-MB-231 triple-negative breast cancer cells stably expressing wildtype AR (MDA-MB-231-AR were used to evaluate the in vitro and in vivo anti-proliferative effects of SARMs. Microarray analysis and epithelial:mesenchymal stem cell (MSC co-culture signaling studies were performed to understand the mechanisms of action.Dihydrotestosterone and SARMs, but not bicalutamide, inhibited the proliferation of MDA-MB-231-AR. The SARMs reduced the MDA-MB-231-AR tumor growth and tumor weight by greater than 90%, compared to vehicle-treated tumors. SARM treatment inhibited the intratumoral expression of genes and pathways that promote breast cancer development through its actions on the AR. SARM treatment also inhibited the metastasis-promoting paracrine factors, IL6 and MMP13, and subsequent migration and invasion of epithelial:MSC co-cultures.1. AR stimulation inhibits paracrine factors that are important for MSC interactions and breast cancer invasion and metastasis. 2. SARMs may provide promise as novel targeted therapies to treat AR-positive triple-negative breast cancer.

  7. Androgen regulation of adrenocorticotropin and corticosterone secretion in the male rat following novelty and foot shock stressors.

    Science.gov (United States)

    Handa, R J; Nunley, K M; Lorens, S A; Louie, J P; McGivern, R F; Bollnow, M R

    1994-01-01

    To examine mechanisms responsible for sex differences in hypothalamo-pituitary-adrenal (HPA) axis responsiveness to stress, we studied the role of androgens in the regulation of the adrenocorticotropin (ACTH) and corticosterone (CORT) responses to foot shock and novelty stressors in gonadectomized (GDX) or intact male F344 rats. Foot shock or exposure to a novel open field increased plasma ACTH and CORT, which was significantly greater in GDX vs. intacts. Testosterone (T) or dihydrotestosterone propionate (DHT) treatment of GDX animals returned poststress levels of ACTH and CORT to intact levels. Estrogen treatment of GDX males further increased poststress CORT secretion above GDX levels. There was no difference in the ACTH response of anterior pituitaries from intact, GDX, and GDX+DHT animals to CRF using an in vitro perifusion system. There were no differences in beta max or binding affinity of type I or II CORT receptors in the hypothalamus or hippocampus of intact, GDX, or GDX+DHT groups. These data demonstrate an effect of GDX on hormonal indices of stress. The increased response in GDX rats appears to be due to the release from androgen receptor mediated inhibition of the HPA axis. This inhibition by androgen is not due to changes in anterior pituitary sensitivity to CRH, nor to changes in type I or type II corticosteroid receptor concentrations. PMID:8140154

  8. Downscaling procedures reduce chemical use in androgen receptor reporter gene assay.

    Science.gov (United States)

    Di Paolo, Carolina; Kirchner, Kristina; Balk, Fabian Gerhard Peter; Muschket, Matthias; Brack, Werner; Hollert, Henner; Seiler, Thomas-Benjamin

    2016-11-15

    Bioactivity screening studies often face sample amount limitation with respect to the need for reliable, reproducible and quantitative results. Therefore approaches that minimize sample use are needed. Low-volume exposure and chemical dilution procedures were applied in an androgen receptor reporter gene human cell line assay to evaluate environmental contaminants and androgen receptor modulators, which were the agonist 5α-dihydrotestosterone (DHT); and the antagonists flutamide, bisphenol A, 1-hydroxypyrene and triclosan. Cells were exposed in around 1/3 of the medium volume recommended by the protocol (70μL/well). Further, chemical losses during pipetting steps were minimized by applying a low-volume method for compound dilution in medium (250μL for triplicate wells) inside microvolume glass inserts. Simultaneously, compounds were evaluated following conventional procedures (200μL/well, dilution in 24-well plates) for comparison of results. Low-volume exposure tests produced DHT EC50 (3.4-3.7×10(-10)M) and flutamide IC50 (2.2-3.3×10(-7)M) values very similar to those from regular assays (3.1-4.2×10(-10) and 2.1-3.3×10(-7)M respectively) and previous studies. Also, results were within assay acceptance criteria, supporting the relevance of the downscaling setup for agonistic and antagonistic tests. The low-volume exposure was also successful in determining IC50 values for 1-hydroxypyrene (2.1-2.8×10(-6)M), bisphenol A (2.6-3.3×10(-6)M), and triclosan (1.2-1.9×10(-6)M) in agreement with values obtained through high-volume exposure (2.3-2.8, 2.5-3.4 and 1.0-1.3×10(-6)M respectively). Finally, experiments following both low-volume dosing and exposure produced flutamide and triclosan IC50 values similar to those from regular tests. The low-volume experimental procedures provide a simple and effective solution for studies that need to minimize bioassay sample use while maintaining method reliability. The downscaling methods can be applied for the evaluation

  9. Laparoscopic gonedectomy in a case of complete androgen insensitivity syndrome

    OpenAIRE

    Bhaskararao, G.; Himabindu, Y.; Samir Ranjan Nayak; Sriharibabu, M.

    2014-01-01

    Complete Androgen insensitivity syndrome is a disorder of hormone resistance characterized by a female phenotype in an individual with an XY karyotype. The pathogenesis of CAIS involves a defective androgen receptor gene located on X-chromosome at Xq11-12and end organ insensitivity to androgens, although androgen concentrations are appropriate for the age of the patient. There are three major types of androgen insensitivity syndrome: Complete androgen insensitivity syndrome, minimal androgen ...

  10. Zipper-interacting protein kinase is involved in regulation of ubiquitination of the androgen receptor, thereby contributing to dynamic transcription complex assembly.

    Science.gov (United States)

    Felten, A; Brinckmann, D; Landsberg, G; Scheidtmann, K H

    2013-10-10

    We have recently identified apoptosis-antagonizing transcription factor (AATF), tumor-susceptibility gene 101 (TSG101) and zipper-interacting protein kinase (ZIPK) as novel coactivators of the androgen receptor (AR). The mechanisms of coactivation remained obscure, however. Here we investigated the interplay and interdependence between these coactivators and the AR using the endogenous prostate specific antigen (PSA) gene as model for AR-target genes. Chromatin immunoprecipitation in combination with siRNA-mediated knockdown revealed that recruitment of AATF and ZIPK to the PSA enhancer was dependent on AR, whereas recruitment of TSG101 was dependent on AATF. Association of AR and its coactivators with the PSA enhancer or promoter occurred in cycles. Dissociation of AR-transcription complexes was due to degradation because inhibition of the proteasome system by MG132 caused accumulation of AR at enhancer/promoter elements. Moreover, inhibition of degradation strongly reduced transcription, indicating that continued and efficient transcription is based on initiation, degradation and reinitiation cycles. Interestingly, knockdown of ZIPK by siRNA had a similar effect as MG132, leading to reduced transcription but enhanced accumulation of AR at androgen-response elements. In addition, knockdown of ZIPK, as well as overexpression of a dominant-negative ZIPK mutant, diminished polyubiquitination of AR. Furthermore, ZIPK cooperated with the E3 ligase Mdm2 in AR-dependent transactivation, assembled into a single complex on chromatin and phosphorylated Mdm2 in vitro. These results suggest that ZIPK has a crucial role in regulation of ubiquitination and degradation of the AR, and hence promoter clearance and efficient transcription.

  11. Targeting the human androgen receptor gene with platinated triplex-forming oligonucleotides.

    Science.gov (United States)

    Graham, Mindy K; Brown, Terry R; Miller, Paul S

    2015-04-01

    Platinum-derivatized homopyrimidine triplex-forming oligonucleotides (Pt-TFOs) consisting of 2'-O-methyl-5-methyluridine, 2'-O-methyl-5-methylcytidine, and a single 3'-N7-trans-chlorodiammine platinum(II)-2'-deoxyguanosine were designed to cross-link to the transcribed strand at four different sequences in the human androgen receptor (AR) gene. Fluorescence microscopy showed that a fluorescein-tagged Pt-TFO localizes in both the cytoplasm and nucleus when it is transfected into LAPC-4 cells, a human prostate cancer cell line, using Lipofectamine 2000. A capture assay employing streptavidin-coated magnetic beads followed by polymerase chain reaction (PCR) amplification was used to demonstrate that 5'-biotin-conjugated Pt-TFOs cross-link in vitro to their four designated AR gene targets in genomic DNA extracted from LAPC-4 cells. Similarly, the capture assay was used to examine cross-linking between the 5'-biotin-conjugated Pt-TFOs and the AR gene in LAPC-4 cells in culture. Three of the four Pt-TFOs cross-linked to their designated target, suggesting that different regions of the AR gene are not uniformly accessible to Pt-TFO cross-linking. LAPC-4 cells were transfected with fluorescein-tagged Pt-TFO or a control oligonucleotide that does not bind or cross-link to AR DNA. The levels of AR mRNA in highly fluorescent cells isolated by fluorescence-activated cell sorting were determined by RT-qPCR, and the levels of AR protein were monitored by immunofluorescence microscopy. Decreases in mRNA and protein levels of 40 and 30%, respectively, were observed for fluorescein-tagged Pt-TFO versus control treated cells. Although the levels of knockdown of AR mRNA and protein were modest, the results suggest that Pt-TFOs hold potential as agents for controlling gene expression by cross-linking to DNA and disrupting transcription. PMID:25768916

  12. No effects of androgen receptor gene CAG and GGC repeat polymorphisms on digit ratio (2D:4D): Meta-analysis

    OpenAIRE

    Voracek, Martin

    2013-01-01

    Objectives: A series of meta-analyses assessed whether differentially efficacious variants (CAG and GGC repeat-length polymorphisms) of the human androgen receptor gene are associated with digit ratio (2D:4D), a widely investigated putative pointer to prenatal androgen action. Methods: Extensive literature search strategies identified a maximum of 16 samples (total N = 2157) eligible for meta-analysis. Results: In contrast to a small-sample (N = 50) initial report, widely cited affirmatively ...

  13. Genotype versus phenotype in families with androgen insensitivity syndrome

    NARCIS (Netherlands)

    Boehmer, ALM; Bruggenwirth, H; Van Assendelft, C; Otten, BJ; Verleun-Mooijman, MCT; Niermeijer, MF; Brunner, HG; Rouwe, CW; Waelkens, JJ; Oostdijk, W; Kleijer, WJ; Van der Kwast, TH; De Vroede, MA; Drop, SLS

    2001-01-01

    Androgen insensitivity syndrome encompasses a wide range of phenotypes, which are caused by numerous different mutations in the AR gene. Detailed information on the genotype/ phenotype relationship in androgen insensitivity syndrome is important for sex assignment, treatment of androgen insensitivit

  14. Members of the murine Pate family are predominantly expressed in the epididymis in a segment-specific fashion and regulated by androgens and other testicular factors

    Directory of Open Access Journals (Sweden)

    Damdimopoulos Anastasios E

    2011-09-01

    Full Text Available Abstract Background Spermatozoa leaving the testis are not able to fertilize the egg in vivo. They must undergo further maturation in the epididymis. Proteins secreted to the epididymal lumen by the epithelial cells interact with the spermatozoa and enable these maturational changes, and are responsible for proper storage conditions before ejaculation. The present study was carried out in order to characterize the expression of a novel Pate (prostate and testis expression gene family, coding for secreted cysteine-rich proteins, in the epididymis. Methods Murine genome databases were searched and sequence comparisons were performed to identify members of the Pate gene family, and their expression profiles in several mouse tissues were characterized by RT-PCR. Alternate transcripts were identified by RT-PCR, sequencing and Northern hybridization. Also, to study the regulation of expression of Pate family genes by the testis, quantitative (q RT-PCR analyses were performed to compare gene expression levels in the epididymides of intact mice, gonadectomized mice, and gonadectomized mice under testosterone replacement treatment. Results A revised family tree of Pate genes is presented, including a previously uncharacterized Pate gene named Pate-X, and the data revealed that Acrv1 and Sslp1 should also be considered as members of the Pate family. Alternate splicing was observed for Pate-X, Pate-C and Pate-M. All the Pate genes studied are predominantly expressed in the epididymis, whereas expression in the testis and prostate is notably lower. Loss of androgens and/or testicular luminal factors was observed to affect the epididymal expression of several Pate genes. Conclusions We have characterized a gene cluster consisting of at least 14 expressed Pate gene members, including Acrv1, Sslp1 and a previously uncharacterized gene which we named Pate-X. The genes code for putatively secreted, cysteine-rich proteins with a TFP/Ly-6/uPAR domain. Members of

  15. Enhanced evaluation of selective androgen receptor modulators in vivo.

    Science.gov (United States)

    Otto-Duessel, M; He, M; Adamson, T W; Jones, J O

    2013-01-01

    Selective androgen receptor modulators (SARMs) are a class of drugs that control the activity of the androgen receptor (AR), which mediates the response to androgens, in a tissue-selective fashion. They are specifically designed to reduce the possible complications that result from the systemic inhibition or activation of AR in patients with diseases that involve androgen signalling. However, there are no ideal in vivo models for evaluating candidate SARMs. Therefore, we created a panel of androgen-responsive genes in clinically relevant AR expressing tissues including prostate, skin, bone, fat, muscle, brain and kidney. We used select genes from this panel to compare transcriptional changes in response to the full agonist dihydrotestosterone (DHT) and the SARM bolandiol at 16 h and 6 weeks. We identified several genes in each tissue whose expression at each of these time points correlates with the known tissue-specific effects of these compounds. For example, in the prostate we found four genes whose expression was much lower in animals treated with bolandiol compared with animals treated with DHT for 6 weeks, which correlated well with differences in prostate weight. We demonstrate that adding molecular measurements (androgen-regulated gene expression) to the traditional physiological measurements (tissue weights, etc.) makes the evaluation of potential SARMs more accurate, thorough and perhaps more rapid by allowing measurement of selectivity after only 16 h of drug treatment.

  16. HDAC6 regulates androgen receptor hypersensitivity and nuclear localization via modulating Hsp90 acetylation in castration-resistant prostate cancer.

    Science.gov (United States)

    Ai, Junkui; Wang, Yujuan; Dar, Javid A; Liu, June; Liu, Lingqi; Nelson, Joel B; Wang, Zhou

    2009-12-01

    The development of castration-resistant prostate cancer (PCa) requires that under castration conditions, the androgen receptor (AR) remains active and thus nuclear. Heat shock protein 90 (Hsp90) plays a key role in androgen-induced and -independent nuclear localization and activation of AR. Histone deacetylase 6 (HDAC6) is implicated, but has not been proven, in regulating AR activity via modulating Hsp90 acetylation. Here, we report that knockdown of HDAC6 in C4-2 cells using short hairpin RNA impaired ligand-independent nuclear localization of endogenous AR and inhibited PSA expression and cell growth in the absence or presence of dihydrotestosterone (DHT). The dose-response curve of DHT-stimulated C4-2 colony formation was shifted by shHDAC6 such that approximately 10-fold higher concentration of DHT is required, indicating a requirement for HDAC6 in AR hypersensitivity. HDAC6 knockdown also inhibited C4-2 xenograft tumor establishment in castrated, but not in testes-intact, nude mice. Studies using HDAC6-deficient mouse embryonic fibroblasts cells showed that inhibition of AR nuclear localization by HDAC6 knockdown can be largely alleviated by expressing a deacetylation mimic Hsp90 mutant. Taken together, our studies suggest that HDAC6 regulates AR hypersensitivity and nuclear localization, mainly via modulating HSP90 acetylation. Targeting HDAC6 alone or in combination with other therapeutic approaches is a promising new strategy for prevention and/or treatment of castration-resistant PCa.

  17. Molecular cloning and characterization of a nuclear androgen receptor activated by 11-ketotestosterone

    Directory of Open Access Journals (Sweden)

    Karlsson Johnny

    2005-08-01

    Full Text Available Abstract Although 11-ketotestosterone is a potent androgen and induces male secondary sex characteristics in many teleosts, androgen receptors with high binding affinity for 11-ketotestosterone or preferential activation by 11-ketotestosterone have not been identified. So, the mechanism by which 11-ketotestosterone exhibits such high potency remains unclear. Recently we cloned the cDNA of an 11-ketotestosterone regulated protein, spiggin, from three-spined stickleback renal tissue. As spiggin is the only identified gene product regulated by 11-ketotestosterone, the stickleback kidney is ideal for determination of the mechanism of 11-ketotestosterone gene regulation. A single androgen receptor gene with two splicing variants, belonging to the androgen receptor-β subfamily was cloned from stickleback kidney. A high affinity, saturable, single class of androgen specific binding sites, with the characteristics of an androgen receptor, was identified in renal cytosolic and nuclear fractions. Measurement of ligand binding moieties in the cytosolic and nuclear fractions as well as to the recombinant receptor revealed lower affinity for 11-ketotestosterone than for dihydrotestosterone. Treatment with different androgens did not up-regulate androgen receptor mRNA level or increase receptor abundance, suggesting that auto-regulation is not involved in differential ligand activation. However, comparison of the trans-activation potential of the stickleback androgen receptor with the human androgen receptor, in both human HepG2 cells and zebrafish ZFL cells, revealed preferential activation by 11-ketotestosterone of the stickleback receptor, but not of the human receptor. These findings demonstrate the presence of a receptor preferentially activated by 11-ketotestosterone in the three-spined stickleback, so far the only one known in any animal.

  18. Androgen-induced neurite outgrowth is mediated by neuritin in motor neurones.

    Science.gov (United States)

    Marron, T U; Guerini, V; Rusmini, P; Sau, D; Brevini, T A L; Martini, L; Poletti, A

    2005-01-01

    In the brain, the spinal cord motor neurones express the highest levels of the androgen receptor (AR). Experimental data have suggested that neurite outgrowth in these neurones may be regulated by testosterone or its derivative 5alpha-dihydrotestosterone (DHT), formed by the 5alpha-reductase type 2 enzyme. In this study we have produced and characterized a model of immortalized motor neuronal cells expressing the mouse AR (mAR) [neuroblastoma-spinal cord (NSC) 34/mAR] and analysed the role of androgens in motor neurones. Androgens either activated or repressed several genes; one has been identified as the mouse neuritin, a protein responsible for neurite elongation. Real-time PCR analysis has shown that the neuritin gene is expressed in the basal condition in immortalized motor neurones and is selectively up-regulated by androgens in NSC34/mAR cells; the DHT effect is counteracted by the anti-androgen Casodex. Moreover, DHT induced neurite outgrowth in NSC34/mAR, while testosterone was less effective and its action was counteracted by the 5alpha-reductase type 2 enzyme inhibitor finasteride. Finally, the androgenic effect on neurite outgrowth was abolished by silencing neuritin with siRNA. Therefore, the trophic effects of androgens in motor neurones may be explained by the androgenic regulation of neuritin, a protein linked to neurone development, elongation and regeneration. PMID:15606892

  19. Chromatin structure regulates gene conversion.

    Directory of Open Access Journals (Sweden)

    W Jason Cummings

    2007-10-01

    Full Text Available Homology-directed repair is a powerful mechanism for maintaining and altering genomic structure. We asked how chromatin structure contributes to the use of homologous sequences as donors for repair using the chicken B cell line DT40 as a model. In DT40, immunoglobulin genes undergo regulated sequence diversification by gene conversion templated by pseudogene donors. We found that the immunoglobulin Vlambda pseudogene array is characterized by histone modifications associated with active chromatin. We directly demonstrated the importance of chromatin structure for gene conversion, using a regulatable experimental system in which the heterochromatin protein HP1 (Drosophila melanogaster Su[var]205, expressed as a fusion to Escherichia coli lactose repressor, is tethered to polymerized lactose operators integrated within the pseudo-Vlambda donor array. Tethered HP1 diminished histone acetylation within the pseudo-Vlambda array, and altered the outcome of Vlambda diversification, so that nontemplated mutations rather than templated mutations predominated. Thus, chromatin structure regulates homology-directed repair. These results suggest that histone modifications may contribute to maintaining genomic stability by preventing recombination between repetitive sequences.

  20. Cloning and expression analysis of androgen receptor gene in chicken embryogenesis.

    Science.gov (United States)

    Katoh, Hironori; Ogino, Yukiko; Yamada, Gen

    2006-03-01

    We cloned a full-length androgen receptor (AR) cDNA from chicken (Gallus gallus) gonads. The cDNA sequence has an open reading frame of 2109 bp encoding 703 amino acids. The chicken AR (cAR) shares high homology with ARs from other species in its amino acid sequences, in particular DNA binding domain (DBD) and ligand binding domain (LBD). RT-PCR analysis revealed that cAR mRNA is expressed in several embryonic tissues of both sexes, and relatively higher expression was observed in left ovary compared with testis. The immunoreactive signal of AR was co-localized within the ovarian cell nucleus, while such nuclear localization was not detected in those of testis. To get insight on the possible role of androgen-AR signaling during gonadal development, non-steroidal AR antagonist, flutamide, was administrated in ovo. The treatment induced the disorganization of sex cords in ovarian cortex at day 12 of incubation. The effect was restored by testosterone co-treatment, implying the possibility that AR mediated signaling may be involved in ovarian morphogenesis. Furthermore, co-treatment of flutamide with estradiol-17beta (E2) also restored the phenotype, suggesting androgen-AR signaling might activate aromatase expression that is necessary for estrogen synthesis. These findings suggest androgen-AR signaling might contribute to chicken embryonic ovarian development. PMID:16480982

  1. Hypochlorite Oxidation of Select Androgenic Steroids

    Science.gov (United States)

    Steroid hormones are vital for regulation of various biological functions including sexual development. Elevated concentrations of natural and synthetic androgenic steroids have been shown to adversely affect normal development in indigenous aqueous species. Androgens and their s...

  2. Mathematical Models of Gene Regulation

    Science.gov (United States)

    Mackey, Michael C.

    2004-03-01

    This talk will focus on examples of mathematical models for the regulation of repressible operons (e.g. the tryptophan operon), inducible operons (e.g. the lactose operon), and the lysis/lysogeny switch in phage λ. These ``simple" gene regulatory elements can display characteristics experimentally of rapid response to perturbations and bistability, and biologically accurate mathematical models capture these aspects of the dynamics. The models, if realistic, are always nonlinear and contain significant time delays due to transcriptional and translational delays that pose substantial problems for the analysis of the possible ranges of dynamics.

  3. QB1 - Stochastic Gene Regulation

    Energy Technology Data Exchange (ETDEWEB)

    Munsky, Brian [Los Alamos National Laboratory

    2012-07-23

    Summaries of this presentation are: (1) Stochastic fluctuations or 'noise' is present in the cell - Random motion and competition between reactants, Low copy, quantization of reactants, Upstream processes; (2) Fluctuations may be very important - Cell-to-cell variability, Cell fate decisions (switches), Signal amplification or damping, stochastic resonances; and (3) Some tools are available to mode these - Kinetic Monte Carlo simulations (SSA and variants), Moment approximation methods, Finite State Projection. We will see how modeling these reactions can tell us more about the underlying processes of gene regulation.

  4. The Nrf1 and Nrf2 Balance in Oxidative Stress Regulation and Androgen Signaling in Prostate Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, Michelle A. [Department of Pharmacology, Tulane University Medical Center, 1430 Tulane Avenue, New Orleans, LA 70112 (United States); Abdel-Mageed, Asim B. [Department of Urology, Tulane University Medical Center, 1430 Tulane Avenue, New Orleans, LA 70112 (United States); Mondal, Debasis, E-mail: dmondal@tulane.edu [Department of Pharmacology, Tulane University Medical Center, 1430 Tulane Avenue, New Orleans, LA 70112 (United States)

    2010-06-21

    Reactive oxygen species (ROS) signaling has recently sparked a surge of interest as being the molecular underpinning for cancer cell survival, but the precise mechanisms involved have not been completely elucidated. This review covers the possible roles of two ROS-induced transcription factors, Nrf1 and Nrf2, and the antioxidant proteins peroxiredoxin-1 (Prx-1) and Thioredoxin-1 (Txn-1) in modulating AR expression and signaling in aggressive prostate cancer (PCa) cells. In androgen independent (AI) C4-2B cells, in comparison to the parental androgen dependent (AD) LNCaP cells, we present evidence of high Nrf1 and Prx-1 expression and low Nrf2 expression in these aggressive PCa cells. Furthermore, in DHT treated C4-2B cells, increased expression of the p65 (active) isoform of Nrf1 correlated with enhanced AR transactivation. Our findings implicate a crucial balance of Nrf1 and Nrf2 signaling in regulating AR activity in AI-PCa cells. Here we will discuss how understanding the mechanisms by which oxidative stress may affect AR signaling may aid in developing novel therapies for AI-PCa.

  5. Glutathione S-transferase Pi mediates proliferation of androgen-independent prostate cancer cells

    OpenAIRE

    Hokaiwado, Naomi; Takeshita, Fumitaka; Naiki-Ito, Aya; Asamoto, Makoto; Ochiya, Takahiro; Shirai, Tomoyuki

    2008-01-01

    Prostate cancers generally acquire an androgen-independent growth capacity with progression, resulting in resistance to antiandrogen therapy. Therefore, identification of the genes regulated through this process may be important for understanding the mechanisms of prostate carcinogenesis. We here utilized androgen-dependent/independent transplantable tumors, newly established with the ‘transgenic rat adenocarcinoma in prostate’ (TRAP) model, to analyze their gene expression using microarrays....

  6. Update of the human secretoglobin (SCGB gene superfamily and an example of 'evolutionary bloom' of androgen-binding protein genes within the mouse Scgb gene superfamily

    Directory of Open Access Journals (Sweden)

    Jackson Brian C

    2011-10-01

    Full Text Available Abstract The secretoglobins (SCGBs comprise a family of small, secreted proteins found in animals exclusively of mammalian lineage. There are 11 human SCGB genes and five pseudogenes. Interestingly, mice have 68 Scgb genes, four of which are highly orthologous to human SCGB genes; the remainder represent an 'evolutionary bloom' and make up a large gene family represented by only six counterparts in humans. SCGBs are found in high concentrations in many mammalian secretions, including fluids of the lung, lacrimal gland, salivary gland, prostate and uterus. Whereas the biological activities of most individual SCGBs have not been fully characterised, what already has been discovered suggests that this family has an important role in the modulation of inflammation, tissue repair and tumorigenesis. In mice, the large Scgb1b and Scgb2b gene families encode the androgen-binding proteins, which have been shown to play a role in mate selection. Although much has been learned about SCGBs in recent years, clearly more research remains to be done to allow a better understanding of the roles of these proteins in human health and disease. Such information is predicted to reveal valuable novel drug targets for the treatment of inflammation, as well as designing biomarkers that might identify tissue damage or cancer.

  7. Effects of triclocarban on the transcription of estrogen, androgen and aryl hydrocarbon receptor responsive genes in human breast cancer cells.

    Science.gov (United States)

    Tarnow, Patrick; Tralau, Tewes; Hunecke, Danele; Luch, Andreas

    2013-08-01

    Triclocarban (TCC) is an antimicrobial agent that is used in detergents, soaps and other personal hygiene products. Similarly to triclosan the widespread use of TCC has raised concerns about its endocrine potential. In luciferase-based reporter assays TCC has been shown to enhance estrogenic and androgenic activities following cellular coexposure with estrogen or dihydrotestosterone, respectively. The present study demonstrates that although coexposure with TCC enhances the estrogenic and androgenic readout of luciferase-based reporter cell lines such as HeLa9908 and MDA-kb2, it fails to act as a xenoandrogen on transcriptional level, nor does it induce cell proliferation in the estrogen sensitive E-screen. In addition TCC did not alter the expression of estrogen responsive genes in human mammary carcinoma MCF-7 cells exposed to 17β-estradiol, bisphenol A, butylparaben or genistein. However, TCC was shown to interfere with the regulon of the aryl hydrocarbon receptor (AhR) as TCC showed a costimulatory effect on transcription of CYP1A1 and CYP1B1, effectively lowering the transcriptional threshold for both genes in the presence of estrogens. It thus seems, that while the induction of the respective luciferase reporter assays by TCC is an unspecific false positive signal caused by luciferase stabilisation, TCC has the potential to interfere with the regulatory crosstalk of the estrogen receptor (ER) and the AhR regulon. PMID:23524099

  8. Elevated expression of steroidogenesis pathway genes; CYP17, GATA6 and StAR in prenatally androgenized rats.

    Science.gov (United States)

    Jahromi, Marziyeh Salehi; Tehrani, Fahimeh Ramezani; Noroozzadeh, Mahsa; Zarkesh, Maryam; Ghasemi, Asghar; Zadeh-Vakili, Azita

    2016-11-15

    It is believed that excess androgen exposure of the fetus, via altered gene expression, causes hyperandrogenism a key feature of polycystic ovary syndrome (PCOS). The aim of this study was to evaluate expression of Cytochrome P450-17 (CYP17), GATA-binding protein (GAGT6) and Steroidogenic acute regulatory protein (StAR), genes of adult female rats prenatally exposed to androgen excess, closely reflect endocrine and ovarian disturbances of PCOS in women, by comparing them during different phases of estrus cycle with those of non-treated rats. Both the adult prenatally testosterone exposed and control rats (n=23, each) were divided into four groups based on their observed vaginal smear (proestrus, estrus, metestrus and diestrus) and the relative expression of CYP17, GATA6 and StAR genes was measured in ovarian theca cells using Cyber-green Real-Time PCR. Serum sex steroid hormones and gonadotropins levels were measured using the ELISA method; a comparison of these two groups showed that there was an overall increase in the studied genes (CYP17; 2.39 fold change, 95% CI: 1.23-3.55; P<0.05, GATA6; 2.08 fold change, 95% CI: 1.62-2.55; P<0.0001, and StAR; 1.4 fold change, 95% CI: 1.02-1.78; P<0.05), despite variations in different phases with maximum elevation for all genes in diestrus. The changes observed may impair the normal development of ovaries that mediate the programming of adult PCOS.

  9. Non-Cell-Autonomous Regulation of Prostate Epithelial Homeostasis by Androgen Receptor.

    Science.gov (United States)

    Zhang, Boyu; Kwon, Oh-Joon; Henry, Gervaise; Malewska, Alicia; Wei, Xing; Zhang, Li; Brinkley, William; Zhang, Yiqun; Castro, Patricia D; Titus, Mark; Chen, Rui; Sayeeduddin, Mohammad; Raj, Ganesh V; Mauck, Ryan; Roehrborn, Claus; Creighton, Chad J; Strand, Douglas W; Ittmann, Michael M; Xin, Li

    2016-09-15

    Prostate inflammation has been suggested as an etiology for benign prostatic hyperplasia (BPH). We show that decreased expression of the androgen receptor (AR) in luminal cells of human BPH specimens correlates with a higher degree of regional prostatic inflammation. However, the cause-and-effect relationship between the two events remains unclear. We investigated specifically whether attenuating AR activity in prostate luminal cells induces inflammation. Disrupting luminal cell AR signaling in mouse models promotes cytokine production cell-autonomously, impairs epithelial barrier function, and induces immune cell infiltration, which further augments local production of cytokines and chemokines including Il-1 and Ccl2. This inflammatory microenvironment promotes AR-independent prostatic epithelial proliferation, which can be abolished by ablating IL-1 signaling or depleting its major cellular source, the macrophages. This study demonstrates that disrupting luminal AR signaling promotes prostate inflammation, which may serve as a mechanism for resistance to androgen-targeted therapy for prostate-related diseases. PMID:27594448

  10. Androgen receptor function links human sexual dimorphism to DNA methylation.

    Directory of Open Access Journals (Sweden)

    Ole Ammerpohl

    Full Text Available Sex differences are well known to be determinants of development, health and disease. Epigenetic mechanisms are also known to differ between men and women through X-inactivation in females. We hypothesized that epigenetic sex differences may also result from sex hormone functions, in particular from long-lasting androgen programming. We aimed at investigating whether inactivation of the androgen receptor, the key regulator of normal male sex development, is associated with differences of the patterns of DNA methylation marks in genital tissues. To this end, we performed large scale array-based analysis of gene methylation profiles on genomic DNA from labioscrotal skin fibroblasts of 8 males and 26 individuals with androgen insensitivity syndrome (AIS due to inactivating androgen receptor gene mutations. By this approach we identified differential methylation of 167 CpG loci representing 162 unique human genes. These were significantly enriched for androgen target genes and low CpG content promoter genes. Additional 75 genes showed a significant increase of heterogeneity of methylation in AIS compared to a high homogeneity in normal male controls. Our data show that normal and aberrant androgen receptor function is associated with distinct patterns of DNA-methylation marks in genital tissues. These findings support the concept that transcription factor binding to the DNA has an impact on the shape of the DNA methylome. These data which derived from a rare human model suggest that androgen programming of methylation marks contributes to sexual dimorphism in the human which might have considerable impact on the manifestation of sex-associated phenotypes and diseases.

  11. A Role for the Androgen Metabolite, 5alpha androstane, 3beta, 17beta Diol (3b-DIol in the regulation of the hypothalamo-pituitary-adrenal axis.

    Directory of Open Access Journals (Sweden)

    Robert James Handa

    2011-11-01

    Full Text Available Activation of the hypothalamo-pituitary-adrenal (HPA axis is a basic reaction of animals to environmental perturbations that threaten homeostasis. These responses are ultimately regulated by neurons residing within the paraventricular nucleus of the hypothalamus (PVN. Within the PVN, corticotropin-releasing hormone (CRH, vasopressin (AVP and oxytocin (OT expressing neurons are critical as they can regulate both neuroendocrine and autonomic responses. Estradiol (E2 and testosterone (T are well known reproductive hormones, however, they have also been shown to modulate stress reactivity. In rodent models, evidence shows that under some conditions E2 enhances stress activated ACTH and corticosterone secretion. In contrast, T decreases the gain of the HPA axis. The modulatory role of testosterone was originally thought to be via 5 alpha reduction to the potent androgen, dihydrotestosterone, whereas E2 effects were thought to be mediated by both estrogen receptors alpha (ERα and beta (ERβ. However, DHT has been shown to be metabolized to the ERβ agonist, 5alpha- androstane 3beta,17beta diol (3b-Diol. The actions of 3β-Diol on the HPA axis are mediated by ERbeta which inhibits the PVN response to stressors. In gonadectomized rats, ERbeta agonists reduce CORT and ACTH responses to restraint stress, an effect that is also present in wild-type but not ERbeta knockout mice. The neurobiological mechanisms underlying the actions of ERbeta to alter HPA reactivity are not currently known. CRH, AVP and OT have all been shown to be regulated by estradiol and recent studies indicate an important role of ERbeta in these regulatory processes. Moreover, activation of the CRH and AVP promoters have been shown by 3β-Diol binding to ERbeta and this is thought to be through alternate pathways of gene regulation. Based on available data, a novel and important role for 3beta Diol in the regulation of the HPA axis is suggested.

  12. 雄激素受体基因的表型异种突变%Phenotypic heterogeneity of mutations in androgen receptor gene

    Institute of Scientific and Technical Information of China (English)

    Singh Rajender; Lalji Singh; Kumarasamy Thangaraj

    2007-01-01

    Androgen receptor (AR) gene has been extensively studied in diverse clinical conditions. In addition to the point mutations, trinucleotide repeat (CAG and GGN) length polymorphisms have been an additional subject of interest and controversy among geneticists. The polymorphic variations in triplet repeats have been associated with a number of disorders, but at the same time contradictory findings have also been reported. Further, studies on the same disorder in different populations have generated different results. Therefore, combined analysis or review of the published studies has been of much value to extract information on the significance of variations in the gene in various clinical conditions. AR genetics has been reviewed extensively but until now review articles have focused on individual clinical categories such as androgen insensitivity, male infertility, prostate cancer, and so on. We have made the first effort to review most the aspects of AR genetics. The impact of androgens in various disorders and polymorphic variations in the AR gene is the main focus of this review. Additionally, the correlations observed in various studies have been discussed in the light of in vitro evidences available for the effect of AR gene variations on the action of androgens.

  13. Regulation of the genes involved in nitrification.

    Energy Technology Data Exchange (ETDEWEB)

    Arp, D.J.; Sayavedra-Soto, L.A.

    2003-08-14

    OAK-B135 This project focuses on the characterization of the regulation of the genes involved in nitrification in the bacterium Nitrosomonas europaea. The key genes in the nitrification pathway, amo and hao, are present in multiple copies in the genome. The promoters for these genes were identified and characterized. It was shown that there were some differences in the transcriptional regulation of the copies of these genes.

  14. p38MAPK activation is involved in androgen-independent proliferation of human prostate cancer cells by regulating IL-6 secretion

    International Nuclear Information System (INIS)

    Increased levels of serum interleukin-6 (IL-6) are frequently observed in patients with advanced, hormone-refractory prostate cancer. However, the precise mechanism of IL-6 regulation is still largely unknown. Since prostate cancer gradually progresses to an androgen-independent state despite the stress caused by various therapeutic agents, we hypothesized the stress-activated protein kinases (SAPKs) involvement in androgen-independent growth or IL-6 secretion of prostate cancer cells. Using PC-3 and DU145 human prostate cancer cells, we analyzed the role of SAPKs in IL-6 mediated cell growth and found that the p38MAPK and JNK are involved in androgen-independent cancer cell growth. Furthermore, IL-6 secretion by PC-3 and DU145 cells was significantly suppressed by SAPKs inhibitor, especially by p38MAPK inhibitor SB203580, but not by JNK inhibitor SP600125 nor by MEK inhibitor, PD98059. These results raised the possibility that the IL-6 mediated androgen-independent proliferation of PC-3 and DU145 cells is regulated at least partly via SAPKs signaling pathway especially through p38MAPK activation

  15. Regulation of the transcriptional coactivator FHL2 licenses activation of the androgen receptor in castrate-resistant prostate cancer.

    Science.gov (United States)

    McGrath, Meagan J; Binge, Lauren C; Sriratana, Absorn; Wang, Hong; Robinson, Paul A; Pook, David; Fedele, Clare G; Brown, Susan; Dyson, Jennifer M; Cottle, Denny L; Cowling, Belinda S; Niranjan, Birunthi; Risbridger, Gail P; Mitchell, Christina A

    2013-08-15

    It is now clear that progression from localized prostate cancer to incurable castrate-resistant prostate cancer (CRPC) is driven by continued androgen receptor (AR), signaling independently of androgen. Thus, there remains a strong rationale to suppress AR activity as the single most important therapeutic goal in CRPC treatment. Although the expression of ligand-independent AR splice variants confers resistance to AR-targeted therapy and progression to lethal castrate-resistant cancer, the molecular regulators of AR activity in CRPC remain unclear, in particular those pathways that potentiate the function of mutant AR in CRPC. Here, we identify FHL2 as a novel coactivator of ligand-independent AR variants that are important in CRPC. We show that the nuclear localization of FHL2 and coactivation of the AR is driven by calpain cleavage of the cytoskeletal protein filamin, a pathway that shows differential activation in prostate epithelial versus prostate cancer cell lines. We further identify a novel FHL2-AR-filamin transcription complex, revealing how deregulation of this axis promotes the constitutive, ligand-independent activation of AR variants, which are present in CRPC. Critically, the calpain-cleaved filamin fragment and FHL2 are present in the nucleus only in CRPC and not benign prostate tissue or localized prostate cancer. Thus, our work provides mechanistic insight into the enhanced AR activation, most notably of the recently identified AR variants, including AR-V7 that drives CRPC progression. Furthermore, our results identify the first disease-specific mechanism for deregulation of FHL2 nuclear localization during cancer progression. These results offer general import beyond prostate cancer, given that nuclear FHL2 is characteristic of other human cancers where oncogenic transcription factors that drive disease are activated like the AR in prostate cancer.

  16. The Androgenic Alopecia Protective Effects of Forsythiaside-A and the Molecular Regulation in a Mouse Model.

    Science.gov (United States)

    Shin, Heon-Sub; Park, Sang-Yong; Song, Hyun-Geun; Hwang, Eunson; Lee, Don-Gil; Yi, Tae-Hoo

    2015-06-01

    This study examined the inhibitory effect of forsythiaside-A, a natural substance derived from Forsythia suspensa (F. suspensa), on entry into catagen induced by dihydrotestosterone (DHT) in an androgenic alopecia mouse model. In vitro experiment comparing finasteride with forsythiaside-A showed that forsythiaside-A treatment resulted in a 30% greater inhibition of DHT-induced apoptosis in human hair dermal papilla cell (HHDPCs) and human keratinocytes (HaCaTs). In vivo experiment showed that mouse hair density and thickness were increased by 50% and 30%, respectively, in the forsythiaside-A-treated group when compared to a DHT group. Tissue histological results revealed that the forsythiaside-A-treated group had an increase in size and shape of the hair follicles and a 1.5 times increase in the follicle anagen/telogen ratio when compared to the finasteride group. Western blot examination of TGF-β2 expression related to apoptosis signaling in mouse skin verified that forsythiaside-A reduced the expression of TGF-β2 by 75% and suppressed apoptosis by reducing the expression of caspase-9 by 40%, and caspase-3 by 53%, which play an roles up-regulator in the apoptosis signal. The forsythiaside-A group also showed a 60% increase in the Bcl-2/Bax ratio, which is a factor related to mitochondrial apoptosis. Our results indicated that forsythiaside-A prevents apoptosis by similar mechanism with finasteride, but forsythiaside-A is more effective than finasteride. In summary, forsythiaside-A controlled the apoptosis of hair cells and retarded the entry into the catagen phase and therefore represents a natural product with much potential for use as a treatment for androgenic alopecia. PMID:25808759

  17. Relationship between gene expression of nitric oxide synthase and androgens in rat corpus cavernosum

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective To cladfy the dependence of neural nitric oxide synthase mRNA (nNOSmRNA) and endothelial nitric oxide synthase mRNA (eNOSmRNA) on androgens (testosterone [T] and dihydrotestosterone [DHT]). Methods 160 male Sprague Dawley (SD) rats were divided into Groups A (56 rats, 5 weeks old), B (50 rets,10 weeks old) and C (54 rats, 58 weeks old). Groups A, B and C were all subdivided respectively into five Subgroups. Subgroup 1: intact osntrels; Subgroup 2: castrated; Subgroup 3: castrated with testosterone ubdecanoate 25 mg/kg·mon-1, intramuscular injection, Subgroup 4: castrated with testosterone undecanoate 50 mg/kg·mon-1, intramuscular injection and Subgroup 5: treated with finaeteride 4.5 mg/kg·day-1, orally. Four and ten weeks after treatments described above, one half of the rats were killed. Serum samples were token for measurements of T, free testosterone (FT) and DHT by raclioimmunoassay. Penile samples were treated with liquid nitrogen and then stored at-80℃. nNOSmRNA and eNOSmRNA were detected by semiquantitative reveres-transcription polymerase chain reaction (RT-PCR) and Dot blot. Resulte There was no significant difference between Subgroup 1 and Subgroup 2 or Subgroup 5 in all Groups A, B and C. The expression of penile eNOSmRNA of Group A was significantly increased (4 weeks model) (P<0.05) or increased (10 weeks model) (P>0.05) in Subgroup 2 or 5 compared with those in Subgroup 1.There wes no significant difference between Subgroup 1 and Subgroup 2 or Subgroup 5 of Group B in 4 weeks model (P>0.05). There was an elevation when animals were castrated or treated with finasteride in the 10 weeks model.The expreseion of penile eNOSmRNA of Group C was significantly increased (10 weeks model) (P<0.05) or increased (4 weeks model) in Subgroup 2 compared with those in Subgroup 1.The production of eNOSmRNA in Subgroup 5 was also increased (including 4- and 10-week models). When T was supplied for castration, the penile eNOSmRNA was desreased to

  18. Dihydrotestosterone Administration Does Not Increase Intraprostatic Androgen Concentrations or Alter Prostate Androgen Action in Healthy Men: A Randomized-Controlled Trial

    OpenAIRE

    Page, Stephanie T; Lin, Daniel W.; Mostaghel, Elahe A.; Marck, Brett T.; Wright, Jonathan L; Wu, Jennifer; Amory, John K.; Peter S Nelson; Matsumoto, Alvin M.

    2010-01-01

    Exogenous dihydrotestosterone (DHT), which substantially raises serum DHT and lowers serum T, does not significantly alter intraprostatic androgen levels or androgen-responsive gene expression in healthy men.

  19. Did androgen-binding protein paralogs undergo neo- and/or Subfunctionalization as the Abp gene region expanded in the mouse genome?

    Directory of Open Access Journals (Sweden)

    Robert C Karn

    Full Text Available The Androgen-binding protein (Abp region of the mouse genome contains 30 Abpa genes encoding alpha subunits and 34 Abpbg genes encoding betagamma subunits, their products forming dimers composed of an alpha and a betagamma subunit. We endeavored to determine how many Abp genes are expressed as proteins in tears and saliva, and as transcripts in the exocrine glands producing them. Using standard PCR, we amplified Abp transcripts from cDNA libraries of C57BL/6 mice and found fifteen Abp gene transcripts in the lacrimal gland and five in the submandibular gland. Proteomic analyses identified proteins corresponding to eleven of the lacrimal gland transcripts, all of them different from the three salivary ABPs reported previously. Our qPCR results showed that five of the six transcripts that lacked corresponding proteins are expressed at very low levels compared to those transcripts with proteins. We found 1 no overlap in the repertoires of expressed Abp paralogs in lacrimal gland/tears and salivary glands/saliva; 2 substantial sex-limited expression of lacrimal gland/tear expressed-paralogs in males but no sex-limited expression in females; and 3 that the lacrimal gland/tear expressed-paralogs are found exclusively in ancestral clades 1, 2 and 3 of the five clades described previously while the salivary glands/saliva expressed-paralogs are found only in clade 5. The number of instances of extremely low levels of transcription without corresponding protein production in paralogs specific to tears and saliva suggested the role of subfunctionalization, a derived condition wherein genes that may have been expressed highly in both glands ancestrally were down-regulated subsequent to duplication. Thus, evidence for subfunctionalization can be seen in our data and we argue that the partitioning of paralog expression between lacrimal and salivary glands that we report here occurred as the result of adaptive evolution.

  20. Potentially harmful advantage to athletes: a putative connection between UGT2B17 gene deletion polymorphism and renal disorders with prolonged use of anabolic androgenic steroids

    OpenAIRE

    Barker James; Székely Andrea D; Petróczi Andrea; Deshmukh Nawed; Hussain Iltaf; Naughton Declan P

    2010-01-01

    Abstract Background and objective With prolonged use of anabolic androgenic steroids (AAS), occasional incidents of renal disorders have been observed. Independently, it has also been established that there are considerable inter-individual and inter-ethnic differences, in particular with reference to the uridine diphosphate-glucuronosyltransferase 2B17 (UGT2B17) gene, in metabolising these compounds. This report postulates the association of deletion polymorphism in the UGT2B17 gene with the...

  1. Human heterochromatin protein 1 isoforms regulate androgen receptor signaling in prostate cancer.

    Science.gov (United States)

    Itsumi, Momoe; Shiota, Masaki; Yokomizo, Akira; Kashiwagi, Eiji; Takeuchi, Ario; Tatsugami, Katsunori; Inokuchi, Junichi; Song, Yoohyun; Uchiumi, Takeshi; Naito, Seiji

    2013-06-01

    Androgen receptor (AR) signaling is critical for the tumorigenesis and development of prostate cancer, as well as the progression to castration-resistant prostate cancer. We previously showed that the heterochromatin protein 1 (HP1) β isoform plays a critical role in transactivation of AR signaling as an AR coactivator that promotes prostate cancer cell proliferation. However, the roles of other HP1 isoforms, HP1α and HP1γ, in AR expression and prostate cancer remain unclear. Here, we found that knockdown of HP1γ, but not HP1α, reduced AR expression and cell proliferation by inducing cell cycle arrest at G1 phase in LNCaP cells. Conversely, overexpression of full-length HP1α and its C-terminal deletion mutant increased AR expression and cell growth, whereas overexpression of HP1γ had no effect. Similarly, HP1α overexpression promoted 22Rv1 cell growth, whereas HP1γ knockdown reduced the proliferation of CxR cells, a castration-resistant LNCaP derivative. Taken together, HP1 isoforms distinctly augment AR signaling and cell growth in prostate cancer. Therefore, silencing of HP1β and HP1γ may be a promising therapeutic strategy for treatment of prostate cancer.

  2. Androgen regulates neuritin mRNA levels in an in vivo model of steroid-enhanced peripheral nerve regeneration.

    Science.gov (United States)

    Fargo, Keith N; Alexander, Thomas D; Tanzer, Lisa; Poletti, Angelo; Jones, Kathryn J

    2008-05-01

    Following crush injury to the facial nerve in Syrian hamsters, treatment with androgens enhances axonal regeneration rates and decreases time to recovery. It has been demonstrated in vitro that the ability of androgen to enhance neurite outgrowth in motoneurons is dependent on neuritin-a protein that is involved in the re-establisment of neuronal connectivity following traumatic damage to the central nervous system and that is under the control of several neurotrophic and neuroregenerative factors--and we have hypothesized that neuritin is a mediator of the ability of androgen to increase peripheral nerve regeneration rates in vivo. Testosterone treatment of facial nerve-axotomized hamsters resulted in an approximately 300% increase in neuritin mRNA levels 2 days post-injury. Simultaneous treatment with flutamide, an androgen receptor blocker that is known to prevent androgen enhancement of nerve regeneration, abolished the ability of testosterone to upregulate neuritin mRNA levels. In a corroborative in vitro experiment, the androgen dihydrotestosterone induced an approximately 100% increase in neuritin mRNA levels in motoneuron-neuroblastoma cells transfected with androgen receptors, but not in cells without androgen receptors. These data confirm that neuritin is under the control of androgens, and suggest that neuritin is an important effector of androgen in enhancing peripheral nerve regeneration following injury. Given that neuritin has now been shown to be involved in responses to both central and peripheral injuries, and appears to be a common effector molecule for several neurotrophic and neurotherapeutic agents, understanding the neuritin pathway is an important goal for the clinical management of traumatic nervous system injuries. PMID:18419250

  3. Sequence of the intron/exon junctions of the coding region of the human androgen receptor gene and identification of a point mutation in a family with complete androgen insensitivity

    International Nuclear Information System (INIS)

    Androgens act through a receptor protein (AR) to mediate sex differentiation and development of the male phenotype. The authors have isolated the eight exons in the amino acid coding region of the AR gene from a human X chromosome library. Nucleotide sequences of the AR gene intron/exon boundaries were determined for use in designing synthetic oligonucleotide primers to bracket coding exons for amplification by the polymerase chain reaction. Genomic DNA was amplified from 46, XY phenotypic female siblings with complete androgen insensitivity syndrome. AR binding affinity for dihydrotestosterone in the affected siblings was lower than in normal males, but the binding capacity was normal. Sequence analysis of amplified exons demonstrated within the AR steroid-binding domain (exon G) a single guanine to adenine mutation, resulting in replacement of valine with methionine at amino acid residue 866. As expected, the carrier mother had both normal and mutant AR genes. Thus, a single point mutation in the steroid-binding domain of the AR gene correlated with the expression of an AR protein ineffective in stimulating male sexual development

  4. Sequence of the intron/exon junctions of the coding region of the human androgen receptor gene and identification of a point mutation in a family with complete androgen insensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Lubahn, D.B.; Simental, J.A.; Higgs, H.N.; Wilson, E.M.; French, F.S. (Univ. of North Carolina, Chapel Hill (USA)); Brown, T.R.; Migeon, C.J. (Johns Hopkins Univ. School of Medicine, Baltimore, MD (USA))

    1989-12-01

    Androgens act through a receptor protein (AR) to mediate sex differentiation and development of the male phenotype. The authors have isolated the eight exons in the amino acid coding region of the AR gene from a human X chromosome library. Nucleotide sequences of the AR gene intron/exon boundaries were determined for use in designing synthetic oligonucleotide primers to bracket coding exons for amplification by the polymerase chain reaction. Genomic DNA was amplified from 46, XY phenotypic female siblings with complete androgen insensitivity syndrome. AR binding affinity for dihydrotestosterone in the affected siblings was lower than in normal males, but the binding capacity was normal. Sequence analysis of amplified exons demonstrated within the AR steroid-binding domain (exon G) a single guanine to adenine mutation, resulting in replacement of valine with methionine at amino acid residue 866. As expected, the carrier mother had both normal and mutant AR genes. Thus, a single point mutation in the steroid-binding domain of the AR gene correlated with the expression of an AR protein ineffective in stimulating male sexual development.

  5. Regulating gene expression : surprises still in store

    NARCIS (Netherlands)

    Jansen, Ritsert C.; Nap, Jan-Peter

    2004-01-01

    Understanding how genes constitute and contribute to the regulatory networks that result in phenotypic diversity is the major challenge of the post-genome era. Recently, it has been shown that major players in gene regulation can be identified by genome-wide linkage analysis of whole-genome gene exp

  6. Identification of let-7-regulated oncofetal genes

    DEFF Research Database (Denmark)

    Boyerinas, Benjamin; Park, Sun-Mi; Shomron, Noam;

    2008-01-01

    -regulated at the end of embryonic development. Let-7 is often down-regulated early during cancer development, suggesting that let-7-regulated oncofetal genes (LOG) may become reexpressed in cancer cells. Using comparative bioinformatics, we have identified 12 conserved LOGs that include HMGA2 and IMP-1/CRD-BP. IMP-1...

  7. Interactions of methoxyacetic acid with androgen receptor

    International Nuclear Information System (INIS)

    Endocrine disruptive compounds (EDC) alter hormone-stimulated, nuclear receptor-dependent physiological and developmental processes by a variety of mechanisms. One recently identified mode of endocrine disruption is through hormone sensitization, where the EDC modulates intracellular signaling pathways that control nuclear receptor function, thereby regulating receptor transcriptional activity indirectly. Methoxyacetic acid (MAA), the primary, active metabolite of the industrial solvent ethylene glycol monomethyl ether and a testicular toxicant, belongs to this EDC class. Modulation of nuclear receptor activity by MAA could contribute to the testicular toxicity associated with MAA exposure. In the present study, we evaluated the impact of MAA on the transcriptional activity of several nuclear receptors including the androgen receptor (AR), which plays a pivotal role in the development and maturation of spermatocytes. AR transcriptional activity is shown to be increased by MAA through a tyrosine kinase signaling pathway that involves PI3-kinase. In a combinatorial setting with AR antagonists, MAA potentiated the AR response without significantly altering the EC50 for androgen responsiveness, partially alleviating the antagonistic effect of the anti-androgens. Finally, MAA treatment of TM3 mouse testicular Leydig cells markedly increased the expression of Cyp17a1 and Shbg while suppressing Igfbp3 expression by ∼ 90%. Deregulation of these genes may alter androgen synthesis and action in a manner that contributes to MAA-induced testicular toxicity.

  8. Inhibition effect of cypermethrin mediated by co-regulators SRC-1 and SMRT in interleukin-6-induced androgen receptor activation.

    Science.gov (United States)

    Wang, Qi; Zhou, Ji-Long; Wang, Hui; Ju, Qiang; Ding, Zhen; Zhou, Xiao-Long; Ge, Xing; Shi, Qiao-Mei; Pan, Chen; Zhang, Jin-Peng; Zhang, Mei-Rong; Yu, Hong-Min; Xu, Li-Chun

    2016-09-01

    It is hypothesized that the pesticide cypermethrin may induce androgen receptor (AR) antagonism via ligand-independent mechanisms. The Real-Time Cell Analysis (RTCA) iCELLigence system was used to investigate the inhibitory effect of cypermethrin on interleukin-6 (IL-6)-induced ligand-independent LNCaP cell growth. Then, the mammalian two-hybrid assays were applied to clarify whether the mechanism of IL-6-induced AR antagonism of cypermethrin was associated with the interactions of the AR and co-activator steroid receptor co-activator-1 (SRC-1) and co-repressor silencing mediator for retinoid and thyroid hormone receptors (SMRT). Cypermethrin inhibited the LNCaP cell growth induced by IL-6. The interactions of AR-SRC-1 and AR-SMRT mediated by IL-6 were suppressed by cypermethrin. The results indicate that the IL-6-mediated AR antagonism induced by cypermethrin is related to repress the recruitment of co-regulators SRC-1 and SMRT to the AR in a ligand-independent manner. Inhibition of the interactions of AR-SRC-1 and AR-SMRT mediated by IL-6 contributes to the AR antagonism induced by cypermethrin. PMID:27239967

  9. Androgen suppresses the proliferation of androgen receptor-positive castration-resistant prostate cancer cells via inhibition of Cdk2, CyclinA, and Skp2.

    Directory of Open Access Journals (Sweden)

    John M Kokontis

    Full Text Available The majority of prostate cancer (PCa patient receiving androgen ablation therapy eventually develop castration-resistant prostate cancer (CRPC. We previously reported that androgen treatment suppresses Skp2 and c-Myc through androgen receptor (AR and induced G1 cell cycle arrest in androgen-independent LNCaP 104-R2 cells, a late stage CRPC cell line model. However, the mechanism of androgenic regulation of Skp2 in CRPC cells was not fully understood. In this study, we investigated the androgenic regulation of Skp2 in two AR-positive CRPC cell line models, the LNCaP 104-R1 and PC-3AR Cells. The former one is an early stage androgen-independent LNCaP cells, while the later one is PC-3 cells re-expressing either wild type AR or mutant LNCaP AR. Proliferation of LNCaP 104-R1 and PC-3AR cells is not dependent on but is suppressed by androgen. We observed in this study that androgen treatment reduced protein expression of Cdk2, Cdk7, Cyclin A, cyclin H, Skp2, c-Myc, and E2F-1; lessened phosphorylation of Thr14, Tyr15, and Thr160 on Cdk2; decreased activity of Cdk2; induced protein level of p27(Kip1; and caused G1 cell cycle arrest in LNCaP 104-R1 cells and PC-3AR cells. Overexpression of Skp2 protein in LNCaP 104-R1 or PC-3AR cells partially blocked accumulation of p27(Kip1 and increased Cdk2 activity under androgen treatment, which partially blocked the androgenic suppressive effects on proliferation and cell cycle. Analyzing on-line gene array data of 214 normal and PCa samples indicated that gene expression of Skp2, Cdk2, and cyclin A positively correlates to each other, while Cdk7 negatively correlates to these genes. These observations suggested that androgen suppresses the proliferation of CRPC cells partially through inhibition of Cyclin A, Cdk2, and Skp2.

  10. Androgen suppresses the proliferation of androgen receptor-positive castration-resistant prostate cancer cells via inhibition of Cdk2, CyclinA, and Skp2.

    Science.gov (United States)

    Kokontis, John M; Lin, Hui-Ping; Jiang, Shih Sheng; Lin, Ching-Yu; Fukuchi, Junichi; Hiipakka, Richard A; Chung, Chi-Jung; Chan, Tzu-Min; Liao, Shutsung; Chang, Chung-Ho; Chuu, Chih-Pin

    2014-01-01

    The majority of prostate cancer (PCa) patient receiving androgen ablation therapy eventually develop castration-resistant prostate cancer (CRPC). We previously reported that androgen treatment suppresses Skp2 and c-Myc through androgen receptor (AR) and induced G1 cell cycle arrest in androgen-independent LNCaP 104-R2 cells, a late stage CRPC cell line model. However, the mechanism of androgenic regulation of Skp2 in CRPC cells was not fully understood. In this study, we investigated the androgenic regulation of Skp2 in two AR-positive CRPC cell line models, the LNCaP 104-R1 and PC-3AR Cells. The former one is an early stage androgen-independent LNCaP cells, while the later one is PC-3 cells re-expressing either wild type AR or mutant LNCaP AR. Proliferation of LNCaP 104-R1 and PC-3AR cells is not dependent on but is suppressed by androgen. We observed in this study that androgen treatment reduced protein expression of Cdk2, Cdk7, Cyclin A, cyclin H, Skp2, c-Myc, and E2F-1; lessened phosphorylation of Thr14, Tyr15, and Thr160 on Cdk2; decreased activity of Cdk2; induced protein level of p27(Kip1); and caused G1 cell cycle arrest in LNCaP 104-R1 cells and PC-3AR cells. Overexpression of Skp2 protein in LNCaP 104-R1 or PC-3AR cells partially blocked accumulation of p27(Kip1) and increased Cdk2 activity under androgen treatment, which partially blocked the androgenic suppressive effects on proliferation and cell cycle. Analyzing on-line gene array data of 214 normal and PCa samples indicated that gene expression of Skp2, Cdk2, and cyclin A positively correlates to each other, while Cdk7 negatively correlates to these genes. These observations suggested that androgen suppresses the proliferation of CRPC cells partially through inhibition of Cyclin A, Cdk2, and Skp2.

  11. Differential effects of androgens on coronary blood flow regulation and arteriolar diameter in intact and castrated swine

    Directory of Open Access Journals (Sweden)

    O’Connor Erin K

    2012-05-01

    Full Text Available Abstract Background Low endogenous testosterone levels have been shown to be a risk factor for the development of cardiovascular disease and cardiovascular benefits associated with testosterone replacement therapy are being advocated; however, the effects of endogenous testosterone levels on acute coronary vasomotor responses to androgen administration are not clear. The objective of this study was to compare the effects of acute androgen administration on in vivo coronary conductance and in vitro coronary microvascular diameter in intact and castrated male swine. Methods Pigs received intracoronary infusions of physiologic levels (1–100 nM of testosterone, the metabolite 5α-dihydrotestosterone, and the epimer epitestosterone while left anterior descending coronary blood flow and mean arterial pressure were continuously monitored. Following sacrifice, coronary arterioles were isolated, cannulated, and exposed to physiologic concentrations (1–100 nM of testosterone, 5α-dihydrotestosterone, and epitestosterone. To evaluate effects of the androgen receptor on acute androgen dilation responses, real-time PCR and immunohistochemistry for androgen receptor were performed on conduit and resistance coronary vessels. Results In vivo, testosterone and 5α-dihydrotestosterone produced greater increases in coronary conductance in the intact compared to the castrated males. In vitro, percent maximal dilation of microvessels was similar between intact and castrated males for testosterone and 5α-dihydrotestosterone. In both studies epitestosterone produced significant increases in conductance and microvessel diameter from baseline in the intact males. Androgen receptor mRNA expression and immunohistochemical staining were similar in intact and castrated males. Conclusions Acute coronary vascular responses to exogenous androgen administration are increased by endogenous testosterone, an effect unrelated to changes in androgen receptor expression.

  12. A common deletion in the uridine diphosphate glucuronyltransferase (UGT) 2B17 gene is a strong determinant of androgen excretion in healthy pubertal boys

    DEFF Research Database (Denmark)

    Juul, A; Sørensen, K; Aksglaede, L;

    2008-01-01

    BACKGROUND: Testosterone (T) is excreted in urine as water-soluble glucuronidated and sulfated conjugates. The ability to glucuronidate T and other steroids depends on a number of different glucuronidases (UGT) of which UGT2B17 is essential. The aim of the study was to evaluate the influence of UGT......2B17 genotypes on urinary excretion of androgen metabolites in pubertal boys. STUDY DESIGN: A clinical study of 116 healthy boys aged 8-19 yr. UGT2B17 genotyping was performed using quantitative PCR. Serum FSH, LH, T, estradiol (E2), and SHBG were analyzed by immunoassays, and urinary levels...... of androgen metabolites were quantitated by gas chromatography/mass spectrometry in all subjects. RESULTS: Ten of 116 subjects (9%) presented with a homozygote deletion of the UGT2B17 gene (del/del), whereas 52 and 54 boys were hetero- and homozygous carriers of the UGT2B17 gene (del/ins and ins...

  13. Schizophrenia and the androgen receptor gene: Report of a sibship showing co-segregation with Reifenstein Syndrome but no evidence for linkage in 23 multiply affected families

    Energy Technology Data Exchange (ETDEWEB)

    Arranz, M.; Sharma, T.; Sham, P.; Kerwin, R. [Institute of Psychiatry, London (United Kingdom)] [and others

    1995-10-09

    Crow et al. have reported excess sharing of alleles by male sibling pairs with schizophrenia, at a triplet repeat marker within the androgen receptor gene, indicating that mutations at or near this gene may be a risk factor for males. In this report, we describe a pair of male siblings concordant for both schizophrenia and Reifenstein syndrome, which is caused by a mutation in this gene. This provides support for the hypothesis that the androgen receptor may contribute to liability to develop schizophrenia. Because of this, we have examined a collection of 23 pedigrees multiply affected by schizophrenia for linkage to the androgen receptor. We have found no evidence for linkage by both the LOD score and affected sibling-pair methods, under a range of genetic models with a broad and narrow definition of phenotype, and when families with male-to-male transmission are excluded. However, because of the small number of informative male-male pairs in our sample, we cannot confirm or refute the excess allele sharing for males reported by Crow. 35 refs., 1 fig., 2 tabs.

  14. Androgens regulate sex differences in signaling but are not associated with male variation in morphology in the weakly electric fish Parapteronotus hasemani.

    Science.gov (United States)

    Petzold, Jacquelyn M; Smith, G Troy

    2016-02-01

    Sexually dimorphic signaling is widespread among animals and can act as an honest indicator of mate quality. Additionally, differences in signaling and morphology within a sex can be associated with different strategies for acquiring mates. Weakly electric fish communicate via self-generated electrical fields that transmit information about sex, reproductive state, and social status. The weakly electric knifefish Parapteronotus hasemani exhibits sexual dimorphism in body size as well as substantial within-male variation in body size and jaw length. We asked whether P. hasemani exhibits hormonally mediated sexual dimorphism in electrocommunication behavior. We also asked whether males with short versus long jaws differed significantly from each other in morphology, behavior, hormone levels, or reproductive maturity. Males produced longer chirps than females, but other signal parameters (electric organ discharge frequency; chirp rate and frequency modulation) were sexually monomorphic. Pharmacologically blocking androgen receptors in males reduced chirp duration, suggesting that this sexually dimorphic trait is regulated at least in part by the activational effects of androgens. Males sorted into two distinct morphological categories but did not differ in circulating 11-ketotestosterone or testosterone. Short-jawed males and long-jawed males also did not differ in any aspects of signaling. Thus, chirping and high levels of 11-ketotestosterone were reliably associated with reproductively active males but do not necessarily indicate male type or quality. This contrasts with other alternative male morph systems in which males that differ in morphology also differ in androgen profiles and signaling behavior.

  15. Androgens regulate sex differences in signaling but are not associated with male variation in morphology in the weakly electric fish Parapteronotus hasemani.

    Science.gov (United States)

    Petzold, Jacquelyn M; Smith, G Troy

    2016-02-01

    Sexually dimorphic signaling is widespread among animals and can act as an honest indicator of mate quality. Additionally, differences in signaling and morphology within a sex can be associated with different strategies for acquiring mates. Weakly electric fish communicate via self-generated electrical fields that transmit information about sex, reproductive state, and social status. The weakly electric knifefish Parapteronotus hasemani exhibits sexual dimorphism in body size as well as substantial within-male variation in body size and jaw length. We asked whether P. hasemani exhibits hormonally mediated sexual dimorphism in electrocommunication behavior. We also asked whether males with short versus long jaws differed significantly from each other in morphology, behavior, hormone levels, or reproductive maturity. Males produced longer chirps than females, but other signal parameters (electric organ discharge frequency; chirp rate and frequency modulation) were sexually monomorphic. Pharmacologically blocking androgen receptors in males reduced chirp duration, suggesting that this sexually dimorphic trait is regulated at least in part by the activational effects of androgens. Males sorted into two distinct morphological categories but did not differ in circulating 11-ketotestosterone or testosterone. Short-jawed males and long-jawed males also did not differ in any aspects of signaling. Thus, chirping and high levels of 11-ketotestosterone were reliably associated with reproductively active males but do not necessarily indicate male type or quality. This contrasts with other alternative male morph systems in which males that differ in morphology also differ in androgen profiles and signaling behavior. PMID:26518663

  16. Testosterone treatment increases androgen receptor and aromatase gene expression in myotubes from patients with PCOS and controls, but does not induce insulin resistance

    DEFF Research Database (Denmark)

    Eriksen, Mette Brandt; Glintborg, Dorte; Nielsen, Michael Friberg Bruun;

    2014-01-01

    Polycystic ovary syndrome (PCOS) is associated with insulin resistance and increased risk of type 2 diabetes. Skeletal muscle is the major site of insulin mediated glucose disposal and the skeletal muscle tissue is capable to synthesize, convert and degrade androgens. Insulin sensitivity is conse......Polycystic ovary syndrome (PCOS) is associated with insulin resistance and increased risk of type 2 diabetes. Skeletal muscle is the major site of insulin mediated glucose disposal and the skeletal muscle tissue is capable to synthesize, convert and degrade androgens. Insulin sensitivity...... is conserved in cultured myotubes (in vitro) from patients with PCOS, but the effect of testosterone on this insulin sensitivity is unknown. We investigated the effect of 7days testosterone treatment (100nmol/l) on glucose transport and gene expression levels of hormone receptors and enzymes involved...... in the synthesis and conversion of testosterone (HSD17B1, HSD17B2, CYP19A1, SRD5A1-2, AR, ER-α, HSD17B6 and AKR1-3) in myotubes from ten patients with PCOS and ten matched controls. Testosterone treatment significantly increased aromatase and androgen receptor gene expression levels in patients and controls...

  17. Influence of the glutation S-transferases T1 and M1 gene polymorphisms on androgenic status and semen quality after surgical treatment of varicocele

    Directory of Open Access Journals (Sweden)

    P. V. Glybochko

    2013-01-01

    Full Text Available Aim: to examine androgenic status in men after surgical treatment of varicocele; to investigate genotype GSTT1 and GSTM1 in patients with pathozoospermia. Thirty men after surgical treatment of varicocele were recruited to this study. All subjects were evaluated by history, physical examination, semen analysis, serum FSH, LH, E2, PL, inhibin B and total testosterone determination. GSTT1, CSTM1 gene polymorphisms were determined by polymerase chain reaction. Total testosterone and inhibin B levels were significantly lower in patients with pathozoospermia. Patients with the GSTM1(- genotype had lower sperm concentrations than those with the GSTM1(+ genotype.Our results suggest that the GSTM1(- genotype is risk factor for androgen deficiency and pathozoospermia.

  18. PDE7B is involved in nandrolone decanoate hydrolysis in liver cytosol and its transcription is up-regulated by androgens in HepG2

    Directory of Open Access Journals (Sweden)

    Emmanuel eStrahm

    2014-05-01

    Full Text Available Most androgenic drugs are available as esters for a prolonged depot action. However the enzymes involved in the hydrolysis of the esters have not been identified. There is one study indicating that PDE7B may be involved in the activation of testosterone enanthate. The aims are to identify the cellular compartments where the hydrolysis of testosterone enanthate and nandrolone decanoate occurs, and to investigate the involvement of PDE7B in the activation. We also determined if testosterone and nandrolone affect the expression of the PDE7B gene. The hydrolysis studies were performed in isolated human liver cytosolic and microsomal preparations with and without specific PDE7B inhibitor. The gene expression was studied in human hepatoma cells (HepG2 exposed to testosterone and nandrolone. We show that PDE7B serves as a catalyst of the hydrolysis of testosterone enanthate and nandrolone decanoate in liver cytosol. The gene expression of PDE7B was significantly induced 3- and 5- fold after 2 hours exposure to 1 µM testosterone enanthate and nandrolone decanoate, respectively. These results show that PDE7B is involved in the activation of esterified nandrolone and testosterone and that the gene expression of PDE7B is induced by supra-physiological concentrations of androgenic drugs.

  19. Diverse spatial, temporal, and sexual expression of recently duplicated androgen-binding protein genes in Mus musculus

    Directory of Open Access Journals (Sweden)

    Emes Richard D

    2005-07-01

    Full Text Available Abstract Background The genes for salivary androgen-binding protein (ABP subunits have been evolving rapidly in ancestors of the house mouse Mus musculus, as evidenced both by recent and extensive gene duplication and by high ratios of nonsynonymous to synonymous nucleotide substitution rates. This makes ABP an appropriate model system with which to investigate how recent adaptive evolution of paralogous genes results in functional innovation (neofunctionalization. Results It was our goal to find evidence for the expression of as many of the Abp paralogues in the mouse genome as possible. We observed expression of six Abpa paralogues and five Abpbg paralogues in ten glands and other organs located predominantly in the head and neck (olfactory lobe of the brain, three salivary glands, lacrimal gland, Harderian gland, vomeronasal organ, and major olfactory epithelium. These Abp paralogues differed dramatically in their specific expression in these different glands and in their sexual dimorphism of expression. We also studied the appearance of expression in both late-stage embryos and postnatal animals prior to puberty and found significantly different timing of the onset of expression among the various paralogues. Conclusion The multiple changes in the spatial expression profile of these genes resulting in various combinations of expression in glands and other organs in the head and face of the mouse strongly suggest that neofunctionalization of these genes, driven by adaptive evolution, has occurred following duplication. The extensive diversification in expression of this family of proteins provides two lines of evidence for a pheromonal role for ABP: 1 different patterns of Abpa/Abpbg expression in different glands; and 2 sexual dimorphism in the expression of the paralogues in a subset of those glands. These expression patterns differ dramatically among various glands that are located almost exclusively in the head and neck, where the sensory

  20. Targeting Alternative Sites on the Androgen Receptor to Treat Castration-Resistant Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Paul S. Rennie

    2013-06-01

    Full Text Available Recurrent, metastatic prostate cancer continues to be a leading cause of cancer-death in men. The androgen receptor (AR is a modular, ligand-inducible transcription factor that regulates the expression of genes that can drive the progression of this disease, and as a consequence, this receptor is a key therapeutic target for controlling prostate cancer. The current drugs designed to directly inhibit the AR are called anti-androgens, and all act by competing with androgens for binding to the androgen/ligand binding site. Unfortunately, with the inevitable progression of the cancer to castration resistance, many of these drugs become ineffective. However, there are numerous other regulatory sites on this protein that have not been exploited therapeutically. The regulation of AR activity involves a cascade of complex interactions with numerous chaperones, co-factors and co-regulatory proteins, leading ultimately to direct binding of AR dimers to specific DNA androgen response elements within the promoter and enhancers of androgen-regulated genes. As part of the family of nuclear receptors, the AR is organized into modular structural and functional domains with specialized roles in facilitating their inter-molecular interactions. These regions of the AR present attractive, yet largely unexploited, drug target sites for reducing or eliminating androgen signaling in prostate cancers. The design of small molecule inhibitors targeting these specific AR domains is only now being realized and is the culmination of decades of work, including crystallographic and biochemistry approaches to map the shape and accessibility of the AR surfaces and cavities. Here, we review the structure of the AR protein and describe recent advancements in inhibiting its activity with small molecules specifically designed to target areas distinct from the receptor’s androgen binding site. It is anticipated that these new classes of anti-AR drugs will provide an additional

  1. GREAT: GENE REGULATION EVALUATION TOOL

    OpenAIRE

    Machado, Cátia Maria, 1981-

    2009-01-01

    Tese de mestrado. Tecnologias de Informação aplicadas às Ciências Biológicas e Médicas. Universidade de Lisboa, Faculdade de Ciências, 2009 A correcta compreensão de como funcionam os sistemas biológicos depende do estudo dos mecanismos que regulam a expressão genética. Estes mecanismos controlam em que momento e durante quanto tempo é utilizada a informação codificada num gene, e podem actuar em diversas etapas do processo de expressão genética. No presente trabalho, a etapa em análise é ...

  2. Regulation of meiotic gene expression in plants

    Directory of Open Access Journals (Sweden)

    Adele eZhou

    2014-08-01

    Full Text Available With the recent advances in genomics and sequencing technologies, databases of transcriptomes representing many cellular processes have been built. Meiotic transcriptomes in plants have been studied in Arabidopsis thaliana, rice (Oryza sativa, wheat (Triticum aestivum, petunia (Petunia hybrida, sunflower (Helianthus annuus, and maize (Zea mays. Studies in all organisms, but particularly in plants, indicate that a very large number of genes are expressed during meiosis, though relatively few of them seem to be required for the completion of meiosis. In this review, we focus on gene expression at the RNA level and analyze the meiotic transcriptome datasets and explore expression patterns of known meiotic genes to elucidate how gene expression could be regulated during meiosis. We also discuss mechanisms, such as chromatin organization and non-coding RNAs, that might be involved in the regulation of meiotic transcription patterns.

  3. Androgen responsiveness of the new human endometrial cancer cell line MFE-296.

    Science.gov (United States)

    Hackenberg, R; Beck, S; Filmer, A; Hushmand Nia, A; Kunzmann, R; Koch, M; Slater, E P; Schulz, K D

    1994-04-01

    MFE-296 endometrial cancer cells express androgen receptors in vitro. These cells, which are tumorigenic in nude mice, are derived from a moderately differentiated human endometrial adenocarcinoma. They express vimentin and the cytokeratins 7, 8, 18, and 19. Karyotyping revealed near-tetraploidy for most of the cells. No marker chromosomes were observed. DNA analyses confirmed the genetic identity of the cell line and the patient from whom the cell line was derived. Proliferation of MFE-296 cells was inhibited by the progestin R5020 and the androgen dihydrotestosterone (DHT). The inhibition of proliferation by DHT was antagonized by the antiandrogen Casodex, demonstrating the involvement of the androgen receptor. Androgen binding was determined at 22,000 binding sites per cell using a whole-cell assay (KD = 0.05 nM) and 30 fmol/mg protein with the dextran charcoal method; 7 fmol/mg protein of progesterone receptors were found, whereas estrogen receptors were below 5 fmol/mg protein. The androgen receptor was functionally intact, as demonstrated by transfection experiments with a reporter-gene construct, containing an androgen-responsive element. In MFE-296 cells the content of the androgen receptor was up-regulated by its own ligand.

  4. ANDROGEN INSENSITIVITY SYNDROME

    OpenAIRE

    Kanan; Sonali

    2014-01-01

    The condition is inherited as X - linked recessive gene 1 . The underlying pathology is the inability of end organs to respond to androgens. These cases are phenotypically and psychologically female with adequate breast development , normal external genitalia , a vagina with variable depth , absent /sparse pubic hair and axillary hair. The exact incidence in India is not known but the reported incidence is 1 in 2 , 000 to 1 in 62 ,400 worldwi...

  5. In vivo modulation of androgen receptor by androgens

    Institute of Scientific and Technical Information of China (English)

    V·L·Kumar; V·Kumar

    2002-01-01

    Aim:To study the effect of androgen and antiandrogen on the level of androgen receptor(AR)mRNA.Methods:The totalRNA was extracted from the prostate and analyzed by slot blot analysis,The blots were hybrid-ized with ARcDNA probe and 1Aprobe(internal control)and autoradionraphy was performed.The intensity of signal was measured with a densitometer and the ratio of AR RNAand1ARNAwas calculated.Results:Androgenic deprivation produced by castration decreased the weight of the prostate and increased the levels of ARmRNA.Treatment of the castrated rats with testostrone increased the weight of prostate and decreased the levels of ARmRNA.Treatment of normal rats with flutamide decreased the weight of the gland and increased the levels of AR mRNA.Conclusion:Androgens produce proliferative effect on the prostate and negatively regulate the AR transcription.

  6. Refinement of the androgen response element based on ChIP-Seq in androgen-insensitive and androgen-responsive prostate cancer cell lines.

    Science.gov (United States)

    Wilson, Stephen; Qi, Jianfei; Filipp, Fabian V

    2016-01-01

    Sequence motifs are short, recurring patterns in DNA that can mediate sequence-specific binding for proteins such as transcription factors or DNA modifying enzymes. The androgen response element (ARE) is a palindromic, dihexameric motif present in promoters or enhancers of genes targeted by the androgen receptor (AR). Using chromatin immunoprecipitation sequencing (ChIP-Seq) we refined AR-binding and AREs at a genome-scale in androgen-insensitive and androgen-responsive prostate cancer cell lines. Model-based searches identified more than 120,000 ChIP-Seq motifs allowing for expansion and refinement of the ARE. We classified AREs according to their degeneracy and their transcriptional involvement. Additionally, we quantified ARE utilization in response to somatic copy number amplifications, AR splice-variants, and steroid treatment. Although imperfect AREs make up 99.9% of the motifs, the degree of degeneracy correlates negatively with validated transcriptional outcome. Weaker AREs, particularly ARE half sites, benefit from neighboring motifs or cooperating transcription factors in regulating gene expression. Taken together, ARE full sites generate a reliable transcriptional outcome in AR positive cells, despite their low genome-wide abundance. In contrast, the transcriptional influence of ARE half sites can be modulated by cooperating factors. PMID:27623747

  7. Refinement of the androgen response element based on ChIP-Seq in androgen-insensitive and androgen-responsive prostate cancer cell lines

    Science.gov (United States)

    Wilson, Stephen; Qi, Jianfei; Filipp, Fabian V.

    2016-01-01

    Sequence motifs are short, recurring patterns in DNA that can mediate sequence-specific binding for proteins such as transcription factors or DNA modifying enzymes. The androgen response element (ARE) is a palindromic, dihexameric motif present in promoters or enhancers of genes targeted by the androgen receptor (AR). Using chromatin immunoprecipitation sequencing (ChIP-Seq) we refined AR-binding and AREs at a genome-scale in androgen-insensitive and androgen-responsive prostate cancer cell lines. Model-based searches identified more than 120,000 ChIP-Seq motifs allowing for expansion and refinement of the ARE. We classified AREs according to their degeneracy and their transcriptional involvement. Additionally, we quantified ARE utilization in response to somatic copy number amplifications, AR splice-variants, and steroid treatment. Although imperfect AREs make up 99.9% of the motifs, the degree of degeneracy correlates negatively with validated transcriptional outcome. Weaker AREs, particularly ARE half sites, benefit from neighboring motifs or cooperating transcription factors in regulating gene expression. Taken together, ARE full sites generate a reliable transcriptional outcome in AR positive cells, despite their low genome-wide abundance. In contrast, the transcriptional influence of ARE half sites can be modulated by cooperating factors. PMID:27623747

  8. Refinement of the androgen response element based on ChIP-Seq in androgen-insensitive and androgen-responsive prostate cancer cell lines.

    Science.gov (United States)

    Wilson, Stephen; Qi, Jianfei; Filipp, Fabian V

    2016-09-14

    Sequence motifs are short, recurring patterns in DNA that can mediate sequence-specific binding for proteins such as transcription factors or DNA modifying enzymes. The androgen response element (ARE) is a palindromic, dihexameric motif present in promoters or enhancers of genes targeted by the androgen receptor (AR). Using chromatin immunoprecipitation sequencing (ChIP-Seq) we refined AR-binding and AREs at a genome-scale in androgen-insensitive and androgen-responsive prostate cancer cell lines. Model-based searches identified more than 120,000 ChIP-Seq motifs allowing for expansion and refinement of the ARE. We classified AREs according to their degeneracy and their transcriptional involvement. Additionally, we quantified ARE utilization in response to somatic copy number amplifications, AR splice-variants, and steroid treatment. Although imperfect AREs make up 99.9% of the motifs, the degree of degeneracy correlates negatively with validated transcriptional outcome. Weaker AREs, particularly ARE half sites, benefit from neighboring motifs or cooperating transcription factors in regulating gene expression. Taken together, ARE full sites generate a reliable transcriptional outcome in AR positive cells, despite their low genome-wide abundance. In contrast, the transcriptional influence of ARE half sites can be modulated by cooperating factors.

  9. Expression of androgen-producing enzyme genes and testosterone concentration in Angus and Nellore heifers with high and low ovarian follicle count.

    Science.gov (United States)

    Loureiro, Bárbara; Ereno, Ronaldo L; Favoreto, Mauricio G; Barros, Ciro M

    2016-07-15

    Follicle population is important when animals are used in assisted reproductive programs. Bos indicus animals have more follicles per follicular wave than Bos taurus animals. On the other hand, B taurus animals present better fertility when compared with B indicus animals. Androgens are positively related with the number of antral follicles; moreover, they increase growth factor expression in granulose cells and oocytes. Experimentation was designed to compare testosterone concentration in plasma, and follicular fluid and androgen enzymes mRNA expression (CYP11A1, CYP17A1, 3BHSD, and 17BHSD) in follicles from Angus and Nellore heifers. Heifers were assigned into two groups according to the number of follicles: low and high follicle count groups. Increased testosterone concentration was measured in both plasma and follicular fluid of Angus heifers. However, there was no difference within groups. Expression of CYP11A1 gene was higher in follicles from Angus heifers; however, there was no difference within groups. Expression of CYP17A1, 3BHSD, and 17BHSD genes was higher in follicles from Nellore heifers, and expression of CYP17A1 and 3BHSD genes was also higher in HFC groups from both breeds. It was found that Nellore heifers have more antral follicles than Angus heifers. Testosterone concentration was higher in Angus heifers; this increase could be associated with the increased mRNA expression of CYP11A1. Increased expression of androgen-producing enzyme genes (CYP17A1, 3BHSD, and 17BHSD) was detected in Nellore heifers. It can be suggested that testosterone is acting through different mechanisms to increase follicle development in Nellore and improve fertility in Angus heifers. PMID:26948295

  10. Aberrant splicing of androgen receptor mRNA results in synthesis of a nonfunctional receptor protein in a patient with androgen insensitivity.

    OpenAIRE

    Ris-Stalpers, C.; Kuiper, G G; Faber, P.W.; SCHWEIKERT, H. U.; van Rooij, H C; Zegers, N.D.; Hodgins, M B; Degenhart, H J; Trapman, J; Brinkmann, A.O.

    1990-01-01

    Androgen insensitivity is a disorder in which the correct androgen response in an androgen target cell is impaired. The clinical symptoms of this X chromosome-linked syndrome are presumed to be caused by mutations in the androgen receptor gene. We report a G----T mutation in the splice donor site of intron 4 of the androgen receptor gene of a 46,XY subject lacking detectable androgen binding to the receptor and with the complete form of androgen insensitivity. This point mutation completely a...

  11. A role for the androgen metabolite, 5alpha-androstane-3beta,17beta-diol, in modulating oestrogen receptor beta-mediated regulation of hormonal stress reactivity.

    Science.gov (United States)

    Handa, R J; Weiser, M J; Zuloaga, D G

    2009-03-01

    Activation of the hypothalamic-pituitary-adrenal (HPA) axis is a basic response of animals to environmental perturbations that threaten homeostasis. These responses are regulated by neurones in the paraventricular nucleus of the hypothalamus (PVN) that synthesise and secrete corticotrophin-releasing hormone (CRH). Other PVN neuropeptides, such as arginine vasopressin and oxytocin, can also modulate activity of CRH neurones in the PVN and enhance CRH secretagogue activity of the anterior pituitary gland. In rodents, sex differences in HPA reactivity are well established; females exhibit a more robust activation of the HPA axis after stress than do males. These sex differences primarily result from opposing actions of sex steroids, testosterone and oestrogen, on HPA function. Ostreogen enhances stress activated adrenocorticotrophic hormone (ACTH) and corticosterone (CORT) secretion, whereas testosterone decreases the gain of the HPA axis and inhibits ACTH and CORT responses to stress. Data show that androgens can act directly on PVN neurones in the male rat through a novel pathway involving oestrogen receptor (ER)beta, whereas oestrogen acts predominantly through ERalpha. Thus, we examined the hypothesis that, in males, testosterone suppresses HPA function via an androgen metabolite that binds ERbeta. Clues to the neurobiological mechanisms underlying such a novel action can be gleaned from studies showing extensive colocalisation of ERbeta in oxytocin-containing cells of the PVN. Hence, in this review, we address the possibility that testosterone inhibits HPA reactivity by metabolising to 5alpha-androstane-3beta,17beta-diol, a compound that binds ERbeta and regulates oxytocin containing neurones of the PVN. These findings suggest a re-evaluation of studies examining pathways for androgen receptor signalling. PMID:19207807

  12. A Role for the Androgen Metabolite, 5α-Androstane-3β,17β-Diol, in Modulating Oestrogen Receptor β-Mediated Regulation of Hormonal Stress Reactivity

    Science.gov (United States)

    Handa, R. J.; Weiser, M. J.; Zuloaga, D. G.

    2009-01-01

    Activation of the hypothalamic-pituitary-adrenal (HPA) axis is a basic response of animals to environmental perturbations that threaten homeostasis. These responses are regulated by neurones in the paraventricular nucleus of the hypothalamus (PVN) that synthesise and secrete corticotrophin-releasing hormone (CRH). Other PVN neuropeptides, such as arginine vasopressin and oxytocin, can also modulate activity of CRH neurones in the PVN and enhance CRH secretagogue activity of the anterior pituitary gland. In rodents, sex differences in HPA reactivity are well established; females exhibit a more robust activation of the HPA axis after stress than do males. These sex differences primarily result from opposing actions of sex steroids, testosterone and oestrogen, on HPA function. Ostreogen enhances stress activated adrenocorticotrophic hormone (ACTH) and corticosterone (CORT) secretion, whereas testosterone decreases the gain of the HPA axis and inhibits ACTH and CORT responses to stress. Data show that androgens can act directly on PVN neurones in the male rat through a novel pathway involving oestrogen receptor (ER)β, whereas oestrogen acts predominantly through ERα. Thus, we examined the hypothesis that, in males, testosterone suppresses HPA function via an androgen metabolite that binds ERβ. Clues to the neurobiological mechanisms underlying such a novel action can be gleaned from studies showing extensive colocalisation of ERβ in oxytocin-containing cells of the PVN. Hence, in this review, we address the possibility that testosterone inhibits HPA reactivity by metabolising to 5α-androstane-3β,17β-diol, a compound that binds ERβ and regulates oxytocin containing neurones of the PVN. These findings suggest a re-evaluation of studies examining pathways for androgen receptor signalling. PMID:19207807

  13. Androgen receptor mutations

    OpenAIRE

    Brinkmann, Albert; Jenster, Guido; Ris-Stalpers, Carolyn; Korput, J. A G M; Brüggenwirth, Hennie; Boehmer, A.L.; Trapman, Jan

    1995-01-01

    textabstractMale sexual differentiation and development proceed under direct control of androgens. Androgen action is mediated by the intracellular androgen receptor, which belongs to the superfamily of ligand-dependent transcription factors. At least three pathological situations are associated with abnormal androgen receptor structure and function: androgen insensitivity syndrome (AIS), spinal and bulbar muscular atrophy (SBMA) and prostate cancer. In the X-linked androgen insensitivity syn...

  14. A codon-usage variant in the (GGN){sub n} trinucleotide polymorphism of the androgen receptor gene as an aid in the prenatal diagnosis of ambiguous genitalia due to partial androgen insensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Lumbroso, R.; Vasiliou, M.; Beitel, L.K. [McGill Univ., Montreal, Quebec (Canada)] [and others

    1994-09-01

    Exon 1 at the X-linked androgen receptor (AR) locus encodes an N-terminal modulatory domain that contains two large homopolyamino acid tracts: (CAG;glutamine;Gln){sub 11-33} and (GGN;Glycine;Cly){sub 15-27}. Certain AR mutations cause partial androgen insensitivity (PAI) with frank genital ambiguity that may engender appreciable parental anxiety and patient morbidity. If the AR mutation in a PAI family is unknown, the AR`s intragenic trinucleotide repeat polymorphisms may be used for prenatal diagnosis. However, intergenerational instability of repeat-size may be worrisome, particularly when the information alleles differ by only a few repeats. Here, we report the discovery of a codon-usage (silent substitution) variant in the GGN repeat, and describe its use as a source of complementary information for prenatal diagnosis. The standard sense sequence of the (GGN){sub n} tract is (GGT){sub 3} GGG(GGT){sub 2} (GGC){sub 9-21}. On 4 of 27 X chromosomes we noted that the internal GGT sequence was expanded to 3 or 4 repeats. We used an internal (GGT){sub 4} repeat in a total (GGN){sub 24} tract together with a (CAG){sub 20} tract to distinguish an X chromosome with a mutant AR allele from another X chromosome, bearing a normal allele, that had an internal (GGT){sub 2} repeat in a total (GGN){sub 23} tract together with a (CAG){sub 21} tract. Subsequently, we found the base change leading to a pathogenic amino acid substitution (M779I) in codon 6 of the mutant AR gene in an affected maternal aunt and the fetus at risk. This confirmed the prenatal diagnosis based on the intragenic trinucleotide repeat polymorphisms, and it strengthened the prediction of external genital ambiguity using our previous experience with M779I in another family.

  15. Regulation of Gene Expression in Protozoa Parasites

    Directory of Open Access Journals (Sweden)

    Consuelo Gomez

    2010-01-01

    Full Text Available Infections with protozoa parasites are associated with high burdens of morbidity and mortality across the developing world. Despite extensive efforts to control the transmission of these parasites, the spread of populations resistant to drugs and the lack of effective vaccines against them contribute to their persistence as major public health problems. Parasites should perform a strict control on the expression of genes involved in their pathogenicity, differentiation, immune evasion, or drug resistance, and the comprehension of the mechanisms implicated in that control could help to develop novel therapeutic strategies. However, until now these mechanisms are poorly understood in protozoa. Recent investigations into gene expression in protozoa parasites suggest that they possess many of the canonical machineries employed by higher eukaryotes for the control of gene expression at transcriptional, posttranscriptional, and epigenetic levels, but they also contain exclusive mechanisms. Here, we review the current understanding about the regulation of gene expression in Plasmodium sp., Trypanosomatids, Entamoeba histolytica and Trichomonas vaginalis.

  16. Transposable element origins of epigenetic gene regulation.

    Science.gov (United States)

    Lisch, Damon; Bennetzen, Jeffrey L

    2011-04-01

    Transposable elements (TEs) are massively abundant and unstable in all plant genomes, but are mostly silent because of epigenetic suppression. Because all known epigenetic pathways act on all TEs, it is likely that the specialized epigenetic regulation of regular host genes (RHGs) was co-opted from this ubiquitous need for the silencing of TEs and viruses. With their internally repetitive and rearranging structures, and the acquisition of fragments of RHGs, the expression of TEs commonly makes antisense RNAs for both TE genes and RHGs. These antisense RNAs, particularly from heterochromatic reservoirs of 'zombie' TEs that are rearranged to form variously internally repetitive structures, may be advantageous because their induction will help rapidly suppress active TEs of the same family. RHG fragments within rapidly rearranging TEs may also provide the raw material for the ongoing generation of miRNA genes. TE gene expression is regulated by both environmental and developmental signals, and insertions can place nearby RHGs under the regulation (both standard and epigenetic) of the TE. The ubiquity of TEs, their frequent preferential association with RHGs, and their ability to be programmed by epigenetic signals all indicate that RGHs have nearly unlimited access to novel regulatory cassettes to assist plant adaptation. PMID:21444239

  17. Linker histones in hormonal gene regulation.

    Science.gov (United States)

    Vicent, G P; Wright, R H G; Beato, M

    2016-03-01

    In the present review, we summarize advances in our knowledge on the role of the histone H1 family of proteins in breast cancer cells, focusing on their response to progestins. Histone H1 plays a dual role in gene regulation by hormones, both as a structural component of chromatin and as a dynamic modulator of transcription. It contributes to hormonal regulation of the MMTV promoter by stabilizing a homogeneous nucleosome positioning, which reduces basal transcription whereas at the same time promoting progesterone receptor binding and nucleosome remodeling. These combined effects enhance hormone dependent gene transcription, which eventually requires H1 phosphorylation and displacement. Various isoforms of histone H1 have specific functions in differentiated breast cancer cells and compact nucleosomal arrays to different extents in vitro. Genome-wide studies show that histone H1 has a key role in chromatin dynamics of hormone regulated genes. A complex sequence of enzymatic events, including phosphorylation by CDK2, PARylation by PARP1 and the ATP-dependent activity of NURF, are required for H1 displacement and gene de-repression, as a prerequisite for further nucleosome remodeling. Similarly, during hormone-dependent gene repression a dedicated enzymatic mechanism controls H1 deposition at promoters by a complex containing HP1γ, LSD1 and BRG1, the ATPase of the BAF complex. Thus, a broader vision of the histone code should include histone H1, as the linker histone variants actively participate in the regulation of the chromatin structure. How modifications of the core histones tails affect H1 modifications and vice versa is one of the many questions that remains to be addressed to provide a more comprehensive view of the histone cross-talk mechanisms. PMID:26518266

  18. Linker histones in hormonal gene regulation.

    Science.gov (United States)

    Vicent, G P; Wright, R H G; Beato, M

    2016-03-01

    In the present review, we summarize advances in our knowledge on the role of the histone H1 family of proteins in breast cancer cells, focusing on their response to progestins. Histone H1 plays a dual role in gene regulation by hormones, both as a structural component of chromatin and as a dynamic modulator of transcription. It contributes to hormonal regulation of the MMTV promoter by stabilizing a homogeneous nucleosome positioning, which reduces basal transcription whereas at the same time promoting progesterone receptor binding and nucleosome remodeling. These combined effects enhance hormone dependent gene transcription, which eventually requires H1 phosphorylation and displacement. Various isoforms of histone H1 have specific functions in differentiated breast cancer cells and compact nucleosomal arrays to different extents in vitro. Genome-wide studies show that histone H1 has a key role in chromatin dynamics of hormone regulated genes. A complex sequence of enzymatic events, including phosphorylation by CDK2, PARylation by PARP1 and the ATP-dependent activity of NURF, are required for H1 displacement and gene de-repression, as a prerequisite for further nucleosome remodeling. Similarly, during hormone-dependent gene repression a dedicated enzymatic mechanism controls H1 deposition at promoters by a complex containing HP1γ, LSD1 and BRG1, the ATPase of the BAF complex. Thus, a broader vision of the histone code should include histone H1, as the linker histone variants actively participate in the regulation of the chromatin structure. How modifications of the core histones tails affect H1 modifications and vice versa is one of the many questions that remains to be addressed to provide a more comprehensive view of the histone cross-talk mechanisms.

  19. Promoter architectures and developmental gene regulation.

    Science.gov (United States)

    Haberle, Vanja; Lenhard, Boris

    2016-09-01

    Core promoters are minimal regions sufficient to direct accurate initiation of transcription and are crucial for regulation of gene expression. They are highly diverse in terms of associated core promoter motifs, underlying sequence composition and patterns of transcription initiation. Distinctive features of promoters are also seen at the chromatin level, including nucleosome positioning patterns and presence of specific histone modifications. Recent advances in identifying and characterizing promoters using next-generation sequencing-based technologies have provided the basis for their classification into functional groups and have shed light on their modes of regulation, with important implications for transcriptional regulation in development. This review discusses the methodology and the results of genome-wide studies that provided insight into the diversity of RNA polymerase II promoter architectures in vertebrates and other Metazoa, and the association of these architectures with distinct modes of regulation in embryonic development and differentiation. PMID:26783721

  20. Polymorphic variation in the androgen receptor gene: association with risk of testicular germ cell cancer and metastatic disease

    DEFF Research Database (Denmark)

    Västermark, Åke; Giwercman, Yvonne Lundberg; Hagströmer, Oskar;

    2011-01-01

    of endocrine disruptors. From a biological point of view, our findings strengthen the hypothesis of the importance of androgen action in the aetiology and pathogenesis of testicular malignancy. Future studies should focus on the impact of sex hormones on foetal germ cell development and the interaction between...

  1. Transcriptome analysis of androgenic gland for discovery of novel genes from the oriental river prawn, Macrobrachium nipponense, using Illumina Hiseq 2000.

    Directory of Open Access Journals (Sweden)

    Shubo Jin

    Full Text Available BACKGROUND: The oriental river prawn, Macrobrachium nipponense, is an important aquaculture species in China, even in whole of Asia. The androgenic gland produces hormones that play crucial roles in sexual differentiation to maleness. This study is the first de novo M. nipponense transcriptome analysis using cDNA prepared from mRNA isolated from the androgenic gland. Illumina/Solexa was used for sequencing. METHODOLOGY AND PRINCIPAL FINDING: The total volume of RNA sample was more than 5 ug. We generated 70,853,361 high quality reads after eliminating adapter sequences and filtering out low-quality reads. A total of 78,408 isosequences were obtained by clustering and assembly of the clean reads, producing 57,619 non-redundant transcripts with an average length of 1244.19 bp. In total 70,702 isosequences were matched to the Nr database, additional analyses were performed by GO (33,203, KEGG (17,868, and COG analyses (13,817, identifying the potential genes and their functions. A total of 47 sex-determination related gene families were identified from the M. nipponense androgenic gland transcriptome based on the functional annotation of non-redundant transcripts and comparisons with the published literature. Furthermore, a total of 40 candidate novel genes were found, that may contribute to sex-determination based on their extremely high expression levels in the androgenic compared to other sex glands,. Further, 437 SSRs and 65,535 high-confidence SNPs were identified in this EST dataset from which 14 EST-SSR markers have been isolated. CONCLUSION: Our study provides new sequence information for M. nipponense, which will be the basis for further genetic studies on decapods crustaceans. More importantly, this study dramatically improves understanding of sex-determination mechanisms, and advances sex-determination research in all crustacean species. The huge number of potential SSR and SNP markers isolated from the transcriptome may shed the lights

  2. Regulation of methane genes and genome expression

    Energy Technology Data Exchange (ETDEWEB)

    John N. Reeve

    2009-09-09

    At the start of this project, it was known that methanogens were Archaeabacteria (now Archaea) and were therefore predicted to have gene expression and regulatory systems different from Bacteria, but few of the molecular biology details were established. The goals were then to establish the structures and organizations of genes in methanogens, and to develop the genetic technologies needed to investigate and dissect methanogen gene expression and regulation in vivo. By cloning and sequencing, we established the gene and operon structures of all of the “methane” genes that encode the enzymes that catalyze methane biosynthesis from carbon dioxide and hydrogen. This work identified unique sequences in the methane gene that we designated mcrA, that encodes the largest subunit of methyl-coenzyme M reductase, that could be used to identify methanogen DNA and establish methanogen phylogenetic relationships. McrA sequences are now the accepted standard and used extensively as hybridization probes to identify and quantify methanogens in environmental research. With the methane genes in hand, we used northern blot and then later whole-genome microarray hybridization analyses to establish how growth phase and substrate availability regulated methane gene expression in Methanobacterium thermautotrophicus ΔH (now Methanothermobacter thermautotrophicus). Isoenzymes or pairs of functionally equivalent enzymes catalyze several steps in the hydrogen-dependent reduction of carbon dioxide to methane. We established that hydrogen availability determine which of these pairs of methane genes is expressed and therefore which of the alternative enzymes is employed to catalyze methane biosynthesis under different environmental conditions. As were unable to establish a reliable genetic system for M. thermautotrophicus, we developed in vitro transcription as an alternative system to investigate methanogen gene expression and regulation. This led to the discovery that an archaeal protein

  3. Unraveling the Complexities of Androgen Receptor Signaling in Prostate Cancer Cells

    OpenAIRE

    Heemers, Hannelore V.; Tindall, Donald J.

    2009-01-01

    Androgen signaling is critical for proliferation of prostate cancer cells but cannot be fully inhibited by current androgen deprivation therapies. A study by Xu et al. in this issue of Cancer Cell provides insights into the complexities of androgen signaling in prostate cancer and suggests avenues to target a subset of androgen-sensitive genes.

  4. Coactivators in PPAR-Regulated Gene Expression

    Directory of Open Access Journals (Sweden)

    Navin Viswakarma

    2010-01-01

    Full Text Available Peroxisome proliferator-activated receptor (PPARα, β (also known as δ, and γ function as sensors for fatty acids and fatty acid derivatives and control important metabolic pathways involved in the maintenance of energy balance. PPARs also regulate other diverse biological processes such as development, differentiation, inflammation, and neoplasia. In the nucleus, PPARs exist as heterodimers with retinoid X receptor-α bound to DNA with corepressor molecules. Upon ligand activation, PPARs undergo conformational changes that facilitate the dissociation of corepressor molecules and invoke a spatiotemporally orchestrated recruitment of transcription cofactors including coactivators and coactivator-associated proteins. While a given nuclear receptor regulates the expression of a prescribed set of target genes, coactivators are likely to influence the functioning of many regulators and thus affect the transcription of many genes. Evidence suggests that some of the coactivators such as PPAR-binding protein (PBP/PPARBP/thyroid hormone receptor-associated protein 220 (TRAP220/mediator complex subunit 1 (MED1 may exert a broader influence on the functions of several nuclear receptors and their target genes. Investigations into the role of coactivators in the function of PPARs should strengthen our understanding of the complexities of metabolic diseases associated with energy metabolism.

  5. Regulation of gene expression in human tendinopathy

    Directory of Open Access Journals (Sweden)

    Archambault Joanne M

    2011-05-01

    Full Text Available Abstract Background Chronic tendon injuries, also known as tendinopathies, are common among professional and recreational athletes. These injuries result in a significant amount of morbidity and health care expenditure, yet little is known about the molecular mechanisms leading to tendinopathy. Methods We have used histological evaluation and molecular profiling to determine gene expression changes in 23 human patients undergoing surgical procedures for the treatment of chronic tendinopathy. Results Diseased tendons exhibit altered extracellular matrix, fiber disorientation, increased cellular content and vasculature, and the absence of inflammatory cells. Global gene expression profiling identified 983 transcripts with significantly different expression patterns in the diseased tendons. Global pathway analysis further suggested altered expression of extracellular matrix proteins and the lack of an appreciable inflammatory response. Conclusions Identification of the pathways and genes that are differentially regulated in tendinopathy samples will contribute to our understanding of the disease and the development of novel therapeutics.

  6. Sex Steroids Regulate Expression of Genes Containing Long Interspersed Elements-1s in Breast Cancer Cells.

    Science.gov (United States)

    Chaiwongwatanakul, Saichon; Yanatatsaneejit, Pattamawadee; Tongsima, Sissades; Mutirangura, Apiwat; Boonyaratanakornkit, Viroj

    2016-01-01

    Long interspersed elements-1s (LINE-1s) are dispersed all over the human genome. There is evidence that hypomethylation of LINE-1s and levels of sex steroids regulate gene expression leading to cancer development. Here, we compared mRNA levels of genes containing an intragenic LINE-1 in breast cancer cells treated with various sex steroids from Gene Expression Omnibus (GEO), with the gene expression database using chi-square analysis (http://www.ncbi.nlm.nih.gov/geo). We evaluated whether sex steroids influence expression of genes containing an intragenic LINE-1. Three sex steroids at various concentrations, 1 and 10 nM estradiol (E2), 10 nM progesterone (PG) and 10 nM androgen (AN), were assessed. In breast cancer cells treated with 1 or 10 nM E2, a significant percentage of genes containing an intragenic LINE-1 were down-regulated. A highly significant percentage of E2-regulated genes containing an intragenic LINE-1 was down-regulated in cells treated with 1 nM E2 for 3 hours (<3.70E-25; OR=1.91; 95% CI=2.16-1.69). Similarly, high percentages of PG or AN- regulated genes containing an intragenic LINE-1 were also down-regulated in cells treated with 10 nM PG or 10 nM AN for 16 hr (p=9.53E-06; OR=1.65; 95% CI=2.06-1.32 and p=3.81E-14; OR=2.01; 95% CI=2.42-1.67). Interestingly, a significant percentage of AN-regulated genes containing an intragenic LINE-1 was up-regulated in cells treated with 10 nM AN for 16 hr (p=4.03E-02; OR=1.40; 95% CI=1.95-1.01). These findings suggest that intragenic LINE-1s may play roles in sex steroid mediated gene expression in breast cancer cells, which could have significant implications for the development and progression of sex steroid-dependent cancers. PMID:27644652

  7. Gene expression regulators--MicroRNAs

    Institute of Scientific and Technical Information of China (English)

    CHEN Fang; YIN Q. James

    2005-01-01

    A large class of non-coding RNAs found in small molecule RNAs are closely associated with the regulation of gene expression, which are called microRNA (miRNA). MiRNAs are coded in intergenic or intronic regions and can be formed into foldback hairpin RNAs. These transcripts are cleaved by Dicer, generating mature miRNAs that can silence their target genes in different modes of action. Now, research on small molecule RNAs has gotten breakthrough advance in biology. To discover miRNA genes and their target genes has become hot topics in RNA research. This review attempts to look back the history of miRNA discovery, to introduce the methods of screening miRNAs, to localize miRNA loci in genome, to seek miRNA target genes and the biological function, and to discuss the working mechanisms of miRNAs. Finally, we will discuss the potential important roles of miRNAs in modulating the genesis, development, growth, and differentiation of organisms. Thus, it can be predicted that a complete understanding of miRNA functions will bring us some new concepts, approaches and strategies for the study of living beings.

  8. Altered theca and cumulus oocyte complex gene expression, follicular arrest and reduced fertility in cows with dominant follicle follicular fluid androgen excess

    Science.gov (United States)

    To date, animal models with naturally occurring androgen excess have not been identified. Serendipitously, we discovered two subpopulations of cows with dramatically different follicular fluid androgen concentrations in dominant follicles within our research herd. In the cow, androstenedione is the...

  9. Systems Pharmacology Modeling of Prostate‐Specific Antigen in Patients With Prostate Cancer Treated With an Androgen Receptor Antagonist and Down‐Regulator

    Science.gov (United States)

    Mistry, HB; Young, J; Clack, G; Dickinson, PA

    2016-01-01

    First‐in‐human (FIH) studies with AZD3514, a selective androgen receptor (AR) down‐regulator, showed decreases of >30% in the prostate‐specific antigen (PSA) in some patients. A modeling approach was adopted to understand these observations and define the optimum clinical use hypothesis for AZD3514 for clinical testing. Initial empirical modeling showed that only baseline PSA correlated significantly with this biological response, whereas drug concentration did not. To identify the mechanistic cause of this observation, a mechanism‐based model was first developed, which described the effects of AZD3514 on AR protein and PSA mRNA levels in LNCaP cells with and without dihydrotestosterone (DHT). Second, the mechanism‐based model was linked to a population pharmacokinetic (PK) model; PSA effects of clinical doses were subsequently simulated under different clinical conditions. This model was used to adjust the design of the ongoing clinical FIH study and direct the backup program. PMID:27299938

  10. 雄激素受体基因新突变致雄激素不敏感综合征%Study on a novel androgen receptor gene mutation causing androgen insensitivity syndrome

    Institute of Scientific and Technical Information of China (English)

    张曼娜; 张惠杰; 杨军; 顾丽群; 刘建民; 王卫庆; 宁光; 李小英

    2009-01-01

    目的 分析2例雄激素不敏感综合征患者及其家系的临床及分子遗传学.方法 收集2例雄激素小敏感综合征患者的临床资料,从患者及其家系成员的外周血单个核细胞抽提基因组DNA,应用PCR扩增雄激素受体基因并直接测序,明确患者及其父母基因有无突变.结果 患者1表现为女性外生殖器、单侧乳房发育、原发性闭经、阴毛腋毛缺如.患者2表现为男性化不全,体毛稀少、双侧乳房发育、尿道下裂.基因检测证实患者1雄激素受体基因第2号外显子第579位密码子点突变(S579N),并证实为一新突变.患者2第5号外显子第747位密码子点突变(V747M).结论 该2例雄激素受体不敏感综合征系分别由雄激素受体基因S579N及V747M所致,其中S579N突变尚未见文献报道.%Objective To investigate the clinical and genetic characteristics in two patients with androgen insensitivity syndrome. Methods Clinical features and laboratory data were collected from the patients and their families. All exons of the androgen receptor gene were amplified by PCR and PCR products were sequenced. Results Patient 1 presented with unambiguous female external genitalia, unilateral gynecomastia and primary amenorrhea. He did not have axillary hairs or pubic hairs. Patient 2 presented with undervirilization including scanty body hairs, gynecomastia and hypospadias. A missense mutation of

  11. Dietary methanol regulates human gene activity.

    Directory of Open Access Journals (Sweden)

    Anastasia V Shindyapina

    Full Text Available Methanol (MeOH is considered to be a poison in humans because of the alcohol dehydrogenase (ADH-mediated conversion of MeOH to formaldehyde (FA, which is toxic. Our recent genome-wide analysis of the mouse brain demonstrated that an increase in endogenous MeOH after ADH inhibition led to a significant increase in the plasma MeOH concentration and a modification of mRNA synthesis. These findings suggest endogenous MeOH involvement in homeostasis regulation by controlling mRNA levels. Here, we demonstrate directly that study volunteers displayed increasing concentrations of MeOH and FA in their blood plasma when consuming citrus pectin, ethanol and red wine. A microarray analysis of white blood cells (WBC from volunteers after pectin intake showed various responses for 30 significantly differentially regulated mRNAs, most of which were somehow involved in the pathogenesis of Alzheimer's disease (AD. There was also a decreased synthesis of hemoglobin mRNA, HBA and HBB, the presence of which in WBC RNA was not a result of red blood cells contamination because erythrocyte-specific marker genes were not significantly expressed. A qRT-PCR analysis of volunteer WBCs after pectin and red wine intake confirmed the complicated relationship between the plasma MeOH content and the mRNA accumulation of both genes that were previously identified, namely, GAPDH and SNX27, and genes revealed in this study, including MME, SORL1, DDIT4, HBA and HBB. We hypothesized that human plasma MeOH has an impact on the WBC mRNA levels of genes involved in cell signaling.

  12. The CXCL12/CXCR4 axis promotes ligand-independent activation of the androgen receptor.

    Science.gov (United States)

    Kasina, Sathish; Macoska, Jill A

    2012-04-01

    The molecular mechanisms responsible for the transition of some prostate cancers from androgen ligand-dependent to androgen ligand-independent are incompletely established. Molecules that are ligands for G protein coupled receptors (GPCRs) have been implicated in ligand-independent androgen receptor (AR) activation. The purpose of this study was to examine whether CXCL12, the ligand for the GPCR, CXCR4, might mediate prostate cancer cell proliferation through AR-dependent mechanisms involving functional transactivation of the AR in the absence of androgen. The results of these studies showed that activation of the CXCL12/CXCR4 axis promoted: The nuclear accumulation of both wild-type and mutant AR in several prostate epithelial cell lines; AR-dependent proliferative responses; nuclear accumulation of the AR co-regulator SRC-1 protein; SRC-1:AR protein:protein association; co-localization of AR and SRC-1 on the promoters of AR-regulated genes; AR- and SRC-1 dependent transcription of AR-regulated genes; AR-dependent secretion of the AR-regulated PSA protein; P13K-dependent phosphorylation of AR; MAPK-dependent phosphorylation of SRC-1, and both MAPK- and P13K-dependent secretion of the PSA protein, in the absence of androgen. Taken together, these studies identify CXCL12 as a novel, non-steroidal growth factor that promotes the growth of prostate epithelial cells through AR-dependent mechanisms in the absence of steroid hormones. These findings support the development of novel therapeutics targeting the CXCL12/CXCR4 axis as an ancillary to those targeting the androgen/AR axis to effectively treat castration resistant/recurrent prostate tumors.

  13. Sexual Dimorphism in the Regulation of Estrogen, Progesterone, and Androgen Receptors by Sex Steroids in the Rat Airway Smooth Muscle Cells

    Science.gov (United States)

    Zarazúa, Abraham; González-Arenas, Aliesha; Ramírez-Vélez, Gabriela; Bazán-Perkins, Blanca; Guerra-Araiza, Christian; Campos-Lara, María G.

    2016-01-01

    The role of sex hormones in lung is known. The three main sex steroid receptors, estrogen, progesterone, and androgen, have not been sufficiently studied in airway smooth muscle cells (ASMC), and the sex hormone regulation on these receptors is unknown. We examined the presence and regulation of sex hormone receptors in female and male rat ASMC by Western blotting and flow cytometry. Gonadectomized rats were treated with 17β-estradiol, progesterone, 17β-estradiol + progesterone, or testosterone. ASMC were enzymatically isolated from tracheas and bronchi. The experiments were performed with double staining flow cytometry (anti-α-actin smooth muscle and antibodies to each hormone receptor). ERα, ERβ, tPR, and AR were detected in females or males. ERα was upregulated by E2 and T and downregulated by P4 in females; in males, ERα was downregulated by P4, E + P, and T. ERβ was downregulated by each treatment in females, and only by E + P and T in males. tPR was downregulated by P4, E + P, and T in females. No hormonal regulation was observed in male receptors. AR was downregulated in males treated with E + P and T. We have shown the occurrence of sex hormone receptors in ASMC and their regulation by the sex hormones in female and male rats. PMID:27110242

  14. Sexual Dimorphism in the Regulation of Estrogen, Progesterone, and Androgen Receptors by Sex Steroids in the Rat Airway Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Abraham Zarazúa

    2016-01-01

    Full Text Available The role of sex hormones in lung is known. The three main sex steroid receptors, estrogen, progesterone, and androgen, have not been sufficiently studied in airway smooth muscle cells (ASMC, and the sex hormone regulation on these receptors is unknown. We examined the presence and regulation of sex hormone receptors in female and male rat ASMC by Western blotting and flow cytometry. Gonadectomized rats were treated with 17β-estradiol, progesterone, 17β-estradiol + progesterone, or testosterone. ASMC were enzymatically isolated from tracheas and bronchi. The experiments were performed with double staining flow cytometry (anti-α-actin smooth muscle and antibodies to each hormone receptor. ERα, ERβ, tPR, and AR were detected in females or males. ERα was upregulated by E2 and T and downregulated by P4 in females; in males, ERα was downregulated by P4, E + P, and T. ERβ was downregulated by each treatment in females, and only by E + P and T in males. tPR was downregulated by P4, E + P, and T in females. No hormonal regulation was observed in male receptors. AR was downregulated in males treated with E + P and T. We have shown the occurrence of sex hormone receptors in ASMC and their regulation by the sex hormones in female and male rats.

  15. Expression regulation of design process gene in product design

    DEFF Research Database (Denmark)

    Fang, Lusheng; Li, Bo; Tong, Shurong;

    2011-01-01

    To improve the design process efficiency, this paper proposes the principle and methodology that design process gene controls the characteristics of design process under the framework of design process reuse and optimization based on design process gene. First, the concept of design process gene ...... with the example of design management gene. Last, the regulation mode that the regulator gene regulates the expression of the structural gene is established and it is illustrated by taking the design process management gene as an example. © (2011) Trans Tech Publications....

  16. Regulation of gene expression by hypoxia.

    Science.gov (United States)

    Millhorn, D E; Czyzyk-Krzeska, M; Bayliss, D A; Lawson, E E

    1993-12-01

    The present study was undertaken to determine if gene expression for tyrosine hydroxylase (TH), the rate limiting enzyme in the biosynthesis of catecholamines, is regulated in the carotid body, sympathetic ganglia and adrenal medulla by hypoxia. We found that a reduction in oxygen tension from 21% to 10% caused a substantial increase (200% at 1 hour and 500% at 6 hours exposure) in the concentration of TH mRNA in carotid body type I cells but not in either the sympathetic ganglia or adrenal gland. In addition, we found that hypercapnia, another natural stimulus of carotid body activity, failed to enhance TH mRNA in type I cells. Removal of the sensory and sympathetic innervation of the carotid body failed to prevent the induction of TH mRNA by hypoxia in type I cells. Our results show that TH gene expression is regulated by hypoxia in the carotid body but not in other peripheral catecholamine synthesizing tissue and that the regulatory mechanism is intrinsic to type I cells. PMID:7909954

  17. Androgen insensitivity syndrome: gonadal androgen receptor activity

    International Nuclear Information System (INIS)

    To determine whether abnormalities of the androgen receptor previously observed in skin fibroblasts from patients with androgen insensitivity syndrome also occur in the gonads of affected individuals, androgen receptor activity in the gonads of a patient with testicular feminization syndrome was investigated. Using conditions for optimal recovery of androgen receptor from human testes established by previous studies, we detected the presence of a high-affinity (dissociation constant . 3.2 X 10(-10) mol/L), low-capacity (4.2 X 10(-12) mol/mg DNA), androgen-binding protein when tritium-labeled R1881 was incubated at 4 degrees C with nuclear extracts from the gonads of control patients or from a patient with testicular feminization syndrome but not when incubated at 37 degrees C. Thus this patient has an androgen receptor with a temperature lability similar to that of receptors from normal persons

  18. PSA and androgen-related gene (AR, CYP17, and CYP19) polymorphisms and the risk of adenocarcinoma at prostate biopsy

    DEFF Research Database (Denmark)

    dos Santos, Rodrigo Mattos; de Jesus, Carlos Márcio Nóbrega; Trindade Filho, José Carlos Souza;

    2008-01-01

    The aim of the present study was to examine the impact of polymorphisms in prostate-specific antigen (PSA) and androgen-related genes (AR, CYP17, and CYP19) on prostate cancer (PCa) risk in selected high-risk patients who underwent prostate biopsy. Blood samples and prostate tissues were obtained...... for DNA analysis. Single-nucleotide polymorphisms in the 50-untranslated regions (UTRs) of the PSA (substitution A>G at position-158) and CYP17 (substitution T>C at 50-UTR) genes were detected by polymerase chain reaction (PCR)-restriction fragment length polymorphism assays. The CAG and TTTA repeats...... in the AR and CYP19 genes, respectively, were genotyped by PCR-based GeneScan analysis. Patients with the GG genotype of the PSA gene had a higher risk of PCa than those with the AG or AA genotype (OR=3.79, p=0.00138). The AA genotype was associated with lower PSA levels (6.44 +/- 1.64 ng=mL) compared...

  19. The transcriptional regulation of regucalcin gene expression.

    Science.gov (United States)

    Yamaguchi, Masayoshi

    2011-01-01

    Regucalcin, which is discovered as a calcium-binding protein in 1978, has been shown to play a multifunctional role in many tissues and cell types; regucalcin has been proposed to play a pivotal role in keeping cell homeostasis and function for cell response. Regucalcin and its gene are identified in over 15 species consisting of regucalcin family. Comparison of the nucleotide sequences of regucalcin from vertebrate species is highly conserved in their coding region with throughout evolution. The regucalcin gene is localized on the chromosome X in rat and human. The organization of rat regucalcin gene consists of seven exons and six introns and several consensus regulatory elements exist upstream of the 5'-flanking region. AP-1, NF1-A1, RGPR-p117, β-catenin, and other factors have been found to be a transcription factor in the enhancement of regucalcin gene promoter activity. The transcription activity of regucalcin gene is enhanced through intracellular signaling factors that are mediated through the phosphorylation and dephosphorylation of nuclear protein in vitro. Regucalcin mRNA and its protein are markedly expressed in the liver and kidney cortex of rats. The expression of regucalcin mRNA in the liver and kidney cortex has been shown to stimulate by hormonal factors (including calcium, calcitonin, parathyroid hormone, insulin, estrogen, and dexamethasone) in vivo. Regucalcin mRNA expression is enhanced in the regenerating liver after partial hepatectomy of rats in vivo. The expression of regucalcin mRNA in the liver and kidney with pathophysiological state has been shown to suppress, suggesting an involvement of regucalcin in disease. Liver regucalcin expression is down-regulated in tumor cells, suggesting a suppressive role in the development of carcinogenesis. Liver regucalcin is markedly released into the serum of rats with chemically induced liver injury in vivo. Serum regucalcin has a potential sensitivity as a specific biochemical marker of chronic

  20. Gene regulation in parthenocarpic tomato fruit.

    Science.gov (United States)

    Martinelli, Federico; Uratsu, Sandra L; Reagan, Russell L; Chen, Ying; Tricoli, David; Fiehn, Oliver; Rocke, David M; Gasser, Charles S; Dandekar, Abhaya M

    2009-01-01

    Parthenocarpy is potentially a desirable trait for many commercially grown fruits if undesirable changes to structure, flavour, or nutrition can be avoided. Parthenocarpic transgenic tomato plants (cv MicroTom) were obtained by the regulation of genes for auxin synthesis (iaaM) or responsiveness (rolB) driven by DefH9 or the INNER NO OUTER (INO) promoter from Arabidopsis thaliana. Fruits at a breaker stage were analysed at a transcriptomic and metabolomic level using microarrays, real-time reverse transcription-polymerase chain reaction (RT-PCR) and a Pegasus III TOF (time of flight) mass spectrometer. Although differences were observed in the shape of fully ripe fruits, no clear correlation could be made between the number of seeds, transgene, and fruit size. Expression of auxin synthesis or responsiveness genes by both of these promoters produced seedless parthenocarpic fruits. Eighty-three percent of the genes measured showed no significant differences in expression due to parthenocarpy. The remaining 17% with significant variation (P parthenocarpy with ovule-specific alteration of auxin synthesis or response driven by the INO promoter could be effectively applied where such changes are commercially desirable. PMID:19700496

  1. Observation of Androgen Receptor Gene and Sex Hormone Binding Protein Gene in PCOS Patients%PCOS患者雄激素受体基因和性激素结合蛋白基因情况观察

    Institute of Scientific and Technical Information of China (English)

    马娟; 周俊; 田贵聪; 石华

    2016-01-01

    目的:研究观察多囊卵巢综合征(polycystic ovary syndrome,PCOS)患者的雄激素受体基因和性激素结合蛋白基因的情况。方法:选取2014年11月-2015年7月本院接诊的62例PCOS患者为观察组,同一时期由于生殖系统发生异常导致不孕的62例患者为对照组。提取所有患者血液标本的DNA进行基因扩增、琼脂糖凝胶、毛细管电泳等检测,观察研究PCOS患者的雄激素受体和性激素结合蛋白基因的情况。结果:观察组SHBG-TAAAA基因型多态性与胰岛素抵抗的研究中,发现9/9基因型的分布在胰岛素抵抗和非胰岛素抵抗两组中存在统计学差异(P<0.05);观察组中,短重复组在高雄激素血症组的分布为52.94%,在雄激素正常组分布为42.86%;而长重复组在高雄激素血症组的分布为61.76%,在雄激素正常组的分布为39.29%,两组数据比较差异有统计学意义(P<0.05)。结论:雄激素受体基因和性激素结合蛋白基因与PCOS相关,可对PCOS的检查指标、PCOS防治、及早诊断起重要作用。%Objective:To investigate the status of androgen receptor gene and sex hormone binding protein gene in patients with polycystic ovary syndrome(PCOS).Method:A total of 62 PCOS patients were selected as the observation group from November 2014 to July 2015 in our hospital,the control group were choosed from the same period due to the occurrence of reproductive system abnormalities lead to infertility in 62 patients.DNA gene amplification,agarose gel electrophoresis and capillary electrophoresis were performed to detect the expression of androgen receptor and sex hormone binding protein gene in PCOS patients.Result:SHBG-TAAAA gene type of polymorphic and insulin resistance of the observation group in the study,found that 9/9 genotype distribution in insulin resistance and insulin resistance had a significant difference in two groups(P<0.05).In the observation group

  2. In vivo endothelial gene regulation in diabetes

    Directory of Open Access Journals (Sweden)

    Shohet Ralph V

    2008-04-01

    Full Text Available Abstract Background An authentic survey of the transcript-level response of the diabetic endothelium in vivo is key to understanding diabetic cardiovascular complications such as accelerated atherosclerosis and endothelial dysfunction. Methods We used streptozotocin to induce a model of type I diabetes in transgenic mice that express green fluorescent protein under the control of an endothelial-specific promoter (Tie2-GFP allowing rapid isolation of aortic endothelium. Three weeks after treatment, endothelial cells were isolated from animals with blood glucose > 350 mg/dl. Aortae from the root to the renal bifurcation were rapidly processed by mincing and proteolytic digestion followed by fluorescent activated cell sorting to yield endothelial cell populations of >95% purity. RNA was isolated from >50,000 endothelial cells and subjected to oligo dT amplification prior to transcriptional analysis on microarrays displaying long oligonucleotides representing 32,000 murine transcripts. Five regulated transcripts were selected for analysis by real-time PCR. Results Within replicate microarray experiments, 19 transcripts were apparently dysregulated by at least 70% within diabetic mice. Up-regulation of glycam1, slc36a2, ces3, adipsin and adiponectin was confirmed by real-time PCR. Conclusion By comprehensively examining cellular gene responses in vivo in a whole animal model of type I diabetes, we have identified novel regulation of key endothelial transcripts that likely contribute to the metabolic and pro-inflammatory responses that accompany diabetes.

  3. Carnosic acid promotes degradation of the androgen receptor and is regulated by the unfolded protein response pathway in vitro and in vivo.

    Science.gov (United States)

    Petiwala, Sakina M; Li, Gongbo; Bosland, Maarten C; Lantvit, Daniel D; Petukhov, Pavel A; Johnson, Jeremy J

    2016-08-01

    Androgen deprivation therapy in prostate cancer is extremely effective; however, due to the continuous expression and/or mutagenesis of androgen receptor (AR), the resistance to antihormonal therapy is a natural progression. Consequently, targeting the AR for degradation offers an alternate approach to overcome this resistance in prostate cancer. In this study, we demonstrate that carnosic acid, a benzenediol diterpene, binds the ligand-binding domain of the AR and degrades the AR via endoplasmic reticulum (ER) stress-mediated proteasomal degradative pathway. In vitro, carnosic acid treatment induced degradation of AR and decreased expression of prostate-specific antigen in human prostate cancer cell lines LNCaP and 22Rv1. Carnosic acid also promoted the expression of ER proteins including BiP and CHOP in a dose-dependent manner. Downregulation of CHOP by small interfering RNA somewhat restored expression of AR suggesting that AR degradation is dependent on ER stress pathway. Future studies will need to evaluate other aspects of the unfolded protein response pathway to characterize the regulation of AR degradation. Furthermore, cotreating cells individually with carnosic acid and proteasome inhibitor (MG-132) and carnosic acid and an ER stress modulator (salubrinal) restored protein levels of AR, suggesting that AR degradation is mediated by ER stress-dependent proteasomal degradation pathway. Degradation of AR and induction of CHOP protein were also evident in vivo along with a 53% reduction in growth of xenograft prostate cancer tumors. In addition, carnosic acid-induced ER stress in prostate cancer cells but not in normal prostate epithelial cells procured from patient biopsies. In conclusion, these data suggest that molecules such as carnosic acid could be further evaluated and optimized as a potential therapeutic alternative to target AR in prostate cancer. PMID:27267997

  4. The Presence of Clitoromegaly in the Nonclassical Form of 21-Hydroxylase Deficiency Could Be Partially Modulated by the CAG Polymorphic Tract of the Androgen Receptor Gene

    Science.gov (United States)

    Garcia Gomes, Larissa; Bugano Diniz Gomes, Diogo; Marcondes, José Antônio Miguel; Madureira, Guiomar; de Mendonca, Berenice Bilharinho; Bachega, Tânia A. Sartori Sanchez

    2016-01-01

    Background In the nonclassical form (NC), good correlation has been observed between genotypes and 17OH-progesterone (17-OHP) levels. However, this correlation was not identified with regard to the severity of hyperandrogenic manifestations, which could depend on interindividual variability in peripheral androgen sensitivity. Androgen action is modulated by the polymorphic CAG tract (nCAG) of the androgen receptor (AR) gene and by polymorphisms in 5α-reductase type 2 (SRD5A2) enzyme, both of which are involved in the severity of hyperandrogenic disorders. Objectives To analyze whether nCAG-AR and SRD5A2 polymorphisms influence the severity of the nonclassical phenotype. Patients NC patients (n = 114) diagnosed by stimulated-17OHP ≥10 ng/mL were divided into groups according to the beginning of hyperandrogenic manifestations (pediatric and adolescent/adult) and CYP21A2 genotypes (C/C: homozygosis for mild mutations; A/C: compound heterozygosis for severe/mild mutations). Methods CYP21A2 mutations were screened by allelic-specific PCR, MLPA and/or sequencing. HpaII-digested and HpaII-undigested DNA samples underwent GeneScan analysis to study nCAG, and the SRD5A2 polymorphisms were screened by RLFP. Results Mean nCAG did not differ among pediatric, adolescent/adult and asymptomatic subjects. In the C/C genotype, we observed a significantly lower frequency of longer CAG alleles in pediatric patients than in adolescent/adults (p = 0.01). In patients carrying the A/C genotype, the frequencies of shorter and longer CAG alleles did not differ between pediatric patients and adolescent/adults (p>0.05). Patients with clitoromegaly had significantly lower weighted CAG biallelic mean than those without it: 19.1±2.7 and 21.6±2.5, respectively (p = 0.007), independent of the CYP21A2 genotype's severity. The SRD5A2 polymorphisms were not associated with the variability of hyperandrogenic NC phenotypes. Conclusions In this series, we observed a modulatory effect of the CAG

  5. Update of the human secretoglobin (SCGB) gene superfamily and an example of 'evolutionary bloom' of androgen-binding protein genes within the mouse Scgb gene superfamily

    OpenAIRE

    Jackson Brian C; Thompson David C; Wright Mathew W; McAndrews Monica; Bernard Alfred; Nebert Daniel W; Vasiliou Vasilis

    2011-01-01

    Abstract The secretoglobins (SCGBs) comprise a family of small, secreted proteins found in animals exclusively of mammalian lineage. There are 11 human SCGB genes and five pseudogenes. Interestingly, mice have 68 Scgb genes, four of which are highly orthologous to human SCGB genes; the remainder represent an 'evolutionary bloom' and make up a large gene family represented by only six counterparts in humans. SCGBs are found in high concentrations in many mammalian secretions, including fluids ...

  6. Androgen insensitivity syndrome

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/001180.htm Androgen insensitivity syndrome To use the sharing features on this page, please enable JavaScript. Androgen insensitivity syndrome (AIS) is when a person who ...

  7. A Role for Androgens in Epithelial Proliferation and Formation of Glands in the Mouse Uterus.

    Science.gov (United States)

    Simitsidellis, Ioannis; Gibson, Douglas A; Cousins, Fiona L; Esnal-Zufiaurre, Arantza; Saunders, Philippa T K

    2016-05-01

    The endometrium consists of stromal and epithelial compartments (luminal and glandular) with distinct functions in the regulation of uterine homeostasis. Ovarian sex steroids, namely 17β-estradiol and progesterone, play essential roles in modulating uterine cell proliferation, stromal-epithelial cross-talk and differentiation in preparation for pregnancy. The effect of androgens on uterine function remains poorly understood. The current study investigated the effect of the non-aromatizable androgen dihydrotestosterone (DHT) on mouse endometrial function. Ovx female mice were given a single sc injection (short treatment) or 7 daily injections (long treatment) of vehicle alone (5% ethanol, 0.4% methylcellulose) or vehicle with the addition of 0.2 mg DHT (n=8/group) and a single injection of bromodeoxyuridine 2 hours prior to tissue recovery. Treatment with DHT increased uterine weight, the area of the endometrial compartment and immunoexpression of the androgen receptor in the luminal and glandular epithelium. Treatment-dependent proliferation of epithelial cells was identified by immunostaining for MKi67 and bromodeoxyuridine. Real-time PCR identified significant DHT-dependent changes in the concentrations of mRNAs encoded by genes implicated in the regulation of the cell cycle (Wee1, Ccnd1, Rb1) and stromal-epithelial interactions (Wnt4, Wnt5a, Wnt7a, Cdh1, Vcl, Igf1, Prl8, Prlr) as well as a striking effect on the number of endometrial glands. This study has revealed a novel role for androgens in regulating uterine function with an effect on the glandular compartment of the endometrium. This previously unrecognized role for androgens has implications for our understanding of the role of androgens in regulation of endometrial function and fertility in women. PMID:26963473

  8. Size of the exon 1-CAG repeats of the androgen receptor gene employed as a molecular marker in the diagnosis of Turner syndrome in girls with short stature.

    Science.gov (United States)

    Figueiredo, C C; Kochi, C; Longui, C A; Rocha, M N; Richeti, F; Evangelista, N M A; Calliari, L E P; Monte, O

    2008-01-01

    Turner syndrome (TS) is one of the most common chromosomal abnormalities among girls. Complete monosomy of X chromosome is responsible for almost 50% of all cases of TS, and mosaicism and X anomaly are detected in the other half. It has already been demonstrated that early diagnosis of these children allows appropriate growth hormone treatment with better final height prognosis and introduction of estrogen at an ideal chronological age. Sixty-four short-stature girls were selected and the clinical data obtained were birth weight and height, weight and height at the first medical visit and target height. Other clinical data including cardiac and renal abnormalities, otitis, Hashimoto thyroiditis, cubitus valgus, short neck, widely separated nipples, and pigmented nevi were obtained from the patients' medical records. The aim of the present study was to evaluate the screening of a group of short-stature girls for TS based on the number of CAG repeats of the androgen receptor gene analyzed by GeneScan software. Patient samples with two alleles (heterozygous) were 49/64 (76.5%) and with one allele (homozygous) were 15/64 (23.5%). A karyotype was determined in 30 patients, 9 homozygous and 21 heterozygous. In the homozygous group, 6/9 were 45,X and 3/9 were 46,XX. In the heterozygous group, 17/21 were 46,XX, and 4/21 were TS patients with mosaicism (45,X/46,XX; 45,X/46XiXq; 46XdelXp). The pattern obtained by GeneScan in two patients with mosaicism in the karyotype was an imbalance between the peak heights of the two alleles, suggesting that this imbalance could be present when there is a mosaicism. The frequency of TS abnormalities (18.7%) did not differ between TS and 46,XX girls. Thus, it is important to accurately assess the incidence of TS in growth-retarded girls, even in the absence of other dysmorphisms. In this study, we diagnosed 6 cases of TS 45,X (9.4%) by molecular analysis, with a 100% sensitivity and 85% specificity. This molecular analysis was able to

  9. Androgen and bone mass in men

    Institute of Scientific and Technical Information of China (English)

    AnnieW.C.Kung

    2003-01-01

    Androgens have multiple actions on the skeleton throughout life. Androgens promote skeletal growth and accumulation of minerals during puberty and adolescence and stimulate osteoblast but suppress osteoclast function,activity and lifespan through complex mechanisms. Also androgens increase periosteal bone apposition, resulting in larger bone size and thicker cortical bone in men. There is convincing evidence to show that aromatization to estrogens was an important pathway for mediating the action of testosterone on bone physiology. Estrogen is probably the dominant sex steroid regulating bone resorption in men, but both testosterone and estrogen are important in maintaining bone formation. ( Asian J Androl 2003 Jun; 5: 148-154)

  10. Detection of androgen receptor gene mutation in two pedigrees with an-drogen insensitivity syndrome%两个雄激素不敏感综合征家系中 AR基因突变检测

    Institute of Scientific and Technical Information of China (English)

    信艳萍; 吴庆华; 张毅; 史惠蓉

    2015-01-01

    目的:对两个疑似雄激素不敏感综合征( AIS)家系进行基因诊断和其他临床相关检查,旨在发现其致病基因并进行遗传咨询。方法:对两个AIS家系的先证者及相关成员行体格检查、染色体核型分析、内分泌检测及超声检查后,提取外周血全基因组DNA,扩增位于X染色体上AR基因的8个外显子,扩增产物测序后与基因库中正常人的序列进行比对,查找是否存在致病突变。结果:两个AIS家系的先证者均检测到AR基因突变,分别为c.2042T>C(p.681I>T)和c.1822C>T(p.608R>X),家系中女性携带者中检测出了上述位点的杂合突变。家系1先证者行腹腔镜性腺切除术后证实性腺为睾丸。结论:AR基因的p.681 I>T和p.608 R>X是两个AIS家系患者的致病性突变;对AR基因进行基因检测是46,XY性发育异常,特别是AIS有效的诊断方式。%Aim:Clinical and genetic tests were performed in two pedigrees suspected of androgen insensitivity syndrome ( AIS) to get the diagnosis and provide genetic counseling .Methods:Physical examination , karyotyping ,endocrinal tests and ultrasonography were performed in the probands and their relatives .Eight encoding exons of AR gene extracted from peripher-al blood were amplified by PCR .The products were compared with the normal gene sequences and further analyzed by direct DNA sequencing to find possible mutant gene .Results:Different mutations of AR gene were detected in both pedigrees , re-spectively, c.2042T>C(p.681I>T) and c.1822C>T(p.608R>X).Heterozygous double peaks at the same position were found in female carriers.In pedigree 1, the laparoscopic surgery was performed in the proband and the sex gland was con-firmed to be testis.Conclusion:These two types of mutation of AR gene may be the pathologic causes of AIS .Direct sequen-cing of AR gene is a rapid method to diagnose 46,XY disorder of sex development , especially for

  11. Hyperactive androgen receptor in prostate cancer, what does it mean for new therapy concepts?

    OpenAIRE

    Culig, Z.; Hobisch, A.; Hittmair, A; Radmayr, C.; Peterziel, H.; Bartsch, G; Cato, A. C. B.; Klocker, H

    1997-01-01

    Investigations on androgen signaling alterations in the late stages of prostate cancer revealed new molecular mechanisms that may be in part responsible for failure of endocrine therapy. Both primary and metastatic lesions from prostate cancer express androgen receptor protein. Amplification of androgen receptor gene occurs in a subset of prostate cancer patients. Several point mutations of androgen receptor gene have been described; they generate receptors whi...

  12. Identification of putative regulatory region of insulin-like androgenic gland hormone gene (IAG) in the prawn Macrobrachium nipponense and proteins that interact with IAG by using yeast two-hybrid system.

    Science.gov (United States)

    Ma, Ke-Yi; Li, Jia-Le; Qiu, Gao-Feng

    2016-04-01

    Insulin-like androgenic gland hormone gene (IAG) is a sex regulator specifically expressed in male crustaceans, controlling the male sexual differentiation, spermatogenesis and reproductive strategy. Our previous study reported the cloning and characterization of the prawn Macrobrachium nipponense IAG (MnIAG). In this study, we further identified a 2214-bp MnIAG 5'-flanking region, and analyzed its transcription factor binding sites and transcriptional activity. The results showed that there were two potential promoter core sequences, three TATA boxes and one CAAT box existing in the MnIAG 5'-flanking region as well as many potential transcription factor binding sites, such as SRY, Sox-5, GATA-1, etc. Notably, the transcriptional activity was weak in this region, and a negative regulatory region was found in -604 to -231bp. In addition, we constructed M. nipponense yeast libraries and identified proteins interacting with the MnIAG protein by yeast two hybridization assay. The yeast two-hybrid screening yielded ten positive clones, of which five were annotated by NCBI database, namely heat shock protein 21, NADH dehydrogenase, zinc finger protein, beta-N-acetylglucosaminidase and a hypothetical protein. The identification of MnIAG putative regulatory region and proteins that interact with IAG will facilitate our understanding of the regulatory role of MnIAG and provide a foundation for deep insight into the prawn sex differentiation mechanism and signaling transduction pathways. PMID:26979275

  13. Yolk androgens reduce offspring survival.

    Science.gov (United States)

    Sockman, K W; Schwabl, H

    2000-07-22

    Females may favour some offspring over others by differential deposition of yolk hormones. In American kestrels (Falco sparverius), we found that yolks of eggs laid late in the sequence of a clutch had more testosterone (T) and androstenedione (A4) than yolks of first-laid eggs. To investigate the effects of these yolk androgens on nestling 'fitness', we injected both T and A4 into the yolks of first-laid eggs and compared their hatching time, nestling growth and nestling survival with those of first-laid eggs in which we injected vehicle as a control. Compared to controls, injection of T and A4 at a dose intended to increase their levels to those of later-laid eggs delayed hatching and reduced nestling growth and survival rates. Yolk androgen treatment of egg 1 had no effect on survival of siblings hatching from subsequently laid eggs. The adverse actions of yolk androgen treatment in the kestrel are in contrast to the favourable actions of yolk T treatment found previously in canaries (Serinus canaria). Additional studies are necessary in order to determine whether the deposition of yolk androgens is an adaptive form of parental favouritism or an adverse by-product of endocrine processes during egg formation. Despite its adaptive significance, such 'transgenerational' effects of steroid hormones may have helped to evolutionarily shape the hormonal mechanisms regulating reproduction. PMID:10983830

  14. Androgen receptor signaling and mutations in prostate cancer

    OpenAIRE

    Koochekpour, Shahriar

    2010-01-01

    Normal and neoplastic growth of the prostate gland are dependent on androgen receptor (AR) expression and function. Androgenic activation of the AR, in association with its coregulatory factors, is the classical pathway that leads to transcriptional activity of AR target genes. Alternatively, cytoplasmic signaling crosstalk of AR by growth factors, neurotrophic peptides, cytokines or nonandrogenic hormones may have important roles in prostate carcinogenesis and in metastatic or androgen-indep...

  15. Sequence Evolution and Expression of the Androgen Receptor and Other Pathway-Related Genes in a Unisexual Fish, the Amazon Molly, Poecilia formosa, and Its Bisexual Ancestors

    Science.gov (United States)

    Zhu, Fangjun; Schlupp, Ingo; Tiedemann, Ralph

    2016-01-01

    The all-female Amazon molly (Poecilia formosa) originated from a single hybridization of two bisexual ancestors, Atlantic molly (Poecilia mexicana) and sailfin molly (Poecilia latipinna). As a gynogenetic species, the Amazon molly needs to copulate with a heterospecific male, but the genetic information of the sperm-donor does not contribute to the next generation, as the sperm only acts as the trigger for the diploid eggs’ embryogenesis. Here, we study the sequence evolution and gene expression of the duplicated genes coding for androgen receptors (ars) and other pathway-related genes, i.e., the estrogen receptors (ers) and cytochrome P450, family19, subfamily A, aromatase genes (cyp19as), in the Amazon molly, in comparison to its bisexual ancestors. Mollies possess–as most other teleost fish—two copies of the ar, er, and cyp19a genes, i.e., arα/arβ, erα/erβ1, and cyp19a1 (also referred as cyp19a1a)/cyp19a2 (also referred to as cyp19a1b), respectively. Non-synonymous single nucleotide polymorphisms (SNPs) among the ancestral bisexual species were generally predicted not to alter protein function. Some derived substitutions in the P. mexicana and one in P. formosa are predicted to impact protein function. We also describe the gene expression pattern of the ars and pathway-related genes in various tissues (i.e., brain, gill, and ovary) and provide SNP markers for allele specific expression research. As a general tendency, the levels of gene expression were lowest in gill and highest in ovarian tissues, while expression levels in the brain were intermediate in most cases. Expression levels in P. formosa were conserved where expression did not differ between the two bisexual ancestors. In those cases where gene expression levels significantly differed between the bisexual species, P. formosa expression was always comparable to the higher expression level among the two ancestors. Interestingly, erβ1 was expressed neither in brain nor in gill in the analyzed

  16. Sequence Evolution and Expression of the Androgen Receptor and Other Pathway-Related Genes in a Unisexual Fish, the Amazon Molly, Poecilia formosa, and Its Bisexual Ancestors.

    Directory of Open Access Journals (Sweden)

    Fangjun Zhu

    Full Text Available The all-female Amazon molly (Poecilia formosa originated from a single hybridization of two bisexual ancestors, Atlantic molly (Poecilia mexicana and sailfin molly (Poecilia latipinna. As a gynogenetic species, the Amazon molly needs to copulate with a heterospecific male, but the genetic information of the sperm-donor does not contribute to the next generation, as the sperm only acts as the trigger for the diploid eggs' embryogenesis. Here, we study the sequence evolution and gene expression of the duplicated genes coding for androgen receptors (ars and other pathway-related genes, i.e., the estrogen receptors (ers and cytochrome P450, family19, subfamily A, aromatase genes (cyp19as, in the Amazon molly, in comparison to its bisexual ancestors. Mollies possess-as most other teleost fish-two copies of the ar, er, and cyp19a genes, i.e., arα/arβ, erα/erβ1, and cyp19a1 (also referred as cyp19a1a/cyp19a2 (also referred to as cyp19a1b, respectively. Non-synonymous single nucleotide polymorphisms (SNPs among the ancestral bisexual species were generally predicted not to alter protein function. Some derived substitutions in the P. mexicana and one in P. formosa are predicted to impact protein function. We also describe the gene expression pattern of the ars and pathway-related genes in various tissues (i.e., brain, gill, and ovary and provide SNP markers for allele specific expression research. As a general tendency, the levels of gene expression were lowest in gill and highest in ovarian tissues, while expression levels in the brain were intermediate in most cases. Expression levels in P. formosa were conserved where expression did not differ between the two bisexual ancestors. In those cases where gene expression levels significantly differed between the bisexual species, P. formosa expression was always comparable to the higher expression level among the two ancestors. Interestingly, erβ1 was expressed neither in brain nor in gill in the

  17. A simple screening method for detection of Klinefelter syndrome and other X-chromosome aneuploidies based on copy number of the androgen receptor gene

    DEFF Research Database (Denmark)

    Ottesen, A M; Garn, I D; Aksglaede, L;

    2007-01-01

    of the copy number assessment of the androgen receptor (AR) gene, located to Xq11.2-q12. We analysed samples from 50 individuals, including a healthy male and female controls and patients with Klinefelter syndrome (47,XXY; 48,XXXY) (n = 28), mosaicisms (46,XX/47,XXY/48XXYY; 45,X/46,XY) (n = 3), other sex...... chromosome abnormalities (46,XX males; 47,XYY)(n = 4) and normal karyotypes (46,XY) (n = 13). The reference range for the AR-copy number was established as 0.8-1.2 for one copy and 1.7-2.3 for two copies. The qPCR results were within the reference range in 17/18 samples (94%) or 30/31 (97%) samples with one...... or two copies of the AR gene, respectively. None of the Klinefelter patients were misdiagnosed as having a karyotype with only one X-chromosome, and in none of the 46,XY males were two copies demonstrated. We systematically compared qPCR results with those obtained with another PCR-based method, the XIST...

  18. Pluralistic and stochastic gene regulation: examples, models and consistent theory.

    Science.gov (United States)

    Salas, Elisa N; Shu, Jiang; Cserhati, Matyas F; Weeks, Donald P; Ladunga, Istvan

    2016-06-01

    We present a theory of pluralistic and stochastic gene regulation. To bridge the gap between empirical studies and mathematical models, we integrate pre-existing observations with our meta-analyses of the ENCODE ChIP-Seq experiments. Earlier evidence includes fluctuations in levels, location, activity, and binding of transcription factors, variable DNA motifs, and bursts in gene expression. Stochastic regulation is also indicated by frequently subdued effects of knockout mutants of regulators, their evolutionary losses/gains and massive rewiring of regulatory sites. We report wide-spread pluralistic regulation in ≈800 000 tightly co-expressed pairs of diverse human genes. Typically, half of ≈50 observed regulators bind to both genes reproducibly, twice more than in independently expressed gene pairs. We also examine the largest set of co-expressed genes, which code for cytoplasmic ribosomal proteins. Numerous regulatory complexes are highly significant enriched in ribosomal genes compared to highly expressed non-ribosomal genes. We could not find any DNA-associated, strict sense master regulator. Despite major fluctuations in transcription factor binding, our machine learning model accurately predicted transcript levels using binding sites of 20+ regulators. Our pluralistic and stochastic theory is consistent with partially random binding patterns, redundancy, stochastic regulator binding, burst-like expression, degeneracy of binding motifs and massive regulatory rewiring during evolution.

  19. Regulation of the pentose phosphate pathway by an androgen receptor-mTOR-mediated mechanism and its role in prostate cancer cell growth.

    Science.gov (United States)

    Tsouko, E; Khan, A S; White, M A; Han, J J; Shi, Y; Merchant, F A; Sharpe, M A; Xin, L; Frigo, D E

    2014-05-26

    Cancer cells display an increased demand for glucose. Therefore, identifying the specific aspects of glucose metabolism that are involved in the pathogenesis of cancer may uncover novel therapeutic nodes. Recently, there has been a renewed interest in the role of the pentose phosphate pathway in cancer. This metabolic pathway is advantageous for rapidly growing cells because it provides nucleotide precursors and helps regenerate the reducing agent NADPH, which can contribute to reactive oxygen species (ROS) scavenging. Correspondingly, clinical data suggest glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the pentose phosphate pathway, is upregulated in prostate cancer. We hypothesized that androgen receptor (AR) signaling, which plays an essential role in the disease, mediated prostate cancer cell growth in part by increasing flux through the pentose phosphate pathway. Here, we determined that G6PD, NADPH and ribose synthesis were all increased by AR signaling. Further, this process was necessary to modulate ROS levels. Pharmacological or molecular inhibition of G6PD abolished these effects and blocked androgen-mediated cell growth. Mechanistically, regulation of G6PD via AR in both hormone-sensitive and castration-resistant models of prostate cancer was abolished following rapamycin treatment, indicating that AR increased flux through the pentose phosphate pathway by the mammalian target of rapamycin (mTOR)-mediated upregulation of G6PD. Accordingly, in two separate mouse models of Pten deletion/elevated mTOR signaling, Pb-Cre;Pten(f/f) and K8-CreER(T2);Pten(f/f), G6PD levels correlated with prostate cancer progression in vivo. Importantly, G6PD levels remained high during progression to castration-resistant prostate cancer. Taken together, our data suggest that AR signaling can promote prostate cancer through the upregulation of G6PD and therefore, the flux of sugars through the pentose phosphate pathway. Hence, these findings support a

  20. Persistent androgen receptor-mediated transcription in castration-resistant prostate cancer under androgen-deprived conditions

    OpenAIRE

    Decker, Keith F.; Zheng, Dali; He, Yuhong; Bowman, Tamara; Edwards, John R.; Jia, Li

    2012-01-01

    The androgen receptor (AR) is a ligand-inducible transcription factor that mediates androgen action in target tissues. Upon ligand binding, the AR binds to thousands of genomic loci and activates a cell-type specific gene program. Prostate cancer growth and progression depend on androgen-induced AR signaling. Treatment of advanced prostate cancer through medical or surgical castration leads to initial response and durable remission, but resistance inevitably develops. In castration-resistant ...

  1. Regulated genes in mesenchymal stem cells and gastriccancer

    Institute of Scientific and Technical Information of China (English)

    Shihori Tanabe; Kazuhiko Aoyagi; Hiroshi Yokozaki; Hiroki Sasaki

    2015-01-01

    AIM To investigate the genes regulated in mesenchymalstem cells (MSCs) and diffuse-type gastric cancer (GC),gene expression was analyzed.METHODS: Gene expression of MSCs and diffuse-typeGC cells were analyzed by microarray. Genes relatedto stem cells, cancer and the epithelial-mesenchymaltransition (EMT) were extracted from human genelists using Gene Ontology and reference information.Gene panels were generated, and messenger RNAgene expression in MSCs and diffuse-type GC cells wasanalyzed. Cluster analysis was performed using the NCSSsoftware.RESULTS: The gene expression of regulator of G-proteinsignaling 1 (RGS1) was up-regulated in diffuse-type GCcells compared with MSCs. A panel of stem-cell relatedgenes and genes involved in cancer or the EMT wereexamined. Stem-cell related genes, such as growtharrest-specific 6, musashi RNA-binding protein 2 andhairy and enhancer of split 1 (Drosophila), NOTCHfamily genes and Notch ligands, such as delta-like 1(Drosophila) and Jagged 2, were regulated.CONCLUSION: Expression of RGS1 is up-regulated,and genes related to stem cells and NOTCH signalingare altered in diffuse-type GC compared with MSCs.

  2. Androgen and prostatic stroma

    Institute of Scientific and Technical Information of China (English)

    Yuan-JieNIU; Teng-XiangMA; IuZHANG; YongXU; Rui-FaHAN; GuangSUN

    2003-01-01

    90,The expression of ER remained unchanged in the whole course.The prostatic stromal cells,including SMCs and fibroblasts,diminished and underwent serial pathological changes of atrophy and apoptosis after castration.The atrophic cells were filled with huge intracellular lipofuscin.The expression of SMC myosin declined after castration,coincident with the increase in TGFβ mRNA level and decline in bFGF mRNA level.In vitro,DHT caused a weak increase in the proliferation and expression of SMC-specific proteins(P<0.05).However,DHT and bFGF together stimulated the proliferation of stromal cells significantly more than either agent alone(P<0.01).The combination of DHT and TGFβgreatly enhanced the expression of SMC-specific proteins(P<0.01)more strongly than either alone(P<0.01.Conclusions:The whole prostate gland is an androgen-sensitive organ with both the epithelium and stroma under the control of androgen.Androgen may direct the proliferation,differentiation and regression of stromal cells by regulating the expression of TGFβ,bFGF ,AR and smooth muscle cell specific proteins.

  3. Regulation of fertility, survival, and cuticle collagen function by the Caenorhabditis elegans eaf-1 and ell-1 genes.

    Science.gov (United States)

    Cai, Liquan; Phong, Binh L; Fisher, Alfred L; Wang, Zhou

    2011-10-14

    EAF2, an androgen-regulated protein, interacts with members of the ELL (eleven-nineteen lysine-rich leukemia) transcription factor family and also acts as a tumor suppressor. Although these proteins control transcriptional elongation and perhaps modulate the effects of other transcription factors, the mechanisms of their actions remain largely unknown. To gain new insights into the biology of the EAF2 and ELL family proteins, we used Caenorhabditis elegans as a model to explore the in vivo roles of their worm orthologs. Through the use of transgenic worms, RNAi, and an eaf-1 mutant, we found that both genes are expressed in multiple cell types throughout the worm life cycle and that they play important roles in fertility, survival, and body size regulation. ELL-1 and EAF-1 likely contribute to these activities in part through modulating cuticle synthesis, given that we observed a disrupted cuticle structure in ell-1 RNAi-treated or eaf-1 mutant worms. Consistent with disruption of cuticle structure, loss of either ELL-1 or EAF-1 suppressed the rol phenotype of specific collagen mutants, possibly through the control of dpy-3, dpy-13, and sqt-3 collagen gene expression. Furthermore, we also noted the regulation of collagen expression by ELL overexpression in PC3 human prostate cancer cells. Together, these results reveal important roles for the eaf-1 and ell-1 genes in the regulation of extracellular matrix components.

  4. Identification of a new plant extract for androgenic alopecia treatment using a non-radioactive human hair dermal papilla cell-based assay

    OpenAIRE

    Jain, Ruchy; Monthakantirat, Orawan; Tengamnuay, Parkpoom; De-Eknamkul, Wanchai

    2016-01-01

    Background Androgenic alopecia (AGA) is a major type of human scalp hair loss, which is caused by two androgens: testosterone (T) and 5α-dihydrotestosterone (5α-DHT). Both androgens bind to the androgen receptor (AR) and induce androgen-sensitive genes within the human hair dermal papilla cells (HHDPCs), but 5α-DHT exhibits much higher binding affinity and potency than T does in inducing the involved androgen-sensitive genes. Changes in the induction of androgen-sensitive genes during AGA are...

  5. The Early Effects of Rapid Androgen Deprivation on Human Prostate Cancer

    OpenAIRE

    Shaw, Greg L; Whitaker, Hayley; Corcoran, Marie; Dunning, Mark J.; Luxton, Hayley; Kay, Jonathan; Massie, Charlie E; Miller, Jodi L.; Lamb, Alastair D.; Ross-Adams, Helen; Russell, Roslin; Adam W Nelson; Eldridge, Matthew D.; Lynch, Andrew G.; Ramos-Montoya, Antonio

    2016-01-01

    The androgen receptor (AR) is the dominant growth factor in prostate cancer (PCa). Therefore, understanding how ARs regulate the human transcriptome is of paramount importance. The early effects of castration on human PCa have not previously been studied 27 patients medically castrated with degarelix 7 d before radical prostatectomy. We used mass spectrometry, immunohistochemistry, and gene expression array (validated by reverse transcription-polymerase chain reaction) to compare resected tum...

  6. Pharmacogenomics genes show varying perceptibility to microRNA regulation

    DEFF Research Database (Denmark)

    Rukov, Jakob Lewin; Vinther, Jeppe; Shomron, Noam

    2011-01-01

    The aim of pharmacogenomics is to identify individual differences in genome and transcriptome composition and their effect on drug efficacy. MicroRNAs (miRNAs) are short noncoding RNAs that negatively regulate expression of the majority of animal genes, including many genes involved in drug...... efficacy. Consequently, differences in the miRNA expression among individuals could be an important factor contributing to differential drug response. Pharmacogenomics genes can be divided into drug target genes termed as pharmacodynamics genes (PD) and genes involved in drug transport and metabolism...... termed as pharmacokinetics genes (PK). To clarify the regulatory potential of miRNAs in pharmacogenomics, we have examined the potential regulation by miRNAs of PK and PD genes....

  7. Discover Gene Specific Local Co-Regulations from Time-Course Gene Expression Data

    Directory of Open Access Journals (Sweden)

    Ji Zhang

    2008-01-01

    Full Text Available Discovering gene co-regulatory relationships is one of most important research in DNA microarray data analysis. The problem of gene specific co-regulation discovery is to, for a particular gene of interest (called target gene, identify the condition subsets where strong gene co-regulations of the target gene are observed and its co-regulated genes in these condition subsets. The co-regulations are local in the sense that they occur in some subsets of full experimental conditions. The study on this problem can contribute to better understanding and characterizing the target gene during the biological activity involved. In this paper, we propose an innovative method for finding gene specific co-regulations using genetic algorithm (GA. A sliding window is used to delimit the allowed length of conditions in which gene co-regulations occur and an ad hoc GA, called the progressive GA, is performed in each window position to find those condition subsets having high fitness. It is called progressive because the initial population for the GA in a window position inherits the top-ranked individuals obtained in its preceding window position, enabling the GA to achieve a better accuracy than the non-progressive algorithm. kNN Lookup Table is utilized to substantially speed up fitness evaluation in the GA. Experimental results with a real-life gene expression data demonstrate the efficiency and effectiveness of our technique in discovering gene specific co-regulations.

  8. Contribution of allelic variability in prostate specific antigen (PSA & androgen receptor (AR genes to serum PSA levels in men with prostate cancer

    Directory of Open Access Journals (Sweden)

    Sushant V Chavan

    2014-01-01

    Full Text Available Background & objectives: Wide variability in serum prostate specific antigen (PSA levels exists in malignant conditions of the prostate. PSA is expressed in normal range in 20 to 25 per cent of prostate cancer cases even in presence of high grade Gleason score. This study was aimed to assess the influence of genetic variants exhibited by PSA and androgen receptor (AR genes towards the variable expression of PSA in prostate cancer. Methods: Pre-treatment serum PSA levels from 101 prostate cancer cases were retrieved from medical record. PSA genotype analysis in promoter region and AR gene microsatellite Cytosine/Adenine/Guanine (CAG repeat analysis in exon 1 region was performed using DNA sequencing and fragment analysis techniques. Results: A total of seven single nucleotide polymorphisms (SNPs in the PSA promoter region were noted. Only two SNPs viz., 158G/A (P<0.001 in the proximal promoter region and -3845G/A (P<0.001 in enhancer region showed significant association with serum PSA levels. The carriers of homozygous GG genotype (P<0.001 at both of these polymorphic sites showed higher expression of PSA whereas homozygous AA genotype (P<0.001 carriers demonstrated lower PSA levels. The combination effect of PSA genotypes along with stratified AR CAG repeats lengths (long, intermediate and short was also studied. The homozygous GG genotype along with AR long CAG repeats and homozygous AA genotype along with AR short CAG repeats at position -3845 and -158 showed strong interaction and thus influenced serum PSA levels. Interpretation & conclusions: The genetic variants exhibited by PSA gene at positions -3845G/A and -158G/A may be accountable towards wide variability of serum PSA levels in prostate cancer. Also the preferential binding of G and A alleles at these polymorphic sites along with AR long and short CAG repeats may contribute towards PSA expression.

  9. Androgens and skeletal muscle: cellular and molecular action mechanisms underlying the anabolic actions.

    Science.gov (United States)

    Dubois, Vanessa; Laurent, Michaël; Boonen, Steven; Vanderschueren, Dirk; Claessens, Frank

    2012-05-01

    Androgens increase both the size and strength of skeletal muscle via diverse mechanisms. The aim of this review is to discuss the different cellular targets of androgens in skeletal muscle as well as the respective androgen actions in these cells leading to changes in proliferation, myogenic differentiation, and protein metabolism. Androgens bind and activate a specific nuclear receptor which will directly affect the transcription of target genes. These genes encode muscle-specific transcription factors, enzymes, structural proteins, as well as microRNAs. In addition, anabolic action of androgens is partly established through crosstalk with other signaling molecules such as Akt, myostatin, IGF-I, and Notch. Finally, androgens may also exert non-genomic effects in muscle by increasing Ca(2+) uptake and modulating kinase activities. In conclusion, the anabolic effect of androgens on skeletal muscle is not only explained by activation of the myocyte androgen receptor but is also the combined result of many genomic and non-genomic actions.

  10. Androgen Metabolism Gene Polymorphisms, Associations with Prostate Cancer Risk and Pathological Characteristics: A Comparative Analysis between South African and Senegalese Men

    Directory of Open Access Journals (Sweden)

    Pedro Fernandez

    2012-01-01

    Full Text Available Prostate cancer is the most common cancer in men in developed countries and the leading cause of mortality in males in less developed countries. African ethnicity is one of the major risk factors for developing prostate cancer. Pathways involved in androgen metabolism have been implicated in the etiology of the disease. Analyses of clinical data and CYP3A4, CYP3A5, and SRD5A2 genotypes were performed in South African White (120 cases; 134 controls, Mixed Ancestry (207 cases; 167 controls, and Black (25 cases; 20 controls men, as well as in Senegalese men (86 cases; 300 controls. Senegalese men were diagnosed earlier with prostate cancer and had higher median PSA levels compared to South African men. Metastasis occurred more frequently in Senegalese men. Gene polymorphism frequencies differed significantly between South African and Senegalese men. The CYP3A4 rs2740574 polymorphism was associated with prostate cancer risk and tumor aggressiveness in South African men, after correction for population stratification, and the SRD5A2 rs523349 CG genotype was inversely associated with high-stage disease in Senegalese men. These data suggest that variants previously associated with prostate cancer in other populations may also affect prostate cancer risk in African men.

  11. Transcriptional programs activated by exposure of human prostate cancer cells to androgen

    OpenAIRE

    DePrimo, Samuel E; Diehn, Maximilian; Nelson, Joel B.; Reiter, Robert E.; Matese, John; Fero, Mike; Tibshirani, Robert; Brown, Patrick O; James D Brooks

    2002-01-01

    Background Androgens are required for both normal prostate development and prostate carcinogenesis. We used DNA microarrays, representing approximately 18,000 genes, to examine the temporal program of gene expression following treatment of the human prostate cancer cell line LNCaP with a synthetic androgen. Results We observed statistically significant changes in levels of transcripts of more than 500 genes. Many of these genes were previously reported androgen targets, but most were not prev...

  12. Androgen receptor gene CAG repeat length as modifier of the association between Persistent Organohalogen Pollutant exposure markers and semen characteristics

    DEFF Research Database (Denmark)

    Giwercman, Aleksander; Rylander, Lars; Rignell-Hydbom, Anna;

    2007-01-01

    OBJECTIVES: Exposure to persistent organohalogen pollutants was suggested to impair male reproductive function. A gene-environment interaction has been proposed. No genes modifying the effect of persistent organohalogen pollutants on reproductive organs have yet been identified. We aimed to inves...

  13. Potentially harmful advantage to athletes: a putative connection between UGT2B17 gene deletion polymorphism and renal disorders with prolonged use of anabolic androgenic steroids

    Directory of Open Access Journals (Sweden)

    Barker James

    2010-04-01

    Full Text Available Abstract Background and objective With prolonged use of anabolic androgenic steroids (AAS, occasional incidents of renal disorders have been observed. Independently, it has also been established that there are considerable inter-individual and inter-ethnic differences, in particular with reference to the uridine diphosphate-glucuronosyltransferase 2B17 (UGT2B17 gene, in metabolising these compounds. This report postulates the association of deletion polymorphism in the UGT2B17 gene with the occurrence of renal disorders on chronic exposure to AAS. Presentation of the hypothesis The major deactivation and elimination pathway of AASs is through glucuronide conjugation, chiefly catalyzed by the UGT2B17 enzyme, followed by excretion in urine. Excretion of steroids is affected in individuals with a deletion mutation in the UGT2B17 gene. We hypothesize that UGT2B17 deficient individuals are more vulnerable to developing renal disorders with prolonged use of AAS owing to increases in body mass index and possible direct toxic effects of steroids on the kidneys. Elevated serum levels of biologically active steroids due to inadequate elimination can lead to prolonged muscle build up. An increase in body mass index may cause renal injuries due to sustained elevated glomerular pressure and flow rate. Testing the hypothesis In the absence of controlled clinical trials in humans, observational studies can be carried out. Real time PCR with allelic discrimination should be employed to examine the prevalence of different UGT2B17 genotypes in patients with impaired renal function and AAS abuse. In individuals with the UGT2B17 deletion polymorphism, blood tests, biofluid analyses, urinalysis, and hair analyses following the administration of an anabolic steroid can be used to determine the fate of the substance once in the body. Implications of the hypothesis If the hypothesis is upheld, anabolic steroid users with a deletion mutation in the UGT2B17 gene may be

  14. Specific changes in the expression of imprinted genes in prostate cancer-implications for cancer progression and epigenetic regulation

    Institute of Scientific and Technical Information of China (English)

    Teodora Ribarska; Klaus-Marius Bastian; Annemarie Koch; Wolfgang A Schulz

    2012-01-01

    Epigenetic dysregulation comprising DNA hypermethylation and hypomethylation,enhancer of zeste homologue 2 (EZH2)overexpression and altered patterns of histone modifications is associated with the progression of prostate cancer.DNA methylation,EZH2 and histone modifications also ensure the parental-specific monoallelic expression of at least 62 imprinted genes.Although it is therefore tempting to speculate that epigenetic dysregulation may extend to imprinted genes,expression changes in cancerous prostates are only well documented for insulin-like growth factor 2 (IGF2).A literature and database survey on imprinted genes in prostate cancer suggests that the expression of most imprinted genes remains unchanged despite global disturbances in epigenetic mechanisms.Instead,selective genetic and epigenetic changes appear to lead to the inactivation of a sub-network of imprinted genes,which might function in the prostate to limit cell growth induced viathe PI3K/Akt pathway,modulate androgen responses and regulate differentiation.Whereas dysregulation of IG F2 may constitute an early change in prostate carcinogenesis,inactivation of this imprinted gene network is rather associated with cancer progression.

  15. Prediction of epigenetically regulated genes in breast cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Loss, Leandro A; Sadanandam, Anguraj; Durinck, Steffen; Nautiyal, Shivani; Flaucher, Diane; Carlton, Victoria EH; Moorhead, Martin; Lu, Yontao; Gray, Joe W; Faham, Malek; Spellman, Paul; Parvin, Bahram

    2010-05-04

    Methylation of CpG islands within the DNA promoter regions is one mechanism that leads to aberrant gene expression in cancer. In particular, the abnormal methylation of CpG islands may silence associated genes. Therefore, using high-throughput microarrays to measure CpG island methylation will lead to better understanding of tumor pathobiology and progression, while revealing potentially new biomarkers. We have examined a recently developed high-throughput technology for measuring genome-wide methylation patterns called mTACL. Here, we propose a computational pipeline for integrating gene expression and CpG island methylation profles to identify epigenetically regulated genes for a panel of 45 breast cancer cell lines, which is widely used in the Integrative Cancer Biology Program (ICBP). The pipeline (i) reduces the dimensionality of the methylation data, (ii) associates the reduced methylation data with gene expression data, and (iii) ranks methylation-expression associations according to their epigenetic regulation. Dimensionality reduction is performed in two steps: (i) methylation sites are grouped across the genome to identify regions of interest, and (ii) methylation profles are clustered within each region. Associations between the clustered methylation and the gene expression data sets generate candidate matches within a fxed neighborhood around each gene. Finally, the methylation-expression associations are ranked through a logistic regression, and their significance is quantified through permutation analysis. Our two-step dimensionality reduction compressed 90% of the original data, reducing 137,688 methylation sites to 14,505 clusters. Methylation-expression associations produced 18,312 correspondences, which were used to further analyze epigenetic regulation. Logistic regression was used to identify 58 genes from these correspondences that showed a statistically signifcant negative correlation between methylation profles and gene expression in the

  16. Transcriptome Analysis of Androgenic Gland for Discovery of Novel Genes from the Oriental River Prawn, Macrobrachium nipponense, Using Illumina Hiseq 2000

    OpenAIRE

    Shubo Jin; Hongtuo Fu; Qiao Zhou; Shengming Sun; Sufei Jiang; Yiwei Xiong; Yongsheng Gong; Hui Qiao; Wenyi Zhang

    2013-01-01

    BACKGROUND: The oriental river prawn, Macrobrachium nipponense, is an important aquaculture species in China, even in whole of Asia. The androgenic gland produces hormones that play crucial roles in sexual differentiation to maleness. This study is the first de novo M. nipponense transcriptome analysis using cDNA prepared from mRNA isolated from the androgenic gland. Illumina/Solexa was used for sequencing. METHODOLOGY AND PRINCIPAL FINDING: The total volume of RNA sample was more than 5 ug. ...

  17. Establishment of a novel immortalized human prostatic epithelial cell line stably expressing androgen receptor and its application for the functional screening of androgen receptor modulators

    International Nuclear Information System (INIS)

    In this study, we developed a human prostatic epithelial cell line BPH-1-AR stably expressing AR by lentiviral transduction. Characterization by immunoblot and RT-PCR showed that AR was stably expressed in all representative BPH-1-AR clones. Androgen treatment induced a secretory differentiation phenotype in BPH-1-AR cells but suppressed their cell proliferation. Treatments with AR agonists induced transactivation of a transfected PSA-gene promoter reporter in BPH-1-AR cells, whereas this transactivation was suppressed by an AR antagonist flutamide, indicating that the transduced AR in BPH-1-AR cells was functional. Finally, we utilized BPH-1-AR cells to evaluate the androgenic activities and growth effects of five newly developed non-steroidal compounds. Results showed that these compounds showed androgenic activities and growth-inhibitory effects on BPH-1-AR cells. Our results showed that BPH-1-AR cell line would be a valuable in vitro model for the study of androgen-regulated processes in prostatic epithelial cells and identification of compounds with AR-modulating activities.

  18. Expression profiling of genes regulated by TGF-beta: Differential regulation in normal and tumour cells

    Directory of Open Access Journals (Sweden)

    Takahashi Takashi

    2007-04-01

    Full Text Available Abstract Background TGF-beta is one of the key cytokines implicated in various disease processes including cancer. TGF-beta inhibits growth and promotes apoptosis in normal epithelial cells and in contrast, acts as a pro-tumour cytokine by promoting tumour angiogenesis, immune-escape and metastasis. It is not clear if various actions of TGF-beta on normal and tumour cells are due to differential gene regulations. Hence we studied the regulation of gene expression by TGF-beta in normal and cancer cells. Results Using human 19 K cDNA microarrays, we show that 1757 genes are exclusively regulated by TGF-beta in A549 cells in contrast to 733 genes exclusively regulated in HPL1D cells. In addition, 267 genes are commonly regulated in both the cell-lines. Semi-quantitative and real-time qRT-PCR analysis of some genes agrees with the microarray data. In order to identify the signalling pathways that influence TGF-beta mediated gene regulation, we used specific inhibitors of p38 MAP kinase, ERK kinase, JNK kinase and integrin signalling pathways. The data suggest that regulation of majority of the selected genes is dependent on at least one of these pathways and this dependence is cell-type specific. Interestingly, an integrin pathway inhibitor, RGD peptide, significantly affected TGF-beta regulation of Thrombospondin 1 in A549 cells. Conclusion These data suggest major differences with respect to TGF-beta mediated gene regulation in normal and transformed cells and significant role of non-canonical TGF-beta pathways in the regulation of many genes by TGF-beta.

  19. Effects of androgen on immunohistochemical localization of androgen receptor and Connexin 43 in mouse ovary.

    Science.gov (United States)

    Yang, Mei; Li, Jianhua; An, Yulin; Zhang, Shuiwen

    2015-10-01

    Androgens have essential roles in the regulation of follicular development and female fertility. Androgen excess is the leading defect in polycystic ovary syndrome (PCOS) patients and involved in the ovarian dysfunction. The aim of this study was to elucidate the regarding regulatory role of androgen in the follicular development of female mouse. Immunohistochemical staining and Western blot analyses were performed to detect androgen receptor (AR) and Connexin 43 (Cx43) expression in ovaries from both control and testosterone-treated group mice. In this study, localizations of AR and Cx43 were dramatically altered in testosterone-treated mouse ovaries. In addition, AR expression was significantly increased, whereas Cx43 expression was markedly decreased after testosterone treatment. Alterations of AR and Cx43 expression by testosterone with concomitant reduction of MII oocytes. Overall, these results suggest the involvement of androgen in the regulation of AR and Cx43 localizations in mouse ovary. Alterations of AR and Cx43 expression by testosterone may affect normal folliculogenesis. Together these findings will enable us to begin understanding the important roles of AR and Cx43 actions in the regulation of follicular development, as well as providing insights into the role of AR and Cx43 actions in the androgen-associated reproductive diseases such as PCOS. PMID:26206424

  20. Androgens and the breast.

    Science.gov (United States)

    Dimitrakakis, Constantine; Bondy, Carolyn

    2009-01-01

    Androgens have important physiological effects in women while at the same time they may be implicated in breast cancer pathologies. However, data on the effects of androgens on mammary epithelial proliferation and/or breast cancer incidence are not in full agreement. We performed a literature review evaluating current clinical, genetic and epidemiological data regarding the role of androgens in mammary growth and neoplasia. Epidemiological studies appear to have significant methodological limitations and thus provide inconclusive results. The study of molecular defects involving androgenic pathways in breast cancer is still in its infancy. Clinical and nonhuman primate studies suggest that androgens inhibit mammary epithelial proliferation and breast growth while conventional estrogen treatment suppresses endogenous androgens. Abundant clinical evidence suggests that androgens normally inhibit mammary epithelial proliferation and breast growth. Suppression of androgens using conventional estrogen treatment may thus enhance estrogenic breast stimulation and possibly breast cancer risk. Addition of testosterone to the usual hormone therapy regimen may diminish the estrogen/progestin increase in breast cancer risk but the impact of this combined use on mammary gland homeostasis still needs evaluation.

  1. Androgen receptor abnormalities

    NARCIS (Netherlands)

    A.O. Brinkmann (Albert); G.G.J.M. Kuiper (George); C. Ris-Stalpers (Carolyn); H.C.J. van Rooij (Henri); G. Romalo (G.); G. Trifiro (Gianluca); E. Mulder (Eppo); L. Pinsky (L.); H.U. Schweikert (H.); J. Trapman (Jan)

    1991-01-01

    markdownabstract__Abstract__ The human androgen receptor is a member of the superfamily of steroid hormone receptors. Proper functioning of this protein is a prerequisite for normal male sexual differentiation and development. The cloning of the human androgen receptor cDNA and the elucidation of t

  2. Bistable switching asymptotics for the self regulating gene

    International Nuclear Information System (INIS)

    A simple stochastic model of a self regulating gene that displays bistable switching is analyzed. While on, a gene transcribes mRNA at a constant rate. Transcription factors can bind to the DNA and affect the gene’s transcription rate. Before an mRNA is degraded, it synthesizes protein, which in turn regulates gene activity by influencing the activity of transcription factors. Protein is slowly removed from the system through degradation. Depending on how the protein regulates gene activity, the protein concentration can exhibit noise induced bistable switching. An asymptotic approximation of the mean switching rate is derived that includes the pre exponential factor, which improves upon a previously reported logarithmically accurate approximation. With the improved accuracy, a uniformly accurate approximation of the stationary probability density, describing the gene, mRNA copy number, and protein concentration is also obtained. (paper)

  3. Hydrogen sulfide represses androgen receptor transactivation by targeting at the second zinc finger module.

    Science.gov (United States)

    Zhao, Kexin; Li, Shuangshuang; Wu, Lingyun; Lai, Christopher; Yang, Guangdong

    2014-07-25

    Androgen receptor (AR) signaling is indispensable for the development of prostate cancer from the initial androgen-dependent state to a later aggressive androgen-resistant state. This study examined the role of hydrogen sulfide (H(2)S), a novel gasotransmitter, in the regulation of AR signaling as well as its mediation in androgen-independent cell growth in prostate cancer cells. Here we found that H(2)S inhibits cell proliferation of both androgen-dependent (LNCaP) and antiandrogen-resistant prostate cancer cells (LNCaP-B), with more significance on the latter, which was established by long term treatment of parental LNCaP cells with bicalutamide. The expression of cystathionine γ-lyase (CSE), a major H(2)S producing enzyme in prostate tissue, was reduced in both human prostate cancer tissues and LNCaP-B cells. LNCaP-B cells were resistant to bicalutamide-induced cell growth inhibition, and CSE overexpression could rebuild the sensitivity of LNCaP-B cells to bicalutamide. H(2)S significantly repressed the expression of prostate-specific antigen (PSA) and TMPRSS2, two AR-targeted genes. In addition, H(2)S inhibited AR binding with PSA promoter and androgen-responsive element (ARE) luciferase activity. We further found that AR is post-translationally modified by H(2)S through S-sulfhydration. Mutation of cysteine 611 and cysteine 614 in the second zinc finger module of AR-DNA binding domain diminished the effects of H(2)S on AR S-sulfhydration and AR dimerization. These data suggest that reduced CSE/H2S signaling contributes to antiandrogen-resistant status, and sufficient level of H(2)S is able to inhibit AR transactivation and treat castration-resistant prostate cancer.

  4. Gene regulation by mRNA editing

    Energy Technology Data Exchange (ETDEWEB)

    Ashkenas, J. [Univ. of Washington, Seattle, WA (United States)

    1997-02-01

    The commonly cited figure of 10{sup 5} genes in the human genome represents a tremendous underestimate of our capacity to generate distinct gene products with unique functions. Our cells possess an impressive collection of tools for altering the products of a single gene to create a variety of proteins. The different gene products may have related but distinct functions, allowing cells of different types or at different developmental stages to fine-tune their patterns of gene expression. These tools may act in the cytoplasm, as when proteins undergo post-translational modifications, or in the nucleus, in the processing of pre-mRNA. Two forms of intranuclear fine-tuning are well established and widely studied: alternative splicing of pre-mRNAs and alternative polyadenylation site selection. In recent years it has become clear that cells possess yet another tool to create RNA sequence diversity, mRNA editing. The term {open_quotes}editing{close_quotes} is applied to posttranscriptional modifications of a purine or pyrimidine, which alter an mRNA sequence as it is read, for example, by ribosomes. Covalent changes to the structure of nucleotide bases are well known to occur on tRNA and rRNA molecules, but such changes in mRNA sequence are novel in that they have the capacity to change specific protein sequences. 43 refs., 1 fig.

  5. Regulation of gene expression in the intestinal epithelium.

    Science.gov (United States)

    Richmond, Camilla A; Breault, David T

    2010-01-01

    Regulation of gene expression within the intestinal epithelium is complex and controlled by various signaling pathways that regulate the balance between proliferation and differentiation. Proliferation is required both to grow and to replace cells lost through apoptosis and attrition, yet in all but a few cells, differentiation must take place to prevent uncontrolled growth (cancer) and to provide essential functions. In this chapter, we review the major signaling pathways underlying regulation of gene expression within the intestinal epithelium, based primarily on data from mouse models, as well as specific morphogens and transcription factor families that have a major role in regulating intestinal gene expression, including the Hedgehog family, Forkhead Box (FOX) factors, Homeobox (HOX) genes, ParaHox genes, GATA transcription factors, canonical Wnt/β-catenin signaling, EPH/Ephrins, Sox9, BMP signaling, PTEN/PI3K, LKB1, K-RAS, Notch pathway, HNF, and MATH1. We also briefly highlight important emerging areas of gene regulation, including microRNA (miRNA) and epigenetic regulation. PMID:21075346

  6. The liver X receptor agonist T0901317 acts as androgen receptor antagonist in human prostate cancer cells

    International Nuclear Information System (INIS)

    T0901317 is a potent non-steroidal synthetic liver X receptor (LXR) agonist. T0901317 blocked androgenic stimulation of the proliferation of androgen-dependent LNCaP 104-S cells and androgenic suppression of the proliferation of androgen-independent LNCaP 104-R2 cells, inhibited the transcriptional activation of an androgen-dependent reporter gene by androgen, and suppressed gene and protein expression of prostate specific antigen (PSA), a target gene of androgen receptor (AR) without affecting gene and protein expression of AR. T0901317 also inhibited binding of a radiolabeled androgen to AR, but inhibition was much weaker compared to the effect of the antiandrogens, bicalutamide and hydroxyflutamide. The LXR agonist T0901317, therefore, acts as an antiandrogen in human prostate cancer cells

  7. Molecular and Biochemical Effects of a Kola Nut Extract on Androgen Receptor-Mediated Pathways

    International Nuclear Information System (INIS)

    The low incidence of prostate cancer in Asians has been attributed to chemo preventative properties of certain chemicals found in their diet. This study characterized the androgenic and chemo preventative properties of the Jamaican bush tea Bizzy using androgen receptor positive and negative cell lines. Exposure of prostate cells to Biz-2 resulted in a growth inhibition (GI50) of 15 ppm in LNCaP cells and 3.6 ppm in DU145 cells. Biz-2 elicited a 2-fold increase in the mRNA of the anti-apoptotic gene Bcl2, with a 10-fold increase in that of the pro apoptotic gene Bax. We observed a 2.4- to 7.5-fold change in apoptotic cells in both cell lines. Biz-2 at 10 ppm elicited a time- and dose-dependent stimulation of both the protein and mRNA levels of several androgen-regulated genes. Biz-2 caused a 36% decrease in PSA secretion and a significant increase in PSA mRNA. The relative binding affinity (IC50) of Biz-2 for AR was 2- to 5-fold lower than that of the synthetic androgen R1881. Biz-2 was found to be a specific ligand for the AR in that the natural ligand, DHT, and the anti-androgen, flutamide, displaced Biz-2 bound to AR and inhibited Biz-2-induced transcription and PSA secretion. This study provided evidence that Biz-2 extract possesses the ability to modulate prostate cancer cell biology in an AR-dependent manner.

  8. Molecular and Biochemical Effects of a Kola Nut Extract on Androgen Receptor-Mediated Pathways

    Directory of Open Access Journals (Sweden)

    Rajasree Solipuram

    2009-01-01

    Full Text Available The low incidence of prostate cancer in Asians has been attributed to chemopreventative properties of certain chemicals found in their diet. This study characterized the androgenic and chemopreventative properties of the Jamaican bush tea “Bizzy,” using androgen receptor positive and negative cell lines. Exposure of prostate cells to Biz-2 resulted in a growth inhibition (GI50 of 15 ppm in LNCaP cells and 3.6 ppm in DU145 cells. Biz-2 elicited a 2-fold increase in the mRNA of the anti-apoptotic gene Bcl2, with a 10-fold increase in that of the proapoptotic gene Bax. We observed a 2.4- to 7.5-fold change in apoptotic cells in both cell lines. Biz-2 at 10 ppm elicited a time- and dose-dependent stimulation of both the protein and mRNA levels of several androgen-regulated genes. Biz-2 caused a 36% decrease in PSA secretion and a significant increase in PSA mRNA. The relative binding affinity (IC50 of Biz-2 for AR was 2- to 5-fold lower than that of the synthetic androgen R1881. Biz-2 was found to be a specific ligand for the AR in that the natural ligand, DHT, and the anti-androgen, flutamide, displaced Biz-2 bound to AR and inhibited Biz-2-induced transcription and PSA secretion. This study provided evidence that Biz-2 extract possesses the ability to modulate prostate cancer cell biology in an AR-dependent manner.

  9. Gene regulation: hacking the network on a sugar high.

    Science.gov (United States)

    Ellis, Tom; Wang, Xiao; Collins, James J

    2008-04-11

    In a recent issue of Molecular Cell, Kaplan et al. (2008) determine the input functions for 19 E. coli sugar-utilization genes by using a two-dimensional high-throughput approach. The resulting input-function map reveals that gene network regulation follows non-Boolean, and often nonmonotonic, logic.

  10. Relating periodicity of nucleosome organization and gene regulation

    OpenAIRE

    Wan, Jun; Lin, Jimmy; Zack, Donald J.; Qian, Jiang

    2009-01-01

    Motivation: The relationship between nucleosome positioning and gene regulation is fundamental yet complex. Previous studies on genomic nucleosome positions have revealed a correlation between nucleosome occupancy on promoters and gene expression levels. Many of these studies focused on individual nucleosomes, especially those proximal to transcription start sites. To study the collective effect of multiple nucleosomes on the gene expression, we developed a mathematical approach based on auto...

  11. Regulated system for heterologous gene expression in Penicillium chrysogenum.

    OpenAIRE

    Graessle, S.; de Haas, H.; Friedlin, E; Kürnsteiner, H; Stöffler, G; Redl, B

    1997-01-01

    A system for regulated heterologous gene expression in the filamentous fungus Penicillium chrysogenum was established. This is the first heterologous expression system to be developed for this organism. Expression of a recombinant fungal xylanase gene (xylp) and the cDNA for the human tear lipocalin (LCNI) was achieved by placing the encoding sequences under the control of the repressible acid phosphatase gene (phoA) promoter of P. chrysogenum. Secreted recombinant proteins were detected in t...

  12. Regulation of human protein S gene (PROS1) transcription

    NARCIS (Netherlands)

    Wolf, Cornelia de

    2006-01-01

    This thesis describes the investigation of the transcriptional regulation of the gene for anticoagulant plasma Protein S, PROS1. Protein S is a cofactor for Protein C in the Protein C anticoagulant pathway. The coagulation cascade is negatively regulated by this pathway through inactivation of activ

  13. Gene expression in distinct regions of rat tendons in response to jump training combined with anabolic androgenic steroid administration

    DEFF Research Database (Denmark)

    Marqueti, Rita Cássia; Marqueti, Rita de Cássia; Heinemeier, Katja Maria;

    2012-01-01

    The aim of this study was to evaluate the expression of key genes responsible for tendon remodeling of the proximal and distal regions of calcaneal tendon (CT), intermediate and distal region of superficial flexor tendon (SFT) and proximal, intermediate and distal region of deep flexor tendon (DF...

  14. 完全型雄激素不敏感综合征雄激素受体基因突变的鉴定与分析%Identification of a novel frameshift mutation of human androgen receptor gene in a patient featuring complete androgen insensitivity syndrome

    Institute of Scientific and Technical Information of China (English)

    谢建红; 瞿京辉; 肖奇志; 周玉球

    2013-01-01

    目的 对l例完全型雄激素不敏感综合征(complete androgen insensitivity syndrome,CAIS)患者的雄激素受体(androgen receptor,AR)基因进行分析,寻找潜在的突变位点,并进一步分析其发病原因.方法 提取患者外周血全基因组DNA,扩增位于X染色体AR基因8个外显子及邻近外显子与内含子剪切位点DNA序列,对扩增产物直接进行DNA序列测定,与GenBank中的基因序列进行比对.结果 该患者AR基因在第6外显子核苷酸序列3507位点缺失一个碱基C而引起移码突变,致使在第808位密码子出现终止密码子(TGA)使得翻译提前终止形成截短的雄激素受体蛋白.该突变可能诱导雄激素受体结合能力发生功能上的变异,导致CAIS的发生.结论 AR基因第6外显子核苷酸序列3507位点缺失碱基C引起的移码突变是一种导致CAIS新的基因突变方式,该研究丰富了AR基因突变谱,为了解CAIS的发病机制提供了新的依据.%Objective To identify potential mutation of human androgen receptor (AR) gene in a patient with complete androgen insensitivity syndrome (CAIS).Methods DNA sequences of 8 exons and exon/intron boundaries of the AR gene were amplified with PCR and directly sequenced.Results DNA sequencing revealed a frameshift mutation due to deletion of nucleotide C at position 3507 in exon 6,which gave rise to a stop codon resulting premature termination for translation.Conclusion A novel frameshift mutation in exon 6 of AR gene probably underlies the disease in our patient.

  15. TBR1 regulates autism risk genes in the developing neocortex.

    Science.gov (United States)

    Notwell, James H; Heavner, Whitney E; Darbandi, Siavash Fazel; Katzman, Sol; McKenna, William L; Ortiz-Londono, Christian F; Tastad, David; Eckler, Matthew J; Rubenstein, John L R; McConnell, Susan K; Chen, Bin; Bejerano, Gill

    2016-08-01

    Exome sequencing studies have identified multiple genes harboring de novo loss-of-function (LoF) variants in individuals with autism spectrum disorders (ASD), including TBR1, a master regulator of cortical development. We performed ChIP-seq for TBR1 during mouse cortical neurogenesis and show that TBR1-bound regions are enriched adjacent to ASD genes. ASD genes were also enriched among genes that are differentially expressed in Tbr1 knockouts, which together with the ChIP-seq data, suggests direct transcriptional regulation. Of the nine ASD genes examined, seven were misexpressed in the cortices of Tbr1 knockout mice, including six with increased expression in the deep cortical layers. ASD genes with adjacent cortical TBR1 ChIP-seq peaks also showed unusually low levels of LoF mutations in a reference human population and among Icelanders. We then leveraged TBR1 binding to identify an appealing subset of candidate ASD genes. Our findings highlight a TBR1-regulated network of ASD genes in the developing neocortex that are relatively intolerant to LoF mutations, indicating that these genes may play critical roles in normal cortical development. PMID:27325115

  16. Plant defense genes are regulated by ethylene

    Energy Technology Data Exchange (ETDEWEB)

    Ecker, J.R.; Davis, R.W.

    1987-08-01

    One of the earliest detectable events during plant-pathogen interaction is a rapid increase in ethylene biosynthesis. This gaseous plant stress hormone may be a signal for plants to activate defense mechanisms against invading pathogens such as bacteria, fungi, and viruses. The effect of ethylene on four plant genes involved in three separate plant defense response pathways was examined; these included (i and ii) genes that encode L-phenylalanine ammonia-lyase (EC 4.3.1.5) and 4-coumarate:CoA ligase (4-coumarate:CoA ligase (AMP-forming), EC 6.2.1.12), enzymes of the phenylpropanoid pathway, (iii) the gene encoding chalcone synthase, an enzyme of the flavonoid glycoside pathway, and (iv) the genes encoding hydroxyproline-rich glycoprotein, a major protein component(s) of plant cell walls. Blot hybridization analysis of mRNA from ethylene-treated carrot roots reveals marked increases in the levels of phenylalanine ammonia-lyase mRNA, 4-coumarate CoA ligase mRNA, chalcone synthase mRNA, and certain hydroxyproline-rich glycoprotein transcripts. The effect of ethylene on hydroxyproline-rich glycoprotein mRNA accumulation was different from that of wounding. Ethylene induces two hydroxyproline-rich glycoprotein mRNAs (1.8 and 4.0 kilobases), whereas wounding of carrot root leads to accumulation of an additional hydroxyproline-rich mRNA (1.5 kilobases). These results indicate that at least two distinct signals, ethylene and a wound signal, can affect the expression of plant defense-response genes.

  17. Dexamethasone acutely down-regulates genes involved in steroidogenesis in stallion testes.

    Science.gov (United States)

    Ing, Nancy H; Forrest, David W; Riggs, Penny K; Loux, Shavahn; Love, Charlie C; Brinsko, Steven P; Varner, Dickson D; Welsh, Thomas H

    2014-09-01

    In rodents, livestock and primate species, a single dose of the synthetic glucocorticoid dexamethasone acutely lowers testosterone biosynthesis. To determine the mechanism of decreased testosterone biosynthesis, stallions were treated with 0.1mg/kg dexamethasone 12h prior to castration. Dexamethasone decreased serum concentrations of testosterone by 60% compared to saline-treated control stallions. Transcriptome analyses (microarrays, northern blots and quantitative PCR) of testes discovered that dexamethasone treatment decreased concentrations of glucocorticoid receptor alpha (NR3C1), alpha actinin 4 (ACTN4), luteinizing hormone receptor (LHCGR), squalene epoxidase (SQLE), 24-dehydrocholesterol reductase (DHCR24), glutathione S-transferase A3 (GSTA3) and aromatase (CYP19A1) mRNAs. Dexamethasone increased concentrations of NFkB inhibitor A (NFKBIA) mRNA in testes. SQLE, DHCR24 and GSTA3 mRNAs were predominantly expressed by Leydig cells. In man and livestock, the GSTA3 protein provides a major 3-ketosteroid isomerase activity: conversion of Δ(5)-androstenedione to Δ(4)-androstenedione, the immediate precursor of testosterone. Consistent with the decrease in GSTA3 mRNA, dexamethasone decreased the 3-ketosteroid isomerase activity in testicular extracts. In conclusion, dexamethasone acutely decreased the expression of genes involved in hormone signaling (NR3C1, ACTN4 and LHCGR), cholesterol synthesis (SQLE and DHCR24) and steroidogenesis (GSTA3 and CYP19A1) along with testosterone production. This is the first report of dexamethasone down-regulating expression of the GSTA3 gene and a very late step in testosterone biosynthesis. Elucidation of the molecular mechanisms involved may lead to new approaches to modulate androgen regulation of the physiology of humans and livestock in health and disease. PMID:25010478

  18. Glucose Regulates the Expression of the Apolipoprotein A5 Gene

    Energy Technology Data Exchange (ETDEWEB)

    Fruchart, Jamila; Nowak, Maxime; Helleboid-Chapman, Audrey; Jakel, Heidelinde; Moitrot, Emmanuelle; Rommens, Corinne; Pennacchio, Len A.; Fruchart-Najib, Jamila; Fruchart, Jean-Charles

    2008-04-07

    The apolipoprotein A5 gene (APOA5) is a key player in determining triglyceride concentrations in humans and mice. Since diabetes is often associated with hypertriglyceridemia, this study explores whether APOA5 gene expression is regulated by alteration in glucose homeostasis and the related pathways. D-glucose activates APOA5 gene expression in a time- and dose-dependent manner in hepatocytes, and the glycolytic pathway involved was determined using D-glucose analogs and metabolites. Together, transient transfections, electrophoretic mobility shift assays and chromatin immunoprecipitation assays show that this regulation occurs at the transcriptional level through an increase of USF1/2 binding to an E-box in the APOA5 promoter. We show that this phenomenon is not due to an increase of mRNA or protein expression levels of USF. Using protein phosphatases 1 and 2A inhibitor, we demonstrate that D-glucose regulates APOA5 gene via a dephosphorylation mechanism, thereby resulting in an enhanced USF1/2-promoter binding. Last, subsequent suppressions of USF1/2 and phosphatases mRNA through siRNA gene silencing abolished the regulation. We demonstrate that APOA5 gene is up regulated by D-glucose and USF through phosphatase activation. These findings may provide a new cross talk between glucose and lipid metabolism.

  19. Selective androgen receptor modulator RAD140 is neuroprotective in cultured neurons and kainate-lesioned male rats.

    Science.gov (United States)

    Jayaraman, Anusha; Christensen, Amy; Moser, V Alexandra; Vest, Rebekah S; Miller, Chris P; Hattersley, Gary; Pike, Christian J

    2014-04-01

    The decline in testosterone levels in men during normal aging increases risks of dysfunction and disease in androgen-responsive tissues, including brain. The use of testosterone therapy has the potential to increase the risks for developing prostate cancer and or accelerating its progression. To overcome this limitation, novel compounds termed "selective androgen receptor modulators" (SARMs) have been developed that lack significant androgen action in prostate but exert agonist effects in select androgen-responsive tissues. The efficacy of SARMs in brain is largely unknown. In this study, we investigate the SARM RAD140 in cultured rat neurons and male rat brain for its ability to provide neuroprotection, an important neural action of endogenous androgens that is relevant to neural health and resilience to neurodegenerative diseases. In cultured hippocampal neurons, RAD140 was as effective as testosterone in reducing cell death induced by apoptotic insults. Mechanistically, RAD140 neuroprotection was dependent upon MAPK signaling, as evidenced by elevation of ERK phosphorylation and inhibition of protection by the MAPK kinase inhibitor U0126. Importantly, RAD140 was also neuroprotective in vivo using the rat kainate lesion model. In experiments with gonadectomized, adult male rats, RAD140 was shown to exhibit peripheral tissue-specific androgen action that largely spared prostate, neural efficacy as demonstrated by activation of androgenic gene regulation effects, and neuroprotection of hippocampal neurons against cell death caused by systemic administration of the excitotoxin kainate. These novel findings demonstrate initial preclinical efficacy of a SARM in neuroprotective actions relevant to Alzheimer's disease and related neurodegenerative diseases.

  20. Post-transcriptional regulation of gene expression in Yersinia species

    Directory of Open Access Journals (Sweden)

    Chelsea A Schiano

    2012-11-01

    Full Text Available Proper regulation of gene expression is required by bacterial pathogens to respond to continually changing environmental conditions and the host response during the infectious process. While transcriptional regulation is perhaps the most well understood form of controlling gene expression, recent studies have demonstrated the importance of post-transcriptional mechanisms of gene regulation that allow for more refined management of the bacterial response to host conditions. Yersinia species of bacteria are known to use various forms of post-transcriptional regulation for control of many virulence-associated genes. These include regulation by cis- and trans-acting small non-coding RNAs, RNA-binding proteins, RNases, and thermoswitches. The effects of these and other regulatory mechanisms on Yersinia physiology can be profound and have been shown to influence type III secretion, motility, biofilm formation, host cell invasion, intracellular survival and replication, and more. In this review, we will discuss these and other post-transcriptional mechanisms and their influence on virulence gene regulation, with a particular emphasis on how these processes influence the virulence of Yersinia in the host.

  1. Intrinsic limits to gene regulation by global crosstalk.

    Science.gov (United States)

    Friedlander, Tamar; Prizak, Roshan; Guet, Călin C; Barton, Nicholas H; Tkačik, Gašper

    2016-01-01

    Gene regulation relies on the specificity of transcription factor (TF)-DNA interactions. Limited specificity may lead to crosstalk: a regulatory state in which a gene is either incorrectly activated due to noncognate TF-DNA interactions or remains erroneously inactive. As each TF can have numerous interactions with noncognate cis-regulatory elements, crosstalk is inherently a global problem, yet has previously not been studied as such. We construct a theoretical framework to analyse the effects of global crosstalk on gene regulation. We find that crosstalk presents a significant challenge for organisms with low-specificity TFs, such as metazoans. Crosstalk is not easily mitigated by known regulatory schemes acting at equilibrium, including variants of cooperativity and combinatorial regulation. Our results suggest that crosstalk imposes a previously unexplored global constraint on the functioning and evolution of regulatory networks, which is qualitatively distinct from the known constraints that act at the level of individual gene regulatory elements. PMID:27489144

  2. Sperm is epigenetically programmed to regulate gene transcription in embryos.

    Science.gov (United States)

    Teperek, Marta; Simeone, Angela; Gaggioli, Vincent; Miyamoto, Kei; Allen, George E; Erkek, Serap; Kwon, Taejoon; Marcotte, Edward M; Zegerman, Philip; Bradshaw, Charles R; Peters, Antoine H F M; Gurdon, John B; Jullien, Jerome

    2016-08-01

    For a long time, it has been assumed that the only role of sperm at fertilization is to introduce the male genome into the egg. Recently, ideas have emerged that the epigenetic state of the sperm nucleus could influence transcription in the embryo. However, conflicting reports have challenged the existence of epigenetic marks on sperm genes, and there are no functional tests supporting the role of sperm epigenetic marking on embryonic gene expression. Here, we show that sperm is epigenetically programmed to regulate embryonic gene expression. By comparing the development of sperm- and spermatid-derived frog embryos, we show that the programming of sperm for successful development relates to its ability to regulate transcription of a set of developmentally important genes. During spermatid maturation into sperm, these genes lose H3K4me2/3 and retain H3K27me3 marks. Experimental removal of these epigenetic marks at fertilization de-regulates gene expression in the resulting embryos in a paternal chromatin-dependent manner. This demonstrates that epigenetic instructions delivered by the sperm at fertilization are required for correct regulation of gene expression in the future embryos. The epigenetic mechanisms of developmental programming revealed here are likely to relate to the mechanisms involved in transgenerational transmission of acquired traits. Understanding how parental experience can influence development of the progeny has broad potential for improving human health. PMID:27034506

  3. Transcription dynamics of inducible genes modulated by negative regulations.

    Science.gov (United States)

    Li, Yanyan; Tang, Moxun; Yu, Jianshe

    2015-06-01

    Gene transcription is a stochastic process in single cells, in which genes transit randomly between active and inactive states. Transcription of many inducible genes is also tightly regulated: It is often stimulated by extracellular signals, activated through signal transduction pathways and later repressed by negative regulations. In this work, we study the nonlinear dynamics of the mean transcription level of inducible genes modulated by the interplay of the intrinsic transcriptional randomness and the repression by negative regulations. In our model, we integrate negative regulations into gene activation process, and make the conventional assumption on the production and degradation of transcripts. We show that, whether or not the basal transcription is temporarily terminated when cells are stimulated, the mean transcription level grows in the typical up and down pattern commonly observed in immune response genes. With the help of numerical simulations, we clarify the delicate impact of the system parameters on the transcription dynamics, and demonstrate how our model generates the distinct temporal gene-induction patterns in mouse fibroblasts discerned in recent experiments.

  4. Regulation of Gene Expression in Protozoa Parasites

    OpenAIRE

    Consuelo Gomez; Esther Ramirez, M.; Mercedes Calixto-Galvez; Olivia Medel; Rodríguez, Mario A

    2010-01-01

    Infections with protozoa parasites are associated with high burdens of morbidity and mortality across the developing world. Despite extensive efforts to control the transmission of these parasites, the spread of populations resistant to drugs and the lack of effective vaccines against them contribute to their persistence as major public health problems. Parasites should perform a strict control on the expression of genes involved in their pathogenicity, differentiation, immune evasion, or dru...

  5. Differential regulation of LncRNA-SARCC suppresses VHL-mutant RCC cell proliferation yet promotes VHL-normal RCC cell proliferation via modulating androgen receptor/HIF-2α/C-MYC axis under hypoxia.

    Science.gov (United States)

    Zhai, W; Sun, Y; Jiang, M; Wang, M; Gasiewicz, T A; Zheng, J; Chang, C

    2016-09-15

    It is well established that hypoxia contributes to tumor progression in a hypoxia inducible factor-2α (HIF-2α)-dependent manner in renal cell carcinoma (RCC), yet the role of long noncoding RNAs (LncRNAs) involved in hypoxia-mediated RCC progression remains unclear. Here we demonstrate that LncRNA-SARCC (Suppressing Androgen Receptor in Renal Cell Carcinoma) is differentially regulated by hypoxia in a von Hippel-Lindau (VHL)-dependent manner both in RCC cell culture and clinical specimens. LncRNA-SARCC can suppress hypoxic cell cycle progression in the VHL-mutant RCC cells while derepress it in the VHL-restored RCC cells. Mechanism dissection reveals that LncRNA-SARCC can post-transcriptionally regulate androgen receptor (AR) by physically binding and destablizing AR protein to suppress AR/HIF-2α/C-MYC signals. In return, HIF-2α can transcriptionally regulate the LncRNA-SARCC expression via binding to hypoxia-responsive elements on the promoter of LncRNA-SARCC. The negative feedback modulation between LncRNA-SARCC/AR complex and HIF-2α signaling may then lead to differentially modulated RCC progression in a VHL-dependent manner. Together, these results may provide us a new therapeutic approach via targeting this newly identified signal from LncRNA-SARCC to AR-mediated HIF-2α/C-MYC signals against RCC progression.

  6. Social modulation of androgens in male birds.

    Science.gov (United States)

    Goymann, Wolfgang

    2009-09-01

    help to better understand variations in androgen responsiveness to social and non-social environmental factors. On an ultimate level this may help to better understand the benefits and costs of increasing, or not increasing testosterone concentrations during social interactions. Proximately, this will aid in a more complete understanding of the mechanisms by which testosterone regulates behavioral traits and by which behavior feeds back on hormone levels. PMID:19100740

  7. The NSL complex regulates housekeeping genes in Drosophila.

    Directory of Open Access Journals (Sweden)

    Kin Chung Lam

    Full Text Available MOF is the major histone H4 lysine 16-specific (H4K16 acetyltransferase in mammals and Drosophila. In flies, it is involved in the regulation of X-chromosomal and autosomal genes as part of the MSL and the NSL complexes, respectively. While the function of the MSL complex as a dosage compensation regulator is fairly well understood, the role of the NSL complex in gene regulation is still poorly characterized. Here we report a comprehensive ChIP-seq analysis of four NSL complex members (NSL1, NSL3, MBD-R2, and MCRS2 throughout the Drosophila melanogaster genome. Strikingly, the majority (85.5% of NSL-bound genes are constitutively expressed across different cell types. We find that an increased abundance of the histone modifications H4K16ac, H3K4me2, H3K4me3, and H3K9ac in gene promoter regions is characteristic of NSL-targeted genes. Furthermore, we show that these genes have a well-defined nucleosome free region and broad transcription initiation patterns. Finally, by performing ChIP-seq analyses of RNA polymerase II (Pol II in NSL1- and NSL3-depleted cells, we demonstrate that both NSL proteins are required for efficient recruitment of Pol II to NSL target gene promoters. The observed Pol II reduction coincides with compromised binding of TBP and TFIIB to target promoters, indicating that the NSL complex is required for optimal recruitment of the pre-initiation complex on target genes. Moreover, genes that undergo the most dramatic loss of Pol II upon NSL knockdowns tend to be enriched in DNA Replication-related Element (DRE. Taken together, our findings show that the MOF-containing NSL complex acts as a major regulator of housekeeping genes in flies by modulating initiation of Pol II transcription.

  8. Pancreatic regeneration: basic research and gene regulation.

    Science.gov (United States)

    Okita, Kenji; Mizuguchi, Toru; Shigenori, Ota; Ishii, Masayuki; Nishidate, Toshihiko; Ueki, Tomomi; Meguro, Makoto; Kimura, Yasutoshi; Tanimizu, Naoki; Ichinohe, Norihisa; Torigoe, Toshihiko; Kojima, Takashi; Mitaka, Toshihiro; Sato, Noriyuki; Sawada, Norimasa; Hirata, Koichi

    2016-06-01

    Pancreatic regeneration (PR) is an interesting phenomenon that could provide clues as to how the control of diabetes mellitus might be achieved. Due to the different regenerative abilities of the pancreas and liver, the molecular mechanism responsible for PR is largely unknown. In this review, we describe five representative murine models of PR and thirteen humoral mitogens that stimulate β-cell proliferation. We also describe pancreatic ontogenesis, including the molecular transcriptional differences between α-cells and β-cells. Furthermore, we review 14 murine models which carry defects in genes related to key transcription factors for pancreatic ontogenesis to gain further insight into pancreatic development. PMID:26148809

  9. Divergence of gene regulation through chromosomal rearrangements

    Directory of Open Access Journals (Sweden)

    Messing Joachim

    2010-11-01

    Full Text Available Abstract Background The molecular mechanisms that modify genome structures to give birth and death to alleles are still not well understood. To investigate the causative chromosomal rearrangements, we took advantage of the allelic diversity of the duplicated p1 and p2 genes in maize. Both genes encode a transcription factor involved in maysin synthesis, which confers resistance to corn earworm. However, p1 also controls accumulation of reddish pigments in floral tissues and has therefore acquired a new function after gene duplication. p1 alleles vary in their tissue-specific expression, which is indicated in their allele designation: the first suffix refers to red or white pericarp pigmentation and the second to red or white glume pigmentation. Results Comparing chromosomal regions comprising p1-ww[4Co63], P1-rw1077 and P1-rr4B2 alleles with that of the reference genome, P1-wr[B73], enabled us to reconstruct additive events of transposition, chromosome breaks and repairs, and recombination that resulted in phenotypic variation and chimeric regulatory signals. The p1-ww[4Co63] null allele is probably derived from P1-wr[B73] by unequal crossover between large flanking sequences. A transposon insertion in a P1-wr-like allele and NHEJ (non-homologous end-joining could have resulted in the formation of the P1-rw1077 allele. A second NHEJ event, followed by unequal crossover, probably led to the duplication of an enhancer region, creating the P1-rr4B2 allele. Moreover, a rather dynamic picture emerged in the use of polyadenylation signals by different p1 alleles. Interestingly, p1 alleles can be placed on both sides of a large retrotransposon cluster through recombination, while functional p2 alleles have only been found proximal to the cluster. Conclusions Allelic diversity of the p locus exemplifies how gene duplications promote phenotypic variability through composite regulatory signals. Transposition events increase the level of genomic complexity

  10. ANDROGEN INSENSITIVITY SYNDROME

    Directory of Open Access Journals (Sweden)

    Kanan

    2014-01-01

    Full Text Available The condition is inherited as X - linked recessive gene 1 . The underlying pathology is the inability of end organs to respond to androgens. These cases are phenotypically and psychologically female with adequate breast development , normal external genitalia , a vagina with variable depth , absent /sparse pubic hair and axillary hair. The exact incidence in India is not known but the reported incidence is 1 in 2 , 000 to 1 in 62 ,400 worldwide . These patients have male karyotyping (XY wi th negative sex chromatin with undescended gonads. These cases are rarely diagnosed before puberty. Though rare , these are extremely distressing to the concerned individuals requiring expert handling. Management should include psychological counseling not only to determine the sexual mentation but also to help those individuals to cope with their problems. The chance of malignancy developing in the gonad with Y chromosome are about 20%.Surgical removal of the gonad is mandatory but can be delayed till 18 ye ars to permit breast development and epiphyseal closure. The aim of presenting this case is to develop awareness regarding this rare syndrome X - linked genetic disorder which runs in families

  11. No evidence that 2D:4D is related to the number of CAG repeats in the androgen receptor gene

    Directory of Open Access Journals (Sweden)

    Johannes eHönekopp

    2013-12-01

    Full Text Available The length ratio of the second to the fourth digit (2D:4D is a putative marker of prenatal testosterone (T effects. The number of CAG repeats (CAGn in the AR gene is negatively correlated with T sensitivity in vitro. Results regarding the relationship between 2D:4D and CAGn are mixed but have featured prominently in arguments for and against the validity of 2D:4D. Here, I present random-effects meta-analyses on 14 relevant samples with altogether 1,904 subjects. Results were homogeneous across studies. Even liberal estimates (upper limit of the 95% CI were close to zero and therefore suggested no substantial relationship of CAGn with either right-hand 2D:4D, left-hand 2D:4D, or the difference between the two. However, closer analysis of the effects of CAGn on T dependent gene activation in vitro and of relationships between CAGn and T dependent phenotypic characteristics suggest that normal variability of CAGn has mostly no, very small, or inconsistent effects. Therefore, the lack of a clear association between CAGn and 2D:4D has no negative implications for the latter’s validity as a marker of prenatal T effects.

  12. Hedgehog/Gli supports androgen signaling in androgen deprived and androgen independent prostate cancer cells

    OpenAIRE

    Shtutman Michael; Tanner Matthew J; Carkner Richard D; Baghel Prateek S; Levina Elina; Feuerstein Michael A; Chen Mengqian; Vacherot Francis; Terry Stéphane; de la Taille Alexandre; Buttyan Ralph

    2010-01-01

    Abstract Background Castration resistant prostate cancer (CRPC) develops as a consequence of hormone therapies used to deplete androgens in advanced prostate cancer patients. CRPC cells are able to grow in a low androgen environment and this is associated with anomalous activity of their endogenous androgen receptor (AR) despite the low systemic androgen levels in the patients. Therefore, the reactivated tumor cell androgen signaling pathway is thought to provide a target for control of CRPC....

  13. Identification of the NAC1-regulated genes in ovarian cancer.

    Science.gov (United States)

    Gao, Min; Wu, Ren-Chin; Herlinger, Alice L; Yap, Kailee; Kim, Jung-Won; Wang, Tian-Li; Shih, Ie-Ming

    2014-01-01

    Nucleus accumbens-associated protein 1 (NAC1), encoded by the NACC1 gene, is a transcription co-regulator that plays a multifaceted role in promoting tumorigenesis. However, the NAC1-regulated transcriptome has not been comprehensively defined. In this study, we compared the global gene expression profiles of NAC1-overexpressing SKOV3 ovarian cancer cells and NAC1-knockdown SKOV3 cells. We found that NAC1 knockdown was associated with up-regulation of apoptotic genes and down-regulation of genes involved in cell movement, proliferation, Notch signaling, and epithelial-mesenchymal transition. Among NAC1-regulated genes, FOXQ1 was further characterized because it is involved in cell motility and epithelial-mesenchymal transition. NAC1 knockdown decreased FOXQ1 expression and promoter activity. Similarly, inactivation of NAC1 by expression of a dominant-negative construct of NAC1 suppressed FOXQ1 expression. Ectopic expression of NAC1 in NACC1 null cells induced FOXQ1 expression. NAC1 knockdown resulted in decreased cell motility and invasion, whereas constitutive expression of FOXQ1 rescued motility in cells after NAC1 silencing. Moreover, in silico analysis revealed a significant co-up-regulation of NAC1 and FOXQ1 in ovarian carcinoma tissues. On the basis of transcription profiling, we report a group of NAC1-regulated genes that may participate in multiple cancer-related pathways. We further demonstrate that NAC1 is essential and sufficient for activation of FOXQ1 transcription and that the role of NAC1 in cell motility is mediated, at least in part, by FOXQ1.

  14. Epigenetic regulation of transposable element derived human gene promoters.

    Science.gov (United States)

    Huda, Ahsan; Bowen, Nathan J; Conley, Andrew B; Jordan, I King

    2011-04-01

    It was previously thought that epigenetic histone modifications of mammalian transposable elements (TEs) serve primarily to defend the genome against deleterious effects associated with their activity. However, we recently showed that, genome-wide, human TEs can also be epigenetically modified in a manner consistent with their ability to regulate host genes. Here, we explore the ability of TE sequences to epigenetically regulate individual human genes by focusing on the histone modifications of promoter sequences derived from TEs. We found 1520 human genes that initiate transcription from within TE-derived promoter sequences. We evaluated the distributions of eight histone modifications across these TE-promoters, within and between the GM12878 and K562 cell lines, and related their modification status with the cell-type specific expression patterns of the genes that they regulate. TE-derived promoters are significantly enriched for active histone modifications, and depleted for repressive modifications, relative to the genomic background. Active histone modifications of TE-promoters peak at transcription start sites and are positively correlated with increasing expression within cell lines. Furthermore, differential modification of TE-derived promoters between cell lines is significantly correlated with differential gene expression. LTR-retrotransposon derived promoters in particular play a prominent role in mediating cell-type specific gene regulation, and a number of these LTR-promoter genes are implicated in lineage-specific cellular functions. The regulation of human genes mediated by histone modifications targeted to TE-derived promoters is consistent with the ability of TEs to contribute to the epigenomic landscape in a way that provides functional utility to the host genome.

  15. The impact of the CAG repeat polymorphism of the androgen receptor gene on muscle and adipose tissues in 20-29-year-old Danish men: Odense Androgen Study

    DEFF Research Database (Denmark)

    Nielsen, Torben Leo; Hagen, Claus; Wraae, Kristian;

    2010-01-01

    .m. and visceral) were measured in 393 men by magnetic resonance imaging (MRI). Lean body mass (LBM) and fat mass (FM) were measured in all men by whole body dual-energy X-ray absorptiometry (DEXA). The absolute areas acquired by MRI were the main outcomes. The absolute DEXA measurements and relative assessments.......108), and relative LBMtotal (r=–0.082), and positively with relative SATthigh (r=0.137), relative SATlower trunk (r=0.188), relative FMlower extremity (r=0.107), and relative FMtotal (r=0.082). These relationships remained significant, controlling for physical activity, smoking, chronic disease, and age. CAGn did...... not correlate with any circulating androgen. Conclusions: The CAG repeat polymorphism affects body composition in young men: absolute musclethigh and absolute musclelower trunk increase as CAGn decreases. Expressed relatively, muscle areas and LBM increase, while SAT and FM decrease as CAGn decreases...

  16. Development of a small-molecule serum- and glucocorticoid-regulated kinase-1 antagonist and its evaluation as a prostate cancer therapeutic.

    Science.gov (United States)

    Sherk, Andrea B; Frigo, Daniel E; Schnackenberg, Christine G; Bray, Jeffrey D; Laping, Nicholas J; Trizna, Walter; Hammond, Marlys; Patterson, Jaclyn R; Thompson, Scott K; Kazmin, Dmitri; Norris, John D; McDonnell, Donald P

    2008-09-15

    Androgens, through their actions on the androgen receptor (AR), are required for the development of the prostate and contribute to the pathologic growth dysregulation observed in prostate cancers. Consequently, androgen ablation has become an essential component of the pharmacotherapy of prostate cancer. In this study, we explored the utility of targeting processes downstream of AR as an alternate approach for therapy. Specifically, we show that the serum and glucocorticoid-regulated kinase 1 (SGK1) gene is an androgen-regulated target gene in cellular models of prostate cancer. Furthermore, functional serum- and glucocorticoid-regulated kinase 1 (SGK1) protein, as determined by the phosphorylation of its target Nedd4-2, was also increased with androgen treatment. Importantly, we determined that RNA interference-mediated knockdown of SGK1 expression attenuates the androgen-mediated growth of the prostate cancer cell line LNCaP. Given these findings, we explored the utility of SGK1 as a therapeutic target in prostate cancer by developing and evaluating a small-molecule inhibitor of this enzyme. From these studies emerged GSK650394, a competitive inhibitor that quantitatively blocks the effect of androgens on LNCaP cell growth. Thus, in addition to androgen ablation, inhibition of pathways downstream of AR is likely to have therapeutic utility in prostate cancer.

  17. Epigenetics, cellular memory and gene regulation.

    Science.gov (United States)

    Henikoff, Steven; Greally, John M

    2016-07-25

    The field described as 'epigenetics' has captured the imagination of scientists and the lay public. Advances in our understanding of chromatin and gene regulatory mechanisms have had impact on drug development, fueling excitement in the lay public about the prospects of applying this knowledge to address health issues. However, when describing these scientific advances as 'epigenetic', we encounter the problem that this term means different things to different people, starting within the scientific community and amplified in the popular press. To help researchers understand some of the misconceptions in the field and to communicate the science accurately to each other and the lay audience, here we review the basis for many of the assumptions made about what are currently referred to as epigenetic processes. PMID:27458904

  18. Ovarian overproduction of androgens

    Science.gov (United States)

    ... the body's testosterone. Tumors of the ovaries and polycystic ovary syndrome (PCOS) can both cause too much androgen production. ... come back after they have been removed. In polycystic ovary syndrome, these things can reduce symptoms caused by high ...

  19. CPU86017-RS attenuated hypoxia-induced testicular dysfunction in mice by normalizing androgen biosynthesis genes and pro-inflammatory cytokines

    Institute of Scientific and Technical Information of China (English)

    Guo-lin ZHANG; Feng YU; De-zai DAI; Yu-si CHENG; Can ZHANG; Yin DAI

    2012-01-01

    Aim:Downregulation of androgen biosynthesis genes StAR (steroidogenic acute regulatory)and 3β-HSD (3β-hydroxysteroid dehydrogenase)contributes to low testosterone levels in hypoxic mice and is possibly related to increased expression of pro-inflammatory cytokines in the testis.The aim of this study is to investigate the effects of CPU86017-RS that block Ca2+ influx on hypoxia-induced testis insult in mice.Methods:Male ICR mice were divided into 5 groups:control group,hypoxia group,hypoxia group treated with nifedipine (10 mg/kg),hypoxia groups treated with CPU86017-RS (60 or 80 mg/kg).Hypoxia was induced by placing the mice in a chamber under 10%+0.5% 02 for 28 d (8 h per day).The mice were orally administered with drug in the last 14 d.At the end of experiment the testes of the mice were harvested.The mRNA and protein levels of StAR,3β-HSD,connexin 43 (Cx43),matrix metalloprotease 9 (MMP9),endothelin receptor A (ETAR)and leptin receptor (OBRb)were analyzed using RT-PCR and Western blotting,respectively.The malondialdehyde (MDA),lactate dehydrogenase (LDH),succinate dehydrogenase (SDH)and acid phosphatase (ACP)levels were measured using biochemical kits.Serum testosterone concentration was measured with radioimmunoassay.Results:Hypoxia significantly increased the MDA level,and decreased the LDH,ACP and SDH activities in testes.Meanwhile,hypoxia induced significant downregulation of StAR and 3β-HSD in testes responsible for reduced testosterone biosynthesis.It decreased the expression of Cx43,and increased the expression of MMP9,ETAR and OBRb,leading to abnormal testis function and structure.These changes were effectively diminished by CPU86017-RS (80 mg/kg)or nifedipine (10 mg/kg).Conclusion:Low plasma testosterone level caused by hypoxia was due to downregulation of StAR and 3β-HSD genes,in association with an increased expression of pro-inflammatory cytokines.These changes can be alleviated by CPU86017-RS or nifedipine.

  20. Quantitative characteristics of gene regulation by small RNA.

    Directory of Open Access Journals (Sweden)

    Erel Levine

    2007-09-01

    Full Text Available An increasing number of small RNAs (sRNAs have been shown to regulate critical pathways in prokaryotes and eukaryotes. In bacteria, regulation by trans-encoded sRNAs is predominantly found in the coordination of intricate stress responses. The mechanisms by which sRNAs modulate expression of its targets are diverse. In common to most is the possibility that interference with the translation of mRNA targets may also alter the abundance of functional sRNAs. Aiming to understand the unique role played by sRNAs in gene regulation, we studied examples from two distinct classes of bacterial sRNAs in Escherichia coli using a quantitative approach combining experiment and theory. Our results demonstrate that sRNA provides a novel mode of gene regulation, with characteristics distinct from those of protein-mediated gene regulation. These include a threshold-linear response with a tunable threshold, a robust noise resistance characteristic, and a built-in capability for hierarchical cross-talk. Knowledge of these special features of sRNA-mediated regulation may be crucial toward understanding the subtle functions that sRNAs can play in coordinating various stress-relief pathways. Our results may also help guide the design of synthetic genetic circuits that have properties difficult to attain with protein regulators alone.

  1. Androgens and Bone

    OpenAIRE

    Clarke, Bart L.; Khosla, Sundeep

    2008-01-01

    Testosterone is the major gonadal sex steroid produced by the testes in men. Testosterone is also produced in smaller amounts by the ovaries in women. The adrenal glands produce the weaker androgens dehydroepiandrosterone, dehydroepiandrosterone sulfate, and androstenedione. These androgens collectively affect skeletal homeostasis throughout life in both men and women, particularly at puberty and during adult life. Because testosterone can be metabolized to estradiol by the aromatase enzyme, ...

  2. Hormonal regulation of gluconeogenic gene transcription in the liver

    Indian Academy of Sciences (India)

    Nirmala Yabaluri; Murali D Bashyam

    2010-09-01

    Glucose homeostasis in mammals is achieved by the actions of counterregulatory hormones, namely insulin, glucagon and glucocorticoids. Glucose levels in the circulation are regulated by the liver, the metabolic centre which produces glucose when it is scarce in the blood. This process is catalysed by two rate-limiting enzymes, phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) whose gene expression is regulated by hormones. Hormone response units (HRUs) present in the two genes integrate signals from various signalling pathways triggered by hormones. How such domains are arranged in the regulatory region of these two genes, how this complex regulation is accomplished and the latest advancements in the field are discussed in this review.

  3. Absence of canonical active chromatin marks in developmentally regulated genes

    Science.gov (United States)

    Ruiz-Romero, Marina; Corominas, Montserrat; Guigó, Roderic

    2015-01-01

    The interplay of active and repressive histone modifications is assumed to play a key role in the regulation of gene expression. In contrast to this generally accepted view, we show that transcription of genes temporally regulated during fly and worm development occurs in the absence of canonically active histone modifications. Conversely, strong chromatin marking is related to transcriptional and post-transcriptional stability, an association that we also observe in mammals. Our results support a model in which chromatin marking is associated to stable production of RNA, while unmarked chromatin would permit rapid gene activation and de-activation during development. In this case, regulation by transcription factors would play a comparatively more important regulatory role. PMID:26280901

  4. Androgen receptor signaling is required for androgen-sensitive human prostate cancer cell proliferation and survival

    Directory of Open Access Journals (Sweden)

    Day Wanda V

    2005-04-01

    Full Text Available Abstract Background Androgens and androgen receptors (AR regulate normal prostate development and growth. They also are involved in pathological development of prostatic diseases, including benign prostatic hyperplasia (BPH and prostate cancer (PCa. Antiandrogen therapy for PCa, in conjunction with chemical or surgical castration, offers initial positive responses and leads to massive prostate cell death. However, cancer cells later appear as androgen-independent PCa. To investigate the role of AR in prostate cell proliferation and survival, we introduced a vector-based small interfering RNA (siRNA. This siRNA targeted 5'-untranslated region of AR mRNA for extended suppression of AR expression in androgen-sensitive human prostate LNCaP cells. Results The siRNA design successfully suppressed endogenous AR expression, as revealed by western blotting and immunofluorescence staining in LNCaP cells. LNCaP cells did not proliferate in the absence of AR and underwent apoptosis, based on elevated phospho-Histone H2B expression and higher number of apoptotic body as compared to control cells. Conclusion We demonstrated that AR is vital for prostate cell proliferation and survival in this androgen-sensitive prostate cell line. These results further strengthen the hypothesis that AR can be a therapeutic target for treating androgen-sensitive stages of PCa. Unlike antiandorgens, however, siRNA targeting AR provides a direct inactivation of AR function through the suppression of AR protein expression.

  5. Differential regulation of genes by retrotransposons in rice promoters.

    Science.gov (United States)

    Dhadi, Surendar Reddy; Xu, Zijun; Shaik, Rafi; Driscoll, Kyle; Ramakrishna, Wusirika

    2015-04-01

    Rice genome harbors genes and promoters with retrotransposon insertions. There is very little information about their function. The effect of retrotransposon insertions in four rice promoter regions on gene regulation, was investigated using promoter-reporter gene constructs with and without retrotransposons. Differences in expression levels of gus and egfp reporter genes in forward orientation and rfp in reverse orientation were evaluated in rice plants with transient expression employing quantitative RT-PCR analysis, histochemical GUS staining, and eGFP and RFP fluorescent microscopy. The presence of SINE in the promoter 1 (P1) resulted in higher expression levels of the reporter genes, whereas the presence of LINE in P2 or gypsy LTR retrotransposon in P3 reduced expression of the reporter genes. Furthermore, the SINE in P1 acts as an enhancer in contrast with the LINE in P2 and the gypsy LTR retrotransposon in P3 which act as silencers. CTAA and CGG motifs in these retrotransposons are the likely candidates for the downregulation compared to TCTT motif (SINE) which is a candidate for the upregulation of gene expression. The effect of retrotransposons on gene regulation correlated with the earlier investigation of conservation patterns of these four retrotransposon insertions in several rice accessions implying their evolutionary significance.

  6. Activation of two mutant androgen receptors from human prostatic carcinoma by adrenal androgens and metabolic derivatives of testosterone.

    Science.gov (United States)

    Culig, Z; Stober, J; Gast, A; Peterziel, H; Hobisch, A; Radmayr, C; Hittmair, A; Bartsch, G; Cato, A C; Klocker, H

    1996-01-01

    The androgen receptor (AR) plays a central regulatory role in prostatic carcinoma and is a target of androgen ablation therapy. Recent detection of mutant receptors in tumor specimens suggest a contribution of AR alterations to progression towards androgen independence. In a specimen derived from metastatic prostate cancer we have reported a point mutation in the AR gene that leads to a single amino acid exchange in the ligand binding domain of the receptor. Another amino acid exchange resulting from a point mutation was also identified 15 amino acids away from our mutation. This mutation was detected in the AR gene isolated from an organ-confined prostatic tumor. Here we report the functional characterization of the two mutant receptors in the presence of adrenal androgens and testosterone metabolites. These studies were performed by cotransfecting androgen-responsive reporter genes and either the wild-type or mutant AR expression vectors into receptor negative DU-145 and CV-1 cells. The indicator genes used consisted of the promoter of the androgen-inducible prostate-specific antigen gene or the C' Delta9 enhancer fragment from the promoter of the mouse sex-limited protein driving the expression of the bacterial chloramphenicol acetyl transferase gene. Cotransfection-transactivation assays revealed that the adrenal androgen androstenedione and two products of testosterone metabolism, androsterone and androstandiol, induced reporter gene activity more efficiently in the presence of the mutant receptors than in the presence of the wild-type receptor. No difference between wild-type and mutant receptors was observed in the presence of the metabolite androstandione. The interaction of receptor-hormone complexes with target DNA was studied in vitro by electrophoretic mobility shift assays (EMSA). Dihydrotestosterone and the synthetic androgen mibolerone induced a faster migrating complex with all receptors, whereas the androgen metabolite androstandione induced this

  7. An Epigenetic Perspective on Developmental Regulation of Seed Genes

    Institute of Scientific and Technical Information of China (English)

    Heng Zhang; Joe Ogas

    2009-01-01

    The developmental program of seeds is promoted by master regulators that are expressed in a seed-specific manner.Ectopic expression studies reveal that expression of these master regulators and other transcriptional regulators is sufficient to promote seed-associated traits,including generation of somatic embryos.Recent work highlights the importance of chromatin-associated factors in restricting expression of seed-specific genes,in particular PcG proteins and ATP-dependent remodelers.This review summarizes what is known regarding factors that promote zygotic and/or somatic embryogenesis and the chromatin machinery that represses their expression.Characterization of the regulation of seedspecific genes reveals that plant chromatin-based repression systems exhibit broad conservation with and surprising differences from animal repression systems.

  8. Molecular nutrition: Interaction of nutrients, gene regulations and performances.

    Science.gov (United States)

    Sato, Kan

    2016-07-01

    Nutrition deals with ingestion of foods, digestion, absorption, transport of nutrients, intermediary metabolism, underlying anabolism and catabolism, and excretion of unabsorbed nutrients and metabolites. In addition, nutrition interacts with gene expressions, which are involved in the regulation of animal performances. Our laboratory is concerned with the improvement of animal productions, such as milks, meats and eggs, with molecular nutritional aspects. The present review shows overviews on the nutritional regulation of metabolism, physiological functions and gene expressions to improve animal production in chickens and dairy cows. PMID:27110862

  9. Gene profile analysis of osteoblast genes differentially regulated by histone deacetylase inhibitors

    Directory of Open Access Journals (Sweden)

    Lamblin Anne-Francoise

    2007-10-01

    Full Text Available Abstract Background Osteoblast differentiation requires the coordinated stepwise expression of multiple genes. Histone deacetylase inhibitors (HDIs accelerate the osteoblast differentiation process by blocking the activity of histone deacetylases (HDACs, which alter gene expression by modifying chromatin structure. We previously demonstrated that HDIs and HDAC3 shRNAs accelerate matrix mineralization and the expression of osteoblast maturation genes (e.g. alkaline phosphatase, osteocalcin. Identifying other genes that are differentially regulated by HDIs might identify new pathways that contribute to osteoblast differentiation. Results To identify other osteoblast genes that are altered early by HDIs, we incubated MC3T3-E1 preosteoblasts with HDIs (trichostatin A, MS-275, or valproic acid for 18 hours in osteogenic conditions. The promotion of osteoblast differentiation by HDIs in this experiment was confirmed by osteogenic assays. Gene expression profiles relative to vehicle-treated cells were assessed by microarray analysis with Affymetrix GeneChip 430 2.0 arrays. The regulation of several genes by HDIs in MC3T3-E1 cells and primary osteoblasts was verified by quantitative real-time PCR. Nine genes were differentially regulated by at least two-fold after exposure to each of the three HDIs and six were verified by PCR in osteoblasts. Four of the verified genes (solute carrier family 9 isoform 3 regulator 1 (Slc9a3r1, sorbitol dehydrogenase 1, a kinase anchor protein, and glutathione S-transferase alpha 4 were induced. Two genes (proteasome subunit, beta type 10 and adaptor-related protein complex AP-4 sigma 1 were suppressed. We also identified eight growth factors and growth factor receptor genes that are significantly altered by each of the HDIs, including Frizzled related proteins 1 and 4, which modulate the Wnt signaling pathway. Conclusion This study identifies osteoblast genes that are regulated early by HDIs and indicates pathways that

  10. Androgen Modulates Functions of Endothelial Progenitor Cells through Activated Egr1 Signaling

    Directory of Open Access Journals (Sweden)

    Yizhou Ye

    2016-01-01

    Full Text Available Researches show that androgens have important effects on migration of endothelial cells and endothelial protection in coronary heart disease. Endothelial progenitor cells (EPCs as a progenitor cell type that can differentiate into endothelial cells, have a critical role in angiogenesis and endothelial protection. The relationship between androgen and the functions of EPCs has animated much interest and controversy. In this study, we investigated the angiogenic and migratory functions of EPCs after treatment by dihydrotestosterone (DHT and the molecular mechanisms as well. We found that DHT treatment enhanced the incorporation of EPCs into tubular structures formed by HUVECs and the migratory activity of EPCs in the transwell assay dose dependently. Moreover, microarray analysis was performed to explore how DHT changes the gene expression profiles of EPCs. We found 346 differentially expressed genes in androgen-treated EPCs. Angiogenesis-related genes like Egr-1, Vcan, Efnb2, and Cdk2ap1 were identified to be regulated upon DHT treatment. Furthermore, the enhanced angiogenic and migratory abilities of EPCs after DHT treatment were inhibited by Egr1-siRNA transfection. In conclusion, our findings suggest that DHT markedly enhances the vessel forming ability and migration capacity of EPCs. Egr1 signaling may be a possible pathway in this process.

  11. Global identification of target genes regulated by APETALA3 and PISTILLATA floral homeotic gene action.

    Science.gov (United States)

    Zik, Moriyah; Irish, Vivian F

    2003-01-01

    Identifying the genes regulated by the floral homeotic genes APETALA3 (AP3) and PISTILLATA (PI) is crucial for understanding the molecular mechanisms that lead to petal and stamen formation. We have used microarray analysis to conduct a broad survey of genes whose expression is affected by AP3 and PI activity. DNA microarrays consisting of 9216 Arabidopsis ESTs were screened with probes corresponding to mRNAs from different mutant and transgenic lines that misexpress AP3 and/or PI. The microarray results were further confirmed by RNA gel blot analyses. Our results suggest that AP3 and PI regulate a relatively small number of genes, implying that many genes used in petal and stamen development are not tissue specific and likely have roles in other processes as well. We recovered genes similar to previously identified petal- and stamen-expressed genes as well as genes that were not implicated previously in petal and stamen development. A very low percentage of the genes recovered encoded transcription factors. This finding suggests that AP3 and PI act relatively directly to regulate the genes required for the basic cellular processes responsible for petal and stamen morphogenesis.

  12. Differential regulation of GS-GOGAT gene expression by plant growth regulators in Arabidopsis seedlings

    Directory of Open Access Journals (Sweden)

    Dragićević Milan

    2016-01-01

    Full Text Available Primary and secondary ammonium assimilation is catalyzed by the glutamine synthetase-glutamate synthase (GS-GOGAT pathway in plants. The Arabidopsis genome contains five cytosolic GS1 genes (GLN1;1 - GLN1;5, one nuclear gene for chloroplastic GS2 isoform (GLN2, two Fd-GOGAT genes (GLU1 and GLU2 and a GLT1 gene coding for NADH-GOGAT. Even though the regulation of GS and GOGAT isoforms has been extensively studied in response to various environmental and metabolic cues in many plant species, little is known about the effects of phytohormones on their regulation. The objective of this study was to investigate the impact of representative plant growth regulators, kinetin (KIN, abscisic acid (ABA, gibberellic acid (GA3 and 2,4-dichlorophenoxyacetic acid (2,4-D, on the expression of A. thaliana GS and GOGAT genes. The obtained results indicate that GS and GOGAT genes are differentially regulated by growth regulators in shoots and roots. KIN and 2,4-D repressed GS and GOGAT expression in roots, with little effect on transcript levels in shoots. KIN affected all tested genes; 2,4-D was apparently more selective and less potent. ABA induced the expression of GLN1;1 and GLU2 in whole seedlings, while GA3 enhanced the expression of all tested genes in shoots, except GLU2. The observed expression patterns are discussed in relation to physiological roles of investigated plant growth regulators and N-assimilating enzymes. [Projekat Ministarstva nauke Republike Srbije, br. ON173024

  13. Pten Regulates Epithelial Cytodifferentiation during Prostate Development

    DEFF Research Database (Denmark)

    Lokody, Isabel B; Francis, Jeffrey C; Gardiner, Jennifer R;

    2015-01-01

    that are shared with Pten mutant prostate cancer models, including a decrease in androgen receptor regulated genes. In depth analysis of the phenotype of these mice during development revealed that loss of Pten leads to the precocious differentiation of epithelial cells towards a luminal cell fate. This study...

  14. Querying Co-regulated Genes on Diverse Gene Expression Datasets Via Biclustering.

    Science.gov (United States)

    Deveci, Mehmet; Küçüktunç, Onur; Eren, Kemal; Bozdağ, Doruk; Kaya, Kamer; Çatalyürek, Ümit V

    2016-01-01

    Rapid development and increasing popularity of gene expression microarrays have resulted in a number of studies on the discovery of co-regulated genes. One important way of discovering such co-regulations is the query-based search since gene co-expressions may indicate a shared role in a biological process. Although there exist promising query-driven search methods adapting clustering, they fail to capture many genes that function in the same biological pathway because microarray datasets are fraught with spurious samples or samples of diverse origin, or the pathways might be regulated under only a subset of samples. On the other hand, a class of clustering algorithms known as biclustering algorithms which simultaneously cluster both the items and their features are useful while analyzing gene expression data, or any data in which items are related in only a subset of their samples. This means that genes need not be related in all samples to be clustered together. Because many genes only interact under specific circumstances, biclustering may recover the relationships that traditional clustering algorithms can easily miss. In this chapter, we briefly summarize the literature using biclustering for querying co-regulated genes. Then we present a novel biclustering approach and evaluate its performance by a thorough experimental analysis. PMID:26626937

  15. Nitrogen regulates chitinase gene expression in a marine bacterium

    DEFF Research Database (Denmark)

    Delpin, Marina; Goodman, A.E.

    2009-01-01

    Ammonium concentration and nitrogen source regulate promoter activity and use for the transcription of chiA, the major chitinase gene of Pseudoalteromonas sp. S91 and S91CX, an S91 transposon lacZ fusion mutant. The activity of chiA was quantified by beta-galactosidase assay of S91CX cultures con...

  16. Substitution of arginine-839 by cysteine or histidine in the androgen receptor causes different receptor phenotypes in cultured cells and coordinate degrees of clinical androgen resistance.

    OpenAIRE

    Beitel, L K; Kazemi-Esfarjani, P; Kaufman, M; Lumbroso, R; DiGeorge, A M; Killinger, D W; Trifiro, M A; Pinsky, L.

    1994-01-01

    We aim to correlate point mutations in the androgen receptor gene with receptor phenotypes and with clinical phenotypes of androgen resistance. In two families, the external genitalia were predominantly female at birth, and sex-of-rearing has been female. Their androgen receptor mutation changed arginine-839 to histidine. In a third family, the external genitalia were predominantly male at birth, and sex-of-rearing has been male: their codon 839 has mutated to cysteine. In genital skin fibrob...

  17. Transcriptional regulation of cathelicidin genes in chicken bone marrow cells.

    Science.gov (United States)

    Lee, Sang In; Jang, Hyun June; Jeon, Mi-hyang; Lee, Mi Ock; Kim, Jeom Sun; Jeon, Ik-Soo; Byun, Sung June

    2016-04-01

    Cathelicidins form a family of vertebrate-specific immune molecules with an evolutionarily conserved gene structure. We analyzed the expression patterns of cathelicidin genes (CAMP, CATH3, and CATHB1) in chicken bone marrow cells (BMCs) and chicken embryonic fibroblasts (CEFs). We found that CAMP and CATHB1 were significantly up-regulated in BMCs, whereas the expression of CATH3 did not differ significantly between BMCs and CEFs. To study the mechanism underlying the up-regulation of cathelicidin genes in BMCs, we predicted the transcription factors (TFs) that bind to the 5'-flanking regions of cathelicidin genes. CEBPA, EBF1, HES1, MSX1, and ZIC3 were up-regulated in BMCs compared to CEFs. Subsequently, when a siRNA-mediated knockdown assay was performed for MSX1, the expression of CAMP and CATHB1 was decreased in BMCs. We also showed that the transcriptional activity of the CAMP promoter was decreased by mutation of the MSX1-binding sites present within the 5'-flanking region of CAMP. These results increase our understanding of the regulatory mechanisms controlling cathelicidin genes in BMCs.

  18. Peptide nucleic acid (PNA) binding-mediated gene regulation

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    Peptide nucleic acids (PNAs) are synthetic oligonucleotides with chemically modified backbones. PNAs can bind to both DNA and RNA targets in a sequence-specific manner to form PNA/DNA and PNA/RNA duplex structures. When bound to double-stranded DNA (dsDNA) targets, the PNA molecule replaces one DNA strand in the duplex by strand invasion to form a PNA/DNA/PNA [or (PNA)2/DNA] triplex structure and the displaced DNA strand exists as a singlestranded D-loop. PNA has been used in many studies as research tools for gene regulation and gene targeting. The Dloops generated from the PNA binding have also been demonstrated for its potential in initiating transcription and inducing gene expression. PNA provides a powerful tool to study the mechanism of transcription and an innovative strategy to regulate target gene expression. An understanding of the PNA-mediated gene regulation will have important clinical implications in treatment of many human diseases including genetic, cancerous, and age-related diseases.

  19. Protein kinase D1 (PKD1) influences androgen receptor (AR) function in prostate cancer cells

    International Nuclear Information System (INIS)

    Protein kinase D1 (PKD1), founding member of PKD protein family, is down-regulated in advanced prostate cancer (PCa). We demonstrate that PKD1 and androgen receptor (AR) are present as a protein complex in PCa cells. PKD1 is associated with a transcriptional complex which contains AR and promoter sequence of the Prostate Specific Antigen (PSA) gene. Ectopic expression of wild type PKD1 and the kinase dead mutant PKD1 (K628W) attenuated the ligand-dependent transcriptional activation of AR in prostate cancer cells and yeast cells indicating that PKD1 can affect AR transcription activity, whereas knocking down PKD1 enhanced the ligand-dependent transcriptional activation of AR. Co-expression of kinase dead mutant with AR significantly inhibited androgen-mediated cell proliferation in both LNCaP and DU145 PC cells. Our data demonstrate for the first time that PKD1 can influence AR function in PCa cells

  20. Development of a small molecule serum and glucocorticoid-regulated kinase 1 antagonist and its evaluation as a prostate cancer therapeutic

    Science.gov (United States)

    Sherk, Andrea B.; Frigo, Daniel E.; Schnackenberg, Christine G.; Bray, Jeffrey D.; Laping, Nicholas J.; Trizna, Walter; Hammond, Marlys; Patterson, Jaclyn R.; Thompson, Scott K.; Kazmin, Dmitri; Norris, John D.; McDonnell, Donald P.

    2008-01-01

    Androgens, through their actions on the androgen receptor (AR), are required for the development of the prostate and contribute to the pathological growth dysregulation observed in prostate cancers. Consequently, androgen ablation has become an essential component of the pharmacotherapy of prostate cancer. In this study, we explored the utility of targeting processes downstream of AR as an alternate approach for therapy. Specifically, we demonstrate that the serum and glucocorticoid-regulated kinase 1 (sgk1) gene is an androgen-regulated target gene in cellular models of prostate cancer. Furthermore, functional SGK1 protein, as determined by the phosphorylation of its target Nedd4-2, was also increased with androgen treatment. Importantly, we determined that RNAi-mediated knockdown of SGK1 expression attenuates androgen-mediated growth of the prostate cancer cell line, LNCaP. Given these findings, we explored the utility of SGK1 as a therapeutic target in prostate cancer by developing and evaluating a small molecule inhibitor of this enzyme. From these studies emerged GSK650394, a competitive inhibitor that quantitatively blocks the effect of androgens on LNCaP cell growth. Thus, in addition to androgen ablation, inhibition of pathways downstream of AR are likely to have therapeutic utility in prostate cancer. PMID:18794135

  1. Markers for sebaceoma show a spectrum of cell cycle regulators, tumor suppressor genes, and oncogenes

    Directory of Open Access Journals (Sweden)

    Ana Maria Abreu Velez

    2015-01-01

    Full Text Available Background: Sebaceoma is a tumor for which the causative oncogenes are not well-understood. Sebaceomas demonstrate some histopathologic features similar to basal cell carcinoma (BCC, such as palisading borders and basaloid cells with additional features, including foamy cytoplasm and indented nuclei. Aims: We examine multiple cell-cycle, oncogene, and tumor suppressor gene markers in sebaceomas, to try to find some suitable biological markers for this tumor, and compare with other published studies. Materials and Methods: We investigated a panel of immunohistochemical (IHC stains that are important for cellular signaling, including a cell cycle regulator, tumor suppressor gene, oncogene, hormone receptor, and genomic stability markers in our cohort of sebaceomas. We collected 30 sebaceomas from three separate USA dermatopathology laboratories. The following IHC panel: Epithelial membrane antigen (EMA/CD227, cytokeratin AE1/AE3, cyclin D1, human breast cancer 1 protein (BRCA-1, C-erb-2, Bcl-2, human androgen receptor (AR, cyclin-dependent kinase inhibitor 1B (p27 kip1 , p53, topoisomerase II alpha, proliferating cell nuclear antigen, and Ki-67 were tested in our cases. Results: EMA/CD227 was positive in the well-differentiated sebaceomas (13/30. Cyclin-dependent kinase inhibitor 1B was positive in tumors with intermediate differentiation (22/30. The less well-differentiated tumors failed to stain with EMA and AR. Most of the tumors with well-differentiated palisaded areas demonstrated positive staining for topoisomerase II alpha, p27 kip1 , and p53, with positive staining in tumoral basaloid areas (22/30. Numerous tumors were focally positive with multiple markers, indicating a significant degree of variability in the complete group. Conclusions: Oncogenes, tumor suppressor genes, cell cycle regulators, and hormone receptors are variably expressed in sebaceomas. Our results suggest that in these tumors, selected marker staining seems to correlate

  2. Identifying disease feature genes based on cellular localized gene functional modules and regulation networks

    Institute of Scientific and Technical Information of China (English)

    ZHANG Min; ZHU Jing; GUO Zheng; LI Xia; YANG Da; WANG Lei; RAO Shaoqi

    2006-01-01

    Identifying disease-relevant genes and functional modules, based on gene expression profiles and gene functional knowledge, is of high importance for studying disease mechanisms and subtyping disease phenotypes. Using gene categories of biological process and cellular component in Gene Ontology, we propose an approach to selecting functional modules enriched with differentially expressed genes, and identifying the feature functional modules of high disease discriminating abilities. Using the differentially expressed genes in each feature module as the feature genes, we reveal the relevance of the modules to the studied diseases. Using three datasets for prostate cancer, gastric cancer, and leukemia, we have demonstrated that the proposed modular approach is of high power in identifying functionally integrated feature gene subsets that are highly relevant to the disease mechanisms. Our analysis has also shown that the critical disease-relevant genes might be better recognized from the gene regulation network, which is constructed using the characterized functional modules, giving important clues to the concerted mechanisms of the modules responding to complex disease states. In addition, the proposed approach to selecting the disease-relevant genes by jointly considering the gene functional knowledge suggests a new way for precisely classifying disease samples with clear biological interpretations, which is critical for the clinical diagnosis and the elucidation of the pathogenic basis of complex diseases.

  3. The cell cycle-regulated genes of Schizosaccharomyces pombe.

    Directory of Open Access Journals (Sweden)

    Anna Oliva

    2005-07-01

    Full Text Available Many genes are regulated as an innate part of the eukaryotic cell cycle, and a complex transcriptional network helps enable the cyclic behavior of dividing cells. This transcriptional network has been studied in Saccharomyces cerevisiae (budding yeast and elsewhere. To provide more perspective on these regulatory mechanisms, we have used microarrays to measure gene expression through the cell cycle of Schizosaccharomyces pombe (fission yeast. The 750 genes with the most significant oscillations were identified and analyzed. There were two broad waves of cell cycle transcription, one in early/mid G2 phase, and the other near the G2/M transition. The early/mid G2 wave included many genes involved in ribosome biogenesis, possibly explaining the cell cycle oscillation in protein synthesis in S. pombe. The G2/M wave included at least three distinctly regulated clusters of genes: one large cluster including mitosis, mitotic exit, and cell separation functions, one small cluster dedicated to DNA replication, and another small cluster dedicated to cytokinesis and division. S. pombe cell cycle genes have relatively long, complex promoters containing groups of multiple DNA sequence motifs, often of two, three, or more different kinds. Many of the genes, transcription factors, and regulatory mechanisms are conserved between S. pombe and S. cerevisiae. Finally, we found preliminary evidence for a nearly genome-wide oscillation in gene expression: 2,000 or more genes undergo slight oscillations in expression as a function of the cell cycle, although whether this is adaptive, or incidental to other events in the cell, such as chromatin condensation, we do not know.

  4. Identification of Master Regulator Genes in Human Periodontitis.

    Science.gov (United States)

    Sawle, A D; Kebschull, M; Demmer, R T; Papapanou, P N

    2016-08-01

    Analytic approaches confined to fold-change comparisons of gene expression patterns between states of health and disease are unable to distinguish between primary causal disease drivers and secondary noncausal events. Genome-wide reverse engineering approaches can facilitate the identification of candidate genes that may distinguish between causal and associative interactions and may account for the emergence or maintenance of pathologic phenotypes. In this work, we used the algorithm for the reconstruction of accurate cellular networks (ARACNE) to analyze a large gene expression profile data set (313 gingival tissue samples from a cross-sectional study of 120 periodontitis patients) obtained from clinically healthy (n = 70) or periodontitis-affected (n = 243) gingival sites. The generated transcriptional regulatory network of the gingival interactome was subsequently interrogated with the master regulator inference algorithm (MARINA) and gene expression signature data from healthy and periodontitis-affected gingiva. Our analyses identified 41 consensus master regulator genes (MRs), the regulons of which comprised between 25 and 833 genes. Regulons of 7 MRs (HCLS1, ZNF823, XBP1, ZNF750, RORA, TFAP2C, and ZNF57) included >500 genes each. Gene set enrichment analysis indicated differential expression of these regulons in gingival health versus disease with a type 1 error between 2% and 0.5% and with >80% of the regulon genes in the leading edge. Ingenuity pathway analysis showed significant enrichment of 36 regulons for several pathways, while 6 regulons (those of MRs HCLS1, IKZF3, ETS1, NHLH2, POU2F2, and VAV1) were enriched for >10 pathways. Pathways related to immune system signaling and development were the ones most frequently enriched across all regulons. The unbiased analysis of genome-wide regulatory networks can enhance our understanding of the pathobiology of human periodontitis and, after appropriate validation, ultimately identify target molecules of

  5. Dopamine receptor-mediated regulation of neuronal "clock" gene expression.

    Science.gov (United States)

    Imbesi, M; Yildiz, S; Dirim Arslan, A; Sharma, R; Manev, H; Uz, T

    2009-01-23

    Using a transgenic mice model (i.e. "clock" knockouts), clock transcription factors have been suggested as critical regulators of dopaminergic behaviors induced by drugs of abuse. Moreover, it has been shown that systemic administration of psychostimulants, such as cocaine and methamphetamine regulates the striatal expression of clock genes. However, it is not known whether dopamine receptors mediate these regulatory effects of psychostimulants at the cellular level. Primary striatal neurons in culture express dopamine receptors as well as clock genes and have been successfully used in studying dopamine receptor functioning. Therefore, we investigated the role of dopamine receptors on neuronal clock gene expression in this model using specific receptor agonists. We found an inhibitory effect on the expression of mClock and mPer1 genes with the D2-class (i.e. D2/D3) receptor agonist quinpirole. We also found a generalized stimulatory effect on the expression of clock genes mPer1, mClock, mNPAS2 (neuronal PAS domain protein 2), and mBmal1 with the D1-class (i.e. D1) receptor agonist SKF38393. Further, we tested whether systemic administration of dopamine receptor agonists causes similar changes in striatal clock gene expression in vivo. We found quinpirole-induced alterations in mPER1 protein levels in the mouse striatum (i.e. rhythm shift). Collectively, our results indicate that the dopamine receptor system may mediate psychostimulant-induced changes in clock gene expression. Using striatal neurons in culture as a model, further research is needed to better understand how dopamine signaling modulates the expression dynamics of clock genes (i.e. intracellular signaling pathways) and thereby influences neuronal gene expression, neuronal transmission, and brain functioning. PMID:19017537

  6. Loss of androgen receptor-dependent growth suppression by prostate cancer cells can occur independently from acquiring oncogenic addiction to androgen receptor signaling.

    Directory of Open Access Journals (Sweden)

    Jason M D'Antonio

    Full Text Available The conversion of androgen receptor (AR signaling as a mechanism of growth suppression of normal prostate epithelial cells to that of growth stimulation in prostate cancer cells is often associated with AR mutation, amplification and over-expression. Thus, down-regulation of AR signaling is commonly therapeutic for prostate cancer. The E006AA cell line was established from a hormone naïve, localized prostate cancer. E006AA cells are genetically aneuploid and grow equally well when xenografted into either intact or castrated male NOG but not nude mice. These cells exhibit: 1 X chromosome duplication and AR gene amplification, although paradoxically not coupled with increased AR expression, and 2 somatic, dominant-negative Serine-599-Glycine loss-of-function mutation within the dimerization surface of the DNA binding domain of the AR gene. No effect on the growth of E006AA cells is observed using targeted knockdown of endogenous mutant AR, ectopic expression of wild-type AR, or treatment with androgens or anti-androgens. E006AA cells represent a prototype for a newly identified subtype of prostate cancer cells that exhibit a dominant-negative AR loss-of-function in a hormonally naïve patient. Such loss-of-function eliminates AR-mediated growth suppression normally induced by normal physiological levels of androgens, thus producing a selective growth advantage for these malignant cells in hormonally naïve patients. These data highlight that loss of AR-mediated growth suppression is an independent process, and that, without additional changes, is insufficient for acquiring oncogene addiction to AR signaling. Thus, patients with prostate cancer cells harboring such AR loss-of-function mutations will not benefit from aggressive hormone or anti-AR therapies even though they express AR protein.

  7. Overexpression of Androgen Receptors in Target Musculature Confers Androgen Sensitivity to Motoneuron Dendrites

    OpenAIRE

    Huguenard, Anna L.; Fernando, Shannon M.; Monks, D. Ashley; Sengelaub, Dale R.

    2010-01-01

    Androgen sensitivity of motoneuron dendrites is conferred indirectly via the enrichment of androgen receptors in the musculature in transgenic rats overexpressing androgen receptors in skeletal muscle.

  8. Global regulation of nucleotide biosynthetic genes by c-Myc.

    Directory of Open Access Journals (Sweden)

    Yen-Chun Liu

    Full Text Available BACKGROUND: The c-Myc transcription factor is a master regulator and integrates cell proliferation, cell growth and metabolism through activating thousands of target genes. Our identification of direct c-Myc target genes by chromatin immunoprecipitation (ChIP coupled with pair-end ditag sequencing analysis (ChIP-PET revealed that nucleotide metabolic genes are enriched among c-Myc targets, but the role of Myc in regulating nucleotide metabolic genes has not been comprehensively delineated. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report that the majority of genes in human purine and pyrimidine biosynthesis pathway were induced and directly bound by c-Myc in the P493-6 human Burkitt's lymphoma model cell line. The majority of these genes were also responsive to the ligand-activated Myc-estrogen receptor fusion protein, Myc-ER, in a Myc null rat fibroblast cell line, HO.15 MYC-ER. Furthermore, these targets are also responsive to Myc activation in transgenic mouse livers in vivo. To determine the functional significance of c-Myc regulation of nucleotide metabolism, we sought to determine the effect of loss of function of direct Myc targets inosine monophosphate dehydrogenases (IMPDH1 and IMPDH2 on c-Myc-induced cell growth and proliferation. In this regard, we used a specific IMPDH inhibitor mycophenolic acid (MPA and found that MPA dramatically inhibits c-Myc-induced P493-6 cell proliferation through S-phase arrest and apoptosis. CONCLUSIONS/SIGNIFICANCE: Taken together, these results demonstrate the direct induction of nucleotide metabolic genes by c-Myc in multiple systems. Our finding of an S-phase arrest in cells with diminished IMPDH activity suggests that nucleotide pool balance is essential for c-Myc's orchestration of DNA replication, such that uncoupling of these two processes create DNA replication stress and apoptosis.

  9. 前列腺癌细胞中两个雄激素应答元件调节雄激素对MMP-2表达的调控%Dual androgen-response elements mediate androgen regulation of MMP-2 expression in prostate cancer cells

    Institute of Scientific and Technical Information of China (English)

    B.Y.Li; X.B.Liao; A.Fujito; J.B.Thrasher; F.Y.Shen; P.Y.Xu

    2007-01-01

    Aim:To characterize the matrix metalloproteinases (MMP)-2 promoter and to identify androgen response elements (AREs) involved in androgen-induced MMP-2 expression. Methods: MMP-2 mRNA levels was determined by reverse transcription-polymerase chain reaction (RT-PCR). MMP-2 promoter-driven luciferase assays were used to determine the fragments responsible for androgen-induced activity. Chromatin-immunoprecipitation assay and electrophoretic mobility shift assays (EMSA) were used to verify the identified AREs in the MMP-2 promoter. Results: Androgen significantly induced MMP-2 expression at the mRNA level, which was blocked by the androgen antagonist bicalutamide. Deletion of a region encompassing base pairs -1 591 to -1259 (relative to the start codon) of the MMP-2 promoter led to a significant loss of androgen-induced reporter activity. Additional deletion of the 5'-region up to -562 bp further reduced the androgen-induced MMP-2 promoter activity. Sequence analysis of these two regions revealed two putative ARE motifs. Introducing mutations in the putative ARE motifs by site-directed mutagenesis approach resulted in a dramatic loss of androgen-induced MMP-2 promoter activity, indicating that the putative ARE motifs are required for androgen-stimulated MMP-2 expression. Most importantly, the androgen receptor (AR) interacted with both motif-containing promoter regions in vivo in a chromatin immunoprecipitation assay after androgen treatment.Furthermore, the AR specifically bound to the wild-type but not mutated ARE motifs-containing probes in an in vitro EMSA assay. Conclusion: Two ARE motifs were identified to be responsible for androgen-induced MMP-2 expression in prostate cancer cells.

  10. Vocal area-related expression of the androgen receptor in the budgerigar (Melopsittacus undulatus) brain.

    Science.gov (United States)

    Matsunaga, Eiji; Okanoya, Kazuo

    2008-05-01

    The androgen receptor is a steroid hormone receptor widely expressed in the vocal control nuclei in songbirds. Here, we analysed androgen receptor expression in the brains of juvenile and adult budgerigars. With a species-specific probe for budgerigar androgen receptor mRNA, we found that the androgen receptor was expressed in the vocal areas, such as the central nucleus of the lateral nidopallium, the anterior arcopallium, the oval nucleus of the mesopallium, the oval nucleus of the anterior nidopallium and the tracheosyringeal hypoglossal nucleus. With the present data, together with previous reports, it turned out that the androgen receptor expression in telencephalic vocal control areas is similar amongst three groups of vocal learners--songbirds, hummingbirds and parrots, suggesting the possibility that the androgen receptor might play a role in vocal development and that the molecular mechanism regulating the androgen receptor expression in the vocal areas might be important in the evolution of vocal learning.

  11. Androgen receptor expression predicts breast cancer survival: the role of genetic and epigenetic events

    International Nuclear Information System (INIS)

    Breast cancer outcome, including response to therapy, risk of metastasis and survival, is difficult to predict using currently available methods, highlighting the urgent need for more informative biomarkers. Androgen receptor (AR) has been implicated in breast carcinogenesis however its potential to be an informative biomarker has yet to be fully explored. In this study, AR protein levels were determined in a cohort of 73 Grade III invasive breast ductal adenocarcinomas. The levels of Androgen receptor protein in a cohort of breast tumour samples was determined by immunohistochemistry and the results were compared with clinical characteristics, including survival. The role of defects in the regulation of Androgen receptor gene expression were examined by mutation and methylation screening of the 5' end of the gene, reporter assays of the 5' and 3' end of the AR gene, and searching for miRNAs that may regulate AR gene expression. AR was expressed in 56% of tumours and expression was significantly inversely associated with 10-year survival (P = 0.004). An investigation into the mechanisms responsible for the loss of AR expression revealed that hypermethylation of the AR promoter is associated with loss of AR expression in breast cancer cells but not in primary breast tumours. In AR negative breast tumours, mutation screening identified the same mutation (T105A) in the 5'UTR of two AR negative breast cancer patients but not reported in the normal human population. Reporter assay analysis of this mutation however found no evidence for a negative impact on AR 5'UTR activity. The role of miR-124 in regulating AR expression was also investigated, however no evidence for this was found. This study highlights the potential for AR expression to be an informative biomarker for breast cancer survival and sets the scene for a more comprehensive investigation of the molecular basis of this phenomenon

  12. Signal Transduction Pathways that Regulate CAB Gene Expression

    Energy Technology Data Exchange (ETDEWEB)

    Chory, Joanne

    2004-12-31

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  13. Signal Transduction Pathways that Regulate CAB Gene Expression

    Energy Technology Data Exchange (ETDEWEB)

    Chory, Joanne

    2006-01-16

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  14. Intron retention-dependent gene regulation in Cryptococcus neoformans.

    Science.gov (United States)

    Gonzalez-Hilarion, Sara; Paulet, Damien; Lee, Kyung-Tae; Hon, Chung-Chau; Lechat, Pierre; Mogensen, Estelle; Moyrand, Frédérique; Proux, Caroline; Barboux, Rony; Bussotti, Giovanni; Hwang, Jungwook; Coppée, Jean-Yves; Bahn, Yong-Sun; Janbon, Guilhem

    2016-01-01

    The biological impact of alternative splicing is poorly understood in fungi, although recent studies have shown that these microorganisms are usually intron-rich. In this study, we re-annotated the genome of C. neoformans var. neoformans using RNA-Seq data. Comparison with C. neoformans var. grubii revealed that more than 99% of ORF-introns are in the same exact position in the two varieties whereas UTR-introns are much less evolutionary conserved. We also confirmed that alternative splicing is very common in C. neoformans, affecting nearly all expressed genes. We also observed specific regulation of alternative splicing by environmental cues in this yeast. However, alternative splicing does not appear to be an efficient method to diversify the C. neoformans proteome. Instead, our data suggest the existence of an intron retention-dependent mechanism of gene expression regulation that is not dependent on NMD. This regulatory process represents an additional layer of gene expression regulation in fungi and provides a mechanism to tune gene expression levels in response to any environmental modification. PMID:27577684

  15. Reconstructing a network of stress-response regulators via dynamic system modeling of gene regulation.

    Science.gov (United States)

    Wu, Wei-Sheng; Li, Wen-Hsiung; Chen, Bor-Sen

    2008-02-10

    Unicellular organisms such as yeasts have evolved mechanisms to respond to environmental stresses by rapidly reorganizing the gene expression program. Although many stress-response genes in yeast have been discovered by DNA microarrays, the stress-response transcription factors (TFs) that regulate these stress-response genes remain to be investigated. In this study, we use a dynamic system model of gene regulation to describe the mechanism of how TFs may control a gene's expression. Then, based on the dynamic system model, we develop the Stress Regulator Identification Algorithm (SRIA) to identify stress-response TFs for six kinds of stresses. We identified some general stress-response TFs that respond to various stresses and some specific stress-response TFs that respond to one specific stress. The biological significance of our findings is validated by the literature. We found that a small number of TFs is probably sufficient to control a wide variety of expression patterns in yeast under different stresses. Two implications can be inferred from this observation. First, the response mechanisms to different stresses may have a bow-tie structure. Second, there may be regulatory cross-talks among different stress responses. In conclusion, this study proposes a network of stress-response regulators and the details of their actions.

  16. Sensitization of androgen refractory prostate cancer cells to anti-androgens through re-expression of epigenetically repressed androgen receptor - Synergistic action of quercetin and curcumin.

    Science.gov (United States)

    Sharma, Vikas; Kumar, Lokesh; Mohanty, Sujit K; Maikhuri, Jagdamba P; Rajender, Singh; Gupta, Gopal

    2016-08-15

    Epigenetic repression of Androgen Receptor (AR) gene by hypermethylation of its promoter causes resistance in prostate cancer (CaP) to androgen deprivation therapy with anti-androgens. Some dietary phytocompounds like quercetin (Q) and curcumin (C) with reported DNMT-inhibitory activity were tested for their ability to re-express the AR in AR-negative CaP cell lines PC3 and DU145. Combined treatment with Q+C was much more effective than either Q or C in inhibiting DNMT, causing global hypomethylation, restoring AR mRNA and protein levels and causing apoptosis via mitochondrial depolarization of PC3 and DU145. The functional AR protein expressed in Q+C treated cells sensitized them to dihydrotestosterone (DHT)-induced proliferation, bicalutamide-induced apoptosis, bound to androgen response element to increase luciferase activity in gene reporter assay and was susceptible to downregulation by AR siRNA. Bisulfite sequencing revealed high methylation of AR promoter CpG sites in AR-negative DU145 and PC3 cell lines that was significantly demethylated by Q+C treatment, which restored AR expression. Notable synergistic effects of Q+C combination in re-sensitizing androgen refractory CaP cells to AR-mediated apoptosis, their known safety in clinical use, and epidemiological evidences relating their dietary consumption with lower cancer incidences indicate their potential for use in chemoprevention of androgen resistance in prostate cancer. PMID:27132804

  17. Gene Regulation System of Vasopressin and Corticotoropin-Releasing Hormone

    Directory of Open Access Journals (Sweden)

    Masanori Yoshida

    2008-01-01

    Full Text Available The neurohypophyseal hormones, arginine vasopressin and corticotropin-releasing hormone (CRH, play a crucial role in the physiological and behavioral response to various kinds of stresses. Both neuropeptides activate the hypophysialpituitary-adrenal (HPA axis, which is a central mediator of the stress response in the body. Conversely, they receive the negative regulation by glucocorticoid, which is an end product of the HPA axis. Vasopressin and CRH are closely linked to immune response; they also interact with pro-inflammatory cytokines. Moreover, as for vasopressin, it has another important role, which is the regulation of water balance through its potent antidiuretic effect. Hence, it is conceivable that vasopressin and CRH mediate the homeostatic responses for survival and protect organisms from the external world. A tight and elaborate regulation system of the vasopressin and CRH gene is required for the rapid and flexible response to the alteration of the surrounding environments. Several important regulatory elements have been identified in the proximal promoter region in the vasopressin and CRH gene. Many transcription factors and intracellular signaling cascades are involved in the complicated gene regulation system. This review focuses on the current status of the basic research of vasopressin and CRH. In addition to the numerous known facts about their divergent physiological roles, the recent topics of promoter analyses will be discussed.

  18. Doublesex: a conserved downstream gene controlled by diverse upstream regulators

    Indian Academy of Sciences (India)

    J. N. Shukla; J. Nagaraju

    2010-09-01

    Sex determination, an integral precursor to sexual reproduction, is required to generate morphologically distinct sexes. The molecular components of sex-determination pathways regulating sexual differentiation have been identified and characterized in different organisms. The Drosophila doublesex (dsx) gene at the bottom of the sex-determination cascade is the best characterized candidate so far, and is conserved from worms (mab3 of Caenorhabditis elegans) to mammals (Dmrt-1). Studies of dsx homologues from insect species belonging to different orders position them at the bottom of their sex-determination cascade. The dsx homologues are regulated by a series of upstream regulators that show amazing diversity in different insect species. These results support the Wilkin’s hypothesis that evolution of the sex-determination cascade has taken place in reverse order, the bottom most gene being most conserved and the upstream genes having been recruited at different times during evolution. The pre-mRNA of dsx is sex-specifically spliced to encode male or female-specific transcription factors that play an important role in the regulation of sexually dimorphic characters in different insect species. The generalization that dsx is required for somatic sexual differentiation culminated with its functional analysis through transgenesis and knockdown experiments in diverse species of insects. This brief review will focus on the similarities and variations of dsx homologues that have been investigated in insects to date.

  19. Differential gene regulation by the SRC family of coactivators

    Institute of Scientific and Technical Information of China (English)

    HuaZhang; XiaYi; Xiaojingsun; NaYin; BinShi; HuijianWu; DanWang; GeWu; YongfengShang

    2005-01-01

    SRCs (steroid receptor coactivatorsl are required for nuclear receptor-mediated transcription and are also implicated in the transcription initiation by other transcription factors, such as STATs and NFKB. Despite phenotypic manifestations in gene knockout mice for SRC-1, GRIP1, and AIB1 of the SRC (Steroid Receptor Coactivator) family indicating their differential roles in animal physiology, there is no clear evidence, at the molecular level, to support a functional specificity for these proteins. We demonstrated in this report that two species of SRC coactivators, either as AIBI:GRIP1 or as AIBI:SRC-1 are recruited, possibly through heterodimerization, on the promoter of genes that contain a classical hormone responsive element (HRE). In contrast, on non-HRE-containing gene promoters, on which steroid receptors bind indirectly, either GRIP1 orSRC-1 is recruited as a monomer, depending on the cellular abundance of the protein. Typically, non-HRE-containing genes are early genes activated by steroid receptors, whereas HRE-containing genes are activated later. Our results also showed that SRC proteins contribute to the temporal regulation of gene transcription. In addition, our experiments revealed a positive correlation between AIB1/c-myc overexpression in ER+ breast carcinoma samples, suggesting a possible mechanism for AIB1/n breast cancer carcinogenesis.

  20. The Regulation of Exosporium-Related Genes in Bacillus thuringiensis

    Science.gov (United States)

    Peng, Qi; Kao, Guiwei; Qu, Ning; Zhang, Jie; Li, Jie; Song, Fuping

    2016-01-01

    Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis (Bt) are spore-forming members of the Bacillus cereus group. Spores of B. cereus group species are encircled by exosporium, which is composed of an external hair-like nap and a paracrystalline basal layer. Despite the extensive studies on the structure of the exosporium-related proteins, little is known about the transcription and regulation of exosporium gene expression in the B. cereus group. Herein, we studied the regulation of several exosporium-related genes in Bt. A SigK consensus sequence is present upstream of genes encoding hair-like nap proteins (bclA and bclB), basal layer proteins (bxpA, bxpB, cotB, and exsY ), and inosine hydrolase (iunH). Mutation of sigK decreased the transcriptional activities of all these genes, indicating that the transcription of these genes is controlled by SigK. Furthermore, mutation of gerE decreased the transcriptional activities of bclB, bxpB, cotB, and iunH but increased the expression of bxpA, and GerE binds to the promoters of bclB, bxpB, cotB, bxpA, and iunH. These results suggest that GerE directly regulates the transcription of these genes, increasing the expression of bclB, bxpB, cotB, and iunH and decreasing that of bxpA. These findings provide insight into the exosporium assembly process at the transcriptional level. PMID:26805020

  1. Computational identification of transcriptionally co-regulated genes, validation with the four ANT isoform genes

    Directory of Open Access Journals (Sweden)

    Dupont Pierre-Yves

    2012-09-01

    Full Text Available Abstract Background The analysis of gene promoters is essential to understand the mechanisms of transcriptional regulation required under the effects of physiological processes, nutritional intake or pathologies. In higher eukaryotes, transcriptional regulation implies the recruitment of a set of regulatory proteins that bind on combinations of nucleotide motifs. We developed a computational analysis of promoter nucleotide sequences, to identify co-regulated genes by combining several programs that allowed us to build regulatory models and perform a crossed analysis on several databases. This strategy was tested on a set of four human genes encoding isoforms 1 to 4 of the mitochondrial ADP/ATP carrier ANT. Each isoform has a specific tissue expression profile linked to its role in cellular bioenergetics. Results From their promoter sequence and from the phylogenetic evolution of these ANT genes in mammals, we constructed combinations of specific regulatory elements. These models were screened using the full human genome and databases of promoter sequences from human and several other mammalian species. For each of transcriptionally regulated ANT1, 2 and 4 genes, a set of co-regulated genes was identified and their over-expression was verified in microarray databases. Conclusions Most of the identified genes encode proteins with a cellular function and specificity in agreement with those of the corresponding ANT isoform. Our in silico study shows that the tissue specific gene expression is mainly driven by promoter regulatory sequences located up to about a thousand base pairs upstream the transcription start site. Moreover, this computational strategy on the study of regulatory pathways should provide, along with transcriptomics and metabolomics, data to construct cellular metabolic networks.

  2. Transcripts of genes encoding reproductive neuroendocrine hormones and androgen receptor in the brain and testis of goldfish exposed to vinclozolin, flutamide, testosterone, and their combinations.

    Science.gov (United States)

    Golshan, Mahdi; Habibi, Hamid R; Alavi, Sayyed Mohammad Hadi

    2016-08-01

    Vinclozolin (VZ) is a pesticide that acts as an anti-androgen to impair reproduction in mammals. However, VZ-induced disruption of reproduction is largely unknown in fish. In the present study, we have established a combination exposure in which adult goldfish were exposed to VZ (30 and 100 μg/L), anti-androgen flutamide (Flu, 300 μg/L), and androgen testosterone (T, 1 μg/L) to better understand effects of VZ on reproductive endocrine system. mRNA levels of kisspeptin (kiss-1 and kiss-2) and its receptor (gpr54), salmon gonadotropin-releasing hormone (gnrh3) and androgen receptor (ar) in the mid-brain, and luteinizing hormone receptor (lhr) in the testis were analyzed and compared with those of control following 10 days of exposure. kiss-1 mRNA level was increased in goldfish exposed to 100 µg/L VZ and to Flu, while kiss-2 mRNA level was increased following exposure to Flu and to combinations of 30 µg/L VZ with Flu, 100 µg/L VZ with T, and Flu with T. gpr54 mRNA level was increased in goldfish exposed to Flu and to combination of 30 µg/L VZ with Flu and 100 µg/L VZ with T. gnrh3 mRNA level was increased in goldfish exposed to 100 µg/L VZ, to Flu, and to combinations of 30 µg/L VZ with Flu, 100 µg/L VZ with T, and Flu with T. The mid-brain ar mRNA level was increased in goldfish exposed to Flu and to combinations of 30 µg/L VZ with Flu, 100 µg/L VZ with T, and Flu with T. Testicular lhr mRNA level was increased in goldfish exposed to Flu and to combination of 30 µg/L VZ with Flu. These results suggest that VZ and Flu are capable of interfering with kisspeptin and GnRH systems to alter pituitary and testicular horonal functions in adult goldfish and the brain ar mediates VZ-induced disruption of androgen production. PMID:26899179

  3. Genes regulated by AoXlnR, the xylanolytic and cellulolytic transcriptional regulator, in Aspergillus oryzae.

    Science.gov (United States)

    Noguchi, Yuji; Sano, Motoaki; Kanamaru, Kyoko; Ko, Taro; Takeuchi, Michio; Kato, Masashi; Kobayashi, Tetsuo

    2009-11-01

    XlnR is a Zn(II)2Cys6 transcriptional activator of xylanolytic and cellulolytic genes in Aspergillus. Overexpression of the aoxlnR gene in Aspergillus oryzae (A. oryzae xlnR gene) resulted in elevated xylanolytic and cellulolytic activities in the culture supernatant, in which nearly 40 secreted proteins were detected by two-dimensional electrophoresis. DNA microarray analysis to identify the transcriptional targets of AoXlnR led to the identification of 75 genes that showed more than fivefold increase in their expression in the AoXlnR overproducer than in the disruptant. Of these, 32 genes were predicted to encode a glycoside hydrolase, highlighting the biotechnological importance of AoXlnR in biomass degradation. The 75 genes included the genes previously identified as AoXlnR targets (xynF1, xynF3, xynG2, xylA, celA, celB, celC, and celD). Thirty-six genes were predicted to be extracellular, which was consistent with the number of proteins secreted, and 61 genes possessed putative XlnR-binding sites (5'-GGCTAA-3', 5'-GGCTAG-3', and 5'-GGCTGA-3') in their promoter regions. Functional annotation of the genes revealed that AoXlnR regulated the expression of hydrolytic genes for degradation of beta-1,4-xylan, arabinoxylan, cellulose, and xyloglucan and of catabolic genes for the conversion of D-xylose to xylulose-5-phosphate. In addition, genes encoding glucose-6-phosphate 1-dehydrogenase and L-arabinitol-4- dehydrogenase involved in D-glucose and L-arabinose catabolism also appeared to be targets of AoXlnR.

  4. Androgen deprivation therapy sensitizes prostate cancer cells to T-cell killing through androgen receptor dependent modulation of the apoptotic pathway.

    Science.gov (United States)

    Ardiani, Andressa; Gameiro, Sofia R; Kwilas, Anna R; Donahue, Renee N; Hodge, James W

    2014-10-15

    Despite recent advances in diagnosis and management, prostrate cancer remains the second most common cause of death from cancer in American men, after lung cancer. Failure of chemotherapies and hormone-deprivation therapies is the major cause of death in patients with castration-resistant prostate cancer (CRPC). Currently, the androgen inhibitors enzalutamide and abiraterone are approved for treatment of metastatic CRPC. Here we show for the first time that both enzalutamide and abiraterone render prostate tumor cells more sensitive to T cell-mediated lysis through immunogenic modulation, and that these immunomodulatory activities are androgen receptor (AR)-dependent. In studies reported here, the NAIP gene was significantly down-regulated in human prostate tumor cells treated in vitro and in vivo with enzalutamide. Functional analysis revealed that NAIP played a critical role in inducing CTL sensitivity. Amplification of AR is a major mechanism of resistance to androgen-deprivation therapy (ADT). Here, we show that enzalutamide enhances sensitivity to immune-mediated killing of prostate tumor cells that overexpress AR. The immunomodulatory properties of enzalutamide and abiraterone provide a rationale for their use in combination with immunotherapeutic agents in CRPC, especially for patients with minimal response to enzalutamide or abiraterone alone, or for patients who have developed resistance to ADT. PMID:25344864

  5. Androgen insensitivity syndrome, a case report and literature review

    Directory of Open Access Journals (Sweden)

    Venkatreddy Malipatil

    2016-06-01

    Full Text Available A case of androgen insensitivity syndrome who presented with left labial mass and inguinal hernia was managed by surgery and counselling. The aim of this report is to present a rare case of androgen insensitivity syndrome, its cause, diagnosis and treatment along with review of literature and its management. Androgen insensitivity syndrome is a X linked disorder of male sexual differentiation caused by mutation affecting the androgen receptor gene Xq 11-12 resulting in decreased peripheral responsiveness to circulating androgens, with variable phenotypic expression. Over 300 mutations have been identical worldwide. A 8 year old girl presented to surgical outpatient department with pain in the left labial mass. She was investigated and operated. She was confirmed of having androgen insensitivity syndrome after testing for abdominal ultrasound, estimation of antimullerian hormone (AMH levels, karyotyping and histopathological examination of labial mass. A literature search and update was made on the causes, clinical issues and management of androgen insensitivity syndrome (AIS. [Int J Res Med Sci 2016; 4(6.000: 1830-1833

  6. Micro-RNA: A New Kind of Gene Regulators

    Institute of Scientific and Technical Information of China (English)

    WU Dan; HU Lan

    2006-01-01

    A group of small RNA molecules, distinct from but related to siRNAs (small interference RNAs) have been identified in a variety of organisms. These small RNAs, called microRNAs (miRNAs), are endogenously encoded approximately 20-24 nt long single-stranded RNAs. They are generally expressed in a highly tissue- or developmental-stage-specific fashion and are post-transcriptional regulator of gene expression in animals and plants. This article summarizes the character, mechanism and analysis method about miRNAs. The current view that miRNAs represent a newly discovered, hidden layer of gene regulation has resulted in high interest among researchers in the discovery of miRNAs, their targets, expression mechanism of action and analysis methods.

  7. Statistical modelling of transcript profiles of differentially regulated genes

    Directory of Open Access Journals (Sweden)

    Sergeant Martin J

    2008-07-01

    Full Text Available Abstract Background The vast quantities of gene expression profiling data produced in microarray studies, and the more precise quantitative PCR, are often not statistically analysed to their full potential. Previous studies have summarised gene expression profiles using simple descriptive statistics, basic analysis of variance (ANOVA and the clustering of genes based on simple models fitted to their expression profiles over time. We report the novel application of statistical non-linear regression modelling techniques to describe the shapes of expression profiles for the fungus Agaricus bisporus, quantified by PCR, and for E. coli and Rattus norvegicus, using microarray technology. The use of parametric non-linear regression models provides a more precise description of expression profiles, reducing the "noise" of the raw data to produce a clear "signal" given by the fitted curve, and describing each profile with a small number of biologically interpretable parameters. This approach then allows the direct comparison and clustering of the shapes of response patterns between genes and potentially enables a greater exploration and interpretation of the biological processes driving gene expression. Results Quantitative reverse transcriptase PCR-derived time-course data of genes were modelled. "Split-line" or "broken-stick" regression identified the initial time of gene up-regulation, enabling the classification of genes into those with primary and secondary responses. Five-day profiles were modelled using the biologically-oriented, critical exponential curve, y(t = A + (B + CtRt + ε. This non-linear regression approach allowed the expression patterns for different genes to be compared in terms of curve shape, time of maximal transcript level and the decline and asymptotic response levels. Three distinct regulatory patterns were identified for the five genes studied. Applying the regression modelling approach to microarray-derived time course data

  8. Regulation of clock-controlled genes in mammals.

    Directory of Open Access Journals (Sweden)

    Katarzyna Bozek

    Full Text Available The complexity of tissue- and day time-specific regulation of thousands of clock-controlled genes (CCGs suggests that many regulatory mechanisms contribute to the transcriptional output of the circadian clock. We aim to predict these mechanisms using a large scale promoter analysis of CCGs.Our study is based on a meta-analysis of DNA-array data from rodent tissues. We searched in the promoter regions of 2065 CCGs for highly overrepresented transcription factor binding sites. In order to compensate the relatively high GC-content of CCG promoters, a novel background model to avoid a bias towards GC-rich motifs was employed. We found that many of the transcription factors with overrepresented binding sites in CCG promoters exhibit themselves circadian rhythms. Among the predicted factors are known regulators such as CLOCKratioBMAL1, DBP, HLF, E4BP4, CREB, RORalpha and the recently described regulators HSF1, STAT3, SP1 and HNF-4alpha. As additional promising candidates of circadian transcriptional regulators PAX-4, C/EBP, EVI-1, IRF, E2F, AP-1, HIF-1 and NF-Y were identified. Moreover, GC-rich motifs (SP1, EGR, ZF5, AP-2, WT1, NRF-1 and AT-rich motifs (MEF-2, HMGIY, HNF-1, OCT-1 are significantly overrepresented in promoter regions of CCGs. Putative tissue-specific binding sites such as HNF-3 for liver, NKX2.5 for heart or Myogenin for skeletal muscle were found. The regulation of the erythropoietin (Epo gene was analysed, which exhibits many binding sites for circadian regulators. We provide experimental evidence for its circadian regulated expression in the adult murine kidney. Basing on a comprehensive literature search we integrate our predictions into a regulatory network of core clock and clock-controlled genes. Our large scale analysis of the CCG promoters reveals the complexity and extensiveness of the circadian regulation in mammals. Results of this study point to connections of the circadian clock to other functional systems including

  9. Looking for arthritis regulating genes on mouse chromosome 6 & 14

    OpenAIRE

    Popovic, Marjan

    2008-01-01

    Rheumatoid arthritis (RA) is a chronic autoimmune disease of the joints with a complex aetiology affected by largely unknown genetic and environmental factors. Because ~60% of susceptibility to RA is genetically inherited, one way to progress towards understanding of the disease is to identify the disease regulating genes. Collagen-induced arthritis (CIA) is the most commonly used model of RA in mice. After immunisation by a subcutaneous injection of collagen emulsified ...

  10. Regulation of cry Gene Expression in Bacillus thuringiensis

    OpenAIRE

    Chao Deng; Qi Peng; Fuping Song; Didier Lereclus

    2014-01-01

    Bacillus thuringiensis differs from the closely related Bacillus cereus group species by its ability to produce crystalline inclusions. The production of these crystals mainly results from the expression of the cry genes, from the stability of their transcripts and from the synthesis, accumulation and crystallization of large amounts of insecticidal Cry proteins. This process normally coincides with sporulation and is regulated by various factors operating at the transcriptional, post-transcr...

  11. Adrenergic regulation of clock gene expression in mouse liver

    OpenAIRE

    Terazono, Hideyuki; Mutoh, Tatsushi; Yamaguchi, Shun; Kobayashi, Masaki; Akiyama, Masashi; Udo, Rhyuta; Ohdo, Shigehiro; Okamura, Hitoshi; Shibata, Shigenobu

    2003-01-01

    A main oscillator in the suprachiasmatic nucleus (SCN) conveys circadian information to the peripheral clock systems for the regulation of fundamental physiological functions. Although polysynaptic autonomic neural pathways between the SCN and the liver were observed in rats, whether activation of the sympathetic nervous system entrains clock gene expression in the liver has yet to be understood. To assess sympathetic innervation from the SCN to liver tissue, we investigated whether inj...

  12. The role of master regulators in gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Enrique Hernández Lemus

    2015-05-01

    Full Text Available Gene regulatory networks present a wide variety of dynamical responses to intrinsic and extrinsic perturbations. Arguably, one of the most important of such coordinated responses is the one of amplification cascades, in which activation of a few key-responsive transcription factors (termed master regulators, MRs lead to a large series of transcriptional activation events. This is so since master regulators are transcription factors controlling the expression of other transcription factor molecules and so on. MRs hold a central position related to transcriptional dynamics and control of gene regulatory networks and are often involved in complex feedback and feedforward loops inducing non-trivial dynamics. Recent studies have pointed out to the myocyte enhancing factor 2C (MEF2C, also known as MADS box transcription enhancer factor 2, polypeptide C as being one of such master regulators involved in the pathogenesis of primary breast cancer. In this work, we perform an integrative genomic analysis of the transcriptional regulation activity of MEF2C and its target genes to evaluate to what extent are these molecules inducing collective responses leading to gene expression deregulation and carcinogenesis. We also analyzed a number of induced dynamic responses, in particular those associated with transcriptional bursts, and nonlinear cascading to evaluate the influence they may have in malignant phenotypes and cancer. Received: 20 Novembre 2014, Accepted: 24 June 2015; Edited by: C. A. Condat, G. J. Sibona; DOI: http://dx.doi.org/10.4279/PIP.070011 Cite as: E Hernández-Lemus, K Baca-López, R Lemus, R García-Herrera, Papers in Physics 7, 070011 (2015

  13. [Insect antimicrobial peptides: structures, properties and gene regulation].

    Science.gov (United States)

    Wang, Yi-Peng; Lai, Ren

    2010-02-01

    Insect antimicrobial peptides (AMPs) are an important group of insect innate immunity effectors. Insect AMPs are cationic and contain less than 100 amino acid residues. According to structure, insect AMPs can be divided into a limited number of families. The diverse antimicrobial spectrum of insect AMPs may indicate different modes of action. Research on the model organism Drosophila indicate that insect AMPs gene regulation involves multiple signaling pathways and a large number of signaling molecules.

  14. Tools for regulated gene expression in the chloroplast of Chlamydomonas.

    Science.gov (United States)

    Rochaix, Jean-David; Surzycki, Raymond; Ramundo, Silvia

    2014-01-01

    The green unicellular alga Chlamydomonas reinhardtii has emerged as a very attractive model system for chloroplast genetic engineering. Algae can be transformed readily at the chloroplast level through bombardment of cells with a gene gun, and transformants can be selected using antibiotic resistance or phototrophic growth. An inducible chloroplast gene expression system could be very useful for several reasons. First, it could be used to elucidate the function of essential chloroplast genes required for cell growth and survival. Second, it could be very helpful for expressing proteins which are toxic to the algal cells. Third, it would allow for the reversible depletion of photosynthetic complexes thus making it possible to study their biogenesis in a controlled fashion. Fourth, it opens promising possibilities for hydrogen production in Chlamydomonas. Here we describe an inducible/repressible chloroplast gene expression system in Chlamydomonas in which the copper-regulated Cyc6 promoter drives the expression of the nuclear Nac2 gene encoding a protein which is targeted to the chloroplast where it acts specifically on the chloroplast psbD 5'-untranslated region and is required for the stable accumulation of the psbD mRNA and photosystem II. The system can be used for any chloroplast gene or transgene by placing it under the control of the psbD 5'-untranslated region. PMID:24599871

  15. Reconstructing a Network of Stress-Response Regulators via Dynamic System Modeling of Gene Regulation

    Directory of Open Access Journals (Sweden)

    Wei-Sheng Wu

    2008-01-01

    Full Text Available Unicellular organisms such as yeasts have evolved mechanisms to respond to environmental stresses by rapidly reorganizing the gene expression program. Although many stress-response genes in yeast have been discovered by DNA microarrays, the stress-response transcription factors (TFs that regulate these stress-response genes remain to be investigated. In this study, we use a dynamic system model of gene regulation to describe the mechanism of how TFs may control a gene’s expression. Then, based on the dynamic system model, we develop the Stress Regulator Identification Algorithm (SRIA to identify stress-response TFs for six kinds of stresses. We identified some general stress-response TFs that respond to various stresses and some specific stress-response TFs that respond to one specifi c stress. The biological significance of our findings is validated by the literature. We found that a small number of TFs is probably suffi cient to control a wide variety of expression patterns in yeast under different stresses. Two implications can be inferred from this observation. First, the response mechanisms to different stresses may have a bow-tie structure. Second, there may be regulatory cross-talks among different stress responses. In conclusion, this study proposes a network of stress-response regulators and the details of their actions.

  16. Defining human insulin-like growth factor I gene regulation.

    Science.gov (United States)

    Mukherjee, Aditi; Alzhanov, Damir; Rotwein, Peter

    2016-08-01

    Growth hormone (GH) plays an essential role in controlling somatic growth and in regulating multiple physiological processes in humans and other species. Insulin-like growth factor I (IGF-I), a conserved, secreted 70-amino acid peptide, is a critical mediator of many of the biological effects of GH. Previous studies have demonstrated that GH rapidly and potently promotes IGF-I gene expression in rodents and in some other mammals through the transcription factor STAT5b, leading to accumulation of IGF-I mRNAs and production of IGF-I. Despite this progress, very little is known about how GH or other trophic factors control human IGF1 gene expression, in large part because of the absence of any cellular model systems that robustly express IGF-I. Here, we have addressed mechanisms of regulation of human IGF-I by GH after generating cells in which the IGF1 chromosomal locus has been incorporated into a mouse cell line. Using this model, we found that physiological levels of GH rapidly stimulate human IGF1 gene transcription and identify several potential transcriptional enhancers in chromatin that bind STAT5b in a GH-regulated way. Each of the putative enhancers also activates a human IGF1 gene promoter in reconstitution experiments in the presence of the GH receptor, STAT5b, and GH. Thus we have developed a novel experimental platform that now may be used to determine how human IGF1 gene expression is controlled under different physiological and pathological conditions. PMID:27406741

  17. Androgens increase lws opsin expression and red sensitivity in male three-spined sticklebacks.

    Directory of Open Access Journals (Sweden)

    Yi Ta Shao

    Full Text Available Optomotor studies have shown that three-spined sticklebacks (Gasterosteus aculeatus are more sensitive to red during summer than winter, which may be related to the need to detect the red breeding colour of males. This study aimed to determine whether this change of red light sensitivity is specifically related to reproductive physiology. The mRNA levels of opsin genes were examined in the retinae of sexually mature and immature fish, as well as in sham-operated males, castrated control males, or castrated males implanted with androgen 11-ketoandrostenedione (11 KA, maintained under stimulatory (L16:D8 or inhibitory (L8:D16 photoperiods. In both sexes, red-sensitive opsin gene (lws mRNA levels were higher in sexually mature than in immature fish. Under L16:D8, lws mRNA levels were higher in intact than in castrated males, and were up-regulated by 11 KA treatment in castrated males. Moreover, electroretinogram data confirmed that sexual maturation resulted in higher relative red spectral sensitivity. Mature males under L16:D8 were more sensitive to red light than males under L8:D16. Red light sensitivity under L16:D8 was diminished by castration, but increased by 11 KA treatment. Thus, in sexually mature male sticklebacks, androgen is a key factor in enhancing sensitivity to red light via regulation of opsin gene expression. This is the first study to demonstrate that sex hormones can regulate spectral vision sensitivity.

  18. Alternative RNA Structure-Coupled Gene Regulations in Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Feng-Chi Chen

    2014-12-01

    Full Text Available Alternative RNA structures (ARSs, or alternative transcript isoforms, are critical for regulating cellular phenotypes in humans. In addition to generating functionally diverse protein isoforms from a single gene, ARS can alter the sequence contents of 5'/3' untranslated regions (UTRs and intronic regions, thus also affecting the regulatory effects of these regions. ARS may introduce premature stop codon(s into a transcript, and render the transcript susceptible to nonsense-mediated decay, which in turn can influence the overall gene expression level. Meanwhile, ARS can regulate the presence/absence of upstream open reading frames and microRNA targeting sites in 5'UTRs and 3'UTRs, respectively, thus affecting translational efficiencies and protein expression levels. Furthermore, since ARS may alter exon-intron structures, it can influence the biogenesis of intronic microRNAs and indirectly affect the expression of the target genes of these microRNAs. The connections between ARS and multiple regulatory mechanisms underline the importance of ARS in determining cell fate. Accumulating evidence indicates that ARS-coupled regulations play important roles in tumorigenesis. Here I will review our current knowledge in this field, and discuss potential future directions.

  19. Inducible gene expression and environmentally regulated genes in lactic acid bacteria.

    Science.gov (United States)

    Kok, J

    1996-10-01

    Relatively recently, a number of genes and operons have been identified in lactic acid bacteria that are inducible and respond to environmental factors. Some of these genes/operons had been isolated and analysed because of their importance in the fermentation industry and, consequently, their transcription was studied and found to be regulatable. Examples are the lactose operon, the operon for nisin production, and genes in the proteolytic pathway of Lactococcus lactis, as well as xylose metabolism in Lactobacillus pentosus. Some other operons were specifically targetted with the aim to compare their mode of regulation with known regulatory mechanisms in other well-studied bacteria. These studies, dealing with the biosynthesis of histidine, tryptophan, and of the branched chain amino acids in L. lactis, have given new insights in gene regulation and in the occurrence of auxotrophy in these bacteria. Also, nucleotide sequence analyses of a number of lactococcal bacteriophages was recently initiated to, among other things, specifically learn more about regulation of the phage life cycle. Yet another approach in the analysis of regulated genes is the 'random' selection of genetic elements that respond to environmental stimuli and the first of such sequences from lactic acid bacteria have been identified and characterized. The potential of these regulatory elements in fundamental research and practical (industrial) applications will be discussed.

  20. Methods and compositions for regulating gene expression in plant cells

    Science.gov (United States)

    Beachy, Roger N. (Inventor); Luis, Maria Isabel Ordiz (Inventor); Dai, Shunhong (Inventor)

    2010-01-01

    Novel chimeric plant promoter sequences are provided, together with plant gene expression cassettes comprising such sequences. In certain preferred embodiments, the chimeric plant promoters comprise the BoxII cis element and/or derivatives thereof. In addition, novel transcription factors are provided, together with nucleic acid sequences encoding such transcription factors and plant gene expression cassettes comprising such nucleic acid sequences. In certain preferred embodiments, the novel transcription factors comprise the acidic domain, or fragments thereof, of the RF2a transcription factor. Methods for using the chimeric plant promoter sequences and novel transcription factors in regulating the expression of at least one gene of interest are provided, together with transgenic plants comprising such chimeric plant promoter sequences and novel transcription factors.

  1. Regulation of Rubisco gene expression in C4 plants.

    Science.gov (United States)

    Berry, James O; Mure, Christopher M; Yerramsetty, Pradeep

    2016-06-01

    Ribulose-1,5-bisphosphate-carboxylase/oxygenase (Rubisco) incorporates inorganic carbon into an organic form, making this chloroplastic enzyme one of the most essential factors for all life on earth. Despite its central role in photosynthesis, research into regulation of the chloroplast rbcL and nuclear RbcS genes that encode this enzyme has lagged behind other plant gene systems. A major characteristic of kranz-type C4 plants is the accumulation of Rubisco only within chloroplasts of internalized bundle sheath cells that surround the leaf vascular centers. In plants that utilize the less common single cell C4 system, Rubisco accumulates only within one type of dimorphic chloroplasts localized to a specific region of leaf chlorenchyma cells. Understanding regulatory processes that restrict Rubisco gene expression to only one cell type or chloroplast type is a major focus of C4 research. Regulatory steps may include transcriptional, post-transcriptional, and post-translational processes. PMID:27026038

  2. A satellite cell-specific knockout of the androgen receptor reveals myostatin as a direct androgen target in skeletal muscle.

    Science.gov (United States)

    Dubois, Vanessa; Laurent, Michaël R; Sinnesael, Mieke; Cielen, Nele; Helsen, Christine; Clinckemalie, Liesbeth; Spans, Lien; Gayan-Ramirez, Ghislaine; Deldicque, Louise; Hespel, Peter; Carmeliet, Geert; Vanderschueren, Dirk; Claessens, Frank

    2014-07-01

    Androgens have well-established anabolic actions on skeletal muscle, although the direct effects of the androgen receptor (AR) in muscle remain unclear. We generated satellite cell-specific AR-knockout (satARKO) mice in which the AR is selectively ablated in satellite cells, the muscle precursor cells. Total-limb maximal grip strength is decreased by 7% in satARKO mice, with soleus muscles containing ∼10% more type I fibers and 10% less type IIa fibers than the corresponding control littermates. The weight of the perineal levator ani muscle is markedly reduced (-52%). Thus, muscle AR is involved in fiber-type distribution and force production of the limb muscles, while it is a major determinant of the perineal muscle mass. Surprisingly, myostatin (Mstn), a strong inhibitor of skeletal muscle growth, is one of the most androgen-responsive genes (6-fold reduction in satARKO) through direct transcription activation by the AR. Consequently, muscle hypertrophy in response to androgens is augmented in Mstn-knockout mice. Our finding that androgens induce Mstn signaling to restrain their own anabolic actions has implications for the treatment of muscle wasting disorders.-Dubois, V., Laurent, M. R., Sinnesael, M., Cielen, N., Helsen, C., Clinckemalie, L., Spans, L., Gayan-Ramirez, G., Deldicque, L., Hespel, P., Carmeliet, G., Vanderschueren, D., and Claessens, F. A satellite cell-specific knockout of the androgen receptor reveals myostatin as a direct androgen target in skeletal muscle.

  3. Anti-androgen resistance in prostate cancer cells chronically induced by interleukin-1β

    OpenAIRE

    Staverosky, Julia A.; Zhu, Xin-Hua; Ha, Susan; Logan, Susan K.

    2013-01-01

    Chronic inflammation has been linked to cancer initiation and progression in a variety of tissues, yet the impact of acute and chronic inflammatory signaling on androgen receptor function has not been widely studied. In this report, we examine the impact of the inflammation-linked cytokine, interleukin-1β on androgen receptor function in prostate cancer cells. We demonstrate that acute interleukin-1β treatment inhibits the transcription of the androgen receptor gene itself, resulting in the r...

  4. Protein-protein Interactions of the Androgen Receptor in Living Cells

    OpenAIRE

    Royen, Martin

    2008-01-01

    markdownabstract__Abstract__ Natural androgens, testosterone (T) and its derivative dihydrotestosterone (DHT) play a crucial role in the development and maintenance of the male phenotype. Androgens are steroids that exert their function via the androgen receptor (AR), a ligand dependent transcription factor. The human AR gene, is located on the X chromosome, and contains 8 exons, coding for a 110 kDa, 919 amino acids protein (Brinkmann et al., 1989; Hughes and Deeb, 2006). In the classical mo...

  5. Regulators of gene expression in Enteric Neural Crest Cells are putative Hirschsprung disease genes.

    Science.gov (United States)

    Schriemer, Duco; Sribudiani, Yunia; IJpma, Arne; Natarajan, Dipa; MacKenzie, Katherine C; Metzger, Marco; Binder, Ellen; Burns, Alan J; Thapar, Nikhil; Hofstra, Robert M W; Eggen, Bart J L

    2016-08-01

    The enteric nervous system (ENS) is required for peristalsis of the gut and is derived from Enteric Neural Crest Cells (ENCCs). During ENS development, the RET receptor tyrosine kinase plays a critical role in the proliferation and survival of ENCCs, their migration along the developing gut, and differentiation into enteric neurons. Mutations in RET and its ligand GDNF cause Hirschsprung disease (HSCR), a complex genetic disorder in which ENCCs fail to colonize variable lengths of the distal bowel. To identify key regulators of ENCCs and the pathways underlying RET signaling, gene expression profiles of untreated and GDNF-treated ENCCs from E14.5 mouse embryos were generated. ENCCs express genes that are involved in both early and late neuronal development, whereas GDNF treatment induced neuronal maturation. Predicted regulators of gene expression in ENCCs include the known HSCR genes Ret and Sox10, as well as Bdnf, App and Mapk10. The regulatory overlap and functional interactions between these genes were used to construct a regulatory network that is underlying ENS development and connects to known HSCR genes. In addition, the adenosine receptor A2a (Adora2a) and neuropeptide Y receptor Y2 (Npy2r) were identified as possible regulators of terminal neuronal differentiation in GDNF-treated ENCCs. The human orthologue of Npy2r maps to the HSCR susceptibility locus 4q31.3-q32.3, suggesting a role for NPY2R both in ENS development and in HSCR. PMID:27266404

  6. MTA3 regulates CGB5 and Snail genes in trophoblast

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI 49503 (United States); Miyazaki, Jun [Department of Obstetrics and Gynecology, Fujita Health University School of Medicine, Fujita Health University, Toyoake (Japan); Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake (Japan); Nishizawa, Haruki [Department of Obstetrics and Gynecology, Fujita Health University School of Medicine, Fujita Health University, Toyoake (Japan); Kurahashi, Hiroki [Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake (Japan); Leach, Richard, E-mail: Richard.Leach@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI 49503 (United States); Department of Obstetrics, Gynecology and Women’s Health, Spectrum Health Medical Group, Grand Rapids, MI 49503 (United States); Wang, Kai, E-mail: Kai.Wang@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI 49503 (United States)

    2013-04-19

    Highlights: •Impaired MTA3, raised CGB5 and Snail expression are associated with preeclampsia. •Knock-down of MTA3 causes up-regulation of CGB5 and Snail genes in BeWo cells. •MTA3 occupies CGB5 and Snail gene promoters in BeWo cells. -- Abstract: Secreted by the placental trophoblast, human chorionic gonadotropin (hCG) is an important hormone during pregnancy and is required for the maintenance of pregnancy. Previous studies have shown that dys-regulation of hCG expression is associated with preeclampsia. However, the exact relationship between altered hCG levels and development of preeclampsia is unknown. Metastasis associated protein 3 (MTA3), a chromatin remodeling protein, is abundantly expressed in the placental trophoblasts, but its function is unknown. In breast cancer, MTA3 has been shown to repress the expression of Snail and cell migration. However, whether MTA3 acts similarly in the trophoblast has not been investigated. In the present study, we examined the role of MTA3 in regulating the hCG β-subunit gene (gene name: CGB5) and Snail expression in the trophoblast cell line, BeWo, as well as its relevance to the high hCG expression levels seen in preeclampsia. First, we investigated MTA3 expression in preeclamptic placenta as compared to normal control placenta via gene expression microarray and qRT-PCR and found that MTA3 was significantly down-regulated, whereas both CGB5 and Snail were up-regulated in preeclamptic placenta. Secondly, we knocked down MTA3 gene in trophoblast cell line BeWo and found Snail and hCG were both up-regulated, suggesting that MTA3 represses Snail and hCG gene expression in trophoblasts. Next, we cloned the CGB5 and Snail promoters into the pGL3-basic vector individually and found that silencing of MTA3 by siRNA resulted in an increase of both CGB5 and Snail promoter activities. To confirm that this MTA3 inhibition is a direct effect, we performed a chromatin immune-precipitation (ChIP) assay and found that MTA3

  7. MTA3 regulates CGB5 and Snail genes in trophoblast

    International Nuclear Information System (INIS)

    Highlights: •Impaired MTA3, raised CGB5 and Snail expression are associated with preeclampsia. •Knock-down of MTA3 causes up-regulation of CGB5 and Snail genes in BeWo cells. •MTA3 occupies CGB5 and Snail gene promoters in BeWo cells. -- Abstract: Secreted by the placental trophoblast, human chorionic gonadotropin (hCG) is an important hormone during pregnancy and is required for the maintenance of pregnancy. Previous studies have shown that dys-regulation of hCG expression is associated with preeclampsia. However, the exact relationship between altered hCG levels and development of preeclampsia is unknown. Metastasis associated protein 3 (MTA3), a chromatin remodeling protein, is abundantly expressed in the placental trophoblasts, but its function is unknown. In breast cancer, MTA3 has been shown to repress the expression of Snail and cell migration. However, whether MTA3 acts similarly in the trophoblast has not been investigated. In the present study, we examined the role of MTA3 in regulating the hCG β-subunit gene (gene name: CGB5) and Snail expression in the trophoblast cell line, BeWo, as well as its relevance to the high hCG expression levels seen in preeclampsia. First, we investigated MTA3 expression in preeclamptic placenta as compared to normal control placenta via gene expression microarray and qRT-PCR and found that MTA3 was significantly down-regulated, whereas both CGB5 and Snail were up-regulated in preeclamptic placenta. Secondly, we knocked down MTA3 gene in trophoblast cell line BeWo and found Snail and hCG were both up-regulated, suggesting that MTA3 represses Snail and hCG gene expression in trophoblasts. Next, we cloned the CGB5 and Snail promoters into the pGL3-basic vector individually and found that silencing of MTA3 by siRNA resulted in an increase of both CGB5 and Snail promoter activities. To confirm that this MTA3 inhibition is a direct effect, we performed a chromatin immune-precipitation (ChIP) assay and found that MTA3

  8. An optimized, chemically regulated gene expression system for Chlamydomonas.

    Directory of Open Access Journals (Sweden)

    Paola Ferrante

    Full Text Available BACKGROUND: Chlamydomonas reinhardtii is a model system for algal and cell biology and is used for biotechnological applications, such as molecular farming or biological hydrogen production. The Chlamydomonas metal-responsive CYC6 promoter is repressed by copper and induced by nickel ions. However, induction by nickel is weak in some strains, poorly reversible by chelating agents like EDTA, and causes, at high concentrations, toxicity side effects on Chlamydomonas growth. Removal of these bottlenecks will encourage the wide use of this promoter as a chemically regulated gene expression system. METHODOLOGY: Using a codon-optimized Renilla luciferase as a reporter gene, we explored several strategies to improve the strength and reversibility of CYC6 promoter induction. Use of the first intron of the RBCS2 gene or of a modified TAP medium increases the strength of CYC6 induction up to 20-fold. In the modified medium, induction is also obtained after addition of specific copper chelators, like TETA. At low concentrations (up to 10 microM TETA is a more efficient inducer than Ni, which becomes a very efficient inducer at higher concentrations (50 microM. Neither TETA nor Ni show toxicity effects at the concentrations used. Unlike induction by Ni, induction by TETA is completely reversible by micromolar copper concentrations, thus resulting in a transient "wave" in luciferase activity, which can be repeated in subsequent growth cycles. CONCLUSIONS: We have worked out a chemically regulated gene expression system that can be finely tuned to produce temporally controlled "waves" in gene expression. The use of cassettes containing the CYC6 promoter, and of modified growth media, is a reliable and economically sustainable system for the temporally controlled expression of foreign genes in Chlamydomonas.

  9. Decorin gene expression and its regulation in human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Velez-DelValle, Cristina; Marsch-Moreno, Meytha; Castro-Munozledo, Federico [Department of Cell Biology, Centro de Investigacion y de Estudios Avanzados del IPN, Apdo. Postal 14-740, Mexico D.F. 07000 (Mexico); Kuri-Harcuch, Walid, E-mail: walidkuri@gmail.com [Department of Cell Biology, Centro de Investigacion y de Estudios Avanzados del IPN, Apdo. Postal 14-740, Mexico D.F. 07000 (Mexico)

    2011-07-22

    Highlights: {yields} We showed that cultured human diploid epidermal keratinocytes express and synthesize decorin. {yields} Decorin is found intracytoplasmic in suprabasal cells of cultures and in human epidermis. {yields} Decorin mRNA expression in cHEK is regulated by pro-inflammatory and proliferative cytokines. {yields} Decorin immunostaining of psoriatic lesions showed a lower intensity and altered intracytoplasmic arrangements. -- Abstract: In various cell types, including cancer cells, decorin is involved in regulation of cell attachment, migration and proliferation. In skin, decorin is seen in dermis, but not in keratinocytes. We show that decorin gene (DCN) is expressed in the cultured keratinocytes, and the protein is found in the cytoplasm of differentiating keratinocytes and in suprabasal layers of human epidermis. RT-PCR experiments showed that DCN expression is regulated by pro-inflammatory and proliferative cytokines. Our data suggest that decorin should play a significant role in keratinocyte terminal differentiation, cutaneous homeostasis and dermatological diseases.

  10. Detection and sequence analysis of accessory gene regulator genes of Staphylococcus pseudintermedius isolates

    Directory of Open Access Journals (Sweden)

    M. Ananda Chitra

    2015-07-01

    Full Text Available Background: Staphylococcus pseudintermedius (SP is the major pathogenic species of dogs involved in a wide variety of skin and soft tissue infections. The accessory gene regulator (agr locus of Staphylococcus aureus has been extensively studied, and it influences the expression of many virulence genes. It encodes a two-component signal transduction system that leads to down-regulation of surface proteins and up-regulation of secreted proteins during in vitro growth of S. aureus. The objective of this study was to detect and sequence analyzing the AgrA, B, and D of SP isolated from canine skin infections. Materials and Methods: In this study, we have isolated and identified SP from canine pyoderma and otitis cases by polymerase chain reaction (PCR and confirmed by PCR-restriction fragment length polymorphism. Primers for SP agrA and agrBD genes were designed using online primer designing software and BLAST searched for its specificity. Amplification of the agr genes was carried out for 53 isolates of SP by PCR and sequencing of agrA, B, and D were carried out for five isolates and analyzed using DNAstar and Mega5.2 software. Results: A total of 53 (59% SP isolates were obtained from 90 samples. 15 isolates (28% were confirmed to be methicillinresistant SP (MRSP with the detection of the mecA gene. Accessory gene regulator A, B, and D genes were detected in all the SP isolates. Complete nucleotide sequences of the above three genes for five isolates were submitted to GenBank, and their accession numbers are from KJ133557 to KJ133571. AgrA amino acid sequence analysis showed that it is mainly made of alpha-helices and is hydrophilic in nature. AgrB is a transmembrane protein, and AgrD encodes the precursor of the autoinducing peptide (AIP. Sequencing of the agrD gene revealed that the 5 canine SP strains tested could be divided into three Agr specificity groups (RIPTSTGFF, KIPTSTGFF, and RIPISTGFF based on the putative AIP produced by each strain

  11. Sugar regulation of harvest-related genes in asparagus.

    Science.gov (United States)

    Davies, K M; Seelye, J F; Irving, D E; Borst, W M; Hurst, P L; King, G A

    1996-07-01

    The signals controlling the abundance of transcripts up-regulated (pTIP27, pTIP31, and pTIP32) or down-regulated (pTIP20 and pTIP21) after harvest in asparagus (Asparagus officinalis L.) spears were examined. pTIP27 and pTIP31 are known to encode asparagine synthetase (AS) and a beta-galactosidase (beta-gal) homolog, respectively. The nucleotide sequences of pTIP20, pTIP21, and pTIP32 were determined, and they encode histone 3, histone 2B, and an unknown product, respectively. Changes in respiration, soluble sugars, and abundance of the five mRNAs were similar in the tips stored as 30-mm lengths or as part of 180-mm spears. We previously hypothesized that sugars may regulate the level of AS transcripts in asparagus tissue. Asparagus cell cultures were used to test the role of sugar status may regulate the level of AS transcripts in asparagus tissue. Asparagus cell cultures were used to test the role of sugar status in regulating gene expression. Transcript abundance for AS, beta-gal, and pTIP32 was low in cells in sugar-containing medium but increased within 12 h after transferring cells to a sugar-free medium. Histone 3 and histone 2B transcripts were, in general, abundant in cells on sugar-containing medium but declined in abundance when transferred to sugar-free medium. When cells were returned to sugar-containing medium the abundance of transcripts for histone 3 and histone 2B increased, whereas that for AS, beta-gal, and pTIP32 decreased. Soluble sugar levels are known to decline rapidly in the tips of harvested spears. Metabolic regulation by sugar status may have a major influence on gene expression in asparagus spears and other tissue after harvest. PMID:8754687

  12. Development and exploitation of a novel mutant androgen receptor modelling strategy to identify new targets for advanced prostate cancer therapy.

    Science.gov (United States)

    O'Neill, Daniel; Jones, Dominic; Wade, Mark; Grey, James; Nakjang, Sirintra; Guo, Wenrui; Cork, David; Davies, Barry R; Wedge, Steve R; Robson, Craig N; Gaughan, Luke

    2015-09-22

    The persistence of androgen receptor (AR) signalling in castrate-resistant prostate cancer (CRPC) highlights the unmet clinical need for the development of more effective AR targeting therapies. A key mechanism of therapy-resistance is by selection of AR mutations that convert anti-androgens to agonists enabling the retention of androgenic signalling in CRPC. To improve our understanding of these receptors in advanced disease we developed a physiologically-relevant model to analyse the global functionality of AR mutants in CRPC. Using the bicalutamide-activated AR(W741L/C) mutation as proof of concept, we demonstrate that this mutant confers an androgenic-like signalling programme and growth promoting phenotype in the presence of bicalutamide. Transcriptomic profiling of AR(W741L) highlighted key genes markedly up-regulated by the mutant receptor, including TIPARP, RASD1 and SGK1. Importantly, SGK1 expression was found to be highly expressed in the KUCaP xenograft model and a CRPC patient biopsy sample both of which express the bicalutamide-activated receptor mutant. Using an SGK1 inhibitor, AR(W741L) transcriptional and growth promoting activity was reduced indicating that exploiting functional distinctions between receptor isoforms in our model may provide new and effective therapies for CRPC patients.

  13. Androgen receptor and miRNA-126* axis controls follicle-stimulating hormone receptor expression in porcine ovarian granulosa cells.

    Science.gov (United States)

    Du, Xing; Li, Qiqi; Pan, Zengxiang; Li, Qifa

    2016-08-01

    Androgen, which acts via the androgen receptor (AR), plays crucial roles in mammalian ovarian function. Recent studies showed that androgen/AR signaling regulates follicle-stimulating hormone receptor (FSHR) expression in follicles; however, the detailed mechanism underlying this regulation remained unknown. Here, we demonstrate that AR and miR-126* cooperate to inhibit FSHR expression and function in pig follicular granulosa cells (pGCs). In pGCs, overexpression of AR decreased, whereas knockdown increased, FSHR mRNA and protein expression; however, neither manipulation affected FSHR promoter activity. Using a dual-luciferase reporter assay, we found that the FSHR gene is a direct target of miR-126*, which inhibits FSHR expression and increases the rate of AR-induced apoptosis in pGCs. Collectively, our data show for the first time that the AR/miR-126* axis exerts synergetic effects in the regulation of FSHR expression and apoptosis in pGCs. Our findings thus define a novel pathway, AR/miR-126*/FSHR, that regulates mammalian GC functions. PMID:27222597

  14. BTG2 is an LXXLL-dependent co-repressor for androgen receptor transcriptional activity

    International Nuclear Information System (INIS)

    Research highlights: → BTG2 associates with AR, androgen causes an increase of the interaction. → BTG2 as a co-repressor inhibits the AR-mediated transcription activity. → BTG2 inhibits the transcription activity and expression of PSA. → An intact 92LxxLL96 motif is essential and necessary for these activities of BTG2, while the 20LxxLL24 motif is not required. → Ectopic expression of BTG2 reduces proliferation of prostate cancer cells. -- Abstract: The tumor suppressor gene, BTG2 has been down-regulated in prostate cancer and the ectopic expression of this gene has been shown to inhibit prostate cancer cell growth. Sequence analysis revealed that the BTG2 protein contains two leucine-rich motifs (20LxxLL24 and 92LxxLL96), which are usually found in nuclear receptor co-factors. Based on this, we postulated that there will be an association between BTG2 and AR. In this study, we discovered that BTG2 directly bound to the androgen receptor (AR) in the absence of 5α-dihydrotestosterone (DHT), and in the presence of the androgen, this interaction was increased. BTG2 bearing the mutant 20LxxLL24 motif bound to AR equally efficient as the wild-type BTG2, while BTG2 bearing the mutant 92LxxLL96 motif failed to interact with AR. Functional studies indicated that ectopic expression of BTG2 caused a significant inhibition of AR-mediated transcriptional activity and a decreased growth of prostate cancer cells. Androgen-induced promoter activation and expression of prostate-specific antigen (PSA) are significantly attenuated by BTG2. The intact 92LxxLL96 motif is required for these activities. These findings, for the first time, demonstrate that BTG2 complexes with AR via an LxxLL-dependent mechanism and may play a role in prostate cancer via modulating the AR signaling pathway.

  15. Phospho-kinase profile of triple negative breast cancer and androgen receptor signaling

    International Nuclear Information System (INIS)

    The androgen receptor (AR) plays a central role in the oncogenesis of different tumors, as is the case in prostate cancer. In triple negative breast cancer (TNBC) a gene expression classification has described different subgroups including a luminal androgen subtype. The AR can be controlled by several mechanisms like the activation of membrane tyrosine kinases and downstream signaling pathways. However little is known in TNBC about how the AR is modulated by these mechanisms and the potential therapeutic strategists to inhibit its expression. We used human samples to evaluate the expression of AR by western-blot and phospho-proteomic kinase arrays that recognize membrane tyrosine kinase receptors and downstream mediators. Western-blots in human cell lines were carried out to analyze the expression and activation of individual proteins. Drugs against these kinases in different conditions were used to measure the expression of the androgen receptor. PCR experiments were performed to assess changes in the AR gene after therapeutic modulation of these pathways. AR is present in a subset of TNBC and its expression correlates with activated membrane receptor kinases-EGFR and PDGFRβ in human samples and cell lines. Inhibition of the PI3K/mTOR pathway in TNBC cell lines decreased notably the expression of the AR. Concomitant administration of the anti-androgen bicalutamide with the EGFR, PDGFRβ and Erk1/2 inhibitors, decreased the amount of AR compared to each agent given alone, and had an additive anti-proliferative effect. Administration of dihydrotestosterone augmented the expression of AR that was not modified by the inhibition of the PI3K/mTOR or Erk1/2 pathways. AR expression was posttranscriptionally regulated by PI3K or Erk1/2 inhibition. Our results describe the expression of the AR in TNBC as a druggable target and further suggest the combination of bicalutamide with inhibitors of EGFR, PDGFRβ or Erk1/2 for future development

  16. Normal phenotype in conditional androgen receptor (AR) exon 3-floxed neomycin-negative male mice.

    Science.gov (United States)

    Rana, Kesha; Clarke, Michele V; Zajac, Jeffrey D; Davey, Rachel A; MacLean, Helen E

    2014-01-01

    Androgens (testosterone and dihydrotestosterone) acting via the androgen receptor (AR) are required for male sexual differentiation, and also regulate the development of many other tissues including muscle, fat and bone. We previously generated an AR(lox) mouse line with exon 3 of the AR gene targeted by loxP sites. The deletion of exon 3 is in-frame, so only the DNA binding-dependent actions of the AR are deleted, but non-DNA binding-dependent actions are retained. This line also contained an antibiotic resistance selection cassette, neomycin (neo) in intron 3, which was also flanked by loxP sites. Hemizygous AR(lox) male mice demonstrated a phenotype of hyperandrogenization, with increased mass of androgen-dependent tissues. We hypothesized that this hyperandrogenization was likely to be due to the presence of the neo cassette. In this study, we have generated an AR(lox) neo-negative mouse line, using the EIIa-cre deleter mouse line to remove the neo cassette. Hemizygous AR(lox) neo-negative male mice have a normal phenotype, with normal body mass and normal mass of androgen-dependent tissues including the testis, seminal vesicles, kidney, spleen, heart and retroperitoneal fat. This neo-negative exon 3-targeted mouse line is the only floxed AR mouse line available to study the DNA binding-dependent actions of the AR in a tissue-specific manner, and is suitable for investigation in all tissues. This study demonstrates the importance of removing the selection cassette, which can potentially alter the phenotype of floxed mouse lines even in the absence of detectable effects on target gene expression.

  17. Genetic analysis of a family with complete androgen insensitivity syndrome

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Kota

    2013-01-01

    Full Text Available Androgen insensitivity causes impaired embryonic sex differentiation leading to developmental failure of normal male external genitalia in 46 XY genetic men. It results from diminished or absent biological actions of androgens, which is mediated by the androgen receptor (AR in both the embryo and secondary sexual development. Mutations in the AR located on the X chromosome are responsible for the disease. Almost 70% of affected individuals inherit the mutation from their carrier mother. We hereby report a 10-year-old girl with all the characteristics of complete androgen insensitivity syndrome (CAIS. Similar scenario was observed in 3 maternal aunts, Sequencing of the AR gene in all the family members revealed C 2754 to T transition in exon 6. It was concluded that the C 2754 to T transition rendered the AR incapable of both ligand-binding and activating the transcription and was the cause of CAIS in the patient.

  18. Neonatal androgenization exacerbates alcohol-induced liver injury in adult rats, an effect abrogated by estrogen.

    Directory of Open Access Journals (Sweden)

    Whitney M Ellefson

    Full Text Available Alcoholic liver disease (ALD affects millions of people worldwide and is a major cause of morbidity and mortality. However, fewer than 10% of heavy drinkers progress to later stages of injury, suggesting other factors in ALD development, including environmental exposures and genetics. Females display greater susceptibility to the early damaging effects of ethanol. Estrogen (E2 and ethanol metabolizing enzymes (cytochrome P450, CYP450 are implicated in sex differences of ALD. Sex steroid hormones are developmentally regulated by the hypothalamic-pituitary-gonadal (HPG axis, which controls sex-specific cycling of gonadal steroid production and expression of hepatic enzymes. The aim of this study was to determine if early postnatal inhibition of adult cyclic E2 alters ethanol metabolizing enzyme expression contributing to the development of ALD in adulthood. An androgenized rat model was used to inhibit cyclic E2 production. Control females (Ctrl, androgenized females (Andro and Andro females with E2 implants were administered either an ethanol or isocalorically-matched control Lieber-DeCarli diet for four weeks and liver injury and CYP450 expression assessed. Androgenization exacerbated the deleterious effects of ethanol demonstrated by increased steatosis, lipid peroxidation, profibrotic gene expression and decreased antioxidant defenses compared to Ctrl. Additionally, CYP2E1 expression was down-regulated in Andro animals on both diets. No change was observed in CYP1A2 protein expression. Further, continuous exogenous administration of E2 to Andro in adulthood attenuated these effects, suggesting that E2 has protective effects in the androgenized animal. Therefore, early postnatal inhibition of cyclic E2 modulates development and progression of ALD in adulthood.

  19. Precise regulation of gene expression dynamics favors complex promoter architectures.

    Directory of Open Access Journals (Sweden)

    Dirk Müller

    2009-01-01

    Full Text Available Promoters process signals through recruitment of transcription factors and RNA polymerase, and dynamic changes in promoter activity constitute a major noise source in gene expression. However, it is barely understood how complex promoter architectures determine key features of promoter dynamics. Here, we employ prototypical promoters of yeast ribosomal protein genes as well as simplified versions thereof to analyze the relations among promoter design, complexity, and function. These promoters combine the action of a general regulatory factor with that of specific transcription factors, a common motif of many eukaryotic promoters. By comprehensively analyzing stationary and dynamic promoter properties, this model-based approach enables us to pinpoint the structural characteristics underlying the observed behavior. Functional tradeoffs impose constraints on the promoter architecture of ribosomal protein genes. We find that a stable scaffold in the natural design results in low transcriptional noise and strong co-regulation of target genes in the presence of gene silencing. This configuration also exhibits superior shut-off properties, and it can serve as a tunable switch in living cells. Model validation with independent experimental data suggests that the models are sufficiently realistic. When combined, our results offer a mechanistic explanation for why specific factors are associated with low protein noise in vivo. Many of these findings hold for a broad range of model parameters and likely apply to other eukaryotic promoters of similar structure.

  20. Drosha regulates gene expression independently of RNA cleavage function

    DEFF Research Database (Denmark)

    Gromak, Natalia; Dienstbier, Martin; Macias, Sara;

    2013-01-01

    Drosha is the main RNase III-like enzyme involved in the process of microRNA (miRNA) biogenesis in the nucleus. Using whole-genome ChIP-on-chip analysis, we demonstrate that, in addition to miRNA sequences, Drosha specifically binds promoter-proximal regions of many human genes in a transcription......-terminal protein-interaction domain, which associates with the RNA-binding protein CBP80 and RNA Polymerase II. Consequently, we uncover a previously unsuspected RNA cleavage-independent function of Drosha in the regulation of human gene expression.......Drosha is the main RNase III-like enzyme involved in the process of microRNA (miRNA) biogenesis in the nucleus. Using whole-genome ChIP-on-chip analysis, we demonstrate that, in addition to miRNA sequences, Drosha specifically binds promoter-proximal regions of many human genes in a transcription......-dependent manner. This binding is not associated with miRNA production or RNA cleavage. Drosha knockdown in HeLa cells downregulated nascent gene transcription, resulting in a reduction of polyadenylated mRNA produced from these gene regions. Furthermore, we show that this function of Drosha is dependent on its N...

  1. Structural Mechanisms of Peptide Recognition and Allosteric Modulation of Gene Regulation by the RRNPP Family of Quorum-Sensing Regulators.

    Science.gov (United States)

    Do, Hackwon; Kumaraswami, Muthiah

    2016-07-17

    The members of RRNPP family of bacterial regulators sense population density-specific secreted oligopeptides and modulate the expression of genes involved in cellular processes, such as sporulation, competence, virulence, biofilm formation, conjugative plasmid transfer and antibiotic resistance. Signaling by RRNPP regulators include several steps: generation and secretion of the signaling oligopeptides, re-internalization of the signaling molecules into the cytoplasm, signal sensing by the cytosolic RRNPP regulators, signal-specific allosteric structural changes in the regulators, and interaction of the regulators with their respective regulatory target and gene regulation. The recently determined structures of the RRNPP regulators provide insight into the mechanistic aspects for several steps in this signaling circuit. In this review, we discuss the structural principles underlying peptide specificity, regulatory target recognition, and ligand-induced allostery in RRNPP regulators and its impact on gene regulation. Despite the conserved tertiary structure of these regulators, structural analyses revealed unexpected diversity in the mechanism of activation and molecular strategies that couple the peptide-induced allostery to gene regulation. Although these structural studies provide a sophisticated understanding of gene regulation by RRNPP regulators, much needs to be learned regarding the target DNA binding by yet-to-be characterized RNPP regulators and the several aspects of signaling by Rgg regulators. PMID:27283781

  2. The regulation of human immunodeficiency virus type-1 gene expression.

    Science.gov (United States)

    Kingsman, S M; Kingsman, A J

    1996-09-15

    Despite 15 years of intensive research we still do not have an effective treatment for AIDS, the disease caused by human immunodeficiency virus (HIV). Recent research is, however, revealing some of the secrets of the replication cycle of this complex retrovirus, and this may lead to the development of novel antiviral compounds. In particular the virus uses strategies for gene expression that seem to be unique in the eukaryotic world. These involve the use of virally encoded regulatory proteins that mediate their effects through interactions with specific viral target sequences present in the messenger RNA rather than in the proviral DNA. If there are no cellular counterparts of these RNA-dependent gene-regulation pathways then they offer excellent targets for the development of antiviral compounds. The viral promoter is also subject to complex regulation by combinations of cellular factors that may be functional in different cell types and at different cell states. Selective interference of specific cellular factors may also provide a route to inhibiting viral replication without disrupting normal cellular functions. The aim of this review is to discuss the regulation of HIV-1 gene expression and, as far as it is possible, to relate the observations to viral pathogenesis. Some areas of research into the regulation of HIV-1 replication have generated controversy and rather than rehearsing this controversy we have imposed our own bias on the field. To redress the balance and to give a broader view of HIV-1 replication and pathogenesis we refer you to a number of excellent reviews [Cullen, B. R. (1992) Microbiol. Rev. 56, 375-394; Levy, J. A. (1993) Microbiol. Rev. 57, 183-394; Antoni, B. A., Stein, S. & Rabson, A. B. (1994) Adv. Virus Res. 43, 53-145; Rosen, C. A. & Fenyoe, E. M. (1995) AIDS (Phila.) 9, S1-S3]. PMID:8856047

  3. Phasevarion mediated epigenetic gene regulation in Helicobacter pylori.

    Science.gov (United States)

    Srikhanta, Yogitha N; Gorrell, Rebecca J; Steen, Jason A; Gawthorne, Jayde A; Kwok, Terry; Grimmond, Sean M; Robins-Browne, Roy M; Jennings, Michael P

    2011-01-01

    Many host-adapted bacterial pathogens contain DNA methyltransferases (mod genes) that are subject to phase-variable expression (high-frequency reversible ON/OFF switching of gene expression). In Haemophilus influenzae and pathogenic Neisseria, the random switching of the modA gene, associated with a phase-variable type III restriction modification (R-M) system, controls expression of a phase-variable regulon of genes (a "phasevarion"), via differential methylation of the genome in the modA ON and OFF states. Phase-variable type III R-M systems are also found in Helicobacter pylori, suggesting that phasevarions may also exist in this key human pathogen. Phylogenetic studies on the phase-variable type III modH gene revealed that there are 17 distinct alleles in H. pylori, which differ only in their DNA recognition domain. One of the most commonly found alleles was modH5 (16% of isolates). Microarray analysis comparing the wild-type P12modH5 ON strain to a P12ΔmodH5 mutant revealed that six genes were either up- or down-regulated, and some were virulence-associated. These included flaA, which encodes a flagella protein important in motility and hopG, an outer membrane protein essential for colonization and associated with gastric cancer. This study provides the first evidence of this epigenetic mechanism of gene expression in H. pylori. Characterisation of H. pylori modH phasevarions to define stable immunological targets will be essential for vaccine development and may also contribute to understanding H. pylori pathogenesis. PMID:22162751

  4. Phasevarion mediated epigenetic gene regulation in Helicobacter pylori.

    Directory of Open Access Journals (Sweden)

    Yogitha N Srikhanta

    Full Text Available Many host-adapted bacterial pathogens contain DNA methyltransferases (mod genes that are subject to phase-variable expression (high-frequency reversible ON/OFF switching of gene expression. In Haemophilus influenzae and pathogenic Neisseria, the random switching of the modA gene, associated with a phase-variable type III restriction modification (R-M system, controls expression of a phase-variable regulon of genes (a "phasevarion", via differential methylation of the genome in the modA ON and OFF states. Phase-variable type III R-M systems are also found in Helicobacter pylori, suggesting that phasevarions may also exist in this key human pathogen. Phylogenetic studies on the phase-variable type III modH gene revealed that there are 17 distinct alleles in H. pylori, which differ only in their DNA recognition domain. One of the most commonly found alleles was modH5 (16% of isolates. Microarray analysis comparing the wild-type P12modH5 ON strain to a P12ΔmodH5 mutant revealed that six genes were either up- or down-regulated, and some were virulence-associated. These included flaA, which encodes a flagella protein important in motility and hopG, an outer membrane protein essential for colonization and associated with gastric cancer. This study provides the first evidence of this epigenetic mechanism of gene expression in H. pylori. Characterisation of H. pylori modH phasevarions to define stable immunological targets will be essential for vaccine development and may also contribute to understanding H. pylori pathogenesis.

  5. A plant gene up-regulated at rust infection sites.

    Science.gov (United States)

    Ayliffe, Michael A; Roberts, James K; Mitchell, Heidi J; Zhang, Ren; Lawrence, Gregory J; Ellis, Jeffrey G; Pryor, Tony J

    2002-05-01

    Expression of the fis1 gene from flax (Linum usitatissimum) is induced by a compatible rust (Melampsora lini) infection. Infection of transgenic plants containing a beta-glucuronidase (GUS) reporter gene under the control of the fis1 promoter showed that induction is highly localized to those leaf mesophyll cells within and immediately surrounding rust infection sites. The level of induction reflects the extent of fungal growth. In a strong resistance reaction, such as the hypersensitive fleck mediated by the L6 resistance gene, there is very little fungal growth and a microscopic level of GUS expression. Partially resistant flax leaves show levels of GUS expression that were intermediate to the level observed in the fully susceptible infection. Sequence and deletion analysis using both transient Agrobacterium tumefaciens expression and stable transformation assays have shown that the rust-inducible fis1 promoter is contained within a 580-bp fragment. Homologs of fis1 were identified in expressed sequence tag databases of a range of plant species including dicots, monocots, and a gymnosperm. Homologous genes isolated from maize (Zea mays; mis1), barley (Hordeum vulgare; bis1), wheat (Triticum aestivum; wis1), and Arabidopsis encode proteins that are highly similar (76%-82%) to the FIS1 protein. The Arabidopsis homologue has been reported to encode a delta1-pyrroline-5-carboxylate dehydrogenase that is involved in the catabolism of proline to glutamate. RNA-blot analysis showed that mis1 in maize and the bis1 homolog in barley are both up-regulated by a compatible infection with the corresponding species-specific rust. The rust-induced genes homologous to fis1 are present in many plants. The promoters of these genes have potential roles for the engineering of synthetic rust resistance genes by targeting transgene expression to the sites of rust infection.

  6. Epigenetic mechanisms of gene expression regulation in neurological diseases.

    Science.gov (United States)

    Gos, Monika

    2013-01-01

    Neurological diseases are a heterogenous group of disorders that are related to alterations in nervous system function. The genetic background of neurological diseases is heterogenous and may include chromosomal aberrations, specific gene mutations and epigenetic defects. This review is aimed at presenting of selected diseases that are associated with different epigenetic alterations. The imprinting defects on chromosome 15 are the cause of Prader-Willi and Angelman syndromes that both are characterized by intellectual disability, developmental delay and specific behavioral phenotype. Besides the imprinting defect, these diseases can also be caused by deletion of chromosome 15 or uniparental disomy. Aberrant epigenetic regulation is also specific for Fragile X syndrome that is caused by expansion of CGG repeats in the FMR1 gene that leads to global methylation of the promoter region and repression of FMR1 transcription. A number of neurological diseases, mainly associated with intellectual impairment, may be caused by mutations in genes encoding proteins involved in epigenetic regulation. The number of such diseases is rapidly growing thanks to the implementation of genomic sequencing for the identification of their molecular causes. One of the best known diseases linked to defects in epigenetic modifiers is Rett syndrome caused by a mutation in the MECP2 gene or its variant - Rett-like syndrome caused by a mutation in CDKL5 or FOXG1 genes. As the epigenetic signature is potentially reversible, much attention is focused on possible therapies with drugs that influence DNA or histone modifications. This is especially important in the case of neurological disorders in which epigenetic changes are observed as the effect of the disease.

  7. One and the same androgen for all? towards designer androgens

    Institute of Scientific and Technical Information of China (English)

    LouisJGGooren; NhuThanhNguyen

    1999-01-01

    The introduction of designer oestrogens as a treatment medality in hormone replacement in women has invited to consider the concept of compounds with selective androgenic effects for male honnone replacement therapy. The full spectrum of the actions of testosterone may not be necessary of even undesired for certain indications for testosterone treatment, To define for what indications certain androgenic properties are desired and undesired more insight in basic androgen (patho)physiology is required. There is convincing evidence that aromatization of androgenic compounds to nestrogens might be an advantage for maintenance of bone mass and it might also mitigate negative effects of androgens on bichemical parameters of cardiovascular risks: the potentially negative effects of oestmgens on prostate pathology in ageing men needs further elucidation. While the role of dihydro-testosterone (DHT) for the male sexual differentiation and for pubertal sexual maturation is evident, its role in mature and ageing males seems less significant or may even be harmful. It is, however, of note that a negative effect of DHT on prostate pathophysiolog~ is certainly not proven.For male contraception a progestational agent with strong androgenic properties might be an asset. For most of the androgenic actions the critical levels of androgens are not well established. The latter is relevant since the large amount of androgen molecules required for its biological actions (as compared to oestrogens) is an impediment in androgen replacement medalities. There may be room for more biopotent androgens since delivery of large amounts of androgen molecules to the circulation poses problems fur treatment modalities. ( Asian J Andro11999 Jun; 1:21 -28)

  8. DMPD: Interferon gene regulation: not all roads lead to Tolls. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16095970 Interferon gene regulation: not all roads lead to Tolls. Jefferies CA, Fit...zgerald KA. Trends Mol Med. 2005 Sep;11(9):403-11. (.png) (.svg) (.html) (.csml) Show Interferon gene regulation: not all road...s lead to Tolls. PubmedID 16095970 Title Interferon gene regulation: not all roads lead to

  9. Regulation of the Saccharomyces cerevisiae DNA repair gene RAD16.

    Science.gov (United States)

    Bang, D D; Timmermans, V; Verhage, R; Zeeman, A M; van de Putte, P; Brouwer, J

    1995-05-25

    The RAD16 gene product has been shown to be essential for the repair of the silenced mating type loci [Bang et al. (1992) Nucleic Acids Res. 20, 3925-3931]. More recently we demonstrated that the RAD16 and RAD7 proteins are also required for repair of non-transcribed strands of active genes in Saccharomyces cerevisiae [Waters et al. (1993) Mol. Gen. Genet. 239, 28-32]. We have studied the regulation of the RAD16 gene and found that the RAD16 transcript levels increased up to 7-fold upon UV irradiation. Heat shock at 42 degrees C also results in elevated levels of RAD16 mRNA. In sporulating MAT alpha/MATa diploid cells RAD16 mRNA is also induced. The basal level of the RAD16 transcript is constant during the mitotic cell cycle. G1-arrested cells show normal induction of RAD16 mRNA upon UV irradiation demonstrating that the induction is not a secondary consequence of G2 cell cycle arrest following UV irradiation. However, in cells arrested in G1 the induction of RAD16 mRNA after UV irradiation is not followed by a rapid decline as occurs in normal growing cells suggesting that the down regulation of RAD16 transcription is dependent on progression into the cell cycle.

  10. Regulation of virulence gene expression in pathogenic Listeria.

    Science.gov (United States)

    Brehm, K; Kreft, J; Ripio, M T; Vázquez-Boland, J A

    1996-06-01

    Dynamic interactions between host and pathogen are characteristic of infections caused by intracellular bacteria. This has favoured the evolution of highly effective control systems by which these pathogens regulate the expression of different virulence factors during sequential steps of the infection process. In the case of the facultative intracellular bacterium Listeria monocytogenes, these steps involve internalization by eukaryotic cells, lysis of the resulting phagosome, replication as well as movement within the host cytoplasm, direct cell-to-cell spread, and subsequent lysis of a double-membrane vacuole when entering neighbouring cells. Virulence factors which are involved in each of these steps have been identified and the expression of these factors is subject to a co-ordinate and differential control exerted by the major listerial virulence regulator PrfA. This protein belongs to the Crp/Fnr-family of transcriptional activators and recognizes specific target sequences in promoter regions of several listerial virulence genes. Differential expression of these genes during sequential steps of the infection seems to be at least partially mediated by different binding affinities of PrfA to its target sequences. Activity of PrfA-dependent genes and of prfA itself is under the control of several environmental variables which are used by the pathogen to recognize its transition from the free environment into a eukaryotic host.

  11. Strategies to identify long noncoding RNAs involved in gene regulation

    Directory of Open Access Journals (Sweden)

    Lee Catherine

    2012-11-01

    Full Text Available Abstract Long noncoding RNAs (lncRNAs have been detected in nearly every cell type and found to be fundamentally involved in many biological processes. The characterization of lncRNAs has immense potential to advance our comprehensive understanding of cellular processes and gene regulation, along with implications for the treatment of human disease. The recent ENCODE (Encyclopedia of DNA Elements study reported 9,640 lncRNA loci in the human genome, which corresponds to around half the number of protein-coding genes. Because of this sheer number and their functional diversity, it is crucial to identify a pool of potentially relevant lncRNAs early on in a given study. In this review, we evaluate the methods for isolating lncRNAs by immunoprecipitation and review the advantages, disadvantages, and applications of three widely used approaches – microarray, tiling array, and RNA-seq – for identifying lncRNAs involved in gene regulation. We also look at ways in which data from publicly available databases such as ENCODE can support the study of lncRNAs.

  12. Synthetic RNAs for gene regulation: design principles and computational tools

    Directory of Open Access Journals (Sweden)

    Alessandro eLaganà

    2014-12-01

    Full Text Available The use of synthetic non-coding RNAs for post-transcriptional regulation of gene expression has not only become a standard laboratory tool for gene functional studies, but it has also opened up new perspectives in the design of new and potentially promising therapeutic strategies. Bioinformatics has provided researchers with a variety of tools for the design, the analysis and the evaluation of RNAi agents such as small-interfering RNA (siRNA, short-hairpin RNA (shRNA, artificial microRNA (a-miR and microRNA sponges. More recently, a new system for genome engineering based on the bacterial CRISPR-Cas9 system (Clustered Regularly Interspaced Short Palindromic Repeats, was shown to have the potential to also regulate gene expression at both transcriptional and post-transcriptional level in a more specific way. In this mini review, we present RNAi and CRISPRi design principles and discuss the advantages and limitations of the current design approaches.

  13. ETS gene fusions in prostate cancer: from discovery to daily clinical practice.

    NARCIS (Netherlands)

    Tomlins, S.A.; Bjartell, A.; Chinnaiyan, A.M.; Jenster, G.; Nam, R.K.; Rubin, M.A.; Schalken, J.A.

    2009-01-01

    CONTEXT: In 2005, fusions between the androgen-regulated transmembrane protease serine 2 gene, TMPRSS2, and E twenty-six (ETS) transcription factors were discovered in prostate cancer. OBJECTIVE: To review advances in our understanding of ETS gene fusions, focusing on challenges affecting translatio

  14. Metabolic syndrome in androgenic alopecia

    OpenAIRE

    Hima Gopinath; Gatha M Upadya

    2016-01-01

    Background: Androgenic alopecia has been associated with an increased risk of coronary heart disease in various studies. The relationship between androgenic alopecia and metabolic syndrome, a known risk factor for atherosclerotic cardiovascular disease, is still poorly understood. Aim: To study the association between metabolic syndrome and early-onset androgenic alopecia. Methods: A hospital-based analytical cross-sectional study was done on men in the age group of 18–55 years. Eighty five c...

  15. Control of adrenal androgen production.

    Science.gov (United States)

    Odell, W D; Parker, L N

    The major adrenal androgens are dehydroepiandrosterone (DHEA), dehydroepiandrosterone sulphate (DHEAS) and androstenedione (delta 4). Studies by Cutler et al in 1978 demonstrated that these androgens are detectable in blood of all domestic and laboratory animals studied, but that only 4 species show increase in one or more with sexual maturation: rabbit, dog, chimpanzee and man. Studies by Grover and Odell in 1975 show these androgens do not bind to the androgen receptor obtained from rat prostate and thus probably are androgens only by conversion to an active androgen in vivo. Thomas and Oake in 1974 showed human skin converted DHEA to testosterone. The control of adrenal androgen secretion is in part modulated by ACTH. However, other factors or hormones must exist also, for a variety of clinical observations show dissociation in adrenal androgen versus cortisol secretion. Other substances that have been said to be controllers of adrenal androgen secretion include estrogens, prolactin, growth hormone, gonadotropins and lipotropin. None of these appear to be the usual physiological modulator, although under some circumstances each may increase androgen production. Studies from our laboratory using in vivo experiments in the castrate dog and published in 1979 indicated that crude extracts of bovine pituitary contained a substance that either modified ACTH stimulation of adrenal androgen secretion, or stimulated secretion itself - Cortisol Androgen Stimulating Hormone. Parker et al in 1983 showed a 60,000 MW glycoprotein was extractable from human pituitaries, which stimulated DHA secretion by dispersed canine adrenal cells in vitro, but did not stimulate cortisol secretion. This material contained no ACTH by radioimmunoassay. In 1982 Brubaker et al reported a substance was also present in human fetal pituitaries, which stimulated DHA secretion, but did not effect cortisol. PMID:6100259

  16. Thermodynamics-based models of transcriptional regulation with gene sequence.

    Science.gov (United States)

    Wang, Shuqiang; Shen, Yanyan; Hu, Jinxing

    2015-12-01

    Quantitative models of gene regulatory activity have the potential to improve our mechanistic understanding of transcriptional regulation. However, the few models available today have been based on simplistic assumptions about the sequences being modeled or heuristic approximations of the underlying regulatory mechanisms. In this work, we have developed a thermodynamics-based model to predict gene expression driven by any DNA sequence. The proposed model relies on a continuous time, differential equation description of transcriptional dynamics. The sequence features of the promoter are exploited to derive the binding affinity which is derived based on statistical molecular thermodynamics. Experimental results show that the proposed model can effectively identify the activity levels of transcription factors and the regulatory parameters. Comparing with the previous models, the proposed model can reveal more biological sense.

  17. ApoM: gene regulation and effects on HDL metabolism

    DEFF Research Database (Denmark)

    Nielsen, Lars B; Christoffersen, Christina; Ahnström, Josefin;

    2009-01-01

    and glucose metabolism. Although the concentration of plasma apoM correlates with that of cholesterol, apoM was not identified as a risk factor for cardiovascular disease in two prospective studies. In genetically modified mice, however, changes in plasma apoM concentration caused quantitative and qualitative......The recently discovered apolipoprotein M (apoM) is a plasma protein of the lipocalin family associated with the lipoproteins (mainly high-density lipoproteins, or HDLs). Expression of the apoM gene in the liver is regulated by transcription factors that control key steps in hepatic lipid...... changes in HDLs, and overexpression of the apoM gene reduced atherosclerosis. In conclusion, it seems that apoM plays a part in lipoprotein metabolism; however, the biological impact of apoM in humans remains to be determined....

  18. Gene regulation and noise reduction by coupling of stochastic processes

    Science.gov (United States)

    Ramos, Alexandre F.; Hornos, José Eduardo M.; Reinitz, John

    2015-02-01

    Here we characterize the low-noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the two gene states depends on protein number. This fact has a very important implication: There exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of the genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction.

  19. Lipocalin 2: a new mechanoresponding gene regulating bone homeostasis.

    Science.gov (United States)

    Rucci, Nadia; Capulli, Mattia; Piperni, Sara Gemini; Cappariello, Alfredo; Lau, Patrick; Frings-Meuthen, Petra; Heer, Martina; Teti, Anna

    2015-02-01

    Mechanical loading represents a crucial factor in the regulation of skeletal homeostasis. Its reduction causes loss of bone mass, eventually leading to osteoporosis. In a previous global transcriptome analysis performed in mouse calvarial osteoblasts subjected to simulated microgravity, the most upregulated gene compared to unit gravity condition was Lcn2, encoding the adipokine Lipocalin 2 (LCN2), whose function in bone metabolism is poorly known. To investigate the mechanoresponding properties of LCN2, we evaluated LCN2 levels in sera of healthy volunteers subjected to bed rest, and found a significant time-dependent increase of this adipokine compared to time 0. We then evaluated the in vivo LCN2 regulation in mice subjected to experimentally-induced mechanical unloading by (1) tail suspension, (2) muscle paralysis by botulin toxin A (Botox), or (3) genetically-induced muscular dystrophy (MDX mice), and observed that Lcn2 expression was upregulated in the long bones of all of them, whereas physical exercise counteracted this increase. Mechanistically, in primary osteoblasts transfected with LCN2-expression-vector (OBs-Lcn2) we observed that Runx2 and its downstream genes, Osterix and Alp, were transcriptionally downregulated, and alkaline phosphatase (ALP) activity was less prominent versus empty-vector transduced osteoblasts (OBs-empty). OBs-Lcn2 also exhibited an increase of the Rankl/Opg ratio and IL-6 mRNA, suggesting that LCN2 could link poor differentiation of osteoblasts to enhanced osteoclast stimulation. In fact, incubation of purified mouse bone marrow mononuclear cells with conditioned media from OBs-Lcn2 cultures, or their coculture with OBs-Lcn2, improved osteoclastogenesis compared to OBs-empty, whereas treatment with recombinant LCN2 had no effect. In conclusion, our data indicate that LCN2 is a novel osteoblast mechanoresponding gene and that its regulation could be central to the pathological response of the bone tissue to low mechanical forces.

  20. Expression of a mutant androgen receptor in cloned fibroblasts derived from a heterozygous carrier for the syndrome of testicular feminization.

    OpenAIRE

    elAwady, M K; Allman, D R; Griffin, J E; Wilson, J. D.

    1983-01-01

    Thermolability of androgen binding was compared in fibroblasts cloned from normal female skin, skin from a subject with testicular feminization whose mutation is known to be associated with a thermolabile androgen receptor, and from the mother of the subject with testicular feminization. Seven of 28 clones studied from the mother exhibited thermolability of binding, indicating that the mutant gene that causes thermolability of binding, like the gene responsible for the normal androgen recepto...

  1. Up-regulation of SNCA gene expression: implications to synucleinopathies.

    Science.gov (United States)

    Tagliafierro, L; Chiba-Falek, O

    2016-07-01

    Synucleinopathies are a group of neurodegenerative diseases that share a common pathological lesion of intracellular protein inclusions largely composed by aggregates of alpha-synuclein protein. Accumulating evidence, including genome wide association studies, has implicated alpha-synuclein (SNCA) gene in the etiology of synucleinopathies. However, the precise variants within SNCA gene that contribute to the sporadic forms of Parkinson's disease (PD), dementia with Lewy bodies (DLB), multiple system atrophy (MSA), and other synucleinopathies and their molecular mechanisms of action remain elusive. It has been suggested that SNCA expression levels are critical for the development of these diseases. Here, we review several model systems that have been developed to advance the understanding of the role of SNCA expression levels in the etiology of synucleinopathies. We also describe different molecular mechanisms that regulate SNCA gene expression and discuss possible strategies for SNCA down-regulation as means for therapeutic approaches. Finally, we highlight some examples that underscore the relationships between the genetic association findings and the regulatory mechanisms of SNCA expression, which suggest that genetic variability in SNCA locus is directly responsible, at least in part, to the changes in gene expression and explain the reported associations of SNCA with synucleinopathies. Future studies utilizing induced pluripotent stem cells (iPSCs)-derived neuronal lines and genome editing by CRISPR/Cas9, will allow us to validate, characterize, and manipulate the effects of particular cis-genetic variants on SNCA expression. Moreover, this model system will enable us to compare different neuronal and glial lineages involved in synucleinopathies representing an attractive strategy to elucidate-common and specific-SNCA-genetic variants, regulatory mechanisms, and vulnerable expression levels underlying synucleinopathy spectrum disorders. This forthcoming

  2. Dynamic model of gene regulation for the lac operon

    Energy Technology Data Exchange (ETDEWEB)

    Angelova, Maia; Ben-Halim, Asma, E-mail: maia.angelova@northumbria.ac.uk, E-mail: asma.benhalim@northumbria.ac.uk [Intelligent Modelling Lab, School of Computing, Engineering and Information Sciences, Northumbria University, Newcastle upon Tyne NE2 1XE (United Kingdom)

    2011-03-01

    Gene regulatory network is a collection of DNA which interact with each other and with other matter in the cell. The lac operon is an example of a relatively simple genetic network and is one of the best-studied structures in the Escherichia coli bacteria. In this work we consider a deterministic model of the lac operon with a noise term, representing the stochastic nature of the regulation. The model is written in terms of a system of simultaneous first order differential equations with delays. We investigate an analytical and numerical solution and analyse the range of values for the parameters corresponding to a stable solution.

  3. The diabetes susceptibility gene Clec16a regulates mitophagy

    OpenAIRE

    Soleimanpour, Scott A.; Gupta, Aditi; Bakay, Marina; Ferrari, Alana M.; Groff, David N.; Fadista, João; Spruce, Lynn A; Kushner, Jake A.; Groop, Leif; Seeholzer, Steven H.; Kaufman, Brett A; Hakonarson, Hakon; Stoffers, Doris A.

    2014-01-01

    Clec16a has been identified as a disease susceptibility gene for type 1 diabetes, multiple sclerosis and adrenal dysfunction, but its function is unknown. Here we report that Clec16a is a membrane-associated endosomal protein that interacts with E3 ubiquitin ligase Nrdp1. Loss of Clec16a leads to an increase in the Nrdp1 target Parkin, a master regulator of mitophagy. Islets from mice with pancreas-specific deletion of Clec16a have abnormal mitochondria with reduced oxygen consumption and ATP...

  4. From biophysics to evolutionary genetics: statistical aspects of gene regulation

    Directory of Open Access Journals (Sweden)

    Lässig Michael

    2007-09-01

    Full Text Available Abstract This is an introductory review on how genes interact to produce biological functions. Transcriptional interactions involve the binding of proteins to regulatory DNA. Specific binding sites can be identified by genomic analysis, and these undergo a stochastic evolution process governed by selection, mutations, and genetic drift. We focus on the links between the biophysical function and the evolution of regulatory elements. In particular, we infer fitness landscapes of binding sites from genomic data, leading to a quantitative evolutionary picture of regulation.

  5. The molecular clock regulates circadian transcription of tissue factor gene.

    Science.gov (United States)

    Oishi, Katsutaka; Koyanagi, Satoru; Ohkura, Naoki

    2013-02-01

    Tissue factor (TF) is involved in endotoxin-induced inflammation and mortality. We found that the circadian expression of TF mRNA, which peaked at the day to night transition (activity onset), was damped in the liver of Clock mutant mice. Luciferase reporter and chromatin immunoprecipitation analyses using embryonic fibroblasts derived from wild-type or Clock mutant mice showed that CLOCK is involved in transcription of the TF gene. Furthermore, the results of real-time luciferase reporter experiments revealed that the circadian expression of TF mRNA is regulated by clock molecules through a cell-autonomous mechanism via an E-box element located in the promoter region.

  6. Complete androgen insensitivity syndrome

    Directory of Open Access Journals (Sweden)

    Tančić-Gajić Milina

    2015-01-01

    Full Text Available Introduction. Androgen insensitivity syndrome (AIS belongs to disorders of sex development, resulting from complete or partial resistance to the biological actions of androgens in persons who are genetically males (XY with normally developed testes and age-appropriate for males of serum testosterone concentration. Case Outline. A 21-year-old female patient was admitted at our Clinic further evaluation and treatment of testicular feminization syndrome, which was diagnosed at the age of 16 years. The patient had never menstruated. On physical examination, her external genitalia and breast development appeared as completely normal feminine structures but pubic and axillary hair was absent. Cytogenetic analysis showed a 46 XY karyotype. The values of sex hormones were as in adult males. The multisliced computed tomography (MSCT showed structures on both sides of the pelvic region, suggestive of testes. Bilateral orchiectomy was performed. Hormone replacement therapy was prescribed after gonadectomy. Vaginal dilatation was advised to avoid dyspareunia. Conclusion. The diagnosis of complete androgen insensitivity is based on clinical findigs, hormonal analysis karyotype, visualization methods and genetic analysis. Bilateral gonadectomy is generally recommended in early adulthood to avoid the risk of testicular malignancy. Vaginal length may be short requiring dilatation in an effort to avoid dyspareunia. Vaginal surgery is rarely indicated for the creation of a functional vagina. [Projekat Ministarstva nauke Republike Srbije, br. 175067

  7. Androgen Receptor CAG Repeat Length Is Associated With Body Fat and Serum SHBG in Boys

    DEFF Research Database (Denmark)

    Mouritsen, Annette; Hagen, Casper P; Sørensen, Kaspar;

    2013-01-01

    Background: Longer androgen receptor gene CAG trinucleotide repeats, AR (CAG)n, have been associated with reduced sensitivity of the androgen receptor (AR) in vitro as well as in humans. Furthermore, short AR (CAG)n have been associated with premature adrenarche. Objective: The aim of the study w...

  8. Glycogen synthesis correlates with androgen-dependent growth arrest in prostate cancer

    Directory of Open Access Journals (Sweden)

    Gorin Frederic A

    2005-03-01

    Full Text Available Abstract Background Androgen withdrawal in normal prostate or androgen-dependent prostate cancer is associated with the downregulation of several glycolytic enzymes and with reduced glucose uptake. Although glycogen metabolism is known to regulate the intracellular glucose level its involvement in androgen response has not been studied. Methods We investigated the effects of androgen on glycogen phosphorylase (GP, glycogen synthase (GS and on glycogen accumulation in the androgen-receptor (AR reconstituted PC3 cell line containing either an empty vector (PC3-AR-V or vector with HPV-E7 (PC3-AR-E7 and the LNCaP cell line. Results Androgen addition in PC3 cells expressing the AR mimics androgen ablation in androgen-dependent prostate cells. Incubation of PC3-AR-V or PC3-AR-E7 cells with the androgen R1881 induced G1 cell cycle arrest within 24 hours and resulted in a gradual cell number reduction over 5 days thereafter, which was accompanied by a 2 to 5 fold increase in glycogen content. 24 hours after androgen-treatment the level of Glucose-6-P (G-6-P had increased threefold and after 48 hours the GS and GP activities increased twofold. Under this condition inhibition of glycogenolysis with the selective GP inhibitor CP-91149 enhanced the increase in glycogen content and further reduced the cell number. The androgen-dependent LNCaP cells that endogenously express AR responded to androgen withdrawal with growth arrest and increased glycogen content. CP-91149 further increased glycogen content and caused a reduction of cell number. Conclusion Increased glycogenesis is part of the androgen receptor-mediated cellular response and blockage of glycogenolysis by the GP inhibitor CP-91149 further increased glycogenesis. The combined use of a GP inhibitor with hormone therapy may increase the efficacy of hormone treatment by decreasing the survival of prostate cancer cells and thereby reducing the chance of cancer recurrence.

  9. A laser pointer driven microheater for precise local heating and conditional gene regulation in vivo. Microheater driven gene regulation in zebrafish

    OpenAIRE

    Achermann Marc; Shen Meng-Chieh; Placinta Mike; Karlstrom Rolf O

    2009-01-01

    Abstract Background Tissue heating has been employed to study a variety of biological processes, including the study of genes that control embryonic development. Conditional regulation of gene expression is a particularly powerful approach for understanding gene function. One popular method for mis-expressing a gene of interest employs heat-inducible heat shock protein (hsp) promoters. Global heat shock of hsp-promoter-containing transgenic animals induces gene expression throughout all tissu...

  10. Gene expression in human hippocampus from cocaine abusers identifies genes which regulate extracellular matrix remodeling.

    Directory of Open Access Journals (Sweden)

    Deborah C Mash

    Full Text Available The chronic effects of cocaine abuse on brain structure and function are blamed for the inability of most addicts to remain abstinent. Part of the difficulty in preventing relapse is the persisting memory of the intense euphoria or cocaine "rush". Most abused drugs and alcohol induce neuroplastic changes in brain pathways subserving emotion and cognition. Such changes may account for the consolidation and structural reconfiguration of synaptic connections with exposure to cocaine. Adaptive hippocampal plasticity could be related to specific patterns of gene expression with chronic cocaine abuse. Here, we compare gene expression profiles in the human hippocampus from cocaine addicts and age-matched drug-free control subjects. Cocaine abusers had 151 gene transcripts upregulated, while 91 gene transcripts were downregulated. Topping the list of cocaine-regulated transcripts was RECK in the human hippocampus (FC = 2.0; p<0.05. RECK is a membrane-anchored MMP inhibitor that is implicated in the coordinated regulation of extracellular matrix integrity and angiogenesis. In keeping with elevated RECK expression, active MMP9 protein levels were decreased in the hippocampus from cocaine abusers. Pathway analysis identified other genes regulated by cocaine that code for proteins involved in the remodeling of the cytomatrix and synaptic connections and the inhibition of blood vessel proliferation (PCDH8, LAMB1, ITGB6, CTGF and EphB4. The observed microarray phenotype in the human hippocampus identified RECK and other region-specific genes that may promote long-lasting structural changes with repeated cocaine abuse. Extracellular matrix remodeling in the hippocampus may be a persisting effect of chronic abuse that contributes to the compulsive and relapsing nature of cocaine addiction.

  11. Calcium-Sensing Receptor Gene: Regulation of Expression.

    Science.gov (United States)

    Hendy, Geoffrey N; Canaff, Lucie

    2016-01-01

    The human calcium-sensing receptor gene (CASR) has 8 exons, and localizes to chromosome 3q. Exons 1A and 1B encode alternative 5'-untranslated regions (UTRs) that splice to exon 2 encoding the AUG initiation codon. Exons 2-7 encode the CaSR protein of 1078 amino acids. Promoter P1 has TATA and CCAAT boxes upstream of exon 1A, and promoter P2 has Sp1/3 motifs at the start site of exon 1B. Exon 1A transcripts from the P1 promoter are reduced in parathyroid tumors and colon carcinomas. Studies of colon carcinomas and neuroblastomas have emphasized the importance of epigenetic changes-promoter methylation of the GC-rich P2 promoter, histone acetylation-as well as involvement of microRNAs in bringing about CASR gene silencing and reduced CaSR expression. Functional cis-elements in the CASR promoters responsive to 1,25-dihydroxyvitamin D [1,25(OH)2D], proinflammatory cytokines, and the transcription factor glial cells missing-2 (GCM2) have been characterized. Reduced levels of CaSR and reduced responsiveness to active vitamin D in parathyroid neoplasia and colon carcinoma may blunt the "tumor suppressor" activity of the CaSR. The hypocalcemia of critically ill patients with burn injury or sepsis is associated with CASR gene upregulation by TNF-alpha and IL-1beta via kappaB elements, and by IL-6 via Stat1/3 and Sp1/3 elements in the CASR gene promoters, respectively. The CASR is transactivated by GCM2-the expression of which is essential for parathyroid gland development. Hyperactive forms of GCM2 may contribute to later parathyroid hyperactivity or tumorigenesis. The expression of the CaSR-the calciostat-is regulated physiologically and pathophysiologically at the gene level. PMID:27679579

  12. Androgen Receptor Is Expressed in Genital Warts

    Institute of Scientific and Technical Information of China (English)

    Jiang Haiyang; Zhang Li; Fan Min; Yang Dexiu

    2003-01-01

    Objective:To study the expression of androgen receptor(AR) in genital warts. Methods:The expressions of AR weredetected in 40 samples of genital warts from 28 males and 12 females and 9 normal foreskins by immunohistochemical stain S-Pmethod. The status of AR expression in wart and normal foreskin were compared. Results:The AR expression was revealed in all 40samples of genital wart and 9 samples of normal foreskin.There weren's any differences in AR expression between the genital wartsand normal foreskins. Conclusions:It' s supposed that androgens may play an important role in regulating the metabolism of GW andthe HPV might be one of viruses which addicts to the tissues expressing AR properly.

  13. Identification of Comamonas testosteroni as an androgen degrader in sewage

    Science.gov (United States)

    Chen, Yi-Lung; Wang, Chia-Hsiang; Yang, Fu-Chun; Ismail, Wael; Wang, Po-Hsiang; Shih, Chao-Jen; Wu, Yu-Ching; Chiang, Yin-Ru

    2016-01-01

    Numerous studies have reported the masculinization of freshwater wildlife exposed to androgens in polluted rivers. Microbial degradation is a crucial mechanism for eliminating steroid hormones from contaminated ecosystems. The aerobic degradation of testosterone was observed in various bacterial isolates. However, the ecophysiological relevance of androgen-degrading microorganisms in the environment is unclear. Here, we investigated the biochemical mechanisms and corresponding microorganisms of androgen degradation in aerobic sewage. Sewage samples collected from the Dihua Sewage Treatment Plant (Taipei, Taiwan) were aerobically incubated with testosterone (1 mM). Androgen metabolite analysis revealed that bacteria adopt the 9, 10-seco pathway to degrade testosterone. A metagenomic analysis indicated the apparent enrichment of Comamonas spp. (mainly C. testosteroni) and Pseudomonas spp. in sewage incubated with testosterone. We used the degenerate primers derived from the meta-cleavage dioxygenase gene (tesB) of various proteobacteria to track this essential catabolic gene in the sewage. The amplified sequences showed the highest similarity (87–96%) to tesB of C. testosteroni. Using quantitative PCR, we detected a remarkable increase of the 16S rRNA and catabolic genes of C. testosteroni in the testosterone-treated sewage. Together, our data suggest that C. testosteroni, the model microorganism for aerobic testosterone degradation, plays a role in androgen biodegradation in aerobic sewage. PMID:27734937

  14. Altered theca and cumulus oocyte complex gene expression, follicular arrest and reduced fertility in cows with dominant follicle follicular fluid androgen excess.

    Directory of Open Access Journals (Sweden)

    Adam F Summers

    Full Text Available Aspiration of bovine follicles 12-36 hours after induced corpus luteum lysis serendipitously identified two populations of cows, one with High androstenedione (A4; >40 ng/ml; mean = 102 and another with Low A4 (<20 ng/ml; mean = 9 in follicular fluid. We hypothesized that the steroid excess in follicular fluid of dominant follicles in High A4 cows would result in reduced fertility through altered follicle development and oocyte maternal RNA abundance. To test this hypothesis, estrous cycles of cows were synchronized and ovariectomy was performed 36 hours later. HPLC MS/MS analysis of follicular fluid showed increased dehydroepiandrosterone (6-fold, A4 (158-fold and testosterone (31-fold in the dominant follicle of High A4 cows. However, estrone (3-fold and estradiol (2-fold concentrations were only slightly elevated, suggesting a possible inefficiency in androgen to estrogen conversion in High A4 cows. Theca cell mRNA expression of LHCGR, GATA6, CYP11A1, and CYP17A1 was greater in High A4 cows. Furthermore, abundance of ZAR1 was decreased 10-fold in cumulus oocyte complexes from High A4 cows, whereas NLRP5 abundance tended to be 19.8-fold greater (P = 0.07. There was a tendency for reduction in stage 4 follicles in ovarian cortex samples from High A4 cows suggesting that progression to antral stages were impaired. High A4 cows tended (P<0.07 to have a 17% reduction in calving rate compared with Low A4 cows suggesting reduced fertility in the High A4 population. These data suggest that the dominant follicle environment of High A4 cows including reduced estrogen conversion and androgen excess contributes to infertility in part through altered follicular and oocyte development.

  15. Curcumin down-regulates AR gene expression and activation in prostate cancer cell lines.

    Science.gov (United States)

    Nakamura, Keiichiro; Yasunaga, Yutaka; Segawa, Takehiko; Ko, Daejin; Moul, Judd W; Srivastava, Shiv; Rhim, Johng S

    2002-10-01

    Curcumin, traditionally used as a seasoning spice in Indian cuisine, has been reported to decrease the proliferation potential of prostate cancer cells, by a mechanism that is not fully understood. In the current study, we have evaluated the effects of curcumin in cell growth, activation of signal transduction, and transforming activities of both androgen-dependent and independent cell lines. Prostate cancer cell lines, LNCaP and PC-3, were treated with curcumin and its effects were further analyzed on signal transduction and expression of androgen receptor (AR) and AR-related cofactors using transient transfection assay and Western blotting. Our results show that curcumin down-regulates transactivation and expression of AR, activator protein-1 (AP-1), nuclear factor-kappaB (NF-kappaB), and CREB (cAMP response element-binding protein)-binding protein (CBP). Curcumin also inhibited the transforming activities of both cell lines as evidenced by the reduced colony forming ability in soft agar. The results obtained here demonstrate that curcumin has a potential therapeutic effect on prostate cancer cells through down-regulation of AR and AR-related cofactors (AP-1, NF-kappaB and CBP). PMID:12239622

  16. Androgen regulation of CYP4B1 responsible for mutagenic activation of bladder carcinogens in the rat bladder: detection of CYP4B1 mRNA by competitive reverse transcription-polymerase chain reaction.

    Science.gov (United States)

    Imaoka, S; Yoneda, Y; Sugimoto, T; Ikemoto, S; Hiroi, T; Yamamoto, K; Nakatani, T; Funae, Y

    2001-05-26

    Significant sex differences exist among cases of bladder cancer in humans as well as in experimental animals such as rats. Aromatic amines such as benzidine and 2-naphthylamine are known to induce bladder cancer. These carcinogenic amines are activated to genotoxic substances by cytochrome P 450 CYP4B1, which is present in bladder mucosa. In this study, regulation of CYP4B1 was investigated to elucidate sex difference in bladder carcinogenesis. Competitive reverse transcription-polymerase chain reaction was used to investigate the expression of rat CYP4B1 mRNA occurring in small amounts of tissue such as bladder tissue. Expression of CYP4B1 in the bladder of male rats increased with development but not in that of female rats. Moreover, mature male rats exhibited higher expression of CYP4B1 in the bladder than did mature female rats. Castration of male rats decreased CYP4B1 levels and treatment with testosterone led to a partial recovery of CYP4B1 levels. These results indicate that CYP4B1 levels in the rat bladder are partly regulated by androgens. Furthermore, the present findings suggest that the sex difference observed in bladder carcinogenesis was due to sex-different expression of CYP4B1 in bladder tissue. PMID:11311483

  17. Androgen receptor: structure, role in prostate cancer and drug discovery.

    Science.gov (United States)

    Tan, M H Eileen; Li, Jun; Xu, H Eric; Melcher, Karsten; Yong, Eu-leong

    2015-01-01

    Androgens and androgen receptors (AR) play a pivotal role in expression of the male phenotype. Several diseases, such as androgen insensitivity syndrome (AIS) and prostate cancer, are associated with alterations in AR functions. Indeed, androgen blockade by drugs that prevent the production of androgens and/or block the action of the AR inhibits prostate cancer growth. However, resistance to these drugs often occurs after 2-3 years as the patients develop castration-resistant prostate cancer (CRPC). In CRPC, a functional AR remains a key regulator. Early studies focused on the functional domains of the AR and its crucial role in the pathology. The elucidation of the structures of the AR DNA binding domain (DBD) and ligand binding domain (LBD) provides a new framework for understanding the functions of this receptor and leads to the development of rational drug design for the treatment of prostate cancer. An overview of androgen receptor structure and activity, its actions in prostate cancer, and how structural information and high-throughput screening have been or can be used for drug discovery are provided herein. PMID:24909511

  18. Ascorbic Acid and Gene Expression: Another Example of Regulation of Gene Expression by Small Molecules?

    OpenAIRE

    Belin, Sophie; Kaya, Ferdinand; Burtey, Stéphane; Fontes, Michel

    2010-01-01

    Ascorbic acid (vitamin C, AA) has long been considered a food supplement necessary for life and for preventing scurvy. However, it has been reported that other small molecules such as retinoic acid (vitamin A) and different forms of calciferol (vitamin D) are directly involved in regulating the expression of numerous genes. These molecules bind to receptors that are differentially expressed in the embryo and are therefore crucial signalling molecules in vertebrate development. The question is...

  19. Whole gene family expression and drought stress regulation of aquaporins.

    Science.gov (United States)

    Alexandersson, Erik; Fraysse, Laure; Sjövall-Larsen, Sara; Gustavsson, Sofia; Fellert, Maria; Karlsson, Maria; Johanson, Urban; Kjellbom, Per

    2005-10-01

    Since many aquaporins (AQPs) act as water channels, they are thought to play an important role in plant water relations. It is therefore of interest to study the expression patterns of AQP isoforms in order to further elucidate their involvement in plant water transport. We have monitored the expression patterns of all 35 Arabidopsis AQPs in leaves, roots and flowers by cDNA microarrays, specially designed for AQPs, and by quantitative real-time reverse transcriptase PCR (Q-RT-PCR). This showed that many AQPs are pre-dominantly expressed in either root or flower organs, whereas no AQP isoform seem to be leaf specific. Looking at the AQP subfamilies, most plasma membrane intrinsic proteins (PIPs) and some tonoplast intrinsic proteins (TIPs) have a high level of expression, while NOD26-like proteins (NIPs) are present at a much lower level. In addition, we show that PIP transcripts are generally down-regulated upon gradual drought stress in leaves, with the exception of AtPIP1;4 and AtPIP2;5, which are up-regulated. AtPIP2;6 and AtSIP1;1 are constitutively expressed and not significantly affected by the drought stress. The transcriptional down-regulation of PIP genes upon drought stress could also be observed on the protein level. PMID:16235111

  20. Human Specific Regulation of the Telomerase Reverse Transcriptase Gene

    Directory of Open Access Journals (Sweden)

    Fan Zhang

    2016-06-01

    Full Text Available Telomerase, regulated primarily by the transcription of its catalytic subunit telomerase reverse transcriptase (TERT, is critical for controlling cell proliferation and tissue homeostasis by maintaining telomere length. Although there is a high conservation between human and mouse TERT genes, the regulation of their transcription is significantly different in these two species. Whereas mTERT expression is widely detected in adult mice, hTERT is expressed at extremely low levels in most adult human tissues and cells. As a result, mice do not exhibit telomere-mediated replicative aging, but telomere shortening is a critical factor of human aging and its stabilization is essential for cancer development in humans. The chromatin environment and epigenetic modifications of the hTERT locus, the binding of transcriptional factors to its promoter, and recruitment of nucleosome modifying complexes all play essential roles in restricting its transcription in different cell types. In this review, we will discuss recent progress in understanding the molecular mechanisms of TERT regulation in human and mouse tissues and cells, and during cancer development.

  1. Mobile gene silencing in Arabidopsis is regulated by hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Dacheng Liang

    2014-12-01

    Full Text Available In plants and nematodes, RNAi can spread from cells from which it is initiated to other cells in the organism. The underlying mechanism controlling the mobility of RNAi signals is not known, especially in the case of plants. A genetic screen designed to recover plants impaired in the movement but not the production or effectiveness of the RNAi signal identified RCI3, which encodes a hydrogen peroxide (H2O2-producing type III peroxidase, as a key regulator of silencing mobility in Arabidopsis thaliana. Silencing initiated in the roots of rci3 plants failed to spread into leaf tissue or floral tissue. Application of exogenous H2O2 reinstated the spread in rci3 plants and accelerated it in wild-type plants. The addition of catalase or MnO2, which breaks down H2O2, slowed the spread of silencing in wild-type plants. We propose that endogenous H2O2, under the control of peroxidases, regulates the spread of gene silencing by altering plasmodesmata permeability through remodelling of local cell wall structure, and may play a role in regulating systemic viral defence.

  2. Alu Elements as Novel Regulators of Gene Expression in Type 1 Diabetes Susceptibility Genes?

    DEFF Research Database (Denmark)

    Kaur, Simranjeet; Pociot, Flemming

    2015-01-01

    Despite numerous studies implicating Alu repeat elements in various diseases, there is sparse information available with respect to the potential functional and biological roles of the repeat elements in Type 1 diabetes (T1D). Therefore, we performed a genome-wide sequence analysis of T1D candidate...... genes to identify embedded Alu elements within these genes. We observed significant enrichment of Alu elements within the T1D genes (p-value Alus revealed significant enrichment for immune......-mediated processes (p-value Alus (IRAlus) within their 3' untranslated regions (UTRs) that are known to regulate the expression of host mRNAs by generating double stranded RNA duplexes. Our in silico analysis predicted the formation of duplex structures...

  3. Gene expression dosage regulation in an allopolyploid fish.

    Directory of Open Access Journals (Sweden)

    I Matos

    Full Text Available How allopolyploids are able not only to cope but profit from their condition is a question that remains elusive, but is of great importance within the context of successful allopolyploid evolution. One outstanding example of successful allopolyploidy is the endemic Iberian cyprinid Squalius alburnoides. Previously, based on the evaluation of a few genes, it was reported that the transcription levels between diploid and triploid S. alburnoides were similar. If this phenomenon occurs on a full genomic scale, a wide functional ''diploidization'' could be related to the success of these polyploids. We generated RNA-seq data from whole juvenile fish and from adult livers, to perform the first comparative quantitative transcriptomic analysis between diploid and triploid individuals of a vertebrate allopolyploid. Together with an assay to estimate relative expression per cell, it was possible to infer the relative sizes of transcriptomes. This showed that diploid and triploid S. alburnoides hybrids have similar liver transcriptome sizes. This in turn made it valid to directly compare the S. alburnoides RNA-seq transcript data sets and obtain a profile of dosage responses across the S. alburnoides transcriptome. We found that 64% of transcripts in juveniles' samples and 44% in liver samples differed less than twofold between diploid and triploid hybrids (similar expression. Yet, respectively 29% and 15% of transcripts presented accurate dosage compensation (PAA/PA expression ratio of 1 instead of 1.5. Therefore, an exact functional diploidization of the triploid genome does not occur, but a significant down regulation of gene expression in triploids was observed. However, for those genes with similar expression levels between diploids and triploids, expression is not globally strictly proportional to gene dosage nor is it set to a perfect diploid level. This quantitative expression flexibility may be a strong contributor to overcome the genomic shock

  4. Regulation of dorsal gene expression in Xenopus by the ventralizing homeodomain gene Vox.

    Science.gov (United States)

    Melby, A E; Clements, W K; Kimelman, D

    1999-07-15

    Patterning in the vertebrate embryo is controlled by an interplay between signals from the dorsal organizer and the ventrally expressed BMPs. Here we examine the function of Vox, a homeodomain-containing gene that is activated by the ventralizing signal BMP-4. Inhibition of BMP signaling using a dominant negative BMP receptor (DeltaBMPR) leads to the ectopic activation of dorsal genes in the ventral marginal zone, and this activation is prevented by co-injection of Vox. chordin is the most strongly activated of those genes that are up-regulated by DeltaBMPR and is the gene most strongly inhibited by Vox expression. We demonstrate that Vox acts as a transcriptional repressor, showing that the activity of native Vox is mimicked by a Vox-repressor fusion (VoxEnR) and that a Vox-activator fusion (VoxG4A) acts as an antimorph, causing the formation of a partial secondary axis when expressed on the ventral side of the embryo. Although Vox can ectopically activate BMP-4 expression in whole embryos, we see no activation of BMP-4 by VoxG4A, demonstrating that this activation is indirect. Using a hormone-inducible version of VoxG4A, we find that a critical time window for Vox function is during the late blastula period. Using this construct, we demonstrate that only a subset of dorsal genes is directly repressed by Vox, revealing that there are different modes of regulation for organizer genes. Since the major direct target for Vox repression is chordin, we propose that Vox acts in establishing a BMP-4 morphogen gradient by restricting the expression domain of chordin. PMID:10395789

  5. Determining Physical Mechanisms of Gene Expression Regulation from Single Cell Gene Expression Data

    Science.gov (United States)

    Moignard, Victoria; Göttgens, Berthold; Adryan, Boris

    2016-01-01

    Many genes are expressed in bursts, which can contribute to cell-to-cell heterogeneity. It is now possible to measure this heterogeneity with high throughput single cell gene expression assays (single cell qPCR and RNA-seq). These experimental approaches generate gene expression distributions which can be used to estimate the kinetic parameters of gene expression bursting, namely the rate that genes turn on, the rate that genes turn off, and the rate of transcription. We construct a complete pipeline for the analysis of single cell qPCR data that uses the mathematics behind bursty expression to develop more accurate and robust algorithms for analyzing the origin of heterogeneity in experimental samples, specifically an algorithm for clustering cells by their bursting behavior (Simulated Annealing for Bursty Expression Clustering, SABEC) and a statistical tool for comparing the kinetic parameters of bursty expression across populations of cells (Estimation of Parameter changes in Kinetics, EPiK). We applied these methods to hematopoiesis, including a new single cell dataset in which transcription factors (TFs) involved in the earliest branchpoint of blood differentiation were individually up- and down-regulated. We could identify two unique sub-populations within a seemingly homogenous group of hematopoietic stem cells. In addition, we could predict regulatory mechanisms controlling the expression levels of eighteen key hematopoietic transcription factors throughout differentiation. Detailed information about gene regulatory mechanisms can therefore be obtained simply from high throughput single cell gene expression data, which should be widely applicable given the rapid expansion of single cell genomics. PMID:27551778

  6. In Silico and In Vitro Investigation of the Piperine's Male Contraceptive Effect: Docking and Molecular Dynamics Simulation Studies in Androgen-Binding Protein and Androgen Receptor.

    Science.gov (United States)

    Chinta, Gopichand; Ramya Chandar Charles, Mariasoosai; Klopčič, Ivana; Sollner Dolenc, Marija; Periyasamy, Latha; Selvaraj Coumar, Mohane

    2015-07-01

    Understanding the molecular mechanism of action of traditional medicines is an important step towards developing marketable drugs from them. Piperine, an active constituent present in the Piper species, is used extensively in Ayurvedic medicines (practiced on the Indian subcontinent). Among others, piperine is known to possess a male contraceptive effect; however, the molecular mechanism of action for this effect is not very clear. In this regard, detailed docking and molecular dynamics simulation studies of piperine with the androgen-binding protein and androgen receptors were carried out. Androgen receptors control male sexual behavior and fertility, while the androgen-binding protein binds testosterone and maintains its concentration at optimal levels to stimulate spermatogenesis in the testis. It was found that piperine docks to the androgen-binding protein, similar to dihydrotestosterone, and to androgen receptors, similar to cyproterone acetate (antagonist). Also, the piperine-androgen-binding protein and piperine-androgen receptors interactions were found to be stable throughout 30 ns of molecular dynamics simulation. Further, two independent simulations for 10 ns each also confirmed the stability of these interactions. Detailed analysis of the piperine-androgen-binding protein interactions shows that piperine interacts with Ser42 of the androgen-binding protein and could block the binding with its natural ligands dihydrotestosterone/testosterone. Moreover, piperine interacts with Thr577 of the androgen receptors in a manner similar to the antagonist cyproterone acetate. Based on the in silico results, piperine was tested in the MDA-kb2 cell line using the luciferase reporter gene assay and was found to antagonize the effect of dihydrotestosterone at nanomolar concentrations. Further detailed biochemical experiments could help to develop piperine as an effective male contraceptive agent in the future.

  7. Androgen Receptor-Mediated Growth Suppression of HPr-1AR and PC3-Lenti-AR Prostate Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Young-Chae Kim

    Full Text Available The androgen receptor (AR mediates the developmental, physiologic, and pathologic effects of androgens including 5α-dihydrotestosterone (DHT. However, the mechanisms whereby AR regulates growth suppression and differentiation of luminal epithelial cells in the prostate gland and proliferation of malignant versions of these cells are not well understood, though they are central to prostate development, homeostasis, and neoplasia. Here, we identify androgen-responsive genes that restrain cell cycle progression and proliferation of human prostate epithelial cell lines (HPr-1AR and PC3-Lenti-AR, and we investigate the mechanisms through which AR regulates their expression. DHT inhibited proliferation of HPr-1AR and PC3-Lenti-AR, and cell cycle analysis revealed a prolonged G1 interval. In the cell cycle, the G1/S-phase transition is initiated by the activity of cyclin D and cyclin-dependent kinase (CDK complexes, which relieve growth suppression. In HPr-1AR, cyclin D1/2 and CDK4/6 mRNAs were androgen-repressed, whereas CDK inhibitor, CDKN1A, mRNA was androgen-induced. The regulation of these transcripts was AR-dependent, and involved multiple mechanisms. Similar AR-mediated down-regulation of CDK4/6 mRNAs and up-regulation of CDKN1A mRNA occurred in PC3-Lenti-AR. Further, CDK4/6 overexpression suppressed DHT-inhibited cell cycle progression and proliferation of HPr-1AR and PC3-Lenti-AR, whereas CDKN1A overexpression induced cell cycle arrest. We therefore propose that AR-mediated growth suppression of HPr-1AR involves cyclin D1 mRNA decay, transcriptional repression of cyclin D2 and CDK4/6, and transcriptional activation of CDKN1A, which serve to decrease CDK4/6 activity. AR-mediated inhibition of PC3-Lenti-AR proliferation occurs through a similar mechanism, albeit without down-regulation of cyclin D. Our findings provide insight into AR-mediated regulation of prostate epithelial cell proliferation.

  8. Metabolic syndrome in androgenic alopecia

    Directory of Open Access Journals (Sweden)

    Hima Gopinath

    2016-01-01

    Full Text Available Background: Androgenic alopecia has been associated with an increased risk of coronary heart disease in various studies. The relationship between androgenic alopecia and metabolic syndrome, a known risk factor for atherosclerotic cardiovascular disease, is still poorly understood. Aim: To study the association between metabolic syndrome and early-onset androgenic alopecia. Methods: A hospital-based analytical cross-sectional study was done on men in the age group of 18–55 years. Eighty five clinically diagnosed cases with early-onset (<35 years androgenic alopecia of Norwood grade III or above, and 85 controls without androgenic alopecia were included. Data collected included anthropometric measurements, arterial blood pressure and history of chronic diseases. Fasting blood and lipid profile were determined. Metabolic syndrome was diagnosed as per the new International Diabetes Federation criteria. Chi-square and Student's t-test were used for statistical analysis using Statistical Package for the Social Sciences (SPSS version 17.00. Results: Metabolic syndrome was seen in 19 (22.4% patients with androgenic alopecia and 8 (9.4% controls (P = 0.021. Abdominal obesity, hypertension and lowered high-density lipoprotein were significantly higher in patients with androgenic alopecia versus their respective controls. Limitations: The limitations of our study include small sample size in subgroups and the lack of evidence of a temporal relationship between metabolic syndrome and androgenic alopecia. Conclusion: A higher prevalence of metabolic syndrome is seen in men with early-onset androgenic alopecia. Early screening for metabolic syndrome and its components is beneficial in patients with early-onset androgenic alopecia.

  9. Steroid Androgen Exposure during Development Has No Effect on Reproductive Physiology of Biomphalaria glabrata.

    Directory of Open Access Journals (Sweden)

    Satwant Kaur

    Full Text Available Gastropod mollusks have been proposed as alternative models for male reproductive toxicity testing, due to similarities in their reproductive anatomy compared to mammals, together with evidence that endocrine disrupting chemicals can cause effects in some mollusks analogous to those seen in mammals. To test this hypothesis, we used the freshwater pulmonate snail, Biomphalaria glabrata, for which various genetic tools and a draft genome have recently become available, to investigate the effects of two steroid androgens on the development of mollusk secondary sexual organs. Here we present the results of exposures to two potent androgens, the vertebrate steroid; 5α-dihydrotestosterone (DHT and the pharmaceutical anabolic steroid; 17α-methyltestosterone (MT, under continuous flow-through conditions throughout embryonic development and up to sexual maturity. Secondary sexual gland morphology, histopathology and differential gene expression analysis were used to determine whether steroid androgens stimulated or inhibited organ development. No significant differences between tissues from control and exposed snails were identified, suggesting that these androgens elicited no biologically detectable response normally associated with exposure to androgens in vertebrate model systems. Identifying no effect of androgens in this mollusk is significant, not only in the context of the suitability of mollusks as alternative model organisms for testing vertebrate androgen receptor agonists but also, if applicable to other similar mollusks, in terms of the likely impacts of androgens and anti-androgenic pollutants present in the aquatic environment.

  10. Steroid Androgen Exposure during Development Has No Effect on Reproductive Physiology of Biomphalaria glabrata.

    Science.gov (United States)

    Kaur, Satwant; Baynes, Alice; Lockyer, Anne E; Routledge, Edwin J; Jones, Catherine S; Noble, Leslie R; Jobling, Susan

    2016-01-01

    Gastropod mollusks have been proposed as alternative models for male reproductive toxicity testing, due to similarities in their reproductive anatomy compared to mammals, together with evidence that endocrine disrupting chemicals can cause effects in some mollusks analogous to those seen in mammals. To test this hypothesis, we used the freshwater pulmonate snail, Biomphalaria glabrata, for which various genetic tools and a draft genome have recently become available, to investigate the effects of two steroid androgens on the development of mollusk secondary sexual organs. Here we present the results of exposures to two potent androgens, the vertebrate steroid; 5α-dihydrotestosterone (DHT) and the pharmaceutical anabolic steroid; 17α-methyltestosterone (MT), under continuous flow-through conditions throughout embryonic development and up to sexual maturity. Secondary sexual gland morphology, histopathology and differential gene expression analysis were used to determine whether steroid androgens stimulated or inhibited organ development. No significant differences between tissues from control and exposed snails were identified, suggesting that these androgens elicited no biologically detectable response normally associated with exposure to androgens in vertebrate model systems. Identifying no effect of androgens in this mollusk is significant, not only in the context of the suitability of mollusks as alternative model organisms for testing vertebrate androgen receptor agonists but also, if applicable to other similar mollusks, in terms of the likely impacts of androgens and anti-androgenic pollutants present in the aquatic environment.

  11. Steroid Androgen Exposure during Development Has No Effect on Reproductive Physiology of Biomphalaria glabrata

    Science.gov (United States)

    Lockyer, Anne E.; Routledge, Edwin J.; Jones, Catherine S.; Noble, Leslie R.; Jobling, Susan

    2016-01-01

    Gastropod mollusks have been proposed as alternative models for male reproductive toxicity testing, due to similarities in their reproductive anatomy compared to mammals, together with evidence that endocrine disrupting chemicals can cause effects in some mollusks analogous to those seen in mammals. To test this hypothesis, we used the freshwater pulmonate snail, Biomphalaria glabrata, for which various genetic tools and a draft genome have recently become available, to investigate the effects of two steroid androgens on the development of mollusk secondary sexual organs. Here we present the results of exposures to two potent androgens, the vertebrate steroid; 5α-dihydrotestosterone (DHT) and the pharmaceutical anabolic steroid; 17α-methyltestosterone (MT), under continuous flow-through conditions throughout embryonic development and up to sexual maturity. Secondary sexual gland morphology, histopathology and differential gene expression analysis were used to determine whether steroid androgens stimulated or inhibited organ development. No significant differences between tissues from control and exposed snails were identified, suggesting that these androgens elicited no biologically detectable response normally associated with exposure to androgens in vertebrate model systems. Identifying no effect of androgens in this mollusk is significant, not only in the context of the suitability of mollusks as alternative model organisms for testing vertebrate androgen receptor agonists but also, if applicable to other similar mollusks, in terms of the likely impacts of androgens and anti-androgenic pollutants present in the aquatic environment. PMID:27448327

  12. Prognostic significance of genetic polymorphisms in disease progression and survival in prostate cancer after androgen deprivation therapy

    Directory of Open Access Journals (Sweden)

    Tsung-Yi Huang

    2015-06-01

    Full Text Available It is believed that androgens and their receptors regulate normal prostate growth and mediate prostate cancer development. Androgen deprivation therapy is the most commonly used treatment for advanced prostate cancer. Although the therapy is initially effective, progression of the disease to castration-resistant prostate cancer is almost inevitable, leading to treatment failure. Despite the existence of current clinical parameters, new biomarkers are urgently needed to improve the prognosis. Some molecules and DNA-based genetic biomarkers are under investigation as potential prognostic factors. The advancement in molecular cytogenetic research, such as genome-wide association for single-nucleotide polymorphisms, has made possible the detection of genetic mutations. In this study, a literature search from August 1985 to April 2013 was performed through the PubMed database using the keywords “genetic polymorphisms”, “prostate cancer” and “androgen deprivation therapy”. The results revealed that several genome-wide association studies (such as rs16901979, rs7931342, HSD17B4, rs6162 in the CYP17A1, rs4243229 and rs7201637 in the HSD17B2, rs1062577 in the ESR1, SLCO1B3, SLCO2B1, rs2939244 in the ARRDC3, rs9508016 in the FLT1, rs6504145 in the SKAP1, rs7830611 in the FBXO32, rs9508016 in the FLT1, rs12529 in the AKR1C3, rs16934641 in the BNC2, rs3763763 in the TACC2, rs2051778 in the ALPK1, and rs3763763 in the TACC2, AR, ESR1, and ESR2 and single-nucleotide polymorphisms in important pathways (such as androgen signal, biosynthesis, metabolism, androgen receptor binding site, response element, androgen receptor CAG repeat polymorphism length, and estrogen receptor-binding sites involved in prostate cancer occurrence and mechanism could serve as candidate biomarkers for the early detection of castration-resistant prostate cancer after androgen deprivation therapy. Additional investigations are required to decipher precisely the gene

  13. Dynamical Processes in Ageing, Gene Regulation and Communication

    DEFF Research Database (Denmark)

    Bendtsen, Kristian Moss

    project we constructed a mathematical model and showed that if DNA damage is primarily caused by geno-toxic agents, it would be advantageous for cells to have a fragile DNA repair mechanism. The second part of my Ph.D. thesis covers gene regulation. In the first project we show how RNA polymerase can be...... unstable activation and stable repression is a requirement for the motif to produce oscillations. The last part of this thesis studies the emergence of communication networks. In this study we constructed a simple e-mail game. E-mails from two session with 16 players, who had never met before, showed how...... players develop favourite communication partners. We observed how this dynamic caused a communication network to form. By quantifying the information flow in this network, we were able to shown how that the network functions as an anti-exploration mechanism against "information leeches"....

  14. Cloning and analysis of genes regulating plant cell growth

    International Nuclear Information System (INIS)

    The aims of this work are to identify, clone and analyze genes involved in the regulation of plant cell growth. To do this, we have induced tumors on Arabidopsis thaliana by exposing seed or germinating seedlings to ionizing radiation. The tumors which developed on the plants derived from these seed were excised and established in culture. Unlike normal tissue explants, the tumors are able to grow on hormone-free medium suggesting changes in growth control (either hormonal or other) induced by the radiation exposure. This progress report describes work aimed at characterizing these tumors at the physiological and cellular levels and at determining the molecular basis of the changes leading to the tumorous phenotype

  15. Regulation of gene expression by hypoxia: a molecular approach.

    Science.gov (United States)

    Beitner-Johnson, D; Shull, G E; Dedman, J R; Millhorn, D E

    1997-11-01

    Oxygen is a strict requirement for cell function. The cellular mechanisms by which organisms detect and respond to changes in oxygen tension remain a major unanswered question in pulmonary physiology. Part of the difficulty in addressing this question is due to the limited scope of experiments that can be performed in vivo. In the past few years, several laboratories have begun to make progress in this area, using a variety of cell culture model systems and sophisticated genetic manipulations. Here, we review the current state of knowledge of regulation of gene expression by hypoxia, and describe novel experimental approaches that promise to broaden our understanding of how cells and whole organisms respond to alterations in O2 tension. PMID:9407603

  16. Pneumococcal hydrogen peroxide-induced stress signaling regulates inflammatory genes.

    Science.gov (United States)

    Loose, Maria; Hudel, Martina; Zimmer, Klaus-Peter; Garcia, Ernesto; Hammerschmidt, Sven; Lucas, Rudolf; Chakraborty, Trinad; Pillich, Helena

    2015-01-15

    Microbial infections can induce aberrant responses in cellular stress pathways, leading to translational attenuation, metabolic restriction, and activation of oxidative stress, with detrimental effects on cell survival. Here we show that infection of human airway epithelial cells with Streptococcus pneumoniae leads to induction of endoplasmic reticulum (ER) and oxidative stress, activation of mitogen-associated protein kinase (MAPK) signaling pathways, and regulation of their respective target genes. We identify pneumococcal H2O2 as the causative agent for these responses, as both catalase-treated and pyruvate oxidase-deficient bacteria lacked these activities. Pneumococcal H2O2 induced nuclear NF-κB translocation and transcription of proinflammatory cytokines. Inhibition of translational arrest and ER stress by salubrinal or of MAPK signaling pathways attenuate cytokine transcription. These results provide strong evidence for the notion that inhibition of translation is an important host pathway in monitoring harmful pathogen-associated activities, thereby enabling differentiation between pathogenic and nonpathogenic bacteria. PMID:25183769

  17. FAT10, a gene up-regulated in various cancers, is cell-cycle regulated

    OpenAIRE

    Zhang Dongwei; Lim Chuan-Bian; Lee Caroline GL

    2006-01-01

    Abstract Background FAT10 is a member of the ubiquitin-like-modifier family of proteins. Over-expression of the FAT10 gene was observed in the tumors of several epithelial cancers. High FAT10 expression was found to lead to increased chromosome instability via the reduction in the kinetochore localization of MAD2 during the prometaphase stage of the cell-cycle. FAT10 expression was also previously reported to be regulated by cytokines and p53. Results Here, we report that FAT10 expression is ...

  18. Phosphorylation Events in the Multiple Gene Regulator of Group A Streptococcus Significantly Influence Global Gene Expression and Virulence

    OpenAIRE

    Sanson, Misu; Makthal, Nishanth; Gavagan, Maire; Cantu, Concepcion; Olsen, Randall J.; Musser, James M.; Kumaraswami, Muthiah

    2015-01-01

    Whole-genome sequencing analysis of ∼800 strains of group A Streptococcus (GAS) found that the gene encoding the multiple virulence gene regulator of GAS (mga) is highly polymorphic in serotype M59 strains but not in strains of other serotypes. To help understand the molecular mechanism of gene regulation by Mga and its contribution to GAS pathogenesis in serotype M59 GAS, we constructed an isogenic mga mutant strain. Transcriptome studies indicated a significant regulatory influence of Mga a...

  19. Repression of androgen receptor transcription through the E2F1/DNMT1 axis.

    Directory of Open Access Journals (Sweden)

    Conrad David Valdez

    Full Text Available Although androgen receptor (AR function has been extensively studied, regulation of the AR gene itself has been much less characterized. In this study, we observed a dramatic reduction in the expression of androgen receptor mRNA and protein in hyperproliferative prostate epithelium of keratin 5 promoter driven E2F1 transgenic mice. To confirm an inhibitory function for E2F1 on AR transcription, we showed that E2F1 inhibited the transcription of endogenous AR mRNA, subsequent AR protein, and AR promoter activity in both human and mouse epithelial cells. E2F1 also inhibited androgen-stimulated activation of two AR target gene promoters. To elucidate the molecular mechanism of E2F-mediated inhibition of AR, we evaluated the effects of two functional E2F1 mutants on AR promoter activity and found that the transactivation domain appears to mediate E2F1 repression of the AR promoter. Because DNMT1 is a functional intermediate of E2F1 we examined DNMT1 function in AR repression. Repression of endogenous AR in normal human prostate epithelial cells was relieved by DNMT1 shRNA knock down. DNMT1 was shown to be physically associated within the AR minimal promoter located 22 bps from the transcription start site; however, methylation remained unchanged at the promoter regardless of DNMT1 expression. Taken together, our results suggest that DNMT1 operates either as a functional intermediary or in cooperation with E2F1 inhibiting AR gene expression in a methylation independent manner.

  20. Androgen receptor serine 81 phosphorylation mediates chromatin binding and transcriptional activation.

    Science.gov (United States)

    Chen, Shaoyong; Gulla, Sarah; Cai, Changmeng; Balk, Steven P

    2012-03-01

    Our previous findings indicated that androgen receptor (AR) phosphorylation at serine 81 is stimulated by the mitotic cyclin-dependent kinase 1 (CDK1). In this report, we extended our previous study and confirmed that Ser-81 phosphorylation increases during mitosis, coincident with CDK1 activation. We further showed blocking cell cycle at G(1) or S phase did not disrupt androgen-induced Ser-81 phosphorylation and AR-dependent transcription, consistent with a recent report that AR was phosphorylated at Ser-81 and activated by the transcriptional CDK9. To assess the function of Ser-81 phosphorylation in prostate cancer (PCa) cells expressing endogenous AR, we developed a ligand switch strategy using a ligand-binding domain mutation (W741C) that renders AR responsive to the antagonist bicalutamide. An S81A/W741C double mutant AR stably expressed in PCa cells failed to transactivate the endogenous AR-regulated PSA or TMPRSS2 genes. ChIP showed that the S81A mutation prevented ligand-induced AR recruitment to these genes, and cellular fractionation revealed that the S81A mutation globally abrogated chromatin binding. Conversely, the AR fraction rapidly recruited to chromatin after androgen stimulation was highly enriched for Ser-81 phosphorylation. Finally, inhibition of CDK1 and CDK9 decreased AR Ser-81 phosphorylation, chromatin binding, and transcriptional activity. These findings indicate that Ser-81 phosphorylation by CDK9 stabilizes AR chromatin binding for transcription and suggest that CDK1-mediated Ser-81 phosphorylation during mitosis provides a pool of Ser-81 phosphorylation AR that can be readily recruited to chromatin for gene reactivation and may enhance AR activity in PCa.

  1. Coenzyme Recognition and Gene Regulation by a Flavin Mononucleotide Riboswitch

    Energy Technology Data Exchange (ETDEWEB)

    Serganov, A.; Huang, L; Patel, D

    2009-01-01

    The biosynthesis of several protein cofactors is subject to feedback regulation by riboswitches. Flavin mononucleotide (FMN)-specific riboswitches also known as RFN elements, direct expression of bacterial genes involved in the biosynthesis and transport of riboflavin (vitamin B2) and related compounds. Here we present the crystal structures of the Fusobacterium nucleatum riboswitch bound to FMN, riboflavin and antibiotic roseoflavin. The FMN riboswitch structure, centred on an FMN-bound six-stem junction, does not fold by collinear stacking of adjacent helices, typical for folding of large RNAs. Rather, it adopts a butterfly-like scaffold, stapled together by opposingly directed but nearly identically folded peripheral domains. FMN is positioned asymmetrically within the junctional site and is specifically bound to RNA through interactions with the isoalloxazine ring chromophore and direct and Mg{sup 2+}-mediated contacts with the phosphate moiety. Our structural data, complemented by binding and footprinting experiments, imply a largely pre-folded tertiary RNA architecture and FMN recognition mediated by conformational transitions within the junctional binding pocket. The inherent plasticity of the FMN-binding pocket and the availability of large openings make the riboswitch an attractive target for structure-based design of FMN-like antimicrobial compounds. Our studies also explain the effects of spontaneous and antibiotic-induced deregulatory mutations and provided molecular insights into FMN-based control of gene expression in normal and riboflavin-overproducing bacterial strains.

  2. Ingested plant miRNAs regulate gene expression in animals

    Institute of Scientific and Technical Information of China (English)

    Hervé Vaucheret; Yves Chupeau

    2012-01-01

    The incidence of genetic material or epigenetic information transferred from one organism to another is an important biological question.A recent study demonstrated that plant small RNAs acquired orally through food intake directly influence gene expression in animals after migration through the plasma and delivery to specific organs.Non-protein coding RNAs,and in particular small RNAs,were recently revealed as master chief regulators of gene expression in all organisms.Endogenous small RNAs come in different flavors,depending on their mode of biogenesis.Most microRNAs (miRNA)and short interferring RNAs (siRNA)derive from long double-stranded RNA (dsRNA) precursors that are processed into small RNA duplexes,20 to 25-nt long,by RNaselll enzymes called Dicer [1].One strand of small RNA duplexes is loaded onto an Argonaute protein that executes silencing by cleaving or repressing the translation of homologous mRNA [2].In certain species,RNA cleavage is followed by DNA methylation and/or histone modification,leading to heritable epigenetic modification [3].

  3. [Regulation pattern of the FRUITFULL (FUL) gene of Arabidopsis thaliana].

    Science.gov (United States)

    Chu, Tingting; Xie, Hua; Xu, Yong; Ma, Rongcai

    2010-11-01

    FRUITFULL (FUL) is an MADS box gene that functions early in controlling flowering time, meristem identity and cauline leaf morphology and later in carpel and fruit development in Arabidopsis thaliana. In order to clarify the regulation of FUL expression the upstream regulatory region, -2148 bp - +96 bp and the first intron of the FUL gene were cloned, and vectors with a series of deletion of FUL promoter, and the ones fused with the first intron were constructed. Vectors harboring the fusion of cis-acting elements with the constitutive promoters of TUBULIN and ACTIN were also constructed. Beta-Glucuronidase activity assays of the transgenic Arabidopsis plants showed that two cis-elements were involved in the repression of FUL expression, with one of the two being probably the binding site of the transcriptional factor AP1. And the two CArG boxes played a important role in FUL initiation particularly. Furthermore, the first intron of FUL was shown to participate in the development of carpel and stamen as an enhancer.

  4. ANDROGEN LEVELS IN PREECLAMPSIA

    Directory of Open Access Journals (Sweden)

    M. Valadan

    2006-08-01

    Full Text Available Preeclampsia is a major cause of morbidity and mortality during pregnancy. Several independent investigators have demonstrated the association of androgens with hypertension. The main purpose of this study was to determine whether maternal levels of sex hormones, especially testosterone, are higher in patients with preeclampsia than in matched normotensive control subjects. Serum levels of testosterone, free testosterone, dehydroepiandrosterone sulfate (DHEA-S and estradiol were measured in 60 subjects in the 3rd trimester of pregnancy with documented preeclampsia (including 30 cases of mild and 30 cases of severe preeclampsia and 60 healthy normotensive women with similar maternal and gestational ages and body mass index (BMI and neonatal sex. All subjects were primigravid with singleton pregnancies. Cases of polycystic ovary (PCO, diabetes, chronic hypertension and chronic systemic diseases such as lupus and patients using steroid hormones and anti-hypertensive drugs were excluded. Levels of testosterone, DHEA-S and estradiol were not higher in primigravid women with preeclampsia than in normotensive women with similar gestational and maternal ages, BMI and neonatal sex. There were no significant differences in sex hormones measured between groups of mild and severe preeclampsia and normotensive women. There were also no significant differences in sex hormone levels according to neonatal sex. These findings are against the hypothesis of mediating or amplifying role of high androgen levels in pathophysiology of preeclampsia.

  5. Androgens and sexuality.

    Science.gov (United States)

    Hutchinson, K A

    1995-01-16

    A review of the literature reveals that the endocrine determinants of female sexuality are complex and difficult to characterize. In adolescent males, free testosterone directly affects sexual motivation, with social factors exerting little or no effect. In adolescent girls, by contrast, societal and peer pressure play a pivotal role in the appearance of certain sexual behaviors. Throughout a woman's life, hormonal and psychosocial factors are critical influences. It is possible that cyclic patterns of testosterone are less important for female sexual behavior than the "tonic" effect of overall testosterone levels. Although the estrogen dependence of the vaginal epithelium--important for postmenopausal women--has been clearly established, the role of other hormonal factors and treatments, particularly those involving androgens, in human female sexual behavior remains enigmatic. The search for an understanding of these relationships is not merely an interesting academic exercise but is necessary to determine what role, if any, androgens may play in the treatment of sexual dysfunction during the female reproductive years. PMID:7825630

  6. Heme regulates the expression in Saccharomyces cerevisiae of chimaeric genes containing 5'-flanking soybean leghemoglobin sequences

    DEFF Research Database (Denmark)

    Jensen, E O; Marcker, K A; Villadsen, IS

    1986-01-01

    The TM1 yeast mutant was transformed with a 2 micron-derived plasmid (YEp24) which carries a chimaeric gene containing the Escherichia coli chloramphenicol acetyl transferase (CAT) gene fused to the 5'- and 3'-flanking regions of the soybean leghemoglobin (Lb) c3 gene. Expression of the chimaeric...... CAT gene is controlled specifically by heme at a post-transcriptional level, most likely by regulating the efficiencies of translation. Expression of another chimaeric gene consisting of the neomycin phosphotransferase (NPTII) gene fused to only the 5'-flanking region of the Lbc3 gene is regulated...

  7. Regulation of gene expression in vertebrate skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Carvajal, Jaime J., E-mail: jaime.carvajal@icr.ac.uk; Rigby, Peter W.J., E-mail: peter.rigby@icr.ac.uk

    2010-11-01

    During embryonic development the integration of numerous synergistic signalling pathways turns a single cell into a multicellular organism with specialized cell types and highly structured, organized tissues. To achieve this, cells must grow, proliferate, differentiate and die according to their spatiotemporal position. Unravelling the mechanisms by which a cell adopts the correct fate in response to its local environment remains one of the fundamental goals of biological research. In vertebrates skeletal myogenesis is coordinated by the activation of the myogenic regulatory factors (MRFs) in response to signals that are interpreted by their associated regulatory elements in different precursor cells during development. The MRFs trigger a cascade of transcription factors and downstream structural genes, ultimately resulting in the generation of one of the fundamental histotypes. In this review we discuss the regulation of the different MRFs in relation to their position in the myogenic cascade, the changes in the general transcriptional machinery during muscle differentiation and the emerging importance of miRNA regulation in skeletal myogenesis.

  8. Transcriptional Regulation of the p16 Tumor Suppressor Gene.

    Science.gov (United States)

    Kotake, Yojiro; Naemura, Madoka; Murasaki, Chihiro; Inoue, Yasutoshi; Okamoto, Haruna

    2015-08-01

    The p16 tumor suppressor gene encodes a specific inhibitor of cyclin-dependent kinase (CDK) 4 and 6 and is found altered in a wide range of human cancers. p16 plays a pivotal role in tumor suppressor networks through inducing cellular senescence that acts as a barrier to cellular transformation by oncogenic signals. p16 protein is relatively stable and its expression is primary regulated by transcriptional control. Polycomb group (PcG) proteins associate with the p16 locus in a long non-coding RNA, ANRIL-dependent manner, leading to repression of p16 transcription. YB1, a transcription factor, also represses the p16 transcription through direct association with its promoter region. Conversely, the transcription factors Ets1/2 and histone H3K4 methyltransferase MLL1 directly bind to the p16 locus and mediate p16 induction during replicative and premature senescence. In the present review, we discuss the molecular mechanisms by which these factors regulate p16 transcription.

  9. An Effective Tri-Clustering Algorithm Combining Expression Data with Gene Regulation Information

    OpenAIRE

    Ao Li; David Tuck

    2009-01-01

    Motivation: Bi-clustering algorithms aim to identify sets of genes sharing similar expression patterns across a subset of conditions. However direct interpretation or prediction of gene regulatory mechanisms may be difficult as only gene expression data is used. Information about gene regulators may also be available, most commonly about which transcription factors may bind to the promoter region and thus control the expression level of a gene. Thus a method to integrate gene expression and g...

  10. [Osteoporosis in men and androgen replacement therapy].

    Science.gov (United States)

    Tsujimura, Akira; Okuyama, Akihiko

    2003-11-01

    Androgen plays an important role in bone maturation and maintenance of bone mass. Androgen deficiency associated with aging causes osteoporosis for men. With respect to this disease, androgen replacement treatment has been performed for aging male. However, available preparations of androgen are limited in Japan and each of them has both merit and demerit. Establishment of guideline for androgen replacement treatment including criteria of serum testosterone concentration is the problem, which now confronts us. PMID:15775234

  11. Transcriptomic analysis in the developing zebrafish embryo after compound exposure: Individual gene expression and pathway regulation

    Energy Technology Data Exchange (ETDEWEB)

    Hermsen, Sanne A.B., E-mail: Sanne.Hermsen@rivm.nl [Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht (Netherlands); Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.178, 3508 TD, Utrecht (Netherlands); Pronk, Tessa E. [Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht (Netherlands); Brandhof, Evert-Jan van den [Centre for Environmental Quality, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Ven, Leo T.M. van der [Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Piersma, Aldert H. [Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.178, 3508 TD, Utrecht (Netherlands)

    2013-10-01

    The zebrafish embryotoxicity test is a promising alternative assay for developmental toxicity. Classically, morphological assessment of the embryos is applied to evaluate the effects of compound exposure. However, by applying differential gene expression analysis the sensitivity and predictability of the test may be increased. For defining gene expression signatures of developmental toxicity, we explored the possibility of using gene expression signatures of compound exposures based on commonly expressed individual genes as well as based on regulated gene pathways. Four developmental toxic compounds were tested in concentration-response design, caffeine, carbamazepine, retinoic acid and valproic acid, and two non-embryotoxic compounds, D-mannitol and saccharin, were included. With transcriptomic analyses we were able to identify commonly expressed genes, which were mostly development related, after exposure to the embryotoxicants. We also identified gene pathways regulated by the embryotoxicants, suggestive of their modes of action. Furthermore, whereas pathways may be regulated by all compounds, individual gene expression within these pathways can differ for each compound. Overall, the present study suggests that the use of individual gene expression signatures as well as pathway regulation may be useful starting points for defining gene biomarkers for predicting embryotoxicity. - Highlights: • The zebrafish embryotoxicity test in combination with transcriptomics was used. • We explored two approaches of defining gene biomarkers for developmental toxicity. • Four compounds in concentration-response design were tested. • We identified commonly expressed individual genes as well as regulated gene pathways. • Both approaches seem suitable starting points for defining gene biomarkers.

  12. A Hox Gene, Antennapedia, Regulates Expression of Multiple Major Silk Protein Genes in the Silkworm Bombyx mori.

    Science.gov (United States)

    Tsubota, Takuya; Tomita, Shuichiro; Uchino, Keiro; Kimoto, Mai; Takiya, Shigeharu; Kajiwara, Hideyuki; Yamazaki, Toshimasa; Sezutsu, Hideki

    2016-03-25

    Hoxgenes play a pivotal role in the determination of anteroposterior axis specificity during bilaterian animal development. They do so by acting as a master control and regulating the expression of genes important for development. Recently, however, we showed that Hoxgenes can also function in terminally differentiated tissue of the lepidopteranBombyx mori In this species,Antennapedia(Antp) regulates expression of sericin-1, a major silk protein gene, in the silk gland. Here, we investigated whether Antpcan regulate expression of multiple genes in this tissue. By means of proteomic, RT-PCR, and in situ hybridization analyses, we demonstrate that misexpression of Antpin the posterior silk gland induced ectopic expression of major silk protein genes such assericin-3,fhxh4, and fhxh5 These genes are normally expressed specifically in the middle silk gland as is Antp Therefore, the evidence strongly suggests that Antpactivates these silk protein genes in the middle silk gland. The putativesericin-1 activator complex (middle silk gland-intermolt-specific complex) can bind to the upstream regions of these genes, suggesting that Antpdirectly activates their expression. We also found that the pattern of gene expression was well conserved between B. moriand the wild species Bombyx mandarina, indicating that the gene regulation mechanism identified here is an evolutionarily conserved mechanism and not an artifact of the domestication of B. mori We suggest that Hoxgenes have a role as a master control in terminally differentiated tissues, possibly acting as a primary regulator for a range of physiological processes. PMID:26814126

  13. Roles of leptin, adiponectin and resistin in the transcriptional regulation of steroidogenic genes contributing to decreased Leydig cells function in obesity.

    Science.gov (United States)

    Roumaud, Pauline; Martin, Luc J

    2015-10-01

    The increase in obesity rate is a major public health issue associated with increased pathological conditions such as type 2 diabetes or cardiovascular diseases. Obesity also contributes to decreased testosterone levels in men. Indeed, the adipose tissue is an endocrine organ which produces hormones such as leptin, adiponectin and resistin. Obesity results in pathological accumulations of leptin and resistin, whereas adiponectin plasma levels are markedly reduced, all having a negative impact on testosterone synthesis. This review focuses on current knowledge related to transcriptional regulation of Leydig cells' steroidogenesis by leptin, adiponectin and resistin. We show that there are crosstalks between the regulatory mechanisms of these hormones and androgen production which may result in a dramatic negative influence on testosterone plasma levels. Indeed leptin, adiponectin and resistin can impact expression of different steroidogenic genes such as Star, Cyp11a1 or Sf1. Further investigations will be required to better define the implications of adipose derived hormones on regulation of steroidogenic genes expression within Leydig cells under physiological as well as pathological conditions.

  14. Identification of up-regulated genes in human uterine leiomyoma by suppression subtractive hybridization

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In searching for differentially expressed genes in human uterine leiomyomas (ULs), suppression sub-tractive hybridization was used to construct an UL up-regulated library, which turned out to represent 88genes. After two rounds of screening by reverse Northern analysis, twenty genes were proved to be up-regulated, including seventeen known genes and three genes with unknown function. All these genes werefirstly associated with UL. Three genes with notable difference were selected for Northern confirmationOur results proved the authenticity of the twenty genes. One gene named Phospholipase A2 (PLA2) showedup-regulation in 4/6 of the patients and investigation of tissue distribution indicated that it had obviousexpression in prostate, testis, liver, heart and skeletal muscle.

  15. Androgen Receptor in Teleosts%硬骨鱼类雄激素受体研究进展

    Institute of Scientific and Technical Information of China (English)

    蒲鲁鲁; 张子平; 王艺磊; 陈芸

    2011-01-01

    The biological activity of androgens is mediated by the nuclear androgen receptor (nAR) in vertebrates, nAR is a ligand-regulated transcriptional factor, which belongs to the nuclear receptor superfamily.nAR has been characterized from mammals to teleosts. The nAR subtype is found to exist in two different isoforms in several fish species due to a teleost specific gene duplication event. These subtypes of nAR form two distinct molecular clusters and display different tissue distributions and expression patterns during embryogenesis and gonad development. Recently, increasing evid