WorldWideScience

Sample records for andrill mcmurdo ice

  1. Quantitative Biostratigraphic Age Control of Glacimarine Sediments, ANDRILL 1B Drillcore, McMurdo Ice Shelf

    Science.gov (United States)

    Cody, R.; Levy, R.; Crampton, J.; Wilson, G.; Naish, T.; Harwood, D.; Winter, D.; Scherer, R.

    2008-12-01

    Interpretation of glacimarine sedimentary records from Antarctic shelf drillholes has been greatly hampered by the ambiguous age of strata where erosional unconformities and coarse diamictite deposits truncate or omit the mangetostratigraphic and biostratigraphic units used for correlation. However, new quantitative biostratigraphic techniques enable the correlation of sparse, incomplete, and reworking-prone Plio- Pleistocene records of Ross Sea fossil diatom flora with the more extensively documented but potentially diachronous offshore history of species' first and last appearances (FAs and LAs). The approach uses a comprehensive regional database of fossil records and computer-automated search algorithms to (a) find the multidimensional line of correlation (LOC) that best fits local observations, and (b) map out confidence intervals based on the full range of equally parsimonious composite FA/LA sequences and local range-end adjustments. An integrated, quantitative chronostratigraphic model for the AND-1B drillcore was constructed iteratively: the initial LOC was based solely on preliminary on-ice observations of fossil diatom highest and lowest occurrences (HOs and LOs) and their correlation with a database of other local event records from 24 DVDP, CIROS, and IODP drillcore sections. The model was subsequently updated as off-ice work yielded additional biostratigraphic marker events and revised event horizons, Ar/Ar ages for volcanic material, better- constrained magnetostratigraphic interpretations, and refinements to computational/analytical methodology. The current quantitative biostratigraphic age model for the AND-1B hole integrates the local ranges of 29 diatom taxa, 5 dated ashes, and independently constrained ages of 5 paleomagnetic reversals. Results corroborate almost all of the on-ice geomagnetic polarity reversal age interpretations, but identify a previously unrecognized major disconformity (~800kyr hiatus) near 440mbsf. It is significant to note

  2. ANDRILL Education and Public Outreach: A Legacy of the IPY

    Science.gov (United States)

    Rack, F. R.; Huffman, L. T.; Reed, J.; Harwood, D. M.; Berg, M.; Diamond, J.; Fox, A.; Dahlman, L. E.; Levy, R. H.

    2009-12-01

    ANDRILL field projects during the IPY included the McMurdo Ice Shelf (MIS) and Southern McMurdo Sound (SMS) drilling projects, and the Mackay Sea Valley (MSV) and Offshore New Harbor (ONH) seismic surveys. ANDRILL's international network of scientists, engineers, students and educators work together to convey an understanding of geoscience research and the process of science to non-technical audiences. ANDRILL education and public outreach (EPO) program goals are to: (1) promote environmental and polar science literacy for all audiences; (2) develop and disseminate engaging resources for formal and informal education; (3) develop and nurture a network of polar science educators; (4) spark the curiosity of students and the general public; (5) encourage students to pursue careers in science; (6) challenge misconceptions about scientific research; (7) provide professional development opportunities for educators; and, (8) encourage inquiry teaching in science education. During the IPY, ANDRILL established partnerships with several IPY projects to enhance science literacy and promote the IPY in formal and informal education and outreach venues. ANDRILL-led initiatives include the ARISE (ANDRILL Research Immersion for Science Educators) Program, Project Iceberg, the FLEXHIBIT (FLEXible exHIBIT; in partnership with Antarctica’s Climate Secrets/IPY Engaging Antarctica), and the Project Circle. ANDRILL partnerships developed with several museums and school districts for teacher professional development workshops and a variety of public events. A polar learning community was created from the ARISE participants and their many contacts, the Project Circle participants, and interested educators who contacted ANDRILL. EPO activities are continuing in the post-IPY period with additional funding. The ARISE program has been successful in building a team of educators and a network of international collaborations across grade levels and cultures. The ANDRILL website has expanded to

  3. Secrets of the Sediments: Using ANDRILL's Scientific Adventure on Ice to Transfer Climate Change Science to K-12 Audiences

    Science.gov (United States)

    Huffman, L. T.; Dahlman, L.; Frisch-Gleason, R.; Harwood, D.; Pound, K.; Rack, F.; Riesselman, C.; Trummel, E.; Tuzzi, E.; Winter, D.

    2008-12-01

    Antarctica's harsh environment and the compelling story of living and working there, provides the backdrop for hooking the interest of young learners on science research and the nature of science. By using the adventure stories of today's researcher-explorers, teachers accompanying the ANDRILL team have taken the technical science of drilling rock cores to understand the history of climate change and the advance and retreat of the Antarctic ice sheet, and translated it for non-technical audiences from K-12 school children, to adult community groups. In order to understand the important issues surrounding global climate change, members of the public need access to accurate and relevant information, high quality educational materials, and a variety of learning opportunities in different learning environments. By taking lessons learned from early virtual polar adventure learning expeditions like Will Steger's Trans-Antarctic Expedition, coupled with educators-in-the-field programs like TEA (Teachers Experiencing Antarctica and the Arctic), ARMADA and Polar Trec, ANDRILL's Education and Outreach Program has evolved into successful and far-reaching integrated education projects including 1) the ARISE (ANDRILL Research Immersion for Science Educators) Program, 2) Climate Change Student Summits, 3) the development of Flexhibit (flexible exhibit) teaching resources, 4) virtual online learning communities, and 5) partnering young researchers with teachers and classrooms. Formal evaluations indicate lasting interest in science studies on the part of students and an increase in teachers' scientific background knowledge.

  4. Viable microbes in ice: Application of molecular assays to McMurdo Dry Valley lake ice communities

    NARCIS (Netherlands)

    Dieser, M.; Nocker, A.; Priscu, J.C.; Foreman, C.M.

    2010-01-01

    The permanent ice covers of the McMurdo Dry Valley lakes, Antarctica, are colonized by a diverse microbial assemblage. We collected ice cores from Lakes Fryxell, Hoare and Bonney. Propidium monoazide (PMA) was used in combination with quantitative PCR (qPCR) and denaturing gradient gel

  5. Airborne thickness and freeboard measurements over the McMurdo Ice Shelf, Antarctica, and implications for ice density

    Science.gov (United States)

    Rack, Wolfgang; Haas, Christian; Langhorne, Pat J.

    2013-11-01

    We present airborne measurements to investigate the thickness of the western McMurdo Ice Shelf in the western Ross Sea, Antarctica. Because of basal accretion of marine ice and brine intrusions conventional radar systems are limited in detecting the ice thickness in this area. In November 2009, we used a helicopter-borne laser and electromagnetic induction sounder (EM bird) to measure several thickness and freeboard profiles across the ice shelf. The maximum electromagnetically detectable ice thickness was about 55 m. Assuming hydrostatic equilibrium, the simultaneous measurement of ice freeboard and thickness was used to derive bulk ice densities ranging from 800 to 975 kg m-3. Densities higher than those of pure ice can be largely explained by the abundance of sediments accumulated at the surface and present within the ice shelf, and are likely to a smaller extent related to the overestimation of ice thickness by the electromagnetic induction measurement related to the presence of a subice platelet layer. The equivalent thickness of debris at a density of 2800 kg m-3 is found to be up to about 2 m thick. A subice platelet layer below the ice shelf, similar to what is observed in front of the ice shelf below the sea ice, is likely to exist in areas of highest thickness. The thickness and density distribution reflects a picture of areas of basal freezing and supercooled Ice Shelf Water emerging from below the central ice shelf cavity into McMurdo Sound.

  6. Pliocene Antarctic sea-ice reconstruction based on the diatom record the ANDRILL 1B core

    Science.gov (United States)

    Scherer, R. P.; Sjunneskog, C. M.; Winter, D.; Riesselman, C.

    2010-12-01

    The ANtarctic DRILLing Program’s AND-1B core, comprising 13 interglacial diatomaceous sections spanning the early Pliocene to the early Pleistocene, provides a largely complete record of Pliocene climate and sea-ice conditions in the Ross Sea. As primary producers, diatoms are directly influenced by surface water conditions, thus fossil assemblages provide a high quality proxy for past surface waters. The modern diatom flora of the Southern Ocean reflects the strong zonal system characterized by a seasonal sea-ice zone (SSIZ), a permanent open ocean zone (POOZ), and a subantarctic zone (SAZ), each with a distinct water column and sedimentary diatom assemblage. The stratigraphic distribution of these assemblages in the AND-1B core provides a history of changing sea surface temperature (SST) and sea-ice conditions through the Pliocene and early Pleistocene. In the early to mid-Pliocene section (4.6-3.3 Ma) the SSIZ is only represented by a few percent, including during glacial stages. This contrasts with the >80% present in the modern western Ross Sea. The SAZ is well represented during this interval in the core, along with the POOZ assemblage, despite the high latitude and proximity to the coastline. This assemblage indicates minimal sea-ice during the summer photoperiod at this latitude. The SSIZ assemblage is present but remains minor during the latter part of the mid-Pliocene (3.3-3.0 Ma). The diatom assemblage suggests surface water stratification, possibly indicating persistent polynya conditions. This period is followed by an interval characterized by both a slight increase in sea-ice and in subantarctic species, which we interpret as reflecting stronger seasonal SST variability compared to prior periods. The sea-ice assemblage and specific sea-ice indicator species increase slightly through the late Pliocene (2.0 Ma) and early Pleistocene (1.07 Ma) but never approach the abundance observed in the modern Ross Sea. These results show that the seasonal sea-ice

  7. Geophysical Survey of McMurdo Ice Shelf to Determine Infrastructure Stability and for Future Planning

    Science.gov (United States)

    2017-01-01

    Laboratory (CRREL) 72 Lyme Road Hanover, NH 03755-1290 Joel Wilner Department of Geology McCardell Bicentennial Hall 276 Bicentennial Way Middlebury...EPOLAR) EP- ANT -15-36, “Geophysical Survey of McMurdo Ice Shelf to Determine Cur- rent Infrastructure Stability and for Future Planning” ERDC/CRREL TR...threaten research in Antarctica. Researchers at the U.S. Army Cold Regions Research and Engineering Laboratory collected approximately 1300 km of

  8. Flexural-response of the McMurdo Ice Shelf to surface lake filling and drainage

    Science.gov (United States)

    Banwell, A. F.; MacAyeal, D. R.; Willis, I.; Macdonald, G. J.; Goodsell, B.

    2017-12-01

    Antarctic ice-shelf instability and break-up, as exhibited by the Larsen B ice shelf in 2002, remains one of the most difficult glaciological processes to observe directly. It is, however, vital to do so because ice-shelf breakup has the potential to influence the buttressing controls on inland ice discharge, and thus to affect sea level. Several mechanisms enabling Larsen B style breakup have previously been proposed, including the ability of surface lakes to introduce ice-shelf fractures when they fill and drain. During the austral summer of 2016/2017, we monitored the filling and draining of four surface lakes on the McMurdo Ice Shelf, Antarctica, and the effect of these processes on ice-shelf flexure. Water-depth data from pressure sensors reveal that two lakes filled to >2 m in depth and subsequently drained over multiple week timescales, which had a simultaneous effect on vertical ice deflection in the area. Differential GPS data from 12 receivers over three months show that vertical deflection varies as a function of distance from the maximum load change (i.e. at the lake centre). Using remote sensing techniques applied to both Landsat 8 and Worldview imagery, we also quantify the meltwater volume in these two lakes through the melt season, which, together with the vertical deflection data, are used to constrain key flexural parameter values in numerical models of ice-shelf flexure.

  9. Observations of turbulence beneath sea ice in southern McMurdo Sound, Antarctica

    Directory of Open Access Journals (Sweden)

    C. L. Stevens

    2009-10-01

    Full Text Available The first turbulence profiler observations beneath land fast sea ice which is directly adjacent to an Antarctic ice shelf are described. The stratification in the 325 m deep water column consisted of a layer of supercooled water in the upper 40 m lying above a quasi-linearly stratified water column with a sharp step in density at mid-depth. Turbulent energy dissipation rates were on average 3×10−8 m2 s−3 with peak bin-averaged values reaching 4×10−7 m2 s−3. The local dissipation rate per unit area was estimated to be 10 m Wm−2 on average with a peak of 50 m Wm−2. These values are consistent with a moderate baroclinic response to the tides. The small-scale turbulent energetics lie on the boundary between isotropy and buoyancy-affected. This will likely influence the formation and aggregation of frazil ice crystals within the supercooled layer. The data suggest that the large crystals observed in McMurdo Sound will transition from initial growth at scales smaller than the Kolmogorov lengthscale to sizes substantially (1–2 orders of magnitude greater than the Kolmogorov scale. An estimate of the experiment-averaged vertical diffusivity of mass Kρ yields a coefficient of around 2×10−4 m2s−1 although this increased by a factor of 2 near the surface. Combining this estimate of Kρ with available observations of average and maximum currents suggests the layer of supercooled water can persist for a distance of ~250 km from the front of the McMurdo Ice Shelf.

  10. Crevasse Extent and Lateral Shearing of the McMurdo Shear Zone, Antarctica: Implications of Ice Shelf Stability

    Science.gov (United States)

    Kaluzienski, L. M.; Hamilton, G. S.; Koons, P. O.; Enderlin, E. M.; Arcone, S. A.; Borstad, C.; Walker, B.

    2016-12-01

    Antarctica's ice shelves modulate the flow of inland ice towards the ocean. Understanding the controls on ice-shelf stability is critical for predicting the future evolution of the ice sheet. For the western sector of the Ross Ice Shelf (RIS), a potentially important region of lateral resistance is the McMurdo Shear Zone (MSZ) just downstream of Minna Bluff. Here the fast-moving Ross Ice Shelf ( 450 m/yr) shears past the slower-moving McMurdo Ice Shelf ( 200 m/yr) creating a zone of intense crevassing. An analysis of several satellite image datasets including a high-resolution digital elevation model (DEM) extracted from stereo Worldview imagery suggests that many of these flow features originate as the RIS flows past Minna Bluff. Here we present a sensitivity analysis of RIS ice flow using the Ice Sheet System Model (ISSM) (Larour et al. 2012) and the Design Analysis Kit for Optimization and Terascale Applications (DAKOTA). In this analysis we assess the sensitivity of model flow of RIS tributary glaciers to boundary condition perturbations within the Minna Bluff/MSZ region. Perturbations include ice shelf thickness variations as well as a scalar damage variable that quantifies the loss of load-bearing surface area due to ice shelf fracture. Field observations of surface flow and strain (GPS) and crevasse distribution and geometry (GPR)in the MSZ help constrain the model simulations. Initial results point to the importance of sub-ice shelf topography and its interaction with features such as Minna Bluff in determining stress distribution on the western RIS. Larour, E.; Seroussi, H.; Morlighem, M.; Rignot, E. 2012. Continental scale, high order, high spatial resolution, ice sheet modeling using the Ice Sheet System Model (ISSM), Journal of Geophysical Research

  11. Dissolved and particulate trace metal micronutrients under the McMurdo Sound seasonal sea ice: basal sea ice communities as a capacitor for iron

    OpenAIRE

    Noble, Abigail E.; Moran, Dawn M.; Allen, Andrew E.; Saito, Mak A.

    2013-01-01

    Dissolved and particulate metal concentrations are reported from three sites beneath and at the base of the McMurdo Sound seasonal sea ice in the Ross Sea of Antarctica. This dataset provided insight into Co and Mn biogeochemistry, supporting a previous hypothesis for water column mixing occurring faster than scavenging. Three observations support this: first, Mn-containing particles with Mn/Al ratios in excess of the sediment were present in the water column, implying the presence of bacteri...

  12. Niche specialization of bacteria in permanently ice-covered lakes of the McMurdo Dry Valleys, Antarctica.

    Science.gov (United States)

    Kwon, Miye; Kim, Mincheol; Takacs-Vesbach, Cristina; Lee, Jaejin; Hong, Soon Gyu; Kim, Sang Jong; Priscu, John C; Kim, Ok-Sun

    2017-06-01

    Perennially ice-covered lakes in the McMurdo Dry Valleys, Antarctica, are chemically stratified with depth and have distinct biological gradients. Despite long-term research on these unique environments, data on the structure of the microbial communities in the water columns of these lakes are scarce. Here, we examined bacterial diversity in five ice-covered Antarctic lakes by 16S rRNA gene-based pyrosequencing. Distinct communities were present in each lake, reflecting the unique biogeochemical characteristics of these environments. Further, certain bacterial lineages were confined exclusively to specific depths within each lake. For example, candidate division WM88 occurred solely at a depth of 15 m in Lake Fryxell, whereas unknown lineages of Chlorobi were found only at a depth of 18 m in Lake Miers, and two distinct classes of Firmicutes inhabited East and West Lobe Bonney at depths of 30 m. Redundancy analysis revealed that community variation of bacterioplankton could be explained by the distinct conditions of each lake and depth; in particular, assemblages from layers beneath the chemocline had biogeochemical associations that differed from those in the upper layers. These patterns of community composition may represent bacterial adaptations to the extreme and unique biogeochemical gradients of ice-covered lakes in the McMurdo Dry Valleys. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Dissolved and particulate trace metal micronutrients under the McMurdo Sound seasonal sea ice: basal sea ice communities as a capacitor for iron

    Directory of Open Access Journals (Sweden)

    Abigail E. Noble

    2013-10-01

    Full Text Available Dissolved and particulate metal concentrations are reported from three sites beneath and at the base of the McMurdo Sound seasonal sea ice in the Ross Sea of Antarctica. This dataset provided insight into Co and Mn biogeochemistry, supporting a previous hypothesis for water column mixing occurring faster than scavenging. Three observations support this: first, Mn-containing particles with Mn/Al ratios in excess of the sediment were present in the water column, implying the presence of bacterial Mn-oxidation processes. Second, dissolved and labile Co were uniform with depth beneath the sea ice after the winter season. Third, dissolved Co:PO43- ratios were consistent with previously observed Ross Sea stoichiometry, implying that over-winter scavenging was slow relative to mixing. Abundant dissolved Fe and Mn were consistent with a winter reserve concept, and particulate Al, Fe, Mn, and Co covaried, implying that these metals behaved similarly. Elevated particulate metals were observed in proximity to the nearby Islands, with particulate Fe/Al ratios similar to that of nearby sediment, consistent with a sediment resuspension source. Dissolved and particulate metals were elevated at the shallowest depths (particularly Fe with elevated particulate P/Al and Fe/Al ratios in excess of sediments, demonstrating a sea ice biomass source. The sea ice biomass was extremely dense (chl a >9500 μg/L and contained high abundances of particulate metals with elevated metal/Al ratios. A hypothesis for seasonal accumulation of bioactive metals at the base of the McMurdo Sound sea ice by the basal algal community is presented, analogous to a capacitor that accumulates iron during the spring and early summer. The release and transport of particulate metals accumulated at the base of the sea ice by sloughing is discussed as a potentially important mechanism in providing iron nutrition during polynya phytoplankton bloom formation and could be examined in future

  14. Dissolved and particulate trace metal micronutrients under the McMurdo Sound seasonal sea ice: basal sea ice communities as a capacitor for iron.

    Science.gov (United States)

    Noble, Abigail E; Moran, Dawn M; Allen, Andrew E; Saito, Mak A

    2013-01-01

    Dissolved and particulate metal concentrations are reported from three sites beneath and at the base of the McMurdo Sound seasonal sea ice in the Ross Sea of Antarctica. This dataset provided insight into Co and Mn biogeochemistry, supporting a previous hypothesis for water column mixing occurring faster than scavenging. Three observations support this: first, Mn-containing particles with Mn/Al ratios in excess of the sediment were present in the water column, implying the presence of bacterial Mn-oxidation processes. Second, dissolved and labile Co were uniform with depth beneath the sea ice after the winter season. Third, dissolved Co:PO(3-) 4 ratios were consistent with previously observed Ross Sea stoichiometry, implying that over-winter scavenging was slow relative to mixing. Abundant dissolved Fe and Mn were consistent with a winter reserve concept, and particulate Al, Fe, Mn, and Co covaried, implying that these metals behaved similarly. Elevated particulate metals were observed in proximity to the nearby Islands, with particulate Fe/Al ratios similar to that of nearby sediment, consistent with a sediment resuspension source. Dissolved and particulate metals were elevated at the shallowest depths (particularly Fe) with elevated particulate P/Al and Fe/Al ratios in excess of sediments, demonstrating a sea ice biomass source. The sea ice biomass was extremely dense (chl a >9500 μg/L) and contained high abundances of particulate metals with elevated metal/Al ratios. A hypothesis for seasonal accumulation of bioactive metals at the base of the McMurdo Sound sea ice by the basal algal community is presented, analogous to a capacitor that accumulates iron during the spring and early summer. The release and transport of particulate metals accumulated at the base of the sea ice by sloughing is discussed as a potentially important mechanism in providing iron nutrition during polynya phytoplankton bloom formation and could be examined in future oceanographic

  15. Dissolved and particulate trace metal micronutrients under the McMurdo Sound seasonal sea ice: basal sea ice communities as a capacitor for iron

    Science.gov (United States)

    Noble, Abigail E.; Moran, Dawn M.; Allen, Andrew E.; Saito, Mak A.

    2013-01-01

    Dissolved and particulate metal concentrations are reported from three sites beneath and at the base of the McMurdo Sound seasonal sea ice in the Ross Sea of Antarctica. This dataset provided insight into Co and Mn biogeochemistry, supporting a previous hypothesis for water column mixing occurring faster than scavenging. Three observations support this: first, Mn-containing particles with Mn/Al ratios in excess of the sediment were present in the water column, implying the presence of bacterial Mn-oxidation processes. Second, dissolved and labile Co were uniform with depth beneath the sea ice after the winter season. Third, dissolved Co:PO3−4 ratios were consistent with previously observed Ross Sea stoichiometry, implying that over-winter scavenging was slow relative to mixing. Abundant dissolved Fe and Mn were consistent with a winter reserve concept, and particulate Al, Fe, Mn, and Co covaried, implying that these metals behaved similarly. Elevated particulate metals were observed in proximity to the nearby Islands, with particulate Fe/Al ratios similar to that of nearby sediment, consistent with a sediment resuspension source. Dissolved and particulate metals were elevated at the shallowest depths (particularly Fe) with elevated particulate P/Al and Fe/Al ratios in excess of sediments, demonstrating a sea ice biomass source. The sea ice biomass was extremely dense (chl a >9500 μg/L) and contained high abundances of particulate metals with elevated metal/Al ratios. A hypothesis for seasonal accumulation of bioactive metals at the base of the McMurdo Sound sea ice by the basal algal community is presented, analogous to a capacitor that accumulates iron during the spring and early summer. The release and transport of particulate metals accumulated at the base of the sea ice by sloughing is discussed as a potentially important mechanism in providing iron nutrition during polynya phytoplankton bloom formation and could be examined in future oceanographic

  16. Abiotic versus biotic drivers of ocean pH variation under fast sea ice in McMurdo Sound, Antarctica.

    Science.gov (United States)

    Matson, Paul G; Washburn, Libe; Martz, Todd R; Hofmann, Gretchen E

    2014-01-01

    Ocean acidification is expected to have a major effect on the marine carbonate system over the next century, particularly in high latitude seas. Less appreciated is natural environmental variation within these systems, particularly in terms of pH, and how this natural variation may inform laboratory experiments. In this study, we deployed sensor-equipped moorings at 20 m depths at three locations in McMurdo Sound, comprising deep (bottom depth>200 m: Hut Point Peninsula) and shallow environments (bottom depth ∼25 m: Cape Evans and New Harbor). Our sensors recorded high-frequency variation in pH (Hut Point and Cape Evans only), tide (Cape Evans and New Harbor), and water mass properties (temperature and salinity) during spring and early summer 2011. These collective observations showed that (1) pH differed spatially both in terms of mean pH (Cape Evans: 8.009±0.015; Hut Point: 8.020±0.007) and range of pH (Cape Evans: 0.090; Hut Point: 0.036), and (2) pH was not related to the mixing of two water masses, suggesting that the observed pH variation is likely not driven by this abiotic process. Given the large daily fluctuation in pH at Cape Evans, we developed a simple mechanistic model to explore the potential for biotic processes--in this case algal photosynthesis--to increase pH by fixing carbon from the water column. For this model, we incorporated published photosynthetic parameters for the three dominant algal functional groups found at Cape Evans (benthic fleshy red macroalgae, crustose coralline algae, and sea ice algal communities) to estimate oxygen produced/carbon fixed from the water column underneath fast sea ice and the resulting pH change. These results suggest that biotic processes may be a primary driver of pH variation observed under fast sea ice at Cape Evans and potentially at other shallow sites in McMurdo Sound.

  17. Abiotic versus biotic drivers of ocean pH variation under fast sea ice in McMurdo Sound, Antarctica.

    Directory of Open Access Journals (Sweden)

    Paul G Matson

    Full Text Available Ocean acidification is expected to have a major effect on the marine carbonate system over the next century, particularly in high latitude seas. Less appreciated is natural environmental variation within these systems, particularly in terms of pH, and how this natural variation may inform laboratory experiments. In this study, we deployed sensor-equipped moorings at 20 m depths at three locations in McMurdo Sound, comprising deep (bottom depth>200 m: Hut Point Peninsula and shallow environments (bottom depth ∼25 m: Cape Evans and New Harbor. Our sensors recorded high-frequency variation in pH (Hut Point and Cape Evans only, tide (Cape Evans and New Harbor, and water mass properties (temperature and salinity during spring and early summer 2011. These collective observations showed that (1 pH differed spatially both in terms of mean pH (Cape Evans: 8.009±0.015; Hut Point: 8.020±0.007 and range of pH (Cape Evans: 0.090; Hut Point: 0.036, and (2 pH was not related to the mixing of two water masses, suggesting that the observed pH variation is likely not driven by this abiotic process. Given the large daily fluctuation in pH at Cape Evans, we developed a simple mechanistic model to explore the potential for biotic processes--in this case algal photosynthesis--to increase pH by fixing carbon from the water column. For this model, we incorporated published photosynthetic parameters for the three dominant algal functional groups found at Cape Evans (benthic fleshy red macroalgae, crustose coralline algae, and sea ice algal communities to estimate oxygen produced/carbon fixed from the water column underneath fast sea ice and the resulting pH change. These results suggest that biotic processes may be a primary driver of pH variation observed under fast sea ice at Cape Evans and potentially at other shallow sites in McMurdo Sound.

  18. Multiphase Reactive Transport and Platelet Ice Accretion in the Sea Ice of McMurdo Sound, Antarctica

    Science.gov (United States)

    Buffo, J. J.; Schmidt, B. E.; Huber, C.

    2018-01-01

    Sea ice seasonally to interannually forms a thermal, chemical, and physical boundary between the atmosphere and hydrosphere over tens of millions of square kilometers of ocean. Its presence affects both local and global climate and ocean dynamics, ice shelf processes, and biological communities. Accurate incorporation of sea ice growth and decay, and its associated thermal and physiochemical processes, is underrepresented in large-scale models due to the complex physics that dictate oceanic ice formation and evolution. Two phenomena complicate sea ice simulation, particularly in the Antarctic: the multiphase physics of reactive transport brought about by the inhomogeneous solidification of seawater, and the buoyancy driven accretion of platelet ice formed by supercooled ice shelf water onto the basal surface of the overlying ice. Here a one-dimensional finite difference model capable of simulating both processes is developed and tested against ice core data. Temperature, salinity, liquid fraction, fluid velocity, total salt content, and ice structure are computed during model runs. The model results agree well with empirical observations and simulations highlight the effect platelet ice accretion has on overall ice thickness and characteristics. Results from sensitivity studies emphasize the need to further constrain sea ice microstructure and the associated physics, particularly permeability-porosity relationships, if a complete model of sea ice evolution is to be obtained. Additionally, implications for terrestrial ice shelves and icy moons in the solar system are discussed.

  19. Mapping of saltwater intrusions into the McMurdo Ice Shelf, Antarctica, using electromagnetic induction sounding and ground penetrating radar measurements

    Science.gov (United States)

    Rack, Wolfgang; Haas, Christian; Krützmann, Nikolai

    2010-05-01

    Ice Shelves, interacting with both the ocean and the atmosphere, are a sensitive indicator of a changing environment. The repeated observation of ice shelf thickness as a result of surface and bottom mass balance and ice shelf dynamics yields insight into this sensitive balance. Ice shelf thickness is normally measured by radar, or derived from freeboard height using knowledge about ice density and sea level height. Seismic methods may also be used but are usually limited to smaller areas. In general, melting at the underside of the ice shelf is expected to be highest near the grounding line, and the rise and outflow of diluted undercooled water may result in bottom freezing. In the presence of saline ice at the ice shelf bottom the use of radar for ice thickness measurements is limited, as the radar energy is effectively absorbed. This is also the case near the ice shelf edge where saltwater intrusions may be observed. In November 2009 we conducted helicopter-borne electromagnetic induction measurements in the McMurdo Sound to measure sea ice and ice shelf thickness within a validation experiment for the CryoSat-2 satellite. The instrument used was an "EM bird", which is more frequently operated in the Arctic to map sea ice thickness. The thickness of the ice shelf could be detected for values less than about 50 m, with a strong gradient perpendicular to the ice shelf front and significant undulations parallel to the ice shelf front. At the same time, we used a ground penetrating radar system in order to detect the transition depth between fresh water and saline ice. In this contribution we present the results of this combined airborne and ground based method, which could be further developed to a fully airborne or ground based technology detecting larger ice shelf thickness and ice shelf morphology in the presence of marine ice.

  20. Analysis of ice shelf flexure and its InSAR representation in the grounding zone of the southern McMurdo Ice Shelf

    Directory of Open Access Journals (Sweden)

    W. Rack

    2017-11-01

    Full Text Available We examine tidal flexure in the grounding zone of the McMurdo Ice Shelf, Antarctica, using a combination of TerraSAR-X repeat-pass radar interferometry, a precise digital elevation model, and GPS ground validation data. Satellite and field data were acquired in tandem between October and December 2014. Our GPS data show a horizontal modulation of up to 60 % of the vertical displacement amplitude at tidal periods within a few kilometres of the grounding line. We ascribe the observed oscillatory horizontal motion to varying bending stresses and account for it using a simple elastic beam model. The horizontal surface strain is removed from nine differential interferograms to obtain precise bending curves. They reveal a fixed (as opposed to tidally migrating grounding-line position and eliminate the possibility of significant upstream bending at this location. The consequence of apparent vertical motion due to uncorrected horizontal strain in interferometric data is a systematic mislocation of the interferometric grounding line by up to the order of one ice thickness, or several hundred metres. While our field site was selected due to its simple boundary conditions and low background velocity, our findings are relevant to other grounding zones studied by satellite interferometry, particularly studies looking at tidally induced velocity changes or interpreting satellite-based flexure profiles.

  1. Dissolved gases in perennially ice-covered lakes of the McMurdo Dry Valleys, Antarctica

    Science.gov (United States)

    Andersen, D. T.; McKay, C. P.; Wharton, R. A. Jr; Wharton RA, J. r. (Principal Investigator)

    1998-01-01

    Measurements of dissolved N2, O2, Ar, CO2, and CH4 were made in perennially ice-covered Lake Hoare. Results confirm previous reports that O2 concentrations in the upper water column exceed atmospheric equilibrium and that N2 and Ar are supersaturated throughout the water column. The mean supersaturation of N2 was found to be 2.0 (+/- 0.37) and Ar was 3.8 (+/- 1.1). The ratios of N2/Ar (20.3 +/- 13.8), and O2/Ar (22.5 +/- 4.0) at the ice-water interface are consistent with those previously measured, suggesting that bubble formation is the main process for removing gas from the lake. However, the saturations of N2 and Ar greatly exceed those previously predicted for degassing by bubble formation only at the ice-water interface. The data support the hypothesis that removal of gas by bubbles occurs in the water column to a depth of 11 m in Lake Hoare. CO2 concentration increases from near zero at the ice-water interface to 80-100 times saturation at and below the chemocline at c. 28 m. There is considerable variability in the gas concentrations throughout the water column; samples separated in depth by one metre may vary by more than 50% in gas content. It is likely that this phenomenon results from the lack of turbulent mixing in the water column. Methane (c. 2 micrograms l-1) was detected below the chemocline and immediately above the sediment/water interface at a depth of 30 m. Samples from lakes Vanda, Joyce, and Miers, also show supersaturations of O2, N2, and Ar at levels similar to levels found in Lake Hoare.

  2. Life Detection and Characterization of Subsurface Ice and Brine in the McMurdo Dry Valleys Using an Ultrasonic Gopher: A NASA ASTEP Project

    Science.gov (United States)

    Doran, P. T.; Bar-Cohen, Y.; Fritsen, C.; Kenig, F.; McKay, C. P.; Murray, A.; Sherrit, S.

    2003-01-01

    Evidence for the presence of ice and fluids near the surface of Mars in both the distant and recent past is growing with each new mission to the Planet. One explanation for fluids forming springlike features on Mars is the discharge of subsurface brines. Brines offer potential refugia for extant Martian life, and near surface ice could preserve a record of past life on the planet. Proven techniques to get underground to sample these environments, and get below the disruptive influence of the surface oxidant and radiation regime, will be critical for future astrobiology missions to Mars. Our Astrobiology for Science and Technology for Exploring Planets (ASTEP) project has the goal to develop and test a novel ultrasonic corer in a Mars analog environment, the McMurdo Dry valleys, Antarctica, and to detect and describe life in a previously unstudied extreme ecosystem; Lake Vida (Fig. 1), an ice-sealed lake.

  3. Draft genome sequence of Paenisporosarcina sp. strain TG-14, a psychrophilic bacterium isolated from sediment-laden stratified basal ice from Taylor Glacier, McMurdo Dry Valleys, Antarctica.

    Science.gov (United States)

    Koh, Hye Yeon; Lee, Sung Gu; Lee, Jun Hyuck; Doyle, Shawn; Christner, Brent C; Kim, Hak Jun

    2012-12-01

    The psychrophilic bacterium Paenisporosarcina sp. TG-14 was isolated from sediment-laden stratified basal ice from Taylor Glacier, McMurdo Dry Valleys, Antarctica. Here we report the draft genome sequence of this strain, which may provide useful information on the cold adaptation mechanism in extremely variable environments.

  4. Deep Drilling with the ANDRILL Program in Antarctica

    Directory of Open Access Journals (Sweden)

    Alex Pyne

    2006-09-01

    Full Text Available ANDRILL (ANtarctic geological DRILLing is a new international, multi-disciplinary drilling program that targets geological records that lie hidden beneath the icy blanket of Antarctica. The primary objective is to investigate Antarctica’s role in global environmental change over the past sixty-fi ve million years, at various scales of age resolution, and thereby enhance our understanding of Antarctica’s potential response to future global changes. Efforts to understand the infl uence of Antarctica on global climate change require a fundamental knowledge of how the Antarctic cryosphere (ice sheets, ice shelves, and sea ice has evolved, not only in recent times but also during earlier geological periods when global temperature and atmospheric CO2 levels were similar to what might be reached by the end of this century. ANDRILL’s integrated science approach willuse stratigraphic drilling, coring, and multi-proxy core analysis combined with geophysical surveys and numerical modeling to study the Cenozoic history of Antarctic climate and ice sheets, the evolution of polar biota, Antarctic tectonism, and Antarctica’s role in the evolution of Earth’s ocean–climate system.

  5. A halophilic bacterium inhabiting the warm, CaCl2-rich brine of the perennially ice-covered Lake Vanda, McMurdo Dry Valleys, Antarctica.

    Science.gov (United States)

    Tregoning, George S; Kempher, Megan L; Jung, Deborah O; Samarkin, Vladimir A; Joye, Samantha B; Madigan, Michael T

    2015-03-01

    Lake Vanda is a perennially ice-covered and stratified lake in the McMurdo Dry Valleys, Antarctica. The lake develops a distinct chemocline at about a 50-m depth, where the waters transition from cool, oxic, and fresh to warm, sulfidic, and hypersaline. The bottom water brine is unique, as the highly chaotropic salts CaCl2 and MgCl2 predominate, and CaCl2 levels are the highest of those in any known microbial habitat. Enrichment techniques were used to isolate 15 strains of heterotrophic bacteria from the Lake Vanda brine. Despite direct supplementation of the brine samples with different organic substrates in primary enrichments, the same organism, a relative of the halophilic bacterium Halomonas (Gammaproteobacteria), was isolated from all depths sampled. The Lake Vanda (VAN) strains were obligate aerobes and showed broad pH, salinity, and temperature ranges for growth, consistent with the physicochemical properties of the brine. VAN strains were halophilic and quite CaCl2 tolerant but did not require CaCl2 for growth. The fact that only VAN strain-like organisms appeared in our enrichments hints that the highly chaotropic nature of the Lake Vanda brine may place unusual physiological constraints on the bacterial community that inhabits it. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Soil temperatures and stability of ice-cemented ground in the McMurdo Dry Valleys, Antarctica

    Science.gov (United States)

    McKay, C.; Mellon, M. T.; Friedmann, E. I.

    1998-01-01

    Year-round temperature measurements at 1600 m elevation during 1994 in the Asgard Range Antarctica, indicate that the mean annual frost point of the ice-cemented ground, 25 cm below the surface, is -21.7 +/- 0.2 degrees C and the mean annual frost point of the atmosphere is -27.5 +/- 1.0 degrees C. The corresponding mean annual temperatures are -24.9 degrees C and -23.3 degrees C. These results imply that there is a net flux of water vapour from the ice to the atmosphere resulting in a recession of the ice-cemented ground by about 0.4-0.6 mm yr-1. The level of the ice-cemented permafrost is about 12 cm below the level of dry permafrost. The summer air temperatures would have to increase about 7 degrees C for thawing temperatures to just reach the top of the subsurface ice. Either subsurface ice at this location is evaporating over time or there are sporadic processes that recharge the ice and maintain equilibrium over long timescales.

  7. Dilution-to-extinction culturing of psychrotolerant planktonic bacteria from permanently ice-covered lakes in the McMurdo Dry Valleys, Antarctica.

    Science.gov (United States)

    Stingl, U; Cho, J-C; Foo, W; Vergin, K L; Lanoil, B; Giovannoni, S J

    2008-04-01

    Lakes in the McMurdo Dry Valleys of Antarctica are characterized by a permanent ice cover and little or no anthropogenic influence. Although bacterial cultures have been obtained from these habitats, recent culture-independent studies indicate that the most abundant microbes in these systems are not yet cultivated. By using dilution-to-extinction cultivation methods with sterilized and nutrient-amended lake water as media, we isolated 148 chemotrophic psychrotolerant bacterial cultures from fresh surface water of Lake Fryxell and the east lobe of Lake Bonney and the hypersaline, suboxic bottom water from the west lobes of Lake Bonney. Screening of the 16S ribosomal ribonucleic acid (rRNA) genes of the cultures by restriction fragment length polymorphism (RFLP) yielded 57 putatively pure psychrotolerant, slow growing cultures grouped into 18 clusters. The sequencing of 16S rRNA genes of randomly selected representatives of each RFLP cluster revealed that the corresponding isolates belong to the Alphaproteobacteria (six RFLP patterns), Betaproteobacteria (six RFLP patterns), Bacteroidetes (four RFLP patterns), and Actinobacteria (two RFLP patterns). Phylogenetic analysis of the sequences showed that the vast majority of the isolates were not closely related to previously described species. Thirteen of 18 RFLP patterns shared a 16S ribosomal deoxyribonucleic acid sequence similarity of 97% or less with the closest described species, and four isolates had a sequence similarity of 93% or less with the nearest described species. Phylogenetic analysis showed that these sequences were representatives of deeply branching organisms in the respective phylum. A comparison of the isolates with 16S rRNA clone libraries prepared from the same environments showed substantial overlap, indicating that dilution-to-extinction culturing in natural lake water media can help isolate some of the most abundant organisms in these perennially ice-covered lakes.

  8. Diatom evidence for the onset of Pliocene cooling from AND-1B, McMurdo Sound, Antarctica

    Science.gov (United States)

    Riesselman, Christina; Dunbar, R. B.

    2013-01-01

    The late Pliocene, ~ 3.3–3.0 Ma, is the most recent interval of sustained global warmth in the geologic past. This window is the focus of climate reconstruction efforts by the U.S. Geological Survey's Pliocene Research, Interpretation, and Synoptic Mapping (PRISM) Data/Model Cooperative, and may provide a useful climate analog for the coming century. Reconstructions of past surface ocean conditions proximal to the Antarctic continent are essential to understanding the sensitivity of the cryosphere to this key interval in Earth's climate evolution. An exceptional marine sediment core collected from the southwestern Ross Sea (78° S), Antarctica, during ANDRILL's McMurdo Ice Shelf Project preserves evidence of dramatic fluctuations between grounded ice and productive, open ocean conditions during the late Pliocene, reflecting orbitally-paced glacial/interglacial cycling. In this near-shore record, diatom-rich sediments are recovered from interglacial intervals; two of these diatomites, from ~ 3.2 Ma and 3.03 Ma, are within the PRISM chronologic window. The diatom assemblages identified in PRISM-age late Pliocene diatom-rich sediments are distinct from those in mid-Pliocene and later Pliocene/Pleistocene intervals recovered from AND-1B, and comprise both extant taxa with well-constrained ecological preferences and a diverse extinct flora, some members of which are previously undescribed from Antarctic sediments. Both units are dominated by Chaetoceros resting spores, an indicator of high productivity and stratification that is present at much lower abundance in materials both older and younger than the PRISM-age sediments. Newly described species of the genus Fragilariopsis, which first appear in the AND-1B record at 3.2 Ma, are the most abundant extinct members of the PRISM-age assemblages. Other extant species with established environmental affinities, such as Fragilariopsis sublinearis, F. curta, Stellarima microtrias, and Thalassiothrix antarctica, are

  9. The Seeds Left in Italy by the E&O Program of the Andrill Research

    Science.gov (United States)

    Cattadori, M.

    2010-12-01

    One of the main purposes of the ARISE program, the educational initiative by the ANDRILL research, was to “integrate polar geoscience content into a range of learning environments”. In the range of this program, an Italian science teacher created and developed through 2006 and 2007 a specific project called progettosmilla.it (www.progettosmilla.it). With the services consequently created, this initiative managed to involve more then 2000 students and 100 teachers across the Italian territory. Though, what is left of that experience four years later? This contribution focuses on the description of the long-term effects of that event on the earth system science education in Italy. It offers the chance to analyze some of the most significant educational projects rooted in the network of (local and national) institutions which supported the progettosmilla.it-ANDRILL program. Among these: - the Ortles project: an E&O initiative developed in the range of an international paleoclimatic research on the biggest ice-cap of the Eastern Alps (by Italian and U.S. universities and centers of research); - the I-CLEEN (Inquiring on Climate & ENergy) project: an information gateway collecting educational resources, which promotes an enquiry-based approach and is managed by science teachers (by the Natural Science Museum of Trento- Italy); - the SPEs (Summer Polar School for Teachers): a summer class where research, researchers and teachers illustrate polar themes and lectures to be introduced in scholastic programs (by the National Museum of Antarctica- Italy); - the first European edition of IESO (International Earth Science Olympiad), initiative to be held in Italy in 2011 (by University of Modena and Reggio Emilia - Italy). Through the analysis of these projects it will be possible to gain useful clues and answer more complex questions, such as: Which are the key factors for the success of such a project, aimed to the cooperation between scientists and teachers? Why an

  10. Subsurface ice and brine sampling using an ultrasonic/sonic gopher for life detection and characterization in the McMurdo Dry Valleys

    Science.gov (United States)

    Bar-Cohen, Y.; Sherrit, S.; Chang, Z.; Wessel, L.; Bao, X.; Doran, P. T.; Fritsen, C. H.; Kenig, F.; McKay, C. P.; Murray, A.; hide

    2004-01-01

    There is growing evidence for ice and fluids near the surface of Mars with potential discharge of brines, which may preserve a record of past life on the planet. Proven techniques to sample Mars subsurface will be critical for future NASA astrobiology missions that will search for such records.

  11. Early diverging lineages within Cryptomycota and Chytridiomycota dominate the fungal communities in ice-covered lakes of the McMurdo Dry Valleys, Antarctica.

    Science.gov (United States)

    Rojas-Jimenez, Keilor; Wurzbacher, Christian; Bourne, Elizabeth Charlotte; Chiuchiolo, Amy; Priscu, John C; Grossart, Hans-Peter

    2017-11-10

    Antarctic ice-covered lakes are exceptional sites for studying the ecology of aquatic fungi under conditions of minimal human disturbance. In this study, we explored the diversity and community composition of fungi in five permanently covered lake basins located in the Taylor and Miers Valleys of Antarctica. Based on analysis of the 18S rRNA sequences, we showed that fungal taxa represented between 0.93% and 60.32% of the eukaryotic sequences. Cryptomycota and Chytridiomycota dominated the fungal communities in all lakes; however, members of Ascomycota, Basidiomycota, Zygomycota, and Blastocladiomycota were also present. Of the 1313 fungal OTUs identified, the two most abundant, belonging to LKM11 and Chytridiaceae, comprised 74% of the sequences. Significant differences in the community structure were determined among lakes, water depths, habitat features (i.e., brackish vs. freshwaters), and nucleic acids (DNA vs. RNA), suggesting niche differentiation. Network analysis suggested the existence of strong relationships among specific fungal phylotypes as well as between fungi and other eukaryotes. This study sheds light on the biology and ecology of basal fungi in aquatic systems. To our knowledge, this is the first report showing the predominance of early diverging lineages of fungi in pristine limnetic ecosystems, particularly of the enigmatic phylum Cryptomycota.

  12. Electric Vehicle Performance at McMurdo Station (Antarctica) and Comparison with McMurdo Station Conventional Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Sears, T.; Lammert, M.; Colby, K.; Walter, R.

    2014-09-01

    This report examines the performance of two electric vehicles (EVs) at McMurdo, Antarctica (McMurdo). The study examined the performance of two e-ride Industries EVs initially delivered to McMurdo on February 16, 2011, and compared their performance and fuel use with that of conventional vehicles that have a duty cycle similar to that of the EVs used at McMurdo.

  13. Ocean Disposal of Man-Made Ice Piers

    Science.gov (United States)

    The National Science Foundation is permitted to ocean dump man-made ice piers from its base at McMurdo Sound in Antarctica under a MPRSA general permit. Information is provided about ice piers and impacts of ice pier disposal.

  14. Predator Foraging in Response to the Mcmurdo Sound Preyscape

    Science.gov (United States)

    Daly, K. L.; Ainley, D. G.; Saenz, B.; Ballard, G.; Kim, S.; Jongsomjit, D.

    2016-02-01

    Growing recent evidence indicates that the Ross Sea, Antarctica, food web is structured as a `wasp-waist' system, in which krill and fish constitute the restriction. The abundance/availability of these prey appears to be affected by top-down predation, and to have only minimal coupling with phytoplankton/primary productivity processes. We investigated this issue further by quantifying prey abundance, depth and distribution along the McMurdo Sound fast-ice edge, using an ROV equipped with acoustic sensors and fluorescence sensors and a CTD equipped with a fluorometer, at the same time that we bio-logged the foraging behavior of Adélie Penguins from an adjacent colony and logged the abundance of trophically competing cetaceans and seals. Early in the study period, concentrations of seals and emperor penguins coincided with a location at which high abundance of an under-ice dwelling fish occurred; these predators disappeared with reduction in that prey's abundance and/or the arrival of seal/penguin-eating killer whales at the fast ice edge. The diet of Adélie penguins changed from 100% krill to 50% krill-fish upon the arrival of minke and fish-eating killer whales. Penguin diving depth did not change, nor did they lengthen foraging range as has been observed in the past upon cetacean arrival. However, the prevalence of the mid-water dwelling forage fish (silverfish) decreased within the penguins' foraging range. Apparently, given the chance penguins and cetaceans appear to have targeted the high-energy dense fish instead of krill, and as a result changed prey availability. Penguin diving depth was just beneath an intense phytoplankton bloom of markedly reduced visibility. Our study brings added support for a food web in which top-down forcing is as important as primary production, having implications for managing fisheries in the region.

  15. Tidal Energy Resource Assessment for McMurdo Station, Antarctica

    Science.gov (United States)

    2016-12-01

    ERDC) solves the nation’s toughest engineering and environmental challenges. ERDC develops innovative solutions in civil and military engineering...5.1 McMurdo Sound ecology .............................................................................................. 35 5.2 Environmental...still important topics to acknowledge. 5.1 McMurdo Sound ecology The seclusion of Antarctica’s environment has led to one of the world’s oldest and

  16. Comprehensive characterization report on Winter Quarters Bay, McMurdo Station, Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Crockett, A.B.; White, G.J.

    1997-01-01

    Winter Quarters Bay is a small embayment located adjacent to the United States largest base in Antarctica, McMurdo Station. McMurdo Station, which is managed by the National Science Foundation`s Office of Polar Programs, was constructed in 1955, has been in constant use since that time, and has a population of about 1,000 persons during the summer and about 250 people for the winter. The bay offers shelter for ships and an ice dock is used during January and February to off load fuel and cargo. During earlier times, trash from the McMurdo Station was piled on the steep shoreline of the bay, doused with several thousand gallons of fuel and ignited. That practice has ceased and the site has been regraded to cover the waste. The bottom of the bay is littered with drums, equipment, tanks, tires, all sorts of metal objects, cables, etc., especially the southeastern side where dumping took place. The sediments are gravel in some places yet fine and fluid at other sites with coarse particles intermixed. The original benthic community is not well recorded but significant ecological changes have occurred. Sediments are contaminated with PCBs, metals, and hydrocarbon fuels. This report summarizes available information on Winter Quarters Bay and was originally intended to be used by workshop participants to become familiar with the bay prior to becoming updated with unpublished data by various Antarctic investigators. The proposed workshop was to assist the National Science Foundation in determining whether and how the bay should be remediated and to develop an integrated research plan if additional data were needed. However, plans changed, the workshop was never conducted, but the briefing report was prepared. Most of this report reviews and summarizes other published data. The only new data are those from the Idaho National Engineering and Environmental Laboratory`s investigation into the distribution of organic contaminants in the bay and sediment toxicity testing.

  17. ANDRILL: INVOLVING TEACHERS IN FIELD RESEARCH ENHANCES THE TRANSFER OF SCIENTIFIC KNOWLEDGE TO CLASSROOMS AND TO OTHER EDUCATORS

    Science.gov (United States)

    Cattadori, M.; Huffman, L. T.; Trummel, B.

    2009-12-01

    For most educators, the end of a field research experience is truly the beginning. From the knowledge gained and the excitement of living and working in a harsh environment like Antarctica, ARISE (ANDRILL Research Immersion for Science Educators) participants create enhanced learning experiences and resources for their students and for the professional development of other teachers. ANDRILL (Antarctic geological DRILLing) is an multi-national and interdisciplinary research project involving Italy, Germany , New Zealand, and USA. The core concept of its Education and Public Outreach Program is to embed educators as integral members on the science research teams, allowing them to participate in every phase of the mission. Their primary goal is to develop effective and innovative educational approaches for the communication of the scientific and technical aspects of the drilling program. ANDRILL has developed an exemplary teacher research experience model that differs from most by supporting a collaborative team of international educators rather than just one teacher. During the first two years of drilling projects, 2006 and 2007, ANDRILL took 16 educators from 4 countries to Antarctica. From those experiences, a growing collaborative network of polar science educators is nurtured, many valuable resources and examples of professional development have been created, and lessons have been learned and evaluated for future teacher research immersion experiences. An Italian ARISE participant and ANDRILL’s Education and Outreach Coordinator will present how ARISE has been at the core of developing transformational programs and resources in both countries including: [1] Flexhibit, a digital series of climate change materials designed for informal and formal learning environments that have been translated into Italian, German, French, Arabic, Spanish, and New Zealand English, (2) C2S2: Climate Change Student Summits, which provide professional development and resources for

  18. Meteoric Be-10 from Sirius Group suggests high elevation McMurdo Dry Valleys permanently frozen since 6 Ma

    DEFF Research Database (Denmark)

    Dickinson, Warren W.; Schiller, Martin; Ditchburn, Bob G.

    2012-01-01

    A long-standing debate concerning Neogene Antarctic climate in the McMurdo Dry Valleys relies largely on evidence from landscape evolution, glacial modeling and stratigraphy. We provide new evidence from meteoric Be for the onset of frozen, hyper-arid conditions on a high elevation (1840m......) interfluve at Table Mountain. A simple decay model for the co-occurrence of meteoric Be and illuviated clay in cores of ice-cemented glacial sediments indicates that the clays were actively migrating down from the surface in a warm climate until the system froze between 6 and 9Ma. Although this age range may...

  19. FY 1993 environmental sampling and analysis report for wastewater discharge at McMurdo Station, Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Crockett, A.B.

    1994-04-01

    Wastewater impact assessment at McMurdo has been or is being conducted by four organizations: Antarctic Support Associates (ASA), which conducts the effluent monitoring; Moss Landing Marine Laboratories, which conducts all of the benthic monitoring and most of the biological monitoring; Montana State University, which conducted water quality and water current measurements; and EG&G Idaho, which conducted water quality and sea ice monitoring. All four programs are interrelated and were needed to determine the impact of the wastewater discharge on the marine environment. This report summarizes the relevant monitoring work being conducted by Antarctic Support Associates, Moss Landing, and Montana State personnel, and specifically documents the results of EG&G Idaho`s efforts.

  20. Aerosolization of cyanobacterial cells across ecosystem boundaries in the McMurdo Dry Valleys, Antarctica

    Science.gov (United States)

    Trout-Haney, J.; Heindel, R. C.; Virginia, R. A.

    2017-12-01

    Cyanobacteria play a major ecological role in polar freshwaters, occurring predominately as small single cells in the water column, i.e., picocyanobacteria, or large multicellular colonies and mats that reside on the lake bottom. Cyanobacteria are also present in terrestrial polar habitats, including within soils, soil crusts, rocks, and glacial ice. Despite their predominance in polar ecosystems, the extent to which cyanobacteria move between terrestrial and aquatic landscape units remains poorly understood. In polar deserts such as the McMurdo Dry Valleys, aeolian processes influence terrestrial landscape morphology and drive the transport of sediments and other particles. Water surfaces can also act as a source of aerosolized particles, such as the production of sea spray aerosols through wave breaking in marine environments. However, aerosolization from freshwater bodies has been far less studied, especially in polar regions. We conducted a field-study to examine the transport of aerosolized cyanobacterial cells from ponds and soils in the McMurdo Dry Valleys. We used highly portable aerosol collection devices fitted with GF/F filters combusted at 500°C (0.3 µm) to collect small particles, such as picocyanobacteria (0.2 - 2 µm), from near-shore water and adjacent soil. We used epifluorescence microscopy to quantify aerosolized cells, with excitation filters for chlorophyll a (435 nm) and phycobilin pigments (572 nm), to distinguish cyanobacterial cells. We detected aerosolized picocyanobacterial cells from all ponds and soils sampled, indicating that these cells may be quite mobile and transported across ecosystem boundaries. We observed cyanobacterial cells individually, clustered, and associated with other organic material, suggesting multiple modes of cell transport. Further, we investigated the potential for aerosolization of toxin-producing cyanobacterial taxa (or unbound cyanotoxins), and the ecological and ecosystem-scale implications of

  1. Can Thermal Bending Fracture Ice Shelves?

    Science.gov (United States)

    MacAyeal, D. R.; Sergienko, O. V.; Banwell, A. F.; Willis, I.; Macdonald, G. J.; Lin, J.

    2017-12-01

    Visco-elastic plates will bend if the temperature on one side is cooled. If the plate is constrained to float, as for sea ice floes, this bending will lead to tensile stresses that can fracture the ice. The hydroacoustic regime below sea ice displays increased fracture-sourced noise when air temperatures above the ice cools with the diurnal cycle. The McMurdo Ice Shelf, Antarctica, also displays a massive increase in seismicity during the cooling phase of the diurnal cycle, and this motivates the question: Can surface cooling (or other forcing with thermal consequences) drive through-thickness fracture leading to iceberg calving? Past study of this question for sea ice gives an upper limit of ice-plate thickness (order meters) for which diurnal-scale thermal bending fracture can occur; but could cooling with longer time scales induce fracture of thicker ice plates? Given the seismic evidence of thermal bending fracture on the McMurdo Ice Shelf, the authors examine this question further.

  2. Subsurface Assessment at McMurdo Station, Antarctica

    Science.gov (United States)

    2017-02-01

    gravimetric moisture showed that water contents were very low (᝼%) in the upper horizons of the active layer and increased significantly to- wards and...signal attenuation potentially from high concentrations of buried hydrocarbons. The ground was typically fully frozen in October with temperatures...al. (1994) measured the gravimetric soil-moisture measure- ments approximately 3 km away from McMurdo Station in the disturbed and undisturbed areas

  3. Field Observations and Modeling Results of the McMurdo Shear Zone, Antarctica: Implications on Shear Margin Dynamics and Long- Term Viability of the South Pole Traverse

    Science.gov (United States)

    Kaluzienski, L. M.; Koons, P. O.; Enderlin, E. M.; Courville, Z.; Campbell, S. W.; Arcone, S.; Jordan, M.; Ray, L.

    2017-12-01

    Antarctica's ice shelves modulate the flow of inland ice towards the ocean. Understanding the controls on ice-shelf stability are critical to predicting the future evolution of the Antarctic Ice Sheet. For the Ross Ice Shelf (RIS), an important region of lateral resistance is the McMurdo Shear Zone (MSZ), a 5-10 km wide strip of heavily crevassed ice. On a yearly basis the United States Antarctic Program (USAP) mitigates crevasse hazards along the South Pole Traverse (SPoT) route that crosses this region. However, as ice advects northward past the lateral buttress of White Island into a region of greater flow divergence, intensified crevassing has been observed which will continue to place a substantial burden on safety mitigation efforts. The route has advected down-glacier towards this complex region since 2002 so the USAP currently has plans to relocate the shear zone crossing upstream in the near future. Our work aims to assess the feasibility of moving the route to several potential locations based on results from an integrated project incorporating detailed field-based observations of crevasse distributions and orientation from ground-penetrating radar (GPR), GPS and remote sensing observations of the flow and stress field within the MSZ, and finite element numerical modeling of local and regional kinematics within the region. In addition, we assess plausible dynamic forcings both upstream and downstream of the MSZ that could influence shear zone stability. These include changes in mass flux across the grounding lines of tributary glaciers such as the observed increase in ice discharge from of Byrd Glacier (Stearns et al., 2008) as well as changes at the MIS front due to recent intensified rift propagation (Banwel et al., 2017). Results from this work will increase our understanding of ice shelf shear margin dynamics and provide a firm basis for predicting the long-term behavior of the MSZ and viability of the SPoT. Stearns, Leigh A., Benjamin E. Smith, and

  4. Observations of amplified roughness from crystal accretion in the sub-ice ocean boundary layer

    Science.gov (United States)

    Robinson, N. J.; Stevens, C. L.; McPhee, M. G.

    2017-02-01

    Ice crystal accretion on the underside of sea ice and ice shelves, a signature of pressure-induced supercooling, has the potential to alter the energy balance in the ocean boundary layer through enhanced hydrodynamic roughness. Here we present estimates of crystal-driven ocean boundary layer roughness in supercooled water beneath sea ice adjacent to the McMurdo/Ross Ice Shelf. Data were collected from four sites in McMurdo Sound, Antarctica, between 2007 and 2015, and represent a range of ice shelf-affected conditions. The results show that drag of the rough ice underside in the presence of platelets is 6-30 times larger than typical levels homogeneously applied in ice-ocean interaction models. The crystal-enhanced drag promotes increased entrainment into the boundary layer from the upper ocean, which has the potential to affect ice shelf evolution and sea ice growth through enhanced turbulent exchange of heat and momentum.

  5. Edwardsiella andrillae, a New Species of Sea Anemone from Antarctic Ice

    Science.gov (United States)

    Daly, Marymegan; Rack, Frank; Zook, Robert

    2013-01-01

    Exploration of the lower surface of the Ross Ice Shelf in Antarctica by the Submersible Capable of under-Ice Navigation and Imaging (SCINI) remotely operated vehicle discovered a new species of sea anemone living in this previously undocumented ecosystem. This discovery was a significant outcome of the Coulman High Project’s geophysical and environmental fieldwork in 2010-2011 as part of the ANDRILL (ANtarctic geologic DRILLing) program. Edwardsiella andrillae n. sp., lives with most of its column in the ice shelf, with only the tentacle crown extending into the seawater below. In addition to being the only Antarctic representative of the genus, Edwardsiella andrillae is distinguished from all other species of the genus in the number of tentacles and in the size and distribution of cnidae. The anatomy and histology of Edwardsiella andrillae present no features that explain how this animal withstands the challenges of life in such an unusual habitat. PMID:24349517

  6. Edwardsiella andrillae, a new species of sea anemone from Antarctic ice.

    Directory of Open Access Journals (Sweden)

    Marymegan Daly

    Full Text Available Exploration of the lower surface of the Ross Ice Shelf in Antarctica by the Submersible Capable of under-Ice Navigation and Imaging (SCINI remotely operated vehicle discovered a new species of sea anemone living in this previously undocumented ecosystem. This discovery was a significant outcome of the Coulman High Project's geophysical and environmental fieldwork in 2010-2011 as part of the ANDRILL (ANtarctic geologic DRILLing program. Edwardsiella andrillae n. sp., lives with most of its column in the ice shelf, with only the tentacle crown extending into the seawater below. In addition to being the only Antarctic representative of the genus, Edwardsiella andrillae is distinguished from all other species of the genus in the number of tentacles and in the size and distribution of cnidae. The anatomy and histology of Edwardsiella andrillae present no features that explain how this animal withstands the challenges of life in such an unusual habitat.

  7. Contamination in sediments, bivalves and sponges of McMurdo Sound, Antarctica

    International Nuclear Information System (INIS)

    Negri, Andrew; Burns, Kathryn; Boyle, Steve; Brinkman, Diane; Webster, Nicole

    2006-01-01

    This study examined the concentrations of total hydrocarbons (THC), polychlorinated biphenyls (PCB), polyaromatic hydrocarbons (PAH), and trace metals (Cu, Zn, Cd, Pb, Hg and As) in marine sediments off Scott Base (NZ) and compared them with sediments near the highly polluted McMurdo Station (US) as well as less impacted sites including Turtle Rock and Cape Evans. The Antarctic mollusc, Laternula elliptica and three common sponge species were also analysed for trace metals. The mean THC concentration in sediments from Scott Base was 3 fold higher than the pristine site, Turtle Rock, but 10 fold lower than samples from McMurdo Station. McMurdo Station sediments also contained the highest concentrations of PAHs, PCBs and the trace metals, Cu, Zn, Pb, Cd and Hg. Copper was significantly higher in bivalves from McMurdo Station than other sites. Trace metal concentrations in sponges were generally consistent within sites but no spatial patterns were apparent. - Analyses of Antarctic marine sediments, bivalves and sponges revealed strong PAH, PCB and trace metal gradients in McMurdo Sound

  8. Allan Hills Pleistocene Ice Project (PIP)

    Science.gov (United States)

    Kurbatov, A.; Brook, E.; Campbell, S. W.; Conway, H.; Dunbar, N. W.; Higgins, J. A.; Iverson, N. A.; Kehrl, L. M.; McIntosh, W. C.; Spaulding, N. E.; Yan, Y.; Mayewski, P. A.

    2016-12-01

    A major international effort to identify at least 1.5 Ma old ice for paleoclimate reconstructions has successfully resulted in the selection of several potential drill sites in East Antarctica. At this point it is indisputable that the Antarctic ice sheet captures a continuous envinronmental record of the Earth that spans the Mid Pleistocene Transition (MPT). In addition to traditional ice coring approaches, the oldest ice can also be recovered in Antarctic Blue Ice Areas (BIA). We have already successfully demonstrated that the Allan Hills (AH) BIA captures a regional climate signal and robust record of 1Ma atmosphere that can be studied with a relatively uncomplicated logistical imprint and essentially unlimited sampling volume. The attractiveness of unlimited sampling of known age ice is the basis for the "ice park" concept proposed earlier by our research team. The idea is that, once the age of ice exposed along the flow line at the surface of BIA is mapped, it could be sampled for numerous research projects as needed. Here we propose an intermediate ( 1,150 m deep) ice core drill site, located only 240 km away from McMurdo base that will help to develop a, continuous, high quality regional paleoclimate record that is at least 1Ma old. We will introduce and discuss the glaciological settings, paleoclimate signals and possible limitations and advantages of the 1 Ma AH BIA regional paleoclimate record. The research was funded by NSF Division of Polar Programs.

  9. Photoadaptations of photosynthesis and carbon metabolism by phytoplankton from McMurdo Sound, Antarctica. I. Species-specific and community responses to reduced irradiances

    International Nuclear Information System (INIS)

    Rivkin, R.B.; Voytek, M.A.

    1987-01-01

    Irradiance-dependent rates of photosynthesis and photosynthate labeling patterns were measured for phytoplankton in McMurdo Sound, Antarctica. Species-specific and traditional whole-water techniques were used to compare the physiological responses of algae collected in a high light environment at the ice edge and from a low light environment under the annual sea ice. There were differences among species within the same sample, for the same species isolated from high and low light environments, and when species-specific responses were compared with that of the natural assemblage. For algae collected beneath the sea ice, photosynthesis generally saturated at a lower irradiance, and the light-limited region of the P vs. I relationship had a steeper slope than for the same species collected at the ice edge. Low-light-adapted algae incorporated significantly less 14 C into proteins and more into low molecular weight compounds and lipids than the same species isolated from a high light environment. Under conditions where reduced rates of protein synthesis were coupled with high rates of carbon uptake, the measurement of photosynthesis may not accurately reflect the physiological condition of the phytoplankton

  10. Application of ground-penetrating radar at McMurdo Station, Antarctica

    International Nuclear Information System (INIS)

    Stefano, J.E.

    1992-01-01

    Argonne National Laboratory initiated a site investigation program at McMurdo Station, Antarctica, to characterize environmental contamination. The performance and usefulness of ground-penetrating radar (GPR) was evaluated under antarctic conditions during the initial site investigation in January 1991. Preliminary surveys were successful in defining the contact between reworked pyroclastic material and in the prefill, undisturbed pyroclastics and basalts at some sites. Interference from radio traffic at McMurdo Station was not observed, but interference was a problem in work with unshielded antennas near buildings. In general, the results of this field test suggest that high-quality, high-resolution, continuous subsurface profiles can be produced with GPR over most of McMurdo Station

  11. Application of ground-penetrating radar at McMurdo Station, Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Stefano, J.E.

    1992-01-01

    Argonne National Laboratory initiated a site investigation program at McMurdo Station, Antarctica, to characterize environmental contamination. The performance and usefulness of ground-penetrating radar (GPR) was evaluated under antarctic conditions during the initial site investigation in January 1991. Preliminary surveys were successful in defining the contact between reworked pyroclastic material and in the prefill, undisturbed pyroclastics and basalts at some sites. Interference from radio traffic at McMurdo Station was not observed, but interference was a problem in work with unshielded antennas near buildings. In general, the results of this field test suggest that high-quality, high-resolution, continuous subsurface profiles can be produced with GPR over most of McMurdo Station.

  12. Application of ground-penetrating radar at McMurdo Station, Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Stefano, J.E.

    1992-05-01

    Argonne National Laboratory initiated a site investigation program at McMurdo Station, Antarctica, to characterize environmental contamination. The performance and usefulness of ground-penetrating radar (GPR) was evaluated under antarctic conditions during the initial site investigation in January 1991. Preliminary surveys were successful in defining the contact between reworked pyroclastic material and in the prefill, undisturbed pyroclastics and basalts at some sites. Interference from radio traffic at McMurdo Station was not observed, but interference was a problem in work with unshielded antennas near buildings. In general, the results of this field test suggest that high-quality, high-resolution, continuous subsurface profiles can be produced with GPR over most of McMurdo Station.

  13. Characteristics of ice-active substances released by sea ice diatoms

    Science.gov (United States)

    Raymond, James A.

    1997-07-01

    Several species of antarctic sea ice diatoms have been found to release ice-active substances (IAS). At natural concentrations, they produce dense pitting on ice crystal surfaces at temperatures slightly below the freezing point, without significantly affecting the freezing point. This phenomenon appears to be associated with cold-adapted species as it has not been found in temperature fresh water and marine diatoms. IASs have been found in several species of sea ice diatoms, including both attached and unattached species. The ice-active substances have been found both in ice platelet water as well as in the solid congelation ice in McMurdo Sound in early summer, and in newly formed ice in winter in the Weddell and Bellinghausen seas. An IAS- producing species (Amphiprora) was cultured in the laboratory and produced noticeable increases in IAS activity. The IAS is retained by dialysis tubing and appears to be proteinaceous, as it is inactivated by proteases and heat. Further attempts to purify and characterize the IAS are in progress. The role of the IAS is unknown. Possible roles involving attachment of diatoms to ice and modification of the optical properties of ice are being considered.

  14. 'McMurdo' Panorama from Spirit's 'Winter Haven'

    Science.gov (United States)

    2006-01-01

    This 360-degree view, called the 'McMurdo' panorama, comes from the panoramic camera (Pancam) on NASA's Mars Exploration Rover Spirit. From April through October 2006, Spirit has stayed on a small hill known as 'Low Ridge.' There, the rover's solar panels are tilted toward the sun to maintain enough solar power for Spirit to keep making scientific observations throughout the winter on southern Mars. This view of the surroundings from Spirit's 'Winter Haven' is presented in approximately true color. Oct. 26, 2006, marks Spirit's 1,000th sol of what was planned as a 90-sol mission. (A sol is a Martian day, which lasts 24 hours, 39 minutes, 35 seconds). The rover has lived through the most challenging part of its second Martian winter. Its solar power levels are rising again. Spring in the southern hemisphere of Mars will begin in early 2007. Before that, the rover team hopes to start driving Spirit again toward scientifically interesting places in the 'Inner Basin' and 'Columbia Hills' inside Gusev crater. The McMurdo panorama is providing team members with key pieces of scientific and topographic information for choosing where to continue Spirit's exploration adventure. The Pancam began shooting component images of this panorama during Spirit's sol 814 (April 18, 2006) and completed the part shown here on sol 932 (Aug. 17, 2006). The panorama was acquired using all 13 of the Pancam's color filters, using lossless compression for the red and blue stereo filters, and only modest levels of compression on the remaining filters. The overall panorama consists of 1,449 Pancam images and represents a raw data volume of nearly 500 megabytes. It is thus the largest, highest-fidelity view of Mars acquired from either rover. Additional photo coverage of the parts of the rover deck not shown here was completed on sol 980 (Oct. 5 , 2006). The team is completing the processing and mosaicking of those final pieces of the panorama, and that image will be released on the Web shortly

  15. 'McMurdo' Panorama from Spirit's 'Winter Haven' (False Color)

    Science.gov (United States)

    2006-01-01

    This 360-degree view, called the 'McMurdo' panorama, comes from the panoramic camera (Pancam) on NASA's Mars Exploration Rover Spirit. From April through October 2006, Spirit has stayed on a small hill known as 'Low Ridge.' There, the rover's solar panels are tilted toward the sun to maintain enough solar power for Spirit to keep making scientific observations throughout the winter on southern Mars. This view of the surroundings from Spirit's 'Winter Haven' is presented in exaggerated color to enhance color differences among rocks, soils and sand. Oct. 26, 2006, marks Spirit's 1,000th sol of what was planned as a 90-sol mission. (A sol is a Martian day, which lasts 24 hours, 39 minutes, 35 seconds). The rover has lived through the most challenging part of its second Martian winter. Its solar power levels are rising again. Spring in the southern hemisphere of Mars will begin in early 2007. Before that, the rover team hopes to start driving Spirit again toward scientifically interesting places in the 'Inner Basin' and 'Columbia Hills' inside Gusev crater. The McMurdo panorama is providing team members with key pieces of scientific and topographic information for choosing where to continue Spirit's exploration adventure. The Pancam began shooting component images of this panorama during Spirit's sol 814 (April 18, 2006) and completed the part shown here on sol 932 (Aug. 17, 2006). The panorama was acquired using all 13 of the Pancam's color filters, using lossless compression for the red and blue stereo filters, and only modest levels of compression on the remaining filters. The overall panorama consists of 1,449 Pancam images and represents a raw data volume of nearly 500 megabytes. It is thus the largest, highest-fidelity view of Mars acquired from either rover. Additional photo coverage of the parts of the rover deck not shown here was completed on sol 980 (Oct. 5 , 2006). The team is completing the processing and mosaicking of those final pieces of the panorama

  16. 'McMurdo' Panorama from Spirit's 'Winter Haven' (Color Stereo)

    Science.gov (United States)

    2006-01-01

    [figure removed for brevity, see original site] Left-eye view of a stereo pair for PIA01905 [figure removed for brevity, see original site] Right-eye view of a stereo pair for PIA01905 This 360-degree view, called the 'McMurdo' panorama, comes from the panoramic camera (Pancam) on NASA's Mars Exploration Rover Spirit. From April through October 2006, Spirit has stayed on a small hill known as 'Low Ridge.' There, the rover's solar panels are tilted toward the sun to maintain enough solar power for Spirit to keep making scientific observations throughout the winter on southern Mars. This view of the surroundings from Spirit's 'Winter Haven' is presented as a stereo anaglyph to show the scene three-dimensionally when viewed through red-blue glasses (with the red lens on the left). Oct. 26, 2006, marks Spirit's 1,000th sol of what was planned as a 90-sol mission. (A sol is a Martian day, which lasts 24 hours, 39 minutes, 35 seconds). The rover has lived through the most challenging part of its second Martian winter. Its solar power levels are rising again. Spring in the southern hemisphere of Mars will begin in early 2007. Before that, the rover team hopes to start driving Spirit again toward scientifically interesting places in the 'Inner Basin' and 'Columbia Hills' inside Gusev crater. The McMurdo panorama is providing team members with key pieces of scientific and topographic information for choosing where to continue Spirit's exploration adventure. The Pancam began shooting component images of this panorama during Spirit's sol 814 (April 18, 2006) and completed the part shown here on sol 932 (Aug. 17, 2006). The panorama was acquired using all 13 of the Pancam's color filters, using lossless compression for the red and blue stereo filters, and only modest levels of compression on the remaining filters. The overall panorama consists of 1,449 Pancam images and represents a raw data volume of nearly 500 megabytes. It is thus the largest, highest-fidelity view of Mars

  17. 'McMurdo' Panorama from Spirit's 'Winter Haven' (Stereo)

    Science.gov (United States)

    2006-01-01

    This 360-degree view, called the 'McMurdo' panorama, comes from the panoramic camera (Pancam) on NASA's Mars Exploration Rover Spirit. From April through October 2006, Spirit has stayed on a small hill known as 'Low Ridge.' There, the rover's solar panels are tilted toward the sun to maintain enough solar power for Spirit to keep making scientific observations throughout the winter on southern Mars. This view of the surroundings from Spirit's 'Winter Haven' is presented as a stereo anaglyph to show the scene three-dimensionally when viewed through red-blue glasses (with the red lens on the left). Oct. 26, 2006, marks Spirit's 1,000th sol of what was planned as a 90-sol mission. (A sol is a Martian day, which lasts 24 hours, 39 minutes, 35 seconds). The rover has lived through the most challenging part of its second Martian winter. Its solar power levels are rising again. Spring in the southern hemisphere of Mars will begin in early 2007. Before that, the rover team hopes to start driving Spirit again toward scientifically interesting places in the 'Inner Basin' and 'Columbia Hills' inside Gusev crater. The McMurdo panorama is providing team members with key pieces of scientific and topographic information for choosing where to continue Spirit's exploration adventure. The Pancam began shooting component images of this panorama during Spirit's sol 814 (April 18, 2006) and completed the part shown here on sol 932 (Aug. 17, 2006). The panorama was acquired using all 13 of the Pancam's color filters, using lossless compression for the red and blue stereo filters, and only modest levels of compression on the remaining filters. The overall panorama consists of 1,449 Pancam images and represents a raw data volume of nearly 500 megabytes. It is thus the largest, highest-fidelity view of Mars acquired from either rover. Additional photo coverage of the parts of the rover deck not shown here was completed on sol 980 (Oct. 5 , 2006). The team is completing the processing and

  18. Subsurface Assessment at McMurdo Station, Antarctica

    Science.gov (United States)

    2017-02-01

    time, soil temperature, and shear strength of the soil . The highest temperature of the ground will con- trol the resistance to ice creep and shear...Johnston 1981). Depending on the design chosen, building engineered structures poten- tially requires excavation of ice-rich soil , and soil will be...for the new development on-site will likely expose large amounts of contaminated soil that require environmental attention. It is advisable to apply

  19. What's Cooler Than Being Cool? Icefin: Robotic Exploration Beneath Antarctic Ice Shelves

    Science.gov (United States)

    Lawrence, J.; Schmidt, B. E.; Meister, M. R.; Glass, J. B.; Bowman, J. S.; Stockton, A. M.; Dichek, D.; Hurwitz, B.; Ramey, C.; Spears, A.; Walker, C. C.

    2017-12-01

    The 2017-18 Antarctic field season marks the first of three under the RISEUP project (Ross Ice Shelf & Europa Underwater Probe, NASA PSTAR program grant NNX16AL07G, PI B. E. Schmidt). RISEUP expands our efforts to understand the physical processes governing ice-ocean interactions from beneath the McMurdo Ice Shelf (MIS) to the Ross Ice Shelf (RIS), utilizing the modular autonomous or remotely operable submersible vehicle (AUV/ROV) Icefin. The remote, aphotic regions below Antarctic shelves present a unique opportunity- they are both poorly understood terrestrial environments and analogs for similar systems hypothesized to be present on other bodies in our solar system, such as Europa and Enceladus. By developing new robotic technologies to access and explore ice shelf cavities we are advancing our understanding of how temperature, pressure, and salinity influence the ice-ocean interface, the limits of habitable environments on Earth, and what biological processes and adaptations enable the life discovered by the RISP and WISSARD programs during initial exploration beneath the RIS. These investigations further our understanding of ocean world habitability and support planned and proposed planetary missions (e.g. Europa Clipper, Europa Lander) via improved constraint of marine ice accretion processes, organic entrainment, and interface habitability. Custom built at Georgia Tech and first deployed during the 2014/15 Antarctic season, Icefin is 3.5 m, 125 kg modular vehicle that now carries a full suite of oceanographic sensors (including conductivity, temperature, depth, dissolved O2, dissolved organic matter, turbidity, pH, eH, and sonar) that can be deployed through boreholes as small as 25 cm in diameter. Here we present continued analysis of basal ice and oceanographic observations in the McMurdo Sound region from 2012-2015 with, pending anticipated field work, comparisons to preliminary data from the 2017/18 field season beneath both the McMurdo and Ross Ice

  20. Asynchronous behavior of the Antarctic Ice Sheet and local glaciers during and since Termination 1, Salmon Valley, Antarctica

    Science.gov (United States)

    Jackson, Margaret S.; Hall, Brenda L.; Denton, George H.

    2018-01-01

    The stability of the Antarctic Ice Sheet under future warming remains an open question with broad implications for sea-level prediction and adaptation. In particular, knowledge of whether the ice sheet has the capacity for rapid drawdown or collapse, or whether it can remain stable during periods of warming, is essential for predicting its future behavior. Here we use 55 radiocarbon dates, coupled with geomorphologic mapping, to reconstruct the timing of changes in ice extent and elevation during the last ice-age termination in Salmon Valley, adjacent to McMurdo Sound in the western Ross Sea Embayment. Results indicate that a grounded ice sheet in the Ross Sea Embayment achieved its maximum elevation and extent along the headlands of Salmon Valley at ∼18,000 yr BP, during a period of increasing temperatures and accumulation over the Antarctic continent. This ice remained at or near its maximum on the headlands near the valley mouth until after ∼14,000 yr BP. Removal of grounded Ross Sea ice from Salmon Valley was complete shortly after ∼7900 yr BP, indicating that the grounding line had retreated through southern McMurdo Sound by that time. We suggest the primary driver of Ross Sea ice removal from McMurdo Sound was marine-based, either through basal melting or calving due to sea-level rise. When combined with regional data, the Salmon Valley record suggests that this sector of the Antarctic Ice Sheet did not contribute in a significant way to deglacial meltwater pulses, such as meltwater pulse 1a. In contrast to the Ross Sea ice, our work also shows that local, independent alpine glaciers in Salmon Valley have advanced through the Holocene. Land-terminating glaciers such as these elsewhere in the region show a similar pattern, and may reflect the continued influence of increased accumulation following the termination of the last ice age.

  1. Dynamic Antarctic ice sheet during the early to mid-Miocene

    Science.gov (United States)

    Gasson, Edward; DeConto, Robert M.; Pollard, David; Levy, Richard H.

    2016-03-01

    Geological data indicate that there were major variations in Antarctic ice sheet volume and extent during the early to mid-Miocene. Simulating such large-scale changes is problematic because of a strong hysteresis effect, which results in stability once the ice sheets have reached continental size. A relatively narrow range of atmospheric CO2 concentrations indicated by proxy records exacerbates this problem. Here, we are able to simulate large-scale variability of the early to mid-Miocene Antarctic ice sheet because of three developments in our modeling approach. (i) We use a climate-ice sheet coupling method utilizing a high-resolution atmospheric component to account for ice sheet-climate feedbacks. (ii) The ice sheet model includes recently proposed mechanisms for retreat into deep subglacial basins caused by ice-cliff failure and ice-shelf hydrofracture. (iii) We account for changes in the oxygen isotopic composition of the ice sheet by using isotope-enabled climate and ice sheet models. We compare our modeling results with ice-proximal records emerging from a sedimentological drill core from the Ross Sea (Andrill-2A) that is presented in a companion article. The variability in Antarctic ice volume that we simulate is equivalent to a seawater oxygen isotope signal of 0.52-0.66‰, or a sea level equivalent change of 30-36 m, for a range of atmospheric CO2 between 280 and 500 ppm and a changing astronomical configuration. This result represents a substantial advance in resolving the long-standing model data conflict of Miocene Antarctic ice sheet and sea level variability.

  2. FY 1994 ambient air monitoring report for McMurdo Station, Antarctica

    International Nuclear Information System (INIS)

    Lugar, R.M.

    1994-12-01

    This report presents the results of ambient air monitoring performed during the 1994 fiscal year (FY 1994) in the vicinity of McMurdo Station, Antarctica. Routine monitoring was performed during the 1993-1994 austral summer at three locations for airborne particulate matter less than 10 micrometers (PM-10) and at two locations for carbon monoxide (CO), sulfur dioxide (SO 2 ), and nitrogen oxides (NO, NO 2 , and NO x ). Selected PM-10 filters were analyzed for arsenic, beryllium, cadmium, chromium, lead, mercury, and nickel. Additional air samples were collected at three McMurdo area locations and at Black Island for determination of the airborne concentration of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). Sampling site selection, sampling procedures, and quality assurance procedures used were consistent with US Environmental Protection Agency guidance for local ambient air quality networks

  3. Drivers of solar radiation variability in the McMurdo Dry Valleys, Antarctica

    Science.gov (United States)

    Obryk, Maciej; Fountain, Andrew G.; Doran, Peter; Lyons, Berry; Eastman, Ryan

    2018-01-01

    Annually averaged solar radiation in the McMurdo Dry Valleys, Antarctica has varied by over 20 W m−2 during the past three decades; however, the drivers of this variability are unknown. Because small differences in radiation are important to water availability and ecosystem functioning in polar deserts, determining the causes are important to predictions of future desert processes. We examine the potential drivers of solar variability and systematically eliminate all but stratospheric sulfur dioxide. We argue that increases in stratospheric sulfur dioxide increase stratospheric aerosol optical depth and decrease solar intensity. Because of the polar location of the McMurdo Dry Valleys (77–78°S) and relatively long solar ray path through the stratosphere, terrestrial solar intensity is sensitive to small differences in stratospheric transmissivity. Important sources of sulfur dioxide include natural (wildfires and volcanic eruptions) and anthropogenic emission.

  4. Waste Water Handling Proof of Concepts at McMurdo Station, Antarctica

    Science.gov (United States)

    2014-09-17

    chloride Acrolein Hexane ERDC/CRREL TR-14-17 30 Figure A1. Location of samplers during emissions testing on 11 February 2012. Figure A2. On...Raytheon Polar Services Company implemented two proof-of-concept waste handling methods for testing during the austral summers spanning 2010 to 2013...at Pegasus Airfield, McMurdo, Antarctica. These methods included a portable waste transfer tank and a waste incineration method. Testing and

  5. Flow Control and Design Assessment for Drainage System at McMurdo Station, Antarctica

    Science.gov (United States)

    2014-11-24

    Development Center (ERDC) solves the nation’s toughest engineering and environmental challenges. ERDC develops innovative solutions in civil and military... solutions to erosions controls are charac- terized as BMPs, which can be either non-structural or structural. (BMPs are a suite of methods by which the...applicable to McMurdo are those for addressing bare earth erosion without tillage, such as in con- struction sites, strip mines, and deforested areas

  6. Obliquity-paced Pliocene West Antarctic ice sheet oscillations

    Science.gov (United States)

    Naish, T.; Powell, R.; Levy, R.; Wilson, G.; Scherer, R.; Talarico, F.; Krissek, L.; Niessen, F.; Pompilio, M.; Wilson, T.; Carter, L.; DeConto, R.; Huybers, P.; McKay, R.; Pollard, D.; Ross, J.; Winter, D.; Barrett, P.; Browne, G.; Cody, R.; Cowan, E.; Crampton, J.; Dunbar, G.; Dunbar, N.; Florindo, F.; Gebhardt, C.; Graham, I.; Hannah, M.; Hansaraj, D.; Harwood, D.; Helling, D.; Henrys, S.; Hinnov, L.; Kuhn, G.; Kyle, P.; Laufer, A.; Maffioli, P.; Magens, D.; Mandernack, K.; McIntosh, W.; Millan, C.; Morin, R.; Ohneiser, C.; Paulsen, T.; Persico, D.; Raine, I.; Reed, J.; Riesselman, C.; Sagnotti, L.; Schmitt, D.; Sjunneskog, C.; Strong, P.; Taviani, M.; Vogel, S.; Wilch, T.; Williams, T.

    2009-01-01

    Thirty years after oxygen isotope records from microfossils deposited in ocean sediments confirmed the hypothesis that variations in the Earth's orbital geometry control the ice ages1, fundamental questions remain over the response of the Antarctic ice sheets to orbital cycles2. Furthermore, an understanding of the behaviour of the marine-based West Antarctic ice sheet (WAIS) during the 'warmer-than-present' early-Pliocene epoch (5–3 Myr ago) is needed to better constrain the possible range of ice-sheet behaviour in the context of future global warming3. Here we present a marine glacial record from the upper 600 m of the AND-1B sediment core recovered from beneath the northwest part of the Ross ice shelf by the ANDRILL programme and demonstrate well-dated, 40-kyr cyclic variations in ice-sheet extent linked to cycles in insolation influenced by changes in the Earth's axial tilt (obliquity) during the Pliocene. Our data provide direct evidence for orbitally induced oscillations in the WAIS, which periodically collapsed, resulting in a switch from grounded ice, or ice shelves, to open waters in the Ross embayment when planetary temperatures were up to 3 °C warmer than today4 and atmospheric CO2 concentration was as high as 400 p.p.m.v. (refs 5, 6). The evidence is consistent with a new ice-sheet/ice-shelf model7 that simulates fluctuations in Antarctic ice volume of up to +7 m in equivalent sea level associated with the loss of the WAIS and up to +3 m in equivalent sea level from the East Antarctic ice sheet, in response to ocean-induced melting paced by obliquity. During interglacial times, diatomaceous sediments indicate high surface-water productivity, minimal summer sea ice and air temperatures above freezing, suggesting an additional influence of surface melt8 under conditions of elevated CO2.

  7. Ice Sheets & Ice Cores

    DEFF Research Database (Denmark)

    Mikkelsen, Troels Bøgeholm

    Since the discovery of the Ice Ages it has been evident that Earth’s climate is liable to undergo dramatic changes. The previous climatic period known as the Last Glacial saw large oscillations in the extent of ice sheets covering the Northern hemisphere. Understanding these oscillations known...

  8. Photophysiology and cellular composition of sea ice algae

    International Nuclear Information System (INIS)

    Lizotte, M.P.

    1989-01-01

    The productivity of sea ice algae depends on their physiological capabilities and the environmental conditions within various microhabitats. Pack ice is the dominant form of sea ice, but the photosynthetic activity of associated algae has rarely been studied. Biomass and photosynthetic rates of ice algae of the Weddell-Scotia Sea were investigated during autumn and winter, the period when ice cover grows from its minimum to maximum. Biomass-specific photosynthetic rates typically ranged from 0.3 to 3.0 μg C · μg chl -1 · h -1 higher than land-fast ice algae but similar to Antarctic phytoplankton. Primary production in the pack ice during winter may be minor compared to annual phytoplankton production, but could represent a vital seasonal contribution to the Antarctic ecosystem. Nutrient supply may limit the productivity of ice algae. In McMurdo Sound, congelation ice algae appeared to be more nutrient deficient than underlying platelet ice algae based on: lower nitrogen:carbon, chlorophyll:carbon, and protein:carbohydrate; and 14 C-photosynthate distribution to proteins and phospholipids was lower, while distribution to polysaccharides and neutral lipids was higher. Depletion of nitrate led to decreased nitrogen:carbon, chlorophyll:carbon, protein:carbohydrate, and 14 C-photosynthate to proteins. Studied were conducted during the spring bloom; therefore, nutrient limitation may only apply to dense ice algal communities. Growth limiting conditions may be alleviated when algae are released into seawater during the seasonal recession of the ice cover. To continue growth, algae must adapt to the variable light field encountered in a mixed water column. Photoadaptation was studied in surface ice communities and in bottom ice communities

  9. Too Warm, Two Poles: Super Interglacial Teleconnections and Possible Dual Pole Ice Sheet Stability

    Science.gov (United States)

    Brigham-Grette, J.; Deconto, R. M.; Roychowdhury, R.; de Wet, G.; Keisling, B. A.; Melles, M.; Minyuk, P.

    2017-12-01

    Geologic records of the warm Pliocene and Pleistocene super interglacials from both the Arctic and the Antarctic show us that ice sheets are more vulnerable to subtle polar warming than once thought. The continuous 3.6 million-year old sediment record from Lake El'gygytgyn (Lake E), the largest, deepest unglaciated Arctic lake located in central Chukotka, Russia, contains evidence of the warm forested Pliocene and the transition to changing glacial/interglacial climate cycles including at least 9 super interglacials and numerous other strong interglacials. Most of these super interglacials especially MIS 11 and 31, record conditions warmer than MIS 5e and many occur when global cycles are dominated by apparent 41ka forcing during the transition from the warm Pliocene to stronger G/IG variability. Given community consensus on the reduction of the Greenland Ice sheet (GIS) during MIS5e, we suggest that previous interglacials likely forced even larger reductions in the GIS, perhaps consistent with cosmogenic isotope exposure histories. We can best match MIS 11 and 31 from the Antarctic ANDRILL records when diatomaceous ooze deposition in the past recovered from under the modern Ross Ice Shelf suggests collapse of the WAIS and open water conditions. It is possible that a large number of the other Lake E super interglacials correspond to other intervals of WAIS collapse, within the uncertainly of the ANDRILL chronology. The forcing of super interglacials was not necessarily the result of high atmospheric CO2 but the result of preconditioning during periods of extremely low eccentricity and high obliquity. The challenge is now to incorporate oceanographic models (as suggested in Melles et al. 2012) to gauge ice sheet and ocean circulation sensitivity and timescales to preconditioning. Yet confirmation of past warming driving frequent ice sheet collapse in both hemispheres is clear geologically-based evidence that informs our future. Today, anthropogenic CO2 emissions are

  10. Differences in Arctic and Antarctic PSC occurrence as observed by lidar in Ny-Ålesund (79° N, 12° E and McMurdo (78° S, 167° E

    Directory of Open Access Journals (Sweden)

    M. Maturilli

    2005-01-01

    Full Text Available The extent of springtime Arctic ozone loss does not reach Antarctic ``ozone hole'' dimensions because of the generally higher temperatures in the northern hemisphere vortex and consequent less polar stratospheric cloud (PSC particle surface for heterogeneous chlorine activation. Yet, with increasing greenhouse gases stratospheric temperatures are expected to further decrease. To infer if present Antarctic PSC occurrence can be applied to predict future Arctic PSC occurrence, lidar observations from McMurdo station (78° S, 167° E and NyÅlesund (79° N, 12° E have been analysed for the 9 winters between 1995 (1995/1996 and 2003 (2003/2004. Although the statistics may not completely cover the overall hemispheric PSC occurrence, the observations are considered to represent the main synoptic cloud features as both stations are mostly situated in the centre or at the inner edge of the vortex. Since the focus is set on the occurrence frequency of solid and liquid particles, the analysis has been restricted to volcanic aerosol free conditions. In McMurdo, by far the largest part of PSC observations is associated with NAT PSCs. The observed persistent background of NAT particles and their potential ability to cause denoxification and irreversible denitrification is presumably more important to Antarctic ozone chemistry than the scarcely observed ice PSCs. Meanwhile in Ny-Ålesund, ice PSCs have never been observed, while solid NAT and liquid STS clouds both occur in large fraction. Although they are also found solely, the majority of observations reveals solid and liquid particle layers in the same profile. For the Ny-Ålesund measurements, the frequent occurrence of liquid PSC particles yields major significance in terms of ozone chemistry, as their chlorine activation rates are more efficient. The relationship between temperature, PSC formation, and denitrification is nonlinear and the McMurdo and Ny-Ålesund PSC observations imply that for

  11. Hydroecological Connections: Hyporheic Zone Weathering of Silicate Minerals Controls Diatom Biodiversity in Microbial Mats in Glacial Meltwater Streams of the McMurdo Dry Valleys, Antarctica

    Science.gov (United States)

    McKnight, D. M.; Dyson, I.; Esposito, R. M.; Gooseff, M. N.; Lyons, W. B.; Welch, K. A.

    2015-12-01

    The McMurdo Dry Valleys of Antarctica is comprised of alpine and terminal glaciers, large expanses of patterned ground, and ice-covered lakes in the valley floors, which are linked by glacial meltwater streams that flow during the austral summer. As part of the McMurdo Dry Valleys Long-Term Ecological research project, we have observed stream ecosystem response to a sustained 18 year cool period with low flows, which has been recently interrupted by three "flood events" during sunny, warm summers. Many of these streams contain thriving microbial mats comprised of cyanobacteria and endemic diatoms, the most diverse group of eukaryotic organisms in the valleys. Of the 45 diatom taxa, some common taxa are heavily silicified, Hantzschia amphioxys f. muelleri, while others are only lightly silicified. By comparing diatom communities in streams which flow every summer with those in streams that only flow during flood events, we found that hydrologic flow regime acts as a strong environmental filter on diatom community composition. Following the first flood event in 2001/02, mat biomass was two-fold lower due to scouring and recovered over several years, with lesser declines following the subsequent floods. In the longer streams, the diatom community composition remained stable through the flood events, whereas in two of the shorter streams, Green and Bowles Creeks, the diatom community shifted after the first flood event to a greater abundance of lightly silicified taxa. Water quality monitoring and reactive transport modeling have shown that rapid weathering of silicate minerals in the hyporheic zone accounts for the downstream increases in Si concentration which are observed in the longer streams. One mechanism driving this greater abundance of lightly silicified diatoms in shorter streams could be the greater dilution of the Si supply from hyporheic weathering in shorter streams under high flows. Given that the stream diatom community is well preserved in the 40

  12. Upper Bound Radiation Dose Assessment for Military Personnel at McMurdo Station, Antarctica, between 1962 and 1979 (2REV)

    Science.gov (United States)

    2017-09-30

    Institute of Occupational Safety and Health (NIOSH) Dose Reconstruction Program uses the Integrated Modules for Bioassay Analysis (IMBA) software ...McMurdo Station, Antarctica. Division of Radiological Health, U.S. Public Health Service, U.S Department of Health, Education , and Welfare, Washington...His work included, among others, hydrological and environmental modeling, GIS -based water security threat assessment, and evaluation of environmental

  13. Upper-Bound Radiation Dose Assessment for Military Personnel at McMurdo Station, Antarctica, between 1962 and 1979

    Science.gov (United States)

    2013-06-01

    provided for first time filers, veterans previously denied VA service connection, and surviving spouses or children of a deceased McMurdo Station...Procedures SPARE Scenario of Participation and Exposure Sr strontium Sv sievert Tl thallium TLD thermoluminescent dosimeter TRIGA Training

  14. 21Ne, 10Be and 26Al cosmogenic burial ages of near-surface eolian sand from the Packard Dune field, McMurdo Dry Valleys, Antarctica.

    Science.gov (United States)

    Fink, David; Augustinus, Paul; Rhodes, Ed; Bristow, Charles; Balco, Greg

    2015-04-01

    The McMurdo Dry Valleys, Antarctica, have been ice-free for at least 10 Ma. In Victoria Valley, the largest of the Dry Valleys, permafrosted yet still actively migrating dune-fields, occupy an area of ~8 km2 with dune thicknesses varying from ~5 to 70 meters. High-resolution ground penetrating radar (GPR) imaging of selected dunes reveal numerous unconformities and complex stratigraphy inferring cycles of sand accretion and deflation from westerly katabatic winter winds sourced from the East Antarctic Ice Sheet and anabatic summer winds sourced from the Ross Sea. Samples above permafrost depth were taken for OSL and cosmogenic 26Al/10Be burial ages. OSL ages from shallow (pre-history independent of depth. Correcting for minor post-burial production based on OSL ages, the minimum (integrated) burial period for these sand grains is 0.51+/- 0.12 Ma which represents the burial age at the time of arrival at the dune. A possible explanation is that this common burial signal reflects recycling episodes of exposure, deposition, burial and deflation, sufficiently frequent to move all grains towards a common pre-dune deposition history. However, it is unclear over what length of time this processes has been active and fraction of time the sand has been buried. Consequently we also analysed purified quartz aliquots of the same samples for a third and stable nuclide, 21Ne, to determine the total surface and burial exposure periods. Using the 21Ne/10Be system we obtain burial ages of 1.10 +/- 0.10 Ma. Further coring below permafrost is planned for austral summer 2015.

  15. Profile temperature, salinity, and hydrostatic pressure from CTD casts in McMurdo Sound from 2011-11-26 to 2011-12-03 (NCEI Accession 0131073)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Full-depth CTD profiles taken on along-sound and cross-sound transects of McMurdo Sound. Eleven stations with six independent sites were visited.

  16. Experimental Analysis of Sublimation Dynamics for Buried Glacier Ice in Beacon Valley, Antarctica

    Science.gov (United States)

    Ehrenfeucht, S.; Dennis, D. P.; Marchant, D. R.

    2017-12-01

    The age of the oldest known buried ice in Beacon Valley, McMurdo Dry Valleys (MDV) Antarctica is a topic of active debate due to its implications for the stability of the East Antarctic Ice Sheet. Published age estimates range from as young as 300 ka to as old as 8.1 Ma. In the upland MDV, ablation occurs predominantly via sublimation. The relict ice in question (ancient ice from Taylor Glacier) lies buried beneath a thin ( 30-70 cm) layer of sublimation till, which forms as a lag deposit as underlying debris-rich ice sublimes. As the ice sublimates, the debris held within the ice accumulates slowly on the surface, creating a porous boundary between the buried-ice surface and the atmosphere, which in turn influences gas exchange between the ice and the atmosphere. Additionally, englacial debris adds several salt species that are ultimately concentrated on the ice surface. It is well documented the rate of ice sublimation varies as a function of overlying till thickness. However, the rate-limiting dynamics under varying environmental conditions, including the threshold thicknesses at which sublimation is strongly retarded, are not yet defined. To better understand the relationships between sublimation rate, till thickness, and long-term surface evolution, we build on previous studies by Lamp and Marchant (2017) and evaluate the role of till thickness as a control on ice loss in an environmental chamber capable of replicating the extreme cold desert conditions observed in the MDV. Previous work has shown that this relationship exhibits exponential decay behavior, with sublimation rate significantly dampened under less than 10 cm of till. In our experiments we pay particular attention to the effect of the first several cm of till in order to quantify the dynamics that govern the transition from bare ice to debris-covered ice. We also examine this transition for various forms of glacier ice, including ice with various salt species.

  17. Ice Cores

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Records of past temperature, precipitation, atmospheric trace gases, and other aspects of climate and environment derived from ice cores drilled on glaciers and ice...

  18. Ancient ice

    Science.gov (United States)

    2009-11-01

    Simon Belt, Guillaume Massé and colleagues rammed their way through sheets of ice, spotting some polar bears on the way, in their attempt to reconstruct Arctic sea-ice records covering thousands of years.

  19. Ice Cream

    NARCIS (Netherlands)

    Scholten, E.

    2014-01-01

    Ice cream is a popular dessert, which owes its sensorial properties (mouth feel) to its complex microstructure. The microstructure is a result of the combination of the ingredients and the production process. Ice cream is produced by simultaneous freezing and shearing of the ice cream mix, which

  20. Results of monitoring for PCDDs and PCDFs in ambient air at McMurdo Station, Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Lugar, R.M.

    1993-09-01

    This report presents the results of ambient air monitoring for polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) performed during the 1992-1993 austral summer in the vicinity of McMurdo Station, Antarctica. Fifteen air samples were collected from four different locations for determination of the presence and concentration of PCDD/PCDF compounds. General Metal Works Inc. PS-1 air samplers equipped with polyurethane foam (PUF) with a sample flow rate of approximately 0.27 m{sup 3}/min. were used to collect air samples. Sampling site selection, sampling procedures, and quality assurance procedures used were consistent with U.S. Environmental Protection Agency guidance for local ambient air quality networks. PCDD/PCDF compounds were not detected at the predominantly upwind location and at a more remote site on Black Island. Trace levels of only a few PCDD/PCDF congeners were detected sporadically at a location approximately 500 meters downwind of the station. The most frequent, most varied, and highest levels of PCDDs/PCDFs were measured at a {open_quotes}downtown{close_quotes} location, where concentrations of total PCDDs ranged from 0.27 to 1.80 pg/m{sup 3} and total PCDFs from less than 0.1 to 2.77 pg/m{sup 3}. Results from the remote Black Island site indicate that the background Antarctic air is still {open_quotes}free{close_quotes} of PCDD/PCDF compounds (not detectable at current method detection limits). The initial baseline effort demonstrated that site selection and sampling equipment performance were satisfactory, provided useful data for assessing the impact of McMurdo operations on the local ambient air quality, and provided baseline data for assessing the Antarctica continental air quality.

  1. Legal Ice?

    DEFF Research Database (Denmark)

    Strandsbjerg, Jeppe

    The idealised land|water dichotomy is most obviously challenged by ice when ‘land practice’ takes place on ice or when ‘maritime practice’ is obstructed by ice. Both instances represent disparity between the legal codification of space and its social practice. Logically, then, both instances call...... for alternative legal thought and practice; in the following I will emphasise the former and reflect upon the relationship between ice, law and politics. Prior to this workshop I had worked more on the relationship between cartography, geography and boundaries than specifically on ice. Listening to all...

  2. Ground based observations of Pc3-Pc5 geomagnetic pulsation power at Antarctic McMurdo station

    Directory of Open Access Journals (Sweden)

    C. G. Maclennan

    1998-06-01

    Full Text Available The two horizontal geomagnetic components and, measured by a fluxgate magnetometer at Antarctic McMurdo station (corrected geomagnetic coordinates 80.0° S, 327.5° E, are analyzed for the period May-June 1994; the spectral powers are calculated and integrated over three frequency intervals corresponding to the nominal ranges. The time dependence of those integrated powers and their correlations with northern auroral indices and solar wind speed are considered. The observations are compared with previous results reported from Terra Nova Bay station (located near McMurdo at the same corrected geomagnetic latitude during Antarctic summer intervals. The differences found between the two stations are discussed in terms of the seasonal dependence of geomagnetic field line configurations in the near cusp region.

  3. Sea Ice

    Science.gov (United States)

    Perovich, D.; Gerland, S.; Hendricks, S.; Meier, Walter N.; Nicolaus, M.; Richter-Menge, J.; Tschudi, M.

    2013-01-01

    During 2013, Arctic sea ice extent remained well below normal, but the September 2013 minimum extent was substantially higher than the record-breaking minimum in 2012. Nonetheless, the minimum was still much lower than normal and the long-term trend Arctic September extent is -13.7 per decade relative to the 1981-2010 average. The less extreme conditions this year compared to 2012 were due to cooler temperatures and wind patterns that favored retention of ice through the summer. Sea ice thickness and volume remained near record-low levels, though indications are of slightly thicker ice compared to the record low of 2012.

  4. Ice Surfaces

    Science.gov (United States)

    Shultz, Mary Jane

    2017-05-01

    Ice is a fundamental solid with important environmental, biological, geological, and extraterrestrial impact. The stable form of ice at atmospheric pressure is hexagonal ice, Ih. Despite its prevalence, Ih remains an enigmatic solid, in part due to challenges in preparing samples for fundamental studies. Surfaces of ice present even greater challenges. Recently developed methods for preparation of large single-crystal samples make it possible to reproducibly prepare any chosen face to address numerous fundamental questions. This review describes preparation methods along with results that firmly establish the connection between the macroscopic structure (observed in snowflakes, microcrystallites, or etch pits) and the molecular-level configuration (detected with X-ray or electron scattering techniques). Selected results of probing interactions at the ice surface, including growth from the melt, surface vibrations, and characterization of the quasi-liquid layer, are discussed.

  5. Cultivable bacteria from ancient algal mats from the McMurdo Dry Valleys, Antarctica.

    Science.gov (United States)

    Antibus, Doug E; Leff, Laura G; Hall, Brenda L; Baeseman, Jenny L; Blackwood, Christopher B

    2012-01-01

    The McMurdo Dry Valleys in Antarctica are a favorable location for preservation of dormant microbes due to their persistent cold and dry climate. In this study, we examined cultivable bacteria in a series of algal mat samples ranging from 8 to 26539 years old. Cultivable bacteria were found in all samples except one (12303 years old), but abundance and diversity of cultivable bacteria decreased with increasing sample age. Only members of the Actinobacteria, Bacteroidetes, and Firmicutes were found in the ancient samples, whereas bacteria in the 8-year-old sample also included Cyanobacteria, Proteobacteria, and Deinococcus-Thermus. Isolates of the Gram-positive spore-forming bacterium Sporosarcina were found in 5 of 8 samples. The growth of these isolates at different temperatures was related to the phylogenetic distance among genotypes measured by BOX-PCR. These findings suggest that adaptation to growth at different temperatures had occurred among Sporosarcina genotypes in the Dry Valleys, causing the existence of physiologically distinct but closely related genotypes. Additionally, fully psychrophilic isolates (that grew at 15°C, but not 25°C) were found in ancient samples, but not in the modern sample. The preservation of viable bacteria in the Dry Valleys could potentially represent a legacy of bacteria that impacts on current microbial communities of this environment.

  6. Legal Ice?

    DEFF Research Database (Denmark)

    Strandsbjerg, Jeppe

    for alternative legal thought and practice; in the following I will emphasise the former and reflect upon the relationship between ice, law and politics. Prior to this workshop I had worked more on the relationship between cartography, geography and boundaries than specifically on ice. Listening to all...... the interesting conversations during the workshop, however, made me think that much of the concern with the Polar Regions in general, and the presence of ice in particular, reverberates around the question of how to accommodate various geographical presences and practices within the regulatory framework that we...

  7. Continuous monitoring of Antarctic sub-ice shelf dynamics and ocean column temperatures

    Science.gov (United States)

    Kobs, S.; Tyler, S. W.; Zagorodnov, V.; Holland, D. M.; Stern, A.; Sledek, C.; Bryenton, J.

    2012-12-01

    Monitoring of ice shelf dynamics and sub-ice shelf ocean processes represents an important, but challenging step in understanding the dynamics of ice sheet behavior. In November 2011, a set of moorings through the McMurdo Ice Shelf at Windless Bight were installed to develop new installation and monitoring tools for understanding sub-ice shelf conditions. The mooring consists of fiber optic cables for distributed temperature sensing (DTS) extending from the surface, through 190m of ice shelf and to a depth of ~920m through the water column along with pressure transducer and independent thermistor strings. With DTS, temperature measurements are made every meter along the fiber optic cable. A continuous in time and depth temperature record was collected from late November 2011 through June 2012. A total of 5.5 million data points of temperature have been collected to date. The temperature record for the water column beneath the ice shelf clearly shows the intrusion of warm currents ( > -1.75 °C) under the ice shelf starting in late January and remaining present into May. Observed warming continues down through the water column into March, reaching depths of ~200m below the ice-ocean interface. The maximum recorded temperature occurred on March 7th and was -1.09 °C, indicating a maximum warming of ~0.8 °C. From March through May the water column began to cool back to the early spring isothermal condition of -1.9 °C. Temperature profiles within the shelf ice indicate a long-term basal melt rate of ~1 m/yr, preliminary observations from the ocean-ice interface show similar melt rates. The system is currently in a depowered state and will be revisited in the following field season.

  8. McMurdo Consolidated Airfields Study: Phase I, Basis of Design

    Science.gov (United States)

    2013-01-01

    of the waste further melted the snow, creating a larger cavity for subse- quent waste. This method works because WF is situated on a porous snow...0.5144444 meters per second miles (US statute) 1,609.347 meters pounds (force) per square inch 6.894757 kilopascals pounds (mass) 0.45359237 kilograms...Once the ice becomes isothermal at 0°C, additional heating (through solar radiation or convection from ambient air) causes melting of the ice (or

  9. A spongy icing model for aircraft icing

    Directory of Open Access Journals (Sweden)

    Li Xin

    2014-02-01

    Full Text Available Researches have indicated that impinging droplets can be entrapped as liquid in the ice matrix and the temperature of accreting ice surface is below the freezing point. When liquid entrapment by ice matrix happens, this kind of ice is called spongy ice. A new spongy icing model for the ice accretion problem on airfoil or aircraft has been developed to account for entrapped liquid within accreted ice and to improve the determination of the surface temperature when entering clouds with supercooled droplets. Different with conventional icing model, this model identifies icing conditions in four regimes: rime, spongy without water film, spongy with water film and glaze. By using the Eulerian method based on two-phase flow theory, the impinging droplet flow was investigated numerically. The accuracy of the Eulerian method for computing the water collection efficiency was assessed, and icing shapes and surface temperature distributions predicted with this spongy icing model agree with experimental results well.

  10. Sub-Sea Ice Sands Offshore of Dry Valleys: Potential Links between Onshore and Offshore Cenozoic Records

    Science.gov (United States)

    Richardson, T. J.; Miller, M. F.; Bowser, S. S.

    2008-12-01

    Onshore and offshore records of late Cenozoic history of Southern Victoria Land (SVL), Antarctica, depict strikingly different scenarios; onshore (Dry Valleys), the geomorphic record indicates long term (Ma) stability of polar deserts whereas offshore (e.g., ANDRILL 1B), the stratigraphic record reveals repeated ice sheet fluctuations and major cooling and establishment of modern conditions in the Late Pliocene. Recognition of facies deposited beneath near permanent sea ice offshore of the Dry Valleys provides an often overlooked but direct method of connecting the disparate records. As part of an initial effort to document facies characteristics, shallow marine cores >30 cm long were collected from a depth of ~20 m in Explorers Cove at the mouth of the Taylor Dry Valley. Shell material characteristics, bioturbation, grain size distribution, and surface textures of quartz grains were analyzed to elucidate taphonomic processes and sediment transport mechanisms, and to constrain the rate of sedimentation. Little shell material was found in the cores, but foraminifera were widespread and sponge spicules were locally abundant. Some bioturbation is apparent in the top 5 cm, and sediment, primarily medium to coarse sand, is poorly sorted and unlaminated with a coarser zone at 8-21 cm depth. Eolian features are abundant on quartz grain surfaces whereas features indicative of fluvial and glacial transport are less common. Eolian transport probably is the dominant transport process, with sediment blown onto the sea ice and eventually deposited on the sea floor via ice cracks. Small summer streams could also deliver sediment to coastal moats, transporting material beneath the sea ice to deeper nearshore water. Results from this study can be applied to analogous present-day habitats in Antarctica and to the interpretation of Cenozoic stratigraphic sequences in cores.

  11. Assessing the Impact of Sublimation on the Stable Water Isotope Signal of Surface Ice

    Science.gov (United States)

    Dennis, D. P.; Ehrenfeucht, S.; Marchant, D. R.

    2017-12-01

    Sublimation is often a significant, if not the dominant, mechanism for ablation in polar and high elevation glacial systems. Previous field studies on firn and ice have suggested that sublimation can enrich the stable water isotope (δD and δ18O) signatures of these exposed materials. Several additional studies have attempted to replicate this effect through laboratory experiments. However, neither the magnitude of alteration caused by sublimation nor the maximum depth at which ice is affected are well-constrained. The effect of sublimation-induced alteration on the original meteoric signal relative to other post-depositional processes is additionally unknown. Here, we present the results of an experimental study on the effect of sublimation on stable water isotope ratios in surface ice. Using high-resolution data, we attempt to assess the suitability of δD and δ18O in near-surface and exposed ice for use as paleoclimate proxies. This type of analysis is particularly useful for future studies of ice from hyper-arid polar regions like the Antarctic McMurdo Dry Valleys, and may be extended to icy planetary bodies, including surface ice on Mars.

  12. Delta13C and delta15N shifts in benthic invertebrates exposed to sewage from McMurdo Station, Antarctica.

    Science.gov (United States)

    Conlan, Kathleen E; Rau, Greg H; Kvitek, Rikk G

    2006-12-01

    In an effort to identify biomonitors for contamination of Antarctic marine benthos by sewage, this study determines whether the US Antarctic Program's McMurdo Station produces a benthic sewage footprint and whether resident megafauna are assimilating sewage-derived material. We identified strong C and N isotopic gradients in benthic sediment as a function of downstream distance from McMurdo Station's point-source sewage addition. Sediment C and N isotope ratios approached marine background levels at the sampling end-point 612 m downcurrent. Based on isotope abundances in their tissues, at least some sewage C and N were assimilated by the sedentary, suspension feeding soft coral Alcyonium antarcticum, ascidian Cnemidocarpa verrucosa and bivalve Laternula elliptica. However, as inferred by tissue-sediment differences in downstream isotope trends, such assimilation was not in proportion to sewage exposure and input, therefore implying non-generalist feeding behavior by these species. In contrast, the motile, generalist feeding sea urchin Sterechinus neumayeri, sea star Odontaster validus and ribbon worm Parborlasia corrugatus showed isotopic evidence of sewage C and N assimilation roughly in proportion to sewage input. We recommend these generalist feeders for further use as biomonitors at this site now that sewage treatment has been implemented. As these species are circumpolar in distribution, they may also prove useful elsewhere in the Antarctic.

  13. δ13C and δ15N shifts in benthic invertebrates exposed to sewage from McMurdo Station, Antarctica

    International Nuclear Information System (INIS)

    Conlan, Kathleen E. . E-mail kconlan@mus-nature.ca; Rau, Greg H.; Kvitek, Rikk G.

    2006-01-01

    In an effort to identify biomonitors for contamination of Antarctic marine benthos by sewage, this study determines whether the US Antarctic Program's McMurdo Station produces a benthic sewage footprint and whether resident megafauna are assimilating sewage-derived material. We identified strong C and N isotopic gradients in benthic sediment as a function of downstream distance from McMurdo Station's point-source sewage addition. Sediment C and N isotope ratios approached marine background levels at the sampling end-point 612 m downcurrent. Based on isotope abundances in their tissues, at least some sewage C and N were assimilated by the sedentary, suspension feeding soft coral Alcyonium antarcticum, ascidian Cnemidocarpa verrucosa and bivalve Laternula elliptica. However, as inferred by tissue-sediment differences in downstream isotope trends, such assimilation was not in proportion to sewage exposure and input, therefore implying non-generalist feeding behavior by these species. In contrast, the motile, generalist feeding sea urchin Sterechinus neumayeri, sea star Odontaster validus and ribbon worm Parborlasia corrugatus showed isotopic evidence of sewage C and N assimilation roughly in proportion to sewage input. We recommend these generalist feeders for further use as biomonitors at this site now that sewage treatment has been implemented. As these species are circumpolar in distribution, they may also prove useful elsewhere in the Antarctic

  14. Characterization of the abundant ≤0.2 μm cell-like particles inhabiting Lake Vida brine, McMurdo Dry Valleys, Antarctica

    Science.gov (United States)

    Kuhn, E.; Ichimura, A.; Peng, V.; Fritsen, C. H.; Murray, A. E.

    2011-12-01

    Most lakes in the McMurdo Dry Valleys are perennially covered with 3 to 6 m of ice, but Lake Vida is frozen from the surface through the lake bed, with ice permeated by brine channels. Brine collected from within the ice of Lake Vida is six times saltier than seawater, anoxic, with temperature of -13.4 C, pH of 6.2, high concentrations of ferrous iron (>300 μM), NH4+ (3.6 mM), and N2O (>58 μM), making it a unique environment. The first analysis of Vida brine microbial community (sampled in 2005) detected a cell rich environment (107 cells/mL), with cells falling into two size classes: ≥0.5 μm (105 cells/mL) and ~0.2 μm (107 cells/mL). Microorganisms in the domain Bacteria were detected, but Eukarya and Archaea were not. The clone library from 2005 identified Bacteria related to the phyla Proteobacteria (γ, δ, and ɛ), Lentisphaera, Firmicutes, Spirochaeta, Bacterioidetes, Actinobacteria, Verrucomicrobia, and candidate Division TM7. Brine samples were collected again in the austral summer of 2010 in which one of the focus areas is interrogating the ~0.2 μm cell size class. Molecular, imaging, and elemental analyses were employed to characterize the population of nano-sized particles (NP) that pass through 0.2 μm filters. The aim of testing was to determine whether or not these particles are cells with a morphology resulting from environmental stresses. These results are being compared to the same analyses applied in the whole brine microbial community. A 0.2 μm filtrate of brine incubated for 25 days at -13 C was collected on a 0.1 μm filter. Analysis of the 16S rRNA gene DGGE profile showed differences in the banding pattern and relative intensity when comparing the 0.2 μm filtrate to the whole brine community. A 16S rRNA clone library from the 0.2 μm filtrate indicated the presence of genera previously described in the 2005 whole brine community clone library like Pscychrobacter, Marinobacter, and members related to candidate Division TM7. Also, the

  15. Sea ice - Multiyear cycles and white ice

    Science.gov (United States)

    Ledley, T. S.

    1985-01-01

    The multiyear thickness cycles represent one of the interesting features of the sea ice studies performed by Semtner (1976) and Washington et al. (1976) with simple thermodynamic models of sea ice. In the present article, a description is given of results which show that the insulating effect of snow on the surface of the sea ice is important in producing these multiyear cycles given the physics included in the model. However, when the formation of white ice is included, the cycles almost disappear. White ice is the ice which forms at the snow-ice interface when the snow layer becomes thick enough to depress the ice below the water level. Water infiltrates the snow by coming through the ice at leads and generally freezes there, forming white ice.

  16. Antarctic Mirabilite Mounds as Mars Analogs: The Lewis Cliffs Ice Tongue Revisited

    Science.gov (United States)

    Socki, Richard A.; Sun, Tao; Niles, Paul B.; Harvey, Ralph P.; Bish, David L.; Tonui, Eric

    2012-01-01

    It has been proposed, based on geomorphic and geochemical arguments, that subsurface water has played an important role in the history of water on the planet Mars [1]. Subsurface water, if present, could provide a protected and long lived environment for potential life. Discovery of gullies [2] and recurring slopes [3] on Mars suggest the potential for subsurface liquid water or brines. Recent attention has also focused on small (the mid to high latitudes on the surface of Mars which may be caused by eruptions of subsurface fluids [4, 5]. We have identified massive but highly localized Na-sulfate deposits (mirabilite mounds, Na2SO4 .10H2O) that may be derived from subsurface fluids and may provide insight into the processes associated with subsurface fluids on Mars. The mounds are found on the end moraine of the Lewis Cliffs Ice Tongue (LCIT) [6] in the Transantarctic Mountains, Antarctica, and are potential terrestrial analogs for mounds observed on the martian surface. The following characteristics distinguish LCIT evaporite mounds from other evaporite mounds found in Antarctic coastal environments and/or the McMurdo Dry Valleys: (1) much greater distance from the open ocean (approx.500 km); (2) higher elevation (approx.2200 meters); and (3) colder average annual temperature (average annual temperature = -30 C for LCIT [7] vs. 20 C at sea level in the McMurdo region [8]. Furthermore, the recent detection of subsurface water ice (inferred as debris-covered glacial ice) by the Mars Reconnaissance Orbiter [9] supports the use of an Antarctic glacial environment, particularly with respect to the mirabilite deposits described in this work, as an ideal terrestrial analog for understanding the geochemistry associated with near-surface martian processes. S and O isotopic compositions.

  17. Great Lakes Ice Charts

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Charts show ice extent and concentration three times weekly during the ice season, for all lakes except Ontario, from the 1973/74 ice season through the 2001/2002...

  18. Forecasting Turbine Icing Events

    DEFF Research Database (Denmark)

    Davis, Neil; Hahmann, Andrea N.; Clausen, Niels-Erik

    2012-01-01

    In this study, we present a method for forecasting icing events. The method is validated at two European wind farms in with known icing events. The icing model used was developed using current ice accretion methods, and newly developed ablation algorithms. The model is driven by inputs from the WRF...... mesoscale model, allowing for both climatological estimates of icing and short term icing forecasts. The current model was able to detect periods of icing reasonably well at the warmer site. However at the cold climate site, the model was not able to remove ice quickly enough leading to large ice...... accumulations, which have not been seen in observations. In addition to the model evaluation we were able to investigate the potential occurrence of ice induced power loss at two wind parks in Europe using observed data. We found that the potential loss during an icing event is large even when the turbine...

  19. Ice sheet margins and ice shelves

    Science.gov (United States)

    Thomas, R. H.

    1984-01-01

    The effect of climate warming on the size of ice sheet margins in polar regions is considered. Particular attention is given to the possibility of a rapid response to warming on the order of tens to hundreds of years. It is found that the early response of the polar regions to climate warming would be an increase in the area of summer melt on the ice sheets and ice shelves. For sufficiently large warming (5-10C) the delayed effects would include the breakup of the ice shelves by an increase in ice drainage rates, particularly from the ice sheets. On the basis of published data for periodic changes in the thickness and melting rates of the marine ice sheets and fjord glaciers in Greenland and Antarctica, it is shown that the rate of retreat (or advance) of an ice sheet is primarily determined by: bedrock topography; the basal conditions of the grounded ice sheet; and the ice shelf condition downstream of the grounding line. A program of satellite and ground measurements to monitor the state of ice sheet equilibrium is recommended.

  20. Ice Lithography for Nanodevices

    DEFF Research Database (Denmark)

    Han, Anpan; Kuan, A.; Wang, J.

    Water vapor is condensed onto a cold sample, coating it with a thin-film of ice. The ice is sensitive to electron beam lithography exposure. 10 nm ice patterns are transferred into metals by “melt-off”. Non-planar samples are coated with ice, and we pattern on cantilevers, AFM tips, and suspended...

  1. Luminescence dating of paleolake deltas and glacial deposits in Garwood Valley, Antarctica: Implications for climate, Ross ice sheet dynamics, and paleolake duration

    Science.gov (United States)

    Levy, Joseph S.; Rittenour, Tammy M.; Fountain, Andrew G.; O'Connor, Jim E.

    2017-01-01

    The formation of perched deltas and other lacustrine deposits in the McMurdo Dry Valleys of Antarctica is widely considered to be evidence of valley-filling lakes dammed by the grounded Ross Sea ice sheet during the local Last Glacial Maximum, with lake drainage interpreted as a record of grounding line retreat. We used luminescence dating to determine the age of paleolake deltas and glacial tills in Garwood Valley, a coastal dry valley that opens to the Ross Sea. Luminescence ages are stratigraphically consistent with radiocarbon results from algal mats within the same delta deposits but suggest radiocarbon dates from lacustrine carbonates may overestimate deposit ages by thousands of years. Results suggest that late Holocene delta deposition into paleolake Howard in Garwood Valley persisted until ca. 3.5 ka. This is significantly younger than the date when grounded ice is thought to have retreated from the Ross Sea. Our evidence suggests that the local, stranded ice-cored till topography in Garwood Valley, rather than regional ice-sheet dynamics, may have controlled lake levels for some McMurdo Dry Valleys paleolakes. Age control from the supraglacial Ross Sea drift suggests grounding and up-valley advance of the Ross Sea ice sheet into Garwood valley during marine oxygen isotope stage (MIS) 4 (71–78 ka) and the local Last Glacial Maximum (9–10 ka). This work demonstrates the power of combining luminescence dating with existing radiocarbon data sets to improve understanding of the relationships among paleolake formation, glacial position, and stream discharge in response to climate change.

  2. Stochastic ice stream dynamics.

    Science.gov (United States)

    Mantelli, Elisa; Bertagni, Matteo Bernard; Ridolfi, Luca

    2016-08-09

    Ice streams are narrow corridors of fast-flowing ice that constitute the arterial drainage network of ice sheets. Therefore, changes in ice stream flow are key to understanding paleoclimate, sea level changes, and rapid disintegration of ice sheets during deglaciation. The dynamics of ice flow are tightly coupled to the climate system through atmospheric temperature and snow recharge, which are known exhibit stochastic variability. Here we focus on the interplay between stochastic climate forcing and ice stream temporal dynamics. Our work demonstrates that realistic climate fluctuations are able to (i) induce the coexistence of dynamic behaviors that would be incompatible in a purely deterministic system and (ii) drive ice stream flow away from the regime expected in a steady climate. We conclude that environmental noise appears to be crucial to interpreting the past behavior of ice sheets, as well as to predicting their future evolution.

  3. Sea Ice Ecosystems

    Science.gov (United States)

    Arrigo, Kevin R.

    2014-01-01

    Polar sea ice is one of the largest ecosystems on Earth. The liquid brine fraction of the ice matrix is home to a diverse array of organisms, ranging from tiny archaea to larger fish and invertebrates. These organisms can tolerate high brine salinity and low temperature but do best when conditions are milder. Thriving ice algal communities, generally dominated by diatoms, live at the ice/water interface and in recently flooded surface and interior layers, especially during spring, when temperatures begin to rise. Although protists dominate the sea ice biomass, heterotrophic bacteria are also abundant. The sea ice ecosystem provides food for a host of animals, with crustaceans being the most conspicuous. Uneaten organic matter from the ice sinks through the water column and feeds benthic ecosystems. As sea ice extent declines, ice algae likely contribute a shrinking fraction of the total amount of organic matter produced in polar waters.

  4. Ross Ice Shelf, Antarctic Ice and Clouds

    Science.gov (United States)

    1991-01-01

    In this view of Antarctic ice and clouds, (56.5S, 152.0W), the Ross Ice Shelf of Antarctica is almost totally clear, showing stress cracks in the ice surface caused by wind and tidal drift. Clouds on the eastern edge of the picture are associated with an Antarctic cyclone. Winds stirred up these storms have been known to reach hurricane force.

  5. Antarctic Ice Velocity Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This compilation of recent ice velocity data of the Antarctic ice sheet is intended for use by the polar scientific community. The data are presented in tabular form...

  6. Current Icing Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Current Icing Product (CIP) is an automatically-generated index suitable for depicting areas of potentially hazardous airframe icing. The CIP algorithm combines...

  7. A Pliocene marine diatom δ18O record of terrestrial-marine feedbacks and orbitally-paced cryogenic brine formation in the McMurdo Dry Valleys

    Science.gov (United States)

    Dodd, J. P.; Abbott, T.; Gibbons, J. A.

    2017-12-01

    Orbital frequencies are well documented in a number of terrestrial and marine climate records throughout the Cenozoic; however, assessing the feedbacks and timing of terrestrial-marine systems on glacial-interglacial timescales is often challenging. This is particularly the case in high-latitude, near-shore environments where traditional proxy records like benthic foraminifera are absent. Here we present oxygen isotope (δ18O and δ17O) values from marine diatom silica in the mid-Pliocene (3.5 - 4.7Ma) section of the AND-1B core from McMurdo Sound, Antarctica. Diatom silica δ18O values range between +28.1 and +36.4‰ VSMOW. Over a range of temperatures (0 to 10°C) that reflect both growth and shallow (mixing line between marine and meteoric waters, which also supports our cryogenic brine hypothesis. The AND-1B δ18O values have an inverse relationship with the stacked benthic foraminifera δ18O record where lower δ18O values in the AND-1B diatom silica correspond with colder intervals, and we interpret variations in the diatom δ18O values as increased brine flux from the MDV to McMurdo Sound. Currently, subsurface brines in the MDV are hydrologically connected with McMurdo Sound. Density-driven transport of these brines from the MDV to the marine costal environments during the warm mid-Pliocene indicate a potentially overlooked terrestrial source of hypersaline waters. Although the lateral extent of these brines is not known, mixing between the terrestrial cryogenic brines and seawater may represent a significant flux of hypersaline water to the marine environment during warmer-than-present global conditions.

  8. Aircraft Icing Handbook. (Update)

    Science.gov (United States)

    1993-01-01

    pp. 68-69, 1947. Speranza, F., OThe Formation of Ice,a Rivista di Meteorologia Aeronautics, 1(2), pp. 19-30, 1937. Steiner, R. 0., "The Icing of...Deposits of Ice on Airplane Carburetors,8 (Translation) Rivista di Meteorologia Aeronautica, 4(2), pp. 38-47, 1940. Von Glahn, U. H.; Renner, C. E

  9. Technology for Ice Rinks

    Science.gov (United States)

    1983-01-01

    Ron Urban's International Ice Shows set up portable ice rinks for touring troupes performing on temporary rinks at amusement parks, sports arenas, dinner theaters, shopping malls and civic centers. Key to enhanced rink portability, fast freezing and maintaining ice consistency is a mat of flexible tubing called ICEMAT, an offshoot of a solar heating system developed by Calmac, Mfg. under contract with Marshall.

  10. Thin, Conductive Permafrost Surrounding Lake Fryxell Indicates Salts From Past Lakes, McMurdo Dry Valleys, Antarctica

    Science.gov (United States)

    Foley, N.; Tulaczyk, S. M.; Gooseff, M. N.; Myers, K. F.; Doran, P. T.; Auken, E.; Dugan, H. A.; Mikucki, J.; Virginia, R. A.

    2017-12-01

    In the McMurdo Dry Valleys (MDV), permafrost should be thick and liquid water rare. However, despite the well below zero mean annual temperature in this cryospheric desert, liquid water can be found in lakes, summer melt streams, subglacial outflow, and - recent work has shown - underneath anomalously thin permafrost. In part, this niche hydrosphere is maintained by the presence of salts, which depress the freezing point of water to perhaps as cold as -10° Celsius. We detected widespread salty water across the MDV in lakes and at depth using a helicopter-borne Time Domain Electromagnetic (TDEM) sensor. By using the presence of brines to mark the transition from frozen permafrost (near the surface) to unfrozen ground (at depth), we have created a map of permafrost thickness in Lower Taylor Valley (LTV), a large MDV with a complex history of glaciation and occupation by lakes. Our results show that permafrost is thinner ( 200m) than would be expected based on geothermal gradient measurements (up to 1000m), a result of the freezing point depression caused by salt and potentially enhanced by an unfinished transient freezing process. Near Lake Fryxell, a large, brackish lake in the center of LTV, permafrost is very thin (about 30-40m) and notably more electrically conductive than more distal permafrost. This thin ring of conductive permafrost surrounding the lake basin most likely reflects the high presence of salts in the subsurface, preventing complete freezing. These salts may be a remnant of the salty bottom waters of a historic larger lake (LGM glacially dammed Lake Washburn) or the remnant of salty basal water from a past advance of Taylor Glacier, which now sits many km up-valley but is known to contain brines which currently flow onto the surface and directly into the subsurface aquifer.

  11. Reactivation of a cryptobiotic stream ecosystem in the McMurdo Dry Valleys, Antarctica: A long-term geomorphological experiment

    Science.gov (United States)

    McKnight, Diane M.; Tate, C.M.; Andrews, E.D.; Niyogi, D.K.; Cozzetto, K.; Welch, K.; Lyons, W.B.; Capone, D.G.

    2007-01-01

    The McMurdo Dry Valleys of Antarctica contain many glacial meltwater streams that flow for 6 to 12??weeks during the austral summer and link the glaciers to the lakes on the valley floors. Dry valley streams gain solutes longitudinally through weathering reactions and microbial processes occurring in the hyporheic zone. Some streams have thriving cyanobacterial mats. In streams with regular summer flow, the mats are freeze-dried through the winter and begin photosynthesizing with the onset of flow. To evaluate the longer term persistence of cyanobacterial mats, we diverted flow to an abandoned channel, which had not received substantial flow for approximately two decades. Monitoring of specific conductance showed that for the first 3??years after the diversion, the solute concentrations were greater in the reactivated channel than in most other dry valley streams. We observed that cyanobacterial mats became abundant in the reactivated channel within a week, indicating that the mats had been preserved in a cryptobiotic state in the channel. Over the next several years, these mats had high rates of productivity and nitrogen fixation compared to mats from other streams. Experiments in which mats from the reactivated channel and another stream were incubated in water from both of the streams indicated that the greater solute concentrations in the reactivated channel stimulated net primary productivity of mats from both streams. These stream-scale experimental results indicate that the cryptobiotic preservation of cyanobacterial mats in abandoned channels in the dry valleys allows for rapid response of these stream ecosystems to climatic and geomorphological change, similar to other arid zone stream ecosystems. ?? 2006 Elsevier B.V. All rights reserved.

  12. Nitrogen and carbon limitation of planktonic primary production and phytoplankton-bacterioplankton coupling in ponds on the McMurdo Ice Shelf, Antarctica

    DEFF Research Database (Denmark)

    Sorrell, B.K.; Hawes, I.; Safi, K.

    2013-01-01

    -limited phytoplanton photosynthesis in some waters. Phytoplankton and bacterioplankton production were extremely closely linked, with no indication of any external nutrient inputs. Most of the large amounts of DOC and DON in the ponds was recalcitrant and not available to plankton. In meromictically stratified ponds...

  13. Arctic ice management

    Science.gov (United States)

    Desch, Steven J.; Smith, Nathan; Groppi, Christopher; Vargas, Perry; Jackson, Rebecca; Kalyaan, Anusha; Nguyen, Peter; Probst, Luke; Rubin, Mark E.; Singleton, Heather; Spacek, Alexander; Truitt, Amanda; Zaw, Pye Pye; Hartnett, Hilairy E.

    2017-01-01

    As the Earth's climate has changed, Arctic sea ice extent has decreased drastically. It is likely that the late-summer Arctic will be ice-free as soon as the 2030s. This loss of sea ice represents one of the most severe positive feedbacks in the climate system, as sunlight that would otherwise be reflected by sea ice is absorbed by open ocean. It is unlikely that CO2 levels and mean temperatures can be decreased in time to prevent this loss, so restoring sea ice artificially is an imperative. Here we investigate a means for enhancing Arctic sea ice production by using wind power during the Arctic winter to pump water to the surface, where it will freeze more rapidly. We show that where appropriate devices are employed, it is possible to increase ice thickness above natural levels, by about 1 m over the course of the winter. We examine the effects this has in the Arctic climate, concluding that deployment over 10% of the Arctic, especially where ice survival is marginal, could more than reverse current trends of ice loss in the Arctic, using existing industrial capacity. We propose that winter ice thickening by wind-powered pumps be considered and assessed as part of a multipronged strategy for restoring sea ice and arresting the strongest feedbacks in the climate system.

  14. Dead-ice environments

    DEFF Research Database (Denmark)

    Krüger, Johannes; Kjær, Kurt H.; Schomacker, Anders

    2010-01-01

    Kötlujökull transports considerable amounts of supraglacial debris at its snout because of frontal oscillations with frequent ice advances followed by ice-margin stagnation. Kötlujökull provides suitable conditions of studying dead-ice melting and landscape formation in a debris-charged lowland...... glacier environment. The scientific challenges are to answer the key questions. What are the conditions for dead-ice formation? From which sources does the sediment cover originate? Which melting and reworking processes act in the ice-cored moraines? What is the rate of de-icing in the ice-cored moraines...... under humid, sub-polar conditions? Does this rate differ from rates reported from polar environments of dry continental nature? How will the sedimentary architecture appear in the geological record? How will the final landsystem appear? These key questions are answered in a review of research...

  15. Separate origins of ice-binding proteins in antarctic chlamydomonas species.

    Science.gov (United States)

    Raymond, James A; Morgan-Kiss, Rachael

    2013-01-01

    The green alga Chlamydomonas raudensis is an important primary producer in a number of ice-covered lakes and ponds in Antarctica. A C. raudensis isolate (UWO241) from Lake Bonney in the McMurdo Dry Valleys, like many other Antarctic algae, was found to secrete ice-binding proteins (IBPs), which appear to be essential for survival in icy environments. The IBPs of several Antarctic algae (diatoms, a prymesiophyte, and a prasinophyte) are similar to each other (here designated as type I IBPs) and have been proposed to have bacterial origins. Other IBPs (type II IBPs) that bear no resemblance to type I IBPs, have been found in the Antarctic Chlamydomonas sp. CCMP681, a putative snow alga, raising the possibility that chlamydomonad IBPs developed separately from the IBPs of other algae. To test this idea, we obtained the IBP sequences of C. raudensis UWO241 by sequencing the transcriptome. A large number of transcripts revealed no sequences resembling type II IBPs. Instead, many isoforms resembling type I IBPs were found, and these most closely matched a hypothetical protein from the bacterium Stigmatella aurantiaca. The sequences were confirmed to encode IBPs by the activity of a recombinant protein and by the matching of predicted and observed isoelectric points and molecular weights. Furthermore, a mesophilic sister species, C. raudensis SAG49.72, showed no ice-binding activity or PCR products from UWO241 IBP primers. These results confirm that algal IBPs are required for survival in icy habitats and demonstrate that they have diverse origins that are unrelated to the taxonomic positions of the algae. Last, we show that the C. raudensis UWO241 IBPs can change the structure of ice in a way that could increase the survivability of cells trapped in the ice.

  16. Autonomous Aerial Ice Observation for Ice Defense

    Directory of Open Access Journals (Sweden)

    Joakim Haugen

    2014-10-01

    Full Text Available One of the tasks in ice defense is to gather information about the surrounding ice environment using various sensor platforms. In this manuscript we identify two monitoring tasks known in literature, namely dynamic coverage and target tracking, and motivate how these tasks are relevant in ice defense using RPAS. An optimization-based path planning concept is outlined for solving these tasks. A path planner for the target tracking problem is elaborated in more detail and a hybrid experiment, which consists of both a real fixed-wing aircraft and simulated objects, is included to show the applicability of the proposed framework.

  17. {delta}{sup 13}C and {delta}{sup 15}N shifts in benthic invertebrates exposed to sewage from McMurdo Station, Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Conlan, Kathleen E. [Canadian Musem of Nature, P.O. Box 3443 Station D, Ottawa, Ont., K1P 6P4 (Canada)]. E-mail kconlan@mus-nature.ca; Rau, Greg H. [Institute of Marine Sciences, University of California, Santa Cruz, CA 95064 (United States); Kvitek, Rikk G. [Earth Systems Science and Policy, California State University Monterey Bay, 100 Campus Center, Seaside, CA 93955 (United States)

    2006-12-15

    In an effort to identify biomonitors for contamination of Antarctic marine benthos by sewage, this study determines whether the US Antarctic Program's McMurdo Station produces a benthic sewage footprint and whether resident megafauna are assimilating sewage-derived material. We identified strong C and N isotopic gradients in benthic sediment as a function of downstream distance from McMurdo Station's point-source sewage addition. Sediment C and N isotope ratios approached marine background levels at the sampling end-point 612 m downcurrent. Based on isotope abundances in their tissues, at least some sewage C and N were assimilated by the sedentary, suspension feeding soft coral Alcyonium antarcticum, ascidian Cnemidocarpa verrucosa and bivalve Laternula elliptica. However, as inferred by tissue-sediment differences in downstream isotope trends, such assimilation was not in proportion to sewage exposure and input, therefore implying non-generalist feeding behavior by these species. In contrast, the motile, generalist feeding sea urchin Sterechinus neumayeri, sea star Odontaster validus and ribbon worm Parborlasia corrugatus showed isotopic evidence of sewage C and N assimilation roughly in proportion to sewage input. We recommend these generalist feeders for further use as biomonitors at this site now that sewage treatment has been implemented. As these species are circumpolar in distribution, they may also prove useful elsewhere in the Antarctic.

  18. Land Ice: Greenland & Antarctic ice mass anomaly

    Data.gov (United States)

    National Aeronautics and Space Administration — Data from NASA's Grace satellites show that the land ice sheets in both Antarctica and Greenland are losing mass. The continent of Antarctica (left chart) has been...

  19. Ice cream structure modification by ice-binding proteins.

    Science.gov (United States)

    Kaleda, Aleksei; Tsanev, Robert; Klesment, Tiina; Vilu, Raivo; Laos, Katrin

    2018-04-25

    Ice-binding proteins (IBPs), also known as antifreeze proteins, were added to ice cream to investigate their effect on structure and texture. Ice recrystallization inhibition was assessed in the ice cream mixes using a novel accelerated microscope assay and the ice cream microstructure was studied using an ice crystal dispersion method. It was found that adding recombinantly produced fish type III IBPs at a concentration 3 mg·L -1 made ice cream hard and crystalline with improved shape preservation during melting. Ice creams made with IBPs (both from winter rye, and type III IBP) had aggregates of ice crystals that entrapped pockets of the ice cream mixture in a rigid network. Larger individual ice crystals and no entrapment in control ice creams was observed. Based on these results a model of ice crystals aggregates formation in the presence of IBPs was proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Ice and ocean velocity in the Arctic marginal ice zone: Ice roughness and momentum transfer

    Directory of Open Access Journals (Sweden)

    Sylvia T. Cole

    2017-09-01

    Full Text Available The interplay between sea ice concentration, sea ice roughness, ocean stratification, and momentum transfer to the ice and ocean is subject to seasonal and decadal variations that are crucial to understanding the present and future air-ice-ocean system in the Arctic. In this study, continuous observations in the Canada Basin from March through December 2014 were used to investigate spatial differences and temporal changes in under-ice roughness and momentum transfer as the ice cover evolved seasonally. Observations of wind, ice, and ocean properties from four clusters of drifting instrument systems were complemented by direct drill-hole measurements and instrumented overhead flights by NASA operation IceBridge in March, as well as satellite remote sensing imagery about the instrument clusters. Spatially, directly estimated ice-ocean drag coefficients varied by a factor of three with rougher ice associated with smaller multi-year ice floe sizes embedded within the first-year-ice/multi-year-ice conglomerate. Temporal differences in the ice-ocean drag coefficient of 20–30% were observed prior to the mixed layer shoaling in summer and were associated with ice concentrations falling below 100%. The ice-ocean drag coefficient parameterization was found to be invalid in September with low ice concentrations and small ice floe sizes. Maximum momentum transfer to the ice occurred for moderate ice concentrations, and transfer to the ocean for the lowest ice concentrations and shallowest stratification. Wind work and ocean work on the ice were the dominant terms in the kinetic energy budget of the ice throughout the melt season, consistent with free drift conditions. Overall, ice topography, ice concentration, and the shallow summer mixed layer all influenced mixed layer currents and the transfer of momentum within the air-ice-ocean system. The observed changes in momentum transfer show that care must be taken to determine appropriate parameterizations

  1. Sea Ice Index, Version 3

    Data.gov (United States)

    National Aeronautics and Space Administration — The Sea Ice Index provides a quick look at Arctic- and Antarctic-wide changes in sea ice. It is a source for consistent, up-to-date sea ice extent and concentration...

  2. Rheology of glacier ice

    Science.gov (United States)

    Jezek, K. C.; Alley, R. B.; Thomas, R. H.

    1985-01-01

    A new method for calculating the stress field in bounded ice shelves is used to compare strain rate and deviatoric stress on the Ross Ice Shelf, Antarctica. The analysis shows that strain rate (per second) increases as the third power of deviatoric stress (in newtons/sq meter), with a constant of proportionality equal to 2.3 x 10 to the -25th.

  3. Sputtering of water ice

    DEFF Research Database (Denmark)

    Baragiola, R.A.; Vidal, R.A.; Svendsen, W.

    2003-01-01

    We present results of a range of experiments of sputtering of water ice together with a guide to the literature. We studied how sputtering depends on the projectile energy and fluence, ice growth temperature, irradiation temperature and external electric fields. We observed luminescence from...

  4. Academic Airframe Icing Perspective

    Science.gov (United States)

    Bragg, Mike; Rothmayer, Alric; Thompson, David

    2009-01-01

    2-D ice accretion and aerodynamics reasonably well understood for engineering applications To significantly improve our current capabilities we need to understand 3-D: a) Important ice accretion physics and modeling not well understood in 3-D; and b) Aerodynamics unsteady and 3-D especially near stall. Larger systems issues important and require multidisciplinary team approach

  5. Making an Ice Core.

    Science.gov (United States)

    Kopaska-Merkel, David C.

    1995-01-01

    Explains an activity in which students construct a simulated ice core. Materials required include only a freezer, food coloring, a bottle, and water. This hands-on exercise demonstrates how a glacier is formed, how ice cores are studied, and the nature of precision and accuracy in measurement. Suitable for grades three through eight. (Author/PVD)

  6. Ice sheet in peril

    DEFF Research Database (Denmark)

    Hvidberg, Christine Schøtt

    2016-01-01

    Earth's large ice sheets in Greenland and Antarctica are major contributors to sea level change. At present, the Greenland Ice Sheet (see the photo) is losing mass in response to climate warming in Greenland (1), but the present changes also include a long-term response to past climate transitions...

  7. Design of an Autonomous Underwater Vehicle to Calibrate the Europa Clipper Ice-Penetrating Radar

    Science.gov (United States)

    Stone, W.; Siegel, V.; Kimball, P.; Richmond, K.; Flesher, C.; Hogan, B.; Lelievre, S.

    2013-12-01

    Jupiter's moon Europa has been prioritized as the target for the Europa Clipper flyby mission. A key science objective for the mission is to remotely characterize the ice shell and any subsurface water, including their heterogeneity, and the nature of surface-ice-ocean exchange. This objective is a critical component of the mission's overarching goal of assessing the habitability of Europa. The instrument targeted for addressing key aspects of this goal is an ice-penetrating radar (IPR). As a primary goal of our work, we will tightly couple airborne IPR studies of the Ross Ice Shelf by the Europa Clipper radar team with ground-truth data to be obtained from sub-glacial sonar and bio-geochemical mapping of the corresponding ice-water and water-rock interfaces using an advanced autonomous underwater vehicle (AUV). The ARTEMIS vehicle - a heavily morphed long-range, low drag variant of the highly successful 4-degree-of-freedom hovering sub-ice ENDURANCE bot -- will be deployed from a sea-ice drill hole adjacent the McMurdo Ice Shelf (MIS) and will perform three classes of missions. The first includes original exploration and high definition mapping of both the ice-water interface and the benthic interface on a length scale (approximately 10 kilometers under-ice penetration radius) that will definitively tie it to the synchronous airborne IPR over-flights. These exploration and mapping missions will be conducted at up to 10 different locations along the MIS in order to capture varying ice thickness and seawater intrusion into the ice shelf. Following initial mapping characterization, the vehicle will conduct astrobiology-relevant proximity operations using bio-assay sensors (custom-designed UV fluorescence and machine-vision-processed optical imagery) followed by point-targeted studies at regions of interest. Sample returns from the ice-water interface will be triggered autonomously using real-time-processed instrument data and onboard decision-to-collect algorithms

  8. Sunlight, Sea Ice, and the Ice Albedo Feedback in a Changing Arctic Sea Ice Cover

    Science.gov (United States)

    2015-09-30

    Figure 1). When the ice is snow covered there is little difference in albedo and partitioning between first year and multiyear ice. Once the snow melts...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Sunlight, Sea Ice, and the Ice Albedo Feedback in a...and iv) onset dates of melt and freeze up. 4. Assess the magnitude of the contribution from ice- albedo feedback to the observed decrease of sea ice

  9. Sunlight, Sea Ice, and the Ice Albedo Feedback in a Changing Artic Sea Ice Cover

    Science.gov (United States)

    2015-11-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. SUNLIGHT, SEA ICE , AND THE ICE ALBEDO FEEDBACK IN A...iv) onset dates of melt and freeze up. 4. Assess the magnitude of the contribution from ice - albedo feedback to the observed decrease of sea ice in... sea ice prediction and modeling community to improve the treatment of solar radiation and the ice - albedo feedback. This transfer will take the form of

  10. GLERL Radiation Transfer Through Freshwater Ice

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Radiation transmittance (ratio of transmitted to incident radiation) through clear ice, refrozen slush ice and brash ice, from ice surface to ice-water interface in...

  11. Modelling snow ice and superimposed ice on landfast sea ice in Kongsfjorden, Svalbard

    Directory of Open Access Journals (Sweden)

    Caixin Wang

    2015-08-01

    Full Text Available Snow ice and superimposed ice formation on landfast sea ice in a Svalbard fjord, Kongsfjorden, was investigated with a high-resolution thermodynamic snow and sea-ice model, applying meteorological weather station data as external forcing. The model shows that sea-ice formation occurs both at the ice bottom and at the snow/ice interface. Modelling results indicated that the total snow ice and superimposed ice, which formed at the snow/ice interface, was about 14 cm during the simulation period, accounting for about 15% of the total ice mass and 35% of the total ice growth. Introducing a time-dependent snow density improved the modelled results, and a time-dependent oceanic heat flux parameterization yielded reasonable ice growth at the ice bottom. Model results suggest that weather conditions, in particular air temperature and precipitation, as well as snow thermal properties and surface albedo are the most critical factors for the development of snow ice and superimposed ice in Kongsfjorden. While both warming air and higher precipitation led to increased snow ice and superimposed ice forming in Kongsfjorden in the model runs, the processes were more sensitive to precipitation than to air temperature.

  12. High Speed Ice Friction

    Science.gov (United States)

    Seymour-Pierce, Alexandra; Sammonds, Peter; Lishman, Ben

    2014-05-01

    Many different tribological experiments have been run to determine the frictional behaviour of ice at high speeds, ostensibly with the intention of applying results to everyday fields such as winter tyres and sports. However, experiments have only been conducted up to linear speeds of several metres a second, with few additional subject specific studies reaching speeds comparable to these applications. Experiments were conducted in the cold rooms of the Rock and Ice Physics Laboratory, UCL, on a custom built rotational tribometer based on previous literature designs. Preliminary results from experiments run at 2m/s for ice temperatures of 271 and 263K indicate that colder ice has a higher coefficient of friction, in accordance with the literature. These results will be presented, along with data from further experiments conducted at temperatures between 259-273K (in order to cover a wide range of the temperature dependent behaviour of ice) and speeds of 2-15m/s to produce a temperature-velocity-friction map for ice. The effect of temperature, speed and slider geometry on the deformation of ice will also be investigated. These speeds are approaching those exhibited by sports such as the luge (where athletes slide downhill on an icy track), placing the tribological work in context.

  13. Synchronizing ice cores from the Renland and Agassiz ice caps to the Greenland Ice Core Chronology

    DEFF Research Database (Denmark)

    Vinther, Bo Møllesøe; Clausen, Henrik Brink; Fischer, D. A.

    2008-01-01

    Four ice cores from the Agassiz ice cap in the Canadian high arctic and one ice core from the Renland ice cap in eastern Greenland have been synchronized to the Greenland Ice Core Chronology 2005 (GICC05) which is based on annual layer counts in the DYE-3, GRIP and NGRIP ice cores. Volcanic....... Annual layer thicknesses in the Agassiz ice cores point to a well-developed Raymond bump in the Agassiz ice cap....... reference horizons, seen in electrical conductivity measurements (ECM) have been used to carry out the synchronization throughout the Holocene. The Agassiz ice cores have been matched to the NGRIP ice core ECM signal, while the Renland core has been matched to the GRIP ice core ECM signal, thus tying...

  14. Initial Cooling Experiment (ICE)

    CERN Multimedia

    Photographic Service; CERN PhotoLab

    1978-01-01

    In 1977, in a record-time of 9 months, the magnets of the g-2 experiment were modified and used to build a proton/antiproton storage ring: the "Initial Cooling Experiment" (ICE). It served for the verification of the cooling methods to be used for the "Antiproton Project". Stochastic cooling was proven the same year, electron cooling followed later. Also, with ICE the experimental lower limit for the antiproton lifetime was raised by 9 orders of magnitude: from 2 microseconds to 32 hours. For its previous life as g-2 storage ring, see 7405430. More on ICE: 7711282, 7809081, 7908242.

  15. Wave-ice Interaction and the Marginal Ice Zone

    Science.gov (United States)

    2015-09-30

    single buoys that were moved from place to place. These new data, obtained within the comprehensive set of ocean, ice and atmosphere sensors and remote...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Wave- ice interaction and the Marginal Ice Zone Prof...between ocean waves and a sea ice cover, in terms, of scattering, attenuation, and mechanical effect of the waves on the ice . OBJECTIVES The

  16. Creep of ice: further studies

    International Nuclear Information System (INIS)

    Heard, H.C.; Durham, W.B.; Kirby, S.H.

    1987-01-01

    Detailed studies have been done of ice creep as related to the icy satellites, Ganymede and Callisto. Included were: (1) the flow of high-pressure water ices II, III, and V, and (2) frictional sliding of ice I sub h. Work was also begun on the study of the effects of impurities on the flow of ice. Test results are summarized

  17. Vortex ice in nanostructured superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Reichhardt, Charles [Los Alamos National Laboratory; Reichhardt, Cynthia J [Los Alamos National Laboratory; Libal, Andras J [Los Alamos National Laboratory

    2008-01-01

    We demonstrate using numerical simulations of nanostructured superconductors that it is possible to realize vortex ice states that are analogous to square and kagome ice. The system can be brought into a state that obeys either global or local ice rules by applying an external current according to an annealing protocol. We explore the breakdown of the ice rules due to disorder in the nanostructure array and show that in square ice, topological defects appear along grain boundaries, while in kagome ice, individual defects appear. We argue that the vortex system offers significant advantages over other artificial ice systems.

  18. Web life: Ice Flows

    Science.gov (United States)

    2016-11-01

    Computer and video gamers of a certain vintage will have fond memories of Lemmings, a game in which players must shepherd pixelated, suicidal rodents around a series of obstacles to reach safety. At first glance, Ice Flows is strikingly similar.

  19. Ice Engineering Research Area

    Data.gov (United States)

    Federal Laboratory Consortium — Refrigerated Physical Modeling of Waterways in a Controlled EnvironmentThe Research Area in the Ice Engineering Facility at the Cold Regions Research and Engineering...

  20. Islands in the ice

    DEFF Research Database (Denmark)

    Jørgensen, Tina; Kjær, Kurt H.; Haile, James Seymour

    2012-01-01

    Nunataks are isolated bedrocks protruding through ice sheets. They vary in age, but represent island environments in 'oceans' of ice through which organism dispersals and replacements can be studied over time. The J.A.D. Jensen's Nunataks at the southern Greenland ice sheet are the most isolated...... nunataks on the northern hemisphere - some 30 km from the nearest biological source. They constitute around 2 km(2) of ice-free land that was established in the early Holocene. We have investigated the changes in plant composition at these nunataks using both the results of surveys of the flora over...... the last 130 years and through reconstruction of the vegetation from the end of the Holocene Thermal Maximum (5528 ± 75 cal year BP) using meta-barcoding of plant DNA recovered from the nunatak sediments (sedaDNA). Our results show that several of the plant species detected with sedaDNA are described from...

  1. Dead-ice environments

    DEFF Research Database (Denmark)

    Krüger, Johannes; Kjær, Kurt H.; Schomacker, Anders

    2010-01-01

    Kötlujökull transports considerable amounts of supraglacial debris at its snout because of frontal oscillations with frequent ice advances followed by ice-margin stagnation. Kötlujökull provides suitable conditions of studying dead-ice melting and landscape formation in a debris-charged lowland...... under humid, sub-polar conditions? Does this rate differ from rates reported from polar environments of dry continental nature? How will the sedimentary architecture appear in the geological record? How will the final landsystem appear? These key questions are answered in a review of research...... and conclusions on dead-ice melting and landscape formation from Kötlujökull. Processes and landform-sediment associations are linked to the current climate and glacier–volcano interaction....

  2. Global ice sheet modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, T.J.; Fastook, J.L. [Univ. of Maine, Orono, ME (United States). Institute for Quaternary Studies

    1994-05-01

    The University of Maine conducted this study for Pacific Northwest Laboratory (PNL) as part of a global climate modeling task for site characterization of the potential nuclear waste respository site at Yucca Mountain, NV. The purpose of the study was to develop a global ice sheet dynamics model that will forecast the three-dimensional configuration of global ice sheets for specific climate change scenarios. The objective of the third (final) year of the work was to produce ice sheet data for glaciation scenarios covering the next 100,000 years. This was accomplished using both the map-plane and flowband solutions of our time-dependent, finite-element gridpoint model. The theory and equations used to develop the ice sheet models are presented. Three future scenarios were simulated by the model and results are discussed.

  3. Global ice sheet modeling

    International Nuclear Information System (INIS)

    Hughes, T.J.; Fastook, J.L.

    1994-05-01

    The University of Maine conducted this study for Pacific Northwest Laboratory (PNL) as part of a global climate modeling task for site characterization of the potential nuclear waste respository site at Yucca Mountain, NV. The purpose of the study was to develop a global ice sheet dynamics model that will forecast the three-dimensional configuration of global ice sheets for specific climate change scenarios. The objective of the third (final) year of the work was to produce ice sheet data for glaciation scenarios covering the next 100,000 years. This was accomplished using both the map-plane and flowband solutions of our time-dependent, finite-element gridpoint model. The theory and equations used to develop the ice sheet models are presented. Three future scenarios were simulated by the model and results are discussed

  4. Ice Cream Stick Math.

    Science.gov (United States)

    Paddock, Cynthia

    1992-01-01

    Described is a teaching technique which uses the collection of ice cream sticks as a means of increasing awareness of quantity in a self-contained elementary special class for students with learning disabilities and mild mental retardation. (DB)

  5. Electrical Properties of Ice

    Science.gov (United States)

    1993-08-01

    carriers in ice. T U] P2 P3 PU4 (00C (m2 V s) (m21V S) (M21V s) (m2/V s) Method used Reference -13 to -36 (1.1±O..1)xl0𔄁 Analysis of Kunst and...Chapter 18. In Ice, 2nd ed., vol. 2. Amsterdam: North Holland Publishing Co., p. 783-7 99 . Kunst , M. and J. Warnan (1983) Nanosecond time-resolved

  6. Ice slurry accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, K.G.; Kauffeld, M.

    1998-06-01

    More and more refrigeration systems are designed with secondary loops, thus reducing the refrigerant charge of the primary refrigeration plant. In order not to increase energy consumption by introducing a secondary refrigerant, alternatives to the well established single phase coolants (brines) and different concepts of the cooling plant have to be evaluated. Combining the use of ice-slurry - mixture of water, a freezing point depressing agent (antifreeze) and ice particles - as melting secondary refrigerant and the use of a cool storage makes it possible to build plants with secondary loops without increasing the energy consumption and investment. At the same time the operating costs can be kept at a lower level. The accumulation of ice-slurry is compared with other and more traditional storage systems. The method is evaluated and the potential in different applications is estimated. Aspects of practically use of ice-slurry has been examined in the laboratory at the Danish Technological Institute (DTI). This paper will include the final conclusions from this work concerning tank construction, agitator system, inlet, outlet and control. The work at DTI indicates that in some applications systems with ice-slurry and accumulation tanks have a great future. These applications are described by a varying load profile and a process temperature suiting the temperature of ice-slurry (-3 - -8/deg. C). (au)

  7. Ice recrystallization inhibition in ice cream by propylene glycol monostearate.

    Science.gov (United States)

    Aleong, J M; Frochot, S; Goff, H D

    2008-11-01

    The effectiveness of propylene glycol monostearate (PGMS) to inhibit ice recrystallization was evaluated in ice cream and frozen sucrose solutions. PGMS (0.3%) dramatically reduced ice crystal sizes in ice cream and in sucrose solutions frozen in a scraped-surface freezer before and after heat shock, but had no effect in quiescently frozen solutions. PGMS showed limited emulsifier properties by promoting smaller fat globule size distributions and enhanced partial coalescence in the mix and ice cream, respectively, but at a much lower level compared to conventional ice cream emulsifier. Low temperature scanning electron microscopy revealed highly irregular crystal morphology in both ice cream and sucrose solutions frozen in a scraped-surface freezer. There was strong evidence to suggest that PGMS directly interacts with ice crystals and interferes with normal surface propagation. Shear during freezing may be required for its distribution around the ice and sufficient surface coverage.

  8. Evaluation of tele-ultrasound as a tool in remote diagnosis and clinical management at the Amundsen-Scott South Pole Station and the McMurdo Research Station.

    Science.gov (United States)

    Otto, Christian; Shemenski, Ron; Scott, Jessica M; Hartshorn, Jeanette; Bishop, Sheryl; Viegas, Steven

    2013-03-01

    Abstract Background: A large number of Antarctic stations do not utilize ultrasound for medical care. Regular use of ultrasound imaging at South Pole and McMurdo Stations first began in October 2002. To date, there has been no evaluation of medical events requiring ultrasound examination from this remote environment. Additionally, the importance of tele-ultrasound for clinical management in Antarctica has not yet been assessed. We therefore conducted a retrospective analysis of all ultrasound exams performed at South Pole and McMurdo Stations between October 2002 and October 2003. Radiology reports and patient charts were reviewed for pre- and post-ultrasound diagnosis and treatment. Sixty-six ultrasound exams were conducted on 49 patients. Of the exams, 94.0% were interpreted by the store-and-forward method, whereas 6.0% were interpreted in "real-time" format. Abdominal, genitourinary, and gynecology ultrasound exams accounted for 63.6% of exams. Ultrasound examination prevented an intercontinental aeromedical evacuation in 25.8% of cases, and had a significant effect on the diagnosis and management of illness in patients at South Pole and McMurdo research stations. These findings indicate that diagnostic ultrasound has significant benefits for medical care at Antarctic stations and that tele-ultrasound is a valuable addition to remote medical care for isolated populations with limited access to tertiary-healthcare facilities.

  9. Characteristics of ice, needed for ice loadings determination

    Directory of Open Access Journals (Sweden)

    Polit’ko Valentin Aleksandrovich

    2015-12-01

    Full Text Available In order to determine ice loads on the offshore oil and gas structures different ice information is required as an input data. At the present moment there is no unified generally recognized methodology for estimating ice loads and set the main ice parameters. In this relation there appears a question of the ice parameters which need to be investigated. The article attempts to analyze a variety of sources, including standards, on the subject of collection of ice information, required and sufficient for the calculation of ice loads. The article presents the basic steps in the planning of ice information collection, the list of main characteristics and parameters of ice, modern methods of observations and direct measurements of the ice, as well as the ways in which the field tests data of physical and mechanical properties of ice is processed. Particular attention is paid to the anisotropy of ice, integrated assessment of the strength of the ice field, as well as the variability of meteorological conditions.

  10. Ice flow Modelling of the Greenland Ice Sheet

    DEFF Research Database (Denmark)

    Nielsen, Lisbeth Tangaa

    Models of ice flow have a range of application in glaciology, including investigating the large-scale response of ice sheets to changes in climate, assimilating data to estimate unknown conditions beneath the ice sheet, and in interpreting proxy records obtained from ice cores, among others. In t...... a steady state with respect to the reference climate at the end of the simulation and that the mass balance of the ice sheet at this time was more sensitive to recent climate fluctuations than the temperature forcing in the early or mid-Holocene.......Models of ice flow have a range of application in glaciology, including investigating the large-scale response of ice sheets to changes in climate, assimilating data to estimate unknown conditions beneath the ice sheet, and in interpreting proxy records obtained from ice cores, among others....... In this PhD project, the use of ice flow models for the interpretation of the age-structure of the Greenland ice sheet, i.e. the depth within the ice, at which ice deposited at given times are found at present day. Two different observational data sets of this archive were investigated. Further, paleo...

  11. High-resolution records of the beryllium-10 solar activity proxy in ice from Law Dome, East Antarctica: measurement, reproducibility and principal trends

    Directory of Open Access Journals (Sweden)

    J. B. Pedro

    2011-07-01

    Full Text Available Three near-monthly resolution 10Be records are presented from the Dome Summit South (DSS ice core site, Law Dome, East Antarctica. The chemical preparation and Accelerator Mass Spectrometer (AMS measurement of these records is described. The reproducibility of 10Be records at DSS is assessed through intercomparison of the ice core data with data from two previously published and contemporaneous snow pits. We find generally good agreement between the five records, comparable to that observed between other trace chemical records from the site. This result allays concerns raised by a previous Antarctic study (Moraal et al., 2005 about poor reproducibility of ice core 10Be records. A single composite series is constructed from the three ice cores providing a monthly-resolved record of 10Be concentrations at DSS over the past decade (1999 to 2009. To our knowledge, this is the first published ice core data spanning the recent exceptional solar minimum of solar cycle 23. 10Be concentrations are significantly correlated to the cosmic ray flux recorded by the McMurdo neutron monitor (rxy = 0.64, with 95 % CI of 0.53 to 0.71, suggesting that solar modulation of the atmospheric production rate may explain up to ~40 % of the variance in 10Be concentrations at DSS. Sharp concentration peaks occur in most years during the summer-to-autumn, possibly caused by stratospheric incursions. Our results underscore the presence of both production and meteorological signals in ice core 10Be data.

  12. IDEOLOGICALLY CHALLENGING ENTERTAINMENT (ICE

    Directory of Open Access Journals (Sweden)

    Dana Lori Chalmers

    2015-09-01

    Full Text Available Ideologically Challenging Entertainment (ICE is entertainment that challenges ‘us vs. them’ ideologies associated with radicalization, violent conflict and terrorism. ICE presents multiple perspectives on a conflict through mainstream entertainment. This article introduces the theoretical underpinnings of ICE, the first ICE production and the audience responses to it. The first ICE production was Two Merchants: The Merchant of Venice adapted to challenge ideologies of the Arab-Israeli Conflict. A mixed-methods study of audience responses explored whether this production inspired audiences to shift their ideological views. Each performance included two versions of the adaptation: a Jewish dominated society with an Arab Muslim minority, contrasted with an Arab Muslim dominated society and a Jewish minority. A mixed-methods study of audience responses explored whether this production inspired audiences to shift their ideological views to become more tolerant of differences away from ideological radicalization. Of audience members who did not initially agree with the premise of the production, 40% reconsidered their ideological views, indicating increased tolerance, greater awareness of and desire to change their own prejudices. In addition, 86% of the audience expressed their intention to discuss the production with others, thereby encouraging critical engagement with, and broader dissemination of the message. These outcomes suggest that high quality entertainment – as defined by audience responses to it - can become a powerful tool in the struggle against radicalised ideologies.

  13. Data archaeology at ICES

    Science.gov (United States)

    Dooley, Harry D.

    1992-01-01

    This paper provides a brief overview of the function of the International Council for the Exploration of the Sea (ICES), both past and present, in particular in the context of its interest in compiling oceanographic data sets. Details are provided of the procedures it adopted to ensure adequate internationally collaborative marine investigations during the first part of the century, such as how it provided a forum for action by its member states, how it coordinated and published the results of scientific programs, and how it provided a foundation, through scientists employed in the ICES Office, for the establishment of the original oceanographic marine databases and associated products, and the scientific interpretation of the results. The growth and expansion of this area of ICES activity is then traced, taking into account the changing conditions for oceanographic data management resulting from the establishment of the National Data Centres, as well as the World Data Centres for Oceanography, which were created to meet the needs of the International Geophysical Year (IGY). Finally, there is a discussion of the way in which the very existence of ICES has proved to be a valuable source of old data, some of which have not yet been digitized, but which can be readily retrieved because they have been very carefully documented throughout the years. Lessons from this activity are noted, and suggestions are made on how the past experiences of ICES can be utilized to ensure the availability of marine data to present and future generations of scientists.

  14. IceBridge PARIS L2 Ice Thickness V001

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains contains Greenland ice thickness measurements acquired using the Pathfinder Advanced Radar Ice Sounder (PARIS).The data were collected as part...

  15. EASE-Grid Sea Ice Age

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides weekly estimates of sea ice age for the Arctic Ocean from remotely sensed sea ice motion and sea ice extent. The ice age data are derived from...

  16. Thin ice and storms: Sea ice deformation from buoy arrays deployed during N-ICE2015

    OpenAIRE

    Itkin, Polona; Spreen, Gunnar; Cheng, Bin; Doble, Martin; Girard-Ardhuin, Fanny; Haapala, Jari; Hughes, Nick; Kaleschke, Lars; Nicolaus, Marcel; Wilkinson, Jeremy

    2017-01-01

    Arctic sea ice has displayed significant thinning as well as an increase in drift speed in recent years. Taken together this suggests an associated rise in sea ice deformation rate. A winter and spring expedition to the sea ice covered region north of Svalbard – the Norwegian young sea ICE 2015 expedition (N-ICE2015) - gave an opportunity to deploy extensive buoy arrays and to monitor the deformation of the first- and second-year ice now common in the majority of the Arctic Basin. During the ...

  17. Dry Ice Etches Terrain

    Science.gov (United States)

    2007-01-01

    [figure removed for brevity, see original site] Figure 1 Every year seasonal carbon dioxide ice, known to us as 'dry ice,' covers the poles of Mars. In the south polar region this ice is translucent, allowing sunlight to pass through and warm the surface below. The ice then sublimes (evaporates) from the bottom of the ice layer, and carves channels in the surface. The channels take on many forms. In the subimage shown here (figure 1) the gas from the dry ice has etched wide shallow channels. This region is relatively flat, which may be the reason these channels have a different morphology than the 'spiders' seen in more hummocky terrain. Observation Geometry Image PSP_003364_0945 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on 15-Apr-2007. The complete image is centered at -85.4 degrees latitude, 104.0 degrees East longitude. The range to the target site was 251.5 km (157.2 miles). At this distance the image scale is 25.2 cm/pixel (with 1 x 1 binning) so objects 75 cm across are resolved. The image shown here has been map-projected to 25 cm/pixel . The image was taken at a local Mars time of 06:57 PM and the scene is illuminated from the west with a solar incidence angle of 75 degrees, thus the sun was about 15 degrees above the horizon. At a solar longitude of 219.6 degrees, the season on Mars is Northern Autumn.

  18. Submesoscale Sea Ice-Ocean Interactions in Marginal Ice Zones

    Science.gov (United States)

    Manucharyan, Georgy E.; Thompson, Andrew F.

    2017-12-01

    Signatures of ocean eddies, fronts, and filaments are commonly observed within marginal ice zones (MIZs) from satellite images of sea ice concentration, and in situ observations via ice-tethered profilers or underice gliders. However, localized and intermittent sea ice heating and advection by ocean eddies are currently not accounted for in climate models and may contribute to their biases and errors in sea ice forecasts. Here, we explore mechanical sea ice interactions with underlying submesoscale ocean turbulence. We demonstrate that the release of potential energy stored in meltwater fronts can lead to energetic submesoscale motions along MIZs with spatial scales O(10 km) and Rossby numbers O(1). In low-wind conditions, cyclonic eddies and filaments efficiently trap the sea ice and advect it over warmer surface ocean waters where it can effectively melt. The horizontal eddy diffusivity of sea ice mass and heat across the MIZ can reach O(200 m2 s-1). Submesoscale ocean variability also induces large vertical velocities (order 10 m d-1) that can bring relatively warm subsurface waters into the mixed layer. The ocean-sea ice heat fluxes are localized over cyclonic eddies and filaments reaching about 100 W m-2. We speculate that these submesoscale-driven intermittent fluxes of heat and sea ice can contribute to the seasonal evolution of MIZs. With the continuing global warming and sea ice thickness reduction in the Arctic Ocean, submesoscale sea ice-ocean processes are expected to become increasingly prominent.

  19. Ice cores and palaeoclimate

    International Nuclear Information System (INIS)

    Krogh Andersen, K.; Ditlevsen, P.; Steffensen, J.P.

    2001-01-01

    Ice cores from Greenland give testimony of a highly variable climate during the last glacial period. Dramatic climate warmings of 15 to 25 deg. C for the annual average temperature in less than a human lifetime have been documented. Several questions arise: Why is the Holocene so stable? Is climatic instability only a property of glacial periods? What is the mechanism behind the sudden climate changes? Are the increased temperatures in the past century man-made? And what happens in the future? The ice core community tries to attack some of these problems. The NGRIP ice core currently being drilled is analysed in very high detail, allowing for a very precise dating of climate events. It will be possible to study some of the fast changes on a year by year basis and from this we expect to find clues to the sequence of events during rapid changes. New techniques are hoped to allow for detection of annual layers as far back as 100,000 years and thus a much improved time scale over past climate changes. It is also hoped to find ice from the Eemian period. If the Eemian layers confirm the GRIP sequence, the Eemian was actually climatically unstable just as the glacial period. This would mean that the stability of the Holocene is unique. It would also mean, that if human made global warming indeed occurs, we could jeopardize the Holocene stability and create an unstable 'Eemian situation' which ultimately could start an ice age. Currenlty mankind is changing the composition of the atmosphere. Ice cores document significant increases in greenhouse gases, and due to increased emissions of sulfuric and nitric acid from fossil fuel burning, combustion engines and agriculture, modern Greenland snow is 3 - 5 times more acidic than pre-industrial snow (Mayewski et al., 1986). However, the magnitude and abruptness of the temperature changes of the past century do not exceed the magnitude of natural variability. It is from the ice core perspective thus not possible to attribute the

  20. Vacancy Concentration in Ice

    DEFF Research Database (Denmark)

    Mogensen, O. E.; Eldrup, Morten Mostgaard

    1977-01-01

    Based on the diffusion constant for self-diffusion in ice, which is believed to take place by a vacancy mechanism, we estimate the relative vacancy concentration near the melting point to be at least ∼ 10−6, i.e. much higher than previous estimates of about 10−10.......Based on the diffusion constant for self-diffusion in ice, which is believed to take place by a vacancy mechanism, we estimate the relative vacancy concentration near the melting point to be at least ∼ 10−6, i.e. much higher than previous estimates of about 10−10....

  1. IOMASA SEA ICE DEVELOPMENTS

    DEFF Research Database (Denmark)

    Andersen, Søren; Tonboe, Rasmus; Heygster, Georg

    2005-01-01

    and determine the circumstances that may lead to anomalous sea ice concentration retrieval as well as to assess and possibly minimize the sensitivities of the retrieval system. Through an active partnership with the SAF on Ocean and Sea Ice, a prototype system will be implemented as an experimental product...... chain in order to shorten the loop from development to operational processing. The presentation will present the developments and examples of the new retrievals and finally give an outlook to the future perspectives of the system....

  2. Safety hazard of aircraft icing

    Science.gov (United States)

    Mclean, J. C., Jr.

    1979-01-01

    The problem of aircraft icing is reported as well as the type of aircraft affected, the pilots involved, and an identification of the areas where reduction in icing accidents are readily accomplished.

  3. ICE Online Detainee Locator System

    Data.gov (United States)

    Department of Homeland Security — The Online Detainee Locator datasets provide the location of a detainee who is currently in ICE custody, or who was release from ICE custody for any reason with the...

  4. Ice recrystallization inhibition in ice cream as affected by ice structuring proteins from winter wheat grass.

    Science.gov (United States)

    Regand, A; Goff, H D

    2006-01-01

    Ice recrystallization in quiescently frozen sucrose solutions that contained some of the ingredients commonly found in ice cream and in ice cream manufactured under commercial conditions, with or without ice structuring proteins (ISP) from cold-acclimated winter wheat grass extract (AWWE), was assessed by bright field microscopy. In sucrose solutions, critical differences in moisture content, viscosity, ionic strength, and other properties derived from the presence of other ingredients (skim milk powder, corn syrup solids, locust bean gum) caused a reduction in ice crystal growth. Significant ISP activity in retarding ice crystal growth was observed in all solutions (44% for the most complex mix) containing 0.13% total protein from AWWE. In heat-shocked ice cream, ice recrystallization rates were significantly reduced 40 and 46% with the addition of 0.0025 and 0.0037% total protein from AWWE. The ISP activity in ice cream was not hindered by its inclusion in mix prior to pasteurization. A synergistic effect between ISP and stabilizer was observed, as ISP activity was reduced in the absence of stabilizer in ice cream formulations. A remarkably smoother texture for ice creams containing ISP after heat-shock storage was evident by sensory evaluation. The efficiency of ISP from AWWE in controlling ice crystal growth in ice cream has been demonstrated.

  5. Cold adaptive traits revealed by comparative genomic analysis of the eurypsychrophile Rhodococcus sp. JG3 isolated from high elevation McMurdo Dry Valley permafrost, Antarctica.

    Science.gov (United States)

    Goordial, Jacqueline; Raymond-Bouchard, Isabelle; Zolotarov, Yevgen; de Bethencourt, Luis; Ronholm, Jennifer; Shapiro, Nicole; Woyke, Tanja; Stromvik, Martina; Greer, Charles W; Bakermans, Corien; Whyte, Lyle

    2016-02-01

    The permafrost soils of the high elevation McMurdo Dry Valleys are the most cold, desiccating and oligotrophic on Earth. Rhodococcus sp. JG3 is one of very few bacterial isolates from Antarctic Dry Valley permafrost, and displays subzero growth down to -5°C. To understand how Rhodococcus sp. JG3 is able to survive extreme permafrost conditions and be metabolically active at subzero temperatures, we sequenced its genome and compared it to the genomes of 14 mesophilic rhodococci. Rhodococcus sp. JG3 possessed a higher copy number of genes for general stress response, UV protection and protection from cold shock, osmotic stress and oxidative stress. We characterized genome wide molecular adaptations to cold, and identified genes that had amino acid compositions favourable for increased flexibility and functionality at low temperatures. Rhodococcus sp. JG3 possesses multiple complimentary strategies which may enable its survival in some of the harshest permafrost on Earth. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Polar Stereographic Valid Ice Masks Derived from National Ice Center Monthly Sea Ice Climatologies, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — These valid ice masks provide a way to remove spurious ice caused by residual weather effects and land spillover in passive microwave data. They are derived from the...

  7. Analysis on ice resistance and ice response of ships sailing in brash ice

    Directory of Open Access Journals (Sweden)

    WANG Chao

    2018-02-01

    Full Text Available [Objectives] In order to explore the interaction between a hull and crushed ice, [Methods] a discrete element model is combined with Euler multiphase flow. The force of a hull under different speeds and different ice levels is calculated, and the motion response of ice during ship-ice interaction discussed. The reasons for ice resistance and movement change are explained intuitively. [Results] The ice resistance of the hull is obtained, mainly due to the friction and collision of the crushed ice and hull surface, which increases with the increase of the speed, but when the speed increases to a certain value, the crushing resistance no longer increases and even reduces the trend. [Conclusions] This provides a reference for the optimization of ship type for ice zones, as well as propeller design.

  8. IceCube SWIRP

    Science.gov (United States)

    Wu, Dongliang L.

    2017-01-01

    Clouds, ice clouds in particular, are a major source of uncertainty in climate models. Submm-wave sensors fill the sensitivity gap between MW and IR.Cloud microphysical properties (particle size and shape) account for large (200 and 40) measurement uncertainty.

  9. Ecology under lake ice

    NARCIS (Netherlands)

    Hampton, Stephanie E.; Galloway, Aaron W. E.; Powers, Stephen M.; Ozersky, Ted; Woo, Kara H.; Batt, Ryan D.; Labou, Stephanie G.; O'Reilly, Catherine M.; Sharma, Sapna; Lottig, Noah R.; Stanley, Emily H.; North, Rebecca L.; Stockwell, Jason D.; Adrian, Rita; Weyhenmeyer, Gesa A.; Arvola, Lauri; Baulch, Helen M.; Bertani, Isabella; Bowman, Larry L., Jr.; Carey, Cayelan C.; Catalan, Jordi; Colom-Montero, William; Domine, Leah M.; Felip, Marisol; Granados, Ignacio; Gries, Corinna; Grossart, Hans-Peter; Haberman, Juta; Haldna, Marina; Hayden, Brian; Higgins, Scott N.; Jolley, Jeff C.; Kahilainen, Kimmo K.; Kaup, Enn; Kehoe, Michael J.; MacIntyre, Sally; Mackay, Anson W.; Mariash, Heather L.; Mckay, Robert M.; Nixdorf, Brigitte; Noges, Peeter; Noges, Tiina; Palmer, Michelle; Pierson, Don C.; Post, David M.; Pruett, Matthew J.; Rautio, Milla; Read, Jordan S.; Roberts, Sarah L.; Ruecker, Jacqueline; Sadro, Steven; Silow, Eugene A.; Smith, Derek E.; Sterner, Robert W.; Swann, George E. A.; Timofeyev, Maxim A.; Toro, Manuel; Twiss, Michael R.; Vogt, Richard J.; Watson, Susan B.; Whiteford, Erika J.; Xenopoulos, Marguerite A.

    Winter conditions are rapidly changing in temperate ecosystems, particularly for those that experi-ence periods of snow and ice cover. Relatively little is known of winter ecology in these systems,due to a historical research focus on summer ‘growing seasons’. We executed the first global

  10. User's guide for ICE

    International Nuclear Information System (INIS)

    Fraley, S.K.

    1976-07-01

    ICE is a cross-section mixing code which will accept cross sections from an AMPX working library and produce mixed cross sections in the AMPX working library format, ANISN format, and the group-independent ANISN format. User input is in the free-form or fixed-form FIDO structure. The code is operable as a module in the AMPX system

  11. Melting ice, growing trade?

    Directory of Open Access Journals (Sweden)

    Sami Bensassi

    2016-05-01

    Full Text Available Abstract Large reductions in Arctic sea ice, most notably in summer, coupled with growing interest in Arctic shipping and resource exploitation have renewed interest in the economic potential of the Northern Sea Route (NSR. Two key constraints on the future viability of the NSR pertain to bathymetry and the future evolution of the sea ice cover. Climate model projections of future sea ice conditions throughout the rest of the century suggest that even under the most “aggressive” emission scenario, increases in international trade between Europe and Asia will be very low. The large inter-annual variability of weather and sea ice conditions in the route, the Russian toll imposed for transiting the NSR, together with high insurance costs and scarce loading/unloading opportunities, limit the use of the NSR. We show that even if these obstacles are removed, the duration of the opening of the NSR over the course of the century is not long enough to offer a consequent boost to international trade at the macroeconomic level.

  12. Ice shelf fracture parameterization in an ice sheet model

    Directory of Open Access Journals (Sweden)

    S. Sun

    2017-11-01

    Full Text Available Floating ice shelves exert a stabilizing force onto the inland ice sheet. However, this buttressing effect is diminished by the fracture process, which on large scales effectively softens the ice, accelerating its flow, increasing calving, and potentially leading to ice shelf breakup. We add a continuum damage model (CDM to the BISICLES ice sheet model, which is intended to model the localized opening of crevasses under stress, the transport of those crevasses through the ice sheet, and the coupling between crevasse depth and the ice flow field and to carry out idealized numerical experiments examining the broad impact on large-scale ice sheet and shelf dynamics. In each case we see a complex pattern of damage evolve over time, with an eventual loss of buttressing approximately equivalent to halving the thickness of the ice shelf. We find that it is possible to achieve a similar ice flow pattern using a simple rule of thumb: introducing an enhancement factor ∼ 10 everywhere in the model domain. However, spatially varying damage (or equivalently, enhancement factor fields set at the start of prognostic calculations to match velocity observations, as is widely done in ice sheet simulations, ought to evolve in time, or grounding line retreat can be slowed by an order of magnitude.

  13. Autonomous Ice Mass Balance Buoys for Seasonal Sea Ice

    Science.gov (United States)

    Whitlock, J. D.; Planck, C.; Perovich, D. K.; Parno, J. T.; Elder, B. C.; Richter-Menge, J.; Polashenski, C. M.

    2017-12-01

    The ice mass-balance represents the integration of all surface and ocean heat fluxes and attributing the impact of these forcing fluxes on the ice cover can be accomplished by increasing temporal and spatial measurements. Mass balance information can be used to understand the ongoing changes in the Arctic sea ice cover and to improve predictions of future ice conditions. Thinner seasonal ice in the Arctic necessitates the deployment of Autonomous Ice Mass Balance buoys (IMB's) capable of long-term, in situ data collection in both ice and open ocean. Seasonal IMB's (SIMB's) are free floating IMB's that allow data collection in thick ice, thin ice, during times of transition, and even open water. The newest generation of SIMB aims to increase the number of reliable IMB's in the Arctic by leveraging inexpensive commercial-grade instrumentation when combined with specially developed monitoring hardware. Monitoring tasks are handled by a custom, expandable data logger that provides low-cost flexibility for integrating a large range of instrumentation. The SIMB features ultrasonic sensors for direct measurement of both snow depth and ice thickness and a digital temperature chain (DTC) for temperature measurements every 2cm through both snow and ice. Air temperature and pressure, along with GPS data complete the Arctic picture. Additionally, the new SIMB is more compact to maximize deployment opportunities from multiple types of platforms.

  14. Ice particle collisions

    Science.gov (United States)

    Sampara, Naresh; Turnbull, Barbara; Hill, Richard; Swift, Michael

    2017-04-01

    Granular interactions of ice occur in a range of geophysical, astrophysical and industrial applications. For example, Saturn's Rings are composed of icy particles from micrometers to kilometres in size - inertial and yet too small to interact gravitationally. In clouds, ice crystals are smashed to pieces before they re-aggregate to for snow floccules in a process that is very much open to interpretation. In a granular flow of ice particles, the energy spent in collisions can lead to localized surface changes and wetting, which in turn can promote aggregation. To understand the induced wetting and its effects, we present two novel experimental methods which provide snippets of insight into the collisional behaviour of macroscopic ice particles. Experiment 1: Microgravity experiments provide minute details of the contact between the ice particles during the collision. A diamagnetic levitation technique, as alternative to the parabolic flight or falling tower experiments, was used to understand the collisional behaviour of individual macroscopic icy bodies. A refrigerated cylinder, that can control ambient conditions, was inserted into the bore of an 18 Tesla superconducting magnet and cooled to -10°C. Initial binary collisions were created, where one 4 mm ice particle was levitated in the magnet bore whilst another particle was dropped vertically from the top of the bore. The trajectories of both particles were captured by high speed video to provide the three-dimensional particle velocities and track the collision outcome. Introducing complexity, multiple particles were levitated in the bore and an azimuthal turbulent air flow introduced, allowing the particles to collide with other particles within a coherent fluid structure (mimicking Saturn's rings, or an eddy in a cloud). In these experiments, a sequence of collisions occur, each one different to the previous one due to the changes in surface characteristics created by the collisions themselves. Aggregation

  15. Icing Research Tunnel

    Science.gov (United States)

    Chennault, Jonathan

    2004-01-01

    The Icing Research Tunnel in Building 11 at the NASA Glenn Research Center is committed to researching the effects of in flight icing on aircraft and testing ways to stop the formation of hazardous icing conditions on planes. During this summer, I worked here with Richard DelRosa, the lead engineer for this area. address one of the major concerns of aviation: icing conditions. During the war, many planes crashed (especially supply planes going over the.Himalayas) because ice built up in their wings and clogged the engines. To this day, it remains the largest ice tunnel in the world, with a test section that measures 6 feet high, 9 feet long, and 20 feet wide. It can simulate airspeeds from 50 to 300 miles per hour at temperatures as low as -50 Fahrenheit. Using these capabilities, IRT can simulate actual conditions at high altitudes. The first thing I did was creating a cross reference in Microsoft Excel. It lists commands for the DPU units that control the pressure and temperature variations in the tunnel, as well as the type of command (keyboard, multiplier, divide, etc). The cross reference also contains the algorithm for every command, and which page it is listed in on the control sheet (visual Auto-CAD graphs, which I helped to make). I actually spent most of the time on the computer using Auto-CAD. I drew a diagram of the entire icing tunnel and then drew diagrams of its various parts. Between my mentor and me, we have drawings of every part of it, from the spray bars to the thermocouples, power cabinets, input-output connectors for power systems, and layouts of various other machines. I was also responsible for drawing schematics for the Escort system (which controls the spray bars), the power system, DPUs, and other electrical systems. In my spare time, I am attempting to build and program the "toddler". Toddler is a walking robot that I have to program in PBASIC language. When complete, it should be able to walk on level terrain while avoiding obstacles in

  16. Improved ice loss estimate of the northwestern Greenland ice sheet

    DEFF Research Database (Denmark)

    Kjeldsen, Kristian Kjellerup; Khan, Shfaqat Abbas; Wahr, J.

    2013-01-01

    We estimate ice volume change rates in the northwest Greenland drainage basin during 2003–2009 using Ice, Cloud and land Elevation Satellite (ICESat) laser altimeter data. Elevation changes are often reported to be largest near the frontal portion of outlet glaciers. To improve the volume change...... a significant acceleration in mass loss at elevations above 1200 m. Both the improved mass loss estimate along the ice sheet margin and the acceleration at higher elevations have implications for predictions of the elastic adjustment of the lithosphere caused by present-day ice mass changes. Our study shows...... change. Our results show that adding Airborne Topographic Mapper and Land, Vegetation and Ice Sensor data to the ICESat data increases the catchment-wide estimate of ice volume loss by 11%, mainly due to an improved volume loss estimate along the ice sheet margin. Furthermore, our results show...

  17. Ice Caps and Ice Belts: The Effects of Obliquity on Ice-Albedo Feedback

    Science.gov (United States)

    Rose, Brian E. J.; Cronin, Timothy W.; Bitz, Cecilia M.

    2017-09-01

    Planetary obliquity determines the meridional distribution of the annual mean insolation. For obliquity exceeding 55°, the weakest insolation occurs at the equator. Stable partial snow and ice cover on such a planet would be in the form of a belt about the equator rather than polar caps. An analytical model of planetary climate is used to investigate the stability of ice caps and ice belts over the widest possible range of parameters. The model is a non-dimensional diffusive Energy Balance Model, representing insolation, heat transport, and ice-albedo feedback on a spherical planet. A complete analytical solution for any obliquity is given and validated against numerical solutions of a seasonal model in the “deep-water” regime of weak seasonal ice line migration. Multiple equilibria and unstable transitions between climate states (ice-free, Snowball, or ice cap/belt) are found over wide swaths of parameter space, including a “Large Ice-Belt Instability” and “Small Ice-Belt Instability” at high obliquity. The Snowball catastrophe is avoided at weak radiative forcing in two different scenarios: weak albedo feedback and inefficient heat transport (favoring stable partial ice cover), or efficient transport at high obliquity (favoring ice-free conditions). From speculative assumptions about distributions of planetary parameters, three-fourths to four-fifths of all planets with stable partial ice cover should be in the form of Earth-like polar caps.

  18. The Influence of Platelet Ice and Snow on Antarctic Land-fast Sea Ice

    OpenAIRE

    Hoppmann, Mario; Nicolaus, Marcel

    2011-01-01

    Sea ice fastened to coasts, icebergs and ice shelves is of crucial importance for climate- and ecosystems. Near Antarctic ice shelves, this land-fast sea ice exhibits two unique characteristics that distinguish it from most other sea ice: 1) Ice platelets form and grow in super-cooled water, which originates from ice shelf cavities. The crystals accumulate beneath the solid sea-ice cover and are incorporated into the sea-ice fabric, contributing between 10 and 60% to the mas...

  19. Analysis of sea ice dynamics

    Science.gov (United States)

    Zwally, J.

    1988-01-01

    The ongoing work has established the basis for using multiyear sea ice concentrations from SMMR passive microwave for studies of largescale advection and convergence/divergence of the Arctic sea ice pack. Comparisons were made with numerical model simulations and buoy data showing qualitative agreement on daily to interannual time scales. Analysis of the 7-year SMMR data set shows significant interannual variations in the total area of multiyear ice. The scientific objective is to investigate the dynamics, mass balance, and interannual variability of the Arctic sea ice pack. The research emphasizes the direct application of sea ice parameters derived from passive microwave data (SMMR and SSMI) and collaborative studies using a sea ice dynamics model. The possible causes of observed interannual variations in the multiyear ice area are being examined. The relative effects of variations in the large scale advection and convergence/divergence within the ice pack on a regional and seasonal basis are investigated. The effects of anomolous atmospheric forcings are being examined, including the long-lived effects of synoptic events and monthly variations in the mean geostrophic winds. Estimates to be made will include the amount of new ice production within the ice pack during winter and the amount of ice exported from the pack.

  20. Experimental provocation of 'ice-cream headache' by ice cubes and ice water.

    Science.gov (United States)

    Mages, Stephan; Hensel, Ole; Zierz, Antonia Maria; Kraya, Torsten; Zierz, Stephan

    2017-04-01

    Background There are various studies on experimentally provoked 'ice-cream headache' or 'headache attributed to ingestion or inhalation of a cold stimulus' (HICS) using different provocation protocols. The aim of this study was to compare two provocation protocols. Methods Ice cubes pressed to the palate and fast ingestion of ice water were used to provoke HICS and clinical features were compared. Results The ice-water stimulus provoked HICS significantly more often than the ice-cube stimulus (9/77 vs. 39/77). Ice-water-provoked HICS had a significantly shorter latency (median 15 s, range 4-97 s vs. median 68 s, range 27-96 s). There was no difference in pain localisation. Character after ice-cube stimulation was predominantly described as pressing and after ice-water stimulation as stabbing. A second HICS followed in 10/39 (26%) of the headaches provoked by ice water. Lacrimation occurred significantly more often in volunteers with than in those without HICS. Discussion HICS provoked by ice water was more frequent, had a shorter latency, different pain character and higher pain intensity than HICS provoked by ice cubes. The finding of two subsequent HICS attacks in the same volunteers supports the notion that two types of HICS exist. Lacrimation during HICS indicates involvement of the trigeminal-autonomic reflex.

  1. Mars, earth, and ice

    International Nuclear Information System (INIS)

    Cordell, B.M.

    1986-01-01

    Possible mechanisms to explain the global ice covering of Mars, and previous ice ages on the earth, are considered. Evidence for the Milankovitch effect is found in the close correspondence of earth's past climate with its orbital variations, as recorded principally in ocean sediments, and the role of CO 2 is discussed. Mars' range of obliquity, 10 times that of the earth, and orbital eccentricity, fluctuating over a range 2 1/2 times that of the earth, could produce an important climate-driving cycle. Mathematical models of the Martian surface and atmosphere based on Viking data suggest that escaped CO 2 could create a surface pressure of 1-3 bars. Other factors such as the effect of continental drift, the increased brightness of the sun, and planetary reversals of magnetic field polarity are discussed, and the questions of where Martian water and CO 2 have gone are considered

  2. Animals and ICE

    DEFF Research Database (Denmark)

    van Hemmen, J Leo; Christensen-Dalsgaard, Jakob; Carr, Catherine E

    2016-01-01

    experimental and mathematical foundation, it is known that there is a low-frequency regime where the internal time difference (iTD) as perceived by the animal may well be 2-5 times higher than the external ITD, the interaural time difference, and that there is a frequency plateau over which the fraction i......TD/ITD is constant. There is also a high-frequency regime where the internal level (amplitude) difference iLD as perceived by the animal is much higher than the interaural level difference ILD measured externally between the two ears. The fundamental tympanic frequency segregates the two regimes. The present special...... issue devoted to "internally coupled ears" provides an overview of many aspects of ICE, be they acoustic, anatomical, auditory, mathematical, or neurobiological. A focus is on the hotly debated topic of what aspects of ICE animals actually exploit neuronally to localize a sound source....

  3. Skating on slippery ice

    Directory of Open Access Journals (Sweden)

    J. M. J. van Leeuwen

    2017-12-01

    Full Text Available The friction of a stationary moving skate on smooth ice is investigated, in particular in relation to the formation of a thin layer of water between skate and ice. It is found that the combination of ploughing and sliding gives a friction force that is rather insensitive for parameters such as velocity and temperature. The weak dependence originates from the pressure adjustment inside the water layer. For instance, high velocities, which would give rise to high friction, also lead to large pressures, which, in turn, decrease the contact zone and so lower the friction. The theory is a combination and completion of two existing but conflicting theories on the formation of the water layer.

  4. Sports: Ice -Doping Time

    OpenAIRE

    Barys Tasman

    2013-01-01

    In 2013 the systematic degradation of Belarusian sports continued, which was most vivid in the mass and most popular kinds of sports – soccer, hockey, track and field athletics, and also in the traditional Olympic disciplines – cycling, boxing, weight-lifting. The national ice hockey team lost the qualification tournament and failed to get to the Olympic Games in Sochi. The football national team took the last place in the qualifying group tournament at the 2014 World Cup. At the World Forum ...

  5. Car engine breather icing

    OpenAIRE

    Horoufi, Aryan

    2012-01-01

    Icing in an engine breather system can block the engine breather pipe, cause excessive crankcase pressure and degrade the engine performance. In this project, a numerical study, experimental tests and CFD analysis are employed in order to understand condensation and the extent of freezing inside a vertical pipe, a horizontal pipe and a T-joint pipe which are exposed to an external convective cooling. The pipe internal flow is assumed to be a vapour/air mixture. This study has l...

  6. Helicopter Icing Review.

    Science.gov (United States)

    1980-09-01

    on the ground or could be injurious to per- sons on the ground. Ice on the rotor hub and fuselage may become critical in a flight transitioning from...0 uE -4- c -) U. c-j -- 0- CL) - lCA AC) O C-)) 41 4J 4- -C -I Q -. x 0 s- =U. A S (U C C -- () : -) -_ __ _r__ . -( ___ 4)a -)r ’ ) - 0 n - 1 3092

  7. Ice condenser experimental plan

    International Nuclear Information System (INIS)

    Kannberg, L.D.; Piepel, G.F.; Owczarski, P.C.; Liebetrau, A.M.

    1986-01-01

    An experimental plan is being developed to validate the computer code ICEDF. The code was developed to estimate the extent of aerosol retention in the ice compartments of pressurized water reactor ice condenser containment systems during severe accidents. The development of the experimental plan began with review of available information on the conditions under which the code will be applied. Computer-generated estimates of thermohydraulic and aerosol conditions entering the ice condenser were evaluated and along with other information, used to generate design criteria. The design criteria have been used for preliminary test assembly design and for generation of statistical test designs. Consideration of the phenomena to be evaluated in the testing program, as well as equipment and measurement limitations, have led to changes in the design criteria and to subsequent changes in the test assembly design and statistical test design. The overall strategy in developing the experimental plan includes iterative generation and evaluation of candidate test designs using computer codes for statistical test design and ICEDF for estimation of experimental results. Estimates of experimental variability made prior to actual testing will be verified by replicate testing at preselected design points

  8. Using ice melting and ice rolling technologies to remove ice from sub-transmission and transmission lines at Manitoba Hydro

    International Nuclear Information System (INIS)

    Farias, A. R.

    1999-01-01

    Development of an of an Ice Storm Management program by Manitoba Hydro to reduce ice storm damage to its 8 kV feeders to 115 kV transmission lines, is discussed. The program consists of the de-icing of overhead lines, either by ice melting, or ice rolling. Ice melting involves the placement of a three-phase short at a calculated point. The term ice rolling denotes a process of mechanically stripping the ice from conductors. The most recent major ice storm experienced by Manitoba Hydro was in the winter of 1997/1998. During the period from February 6 to February 17, 1998, a total of 83 'ice melt' procedures were performed to melt the ice from 2,628 km of overhead line (7,883 km of conductor), in addition to 'ice rolling'. This paper describes Manitoba Hydro's 25-years' experience with ice melting and it also describes the advantages and disadvantages of both ice melting and ice rolling. Although not a panacea to combat the effects of ice storms, ice melting was found to be the most effective way of removing ice from overhead transmission and sub-transmission lines. Ice rolling was also found to be effective. Other tools that have been found to be useful by various utilities in combating ice storm damage include improved structure and line design, system design that provide more redundancies and emergency sources, and standby generators at critical load points

  9. Modelling ice-ocean interaction in ice shelf crevasses

    Science.gov (United States)

    Jordan, J. R.; Holland, P.; Piggott, M. D.; Jenkins, A.; Kimura, S.

    2013-12-01

    Ocean freezing within ice shelf basal crevasses could potentially act as a stabilising influence on ice shelves, however ice-ocean interaction and ocean dynamics within these crevasses are as yet poorly understood. To this end, an idealised two-dimensional model of an ice shelf basal crevasse has been developed using Fluidity-ICOM, a finite element ocean model using an unstructured mesh. A model of frazil ice formation and deposition has been incorporated into Fluidity-ICOM to better represent the freezing process. Model results show that freezing at the top of crevasses leads to the formation of an unstable overturning circulation due to the rejection of dense, salty water. The strength of this circulation, which is increased by the formation of frazil ice, is found to be the dominant factor influencing the total freezing rate. Frazil ice precipitation is found to be responsible for roughly one sixth of ice formation on the top of the basal crevasse, with direct freezing, enhanced by the complex dynamics of the overturning circulation, responsible for the rest. Increasing the frazil crystal radii used in the model has little impact on the amount of frazil ice deposition but does increase the amount of direct freezing. Significant melting and freezing was found to occur on the walls of the crevasse due to the strong overturning circulation. With previous modelling approaches it has not been possible to simulate this strong circulation, with water rising up one side of the crevasse and down the other.

  10. IceCube systematic errors investigation: Simulation of the ice

    Energy Technology Data Exchange (ETDEWEB)

    Resconi, Elisa; Wolf, Martin [Max-Planck-Institute for Nuclear Physics, Heidelberg (Germany); Schukraft, Anne [RWTH, Aachen University (Germany)

    2010-07-01

    IceCube is a neutrino observatory for astroparticle and astronomy research at the South Pole. It uses one cubic kilometer of Antartica's deepest ice (1500 m-2500 m in depth) to detect Cherenkov light, generated by charged particles traveling through the ice, with an array of phototubes encapsulated in glass pressure spheres. The arrival time as well as the charge deposited of the detected photons represent the base measurements that are used for track and energy reconstruction of those charged particles. The optical properties of the deep antarctic ice vary from layer to layer. Measurements of the ice properties and their correct modeling in Monte Carlo simulation is then of primary importance for the correct understanding of the IceCube telescope behavior. After a short summary about the different methods to investigate the ice properties and to calibrate the detector, we show how the simulation obtained by using this information compares to the measured data and how systematic errors due to uncertain ice properties are determined in IceCube.

  11. Ice blockage of water intakes

    International Nuclear Information System (INIS)

    Carey, K.L.

    1978-12-01

    The ice blockage of water intake structures can pose serious threats to the availability of cooling water at thermal power plants. Using information gained from a literature search and general knowledge of the problem, ice blockage difficulties are described as they may occur in rivers, lakes, reservoirs, and estuaries, and as they may affect intakes either at the surface or submerged. To further enable understanding of these problems, characteristics of both surface sheet ice and frazil ice are examined, namely, formational processes, sizes, thicknesses, movement or mobility, and modes of blockage or adhesion. Case histories of incidents of ice blockage of intakes are given by means of excerpts from the technical literature. Lastly, a brief overview is provided on the matter of solving ice blockage problems, either through original design, post-construction modification, or revised operational techniques

  12. Micro-hole and multigrain quartz luminescence dating of Paleodeltas at Lake Fryxell, McMurdo Dry Valleys (Antarctica), and relevance for lake history

    DEFF Research Database (Denmark)

    Berger, G.W.; Doran, P.T.; Thomsen, Kristina Jørkov

    2013-01-01

    Relict (perched) lacustrine deltas around the perennially ice-covered lakes in the Taylor Valley, Antarctica, imply that these lakes were up to 40 times larger in area than at present since the last glacial maximum (LGM). These deltas have been used to constrain ice-margin positions in Taylor...... Valley, and the boundaries of the proposed LGM ice-damned Glacial Lake Washburn. The timing of these high lake levels has depended on 14C chronologies of algal layers within relict lacustrine deltas. To provide additional geochronometric data for the post-LGM lake-level history, we applied photon......-stimulated-luminescence (PSL) sediment dating to polymineral fine silt and sand-size quartz from 7 perched-delta and 3 active delta sites of different elevations along 3 major meltwater streams entering Lake Fryxell. Our PSL dating of 4 quartz-sand samples from core tops in the seasonal ice-free moat of Lake Fryxell...

  13. Diffuse scattering in Ih ice

    International Nuclear Information System (INIS)

    Wehinger, Björn; Krisch, Michael; Bosak, Alexeï; Chernyshov, Dmitry; Bulat, Sergey; Ezhov, Victor

    2014-01-01

    Single crystals of ice Ih, extracted from the subglacial Lake Vostok accretion ice layer (3621 m depth) were investigated by means of diffuse x-ray scattering and inelastic x-ray scattering. The diffuse scattering was identified as mainly inelastic and rationalized in the frame of ab initio calculations for the ordered ice XI approximant. Together with Monte-Carlo modelling, our data allowed reconsidering previously available neutron diffuse scattering data of heavy ice as the sum of thermal diffuse scattering and static disorder contribution. (paper)

  14. Modelling the Early Weichselian Eurasian Ice Sheets: role of ice shelves and influence of ice-dammed lakes

    Directory of Open Access Journals (Sweden)

    V. Peyaud

    2007-07-01

    Full Text Available During the last glaciation, a marine ice sheet repeatedly appeared in Eurasia. The floating part of this ice sheet was essential to its rapid extension over the seas. During the earliest stage (90 kyr BP, large ice-dammed lakes formed south of the ice sheet. These lakes are believed to have cooled the climate at the margin of the ice. Using an ice sheet model, we investigated the role of ice shelves during the inception and the influence of ice-dammed lakes on the ice sheet evolution. Inception in Barents sea seems due to thickening of a large ice shelf. We observe a substantial impact of the lakes on the evolution of the ice sheets. Reduced summer ablation enhances ice extent and thickness, and the deglaciation is delayed by 2000 years.

  15. Ice storm `98

    Energy Technology Data Exchange (ETDEWEB)

    Soulard, F.; Trant, D.; Filoso, J.; Van Wesenbeeck, P. [Statistics Canada, Ottawa, ON (Canada). Environment Statistics Program

    1998-12-31

    As much as 100 millimeters of freezing rain fell on central and eastern Canada between January 4 to 10, 1998. This study concentrates on Canada`s St. Lawrence River Valley where total precipitation exceeded 73 mm in Kingston, 85 mm in Ottawa and 100 mm in areas south of Montreal. By comparison, the largest previously recorded ice storms left between 30 and 40 mm of ice. A state of emergency was declared for the affected regions. 56 per cent of Quebec`s population and 11 per cent of Ontario`s population were affected by the storm. Over 1000 power transmission towers collapsed and more than 30,000 wooden utility poles were brought down. In Quebec, nearly 1.4 million customers were left without electricity. In Ontario that number was about 230,000. While some manufacturers benefited directly from the storm, including makers of hydro and telephone poles, batteries and specialized electrical equipment, the overall economic losses for Montreal and Ottawa were high as estimates run to $585 million and $114 million, respectively. Almost 5 million sugar maple taps in Quebec and Ontario were located and suffered some damage in the affected areas. Nearly one-quarter (274,000) of all dairy cows were also located in the affected areas. Since in the absence of electricity they could not be milked, many of them suffered from mastitis. Many succumbed, others that survived may never attain their former level of productivity. As of June 1998, over 600,000 insurance claims totaling one billion dollars had been filed by Canadian households and businesses from the area affected by the ice storm.1 fig.

  16. Improved ice loss estimate of the northwestern Greenland ice sheet

    NARCIS (Netherlands)

    Kjeldsen, K.K.; Khan, S.A.; van den Broeke, M.R.; van Angelen, J.H.

    2013-01-01

    We estimate ice volume change rates in the northwest Greenland drainage basin during 2003–2009 using Ice, Cloud and land Elevation Satellite (ICESat) laser altimeter data. Elevation changes are often reported to be largest near the frontal portion of outlet glaciers. To improve the volume change

  17. Eulerian method for ice crystal icing in turbofan engines

    NARCIS (Netherlands)

    Norde, Ellen

    2017-01-01

    The newer generations of high-bypass-ratio engines are susceptible to the ingestion of small ice crystals which may cause engine power loss or damage. The research presented in this thesis focusses on the development of a computational method for in-engine ice crystal accretion. The work has been

  18. Ice Ages-Periodic Ice Coverings on the Earth

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 8. Ice Ages - Periodic Ice Coverings on the Earth. J Srinivasan. General Article Volume 4 Issue 8 August 1999 pp 25-35. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/004/08/0025-0035 ...

  19. Wave-Ice and Air-Ice-Ocean Interaction During the Chukchi Sea Ice Edge Advance

    Science.gov (United States)

    2015-09-30

    Chukchi Sea in the late summer have potentially changed the impact of fall storms by creating wave fields in the vicinity of the advancing ice edge. A...related to variability in storm and wave activity and changes in ice type and set the historical context for the Sea State field observations. Work...Doble Wave Climate and Wave Mixing in the Marginal Ice Zones of Arctic Seas: Observations and Modeling Babanin Storm Flux: Heat and Momentum

  20. recurrent ice ages

    Directory of Open Access Journals (Sweden)

    Andrei Korobeinikov

    2001-01-01

    Full Text Available Rapid and dramatic changes in climate and glacial conditions have taken place during the last 2.5 million years of the earth's history. Huge ice sheets expanded and contracted periodically, at times covering large areas of North America and Europe. Global sea levels dropped and rose 100 m to 150 m in response to the growth and melting of glaciers, causing continental coast lines to move far into present sea areas and then retreated again. We will use a simple conceptual model to demonstrate that these climate and glacier fluctuations can be a consequence of a supercritical Hopf bifurcation in models of the “ocean-land-atmosphere” system.

  1. Ice-driven CO2 feedback on ice volume

    Directory of Open Access Journals (Sweden)

    W. F. Ruddiman

    2006-01-01

    Full Text Available The origin of the major ice-sheet variations during the last 2.7 million years is a long-standing mystery. Neither the dominant 41 000-year cycles in δ18O/ice-volume during the late Pliocene and early Pleistocene nor the late-Pleistocene oscillations near 100 000 years is a linear ('Milankovitch' response to summer insolation forcing. Both responses must result from non-linear behavior within the climate system. Greenhouse gases (primarily CO2 are a plausible source of the required non-linearity, but confusion has persisted over whether the gases force ice volume or are a positive feedback. During the last several hundred thousand years, CO2 and ice volume (marine δ18O have varied in phase at the 41 000-year obliquity cycle and nearly in phase within the ~100 000-year band. This timing rules out greenhouse-gas forcing of a very slow ice response and instead favors ice control of a fast CO2 response. In the schematic model proposed here, ice sheets responded linearly to insolation forcing at the precession and obliquity cycles prior to 0.9 million years ago, but CO2 feedback amplified the ice response at the 41 000-year period by a factor of approximately two. After 0.9 million years ago, with slow polar cooling, ablation weakened. CO2 feedback continued to amplify ice-sheet growth every 41 000 years, but weaker ablation permitted some ice to survive insolation maxima of low intensity. Step-wise growth of these longer-lived ice sheets continued until peaks in northern summer insolation produced abrupt deglaciations every ~85 000 to ~115 000 years. Most of the deglacial ice melting resulted from the same CO2/temperature feedback that had built the ice sheets. Several processes have the northern geographic origin, as well as the requisite orbital tempo and phasing, to be candidate mechanisms for ice-sheet control of CO2 and their own feedback.

  2. The health of Antarctic ice shelves

    Science.gov (United States)

    Gagliardini, Olivier

    2018-01-01

    The thinning of floating ice shelves around Antarctica enhances upstream ice flow, contributing to sea-level rise. Ice-shelf thinning is now shown to influence glacial movement over much larger distances than previously thought.

  3. Great Lakes Ice Charts, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — These charts show ice extent and concentration three times weekly during the ice season, for all lakes except Ontario, from the 1973/74 ice season through the...

  4. Arctic Sea Ice Freeboard and Thickness

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides measurements of sea ice freeboard and sea ice thickness for the Arctic region. The data were derived from measurements made by from the Ice,...

  5. Ion implantation in ices

    International Nuclear Information System (INIS)

    Strazzulla, G.; Baratta, G.A.; Palumbo, M.E.; Satorre, M.A.

    2000-01-01

    We have studied, by in situ infrared spectroscopy, some effects due to ion implantation in frozen ices. In particular mixtures containing C, N and O atoms (e.g., N 2 :H 2 O:CH 4 ) have been irradiated with unreactive (noble gases) ions: the resulting alteration of the frozen sample induces the formation of other molecules (e.g., CO 2 , R- - -OCN, CO and HCN) and of a refractory organic residue. Similar products are formed when mixtures containing only C and O atoms (e.g., H 2 O:CH 4 ) are irradiated with N ions, i.e. molecular species that include the projectile are formed. These results are important, in particular for their applications to planetary physics. In planetary environments ice thickness is usually much larger than the penetration depth of the relevant ion populations (solar wind ions, magnetospheric particles, etc.) and ion implantation phenomena are expected. Our results indicate that some molecular species observed on icy planetary surfaces could not be native of that object but formed by ion irradiation and/or by implantation of reactive ions

  6. Ice hockey injuries.

    Science.gov (United States)

    Benson, Brian W; Meeuwisse, Willem H

    2005-01-01

    This article reviews the distribution and determinants of injuries reported in the pediatric ice hockey literature, and suggests potential injury prevention strategies and directions for further research. Thirteen electronic databases, the ISI Web of Science, and 'grey literature' databases were searched using a combination of Medical Subject Headings and text words to identify potentially relevant articles. The bibliographies of selected studies were searched to identify additional articles. Studies were selected for review based on predetermined inclusion and exclusion criteria. A comparison between studies on this topic area was difficult due to the variability in research designs, definition of injury, study populations, and measurements used to assess injury. The majority of injuries were sustained during games compared with practices. The two most commonly reported injuries were sprains/strains and contusions. Players competing at the Minor hockey, High School, and Junior levels of competition sustained most of their injuries to the upper extremity, head, and lower extremity, respectively. The primary mechanism of injury was body checking, followed by stick and puck contact. The frequency of catastrophic eye injuries has been significantly reduced with the world-wide mandation of full facial protection for all Minor hockey players. Specific hockey-related injury risk factors are poorly delineated and rarely studied among pediatric ice hockey players leaving large gaps in the knowledge of appropriate prevention strategies. Risk management strategies should be focused at avoiding unnecessary foreseeable risk, and controlling the risks inherent to the sport. Suggestions for injury prevention and future research are discussed.

  7. Snow, ice and solar radiation

    NARCIS (Netherlands)

    Kuipers Munneke, P.

    2009-01-01

    The snow-covered ice sheets of Antarctica and Greenland reflect most of the incoming solar radiation. The reflectivity, commonly called the albedo, of snow on these ice sheets has been observed to vary in space and time. In this thesis, temporal and spatial changes in snow albedo is found to depend

  8. The physics of ice cream

    Science.gov (United States)

    Clarke, Chris

    2003-05-01

    Almost everybody likes ice cream, so it can provide an excellent vehicle for discussing and demonstrating a variety of physical phenomena, such as Newton's law of cooling, Boyle's law and the relationship between microstructure and macroscopic properties (e.g. Young's modulus). Furthermore, a demonstration of freezing point depression can be used to make ice cream in the classroom!

  9. Ice as a Construction Material

    Science.gov (United States)

    Zuppero, Anthony; Lewis, Joseph

    1998-01-01

    The use of ice as a construction material is discussed. A model of an ice tire torus space ship, which slowly spins to produce artificial gravity is proposed. The size of the ship, needed to support a given number of people and the required envelope mass is presented.

  10. Oceanographic mechanisms and penguin population increases during the Little Ice Age in the southern Ross Sea, Antarctica

    Science.gov (United States)

    Yang, Lianjiao; Sun, Liguang; Emslie, Steven D.; Xie, Zhouqing; Huang, Tao; Gao, Yuesong; Yang, Wenqing; Chu, Zhuding; Wang, Yuhong

    2018-01-01

    The Adélie penguin is a well-known indicator for climate and environmental changes. Exploring how large-scale climate variability affects penguin ecology in the past is essential for understanding the responses of Southern Ocean ecosystems to future global change. Using ornithogenic sediments at Cape Bird, Ross Island, Antarctica, we inferred relative population changes of Adélie penguins in the southern Ross Sea over the past 500 yr, and observed an increase in penguin populations during the Little Ice Age (LIA; 1500-1850 AD). We used cadmium content in ancient penguin guano as a proxy of ocean upwelling and identified a close linkage between penguin dynamics and atmospheric circulation and oceanic conditions. During the cold period of ∼1600-1825 AD, a deepened Amundsen Sea Low (ASL) led to stronger winds, intensified ocean upwelling, enlarged Ross Sea and McMurdo Sound polynyas, and thus higher food abundance and penguin populations. We propose a mechanism linking Antarctic marine ecology and atmospheric/oceanic dynamics which can help explain and predict responses of Antarctic high latitudes ecosystems to climate change.

  11. Upper-Tropospheric Cloud Ice from IceCube

    Science.gov (United States)

    Wu, D. L.

    2017-12-01

    Cloud ice plays important roles in Earth's energy budget and cloud-precipitation processes. Knowledge of global cloud ice and its properties is critical for understanding and quantifying its roles in Earth's atmospheric system. It remains a great challenge to measure these variables accurately from space. Submillimeter (submm) wave remote sensing has capability of penetrating clouds and measuring ice mass and microphysical properties. In particular, the 883-GHz frequency is a highest spectral window in microwave frequencies that can be used to fill a sensitivity gap between thermal infrared (IR) and mm-wave sensors in current spaceborne cloud ice observations. IceCube is a cubesat spaceflight demonstration of 883-GHz radiometer technology. Its primary objective is to raise the technology readiness level (TRL) of 883-GHz cloud radiometer for future Earth science missions. By flying a commercial receiver on a 3U cubesat, IceCube is able to achieve fast-track maturation of space technology, by completing its development, integration and testing in 2.5 years. IceCube was successfully delivered to ISS in April 2017 and jettisoned from the International Space Station (ISS) in May 2017. The IceCube cloud-ice radiometer (ICIR) has been acquiring data since the jettison on a daytime-only operation. IceCube adopted a simple design without payload mechanism. It makes maximum utilization of solar power by spinning the spacecraft continuously about the Sun vector at a rate of 1.2° per second. As a result, the ICIR is operated under the limited resources (8.6 W without heater) and largely-varying (18°C-28°C) thermal environments. The spinning cubesat also allows ICIR to have periodical views between the Earth (atmosphere and clouds) and cold space (calibration), from which the first 883-GHz cloud map is obtained. The 883-GHz cloud radiance, sensitive to ice particle scattering, is proportional to cloud ice amount above 10 km. The ICIR cloud map acquired during June 20-July 2

  12. The IceProd Framework

    DEFF Research Database (Denmark)

    Aartsen, M.G.; Abbasi, R.; Ackermann, M.

    2015-01-01

    IceCube is a one-gigaton instrument located at the geographic South Pole, designed to detect cosmic neutrinos, iden- tify the particle nature of dark matter, and study high-energy neutrinos themselves. Simulation of the IceCube detector and processing of data require a significant amount...... of computational resources. IceProd is a distributed management system based on Python, XML-RPC and GridFTP. It is driven by a central database in order to coordinate and admin- ister production of simulations and processing of data produced by the IceCube detector. IceProd runs as a separate layer on top of other...... middleware and can take advantage of a variety of computing resources, including grids and batch systems such as CREAM, Condor, and PBS. This is accomplished by a set of dedicated daemons that process job submission in a coordinated fashion through the use of middleware plugins that serve to abstract...

  13. Ice storms and forest impacts.

    Science.gov (United States)

    Irland, L C

    2000-11-15

    Ice storms, or icing events, are important meteorological disturbances affecting forests over a surprisingly large portion of the USA. A broad belt extending from east Texas to New England experiences major ice storms at least once a decade; and truly major events occur in the heart of this belt once or twice a century. In the areas most affected, icing events are a factor that shapes stand composition, structure, and condition over wide areas. Impacts of individual storms are highly patchy and variable, and depend on the nature of the storm. Impacts also depend on how (or if) forest managers conduct subsequent salvage cuttings. Important research needs remain to be considered by the forest ecology and meteorology communities. At present, how ice storm frequency and severity may change with future climate change is unknown.

  14. Ice sheet hydrology from observations

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Peter (Dept. of Physical Geography and Quaternary Geology, Stockholm Univ-, Stockholm (Sweden))

    2010-11-15

    The hydrological systems of ice sheets are complex. Our view of the system is split, largely due to the complexity of observing the systems. Our basic knowledge of processes have been obtained from smaller glaciers and although applicable in general to the larger scales of the ice sheets, ice sheets contain features not observable on smaller glaciers due to their size. The generation of water on the ice sheet surface is well understood and can be satisfactorily modeled. The routing of water from the surface down through the ice is not complicated in terms of procat has been problematic is the way in which the couplings between surface and bed has been accomplished through a kilometer of cold ice, but with the studies on crack propagation and lake drainage on Greenland we are beginning to understand also this process and we know water can be routed through thick cold ice. Water generation at the bed is also well understood but the main problem preventing realistic estimates of water generation is lack of detailed information about geothermal heat fluxes and their geographical distribution beneath the ice. Although some average value for geothermal heat flux may suffice, for many purposes it is important that such values are not applied to sub-regions of significantly higher fluxes. Water generated by geothermal heat constitutes a constant supply and will likely maintain a steady system beneath the ice sheet. Such a system may include subglacial lakes as steady features and reconfiguration of the system is tied to time scales on which the ice sheet geometry changes so as to change pressure gradients in the basal system itself. Large scale re-organization of subglacial drainage systems have been observed beneath ice streams. The stability of an entirely subglacially fed drainage system may hence be perturbed by rapid ice flow. In the case of Antarctic ice streams where such behavior has been observed, the ice streams are underlain by deformable sediments. It is

  15. The IceProd (IceCube Production) Framework

    International Nuclear Information System (INIS)

    Díaz-Vélez, J C

    2014-01-01

    IceProd is a data processing and management framework developed by the IceCube Neutrino Observatory for processing of Monte Carlo simulations and data. IceProd runs as a separate layer on top of middleware or cluster job schedulers and can take advantage of a variety of computing resources including grids such as EGI, OSG, and NorduGrid as well as local clusters running batch systems like HT Condor, PBS, and SGE. This is accomplished by a set of dedicated daemons which process job submission in a coordinated fashion through the use of middleware plug-ins that serve to abstract the details of job submission and job management. IceProd can also manage complex workflow DAGs across distributed computing grids in order to optimize usage of resources. We describe several aspects of IceProd's design and it's applications in collaborative computing environments. We also briefly discuss design aspects of a second generation IceProd, currently being tested in IceCube.

  16. Arctic sea-ice ridges—Safe heavens for sea-ice fauna during periods of extreme ice melt?

    Science.gov (United States)

    Gradinger, Rolf; Bluhm, Bodil; Iken, Katrin

    2010-01-01

    The abundances and distribution of metazoan within-ice meiofauna (13 stations) and under-ice fauna (12 stations) were investigated in level sea ice and sea-ice ridges in the Chukchi/Beaufort Seas and Canada Basin in June/July 2005 using a combination of ice coring and SCUBA diving. Ice meiofauna abundance was estimated based on live counts in the bottom 30 cm of level sea ice based on triplicate ice core sampling at each location, and in individual ice chunks from ridges at four locations. Under-ice amphipods were counted in situ in replicate ( N=24-65 per station) 0.25 m 2 quadrats using SCUBA to a maximum water depth of 12 m. In level sea ice, the most abundant ice meiofauna groups were Turbellaria (46%), Nematoda (35%), and Harpacticoida (19%), with overall low abundances per station that ranged from 0.0 to 10.9 ind l -1 (median 0.8 ind l -1). In level ice, low ice algal pigment concentrations (Turbellaria, Nematoda and Harpacticoida also were observed in pressure ridges (0-200 ind l -1, median 40 ind l -1), although values were highly variable and only medians of Turbellaria were significantly higher in ridge ice than in level ice. Median abundances of under-ice amphipods at all ice types (level ice, various ice ridge structures) ranged from 8 to 114 ind m -2 per station and mainly consisted of Apherusa glacialis (87%), Onisimus spp. (7%) and Gammarus wilkitzkii (6%). Highest amphipod abundances were observed in pressure ridges at depths >3 m where abundances were up to 42-fold higher compared with level ice. We propose that the summer ice melt impacted meiofauna and under-ice amphipod abundance and distribution through (a) flushing, and (b) enhanced salinity stress at thinner level sea ice (less than 3 m thickness). We further suggest that pressure ridges, which extend into deeper, high-salinity water, become accumulation regions for ice meiofauna and under-ice amphipods in summer. Pressure ridges thus might be crucial for faunal survival during periods of

  17. Ice-clad volcanoes

    Science.gov (United States)

    Waitt, Richard B.; Edwards, B.R.; Fountain, Andrew G.; Huggel, C.; Carey, Mark; Clague, John J.; Kääb, Andreas

    2015-01-01

    An icy volcano even if called extinct or dormant may be active at depth. Magma creeps up, crystallizes, releases gas. After decades or millennia the pressure from magmatic gas exceeds the resistance of overlying rock and the volcano erupts. Repeated eruptions build a cone that pokes one or two kilometers or more above its surroundings - a point of cool climate supporting glaciers. Ice-clad volcanic peaks ring the northern Pacific and reach south to Chile, New Zealand, and Antarctica. Others punctuate Iceland and Africa (Fig 4.1). To climb is irresistible - if only “because it’s there” in George Mallory’s words. Among the intrepid ascents of icy volcanoes we count Alexander von Humboldt’s attempt on 6270-meter Chimborazo in 1802 and Edward Whymper’s success there 78 years later. By then Cotopaxi steamed to the north.

  18. INITIAL COOLING EXPERIMENT (ICE)

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    ICE was built in 1977, using the modified bending magnets of the g-2 muon storage ring (see 7405430). Its purpose was to verify the validity of stochastic and electron cooling for the antiproton project. Stochastic cooling proved a resounding success early in 1978 and the antiproton project could go ahead, now entirely based on stochastic cooling. Electron cooling was experimented with in 1979. The 26 kV equipment is housed in the cage to the left of the picture, adjacent to the "e-cooler" located in a straight section of the ring. With some modifications, the cooler was later transplanted into LEAR (Low Energy Antiproton Ring) and then, with further modifications, into the AD (Antiproton Decelerator), where it cools antiprotons to this day (2006). See also: 7711282, 7802099, 7809081.

  19. Ice-skating injuries.

    Science.gov (United States)

    Williamson, D M; Lowdon, I M

    1986-05-01

    The range of injuries sustained at an ice-rink and presented to an Accident Service department is described. A total of 203 patients with 222 injuries presented themselves during a 2-month period. There were 103 noteworthy injuries, including 61 fractures, 2 dislocations and 2 severed tendons, but the commonest injuries were wounds, sprains and bruises. Beginners appear to be more prone to injury than experienced skaters. In addition to using well-fitting skate-boots to protect the ankle, some injuries could be avoided by wearing elbow and knee pads, and a thick pair of gloves. The number of injuries compared with the total number of skaters was small but produced a noteworthy increase in the workload of the Accident Service.

  20. Initial Cooling Experiment (ICE)

    CERN Multimedia

    CERN PhotoLab

    1978-01-01

    ICE was built in 1977, in a record time of 9 months, using the modified bending magnets of the g-2 muon storage ring. Its purpose was to verify the validity of stochastic and electron cooling for the antiproton project, to be launched in 1978. Already early in 1978, stochastic cooling proved a resounding success, such that the antiproton (p-pbar)project was entirely based on it. Tests of electron cooling followed later: protons of 46 MeV kinetic energy were cooled with an electron beam of 26 kV and 1.3 A. The cage seen prominently in the foreground houses the HV equipment, adjacent to the "cooler" installed in a straight section of the ring. With some modifications, the cooler was later transplanted into LEAR (Low Energy Antiproton Ring) and then, with further modifications, into the AD (Antiproton Decelerator), where it cools antiprotons to this day (2006). See also: 7711282, 7802099, 7908242.

  1. City under the Ice

    DEFF Research Database (Denmark)

    Nielsen, Kristian Hvidtfelt

    conflict that gave impetus to the camp’s construction. Presented to the public as a scientific station and a technologically-advanced, under-ice extension of the American way of life, while situated in the titanic struggle between West and East, Camp Century took on a number of closed-world meanings...... military conflicts are taking place. Studying the wealth of public representations of Camp Century, established 1959-60 by the US Army 128 miles east of the Thule Air Base and often referred to as the “City under the Ice”, we find a sharp contrast between the domesticated interior and the superpower......: The public image of Camp Century was one of technological comfort and military-scientific control. Amidst the raging Cold War and up against the harsh environment, the construction of the camp would prove to the public that the combined forces of the US military-technology-science complex would prevail...

  2. Sources of Sulfate Found in Mounds and Lakes at the Lewis Cliffs Ice Tongue, Transantarctic

    Science.gov (United States)

    Socki, Richard; Sun, Tao; Harvey, Ralph P.; Bish, David L.; Tonui, Eric; Bao, Huiming; Niles, Paul B.

    2012-01-01

    Massive but highly localized Na-sulfate mounds (mirabilite, Na2SO4.10H2O) have been found at the terminal moraine of the Lewis Cliffs Ice Tongue (LCIT), Antarctica. (Sigma)34S and (Sigma)18O values of LCIT mirabilite range from +48.8 to +49.3% (CDT), and -16.6 to -17.1% (V-SMOW), respectively, while (Delta)17O average -0.37% (V-SMOW). LCIT mirabilite mounds are isotopically different from other mirabilite mounds found in coastal regions of Antarctica, which have isotope values close to seawater compositions. (Sigma)18O and (Delta)17O values suggest the incorporation of isotopically light glacial water. Data point to initial sulfate formation in an anoxic water body, either as a stratified anoxic deep lake on the surface, a sub-glacial water reservoir, or a sub-glacial lake. Several surface lakes of varying size are also present within this region of the LCIT, and in some cases are adjacent to the mirabilite mounds. O and D isotope compositions of surface lakes confirm they are derived from a mixture of glacial ice and snow that underwent moderate evaporation. (Sigma)18O and (Sigma)D (V-SMOW) values of snow, ice, and lake water range from -64.2 to -29.7%, and -456.0 to -231.7%, respectively. However, the isotope chemistry of these surface lakes is extremely different from the mounds. Dissolved SO4-2 (Sigma)34S and (Sigma)18O values range from +12.0 to +20.0% and -12.8 to -22.2% (the most negative (Sigma)18O of terrestrial sulfate ever reported), respectively, with sulfate (Delta)17O ranging from +0.93 to 2.24%. Ion chromatography data show that lake water is fresh to brackish in origin, with TDS less than 1500 ppm, and sulfate concentration less than 431 ppm. Isotope and chemical data suggest that these lakes are unlikely the source of the mirabilite mounds. We suggest that lake water sulfate is potentially composed of a mixture of atmospheric sulfate and minor components of sulfate of weathering origin, much like the sulfate in the polar plateau soils of the McMurdo

  3. IceCube deep core

    Energy Technology Data Exchange (ETDEWEB)

    Resconi, Elisa; Gross, Andreas; Schulz, Olaf; Sestayo, Yolanda [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Euler, Sebastian; Huelss, Jan-Patrick; Wiebusch, Christopher [RWTH Aachen, III Physikalisches Institut B, Aachen (Germany)

    2008-07-01

    The IceCube neutrino telescope has been designed to obtain the best performances in the energy region above few TeV. This will make IceCube sensitive to the co-called PeVatrons, i.e. sources of cosmic rays around the 'knee'. Recent observations of galactic sources from ground-based Cherenkov telescopes indicate a softening or cut-off at energies slightly lower than expected for the PeVatrons. Some of these sources could be also neutrino emitters, producing neutrinos at energies below the optimal range for IceCube. At even lower energies, the study of neutrino oscillations could become accessible as well as indirect dark matter search. Currently, a design study for the construction of a compact core inside IceCube called IceCube deep core is undergoing. IceCube deep core will significantly improve IceCube performances below 1 TeV and open the field of view to the southern hemisphere. We report in this talk the preliminary results of this design study including preliminary sensitivities.

  4. VT Ice Damage Assessment from the 1998 Ice Storm

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This dataset (ICEDAMAG98) depicts the extent and severity of tree damage caused by the 1998 ice storm, which resulted in extensive tree damage in...

  5. Nenana Ice Classic: Tanana River Ice Annual Breakup Dates

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nenana river in the Interior of Alaska usually freezes over during October and November. The ice continues to grow throughout the winter accumulating an average...

  6. Modelling the Antarctic Ice Sheet

    DEFF Research Database (Denmark)

    Pedersen, Jens Olaf Pepke; Holm, A.

    2015-01-01

    Science) Antarctic Ice Sheet (DAIS) model (Shaffer 2014) is forced by reconstructed time series of Antarctic temperature, global sea level and ocean subsurface temperature over the last two glacial cycles. In this talk a modelling work of the Antarctic ice sheet over most of the Cenozoic era using...... the DAIS model will be presented. G. Shaffer (2014) Formulation, calibration and validation of the DAIS model (version 1), a simple Antarctic ice sheet model sensitive to variations of sea level and ocean subsurface temperature, Geosci. Model Dev., 7, 1803‐1818...

  7. Continuous Chemistry in Ice Cores

    DEFF Research Database (Denmark)

    Kjær, Helle Astrid

    corrections. Further the method successfully identified volcanic eruptions as well as the underlying anthropogenic signal related to the industrial pollution peaking in the 1970’s. The pH method was also applied on the Antarctic RICE ice core and proved useful, contrary to both the ECM and melt water...... into the ice due to scattering by individual snow grains at the very surface and by air bubbles in the upper part of the ice. However light is produced in situ by Cherenkov radiation from cosmic rays. As part of this thesis the penetration of light on surface layers of snow at NEEM was determined andthe 1/e...

  8. Influence of winter sea-ice motion on summer ice cover in the Arctic

    Directory of Open Access Journals (Sweden)

    Noriaki Kimura

    2013-11-01

    Full Text Available Summer sea-ice cover in the Arctic varies largely from year to year owing to several factors. This study examines one such factor, the relationship between interannual difference in winter ice motion and ice area in the following summer. A daily-ice velocity product on a 37.5-km resolution grid is prepared using the satellite passive microwave sensor Advanced Microwave Scanning Radiometer—Earth Observing System data for the nine years of 2003–2011. Derived daily-ice motion reveals the dynamic modification of the winter ice cover. The winter ice divergence/convergence is strongly related to the summer ice cover in some regions; the correlation coefficient between the winter ice convergence and summer ice area ranges between 0.5 and 0.9 in areas with high interannual variability. This relation implies that the winter ice redistribution controls the spring ice thickness and the summer ice cover.

  9. Ice911 Research: Preserving and Rebuilding Multi-Year Ice

    Science.gov (United States)

    Field, L. A.; Chetty, S.; Manzara, A.

    2013-12-01

    A localized surface albedo modification technique is being developed that shows promise as a method to increase multi-year ice using reflective floating materials, chosen so as to have low subsidiary environmental impact. Multi-year ice has diminished rapidly in the Arctic over the past 3 decades (Riihela et al, Nature Climate Change, August 4, 2013) and this plays a part in the continuing rapid decrease of summer-time ice. As summer-time ice disappears, the Arctic is losing its ability to act as the earth's refrigeration system, and this has widespread climatic effects, as well as a direct effect on sea level rise, as oceans heat, and once-land-based ice melts into the sea. We have tested the albedo modification technique on a small scale over five Winter/Spring seasons at sites including California's Sierra Nevada Mountains, a Canadian lake, and a small man-made lake in Minnesota, using various materials and an evolving array of instrumentation. The materials can float and can be made to minimize effects on marine habitat and species. The instrumentation is designed to be deployed in harsh and remote locations. Localized snow and ice preservation, and reductions in water heating, have been quantified in small-scale testing. Climate modeling is underway to analyze the effects of this method of surface albedo modification in key areas on the rate of oceanic and atmospheric temperature rise. We are also evaluating the effects of snow and ice preservation for protection of infrastructure and habitat stabilization. This paper will also discuss a possible reduction of sea level rise with an eye to quantification of cost/benefit. The most recent season's experimentation on a man-made private lake in Minnesota saw further evolution in the material and deployment approach. The materials were successfully deployed to shield underlying snow and ice from melting; applications of granular materials remained stable in the face of local wind and storms. Localized albedo

  10. Wave-Ice interaction in the Marginal Ice Zone: Toward a Wave-Ocean-Ice Coupled Modeling System

    Science.gov (United States)

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Wave-Ice interaction in the Marginal Ice Zone: Toward a...scattering of waves by interaction with ice in the Marginal Ice Zone (MIZ). The wave model physics developed here will later be part of an operational...10.5670/oceanog.2014.73. Liu, A.K., B. Holt, and P.W. Vachon, 1991: Wave propagation in the Marginal Ice Zone: Model predictions and comparisons

  11. Ice Accretion on Wind Turbine Blades

    DEFF Research Database (Denmark)

    Hudecz, Adriána; Koss, Holger; Hansen, Martin Otto Laver

    2013-01-01

    forces were monitored as ice was building up on the airfoil for glaze, rime and mixed ice. In the first part of the numerical analysis, the resulted ice profiles of the wind tunnel tests were compared to profiles estimated by using the 2D ice accretion code TURBICE. In the second part, Ansys Fluent...

  12. Amorphization of ice under mechanical stresses

    Science.gov (United States)

    Bordonskii, G. S.; Krylov, S. D.

    2017-11-01

    The dielectric parameters of freshly produced freshwater ice in the microwave range are investigated. It is established that this kind of ice contains a noticeable amount of amorphous ice. Its production is associated with plastic deformation under mechanical stresses. An assessment of the dielectric-permeability change caused by amorphous ice in the state of a slowly flowing medium is given.

  13. Climate change winners: receding ice fields facilitate colony expansion and altered dynamics in an Adélie penguin metapopulation.

    Science.gov (United States)

    LaRue, Michelle A; Ainley, David G; Swanson, Matt; Dugger, Katie M; Lyver, Phil O'B; Barton, Kerry; Ballard, Grant

    2013-01-01

    There will be winners and losers as climate change alters the habitats of polar organisms. For an Adélie penguin (Pygoscelis adeliae) colony on Beaufort Island (Beaufort), part of a cluster of colonies in the southern Ross Sea, we report a recent population increase in response to increased nesting habitat as glaciers have receded. Emigration rates of birds banded as chicks on Beaufort to colonies on nearby Ross Island decreased after 2005 as available habitat on Beaufort increased, leading to altered dynamics of the metapopulation. Using aerial photography beginning in 1958 and modern satellite imagery, we measured change in area of available nesting habitat and population size of the Beaufort colony. Population size varied with available habitat, and both increased rapidly since the 1990s. In accord with glacial retreat, summer temperatures at nearby McMurdo Station increased by ~0.50 °C per decade since the mid-1980s. Although the Ross Sea is likely to be the last ocean with an intact ecosystem, the recent retreat of ice fields at Beaufort that resulted in increased breeding habitat exemplifies a process that has been underway in the Ross Sea during the entire Holocene. Furthermore, our results are in line with predictions that major ice shelves and glaciers will retreat rapidly elsewhere in the Antarctic, potentially leading to increased breeding habitat for Adélie penguins. Results further indicated that satellite imagery may be used to estimate large changes in Adélie penguin populations, facilitating our understanding of metapopulation dynamics and environmental factors that influence regional populations.

  14. Timescales of Growth Response of Microbial Mats to Environmental Change in an Ice-Covered Antarctic Lake

    Directory of Open Access Journals (Sweden)

    Anne D. Jungblut

    2013-01-01

    Full Text Available Lake Vanda is a perennially ice-covered, closed-basin lake in the McMurdo Dry Valleys, Antarctica. Laminated photosynthetic microbial mats cover the floor of the lake from below the ice cover to >40 m depth. In recent decades, the water level of Lake Vanda has been rising, creating a “natural experiment” on development of mat communities on newly flooded substrates and the response of deeper mats to declining irradiance. Mats in recently flooded depths accumulate one lamina (~0.3 mm per year and accrue ~0.18 µg chlorophyll-a cm−2 y−1. As they increase in thickness, vertical zonation becomes evident, with the upper 2-4 laminae forming an orange-brown zone, rich in myxoxanthophyll and dominated by intertwined Leptolyngbya trichomes. Below this, up to six phycobilin-rich green/pink-pigmented laminae form a subsurface zone, inhabited by Leptolyngbya, Oscillatoria and Phormidium morphotypes. Laminae continued to increase in thickness for several years after burial, and PAM fluorometry indicated photosynthetic potential in all pigmented laminae. At depths that have been submerged for >40 years, mats showed similar internal zonation and formed complex pinnacle structures that were only beginning to appear in shallower mats. Chlorophyll-a did not change over time and these mats appear to represent resource-limited “climax” communities. Acclimation of microbial mats to changing environmental conditions is a slow process, and our data show how legacy effects of past change persist into the modern community structure.

  15. Climate change winners: receding ice fields facilitate colony expansion and altered dynamics in an Adélie penguin metapopulation.

    Directory of Open Access Journals (Sweden)

    Michelle A LaRue

    Full Text Available There will be winners and losers as climate change alters the habitats of polar organisms. For an Adélie penguin (Pygoscelis adeliae colony on Beaufort Island (Beaufort, part of a cluster of colonies in the southern Ross Sea, we report a recent population increase in response to increased nesting habitat as glaciers have receded. Emigration rates of birds banded as chicks on Beaufort to colonies on nearby Ross Island decreased after 2005 as available habitat on Beaufort increased, leading to altered dynamics of the metapopulation. Using aerial photography beginning in 1958 and modern satellite imagery, we measured change in area of available nesting habitat and population size of the Beaufort colony. Population size varied with available habitat, and both increased rapidly since the 1990s. In accord with glacial retreat, summer temperatures at nearby McMurdo Station increased by ~0.50 °C per decade since the mid-1980s. Although the Ross Sea is likely to be the last ocean with an intact ecosystem, the recent retreat of ice fields at Beaufort that resulted in increased breeding habitat exemplifies a process that has been underway in the Ross Sea during the entire Holocene. Furthermore, our results are in line with predictions that major ice shelves and glaciers will retreat rapidly elsewhere in the Antarctic, potentially leading to increased breeding habitat for Adélie penguins. Results further indicated that satellite imagery may be used to estimate large changes in Adélie penguin populations, facilitating our understanding of metapopulation dynamics and environmental factors that influence regional populations.

  16. Phytoplankton-bacterial interactions mediate micronutrient colimitation at the coastal Antarctic sea ice edge.

    Science.gov (United States)

    Bertrand, Erin M; McCrow, John P; Moustafa, Ahmed; Zheng, Hong; McQuaid, Jeffrey B; Delmont, Tom O; Post, Anton F; Sipler, Rachel E; Spackeen, Jenna L; Xu, Kai; Bronk, Deborah A; Hutchins, David A; Allen, Andrew E

    2015-08-11

    Southern Ocean primary productivity plays a key role in global ocean biogeochemistry and climate. At the Southern Ocean sea ice edge in coastal McMurdo Sound, we observed simultaneous cobalamin and iron limitation of surface water phytoplankton communities in late Austral summer. Cobalamin is produced only by bacteria and archaea, suggesting phytoplankton-bacterial interactions must play a role in this limitation. To characterize these interactions and investigate the molecular basis of multiple nutrient limitation, we examined transitions in global gene expression over short time scales, induced by shifts in micronutrient availability. Diatoms, the dominant primary producers, exhibited transcriptional patterns indicative of co-occurring iron and cobalamin deprivation. The major contributor to cobalamin biosynthesis gene expression was a gammaproteobacterial population, Oceanospirillaceae ASP10-02a. This group also contributed significantly to metagenomic cobalamin biosynthesis gene abundance throughout Southern Ocean surface waters. Oceanospirillaceae ASP10-02a displayed elevated expression of organic matter acquisition and cell surface attachment-related genes, consistent with a mutualistic relationship in which they are dependent on phytoplankton growth to fuel cobalamin production. Separate bacterial groups, including Methylophaga, appeared to rely on phytoplankton for carbon and energy sources, but displayed gene expression patterns consistent with iron and cobalamin deprivation. This suggests they also compete with phytoplankton and are important cobalamin consumers. Expression patterns of siderophore- related genes offer evidence for bacterial influences on iron availability as well. The nature and degree of this episodic colimitation appear to be mediated by a series of phytoplankton-bacterial interactions in both positive and negative feedback loops.

  17. Rivers under ice: fluvial erosion beneath decaying ice sheets

    Science.gov (United States)

    Jansen, John D.; Codilean, Alexandru T.; Stroeven, Arjen P.; Fabel, Derek; Hättestrand, Clas; Kleman, Johan; Harbor, Jon M.; Heyman, Jakob; Kubik, Peter W.; Xu, Sheng

    2014-05-01

    The century-long debate over the origins of inner gorges cut within larger valleys that were repeatedly covered by Quaternary glaciers hinges upon whether the gorges are fluvial forms eroded by subaerial rivers, or subglacial forms cut beneath ice. We apply cosmogenic nuclide exposure dating to seven inner gorges along ~500 km of the former Fennoscandia ice sheet margin in combination with a new deglaciation isochron map. We show that the timing of bedrock exposure matches the advent of ice-free conditions, strongly suggesting that inner gorges were cut by channelised subglacial meltwater while simultaneously being shielded from cosmic rays by overlying ice. Given the exceptional hydraulic efficiency required for subglacial meltwater channels to erode bedrock and evacuate debris, we deduce that inner gorges are the product of ice sheets undergoing intense surface melting akin to that currently occurring on the Greenland ice sheet. The lack of postglacial river erosion in our seven inner gorges leads us to propose that channelised subglacial meltwater-boosted possibly by abrupt supraglacial lake drainage-may be a key driver of valley deepening on the Baltic Shield over multiple glacial cycles.

  18. Loss of sea ice in the Arctic.

    Science.gov (United States)

    Perovich, Donald K; Richter-Menge, Jacqueline A

    2009-01-01

    The Arctic sea ice cover is in decline. The areal extent of the ice cover has been decreasing for the past few decades at an accelerating rate. Evidence also points to a decrease in sea ice thickness and a reduction in the amount of thicker perennial sea ice. A general global warming trend has made the ice cover more vulnerable to natural fluctuations in atmospheric and oceanic forcing. The observed reduction in Arctic sea ice is a consequence of both thermodynamic and dynamic processes, including such factors as preconditioning of the ice cover, overall warming trends, changes in cloud coverage, shifts in atmospheric circulation patterns, increased export of older ice out of the Arctic, advection of ocean heat from the Pacific and North Atlantic, enhanced solar heating of the ocean, and the ice-albedo feedback. The diminishing Arctic sea ice is creating social, political, economic, and ecological challenges.

  19. Charge Transfer Scheme for Atmospheric Ice Sensing

    Directory of Open Access Journals (Sweden)

    Umair Najeeb MUGHAL

    2015-01-01

    Full Text Available The atmospheric icing parameters are being measured nowadays with the aid of more customized yet limited commercial equipment. The parameters include atmospheric ice detection, icing load and icing rate. The robustness of such equipment is usually under scrutiny when it comes to cold/harsh environment operations. This phenomenon was experienced consistently by the atmospheric Icing Research Team at Narvik University College during data retrieval exercises from its atmospheric icing stations installed at Fargnesfjellet during 2012-13. In this paper it is aimed to address the potential feasibility to produce a robust hardware addressing the icing measurements signals, which includes instrumentation hardware giving icing indications, icing type and de- icing rate measurements in a single platform (not commercially available till date.

  20. Holocene accumulation and ice flow near the West Antarctic Ice Sheet Divide ice core site

    Science.gov (United States)

    Koutnik, Michelle R.; Fudge, T. J.; Conway, Howard; Waddington, Edwin D.; Neumann, Thomas A.; Cuffey, Kurt M.; Buizert, Christo; Taylor, Kendrick C.

    2016-05-01

    The West Antarctic Ice Sheet Divide Core (WDC) provided a high-resolution climate record from near the Ross-Amundsen Divide in Central West Antarctica. In addition, radar-detected internal layers in the vicinity of the WDC site have been dated directly from the ice core to provide spatial variations in the age structure of the region. Using these two data sets together, we first infer a high-resolution Holocene accumulation-rate history from 9.2 kyr of the ice-core timescale and then confirm that this climate history is consistent with internal layers upstream of the core site. Even though the WDC was drilled only 24 km from the modern ice divide, advection of ice from upstream must be taken into account. We evaluate histories of accumulation rate by using a flowband model to generate internal layers that we compare to observed layers. Results show that the centennially averaged accumulation rate was over 20% lower than modern at 9.2 kyr before present (B.P.), increased by 40% from 9.2 to 2.3 kyr B.P., and decreased by at least 10% over the past 2 kyr B.P. to the modern values; these Holocene accumulation-rate changes in Central West Antarctica are larger than changes inferred from East Antarctic ice-core records. Despite significant changes in accumulation rate, throughout the Holocene the regional accumulation pattern has likely remained similar to today, and the ice-divide position has likely remained on average within 5 km of its modern position. Continent-scale ice-sheet models used for reconstructions of West Antarctic ice volume should incorporate this accumulation history.

  1. Sticking properties of ice grains

    Directory of Open Access Journals (Sweden)

    Jongmanns M.

    2017-01-01

    Full Text Available We study the size dependence of pull-off forces of water ice in laboratory experiments and numerical simulations. To determine the pull-off force in our laboratory experiments, we use a liquid nitrogen cooled centrifuge. Depending on its rotation frequency, spherical ice grains detach due to the centrifugal force which is related to the adhesive properties. Numerical simulations are conducted by means of molecular dynamics simulations of hexagonal ice using a standard coarse-grained water potential. The pull-off force of a single contact between two spherical ice grains is measured due to strain controlled simulations. Both, the experimental study and the simulations reveal a dependence between the pull-off force and the (reduced particle radii, which differ significantly from the linear dependence of common contact theories.

  2. Microfabricated Ice-Detection Sensor

    National Research Council Canada - National Science Library

    DeAnna, Russell

    1997-01-01

    .... The sensor is capable of distinguishing between an ice covered and a clean surface. It employs a bulk micromachined wafer with a 7 micrometers thick, boron doped, silicon diaphragm which serves as one plate of a parallel plate capacitor...

  3. Radiative properties of ice clouds

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, D.L.; Koracin, D.; Carter, E. [Desert Research Institute, Reno, NV (United States)

    1996-04-01

    A new treatment of cirrus cloud radiative properties has been developed, based on anomalous diffraction theory (ADT), which does not parameterize size distributions in terms of an effective radius. Rather, is uses the size distribution parameters directly, and explicitly considers the ice particle shapes. There are three fundamental features which characterize this treatment: (1) the ice path radiation experiences as it travels through an ice crystal is parameterized, (2) only determines the amount of radiation scattered and absorbed, and (3) as in other treatments, the projected area of the size distribution is conserved. The first two features are unique to this treatment, since it does not convert the ice particles into equivalent volume or area spheres in order to apply Mie theory.

  4. Sticking properties of ice grains

    Science.gov (United States)

    Jongmanns, M.; Kumm, M.; Wurm, G.; Wolf, D. E.; Teiser, J.

    2017-06-01

    We study the size dependence of pull-off forces of water ice in laboratory experiments and numerical simulations. To determine the pull-off force in our laboratory experiments, we use a liquid nitrogen cooled centrifuge. Depending on its rotation frequency, spherical ice grains detach due to the centrifugal force which is related to the adhesive properties. Numerical simulations are conducted by means of molecular dynamics simulations of hexagonal ice using a standard coarse-grained water potential. The pull-off force of a single contact between two spherical ice grains is measured due to strain controlled simulations. Both, the experimental study and the simulations reveal a dependence between the pull-off force and the (reduced) particle radii, which differ significantly from the linear dependence of common contact theories.

  5. 2006 Program of Study: Ice

    National Research Council Canada - National Science Library

    Balmforth, Neil J; Wettlaufer, John S; Worster, Grae

    2007-01-01

    .... Towards the end of Grae's lectures, we also held the 2006 GFD Public Lecture. This was given by Greg Dash of the University of Washington, on matters of ice physics and a well known popularization...

  6. Greenland Ice Sheet Mass Balance

    Science.gov (United States)

    Reeh, N.

    1984-01-01

    Mass balance equation for glaciers; areal distribution and ice volumes; estimates of actual mass balance; loss by calving of icebergs; hydrological budget for Greenland; and temporal variations of Greenland mass balance are examined.

  7. Images of Antarctic Ice Shelves

    Data.gov (United States)

    National Aeronautics and Space Administration — Recent changes in the extent and stability of ice shelves in the Antarctic Peninsula prompted NSIDC to begin a monitoring program using data from the AVHRR Polar 1...

  8. Let's Make Metric Ice Cream

    Science.gov (United States)

    Zimmerman, Marianna

    1975-01-01

    Describes a classroom activity which involved sixth grade students in a learning situation including making ice cream, safety procedures in a science laboratory, calibrating a thermometer, using metric units of volume and mass. (EB)

  9. Multiscale Models of Melting Arctic Sea Ice

    Science.gov (United States)

    2014-09-30

    Sea ice reflectance or albedo , a key parameter in climate modeling, is primarily determined by melt pond and ice floe configurations. Ice - albedo ...determine their albedo - a key parameter in climate modeling. Here we explore the possibility of a conceptual sea ice climate model passing through a...bifurcation points. Ising model for melt ponds on Arctic sea ice Y. Ma, I. Sudakov, and K. M. Golden Abstract: The albedo of melting

  10. Marginal Ice Zone: Biogeochemical Sampling with Gliders

    Science.gov (United States)

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Marginal Ice Zone: Biogeochemical Sampling with Gliders...under the ice and in the marginal ice zone. The project specific goals are to develop biogeochemical and optical proxies for glider optics; to use the...water, in the marginal ice zone, and under the ice; to use glider optical measurements to compute fields of rates of photosynthetic carbon fixation

  11. Ice sheet hydrology - a review

    International Nuclear Information System (INIS)

    Jansson, Peter; Naeslund, Jens-Ove; Rodhe, Lars

    2007-03-01

    This report summarizes the theoretical knowledge on water flow in and beneath glaciers and ice sheets and how these theories are applied in models to simulate the hydrology of ice sheets. The purpose is to present the state of knowledge and, perhaps more importantly, identify the gaps in our understanding of ice sheet hydrology. Many general concepts in hydrology and hydraulics are applicable to water flow in glaciers. However, the unique situation of having the liquid phase flowing in conduits of the solid phase of the same material, water, is not a commonly occurring phenomena. This situation means that the heat exchange between the phases and the resulting phase changes also have to be accounted for in the analysis. The fact that the solidus in the pressure-temperature dependent phase diagram of water has a negative slope provides further complications. Ice can thus melt or freeze from both temperature and pressure variations or variations in both. In order to provide details of the current understanding of water flow in conjunction with deforming ice and to provide understanding for the development of ideas and models, emphasis has been put on the mathematical treatments, which are reproduced in detail. Qualitative results corroborating theory or, perhaps more often, questioning the simplifications made in theory, are also given. The overarching problem with our knowledge of glacier hydrology is the gap between the local theories of processes and the general flow of water in glaciers and ice sheets. Water is often channelized in non-stationary conduits through the ice, features which due to their minute size relative to the size of glaciers and ice sheets are difficult to incorporate in spatially larger models. Since the dynamic response of ice sheets to global warming is becoming a key issue in, e.g. sea-level change studies, the problems of the coupling between the hydrology of an ice sheet and its dynamics is steadily gaining interest. New work is emerging

  12. Ice sheet hydrology - a review

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Peter; Naeslund, Jens-Ove [Dept. of Physical Geography and Quaternary Geology, Stockholm Univ., Stockholm (Sweden); Rodhe, Lars [Geological Survey of Sweden, Uppsala (Sweden)

    2007-03-15

    This report summarizes the theoretical knowledge on water flow in and beneath glaciers and ice sheets and how these theories are applied in models to simulate the hydrology of ice sheets. The purpose is to present the state of knowledge and, perhaps more importantly, identify the gaps in our understanding of ice sheet hydrology. Many general concepts in hydrology and hydraulics are applicable to water flow in glaciers. However, the unique situation of having the liquid phase flowing in conduits of the solid phase of the same material, water, is not a commonly occurring phenomena. This situation means that the heat exchange between the phases and the resulting phase changes also have to be accounted for in the analysis. The fact that the solidus in the pressure-temperature dependent phase diagram of water has a negative slope provides further complications. Ice can thus melt or freeze from both temperature and pressure variations or variations in both. In order to provide details of the current understanding of water flow in conjunction with deforming ice and to provide understanding for the development of ideas and models, emphasis has been put on the mathematical treatments, which are reproduced in detail. Qualitative results corroborating theory or, perhaps more often, questioning the simplifications made in theory, are also given. The overarching problem with our knowledge of glacier hydrology is the gap between the local theories of processes and the general flow of water in glaciers and ice sheets. Water is often channelized in non-stationary conduits through the ice, features which due to their minute size relative to the size of glaciers and ice sheets are difficult to incorporate in spatially larger models. Since the dynamic response of ice sheets to global warming is becoming a key issue in, e.g. sea-level change studies, the problems of the coupling between the hydrology of an ice sheet and its dynamics is steadily gaining interest. New work is emerging

  13. ICE CONTROL - Towards optimizing wind energy production during icing events

    Science.gov (United States)

    Dorninger, Manfred; Strauss, Lukas; Serafin, Stefano; Beck, Alexander; Wittmann, Christoph; Weidle, Florian; Meier, Florian; Bourgeois, Saskia; Cattin, René; Burchhart, Thomas; Fink, Martin

    2017-04-01

    Forecasts of wind power production loss caused by icing weather conditions are produced by a chain of physical models. The model chain consists of a numerical weather prediction model, an icing model and a production loss model. Each element of the model chain is affected by significant uncertainty, which can be quantified using targeted observations and a probabilistic forecasting approach. In this contribution, we present preliminary results from the recently launched project ICE CONTROL, an Austrian research initiative on measurements, probabilistic forecasting, and verification of icing on wind turbine blades. ICE CONTROL includes an experimental field phase, consisting of measurement campaigns in a wind park in Rhineland-Palatinate, Germany, in the winters 2016/17 and 2017/18. Instruments deployed during the campaigns consist of a conventional icing detector on the turbine hub and newly devised ice sensors (eologix Sensor System) on the turbine blades, as well as meteorological sensors for wind, temperature, humidity, visibility, and precipitation type and spectra. Liquid water content and spectral characteristics of super-cooled water droplets are measured using a Fog Monitor FM-120. Three cameras document the icing conditions on the instruments and on the blades. Different modelling approaches are used to quantify the components of the model-chain uncertainties. The uncertainty related to the initial conditions of the weather prediction is evaluated using the existing global ensemble prediction system (EPS) of the European Centre for Medium-Range Weather Forecasts (ECMWF). Furthermore, observation system experiments are conducted with the AROME model and its 3D-Var data assimilation to investigate the impact of additional observations (such as Mode-S aircraft data, SCADA data and MSG cloud mask initialization) on the numerical icing forecast. The uncertainty related to model formulation is estimated from multi-physics ensembles based on the Weather Research

  14. On the nature of the dirty ice at the bottom of the GISP2 ice core

    Science.gov (United States)

    Bender, Michael L.; Burgess, Edward; Alley, Richard B.; Barnett, Bruce; Clow, Gary D.

    2010-11-01

    We present data on the triple Ar isotope composition in trapped gas from clean, stratigraphically disturbed ice between 2800 and 3040 m depth in the GISP2 ice core, and from basal dirty ice from 3040 to 3053 m depth. We also present data for the abundance and isotopic composition of O 2 and N 2, and abundance of Ar, in the basal dirty ice. The Ar/N 2 ratio of dirty basal ice, the heavy isotope enrichment (reflecting gravitational fractionation), and the total gas content all indicate that the gases in basal dirty ice originate from the assimilation of clean ice of the overlying glacier, which comprises most of the ice in the dirty bottom layer. O 2 is partly to completely depleted in basal ice, reflecting active metabolism. The gravitationally corrected ratio of 40Ar/ 38Ar, which decreases with age in the global atmosphere, is compatible with an age of 100-250 ka for clean disturbed ice. In basal ice, 40Ar is present in excess due to injection of radiogenic 40Ar produced in the underlying continental crust. The weak depth gradient of 40Ar in the dirty basal ice, and the distribution of dirt, indicate mixing within the basal ice, while various published lines of evidence indicate mixing within the overlying clean, disturbed ice. Excess CH 4, which reaches thousands of ppm in basal dirty ice at GRIP, is virtually absent in overlying clean disturbed ice, demonstrating that mixing of dirty basal ice into the overlying clean ice, if it occurs at all, is very slow. Order-of-magnitude estimates indicate that the mixing rate of clean ice into dirty ice is sufficient to maintain a steady thickness of dirty ice against thinning from the mean ice flow. The dirty ice appears to consist of two or more basal components in addition to clean glacial ice. A small amount of soil or permafrost, plus preglacial snow, lake or ground ice could explain the observations.

  15. On the nature of the dirty ice at the bottom of the GISP2 ice core

    Science.gov (United States)

    Bender, Michael L.; Burgess, Edward; Alley, Richard B.; Barnett, Bruce; Clow, Gary D.

    2010-01-01

    We present data on the triple Ar isotope composition in trapped gas from clean, stratigraphically disturbed ice between 2800 and 3040m depth in the GISP2 ice core, and from basal dirty ice from 3040 to 3053m depth. We also present data for the abundance and isotopic composition of O2 and N2, and abundance of Ar, in the basal dirty ice. The Ar/N2 ratio of dirty basal ice, the heavy isotope enrichment (reflecting gravitational fractionation), and the total gas content all indicate that the gases in basal dirty ice originate from the assimilation of clean ice of the overlying glacier, which comprises most of the ice in the dirty bottom layer. O2 is partly to completely depleted in basal ice, reflecting active metabolism. The gravitationally corrected ratio of 40Ar/38Ar, which decreases with age in the global atmosphere, is compatible with an age of 100-250ka for clean disturbed ice. In basal ice, 40Ar is present in excess due to injection of radiogenic 40Ar produced in the underlying continental crust. The weak depth gradient of 40Ar in the dirty basal ice, and the distribution of dirt, indicate mixing within the basal ice, while various published lines of evidence indicate mixing within the overlying clean, disturbed ice. Excess CH4, which reaches thousands of ppm in basal dirty ice at GRIP, is virtually absent in overlying clean disturbed ice, demonstrating that mixing of dirty basal ice into the overlying clean ice, if it occurs at all, is very slow. Order-of-magnitude estimates indicate that the mixing rate of clean ice into dirty ice is sufficient to maintain a steady thickness of dirty ice against thinning from the mean ice flow. The dirty ice appears to consist of two or more basal components in addition to clean glacial ice. A small amount of soil or permafrost, plus preglacial snow, lake or ground ice could explain the observations.

  16. How Cubic Can Ice Be?

    Science.gov (United States)

    Amaya, Andrew J; Pathak, Harshad; Modak, Viraj P; Laksmono, Hartawan; Loh, N Duane; Sellberg, Jonas A; Sierra, Raymond G; McQueen, Trevor A; Hayes, Matt J; Williams, Garth J; Messerschmidt, Marc; Boutet, Sébastien; Bogan, Michael J; Nilsson, Anders; Stan, Claudiu A; Wyslouzil, Barbara E

    2017-07-20

    Using an X-ray laser, we investigated the crystal structure of ice formed by homogeneous ice nucleation in deeply supercooled water nanodrops (r ≈ 10 nm) at ∼225 K. The nanodrops were formed by condensation of vapor in a supersonic nozzle, and the ice was probed within 100 μs of freezing using femtosecond wide-angle X-ray scattering at the Linac Coherent Light Source free-electron X-ray laser. The X-ray diffraction spectra indicate that this ice has a metastable, predominantly cubic structure; the shape of the first ice diffraction peak suggests stacking-disordered ice with a cubicity value, χ, in the range of 0.78 ± 0.05. The cubicity value determined here is higher than those determined in experiments with micron-sized drops but comparable to those found in molecular dynamics simulations. The high cubicity is most likely caused by the extremely low freezing temperatures and by the rapid freezing, which occurs on a ∼1 μs time scale in single nanodroplets.

  17. STABLE ISOTOPE GEOCHEMISTRY OF MASSIVE ICE

    Directory of Open Access Journals (Sweden)

    Yurij K. Vasil’chuk

    2016-01-01

    Full Text Available The paper summarises stable-isotope research on massive ice in the Russian and North American Arctic, and includes the latest understanding of massive-ice formation. A new classification of massive-ice complexes is proposed, encompassing the range and variabilityof massive ice. It distinguishes two new categories of massive-ice complexes: homogeneousmassive-ice complexes have a similar structure, properties and genesis throughout, whereasheterogeneous massive-ice complexes vary spatially (in their structure and properties andgenetically within a locality and consist of two or more homogeneous massive-ice bodies.Analysis of pollen and spores in massive ice from Subarctic regions and from ice and snow cover of Arctic ice caps assists with interpretation of the origin of massive ice. Radiocarbon ages of massive ice and host sediments are considered together with isotope values of heavy oxygen and deuterium from massive ice plotted at a uniform scale in order to assist interpretation and correlation of the ice.

  18. Momentum Exchange Near Ice Keels in the Under Ice Ocean Boundary Layer

    National Research Council Canada - National Science Library

    Bleidorn, John C

    2008-01-01

    .... Understanding ice-ocean momentum exchange is important for accurate predictive ice modeling. Due to climate change, increased naval presence in the Arctic region is anticipated and ice models will become necessary for tactical and safety reasons...

  19. The IceCube Neutrino Observatory VI: Neutrino Oscillations, Supernova Searches, Ice Properties

    OpenAIRE

    The IceCube Collaboration

    2011-01-01

    Atmospheric neutrino oscillations with DeepCore; Supernova detection with IceCube and beyond; Study of South Pole ice transparency with IceCube flashers; Submitted papers to the 32nd International Cosmic Ray Conference, Beijing 2011.

  20. Canadian Ice Service Arctic Regional Sea Ice Charts in SIGRID-3 Format

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Canadian Ice Service (CIS) produces digital Arctic regional sea ice charts for marine navigation, climate research, and input to the Global Digital Sea Ice Data...

  1. Canadian Ice Service Arctic Regional Sea Ice Charts in SIGRID-3 Format, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Canadian Ice Service (CIS) produces digital Arctic regional sea ice charts for marine navigation, climate research, and input to the Global Digital Sea Ice Data...

  2. Videos of Basal Ice in Boreholes on the Kamb Ice Stream in West Antarctica, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set is a collection of video data of basal ice taken in a borehole on the Kamb Ice Stream in West Antarctica. Ice streams are an expression of the inherent...

  3. IceBridge HiCARS 1 L2 Geolocated Ice Thickness

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA IceBridge HiCARS 1 Level-2 Geolocated Ice Thickness (IR1HI2) data set contains Ice Thickness, Surface Elevations, and Bed Elevation measurements taken over...

  4. IceAge: Chemical Evolution of Ices during Star Formation

    Science.gov (United States)

    McClure, Melissa; Bailey, J.; Beck, T.; Boogert, A.; Brown, W.; Caselli, P.; Chiar, J.; Egami, E.; Fraser, H.; Garrod, R.; Gordon, K.; Ioppolo, S.; Jimenez-Serra, I.; Jorgensen, J.; Kristensen, L.; Linnartz, H.; McCoustra, M.; Murillo, N.; Noble, J.; Oberg, K.; Palumbo, M.; Pendleton, Y.; Pontoppidan, K.; Van Dishoeck, E.; Viti, S.

    2017-11-01

    Icy grain mantles are the main reservoir for volatile elements in star-forming regions across the Universe, as well as the formation site of pre-biotic complex organic molecules (COMs) seen in our Solar System. We propose to trace the evolution of pristine and complex ice chemistry in a representative low-mass star-forming region through observations of a: pre-stellar core, Class 0 protostar, Class I protostar, and protoplanetary disk. Comparing high spectral resolution (R 1500-3000) and sensitivity (S/N 100-300) observations from 3 to 15 um to template spectra, we will map the spatial distribution of ices down to 20-50 AU in these targets to identify when, and at what visual extinction, the formation of each ice species begins. Such high-resolution spectra will allow us to search for new COMs, as well as distinguish between different ice morphologies,thermal histories, and mixing environments. The analysis of these data will result in science products beneficial to Cycle 2 proposers. A newly updated public laboratory ice database will provide feature identifications for all of the expected ices, while a chemical model fit to the observed ice abundances will be released publically as a grid, with varied metallicity and UV fields to simulate other environments. We will create improved algorithms to extract NIRCAM WFSS spectra in crowded fields with extended sources as well as optimize the defringing of MIRI LRS spectra in order to recover broad spectral features. We anticipate that these resources will be particularly useful for astrochemistry and spectroscopy of fainter, extended targets like star forming regions of the SMC/LMC or more distant galaxies.

  5. Acquisition of Ice Thickness and Ice Surface Characteristics in the Seasonal Ice Zone by CULPIS-X during the US Coast Guard’s Arctic Domain Awareness Program

    Science.gov (United States)

    2014-09-30

    OBJECTIVES • What is the volume of sea ice in the Beaufort Sea Seasonal Ice Zone (SIZ) and how does this evolve during summer as the ice edge...retreats? Recent observations suggest that the remaining ice in the Beaufort Sea is younger and thinner in recent years in part because even the oldest...surrounding ice . Recent analyses have indicated that ponds on thinner ice are often darker, accelerating the ice - albedo feedback over thin ice in summer

  6. On Wave-Ice Interaction in the Arctic Marginal Ice Zone: Dispersion, Attenuation, and Ice Response

    Science.gov (United States)

    2016-06-01

    36 FIGURE 9 THE SPECTRAL ATTENUATION RATES AS A FUNCTION OF WAVE PERIOD. THE LIGHT COLORED LINES ARE THE INDIVIDUAL...ice surfaces, which is currently being investigated as a new mechanism contributing to ice melting and reduced wave transmission [Skene et al., 2015...is a transmission coefficient and the critical strain is assumed, = 3 × 10−5. Given the length of time step and the zero-crossing wave

  7. Dynamics of Under Ice Boundary Layers Below Floating Ice Shelves

    Science.gov (United States)

    Shaw, W. J.; Stanton, T. P.

    2016-02-01

    Pine Island Glacier (PIG), a major outlet stream of the Western Antarctic Ice Sheet, has dramatically thinned and accelerated in recent decades. It is believed that a weakening of the floating portion of the glacier, known as the ice shelf, due to increased ocean thermal forcing is a primary cause of the observed increasing discharge of PIG. In order to better understand the controls on the exchange of heat between the PIG shelf and the underlying ocean cavity, a numerical model, MITgcm, has been configured to study the dynamics of the sloping, meltwater-forced, buoyant boundary layer below the ice shelf A 2-D approximation allows for high vertical resolution that resolves well the under shelf ocean boundary layer. We are particularly interested in the dynamical balance between buoyancy along the sloping ice shelf base, drag, and entrainment/detrainment and the associated feedback of basal melting of the ice shelf. Numerical results will be compared to in-situ observations obtained through a field campaign in 2013.

  8. Response timescales for martian ice masses and implications for ice flow on Mars

    DEFF Research Database (Denmark)

    Koutnik, Michelle Rebecca; Waddington, E.D.; Winebrener, D.P.

    2013-01-01

    ice-flow rates were more significant than today. A plausible range of near-basal ice temperatures and ice-flow enhancement factors can generate the characteristic geometry of an ice mass that has been shaped by flow over reasonable volume-response timescales. All plausible ice-flow scenarios require......On Earth and on Mars, ice masses experience changes in precipitation, temperature, and radiation. In a new climate state, flowing ice masses will adjust in length and in thickness, and this response toward a new steady state has a characteristic timescale. However, a flowing ice mass has...

  9. Airborne Tomographic Swath Ice Sounding Processing System

    Science.gov (United States)

    Wu, Xiaoqing; Rodriquez, Ernesto; Freeman, Anthony; Jezek, Ken

    2013-01-01

    Glaciers and ice sheets modulate global sea level by storing water deposited as snow on the surface, and discharging water back into the ocean through melting. Their physical state can be characterized in terms of their mass balance and dynamics. To estimate the current ice mass balance, and to predict future changes in the motion of the Greenland and Antarctic ice sheets, it is necessary to know the ice sheet thickness and the physical conditions of the ice sheet surface and bed. This information is required at fine resolution and over extensive portions of the ice sheets. A tomographic algorithm has been developed to take raw data collected by a multiple-channel synthetic aperture sounding radar system over a polar ice sheet and convert those data into two-dimensional (2D) ice thickness measurements. Prior to this work, conventional processing techniques only provided one-dimensional ice thickness measurements along profiles.

  10. What Determines the Ice Polymorph in Clouds?

    Science.gov (United States)

    Hudait, Arpa; Molinero, Valeria

    2016-07-20

    Ice crystals in the atmosphere nucleate from supercooled liquid water and grow by vapor uptake. The structure of the ice polymorph grown has strong impact on the morphology and light scattering of the ice crystals, modulates the amount of water vapor in ice clouds, and can impact the molecular uptake and reactivity of atmospheric aerosols. Experiments and molecular simulations indicate that ice nucleated and grown from deeply supercooled liquid water is metastable stacking disordered ice. The ice polymorph grown from vapor has not yet been determined. Here we use large-scale molecular simulations to determine the structure of ice that grows as a result of uptake of water vapor in the temperature range relevant to cirrus and mixed-phase clouds, elucidate the molecular mechanism of the formation of ice at the vapor interface, and compute the free energy difference between cubic and hexagonal ice interfaces with vapor. We find that vapor deposition results in growth of stacking disordered ice only under conditions of extreme supersaturation, for which a nonequilibrium liquid layer completely wets the surface of ice. Such extreme conditions have been used to produce stacking disordered frost ice in experiments and may be plausible in the summer polar mesosphere. Growth of ice from vapor at moderate supersaturations in the temperature range relevant to cirrus and mixed-phase clouds, from 200 to 260 K, produces exclusively the stable hexagonal ice polymorph. Cubic ice is disfavored with respect to hexagonal ice not only by a small penalty in the bulk free energy (3.6 ± 1.5 J mol(-1) at 260 K) but also by a large free energy penalty at the ice-vapor interface (89.7 ± 12.8 J mol(-1) at 260 K). The latter originates in higher vibrational entropy of the hexagonal-terminated ice-vapor interface. We predict that the free energy penalty against the cubic ice interface should decrease strongly with temperature, resulting in some degree of stacking disorder in ice grown from

  11. Mixed ice accretion on aircraft wings

    Science.gov (United States)

    Janjua, Zaid A.; Turnbull, Barbara; Hibberd, Stephen; Choi, Kwing-So

    2018-02-01

    Ice accretion is a problematic natural phenomenon that affects a wide range of engineering applications including power cables, radio masts, and wind turbines. Accretion on aircraft wings occurs when supercooled water droplets freeze instantaneously on impact to form rime ice or runback as water along the wing to form glaze ice. Most models to date have ignored the accretion of mixed ice, which is a combination of rime and glaze. A parameter we term the "freezing fraction" is defined as the fraction of a supercooled droplet that freezes on impact with the top surface of the accretion ice to explore the concept of mixed ice accretion. Additionally we consider different "packing densities" of rime ice, mimicking the different bulk rime densities observed in nature. Ice accretion is considered in four stages: rime, primary mixed, secondary mixed, and glaze ice. Predictions match with existing models and experimental data in the limiting rime and glaze cases. The mixed ice formulation however provides additional insight into the composition of the overall ice structure, which ultimately influences adhesion and ice thickness, and shows that for similar atmospheric parameter ranges, this simple mixed ice description leads to very different accretion rates. A simple one-dimensional energy balance was solved to show how this freezing fraction parameter increases with decrease in atmospheric temperature, with lower freezing fraction promoting glaze ice accretion.

  12. Ice nucleation activity of polysaccharides

    Science.gov (United States)

    Bichler, Magdalena; Felgitsch, Laura; Haeusler, Thomas; Seidl-Seiboth, Verena; Grothe, Hinrich

    2015-04-01

    Heterogeneous ice nucleation is an important process in the atmosphere. It shows direct impact on our climate by triggering ice cloud formation and therefore it has much influence on the radiation balance of our planet (Lohmann et al. 2002; Mishchenko et al. 1996). The process itself is not completely understood so far and many questions remain open. Different substances have been found to exhibit ice nucleation activity (INA). Due to their vast differences in chemistry and morphology it is difficult to predict what substance will make good ice nuclei and which will not. Hence simple model substances must be found and be tested regarding INA. Our work aims at gaining to a deeper understanding of heterogeneous ice nucleation. We intend to find some reference standards with defined chemistry, which may explain the mechanisms of heterogeneous ice nucleation. A particular focus lies on biological carbohydrates in regards to their INA. Biological carbohydrates are widely distributed in all kingdoms of life. Mostly they are specific for certain organisms and have well defined purposes, e.g. structural polysaccharides like chitin (in fungi and insects) and pectin (in plants), which has also water-binding properties. Since they are widely distributed throughout our biosphere and mostly safe to use for nutrition purposes, they are well studied and easily accessible, rendering them ideal candidates as proxies. In our experiments we examined various carbohydrates, like the already mentioned chitin and pectin, as well as their chemical modifications. Lohmann U.; A Glaciation Indirect Aerosol Effect Caused by Soot Aerosols; J. Geoph. Res.; Vol. 24 No.4; pp 11-1 - 11-4; 2002 Mishchenko M.I., Rossow W.B., Macke A., Lacis A. A.; Sensitivity of Cirrus Cloud Albedo, Bidirectional Reflectance and Optical Thickness Retrieval Accuracy to Ice Particle Shape, J. Geoph. Res.; Vol. 101, No D12; pp. 16,973 - 16,985; 1996

  13. Sensitivity of open-water ice growth and ice concentration evolution in a coupled atmosphere-ocean-sea ice model

    Science.gov (United States)

    Shi, Xiaoxu; Lohmann, Gerrit

    2017-09-01

    A coupled atmosphere-ocean-sea ice model is applied to investigate to what degree the area-thickness distribution of new ice formed in open water affects the ice and ocean properties. Two sensitivity experiments are performed which modify the horizontal-to-vertical aspect ratio of open-water ice growth. The resulting changes in the Arctic sea-ice concentration strongly affect the surface albedo, the ocean heat release to the atmosphere, and the sea-ice production. The changes are further amplified through a positive feedback mechanism among the Arctic sea ice, the Atlantic Meridional Overturning Circulation (AMOC), and the surface air temperature in the Arctic, as the Fram Strait sea ice import influences the freshwater budget in the North Atlantic Ocean. Anomalies in sea-ice transport lead to changes in sea surface properties of the North Atlantic and the strength of AMOC. For the Southern Ocean, the most pronounced change is a warming along the Antarctic Circumpolar Current (ACC), owing to the interhemispheric bipolar seasaw linked to AMOC weakening. Another insight of this study lies on the improvement of our climate model. The ocean component FESOM is a newly developed ocean-sea ice model with an unstructured mesh and multi-resolution. We find that the subpolar sea-ice boundary in the Northern Hemisphere can be improved by tuning the process of open-water ice growth, which strongly influences the sea ice concentration in the marginal ice zone, the North Atlantic circulation, salinity and Arctic sea ice volume. Since the distribution of new ice on open water relies on many uncertain parameters and the knowledge of the detailed processes is currently too crude, it is a challenge to implement the processes realistically into models. Based on our sensitivity experiments, we conclude a pronounced uncertainty related to open-water sea ice growth which could significantly affect the climate system sensitivity.

  14. Sea Ice Concentration and Extent

    Science.gov (United States)

    Comiso, Josefino C.

    2014-01-01

    Among the most seasonal and most dynamic parameters on the surface of the Earth is sea ice which at any one time covers about 3-6% of the planet. In the Northern Hemisphere, sea ice grows in extent from about 6 x 10(exp 6) sq km to 16 x 10(exp 6) sq km, while in the Southern Hemisphere, it grows from about 3 x 10(exp 6) sq km to about 19 x 10(exp 6) sq km (Comiso, 2010; Gloersen et al., 1992). Sea ice is up to about 2-3 m thick in the Northern Hemisphere and about 1 m thick in the Southern Hemisphere (Wadhams, 2002), and compared to the average ocean depth of about 3 km, it is a relatively thin, fragile sheet that can break due to waves and winds or melt due to upwelling of warm water. Being constantly advected by winds, waves, and currents, sea ice is very dynamic and usually follows the directions of the many gyres in the polar regions. Despite its vast expanse, the sea ice cover was previously left largely unstudied and it was only in recent years that we have understood its true impact and significance as related to the Earths climate, the oceans, and marine life.

  15. Ice-condenser aerosol tests

    International Nuclear Information System (INIS)

    Ligotke, M.W.; Eschbach, E.J.; Winegardner, W.K.

    1991-09-01

    This report presents the results of an experimental investigation of aerosol particle transport and capture using a full-scale height and reduced-scale cross section test facility based on the design of the ice compartment of a pressurized water reactor (PWR) ice-condenser containment system. Results of 38 tests included thermal-hydraulic as well as aerosol particle data. Particle retention in the test section was greatly influenced by thermal-hydraulic and aerosol test parameters. Test-average decontamination factor (DF) ranged between 1.0 and 36 (retentions between ∼0 and 97.2%). The measured test-average particle retentions for tests without and with ice and steam ranged between DF = 1.0 and 2.2 and DF = 2.4 and 36, respectively. In order to apparent importance, parameters that caused particle retention in the test section in the presence of ice were steam mole fraction (SMF), noncondensible gas flow rate (residence time), particle solubility, and inlet particle size. Ice-basket section noncondensible flows greater than 0.1 m 3 /s resulted in stable thermal stratification whereas flows less than 0.1 m 3 /s resulted in thermal behavior termed meandering with frequent temperature crossovers between flow channels. 10 refs., 66 figs., 16 tabs

  16. Ice-condenser aerosol tests

    Energy Technology Data Exchange (ETDEWEB)

    Ligotke, M.W.; Eschbach, E.J.; Winegardner, W.K. (Pacific Northwest Lab., Richland, WA (United States))

    1991-09-01

    This report presents the results of an experimental investigation of aerosol particle transport and capture using a full-scale height and reduced-scale cross section test facility based on the design of the ice compartment of a pressurized water reactor (PWR) ice-condenser containment system. Results of 38 tests included thermal-hydraulic as well as aerosol particle data. Particle retention in the test section was greatly influenced by thermal-hydraulic and aerosol test parameters. Test-average decontamination factor (DF) ranged between 1.0 and 36 (retentions between {approximately}0 and 97.2%). The measured test-average particle retentions for tests without and with ice and steam ranged between DF = 1.0 and 2.2 and DF = 2.4 and 36, respectively. In order to apparent importance, parameters that caused particle retention in the test section in the presence of ice were steam mole fraction (SMF), noncondensible gas flow rate (residence time), particle solubility, and inlet particle size. Ice-basket section noncondensible flows greater than 0.1 m{sup 3}/s resulted in stable thermal stratification whereas flows less than 0.1 m{sup 3}/s resulted in thermal behavior termed meandering with frequent temperature crossovers between flow channels. 10 refs., 66 figs., 16 tabs.

  17. Recrystallization inhibition in ice due to ice binding protein activity detected by nuclear magnetic resonance.

    Science.gov (United States)

    Brown, Jennifer R; Seymour, Joseph D; Brox, Timothy I; Skidmore, Mark L; Wang, Chen; Christner, Brent C; Luo, Bing-Hao; Codd, Sarah L

    2014-09-01

    Liquid water present in polycrystalline ice at the interstices between ice crystals results in a network of liquid-filled veins and nodes within a solid ice matrix, making ice a low porosity porous media. Here we used nuclear magnetic resonance (NMR) relaxation and time dependent self-diffusion measurements developed for porous media applications to monitor three dimensional changes to the vein network in ices with and without a bacterial ice binding protein (IBP). Shorter effective diffusion distances were detected as a function of increased irreversible ice binding activity, indicating inhibition of ice recrystallization and persistent small crystal structure. The modification of ice structure by the IBP demonstrates a potential mechanism for the microorganism to enhance survivability in ice. These results highlight the potential of NMR techniques in evaluation of the impact of IBPs on vein network structure and recrystallization processes; information useful for continued development of ice-interacting proteins for biotechnology applications.

  18. Ice lollies: An ice particle generated in supercooled conveyor belts

    Science.gov (United States)

    Keppas, S. Ch.; Crosier, J.; Choularton, T. W.; Bower, K. N.

    2017-05-01

    On 21 January 2009, a maturing low-pressure weather system approached the UK along with several associated frontal systems. As a part of the Aerosol Properties, PRocesses And InfluenceS on the Earth's climate-Clouds project, an observational research flight took place in southern England, sampling the leading warm front of this system. During the flight, a distinctive hydrometeor type was repeatedly observed which has not been widely reported in previous studies. We refer to the hydrometeors as "drizzle-rimed columnar ice" or "ice lollies" for short due to their characteristic shape. We discuss the processes that led to their formation using in situ and remote sensing data.

  19. Winter sea ice export from the Laptev Sea preconditions the local summer sea ice cover

    Science.gov (United States)

    Krumpen, T.; Haas, C.; Itkin, P.

    2016-12-01

    Interannual variability and trends in sea ice export out of the Laptev Sea were investigated using a combination of observations and satellite data. The Laptev Sea shows a statistically positive trend in ice area export that is likely associated to an increase in ice drift velocity being the consequence of a thinning ice cover further north. Moreover, we could show that there is a high statistical connection of the late winter (Jan-May) sea ice export and ice formation in Laptev Sea polynyas to the summer sea ice concentration. By means of a sensitivity study using a coupled sea ice-ocean model (MITgcm), we could highlight the importance of winter sea ice processes for summer sea ice conditions in the Laptev Sea and likewise in the adjacent Siberian Seas. Years of high ice export have a thinning effect on the ice cover, which in turn preconditions early fast ice break up, pack ice melt and the occurrence of negative sea ice extent anomalies in summer. Our model simulation also indicate that observed increase in the sea ice export from the Laptev Sea is accompanied by an increase in the volume export, which is important for the Arctic sea ice budget.

  20. Open-Source Python Modules to Estimate Level Ice Thickness from Ice Charts

    Science.gov (United States)

    Geiger, C. A.; Deliberty, T. L.; Bernstein, E. R.; Helfrich, S.

    2012-12-01

    A collaborative research effort between the University of Delaware (UD) and National Ice Center (NIC) addresses the task of providing open-source translations of sea ice stage-of-development into level ice thickness estimates on a 4km grid for the Interactive Multisensor Snow and Ice Mapping System (IMS). The characteristics for stage-of-development are quantified from remote sensing imagery with estimates of level ice thickness categories originating from World Meteorological Organization (WMO) egg coded ice charts codified since the 1970s. Conversions utilize Python scripting modules which transform electronic ice charts with WMO egg code characteristics into five level ice thickness categories, in centimeters, (0-10, 10-30, 30-70, 70-120, >120cm) and five ice types (open water, first year pack ice, fast ice, multiyear ice, and glacial ice with a reserve slot for deformed ice fractions). Both level ice thickness categories and ice concentration fractions are reported with uncertainties propagated based on WMO ice stage ranges which serve as proxy estimates for standard deviation. These products are in preparation for use by NCEP, CMC, and NAVO by 2014 based on their modeling requirements for daily products in near-real time. In addition to development, continuing research tests the value of these estimated products against in situ observations to improve both value and uncertainty estimates.

  1. Compression experiments on artificial, alpine and marine ice: implications for ice-shelf/continental interactions

    Science.gov (United States)

    Dierckx, Marie; Goossens, Thomas; Samyn, Denis; Tison, Jean-Louis

    2010-05-01

    Antarctic ice shelves are important components of continental ice dynamics, in that they control grounded ice flow towards the ocean. As such, Antarctic ice shelves are a key parameter to the stability of the Antarctic ice sheet in the context of global change. Marine ice, formed by sea water accretion beneath some ice shelves, displays distinct physical (grain textures, bubble content, ...) and chemical (salinity, isotopic composition, ...) characteristics as compared to glacier ice and sea ice. The aim is to refine Glen's flow relation (generally used for ice behaviour in deformation) under various parameters (temperature, salinity, debris, grain size ...) to improve deformation laws used in dynamic ice shelf models, which would then give more accurate and / or realistic predictions on ice shelf stability. To better understand the mechanical properties of natural ice, deformation experiments were performed on ice samples in laboratory, using a pneumatic compression device. To do so, we developed a custom built compression rig operated by pneumatic drives. It has been designed for performing uniaxial compression tests at constant load and under unconfined conditions. The operating pressure ranges from about 0.5 to 10 Bars. This allows modifying the experimental conditions to match the conditions found at the grounding zone (in the 1 Bar range). To maintain the ice at low temperature, the samples are immersed in a Silicone oil bath connected to an external refrigeration system. During the experiments, the vertical displacement of the piston and the applied force is measured by sensors which are connected to a digital acquisition system. We started our experiments with artificial ice and went on with continental ice samples from glaciers in the Alps. The first results allowed us to acquire realistic mechanical data for natural ice. Ice viscosity was calculated for different types of artificial ice, using Glen's flow law, and showed the importance of impurities

  2. Thermodynamic and Dynamic Aspects of Ice Nucleation

    Science.gov (United States)

    Barahona, Donifan

    2018-01-01

    It is known that ice nucleating particles (INP) immersed within supercooled droplets promote the formation of ice. Common theoretical models used to represent this process assume that the immersed particle lowers the work of ice nucleation without significantly affecting the dynamics of water in the vicinity of the particle. This is contrary to evidence showing that immersed surfaces significantly affect the viscosity and diffusivity of vicinal water. To study how this may affect ice formation this work introduces a model linking the ice nucleation rate to the modification of the dynamics and thermodynamics of vicinal water by immersed particles. It is shown that INP that significantly reduce the work of ice nucleation also pose strong limitations to the growth of the nascent ice germs. This leads to the onset of a new ice nucleation regime, called spinodal ice nucleation, where the dynamics of ice germ growth instead of the ice germ size determines the nucleation rate. Nucleation in this regime is characterized by an enhanced sensitivity to particle area and cooling rate. Comparison of the predicted ice nucleation rate against experimental measurements for a diverse set of species relevant to cloud formation suggests that spinodal ice nucleation may be common in nature.

  3. Proceedings of the 19. IAHR international symposium on ice : using new technology to understand water-ice interaction

    International Nuclear Information System (INIS)

    Jasek, M.; Andrishak, R.; Siddiqui, A.

    2008-01-01

    This conference provided a venue for scientists, engineers and researchers an opportunity to expand their knowledge of water-ice interactions with reference to water resources, river and coastal hydraulics, risk analysis, energy and the environment. The the theme of new technology falls into 3 basic groups, notably measurement and instrumentation; remote sensing; and numerical simulation. The thermal regime of rivers was discussed along with ice mechanics, ice hydraulics, ice structures and modelling ice phenomena. The titles of the sessions were: river ice, glaciers and climate change; freeze-up processes on rivers and oceans; river ice-structure interactions; numerical simulations in ice engineering; river-ice break-up and ice jam formation; ice measurement; Grasse River ice evaluation; evaluation of structural ice control alternatives; remote sensing; hydropower and dam decommissioning; mechanical behaviour of river ice, ice covered flow and thermal modelling; mathematical and computer model formulations for ice friction and sea ice; ice bergs and ice navigation; ice crushing processes; sea ice and shore/structure interactions; ice properties, testing and physical modelling; ice actions on compliant structures; oil spills in ice; desalination, ice thickness and climate change; and, sea ice ridges. The conference featured 123 presentations, of which 20 have been catalogued separately for inclusion in this database. refs., tabs., figs

  4. Disorder and Quantum Spin Ice

    Science.gov (United States)

    Martin, N.; Bonville, P.; Lhotel, E.; Guitteny, S.; Wildes, A.; Decorse, C.; Ciomaga Hatnean, M.; Balakrishnan, G.; Mirebeau, I.; Petit, S.

    2017-10-01

    We report on diffuse neutron scattering experiments providing evidence for the presence of random strains in the quantum spin-ice candidate Pr2Zr2O7 . Since Pr3 + is a non-Kramers ion, the strain deeply modifies the picture of Ising magnetic moments governing the low-temperature properties of this material. It is shown that the derived strain distribution accounts for the temperature dependence of the specific heat and of the spin-excitation spectra. Taking advantage of mean-field and spin-dynamics simulations, we argue that the randomness in Pr2Zr2O7 promotes a new state of matter, which is disordered yet characterized by short-range antiferroquadrupolar correlations, and from which emerge spin-ice-like excitations. Thus, this study gives an original research route in the field of quantum spin ice.

  5. Disorder and Quantum Spin Ice

    Directory of Open Access Journals (Sweden)

    N. Martin

    2017-10-01

    Full Text Available We report on diffuse neutron scattering experiments providing evidence for the presence of random strains in the quantum spin-ice candidate Pr_{2}Zr_{2}O_{7}. Since Pr^{3+} is a non-Kramers ion, the strain deeply modifies the picture of Ising magnetic moments governing the low-temperature properties of this material. It is shown that the derived strain distribution accounts for the temperature dependence of the specific heat and of the spin-excitation spectra. Taking advantage of mean-field and spin-dynamics simulations, we argue that the randomness in Pr_{2}Zr_{2}O_{7} promotes a new state of matter, which is disordered yet characterized by short-range antiferroquadrupolar correlations, and from which emerge spin-ice-like excitations. Thus, this study gives an original research route in the field of quantum spin ice.

  6. PU-ICE Summary Information.

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    The Generator Knowledge Report for the Plutonium Isentropic Compression Experiment Containment Systems (GK Report) provides information for the Plutonium Isentropic Compression Experiment (Pu- ICE) program to support waste management and characterization efforts. Attachment 3-18 presents generator knowledge (GK) information specific to the eighteenth Pu-ICE conducted in August 2015, also known as ‘Shot 18 (Aug 2015) and Pu-ICE Z-2841 (1).’ Shot 18 (Aug 2015) was generated on August 28, 2015 (1). Calculations based on the isotopic content of Shot 18 (Aug 2015) and the measured mass of the containment system demonstrate the post-shot containment system is low-level waste (LLW). Therefore, this containment system will be managed at Sandia National Laboratory/New Mexico (SNL/NM) as LLW. Attachment 3-18 provides documentation of the TRU concentration and documents the concentration of any hazardous constituents.

  7. Heavy Metal Presence in Two Different Types of Ice Cream: Artisanal Ice Cream (Italian Gelato) and Industrial Ice Cream.

    Science.gov (United States)

    Conficoni, D; Alberghini, L; Bissacco, E; Ferioli, M; Giaccone, V

    2017-03-01

    Ice cream, a popular product worldwide, is usually a milk-based product with other types of ingredients (fruit, eggs, cocoa, dried fruit, additives, and others). Different materials are used to obtain the desired taste, texture, consistency, and appearance of the final product. This study surveyed ice cream products available in Italy for heavy metals (lead, cadmium, chromium, tin, and arsenic). The differences between artisanal and industrial ice cream were also investigated because of the importance in the Italian diet and the diffusion of this ready-to-eat food. Ice cream sampling was performed between October 2010 and February 2011 in the northeast of Italy. A total of 100 samples were randomly collected from different sources: 50 industrial samples produced by 19 different brands were collected in coffee bars and supermarkets; 50 artisanal ice cream samples were gathered at nine different artisanal ice cream shops. Ten wooden sticks of industrial ice cream were analyzed in parallel to the ice cream. All samples were negative for arsenic and mercury. None of the artisanal ice cream samples were positive for lead and tin; 18% of the industrial ice cream samples were positive. All positive lead samples were higher than the legal limit stated for milk (0.02 mg/kg). All industrial ice cream samples were negative for cadmium, but cadmium was present in 10% of the artisanal ice cream samples. Chromium was found in 26% of the artisanal and in 58% of the industrial ice cream samples. The heavy metals found in the wooden sticks were different from the corresponding ice cream, pointing out the lack of cross-contamination between the products. Considering the results and the amount of ice cream consumed during the year, contamination through ice cream is a low risk for the Italian population, even though there is need for further analysis.

  8. Changes on the ice plain of Ice Stream B and Ross Ice Shelf

    Science.gov (United States)

    Shabtaie, Sion

    1993-01-01

    During the 1970's and 1980's, nearly 200 stations from which accurate, three dimensional position fixes have been obtained from TRANSIT satellites were occupied throughout the Ross Ice Shelf. We have transformed the elevations obtained by satellite altimetry to the same geodetic datum, and then applied a second transformation to reduce the geodetic heights to elevations above mean sea level using the GEM-10C geoidal height. On the IGY Ross Ice Shelf traverse between Oct. 1957 and Feb. 1958, an accurate method of barometric altimetry was used on a loop around the ice shelf that was directly tied to the sea at both ends of the travel route, thus providing absolute elevations. Comparisons of the two sets of data at 32 station pairs on floating ice show a mean difference of 0 +/- 1 m. The elevation data were also compared with theoretical values of elevations for a hydrostatically floating ice shelf. The mean difference between theoretical and measured values of elevations is -2 +/- 1 m.

  9. Airfields on Antarctic Glacier Ice

    Science.gov (United States)

    1989-12-01

    meteorites behind on the surface. excellent friction for tires, to the extent that rubber can be burned off the tire if the wheel locks at high Blue-ice areas...scattered stones are not likely to affect aircraft just a thin layer (about cobblestone thickness) ly- operations, or to cause problems for ice-planing ing...Challenger, tinations. Some sites, e.g. Pegasus site and Casey which has a novel rubber -belt track system, is S-1, are final destinations, intended to

  10. Arctic Landfast Sea Ice 1953-1998

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The files in this data set contain landfast sea ice data (monthly means) gathered from both Russian Arctic and Antarctic Research Institute (AARI) and Canadian Ice...

  11. RIDES: Raman Icing Detection System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Inflight icing of engines and airframe presents a significant hazard to air transport, especially at lower flight elevations during take-off or on approach. Ice...

  12. Monthly snow/ice averages (ISCCP)

    Data.gov (United States)

    National Aeronautics and Space Administration — September Arctic sea ice is now declining at a rate of 11.5 percent per decade, relative to the 1979 to 2000 average. Data from NASA show that the land ice sheets in...

  13. IceBridge Mission Flight Reports

    Data.gov (United States)

    National Aeronautics and Space Administration — The IceBridge Mission Flight Reports data set contains flight reports from NASA Operation IceBridge Greenland, Arctic, Antarctic, and Alaska missions. Flight reports...

  14. ROV dives under Great Lakes ice

    Science.gov (United States)

    Bolsenga, S.J.; Gannon, John E.; Kennedy, Gregory; Norton, D.C.; Herdendorf, Charles E.

    1989-01-01

    Observations of the underside of ice have a wide variety of applications. Severe under-ice roughness can affect ice movements, rough under-ice surfaces can scour the bottom disturbing biota and man-made structures such as pipelines, and the flow rate of rivers is often affected by under-ice roughness. A few reported observations of the underside of an ice cover have been made, usually by cutting a large block of ice and overturning it, by extensive boring, or by remote sensing. Such operations are extremely labor-intensive and, in some cases, prone to inaccuracies. Remotely operated vehicles (ROV) can partially solve these problems. In this note, we describe the use, performance in a hostile environment, and results of a study in which a ROV was deployed under the ice in Lake Erie (North American Great Lakes).

  15. Greenland Radar Ice Sheet Thickness Measurements

    Data.gov (United States)

    National Aeronautics and Space Administration — Two 150-MHz coherent radar depth sounders were developed and flown over the Greenland ice sheet to obtain ice thickness measurements in support of PARCA...

  16. Global Lake and River Ice Phenology Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Lake and River Ice Phenology Database contains freeze and thaw/breakup dates as well as other descriptive ice cover data for 865 lakes and rivers in the...

  17. Ice nucleation and overseeding of ice in volcanic clouds

    Science.gov (United States)

    Durant, A. J.; Shaw, R. A.; Rose, W. I.; Mi, Y.; Ernst, G. G. J.

    2008-05-01

    Water is the dominant component of volcanic gas emissions, and water phase transformations, including the formation of ice, can be significant in the dynamics of volcanic clouds. The effectiveness of volcanic ash particles as ice-forming nuclei (IN) is poorly understood and the sparse data that exist for volcanic ash IN have been interpreted in the context of meteorological, rather than volcanic clouds. In this study, single-particle freezing experiments were carried out to investigate the effect of ash particle composition and surface area on water drop freezing temperature. Measured freezing temperatures show only weak correlations with ash IN composition and surface area. Our measurements, together with a review of previous volcanic ash IN measurements, suggest that fine-ash particles (equivalent diameters between approximately 1 and 1000 μm) from the majority of volcanoes will exhibit an onset of freezing between ˜250-260 K. In the context of explosive eruptions where super-micron particles are plentiful, this result implies that volcanic clouds are IN-rich relative to meteorological clouds, which typically are IN-limited, and therefore should exhibit distinct microphysics. We can expect that such "overseeded" volcanic clouds will exhibit enhanced ice crystal concentrations and smaller average ice crystal size, relative to dynamically similar meteorological clouds, and that glaciation will tend to occur over a relatively narrow altitude range.

  18. Ice sheet anisotropy measured with polarimetric ice sounding radar

    DEFF Research Database (Denmark)

    Dall, Jørgen

    2010-01-01

    For polar ice sheets, valuable stress and strain information can be deduced from crystal orientation fabrics (COF) and their prevailing c-axis alignment. Polarimetric radio echo sounding is a promising technique to measure the anisotropic electromagnetic propagation and reflection properties asso...

  19. Delicious ice cream, why does salt thaw ice?

    Science.gov (United States)

    Bagnoli, Franco

    2016-03-01

    Plain Awful is an imaginary valley on the Andes populated by a highly-imitative, cubical people for which the most criminal offence is to exhibit round objects. The duck family (Scrooge, Donald and nephews) are teaming against Scrooge's worst enemy, Flintheart Glomgold, trying to buy the famous Plain Awful square eggs. Inadvertently, Scrooge violates the taboo, showing his Number One Dime, and is imprisoned in the stone quarries. He can be released only after the presentation of an ice cream soda to the President of Plain Awful. Donald and his nephews fly with Flintheart to deliver it, but Scrooge's enemy, of course, betrays the previous agreement after getting the ice cream, forcing the ducks into making an emergence replacement on the spot. Using dried milk, sugar and chocolate from their ration packs, plus some snow and salt for cooling they are able make the ice cream, and after dressing it with the carbonated water from a fire extinguisher they finally manage to produce the desired dessert. This comic may serve as an introduction to the "mysterious" phenomenon that added salt melts the ice and, even more surprising, does it by lowering the temperature of the mixture.

  20. Passive Polarimetric Remote Sensing of Snow and Ice

    Science.gov (United States)

    1997-09-30

    ice and snow, we proposed to measure the Stokes parameters, as a function of incidence angle, for growing ice, desalinated ice, new snow, and...orientation of ice crystals, brine channels and air pockets. Although the CRREL facility is well equipped to artificially generate ice (via refrigeration of...calibration and early growth phase of new ice (See figure 2) 26-Feb Growth phase of new ice 26-Feb Old, desalinated ice (See figure 3) Slight surface

  1. The last British-Irish Ice Sheet: A data-rich environment for ice sheet modelling

    Science.gov (United States)

    Ely, Jeremy; Clark, Chris; Hindmarsh, Richard; Bradley, Sarah

    2017-04-01

    In order to simulate the future dynamics of the Greenland and Antarctic ice sheets, robust numerical models validated by observations of past ice sheet behaviour are required. The extent and dynamics of contemporary ice sheets have been observed at a decadal scale. But a much longer record of ice sheet behaviour (10 ka) can be collated by studying the evidence left behind by palaeo-ice sheets. Extensive geomorphological and geochronological evidence for the past behaviour of the last British-Irish Ice Sheet has been gathered through over 150 years of research and BRITICE-CHRONO, a recent consortium project. This large volume of empirical evidence makes the last British-Irish Ice Sheet one of the best constrained palaeo-ice sheets in the world, and a data-rich environment for ice sheet modelling experiments. Yet, integrating this data and its associated uncertainty and abstraction into ice sheet modelling experiments remains challenging. Here we summarise the available geomorphological and geochronological data and discuss how this will be integrated into ice sheet modelling experiments. Several packages of data, each with its own associated level of interpretation (ranging from raw data to empirically reconstructed ice sheet margins), will be made available to the ice-sheet modelling community. Furthermore, we demonstrate our approach to simulating the empirically reconstructed behaviour of the British-Irish Ice Sheet through a series of ice sheet modelling experiments which account for relative sea level change, and uncertainty in empirically reconstructed ice sheet extent.

  2. Acquisition of Ice Thickness and Ice Surface Characteristics In the Seasonal Ice Zone by CULPIS-X During the US Coast Guards Arctic Domain Awareness Program

    Science.gov (United States)

    2015-09-30

    ponds on thinner ice are often darker, accelerating the ice - albedo feedback over thin ice in summer. During winter, leads and very thin ice are centers...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Acquisition of Ice Thickness and Ice Surface...Characteristics In the Seasonal Ice Zone by CULPIS-X During the US Coast Guard’s Arctic Domain Awareness Program PI: Mark A. Tschudi University of

  3. Research destruction ice under dynamic loading. Part 1. Modeling explosive ice cover into account the temperature

    Directory of Open Access Journals (Sweden)

    Bogomolov Gennady N.

    2017-01-01

    Full Text Available In the research, the behavior of ice under shock and explosive loads is analyzed. Full-scale experiments were carried out. It is established that the results of 2013 practically coincide with the results of 2017, which is explained by the temperature of the formation of river ice. Two research objects are considered, including freshwater ice and river ice cover. The Taylor test was simulated numerically. The results of the Taylor test are presented. Ice is described by an elastoplastic model of continuum mechanics. The process of explosive loading of ice by emulsion explosives is numerically simulated. The destruction of the ice cover under detonation products is analyzed in detail.

  4. Development of a Capacitive Ice Sensor to Measure Ice Growth in Real Time

    Directory of Open Access Journals (Sweden)

    Xiang Zhi

    2015-03-01

    Full Text Available This paper presents the development of the capacitive sensor to measure the growth of ice on a fuel pipe surface in real time. The ice sensor consists of pairs of electrodes to detect the change in capacitance and a thermocouple temperature sensor to examine the ice formation situation. In addition, an environmental chamber was specially designed to control the humidity and temperature to simulate the ice formation conditions. From the humidity, a water film is formed on the ice sensor, which results in an increase in capacitance. Ice nucleation occurs, followed by the rapid formation of frost ice that decreases the capacitance suddenly. The capacitance is saturated. The developed ice sensor explains the ice growth providing information about the icing temperature in real time.

  5. Development of a capacitive ice sensor to measure ice growth in real time.

    Science.gov (United States)

    Zhi, Xiang; Cho, Hyo Chang; Wang, Bo; Ahn, Cheol Hee; Moon, Hyeong Soon; Go, Jeung Sang

    2015-03-19

    This paper presents the development of the capacitive sensor to measure the growth of ice on a fuel pipe surface in real time. The ice sensor consists of pairs of electrodes to detect the change in capacitance and a thermocouple temperature sensor to examine the ice formation situation. In addition, an environmental chamber was specially designed to control the humidity and temperature to simulate the ice formation conditions. From the humidity, a water film is formed on the ice sensor, which results in an increase in capacitance. Ice nucleation occurs, followed by the rapid formation of frost ice that decreases the capacitance suddenly. The capacitance is saturated. The developed ice sensor explains the ice growth providing information about the icing temperature in real time.

  6. 21 CFR 135.160 - Water ices.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Water ices. 135.160 Section 135.160 Food and Drugs... CONSUMPTION FROZEN DESSERTS Requirements for Specific Standardized Frozen Desserts § 135.160 Water ices. (a) Description. Water ices are the foods each of which is prepared from the same ingredients and in the same...

  7. CICE, The Los Alamos Sea Ice Model

    Energy Technology Data Exchange (ETDEWEB)

    2017-05-12

    The Los Alamos sea ice model (CICE) is the result of an effort to develop a computationally efficient sea ice component for a fully coupled atmosphere–land–ocean–ice global climate model. It was originally designed to be compatible with the Parallel Ocean Program (POP), an ocean circulation model developed at Los Alamos National Laboratory for use on massively parallel computers. CICE has several interacting components: a vertical thermodynamic model that computes local growth rates of snow and ice due to vertical conductive, radiative and turbulent fluxes, along with snowfall; an elastic-viscous-plastic model of ice dynamics, which predicts the velocity field of the ice pack based on a model of the material strength of the ice; an incremental remapping transport model that describes horizontal advection of the areal concentration, ice and snow volume and other state variables; and a ridging parameterization that transfers ice among thickness categories based on energetic balances and rates of strain. It also includes a biogeochemical model that describes evolution of the ice ecosystem. The CICE sea ice model is used for climate research as one component of complex global earth system models that include atmosphere, land, ocean and biogeochemistry components. It is also used for operational sea ice forecasting in the polar regions and in numerical weather prediction models.

  8. Anti-icing performance of superhydrophobic surfaces

    Science.gov (United States)

    Farhadi, S.; Farzaneh, M.; Kulinich, S. A.

    2011-05-01

    This article studies the anti-ice performance of several micro/nano-rough hydrophobic coatings with different surface chemistry and topography. The coatings were prepared by spin-coating or dip coating and used organosilane, fluoropolymer or silicone rubber as a top layer. Artificially created glaze ice, similar to the naturally accreted one, was deposited on the nanostructured surfaces by spraying supercooled water microdroplets (average size ˜80 μm) in a wind tunnel at subzero temperature (-10 °C). The ice adhesion strength was evaluated by spinning the samples in a centrifuge at constantly increasing speed until ice delamination occurred. The results show that the anti-icing properties of the tested materials deteriorate, as their surface asperities seem to be gradually broken during icing/de-icing cycles. Therefore, the durability of anti-icing properties appears to be an important point for further research. It is also shown that the anti-icing efficiency of the tested superhydrophobic surfaces is significantly lower in a humid atmosphere, as water condensation both on top and between surface asperities takes place, leading to high values of ice adhesion strength. This implies that superhydrophobic surfaces may not always be ice-phobic in the presence of humidity, which can limit their wide use as anti-icing materials.

  9. The Last Arctic Sea Ice Refuge

    Science.gov (United States)

    Pfirman, S. L.; Tremblay, B.; Newton, R.; Fowler, C.

    2010-12-01

    Summer sea ice may persist along the northern flank of Canada and Greenland for decades longer than the rest of the Arctic, raising the possibility of a naturally formed refugium for ice-associated species. Observations and models indicate that some ice in this region forms locally, while some is transported to the area by winds and ocean currents. Depending on future changes in melt patterns and sea ice transport rates, both the central Arctic and Siberian shelf seas may be sources of ice to the region. An international system of monitoring and management of the sea ice refuge, along with the ice source regions, has the potential to maintain viable habitat for ice-associated species, including polar bears, for decades into the future. Issues to consider in developing a strategy include: + the likely duration and extent of summer sea ice in this region based on observations, models and paleoenvironmental information + the extent and characteristics of the “ice shed” contributing sea ice to the refuge, including its dynamics, physical and biological characteristics as well as potential for contamination from local or long-range sources + likely assemblages of ice-associated species and their habitats + potential stressors such as transportation, tourism, resource extraction, contamination + policy, governance, and development issues including management strategies that could maintain the viability of the refuge.

  10. On the origin of the ice ages

    NARCIS (Netherlands)

    Oerlemans, J.

    1984-01-01

    Ice sheet dynamics provide a possible explanation for the 100 kyr power in climatic records. Some numerical experiments presented here show that even the transition from an essentially ice-free earth to a glacial can be produced by a northern hemisphere ice-sheet model, provided that a

  11. Balance of the West Antarctic Ice Sheet

    Science.gov (United States)

    2002-01-01

    For several decades, measurements of the West Antarctic Ice Sheet showed it to be retreating rapidly. But new data derived from satellite-borne radar sensors show the ice sheet to be growing. Changing Antarctic ice sheets remains an area of high scientific interest, particularly in light of recent global warming concerns. These new findings are significant because scientists estimate that sea level would rise 5-6 meters (16-20 feet) if the ice sheet collapsed into the sea. Do these new measurements signal the end of the ice sheet's 10,000-year retreat? Or, are these new satellite data simply much more accurate than the sparse ice core and surface measurements that produced the previous estimates? Another possibility is that the ice accumulation may simply indicate that the ice sheet naturally expands and retreats in regular cycles. Cryologists will grapple with these questions, and many others, as they examine the new data. The image above depicts the region of West Antarctica where scientists measured ice speed. The fast-moving central ice streams are shown in red. Slower tributaries feeding the ice streams are shown in blue. Green areas depict slow-moving, stable areas. Thick black lines depict the areas that collect snowfall to feed their respective ice streams. Reference: Ian Joughin and Slawek Tulaczyk Science Jan 18 2002: 476-480. Image courtesy RADARSAT Antarctic Mapping Project

  12. Tree recovery from ice storm injury

    Science.gov (United States)

    Kevin T. Smith

    2015-01-01

    Ice storms are part of nature, particularly in northeastern North America. The combination of air and surface temperatures, precipitation, and wind that result in damaging layers of ice is very specific, occurring infrequently at any given location. Across the region however, damaging ice is formed in fragmented areas every year. Occasionally as in December 2013 and...

  13. Arctic Ice Algae Distribution as Function of Large Scale Sea Ice Variables

    Science.gov (United States)

    Flores, H.; Castellani, G.; Lange, B. A.; David, C.; Katlein, C.; Peeken, I.; Nicolaus, M.; Losch, M. J.; van Franeker, J. A.

    2016-02-01

    One of the most pronounced impacts of climate change is the declining sea ice cover in the Arctic Ocean, which has implications for sea-ice associated ecosystems that are strongly dependent on carbon produced by ice algae. In order to understand these ecosystems there is a need to understand the interaction between the physical and biological components of sea ice. Our current understanding of Arctic sea ice algae is based on observations with limited spatial coverage. Therefore, we aim to model the spatial distribution of ice-algae on a basin scale. Current sea-ice-ocean models do allow the representation of sea-ice variability on a scale of few km. Large scale characteristics of sea ice such as age, deformation, and snow cover, do affect the small scale ice properties, such as salinity, porosity, light transmission. The latter directly affect the sea ice algae content, but to what extent is not yet well understood. In this work we present a new parameterization for the sea-ice algae content developed with the aim to model the algae content and variability based on large scale sea-ice characteristics. This parameterization is tuned with data collected during a ship-based campaign to the Eastern Central Arctic in summer 2012. Sea-ice thickness and under-ice spectral surveys over different sea ice regimes were conducted with a Surface and Under Ice Trawl (SUIT) and a Remote Operated Vehicle (ROV). In addition, ice cores were extracted at several sites for chl a analysis. We use a coupled sea-ice-ocean model with a spatial scale of 10 km and we show here the results for the temporal evolution of algae content in sea ice.

  14. Response of passive microwave sea ice concentration algorithms to thin ice

    DEFF Research Database (Denmark)

    Heygster, Georg; Huntemann, Marcus; Ivanova, Natalia

    2014-01-01

    The influence of sea ice thickness brightness temperatures and ice concentrations retrieved from passive microwave observations is quantified, using horizontally homogeneous sea ice thickness retrievals from ESA's SMOS sensor observations at high incidence angles. Brightness temperatures...... are influenced by thickness below 18 cm (89GHz) and 50 cm (1.4 GHz). Ice concentration retrievals reduced by ice thickness below 0.17 m and 0.33 m, with higher frequency algorithms being less influenced....

  15. Development of a Capacitive Ice Sensor to Measure Ice Growth in Real Time

    OpenAIRE

    Zhi, Xiang; Cho, Hyo Chang; Wang, Bo; Ahn, Cheol Hee; Moon, Hyeong Soon; Go, Jeung Sang

    2015-01-01

    This paper presents the development of the capacitive sensor to measure the growth of ice on a fuel pipe surface in real time. The ice sensor consists of pairs of electrodes to detect the change in capacitance and a thermocouple temperature sensor to examine the ice formation situation. In addition, an environmental chamber was specially designed to control the humidity and temperature to simulate the ice formation conditions. From the humidity, a water film is formed on the ice sensor, which...

  16. Women of Ice and Fire

    DEFF Research Database (Denmark)

    The anthology offers 11 original contributions about the women in GoT, the transmedial universe of George R.R. Martin's book series A Song of Ice and Fire, the HBO TV series Game of Thrones, computer games and online fan activities. The anthology examines the representation of women, and activity...

  17. Medical ice slurry production device

    Science.gov (United States)

    Kasza, Kenneth E [Palos Park, IL; Oras, John [Des Plaines, IL; Son, HyunJin [Naperville, IL

    2008-06-24

    The present invention relates to an apparatus for producing sterile ice slurries for medical cooling applications. The apparatus is capable of producing highly loaded slurries suitable for delivery to targeted internal organs of a patient, such as the brain, heart, lungs, stomach, kidneys, pancreas, and others, through medical size diameter tubing. The ice slurry production apparatus includes a slurry production reservoir adapted to contain a volume of a saline solution. A flexible membrane crystallization surface is provided within the slurry production reservoir. The crystallization surface is chilled to a temperature below a freezing point of the saline solution within the reservoir such that ice particles form on the crystallization surface. A deflector in the form of a reciprocating member is provided for periodically distorting the crystallization surface and dislodging the ice particles which form on the crystallization surface. Using reservoir mixing the slurry is conditioned for easy pumping directly out of the production reservoir via medical tubing or delivery through other means such as squeeze bottles, squeeze bags, hypodermic syringes, manual hand delivery, and the like.

  18. Women of Ice and Fire

    DEFF Research Database (Denmark)

    George R.R. Martin's acclaimed seven-book fantasy series A Song of Ice and Fire is unique for its strong and multi-faceted female protagonists, from teen queen Daenerys, scheming Queen Cersei, child avenger Arya, knight Brienne, Red Witch Melisandre, and many more. The Game of Thrones universe...

  19. Facility for testing ice drills

    Science.gov (United States)

    Nielson, Dennis L.; Delahunty, Chris; Goodge, John W.; Severinghaus, Jeffery P.

    2017-05-01

    The Rapid Access Ice Drill (RAID) is designed for subsurface scientific investigations in Antarctica. Its objectives are to drill rapidly through ice, to core samples of the transition zone and bedrock, and to leave behind a borehole observatory. These objectives required the engineering and fabrication of an entirely new drilling system that included a modified mining-style coring rig, a unique fluid circulation system, a rod skid, a power unit, and a workshop with areas for the storage of supplies and consumables. An important milestone in fabrication of the RAID was the construction of a North American Test (NAT) facility where we were able to test drilling and fluid processing functions in an environment that is as close as possible to that expected in Antarctica. Our criteria for site selection was that the area should be cold during the winter months, be located in an area of low heat flow, and be at relatively high elevation. We selected a site for the facility near Bear Lake, Utah, USA. The general design of the NAT well (NAT-1) started with a 27.3 cm (10.75 in.) outer casing cemented in a 152 m deep hole. Within that casing, we hung a 14 cm (5.5 in.) casing string, and, within that casing, a column of ice was formed. The annulus between the 14 and 27.3 cm casings provided the path for circulation of a refrigerant. After in-depth study, we chose to use liquid CO2 to cool the hole. In order to minimize the likelihood of the casing splitting due to the volume increase associated with freezing water, the hole was first cooled and then ice was formed in increments from the bottom upward. First, ice cubes were placed in the inner liner and then water was added. Using this method, a column of ice was incrementally prepared for drilling tests. The drilling tests successfully demonstrated the functioning of the RAID system. Reproducing such a facility for testing of other ice drilling systems could be advantageous to other research programs in the future.

  20. The Rapidly Shrinking Arctic Multiyear Ice Cover

    Science.gov (United States)

    Comiso, Josefino C.

    2010-01-01

    Among the most dramatic changes in the Arctic in recent years was the precipitous decline in the perennial ice cover. In 2007, the perennial ice area was 37% lower than climatological average and 28% lower than the previous low established in 2005. In 2008, the perennial ice recovered somewhat because of colder global temperatures but by only about 6% of average value. The trend in the ice area covered by perennial ice is now -12.5% per decade using data from 1979 to 2009 which compared to a previous report of -9% per decade derived from 1979 to 2000 data indicates an accelerated decline. To gain insight into the phenomenon, we studied the mUltiyear ice cover as detected by satellite sensor in winter. The multiyear ice as detected in winter represents ice that has generally survived two summers and therefore the thicker component of the perennial ice cover. Analysis of the thicker multiyear ice types indicates an even more rapid decline of 17% per decade. Such decline in the thick component of the Arctic ice cover that normally survives the summer means an even more vulnerable perennial ice cover. Much of the decline occurred in the western region of the Arctic Basin (Le., Chukchi and Beaufort Seas) where the open water area has been increasing by about 35% per decade. Such increase in low albedo ice free region causes the absorption of considerably more solar heat in the Arctic basin. This causes further decline in the ice cover in a process called ice-albedo feedback. A manifestation of such process is the observed trend in SST in the basin of about 0.5 + 0.2 degrees Celsius per decade as derived from satellite data

  1. Ice formation and growth shape bacterial community structure in Baltic Sea drift ice.

    Science.gov (United States)

    Eronen-Rasimus, Eeva; Lyra, Christina; Rintala, Janne-Markus; Jürgens, Klaus; Ikonen, Vilma; Kaartokallio, Hermanni

    2015-02-01

    Drift ice, open water and under-ice water bacterial communities covering several developmental stages from open water to thick ice were studied in the northern Baltic Sea. The bacterial communities were assessed with 16S rRNA gene terminal-restriction fragment length polymorphism and cloning, together with bacterial abundance and production measurements. In the early stages, open water and pancake ice were dominated by Alphaproteobacteria and Actinobacteria, which are common bacterial groups in Baltic Sea wintertime surface waters. The pancake ice bacterial communities were similar to the open-water communities, suggesting that the parent water determines the sea-ice bacterial community in the early stages of sea-ice formation. In consolidated young and thick ice, the bacterial communities were significantly different from water bacterial communities as well as from each other, indicating community development in Baltic Sea drift ice along with ice-type changes. The thick ice was dominated by typical sea-ice genera from classes Flavobacteria and Gammaproteobacteria, similar to those in polar sea-ice bacterial communities. Since the thick ice bacterial community was remarkably different from that of the parent seawater, results indicate that thick ice bacterial communities were recruited from the rarer members of the seawater bacterial community. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Modeling the formation and deposition of frazil ice beneath Filchner-Ronne Ice Shelf

    Science.gov (United States)

    Bombosch, Andreas; Jenkins, Adrian

    1995-04-01

    Large areas of the Filchner-Ronne Ice Shelf are underlain by layers of marine ice, which form when supercooled seawater circulating beneath the ice shelf freezes. The freezing process initially produces a suspension of disc-shaped frazil ice crystals, and these are subs quently deposited onto the ice shelf base in areas where the flow of water is slack enough. This has been modeled assuming that the freezing takes place within buoyant plumes of Ice Shelf Water ascending the ice shelf base from source regions near the grounding lines of the major inlet glaciers. The deposition of the majority of the suspended frazil ice is found to occur in spatially discrete bursts, where peak rates of accumulation at the ice shelf base exceed 1 m yr-1 of solid ice. There is a good correlation between the location of the zones of crystal deposition and the position of the upstream limits of the marine ice layers. The high rates of localized accumulation account for the rapid buildup observed in the layer thickness, which then gradually declines as the marine ice is carried downstream with the flow of the ice shelf. Model results also suggest an origin for the ice platelets observed at depth in the water column near the Filchner Ice Shelf.

  3. Inner Phases of Colloidal Hexagonal Spin Ice

    Science.gov (United States)

    Libál, A.; Nisoli, C.; Reichhardt, C. J. O.; Reichhardt, C.

    2018-01-01

    Using numerical simulations that mimic recent experiments on hexagonal colloidal ice, we show that colloidal hexagonal artificial spin ice exhibits an inner phase within its ice state that has not been observed previously. Under increasing colloid-colloid repulsion, the initially paramagnetic system crosses into a disordered ice regime, then forms a topologically charge ordered state with disordered colloids, and finally reaches a threefold degenerate, ordered ferromagnetic state. This is reminiscent of, yet distinct from, the inner phases of the magnetic kagome spin ice analog. The difference in the inner phases of the two systems is explained by their difference in energetics and frustration.

  4. NASA/FAA Tailplane Icing Program Overview

    Science.gov (United States)

    Ratvasky, Thomas P.; VanZante, Judith Foss; Riley, James T.

    1999-01-01

    The effects of tailplane icing were investigated in a four-year NASA/FAA Tailplane Icing, Program (TIP). This research program was developed to improve the understanding, of iced tailplane aeroperformance and aircraft aerodynamics, and to develop design and training aides to help reduce the number of incidents and accidents caused by tailplane icing. To do this, the TIP was constructed with elements that included icing, wind tunnel testing, dry-air aerodynamic wind tunnel testing, flight tests, and analytical code development. This paper provides an overview of the entire program demonstrating the interconnectivity of the program elements and reports on current accomplishments.

  5. Using the glacial geomorphology of palaeo-ice streams to understand mechanisms of ice sheet collapse

    Science.gov (United States)

    Stokes, Chris R.; Margold, Martin; Clark, Chris; Tarasov, Lev

    2017-04-01

    Processes which bring about ice sheet deglaciation are critical to our understanding of glacial-interglacial cycles and ice sheet sensitivity to climate change. The precise mechanisms of deglaciation are also relevant to our understanding of modern-day ice sheet stability and concerns over global sea level rise. Mass loss from ice sheets can be broadly partitioned between melting and a 'dynamic' component whereby rapidly-flowing ice streams/outlet glaciers transfer ice from the interior to the oceans. Surface and basal melting (e.g. of ice shelves) are closely linked to atmospheric and oceanic conditions, but the mechanisms that drive dynamic changes in ice stream discharge are more complex, which generates much larger uncertainties about their future contribution to ice sheet mass loss and sea level rise. A major problem is that observations of modern-day ice streams typically span just a few decades and, at the ice-sheet scale, it is unclear how the entire drainage network of ice streams evolves during deglaciation. A key question is whether ice streams might increase and sustain rates of mass loss over centuries or millennia, beyond those expected for a given ocean-climate forcing. To address this issue, numerous workers have sought to understand ice stream dynamics over longer time-scales using their glacial geomorphology in the palaeo-record. Indeed, our understanding of their geomorphology has grown rapidly in the last three decades, from almost complete ignorance to a detailed knowledge of their geomorphological products. Building on this body of work, this paper uses the glacial geomorphology of 117 ice streams in the North American Laurentide Ice Sheet to reconstruct their activity during its deglaciation ( 22,000 to 7,000 years ago). Ice stream activity was characterised by high variability in both time and space, with ice streams switching on and off in different locations. During deglaciation, we find that their overall number decreased, they occupied a

  6. There goes the sea ice: following Arctic sea ice parcels and their properties.

    Science.gov (United States)

    Tschudi, M. A.; Tooth, M.; Meier, W.; Stewart, S.

    2017-12-01

    Arctic sea ice distribution has changed considerably over the last couple of decades. Sea ice extent record minimums have been observed in recent years, the distribution of ice age now heavily favors younger ice, and sea ice is likely thinning. This new state of the Arctic sea ice cover has several impacts, including effects on marine life, feedback on the warming of the ocean and atmosphere, and on the future evolution of the ice pack. The shift in the state of the ice cover, from a pack dominated by older ice, to the current state of a pack with mostly young ice, impacts specific properties of the ice pack, and consequently the pack's response to the changing Arctic climate. For example, younger ice typically contains more numerous melt ponds during the melt season, resulting in a lower albedo. First-year ice is typically thinner and more fragile than multi-year ice, making it more susceptible to dynamic and thermodynamic forcing. To investigate the response of the ice pack to climate forcing during summertime melt, we have developed a database that tracks individual Arctic sea ice parcels along with associated properties as these parcels advect during the summer. Our database tracks parcels in the Beaufort Sea, from 1985 - present, along with variables such as ice surface temperature, albedo, ice concentration, and convergence. We are using this database to deduce how these thousands of tracked parcels fare during summer melt, i.e. what fraction of the parcels advect through the Beaufort, and what fraction melts out? The tracked variables describe the thermodynamic and dynamic forcing on these parcels during their journey. This database will also be made available to all interested investigators, after it is published in the near future. The attached image shows the ice surface temperature of all parcels (right) that advected through the Beaufort Sea region (left) in 2014.

  7. Initiation of secondary ice production in clouds

    Science.gov (United States)

    Sullivan, Sylvia C.; Hoose, Corinna; Kiselev, Alexei; Leisner, Thomas; Nenes, Athanasios

    2018-02-01

    Disparities between the measured concentrations of ice-nucleating particles (INPs) and in-cloud ice crystal number concentrations (ICNCs) have led to the hypothesis that mechanisms other than primary nucleation form ice in the atmosphere. Here, we model three of these secondary production mechanisms - rime splintering, frozen droplet shattering, and ice-ice collisional breakup - with a six-hydrometeor-class parcel model. We perform three sets of simulations to understand temporal evolution of ice hydrometeor number (Nice), thermodynamic limitations, and the impact of parametric uncertainty when secondary production is active. Output is assessed in terms of the number of primarily nucleated ice crystals that must exist before secondary production initiates (NINP(lim)) as well as the ICNC enhancement from secondary production and the timing of a 100-fold enhancement. Nice evolution can be understood in terms of collision-based nonlinearity and the phasedness of the process, i.e., whether it involves ice hydrometeors, liquid ones, or both. Ice-ice collisional breakup is the only process for which a meaningful NINP(lim) exists (0.002 up to 0.15 L-1). For droplet shattering and rime splintering, a warm enough cloud base temperature and modest updraft are the more important criteria for initiation. The low values of NINP(lim) here suggest that, under appropriate thermodynamic conditions for secondary ice production, perturbations in cloud concentration nuclei concentrations are more influential in mixed-phase partitioning than those in INP concentrations.

  8. Multi-decadal Arctic sea ice roughness.

    Science.gov (United States)

    Tsamados, M.; Stroeve, J.; Kharbouche, S.; Muller, J. P., , Prof; Nolin, A. W.; Petty, A.; Haas, C.; Girard-Ardhuin, F.; Landy, J.

    2017-12-01

    The transformation of Arctic sea ice from mainly perennial, multi-year ice to a seasonal, first-year ice is believed to have been accompanied by a reduction of the roughness of the ice cover surface. This smoothening effect has been shown to (i) modify the momentum and heat transfer between the atmosphere and ocean, (ii) to alter the ice thickness distribution which in turn controls the snow and melt pond repartition over the ice cover, and (iii) to bias airborne and satellite remote sensing measurements that depend on the scattering and reflective characteristics over the sea ice surface topography. We will review existing and novel remote sensing methodologies proposed to estimate sea ice roughness, ranging from airborne LIDAR measurement (ie Operation IceBridge), to backscatter coefficients from scatterometers (ASCAT, QUICKSCAT), to multi angle maging spectroradiometer (MISR), and to laser (Icesat) and radar altimeters (Envisat, Cryosat, Altika, Sentinel-3). We will show that by comparing and cross-calibrating these different products we can offer a consistent multi-mission, multi-decadal view of the declining sea ice roughness. Implications for sea ice physics, climate and remote sensing will also be discussed.

  9. Solar radiation interactions with seasonal sea ice

    Science.gov (United States)

    Ehn, Jens Kristian

    Presently, the Arctic Ocean is undergoing an escalating reduction in sea ice and a transition towards a seasonal sea ice environment. This warrants detailed investigations into improving our understanding of the seasonal evolution of sea ice and snow covers, and their representation in climate models. The interaction of solar radiation with sea ice is an important process influencing the energy balance and biological activity in polar seas, and consequently plays a key role in the earth's climate system. This thesis focuses on characterization of the optical properties---and the underlying physical properties that determine them---of seasonal sea ice during the fall freeze-up and the spring melt periods. Both periods display high spatial heterogeneity and rapid temporal changes in sea ice properties, and are therefore poorly understood. Field data were collected in Amundsen Gulf/Franklin Bay (FB), southern-eastern Beaufort Sea, in Oct.-Nov. 2003 and Apr. 2004 and in Button Bay (BB), western Hudson Bay, in Mar.-May 2005 to address (1) the temporal and spatial evolution of surface albedo and transmittance, (2) how radiative transfer in sea ice is controlled by its physical nature, and (3) the characteristics of the bottom ice algae community and its effect on the optical properties. The fall study showed the importance of surface features such as dry or slushy bare ice, frost flowers and snow cover in determining the surface albedo. Ice thickness was also important, however, mostly because surface features were associated with thickness. For example, nilas (brine skim layer on the surface, while surface conditions on thicker ice types were cold and dry enough to support a snow cover. In general, the surface albedo increased exponentially with an ice thickness increase, however, variability within ice thickness types were very large. It is apparent that a more complete treatment of brine movement towards the surface ice of the ice cover and the formation of surface

  10. ICESat: Ice, Cloud and Land Elevation Satellite

    Science.gov (United States)

    Zwally, Jay; Shuman, Christopher

    2002-01-01

    Ice exists in the natural environment in many forms. The Earth dynamic ice features shows that at high elevations and/or high latitudes,snow that falls to the ground can gradually build up tu form thick consolidated ice masses called glaciers. Glaciers flow downhill under the force of gravity and can extend into areas that are too warm to support year-round snow cover. The snow line, called the equilibrium line on a glacier or ice sheet, separates the ice areas that melt on the surface and become show free in summer (net ablation zone) from the ice area that remain snow covered during the entire year (net accumulation zone). Snow near the surface of a glacier that is gradually being compressed into solid ice is called firm.

  11. Evidence for radionuclide transport by sea ice

    International Nuclear Information System (INIS)

    Meese, D.A.; Tucker, W.B.; Gow, A.J.; Reimnitz, E.; Bischof, J.; Darby, D.

    1997-01-01

    Ice and ice-borne sediments were collected across the Arctic Basin during the Arctic Ocean Section, 1994 (AOS-94), a recent US/Canada trans-Arctic expedition. Sediments were analysed for 137 Cs, clay mineralogy and carbon. Concentrations of 137 Cs ranged from 5 to 73 Bq kg -1 in the ice-borne sediments. Concentrations of ice samples without sediment were all less than 1 Bq m -3 . The sediment sample with the highest 137 Cs concentration (73 Bq kg -1 ) was collected in the Beaufort Sea. This concentration was significantly higher than in bottom sediments collected in the same area, indicating an ice transport mechanism from an area with correspondingly higher concentrations. Recent results from the application of ice transport models and sediment analyses indicate that it is very likely that sediments are transported by ice, from the Siberian shelf areas to the Beaufort Sea

  12. Observed ices in the Solar System

    Science.gov (United States)

    Clark, Roger N.; Grundy, Will; Carlson, Robert R.; Noll, Keith; Gudipati, Murthy; Castillo-Rogez, Julie C.

    2013-01-01

    Ices have been detected and mapped on the Earth and all planets and/or their satellites further from the sun. Water ice is the most common frozen volatile observed and is also unambiguously detected or inferred in every planet and/or their moon(s) except Venus. Carbon dioxide is also extensively found in all systems beyond the Earth except Pluto although it sometimes appears to be trapped rather than as an ice on some objects. The largest deposits of carbon dioxide ice is on Mars. Sulfur dioxide ice is found in the Jupiter system. Nitrogen and methane ices are common beyond the Uranian system. Saturn’s moon Titan probably has the most complex active chemistry involving ices, with benzene (C6H6) and many tentative or inferred compounds including ices of Cyanoacetylene (HC3N), Toluene (C7H8), Cyanogen (C2N2), Acetonitrile (CH3CN), H2O, CO2, and NH3. Confirming compounds on Titan is hampered by its thick smoggy atmosphere. Ammonia was predicted on many icy moons but is notably absent among the definitively detected ices with the possible exception of Enceladus. Comets, storehouses of many compounds that could exist as ices in their nuclei, have only had small amounts of water ice definitively detected on their surfaces. Only one asteroid has had a direct detection of surface water ice, although its presence can be inferred in others. This chapter reviews some of the properties of ices that lead to their detection, and surveys the ices that have been observed on solid surfaces throughout the Solar System.

  13. EBSD in Antarctic and Greenland Ice

    Science.gov (United States)

    Weikusat, Ilka; Kuiper, Ernst-Jan; Pennock, Gill; Sepp, Kipfstuhl; Drury, Martyn

    2017-04-01

    Ice, particularly the extensive amounts found in the polar ice sheets, impacts directly on the global climate by changing the albedo and indirectly by supplying an enormous water reservoir that affects sea level change. The discharge of material into the oceans is partly controlled by the melt excess over snow accumulation, partly by the dynamic flow of ice. In addition to sliding over bedrock, an ice body deforms gravitationally under its own weight. In order to improve our description of this flow, ice microstructure studies are needed that elucidate the dominant deformation and recrystallization mechanisms involved. Deformation of hexagonal ice is highly anisotropic: ice is easily sheared in the basal plane and is about two orders of magnitude harder parallel to the c-axis. As dislocation creep is the dominant deformation mechanism in polar ice this strong anisotropy needs to be understood in terms of dislocation activity. The high anisotropy of the ice crystal is usually ascribed to a particular behaviour of dislocations in ice, namely the extension of dislocations into partials on the basal plane. Analysis of EBSD data can help our understanding of dislocation activity by characterizing subgrain boundary types thus providing a tool for comprehensive dislocation characterization in polar ice. Cryo-EBSD microstructure in combination with light microscopy measurements from ice core material from Antarctica (EPICA-DML deep ice core) and Greenland (NEEM deep ice core) are presented and interpreted regarding substructure identification and characterization. We examined one depth for each ice core (EDML: 656 m, NEEM: 719 m) to obtain the first comparison of slip system activity from the two ice sheets. The subgrain boundary to grain boundary threshold misorientation was taken to be 3-5° (Weikusat et al. 2011). EBSD analyses suggest that a large portion of edge dislocations with slip systems basal gliding on the basal plane were indeed involved in forming subgrain

  14. Arctic sea ice decline and ice export in the CMIP5 historical simulations

    Science.gov (United States)

    Langehaug, H. R.; Geyer, F.; Smedsrud, L. H.; Gao, Y.

    2013-11-01

    Arctic sea ice properties and Fram Strait ice export from six CMIP5 Global Climate and Earth System Models are evaluated and investigated for the period 1957-2005. Over the last decades most ensemble members simulate a decreasing September sea ice area and a slow, general thinning of the sea ice cover. While the different ensemble members both under- and overestimate the decline in observed September sea ice area, none of the members reproduce the observed thinning. This study is a first attempt to evaluate the Fram Strait ice area export in the CMIP5 models, and the role it has played for Arctic sea ice area and thickness. Five of the six models evaluated reproduce the seasonal cycle and the inter-annual variance of the ice area export in the Fram Strait reasonably well. The simulated southward export of sea ice in the Fram Strait constitutes a major fraction of the Arctic sea ice in these five models; 10-18% of the sea ice covered Arctic Basin is annually exported. For the same models the year-to-year variability in Fram Strait ice volume export carries 35% of the year-to-year variability in the Arctic Basin sea ice volume. We have found low but significant correlations on inter-annual timescales between the Fram Strait ice export, both in terms of area and volume, and the Arctic Basin sea ice thickness. All six models show that an increase in ice area export leads a decrease in the sea ice thickness. This inverse relationship also holds when considering the long-term trends; the larger the increase in Fram Strait ice area export, the larger the thinning of the Arctic Basin sea ice cover and the larger the loss in the September sea ice area. The different ensemble members show both negative and positive ice export trends. Focusing on the model with the largest number of ensemble members (10), we have been able to quantify the effect of the ice area export on the Arctic Basin sea ice for this particular model. For this model an increase of the ice area export

  15. Ice stratigraphy at the Pakitsoq ice margin, West Greenland, derived from gas records

    DEFF Research Database (Denmark)

    Schaefer, H.; Petrenko, V. V.; Brook, E. J.

    2009-01-01

    Horizontal ice-core sites, where ancient ice is exposed at the glacier surface, offer unique opportunities for paleo-studies of trace components requiring large sample volumes. Following previous work at the Pakitsoq ice margin in West Greenland, we use a combination of geochemical parameters...... measured in the ice matrix (delta O-18(ice)) and air occlusions (delta O-18(atm), delta N-15 of N-2 and methane concentration) to date ice layers from specific climatic intervals. The data presented here expand our understanding of the stratigraphy and three-dimensional structure of ice layers outcropping...... at Pakitsoq. Sections containing ice from every distinct climatic interval during Termination I, including Last Glacial Maximum, Bolling/Allerod, Younger Dryas and the early Holocene, are identified. In the early Holocene, we find evidence for climatic fluctuations similar to signals found in deep ice cores...

  16. Sea ice and pollution-modulated changes in Greenland ice core methanesulfonate and bromine

    Science.gov (United States)

    Maselli, Olivia J.; Chellman, Nathan J.; Grieman, Mackenzie; Layman, Lawrence; McConnell, Joseph R.; Pasteris, Daniel; Rhodes, Rachael H.; Saltzman, Eric; Sigl, Michael

    2017-01-01

    Reconstruction of past changes in Arctic sea ice extent may be critical for understanding its future evolution. Methanesulfonate (MSA) and bromine concentrations preserved in ice cores have both been proposed as indicators of past sea ice conditions. In this study, two ice cores from central and north-eastern Greenland were analysed at sub-annual resolution for MSA (CH3SO3H) and bromine, covering the time period 1750-2010. We examine correlations between ice core MSA and the HadISST1 ICE sea ice dataset and consult back trajectories to infer the likely source regions. A strong correlation between the low-frequency MSA and bromine records during pre-industrial times indicates that both chemical species are likely linked to processes occurring on or near sea ice in the same source regions. The positive correlation between ice core MSA and bromine persists until the mid-20th century, when the acidity of Greenland ice begins to increase markedly due to increased fossil fuel emissions. After that time, MSA levels decrease as a result of declining sea ice extent but bromine levels increase. We consider several possible explanations and ultimately suggest that increased acidity, specifically nitric acid, of snow on sea ice stimulates the release of reactive Br from sea ice, resulting in increased transport and deposition on the Greenland ice sheet.

  17. The future of ice sheets and sea ice: between reversible retreat and unstoppable loss.

    Science.gov (United States)

    Notz, Dirk

    2009-12-08

    We discuss the existence of cryospheric "tipping points" in the Earth's climate system. Such critical thresholds have been suggested to exist for the disappearance of Arctic sea ice and the retreat of ice sheets: Once these ice masses have shrunk below an anticipated critical extent, the ice-albedo feedback might lead to the irreversible and unstoppable loss of the remaining ice. We here give an overview of our current understanding of such threshold behavior. By using conceptual arguments, we review the recent findings that such a tipping point probably does not exist for the loss of Arctic summer sea ice. Hence, in a cooler climate, sea ice could recover rapidly from the loss it has experienced in recent years. In addition, we discuss why this recent rapid retreat of Arctic summer sea ice might largely be a consequence of a slow shift in ice-thickness distribution, which will lead to strongly increased year-to-year variability of the Arctic summer sea-ice extent. This variability will render seasonal forecasts of the Arctic summer sea-ice extent increasingly difficult. We also discuss why, in contrast to Arctic summer sea ice, a tipping point is more likely to exist for the loss of the Greenland ice sheet and the West Antarctic ice sheet.

  18. Evidence for middle Eocene Arctic sea ice from diatoms and ice-rafted debris.

    Science.gov (United States)

    Stickley, Catherine E; St John, Kristen; Koç, Nalân; Jordan, Richard W; Passchier, Sandra; Pearce, Richard B; Kearns, Lance E

    2009-07-16

    Oceanic sediments from long cores drilled on the Lomonosov ridge, in the central Arctic, contain ice-rafted debris (IRD) back to the middle Eocene epoch, prompting recent suggestions that ice appeared in the Arctic about 46 million years (Myr) ago. However, because IRD can be transported by icebergs (derived from land-based ice) and also by sea ice, IRD records are restricted to providing a history of general ice-rafting only. It is critical to differentiate sea ice from glacial (land-based) ice as climate feedback mechanisms vary and global impacts differ between these systems: sea ice directly affects ocean-atmosphere exchanges, whereas land-based ice affects sea level and consequently ocean acidity. An earlier report assumed that sea ice was prevalent in the middle Eocene Arctic on the basis of IRD, and although somewhat preliminary supportive evidence exists, these data are neither comprehensive nor quantified. Here we show the presence of middle Eocene Arctic sea ice from an extraordinary abundance of a group of sea-ice-dependent fossil diatoms (Synedropsis spp.). Analysis of quartz grain textural characteristics further supports sea ice as the dominant transporter of IRD at this time. Together with new information on cosmopolitan diatoms and existing IRD records, our data strongly suggest a two-phase establishment of sea ice: initial episodic formation in marginal shelf areas approximately 47.5 Myr ago, followed approximately 0.5 Myr later by the onset of seasonally paced sea-ice formation in offshore areas of the central Arctic. Our data establish a 2-Myr record of sea ice, documenting the transition from a warm, ice-free environment to one dominated by winter sea ice at the start of the middle Eocene climatic cooling phase.

  19. Hydrogen ICE Vehicle Testing Activities

    Energy Technology Data Exchange (ETDEWEB)

    J. Francfort; D. Karner

    2006-04-01

    The Advanced Vehicle Testing Activity teamed with Electric Transportation Applications and Arizona Public Service to develop and monitor the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant. The Pilot Plant provides 100% hydrogen, and hydrogen and compressed natural gas (H/CNG)-blended fuels for the evaluation of hydrogen and H/CNG internal combustion engine (ICE) vehicles in controlled and fleet testing environments. Since June 2002, twenty hydrogen and H/CNG vehicles have accumulated 300,000 test miles and 5,700 fueling events. The AVTA is part of the Department of Energy’s FreedomCAR and Vehicle Technologies Program. These testing activities are managed by the Idaho National Laboratory. This paper discusses the Pilot Plant design and monitoring, and hydrogen ICE vehicle testing methods and results.

  20. Grain boundary melting in ice

    OpenAIRE

    Thomson, E. S.; Hansen-Goos, Hendrik; Wilen, L. A.; Wettlaufer, J. S.

    2012-01-01

    We describe an optical scattering study of grain boundary premelting in water ice. Ubiquitous long ranged attractive polarization forces act to suppress grain boundary melting whereas repulsive forces originating in screened Coulomb interactions and classical colligative effects enhance it. The liquid enhancing effects can be manipulated by adding dopant ions to the system. For all measured grain boundaries this leads to increasing premelted film thickness with increasing electrolyte concentr...

  1. Population structure of ice-breeding seals.

    Science.gov (United States)

    Davis, Corey S; Stirling, Ian; Strobeck, Curtis; Coltman, David W

    2008-07-01

    The development of population genetic structure in ice-breeding seal species is likely to be shaped by a combination of breeding habitat and life-history characteristics. Species that return to breed on predictable fast-ice locations are more likely to exhibit natal fidelity than pack-ice-breeding species, which in turn facilitates the development of genetic differentiation between subpopulations. Other aspects of life history such as geographically distinct vocalizations, female gregariousness, and the potential for polygynous breeding may also facilitate population structure. Based on these factors, we predicted that fast-ice-breeding seal species (the Weddell and ringed seal) would show elevated genetic differentiation compared to pack-ice-breeding species (the leopard, Ross, crabeater and bearded seals). We tested this prediction using microsatellite analysis to examine population structure of these six ice-breeding species. Our results did not support this prediction. While none of the Antarctic pack-ice species showed statistically significant population structure, the bearded seal of the Arctic pack ice showed strong differentiation between subpopulations. Again in contrast, the fast-ice-breeding Weddell seal of the Antarctic showed clear evidence for genetic differentiation while the ringed seal, breeding in similar habitat in the Arctic, did not. These results suggest that the development of population structure in ice-breeding phocid seals is a more complex outcome of the interplay of phylogenetic and ecological factors than can be predicted on the basis of breeding substrate and life-history characteristics.

  2. Trend analysis of Arctic sea ice extent

    Science.gov (United States)

    Silva, M. E.; Barbosa, S. M.; Antunes, Luís; Rocha, Conceição

    2009-04-01

    The extent of Arctic sea ice is a fundamental parameter of Arctic climate variability. In the context of climate change, the area covered by ice in the Arctic is a particularly useful indicator of recent changes in the Arctic environment. Climate models are in near universal agreement that Arctic sea ice extent will decline through the 21st century as a consequence of global warming and many studies predict a ice free Arctic as soon as 2012. Time series of satellite passive microwave observations allow to assess the temporal changes in the extent of Arctic sea ice. Much of the analysis of the ice extent time series, as in most climate studies from observational data, have been focussed on the computation of deterministic linear trends by ordinary least squares. However, many different processes, including deterministic, unit root and long-range dependent processes can engender trend like features in a time series. Several parametric tests have been developed, mainly in econometrics, to discriminate between stationarity (no trend), deterministic trend and stochastic trends. Here, these tests are applied in the trend analysis of the sea ice extent time series available at National Snow and Ice Data Center. The parametric stationary tests, Augmented Dickey-Fuller (ADF), Phillips-Perron (PP) and the KPSS, do not support an overall deterministic trend in the time series of Arctic sea ice extent. Therefore, alternative parametrizations such as long-range dependence should be considered for characterising long-term Arctic sea ice variability.

  3. The role of ice stream dynamics in deglaciation

    Science.gov (United States)

    Robel, Alexander A.; Tziperman, Eli

    2016-08-01

    Since the mid-Pleistocene transition, deglaciation has occurred only after ice sheets have grown large while experiencing several precession and obliquity cycles, indicating that large ice sheets are more sensitive to Milankovitch forcing than small ice sheets are. Observations and model simulations suggest that the development of ice streams in the Laurentide Ice Sheet played an as yet unknown role in deglaciations. In this study, we propose a mechanism by which ice streams may enhance deglaciation and render large ice sheets more sensitive to Milankovitch forcing. We use an idealized configuration of the Parallel Ice Sheet Model that permits the formation of ice streams. When the ice sheet is large and ice streams are sufficiently developed, an upward shift in equilibrium line altitude, commensurate with Milankovitch forcing, results in rapid deglaciation, while the same shift applied to an ice sheet without fully formed ice streams results in continued ice sheet growth or slower deglaciation. Rapid deglaciation in ice sheets with significant streaming behavior is caused by ice stream acceleration and the attendant enhancement of calving and surface melting at low elevations. Ice stream acceleration is ultimately the result of steepening of the ice surface and increased driving stresses in ice stream onset zones, which come about due to the dependence of surface mass balance on elevation. These ice sheet simulations match the broad features of geomorphological observations and add ice stream dynamics that are missing from previous model studies of deglaciation.

  4. ICE-DIP kicks off

    CERN Multimedia

    CERN Bulletin

    2013-01-01

    Last month, Marie Curie Actions* added a new member to its ranks: ICE-DIP (the Intel-CERN European Doctorate Industrial Program). The programme held its kick-off meeting on 18-19 February in Leixlip near Dublin, Ireland, at Intel’s premises.   Building on CERN’s long-standing relationship with Intel in the CERN openlab project, ICE-DIP brings together CERN and industrial partners, Intel and Xena Networks, to train five Early Stage ICT Researchers. These researchers will be funded by the European Commission and granted a CERN Fellow contract while enrolled in the doctoral programmes at partner universities Dublin City University and National University of Ireland Maynooth. The researchers will go on extended secondments to Intel Labs Europe locations across Europe during their three-year training programme. The primary focus of the ICE-DIP researchers will be the development of techniques for acquiring and processing data that are relevant for the trigger a...

  5. Ice Nuclei Production in Volcanic Clouds

    Science.gov (United States)

    Few, A. A.

    2012-12-01

    The paper [Durant et al., 2008] includes a review of research on ice nucleation in explosive volcanic clouds in addition to reporting their own research on laboratory measurements focused on single-particle ice nucleation. Their research as well as the research they reviewed were concerned with the freezing of supercooled water drops (250 to 260 K) by volcanic ash particles acting as ice freezing nuclei. Among their conclusions are: Fine volcanic ash particles are very efficient ice freezing nuclei. Volcanic clouds likely contain fine ash concentrations 104 to 105 times greater than found in meteorological clouds. This overabundance of ice nuclei will produce a cloud with many small ice crystals that will not grow larger as they do in meteorological clouds because the cloud water content is widely distributed among the numerous small ice crystals. The small ice crystals have a small fall velocity, thus volcanic clouds are very stable. The small ice crystals are easily lofted into the stratosphere transporting water and adsorbed trace gasses. In this paper we examine the mechanism for the production of the small ice nuclei and develop a simple model for calculating the size of the ice nuclei based upon the distribution of magma around imbedded bubbles. We also have acquired a volcanic bomb that exhibits bubble remnants on its entire surface. The naturally occurring fragments from the volcanic bomb reveal a size distribution consistent with that predicted by the simple model. Durant, A. J., R. A. Shaw, W. I. Rose, Y. Mi, and G. G. J. Ernst (2008), Ice nucleation and overseeding of ice in volcanic clouds, J. Geophys. Res., 113, D09206, doi:10.1029/2007JD009064.

  6. Early Student Support to Investigate the Role of Sea Ice-Albedo Feedback in Sea Ice Predictions

    Science.gov (United States)

    2014-09-30

    Ice - Albedo Feedback in Sea Ice Predictions Cecilia M. Bitz Atmospheric Sciences MS351640 University of Washington Seattle, WA 98196-1640 phone...TERM GOALS The overarching goals of this project are to understand the role of sea ice - albedo feedback on sea ice predictability, to improve how...sea- ice albedo is modeled and how sea ice predictions are initialized, and then to evaluate how these improvements influence inherent sea ice

  7. On the Predictability of Sea Ice

    Science.gov (United States)

    Blanchard-Wrigglesworth, Edward

    We investigate the persistence and predictability of sea ice in numerical models and observations. We first use the 3rd generation Community Climate System Model (CCSM3) General Circulation Model (GCM) to investigate the inherent persistence of sea-ice area and thickness. We find that sea-ice area anomalies have a seasonal decay timescale, exhibiting an initial decorrelation similar to a first order auto-regressive (AR1, or red noise) process. Beyond this initial loss of memory, there is a re-emergence of memory at certain times of the year. There are two distinct modes of re-emergence in the model, one driven by the seasonal coupling of area and thickness anomalies in the summer, the other by the persistence of upper ocean temperature anomalies that originate from ice anomalies in the melt season and then influence ice anomalies in the growth season. Comparison with satellite observations where available indicate these processes appear in nature. We then use the 4th generation CCSM (CCSM4) to investigate the partition of Arctic sea-ice predictability into its initial-value and boundary forced components under present day forcing conditions. We find that initial-value predictability lasts for 1-2 years for sea-ice area, and 3-4 years for sea-ice volume. Forced predictability arises after just 4-5 years for both area and volume. Initial-value predictability of sea-ice area during the summer hinges on the coupling between thickness and area anomalies during that season. We find that the loss of initial-value predictability with time is not uniform --- there is a rapid loss of predictability of sea-ice volume during the late spring early summer associated with snow melt and albedo feedbacks. At the same time, loss of predictability is not uniform across different regions. Given the usefulness of ice thickness as a predictor of summer sea-ice area, we obtain a hindcast of September sea-ice area initializing the GCM on May 1with an estimate of observed sea-ice thickness

  8. Ice matters. Arctic and Antarctic under-ice communities linking sea ice with the pelagic food web

    OpenAIRE

    Flores, Hauke; van Franeker, Jan Andries; Lange, Benjamin; Siegel, Volker; Kruse, Svenja; Hunt, Brian; Pakhomov, E. A.

    2013-01-01

    In both Polar Regions, sea ice environments are undergoing rapid environmental change. Because sea ice constitutes an important habitat for numerous species, as well as an important carbon source during critical periods of the year, these changes impact significantly on ecosystem functioning, biodiversity, species distribution and population sizes, including commercially exploited fish stocks. Species dwelling at the ice-water interface (e.g. Antarctic krill and Arctic cod) play a key role in...

  9. Off-Ice Anaerobic Power Does Not Predict On-Ice Repeated Shift Performance in Hockey.

    Science.gov (United States)

    Peterson, Ben J; Fitzgerald, John S; Dietz, Calvin C; Ziegler, Kevin S; Baker, Sarah E; Snyder, Eric M

    2016-09-01

    Peterson, BJ, Fitzgerald, JS, Dietz, CC, Ziegler, KS, Baker, SE, and Snyder, EM. Off-ice anaerobic power does not predict on-ice repeated shift performance in hockey. J Strength Cond Res 30(9): 2375-2381, 2016-Anaerobic power is a significant predictor of acceleration and top speed in team sport athletes. Historically, these findings have been applied to ice hockey although recent research has brought their validity for this sport into question. As ice hockey emphasizes the ability to repeatedly produce power, single bout anaerobic power tests should be examined to determine their ability to predict on-ice performance. We tested whether conventional off-ice anaerobic power tests could predict on-ice acceleration, top speed, and repeated shift performance. Forty-five hockey players, aged 18-24 years, completed anthropometric, off-ice, and on-ice tests. Anthropometric and off-ice testing included height, weight, body composition, vertical jump, and Wingate tests. On-ice testing consisted of acceleration, top speed, and repeated shift fatigue tests. Vertical jump (VJ) (r = -0.42; r = -0.58), Wingate relative peak power (WRPP) (r = -0.32; r = -0.43), and relative mean power (WRMP) (r = -0.34; r = -0.48) were significantly correlated (p ≤ 0.05) to on-ice acceleration and top speed, respectively. Conversely, none of the off-ice tests correlated with on-ice repeated shift performance, as measured by first gate, second gate, or total course fatigue; VJ (r = 0.06; r = 0.13; r = 0.09), WRPP (r = 0.06; r = 0.14; r = 0.10), or WRMP (r = -0.10; r = -0.01; r = -0.01). Although conventional off-ice anaerobic power tests predict single bout on-ice acceleration and top speed, they neither predict the repeated shift ability of the player, nor are good markers for performance in ice hockey.

  10. Caterpillar-like ice motion in the ablation zone of the Greenland ice sheet

    Science.gov (United States)

    Ryser, C.; Lüthi, M. P.; Andrews, L. C.; Catania, G. A.; Funk, M.; Hawley, R.; Hoffman, M.; Neumann, T. A.

    2014-10-01

    Current understanding of ice dynamics predicts that increasing availability and variability of meltwater will have an impact on basal motion and therefore on the evolution and future behavior of the Greenland ice sheet. We present measurements of ice deformation, subglacial water pressure, and surface velocity that show periodic and episodic variations on several time scales (seasonal, multiday, and diurnal). These variations, observed with GPS and sensors at different depths throughout the ice column, are not synchronous but show delayed responses of ice deformation with increasing depth and basal water pressure in antiphase with surface velocity. With the help of a Full-Stokes ice flow model, these observations are explained as ice motion in a caterpillar-like fashion. Caused by patches of different basal slipperiness, horizontal stress transfer through the stiff central part of the ice body leads to spatially varying surface velocities and ice deformation patterns. Variation of this basal slipperiness induces characteristic patterns of ice deformation variability that explain the observed behavior. Ice flow in the ablation zone of the Greenland ice sheet is therefore controlled by activation of basal patches by varying slipperiness in the course of a melt season, leading to caterpillar-like ice motion superposed on the classical shear deformation.

  11. CO2 (dry ice) cleaning system

    Science.gov (United States)

    Barnett, Donald M.

    1995-01-01

    Tomco Equipment Company has participated in the dry ice (solid carbon dioxide, CO2) cleaning industry for over ten years as a pioneer in the manufacturer of high density, dry ice cleaning pellet production equipment. For over four years Tomco high density pelletizers have been available to the dry ice cleaning industry. Approximately one year ago Tomco introduced the DI-250, a new dry ice blast unit making Tomco a single source supplier for sublimable media, particle blast, cleaning systems. This new blast unit is an all pneumatic, single discharge hose device. It meters the insertion of 1/8 inch diameter (or smaller), high density, dry ice pellets into a high pressure, propellant gas stream. The dry ice and propellant streams are controlled and mixed from the blast cabinet. From there the mixture is transported to the nozzle where the pellets are accelerated to an appropriate blasting velocity. When directed to impact upon a target area, these dry ice pellets have sufficient energy to effectively remove most surface coatings through dry, abrasive contact. The meta-stable, dry ice pellets used for CO2 cleaning, while labeled 'high density,' are less dense than alternate, abrasive, particle blast media. In addition, after contacting the target surface, they return to their equilibrium condition: a superheated gas state. Most currently used grit blasting media are silicon dioxide based, which possess a sharp tetrahedral molecular structure. Silicon dioxide crystal structures will always produce smaller sharp-edged replicas of the original crystal upon fracture. Larger, softer dry ice pellets do not share the same sharp-edged crystalline structures as their non-sublimable counterparts when broken. In fact, upon contact with the target surface, dry ice pellets will plastically deform and break apart. As such, dry ice cleaning is less harmful to sensitive substrates, workers and the environment than chemical or abrasive cleaning systems. Dry ice cleaning system

  12. Duality of Ross Ice Shelf systems: crustal boundary, ice sheet processes and ocean circulation from ROSETTA-Ice surveys

    Science.gov (United States)

    Tinto, K. J.; Siddoway, C. S.; Padman, L.; Fricker, H. A.; Das, I.; Porter, D. F.; Springer, S. R.; Siegfried, M. R.; Caratori Tontini, F.; Bell, R. E.

    2017-12-01

    Bathymetry beneath Antarctic ice shelves controls sub-ice-shelf ocean circulation and has a major influence on the stability and dynamics of the ice sheets. Beneath the Ross Ice Shelf, the sea-floor bathymetry is a product of both tectonics and glacial processes, and is influenced by the processes it controls. New aerogeophysical surveys have revealed a fundamental crustal boundary bisecting the Ross Ice Shelf and imparting a duality to the Ross Ice Shelf systems, encompassing bathymetry, ocean circulation and ice flow history. The ROSETTA-Ice surveys were designed to increase the resolution of Ross Ice Shelf mapping from the 55 km RIGGS survey of the 1970s to a 10 km survey grid, flown over three years from New York Air National Guard LC130s. Radar, LiDAR, gravity and magnetic instruments provide a top to bottom profile of the ice shelf and the underlying seafloor, with 20 km resolution achieved in the first two survey seasons (2015 and 2016). ALAMO ocean-profiling floats deployed in the 2016 season are measuring the temperature and salinity of water entering and exiting the sub-ice water cavity. A significant east-west contrast in the character of the magnetic and gravity fields reveals that the lithospheric boundary between East and West Antarctica exists not at the base of the Transantarctic Mountains (TAM), as previously thought, but 300 km further east. The newly-identified boundary spatially coincides with the southward extension of the Central High, a rib of shallow basement identified in the Ross Sea. The East Antarctic side is characterized by lower amplitude magnetic anomalies and denser TAM-type lithosphere compared to the West Antarctic side. The crustal structure imparts a fundamental duality on the overlying ice and ocean, with deeper bathymetry and thinner ice on the East Antarctic side creating a larger sub-ice cavity for ocean circulation. The West Antarctic side has a shallower seabed, more restricted ocean access and a more complex history of

  13. Understanding Ice Shelf Basal Melting Using Convergent ICEPOD Data Sets: ROSETTA-Ice Study of Ross Ice Shelf

    Science.gov (United States)

    Bell, R. E.; Frearson, N.; Tinto, K. J.; Das, I.; Fricker, H. A.; Siddoway, C. S.; Padman, L.

    2017-12-01

    The future stability of the ice shelves surrounding Antarctica will be susceptible to increases in both surface and basal melt as the atmosphere and ocean warm. The ROSETTA-Ice program is targeted at using the ICEPOD airborne technology to produce new constraints on Ross Ice Shelf, the underlying ocean, bathymetry, and geologic setting, using radar sounding, gravimetry and laser altimetry. This convergent approach to studying the ice-shelf and basal processes enables us to develop an understanding of the fundamental controls on ice-shelf evolution. This work leverages the stratigraphy of the ice shelf, which is detected as individual reflectors by the shallow-ice radar and is often associated with surface scour, form close to the grounding line or pinning points on the ice shelf. Surface accumulation on the ice shelf buries these reflectors as the ice flows towards the calving front. This distinctive stratigraphy can be traced across the ice shelf for the major East Antarctic outlet glaciers and West Antarctic ice streams. Changes in the ice thickness below these reflectors are a result of strain and basal melting and freezing. Correcting the estimated thickness changes for strain using RIGGS strain measurements, we can develop decadal-resolution flowline distributions of basal melt. Close to East Antarctica elevated melt-rates (>1 m/yr) are found 60-100 km from the calving front. On the West Antarctic side high melt rates primarily develop within 10 km of the calving front. The East Antarctic side of Ross Ice Shelf is dominated by melt driven by saline water masses that develop in Ross Sea polynyas, while the melting on the West Antarctic side next to Hayes Bank is associated with modified Continental Deep Water transported along the continental shelf. The two sides of Ross Ice Shelf experience differing basal melt in part due to the duality in the underlying geologic structure: the East Antarctic side consists of relatively dense crust, with low amplitude

  14. A simulated Antarctic fast ice ecosystem

    Science.gov (United States)

    Arrigo, Kevin R.; Kremer, James N.; Sullivan, Cornelius W.

    1993-01-01

    A 2D numerical ecosystem model of Antarctic land fast ice is developed to elucidate the primary production with the Antarctic sea ice zone. The physical component employs atmospheric data to simulate congelation ice growth, initial brine entrapment, desalination, and nutrient flux. The biological component is based on the concept of a maximum temperature-dependent algal growth rate which is reduced by limitations imposed from insufficient light or nutrients, as well as suboptimal salinity. Preliminary simulations indicate that, during a bloom, microalgae are able to maintain their vertical position relative to the lower congelation ice margin and are not incorporated into the crystal matrix as the ice sheet thickens. It is inferred that land fast sea ice contains numerous microhabitats that are functionally distinct based upon the unique set of processes that control microalgal growth and accumulation within each.

  15. Recent State of Arctic Sea Ice

    Science.gov (United States)

    Nghiem, S. V.; Rigor, I. G.; Clemente-Colón, P.; Perovich, D. K.; Richter-Menge, J. A.; Chao, Y.; Neumann, G.; Ortmeyer, M.

    2008-12-01

    We present the recent state of Arctic sea ice including observations from 2008 in a context of a multi-decadal perspective. A new record has been set in the reduction of Arctic perennial sea ice extent this winter. As of 1 March 2008, the extent of perennial sea ice was reduced by one million km2 compared to that at the same time last year as observed by the NASA SeaWinds scatterometer on the QuikSCAT satellite (QSCAT). This decrease of perennial ice continues the precipitous declining trend observed in this decade. Furthermore, the perennial sea ice pattern change was deduced by buoy-based estimates with 50 years of data from drifting buoys and measurement camps to track sea ice movement around the Arctic Ocean. The combination of the satellite and surface data records confirms that the reduction of winter perennial ice extent broke the record in 2008 compared to data over the last half century. In the winter, the loss of perennial ice extent was driven by winds that compressed the ice and transported it out of the Fram Strait and Nares Strait to warmer ocean waters at lower latitudes, where the ice melted very effectively. Another historical fact is that the boundary of perennial sea ice already crossed the North Pole (NP) in February 2008, leaving the area around the NP occupied by seasonal sea ice. This is the first time, not only from the satellite data record but also in the history of sea ice charting at the National Ice Center since the 1970's, that observations indicate the seasonal ice migration into the NP area so early in winter. In the Bering Sea by 12 March 2008, the sea ice edge reached to an extent that coincided with the continental shelf break, indicating bathymetric effects on the distribution of water masses along the Aleutian North Slope, Bering Slope, Anadyr, and Kamchatka Currents that governed the pattern of sea ice formation in this region. Moreover, QSCAT observations showed that, in the 2008 winter, seasonal ice occupied the Northern Sea

  16. MODIS Snow and Sea Ice Products

    Science.gov (United States)

    Hall, Dorothy K.; Riggs, George A.; Salomonson, Vincent V.

    2004-01-01

    In this chapter, we describe the suite of Earth Observing System (EOS) Moderate-Resolution Imaging Spectroradiometer (MODIS) Terra and Aqua snow and sea ice products. Global, daily products, developed at Goddard Space Flight Center, are archived and distributed through the National Snow and Ice Data Center at various resolutions and on different grids useful for different communities Snow products include binary snow cover, snow albedo, and in the near future, fraction of snow in a 5OO-m pixel. Sea ice products include ice extent determined with two different algorithms, and sea ice surface temperature. The algorithms used to develop these products are described. Both the snow and sea ice products, available since February 24,2000, are useful for modelers. Validation of the products is also discussed.

  17. Seismic explosion sources on an ice cap

    DEFF Research Database (Denmark)

    Shulgin, Alexey; Thybo, Hans

    2015-01-01

    Controlled source seismic investigation of crustal structure below ice covers is an emerging technique. We have recently conducted an explosive refraction/wide-angle reflection seismic experiment on the ice cap in east-central Greenland. The data-quality is high for all shot points and a full...... as a strong ice wave. The ice cap leads to low transmission of energy into the crust such that charges need be larger than in conventional onshore experiments to obtain reliable seismic signals. The strong reflection coefficient at the base of the ice generates strong multiples which may mask for secondary...... phases. This effect may be crucial for acquisition of reflection seismic profiles on ice caps. Our experience shows that it is essential to use optimum depth for the charges and to seal the boreholes carefully....

  18. IceProd 2 Usage Experience

    Science.gov (United States)

    Delventhal, D.; Schultz, D.; Diaz Velez, J. C.

    2017-10-01

    IceProd is a data processing and management framework developed by the IceCube Neutrino Observatory for processing of Monte Carlo simulations, detector data, and data driven analysis. It runs as a separate layer on top of grid and batch systems. This is accomplished by a set of daemons which process job workflow, maintaining configuration and status information on the job before, during, and after processing. IceProd can also manage complex workflow DAGs across distributed computing grids in order to optimize usage of resources. IceProd has recently been rewritten to increase its scaling capabilities, handle user analysis workflows together with simulation production, and facilitate the integration with 3rd party scheduling tools. IceProd 2, the second generation of IceProd, has been running in production for several months now. We share our experience setting up the system and things we’ve learned along the way.

  19. Improving Arctic sea ice edge forecasts by assimilating high horizontal resolution sea ice concentration data into the US Navy's ice forecast systems

    Science.gov (United States)

    Posey, P. G.; Metzger, E. J.; Wallcraft, A. J.; Hebert, D. A.; Allard, R. A.; Smedstad, O. M.; Phelps, M. W.; Fetterer, F.; Stewart, J. S.; Meier, W. N.; Helfrich, S. R.

    2015-08-01

    This study presents the improvement in ice edge error within the US Navy's operational sea ice forecast systems gained by assimilating high horizontal resolution satellite-derived ice concentration products. Since the late 1980's, the ice forecast systems have assimilated near real-time sea ice concentration derived from the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSMI and then SSMIS). The resolution of the satellite-derived product was approximately the same as the previous operational ice forecast system (25 km). As the sea ice forecast model resolution increased over time, the need for higher horizontal resolution observational data grew. In 2013, a new Navy sea ice forecast system (Arctic Cap Nowcast/Forecast System - ACNFS) went into operations with a horizontal resolution of ~ 3.5 km at the North Pole. A method of blending ice concentration observations from the Advanced Microwave Scanning Radiometer (AMSR2) along with a sea ice mask produced by the National Ice Center (NIC) has been developed, resulting in an ice concentration product with very high spatial resolution. In this study, ACNFS was initialized with this newly developed high resolution blended ice concentration product. The daily ice edge locations from model hindcast simulations were compared against independent observed ice edge locations. ACNFS initialized using the high resolution blended ice concentration data product decreased predicted ice edge location error compared to the operational system that only assimilated SSMIS data. A second evaluation assimilating the new blended sea ice concentration product into the pre-operational Navy Global Ocean Forecast System 3.1 also showed a substantial improvement in ice edge location over a system using the SSMIS sea ice concentration product alone. This paper describes the technique used to create the blended sea ice concentration product and the significant improvements in ice edge forecasting in both of the

  20. Design of an airborne P-band ice sounding radar

    DEFF Research Database (Denmark)

    Dall, Jørgen; Skou, Niels; Kusk, Anders

    2006-01-01

    is to test new ice sounding techniques, e.g. polarimetry, synthetic aperture processing, and coherent clutter suppression. A system analysis involving ice scattering models confirms that it is feasible to detect the bedrock through 4 km of ice and to detect deep ice layers. The ice sounder design features...

  1. Ice Motion and Topography Near Margin Areas of Kamb Ice Stream, Antarctica, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes ice motion and topography measurements that were taken by measuring movement and altitude of poles set in the West Antarctic Ice Shelf. The...

  2. National Ice Center Arctic Sea Ice Charts and Climatologies in Gridded Format

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. National Ice Center (NIC) is an inter-agency sea ice analysis and forecasting center comprised of the Department of Commerce/NOAA, the Department of...

  3. Cook Inlet and Kenai Peninsula, Alaska ESI: ICE (Ice Extent Lines)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains locations of ice extent in Cook Inlet, Alaska. Vector lines in the data set represent 50 percent ice coverage. Location-specific type and...

  4. Multiple Isotope Analysis of Sulfate in the West Antarctic Ice Sheet Divide Ice Core, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains measurements of multiple sulfur and oxygen isotopes from sulfates, from an ice core drilled at the West Antarctic Ice Sheet (WAIS) Divide site...

  5. IceBridge Radar L3 Tomographic Ice Thickness V001

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains Level-3 tomographic ice thickness measurements derived from data captured by the Center for Remote Sensing of Ice Sheets (CReSIS) Multichannel...

  6. Arctic sea ice decline contributes to thinning lake ice trend in northern Alaska

    Science.gov (United States)

    Alexeev, Vladimir; Arp, Christopher D.; Jones, Benjamin M.; Cai, Lei

    2016-01-01

    Field measurements, satellite observations, and models document a thinning trend in seasonal Arctic lake ice growth, causing a shift from bedfast to floating ice conditions. September sea ice concentrations in the Arctic Ocean since 1991 correlate well (r = +0.69,p Research and Forecasting model output produced a 7% decrease in lake ice growth when 2007/08 sea ice was imposed on 1991/92 climatology and a 9% increase in lake ice growth for the opposing experiment. Here, we clearly link early winter 'ocean-effect' snowfall and warming to reduced lake ice growth. Future reductions in sea ice extent will alter hydrological, biogeochemical, and habitat functioning of Arctic lakes and cause sub-lake permafrost thaw.

  7. National Ice Center Arctic Sea Ice Charts and Climatologies in Gridded Format, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — The U.S. National Ice Center (NIC) is an inter-agency sea ice analysis and forecasting center comprised of the Department of Commerce/NOAA, the Department of...

  8. Ice Draft and Ice Velocity Data in the Beaufort Sea, 1990-2003, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides measurement of sea ice draft (m) and the movement of sea ice (cm/s) over the continental shelf of the Eastern Beaufort Sea. The data set spans...

  9. The ecophysiology of under-ice fauna

    OpenAIRE

    Aarset, Arne V.

    1991-01-01

    During exposure to low salinity, the under-ice amphipods Gammarus wilkitzkii and Onisimus glacialis appeared as euryhaline osmoregulators, displaying regulation of haemolymph concentrations of sodium and chloride. Free amino acids took part in the regulation. During freezing and brine formation, the amphipods were freeze-sensitive and did not tolerate being frozen into solid ice. However, they could stay in the vicinity of the ice, conforming osmotically to the ambient brine and thus lowering...

  10. On the origin of the ice ages

    OpenAIRE

    Oerlemans, J.

    1984-01-01

    Ice sheet dynamics provide a possible explanation for the 100 kyr power in climatic records. Some numerical experiments presented here show that even the transition from an essentially ice-free earth to a glacial can be produced by a northern hemisphere ice-sheet model, provided that a slow general cooling on the northern hemisphere continents is imposed. Such a cooling could for example be the result of continental drift.

  11. Biological darkening of ice: measurements and models

    Science.gov (United States)

    Cook, J.; Tedstone, A.; Hodson, A. J.; Williamson, C.; McCutcheon, J.; Tranter, M.

    2017-12-01

    Biological growth occurs in the ablation zones of glaciers and ice sheets, resulting in a reduction of the ice albedo. Given the critical role of albedo in determining the surface energy balance - and therefore melt rate - of a mass of ice, understanding and quantifying biological albedo reduction is fundamental to predicting future ice dynamics. This may be particularly important on ablating ice on the western Greenland Ice Sheet, where a `dark ice zone' of varying spatial extent may be partly or mostly explained by biological growth. However, our ability to quantify and predict the contribution of biological impurities to the overall energy balance of glacial systems is currently limited by a lack of understanding of the mechanisms of biological darkening, difficulties in determining the spatial extent of biological impurities and uncertainty in isolating biological from non-biological albedo reduction. Here, new spectral measurements are presented for ice containing varying amounts of biological impurities which were obtained on the ground using a field spectrometer and from the air using a purpose built UAV on the Greenland Ice Sheet in summer 2016 and 2017. Distinctive spectral signatures are identified and used to map the spatial extent of algal blooms on the ice surface. A new radiative transfer scheme (BioSNICAR) for predicting the albedo of snow or ice discolored by microbial life is also described, offering insight into the mechanisms of biological darkening. Together, these demonstrate the critical role played by pigmented algae in darkening ice surfaces and provide a framework for predicting biological albedo reduction in future climate scenarios.

  12. Boundary layer physics over snow and ice

    OpenAIRE

    Anderson, P. S.; Neff, W. D.

    2008-01-01

    Observations of the unique chemical environment over snow and ice in recent decades, particularly in the polar regions, have stimulated increasing interest in the boundary layer processes that mediate exchanges between the ice/snow interface and the atmosphere. This paper provides a review of the underlying concepts and examples from recent field studies in polar boundary layer meteorology, which will generally apply to atmospheric flow over snow and ice surfaces. It forms a companion paper t...

  13. Ice storms in a changing climate

    OpenAIRE

    McNitt, Jennifer M.

    2016-01-01

    Approved for public release; distribution is unlimited Ice storms can cause billions of dollars' worth of damage to energy infrastructure, towers, surrounding trees (that could further damage electrical structures), and transportation, and can cause deaths--either due to exposure to subfreezing temperatures or vehicular accidents. An increase in global temperatures, due to climate change, could affect the frequency, intensity, and geographic location of ice storms. Three known ice storm ca...

  14. 21 CFR 880.6050 - Ice bag.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ice bag. 880.6050 Section 880.6050 Food and Drugs....6050 Ice bag. (a) Identification. An ice bag is a device intended for medical purposes that is in the... the body. The device may include a holder that keeps the bag in place against an external area of the...

  15. Elevator deflections on the icing process

    Science.gov (United States)

    Britton, Randall K.

    1990-01-01

    The effect of elevator deflection of the horizontal stabilizer for certain icing parameters is investigated. Elevator deflection can severely change the lower and upper leading-edge impingement limits, and ice can accrete on the elevator itself. Also, elevator deflection had practically no effect on the maximum local collection efficiency. It is shown that for severe icing conditions (large water droplets), elevator deflections that increase the projected height of the airfoil can significantly increase the total collection efficiency of the airfoil.

  16. Swimming Three Ice Miles within Fifteen Hours.

    Science.gov (United States)

    Stjepanovic, Mirko; Nikolaidis, Pantelis T.; Knechtle, Beat

    2017-08-31

    Ice Mile swimming (1608 m in water of below 5 °Celsius) is becoming increasingly popular. This case study aimed to identify body core temperature and selected haematological and biochemical parameters before and after repeated Ice Miles. An experienced ice swimmer completed three consecutive Ice Miles within 15 h. Swim times, body core temperatures, and selected urinary and haematological parameters were recorded. Body core temperature reached its maximum between 5, 8 and 15 min after immersion (37.7°C, 38.1°C, and 38.0°C, respectively). The swimmer suffered hypothermia during the first Ice Mile (35.4°C) and body core temperature dropped furthermore to 34.5°C during recovery after the first Ice Mile. He developed a metabolic acidosis in both the first and the last Ice Mile (pH 7.31 and pH 7.34, respectively). We observed hyperkalaemia ([K⁺] > 5.5 mM) after the second Ice Mile (6.9 mM). This was followed by a drop in [K⁺] to3.7 mM after the third Ice Mile. Anticipatory thermogenesis (i.e. an initial increase of body core temperature after immersion in ice cold water) seems to be a physiological response in a trained athlete. The results suggest that swimming in ice-cold water leads to a metabolic acidosis, which the swimmer compensates with hyperventilation (i.e. leading to respiratory alkalosis). The shift of serum [K⁺] could increase the risk of a cardiac arrhythmia. Further studies addressing the physiology and potential risks of Ice Mile swimming are required to substantiate this finding.

  17. Greenland Ice Shelves and Ice Tongues

    DEFF Research Database (Denmark)

    Reeh, Niels

    2017-01-01

    literature and physical properties are reviewed. There exists a difference between: (1) Floating glaciers in northern Greenland (>77°N) which experience bottom melting as their dominant ablation mechanism and calve relatively thin, but large (km-sized) tabular icebergs (‘ice islands’), and (2) Grounded...... glaciers further south (iceberg calving provides the dominant ablation mechanism. The relatively smaller iceberg discharge in northern Greenland is closely related to the occurrence of extended floating glacier sections, allowing bottom melting estimated at up to 10 m year−1 for locations...

  18. Icing Branch Current Research Activities in Icing Physics

    Science.gov (United States)

    Vargas, Mario

    2009-01-01

    Current development: A grid block transformation scheme which allows the input of grids in arbitrary reference frames, the use of mirror planes, and grids with relative velocities has been developed. A simple ice crystal and sand particle bouncing scheme has been included. Added an SLD splashing model based on that developed by William Wright for the LEWICE 3.2.2 software. A new area based collection efficiency algorithm will be incorporated which calculates trajectories from inflow block boundaries to outflow block boundaries. This method will be used for calculating and passing collection efficiency data between blade rows for turbo-machinery calculations.

  19. Coupled regional climate-ice-sheet simulation shows limited Greenland ice loss during the Eemian

    OpenAIRE

    Helsen, M. M.; van de Berg, W. J.; van de Wal, R. S. W.; van den Broeke, M. R.; Oerlemans, J.

    2013-01-01

    During the last interglacial period (Eemian, 130–115 kyr BP) eustatic global sea level likely peaked at > 6 m above the present-day level, but estimates of the contribution of the Greenland Ice Sheet vary widely. Here we use an asynchronously two-way-coupled regional climate–ice-sheet model, which includes physically realistic feedbacks between the changing ice sheet topography and climate forcing. Our simulation results in a contribution from the Greenland Ice Sheet to the ...

  20. Windows in Arctic sea ice: Light transmission and ice algae in a refrozen lead

    Science.gov (United States)

    Kauko, Hanna M.; Taskjelle, Torbjørn; Assmy, Philipp; Pavlov, Alexey K.; Mundy, C. J.; Duarte, Pedro; Fernández-Méndez, Mar; Olsen, Lasse M.; Hudson, Stephen R.; Johnsen, Geir; Elliott, Ashley; Wang, Feiyue; Granskog, Mats A.

    2017-06-01

    The Arctic Ocean is rapidly changing from thicker multiyear to thinner first-year ice cover, with significant consequences for radiative transfer through the ice pack and light availability for algal growth. A thinner, more dynamic ice cover will possibly result in more frequent leads, covered by newly formed ice with little snow cover. We studied a refrozen lead (≤0.27 m ice) in drifting pack ice north of Svalbard (80.5-81.8°N) in May-June 2015 during the Norwegian young sea ICE expedition (N-ICE2015). We measured downwelling incident and ice-transmitted spectral irradiance, and colored dissolved organic matter (CDOM), particle absorption, ultraviolet (UV)-protecting mycosporine-like amino acids (MAAs), and chlorophyll a (Chl a) in melted sea ice samples. We found occasionally very high MAA concentrations (up to 39 mg m-3, mean 4.5 ± 7.8 mg m-3) and MAA to Chl a ratios (up to 6.3, mean 1.2 ± 1.3). Disagreement in modeled and observed transmittance in the UV range let us conclude that MAA signatures in CDOM absorption spectra may be artifacts due to osmotic shock during ice melting. Although observed PAR (photosynthetically active radiation) transmittance through the thin ice was significantly higher than that of the adjacent thicker ice with deep snow cover, ice algal standing stocks were low (≤2.31 mg Chl a m-2) and similar to the adjacent ice. Ice algal accumulation in the lead was possibly delayed by the low inoculum and the time needed for photoacclimation to the high-light environment. However, leads are important for phytoplankton growth by acting like windows into the water column.

  1. Possible Mechanisms for Turbofan Engine Ice Crystal Icing at High Altitude

    Science.gov (United States)

    Tsao, Jen-Ching; Struk, Peter M.; Oliver, Michael J.

    2016-01-01

    A thermodynamic model is presented to describe possible mechanisms of ice formation on unheated surfaces inside a turbofan engine compression system from fully glaciated ice crystal clouds often formed at high altitude near deep convective weather systems. It is shown from the analysis that generally there could be two distinct types of ice formation: (1) when the "surface freezing fraction" is in the range of 0 to 1, dominated by the freezing of water melt from fully or partially melted ice crystals, the ice structure is formed from accretion with strong adhesion to the surface, and (2) when the "surface melting fraction" is the range of 0 to 1, dominated by the further melting of ice crystals, the ice structure is formed from accumulation of un-melted ice crystals with relatively weak bonding to the surface. The model captures important qualitative trends of the fundamental ice-crystal icing phenomenon reported earlier (Refs. 1 and 2) from the research collaboration work by NASA and the National Research Council (NRC) of Canada. Further, preliminary analysis of test data from the 2013 full scale turbofan engine ice crystal icing test (Ref. 3) conducted in the NASA Glenn Propulsion Systems Laboratory (PSL) has also suggested that (1) both types of ice formation occurred during the test, and (2) the model has captured some important qualitative trend of turning on (or off) the ice crystal ice formation process in the tested engine low pressure compressor (LPC) targeted area under different icing conditions that ultimately would lead to (or suppress) an engine core roll back (RB) event.

  2. Ice, Ocean and Atmosphere Interactions in the Arctic Marginal Ice Zone

    Science.gov (United States)

    2015-09-30

    release; distribution is unlimited. DRI TECHNICAL PROGRAM: Emerging Dynamics Of The Marginal Ice Zone Ice, Ocean and Atmosphere Interactions in the...Arctic Marginal Ice Zone Year 4 Annual Report Jeremy Wilkinson British Antarctic Survey phone: 44 (0)1223 221489 fax: 44 (0) 1223...sams.ac.uk LONG-TERM GOALS This DRI TECHNICAL PROGRAM (Emerging Dynamics Of The Marginal Ice Zone) brings together a high-level

  3. Sea ice roughness: the key for predicting Arctic summer ice albedo

    Science.gov (United States)

    Landy, J.; Ehn, J. K.; Tsamados, M.; Stroeve, J.; Barber, D. G.

    2017-12-01

    Although melt ponds on Arctic sea ice evolve in stages, ice with smoother surface topography typically allows the pond water to spread over a wider area, reducing the ice-albedo and accelerating further melt. Building on this theory, we simulated the distribution of meltwater on a range of statistically-derived topographies to develop a quantitative relationship between premelt sea ice surface roughness and summer ice albedo. Our method, previously applied to ICESat observations of the end-of-winter sea ice roughness, could account for 85% of the variance in AVHRR observations of the summer ice-albedo [Landy et al., 2015]. Consequently, an Arctic-wide reduction in sea ice roughness over the ICESat operational period (from 2003 to 2008) explained a drop in ice-albedo that resulted in a 16% increase in solar heat input to the sea ice cover. Here we will review this work and present new research linking pre-melt sea ice surface roughness observations from Cryosat-2 to summer sea ice albedo over the past six years, examining the potential of winter roughness as a significant new source of sea ice predictability. We will further evaluate the possibility for high-resolution (kilometre-scale) forecasts of summer sea ice albedo from waveform-level Cryosat-2 roughness data in the landfast sea ice zone of the Canadian Arctic. Landy, J. C., J. K. Ehn, and D. G. Barber (2015), Albedo feedback enhanced by smoother Arctic sea ice, Geophys. Res. Lett., 42, 10,714-10,720, doi:10.1002/2015GL066712.

  4. Diversity of cultured bacteria from the perennial ice block of Scarisoara Ice Cave, Romania

    Directory of Open Access Journals (Sweden)

    Corina Iţcuş

    2016-01-01

    Full Text Available Cave ice ecosystems represent a poorly investigated glacial environment. Diversity of cave ice bacteria and their distribution in perennial ice deposits of this underground glacial habitat could constitute a proxy for microbial response to climatic and environmental changes. Scarisoara Ice Cave (Romania hosts one of the oldest and largest cave ice blocks worldwide. Here we report on cultured microbial diversity of recent, 400, and 900 years-old perennial ice from this cave, representing the first characterization of a chronological distribution of cave-ice bacteria. Total cell density measured by SYBR Green I epifluorescence microscopy varied in the 2.4 x 104 – 2.9 x 105 cells mL-1 range. The abundance of cultured bacteria (5 x 102 – 8 x 104 CFU mL-1 representing 0.3-52% of the total cell number decreased exponentially with the ice age, and was higher in organic rich ice sediments. Cultivation at 4˚C and 15˚C using BIOLOG EcoPlates revealed a higher functional diversity of cold-active bacteria, dependent on the age, sediment content and physicochemical properties of the ice. The composition dissimilarity of ice microbiota across the ice block was confirmed by growth parameter variations when cultivated in different liquid media at low and high temperatures. PCR-DGGE and sequencing of bacterial 16S rRNA gene fragments from the cultured ice samples led to the identification of 77 bacterial amplicons belonging to Gammaproteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria, showing variation in distribution across the ice layers. Several identified OTUs were homologous to those identified in other glacial and karst environments and showed partial conservation across the ice block. Moreover, our survey provided a glimpse on the cave-ice hosted bacteria as putative biomarkers for past climate and environmental changes.

  5. Determining the ice seasons severity during 1982-2015 using the ice extents sum as a new characteristic

    Science.gov (United States)

    Rjazin, Jevgeni; Pärn, Ove

    2016-04-01

    Sea ice is a key climate factor and it restricts considerably the winter navigation in sever seasons on the Baltic Sea. So determining ice conditions severity and describing ice cover behaviour at severe seasons interests scientists, engineers and navigation managers. The present study is carried out to determine the ice seasons severity degree basing on the ice seasons 1982 to 2015. A new integrative characteristic is introduced to describe the ice season severity. It is the sum of ice extents of the ice season id est the daily ice extents of the season are summed. The commonly used procedure to determine the ice season severity degree by the maximal ice extent is in this research compared to the new characteristic values. The remote sensing data on the ice concentrations on the Baltic Sea published in the European Copernicus Programme are used to obtain the severity characteristic values. The ice extents are calculated on these ice concentration data. Both the maximal ice extent of the season and a newly introduced characteristic - the ice extents sum are used to classify the winters with respect of severity. The most severe winter of the reviewed period is 1986/87. Also the ice seasons 1981/82, 1984/85, 1985/86, 1995/96 and 2002/03 are classified as severe. Only three seasons of this list are severe by both the criteria. They are 1984/85, 1985/86 and 1986/87. We interpret this coincidence as the evidence of enough-during extensive ice cover in these three seasons. In several winters, for example 2010/11 ice cover extended enough for some time, but did not endure. At few other ice seasons as 2002/03 the Baltic Sea was ice-covered in moderate extent, but the ice cover stayed long time. At 11 winters the ice extents sum differed considerably (> 10%) from the maximal ice extent. These winters yield one third of the studied ice seasons. The maximal ice extent of the season is simple to use and enables to reconstruct the ice cover history and to predict maximal ice

  6. Modeling interfacial liquid layers on environmental ices

    Directory of Open Access Journals (Sweden)

    M. H. Kuo

    2011-09-01

    Full Text Available Interfacial layers on ice significantly influence air-ice chemical interactions. In solute-containing aqueous systems, a liquid brine may form upon freezing due to the exclusion of impurities from the ice crystal lattice coupled with freezing point depression in the concentrated brine. The brine may be segregated to the air-ice interface where it creates a surface layer, in micropockets, or at grain boundaries or triple junctions.

    We present a model for brines and their associated liquid layers in environmental ice systems that is valid over a wide range of temperatures and solute concentrations. The model is derived from fundamental equlibrium thermodynamics and takes into account nonideal solution behavior in the brine, partitioning of the solute into the ice matrix, and equilibration between the brine and the gas phase for volatile solutes. We find that these phenomena are important to consider when modeling brines in environmental ices, especially at low temperatures. We demonstrate its application for environmentally important volatile and nonvolatile solutes including NaCl, HCl, and HNO3. The model is compared to existing models and experimental data from literature where available. We also identify environmentally relevant regimes where brine is not predicted to exist, but the QLL may significantly impact air-ice chemical interactions. This model can be used to improve the representation of air-ice chemical interactions in polar atmospheric chemistry models.

  7. Dynamics of colloidal particles in ice

    KAUST Repository

    Spannuth, Melissa

    2011-01-01

    We use x-ray photon correlation spectroscopy (XPCS) to probe the dynamics of colloidal particles in polycrystalline ice. During freezing, the dendritic ice morphology and rejection of particles from the ice created regions of high particle density, where some of the colloids were forced into contact and formed disordered aggregates. The particles in these high density regions underwent ballistic motion, with a characteristic velocity that increased with temperature. This ballistic motion is coupled with both stretched and compressed exponential decays of the intensity autocorrelation function. We suggest that this behavior could result from ice grain boundary migration. © 2011 American Institute of Physics.

  8. Polar Ice Sounding and Geomagnetics, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — Data addresses ice thickness and related geomagnetics generated during remote sensing flights over Antarctica and Greenland. Analog records are oscilloscope traces...

  9. Yield surface evolution for columnar ice

    Directory of Open Access Journals (Sweden)

    Zhiwei Zhou

    Full Text Available A series of triaxial compression tests, which has capable of measuring the volumetric strain of the sample, were conducted on columnar ice. A new testing approach of probing the experimental yield surface was performed from a single sample in order to investigate yield and hardening behaviors of the columnar ice under complex stress states. Based on the characteristic of the volumetric strain, a new method of defined the multiaxial yield strengths of the columnar ice is proposed. The experimental yield surface remains elliptical shape in the stress space of effective stress versus mean stress. The effect of temperature, loading rate and loading path in the initial yield surface and deformation properties of the columnar ice were also studied. Subsequent yield surfaces of the columnar ice have been explored by using uniaxial and hydrostatic paths. The evolution of the subsequent yield surface exhibits significant path-dependent characteristics. The multiaxial hardening law of the columnar ice was established experimentally. A phenomenological yield criterion was presented for multiaxial yield and hardening behaviors of the columnar ice. The comparisons between the theoretical and measured results indicate that this current model is capable of giving a reasonable prediction for the multiaxial yield and post-yield properties of the columnar ice subjected to different temperature, loading rate and path conditions. Keywords: Columnar ice, Multiaxial loading, Hardening rule, Path dependency, Yield criterion

  10. RIDES: Raman Icing Detection System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Michigan Aerospace Corporation proposes to develop an integrated LIDAR instrument capable of identifying icing conditions while also providing air data sensing...

  11. [Reflectance of sea ice in Liaodong Bay].

    Science.gov (United States)

    Xu, Zhan-tang; Yang, Yue-zhong; Wang, Gui-fen; Cao, Wen-xi; Kong, Xiang-peng

    2010-07-01

    In the present study, the relationships between sea ice albedo and the bidirectional reflectance distribution in Liaodong Bay were investigated. The results indicate that: (1) sea ice albedo alpha(lambda) is closely related to the components of sea ice, the higher the particulate concentration in sea ice surface is, the lower the sea ice albedo alpha(lambda) is. On the contrary, the higher the bubble concentration in sea ice is, the higher sea ice albedo alpha(lambda) is. (2) Sea ice albedo alpha(lambda) is similar to the bidirectional reflectance factor R(f) when the probe locates at nadir. The R(f) would increase with the increase in detector zenith theta, and the correlation between R(f) and the detector azimuth would gradually increase. When the theta is located at solar zenith 63 degrees, the R(f) would reach the maximum, and the strongest correlation is also shown between the R(f) and the detector azimuth. (3) Different types of sea ice would have the different anisotropic reflectance factors.

  12. The IceCube Computing Infrastructure Model

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Besides the big LHC experiments a number of mid-size experiments is coming online which need to define new computing models to meet the demands on processing and storage requirements of those experiments. We present the hybrid computing model of IceCube which leverages GRID models with a more flexible direct user model as an example of a possible solution. In IceCube a central datacenter at UW-Madison servers as Tier-0 with a single Tier-1 datacenter at DESY Zeuthen. We describe the setup of the IceCube computing infrastructure and report on our experience in successfully provisioning the IceCube computing needs.

  13. Viscosity of interfacial water regulates ice nucleation

    International Nuclear Information System (INIS)

    Li, Kaiyong; Chen, Jing; Zhang, Qiaolan; Zhang, Yifan; Xu, Shun; Zhou, Xin; Cui, Dapeng; Wang, Jianjun; Song, Yanlin

    2014-01-01

    Ice formation on solid surfaces is an important phenomenon in many fields, such as cloud formation and atmospheric icing, and a key factor for applications in preventing freezing. Here, we report temperature-dependent nucleation rates of ice for hydrophilic and hydrophobic surfaces. The results show that hydrophilic surface presents a lower ice nucleation rate. We develop a strategy to extract the thermodynamic parameters, J 0 and Γ, in the context of classical nucleation theory. From the extracted J 0 and Γ, we reveal the dominant role played by interfacial water. The results provide an insight into freezing mechanism on solid surfaces

  14. Linking scales in sea ice mechanics

    Science.gov (United States)

    Weiss, Jérôme; Dansereau, Véronique

    2017-02-01

    Mechanics plays a key role in the evolution of the sea ice cover through its control on drift, on momentum and thermal energy exchanges between the polar oceans and the atmosphere along cracks and faults, and on ice thickness distribution through opening and ridging processes. At the local scale, a significant variability of the mechanical strength is associated with the microstructural heterogeneity of saline ice, however characterized by a small correlation length, below the ice thickness scale. Conversely, the sea ice mechanical fields (velocity, strain and stress) are characterized by long-ranged (more than 1000 km) and long-lasting (approx. few months) correlations. The associated space and time scaling laws are the signature of the brittle character of sea ice mechanics, with deformation resulting from a multi-scale accumulation of episodic fracturing and faulting events. To translate the short-range-correlated disorder on strength into long-range-correlated mechanical fields, several key ingredients are identified: long-ranged elastic interactions, slow driving conditions, a slow viscous-like relaxation of elastic stresses and a restoring/healing mechanism. These ingredients constrained the development of a new continuum mechanics modelling framework for the sea ice cover, called Maxwell-elasto-brittle. Idealized simulations without advection demonstrate that this rheological framework reproduces the main characteristics of sea ice mechanics, including anisotropy, spatial localization and intermittency, as well as the associated scaling laws. This article is part of the themed issue 'Microdynamics of ice'.

  15. Partially ordered state of ice XV

    Science.gov (United States)

    Komatsu, K.; Noritake, F.; Machida, S.; Sano-Furukawa, A.; Hattori, T.; Yamane, R.; Kagi, H.

    2016-01-01

    Most ice polymorphs have order–disorder “pairs” in terms of hydrogen positions, which contributes to the rich variety of ice polymorphs; in fact, three recently discovered polymorphs— ices XIII, XIV, and XV—are ordered counter forms to already identified disordered phases. Despite the considerable effort to understand order–disorder transition in ice crystals, there is an inconsistency among the various experiments and calculations for ice XV, the ordered counter form of ice VI, i.e., neutron diffraction observations suggest antiferroelectrically ordered structures, which disagree with dielectric measurement and theoretical studies, implying ferroelectrically ordered structures. Here we investigate in-situ neutron diffraction measurements and density functional theory calculations to revisit the structure and stability of ice XV. We find that none of the completely ordered configurations are particular favored; instead, partially ordered states are established as a mixture of ordered domains in disordered ice VI. This scenario in which several kinds of ordered configuration coexist dispels the contradictions in previous studies. It means that the order–disorder pairs in ice polymorphs are not one-to-one correspondent pairs but rather have one-to-n correspondence, where there are n possible configurations at finite temperature. PMID:27375120

  16. Communication: Hypothetical ultralow-density ice polymorphs

    Science.gov (United States)

    Matsui, Takahiro; Hirata, Masanori; Yagasaki, Takuma; Matsumoto, Masakazu; Tanaka, Hideki

    2017-09-01

    More than 300 kinds of porous ice structures derived from zeolite frameworks and space fullerenes are examined using classical molecular dynamics simulations. It is found that a hypothetical zeolitic ice phase is less dense and more stable than the sparse ice structures reported by Huang et al. [Chem. Phys. Lett. 671, 186 (2017)]. In association with the zeolitic ice structure, even less dense structures, "aeroices," are proposed. It is found that aeroices are the most stable solid phases of water near the absolute zero temperature under negative pressure.

  17. Bibliography of Ice Properties and Forecasting Related to Transportation in Ice-Covered Waters.

    Science.gov (United States)

    1980-09-01

    between duced. the above-water and underwater portions of an ice pressure ridge. Seasonal and spatial data from two Parmenter, Frances C., Spring ice...Glaciology and ice conditions in the Alaska, is mainly a series of braided channels that Weddell Sea, Servicio de Hydrografia Naval, Boetin freeze

  18. Deformation and failure of the ice bridge on the Wilkins Ice Shelf, Antarctica

    NARCIS (Netherlands)

    Humbert, A.; Gross, D.; Müller, R.; Braun, M.; van de Wal, R.S.W.; van den Broeke, M.R.; Vaughan, D.G.; van de Berg, W.J.

    2010-01-01

    A narrow bridge of floating ice that connected the Wilkins Ice Shelf, Antarctica, to two confining islands eventually collapsed in early April 2009. In the month preceding the collapse, we observed deformation of the ice bridge by means of satellite imagery and from an in situ GPS station.

  19. Bridge ice accretion and de- and anti-icing systems: A review

    DEFF Research Database (Denmark)

    Kleissl, Kenneth; Georgakis, Christos

    2010-01-01

    in turn lead to severe financial losses. This paper presents a review of the different de- and anti-icing techniques, already developed or in development, which could be applied to bridge cables or pylons. Furthermore, the fundamentals of icing caused by freezing precipitation and in-cloud icing...

  20. Inhibition of ice crystal growth in ice cream mix by gelatin hydrolysate.

    Science.gov (United States)

    Damodaran, Srinivasan

    2007-12-26

    The inhibition of ice crystal growth in ice cream mix by gelatin hydrolysate produced by papain action was studied. The ice crystal growth was monitored by thermal cycling between -14 and -12 degrees C at a rate of one cycle per 3 min. It is shown that the hydrolysate fraction containing peptides in the molecular weight range of about 2000-5000 Da exhibited the highest inhibitory activity on ice crystal growth in ice cream mix, whereas fractions containing peptides greater than 7000 Da did not inhibit ice crystal growth. The size distribution of gelatin peptides formed in the hydrolysate was influenced by the pH of hydrolysis. The optimum hydrolysis conditions for producing peptides with maximum ice crystal growth inhibitory activity was pH 7 at 37 degrees C for 10 min at a papain to gelatin ratio of 1:100. However, this may depend on the type and source of gelatin. The possible mechanism of ice crystal growth inhibition by peptides from gelatin is discussed. Molecular modeling of model gelatin peptides revealed that they form an oxygen triad plane at the C-terminus with oxygen-oxygen distances similar to those found in ice nuclei. Binding of this oxygen triad plane to the prism face of ice nuclei via hydrogen bonding appears to be the mechanism by which gelatin hydrolysate might be inhibiting ice crystal growth in ice cream mix.

  1. Do pelagic grazers benefit from sea ice? Insights from the Antarctic sea ice proxy IPSO25

    Science.gov (United States)

    Schmidt, Katrin; Brown, Thomas A.; Belt, Simon T.; Ireland, Louise C.; Taylor, Kyle W. R.; Thorpe, Sally E.; Ward, Peter; Atkinson, Angus

    2018-04-01

    Sea ice affects primary production in polar regions in multiple ways. It can dampen water column productivity by reducing light or nutrient supply, provide a habitat for ice algae and condition the marginal ice zone (MIZ) for phytoplankton blooms on its seasonal retreat. The relative importance of three different carbon sources (sea ice derived, sea ice conditioned, non-sea-ice associated) for the polar food web is not well understood, partly due to the lack of methods that enable their unambiguous distinction. Here we analysed two highly branched isoprenoid (HBI) biomarkers to trace sea-ice-derived and sea-ice-conditioned carbon in Antarctic krill (Euphausia superba) and relate their concentrations to the grazers' body reserves, growth and recruitment. During our sampling in January-February 2003, the proxy for sea ice diatoms (a di-unsaturated HBI termed IPSO25, δ13C = -12.5 ± 3.3 ‰) occurred in open waters of the western Scotia Sea, where seasonal ice retreat was slow. In suspended matter from surface waters, IPSO25 was present at a few stations close to the ice edge, but in krill the marker was widespread. Even at stations that had been ice-free for several weeks, IPSO25 was found in krill stomachs, suggesting that they gathered the ice-derived algae from below the upper mixed layer. Peak abundances of the proxy for MIZ diatoms (a tri-unsaturated HBI termed HBI III, δ13C = -42.2 ± 2.4 ‰) occurred in regions of fast sea ice retreat and persistent salinity-driven stratification in the eastern Scotia Sea. Krill sampled in the area defined by the ice edge bloom likewise contained high amounts of HBI III. As indicators for the grazer's performance we used the mass-length ratio, size of digestive gland and growth rate for krill, and recruitment for the biomass-dominant calanoid copepods Calanoides acutus and Calanus propinquus. These indices consistently point to blooms in the MIZ as an important feeding ground for pelagic grazers. Even though ice

  2. Results from IceCube

    Directory of Open Access Journals (Sweden)

    DeYoung Tyce

    2016-01-01

    Full Text Available Data from the IceCube Neutrino Observatory have revealed the existence of a flux of high energy neutrinos of extraterrestrial origin, which is observed in a number of analyses spanning different energy ranges, fields of view, and neutrino flavors. The current data are consistent with an isotropic, equal-flavor flux described by a simple power law spectrum, but deviations from this simple model cannot yet be constrained with high precision. The existing observations in this area are reviewed, along with recent results on dark matter searches and observations of cosmic rays.

  3. IceCube and ANTARES

    Directory of Open Access Journals (Sweden)

    Brunner Jürgen

    2013-06-01

    Full Text Available IceCube and ANTARES are neutrino detectors sensitive to energies from 20 GeV up to PeV. Both detectors have been completed and take data. Several years of data have been already analysed including periods with the partly assembled detectors. The primary goal of these two neutrino telescopes is the observation of astrophysical sources of neutrinos. Results from searches for such neutrinos with different strategies will be presented as well as measurements of atmospheric neutrinos which are an irreducible background for such searches, but they are an interesting study object by themselves.

  4. Ice Nuclei from Birch Trees

    Science.gov (United States)

    Felgitsch, Laura; Seifried, Teresa; Winkler, Philipp; Schmale, David, III; Grothe, Hinrich

    2017-04-01

    While the importance of heterogeneous ice nucleation in the atmosphere is known, we still know very little about the substances triggering these freezing events. Recent findings support the theory that biological ice nuclei (IN) exhibit the ability to play an important role in these processes. Huffman et al. (2013) showed a burst of biological IN over woodlands triggered by rain events. Birch pollen are known to release a high number of efficient IN if incubated in water (Pummer et al. 2012). Therefore birches are of interest in our research on this topic. Plants native to the timberline, such as birch trees, have to cope with very cold climatic conditions, rendering freezing avoidance impossible. These plants trigger freezing in their extracellular spaces to control the freezing process and avoid intracellular freezing, which would have lethal consequences. The plants hereby try to freeze at a temperature well above homogeneous freezing temperatures but still at temperatures low enough to not be effected by brief night frosts. To achieve this, IN are an important tool. The specific objective of our work was to study the potential sources and distribution of IN in birch trees. We collected leaves, fruit, bark, and trunk cores from a series of mature birch trees in Tyrol, Austria at different altitudes and sampling sites. We also collected samples from a birch tree in an urban park in Vienna, Austria. Our data show a sampling site dependence and the distribution of IN throughout the tree. Our data suggest that leaves, bark, and wood of birch can function as a source of IN, which are easily extracted with water. The IN are therefore not restricted to pollen. Hence, the amount of IN, which can be released from birch trees, is tremendous and has been underrated so far. Future work aims to elucidate the nature, contribution, and potential ecological roles of IN from birch trees in different habitats. Huffman, J.A., Prenni, A.J., DeMott, P.J., Pöhlker, C., Mason, R

  5. Metastable Phases in Ice Clouds

    Science.gov (United States)

    Weiss, Fabian; Baloh, Philipp; Kubel, Frank; Hoelzel, Markus; Parker, Stewart; Grothe, Hinrich

    2014-05-01

    Polar Stratospheric Clouds and Cirrus Clouds contain both, pure water ice and phases of nitric acid hydrates. Preferentially for the latter, the thermodynamically stable phases have intensively been investigated in the past (e.g. nitric acid trihydrate, beta-NAT). As shown by Peter et al. [1] the water activity inside clouds is higher than expected, which might be explained by the presence of metastable stable phases (e.g. cubic ice). However, also metastable nitric acid hydrates might be important due to the inherent non-equilibrium freezing conditions in the upper atmosphere. The delta ice theory of Gao et al. [2] presents a model approach to solve this problem by involving both metastable ice and NAT as well. So it is of high interest to investigate the metastable phase of NAT (i.e. alpha-NAT), the structure of which was unknown up to the presence. In our laboratory a production procedure for metastable alpha-NAT has been developed, which gives access to neutron diffraction and X-ray diffraction measurements, where sample quantities of several Gramm are required. The diffraction techniques were used to solve the unknown crystalline structure of metastable alpha-NAT, which in turn allows the calculation of the vibrational spectra, which have also been recorded by us in the past. Rerefences [1] Peter, T., C. Marcolli, P. Spichtinger, T. Corti, M. B. Baker, and T. Koop. When dry air is too humid. Science, 314:1399-1402, 2006. [2] Gao, R., P. Popp, D. Fahey, T. Marcy, R. L. Herman, E. Weinstock, D. Baumgardener, T. Garrett, K. Rosenlof, T. Thompson, T. P. Bui, B. Ridley, S. C. Wofsy, O. B. Toon, M. Tolbert, B. Kärcher, Th. Peter, P. K. Hudson, A. Weinheimer, and A. Heymsfield. Evidence That Nitric Acid Increases Relative Humidity in Low-Temperature Cirrus Clouds, Science, 303:516-520, 2004. [3] Tizek, H., E. Knözinger, and H. Grothe. Formation and phase distribution of nitric acid hydrates in the mole fraction range xHNO3<0.25: A combined XRD and IR study, PCCP, 6

  6. Multisensor Analyzed Sea Ice Extent - Northern Hemisphere (MASIE-NH)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Multisensor Analyzed Sea Ice Extent Northern Hemisphere (MASIE-NH) products provide measurements of daily sea ice extent and sea ice edge boundary for the...

  7. IceBridge KT19 IR Surface Temperature V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA IceBridge KT19 IR Surface Temperature data set contains surface temperature measurements of Arctic and Antarctic sea ice and land ice acquired using the...

  8. Influence of icings on river aufeis fluviogenesis

    Directory of Open Access Journals (Sweden)

    V. R. Alekseev

    2013-01-01

    Full Text Available Formation and development of a river network in the permafrost zone is heavily influenced by icings and icing processes. It is of the most widespread occurrence in regions of discontinuous and continuous permafrost where the mean thickness of the ice on rivers varies over the range 1−2.5 m, and most of the ice cover is formed by consecutive freezing of outcropping groundwater. The intensity of cryogenic channel formation in the permafrost zone has a clearly pronounced cyclic character that depends on the exceeding of the icing ice over the water edge of the river during the autumn low-water period. Five stages of cryogenic channel genesis are described: preglacial, transgressive, stabilizing, regressive, and postglacial. To each stage there corresponds a definite glaciohydrological regime of the discharge channels, their shape, size, and spatial distribution. The channel network is in its maximum development during the third and fourth states when the channel of the allochthonous flow divides into a number of shallow branches producing a complicated plan pattern of the terrain. Mature sites of annual appearance of icings clearly show areas that are in different development stages, which bears witness to a broad range of variability in the channel icing genesis across space and time. According to the size of icings, the flow of the river and geologo-geomorphological and cryogenic-hydrological conditions, five kinds of icing structure of the channel network have been identified: fan-shaped, cone-shaped, treelike, reticular, and longitudinal-insular. The channel icing network is a characteristic indicator of the specific character of development of glaciohydrosystems in the permafrost zone.

  9. Seasonal Greenland Ice Sheet ice flow variations in regions of differing bed and surface topography

    Science.gov (United States)

    Sole, A. J.; Livingstone, S. J.; Rippin, D. M.; Hill, J.; McMillan, M.; Quincey, D. J.

    2015-12-01

    The contribution of the Greenland Ice Sheet (GrIS) to future sea-level rise is uncertain. Observations reveal the important role of basal water in controlling ice-flow to the ice sheet margin. In Greenland, drainage of large volumes of surface meltwater to the ice sheet bed through moulins and hydrofracture beneath surface lakes dominates the subglacial hydrological system and provides an efficient means of moving mass and heat through the ice sheet. Ice surface and bed topography influence where meltwater can access the bed, and the nature of its subsequent flow beneath the ice. However, no systematic investigation into the influence of topographic variability on Greenland hydrology and dynamics exists. Thus, physical processes controlling storage and drainage of surface and basal meltwater, and the way these affect ice flow are not comprehensively understood. This presents a critical obstacle in efforts to predict the future evolution of the GrIS. Here we present high-resolution satellite mapping of the ice-surface drainage network (e.g. lakes, channels and moulins) and measurements of seasonal variations in ice flow in south west Greenland. The region is comprised of three distinct subglacial terrains which vary in terms of the amplitude and wavelength and thus the degree to which basal topography is reflected in the ice sheet surface. We find that the distribution of surface hydrological features is related to the transfer of bed topography to the ice sheet surface. For example, in areas of thinner ice and high bed relief, moulins occur more frequently and are more uniformly dispersed, indicating a more distributed influx of surface-derived meltwater to the ice sheet bed. We investigate the implications of such spatial variations in surface hydrology on seasonal ice flow rates.

  10. Characterizing Arctic Sea Ice Topography Using High-Resolution IceBridge Data

    Science.gov (United States)

    Petty, Alek; Tsamados, Michel; Kurtz, Nathan; Farrell, Sinead; Newman, Thomas; Harbeck, Jeremy; Feltham, Daniel; Richter-Menge, Jackie

    2016-01-01

    We present an analysis of Arctic sea ice topography using high resolution, three-dimensional, surface elevation data from the Airborne Topographic Mapper, flown as part of NASA's Operation IceBridge mission. Surface features in the sea ice cover are detected using a newly developed surface feature picking algorithm. We derive information regarding the height, volume and geometry of surface features from 2009-2014 within the Beaufort/Chukchi and Central Arctic regions. The results are delineated by ice type to estimate the topographic variability across first-year and multi-year ice regimes.

  11. Ocean circulation and sea-ice thinning induced by melting ice shelves in the Amundsen Sea

    Science.gov (United States)

    Jourdain, Nicolas C.; Mathiot, Pierre; Merino, Nacho; Durand, Gaël.; Le Sommer, Julien; Spence, Paul; Dutrieux, Pierre; Madec, Gurvan

    2017-03-01

    A 1/12° ocean model configuration of the Amundsen Sea sector is developed to better understand the circulation induced by ice-shelf melt and the impacts on the surrounding ocean and sea ice. Eighteen sensitivity experiments to drag and heat exchange coefficients at the ice shelf/ocean interface are performed. The total melt rate simulated in each cavity is function of the thermal Stanton number, and for a given thermal Stanton number, melt is slightly higher for lower values of the drag coefficient. Sub-ice-shelf melt induces a thermohaline circulation that pumps warm circumpolar deep water into the cavity. The related volume flux into a cavity is 100-500 times stronger than the melt volume flux itself. Ice-shelf melt also induces a coastal barotropic current that contributes 45 ± 12% of the total simulated coastal transport. Due to the presence of warm circumpolar deep waters, the melt-induced inflow typically brings 4-20 times more heat into the cavities than the latent heat required for melt. For currently observed melt rates, approximately 6-31% of the heat that enters a cavity with melting potential is actually used to melt ice shelves. For increasing sub-ice-shelf melt rates, the transport in the cavity becomes stronger, and more heat is pumped from the deep layers to the upper part of the cavity then advected toward the ocean surface in front of the ice shelf. Therefore, more ice-shelf melt induces less sea-ice volume near the ice sheet margins.Plain Language SummaryThe ice-shelf cavities of the Amundsen Sea, Antarctica, act as very powerful pumps that create strong inflows of warm water under the ice-shelves, as well as significant circulation changes in the entire region. Such warm inflows bring more heat than required to melt ice, so that a large part of that heat exits ice-shelf cavities without being used. Due to mixing between warm deep waters and melt freshwater, melt-induced flows are warm and buoyant when they leave cavities. Therefore, they reach

  12. Ocean Profile Measurements During the Seasonal Ice Zone Reconnaissance Surveys

    Science.gov (United States)

    2014-09-30

    ice cover in 2014. The consequent reduced melting early in the summer delays the onset of sea - ice - albedo feed back in accelerating melt throughout the...Chukchi sea seasonal sea ice zone (SIZ) utilizing US Coast Guard Arctic Domain Awareness (ADA) flights of opportunity. This report covers our grant...region between maximum winter sea ice extent and minimum summer sea ice extent. As such, it contains the full range of positions of the marginal ice

  13. The Physics of "String Passing through Ice"

    Science.gov (United States)

    Mohazzabi, Pirooz

    2011-01-01

    One of the oldest yet interesting experiments related to heat and thermodynamics is placing a string on a block of ice and hanging two masses from the ends of the string. Sometime later, it is discovered that the string has passed through the ice without cutting it in half. A simple explanation of this effect is that the pressure caused by the…

  14. Major new sources of biological ice nuclei

    Science.gov (United States)

    Moffett, B. F.; Hill, T.; Henderson-Begg, S. K.

    2009-12-01

    Almost all research on biological ice nucleation has focussed on a limited number of bacteria. Here we characterise several major new sources of biogenic ice nuclei. These include mosses, hornworts, liverworts and cyanobacteria. Ice nucleation in the eukaryotic bryophytes appears to be ubiquitous. The temperature at which these organisms nucleate is that at which the difference in vapour pressure over ice and water is at or close to its maximum. At these temperatures (-8 to -18 degrees C) ice will grow at the expense of supercooled water. These organisms are dependent for their water on occult precipitation - fog, dew and cloudwater which by its nature is not collected in conventional rain gauges. Therefore we suggest that these organism produce ice nuclei as a water harvesting mechanism. Since the same mechanism would also drive the Bergeron-Findeisen process, and as moss is known to become airborne, these nuclei may have a role in the initiation of precipitation. The properties of these ice nuclei are very different from the well characterised bacterial nuclei. We will also present DNA sequence data showing that, although related, the proteins responsible are only very distantly related to the classical bacterial ice nuclei.

  15. Multiscale physics of rubber-ice friction

    Science.gov (United States)

    Tuononen, Ari J.; Kriston, András; Persson, Bo

    2016-09-01

    Ice friction plays an important role in many engineering applications, e.g., tires on icy roads, ice breaker ship motion, or winter sports equipment. Although numerous experiments have already been performed to understand the effect of various conditions on ice friction, to reveal the fundamental frictional mechanisms is still a challenging task. This study uses in situ white light interferometry to analyze ice surface topography during linear friction testing with a rubber slider. The method helps to provide an understanding of the link between changes in the surface topography and the friction coefficient through direct visualization and quantitative measurement of the morphologies of the ice surface at different length scales. Besides surface polishing and scratching, it was found that ice melts locally even after one sweep showing the refrozen droplets. A multi-scale rubber friction theory was also applied to study the contribution of viscoelasticity to the total friction coefficient, which showed a significant level with respect to the smoothness of the ice; furthermore, the theory also confirmed the possibility of local ice melting.

  16. Simple Cloud Chambers Using Gel Ice Packs

    Science.gov (United States)

    Kamata, Masahiro; Kubota, Miki

    2012-01-01

    Although cloud chambers are highly regarded as teaching aids for radiation education, school teachers have difficulty in using cloud chambers because they have to prepare dry ice or liquid nitrogen before the experiment. We developed a very simple and inexpensive cloud chamber that uses the contents of gel ice packs which can substitute for dry…

  17. Greenland ice sheet mass balance: a review

    DEFF Research Database (Denmark)

    Khan, Shfaqat Abbas; Aschwanden, Andy; Bjørk, Anders A.

    2015-01-01

    Over the past quarter of a century the Arctic has warmed more than any other region on Earth, causing a profound impact on the Greenland ice sheet (GrIS) and its contribution to the rise in global sea level. The loss of ice can be partitioned into processes related to surface mass balance...... realistic future sea-level changes....

  18. Polar bears and sea ice habitat change

    Science.gov (United States)

    Durner, George M.; Atwood, Todd C.; Butterworth, Andy

    2017-01-01

    The polar bear (Ursus maritimus) is an obligate apex predator of Arctic sea ice and as such can be affected by climate warming-induced changes in the extent and composition of pack ice and its impacts on their seal prey. Sea ice declines have negatively impacted some polar bear subpopulations through reduced energy input because of loss of hunting habitats, higher energy costs due to greater ice drift, ice fracturing and open water, and ultimately greater challenges to recruit young. Projections made from the output of global climate models suggest that polar bears in peripheral Arctic and sub-Arctic seas will be reduced in numbers or become extirpated by the end of the twenty-first century if the rate of climate warming continues on its present trajectory. The same projections also suggest that polar bears may persist in the high-latitude Arctic where heavy multiyear sea ice that has been typical in that region is being replaced by thinner annual ice. Underlying physical and biological oceanography provides clues as to why polar bear in some regions are negatively impacted, while bears in other regions have shown no apparent changes. However, continued declines in sea ice will eventually challenge the survival of polar bears and efforts to conserve them in all regions of the Arctic.

  19. De-Icing Salts and the Environment.

    Science.gov (United States)

    Massachusetts Audubon Society, Lincoln.

    Reported is an examination of the use and effects of chlorides as de-icing products for removal of snow and ice from roads immediately following storms. Increasing evidence of detrimental side effects led to a closer look and more careful evaluation of the overall significance of the so-called "bare pavement maintenance." The side…

  20. Destabilization of the Northeast Greenland Ice Stream

    DEFF Research Database (Denmark)

    Korsgaard, N. J.; Khan, Shfaqat Abbas; Kjaer, K. H.

    . Here, we reveal that the Northeast Greenland Ice Stream (NEGIS), which extends more than 600 km into the interior of the ice sheet, is now undergoing dynamic thinning after more than a quarter of a century of stability. This sector of the GrIS is of particular interest in sea level projections, because...

  1. Spectroscopy and chemistry of interstellar ice analogues

    NARCIS (Netherlands)

    Bouwman, Jordy

    2010-01-01

    Mid-infrared (mid-IR) astronomical observations show that molecules freeze out on interstellar grains to form interstellar ices. These ices play an important role in the chemical evolution of molecules in space. Understanding the physical interactions and chemical reactions that take place in these

  2. Spring Ice Chokes the Bering Strait

    Science.gov (United States)

    2002-01-01

    MODIS image of the Bering Sea, Bering Straight and southern Arctic Ocean acquired 7 May 2000. Image generated from MODIS band 2 (0.85 um) at 250 m spatial resolution. Detailed structure and leads in the ice pack are apparent. Ice flow from the Bering Strait southward to the Bearing Sea is seen in great detail. George Riggs, NASA GSFC

  3. Clouds enhance Greenland ice sheet meltwater runoff

    NARCIS (Netherlands)

    Van Tricht, K.; Lhermitte, S.; Lenaerts, J. T M; Gorodetskaya, I. V.; L'Ecuyer, T. S.; Noël, B.; Van Den Broeke, M. R.; Turner, D. D.; Van Lipzig, N. P M

    2016-01-01

    The Greenland ice sheet has become one of the main contributors to global sea level rise, predominantly through increased meltwater runoff. The main drivers of Greenland ice sheet runoff, however, remain poorly understood. Here we show that clouds enhance meltwater runoff by about one-third relative

  4. History of sea ice in the Arctic

    DEFF Research Database (Denmark)

    Polyak, Leonid; Alley, Richard B.; Andrews, John T.

    2010-01-01

    seasonally ice-free conditions occurred during warmer periods linked to orbital variations. The last low-ice event related to orbital forcing (high insolation) was in the early Holocene, after which the northern high latitudes cooled overall, with some superimposed shorterterm (multidecadal to millennial...

  5. Tuning Ice Nucleation with Supercharged Polypeptides

    NARCIS (Netherlands)

    Yang, Huige; Ma, Chao; Li, Kaiyong; Liu, Kai; Loznik, Mark; Teeuwen, Rosalie; van Hest, Jan C. M.; Zhou, Xin; Herrmann, Andreas; Wang, Jianjun

    2016-01-01

    Supercharged unfolded polypeptides (SUPs) are exploited for controlling ice nucleation via tuning the nature of charge and charge density of SUPs. The results show that positively charged SUPs facilitate ice nucleation, while negatively charged ones suppress it. Moreover, the charge density of the

  6. Ice age plant refugia in East Greenland

    DEFF Research Database (Denmark)

    Funder, Svend Visby

    1979-01-01

    From the distribution of plants it has been inferred by some botanists that ice-free areas existed in East Greenland accommodating a flora which survived one or several ice ages in the area. Comparing this evidence with recent information on the chronology of glaciations and post-glacial vegetati...

  7. Cesium-137 contamination in Arctic Ocean ice

    International Nuclear Information System (INIS)

    Meese, D.; Tucker, W.; Cooper, L.; Larsen, I.L.; Grebmeier, J.

    1995-01-01

    Sea ice and ice-borne sediment samples were collected across the western Arctic basin on the joint US/Canada Arctic Ocean Section during August 1994. Samples were processed on board and returned at the completion of the cruise to Oak Ridge National Laboratory for analysis. Sediment was observed on the surface and in the ice from the southern ice limit in the Chukchi Sea to the North Pole. Preliminary results on the ice-borne sediment samples show widespread elevated concentrations of 137 Cs, ranging from 4.9 to 73 mBq g dry weight -1 . An analysis of the measurements indicate that sea ice is primary transport mechanism by which contaminated sediments are redistributed throughout the Arctic Ocean and possibly exported into the Greenland Sea and North Atlantic through Fram Strait. The wide variability in the ice-borne sediment concentrations of 137 Cs measured along the transect argues that contaminants incorporated on the Siberian shelves can follow much more variable trajectories than is suggested by mean ice drift calculations. 2 figs

  8. Balance velocities of the Greenland ice sheet

    DEFF Research Database (Denmark)

    Joughin, I.; Fahnestock, M.; Ekholm, Simon

    1997-01-01

    We present a map of balance velocities for the Greenland ice sheet. The resolution of the underlying DEM, which was derived primarily from radar altimetery data, yields far greater detail than earlier balance velocity estimates for Greenland. The velocity contours reveal in striking detail......, the balance map is useful for ice-sheet modelling, mass balance studies, and field planning....

  9. Performance evaluation of snow and ice plows.

    Science.gov (United States)

    2015-11-01

    Removal of ice and snow from road surfaces is a critical task in the northern tier of the United States, : including Illinois. Highways with high levels of traffic are expected to be cleared of snow and ice quickly : after each snow storm. This is ne...

  10. We Scream for Nano Ice Cream

    Science.gov (United States)

    Jones, M. Gail; Krebs, Denise L.; Banks, Alton J.

    2011-01-01

    There is a wide range of new products emerging from nanotechnology, and "nano ice cream" is an easy one that you can use to teach topics from surface area to volume applications. In this activity, students learn how ice cream can be made smoother and creamier tasting through nanoscience. By using liquid nitrogen to cool the cream mixture, students…

  11. MASS BALANCE CHANGES AND ICE DYNAMICS OF GREENLAND AND ANTARCTIC ICE SHEETS FROM LASER ALTIMETRY

    Directory of Open Access Journals (Sweden)

    G. S. Babonis

    2016-06-01

    Full Text Available During the past few decades the Greenland and Antarctic ice sheets have lost ice at accelerating rates, caused by increasing surface temperature. The melting of the two big ice sheets has a big impact on global sea level rise. If the ice sheets would melt down entirely, the sea level would rise more than 60 m. Even a much smaller rise would cause dramatic damage along coastal regions. In this paper we report about a major upgrade of surface elevation changes derived from laser altimetry data, acquired by NASA’s Ice, Cloud and land Elevation Satellite mission (ICESat and airborne laser campaigns, such as Airborne Topographic Mapper (ATM and Land, Vegetation and Ice Sensor (LVIS. For detecting changes in ice sheet elevations we have developed the Surface Elevation Reconstruction And Change detection (SERAC method. It computes elevation changes of small surface patches by keeping the surface shape constant and considering the absolute values as surface elevations. We report about important upgrades of earlier results, for example the inclusion of local ice caps and the temporal extension from 1993 to 2014 for the Greenland Ice Sheet and for a comprehensive reconstruction of ice thickness and mass changes for the Antarctic Ice Sheets.

  12. Ice Caps and Ice Belts: The Effects of Obliquity on Ice−Albedo Feedback

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Brian E. J. [Department of Atmospheric and Environmental Sciences, University at Albany (State University of New York), 1400 Washington Avenue, Albany, NY 12222 (United States); Cronin, Timothy W. [Program in Atmospheres, Oceans, and Climate, Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Bitz, Cecilia M., E-mail: brose@albany.edu [Department of Atmospheric Sciences, MS 351640, University of Washington, Seattle, WA 98195-1640 (United States)

    2017-09-01

    Planetary obliquity determines the meridional distribution of the annual mean insolation. For obliquity exceeding 55°, the weakest insolation occurs at the equator. Stable partial snow and ice cover on such a planet would be in the form of a belt about the equator rather than polar caps. An analytical model of planetary climate is used to investigate the stability of ice caps and ice belts over the widest possible range of parameters. The model is a non-dimensional diffusive Energy Balance Model, representing insolation, heat transport, and ice−albedo feedback on a spherical planet. A complete analytical solution for any obliquity is given and validated against numerical solutions of a seasonal model in the “deep-water” regime of weak seasonal ice line migration. Multiple equilibria and unstable transitions between climate states (ice-free, Snowball, or ice cap/belt) are found over wide swaths of parameter space, including a “Large Ice-Belt Instability” and “Small Ice-Belt Instability” at high obliquity. The Snowball catastrophe is avoided at weak radiative forcing in two different scenarios: weak albedo feedback and inefficient heat transport (favoring stable partial ice cover), or efficient transport at high obliquity (favoring ice-free conditions). From speculative assumptions about distributions of planetary parameters, three-fourths to four-fifths of all planets with stable partial ice cover should be in the form of Earth-like polar caps.

  13. Little ice bodies, huge ice lands, and the up-going of the big water body

    Science.gov (United States)

    Ultee, E.; Bassis, J. N.

    2017-12-01

    Ice moving out of the huge ice lands causes the big water body to go up. That can cause bad things to happen in places close to the big water body - the land might even disappear! If that happens, people living close to the big water body might lose their homes. Knowing how much ice will come out of the huge ice lands, and when, can help the world plan for the up-going of the big water body. We study the huge ice land closest to us. All around the edge of that huge ice land, there are smaller ice bodies that control how much ice makes it into the big water body. Most ways of studying the huge ice land with computers struggle to tell the computer about those little ice bodies, but we have found a new way. We will talk about our way of studying little ice bodies and how their moving brings about up-going of the big water.

  14. Molecular Dynamics at the Interface between Ice and Poly(vinyl alcohol) and Ice Recrystallization Inhibition.

    Science.gov (United States)

    Weng, Lindong; Stott, Shannon L; Toner, Mehmet

    2017-12-13

    Ice formation is a ubiquitous process that poses serious challenges for many areas. Nature has evolved a variety of different mechanisms to regulate ice formation. For example, many cold-adapted species produce antifreeze proteins (AFPs) and/or antifreeze glycoproteins (AFGPs) to inhibit ice recrystallization. Although several synthetic substitutes for AF(G)Ps have been developed, the fundamental principles of designing AF(G)P mimics are still missing. In this study, we explored the molecular dynamics of ice recrystallization inhibition (IRI) by poly(vinyl alcohol) (PVA), a well-recognized ice recrystallization inhibitor, to shed light on the otherwise hidden ice-binding mechanisms of chain polymers. Our molecular dynamics simulations revealed a stereoscopic, geometrical match between the hydroxyl groups of PVA and the water molecules of ice, and provided microscopic evidence of the adsorption of PVA to both the basal and prism faces of ice and the incorporation of short-chain PVA into the ice lattice. The length of PVA, i.e., the number of hydroxyl groups, seems to be a key factor dictating the performance of IRI, as the PVA molecule must be large enough to prevent the joining together of adjacent curvatures in the ice front. The findings in this study will help pave the path for addressing a pressing challenge in designing synthetic ice recrystallization inhibitors rationally, by enriching our mechanistic understanding of IRI process by macromolecules.

  15. Arabidopsis thaliana ICE2 gene: phylogeny, structural evolution and functional diversification from ICE1.

    Science.gov (United States)

    Kurbidaeva, Amina; Ezhova, Tatiana; Novokreshchenova, Maria

    2014-12-01

    The ability to tolerate environmental stresses is crucial for all living organisms, and gene duplication is one of the sources for evolutionary novelties. Arabidopsis thaliana INDUCER OF CBF EXPRESSION1 and 2 (ICE1 and ICE2) encode MYC-type bHLH (basic helix-loop-helix) transcription factors. They confer cold stress tolerance by induction of the CBF/DREB1 regulon and regulate stomata formation. Although ICE2 is closely related to ICE1, its origin and role in cold response remains uncertain. Here, we used a bioinformatics/phylogenetic approach to uncover the ICE2 evolutionary history, structural evolution and functional divergence from the putative ancestral gene. Sequence diversification from ICE1 included the gain of cis-acting elements in ICE2 promoter sequence that may provide meristem-specific and defense-related gene expression. By analyzing transgenic Arabidopsis lines with ICE2 over-expression we showed that it contributes to stomata formation, flowering time regulation and cold response. Constitutive ICE2 expression led to induced meristem freezing tolerance, resulting from activation of CBF1 and CBF3 genes and ABA biosynthesis by NCED3 induction. We presume that ICE2 gene has originated from a duplication event about 17.9MYA followed by sub- and neofunctionalization of the ancestral ICE1 gene. Moreover, we predict its role in pathogen resistance and flowering time regulation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. On the assimilation of ice velocity and concentration data into large-scale sea ice models

    Directory of Open Access Journals (Sweden)

    V. Dulière

    2007-06-01

    Full Text Available Data assimilation into sea ice models designed for climate studies has started about 15 years ago. In most of the studies conducted so far, it is assumed that the improvement brought by the assimilation is straightforward. However, some studies suggest this might not be true. In order to elucidate this question and to find an appropriate way to further assimilate sea ice concentration and velocity observations into a global sea ice-ocean model, we analyze here results from a number of twin experiments (i.e. experiments in which the assimilated data are model outputs carried out with a simplified model of the Arctic sea ice pack. Our objective is to determine to what degree the assimilation of ice velocity and/or concentration data improves the global performance of the model and, more specifically, reduces the error in the computed ice thickness. A simple optimal interpolation scheme is used, and outputs from a control run and from perturbed experiments without and with data assimilation are thoroughly compared. Our results indicate that, under certain conditions depending on the assimilation weights and the type of model error, the assimilation of ice velocity data enhances the model performance. The assimilation of ice concentration data can also help in improving the model behavior, but it has to be handled with care because of the strong connection between ice concentration and ice thickness. This study is first step towards real data assimilation into NEMO-LIM, a global sea ice-ocean model.

  17. Ice bridges and ridges in the Maxwell-EB sea ice rheology

    Science.gov (United States)

    Dansereau, Véronique; Weiss, Jérôme; Saramito, Pierre; Lattes, Philippe; Coche, Edmond

    2017-09-01

    This paper presents a first implementation of a new rheological model for sea ice on geophysical scales. This continuum model, called Maxwell elasto-brittle (Maxwell-EB), is based on a Maxwell constitutive law, a progressive damage mechanism that is coupled to both the elastic modulus and apparent viscosity of the ice cover and a Mohr-Coulomb damage criterion that allows for pure (uniaxial and biaxial) tensile strength. The model is tested on the basis of its capability to reproduce the complex mechanical and dynamical behaviour of sea ice drifting through a narrow passage. Idealized as well as realistic simulations of the flow of ice through Nares Strait are presented. These demonstrate that the model reproduces the formation of stable ice bridges as well as the stoppage of the flow, a phenomenon occurring within numerous channels of the Arctic. In agreement with observations, the model captures the propagation of damage along narrow arch-like kinematic features, the discontinuities in the velocity field across these features dividing the ice cover into floes, the strong spatial localization of the thickest, ridged ice, the presence of landfast ice in bays and fjords and the opening of polynyas downstream of the strait. The model represents various dynamical behaviours linked to an overall weakening of the ice cover and to the shorter lifespan of ice bridges, with implications in terms of increased ice export through narrow outflow pathways of the Arctic.

  18. Variability and Trends in Sea Ice Extent and Ice Production in the Ross Sea

    Science.gov (United States)

    Comiso, Josefino; Kwok, Ronald; Martin, Seelye; Gordon, Arnold L.

    2011-01-01

    Salt release during sea ice formation in the Ross Sea coastal regions is regarded as a primary forcing for the regional generation of Antarctic Bottom Water. Passive microwave data from November 1978 through 2008 are used to examine the detailed seasonal and interannual characteristics of the sea ice cover of the Ross Sea and the adjacent Bellingshausen and Amundsen seas. For this period the sea ice extent in the Ross Sea shows the greatest increase of all the Antarctic seas. Variability in the ice cover in these regions is linked to changes in the Southern Annular Mode and secondarily to the Antarctic Circumpolar Wave. Over the Ross Sea shelf, analysis of sea ice drift data from 1992 to 2008 yields a positive rate of increase in the net ice export of about 30,000 sq km/yr. For a characteristic ice thickness of 0.6 m, this yields a volume transport of about 20 cu km/yr, which is almost identical, within error bars, to our estimate of the trend in ice production. The increase in brine rejection in the Ross Shelf Polynya associated with the estimated increase with the ice production, however, is not consistent with the reported Ross Sea salinity decrease. The locally generated sea ice enhancement of Ross Sea salinity may be offset by an increase of relatively low salinity of the water advected into the region from the Amundsen Sea, a consequence of increased precipitation and regional glacial ice melt.

  19. Algae Drive Enhanced Darkening of Bare Ice on the Greenland Ice Sheet

    Science.gov (United States)

    Stibal, Marek; Box, Jason E.; Cameron, Karen A.; Langen, Peter L.; Yallop, Marian L.; Mottram, Ruth H.; Khan, Alia L.; Molotch, Noah P.; Chrismas, Nathan A. M.; Calı Quaglia, Filippo; Remias, Daniel; Smeets, C. J. P. Paul; van den Broeke, Michiel R.; Ryan, Jonathan C.; Hubbard, Alun; Tranter, Martyn; van As, Dirk; Ahlstrøm, Andreas P.

    2017-11-01

    Surface ablation of the Greenland ice sheet is amplified by surface darkening caused by light-absorbing impurities such as mineral dust, black carbon, and pigmented microbial cells. We present the first quantitative assessment of the microbial contribution to the ice sheet surface darkening, based on field measurements of surface reflectance and concentrations of light-absorbing impurities, including pigmented algae, during the 2014 melt season in the southwestern part of the ice sheet. The impact of algae on bare ice darkening in the study area was greater than that of nonalgal impurities and yielded a net albedo reduction of 0.038 ± 0.0035 for each algal population doubling. We argue that algal growth is a crucial control of bare ice darkening, and incorporating the algal darkening effect will improve mass balance and sea level projections of the Greenland ice sheet and ice masses elsewhere.

  20. Intercomparison of passive microwave sea ice concentration retrievals over the high-concentration Arctic sea ice

    DEFF Research Database (Denmark)

    andersen, susanne; Tonboe, R.; Kaleschke, L.

    2007-01-01

    [1] Measurements of sea ice concentration from the Special Sensor Microwave Imager (SSM/I) using seven different algorithms are compared to ship observations, sea ice divergence estimates from the Radarsat Geophysical Processor System, and ice and water surface type classification of 59 wide......-swath synthetic aperture radar (SAR) scenes. The analysis is confined to the high-concentration Arctic sea ice, where the ice cover is near 100%. During winter the results indicate that the variability of the SSM/I concentration estimates is larger than the true variability of ice concentration. Results from...... a trusted subset of the SAR scenes across the central Arctic allow the separation of the ice concentration uncertainty due to emissivity variations and sensor noise from other error sources during the winter of 2003-2004. Depending on the algorithm, error standard deviations from 2.5 to 5.0% are found...

  1. Factors Affecting the Changes of Ice Crystal Form in Ice Cream

    Science.gov (United States)

    Wang, Xin; Watanabe, Manabu; Suzuki, Toru

    In this study, the shape of ice crystals in ice cream was quantitatively evaluated by introducing fractal analysis. A small droplet of commercial ice cream mix was quickly cooled to about -30°C on the cold stage of microscope. Subsequently, it was heated to -5°C or -10°C and then held for various holding time. Based on the captured images at each holding time, the cross-sectional area and the length of circumference for each ice crystal were measured to calculate fractal dimension using image analysis software. The results showed that the ice crystals were categorized into two groups, e.g. simple-shape and complicated-shape, according to their fractal dimensions. The fractal dimension of ice crystals became lower with increasing holding time and holding temperature. It was also indicated that the growing rate of complicated-shape ice crystals was relatively higher because of aggregation.

  2. Ice formation in subglacial Lake Vostok, Central Antarctica

    Science.gov (United States)

    Souchez, R.; Petit, J. R.; Tison, J.-L.; Jouzel, J.; Verbeke, V.

    2000-09-01

    The investigation of chemical and isotopic properties in the lake ice from the Vostok ice core gives clues to the mechanisms involved in ice formation within the lake. A small lake water salinity can be reasonably deduced from the chemical data. Possible implications for the water circulation of Lake Vostok are developed. The characteristics of the isotopic composition of the lake ice indicate that ice formation in Lake Vostok occurred by frazil ice crystal generation due to supercooling as a consequence of rising waters and a possible contrast in water salinity. Subsequent consolidation of the developed loose ice crystals results in the accretion of ice to the ceiling of the lake.

  3. Rheology of water ices V and VI

    Science.gov (United States)

    Durham, W.B.; Stern, L.A.; Kirby, S.H.

    1996-01-01

    We have measured the mechanical strength (??) of pure water ices V and VI under steady state deformation conditions. Constant displacement rate compressional tests were conducted in a gas apparatus at confining pressures from 400 250 K. Ices V and VI are thus Theologically distinct but by coincidence have approximately the same strength under the conditions chosen for these experiments. To avoid misidentification, these tests are therefore accompanied by careful observations of the occurrences and characteristics of phase changes. One sample each of ice V and VI was quenched at pressure to metastably retain the high-pressure phase and the acquired deformation microstructures; X ray diffraction analysis of these samples confirmed the phase identification. Surface replicas of the deformed and quenched samples suggest that ice V probably deforms largely by dislocation creep, while ice VI deforms by a more complicated process involving substantial grain size reduction through recrystallization.

  4. Simulation Tools Model Icing for Aircraft Design

    Science.gov (United States)

    2012-01-01

    Here s a simple science experiment to try: Place an unopened bottle of distilled water in your freezer. After 2-3 hours, if the water is pure enough, you will notice that it has not frozen. Carefully pour the water into a bowl with a piece of ice in it. When it strikes the ice, the water will instantly freeze. One of the most basic and commonly known scientific facts is that water freezes at around 32 F. But this is not always the case. Water lacking any impurities for ice crystals to form around can be supercooled to even lower temperatures without freezing. High in the atmosphere, water droplets can achieve this delicate, supercooled state. When a plane flies through clouds containing these droplets, the water can strike the airframe and, like the supercooled water hitting the ice in the experiment above, freeze instantly. The ice buildup alters the aerodynamics of the plane - reducing lift and increasing drag - affecting its performance and presenting a safety issue if the plane can no longer fly effectively. In certain circumstances, ice can form inside aircraft engines, another potential hazard. NASA has long studied ways of detecting and countering atmospheric icing conditions as part of the Agency s efforts to enhance aviation safety. To do this, the Icing Branch at Glenn Research Center utilizes a number of world-class tools, including the Center s Icing Research Tunnel and the NASA 607 icing research aircraft, a "flying laboratory" for studying icing conditions. The branch has also developed a suite of software programs to help aircraft and icing protection system designers understand the behavior of ice accumulation on various surfaces and in various conditions. One of these innovations is the LEWICE ice accretion simulation software. Initially developed in the 1980s (when Glenn was known as Lewis Research Center), LEWICE has become one of the most widely used tools in icing research and aircraft design and certification. LEWICE has been transformed over

  5. The Science of Solar System Ices

    CERN Document Server

    Castillo-Rogez, Julie

    2013-01-01

    The Science of Solar System Ices The role of laboratory research and simulations in advancing our understanding of solar system ices (including satellites, KBOs, comets, and giant planets) is becoming increasingly important. Understanding ice surface radiation processing, particle and radiation penetration depths, surface and subsurface chemistry, morphology, phases, density, conductivity, etc., are only a few examples of the inventory of issues that are being addressed by Earth-based laboratory research. As a response to the growing need for cross-disciplinary dialog and communication in the planetary ices science community, this book aims to foster focused collaborations among the observational, modeling, and laboratory research communities. The book is a compilation of articles from experts in ices: experimentalists, modelers, and observers (ground-based telescopes and space missions). Most of the contributors featured in this book are renowned experts in their respective fields. Many of these scientists h...

  6. Parameterizing Size Distribution in Ice Clouds

    Energy Technology Data Exchange (ETDEWEB)

    DeSlover, Daniel; Mitchell, David L.

    2009-09-25

    PARAMETERIZING SIZE DISTRIBUTIONS IN ICE CLOUDS David L. Mitchell and Daniel H. DeSlover ABSTRACT An outstanding problem that contributes considerable uncertainty to Global Climate Model (GCM) predictions of future climate is the characterization of ice particle sizes in cirrus clouds. Recent parameterizations of ice cloud effective diameter differ by a factor of three, which, for overcast conditions, often translate to changes in outgoing longwave radiation (OLR) of 55 W m-2 or more. Much of this uncertainty in cirrus particle sizes is related to the problem of ice particle shattering during in situ sampling of the ice particle size distribution (PSD). Ice particles often shatter into many smaller ice fragments upon collision with the rim of the probe inlet tube. These small ice artifacts are counted as real ice crystals, resulting in anomalously high concentrations of small ice crystals (D < 100 µm) and underestimates of the mean and effective size of the PSD. Half of the cirrus cloud optical depth calculated from these in situ measurements can be due to this shattering phenomenon. Another challenge is the determination of ice and liquid water amounts in mixed phase clouds. Mixed phase clouds in the Arctic contain mostly liquid water, and the presence of ice is important for determining their lifecycle. Colder high clouds between -20 and -36 oC may also be mixed phase but in this case their condensate is mostly ice with low levels of liquid water. Rather than affecting their lifecycle, the presence of liquid dramatically affects the cloud optical properties, which affects cloud-climate feedback processes in GCMs. This project has made advancements in solving both of these problems. Regarding the first problem, PSD in ice clouds are uncertain due to the inability to reliably measure the concentrations of the smallest crystals (D < 100 µm), known as the “small mode”. Rather than using in situ probe measurements aboard aircraft, we employed a treatment of ice

  7. Disordered kagomé spin ice

    Science.gov (United States)

    Greenberg, Noah; Kunz, Andrew

    2018-05-01

    Artificial spin ice is made from a large array of patterned magnetic nanoislands designed to mimic naturally occurring spin ice materials. The geometrical arrangement of the kagomé lattice guarantees a frustrated arrangement of the islands' magnetic moments at each vertex where the three magnetic nanoislands meet. This frustration leads to a highly degenerate ground state which gives rise to a finite (residual) entropy at zero temperature. In this work we use the Monte Carlo simulation to explore the effects of disorder in kagomé spin ice. Disorder is introduced to the system by randomly removing a known percentage of magnetic islands from the lattice. The behavior of the spin ice changes as the disorder increases; evident by changes to the shape and locations of the peaks in heat capacity and the residual entropy. The results are consistent with observations made in diluted physical spin ice materials.

  8. Uranium series dating of Allan Hills ice

    Science.gov (United States)

    Fireman, E. L.

    1986-01-01

    Uranium-238 decay series nuclides dissolved in Antarctic ice samples were measured in areas of both high and low concentrations of volcanic glass shards. Ice from the Allan Hills site (high shard content) had high Ra-226, Th-230 and U-234 activities but similarly low U-238 activities in comparison with Antarctic ice samples without shards. The Ra-226, Th-230 and U-234 excesses were found to be proportional to the shard content, while the U-238 decay series results were consistent with the assumption that alpha decay products recoiled into the ice from the shards. Through this method of uranium series dating, it was learned that the Allen Hills Cul de Sac ice is approximately 325,000 years old.

  9. Continuous greenhouse gas measurements from ice cores

    DEFF Research Database (Denmark)

    Stowasser, Christopher

    Ice cores offer the unique possibility to study the history of past atmospheric greenhouse gases over the last 800,000 years, since past atmospheric air is trapped in bubbles in the ice. Since the 1950s, paleo-scientists have developed a variety of techniques to extract the trapped air from...... individual ice core samples, and to measure the mixing ratio of greenhouse gases such as carbon dioxide, methane and nitrous oxide in the extracted air. The discrete measurements have become highly accurate and reproducible, but require relatively large amounts of ice per measured species and are both time......-consuming and labor-intensive. This PhD thesis presents the development of a new method for measurements of greenhouse gas mixing ratios from ice cores based on a melting device of a continuous flow analysis (CFA) system. The coupling to a CFA melting device enables time-efficient measurements of high resolution...

  10. The effects of additional black carbon on Arctic sea ice surface albedo: variation with sea ice type and snow cover

    OpenAIRE

    A. A. Marks; M. D. King

    2013-01-01

    Black carbon in sea ice will decrease sea ice surface albedo through increased absorption of incident solar radiation, exacerbating sea ice melting. Previous literature has reported different albedo responses to additions of black carbon in sea ice and has not considered how a snow cover may mitigate the effect of black carbon in sea ice. Sea ice is predominately snow covered. Visible light absorption and light scattering coefficients are calculated for a typical first year and multi-y...

  11. Influence of ice thickness and surface properties on light transmission through Arctic sea ice.

    Science.gov (United States)

    Katlein, Christian; Arndt, Stefanie; Nicolaus, Marcel; Perovich, Donald K; Jakuba, Michael V; Suman, Stefano; Elliott, Stephen; Whitcomb, Louis L; McFarland, Christopher J; Gerdes, Rüdiger; Boetius, Antje; German, Christopher R

    2015-09-01

    The observed changes in physical properties of sea ice such as decreased thickness and increased melt pond cover severely impact the energy budget of Arctic sea ice. Increased light transmission leads to increased deposition of solar energy in the upper ocean and thus plays a crucial role for amount and timing of sea-ice-melt and under-ice primary production. Recent developments in underwater technology provide new opportunities to study light transmission below the largely inaccessible underside of sea ice. We measured spectral under-ice radiance and irradiance using the new Nereid Under-Ice (NUI) underwater robotic vehicle, during a cruise of the R/V Polarstern to 83°N 6°W in the Arctic Ocean in July 2014. NUI is a next generation hybrid remotely operated vehicle (H-ROV) designed for both remotely piloted and autonomous surveys underneath land-fast and moving sea ice. Here we present results from one of the first comprehensive scientific dives of NUI employing its interdisciplinary sensor suite. We combine under-ice optical measurements with three dimensional under-ice topography (multibeam sonar) and aerial images of the surface conditions. We investigate the influence of spatially varying ice-thickness and surface properties on the spatial variability of light transmittance during summer. Our results show that surface properties such as melt ponds dominate the spatial distribution of the under-ice light field on small scales (<1000 m 2 ), while sea ice-thickness is the most important predictor for light transmission on larger scales. In addition, we propose the use of an algorithm to obtain histograms of light transmission from distributions of sea ice thickness and surface albedo.

  12. Contrasts in Sea Ice Formation and Production in the Arctic Seasonal and Perennial Ice Zones

    Science.gov (United States)

    Kwok, R.

    2006-01-01

    Four years (1997-2000) of RADARSAT Geophysical Processor System (RGPS) data are used to contrast the sea ice deformation and production regionally, and in the seasonal (SIZ) and perennial (PIZ) ice zones. Ice production is of seasonal ice in openings during the winter. 3-day estimates of these quantities are provided within Lagrangian elements initially 10 km on a side. A distinct seasonal cycle is seen in both zones with these estimates highest in the late fall and with seasonal minimums in the mid-winter. Regional divergence over the winter could be up to 30%. Spatially, the highest deformation is in the SIZ north of coastal Alaska. Both ice deformation and production are higher in the SIZ: deformation-related ice production in the SIZ (approx.0.5 m) is 1.5-2.3 times that of the PIZ (approx.0.3 m) - this is connected to ice strength and thickness. Atmospheric forcing and boundary layer structure contribute to only the seasonal and interannual variability. Seasonal ice growth in ice fractures accounts for approx.25-40% of the total ice production of the Arctic Ocean. By itself, this deformation-ice production relationship could be considered a negative feedback when thickness is perturbed. However, the overall effect on ice production in the face of increasing seasonal and thinner/weaker ice coverage could be modified by: local destabilization of the water column promoting overturning of warmer water due to increased brine rejection; and, the upwelling of the pynocline associated with increased occurrence of large shear motion in sea ice.

  13. Ross Sea Polynyas: Response of Ice Concentration Retrievals to Large Areas of Thin Ice

    Science.gov (United States)

    Kwok, R.; Comiso, J. C.; Martin, S.; Drucker, R.

    2007-01-01

    For a 3-month period between May and July of 2005, we examine the response of the Advanced Microwave Scanning Radiometer (AMSR-E) Enhanced NASA Team 2 (NT2) and AMSR-E Bootstrap (ABA) ice concentration algorithms to large areas of thin ice of the Ross Sea polynyas. Coincident Envisat Synthetic Aperture Radar (SAR) coverage of the region during this period offers a detailed look at the development of the polynyas within several hundred kilometers of the ice front. The high-resolution imagery and derived ice motion fields show bands of polynya ice, covering up to approximately 105 km(sup 2) of the Ross Sea, that are associated with wind-forced advection. In this study, ice thickness from AMSR-E 36 GHz polarization information serves as the basis for examination of the response. The quality of the thickness of newly formed sea ice (<10 cm) from AMSR-E is first assessed with thickness estimates derived from ice surface temperatures from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument. The effect of large areas of thin ice in lowering the ice concentration estimates from both NT2/ABA approaches is clearly demonstrated. Results show relatively robust relationships between retrieved ice concentrations and thin ice thickness estimates that differ between the two algorithms. These relationships define the approximate spatial coincidence of ice concentration and thickness isopleths. Using the 83% (ABA) and 91% (NT2) isopleths as polynya boundaries, we show that the computed coverage compares well with that using the estimated 10-cm thickness contour. The thin ice response characterized here suggests that in regions with polynyas, the retrieval results could be used to provide useful geophysical information, namely thickness and coverage.

  14. Wave–ice interactions in the neXtSIM sea-ice model

    Directory of Open Access Journals (Sweden)

    T. D. Williams

    2017-09-01

    Full Text Available In this paper we describe a waves-in-ice model (WIM, which calculates ice breakage and the wave radiation stress (WRS. This WIM is then coupled to the new sea-ice model neXtSIM, which is based on the elasto-brittle (EB rheology. We highlight some numerical issues involved in the coupling and investigate the impact of the WRS, and of modifying the EB rheology to lower the stiffness of the ice in the area where the ice has broken up (the marginal ice zone or MIZ. In experiments in the absence of wind, we find that wind waves can produce noticeable movement of the ice edge in loose ice (concentration around 70 % – up to 36 km, depending on the material parameters of the ice that are used and the dynamical model used for the broken ice. The ice edge position is unaffected by the WRS if the initial concentration is higher (≳ 0.9. Swell waves (monochromatic waves with low frequency do not affect the ice edge location (even for loose ice, as they are attenuated much less than the higher-frequency components of a wind wave spectrum, and so consequently produce a much lower WRS (by about an order of magnitude at least.In the presence of wind, we find that the wind stress dominates the WRS, which, while large near the ice edge, decays exponentially away from it. This is in contrast to the wind stress, which is applied over a much larger ice area. In this case (when wind is present the dynamical model for the MIZ has more impact than the WRS, although that effect too is relatively modest. When the stiffness in the MIZ is lowered due to ice breakage, we find that on-ice winds produce more compression in the MIZ than in the pack, while off-ice winds can cause the MIZ to be separated from the pack ice.

  15. Channelized melting drives thinning under Dotson ice shelf, Western Antarctic Ice Sheet

    Science.gov (United States)

    Gourmelen, N.; Goldberg, D.; Snow, K.; Henley, S. F.; Bingham, R. G.; Kimura, S.; Hogg, A.; Shepherd, A.; Mouginot, J.; Lenaerts, J.; Ligtenberg, S.; Van De Berg, W. J.

    2017-12-01

    The majority of meteoric ice that forms in West Antarctica leaves the ice sheet through floating ice shelves, many of which have been thinning substantially over the last 25 years. A significant proportion of ice-shelf thinning has been driven by submarine melting facilitated by increased access of relatively warm (>0.6oC) modified Circumpolar Deep Water to sub-shelf cavities. Ice shelves play a significant role in stabilising the ice sheet from runaway retreat and regulating its contribution to sea level change. Ice-shelf melting has also been implicated in sustaining high primary productivity in Antarctica's coastal seas. However, these processes vary regionally and are not fully understood. Under some ice shelves, concentrated melting leads to the formation of inverted channels. These channels guide buoyant melt-laden outflow, which can lead to localised melting of the sea ice cover. The channels may also potentially lead to heightened crevassing, which in turn affects ice-shelf stability. Meanwhile, numerical studies suggest that buttressing loss is sensitive to the location of ice removal within an ice-shelf. Thus it is important that we observe spatial patterns, as well as magnitudes, of ice-shelf thinning, in order to improve understanding of the ocean drivers of thinning and of their impacts on ice-shelf stability. Here we show from high-resolution altimetry measurements acquired between 2010 to 2016 that Dotson Ice Shelf, West Antarctica, thins in response to basal melting focussed along a single 5 km-wide and 60 km-long channel extending from the ice shelf's grounding zone to its calving front. The coupled effect of geostrophic circulation and ice-shelf topography leads to the observed concentration of basal melting. Analysis of previous datasets suggests that this process has been ongoing for at least the last 25 years. If focused thinning continues at present rates, the channel would melt through within 40-50 years, almost two centuries before it is

  16. Sea ice biogeochemistry: a guide for modellers.

    Directory of Open Access Journals (Sweden)

    Letizia Tedesco

    Full Text Available Sea ice is a fundamental component of the climate system and plays a key role in polar trophic food webs. Nonetheless sea ice biogeochemical dynamics at large temporal and spatial scales are still rarely described. Numerical models may potentially contribute integrating among sparse observations, but available models of sea ice biogeochemistry are still scarce, whether their relevance for properly describing the current and future state of the polar oceans has been recently addressed. A general methodology to develop a sea ice biogeochemical model is presented, deriving it from an existing validated model application by extension of generic pelagic biogeochemistry model parameterizations. The described methodology is flexible and considers different levels of ecosystem complexity and vertical representation, while adopting a strategy of coupling that ensures mass conservation. We show how to apply this methodology step by step by building an intermediate complexity model from a published realistic application and applying it to analyze theoretically a typical season of first-year sea ice in the Arctic, the one currently needing the most urgent understanding. The aim is to (1 introduce sea ice biogeochemistry and address its relevance to ocean modelers of polar regions, supporting them in adding a new sea ice component to their modelling framework for a more adequate representation of the sea ice-covered ocean ecosystem as a whole, and (2 extend our knowledge on the relevant controlling factors of sea ice algal production, showing that beyond the light and nutrient availability, the duration of the sea ice season may play a key-role shaping the algal production during the on going and upcoming projected changes.

  17. The Sea-Ice Floe Size Distribution

    Science.gov (United States)

    Stern, H. L., III; Schweiger, A. J. B.; Zhang, J.; Steele, M.

    2017-12-01

    The size distribution of ice floes in the polar seas affects the dynamics and thermodynamics of the ice cover and its interaction with the ocean and atmosphere. Ice-ocean models are now beginning to include the floe size distribution (FSD) in their simulations. In order to characterize seasonal changes of the FSD and provide validation data for our ice-ocean model, we calculated the FSD in the Beaufort and Chukchi seas over two spring-summer-fall seasons (2013 and 2014) using more than 250 cloud-free visible-band scenes from the MODIS sensors on NASA's Terra and Aqua satellites, identifying nearly 250,000 ice floes between 2 and 30 km in diameter. We found that the FSD follows a power-law distribution at all locations, with a seasonally varying exponent that reflects floe break-up in spring, loss of smaller floes in summer, and the return of larger floes after fall freeze-up. We extended the results to floe sizes from 10 m to 2 km at selected time/space locations using more than 50 high-resolution radar and visible-band satellite images. Our analysis used more data and applied greater statistical rigor than any previous study of the FSD. The incorporation of the FSD into our ice-ocean model resulted in reduced sea-ice thickness, mainly in the marginal ice zone, which improved the simulation of sea-ice extent and yielded an earlier ice retreat. We also examined results from 17 previous studies of the FSD, most of which report power-law FSDs but with widely varying exponents. It is difficult to reconcile the range of results due to different study areas, seasons, and methods of analysis. We review the power-law representation of the FSD in these studies and discuss some mathematical details that are important to consider in any future analysis.

  18. Simulations of collision of ice particles

    Science.gov (United States)

    Zamankhan, Piroz

    2010-06-01

    The objective of this paper is to develop a realistic model for ice-structure interaction. To this end, the experiments made by Bridges et al. [Bridges FG, Hatzes A, Liu DNC. Structure, stability and evolution of Saturn's rings. Nature 1984;309:333-5] in order to measure the coefficient of restitution for ice particles are thoroughly analyzed. One particularly troublesome aspect of the aforementioned experiments is fracture of the ice particles during a collision. In the present effort, the collisional properties of the ice particles are investigated using a Finite Element approach. It is found that a major challenge in modeling collision of the ice balls is the prediction of the onset of fracture and crack propagation in them. In simulations of a block of ice collision to a structure, it is crucial that fracture is determined correctly, as it will influence the collisional properties of the ice particles. The results of the simulation, considering fracture criterion implemented into the Finite Element Model [Zamankhan P, Bordbar M-H. Complex flow dynamics in dense granular flows. Part I: experimentation. J Appl Mech (T-ASME) 2006;73:648-57; Zamankhan P, Huang J. Complex flow dynamics in dense granular flows. Part II: simulations. J Appl Mech (T-ASME) 2007;74:691-702] together with a material model for the ice, imply that most of the kinetic energy dissipation occurs as a result of fracturing at the contact surface of the ice particles. The results obtained in the present study suggest that constitutive models such as those proposed by Brilliantov et al. [Brilliantov NV, Spahn F, Hertzsch JM, Poschel T. Model for collisions in granular gases. Phys Rev E;1996;53:5382-92] for collisions of ice particles are highly questionable.

  19. Fundamental Ice Crystal Accretion Physics Studies

    Science.gov (United States)

    Struk, Peter M.; Broeren, Andy P.; Tsao, Jen-Ching; Vargas, Mario; Wright, William B.; Currie, Tom; Knezevici, Danny; Fuleki, Dan

    2012-01-01

    Due to numerous engine power-loss events associated with high-altitude convective weather, ice accretion within an engine due to ice crystal ingestion is being investigated. The National Aeronautics and Space Administration (NASA) and the National Research Council (NRC) of Canada are starting to examine the physical mechanisms of ice accretion on surfaces exposed to ice-crystal and mixed-phase conditions. In November 2010, two weeks of testing occurred at the NRC Research Altitude Facility utilizing a single wedge-type airfoil designed to facilitate fundamental studies while retaining critical features of a compressor stator blade or guide vane. The airfoil was placed in the NRC cascade wind tunnel for both aerodynamic and icing tests. Aerodynamic testing showed excellent agreement compared with CFD data on the icing pressure surface and allowed calculation of heat transfer coefficients at various airfoil locations. Icing tests were performed at Mach numbers of 0.2 to 0.3, total pressures from 93 to 45 kPa, and total temperatures from 5 to 15 C. Ice and liquid water contents ranged up to 20 and 3 g/m3, respectively. The ice appeared well adhered to the surface in the lowest pressure tests (45 kPa) and, in a particular case, showed continuous leading-edge ice growth to a thickness greater than 15 mm in 3 min. Such widespread deposits were not observed in the highest pressure tests, where the accretions were limited to a small area around the leading edge. The suction surface was typically ice-free in the tests at high pressure, but not at low pressure. The icing behavior at high and low pressure appeared to be correlated with the wet-bulb temperature, which was estimated to be above 0 C in tests at 93 kPa and below 0 C in tests at lower pressure, the latter enhanced by more evaporative cooling of water. The authors believe that the large ice accretions observed in the low pressure tests would undoubtedly cause the aerodynamic performance of a compressor component

  20. Helicopter rotor noise investigation during ice accretion

    Science.gov (United States)

    Cheng, Baofeng

    An investigation of helicopter rotor noise during ice accretion is conducted using experimental, theoretical, and numerical methods. This research is the acoustic part of a joint helicopter rotor icing physics, modeling, and detection project at The Pennsylvania State University Vertical Lift Research Center of Excellence (VLRCOE). The current research aims to provide acoustic insight and understanding of the rotor icing physics and investigate the feasibility of detecting rotor icing through noise measurements, especially at the early stage of ice accretion. All helicopter main rotor noise source mechanisms and their change during ice accretion are discussed. Changes of the thickness noise, steady loading noise, and especially the turbulent boundary layer - trailing edge (TBL-TE) noise due to ice accretion are identified and studied. The change of the discrete frequency noise (thickness noise and steady loading noise) due to ice accretion is calculated by using PSU-WOPWOP, an advanced rotorcraft acoustic prediction code. The change is noticeable, but too small to be used in icing detection. The small thickness noise change is due to the small volume of the accreted ice compared to that of the entire blade, although a large iced airfoil shape is used. For the loading noise calculation, two simplified methods are used to generate the loading on the rotor blades, which is the input for the loading noise calculation: 1) compact loading from blade element momentum theory, icing effects are considered by increasing the drag coefficient; and 2) pressure loading from the 2-D CFD simulation, icing effects are considered by using the iced airfoil shape. Comprehensive rotor broadband noise measurements are carried out on rotor blades with different roughness sizes and rotation speeds in two facilities: the Adverse Environment Rotor Test Stand (AERTS) facility at The Pennsylvania State University, and The University of Maryland Acoustic Chamber (UMAC). In both facilities the

  1. Grain boundary melting in ice

    Science.gov (United States)

    Thomson, E. S.; Hansen-Goos, Hendrik; Wettlaufer, J. S.; Wilen, L. A.

    2013-03-01

    We describe an optical scattering study of grain boundary premelting in water ice. Ubiquitous long ranged attractive polarization forces act to suppress grain boundary melting whereas repulsive forces originating in screened Coulomb interactions and classical colligative effects enhance it. The liquid enhancing effects can be manipulated by adding dopant ions to the system. For all measured grain boundaries this leads to increasing premelted film thickness with increasing electrolyte concentration. Although we understand that the interfacial surface charge densities qs and solute concentrations can potentially dominate the film thickness, we cannot directly measure them within a given grain boundary. Therefore, as a framework for interpreting the data we consider two appropriate qs dependent limits; one is dominated by the colligative effect and other is dominated by electrostatic interactions.

  2. Continuous Chemistry in Ice Cores

    DEFF Research Database (Denmark)

    Kjær, Helle Astrid

    resolution increase our knowledge on fast climate variations and cover a wide range of proxies informing on a variety of components such as atmospheric transport, volcanic eruptions, forest fires and many more. New CFA methods for the determination of dissolved reactive phosphorus (DRP) and pH are presented...... as part of this thesis. Phosphorus is an essential nutrient for the biosphere. The phosphorus is cycled mainly via hydrology, but some biological systems, such as the remote oceans and old forests are dependent on atmospheric deposition of phosphorus. The flux of phosphorus to the ocean is suggested...... on parameters involved in the study of photolysis as a source of in situ CO2. The concentration of organic substances in Greenland ice is poorly known due to their low levels and the fact that only a few studies evaluate the concentrations of specific organic compounds. Light does not penetrate deep...

  3. Star patterns on lake ice

    Science.gov (United States)

    Tsai, Victor C.; Wettlaufer, J. S.

    2007-06-01

    Star patterns, reminiscent of a wide range of diffusively controlled growth forms from snowflakes to Saffman-Taylor fingers, are ubiquitous features of ice-covered lakes. Despite the commonality and beauty of these “lake stars,” the underlying physical processes that produce them have not been explained in a coherent theoretical framework. Here we describe a simple mathematical model that captures the principal features of lake-star formation; radial fingers of (relatively warm) water-rich regions grow from a central source and evolve through a competition between thermal and porous media flow effects in a saturated snow layer covering the lake. The number of star arms emerges from a stability analysis of this competition and the qualitative features of this meter-scale natural phenomenon are captured in laboratory experiments.

  4. IceMap250—Automatic 250 m Sea Ice Extent Mapping Using MODIS Data

    Directory of Open Access Journals (Sweden)

    Charles Gignac

    2017-01-01

    Full Text Available The sea ice cover in the North evolves at a rapid rate. To adequately monitor this evolution, tools with high temporal and spatial resolution are needed. This paper presents IceMap250, an automatic sea ice extent mapping algorithm using MODIS reflective/emissive bands. Hybrid cloud-masking using both the MOD35 mask and a visibility mask, combined with downscaling of Bands 3–7 to 250 m, are utilized to delineate sea ice extent using a decision tree approach. IceMap250 was tested on scenes from the freeze-up, stable cover, and melt seasons in the Hudson Bay complex, in Northeastern Canada. IceMap250 first product is a daily composite sea ice presence map at 250 m. Validation based on comparisons with photo-interpreted ground-truth show the ability of the algorithm to achieve high classification accuracy, with kappa values systematically over 90%. IceMap250 second product is a weekly clear sky map that provides a synthesis of 7 days of daily composite maps. This map, produced using a majority filter, makes the sea ice presence map even more accurate by filtering out the effects of isolated classification errors. The synthesis maps show spatial consistency through time when compared to passive microwave and national ice services maps.

  5. Behavior of flexural gravity waves on ice shelves: Application to the Ross Ice Shelf

    Science.gov (United States)

    Sergienko, O. V.

    2017-08-01

    Ocean waves continuously impact floating ice shelves and affect their stress regime. Low-frequency, long-period (75-400 s), ocean waves are able to reach ice-shelf cavities from distant sources and excite flexural gravity waves that represent coupled motion in the water of the cavity and the ice covering above. Analytic treatment of simplified geometric configuration and three-dimensional numerical simulations of these flexural gravity waves applied to the Ross Ice Shelf show that propagation and ice-shelf flexural stresses are strongly controlled by the geometry of the system, bathymetry of the ice-shelf cavity, and ice-shelf cavity thickness. The derived dispersion relationships, group and phase velocities of these waves can be used to infer poorly constrained characteristics of ice shelves from field observations. The results of numerical simulations show that the flexural gravity waves propagate as beams. The orientation of these beams is determined by the direction of the open ocean waves incident on the ice-shelf front. The higher frequency ocean waves cause larger flexural stresses, while lower frequency waves can propagate farther away from the ice-shelf front and cause flexural stresses in the vicinity of the grounding line.

  6. Effects of future Arctic sea ice decline on Greenland ice sheet melt

    Science.gov (United States)

    Vizcaino, Miren; Michailidou, Egli

    2017-04-01

    CMIP5 models project substantial reduction of the Arctic sea ice cover during the current century, including the onset of a seasonally ice free Arctic. In this study we explore the effects of future Arctic sea-ice change on the mass balance of the Greenland ice sheet (GrIS). For this, we use 1850-2100 simulations from the Community Earth System Model version 1.0 corresponding to historical and RCP8.5 scenarios. We examine the impact of Arctic change on the surface energy and mass budgets of the Greenland ice sheet. We distinguish between winter Arctic change and Greenland-melt-season (Spring and Summer) future climate change. We find a substantial reduction in summer incoming shortwave radiation over the GrIS both for clear-sky and all-sky conditions, that reduces the energy available for melt. Because of the large amount of energy that is used during summer to melt sea-ice, we find no amplified summer warming in the ocean around Greenland, except where summer-long ice-free conditions develop. The different nature of the processes controlling sea-ice change along the western and eastern Greenland coast is examined. We find no links in the timing of major sea-ice change and Greenland snow and ice melt, and justify why such a linkage is absent.

  7. Tidal Modulation of Ice-shelf Flow: a Viscous Model of the Ross Ice Shelf

    Science.gov (United States)

    Brunt, Kelly M.; MacAyeal, Douglas R.

    2014-01-01

    Three stations near the calving front of the Ross Ice Shelf, Antarctica, recorded GPS data through a full spring-neap tidal cycle in November 2005. The data revealed a diurnal horizontal motion that varied both along and transverse to the long-term average velocity direction, similar to tidal signals observed in other ice shelves and ice streams. Based on its periodicity, it was hypothesized that the signal represents a flow response of the Ross Ice Shelf to the diurnal tides of the Ross Sea. To assess the influence of the tide on the ice-shelf motion, two hypotheses were developed. The first addressed the direct response of the ice shelf to tidal forcing, such as forces due to sea-surface slopes or forces due to sub-ice-shelf currents. The second involved the indirect response of ice-shelf flow to the tidal signals observed in the ice streams that source the ice shelf. A finite-element model, based on viscous creep flow, was developed to test these hypotheses, but succeeded only in falsifying both hypotheses, i.e. showing that direct tidal effects produce too small a response, and indirect tidal effects produce a response that is not smooth in time. This nullification suggests that a combination of viscous and elastic deformation is required to explain the observations.

  8. Changes in ice dynamics and mass balance of the Antarctic ice sheet.

    Science.gov (United States)

    Rignot, Eric

    2006-07-15

    The concept that the Antarctic ice sheet changes with eternal slowness has been challenged by recent observations from satellites. Pronounced regional warming in the Antarctic Peninsula triggered ice shelf collapse, which led to a 10-fold increase in glacier flow and rapid ice sheet retreat. This chain of events illustrated the vulnerability of ice shelves to climate warming and their buffering role on the mass balance of Antarctica. In West Antarctica, the Pine Island Bay sector is draining far more ice into the ocean than is stored upstream from snow accumulation. This sector could raise sea level by 1m and trigger widespread retreat of ice in West Antarctica. Pine Island Glacier accelerated 38% since 1975, and most of the speed up took place over the last decade. Its neighbour Thwaites Glacier is widening up and may double its width when its weakened eastern ice shelf breaks up. Widespread acceleration in this sector may be caused by glacier ungrounding from ice shelf melting by an ocean that has recently warmed by 0.3 degrees C. In contrast, glaciers buffered from oceanic change by large ice shelves have only small contributions to sea level. In East Antarctica, many glaciers are close to a state of mass balance, but sectors grounded well below sea level, such as Cook Ice Shelf, Ninnis/Mertz, Frost and Totten glaciers, are thinning and losing mass. Hence, East Antarctica is not immune to changes.

  9. EM Bias-Correction for Ice Thickness and Surface Roughness Retrievals over Rough Deformed Sea Ice

    Science.gov (United States)

    Li, L.; Gaiser, P. W.; Allard, R.; Posey, P. G.; Hebert, D. A.; Richter-Menge, J.; Polashenski, C. M.

    2016-12-01

    The very rough ridge sea ice accounts for significant percentage of total ice areas and even larger percentage of total volume. The commonly used Radar altimeter surface detection techniques are empirical in nature and work well only over level/smooth sea ice. Rough sea ice surfaces can modify the return waveforms, resulting in significant Electromagnetic (EM) bias in the estimated surface elevations, and thus large errors in the ice thickness retrievals. To understand and quantify such sea ice surface roughness effects, a combined EM rough surface and volume scattering model was developed to simulate radar returns from the rough sea ice `layer cake' structure. A waveform matching technique was also developed to fit observed waveforms to a physically-based waveform model and subsequently correct the roughness induced EM bias in the estimated freeboard. This new EM Bias Corrected (EMBC) algorithm was able to better retrieve surface elevations and estimate the surface roughness parameter simultaneously. In situ data from multi-instrument airborne and ground campaigns were used to validate the ice thickness and surface roughness retrievals. For the surface roughness retrievals, we applied this EMBC algorithm to co-incident LiDAR/Radar measurements collected during a Cryosat-2 under-flight by the NASA IceBridge missions. Results show that not only does the waveform model fit very well to the measured radar waveform, but also the roughness parameters derived independently from the LiDAR and radar data agree very well for both level and deformed sea ice. For sea ice thickness retrievals, validation based on in-situ data from the coordinated CRREL/NRL field campaign demonstrates that the physically-based EMBC algorithm performs fundamentally better than the empirical algorithm over very rough deformed sea ice, suggesting that sea ice surface roughness effects can be modeled and corrected based solely on the radar return waveforms.

  10. Capabilities and performance of Elmer/Ice, a new-generation ice sheet model

    Directory of Open Access Journals (Sweden)

    O. Gagliardini

    2013-08-01

    Full Text Available The Fourth IPCC Assessment Report concluded that ice sheet flow models, in their current state, were unable to provide accurate forecast for the increase of polar ice sheet discharge and the associated contribution to sea level rise. Since then, the glaciological community has undertaken a huge effort to develop and improve a new generation of ice flow models, and as a result a significant number of new ice sheet models have emerged. Among them is the parallel finite-element model Elmer/Ice, based on the open-source multi-physics code Elmer. It was one of the first full-Stokes models used to make projections for the evolution of the whole Greenland ice sheet for the coming two centuries. Originally developed to solve local ice flow problems of high mechanical and physical complexity, Elmer/Ice has today reached the maturity to solve larger-scale problems, earning the status of an ice sheet model. Here, we summarise almost 10 yr of development performed by different groups. Elmer/Ice solves the full-Stokes equations, for isotropic but also anisotropic ice rheology, resolves the grounding line dynamics as a contact problem, and contains various basal friction laws. Derived fields, like the age of the ice, the strain rate or stress, can also be computed. Elmer/Ice includes two recently proposed inverse methods to infer badly known parameters. Elmer is a highly parallelised code thanks to recent developments and the implementation of a block preconditioned solver for the Stokes system. In this paper, all these components are presented in detail, as well as the numerical performance of the Stokes solver and developments planned for the future.

  11. Role of ground ice dynamics and ecological feedbacks in recent ice wedge degradation and stabilization

    Science.gov (United States)

    Mark Torre Jorgenson,; Mikhail Kanevskiy,; Yuri Shur,; Natalia Moskalenko,; Dana Brown,; Wickland, Kimberly P.; Striegl, Robert G.; Koch, Joshua C.

    2015-01-01

    Ground ice is abundant in the upper permafrost throughout the Arctic and fundamentally affects terrain responses to climate warming. Ice wedges, which form near the surface and are the dominant type of massive ice in the Arctic, are particularly vulnerable to warming. Yet processes controlling ice wedge degradation and stabilization are poorly understood. Here we quantified ice wedge volume and degradation rates, compared ground ice characteristics and thermal regimes across a sequence of five degradation and stabilization stages and evaluated biophysical feedbacks controlling permafrost stability near Prudhoe Bay, Alaska. Mean ice wedge volume in the top 3 m of permafrost was 21%. Imagery from 1949 to 2012 showed thermokarst extent (area of water-filled troughs) was relatively small from 1949 (0.9%) to 1988 (1.5%), abruptly increased by 2004 (6.3%) and increased slightly by 2012 (7.5%). Mean annual surface temperatures varied by 4.9°C among degradation and stabilization stages and by 9.9°C from polygon center to deep lake bottom. Mean thicknesses of the active layer, ice-poor transient layer, ice-rich intermediate layer, thermokarst cave ice, and wedge ice varied substantially among stages. In early stages, thaw settlement caused water to impound in thermokarst troughs, creating positive feedbacks that increased net radiation, soil heat flux, and soil temperatures. Plant growth and organic matter accumulation in the degraded troughs provided negative feedbacks that allowed ground ice to aggrade and heave the surface, thus reducing surface water depth and soil temperatures in later stages. The ground ice dynamics and ecological feedbacks greatly complicate efforts to assess permafrost responses to climate change.

  12. Role of ground ice dynamics and ecological feedbacks in recent ice wedge degradation and stabilization

    Science.gov (United States)

    Jorgenson, M. T.; Kanevskiy, M.; Shur, Y.; Moskalenko, N.; Brown, D. R. N.; Wickland, K.; Striegl, R.; Koch, J.

    2015-11-01

    Ground ice is abundant in the upper permafrost throughout the Arctic and fundamentally affects terrain responses to climate warming. Ice wedges, which form near the surface and are the dominant type of massive ice in the Arctic, are particularly vulnerable to warming. Yet processes controlling ice wedge degradation and stabilization are poorly understood. Here we quantified ice wedge volume and degradation rates, compared ground ice characteristics and thermal regimes across a sequence of five degradation and stabilization stages and evaluated biophysical feedbacks controlling permafrost stability near Prudhoe Bay, Alaska. Mean ice wedge volume in the top 3 m of permafrost was 21%. Imagery from 1949 to 2012 showed thermokarst extent (area of water-filled troughs) was relatively small from 1949 (0.9%) to 1988 (1.5%), abruptly increased by 2004 (6.3%) and increased slightly by 2012 (7.5%). Mean annual surface temperatures varied by 4.9°C among degradation and stabilization stages and by 9.9°C from polygon center to deep lake bottom. Mean thicknesses of the active layer, ice-poor transient layer, ice-rich intermediate layer, thermokarst cave ice, and wedge ice varied substantially among stages. In early stages, thaw settlement caused water to impound in thermokarst troughs, creating positive feedbacks that increased net radiation, soil heat flux, and soil temperatures. Plant growth and organic matter accumulation in the degraded troughs provided negative feedbacks that allowed ground ice to aggrade and heave the surface, thus reducing surface water depth and soil temperatures in later stages. The ground ice dynamics and ecological feedbacks greatly complicate efforts to assess permafrost responses to climate change.

  13. The air content of Larsen Ice Shelf

    Science.gov (United States)

    Holland, Paul R.; Corr, Hugh F. J.; Pritchard, Hamish D.; Vaughan, David G.; Arthern, Robert J.; Jenkins, Adrian; Tedesco, Marco

    2011-05-01

    The air content of glacial firn determines the effect and attribution of observed changes in ice surface elevation, but is currently measurable only using labor-intensive ground-based techniques. Here a novel method is presented for using radar sounding measurements to decompose the total thickness of floating ice shelves into thicknesses of solid ice and firn air (or firn water). The method is applied to a 1997/98 airborne survey of Larsen Ice Shelf, revealing large spatial gradients in air content that are consistent with existing measurements and local meteorology. The gradients appear to be governed by meltwater-induced firn densification. We find sufficient air in Larsen C Ice Shelf for increased densification to account for its previously observed surface lowering, and the rate of lowering superficially agrees with published trends in melting. This does not preclude a contribution to the lowering from oceanic basal melting, but a modern repeat of the survey could conclusively distinguish atmosphere-led from ocean-led change. The technique also holds promise for the calibration of firn-density models, derivation of ice thickness from surface elevation measurements, and calculation of the sea-level contribution of changes in grounded-ice discharge.

  14. Buoyant Rover for Under-Ice Exploration

    Science.gov (United States)

    Berisford, D. F.; Leichty, J. M.; Klesh, A. T.; Matthews, J. B.; Hand, K. P.

    2012-12-01

    We have designed, constructed and tested a prototype robotic mobility platform for exploring the underside of ice sheets in frozen lake or ocean environments. The ice-water interface often provides some of the most interesting and dynamic chemistry in partially frozen systems, as dissolved impurities are rejected from the advancing freezing front. Higher concentrations of microorganisms can be found in this region, and the topography of the ice underside can help reveal the history of its formation. Furthermore, in lake environments ice cover can serve to trap gases released from biological and geological processes in the subsurface. The rover uses a two-wheeled design with a flexible dragging tail, enabling it to fit into a 10-inch diameter ice borehole. The sealed air-filled cylindrical body, along with closed-cell foam inside of cone-shaped wheels, provides buoyancy force to enable roving along the underside of the ice. The prototype contains two cameras that stream live video via a tethered connection to a ground station and uses semi-autonomous control via a PC. Preliminary testing of the prototype in a cold lab and in northern Alaskan thermokarst lakes demonstrates the utility and simplicity of this type of robotic platform for exploring the ice-water interface. This technology has potential future use in landed missions to icy ocean worlds in the solar system.

  15. Ask about ice, then consider iron.

    Science.gov (United States)

    Rabel, Antoinette; Leitman, Susan F; Miller, Jeffery L

    2016-02-01

    The study aims to review a condition defined by the desire to consume ice in order to satisfy an addictive-like compulsion, rather than for purposes of hydration or pain relief. This condition is called ice pica, or pagophagia. Associations between ice pica and iron deficiency, suggestions for clinical screening of at risk populations, and recommendations for treatment and follow-up care are provided. An extensive literature review of original research articles, reviews, clinical practice manuscripts, and scientific publications on pica and pagophagia. A compulsion or craving for the consumption of ice is often overlooked in clinical practice. It is therefore important for clinicians to include ice pica as part of the review of systems for certain patient populations. Ice pica is frequently associated with iron deficiency, and iron supplementation is an effective therapy in most cases. Knowledge gained from screening for ice pica can generate valuable patient information and lead to the diagnosis and treatment of iron deficiency. The populations at risk include young women and blood donors of either sex. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  16. Clouds enhance Greenland ice sheet meltwater runoff.

    Science.gov (United States)

    Van Tricht, K; Lhermitte, S; Lenaerts, J T M; Gorodetskaya, I V; L'Ecuyer, T S; Noël, B; van den Broeke, M R; Turner, D D; van Lipzig, N P M

    2016-01-12

    The Greenland ice sheet has become one of the main contributors to global sea level rise, predominantly through increased meltwater runoff. The main drivers of Greenland ice sheet runoff, however, remain poorly understood. Here we show that clouds enhance meltwater runoff by about one-third relative to clear skies, using a unique combination of active satellite observations, climate model data and snow model simulations. This impact results from a cloud radiative effect of 29.5 (±5.2) W m(-2). Contrary to conventional wisdom, however, the Greenland ice sheet responds to this energy through a new pathway by which clouds reduce meltwater refreezing as opposed to increasing surface melt directly, thereby accelerating bare-ice exposure and enhancing meltwater runoff. The high sensitivity of the Greenland ice sheet to both ice-only and liquid-bearing clouds highlights the need for accurate cloud representations in climate models, to better predict future contributions of the Greenland ice sheet to global sea level rise.

  17. Hydrogen-Bonding Surfaces for Ice Mitigation

    Science.gov (United States)

    Smith, Joseph G., Jr.; Wohl, Christopher J.; Kreeger, Richard E.; Hadley, Kevin R.; McDougall, Nicholas

    2014-01-01

    Ice formation on aircraft, either on the ground or in-flight, is a major safety issue. While ground icing events occur predominantly during the winter months, in-flight icing can happen anytime during the year. The latter is more problematic since it could result in increased drag and loss of lift. Under a Phase I ARMD NARI Seedling Activity, coated aluminum surfaces possessing hydrogen-bonding groups were under investigation for mitigating ice formation. Hydroxyl and methyl terminated dimethylethoxysilanes were prepared via known chemistries and characterized by spectroscopic methods. These materials were subsequently used to coat aluminum surfaces. Surface compositions were based on pure hydroxyl and methyl terminated species as well as mixtures of the two. Coated surfaces were characterized by contact angle goniometry. Receding water contact angle data suggested several potential surfaces that may exhibit reduced ice adhesion. Qualitative icing experiments performed under representative environmental temperatures using supercooled distilled water delivered via spray coating were inconclusive. Molecular modeling studies suggested that chain mobility affected the interface between ice and the surface more than terminal group chemical composition. Chain mobility resulted from the creation of "pockets" of increased free volume for longer chains to occupy.

  18. Making Ice Creep in the Classroom

    Science.gov (United States)

    Prior, David; Vaughan, Matthew; Banjan, Mathilde; Hamish Bowman, M.; Craw, Lisa; Tooley, Lauren; Wongpan, Pat

    2017-04-01

    Understanding the creep of ice has direct application to the role of ice sheet flow in sea level and climate change and to modelling of icy planets and satellites of the outer solar system. Additionally ice creep can be used as an analogue for the high temperature creep of rocks, most particularly quartzites. We adapted technologies developed for ice creep experiments in the research lab, to build some inexpensive ( EU200) rigs to conduct ice creep experiments in an undergraduate (200 and 300 level) class in rock deformation. The objective was to give the students an experience of laboratory rock deformation experiments so that they would understand better what controls the creep rate of ice and rocks. Students worked in eight groups of 5/6 students. Each group had one deformation rig and temperature control system. Each group conducted two experiments over a 2 week period. The results of all 16 experiments were then shared so that all students could analyse the mechanical data and generate a "flow law" for ice. Additionally thin sections were made of each deformed sample so that some microstructural analysis could be incorporated in the data analysis. Students were able to derive a flow law that showed the relationship of creep rate to both stress and temperature. The flow law matches with those from published research. The class did provide a realistic introduction to laboratory rock deformation experiments and helped students' understanding of what controls the creep of rocks.

  19. Impact of aerosols on ice crystal size

    Science.gov (United States)

    Zhao, Bin; Liou, Kuo-Nan; Gu, Yu; Jiang, Jonathan H.; Li, Qinbin; Fu, Rong; Huang, Lei; Liu, Xiaohong; Shi, Xiangjun; Su, Hui; He, Cenlin

    2018-01-01

    The interactions between aerosols and ice clouds represent one of the largest uncertainties in global radiative forcing from pre-industrial time to the present. In particular, the impact of aerosols on ice crystal effective radius (Rei), which is a key parameter determining ice clouds' net radiative effect, is highly uncertain due to limited and conflicting observational evidence. Here we investigate the effects of aerosols on Rei under different meteorological conditions using 9-year satellite observations. We find that the responses of Rei to aerosol loadings are modulated by water vapor amount in conjunction with several other meteorological parameters. While there is a significant negative correlation between Rei and aerosol loading in moist conditions, consistent with the "Twomey effect" for liquid clouds, a strong positive correlation between the two occurs in dry conditions. Simulations based on a cloud parcel model suggest that water vapor modulates the relative importance of different ice nucleation modes, leading to the opposite aerosol impacts between moist and dry conditions. When ice clouds are decomposed into those generated from deep convection and formed in situ, the water vapor modulation remains in effect for both ice cloud types, although the sensitivities of Rei to aerosols differ noticeably between them due to distinct formation mechanisms. The water vapor modulation can largely explain the difference in the responses of Rei to aerosol loadings in various seasons. A proper representation of the water vapor modulation is essential for an accurate estimate of aerosol-cloud radiative forcing produced by ice clouds.

  20. Magnetospheric considerations for solar system ice state

    Science.gov (United States)

    Paranicas, C.; Hibbitts, C. A.; Kollmann, P.; Ligier, N.; Hendrix, A. R.; Nordheim, T. A.; Roussos, E.; Krupp, N.; Blaney, D.; Cassidy, T. A.; Clark, G.

    2018-03-01

    The current lattice configuration of the water ice on the surfaces of the inner satellites of Jupiter and Saturn is likely shaped by many factors. But laboratory experiments have found that energetic proton irradiation can cause a transition in the structure of pure water ice from crystalline to amorphous. It is not known to what extent this process is competitive with other processes in solar system contexts. For example, surface regions that are rich in water ice may be too warm for this effect to be important, even if the energetic proton bombardment rate is very high. In this paper, we make predictions, based on particle flux levels and other considerations, about where in the magnetospheres of Jupiter and Saturn the ∼MeV proton irradiation mechanism should be most relevant. Our results support the conclusions of Hansen and McCord (2004), who related relative level of radiation on the three outer Galilean satellites to the amorphous ice content within the top 1 mm of surface. We argue here that if magnetospheric effects are considered more carefully, the correlation is even more compelling. Crystalline ice is by far the dominant ice state detected on the inner Saturnian satellites and, as we show here, the flux of bombarding energetic protons onto these bodies is much smaller than at the inner Jovian satellites. Therefore, the ice on the Saturnian satellites also corroborates the correlation.

  1. Variational Ridging in Sea Ice Models

    Science.gov (United States)

    Roberts, A.; Hunke, E. C.; Lipscomb, W. H.; Maslowski, W.; Kamal, S.

    2017-12-01

    This work presents the results of a new development to make basin-scale sea ice models aware of the shape, porosity and extent of individual ridges within the pack. We have derived an analytic solution for the Euler-Lagrange equation of individual ridges that accounts for non-conservative forces, and therefore the compressive strength of individual ridges. Because a region of the pack is simply a collection of paths of individual ridges, we are able to solve the Euler-Lagrange equation for a large-scale sea ice field also, and therefore the compressive strength of a region of the pack that explicitly accounts for the macro-porosity of ridged debris. We make a number of assumptions that have simplified the problem, such as treating sea ice as a granular material in ridges, and assuming that bending moments associated with ridging are perturbations around an isostatic state. Regardless of these simplifications, the ridge model is remarkably predictive of macro-porosity and ridge shape, and, because our equations are analytic, they do not require costly computations to solve the Euler-Lagrange equation of ridges on the large scale. The new ridge model is therefore applicable to large-scale sea ice models. We present results from this theoretical development, as well as plans to apply it to the Regional Arctic System Model and a community sea ice code. Most importantly, the new ridging model is particularly useful for pinpointing gaps in our observational record of sea ice ridges, and points to the need for improved measurements of the evolution of porosity of deformed ice in the Arctic and Antarctic. Such knowledge is not only useful for improving models, but also for improving estimates of sea ice volume derived from altimetric measurements of sea ice freeboard.

  2. Initiation of secondary ice production in clouds

    Directory of Open Access Journals (Sweden)

    S. C. Sullivan

    2018-02-01

    Full Text Available Disparities between the measured concentrations of ice-nucleating particles (INPs and in-cloud ice crystal number concentrations (ICNCs have led to the hypothesis that mechanisms other than primary nucleation form ice in the atmosphere. Here, we model three of these secondary production mechanisms – rime splintering, frozen droplet shattering, and ice–ice collisional breakup – with a six-hydrometeor-class parcel model. We perform three sets of simulations to understand temporal evolution of ice hydrometeor number (Nice, thermodynamic limitations, and the impact of parametric uncertainty when secondary production is active. Output is assessed in terms of the number of primarily nucleated ice crystals that must exist before secondary production initiates (NINP(lim as well as the ICNC enhancement from secondary production and the timing of a 100-fold enhancement. Nice evolution can be understood in terms of collision-based nonlinearity and the phasedness of the process, i.e., whether it involves ice hydrometeors, liquid ones, or both. Ice–ice collisional breakup is the only process for which a meaningful NINP(lim exists (0.002 up to 0.15 L−1. For droplet shattering and rime splintering, a warm enough cloud base temperature and modest updraft are the more important criteria for initiation. The low values of NINP(lim here suggest that, under appropriate thermodynamic conditions for secondary ice production, perturbations in cloud concentration nuclei concentrations are more influential in mixed-phase partitioning than those in INP concentrations.

  3. Understanding first-year ice thickness variability using IceBridge measurements and drift track analysis

    Science.gov (United States)

    Bradley, A. C.; Palo, S. E.

    2016-12-01

    In a first-year ice dominated environment, positive climate feedbacks in the Arctic persist from year to year when increased summertime melt results in decreased ice growth the following winter. In this presentation, we describe a novel approach to evaluating the impacts of delayed freeze-up, oceanic heat flux, and variable atmospheric forcing on end-of-season first year ice thickness. Parcels of first-year sea ice selected from IceBridge sea ice thickness retrievals are tracked backwards through their winter drift paths using the Pathfinder Ice Motion product. The freeze-up date for each parcel is determined by tracing the drift path through the SSMI Ice Concentration product, and summertime mixed layer heat is estimated from the NOAA Optimal Interpolation SST product at the locations of freeze-up and the end-of-season measurement. Over-winter atmospheric forcing is estimated from integrating the drift path through the MERRA2 reanalysis product using a simple 1-D ice growth model. The end of season ice thickness distributions can then be analyzed in the context of the processes that drive ice growth. The summer mixed layer temperature at the end-of-season measurement location, the integrated atmospheric forcing, and the length of the growth season are the three parameters, after end-of-season snow depth, most correlated with the ice thickness. Controlling for these other factors, delaying freeze-up by one week leads to 5.3 cm thinner ice cover at the end of the season. Warming summer ocean temperatures contribute to delayed freeze-up, but even after controlling for changing freeze-up dates and atmospheric forcing, each degree (C) of warmer summertime temperatures results in 1.9 centimeters of thinner ice cover at the end of the winter season. This indicates that oceanic heat flux due to trapped seasonal heat compounds the loss of ice growth due to delayed freeze-up resulting in thinner first-year ice cover in the Arctic seasonal ice zones.

  4. Dark ice dynamics of the south-west Greenland Ice Sheet

    Directory of Open Access Journals (Sweden)

    A. J. Tedstone

    2017-11-01

    Full Text Available Runoff from the Greenland Ice Sheet (GrIS has increased in recent years due largely to changes in atmospheric circulation and atmospheric warming. Albedo reductions resulting from these changes have amplified surface melting. Some of the largest declines in GrIS albedo have occurred in the ablation zone of the south-west sector and are associated with the development of dark ice surfaces. Field observations at local scales reveal that a variety of light-absorbing impurities (LAIs can be present on the surface, ranging from inorganic particulates to cryoconite materials and ice algae. Meanwhile, satellite observations show that the areal extent of dark ice has varied significantly between recent successive melt seasons. However, the processes that drive such large interannual variability in dark ice extent remain essentially unconstrained. At present we are therefore unable to project how the albedo of bare ice sectors of the GrIS will evolve in the future, causing uncertainty in the projected sea level contribution from the GrIS over the coming decades. Here we use MODIS satellite imagery to examine dark ice dynamics on the south-west GrIS each year from 2000 to 2016. We quantify dark ice in terms of its annual extent, duration, intensity and timing of first appearance. Not only does dark ice extent vary significantly between years but so too does its duration (from 0 to > 80 % of June–July–August, JJA, intensity and the timing of its first appearance. Comparison of dark ice dynamics with potential meteorological drivers from the regional climate model MAR reveals that the JJA sensible heat flux, the number of positive minimum-air-temperature days and the timing of bare ice appearance are significant interannual synoptic controls. We use these findings to identify the surface processes which are most likely to explain recent dark ice dynamics. We suggest that whilst the spatial distribution of dark ice is best explained by

  5. Dark ice dynamics of the south-west Greenland Ice Sheet

    Science.gov (United States)

    Tedstone, Andrew J.; Bamber, Jonathan L.; Cook, Joseph M.; Williamson, Christopher J.; Fettweis, Xavier; Hodson, Andrew J.; Tranter, Martyn

    2017-11-01

    Runoff from the Greenland Ice Sheet (GrIS) has increased in recent years due largely to changes in atmospheric circulation and atmospheric warming. Albedo reductions resulting from these changes have amplified surface melting. Some of the largest declines in GrIS albedo have occurred in the ablation zone of the south-west sector and are associated with the development of dark ice surfaces. Field observations at local scales reveal that a variety of light-absorbing impurities (LAIs) can be present on the surface, ranging from inorganic particulates to cryoconite materials and ice algae. Meanwhile, satellite observations show that the areal extent of dark ice has varied significantly between recent successive melt seasons. However, the processes that drive such large interannual variability in dark ice extent remain essentially unconstrained. At present we are therefore unable to project how the albedo of bare ice sectors of the GrIS will evolve in the future, causing uncertainty in the projected sea level contribution from the GrIS over the coming decades. Here we use MODIS satellite imagery to examine dark ice dynamics on the south-west GrIS each year from 2000 to 2016. We quantify dark ice in terms of its annual extent, duration, intensity and timing of first appearance. Not only does dark ice extent vary significantly between years but so too does its duration (from 0 to > 80 % of June-July-August, JJA), intensity and the timing of its first appearance. Comparison of dark ice dynamics with potential meteorological drivers from the regional climate model MAR reveals that the JJA sensible heat flux, the number of positive minimum-air-temperature days and the timing of bare ice appearance are significant interannual synoptic controls. We use these findings to identify the surface processes which are most likely to explain recent dark ice dynamics. We suggest that whilst the spatial distribution of dark ice is best explained by outcropping of particulates from

  6. Water ice is water ice: some applications and limitations of Earth analogues to Mars

    Science.gov (United States)

    Koutnik, M.; Pathare, A.; Waddington, E. D.; Winebrenner, D. P.

    2017-12-01

    Quantitative and qualitative analyses of ice on Mars have advanced with the acquisition of abundant topography, imagery, and radar data, which have enabled the planetary-science community to tackle sophisticated questions about the martian cryosphere. Over the past decades, many studies have applied knowledge of terrestrial ice-sheet and glacier flow to improve understanding of ice behavior on Mars. A key question for both planets is how we can robustly interpret past climate from glaciological and glacial geomorphological features. Doing this requires deciphering how the history of accumulation, ablation, dust/debris deposition, and flow led to the shape and internal structure of present-day ice. Terrestrial glaciology and glacial geomorphology provide physical relationships that can be extended across environmental conditions to characterize related processes that may act at different rates or on different timescales. However, there remain fundamental unknowns about martian ice rheology and history that often limit our ability to directly apply understanding of ice dynamics learned from Antarctica, Greenland, terrestrial glaciers, and laboratory ice experiments. But the field is rich with opportunity because the constitutive relationship for water ice depends on quantities that can typically be reasonably estimated; water ice is water ice. We reflect on progress to understand the history of the ice-rich North Polar Layered Deposits (NPLD) and of select mid-latitude Lobate Debris Aprons (LDAs), and the utility of terrestrial ice-sheet and glacier analogues for these problems. Our work on Earth and Mars has focused on constraining surface accumulation/ablation patterns and ice-flow histories from topography and radar observations. We present on the challenge of interpreting internal-layer shapes when both accumulation/ablation and ice-flow histories are unknown, and how this non-uniqueness can be broken only by making assumptions about one or the other. In

  7. Arctic tides from GPS on sea ice

    OpenAIRE

    Kildegaard Rose, Stine; Skourup, Henriette; Forsberg, René

    2012-01-01

    The presence of sea-ice in the Arctic Ocean plays a significant role in the Arctic climate. Sea ice dampens the ocean tide amplitude with the result that global tidal models which use only astronomical data perform less accurately in the polar regions. This study presents a kinematic processing of Global Positioning System (GPS) buoys placed on sea-ice at five different sites north of Greenland for the study of sea level height and tidal analysis to improve tidal models in the Central Arctic....

  8. Balance Velocities of the Greenland Ice Sheet

    Science.gov (United States)

    Joughin, Ian; Fahnestock, Mark; Ekholm, Simon; Kwok, Ron

    1997-01-01

    We present a map of balance velocities for the Greenland ice sheet. The resolution of the underlying DEM, which was derived primarily from radar altimetry data, yields far greater detail than earlier balance velocity estimates for Greenland. The velocity contours reveal in striking detail the location of an ice stream in northeastern Greenland, which was only recently discovered using satellite imagery. Enhanced flow associated with all of the major outlets is clearly visible, although small errors in the source data result in less accurate estimates of the absolute flow speeds. Nevertheless, the balance map is useful for ice-sheet modelling, mass balance studies, and field planning.

  9. IceCube Results and PINGU Perspectives

    DEFF Research Database (Denmark)

    Koskinen, David Jason

    2015-01-01

    The last three years of IceCube operation with the completed detector have resulted in a plethora of results, including the first observation of high energy astrophysical neutrinos, tests of a possible neutrino flux from atmospheric charm meson decay, and competitive results of neutrino oscillati...... from atmospheric muon neutrino disappearance. Based on the success of IceCube, a new low energy in-fill, known as the Precision IceCube Next Generation Upgrade, is being proposed with the primary physics goal of resolving the ordering of the neutrino mass hierarchy....

  10. Water Accommodation on Bare and Coated Ice

    Science.gov (United States)

    Kong, Xiangrui

    2015-04-01

    A good understanding of water accommodation on ice surfaces is essential for quantitatively predicting the evolution of clouds, and therefore influences the effectiveness of climate models. However, the accommodation coefficient is poorly constrained within the literature where reported values vary by up to three orders of magnitude. In addition, the complexity of the chemical composition of the atmosphere plays an important role in ice phase behavior and dynamics. We employ an environmental molecular beam (EMB) technique to investigate molecular water interactions with bare and impurity coated ice at temperatures from 170 K to 200 K. In this work, we summarize results of water accommodation experiments on bare ice (Kong et al., 2014) and on ice coated by methanol (Thomson et al., 2013), butanol (Thomson et al., 2013) and acetic acid (Papagiannakopoulos et al., 2014), and compare those results with analogous experiments using hexanol and nitric acid coatings. Hexanol is chosen as a complementary chain alcohol to methanol and butanol, while nitric acid is a common inorganic compound in the atmosphere. The results show a strong negative temperature dependence of water accommodation on bare ice, which can be quantitatively described by a precursor model. Acidic adlayers tend to enhance water uptake indicating that the system kinetics are thoroughly changed compared to bare ice. Adsorbed alcohols influence the temperature dependence of the accommodation coefficient and water molecules generally spend less time on the surfaces before desorbing, although the measured accommodation coefficients remain high and comparable to bare ice for the investigated systems. We conclude that impurities can either enhance or restrict water uptake in ways that are influenced by several factors including temperature and type of adsorbant, with potential implications for the description of ice particle growth in the atmosphere. This work was supported by the Swedish Research Council and

  11. Arctic tides from GPS on sea ice

    DEFF Research Database (Denmark)

    Kildegaard Rose, Stine; Skourup, Henriette; Forsberg, René

    The presence of sea-ice in the Arctic Ocean plays a significant role in the Arctic climate. Sea ice dampens the ocean tide amplitude with the result that global tidal models which use only astronomical data perform less accurately in the polar regions. This study presents a kinematic processing...... of Global Positioning System (GPS) buoys placed on sea-ice at five different sites north of Greenland for the study of sea level height and tidal analysis to improve tidal models in the Central Arctic. The GPS measurements are compared with the Arctic tidal model AOTIM-5, which assimilates tide...

  12. Glacial transport and local ice dynamics under the Keewatin Ice Divide of the Laurentide Ice Sheet, central Nunavut

    Science.gov (United States)

    Goulet, C.; Roy, M.; McMartin, I.

    2009-12-01

    Goulet, C.; Roy, M., Department of Earth and Atmospheric Sciences, and GEOTOP, University of Quebec in Montreal, QC, H3C 3P8; McMartin, I., Geological Survey of Canada, 601 Booth Street, Ottawa, ON, K1A OE8 Recent paleogeographic reconstructions indicate that the Keewatin Ice Divide (KID) of the Laurentide Ice Sheet (LIS) was highly dynamic throughout the last glacial cycle. Extensive field measurements of cross-cutting ice-flow erosional features (striations, grooves) on multi-faceted bedrock outcrops, as well as mapping of streamlined landforms indicate significant displacements (up to 500 km) of this ice flow center during the last glacial cycle. These episodes of ice-flow reorganization likely affected the patterns of glacial transport, but the extent of the reworking of former glacial dispersal trains is often unconstrained in certain regions. Here we report ice-flow directional data and associated glacial-dynamic considerations for an area located 100 km north of Baker Lake, central Nunavut. This area lies underneath the zone of migration of the KID (essentially north of its final position), thus representing a key area for understanding the dynamics of this sector of the LIS. Measurements of ice-flow indicators indicate at least 7 ice-flow directions, going from N, NNW, NW to WNW, NNE, W, SE, and SW to WSW. A relative chronology was established from multiple intersecting striations and geometrical relations between multi-faceted outcrops, starting from older phases to younger ones with W, NW, NNW, and N. Surficial mapping using air-photo and satellite images indicate that this region is characterized by zones of fast and slower ice velocity. The presence in the centre of the study area of a drift-free positive relief formed by resistant NE-SW-oriented Proterozoic quartzite appears to have played an important role on the local ice dynamics by slowing down the velocity of the ice. Local example of varying ice velocity systems is expressed by a glacially

  13. An ice crystal model for jupiter's moon Europa

    DEFF Research Database (Denmark)

    Dahl-Jensen, Dorthe; schmidt, Karen Guldbae

    2003-01-01

    A simple model for crystal growth in the ice shell of Europa has been made in order to estimate the size of ice crystals at Europa's surface. If mass is lost from the surface of Europa due to sputtering processes, and the ice thickness is constant in time, ice crystals will be transported upwards...

  14. High resolution modelling of the decreasing Arctic sea ice

    DEFF Research Database (Denmark)

    Madsen, K. S.; Rasmussen, T. A. S.; Blüthgen, Jonas

    2012-01-01

    The Arctic sea ice cover has been rapidly decreasing and thinning over the last decade, with minimum ice extent in 2007 and almost as low extent in 2011. This study investigates two aspects of the decreasing ice cover; first the large scale thinning and changing dynamics of the polar sea ice, and...

  15. Interaction of ice sheets and climate on geological time scales

    NARCIS (Netherlands)

    Stap, L.B.

    2017-01-01

    Since the inception of the Antarctic ice sheet at the Eocene-Oligocene Transition (~34 Myr ago), land ice plays a crucial role in Earth’s climate. Through the ice-albedo and surface-height-temperature feedbacks, land ice variability strengthens atmospheric temperature changes induced by orbital and

  16. Performance comparison of hydraulic and gravitation HybridICE ...

    African Journals Online (AJOL)

    HybridICE is an emerging freeze desalination technology for treating complex mine wastewaters. The technology works on the principle that growing ice crystals reject impurities during freezing. The bottleneck in the freeze desalination processes may be the separation of ice from the ice slurry generated in the freeze ...

  17. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... marked on two sides “WARNING CO2 SOLID (DRY ICE).” (2) Other packagings containing solid carbon dioxide...

  18. 21 CFR 135.110 - Ice cream and frozen custard.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Ice cream and frozen custard. 135.110 Section 135....110 Ice cream and frozen custard. (a) Description. (1) Ice cream is a food produced by freezing, while... accomplish specific functions. Ice cream is sweetened with safe and suitable sweeteners and may be...

  19. Ice-Shelf Flexure and Tidal Forcing of Bindschadler Ice Stream, West Antarctica

    Science.gov (United States)

    Walker, Ryan T.; Parizek, Bryron R.; Alley, Richard B.; Brunt, Kelly M.; Anandakrishnan, Sridhar

    2014-01-01

    Viscoelastic models of ice-shelf flexure and ice-stream velocity perturbations are combined into a single efficient flowline model to study tidal forcing of grounded ice. The magnitude and timing of icestream response to tidally driven changes in hydrostatic pressure and/or basal drag are found to depend significantly on bed rheology, with only a perfectly plastic bed allowing instantaneous velocity response at the grounding line. The model can reasonably reproduce GPS observations near the grounding zone of Bindschadler Ice Stream (formerly Ice Stream D) on semidiurnal time scales; however, other forcings such as tidally driven ice-shelf slope transverse to the flowline and flexurally driven till deformation must also be considered if diurnal motion is to be matched

  20. connecting the dots between Greenland ice sheet surface melting and ice flow dynamics (Invited)

    Science.gov (United States)

    Box, J. E.; Colgan, W. T.; Fettweis, X.; Phillips, T. P.; Stober, M.

    2013-12-01

    This presentation is of a 'unified theory' in glaciology that first identifies surface albedo as a key factor explaining total ice sheet mass balance and then surveys a mechanistic self-reinforcing interaction between melt water and ice flow dynamics. The theory is applied in a near-real time total Greenland mass balance retrieval based on surface albedo, a powerful integrator of the competing effects of accumulation and ablation. New snowfall reduces sunlight absorption and increases meltwater retention. Melting amplifies absorbed sunlight through thermal metamorphism and bare ice expansion in space and time. By ';following the melt'; we reveal mechanisms linking existing science into a unified theory. Increasing meltwater softens the ice sheet in three ways: 1.) sensible heating given the water temperature exceeds that of the ice sheet interior; 2.) Some infiltrating water refreezes, transferring latent heat to the ice; 3.) Friction from water turbulence heats the ice. It has been shown that for a point on the ice sheet, basal lubrication increases ice flow speed to a time when an efficient sub-glacial drainage network develops that reduces this effect. Yet, with an increasing melt duration the point where the ice sheet glides on a wet bed increases inland to a larger area. This effect draws down the ice surface elevation, contributing to the ';elevation feedback'. In a perpetual warming scenario, the elevation feedback ultimately leads to ice sheet loss reversible only through much slower ice sheet growth in an ice age environment. As the inland ice sheet accelerates, the horizontal extension pulls cracks and crevasses open, trapping more sunlight, amplifying the effect of melt accelerated ice. As the bare ice area increases, the direct sun-exposed crevassed and infiltration area increases further allowing the ice warming process to occur more broadly. Considering hydrofracture [a.k.a. hydrofracking]; surface meltwater fills cracks, attacking the ice integrity