Probing Anderson localization of light by weak non-linear effects
International Nuclear Information System (INIS)
Breakdown of wave transport due to strong disorder is a universal phenomenon known as Anderson localization (AL). It occurs because of the macroscopic population of reciprocal multiple scattering paths, which in three dimensional systems happens at a critical scattering strength. Intensities on these random loops should thus be highly increased relative to those of a diffusive sample. In order to highlight localized modes of light, we exploit the optical nonlinearities of TiO2. Power dependent and spectrally resolved time of flight distribution measurements in transmission through slabs of TiO2 powders at various turbidities reveal that mostly long loops are affected by nonlinearities and that the deviations from diffusive transport observed at long times are due to these localized modes. Our data are a first step in the experimental investigation of the interplay between nonlinear effects and AL in 3D. (fast track communication)
Bachelard, Nicolas; Sebbah, Patrick; Vanneste, Christian
2014-01-01
We use time-domain numerical simulations of a two-dimensional (2D) scattering system to study the interaction of a collection of emitters resonantly coupled to an Anderson-localized mode. For a small electric field intensity, we observe the strong coupling between the emitters and the mode, which is characterized by linear Rabi oscillations. Remarkably, a larger intensity induces non-linear interaction between the emitters and the mode, referred to as the dynamical Stark effect, resulting in non-linear Rabi oscillations. The transition between both regimes is observed and an analytical model is proposed which accurately describes our numerical observations.
50 Years of Anderson Localization
Abrahams, Elihu
2010-01-01
In his groundbreaking paper Absence of diffusion in certain random lattices (1958), Philip W. Anderson originated, described and developed the physical principles underlying the phenomenon of the localization of quantum objects due to disorder. Anderson's 1977 Nobel Prize citation featured that paper, which was fundamental for many subsequent developments in condensed matter theory and technical applications. After more than a half century, the subject continues to be of fundamental importance. In particular, in the last 25 years, the phenomenon of localization has proved to be crucial for the
Anderson localization from classical trajectories
Brouwer, Piet W.; Altland, Alexander
2008-01-01
We show that Anderson localization in quasi-one dimensional conductors with ballistic electron dynamics, such as an array of ballistic chaotic cavities connected via ballistic contacts, can be understood in terms of classical electron trajectories only. At large length scales, an exponential proliferation of trajectories of nearly identical classical action generates an abundance of interference terms, which eventually leads to a suppression of transport coefficients. We quantitatively descri...
The non-linear evolution of edge localized modes
International Nuclear Information System (INIS)
Edge localized modes (ELMs) are instabilities in the edge of tokamak plasmas in the high confinement regime (H-mode). Without them the edge transport in ordinary H-mode plasmas is too low to establish a stationary situation. However in a future device large unmitigated ELMs are believed to cause divertor power flux densities far in excess of tolerable material limits. Hence the size of energy loss per ELM and the resulting ELM frequency must be controlled. To proceed in understanding how the ELM size is determined and how ELM mitigation methods work it is necessary to characterize the non-linear evolution of pedestal erosion. In order to achieve this experimental data is compared to the results of ELM simulations with the code JOREK (reduced MHD, non-linear) applying a specially developed synthetic magnetic diagnostic. The experimental data are acquired by several fast sampling diagnostics at the experiments ASDEX Upgrade and TCV at a large number of toroidal/poloidal positions. A central element of the presented work is the detailed characterization of dominant magnetic perturbations during ELMs. These footprints of the instability can be observed most intensely in close temporal vicinity to the onset of pedestal erosion. Dominant magnetic perturbations are caused by current perturbations located at or inside the last closed flux surface. In ASDEX Upgrade under certain conditions dominant magnetic perturbations like other H-mode edge instabilities display a similarity to solitons. Furthermore - as expected - they are often observed to be correlated to a perturbation of electron temperature. In TCV it is possible to characterize the evolution of the toroidal structure of dominant magnetic perturbations. Between growing above the level of background fluctuations and the maximum perturbation level for all time instance a similar toroidal structure is observed. This rigid mode-structure is an indication for non-linear coupling. Most frequently the dominant toroidal
The non-linear evolution of edge localized modes
Energy Technology Data Exchange (ETDEWEB)
Wenninger, Ronald
2013-01-09
Edge localized modes (ELMs) are instabilities in the edge of tokamak plasmas in the high confinement regime (H-mode). Without them the edge transport in ordinary H-mode plasmas is too low to establish a stationary situation. However in a future device large unmitigated ELMs are believed to cause divertor power flux densities far in excess of tolerable material limits. Hence the size of energy loss per ELM and the resulting ELM frequency must be controlled. To proceed in understanding how the ELM size is determined and how ELM mitigation methods work it is necessary to characterize the non-linear evolution of pedestal erosion. In order to achieve this experimental data is compared to the results of ELM simulations with the code JOREK (reduced MHD, non-linear) applying a specially developed synthetic magnetic diagnostic. The experimental data are acquired by several fast sampling diagnostics at the experiments ASDEX Upgrade and TCV at a large number of toroidal/poloidal positions. A central element of the presented work is the detailed characterization of dominant magnetic perturbations during ELMs. These footprints of the instability can be observed most intensely in close temporal vicinity to the onset of pedestal erosion. Dominant magnetic perturbations are caused by current perturbations located at or inside the last closed flux surface. In ASDEX Upgrade under certain conditions dominant magnetic perturbations like other H-mode edge instabilities display a similarity to solitons. Furthermore - as expected - they are often observed to be correlated to a perturbation of electron temperature. In TCV it is possible to characterize the evolution of the toroidal structure of dominant magnetic perturbations. Between growing above the level of background fluctuations and the maximum perturbation level for all time instance a similar toroidal structure is observed. This rigid mode-structure is an indication for non-linear coupling. Most frequently the dominant toroidal
Anderson Localization in Nonlocal Nonlinear Media
Folli, Viola; 10.1364/OL.37.000332
2012-01-01
The effect of focusing and defocusing nonlinearities on Anderson localization in highly nonlocal media is theoretically and numerically investigated. A perturbative approach is developed to solve the nonlocal nonlinear Schroedinger equation in the presence of a random potential, showing that nonlocality stabilizes Anderson states.
Anderson localization in metallic nanoparticle arrays
Mai, Zhijie; Pang, Wei; Xu, Haitao; Tan, Suiyan; Fu, Shenhe; Li, Yongyao
2016-01-01
Anderson localization has been observed in various types of waves, such as matter waves, optical waves and acoustic waves. Here we reveal that the effect of Anderson localization can be also induced in metallic nonlinear nanoparticle arrays excited by a random electrically driving field. We find that the dipole-induced nonlinearity results in ballistic expansion of dipole intensity during evolution; while the randomness of the external driving field can suppress such an expansion. Increasing the strength of randomness above the threshold value, a localized pattern of dipole intensity can be generated in the metallic nanoparticle arrays. By means of statistics, the mean intensity distribution of the dipoles reveals the formation of Anderson localization. We further show that the generated Anderson localization is highly confined, with its size down to the scale of incident wavelength. The reported results might facilitate the manipulations of electromagnetic fields in the scale of wavelength.
Anderson localization in metallic nanoparticle arrays
Mai, Zhijie; Lin, Fang; Pang, Wei; Xu, Haitao; Tan, Suiyan; Fu, Shenhe; Li, Yongyao
2016-06-01
Anderson localization has been observed in various types of waves, such as matter waves, optical waves and acoustic waves. Here we reveal that the effect of Anderson localization can be also induced in metallic nonlinear nanoparticle arrays excited by a random electrically driving field. We find that the dipole-induced nonlinearity results in ballistic expansion of dipole intensity during evolution; while the randomness of the external driving field can suppress such an expansion. Increasing the strength of randomness above the threshold value, a localized pattern of dipole intensity can be generated in the metallic nanoparticle arrays. By means of statistics, the mean intensity distribution of the dipoles reveals the formation of Anderson localization. We further show that the generated Anderson localization is highly confined, with its size down to the scale of incident wavelength. The reported results might facilitate the manipulations of electromagnetic fields in the scale of wavelength.
Random nanolasing in the Anderson localized regime
DEFF Research Database (Denmark)
Liu, Jin; Garcia, P. D.; Ek, Sara;
2014-01-01
multiple scattering. The applicability of random lasers has been limited due to multidirectional emission, lack of tunability, and strong mode competition with chaotic fluctuations due to a weak mode confinement. The regime of Anderson localization of light has been proposed for obtaining stable multimode...... random lasing, and initial work concerned macroscopic one-dimensional layered media. Here, we demonstrate on-chip random nanolasers where the cavity feedback is provided by the intrinsic disorder. The strong confinement achieved by Anderson localization reduces the spatial overlap between lasing modes...
An Anderson-localized random nanolaser
Liu, Jin; Ek, Sara; Gregersen, Niels; Suhr, Troels; Schubert, Martin; Mørk, Jesper; Stobbe, Søren; Lodahl, Peter
2012-01-01
Precision is a virtue throughout science in general and in optics in particular where carefully fabricated nanometer-scale devices hold great promise for both classical and quantum photonics [1-6]. In such nanostructures, unavoidable imperfections often impose severe performance limits but, in certain cases, disorder may enable new functionalities [7]. Here we demonstrate on-chip random nanolasers where the cavity feedback is provided by the intrinsic disorder in a semiconductor photonic-crystal waveguide, leading to Anderson localization of light [8]. This enables highly e?cient and broadband tunable lasers with very small mode volumes. We observe an intriguing interplay between gain, dispersion-controlled slow light, and disorder, which determines the cross-over from ballistic transport to Anderson localization. Such a behavior is a unique feature of non-conservative random media that enables the demonstration of all-optical control of random lasing. Our statistical analysis shows a way towards ultimate thr...
Hybrid Bloch-Anderson localization of light
Stutzer, Simon; Vysloukh, Victor A; Konotop, Vladimir V; Nolte, Stefan; Torner, Lluis; Szameit, Alexander
2013-01-01
We investigate the interplay of Bloch oscillations and Anderson localization in optics. Gradual washing out of Bloch oscillations and the formation of nearly stationary averaged intensity distributions, which are symmetric for narrow and strongly asymmetric for broad input excitations, are observed experimentally in laser-written waveguide arrays. At large disorder levels Bloch oscillations are completely destroyed and both narrow and wide excitations lead to symmetric stationary averaged intensity distributions with exponentially decaying tails.
Hybrid Bloch-Anderson localization of light.
Stützer, Simon; Kartashov, Yaroslav V; Vysloukh, Victor A; Konotop, Vladimir V; Nolte, Stefan; Torner, Lluis; Szameit, Alexander
2013-05-01
We investigate the interplay of Bloch oscillations and Anderson localization in optics. Gradual washing out of Bloch oscillations and the formation of nearly stationary averaged intensity distributions, which are symmetric for narrow and strongly asymmetric for broad input excitations, are observed experimentally in laser-written waveguide arrays. At large disorder levels Bloch oscillations are completely destroyed and both narrow and wide excitations lead to symmetric stationary averaged intensity distributions with exponentially decaying tails.
Probabilistic Numerical Methods for Fully Non-linear Non-local Parabolic PDEs
Fahim, Arash
2010-01-01
We introduce a probabilistic numerical method for the approximation of the solutions of fully non--linear parabolic non--local PDEs. The method is the generalization of the method in \\cite{ftw} for fully non--linear parabolic PDEs. As an independent result, we also introduce a Monte Carlo Quadrature method to approximate the integral with respect to L\\'evy measure which may appear inside the scheme. We consider the equations whose non--linearity is of the Hamilton--Jacobi--Belman type. We avoid the difficulties of infinite L\\'evy measures by truncation of the L\\'evy integral by some $\\kappa>0$ near $0$. The first result provides the convergence of the scheme for general parabolic non--linearities. The second result provides bounds on the rate of convergence for concave non--linearities from above and below. For both results, it is crucial to choose $\\kappa$ appropriately dependent on $h$.
Romero, María de los Ángeles Sandoval; Weder, Ricardo
2005-01-01
We consider non-linear Schr\\"odinger equations with a potential, and non-local non-linearities, that are models in mesoscopic physics, for example of a quantum capacitor, and that also are models of molecular structure. We study in detail the initial value problem for these equations. In particular, existence and uniqueness of local and global solutions, continuous dependence on the initial data and regularity. We allow for a large class of unbounded potentials. We have no restriction on the ...
Distribution of critical temperature at Anderson localization
Gammag, Rayda; Kim, Ki-Seok
2016-05-01
Based on a local mean-field theory approach at Anderson localization, we find a distribution function of critical temperature from that of disorder. An essential point of this local mean-field theory approach is that the information of the wave-function multifractality is introduced. The distribution function of the Kondo temperature (TK) shows a power-law tail in the limit of TK→0 regardless of the Kondo coupling constant. We also find that the distribution function of the ferromagnetic transition temperature (Tc) gives a power-law behavior in the limit of Tc→0 when an interaction parameter for ferromagnetic instability lies below a critical value. However, the Tc distribution function stops the power-law increasing behavior in the Tc→0 limit and vanishes beyond the critical interaction parameter inside the ferromagnetic phase. These results imply that the typical Kondo temperature given by a geometric average always vanishes due to finite density of the distribution function in the TK→0 limit while the typical ferromagnetic transition temperature shows a phase transition at the critical interaction parameter. We propose that the typical transition temperature serves a criterion for quantum Griffiths phenomena vs smeared transitions: Quantum Griffiths phenomena occur above the typical value of the critical temperature while smeared phase transitions result at low temperatures below the typical transition temperature. We speculate that the ferromagnetic transition at Anderson localization shows the evolution from quantum Griffiths phenomena to smeared transitions around the critical interaction parameter at low temperatures.
International Nuclear Information System (INIS)
The non-linear Schrödinger equation and its higher order extensions are routinely used for analysis of extreme ocean waves. This paper compares the evolution of individual wave-packets modelled using non-linear Schrödinger type equations with packets modelled using fully non-linear potential flow models. The modified non-linear Schrödinger Equation accurately models the relatively large scale non-linear changes to the shape of wave-groups, with a dramatic contraction of the group along the mean propagation direction and a corresponding extension of the width of the wave-crests. In addition, as extreme wave form, there is a local non-linear contraction of the wave-group around the crest which leads to a localised broadening of the wave spectrum which the bandwidth limited non-linear Schrödinger Equations struggle to capture. This limitation occurs for waves of moderate steepness and a narrow underlying spectrum
Energy Technology Data Exchange (ETDEWEB)
Adcock, T. A. A.; Taylor, P. H. [Department of Engineering Science, University of Oxford, Oxford (United Kingdom)
2016-01-15
The non-linear Schrödinger equation and its higher order extensions are routinely used for analysis of extreme ocean waves. This paper compares the evolution of individual wave-packets modelled using non-linear Schrödinger type equations with packets modelled using fully non-linear potential flow models. The modified non-linear Schrödinger Equation accurately models the relatively large scale non-linear changes to the shape of wave-groups, with a dramatic contraction of the group along the mean propagation direction and a corresponding extension of the width of the wave-crests. In addition, as extreme wave form, there is a local non-linear contraction of the wave-group around the crest which leads to a localised broadening of the wave spectrum which the bandwidth limited non-linear Schrödinger Equations struggle to capture. This limitation occurs for waves of moderate steepness and a narrow underlying spectrum.
Adcock, T. A. A.; Taylor, P. H.
2016-01-01
The non-linear Schrödinger equation and its higher order extensions are routinely used for analysis of extreme ocean waves. This paper compares the evolution of individual wave-packets modelled using non-linear Schrödinger type equations with packets modelled using fully non-linear potential flow models. The modified non-linear Schrödinger Equation accurately models the relatively large scale non-linear changes to the shape of wave-groups, with a dramatic contraction of the group along the mean propagation direction and a corresponding extension of the width of the wave-crests. In addition, as extreme wave form, there is a local non-linear contraction of the wave-group around the crest which leads to a localised broadening of the wave spectrum which the bandwidth limited non-linear Schrödinger Equations struggle to capture. This limitation occurs for waves of moderate steepness and a narrow underlying spectrum.
Controlling Anderson localization in disordered photonic crystal waveguides
DEFF Research Database (Denmark)
Garcia-Fernández, David; Smolka, Stephan; Stobbe, Søren;
2010-01-01
In most experiments on Anderson localization so far, only completely random systems without any long-range correlation between the scattering sites have been used, meaning that the Anderson localized modes cannot be controlled. Strongly confined modes were recently observed in the slow-light regime...... of a disordered photonic crystal waveguide and attributed to Anderson localization. We have tested this hypothesis by measuring the light localization length, ξloc, in a disordered photonic crystal waveguide and checked explicitly the criterion of one dimensional Anderson localization that ξloc is...... shorter than the waveguide length LS. Our measurements demonstrate for the first time the close relation between light localization and density of states, which can be used ultimately for controlling Anderson localized modes....
Probing the statistical properties of Anderson localization with quantum emitters
DEFF Research Database (Denmark)
Smolka, Stephan; Nielsen, Henri Thyrrestrup; Sapienza, Luca;
2011-01-01
Wave propagation in disordered media can be strongly modified by multiple scattering and wave interference. Ultimately, the so-called Anderson-localized regime is reached when the waves become strongly confined in space. So far, Anderson localization of light has been probed in transmission...
Controlling Anderson localization in disordered photonic crystal waveguides
DEFF Research Database (Denmark)
Smolka, Stephan; Garcia, Pedro D.; Lodahl, Peter
2010-01-01
We prove Anderson localization in the slow-light regime of a photonic crystal waveguide by measuring the ensemble-averaged localization length which is controlled by the dispersion of the disordered photonic crystal waveguide.......We prove Anderson localization in the slow-light regime of a photonic crystal waveguide by measuring the ensemble-averaged localization length which is controlled by the dispersion of the disordered photonic crystal waveguide....
Transverse Anderson localization of light: a tutorial review
Mafi, Arash
2015-01-01
This tutorial review gives an overview of the transverse Anderson localization of light in one and two transverse dimensions. A pedagogical approach is followed throughout the presentation, where many aspects of localization are illustrated by means of a few simple models. The tutorial starts with some basic aspects of random matrix theory, and light propagation through and reflection from a random stack of dielectric slabs. Transverse Anderson localization of light in one- and two-dimensiona...
BAND GAP EFFECTS IN PERIODIC CHAIN WITH LOCAL LINEAR OR NON-LINEAR OSCILLATORS
DEFF Research Database (Denmark)
Lazarov, Boyan Stefanov; Jensen, Jakob Søndergaard
2007-01-01
attached linear oscillators. The stop band is located around the resonant frequency of the local oscillators, and thus a stop band can be created in the lower frequency range. In this paper, wave propagation in one-dimensional infinite periodic chains with attached linear and non-linear local oscillators...... within bands of frequencies called stop bands. Stop bands in structures with periodic or random inclusions are located mainly in the high frequency range, as the wave length has to be comparable with the distance between the alternating parts. Wave attenuation is also possible in structures with locally...
Cavity quantum electrodynamics in the Anderson-localized regime
DEFF Research Database (Denmark)
Sapienza, Luca; Nielsen, Henri Thyrrestrup; Stobbe, Søren;
2010-01-01
We experimentally measure, by means of time-resolved photoluminescence spectroscopy, a 15-fold enhancement of the spontaneous emission decay rate of single semiconductor quantum dots coupled to disorder-induced Anderson-localized modes with efficiencies reaching 94%....
Localization of Non-Linearly Modeled Autonomous Mobile Robots Using Out-of-Sequence Measurements
Directory of Open Access Journals (Sweden)
Jesus M. de la Cruz
2012-02-01
Full Text Available This paper presents a state of the art of the estimation algorithms dealing with Out-of-Sequence (OOS measurements for non-linearly modeled systems. The state of the art includes a critical analysis of the algorithm properties that takes into account the applicability of these techniques to autonomous mobile robot navigation based on the fusion of the measurements provided, delayed and OOS, by multiple sensors. Besides, it shows a representative example of the use of one of the most computationally efficient approaches in the localization module of the control software of a real robot (which has non-linear dynamics, and linear and non-linear sensors and compares its performance against other approaches. The simulated results obtained with the selected OOS algorithm shows the computational requirements that each sensor of the robot imposes to it. The real experiments show how the inclusion of the selected OOS algorithm in the control software lets the robot successfully navigate in spite of receiving many OOS measurements. Finally, the comparison highlights that not only is the selected OOS algorithm among the best performing ones of the comparison, but it also has the lowest computational and memory cost.
Localization of non-linearly modeled autonomous mobile robots using out-of-sequence measurements.
Besada-Portas, Eva; Lopez-Orozco, Jose A; Lanillos, Pablo; de la Cruz, Jesus M
2012-01-01
This paper presents a state of the art of the estimation algorithms dealing with Out-of-Sequence (OOS) measurements for non-linearly modeled systems. The state of the art includes a critical analysis of the algorithm properties that takes into account the applicability of these techniques to autonomous mobile robot navigation based on the fusion of the measurements provided, delayed and OOS, by multiple sensors. Besides, it shows a representative example of the use of one of the most computationally efficient approaches in the localization module of the control software of a real robot (which has non-linear dynamics, and linear and non-linear sensors) and compares its performance against other approaches. The simulated results obtained with the selected OOS algorithm shows the computational requirements that each sensor of the robot imposes to it. The real experiments show how the inclusion of the selected OOS algorithm in the control software lets the robot successfully navigate in spite of receiving many OOS measurements. Finally, the comparison highlights that not only is the selected OOS algorithm among the best performing ones of the comparison, but it also has the lowest computational and memory cost.
Non-Linear Localized Modes Give Rise to a Reflective Optical Limiter
Makri, Eleana; Kottos, Tsampikos; Vitebskiy, Ilya
2013-01-01
Optical limiters are designed to transmit low intensity light, while blocking the light with excessively high intensity. A typical passive limiter absorbs excessive electromagnetic energy, which can cause its overheating and destruction. We propose the concept of a layered reflective limiter based on resonance transmission via a non-linear localized mode. Such a limiter does not absorb the high level radiation, but rather reflects it back to space. Importantly, the total reflection occurs within a broad frequency range and for an arbitrary direction of incidence. The same concept can be applied to infrared and microwave frequencies.
Absence of Anderson localization in certain random lattices
Choi, Wonjun; Yin, Cheng; Hooper, Ian R.; Bernes, William L.; Bertolotti, Jacopo
2016-01-01
We report on the transition between an Anderson localized regime and a conductive regime in a 1D scattering system with correlated disorder. We show experimentally that when long-range correlations, in the form of a power-law spectral density with power larger than 2, are introduced the localization length becomes much bigger than the sample size and the transmission peaks typical of an Anderson localized system merge into a pass band. As other forms of long-range correlations are known to ha...
Multiple-beam Propagation in an Anderson Localized Optical Fiber
Karbasi, Salman; Mafi, Arash
2012-01-01
We investigate the simultaneous propagation of multiple beams in a disordered Anderson localized optical fiber. The profiles of each beam fall off exponentially, enabling multiple channels at high-density. We examine the influence of fiber bends on the movement of the beam positions, which we refer to as drift. We investigate the extent of the drift of localized beams induced by macro-bending and show that it is possible to design Anderson localized optical fibers which can be used for practical beam-multiplexing applications.
Interplay of Anderson localization and strong interaction in disordered systems
Energy Technology Data Exchange (ETDEWEB)
Henseler, Peter
2010-01-15
We study the interplay of disorder localization and strong local interactions within the Anderson-Hubbard model. Taking into account local Mott-Hubbard physics and static screening of the disorder potential, the system is mapped onto an effective single-particle Anderson model, which is studied within the self-consistent theory of electron localization. For fermions, we find rich nonmonotonic behavior of the localization length {xi}, particularly in two-dimensional systems, including an interaction-induced exponential enhancement of {xi} for small and intermediate disorders and a strong reduction of {xi} due to hopping suppression by strong interactions. In three dimensions, we identify for half filling a Mott-Hubbard-assisted Anderson localized phase existing between the metallic and the Mott-Hubbard-gapped phases. For small U there is re-entrant behavior from the Anderson localized phase to the metallic phase. For bosons, the unrestricted particle occupation number per lattice site yields a monotonic enhancement of {xi} as a function of decreasing interaction, which we assume to persist until the superfluid Bose-Einstein condensate phase is entered. Besides, we study cold atomic gases expanding, by a diffusion process, in a weak random potential. We show that the density-density correlation function of the expanding gas is strongly affected by disorder and we estimate the typical size of a speckle spot, i.e., a region of enhanced or depleted density. Both a Fermi gas and a Bose-Einstein condensate (in a mean-field approach) are considered. (orig.)
Interplay of Anderson localization and strong interaction in disordered systems
International Nuclear Information System (INIS)
We study the interplay of disorder localization and strong local interactions within the Anderson-Hubbard model. Taking into account local Mott-Hubbard physics and static screening of the disorder potential, the system is mapped onto an effective single-particle Anderson model, which is studied within the self-consistent theory of electron localization. For fermions, we find rich nonmonotonic behavior of the localization length ξ, particularly in two-dimensional systems, including an interaction-induced exponential enhancement of ξ for small and intermediate disorders and a strong reduction of ξ due to hopping suppression by strong interactions. In three dimensions, we identify for half filling a Mott-Hubbard-assisted Anderson localized phase existing between the metallic and the Mott-Hubbard-gapped phases. For small U there is re-entrant behavior from the Anderson localized phase to the metallic phase. For bosons, the unrestricted particle occupation number per lattice site yields a monotonic enhancement of ξ as a function of decreasing interaction, which we assume to persist until the superfluid Bose-Einstein condensate phase is entered. Besides, we study cold atomic gases expanding, by a diffusion process, in a weak random potential. We show that the density-density correlation function of the expanding gas is strongly affected by disorder and we estimate the typical size of a speckle spot, i.e., a region of enhanced or depleted density. Both a Fermi gas and a Bose-Einstein condensate (in a mean-field approach) are considered. (orig.)
A Probabilistic Scheme for Fully Non-linear Non-local Parabolic PDEs with singular Levy measures
Fahim, Arash
2011-01-01
We introduce a Monte Carlo scheme for the approximation of the solutions of fully non--linear parabolic non--local PDEs. The method is the generalization of the method proposed by [Fahim-Touzi-Warin,2011] for fully non--linear parabolic PDEs. As an independent result, we also introduce a Monte Carlo Quadrature method to approximate the integral with respect to Lévy measure which may appear inside the scheme. We consider the equations whose non--linearity is of the Hamilton--Jacobi--Belman typ...
Cavity quantum electrodynamics with Anderson-localized modes
DEFF Research Database (Denmark)
Sapienza, Luca; Nielsen, Henri Thyrrestrup; Stobbe, Søren;
2010-01-01
by a factor of 15 on resonance with the Anderson-localized mode, and 94% of the emitted single photons coupled to the mode. Disordered photonic media thus provide an efficient platform for quantum electrodynamics, offering an approach to inherently disorder-robust quantum information devices....
Topological principles in the theory of Anderson localization
A.M.M. Pruisken
2009-01-01
Scaling ideas in the theory of the quantum Hall effect are fundamentally based on topological principles in Anderson localization theory. These concepts have a very general significance and are not limited to replica field theory or disordered systems alone. We will discuss these ideas in several di
Absence of Anderson localization in certain random lattices
Choi, Wonjun; Hooper, Ian R; Bernes, William L; Bertolotti, Jacopo
2016-01-01
We report on the transition between an Anderson localized regime and a conductive regime in a 1D scattering system with correlated disorder. We show experimentally that when long-range correlations, in the form of a power-law spectral density with power larger than 2, are introduced the localization length becomes much bigger than the sample size and the transmission peaks typical of an Anderson localized system merge into a pass band. As other forms of long-range correlations are known to have the opposite effect, i.e. to enhance localization, our results show that care is needed when discussing the effects of correlations, as different kinds of long-range correlations can give rise to very different behavior.
Photon transport enhanced by transverse Anderson localization in disordered superlattices
Hsieh, Pin-Chun; McMillan, James; Tsai, Min-An; Lu, Ming; Panoiu, Nicolae; Wong, Chee Wei
2014-01-01
One of the daunting challenges in optical physics is to accurately control the flow of light at the subwavelength scale, by patterning the optical medium one can design anisotropic media. The light transport can also be significantly affected by Anderson localization, namely the wave localization in a disordered medium, a ubiquitous phenomenon in wave physics. Here we report the photon transport and collimation enhanced by transverse Anderson localization in chip-scale dispersion engineered anisotropic media. We demonstrate a new type of anisotropic photonic structure in which diffraction is nearly completely arrested by cascaded resonant tunneling through transverse guided resonances. By perturbing the shape of more than 4,000 scatterers in these superlattices we add structural disordered in a controlled manner and uncover the mechanism of disorder-induced transverse localization at the chip-scale. Arrested spatial divergence is captured in the power-law scaling, along with exponential asymmetric mode profil...
Transverse Anderson localization of light: a tutorial review
Mafi, Arash
2015-01-01
This tutorial review gives an overview of the transverse Anderson localization of light in one and two transverse dimensions. A pedagogical approach is followed throughout the presentation, where many aspects of localization are illustrated by means of a few simple models. The tutorial starts with some basic aspects of random matrix theory, and light propagation through and reflection from a random stack of dielectric slabs. Transverse Anderson localization of light in one- and two-dimensional coupled waveguide arrays is subsequently established and discussed. Recent experimental observations of localization and image transport in disordered optical fibers are discussed. More advanced topics, such as hyper-transport in longitudinally varying disordered waveguides, the impact of nonlinearity, and propagation of partially coherent and quantum light, are also examined.
Many-body Anderson localization in one-dimensional systems
Delande, Dominique; Sacha, Krzysztof; Płodzień, Marcin; Avazbaev, Sanat K.; Zakrzewski, Jakub
2013-04-01
We show, using quasi-exact numerical simulations, that Anderson localization in a disordered one-dimensional potential survives in the presence of attractive interaction between particles. The localization length of the particles' center of mass—computed analytically for weak disorder—is in good agreement with the quasi-exact numerical observations using the time evolving block decimation algorithm. Our approach allows for simulation of the entire experiment including the final measurement of all atom positions.
Brambila, Danilo
2012-01-01
We have theoretically studied Anderson localization in a 2D+1 nonlinear kicked rotor model. The system shows a very rich dynamical behavior, where the Anderson localization is suppressed and soliton wave-particles undergo a superdiffusive motion.
Multi-Scale Jacobi Method for Anderson Localization
Imbrie, John Z.
2015-11-01
A new KAM-style proof of Anderson localization is obtained. A sequence of local rotations is defined, such that off-diagonal matrix elements of the Hamiltonian are driven rapidly to zero. This leads to the first proof via multi-scale analysis of exponential decay of the eigenfunction correlator (this implies strong dynamical localization). The method has been used in recent work on many-body localization (Imbrie in On many-body localization for quantum spin chains, arXiv:1403.7837 URL"/> , 2014).
Non-linear Heat Transport Modelling with Edge Localized Modes and Plasma Edge Control in Tokamaks
Energy Technology Data Exchange (ETDEWEB)
Becoulet, M.; Huysmans, G.; Thomas, P.; Ghendrih, P.; Grosman, A.; Monier-Garbet, P.; Garbet, X.; Zwingman, W.; Nardon, E. [Euratom-CEA, Centre d' Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Moyer, R. [California Univ., San Diego, La Jolla CA (United States); Evans, T.; Leonard, A. [General Atomics, San Diego, CA (United States)
2004-07-01
The paper presents a new approach for the modelling of the pedestal energy transport in the presence of Type I ELMs (edge localized mode) based on the linear ideal MHD code MISHKA coupled with the non-linear energy transport code TELM in a realistic tokamak geometry. The main mechanism of increased transport through the External Transport Barrier (ETB) in this model of ELMs is the increased convective flux due to the MHD velocity perturbation and an additional conductive flux due the radial perturbation of the magnetic field leading to a flattening of the pressure profile in the unstable zone. The typical Type I ELM time-cycle including the destabilization of the ballooning modes leading to the fast (200 {mu}s) collapse of the pedestal pressure followed by the edge pressure profile re-building on a diffusive time scale was reproduced numerically. The possible mechanism of Type I ELMs control using a stochastic plasma boundary created by external coils is modelled in the paper. In the stochastic layer the transverse transport is effectively increased by the magnetic field line diffusion. The modelling results for DIII-D experiment on Type I ELM suppression using the external perturbation from the I-coils demonstrated the possibility to decrease the edge pressure gradient just under the ideal ballooning limit, leading to the high confinement regime without Type I ELMs. (authors)
Cavity quantum electrodynamics with Anderson-localized modes.
Sapienza, Luca; Thyrrestrup, Henri; Stobbe, Søren; Garcia, Pedro David; Smolka, Stephan; Lodahl, Peter
2010-03-12
A major challenge in quantum optics and quantum information technology is to enhance the interaction between single photons and single quantum emitters. This requires highly engineered optical cavities that are inherently sensitive to fabrication imperfections. We have demonstrated a fundamentally different approach in which disorder is used as a resource rather than a nuisance. We generated strongly confined Anderson-localized cavity modes by deliberately adding disorder to photonic crystal waveguides. The emission rate of a semiconductor quantum dot embedded in the waveguide was enhanced by a factor of 15 on resonance with the Anderson-localized mode, and 94% of the emitted single photons coupled to the mode. Disordered photonic media thus provide an efficient platform for quantum electrodynamics, offering an approach to inherently disorder-robust quantum information devices.
Institute of Scientific and Technical Information of China (English)
Hasan ABBASI NOZARI; Hamed DEHGHAN BANADAKI; Mohammad MOKHTARE; Somaveh HEKMATI VAHED
2012-01-01
This study deals with the neuro-fuzzy (NF) modelling of a real industrial winding process in which the acquired NF model can be exploited to improve control performance and achieve a robust fault-tolerant system.A new simulator model is proposed for a winding process using non-linear identification based on a recurrent local linear neuro-fuzzy (RLLNF) network trained by local linear model tree (LOLIMOT),which is an incremental tree-based learning algorithm.The proposed NF models are compared with other known intelligent identifiers,namely multilayer perceptron (MLP) and radial basis function (RBF).Comparison of our proposed non-linear models and associated models obtained through the least square error (LSE) technique (the optimal modelling method for linear systems) confirms that the winding process is a non-linear system.Experimental results show the effectiveness of our proposed NF modelling approach.
Quasiperiodic driving of Anderson localized waves in one dimension
Hatami, H.; Danieli, C.; Bodyfelt, J. D.; Flach, S
2016-01-01
We consider a quantum particle in a one-dimensional disordered lattice with Anderson localization, in the presence of multi-frequency perturbations of the onsite energies. Using the Floquet representation, we transform the eigenvalue problem into a Wannier-Stark basis. Each frequency component contributes either to a single channel or a multi-channel connectivity along the lattice, depending on the control parameters. The single channel regime is essentially equivalent to the undriven case. T...
Floß, Johannes
2011-01-01
We demonstrate that the current laser technology used for field-free molecular alignment via a cascade of Raman rotational transitions allows for observing long-discussed non-linear quantum phenomena in the dynamics of the periodically kicked rotor. This includes the scaling of the absorbed energy near the conditions of quantum resonance and Anderson-like localization in the angular momentum. Based on these findings, we suggest a novel approach to tunable selective rotational excitation and alignment in a molecular mixture, using trains of short laser pulses. We demonstrate the efficiency of this approach by applying it to a mixture of two nitrogen isotopologues (14N2 and 15N2), and show that strong selectivity is possible even at room temperature.
Signatures of Anderson localization excited by an optical frequency comb
Gentilini, S.
2010-01-25
We investigate Anderson localization of light as occurring in ultrashort excitations. A theory based on time dependent coupled-mode equations predicts universal features in the spectrum of the transmitted pulse. In particular, the process of strong localization of light is shown to correspond to the formation of peaks in both the amplitude and in the group delay of the transmitted pulse. Parallel ab initio simulations made with finite-difference time-domain codes and molecular dynamics confirm theoretical predictions, while showing that there exists an optimal degree of disorder for the strong localization. © 2010 The American Physical Society.
Quasiperiodic driving of Anderson localized waves in one dimension
Hatami, H.; Danieli, C.; Bodyfelt, J. D.; Flach, S.
2016-06-01
We consider a quantum particle in a one-dimensional disordered lattice with Anderson localization in the presence of multifrequency perturbations of the onsite energies. Using the Floquet representation, we transform the eigenvalue problem into a Wannier-Stark basis. Each frequency component contributes either to a single channel or a multichannel connectivity along the lattice, depending on the control parameters. The single-channel regime is essentially equivalent to the undriven case. The multichannel driving increases substantially the localization length for slow driving, showing two different scaling regimes of weak and strong driving, yet the localization length stays finite for a finite number of frequency components.
Non-local investigation of bifurcations of solutions of non-linear elliptic equations
Energy Technology Data Exchange (ETDEWEB)
Il' yasov, Ya Sh
2002-12-31
We justify the projective fibration procedure for functionals defined on Banach spaces. Using this procedure and a dynamical approach to the study with respect to parameters, we prove that there are branches of positive solutions of non-linear elliptic equations with indefinite non-linearities. We investigate the asymptotic behaviour of these branches at bifurcation points. In the general case of equations with p-Laplacian we prove that there are upper bounds of branches of positive solutions with respect to the parameter.
Integrals of motion for one-dimensional Anderson localized systems
Modak, Ranjan; Mukerjee, Subroto; Yuzbashyan, Emil A.; Shastry, B. Sriram
2016-03-01
Anderson localization is known to be inevitable in one-dimension for generic disordered models. Since localization leads to Poissonian energy level statistics, we ask if localized systems possess ‘additional’ integrals of motion as well, so as to enhance the analogy with quantum integrable systems. We answer this in the affirmative in the present work. We construct a set of nontrivial integrals of motion for Anderson localized models, in terms of the original creation and annihilation operators. These are found as a power series in the hopping parameter. The recently found Type-1 Hamiltonians, which are known to be quantum integrable in a precise sense, motivate our construction. We note that these models can be viewed as disordered electron models with infinite-range hopping, where a similar series truncates at the linear order. We show that despite the infinite range hopping, all states but one are localized. We also study the conservation laws for the disorder free Aubry-Andre model, where the states are either localized or extended, depending on the strength of a coupling constant. We formulate a specific procedure for averaging over disorder, in order to examine the convergence of the power series. Using this procedure in the Aubry-Andre model, we show that integrals of motion given by our construction are well-defined in localized phase, but not so in the extended phase. Finally, we also obtain the integrals of motion for a model with interactions to lowest order in the interaction.
Two-particle Anderson localization at low energies
Ekanga, Trésor
2012-01-01
We prove exponential spectral localization in a two-particle lattice Anderson model, with a short-range interaction and external random i.i.d. potential, at sufficiently low energies. The proof is based on the multi-particle multi-scale analysis developed earlier by Chulaevsky and Suhov (2009) in the case of high disorder. Our method applies to a larger class of random potentials than in Aizenman and Warzel (2009) where dynamical localization was proved with the help of the fractional moment method.
Defect-controlled Anderson localization of light in photonic lattices
International Nuclear Information System (INIS)
The transverse localization of light in a disordered photonic lattice with a central defect is analyzed numerically. The effect of different input beam widths on various regimes of Anderson localization is investigated. The inclusion of a defect enhances the localization of both narrow and broad beams, as compared to the lattice with no defect. But, in the case of a broad beam a higher disorder level is needed to reach the same localization as for a narrow input beam. It is also investigated how the transverse localization of light in such geometries depends on both the strength of disorder and the strength of nonlinearity in the system. While in the linear regime the localization is most pronounced in the lattice with the defect, in the nonlinear regime this is not the case. (paper)
Invariant-imbedding approach to localization. II. Non-linear random media
Doucot, B.; Rammal, R.
1987-01-01
By employing an invariant-imbedding method a partial differential equation is derived for the complex reflection amplitude R (L ) of a one-dimensional non-linear random medium of length L. The method of characteristics reduces this equation to a dynamical system. Averaging of the perturbation of orbits by weak disorder is used to investigate the probability distribution of R (L). Two different situations are considered : fixed output w 0 (Problem A) and fixed input (Problem B). For a large cl...
Transversal Anderson localization of sound in acoustic waveguide arrays
International Nuclear Information System (INIS)
We present designs of one-dimensional acoustic waveguide arrays and investigate wave propagation inside. Under the condition of single identical waveguide mode and weak coupling, the acoustic wave motion in waveguide arrays can be modeled with a discrete mode-coupling theory. The coupling constants can be retrieved from simulations or experiments as the function of neighboring waveguide separations. Sound injected into periodic arrays gives rise to the discrete diffraction, exhibiting ballistic or extended transport in transversal direction. But sound injected into randomized waveguide arrays readily leads to Anderson localization transversally. The experimental results show good agreement with simulations and theoretical predictions. (paper)
Experimental Observation of Two-Dimensional Anderson Localization with the Atomic Kicked Rotor
Manai, Isam; Clément, Jean-François; Chicireanu, Radu; Hainaut, Clément; Garreau, Jean Claude; Szriftgiser, Pascal; Delande, Dominique
2015-01-01
Dimension 2 is expected to be the lower critical dimension for Anderson localization in a time-reversal-invariant disordered quantum system: the dynamics is generically localized in dimension lower than 2, while it presents a transition from a diffusive regime at weak disorder to a localized regime at strong disorder in dimension larger than 2. We use an atomic quasiperiodically kicked rotor – equivalent to a two-dimensional Anderson-like model – to experimentally study Anderson localization ...
Experimental Observation of Two-Dimensional Anderson Localization with the Atomic Kicked Rotor.
Manai, Isam; Clément, Jean-François; Chicireanu, Radu; Hainaut, Clément; Garreau, Jean Claude; Szriftgiser, Pascal; Delande, Dominique
2015-12-11
Dimension 2 is expected to be the lower critical dimension for Anderson localization in a time-reversal-invariant disordered quantum system. Using an atomic quasiperiodic kicked rotor-equivalent to a two-dimensional Anderson-like model-we experimentally study Anderson localization in dimension 2 and we observe localized wave function dynamics. We also show that the localization length depends exponentially on the disorder strength and anisotropy and is in quantitative agreement with the predictions of the self-consistent theory for the 2D Anderson localization. PMID:26705619
Density of states controls Anderson localization in disordered photonic crystal waveguides
DEFF Research Database (Denmark)
Garcia-Fernández, David; Smolka, Stephan; Stobbe, Søren;
2010-01-01
We prove Anderson localization in a disordered photonic crystal waveguide by measuring the ensemble-averaged extinction mean-free path, ℓe, which is controlled by the dispersion in the photon density of states (DOS) of the photonic crystal waveguide. Except for the very low DOS case, where out...... demonstrates the close relation between Anderson localization and the DOS in disordered photonic crystals, which opens a promising route to controlling and exploiting Anderson-localized modes for efficient light confinement....
Energy Technology Data Exchange (ETDEWEB)
Kojima, Kotaro [Department of Architecture and Architectural Engineering, Kyoto University, Kyoto 615-8540 (Japan); Kamagata, Shuichi [Nuclear Power Department, Kajima Corporation, Tokyo 107-8348 (Japan); Takewaki, Izuru, E-mail: takewaki@archi.kyoto-u.ac.jp [Department of Architecture and Architectural Engineering, Kyoto University, Kyoto 615-8540 (Japan)
2014-07-01
Highlights: • A new interpretation of large earthquake accelerations is provided. • Non-linear interaction between an embedded building and its surrounding soil is a key. • A bi-linear restoring-force characteristic with a gap-slip process is used for analysis. • Ricker wavelet and a continuous sweep sinusoidal wave are adopted as input. • The amplification is induced by a higher mode due to the change of a support condition. - Abstract: A new interpretation of large amplitude earthquake accelerations recorded at the Kashiwazaki-Kariwa nuclear power station during the Niigata-ken Chuetsu-oki earthquake in 2007 is provided from the viewpoint of non-linear local interaction between an embedded building and its surrounding soil. An occurrence mechanism is investigated by the dynamic response analysis in which a bi-linear restoring-force characteristic with a gap-slip process is used. The Ricker wavelet and the continuous sweep sinusoidal wave are adopted as an input. The amplification is explained to be induced by an additional higher mode due to the change of a support condition, such as a gap between an embedded building and its surrounding soil.
International Nuclear Information System (INIS)
Highlights: • A new interpretation of large earthquake accelerations is provided. • Non-linear interaction between an embedded building and its surrounding soil is a key. • A bi-linear restoring-force characteristic with a gap-slip process is used for analysis. • Ricker wavelet and a continuous sweep sinusoidal wave are adopted as input. • The amplification is induced by a higher mode due to the change of a support condition. - Abstract: A new interpretation of large amplitude earthquake accelerations recorded at the Kashiwazaki-Kariwa nuclear power station during the Niigata-ken Chuetsu-oki earthquake in 2007 is provided from the viewpoint of non-linear local interaction between an embedded building and its surrounding soil. An occurrence mechanism is investigated by the dynamic response analysis in which a bi-linear restoring-force characteristic with a gap-slip process is used. The Ricker wavelet and the continuous sweep sinusoidal wave are adopted as an input. The amplification is explained to be induced by an additional higher mode due to the change of a support condition, such as a gap between an embedded building and its surrounding soil
All-solid-state cavity QED using Anderson-localized modes in disordered photonic crystal waveguides
DEFF Research Database (Denmark)
Lodahl, Peter; Sapienza, Luca; Nielsen, Henri Thyrrestrup;
2010-01-01
We employ Anderson-localized modes in deliberately disordered photonic crystal waveguides to confine light and enhance the interaction with matter. A 15-fold enhancement of the decay rate of a single quantum dot is observed meaning that 94% of the emitted single photons are coupled to an Anderson...
Non-linear non-local molecular electrodynamics with nano-optical fields.
Chernyak, Vladimir Y; Saurabh, Prasoon; Mukamel, Shaul
2015-10-28
The interaction of optical fields sculpted on the nano-scale with matter may not be described by the dipole approximation since the fields may vary appreciably across the molecular length scale. Rather than incrementally adding higher multipoles, it is advantageous and more physically transparent to describe the optical process using non-local response functions that intrinsically include all multipoles. We present a semi-classical approach for calculating non-local response functions based on the minimal coupling Hamiltonian. The first, second, and third order response functions are expressed in terms of correlation functions of the charge and the current densities. This approach is based on the gauge invariant current rather than the polarization, and on the vector potential rather than the electric and magnetic fields.
Linearized versus non-linear inverse methods for seismic localization of underground sources
DEFF Research Database (Denmark)
Oh, Geok Lian; Jacobsen, Finn
2013-01-01
the Bayes nonlinear inversion method. The travel times used in the beamformer are derived from solving the Eikonal equation. In the linearized inversion method, we assume that the elastic waves are predominantly acoustic waves, and the acoustic approximation is applied. For the nonlinear inverse......The problem of localization of underground sources from seismic measurements detected by several geophones located on the ground surface is addressed. Two main approaches to the solution of the problem are considered: a beamforming approach that is derived from the linearized inversion problem, and...... Difference elastic wave-field numerical method. In this paper, the accuracy and performance of the linear beamformer and nonlinear inverse methods to localize a underground seismic source are checked and compared using computer generated synthetic experimental data. © 2013 Acoustical Society of America....
Non-linear non-local molecular electrodynamics with nano-optical fields.
Chernyak, Vladimir Y; Saurabh, Prasoon; Mukamel, Shaul
2015-10-28
The interaction of optical fields sculpted on the nano-scale with matter may not be described by the dipole approximation since the fields may vary appreciably across the molecular length scale. Rather than incrementally adding higher multipoles, it is advantageous and more physically transparent to describe the optical process using non-local response functions that intrinsically include all multipoles. We present a semi-classical approach for calculating non-local response functions based on the minimal coupling Hamiltonian. The first, second, and third order response functions are expressed in terms of correlation functions of the charge and the current densities. This approach is based on the gauge invariant current rather than the polarization, and on the vector potential rather than the electric and magnetic fields. PMID:26520498
Two-photon Anderson localization in a disordered quadratic waveguide array
International Nuclear Information System (INIS)
We theoretically investigate two-photon Anderson localization in a χ (2) waveguide array with off-diagonal disorder. The nonlinear parametric down-conversion process would enhance both the single-photon and the two-photon Anderson localization. In the strong disorder regime, the two-photon position correlation exhibits a bunching distribution around the pumped waveguides, which is independent of pumping conditions and geometrical structures of waveguide arrays. Quadratic nonlinearity can be supplied as a new ingredient for Anderson localization. Also, our results pave the way for engineering quantum states through nonlinear quantum walks. (paper)
Schulte, T.; Drenkelforth, S.; Kruse, J.; Ertmer, W.; Arlt, J.; Sacha, K.; Zakrzewski, J.; Lewenstein, M.
2005-10-01
We investigate, both experimentally and theoretically, possible routes towards Anderson-like localization of Bose-Einstein condensates in disordered potentials. The dependence of this quantum interference effect on the nonlinear interactions and the shape of the disorder potential is investigated. Experiments with an optical lattice and a superimposed disordered potential reveal the lack of Anderson localization. A theoretical analysis shows that this absence is due to the large length scale of the disorder potential as well as its screening by the nonlinear interactions. Further analysis shows that incommensurable superlattices should allow for the observation of the crossover from the nonlinear screening regime to the Anderson localized case within realistic experimental parameters.
International Nuclear Information System (INIS)
We investigate, both experimentally and theoretically, possible routes towards Anderson-like localization of Bose-Einstein condensates in disordered potentials. The dependence of this quantum interference effect on the nonlinear interactions and the shape of the disorder potential is investigated. Experiments with an optical lattice and a superimposed disordered potential reveal the lack of Anderson localization. A theoretical analysis shows that this absence is due to the large length scale of the disorder potential as well as its screening by the nonlinear interactions. Further analysis shows that incommensurable superlattices should allow for the observation of the crossover from the nonlinear screening regime to the Anderson localized case within realistic experimental parameters
Directory of Open Access Journals (Sweden)
Jessamine P Winer
Full Text Available Most tissue cells grown in sparse cultures on linearly elastic substrates typically display a small, round phenotype on soft substrates and become increasingly spread as the modulus of the substrate increases until their spread area reaches a maximum value. As cell density increases, individual cells retain the same stiffness-dependent differences unless they are very close or in molecular contact. On nonlinear strain-stiffening fibrin gels, the same cell types become maximally spread even when the low strain elastic modulus would predict a round morphology, and cells are influenced by the presence of neighbors hundreds of microns away. Time lapse microscopy reveals that fibroblasts and human mesenchymal stem cells on fibrin deform the substrate by several microns up to five cell lengths away from their plasma membrane through a force limited mechanism. Atomic force microscopy and rheology confirm that these strains locally and globally stiffen the gel, depending on cell density, and this effect leads to long distance cell-cell communication and alignment. Thus cells are acutely responsive to the nonlinear elasticity of their substrates and can manipulate this rheological property to induce patterning.
Anderson localization to enhance light-matter interaction (Conference Presentation)
Garcia, Pedro David
2016-04-01
Deliberately introducing disorder in low-dimensional nanostructures like photonic crystal waveguides (PCWs) [1] or photonic crystals (PCs) [2] leads to Anderson localization where light is efficiently trapped by random multiple scattering with the lattice imperfections. These disorder-induced optical modes hace been demonstrated to be very promising for cavity-quantum electrodynamics (QED) experiments where the radiative emission rate of single quantum emitters can be controlled when tuned through resonance with one of these random cavities. Our statistical analysis of the emission dynamics from single quantum dots embeded in disordered PCWs [3] provides detailed insigth about the statistical properties of QED in these complex nanostructures. In addition, using internal light sources reveals new physics in the form of nonuniversal intensity correlations between the different scattered paths within the structure which imprint the local QED properties deep inside the complex structure onto the far-field intensity pattern [2]. Finally, increasing the optical gain in PCWs allows on-chip random nanolasing where the cavity feedback is provided by the intrinsic disorder which enables highly efficient, stable, and broadband tunable lasers with very small mode volumes [4]. The figure of merit of these disorder-induced cavities is their localization length which determines to a large degree the coupling efficiency of a quantum emitter to a disorder-induced cavity as well as the efficiency of random lasing and reveals a strongly dispersive behavior and a non-trivial dependence on disorder in PCWs [5]. [1] L. Sapienza, H. Thyrrestrup, S. Stobbe, P.D. Garcia, S. Smolka, and P. Lodahl, Science 327, 1352 (2010). [2] P. D. García, S. Stobbe, I. Soellner and P. Lodahl, Physical Review Letters 109, 253902 (2012). [3] A. Javadi, S. Maibom, L. Sapienza, H. Thyrrestrup, P.D. Garcia, and P. Lodahl, Opt. Express 22, 30992 (2014). [4] J. Liu, P. D. Garcia, S. Ek, N. Gregersen, T. Suhr, M
Cosmic flows and the expansion of the local Universe from non-linear phase-space reconstructions
Heß, Steffen; Kitaura, Francisco-Shu
2016-03-01
In this work, we investigate the impact of cosmic flows and density perturbations on Hubble constant H0 measurements using non-linear phase-space reconstructions of the Local Universe (LU). In particular, we rely on a set of 25 precise constrained N-body simulations based on Bayesian initial conditions reconstructions of the LU using the Two-Micron Redshift Survey galaxy sample within distances of about 90 h-1 Mpc. These have been randomly extended up to volumes enclosing distances of 360 h-1 Mpc with augmented Lagrangian perturbation theory (750 simulations in total), accounting in this way for gravitational mode coupling from larger scales, correcting for periodic boundary effects, and estimating systematics of missing attractors (σlarge = 134 s-1 km). We report on Local Group (LG) speed reconstructions, which for the first time are compatible with those derived from cosmic microwave background-dipole measurements: |vLG| = 685 ± 137 s-1 km. The direction (l, b) = (260.5° ± 13.3°, 39.1 ± 10.4°) is found to be compatible with the observations after considering the variance of large scales. Considering this effect of large scales, our local bulk flow estimations assuming a Λ cold dark matter model are compatible with the most recent estimates based on velocity data derived from the Tully-Fisher relation. We focus on low-redshift supernova measurements out to 0.01 positive bias in H0. Taking these effects into account yields a correction of ΔH0 = -1.76 ± 0.21 s- 1 km Mpc- 1, thereby reducing the tension between local probes and more distant probes. Effectively H0 is lower by about 2 per cent.
Image transport through a disordered optical fiber mediated by transverse Anderson localization
Karbasi, Salman; Koch, Karl W; Hawkins, Thomas; Ballato, John; Mafi, Arash
2013-01-01
Transverse Anderson localization of light allows localized optical-beam-transport through a transversely-disordered and longitudinally-invariant medium. Its successful implementation in disordered optical fibers recently resulted in the simultaneous propagation of multiple beams in a single strand of an optical fiber, suggesting potential applications for spatial beam multiplexing and image transport. We present what is, to the best of our knowledge, the first demonstration of optical image transport using transverse Anderson localization of light. The image transport quality obtained in the polymer disordered optical fiber is comparable with or better than some of the best commercially available multicore imaging fibers with less pixelation and higher contrast. A proof-of-concept glass version is also evaluated and further optimization is discussed. Our results open the way to device-level implementation of the transverse Anderson localization of light with potential applications in biological and medical im...
Wigner-like crystallization of Anderson-localized electron systems with low electron densities
Slutskin, A A; Pepper, M
2002-01-01
We consider an electron system under conditions of strong Anderson localization, taking into account interelectron long-range Coulomb repulsion. We establish that at sufficiently low electron densities and sufficiently low temperatures the Coulomb electron interaction brings about ordering of the Anderson-localized electrons into a structure that is close to an ideal (Wigner) crystal lattice, provided the dimension of the system is > 1. This Anderson-Wigner glass (AWG) is a new macroscopic electron state that, on the one hand, is beyond the conventional Fermi glass concept, and on the other hand, qualitatively differs from the known 'plain' Wigner glass (inherent in self-localized electron systems) in that the random slight electron displacements from the ideal crystal sites essentially depend on the electron density. With increasing electron density the AWG is found to turn into the plain Wigner glass or Fermi glass, depending on the width of the random spread of the electron levels. It is shown that the res...
Anderson localization of spinons in a spin-1/2 antiferromagnetic Heisenberg chain
Pan, B. Y.; Zhou, S. Y.; Hong, X. C.; Qiu, X; Li, S. Y.
2012-01-01
Anderson localization is a general phenomenon of wave physics, which stems from the interference between multiple scattering paths1,2. It was originally proposed for electrons in a crystal, but later was also observed for light3-5, microwaves6, ultrasound7,8, and ultracold atoms9-12. Actually, in a crystal, besides electrons there may exist other quasiparticles such as magnons and spinons. However the search for Anderson localization of these magnetic excitations is rare so far. Here we repor...
A modal perspective on the transverse Anderson localization of light in disordered optical lattices
Karbasi, Salman; Mafi, Arash
2013-01-01
We frame the transverse Anderson localization of light in a one-dimensional disordered optical lattice in the language of localized propagating eigenmodes. The modal analysis allows us to explore localization behavior of a disordered lattice independent of the properties of the external excitation. Various localization-related phenomena, such as the periodic revival of a propagating Anderson-localized beam are easily explained in modal language. We characterize the localization strength by the average width of the guided modes and carry out a detailed analysis of localization behavior as a function of the optical and geometrical parameters of the disordered lattice. We also show that in order to obtain a minimum average mode width, the average width of the individual random sites in the disordered lattice must be larger than the wavelength of the light by approximately a factor of two or more, and the optimum site width for the maximum localization depends on the design parameters of the disordered lattice.
Observation of migrating transverse Anderson localizations of light in nonlocal media
Leonetti, Marco; Mafi, Arash; Conti, Claudio
2014-01-01
We report the experimental observation of the interaction and attraction of many localized modes in a two dimensional (2D) system realized by a disordered optical fiber supporting transverse Anderson localization. We show that a nonlocal optically nonlinear response of thermal origin alters the localization length by an amount determined by the optical power and also induces an action at a distance between the localized modes and their spatial migration. Evidence of a collective and strongly interacting regime is given.
Spectral statistics for the discrete Anderson model in the localized regime
Germinet, François
2010-01-01
We report on recent results on the spectral statistics of the discrete Anderson model in the localized phase. Our results show, in particular, that, for the discrete Anderson Hamiltonian with smoothly distributed random potential at sufficiently large coupling, the limit of the level spacing distribution is that of i.i.d. random variables distributed according to the density of states of the random Hamiltonian. This text is a contribution to the proceedings of the conference "Spectra of Random Operators and Related Topics" held at Kyoto University, 02-04/12/09 organized by N. Minami and N. Ueki.
Experimental observation of Anderson localization in laser-kicked molecular rotors
Bitter, Martin
2016-01-01
We observe and study the phenomenon of Anderson localization in a system of true quantum kicked rotors. Nitrogen molecules in a supersonic molecular jet are cooled down to 27~K and are rotationally excited by a periodic train of 24~high-intensity femtosecond pulses. Exponential distribution of the molecular angular momentum - the most unambiguous signature of Anderson localization - is measured directly by means of coherent Raman scattering. We demonstrate the suppressed growth of the molecular rotational energy with the number of laser kicks and study the dependence of the localization length on the kick strength. Both timing and amplitude noise in the pulse train is shown to destroy the localization and revive the diffusive growth of angular momentum.
Scaling analysis of transverse Anderson localization in a disordered optical waveguide
Abaie, Behnam
2016-01-01
The intention of this manuscript is twofold. First, the mode-width probability density function (PDF) is introduced as a powerful statistical tool to study and compare the transverse Anderson localization properties of a disordered one dimensional optical waveguide. Second, by analyzing the scaling properties of the mode-width PDF with the transverse size of the waveguide, it is shown that the mode-width PDF gradually converges to a terminal configuration. Therefore, it may not be necessary to study a real-sized disordered structure in order to obtain its statistical localization properties and the same PDF can be obtained for a substantially smaller structure. This observation is important because it can reduce the often demanding computational effort that is required to study the statistical properties of Anderson localization in disordered waveguides. Using the mode-width PDF, substantial information about the impact of the waveguide parameters on its localization properties is extracted. This information ...
Anderson Localization for a Multi-Particle Quantum Graph
Sabri, Mostafa
2012-01-01
We study a multi-particle quantum graph with random potential. Taking the approach of multiscale analysis we prove exponential and strong dynamical localization of any order in the Hilbert-Schmidt norm near the spectral edge. Apart from the results on multi-particle systems, we also prove Lifshitz-type asymptotics for single-particle systems. This shows in particular that localization for single-particle quantum graphs holds under a weaker assumption on the random potential than previously kn...
Snapshots of Anderson localization beyond the ensemble average
El-Dardiry, Ramy G. S.; Faez, Sanli; Lagendijk, Ad
2012-09-01
We study (1+1)D transverse localization of electromagnetic radiation at microwave frequencies directly by two-dimensional spatial scans. Since the longitudinal direction can be mapped onto time, our experiments provide unique snapshots of the buildup of localized waves. The evolution of the wave functions is compared with semianalytical calculations. Studies beyond ensemble averages reveal counterintuitive surprises. Oscillations of the wave functions are observed in space and explained in terms of a beating between the eigenstates.
Controlling Anderson localization in disordered heterostrctures with Lévy-type distribution
International Nuclear Information System (INIS)
In this paper, we propose a disordered heterostructure in which the distribution of the refractive index of one of its constituents follows a Lévy-type distribution characterized by the exponent α. For the normal and oblique incidences, the effect of α variation on the localization length is investigated in different frequency ranges. As a result, the controllability of Anderson localization can be achieved by changing the exponent α in the disordered structure having heavy tailed distribution. (paper)
Levy, Daniel; Roos, Jason; Robinson, Jace; Carpenter, William; Martin, Richard; Taylor, Clark; Sugrue, Joseph; Terzuoli, Andrew
2016-06-01
Multiple sensors are used in a variety of geolocation systems. Many use Time Difference of Arrival (TDOA) or Received Signal Strength (RSS) measurements to estimate the most likely location of a signal. When an object does not emit an RF signal, Angle of Arrival (AOA) measurements using optical or infrared frequencies become more feasible than TDOA or RSS measurements. AOA measurements can be created from any sensor platform with any sort of optical sensor, location and attitude knowledge to track passive objects. Previous work has created a non-linear optimization (NLO) method for calculating the most likely estimate from AOA measurements. Two new modifications to the NLO algorithm are created and shown to correct AOA measurement errors by estimating the inherent bias and time-drift in the Inertial Measurement Unit (IMU) of the AOA sensing platform. One method corrects the sensor bias in post processing while treating the NLO method as a module. The other method directly corrects the sensor bias within the NLO algorithm by incorporating the bias parameters as a state vector in the estimation process. These two methods are analyzed using various Monte-Carlo simulations to check the general performance of the two modifications in comparison to the original NLO algorithm.
Transverse Anderson Localization in Disordered Glass Optical Fibers: A Review
Directory of Open Access Journals (Sweden)
Arash Mafi
2014-07-01
Full Text Available Disordered optical fibers show novel waveguiding properties that can be used for various device applications, such as beam-multiplexed optical communications and endoscopic image transport. The strong transverse scattering from the transversely disordered optical fibers results in transversely confined beams that can freely propagate in the longitudinal direction, similar to conventional optical fibers, with the advantage that any point in the cross section of the fiber can be used for beam transport. For beam multiplexing and imaging applications, it is highly desirable to make the localized beam radius as small as possible. This requires large refractive index differences between the materials that define the random features in the disordered fiber. Here, disordered glass-air fibers are briefly reviewed, where randomly placed airholes in a glass matrix provide the sufficiently large refractive index difference of 0.5 for strong random transverse scattering. The main future challenge for the fabrication of an optimally disordered glass-air fibers is to increase the fill-fraction of airholes to nearly 50% for maximum beam confinement.
Energy Technology Data Exchange (ETDEWEB)
Waintal, X
1999-09-10
We study the quantum mechanics of interacting particles in a disordered system, and in particular, what happens to Anderson localisation when interaction is taken into account. In the first part,one looks at the excited states of two particles in one dimension. For this model, it has been shown (Shepelyansky 1994) that a local repulsive interaction can partially destroy Anderson localisation. Here, we show that this model has similarities with the three-dimensional Anderson model at the metal-insulator transition. In particular, the maximum of rigidity obtained in the spectral statistics correspond to some intermediary statistics that cannot be described by random matrix theory neither by a Poisson statistics. The wave functions show a multifractal behaviour and the spreading of the center of mass of a wave packet is logarithmic in time. The second part deals with the ground state of a finite density of spinless fermions in two dimensions. After the scaling theory of localisation, it was commonly accepted that there was no metal in two dimensions. This idea has been challenged by the observation of a metal-insulator transition in low density electron gas (Kravchenko et al. 1994). We propose a scenario in which a metallic phase occurs between the Anderson insulator and the pinned Wigner crystal. This intermediate phase is characterized by an alignment of the local currents flowing in the system. (author)
Anderson localization of electrons in single crystals: Li (x) Fe(7)Se(8).
Ying, Tianping; Gu, Yueqiang; Chen, Xiao; Wang, Xinbo; Jin, Shifeng; Zhao, Linlin; Zhang, Wei; Chen, Xiaolong
2016-02-01
Anderson (disorder-induced) localization, proposed more than half a century ago, has inspired numerous efforts to explore the absence of wave diffusions in disordered media. However, the proposed disorder-induced metal-insulator transition (MIT), associated with the nonpropagative electron waves, has hardly been observed in three-dimensional (3D) crystalline materials, let alone single crystals. We report the observation of an MIT in centimeter-size single crystals of Li x Fe7Se8 induced by lattice disorder. Both specific heat and infrared reflectance measurements reveal the presence of considerable electronic states in the vicinity of the Fermi level when the MIT occurs, suggesting that the transition is not due to Coulomb repulsion mechanism. The 3D variable range hopping regime evidenced by electrical transport measurements at low temperatures indicates the localized nature of the electronic states on the Fermi level. Quantitative analyses of carrier concentration, carrier mobility, and simulated density of states (DOS) fully support that Li x Fe7Se8 is an Anderson insulator. On the basis of these results, we provide a unified DOS picture to explain all the experimental results, and a schematic diagram for finding other potential Anderson insulators. This material will thus serve as a rich playground for both theoretical and experimental investigations on MITs and disorder-induced phenomena. PMID:26989781
Efficient Non Linear Loudspeakers
DEFF Research Database (Denmark)
Petersen, Bo R.; Agerkvist, Finn T.
2006-01-01
Loudspeakers have traditionally been designed to be as linear as possible. However, as techniques for compensating non linearities are emerging, it becomes possible to use other design criteria. This paper present and examines a new idea for improving the efficiency of loudspeakers at high levels...... by changing the voice coil layout. This deliberate non-linear design has the benefit that a smaller amplifier can be used, which has the benefit of reducing system cost as well as reducing power consumption.......Loudspeakers have traditionally been designed to be as linear as possible. However, as techniques for compensating non linearities are emerging, it becomes possible to use other design criteria. This paper present and examines a new idea for improving the efficiency of loudspeakers at high levels...
Ying, Guanwen; Kouzaev, Guennadi
2016-10-01
We present the eigenmodal analysis techniques enhanced towards calculations of optical and non-interacting Bose-Einstein condensate (BEC) modes formed by random potentials and localized by Anderson effect. The results are compared with the published measurements and verified additionally by the convergence criterion. In 2-D BECs captured in circular areas, the randomness shows edge localization of the high-order Tamm-modes. To avoid strong diffusive effect, which is typical for BECs trapped by speckle potentials, a 3-D-lattice potential with increased step magnitudes is proposed, and the BECs in these lattices are simulated and plotted.
Coalescence of Anderson-localized modes at an exceptional point in 2D random media
Bachelard, Nicolas; Arlandis, Julien; Touzani, Rachid; Sebbah, Patrick
2014-01-01
In non-hermitian systems, the particular position at which two eigenstates coalesce under a variation of a parameter in the complex plane is called an exceptional point. A non-perturbative theory is proposed which describes the evolution of modes in 2D open dielectric systems when permittivity distribution is modified. We successfully test this theory in a 2D disordered system to predict the position in the parameter space of the exceptional point between two Anderson-localized states. We observe that the accuracy of the prediction depends on the number of localized states accounted for. Such an exceptional point is experimentally accessible in practically relevant disordered photonic systems
Anderson localization and saturable nonlinearity in one-dimensional disordered lattices
Nguyen, Ba Phi
2016-01-01
We investigate numerically the propagation and the Anderson localization of plane waves in a one-dimensional lattice chain, where disorder and saturable nonlinearity are simultaneously present. Using a calculation scheme for solving the stationary discrete nonlinear Schr\\"{o}dinger equation in the fixed input case, the disorder-averaged logarithmic transmittance and the localization length are calculated in a numerically precise manner. The localization length is found to be a nonmonotonic function of the incident wave intensity, acquiring a minimum value at a certain finite intensity, due to saturation effects. For low incident intensities where the saturation effect is ineffective, the enhancement of localization due to Kerr-type nonlinearity occurs in a way similar to the case without saturation. For sufficiently high incident intensities, we find that the localization length is an increasing function of the incident wave intensity, which implies that localization is suppressed for stronger input intensiti...
Lehtonen, J V; Denessiouk, K; May, A C; Johnson, M S
1999-02-15
We have developed a generic tool for the automatic identification of regions of local structural similarity in unrelated proteins having different folds, as well as for defining more global similarities that result from homologous protein structures. The computer program GENFIT has evolved from the genetic algorithm-based three-dimensional protein structure comparison program GA_FIT. GENFIT, however, can locate and superimpose regions of local structural homology regardless of their position in a pair of structures, the fold topology, or the chain direction. Furthermore, it is possible to restrict the search to a volume centered about a region of interest (e.g., catalytic site, ligand-binding site) in two protein structures. We present a number of examples to illustrate the function of the program, which is a parallel processing implementation designed for distribution to multiple machines over a local network or to run on a single multiprocessor computer.
Scaling analysis of transverse Anderson localization in a disordered optical waveguide
Abaie, Behnam; Mafi, Arash
2016-08-01
The intention of this paper is twofold. First, the mode-width probability density function (PDF) is introduced as a powerful statistical tool to study and compare the transverse Anderson localization properties of a disordered quasi-one-dimensional optical waveguide. Second, by analyzing the scaling properties of the mode-width PDF with the transverse size of the waveguide, it is shown that the mode-width PDF gradually converges to a terminal configuration. Therefore, it may not be necessary to study a real-sized disordered structure in order to obtain its statistical localization properties and the same PDF can be obtained for a substantially smaller structure. This observation is important because it can reduce the often demanding computational effort that is required to study the statistical properties of Anderson localization in disordered waveguides. Using the mode-width PDF, substantial information about the impact of the waveguide parameters on its localization properties is extracted. This information is generally obscured when disordered waveguides are analyzed using other techniques such as the beam propagation method. As an example of the utility of the mode-width PDF, it is shown that the cladding refractive index can be used to quench the number of extended modes, hence improving the contrast in image transport properties of disordered waveguides.
Duck, F
2010-01-01
The propagation of acoustic waves is a fundamentally non-linear process, and only waves with infinitesimally small amplitudes may be described by linear expressions. In practice, all ultrasound propagation is associated with a progressive distortion in the acoustic waveform and the generation of frequency harmonics. At the frequencies and amplitudes used for medical diagnostic scanning, the waveform distortion can result in the formation of acoustic shocks, excess deposition of energy, and acoustic saturation. These effects occur most strongly when ultrasound propagates within liquids with comparatively low acoustic attenuation, such as water, amniotic fluid, or urine. Attenuation by soft tissues limits but does not extinguish these non-linear effects. Harmonics may be used to create tissue harmonic images. These offer improvements over conventional B-mode images in spatial resolution and, more significantly, in the suppression of acoustic clutter and side-lobe artefacts. The quantity B/A has promise as a parameter for tissue characterization, but methods for imaging B/A have shown only limited success. Standard methods for the prediction of tissue in-situ exposure from acoustic measurements in water, whether for regulatory purposes, for safety assessment, or for planning therapeutic regimes, may be in error because of unaccounted non-linear losses. Biological effects mechanisms are altered by finite-amplitude effects. PMID:20349813
Natale, Joseph; Hentschel, George
Firing-rate networks offer a coarse model of signal propagation in the brain. Here we analyze sparse, 2D planar firing-rate networks with no synapses beyond a certain cutoff distance. Additionally, we impose Dale's Principle to ensure that each neuron makes only or inhibitory outgoing connections. Using spectral methods, we find that the number of neurons participating in excitations of the network becomes insignificant whenever the connectivity cutoff is tuned to a value near or below the average interneuron separation. Further, neural activations exceeding a certain threshold stay confined to a small region of space. This behavior is an instance of Anderson localization, a disorder-induced phase transition by which an information channel is rendered unable to transmit signals. We discuss several potential implications of localization for both local and long-range computation in the brain. This work was supported in part by Grants JSMF/ 220020321 and NSF/IOS/1208126.
Cossu, Guido; Hashimoto, Shoji
2016-06-01
We investigate the properties of the background gauge field configurations that act as disorder for the Anderson localization mechanism in the Dirac spectrum of QCD at high temperatures. We compute the eigenmodes of the Möbius domain-wall fermion operator on configurations generated for the SU(3) gauge theory with two flavors of fermions, in the temperature range [0.9, 1.9]T c . We identify the source of localization of the eigenmodes with gauge configurations that are self-dual and support negative fluctuations of the Polyakov loop P L , in the high temperature sea of P L ˜ 1. The dependence of these observations on the boundary conditions of the valence operator is studied. We also investigate the spatial overlap of the left-handed and right-handed projected eigenmodes in correlation with the localization and the corresponding eigenvalue. We discuss an interpretation of the results in terms of monopole-instanton structures.
Cossu, Guido
2016-01-01
We investigate the properties of the background gauge field configurations that act as disorder for the Anderson localization mechanism in the Dirac spectrum of QCD at high temperatures. We compute the eigenmodes of the M\\"obius domain-wall fermion operator on configurations generated for the $SU(3)$ gauge theory with two flavors of fermions, in the temperature range $[0.9,1.9]T_c$. We identify the source of localization of the eigenmodes with gauge configurations that are self-dual and support negative fluctuations of the Polyakov loop $P_L$, in the high temperature sea of $P_L\\sim 1$. The dependence of these observations on the boundary conditions of the valence operator is studied. We also investigate the spatial overlap of the left-handed and right-handed projected eigenmodes in correlation with the localization and the corresponding eigenvalue. We discuss an interpretation of the results in terms of monopole-instanton structures.
Metallic Transport and Anderson Localization on In Atomic Layers on Silicon
Yamazaki, Shiro; Hosomura, Yoshikazu; Matsuda, Iwao; Hobara, Rei; Hasegawa, Shuji
2008-03-01
Metallic temperature dependence of electrical resistance have not been observed except extremely limited number of examples[1] below 100K in atomic-scale low-dimensional metal systems due to Anderson localization. Si(111)-√7 x√3 -In surface reconstruction consist of 1.2 ML In atoms. According to ARPES study, the surface is 2D metal with the large Fermi wave number (kF=14nm-1) and the large electron density (4.6x10^14eV-1cm-2), leading to a low resistance [2]. By using variable-temperature micro-four-point probe method [3], low resistance and metallic transport was found down to 10 K. It is quantitatively explained by the ARPES result by using Boltzmann equation R2D=4π^2λm^*e^2kF^2 kBT. By introducing defect, it shows semiconducting temperature dependence of variable range hopping due to Anderson localization. [1]K. Lee, et al. , Nature 441, 65 (2006). [2]E. Rotenberg, et al. , Phys. Rev. Lett. 91, 246404 (2003). [3]T. Tanikawa, et al. , e-J. Surf. Sci. Nanotech. 1, 50 (2003)
Javadi, Alisa; Sapienza, Luca; Thyrrestrup, Henri; Lodahl, Peter
2013-01-01
Optical nanostructures have proven to be meritorious for tailoring the emission properties of quantum emitters. However, unavoidable fabrication imperfections may represent a nuisance. Quite remarkably, disorder offers new opportunities since light can be efficiently confined by random multiple scattering leading to Anderson localization. Here we investigate the effect of such disorder-induced cavities on the emission dynamics of single quantum dots embedded in disordered photonic-crystal waveguides. We present time-resolved measurements of both the total emission from Anderson-localized cavities and from single emitters that are coupled to the cavities. We observe both strongly inhibited and enhanced decay rates relative to the rate of spontaneous emission in a homogeneous medium. From a statistical analysis, we report an average Purcell factor of 2 in without any control on the quantum dot - cavity detuning. By spectrally tuning individual quantum dots into resonance with Anderson-localized modes, a maximum...
Ekanga, Trésor
2012-01-01
We consider the multi-particle lattice Anderson model with an i.i.d. random external potential and a short-range interaction. Using the multi-particle multiscale analysis (MPMSA) developed by Chulaevsky and Suhov (2009), we prove spectral localization for such Hamiltonians at low energies under the assumption of log-H\\"{o}lder continuity of the marginal probability distribution of the random potential. Under a stronger assumption of H\\"older continuity, Anderson localization for such systems at low energies was established earlier by Aizenman and Warzel (2009) with the help of the multi-particle Fractional-Moment Method.
Energy Technology Data Exchange (ETDEWEB)
Filippidis, G [Institute of Electronic Structure and Laser, Foundation of Research and Technology-Hellas, PO Box 1527, 71110 Heraklion (Greece); Kouloumentas, C [Institute of Electronic Structure and Laser, Foundation of Research and Technology-Hellas, PO Box 1527, 71110 Heraklion (Greece); Kapsokalyvas, D [Institute of Electronic Structure and Laser, Foundation of Research and Technology-Hellas, PO Box 1527, 71110 Heraklion (Greece); Voglis, G [Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology, Heraklion 71110, Crete (Greece); Tavernarakis, N [Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology, Heraklion 71110, Crete (Greece); Papazoglou, T G [Institute of Electronic Structure and Laser, Foundation of Research and Technology-Hellas, PO Box 1527, 71110 Heraklion (Greece)
2005-08-07
Two-photon excitation fluorescence (TPEF) and second-harmonic generation (SHG) are relatively new promising tools for the imaging and mapping of biological structures and processes at the microscopic level. The combination of the two image-contrast modes in a single instrument can provide unique and complementary information concerning the structure and the function of tissues and individual cells. The extended application of this novel, innovative technique by the biological community is limited due to the high price of commercial multiphoton microscopes. In this study, a compact, inexpensive and reliable setup utilizing femtosecond pulses for excitation was developed for the TPEF and SHG imaging of biological samples. Specific cell types of the nematode Caenorhabditis elegans were imaged. Detection of the endogenous structural proteins of the worm, which are responsible for observation of SHG signals, was achieved. Additionally, the binding of different photosensitizers in the HL-60 cell line was investigated, using non-linear microscopy. The sub-cellular localization of photosensitizers of a new generation, very promising for photodynamic therapy (PDT) (Hypericum perforatum L. extracts) was achieved. The sub-cellular localization of these novel photosensitizers was linked with their photodynamic action during PDT, and the possible mechanisms for cell killing have been elucidated.
International Nuclear Information System (INIS)
This paper proposes a one-dimensional random structure composed of three types of alternating layers of dielectric and magnetized plasma materials. By employing the transfer matrix method, the localization lengths of the waves propagating in opposite directions are calculated. The numerical results demonstrate that nonreciprocal features appear in the averaged localization length and individual transmission resonances. However, in the short wavelength regime, the nonreciprocal behavior of the averaged localization length disappears, and the maximum of differential transmission decreases. The author investigates the effects of the external magnetic field, incident angle, collision frequency, and plasma density of the plasma layer on the reciprocal properties. The frequencies at which nonreciprocity occurs depend on the external magnetic field. Thus, it is possible to realize a photonic diode that is tunable with the external magnetic field. Also found is that for small angles of incidence no significant difference exists between the localization lengths of the forward and backward waves. There is a lower limit for the plasma density of the magnetized plasma layers to obtain nonreciprocal Anderson localization. As the collision frequency increases, the nonreciprocal features of the proposed random system survive. (papers)
International Nuclear Information System (INIS)
coexist in waveguide-like systems with randomly corrugated boundaries, specifically, the entropic localization and the one-dimensional Anderson (disorder-driven) localization. If the particular mode propagates across the rough segment ballistically, the Fabry–Pérot-type oscillations should be observed in the conductance, which are suppressed for the mode transferred in the Anderson-localized regime
Hewson, Alex C.; Bauer, Johannes
2010-01-01
We show that information on the probability density of local fluctuations can be obtained from a numerical renormalisation group calculation of a reduced density matrix. We apply this approach to the Anderson-Holstein impurity model to calculate the ground state probability density $\\rho(x)$ for the displacement $x$ of the local oscillator. From this density we can deduce an effective local potential for the oscillator and compare its form with that obtained from a semiclassical approximation...
Itinerant-Localized Transitions in Magnetic Phases of the Periodic Anderson Model
Kubo, Katsunori
To clarify the characteristics of Fermi-surface reconstruction, called Lifshitz transitions, in magnetic phases of f-electron materials, we investigate magnetically ordered states of the periodic Anderson model by applying the variational Monte Carlo method. As variational wavefunctions, we use the Gutzwiller wavefunctions for the paramagnetic, antiferromagnetic, and ferromagnetic states. Around half-filling, we find an antiferromagnetic phase, and far away from half-filling, we find a ferromagnetic phase as the ground state. Inside both magnetic phases, Lifshitz transitions take place. At the Lifshitz transitions, the sizes of the ordered moments change. In order to understand the Lifshitz transitions further, we also analyze the f -electron contribution to the Fermi surface by evaluating the jump in the momentum distribution function at the Fermi momentum. Then, we find that, in the large ordered-moment states, the f -electron contribution to the Fermi surface becomes small. This observation clearly shows that these Lifshitz transitions are itinerant-localized transitions of the f electrons.
Energy Technology Data Exchange (ETDEWEB)
Monthus, Cecile; Garel, Thomas, E-mail: cecile.monthus@cea.fr [Institut de Physique Theorique, CNRS and CEA Saclay 91191 Gif-sur-Yvette Cedex (France)
2011-04-08
In contrast to finite dimensions where disordered systems display multifractal statistics only at criticality, the tree geometry induces multifractal statistics for disordered systems also off criticality. For the Anderson tight-binding localization model defined on a tree of branching ratio K = 2 with N generations, we consider the Miller-Derrida scattering geometry (1994 J. Stat. Phys. 75 357), where an incoming wire is attached to the root of the tree, and where K{sup N} outcoming wires are attached to the leaves of the tree. In terms of the K{sup N} transmission amplitudes t{sub j}, the total Landauer transmission is T {identical_to} {Sigma}{sub j}|t{sub j}|{sup 2}, so that each channel j is characterized by the weight w{sub j} = |t{sub j}|{sup 2}/T. We numerically measure the typical multifractal singularity spectrum f({alpha}) of these weights as a function of the disorder strength W and we obtain the following conclusions for its left termination point {alpha}{sub +}(W). In the delocalized phase W < W{sub c}, {alpha}{sub +}(W) is strictly positive {alpha}{sub +}(W) > 0 and is associated with a moment index q{sub +}(W) > 1. At criticality, it vanishes {alpha}{sub +}(W{sub c}) = 0 and is associated with the moment index q{sub +}(W{sub c}) = 1. In the localized phase W > W{sub c}, {alpha}{sub +}(W) = 0 is associated with some moment index q{sub +}(W) < 1. We discuss the similarities with the exact results concerning the multifractal properties of the directed polymer on the Cayley tree.
Milde, Frank; R{ö}mer, Rudolf A.
1998-01-01
Recently, a metal-insulator transition (MIT) was found in the anisotropic Anderson model of localization by transfer-matrix methods (TMM). This MIT has been also investigated by multifractal analysis (MFA) and the same critical disorders $W_c$ have been obtained within the accuracy of the data. We now employ energy level statistics (ELS) to further characterize the MIT. We find a crossover of the nearest-neighbor level spacing distribution $P(s)$ from GOE statistics at small disorder indicati...
Pietracaprina, Francesca; Ros, Valentina; Scardicchio, Antonello
2016-02-01
In this paper we analyze the predictions of the forward approximation in some models which exhibit an Anderson (single-body) or many-body localized phase. This approximation, which consists of summing over the amplitudes of only the shortest paths in the locator expansion, is known to overestimate the critical value of the disorder which determines the onset of the localized phase. Nevertheless, the results provided by the approximation become more and more accurate as the local coordination (dimensionality) of the graph, defined by the hopping matrix, is made larger. In this sense, the forward approximation can be regarded as a mean-field theory for the Anderson transition in infinite dimensions. The sum can be efficiently computed using transfer matrix techniques, and the results are compared with the most precise exact diagonalization results available. For the Anderson problem, we find a critical value of the disorder which is 0.9 % off the most precise available numerical value already in 5 spatial dimensions, while for the many-body localized phase of the Heisenberg model with random fields the critical disorder hc=4.0 ±0.3 is strikingly close to the most recent results obtained by exact diagonalization. In both cases we obtain a critical exponent ν =1 . In the Anderson case, the latter does not show dependence on the dimensionality, as it is common within mean-field approximations. We discuss the relevance of the correlations between the shortest paths for both the single- and many-body problems, and comment on the connections of our results with the problem of directed polymers in random medium.
Energy Technology Data Exchange (ETDEWEB)
Chen, X. [University of California-Irvine, Irvine, California 92697 (United States); General Atomics, P.O. Box 85608, San Diego, California 92186 (United States); Heidbrink, W. W. [University of California-Irvine, Irvine, California 92697 (United States); Kramer, G. J.; Nazikian, R.; Grierson, B. A.; Podesta, M. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States); Van Zeeland, M. A.; Pace, D. C.; Petty, C. C.; Fisher, R. K. [General Atomics, P.O. Box 85608, San Diego, California 92186 (United States); Zeng, L. [University of California, Los Angeles 90095, California (United States); Austin, M. E. [University of Texas-Austin, Austin, Texas 78712 (United States)
2014-08-15
Two key insights into interactions between Alfvén eigenmodes (AEs) and energetic particles in the plasma core are gained from measurements and modeling of first-orbit beam-ion loss in DIII-D. First, the neutral beam-ion first-orbit losses are enhanced by AEs and a single AE can cause large fast-ion displacement. The coherent losses are from born trapped full energy beam-ions being non-resonantly scattered by AEs onto loss orbits within their first poloidal transit. The loss amplitudes scale linearly with the mode amplitude but the slope is different for different modes. The radial displacement of fast-ions by individual AEs can be directly inferred from the measurements. Second, oscillations in the beam-ion first-orbit losses are observed at the sum, difference, and harmonic frequencies of two independent AEs. These oscillations are not plasma modes and are absent in magnetic, density, and temperature fluctuations. The origin of the non-linearity as a wave-particle coupling is confirmed through bi-coherence analysis, which is clearly observed because the coherences are preserved by the first-orbit loss mechanism. An analytic model and full orbit simulations show that the non-linear features seen in the loss signal can be explained by a non-linear interaction between the fast ions and the two independent AEs.
Hewson, Alex C; Bauer, Johannes
2010-03-24
We show that information on the probability density of local fluctuations can be obtained from a numerical renormalization group calculation of a reduced density matrix. We apply this approach to the Anderson-Holstein impurity model to calculate the ground state probability density ρ(x) for the displacement x of the local oscillator. From this density we can deduce an effective local potential for the oscillator and compare its form with that obtained from a semiclassical approximation as a function of the coupling strength. The method is extended to the infinite dimensional Holstein-Hubbard model using dynamical mean field theory. We use this approach to compare the probability densities for the displacement of the local oscillator in the normal, antiferromagnetic and charge ordered phases.
Modelling Loudspeaker Non-Linearities
DEFF Research Database (Denmark)
Agerkvist, Finn T.
2007-01-01
This paper investigates different techniques for modelling the non-linear parameters of the electrodynamic loudspeaker. The methods are tested not only for their accuracy within the range of original data, but also for the ability to work reasonable outside that range, and it is demonstrated that...
DEFF Research Database (Denmark)
Andersen, Steffen; Harrison, Glenn W.; Hole, Arne Risa;
2012-01-01
We develop an extension of the familiar linear mixed logit model to allow for the direct estimation of parametric non-linear functions defined over structural parameters. Classic applications include the estimation of coefficients of utility functions to characterize risk attitudes and discountin...
Roundy, R C; Nemirovsky, D; Kagalovsky, V; Raikh, M E
2014-06-01
Motivated by recent experiments, where the tunnel magnetoresitance (TMR) of a spin valve was measured locally, we theoretically study the distribution of TMR along the surface of magnetized electrodes. We show that, even in the absence of interfacial effects (like hybridization due to donor and acceptor molecules), this distribution is very broad, and the portion of area with negative TMR is appreciable even if on average the TMR is positive. The origin of the local sign reversal is quantum interference of subsequent spin-rotation amplitudes in the course of incoherent transport of carriers between the source and the drain. We find the distribution of local TMR exactly by drawing upon formal similarity between evolution of spinors in time and of the reflection coefficient along a 1D chain in the Anderson model. The results obtained are confirmed by the numerical simulations. PMID:24949781
DEFF Research Database (Denmark)
Du, Yigang
without iteration steps. The ASA is implemented in combination with Field II and extended to simulate the pulsed ultrasound fields. The simulated results from a linear array transducer are made by the ASA based on Field II, and by a released non-linear simulation program- Abersim, respectively....... The calculation speed of the ASA is increased approximately by a factor of 140. For the second harmonic point spread function the error of the full width is 1.5% at -6 dB and 6.4% at -12 dB compared to Abersim. To further investigate the linear and non-linear ultrasound fields, hydrophone measurements.......3% relative to the measurement from a 1 inch diameter transducer. A preliminary study for harmonic imaging using synthetic aperture sequential beamforming (SASB) has been demonstrated. A wire phantom underwater measurement is made by an experimental synthetic aperture real-time ultrasound scanner (SARUS...
International Nuclear Information System (INIS)
Processing of nuclear medicine images is generally performed by essentially linear methods with the non-negativity condition being applied as the only non-linear process. The various methods used: matrix methods in signal space and Fourier or Hadamard transforms in frequency or sequency space are essentially equivalent. Further improvement in images can be obtained by the use of inherently non-linear methods. The recent development of an approximation to a least-difference method (as opposed to a least-square method) has led to an appreciation of the effects of data bounding and to the development of a more powerful process. Data bounding (modification of statistically improbable data values) is an inherently non-linear method with considerable promise. Strong bounding depending on two-dimensional least-squares fitting yields a reduction of mottling (buttermilk effect) not attainable with linear processes. A pre-bounding process removing very bad points is used to protect the strong bounding process from incorrectly modifying data points due to the weight of an extreme but yet unbounded point as the fitting area approaches it
Dujardin, Julien; Engl, Thomas; Schlagheck, Peter
2016-01-01
We study the transport of an interacting Bose-Einstein condensate through a 1D correlated disorder potential. We use for this purpose the truncated Wigner method, which is, as we show, corresponding to the diagonal approximation of a semiclassical van Vleck-Gutzwiller representation of this many-body transport process. We also argue that semiclassical corrections beyond this diagonal approximation are vanishing under disorder average, thus confirming the validity of the truncated Wigner method in this context. Numerical calculations show that, while for weak atom-atom interaction strengths Anderson localization is preserved with a slight modification of the localization length, for larger interaction strengths a crossover to a delocalized regime exists due to inelastic scattering. In this case, the transport is fully incoherent.
Gomes, Anderson S L; Pincheira, Pablo I R; Moura, André L; Gagné, Mathieu; Kashyap, Raman; Raposo, Ernesto P; de Araújo, Cid B
2016-01-01
The analogue of the paramagnetic to spin-glass phase transition in disordered magnetic systems, leading to the phenomenon of replica symmetry breaking, has been recently demonstrated in a two-dimensional random laser consisting of an organic-based amorphous solid-state thin film. We report here the first demonstration of replica symmetry breaking in a one-dimensional photonic system consisting of an erbium-doped random fiber laser operating in the continuous-wave regime based on a unique random fiber grating system, which plays the role of the random scatterers and operates in the Anderson localization regime. The clear transition from a photonic paramagnetic to a photonic spin glass phase, characterized by the probability distribution function of the Parisi overlap, was verified and characterized. In this unique system, the radiation field interacts only with the gain medium, and the fiber grating, which provides the disordered feedback mechanism, does not interfere with the pump.
Non-linear constitutive equations for gravitoelectromagnetism
Duplij, Steven; Di Grezia, Elisabetta; Esposito, Giampiero; Kotvytskiy, Albert
2013-01-01
This paper studies non-linear constitutive equations for gravitoelectromagnetism. Eventually, the problem is solved of finding, for a given particular solution of the gravity-Maxwell equations, the exact form of the corresponding non-linear constitutive equations.
Penyajian Integral dari Operator Non Linear
Budiman, Herdi; Sunusi, Nurtiti
2004-01-01
Fungsional linear kontinu pada suatu ruang fungsi dapat disajikan dengan suatu integral dan biasanya linear. Pada papaer ini akan diberikan penyajian integral dari suatu operator non linear, dengan cara mengkonstruksi integral non linear Henstock Kurzweil, fungsi f:[0,1] ---------> X, dengan X merupakan ruang Banach, dilanjutkan dengan penyajian integral dari operator non linear pada ruang C=C([0,1],X).
Corrections to scaling at the Anderson transition
Slevin, Keith; Ohtsuki, Tomi
1998-01-01
We report a numerical analysis of corrections to finite size scaling at the Anderson transition due to irrelevant scaling variables and non-linearities of the scaling variables. By taking proper account of these corrections, the universality of the critical exponent for the orthogonal universality class for three different distributions of the random potential is convincingly demonstrated.
Anderson localization of light in a colloidal suspension (TiO2@silica).
Jimenez-Villar, Ernesto; da Silva, Iran F; Mestre, Valdeci; de Oliveira, Paulo C; Faustino, Wagner M; de Sá, Gilberto F
2016-06-01
In recent years, there has been dramatic progress in the photonics field in disordered media, ranging from applications in solar collectors, photocatalyzers, random lasing, and other novel photonic functions, to investigations into fundamental topics, such as light confinement and other phenomena involving photon interactions. This paper reports several pieces of experimental evidence of localization transition in a strongly disordered scattering medium composed of a colloidal suspension of core-shell nanoparticles (TiO2@silica) in ethanol solution. We demonstrate the crossover from a diffusive transport to a localization transition regime as the nanoparticle concentration is increased, and that an enhanced absorption effect arises at localization transition.
Anderson localization and its ramifications disorder, phase coherence and electron correlations
Kettemann, S
2003-01-01
The phenomenon of localization of the electronic wave function in a random medium can be regarded as the key manifestation of quantum coherence in a condensed matter system. As one of the most remarkable phenomena in condensed matter physics discovered in the 20th century, the localization problem is an indispensable part of the theory of the quantum Hall effects and rivals superconductivity in its significance as a manifestation of quantum coherence at a macroscopic scale. The present volume, written by some of the leading experts in the field, is intended to highlight some of the recent progress in the field of localization, with particular emphasis on the effect of interactions on quantum coherence. The chapters are written in textbook style and should serve as a reliable and thorough introduction for advanced students or researchers already working in the field of mesoscopic physics.
Non-linear models: applications in economics
Albu, Lucian-Liviu
2006-01-01
The study concentrated on demonstrating how non-linear modelling can be useful to investigate the behavioural of dynamic economic systems. Using some adequate non-linear models could be a good way to find more refined solutions to actually unsolved problems or ambiguities in economics. Beginning with a short presentation of the simplest non-linear models, then we are demonstrating how the dynamics of complex systems, as the economic system is, could be explained on the base of some more advan...
Simulation of non-linear ultrasound fields
DEFF Research Database (Denmark)
Jensen, Jørgen Arendt; Fox, Paul D.; Wilhjelm, Jens E.;
2002-01-01
An approach for simulating non-linear ultrasound imaging using Field II has been implemented using the operator splitting approach, where diffraction, attenuation, and non-linear propagation can be handled individually. The method uses the Earnshaw/Poisson solution to Burgcrs' equation for the non......-linear ultrasound imaging in 3D using filters or pulse inversion for any kind of transducer, focusing, apodization, pulse emission and scattering phantom. This is done by first simulating the non-linear emitted field and assuming that the scattered field is weak and linear. The received signal is then the spatial...
Processing Approach of Non-linear Adjustment Models in the Space of Non-linear Models
Institute of Scientific and Technical Information of China (English)
LI Chaokui; ZHU Qing; SONG Chengfang
2003-01-01
This paper investigates the mathematic features of non-linear models and discusses the processing way of non-linear factors which contributes to the non-linearity of a nonlinear model. On the basis of the error definition, this paper puts forward a new adjustment criterion, SGPE.Last, this paper investigates the solution of a non-linear regression model in the non-linear model space and makes the comparison between the estimated values in non-linear model space and those in linear model space.
Non linear identification applied to PWR steam generators
International Nuclear Information System (INIS)
For the precise industrial purpose of PWR nuclear power plant steam generator water level control, a natural method is developed where classical techniques seem not to be efficient enough. From this essentially non-linear practical problem, an input-output identification of dynamic systems is proposed. Through Homodynamic Systems, characterized by a regularity property which can be found in most industrial processes with balance set, state form realizations are built, which resolve the exact joining of local dynamic behaviors, in both discrete and continuous time cases, avoiding any load parameter. Specifically non-linear modelling analytical means, which have no influence on local joined behaviors, are also pointed out. Non-linear autoregressive realizations allow us to perform indirect adaptive control under constraint of an admissible given dynamic family
Non-linear finite element modeling
DEFF Research Database (Denmark)
Mikkelsen, Lars Pilgaard
The note is written for courses in "Non-linear finite element method". The note has been used by the author teaching non-linear finite element modeling at Civil Engineering at Aalborg University, Computational Mechanics at Aalborg University Esbjerg, Structural Engineering at the University...
Neural Networks for Non-linear Control
DEFF Research Database (Denmark)
Sørensen, O.
1994-01-01
This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process.......This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process....
Non-linearity in Johnson noise thermometry
White, D. R.
2012-12-01
This paper discusses the effects of non-linearity, some of the mechanisms responsible for non-linearity, and methods for measuring non-linearity in Johnson noise thermometry. Mechanisms considered include quantum tunnelling, bipolar junction transistor and junction field-effect transistor amplifiers, feedback, clipping, output-stage crossover, quantization and dither. It is found that even- and odd-order effects behave differently in correlator-based noise thermometers, with the dominant even-order effects contributing as intermodulation products whereas the dominant odd-order contributions are third-order and at the same frequencies as the parent signals. Possible test methods include the use of discrete tones, changes in spectral shape, and direct measurement using reference noise powers. For correlators operated at constant noise power, direct measurement of non-linearity using reference noise powers enables corrections to be made with negligible additional uncertainty and measurement time.
Optimal Stopping for Non-linear Expectations
Erhan Bayraktar; Song Yao
2009-01-01
We develop a theory for solving continuous time optimal stopping problems for non-linear expectations. Our motivation is to consider problems in which the stopper uses risk measures to evaluate future rewards.
Non-linear cluster lens reconstruction
Kaiser, N
1994-01-01
We develop a method for general non-linear cluster lens reconstruction using the observable distortion of background galaxies. The distortion measures the combination \\gamma/(1-\\kappa) of shear \\gamma and surface density \\kappa. From this we obtain an expression for the gradient of \\log (1 - \\kappa) in terms of directly measurable quantities. This allows one to reconstruct 1 - \\kappa up to an arbitrary constant multiplier. Recent work has emphasised an ambiguity in the relation between the distortion and \\gamma/(1-\\kappa). Here we show that the functional relation depends only on the parity of the images, so if one has data extending to large radii, and if the critical lines can be visually identified (as lines along which the distortion diverges), this ambiguity is resolved. Moreover, we show that for a generic 2-dimensional lens it is possible to locally determine the parity from the distortion. The arbitrary multiplier, which may in fact take a different value in each region bounded by the contour \\kappa =...
Physically and geometrically non-linear vibrations of thin rectangular plates
Breslavsky, Ivan; Amabili, Marco; Legrand, Mathias
2013-01-01
International audience Static deflection as well as free and forced large-amplitude vibrations of thin rectangular rubber plates under uniformly distributed pressure are investigated. Both physical, through a neo-Hookean constitutive law to describe the non-linear elastic deformation of the material, and geometrical non-linearities are accounted for. The deflections of a thin initially flat plate are described by the von Karman non-linear plate theory. A method for building a local model, ...
Macroscopic and non-linear quantum games
International Nuclear Information System (INIS)
Full text: We consider two models of quantum games. The first one is Marinatto and Weber's 'restricted' quantum game in which only the identity and the spin-flip operators are used. We show that this quantum game allows macroscopic mechanistic realization with the use of a version of the 'macroscopic quantum machine' described by Aerts already in 1980s. In the second model we use non-linear quantum state transformations which operate on points of spin-1/2 on the Bloch sphere and which can be used to distinguish optimally between two non-orthogonal states. We show that efficiency of these non-linear strategies out-perform any linear ones. Some hints on the possible theory of non-linear quantum games are given. (author)
Correlations and Non-Linear Probability Models
DEFF Research Database (Denmark)
Breen, Richard; Holm, Anders; Karlson, Kristian Bernt
2014-01-01
the dependent variable of the latent variable model and its predictor variables. We show how this correlation can be derived from the parameters of non-linear probability models, develop tests for the statistical significance of the derived correlation, and illustrate its usefulness in two applications. Under......Although the parameters of logit and probit and other non-linear probability models are often explained and interpreted in relation to the regression coefficients of an underlying linear latent variable model, we argue that they may also be usefully interpreted in terms of the correlations between...... certain circumstances, which we explain, the derived correlation provides a way of overcoming the problems inherent in cross-sample comparisons of the parameters of non-linear probability models....
Entanglement in Anderson Nanoclusters
Samuelsson, Peter
2007-01-01
We investigate the two-particle spin entanglement in magnetic nanoclusters described by the periodic Anderson model. An entanglement phase diagram is obtained, providing a novel perspective on a central property of magnetic nanoclusters, namely the temperature dependent competition between local Kondo screening and nonlocal Ruderman-Kittel-Kasuya-Yoshida spin ordering. We find that multiparticle entangled states are present for finite magnetic field as well as in the mixed valence regime and away from half filling. Our results emphasize the role of charge fluctuations.
NICE: Non-linear Independent Components Estimation
Dinh, Laurent; Krueger, David; Bengio, Yoshua
2014-01-01
We propose a deep learning framework for modeling complex high-dimensional densities called Non-linear Independent Component Estimation (NICE). It is based on the idea that a good representation is one in which the data has a distribution that is easy to model. For this purpose, a non-linear deterministic transformation of the data is learned that maps it to a latent space so as to make the transformed data conform to a factorized distribution, i.e., resulting in independent latent variables....
Conjugate Gradient Acceleration of Non-Linear Smoothing Filters
Knyazev, Andrew; Malyshev, Alexander,
2015-01-01
The most efficient signal edge-preserving smoothing filters, e.g., for denoising, are non-linear. Thus, their acceleration is challenging and is often performed in practice by tuning filter parameters, such as by increasing the width of the local smoothing neighborhood, resulting in more aggressive smoothing of a single sweep at the cost of increased edge blurring. We propose an alternative technology, accelerating the original filters without tuning, by running them through a special conjuga...
Non linearity between finance and growth
L. Deidda; B. Fattouh
2001-01-01
We present a simple model which establishes a non linear and possibly non monotonic relationship between financial development and economic growth. Applying a threshold regression model to King and Levine™s (1993) data set, we find evidence that is consistent with the main implications stemming from the theoretical model.
Non-linear Loudspeaker Unit Modelling
DEFF Research Database (Denmark)
Pedersen, Bo Rohde; Agerkvist, Finn
2008-01-01
Simulations of a 6½-inch loudspeaker unit are performed and compared with a displacement measurement. The non-linear loudspeaker model is based on the major nonlinear functions and expanded with time-varying suspension behaviour and flux modulation. The results are presented with FFT plots of three...
Non-Linear Logging Parameters Inversion
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
The non-linear logging parameters inversion is based on the field theory, information optimization and predication theory. It uses seismic charaoters,geological model and logging data as a restriction to inverse 2D, 3D logging parameters data volume. Using this method,
Non linear system become linear system
Directory of Open Access Journals (Sweden)
Petre Bucur
2007-01-01
Full Text Available The present paper refers to the theory and the practice of the systems regarding non-linear systems and their applications. We aimed the integration of these systems to elaborate their response as well as to highlight some outstanding features.
Controller reconfiguration for non-linear systems
Kanev, S.; Verhaegen, M.
2000-01-01
This paper outlines an algorithm for controller reconfiguration for non-linear systems, based on a combination of a multiple model estimator and a generalized predictive controller. A set of models is constructed, each corresponding to a different operating condition of the system. The interacting m
Light focusing in the Anderson Regime
Leonetti, Marco; Mafi, Arash; Conti, Claudio
2014-01-01
Anderson localization is a regime in which diffusion is inhibited and waves (also electromagnetic waves) get localized. Here we exploit adaptive optics to achieve focusing in disordered optical fibers in the Anderson regime. By wavefront shaping and optimization, we observe the generation of a propagation invariant beam, where light is trapped transversally by disorder, and show that Anderson localizations can be also excited by extended speckled beams. We demonstrate that disordered fibers allow a more efficient focusing action with respect to standard fibers in a way independent of their length, because of the propagation invariant features and cooperative action of transverse localizations.
Non-linearly weighted fuzzy correlation for color-image retrieval
Institute of Scientific and Technical Information of China (English)
Guoguang Mu(母国光); Hongchen Zhai(翟宏琛); Siyuan Zhang(张思远)
2003-01-01
An algorithm with non-linear weight factors in the summation process for fuzzy correlation of color his-tograms is presented, in which non-linear weights are assigned to some characteristic colors of interest.Experimental results show that this can improve the retrieval of color images with partial aberrations orwith local color characters.
Non-linear wave equations:Mathematical techniques
International Nuclear Information System (INIS)
An account of certain well-established mathematical methods, which prove useful to deal with non-linear partial differential equations is presented. Within the strict framework of Functional Analysis, it describes Semigroup Techniques in Banach Spaces as well as variational approaches towards critical points. Detailed proofs are given of the existence of local and global solutions of the Cauchy problem and of the stability of stationary solutions. The formal approach based upon invariance under Lie transformations deserves attention due to its wide range of applicability, even if the explicit solutions thus obtained do not allow for a deep analysis of the equations. A compre ensive introduction to the inverse scattering approach and to the solution concept for certain non-linear equations of physical interest are also presented. A detailed discussion is made about certain convergence and stability problems which arise in importance need not be emphasized. (author)
Superconformal mechanics and non-linear realizations
de Azcárraga, J A; Bueno, J C P; Townsend, P K
1999-01-01
We use the method of non-linear realizations to recover the superspace action of the SU(1,1|1)-invariant superconformal mechanics, and the field equations of its SU(1,1|2)-invariant extension. The coefficient of the superpotential term can be interpreted as the orbital angular momentum of a particle near the horizon of an extreme Reissner-Nordstrom black hole.
Non-linear Loudspeaker Unit Modelling
DEFF Research Database (Denmark)
Pedersen, Bo Rohde; Agerkvist, Finn T.
2008-01-01
Simulations of a 6½-inch loudspeaker unit are performed and compared with a displacement measurement. The non-linear loudspeaker model is based on the major nonlinear functions and expanded with time-varying suspension behaviour and flux modulation. The results are presented with FFT plots of three...... frequencies and different displacement levels. The model errors are discussed and analysed including a test with loudspeaker unit where the diaphragm is removed....
Non--Linear Evolution of Cosmological Perturbations
Matarrese, Sabino
1996-01-01
In these lecture notes I review the theory of the non--linear evolution of cosmological perturbations in a self--gravitating collisionless medium, with vanishing vorticity. The problem is first analyzed in the context of the Newtonian approximation, where the basic properties of the Zel'dovich, frozen--flow and adhesion algorithms are introduced. An exact general relativistic formalism is then presented and it is shown how the Newtonian limit, both in Lagrangian and Eulerian coordinates, can ...
Kondakci, H Esat; Saleh, Bahaa E A
2016-01-01
When a disordered array of coupled waveguides is illuminated with an extended coherent optical field, discrete speckle develops: partially coherent light with a granular intensity distribution on the lattice sites. The same paradigm applies to a variety of other settings in photonics, such as imperfectly coupled resonators or fibers with randomly coupled cores. Through numerical simulations and analytical modeling, we uncover a set of surprising features that characterize discrete speckle in one- and two-dimensional lattices known to exhibit transverse Anderson localization. Firstly, the fingerprint of localization is embedded in the fluctuations of the discrete speckle and is revealed in the narrowing of the spatial coherence function. Secondly, the transverse coherence length (or speckle grain size) is frozen during propagation. Thirdly, the axial coherence depth is independent of the axial position, thereby resulting in a coherence voxel of fixed volume independently of position. We take these unique featu...
Farakos, Fotis
2012-01-01
We present a non-linear MSSM with non-standard Higgs sector and goldstino field. Non-linear supersymmetry for the goldstino couplings is described by the constrained chiral superfield and, as usual, the Standard Model sector is encompassed in suitable chiral and vector supermultiplets. Two models are presented. In the first model (non-linear MSSM$3 1/2$), the second Higgs is replaced by a new supermultiplet of half-family with only a new generation of leptons (or quarks). In the second model, for anomaly cancellation purposes, the second Higgs is retained as a spectator superfield by imposing a discrete symmetry. Both models do not have a $\\mu$-problem as a $\\mu$-term is forbidden by the discrete symmetry in the case of a spectator second Higgs or not existing at all in the case of a single Higgs. Moreover, the tree level relation between the Higgs mass and the hidden sector SUSY breaking scale $\\sqrt{f}$ is derived. Finally, we point out a relative suppression by $m_{soft}/\\Lambda$ of the bottom and tau Yuka...
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
@@ Design Concept: "Wuhan Blue Prototype" A highlight of the concept is its integration with the local neighbourhood.The building and site planning will be coordinated with the existing planned facilities with a great lawn leading up from the community entrance toward a community gym and shopping centre. The Blue Sky Prototype itself is planned as an open-air network of pedestrian streets and public gardens at ground level winding up to vertical floor plates. The front doors of each unit will open to wide open-air streets and the sky.
Schreurs, D; Verspecht, J.; Acciari, G; Colantonio, P.; Giannini, F; Limiti, E.; Leuzzi, G.
2001-01-01
The Non-Linear Scattering Functions have been theoretically defined and experimentally measured for the linear-equivalent design of non-linear circuits in arbitrary large signal conditions. Non-linear measures and simulations have been compared, with good agreement. Linear CAD concepts can therefore be extended to non-linear circuits in a rigorous way.
Interpolation of compact non-linear operators
Bento AJG
2000-01-01
Let and be two Banach couples and let be a continuous map such that is a Lipschitz compact operator and is a Lipschitz operator. We prove that if is also compact or is continuously embedded in or is continuously embedded in , then is also a compact operator when and . We also investigate the behaviour of the measure of non-compactness under real interpolation and obtain best possible compactness results of Lions–Peetre type for non-linear operators. A two-sided compactness r...
Limits on Non-Linear Electrodynamics
Fouché, M; Rizzo, C
2016-01-01
In this paper we set a framework in which experiments whose goal is to test QED predictions can be used in a more general way to test non-linear electrodynamics (NLED) which contains low-energy QED as a special case. We review some of these experiments and we establish limits on the different free parameters by generalizing QED predictions in the framework of NLED. We finally discuss the implications of these limits on bound systems and isolated charged particles for which QED has been widely and successfully tested.
Non-linear statistical downscaling of present and LGM precipitation and temperatures over Europe
Vrac, M.; Marbaix, P.; Paillard, D.; Naveau, P.
2007-01-01
Local-scale climate information is increasingly needed for the study of past, present and future climate changes. In this study we develop a non-linear statistical downscaling method to generate local temperatures and precipitation values from large-scale variables of a Earth System Model of Intermediate Complexity (here CLIMBER). Our statistical downscaling scheme is based on the concept of Generalized Additive Models (GAMs), capturing non-linearities via non-parametric techniques. Our GAMs ...
Non-linear feedback neural networks VLSI implementations and applications
Ansari, Mohd Samar
2014-01-01
This book aims to present a viable alternative to the Hopfield Neural Network (HNN) model for analog computation. It is well known that the standard HNN suffers from problems of convergence to local minima, and requirement of a large number of neurons and synaptic weights. Therefore, improved solutions are needed. The non-linear synapse neural network (NoSyNN) is one such possibility and is discussed in detail in this book. This book also discusses the applications in computationally intensive tasks like graph coloring, ranking, and linear as well as quadratic programming. The material in the book is useful to students, researchers and academician working in the area of analog computation.
Non-Linear Dynamics of Saturn's Rings
Esposito, L. W.
2015-12-01
Non-linear processes can explain why Saturn's rings are so active and dynamic. Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity, and allows aggregates to grow. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit, with relative velocity ranging from nearly zero to a multiple of the orbit average: 2-10x is possible. Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like 'straw' that can explain the halo structure and spectroscopy: Cyclic velocity changes cause perturbed regions to reach higher collision speeds at some orbital phases, which preferentially removes small regolith particles; Surrounding particles diffuse back too slowly to erase the effect: this gives the halo morphology; This requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km); We propose 'straw', as observed ny Cassini cameras. Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing. Ring dynamics and history implications: Moon-triggered clumping at perturbed regions in Saturn's rings creates both high velocity dispersion and large aggregates at these distances, explaining both small and large particles observed there. This confirms the triple architecture of ring particles: a broad size distribution of particles; these aggregate into temporary rubble piles; coated by a regolith of dust. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating the Markov chain as an asymmetric random walk with reflecting boundaries allows us to determine the power law index from
Non Linear Beam Dynamics Studies at SPEAR
International Nuclear Information System (INIS)
The frequency map analysis of a Hamiltonian system recently introduced to accelerators physics in combination with turn-by-turn phase space measurements opens new experimental opportunities for studying non linear dynamic in storage rings. In this paper we report on the experimental program at SPEAR having the goal of measuring the frequency map of the machine. In this paper we discuss the accuracy of the instantaneous tune extraction from experimental data and demonstrate the possibility of the frequency map measurement. The instantaneous tune extraction technique can be applied to experimental tracking data with reasonable accuracy. Frequency map can be experimentally determined using the existing turn-by-turn phase space measurement techniques and NAFF instantaneous tune extraction.
Chaotic Discrimination and Non-Linear Dynamics
Directory of Open Access Journals (Sweden)
Partha Gangopadhyay
2005-01-01
Full Text Available This study examines a particular form of price discrimination, known as chaotic discrimination, which has the following features: sellers quote a common price but, in reality, they engage in secret and apparently unsystematic price discounts. It is widely held that such forms of price discrimination are seriously inconsistent with profit maximization by sellers.. However, there is no theoretical salience to support this kind of price discrimination. By straining the logic of non-linear dynamics this study explains why such secret discounts are chaotic in the sense that sellers fail to adopt profit-maximising price discounts. A model is developed to argue that such forms of discrimination may derive from the regions of instability of a dynamic model of price discounts.
Directory of Open Access Journals (Sweden)
Carlos A Bustamante Chaverra
2013-03-01
Full Text Available Un método sin malla es desarrollado para solucionar una versión genérica de la ecuación no lineal de convección-difusión-reacción en dominios bidimensionales. El método de Interpolación Local Hermítica (LHI es empleado para la discretización espacial, y diferentes estrategias son implementadas para solucionar el sistema de ecuaciones no lineales resultante, entre estas iteración de Picard, método de Newton-Raphson y el Método de Homotopía truncado (HAM. En el método LHI las Funciones de Base Radial (RBFs son empleadas para construir una función de interpolación. A diferencia del Método de Kansa, el LHI es aplicado localmente y los operadores diferenciales de las condiciones de frontera y la ecuación gobernante son utilizados para construir la función de interpolación, obteniéndose una matriz de colocación simétrica. El método de Newton-Rapshon se implementa con matriz Jacobiana analítica y numérica, y las derivadas de la ecuación gobernante con respecto al paramétro de homotopía son obtenidas analíticamente. El esquema numérico es veriﬁcado mediante la comparación de resultados con las soluciones analíticas de las ecuaciones de Burgers en una dimensión y Richards en dos dimensiones. Similares resultados son obtenidos para todos los solucionadores que se probaron, pero mejores ratas de convergencia son logradas con el método de Newton-Raphson en doble iteración.A meshless numerical scheme is developed for solving a generic version of the non-linear convection-diﬀusion-reaction equation in two-dim-ensional domains. The Local Hermitian Interpolation (LHI method is employed for the spatial discretization and several strategies are implemented for the solution of the resulting non-linear equation system, among them the Picard iteration, the Newton Raphson method and a truncated version of the Homotopy Analysis Method (HAM. The LHI method is a local collocation strategy in which Radial Basis Functions (RBFs
Left-right non-linear dynamical Higgs
Shu, Jing
2016-01-01
All the possible CP-conserving non-linear operators up to the $p^4$-order in the Lagrangian expansion are analysed here for the left-right symmetric model in the non-linear electroweak chiral context coupled to a light dynamical Higgs. The low energy effects will be triggered by an emerging new physics field content in the nature, more specifically, from spin-1 resonances sourced by the straightforward extension of the SM local gauge symmetry to the larger local group $SU(2)_L\\otimes SU(2)_R\\otimes U(1)_{B-L}$. Low energy phenomenology will be altered by integrating out the resonances from the physical spectrum, being manifested through induced corrections onto the left handed operators. Such modifications are weighted by powers of the scales ratio implied by the symmetries of the model and will determine the size of the effective operator basis to be used. The recently observed diboson excess around the invariant mass 1.8-2 TeV entails a scale suppression that suggests to encode the low energy effects via a ...
Non-linear flow response and reaction plane correlations
Teaney, Derek; Yan, Li
2012-01-01
We apply the non-linear flow response formalism to the recently measured event plane correlations. We find that as a result of the combined effects of linear and non-linear flow response, the observed event plane correlations can be understood as an effective average of the 'linear limit' and 'non-linear limit'.
Global non-linear effect of temperature on economic production.
Burke, Marshall; Hsiang, Solomon M; Miguel, Edward
2015-11-12
Growing evidence demonstrates that climatic conditions can have a profound impact on the functioning of modern human societies, but effects on economic activity appear inconsistent. Fundamental productive elements of modern economies, such as workers and crops, exhibit highly non-linear responses to local temperature even in wealthy countries. In contrast, aggregate macroeconomic productivity of entire wealthy countries is reported not to respond to temperature, while poor countries respond only linearly. Resolving this conflict between micro and macro observations is critical to understanding the role of wealth in coupled human-natural systems and to anticipating the global impact of climate change. Here we unify these seemingly contradictory results by accounting for non-linearity at the macro scale. We show that overall economic productivity is non-linear in temperature for all countries, with productivity peaking at an annual average temperature of 13 °C and declining strongly at higher temperatures. The relationship is globally generalizable, unchanged since 1960, and apparent for agricultural and non-agricultural activity in both rich and poor countries. These results provide the first evidence that economic activity in all regions is coupled to the global climate and establish a new empirical foundation for modelling economic loss in response to climate change, with important implications. If future adaptation mimics past adaptation, unmitigated warming is expected to reshape the global economy by reducing average global incomes roughly 23% by 2100 and widening global income inequality, relative to scenarios without climate change. In contrast to prior estimates, expected global losses are approximately linear in global mean temperature, with median losses many times larger than leading models indicate. PMID:26503051
Global non-linear effect of temperature on economic production
Burke, Marshall; Hsiang, Solomon M.; Miguel, Edward
2015-11-01
Growing evidence demonstrates that climatic conditions can have a profound impact on the functioning of modern human societies, but effects on economic activity appear inconsistent. Fundamental productive elements of modern economies, such as workers and crops, exhibit highly non-linear responses to local temperature even in wealthy countries. In contrast, aggregate macroeconomic productivity of entire wealthy countries is reported not to respond to temperature, while poor countries respond only linearly. Resolving this conflict between micro and macro observations is critical to understanding the role of wealth in coupled human-natural systems and to anticipating the global impact of climate change. Here we unify these seemingly contradictory results by accounting for non-linearity at the macro scale. We show that overall economic productivity is non-linear in temperature for all countries, with productivity peaking at an annual average temperature of 13 °C and declining strongly at higher temperatures. The relationship is globally generalizable, unchanged since 1960, and apparent for agricultural and non-agricultural activity in both rich and poor countries. These results provide the first evidence that economic activity in all regions is coupled to the global climate and establish a new empirical foundation for modelling economic loss in response to climate change, with important implications. If future adaptation mimics past adaptation, unmitigated warming is expected to reshape the global economy by reducing average global incomes roughly 23% by 2100 and widening global income inequality, relative to scenarios without climate change. In contrast to prior estimates, expected global losses are approximately linear in global mean temperature, with median losses many times larger than leading models indicate.
Global non-linear effect of temperature on economic production.
Burke, Marshall; Hsiang, Solomon M; Miguel, Edward
2015-11-12
Growing evidence demonstrates that climatic conditions can have a profound impact on the functioning of modern human societies, but effects on economic activity appear inconsistent. Fundamental productive elements of modern economies, such as workers and crops, exhibit highly non-linear responses to local temperature even in wealthy countries. In contrast, aggregate macroeconomic productivity of entire wealthy countries is reported not to respond to temperature, while poor countries respond only linearly. Resolving this conflict between micro and macro observations is critical to understanding the role of wealth in coupled human-natural systems and to anticipating the global impact of climate change. Here we unify these seemingly contradictory results by accounting for non-linearity at the macro scale. We show that overall economic productivity is non-linear in temperature for all countries, with productivity peaking at an annual average temperature of 13 °C and declining strongly at higher temperatures. The relationship is globally generalizable, unchanged since 1960, and apparent for agricultural and non-agricultural activity in both rich and poor countries. These results provide the first evidence that economic activity in all regions is coupled to the global climate and establish a new empirical foundation for modelling economic loss in response to climate change, with important implications. If future adaptation mimics past adaptation, unmitigated warming is expected to reshape the global economy by reducing average global incomes roughly 23% by 2100 and widening global income inequality, relative to scenarios without climate change. In contrast to prior estimates, expected global losses are approximately linear in global mean temperature, with median losses many times larger than leading models indicate.
Non-linear optical titanyl arsenates: Crystal growth and properties
Nordborg, Jenni Eva Louise
structures. It was shown that, instead of two cation sites, there is a considerable distribution of the cations over additional sites related by pseudosymmetry. The cation disorder is temperature dependent and seems to be universal for the (KIP) family. Charge density maps for RTA reflect the anisotropy of non-linear susceptibility, which is greater in the directions with strong locally anti-symmetric components of the residual electron density. Accordingly, the Ti-O and As-O covalent bonds can be related to the linear and non-linear susceptibility of these materials.
Non-Linear Sigma Model on Conifolds
Parthasarathy, R
2002-01-01
Explicit solutions to the conifold equations with complex dimension $n=3,4$ in terms of {\\it{complex coordinates (fields)}} are employed to construct the Ricci-flat K\\"{a}hler metrics on these manifolds. The K\\"{a}hler 2-forms are found to be closed. The complex realization of these conifold metrics are used in the construction of 2-dimensional non-linear sigma model with the conifolds as target spaces. The action for the sigma model is shown to be bounded from below. By a suitable choice of the 'integration constants', arising in the solution of Ricci flatness requirement, the metric and the equations of motion are found to be {\\it{non-singular}}. As the target space is Ricci flat, the perturbative 1-loop counter terms being absent, the model becomes topological. The inherent U(1) fibre over the base of the conifolds is shown to correspond to a gauge connection in the sigma model. The same procedure is employed to construct the metric for the resolved conifold, in terms of complex coordinates and the action ...
Non-Linear Pricing in Imperfectly Competitive Markets
Reggiani, Carlo
2009-01-01
This thesis is dedicated to the analysis of non-linear pricing in oligopoly. Non-linear pricing is a fairly predominant practice in most real markets, mostly characterized by some amount of competition. The sophistication of pricing practices has increased in the latest decades due to the technological advances that have allowed companies to gather more and more data on consumers preferences. The first essay of the thesis highlights the main characteristics of oligopolistic non-linear ...
Non-linear finite element analysis in structural mechanics
Rust, Wilhelm
2015-01-01
This monograph describes the numerical analysis of non-linearities in structural mechanics, i.e. large rotations, large strain (geometric non-linearities), non-linear material behaviour, in particular elasto-plasticity as well as time-dependent behaviour, and contact. Based on that, the book treats stability problems and limit-load analyses, as well as non-linear equations of a large number of variables. Moreover, the author presents a wide range of problem sets and their solutions. The target audience primarily comprises advanced undergraduate and graduate students of mechanical and civil engineering, but the book may also be beneficial for practising engineers in industry.
Low-frequency band gaps in chains with attached non-linear oscillators
DEFF Research Database (Denmark)
Lazarov, Boyan Stefanov; Jensen, Jakob Søndergaard
2007-01-01
in structures with periodic or random inclusions are located mainly in the high frequency range, as the wavelength has to be comparable with the distance between the alternating parts. Band gaps may also exist in structures with locally attached oscillators. In the linear case the gap is located around......The aim of this article is to investigate the wave propagation in one-dimensional chains with attached non-linear local oscillators by using analytical and numerical models. The focus is on the influence of non-linearities on the filtering properties of the chain in the low frequency range...
A comparison of equivalent linear and non-linear approaches for site amplification studies
International Nuclear Information System (INIS)
The specification of the seismic design criteria for a nuclear installation requires that the effect of the local soil conditions at the site on seismic motion is assessed. The local soil conditions, in particular the material properties of the different soil strata, will affect both the frequency content and peak ground acceleration of seismic motion at the surface. Two main approaches which are used to account for the non-linear behavior of the soil are the equivalent linear approach and the non-linear incremental approach (Desai, 1976). In this paper the non-linear seismic response of a typical site characterized by shallow weak, horizontal soil layers overlying firm rock is examined using both these approaches. The results are compared and the extent of applicability of the equivalent linear approach is determined. The results are compared also with the results obtained from a linear analysis in order to examine the conservatisms inherent in such an analysis
Non-linear Frequency Scaling Algorithm for FMCW SAR Data
Meta, A.; Hoogeboom, P.; Ligthart, L.P.
2006-01-01
This paper presents a novel approach for processing data acquired with Frequency Modulated Continuous Wave (FMCW) dechirp-on-receive systems by using a non-linear frequency scaling algorithm. The range frequency non-linearity correction, the Doppler shift induced by the continuous motion and the ran
Non Linear Gauge Fixing for FeynArts
Gajdosik, Thomas
2007-01-01
We review the non-linear gauge-fixing for the Standard Model, proposed by F. Boudjema and E. Chopin, and present our implementation of this non-linear gauge-fixing to the Standard Model and to the minimal supersymmetric Standard Model in FeynArts.
Algorithms for non-linear M-estimation
DEFF Research Database (Denmark)
Madsen, Kaj; Edlund, O; Ekblom, H
1997-01-01
In non-linear regression, the least squares method is most often used. Since this estimator is highly sensitive to outliers in the data, alternatives have became increasingly popular during the last decades. We present algorithms for non-linear M-estimation. A trust region approach is used, where...
Non-linear wave packet dynamics of coherent states
Indian Academy of Sciences (India)
J Banerji
2001-02-01
We have compared the non-linear wave packet dynamics of coherent states of various symmetry groups and found that certain generic features of non-linear evolution are present in each case. Thus the initial coherent structures are quickly destroyed but are followed by Schrödinger cat formation and revival. We also report important differences in their evolution.
Identification of Non-Linear Structures using Recurrent Neural Networks
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.
1995-01-01
Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....
Identification of Non-Linear Structures using Recurrent Neural Networks
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.
Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....
Chaos and non-linear phenomena in renal vascular control
DEFF Research Database (Denmark)
Yip, K P; Holstein-Rathlou, N H
1996-01-01
a variety of non-linear phenomena. In halothane-anesthetized, normotensive rats the TGF system oscillates regularly at 2-3 cycles/min because of the non-linearities and the time delays within the feedback system. Oscillations are present in single nephron blood flow, tubular pressure and flow...... the well-known phenomenon of vasomotion. Using newly developed non-linear analytical methods non-linear interactions between vasomotion and the TGF mediated oscillation were detected both in single nephron and in whole kidney blood flow. The physiological significance of these non-linear phenomena in renal......Renal autoregulation of blood flow depends on the functions of the tubuloglomerular feedback (TGF) system and the myogenic response of the afferent arteriole. Studies of the dynamic aspects of these control mechanisms at the level of both the single nephron and the whole kidney have revealed...
Non-linear dynamics of wind turbine wings
DEFF Research Database (Denmark)
Larsen, Jesper Winther; Nielsen, Søren R.K.
2006-01-01
The paper deals with the formulation of non-linear vibrations of a wind turbine wing described in a wing fixed moving coordinate system. The considered structural model is a Bernoulli-Euler beam with due consideration to axial twist. The theory includes geometrical non-linearities induced...... by the rotation of the aerodynamic load and the curvature, as well as inertial induced non-linearities caused by the support point motion. The non-linear partial differential equations of motion in the moving frame of reference have been discretized, using the fixed base eigenmodes as a functional basis....... Important non-linear couplings between the fundamental blade mode and edgewise modes have been identified based on a resonance excitation of the wing, caused by a harmonically varying support point motion with the circular frequency omega. Assuming that the fundamental blade and edgewise eigenfrequencies...
Energy Technology Data Exchange (ETDEWEB)
Anderson, J.H.; Bilbow, W.M.
1993-03-18
The objective of this study was to make a more refined evaluation of the Anderson Quin Cycle based on most recent information on the performance of various elements that will be used in the Anderson Quin Cycle. My original estimate of the work plan for evaluating and optimizing the Anderson Quin Cycle called for 7000 man hours of work. Since this grant was limited to 2150 man hours, we could not expect to achieve all the objectives within the allotted period of work. However, the most relevant program objectives have been completed as reported here. The analysis generally confirms the results originally estimated in my paper on the subject. (Ref. 2) Further optimizations should show even higher efficiencies. The Anderson Quin Cycle (US Patent applied for) basically consists of 5 elements in the power cycle: A refrigeration system to cool and clean the inlet air before it enters the compressor that supplies air for the gas turbine; a gas turbine consisting of a compressor, combustor, and turbine; a steam boiler and steam turbine system using the heat from the exhaust gas out of the gas turbine; a vapor turbine cycle, which utilizes the condensed heat from the exhaust of the steam turbine and the exhaust gas heat leaving the steam boiler to operate a vapor turbine cycle which utilizes another fluid than water, in this case isobutane; and the fifth element consists of a gas cooler and heat pump system, which removes the heat from the exhaust gas to lower its temperature essentially to atmospheric temperature, and at the same time permits treatment of the exhaust gas to remove acid components such as sulfur dioxide and nitrogen oxides. Current industry accepted component characteristics were incorporated in the performance analysis of the overall cycle, ensuring accurate and meaningful operating predictions. The characteristics and performance of each of the elements are described. The thermal efficiency of the optimized calculated Anderson Quin Cycle is 62 percent.
Option pricing with linear market impact and non-linear Black and Scholes equations
Gregoire Loeper
2013-01-01
We consider a model of linear market impact, and address the problem of replicating a contingent claim in this framework. We derive a non-linear Black-Scholes Equation that provides an exact replication strategy. This equation is fully non-linear and singular, but we show that it is well posed, and we prove existence of smooth solutions for a large class of final payoffs, both for constant and local volatility. To obtain regularity of the solutions, we develop an original method based on Lege...
Identification of non-linear models of neural activity in bold fmri
DEFF Research Database (Denmark)
Jacobsen, Daniel Jakup; Madsen, Kristoffer Hougaard; Hansen, Lars Kai
2006-01-01
Non-linear hemodynamic models express the BOLD signal as a nonlinear, parametric functional of the temporal sequence of local neural activity. Several models have been proposed for this neural activity. We identify one such parametric model by estimating the distribution of its parameters...
Analysis of non-linearity in differential wavefront sensing technique.
Duan, Hui-Zong; Liang, Yu-Rong; Yeh, Hsien-Chi
2016-03-01
An analytical model of a differential wavefront sensing (DWS) technique based on Gaussian Beam propagation has been derived. Compared with the result of the interference signals detected by quadrant photodiode, which is calculated by using the numerical method, the analytical model has been verified. Both the analytical model and numerical simulation show milli-radians level non-linearity effect of DWS detection. In addition, the beam clipping has strong influence on the non-linearity of DWS. The larger the beam clipping is, the smaller the non-linearity is. However, the beam walking effect hardly has influence on DWS. Thus, it can be ignored in laser interferometer. PMID:26974079
Working group 3 : Identification of non-linear systems
GOLINVAL, JC; G. Kerschen; V. Lenaerts; Thouverez, F.; Argoul, P.
2003-01-01
Researchers in structural dynamics have long recognised the importance of diagnosing and modelling non-linearity. The last 20 years have witnessed a shift in emphasis from single degree-of-freedom (sdof) to multi-degree-of-freedom (mdof) non-linear structural dynamics. The main feature of the program of COST F3 Working Group 3 was to identify the behaviour of a structure which exhibits a localised non-linear component. Inside this working group, two benchmarks were defined and studied intensi...
Non-linear simulations of ELMs in ASDEX Upgrade including diamagnetic drift effects
Energy Technology Data Exchange (ETDEWEB)
Lessig, Alexander; Hoelzl, Matthias; Krebs, Isabel; Franck, Emmanuel; Guenter, Sibylle [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstrasse 2, 85748 Garching (Germany); Orain, Francois; Morales, Jorge; Becoulet, Marina [CEA-IRFM, Cadarache, 13108 Saint-Paul-Lez-Durance (France); Huysmans, Guido [ITER Organization, 13067 Saint-Paul-Lez-Durance (France)
2015-05-01
Large edge localized modes (ELMs) are a severe concern for ITER due to high transient heat loads on divertor targets and wall structures. Using the non-linear MHD code JOREK, we have performed ELM simulations for ASDEX Upgrade (AUG) including diamagnetic drift effects. The influence of diamagnetic terms onto the evolution of the toroidal mode spectrum for different AUG equilibria and the non-linear interaction of the toroidal harmonics are investigated. In particular, we confirm the diamagnetic stabilization of high mode numbers and present new features of a previously introduced quadratic mode coupling model for the early non-linear evolution of the mode structure. Preliminary comparisons of full ELM crashes with experimental observations are shown aiming at code validation and the understanding of different ELM types. Work is ongoing to include toroidal and neoclassical poloidal rotation in our simulations.
NON-LINEAR FORCED VIBRATION OF AXIALLY MOVING VISCOELASTIC BEAMS
Institute of Scientific and Technical Information of China (English)
Yang Xiaodong; Chen Li-Qun
2006-01-01
The non-linear forced vibration of axially moving viscoelastic beams excited by the vibration of the supporting foundation is investigated. A non-linear partial-differential equation governing the transverse motion is derived from the dynamical, constitutive equations and geometrical relations. By referring to the quasi-static stretch assumption, the partial-differential non-linearity is reduced to an integro-partial-differential one. The method of multiple scales is directly applied to the governing equations with the two types of non-linearity, respectively. The amplitude of near- and exact-resonant steady state is analyzed by use of the solvability condition of eliminating secular terms. Numerical results are presented to show the contributions of foundation vibration amplitude, viscoelastic damping, and nonlinearity to the response amplitude for the first and the second mode.
Linear and non-linear optics of condensed matter
International Nuclear Information System (INIS)
Part I - Linear optics: 1. General introduction. 2. Frequency dependence of epsilon(ω, k vector). 3. Wave-vector dependence of epsilon(ω, k vector). 4. Tensor character of epsilon(ω, k vector). Part II - Non-linear optics: 5. Introduction. 6. A classical theory of non-linear response in one dimension. 7. The generalization to three dimensions. 8. General properties of the polarizability tensors. 9. The phase-matching condition. 10. Propagation in a non-linear dielectric. 11. Second harmonic generation. 12. Coupling of three waves. 13. Materials and their non-linearities. 14. Processes involving energy exchange with the medium. 15. Two-photon absorption. 16. Stimulated Raman effect. 17. Electro-optic effects. 18. Limitations of the approach presented here. (author)
Rotorcraft trajectory tracking by non linear inverse control
Drouin, Antoine; Brandao-Ramos, Alexandre Carlos; Miquel, Thierry; Mora-Camino, Félix
2007-01-01
The purpose of this communication is to investigate the usefulness of the non linear inverse control approach to solve the trajectory tracking problem for a four rotor aircraft. After introducing simplifying assumptions, the flight dynamics equations for the four rotor aircraft are considered. A trajectory tracking control structure based on a two layer non linear inverse approach is then proposed. A supervision level is introduced to take into account the actuator limitations.
Non-Linear Seismic Analysis of Masonry Buildings
Parisi, Fulvio
2010-01-01
Non-linear analysis is the most viable tool to get accurate predictions of the actual response of masonry structures under earthquake loading. Analytical methods based on the idealisation of masonry walls with openings as systems of macro-elements allow not only to capture the main failure modes observed after past earthquakes, but also to ensure a limited computational demand in engineering practice. The present thesis deals with non-linear incremental static (pushover) analysis on mason...
Non-linear analysis of multilayer composite structures
Kroflič, Aleš
2012-01-01
A new mathematical model for non-linear static analysis of multilayer composite structures with deformable connection is presented. Doctoral thesis is divided into two parts. In the first part a new mathematical model for analysis of plane multilayer frames is presented. Each layer of composite frame is modelled with geometrically exact Reissner model of plane beam. An important novelty of the model is the introduction of a new constitutive law for connection. Arbitrary non-linear relationshi...
NON-LINEAR SOIL MODELS FOR PIPELINE AND RISER ANALYSIS
Irman, Arifian Agusta
2015-01-01
This thesis describes the development and application of non-linear soil models in pipeline and riser design. A non-linear soil model is typically employed when investigating a complex pipe-soil interaction problem. Two main pipe-soil interactions are frequently studied: the vertical pipe-soil interaction at the touchdown point of the steel catenary riser (SCR) during cyclic heave motion, and the lateral pipe-soil interaction during the pipeline s lateral buckling. Mathematical models for...
Graphical and Analytical Analysis of the Non-Linear PLL
Boer, de, F.R.; Radovanović, Saša; Annema, Anne Johan; Nauta, Bram
2003-01-01
The fixed width control pulses from the Bang-Bang Phase Detector in non-linear PLLs allow for operation at higher data rates than the linear PLL. The high non-linearity of the Bang-Bang Phase Detector gives rise to unwanted effects, such as limit-cycles, not yet fully described. This paper introduces an analysis for accurate prediction of these effects and design alterations to lower its influence on the phase error.
Non-linear corrections to inflationary power spectrum
Gong, Jinn-Ouk(Asia Pacific Center for Theoretical Physics, 67 Cheongam-ro, Pohang, 790-784, Korea); Noh, Hyerim; Hwang, Jai-chan
2010-01-01
We study non-linear contributions to the power spectrum of the curvature perturbation on super-horizon scales, produced during slow-roll inflation driven by a canonical single scalar field. We find that on large scales the linear power spectrum completely dominates and leading non-linear corrections remain totally negligible, indicating that we can safely rely on linear perturbation theory to study inflationary power spectrum. We also briefly comment on the infrared and ultraviolet behaviour ...
Nungesser, Ernesto
2014-01-01
We show future global non-linear stability of surface symmetric solutions of the Einstein-Vlasov system with a positive cosmological constant. Estimates of higher derivatives of the metric and the matter terms are obtained using an inductive argument. In a recent research monograph Ringstr\\"{o}m shows future non-linear stability of (not necessarily symmetric) solutions of the Einstein-Vlasov system with a non-linear scalar field if certain local estimates on the geometry and the matter terms are fulfilled. We show that these assumptions are satisfied at late times for the case under consideration here which together with Cauchy stability leads to our main conclusion.
High-frequency effects in 1D spring-mass systems with strongly non-linear inclusions
DEFF Research Database (Denmark)
Lazarov, Boyan Stefanov; Snaeland, S.O.; Thomsen, Jon Juel
2010-01-01
-like systems with embedded non-linear parts, where the masses interact with a limited set of neighbour masses. The presented analytical and numerical results show that the effective properties for LF wave propagation can be altered by establishing HF standing waves in the non-linear regions of the chain......This work generalises the possibilities to change the effective material or structural properties for low frequency (LF) wave propagation, by using high-frequency (HF) external excitation combined with strong non-linear and non-local material behaviour. The effects are demonstrated on 1D chain....... The changes affect the effective stiffness and damping of the system....
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
This paper presents a method on non-linear correction of broadband LFMCW signal utilizing its relativenonlinear error. The deriving procedure and the results simulated by a computer and tested by a practical system arealso introduced. The method has two obvious advantages compared with the previous methods: (1) Correction has norelation with delay time td and sweep bandwidth B; (2) The inherent non-linear error of VCO has no influence on thecorrection and its last results.
Non-linear statistical downscaling of present and LGM precipitation and temperatures over Europe
Vrac, M.; Paillard, D.; Naveau, P.
2007-01-01
The needs of small-scale climate information have become prevalent to study the impacts of future climate change as well as for paleoclimate researches where the reconstructions from proxies are obviously local. In this study we develop a non-linear statistical downscaling method to generate local temperatures and precipitation values from large-scale variables (e.g. Global Circulation Model – GCM – outputs), through Generalized Additive Models (GAMs) calibrated on the pre...
Non-linear statistical downscaling of present and LGM precipitation and temperatures over Europe
Vrac, M.; Paillard, D.; Naveau, P.
2007-01-01
International audience The needs of small-scale climate information have become prevalent to study the impacts of future climate change as well as for paleoclimate researches where the reconstructions from proxies are obviously local. In this study we develop a non-linear statistical downscaling method to generate local temperatures and precipitation values from large-scale variables (e.g. Global Circulation Model – GCM – outputs), through Generalized Additive Models (GAMs) calibrated on t...
Non-linear pattern formation in bone growth and architecture.
Salmon, Phil
2014-01-01
The three-dimensional morphology of bone arises through adaptation to its required engineering performance. Genetically and adaptively bone travels along a complex spatiotemporal trajectory to acquire optimal architecture. On a cellular, micro-anatomical scale, what mechanisms coordinate the activity of osteoblasts and osteoclasts to produce complex and efficient bone architectures? One mechanism is examined here - chaotic non-linear pattern formation (NPF) - which underlies in a unifying way natural structures as disparate as trabecular bone, swarms of birds flying, island formation, fluid turbulence, and others. At the heart of NPF is the fact that simple rules operating between interacting elements, and Turing-like interaction between global and local signals, lead to complex and structured patterns. The study of "group intelligence" exhibited by swarming birds or shoaling fish has led to an embodiment of NPF called "particle swarm optimization" (PSO). This theoretical model could be applicable to the behavior of osteoblasts, osteoclasts, and osteocytes, seeing them operating "socially" in response simultaneously to both global and local signals (endocrine, cytokine, mechanical), resulting in their clustered activity at formation and resorption sites. This represents problem-solving by social intelligence, and could potentially add further realism to in silico computer simulation of bone modeling. What insights has NPF provided to bone biology? One example concerns the genetic disorder juvenile Pagets disease or idiopathic hyperphosphatasia, where the anomalous parallel trabecular architecture characteristic of this pathology is consistent with an NPF paradigm by analogy with known experimental NPF systems. Here, coupling or "feedback" between osteoblasts and osteoclasts is the critical element. This NPF paradigm implies a profound link between bone regulation and its architecture: in bone the architecture is the regulation. The former is the emergent
Directory of Open Access Journals (Sweden)
Y.H. Chong
2000-01-01
Full Text Available The purpose of Part II is to provide an experimental validation of the methodology presented in Part I and to consider a representative engineering case, the study of which requires a relatively large numerical model. A beam system with cubic stiffness type non-linearity was used in the experimental study. The non-linear response was measured at three locations and the underlying linear system was obtained via linear modal analysis of low-excitation response data. The non-linear parameter variations were obtained as a function of the modal amplitude and the response of the system was generated for other force levels. The results were found to agree very well with the corresponding measurements, indicating the success of the non-linear modal analysis methodology, even in the presence of true experimental noise. An advanced numerical case study that included both inherent structural damping and non-linear friction damping, was considered next. The linear finite element model of a high-pressure turbine blade was used in conjunction with three local non-linear friction damper elements. It was shown that the response of the system could be predicted at any force level, provided that that non-linear modal parameters were available at some reference force level. The predicted response levels were compared against those obtained from reference simulations and very good agreement was achieved in all cases.
Massive Neutrinos and the Non-linear Matter Power Spectrum
Bird, Simeon; Haehnelt, Martin G
2011-01-01
We perform an extensive suite of N-body simulations of the matter power spectrum, incorporating massive neutrinos in the range M = 0.15-0.6 eV, probing the non-linear regime at scales k < 10 hMpc-1 at z < 3. We extend the widely used HALOFIT approximation (Smith et al. 2003) to account for the effect of massive neutrinos on the power spectrum. In the strongly non-linear regime HALOFIT systematically over-predicts the suppression due to the free-streaming of the neutrinos. The maximal discrepancy occurs at k \\sim 1hMpc-1, and is at the level of 10% of the total suppression. Most published constraints on neutrino masses based on HALOFIT are not affected, as they rely on data probing the matter power spectrum in the linear or mildly non-linear regime. However, predictions for future galaxy, Lyman-alpha forest and weak lensing surveys extending to more non-linear scales will benefit from the improved approximation to the non-linear matter power spectrum we provide. Our approximation reproduces the induced n...
The Importance of Non-Linearity on Turbulent Fluxes
DEFF Research Database (Denmark)
Rokni, Masoud
2007-01-01
Two new non-linear models for the turbulent heat fluxes are derived and developed from the transport equation of the scalar passive flux. These models are called as non-linear eddy diffusivity and non-linear scalar flux. The structure of these models is compared with the exact solution which...... is derived from the Cayley-Hamilton theorem and contains a three term-basis plus a non-linear term due to scalar fluxes. In order to study the performance of the model itself, all other turbulent quantities are taken from a DNS channel flow data-base and thus the error source has been minimized. The results...... are compared with the DNS channel flow and good agreement is achieved. It has been shown that the non-linearity parts of the models are important to capture the true path of the streamwise scalar fluxes. It has also been shown that one of model constant should have negative sign rather than positive, which had...
Generalized non-linear strength theory and transformed stress space
Institute of Scientific and Technical Information of China (English)
YAO Yangping; LU Dechun; ZHOU Annan; ZOU Bo
2004-01-01
Based on the test data of frictional materials and previous research achievements in this field, a generalized non-linear strength theory (GNST) is proposed. It describes non-linear strength properties on the π-plane and the meridian plane using a unified formula, and it includes almost all the present non-linear strength theories, which can be used in just one material. The shape of failure function of the GNST is a smooth curve between the SMP criterion and the Mises criterion on the π-plane, and an exponential curve on the meridian plane. Through the transformed stress space based on the GNST, the combination of the GNST and various constitutive models using p and q as stress parameters can be realized simply and rationally in three-dimensional stress state.
Non-linear coupling of quantum theory and classical gravity
International Nuclear Information System (INIS)
The possibility that the non-linear evolution proposed earlier for a relativistic quantum field theory may be related to its coupling to a classical gravitational field is discussed. Formally, in the Schroedinger picture, it is shown how both the Schroedinger equation and Einstein's equations (with the expectation value of the energy-momentum tensor on the right) can be derived from a variational principle. This yields a non-linear quantum evolution. Other terms can be added to the action integral to incorporate explicit non-linearities of the type discussed previously. The possibility of giving a meaning to the resulting equation in a Heisenberg or interaction-like picture, is briefly discussed. (author)
Non-linear system identification in flow-induced vibration
Energy Technology Data Exchange (ETDEWEB)
Spanos, P.D.; Zeldin, B.A. [Rice Univ., Houston, TX (United States); Lu, R. [Hudson Engineering Corp., Houston, TX (United States)
1996-12-31
The paper introduces a method of identification of non-linear systems encountered in marine engineering applications. The non-linearity is accounted for by a combination of linear subsystems and known zero-memory non-linear transformations; an equivalent linear multi-input-single-output (MISO) system is developed for the identification problem. The unknown transfer functions of the MISO system are identified by assembling a system of linear equations in the frequency domain. This system is solved by performing the Cholesky decomposition of a related matrix. It is shown that the proposed identification method can be interpreted as a {open_quotes}Gram-Schmidt{close_quotes} type of orthogonal decomposition of the input-output quantities of the equivalent MISO system. A numerical example involving the identification of unknown parameters of flow (ocean wave) induced forces on offshore structures elucidates the applicability of the proposed method.
An algorithm for earthwork allocation considering non-linear factors
Institute of Scientific and Technical Information of China (English)
WANG Ren-chao; LIU Jin-fei
2008-01-01
For solving the optimization model of earthwork allocation considering non-linear factors, a hybrid al-gorithm combined with the ant algorithm (AA) and particle swarm optimization (PSO) is proposed in this pa-per. Then the proposed method and the LP method are used respectively in solving a linear allocation model of a high rockfill dam project. Results obtained by these two methods are compared each other. It can be conclu-ded that the solution got by the proposed method is extremely approximate to the analytic solution of LP method. The superiority of the proposed method over the LP method in solving a non-linear allocation model is illustrated by a non-linear case. Moreover, further researches on improvement of the algorithm and the allocation model are addressed.
Change-Of-Bases Abstractions for Non-Linear Systems
Sankaranarayanan, Sriram
2012-01-01
We present abstraction techniques that transform a given non-linear dynamical system into a linear system or an algebraic system described by polynomials of bounded degree, such that, invariant properties of the resulting abstraction can be used to infer invariants for the original system. The abstraction techniques rely on a change-of-basis transformation that associates each state variable of the abstract system with a function involving the state variables of the original system. We present conditions under which a given change of basis transformation for a non-linear system can define an abstraction. Furthermore, the techniques developed here apply to continuous systems defined by Ordinary Differential Equations (ODEs), discrete systems defined by transition systems and hybrid systems that combine continuous as well as discrete subsystems. The techniques presented here allow us to discover, given a non-linear system, if a change of bases transformation involving degree-bounded polynomials yielding an alge...
Asymtotics of M-estmation in Non-linear Regression
Institute of Scientific and Technical Information of China (English)
Ying YANG
2004-01-01
Consider the standard non-linear regression model yi = g(xi,θo) +εi, i = 1,..., n where g(x,θ) is a continuous function on a bounded closed region X × , θo is the unknown parameter vector in Rp, {x1, x2, ... ,xn} is a deterministic design of experiment and {ε1, ε2 ,εn} is a sequence of independent random variables. This paper establishes the existences of M-estimates and the asymptotic uniform linearity of M-scores in a family of non-linear regression models when the errors are independent and identically distributed. This result is then used to obtain the asymptotic distribution of a class of M-estimators for a large class of non-linear regression models. At the same time, we point out that Theorem 2 of Wang (1995) (J. of Multivariate Analysis, vol. 54, pp. 227-238, Corrigenda. vol. 55, p. 350) is not correct.
Using the group of non-linear cells design metamaterial bar
Sun, Hongwei; Song, Xin; Hu, Xiaolei; Gu, Jinliang
2016-04-01
The paper presents the wave propagation in one-dimensional metamaterial bar with attached group of non-linear local oscillators by using analytical and numerical models. The focus is on the influence of group of non-linear cells on the filtering properties of the bar in the 1000Hz to 2000Hz range. Group of Periodic cells with alternating properties exhibit interesting dynamic characteristics that enable them to act as filters. Waves can propagate along bars within specific bands of frequencies called pass bands, and attenuate within bands of frequencies called gaps. Gaps in structures with group of periodic cells are located according on the frequency of cells. From the cell, we can yield the effect negative stiffness and effect negative mass. We can also design the gaps from attached oscillators or cells. In the uniform case the gap is located around the resonant frequency of the oscillators, and thus a stop band can be created in the lower frequency range. In the case with group of non-linear cells the results show that the position of the gap can be designed, and the design depends on the amplitude and the degree of non-linear cells.
Arithmetic coding as a non-linear dynamical system
Nagaraj, Nithin; Vaidya, Prabhakar G.; Bhat, Kishor G.
2009-04-01
In order to perform source coding (data compression), we treat messages emitted by independent and identically distributed sources as imprecise measurements (symbolic sequence) of a chaotic, ergodic, Lebesgue measure preserving, non-linear dynamical system known as Generalized Luröth Series (GLS). GLS achieves Shannon's entropy bound and turns out to be a generalization of arithmetic coding, a popular source coding algorithm, used in international compression standards such as JPEG2000 and H.264. We further generalize GLS to piecewise non-linear maps (Skewed-nGLS). We motivate the use of Skewed-nGLS as a framework for joint source coding and encryption.
Foundations of the non-linear mechanics of continua
Sedov, L I
1966-01-01
International Series of Monographs on Interdisciplinary and Advanced Topics in Science and Engineering, Volume 1: Foundations of the Non-Linear Mechanics of Continua deals with the theoretical apparatus, principal concepts, and principles used in the construction of models of material bodies that fill space continuously. This book consists of three chapters. Chapters 1 and 2 are devoted to the theory of tensors and kinematic applications, focusing on the little-known theory of non-linear tensor functions. The laws of dynamics and thermodynamics are covered in Chapter 3.This volume is suitable
Mathematical problems in non-linear Physics: some results
International Nuclear Information System (INIS)
The basic results presented in this report are the following: 1) Characterization of the range and Kernel of the variational derivative. 2) Determination of general conservation laws in linear evolution equations, as well as bounds for the number of polynomial conserved densities in non-linear evolution equations in two independent variables of even order. 3) Construction of the most general evolution equation which has a given family of conserved densities. 4) Regularity conditions for the validity of the Lie invariance method. 5) A simple class of perturbations in non-linear wave equations. 6) Soliton solutions in generalized KdV equations. (author)
Non-linear effects in bunch compressor of TARLA
Yildiz, Hüseyin; Aksoy, Avni; Arikan, Pervin
2016-03-01
Transport of a beam through an accelerator beamline is affected by high order and non-linear effects such as space charge, coherent synchrotron radiation, wakefield, etc. These effects damage form of the beam, and they lead particle loss, emittance growth, bunch length variation, beam halo formation, etc. One of the known non-linear effects on low energy machine is space charge effect. In this study we focus on space charge effect for Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) machine which is designed to drive InfraRed Free Electron Laser covering the range of 3-250 µm. Moreover, we discuss second order effects on bunch compressor of TARLA.
Non-Linear Finite Element Modeling of THUNDER Piezoelectric Actuators
Taleghani, Barmac K.; Campbell, Joel F.
1999-01-01
A NASTRAN non-linear finite element model has been developed for predicting the dome heights of THUNDER (THin Layer UNimorph Ferroelectric DrivER) piezoelectric actuators. To analytically validate the finite element model, a comparison was made with a non-linear plate solution using Von Karmen's approximation. A 500 volt input was used to examine the actuator deformation. The NASTRAN finite element model was also compared with experimental results. Four groups of specimens were fabricated and tested. Four different input voltages, which included 120, 160, 200, and 240 Vp-p with a 0 volts offset, were used for this comparison.
Non-linear optics of ultrastrongly coupled cavity polaritons
Crescimanno, Michael; Liu, Bin; McMaster, Michael; Singer, Kenneth
2016-05-01
Experiments at CWRU have developed organic cavity polaritons that display world-record vacuum Rabi splittings of more than an eV. This ultrastrongly coupled polaritonic matter is a new regime for exploring non-linear optical effects. We apply quantum optics theory to quantitatively determine various non-linear optical effects including types of low harmonic generation (SHG and THG) in single and double cavity polariton systems. Ultrastrongly coupled photon-matter systems such as these may be the foundation for technologies including low-power optical switching and computing.
Implementation of neural network based non-linear predictive
DEFF Research Database (Denmark)
Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole;
1998-01-01
The paper describes a control method for non-linear systems based on generalized predictive control. Generalized predictive control (GPC) was developed to control linear systems including open loop unstable and non-minimum phase systems, but has also been proposed extended for the control of non-linear...... systems. GPC is model-based and in this paper we propose the use of a neural network for the modeling of the system. Based on the neural network model a controller with extended control horizon is developed and the implementation issues are discussed, with particular emphasis on an efficient Quasi......-Newton optimization algorithm. The performance is demonstrated on a pneumatic servo system....
Non-linear growth and condensation in multiplex networks
Nicosia, Vincenzo; Latora, Vito; Barthelemy, Marc
2013-01-01
Different types of interactions coexist and coevolve to shape the structure and function of a multiplex network. We propose here a general class of growth models in which the various layers of a multiplex network coevolve through a set of non-linear preferential attachment rules. We show, both numerically and analytically, that by tuning the level of non-linearity these models allow to reproduce either homogeneous or heterogeneous degree distributions, together with positive or negative degree correlations across layers. In particular, we derive the condition for the appearance of a condensed state in which a single node connects to nearly all other nodes of a layer.
Simulation of non-linear rf losses derived from characteristic Nb topography
Energy Technology Data Exchange (ETDEWEB)
Reece, Charles E. [JLAB; Xu, Chen; Kelley, Michael [W& M. JLAB
2013-09-01
A simplified model has been developed to simulate non-linear RF losses on Nb surfaces exclusively due to topographical enhancement of surface magnetic fields. If local sharp edges are small enough, at locations where local surface fields exceed Hc, small volumes of material may become normal conducting without thermal leading to quench. These small volumes of normal material yield increases in the effective surface resistance of the Nb. Using topographic data from typical BCP?d and EP?d fine grain niobium surfaces, we have simulated field-dependent losses and found that when extrapolated to resulting cavity performance, these losses correspond well to characteristic BCP/EP high field Q0 performance differences for fine grain Nb. We describe the structure of the model, its limitations, and the effects of this type of non-linear loss contribution on SRF cavities.
Sparse PDF maps for non-linear multi-resolution image operations
Hadwiger, Markus
2012-11-01
We introduce a new type of multi-resolution image pyramid for high-resolution images called sparse pdf maps (sPDF-maps). Each pyramid level consists of a sparse encoding of continuous probability density functions (pdfs) of pixel neighborhoods in the original image. The encoded pdfs enable the accurate computation of non-linear image operations directly in any pyramid level with proper pre-filtering for anti-aliasing, without accessing higher or lower resolutions. The sparsity of sPDF-maps makes them feasible for gigapixel images, while enabling direct evaluation of a variety of non-linear operators from the same representation. We illustrate this versatility for antialiased color mapping, O(n) local Laplacian filters, smoothed local histogram filters (e.g., median or mode filters), and bilateral filters. © 2012 ACM.
International Nuclear Information System (INIS)
We have carried out numerical investigations of transmittance fluctuations in disordered chains in the presence of external electric fields. We have obtained an almost constant fluctuation in a length scale smaller than the localization length. However, the value of the fluctuation in the plateau region is dependent on the external electric field and strength of disorder. We have also studied the transmittance autocorrelation as a function of external electric field to probe non-linearity in transmittance. (author). 26 refs, 4 figs
Non-linear duality invariant partially massless models?
Cherney, D.; Deser, S.; Waldron, A; Zahariade, G.
2016-01-01
We present manifestly duality invariant, non-linear, equations of motion for maximal depth, partially massless higher spins. These are based on a first order, Maxwell-like formulation of the known partially massless systems. Our models mimic Dirac–Born–Infeld theory but it is unclear whether they are Lagrangian.
Development and Control of a Non Linear Magnetic Levitation System
Directory of Open Access Journals (Sweden)
A Sanjeevi Gandhi
2013-06-01
Full Text Available Nowadays, studies to develop and control non linear systems is of great significance. Magnetic Levitation System has gained considerable interests due to its great practical importance in different engineering fields In this paper an electromagnetic levitation system was developed and mathematical model for the system was derived. The developed system was controlled manually.
Non-linear protocell models: synchronization and chaos
Filisetti, A.; Serra, R.; Carletti, T.; Villani, M.; Poli, I.
2010-09-01
We consider generic protocells models allowing linear and non-linear kinetics for the main involved chemical reactions. We are interested in understanding if and how the protocell division and the metabolism do synchronise to give rise to sustainable evolution of the protocell.
Information content of the non-linear matter power spectrum
Rimes, C D
2005-01-01
We use an ensemble of N-body simulations of the currently favoured (concordance) cosmological model to measure the amount of information contained in the non-linear matter power spectrum, and its pre-whitened counterpart, about the amplitude of the initial power spectrum. Two surprising results emerge from this study: (i) that there is very little independent information in the power spectrum in the translinear regime (k ~ 0.2-0.8 Mpc/h at the present day) over and above the information at linear scales and (ii) that the cumulative information begins to rise sharply again with increasing wavenumber in the non-linear regime. In the fully non-linear regime, the simulations are consistent with no loss of information during translinear and non-linear evolution. If this is indeed the case then the results suggest a picture in which translinear collapse is very rapid, and is followed by a bounce prior to virialization, impelling a wholesale revision of the HKLM-PD formalism.
A problem in non-linear Diophantine approximation
Harrap, Stephen; Hussain, Mumtaz; Kristensen, Simon
2015-01-01
In this paper we obtain the Lebesgue and Hausdorff measure results for the set of vectors satisfying infinitely many fully non-linear Diophantine inequalities. The set is also associated with a class of linear inhomogeneous partial differential equations whose solubility is related to a certain Diophantine condition. The failure of the Diophantine condition guarantees the existence of a smooth solution.
An inhomogeneous wave equation and non-linear Diophantine approximation
DEFF Research Database (Denmark)
Beresnevich, V.; Dodson, M. M.; Kristensen, S.;
2008-01-01
A non-linear Diophantine condition involving perfect squares and arising from an inhomogeneous wave equation on the torus guarantees the existence of a smooth solution. The exceptional set associated with the failure of the Diophantine condition and hence of the existence of a smooth solution is...
Non Linear System for a Veritable pid Substitute
Directory of Open Access Journals (Sweden)
Petre Bucur
2008-01-01
Full Text Available The paper deals with a non-linear system largely used in biology, which, in certain conditions and for particular coefficient values, becomes linear, with a linear diagram over a large range of time. It can be used as a veritable regulator in systems' control
Non-Linear Interactive Stories in Computer Games
DEFF Research Database (Denmark)
Bangsø, Olav; Jensen, Ole Guttorm; Kocka, Tomas
2003-01-01
The paper introduces non-linear interactive stories (NOLIST) as a means to generate varied and interesting stories for computer games automatically. We give a compact representation of a NOLIST based on the specification of atomic stories, and show how to build an object-oriented Bayesian network...
Characterising dynamic non-linearity in floating wind turbines
International Nuclear Information System (INIS)
Fully coupled aero-hydro-control-elastic codes are being developed to cope with the new modelling challenges presented by floating wind turbines, but there is also a place for more efficient methods of analysis. One option is linearisation and analysis in the frequency domain. For this to be an effective method, the non-linearities in the system must be well understood. The present study focusses on understanding the dynamic response of the rotor to the overall platform motion, as would arise from wave loading, by using a simple model of a floating wind turbine with a rigid tower and flexible rotor (represented by hinged rigid blades). First, an equation of motion of the blade is derived and an approximate solution for the blade response is found using the perturbation method. Secondly, the full non-linear solution is found by time- domain simulation. The response is found to be linear at lower platform pitching frequencies, becoming non-linear at higher frequencies, with the approximate solution giving good results for weakly non-linear behaviour. Higher rotor speeds have a stabilising effect on the response. In the context of typical floating turbine parameters, it is concluded that the blade flapwise response is likely to be linear
Design Wave Load Prediction by Non-Linear Strip Theories
DEFF Research Database (Denmark)
Jensen, Jørgen Juncher
1998-01-01
Some methods for predicting global stochastic wave load responses in ships are presented. The methods take into account the elastic behaviour of the ship and at least some of the non-linearities in the wave-induced loadings.Numerical rsults obtained for actual ships are reviewed with special...
On the non-linearity of the subsidiary systems
Friedrich, H
2005-01-01
In hyperbolic reductions of the Einstein equations the evolution of gauge conditions or constraint quantities is controlled by subsidiary systems. We point out a class of non-linearities in these systems which may have the potential of generating catastrophic growth of gauge resp. constraint violations in numerical calculations.
S-AMP for non-linear observation models
DEFF Research Database (Denmark)
Cakmak, Burak; Winther, Ole; Fleury, Bernard H.
2015-01-01
Recently we presented the S-AMP approach, an extension of approximate message passing (AMP), to be able to handle general invariant matrix ensembles. In this contribution we extend S-AMP to non-linear observation models. We obtain generalized AMP (GAMP) as the special case when the measurement...
Non-Linear Vibration of Euler-Bernoulli Beams
DEFF Research Database (Denmark)
Barari, Amin; Kaliji, H. D.; Domairry, G.;
2011-01-01
In this paper, variational iteration (VIM) and parametrized perturbation (PPM)methods have been used to investigate non-linear vibration of Euler-Bernoulli beams subjected to the axial loads. The proposed methods do not require small parameter in the equation which is difficult to be found...
Implementation of neural network based non-linear predictive control
DEFF Research Database (Denmark)
Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole;
1999-01-01
of non-linear systems. GPC is model based and in this paper we propose the use of a neural network for the modeling of the system. Based on the neural network model, a controller with extended control horizon is developed and the implementation issues are discussed, with particular emphasis...
Semiclassical approximations in non-linear σω models
International Nuclear Information System (INIS)
Extended Thomas-Fermi calculations up to second order in ℎ have been performed for relativistic non-linear σω models and compared with the corresponding Hartree calculations. In several respects, the relativistic phenomenology quite resembles the one previously found in the non-relativistic context using Skyrme forces. (orig.)
Optimisation of High-Power Amplifiers using non linear models
Hek, A.P. de; Bogaart, F.L.M. van den
1999-01-01
This paper identifies the areas where the use of non-linear simulations for the design of high-power amplifiers is useful. The identified areas are: operating class selection, determination source and load impedance for matching network design, overall amplifier simulations and stability analysis un
Non-linear Behavior of Curved Sandwich Panels
DEFF Research Database (Denmark)
Berggreen, Carl Christian; Jolma, P.; Karjalainen, J. P.;
2003-01-01
In this paper the non-linear behavior of curved sandwich panels is investigated both numerically and experimentally. Focus is on various aspects of finite element modeling and calculation procedures. A simply supported, singly curved, CFRP/PVC sandwich panel is analyzed under uniform pressure load...
Applications of non-linear methods in astronomy
Martens, P.C.H.
1984-01-01
In this review I discuss catastrophes, bifurcations and strange attractors in a non-mathematical manner by giving very simple examples that st ill contain the essence of the phenomenon. The salientresults of the applications of these non-linear methods in astrophysics are reviewed and include such d
Development and Control of a Non Linear Magnetic Levitation System
A Sanjeevi Gandhi; Reshma Angelene Jose
2013-01-01
Nowadays, studies to develop and control non linear systems is of great significance. Magnetic Levitation System has gained considerable interests due to its great practical importance in different engineering fields In this paper an electromagnetic levitation system was developed and mathematical model for the system was derived. The developed system was controlled manually.
Range non-linearities correction in FMCW SAR
Meta, A.; Hoogeboom, P.; Ligthart, L.P.
2006-01-01
The limiting factor to the use of Frequency Modulated Continuous Wave (FMCW) technology with Synthetic Aperture Radar (SAR) techniques to produce lightweight, cost effective, low power consuming imaging sensors with high resolution, is the well known presence of non-linearities in the transmitted si
Spinning Solitons of a Modified Non-Linear Schroedinger equation
Brihaye, Y; Zakrzewski, W J; Brihaye, Yves; Hartmann, Betti; Zakrzewski, Wojtek J.
2003-01-01
We study soliton solutions of a modified non-linear Schroedinger (MNLS) equation. Using an Ansatz for the time and azimuthal angle dependence previously considered in the studies of the spinning Q-balls, we construct multi-node solutions of MNLS as well as spinning generalisations.
Non-Linear Second-Order Periodic Systems with Non-Smooth Potential
Indian Academy of Sciences (India)
Evgenia H Papageorgiou; Nikolaos S, Papageorgiou
2004-08-01
In this paper we study second order non-linear periodic systems driven by the ordinary vector -Laplacian with a non-smooth, locally Lipschitz potential function. Our approach is variational and it is based on the non-smooth critical point theory. We prove existence and multiplicity results under general growth conditions on the potential function. Then we establish the existence of non-trivial homoclinic (to zero) solutions. Our theorem appears to be the first such result (even for smooth problems) for systems monitored by the -Laplacian. In the last section of the paper we examine the scalar non-linear and semilinear problem. Our approach uses a generalized Landesman–Lazer type condition which generalizes previous ones used in the literature. Also for the semilinear case the problem is at resonance at any eigenvalue.
Non-linear dynamics of Kelvin-Helmholtz unstable magnetized jets three-dimensional effects
Keppens, R
1999-01-01
A numerical study of the Kelvin-Helmholtz instability in compressible magnetohydrodynamics is presented. The three-dimensional simulations consider shear flow in a cylindrical jet configuration, embedded in a uniform magnetic field directed along the jet axis. The growth of linear perturbations at specified poloidal and axial mode numbers demonstrate intricate non-linear coupling effects. The physical mechanims leading to induced secondary Kelvin-Helmholtz instabilities at higher mode numbers are identified. The initially weak magnetic field becomes locally dominant in the non-linear dynamics before and during saturation. Thereby, it controls the jet deformation and eventual breakup. The results are obtained using the Versatile Advection Code [G. Toth, Astrophys. Lett. Comm. 34, 245 (1996)], a software package designed to solve general systems of conservation laws. An independent calculation of the same Kelvin-Helmholtz unstable jet configuration using a three-dimensional pseudo-spectral code gives important ...
Global Spiral Arms Formation by Non-linear Interaction of Wakelets
Kumamoto, Jun
2016-01-01
The formation and evolution of galactic spiral arms is not yet clearly understood despite many analytic and numerical work. Recently, a new idea has been proposed that local density enhancements (waklets) arising in the galactic disk connect with each other and make global spiral arms. However, the understanding of this mechanism is not yet sufficient. We analyze the interaction of wakelets by using N-body simulations including perturbing point masses, which are heavier than individual N-body particles and act as the seeds for wakelets. Our simulation facilitates more straightforward interpretation of numerical results than previous work by putting a certain number of perturbers in a well-motivated configuration. We detected a clear sign of non-linear interaction between wakelets, which make global spiral arms by connecting two adjacent wakelets. We found that the wave number of the strongest non-linear interaction depends on galactic disk mass and shear rate. This dependence is consistent with the prediction...
A non-linear discrete transform for pattern recognition of discrete chaotic systems
Karanikas, C
2003-01-01
It is shown, by an invertible non-linear discrete transform that any finite sequence or any collection of strings of any length can be presented as a random walk on trees. These transforms create the mathematical background for coding any information, for exploring its local variability and diversity. With the underlying computational algorithms, with several examples and applications we propose that these transforms can be used for pattern recognition of immune type. In other words we propose a mathematical platform for detecting self and non-self strings of any alphabet, based on a negative selection algorithms, for scouting data's periodicity and self-similarity and for measuring the diversity of chaotic strings with fractal dimension methods. In particular we estimate successfully the entropy and the ratio of chaotic data with self similarity. Moreover we give some applications of a non-linear denoising filter.
Iterated non-linear model predictive control based on tubes and contractive constraints.
Murillo, M; Sánchez, G; Giovanini, L
2016-05-01
This paper presents a predictive control algorithm for non-linear systems based on successive linearizations of the non-linear dynamic around a given trajectory. A linear time varying model is obtained and the non-convex constrained optimization problem is transformed into a sequence of locally convex ones. The robustness of the proposed algorithm is addressed adding a convex contractive constraint. To account for linearization errors and to obtain more accurate results an inner iteration loop is added to the algorithm. A simple methodology to obtain an outer bounding-tube for state trajectories is also presented. The convergence of the iterative process and the stability of the closed-loop system are analyzed. The simulation results show the effectiveness of the proposed algorithm in controlling a quadcopter type unmanned aerial vehicle.
The algebra of physical observables in non-linearly realized gauge theories
International Nuclear Information System (INIS)
We classify the physical observables in spontaneously broken non-linearly realized gauge theories in the recently proposed loopwise expansion governed by the Weak Power-Counting (WPC) and the Local Functional Equation. The latter controls the non-trivial quantum deformation of the classical non-linearly realized gauge symmetry, to all orders in the loop expansion. The Batalin-Vilkovisky (BV) formalism is used. We show that the dependence of the vertex functional on the Goldstone fields is obtained via a canonical transformation w.r.t. the BV bracket associated with the BRST symmetry of the model. We also compare the WPC with strict power-counting renormalizability in linearly realized gauge theories. In the case of the electroweak group we find that the tree-level Weinberg relation still holds if power-counting renormalizability is weakened to the WPC condition. (orig.)
Adaptive Kronrod-Patterson integration of non-linear finite-element matrices
DEFF Research Database (Denmark)
Janssen, Hans
2010-01-01
. While developed for finite element unsaturated moisture transfer simulation, adaptive integration is similarly applicable for other non-linear problems and other discretization methods, and whereas perhaps outperformed by mesh-adaptive techniques, adaptive integration requires much less implementation...... and capacity variations as result. It is shown that these strong variations conflict with the common preference for low-order numerical integration in finite element simulations of unsaturated moisture flow: inaccurate numerical integration leads to errors that are often far more important than errors from...... inappropriate discretization. In response, this article develops adaptive integration, based on nested Kronrod-Patterson-Gauss integration schemes: basically, the integration order is adapted to the locally observed grade of non-linearity. Adaptive integration is developed based on a standard infiltration...
Non-linear Young's double-slit experiment.
San Roman, Julio; Ruiz, Camilo; Perez, Jose Antonio; Delgado, Diego; Mendez, Cruz; Plaja, Luis; Roso, Luis
2006-04-01
The Young's double slit experiment is recreated using intense and short laser pulses. Our experiment evidences the role of the non-linear Kerr effect in the formation of interference patterns. In particular, our results evidence a mixed mechanism in which the zeroth diffraction order of each slit are mainly affected by self-focusing and self-phase modulation, while the higher orders propagate linearly. Despite of the complexity of the general problem of non-linear propagation, we demonstrate that this experiment retains its simplicity and allows for a geometrical interpretation in terms of simple optical paths. In consequence, our results may provide key ideas on experiments on the formation of interference patterns with intense laser fields in Kerr media.
Non-linear corrections in market method of patent valuation
Directory of Open Access Journals (Sweden)
Katarzyna Kopczewska
2014-10-01
Full Text Available Intellectual property rights are increasingly becoming an important asset of enterprises, so that an innovative business must carefully decide about the method of its valuation. The existing literature indicates three classical approaches to this issue: cost-based, income-based, and market-based methods, and a few more sophisticated ones such as: the option-based and patent citation methods, with their advantages and disadvantages. This paper proposes a novel methodology of non-linear corrections in the market model of patent valuation, when factors such as time to expiration, copying risk, or momentum in patent life cycle are taken into consideration. The proposed approach, based on evidence of the non-linear impact over time of the abovementioned factors on the value of patent, is anchored primarily in marketing science as well as in the theory and practice of accounting. This fine-tuning raises the accuracy and credibility of the market method of patent valuation.
Non-linear effects for cylindrical gravitational two-soliton
Tomizawa, Shinya
2015-01-01
Using a cylindrical soliton solution to the four-dimensional vacuum Einstein equation, we study non-linear effects of gravitational waves such as Faraday rotation and time shift phenomenon. In the previous work, we analyzed the single-soliton solution constructed by the Pomeransky's improved inverse scattering method. In this work, we construct a new two-soliton solution with complex conjugate poles, by which we can avoid light-cone singularities unavoidable in a single soliton case. In particular, we compute amplitudes of such non-linear gravitational waves and time-dependence of the polarizations. Furthermore, we consider the time shift phenomenon for soliton waves, which means that a wave packet can propagate at slower velocity than light.
The linear-non-linear frontier for the Goldstone Higgs
Gavela, M B; Machado, P A N; Saa, S
2016-01-01
The minimal $SO(5)/SO(4)$ sigma model is used as a template for the ultraviolet completion of scenarios in which the Higgs particle is a low-energy remnant of some high-energy dynamics, enjoying a (pseudo) Nambu-Goldstone boson ancestry. Varying the $\\sigma$ mass allows to sweep from the perturbative regime to the customary non-linear implementations. The low-energy benchmark effective non-linear Lagrangian for bosons and fermions is obtained, determining as well the operator coefficients including linear corrections. At first order in the latter, three effective bosonic operators emerge which are independent of the explicit soft breaking assumed. The Higgs couplings to vector bosons and fermions turn out to be quite universal: the linear corrections are proportional to the explicit symmetry breaking parameters. Furthermore, we define an effective Yukawa operator which allows a simple parametrization and comparison of different heavy fermion ultraviolet completions. In addition, one particular fermionic compl...
New non-linear photovoltaic effect in uniform bipolar semiconductor
Energy Technology Data Exchange (ETDEWEB)
Volovichev, I. [A. Usikov Institute for Radiophysics and Electronics, National Academy of Sciences of Ukraine, 12 Ac. Proscura St., Kharkov 61085 (Ukraine)
2014-11-21
A linear theory of the new non-linear photovoltaic effect in the closed circuit consisting of a non-uniformly illuminated uniform bipolar semiconductor with neutral impurities is developed. The non-uniform photo-excitation of impurities results in the position-dependant current carrier mobility that breaks the semiconductor homogeneity and induces the photo-electromotive force (emf). As both the electron (or hole) mobility gradient and the current carrier generation rate depend on the light intensity, the photo-emf and the short-circuit current prove to be non-linear functions of the incident light intensity at an arbitrarily low illumination. The influence of the sample size on the photovoltaic effect magnitude is studied. Physical relations and distinctions between the considered effect and the Dember and bulk photovoltaic effects are also discussed.
On the non-linear scale of cosmological perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Blas, Diego [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Garny, Mathias; Konstandin, Thomas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2013-04-15
We discuss the convergence of cosmological perturbation theory. We prove that the polynomial enhancement of the non-linear corrections expected from the effects of soft modes is absent in equal-time correlators like the power or bispectrum. We first show this at leading order by resumming the most important corrections of soft modes to an arbitrary skeleton of hard fluctuations. We derive the same result in the eikonal approximation, which also allows us to show the absence of enhancement at any order. We complement the proof by an explicit calculation of the power spectrum at two-loop order, and by further numerical checks at higher orders. Using these insights, we argue that the modification of the power spectrum from soft modes corresponds at most to logarithmic corrections. Finally, we discuss the asymptotic behavior in the large and small momentum regimes and identify the expansion parameter pertinent to non-linear corrections.
Hans Hinterreiter’s non-linear transformations
DEFF Research Database (Denmark)
Makovicky, Emil
poster illustrates four different cases of this process, starting always with a plane-group pattern and showing both the application of non-linear transformations and coloured symmetry. In his more complex patterns, two of which are shown on the poster, Hinterreiter created domains of affinely...... working on them (more about it in [1]). After a period of experimentation with plane groups of symmetry, he moved to a more complex level of geometric abstract art by applying non-linear transformations to the plane-group patterns. His goal was to achieve a more dynamic rendition of the patterns used. My...... or perspectively distorted motif which were further combined by means of domain boundaries or by the operations of twinning, the latter being frowned upon very much by art specialists when mentioned as one of the analytical concepts. Another means of generalization used by Hinterreiter was a careful mapping...
NON-LINEAR FINITE ELEMENT MODELING OF DEEP DRAWING PROCESS
Directory of Open Access Journals (Sweden)
Hasan YILDIZ
2004-03-01
Full Text Available Deep drawing process is one of the main procedures used in different branches of industry. Finding numerical solutions for determination of the mechanical behaviour of this process will save time and money. In die surfaces, which have complex geometries, it is hard to determine the effects of parameters of sheet metal forming. Some of these parameters are wrinkling, tearing, and determination of the flow of the thin sheet metal in the die and thickness change. However, the most difficult one is determination of material properties during plastic deformation. In this study, the effects of all these parameters are analyzed before producing the dies. The explicit non-linear finite element method is chosen to be used in the analysis. The numerical results obtained for non-linear material and contact models are also compared with the experiments. A good agreement between the numerical and the experimental results is obtained. The results obtained for the models are given in detail.
Neural Generalized Predictive Control of a non-linear Process
DEFF Research Database (Denmark)
Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole;
1998-01-01
The use of neural network in non-linear control is made difficult by the fact the stability and robustness is not guaranteed and that the implementation in real time is non-trivial. In this paper we introduce a predictive controller based on a neural network model which has promising stability...... qualities. The controller is a non-linear version of the well-known generalized predictive controller developed in linear control theory. It involves minimization of a cost function which in the present case has to be done numerically. Therefore, we develop the numerical algorithms necessary in substantial...... detail and discuss the implementation difficulties. The neural generalized predictive controller is tested on a pneumatic servo sys-tem....
Non-linear stochastic response of a shallow cable
DEFF Research Database (Denmark)
Larsen, Jesper Winther; Nielsen, Søren R.K.
2004-01-01
The paper considers the stochastic response of geometrical non-linear shallow cables. Large rain-wind induced cable oscillations with non-linear interactions have been observed in many large cable stayed bridges during the last decades. The response of the cable is investigated for a reduced two......-degrees-of-freedom system with one modal coordinate for the in-plane displacement and one for the out-of-plane displacement. At first harmonic varying chord elongation at excitation frequencies close to the corresponding eigenfrequencies of the cable is considered in order to identify stable modes of vibration. Depending...... on the initial conditions the system may enter one of two states of vibration in the static equilibrium plane with the out-of-plane displacement equal to zero, or a whirling state with the out-of-plane displacement different from zero. Possible solutions are found both analytically and numerically. Next...
Design and implementation of non-linear image processing functions for CMOS image sensor
Musa, Purnawarman; Sudiro, Sunny A.; Wibowo, Eri P.; Harmanto, Suryadi; Paindavoine, Michel
2012-11-01
Today, solid state image sensors are used in many applications like in mobile phones, video surveillance systems, embedded medical imaging and industrial vision systems. These image sensors require the integration in the focal plane (or near the focal plane) of complex image processing algorithms. Such devices must meet the constraints related to the quality of acquired images, speed and performance of embedded processing, as well as low power consumption. To achieve these objectives, low-level analog processing allows extracting the useful information in the scene directly. For example, edge detection step followed by a local maxima extraction will facilitate the high-level processing like objects pattern recognition in a visual scene. Our goal was to design an intelligent image sensor prototype achieving high-speed image acquisition and non-linear image processing (like local minima and maxima calculations). For this purpose, we present in this article the design and test of a 64×64 pixels image sensor built in a standard CMOS Technology 0.35 μm including non-linear image processing. The architecture of our sensor, named nLiRIC (non-Linear Rapid Image Capture), is based on the implementation of an analog Minima/Maxima Unit. This MMU calculates the minimum and maximum values (non-linear functions), in real time, in a 2×2 pixels neighbourhood. Each MMU needs 52 transistors and the pitch of one pixel is 40×40 mu m. The total area of the 64×64 pixels is 12.5mm2. Our tests have shown the validity of the main functions of our new image sensor like fast image acquisition (10K frames per second), minima/maxima calculations in less then one ms.
Non-linear electromagnetic interactions in thermal QED
Brandt, Fernando T.; Frenkel, Josif
1994-01-01
We examine the behavior of the non-linear interactions between electromagnetic fields at high temperature. It is shown that, in general, the log(T) dependence on the temperature of the Green functions is simply related to their UV behavior at zero-temperature. We argue that the effective action describing the nonlinear thermal electromagnetic interactions has a finite limit as T tends to infinity. This thermal action approaches, in the long wavelength limit, the negative of the corresponding ...
The coupling of non-linear supersymmetry to supergravity
Energy Technology Data Exchange (ETDEWEB)
Antoniadis, Ignatios [Sorbonne Universites, UPMC Paris 6, LPTHE, UMR CNRS 7589, Paris (France); University of Bern, Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, Bern (Switzerland); Markou, Chrysoula [Sorbonne Universites, UPMC Paris 6, LPTHE, UMR CNRS 7589, Paris (France)
2015-12-15
We study the coupling of non-linear supersymmetry to supergravity. The goldstino nilpotent superfield of global supersymmetry coupled to supergravity is described by a geometric action of the chiral curvature superfield R subject to the constraint (R - λ){sup 2} = 0 with an appropriate constant λ. This constraint can be found as the decoupling limit of the scalar partner of the goldstino in a class of f(R) supergravity theories. (orig.)
The coupling of non-linear supersymmetry to supergravity
Energy Technology Data Exchange (ETDEWEB)
Antoniadis, Ignatios, E-mail: antoniad@lpthe.jussieu.fr [LPTHE, UMR CNRS 7589, Sorbonne Universités, UPMC Paris 6, 75005, Paris (France); Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern, Sidlestrasse 5, 3012, Bern (Switzerland); Markou, Chrysoula, E-mail: chrysoula@lpthe.jussieu.fr [LPTHE, UMR CNRS 7589, Sorbonne Universités, UPMC Paris 6, 75005, Paris (France)
2015-12-09
We study the coupling of non-linear supersymmetry to supergravity. The goldstino nilpotent superfield of global supersymmetry coupled to supergravity is described by a geometric action of the chiral curvature superfield R subject to the constraint (R-λ){sup 2}=0 with an appropriate constant λ. This constraint can be found as the decoupling limit of the scalar partner of the goldstino in a class of f(R) supergravity theories.
Non linear Fierz-Pauli theory from torsion and bigravity
Deffayet, Cédric; Randjbar-Daemi, Seifallah
2011-01-01
The non linear aspects of a recently proposed model of massive spin-2 particles with propagating torsion are studied. We obtain a nonlinear equation which reduces at linear order to a generalized Fierz-Pauli equation in any background space-time with or without a vanishing torsion. We contrast those results with properties of a class of bigravity theories in an arbitrary background Einstein manifold. It is known that the non perturbative spectrum of the bigravity model has 8 propagating physi...
Measuring the Non-Linear Effects of Monetary Policy
Christian Matthes; Regis Barnichon
2015-01-01
This paper proposes a method to identify the non-linear effects of structural shocks by using Gaussian basis functions to parametrize impulse response functions. We apply our approach to monetary policy and find that the effect of a monetary intervention depends strongly on (i) the sign of the intervention, (ii) the size of the intervention, and (iii) the state of the business cycle at the time of the intervention. A contractionary policy has a strong adverse effect on output, much stronger t...
Linear and non-linear bias: predictions vs. measurements
Hoffmann, Kai; Bel, Julien; Gaztanaga, Enrique
2016-01-01
We study the linear and non-linear bias parameters which determine the mapping between the distributions of galaxies and the full matter density fields, comparing different measurements and predictions. Accociating galaxies with dark matter haloes in the MICE Grand Challenge N-body simulation we directly measure the bias parameters by comparing the smoothed density fluctuations of halos and matter in the same region at different positions as a function of smoothing scale. Alternatively we mea...
Non linear identities between unitary minimal Virasoro characters
Taormina, Anne
Non linear identities between unitary minimal Virasoro characters at low levels (m = 3, 4, 5) are presented as well as a sketch of some proofs. The first identity gives the Ising model characters (m = 3) as bilinears in tricritical Ising model characters (m = 4), while the second one gives the tricritical Ising model characters as bilinears in the Ising model characters and the six combinations of m = 5 Virasoro characters which do not appear in the spectrum of the three state Potts model.
Linear and non-linear calculation of resistive magnetohydrodynamic instabilities
International Nuclear Information System (INIS)
The time-dependent, linear and non-linear, resistive magnetohydrodynamic, numerical models that have been developed at MFECC are reviewed. The purpose of these codes is to compute growth rates, mode structure and saturation of tearing, rippling, and interchange modes in fusion experiments. Cartesian, cylindrical, helical, and toroidal geometries are used in the applications. The numerical methods are described and applications to reversed field configurations are presented
Control of Non-linear Marine Cooling System
DEFF Research Database (Denmark)
Hansen, Michael; Stoustrup, Jakob; Bendtsen, Jan Dimon
2011-01-01
We consider the problem of designing control laws for a marine cooling system used for cooling the main engine and auxiliary components aboard several classes of container vessels. We focus on achieving simple set point control for the system and do not consider compensation of the non-linearities......, closed circuit flow dynamics or transport delays that are present in the system. Control laws are therefore designed using classical control theory and the performance of the design is illustrated through two simulation examples....
Non-linear high-frequency waves in the magnetosphere
Indian Academy of Sciences (India)
S Moolla; R Bharuthram; S V Singh; G S Lakhina
2003-12-01
Using ﬂuid theory, a set of equations is derived for non-linear high-frequency waves propagating oblique to an external magnetic ﬁeld in a three-component plasma consisting of hot electrons, cold electrons and cold ions. For parameters typical of the Earth’s magnetosphere, numerical solutions of the governing equations yield sinusoidal, sawtooth or bipolar wave-forms for the electric ﬁeld.
Non-linear impact analysis of a concrete building
International Nuclear Information System (INIS)
In the nuclear activity domain, design requirements have evolved from the safety point of view. For example, the protection against external hazards has been increased by taking into account high levels of earthquake and also high energy airplane crash. Methodologies have to be developed to evaluate the ability of protective concrete shells to cope with these evolutions of design requirements. Taking account of the complexity of such a problem, different models have been used for the impact analysis: 3D model of the total nuclear island including soil-structure interaction devoted to non-linear analysis in order to estimate the global behaviour of the building and to identify critical zones, and different 3D and 2D models representing partial structures of the whole building limited to the critical zones and taking into account for the boundary conditions given by the whole model, as well as the simplified so-called CEB model. The latter is predominantly suited for an approximate non-linear analysis of flat walls. The basis of the simplified process is derived from that of the CEB code model which consists of a spring-mass model with simplified integral non-linear behaviour laws for the concerned structural elements and adjusted to nuclear types of structures. For the total model and the partial models, a more scientific approach has been used: finite element (FE) method, non-linear laws for steel and concrete, dynamic implicit integration. With the aim of adjusting the parameters of the simplified model, the results from the different FE analyses are compared with the simplified approach. (authors)
Non-linear Galaxy Power Spectrum and Cosmological Parameters
Cooray, Asantha
2003-01-01
The galaxy power spectrum is now a well-known tool of precision cosmology. In addition to the overall shape, baryon oscillations and the small-scale suppression of power by massive neutrinos capture complimentary information on cosmological parameters when compared to the angular power spectrum of cosmic microwave background anisotropies. We study both the real space and redshift space galaxy power spectra in the context of non-linear effects and model them based on the halo approach to large...
Adaptive spectral identification techniques in presence of undetected non linearities
Cella, G; Guidi, G M
2002-01-01
The standard procedure for detection of gravitational wave coalescing binaries signals is based on Wiener filtering with an appropriate bank of template filters. This is the optimal procedure in the hypothesis of addictive Gaussian and stationary noise. We study the possibility of improving the detection efficiency with a class of adaptive spectral identification techniques, analyzing their effect in presence of non stationarities and undetected non linearities in the noise
Non-linear dark matter collapse under diffusion
Velten, Hermano E. S.; Caramês, Thiago R. P.
2014-01-01
Diffusion is one of the physical processes allowed for describing the large scale dark matter dynamics. At the same time, it can be seen as a possible mechanism behind the interacting cosmologies. We study the non-linear spherical "top-hat" collapse of dark matter which undergoes velocity diffusion into a solvent dark energy field. We show constraints on the maximum magnitude allowed for the dark matter diffusion. Our results reinforce previous analysis concerning the linear perturbation theory.
Non-linear HRV indices under autonomic nervous system blockade.
Bolea, Juan; Pueyo, Esther; Laguna, Pablo; Bailón, Raquel
2014-01-01
Heart rate variability (HRV) has been studied as a non-invasive technique to characterize the autonomic nervous system (ANS) regulation of the heart. Non-linear methods based on chaos theory have been used during the last decades as markers for risk stratification. However, interpretation of these nonlinear methods in terms of sympathetic and parasympathetic activity is not fully established. In this work we study linear and non-linear HRV indices during ANS blockades in order to assess their relation with sympathetic and parasympathetic activities. Power spectral content in low frequency (0.04-0.15 Hz) and high frequency (0.15-0.4 Hz) bands of HRV, as well as correlation dimension, sample and approximate entropies were computed in a database of subjects during single and dual ANS blockade with atropine and/or propranolol. Parasympathetic blockade caused a significant decrease in the low and high frequency power of HRV, as well as in correlation dimension and sample and approximate entropies. Sympathetic blockade caused a significant increase in approximate entropy. Sympathetic activation due to postural change from supine to standing caused a significant decrease in all the investigated non-linear indices and a significant increase in the normalized power in the low frequency band. The other investigated linear indices did not show significant changes. Results suggest that parasympathetic activity has a direct relation with sample and approximate entropies.
Testing non-linear vacuum electrodynamics with Michelson interferometry
Schellstede, Gerold O; Lämmerzahl, Claus
2015-01-01
We discuss the theoretical foundations for testing non-linear vacuum electrodynamics with Michelson interferometry. Apart from some non-degeneracy conditions to be imposed, our discussion applies to all non-linear electrodynamical theories of the Pleba\\'nski class, i.e., to all Lagrangians that depend only on the two Lorentz-invariant scalars quadratic in the field strength. The main idea of the experiment proposed here is to use the fact that, according to non-linear electrodynamics, the phase velocity of light should depend on the strength and on the direction of an electromagnetic background field. There are two possible experimental set-ups for testing this prediction with Michelson interferometry. The first possibility is to apply a strong electromagnetic field to the beam in one arm of the interferometer and to compare the situation where the field is switched on with the situation where it is switched off. The second possibility is to place the whole interferometer in a strong electromagnetic field and...
Fitting and forecasting non-linear coupled dark energy
Casas, Santiago; Baldi, Marco; Pettorino, Valeria; Vollmer, Adrian
2015-01-01
We consider cosmological models in which dark matter feels a fifth force mediated by the dark energy scalar field, also known as coupled dark energy. Our interest resides in estimating forecasts for future surveys like Euclid when we take into account non-linear effects, relying on new fitting functions that reproduce the non-linear matter power spectrum obtained from N-body simulations. We obtain fitting functions for models in which the dark matter-dark energy coupling is constant. Their validity is demonstrated for all available simulations in the redshift range $z=0-1.6$ and wave modes below $k=10 \\text{h/Mpc}$. These fitting formulas can be used to test the predictions of the model in the non-linear regime without the need for additional computing-intensive N-body simulations. We then use these fitting functions to perform forecasts on the constraining power that future galaxy-redshift surveys like Euclid will have on the coupling parameter, using the Fisher matrix method for galaxy clustering (GC) and w...
Non-linear Q-clouds around Kerr black holes
Directory of Open Access Journals (Sweden)
Carlos Herdeiro
2014-12-01
Full Text Available Q-balls are regular extended ‘objects’ that exist for some non-gravitating, self-interacting, scalar field theories with a global, continuous, internal symmetry, on Minkowski spacetime. Here, analogous objects are also shown to exist around rotating (Kerr black holes, as non-linear bound states of a test scalar field. We dub such configurations Q-clouds. We focus on a complex massive scalar field with quartic plus hexic self-interactions. Without the self-interactions, linear clouds have been shown to exist, in synchronous rotation with the black hole horizon, along 1-dimensional subspaces – existence lines – of the Kerr 2-dimensional parameter space. They are zero modes of the superradiant instability. Non-linear Q-clouds, on the other hand, are also in synchronous rotation with the black hole horizon; but they exist on a 2-dimensional subspace, delimited by a minimal horizon angular velocity and by an appropriate existence line, wherein the non-linear terms become irrelevant and the Q-cloud reduces to a linear cloud. Thus, Q-clouds provide an example of scalar bound states around Kerr black holes which, generically, are not zero modes of the superradiant instability. We describe some physical properties of Q-clouds, whose backreaction leads to a new family of hairy black holes, continuously connected to the Kerr family.
Non-linear Q-clouds around Kerr black holes
International Nuclear Information System (INIS)
Q-balls are regular extended ‘objects’ that exist for some non-gravitating, self-interacting, scalar field theories with a global, continuous, internal symmetry, on Minkowski spacetime. Here, analogous objects are also shown to exist around rotating (Kerr) black holes, as non-linear bound states of a test scalar field. We dub such configurations Q-clouds. We focus on a complex massive scalar field with quartic plus hexic self-interactions. Without the self-interactions, linear clouds have been shown to exist, in synchronous rotation with the black hole horizon, along 1-dimensional subspaces – existence lines – of the Kerr 2-dimensional parameter space. They are zero modes of the superradiant instability. Non-linear Q-clouds, on the other hand, are also in synchronous rotation with the black hole horizon; but they exist on a 2-dimensional subspace, delimited by a minimal horizon angular velocity and by an appropriate existence line, wherein the non-linear terms become irrelevant and the Q-cloud reduces to a linear cloud. Thus, Q-clouds provide an example of scalar bound states around Kerr black holes which, generically, are not zero modes of the superradiant instability. We describe some physical properties of Q-clouds, whose backreaction leads to a new family of hairy black holes, continuously connected to the Kerr family
Lithuania 1940 / Herbert Foster Anderson
Foster Anderson, Herbert
2004-01-01
Stseenid Leedu ennesõjaaegsest pealinnast Kaunasest briti ärimehe H. Foster Andersoni silme läbi 1940. aastal. Lühikokkuvõte raamatust: Foster Anderson, Herbert. Borderline Russia. London : Cresset press, 1942
International Nuclear Information System (INIS)
The Price-Anderson Act establishes nuclear liability law in the United States. First passed in 1957, it has influenced other nuclear liability legislation around the world. The insurer response the nuclear accident at Three Mile Island in 1979 demonstrates the application of the Act in a real life situation. The Price-Anderson Act is scheduled to be renewed in 2002, and the future use of commercial nuclear power in tge United States will be influenced by this renewal. (author)
Non-linearities in Holocene floodplain sediment storage
Notebaert, Bastiaan; Nils, Broothaerts; Jean-François, Berger; Gert, Verstraeten
2013-04-01
Floodplain sediment storage is an important part of the sediment cascade model, buffering sediment delivery between hillslopes and oceans, which is hitherto not fully quantified in contrast to other global sediment budget components. Quantification and dating of floodplain sediment storage is data and financially demanding, limiting contemporary estimates for larger spatial units to simple linear extrapolations from a number of smaller catchments. In this paper we will present non-linearities in both space and time for floodplain sediment budgets in three different catchments. Holocene floodplain sediments of the Dijle catchment in the Belgian loess region, show a clear distinction between morphological stages: early Holocene peat accumulation, followed by mineral floodplain aggradation from the start of the agricultural period on. Contrary to previous assumptions, detailed dating of this morphological change at different shows an important non-linearity in geomorphologic changes of the floodplain, both between and within cross sections. A second example comes from the Pre-Alpine French Valdaine region, where non-linearities and complex system behavior exists between (temporal) patterns of soil erosion and floodplain sediment deposition. In this region Holocene floodplain deposition is characterized by different cut-and-fill phases. The quantification of these different phases shows a complicated image of increasing and decreasing floodplain sediment storage, which hampers the image of increasing sediment accumulation over time. Although fill stages may correspond with large quantities of deposited sediment and traditionally calculated sedimentation rates for such stages are high, they do not necessary correspond with a long-term net increase in floodplain deposition. A third example is based on the floodplain sediment storage in the Amblève catchment, located in the Belgian Ardennes uplands. Detailed floodplain sediment quantification for this catchments shows
Non-linear absorption for concentrated solar energy transport
Energy Technology Data Exchange (ETDEWEB)
Jaramillo, O. A; Del Rio, J.A; Huelsz, G [Centro de Investigacion de Energia, UNAM, Temixco, Morelos (Mexico)
2000-07-01
In order to determine the maximum solar energy that can be transported using SiO{sub 2} optical fibers, analysis of non-linear absorption is required. In this work, we model the interaction between solar radiation and the SiO{sub 2} optical fiber core to determine the dependence of the absorption of the radioactive intensity. Using Maxwell's equations we obtain the relation between the refractive index and the electric susceptibility up to second order in terms of the electric field intensity. This is not enough to obtain an explicit expression for the non-linear absorption. Thus, to obtain the non-linear optical response, we develop a microscopic model of an harmonic driven oscillators with damp ing, based on the Drude-Lorentz theory. We solve this model using experimental information for the SiO{sub 2} optical fiber, and we determine the frequency-dependence of the non-linear absorption and the non-linear extinction of SiO{sub 2} optical fibers. Our results estimate that the average value over the solar spectrum for the non-linear extinction coefficient for SiO{sub 2} is k{sub 2}=10{sup -}29m{sup 2}V{sup -}2. With this result we conclude that the non-linear part of the absorption coefficient of SiO{sub 2} optical fibers during the transport of concentrated solar energy achieved by a circular concentrator is negligible, and therefore the use of optical fibers for solar applications is an actual option. [Spanish] Con el objeto de determinar la maxima energia solar que puede transportarse usando fibras opticas de SiO{sub 2} se requiere el analisis de absorcion no linear. En este trabajo modelamos la interaccion entre la radiacion solar y el nucleo de la fibra optica de SiO{sub 2} para determinar la dependencia de la absorcion de la intensidad radioactiva. Mediante el uso de las ecuaciones de Maxwell obtenemos la relacion entre el indice de refraccion y la susceptibilidad electrica hasta el segundo orden en terminos de intensidad del campo electrico. Esto no es
Zhang, Ruikun; Hou, Zhongsheng; Ji, Honghai; Yin, Chenkun
2016-04-01
In this paper, an adaptive iterative learning control scheme is proposed for a class of non-linearly parameterised systems with unknown time-varying parameters and input saturations. By incorporating a saturation function, a new iterative learning control mechanism is presented which includes a feedback term and a parameter updating term. Through the use of parameter separation technique, the non-linear parameters are separated from the non-linear function and then a saturated difference updating law is designed in iteration domain by combining the unknown parametric term of the local Lipschitz continuous function and the unknown time-varying gain into an unknown time-varying function. The analysis of convergence is based on a time-weighted Lyapunov-Krasovskii-like composite energy function which consists of time-weighted input, state and parameter estimation information. The proposed learning control mechanism warrants a L2[0, T] convergence of the tracking error sequence along the iteration axis. Simulation results are provided to illustrate the effectiveness of the adaptive iterative learning control scheme.
Non-linear partially massless symmetry in an SO(1,5) continuation of conformal gravity
Apolo, Luis
2016-01-01
We construct a non-linear theory of interacting spin-2 fields that is invariant under the partially massless (PM) symmetry to all orders. This theory is based on the SO(1,5) group, in analogy with the SO(2,4) formulation of conformal gravity, but has a quadratic spectrum free of ghost instabilities. The action contains a vector field associated to a local SO(2) symmetry which is manifest in the vielbein formulation of the theory. We show that, in a perturbative expansion, the SO(2) symmetry transmutes into the PM transformations of a massive spin-2 field. In this context, the vector field is crucial to circumvent earlier obstructions to an order-by-order construction of PM symmetry. Although the non-linear theory lacks enough first class constraints to remove all helicity-0 modes from the spectrum, the PM transformations survive to all orders. The absence of ghosts and strong coupling effects at the non-linear level are not addressed here.
Polarons in π-Conjugated Polymers: Anderson or Landau?
Barford, William; Marcus, Max; Tozer, Oliver Robert
2016-02-01
Using both analytical expressions and the density matrix renormalization group method, we study the fully quantized disordered Holstein model to investigate the localization of charges and excitons by vibrational or torsional modes-i.e., the formation of polarons-in conformationally disordered π-conjugated polymers. We identify two distinct mechanisms for polaron formation, namely Anderson localization via disorder (causing the formation of Anderson polarons) and self-localization by self-trapping via normal modes (causing the formation of Landau polarons). We identify the regimes where either description is more valid. The key distinction between Anderson and Landau polarons is that for the latter the particle wave function is a strong function of the normal coordinates, and hence the "vertical" and "relaxed" wave functions are different. This has theoretical and experimental consequences for Landau polarons. Theoretically, it means that the Condon approximation is not valid, and so care needs to be taken when evaluating transition rates. Experimentally, it means that the self-localization of the particle as a consequence of its coupling to the normal coordinates may lead to experimental observables, e.g., ultrafast fluorescence depolarization. We apply these ideas to poly(p-phenylenevinylene). We show that the high frequency C-C bond oscillation only causes Landau polarons for a very narrow parameter regime; generally we expect disorder to dominate and Anderson polarons to be a more applicable description. Similarly, for the low frequency torsional fluctuations we show that Anderson polarons are expected for realistic parameters.
Studies for an alternative LHC non-linear collimation system
Lari, L; Boccone, V; Cerutti, F; Versaci, R; Vlachoudis, V; Mereghetti, A; Faus-Golfe, A; Resta-Lopez, J
2012-01-01
A LHC non-linear betatron cleaning collimation system would allow larger gap for the mechanical jaws, reducing as a consequence the collimator-induced impedance, which may limit the LHC beam intensity. In this paper, the performance of the proposed system is analyzed in terms of beam losses distribution around the LHC ring and cleaning efficiency in stable physics condition at 7TeV for Beam1. Moreover, the energy deposition distribution on the machine elements is compared to the present LHC Betatron cleaning collimation system in the Point 7 Insertion Region (IR).
Non-linear dynamics in pulse combustor: A review
Indian Academy of Sciences (India)
Sirshendu Mondal; Achintya Kukhopadhyay; Swarnendu Sen
2015-03-01
The state of the art of non-linear dynamics applied to pulse combustor theoretically and experimentally is reviewed. Pulse combustors are a class of air-breathing engines in which pulsations in combustion are utilized to improve the performance. As no analytical solution can be obtained for most of the nonlinear systems, the whole set of solutions can be investigated with the help of dynamical system theory. Many studies have been carried out on pulse combustors whose dynamics include limit cycle behaviour, Hopf bifurcation and period-doubling bifurcation. The dynamic signature has also been used for early prediction of extinction.
Linear Versus Non-linear Supersymmetry, in General
Ferrara, Sergio; Van Proeyen, Antoine; Wrase, Timm
2016-01-01
We study superconformal and supergravity models with constrained superfields. The underlying version of such models with all unconstrained superfields and linearly realized supersymmetry is presented here, in addition to the physical multiplets there are Lagrange multiplier (LM) superfields. Once the equations of motion for the LM superfields are solved, some of the physical superfields become constrained. The linear supersymmetry of the original models becomes non-linearly realized, its exact form can be deduced from the original linear supersymmetry. Known examples of constrained superfields are shown to require the following LM's: chiral superfields, linear superfields, general complex superfields, some of them are multiplets with a spin.
Structure/property relationships in non-linear optical materials
Energy Technology Data Exchange (ETDEWEB)
Cole, J.M. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)]|[Durham Univ. (United Kingdom); Howard, J.A.K. [Durham Univ. (United Kingdom); McIntyre, G.J. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)
1997-04-01
The application of neutrons to the study of structure/property relationships in organic non-linear optical materials (NLOs) is described. In particular, charge-transfer effects and intermolecular interactions are investigated. Charge-transfer effects are studied by charge-density analysis and an example of one such investigation is given. The study of intermolecular interactions concentrates on the effects of hydrogen-bonding and an example is given of two structurally similar molecules with very disparate NLO properties, as a result of different types of hydrogen-bonding. (author). 3 refs.
Non-Linear Langmuir Wave Modulation in Collisionless Plasmas
DEFF Research Database (Denmark)
Dysthe, K. B.; Pécseli, Hans
1977-01-01
A non-linear Schrodinger equation for Langmuir waves is presented. The equation is derived by using a fluid model for the electrons, while both a fluid and a Vlasov formulation are considered for the ion dynamics. The two formulations lead to significant differences in the final results, especially...... in the expressions concerning the modulation instability of a plane Langmuir wave. When the Vlasov equation for the ions is applied, a Langmuir wave is modulationally unstable for arbitrary perturbations independent of the unperturbed wave amplitude, in contrast to what is found for fluid ions. A...
Non-linear theory of elasticity and optimal design
Ratner, LW
2003-01-01
In order to select an optimal structure among possible similar structures, one needs to compare the elastic behavior of the structures. A new criterion that describes elastic behavior is the rate of change of deformation. Using this criterion, the safe dimensions of a structure that are required by the stress distributed in a structure can be calculated. The new non-linear theory of elasticity allows one to determine the actual individual limit of elasticity/failure of a structure using a simple non-destructive method of measurement of deformation on the model of a structure while presently it
Response of a rotorcraft model with damping non-linearities
Tongue, B. H.
1985-11-01
The linearized equations of motion of a helicopter in contact with the ground have solutions which can be linearly stable or unstable, depending on the system parameters. The present study includes physical non-linearities in the helicopter model. This allows one to determine if a steady-state response exists and, if so, what the frequency and amplitude of the oscillations will be. In this way, one can determine how serious the linearly unstable operating regime is and whether destructive oscillations are possible when the system is in the linearly stable regime. The present analysis applies to helicopters having fully articulated rotors.
Non linear identities between unitary minimal Virasoro characters
Energy Technology Data Exchange (ETDEWEB)
Taormina, A. [Durham Univ. (United Kingdom). Dept. of Mathematical Sciences
1995-12-31
Non linear identities between unitary minimal Virasoro characters at low levels (m = 3, 4, 5) are presented as well as a sketch of some proofs. The first identity gives the Ising model characters (m = 3) as bilinears in tricritical Ising model characters (m = 4), while the second one gives the tricritical Ising model characters as bilinears in the Ising model characters and the six combinations of m = 5 Virasoro characters which do not appear in the spectrum of the three state Potts model. (orig.)
Margins, Kernels and Non-linear Smoothed Perceptrons
Ramdas, Aaditya; Peña, Javier
2015-01-01
We focus on the problem of finding a non-linear classification function that lies in a Reproducing Kernel Hilbert Space (RKHS) both from the primal point of view (finding a perfect separator when one exists) and the dual point of view (giving a certificate of non-existence), with special focus on generalizations of two classical schemes - the Perceptron (primal) and Von-Neumann (dual) algorithms. We cast our problem as one of maximizing the regularized normalized hard-margin ($\\rho$) in an RK...
Hierarchical Non-linear Image Registration Integrating Deformable Segmentation
Institute of Scientific and Technical Information of China (English)
RAN Xin; QI Fei-hu
2005-01-01
A hierarchical non-linear method for image registration was presented, which integrates image segmentation and registration under a variational framework. An improved deformable model is used to simultaneously segment and register feature from multiple images. The objects in the image pair are segmented by evolving a single contour and meanwhile the parameters of affine registration transformation are found out. After that, a contour-constrained elastic registration is applied to register the images correctly. The experimental results indicate that the proposed approach is effective to segment and register medical images.
Non-Linear Dynamics of Saturn’s Rings
Esposito, Larry W.
2015-11-01
Non-linear processes can explain why Saturn’s rings are so active and dynamic. Ring systems differ from simple linear systems in two significant ways: 1. They are systems of granular material: where particle-to-particle collisions dominate; thus a kinetic, not a fluid description needed. We find that stresses are strikingly inhomogeneous and fluctuations are large compared to equilibrium. 2. They are strongly forced by resonances: which drive a non-linear response, pushing the system across thresholds that lead to persistent states.Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity, and allows aggregates to grow. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit.Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like ‘straw’ that can explain the halo structure and spectroscopy: This requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km).Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing.Ring dynamics and history implications: Moon-triggered clumping at perturbed regions in Saturn’s rings creates both high velocity dispersion and large aggregates at these distances, explaining both small and large particles observed there. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating the Markov chain as an asymmetric random walk with reflecting boundaries allows us to determine the power law index from results of numerical simulations in the tidal environment surrounding Saturn. Aggregates can explain many dynamic aspects
Quantum-dot-based integrated non-linear sources
DEFF Research Database (Denmark)
Bernard, Alice; Mariani, Silvia; Andronico, Alessio;
2015-01-01
The authors report on the design and the preliminary characterisation of two active non-linear sources in the terahertz and near-infrared range. The former is associated to difference-frequency generation between whispering gallery modes of an AlGaAs microring resonator, whereas the latter is...... granted by parametric generation in a waveguide via modal phase matching. Both devices rely on embedded quantum-dot lasers, which allow for low-threshold currents and unconventional geometries. They also include specific degrees of freedom that open a practical route towards phase matching, either during...
Non-linear Calibration Leads to Improved Correspondence between Uncertainties
DEFF Research Database (Denmark)
Andersen, Jens Enevold Thaulov
2007-01-01
an investigation of an uncomplicated expression of the non-linear working curve that is well suited to an assessment of predicted uncertainties. At small concentrations, the working curve reduces to a straight line that corresponds to the conventional calibration line. If no interferences were disturbing...... limit theorem, an excellent correspondence was obtained between predicted uncertainties and measured uncertainties. In order to validate the method, experiments were applied of flame atomic absorption spectrometry (FAAS) for the analysis of Co and Pt, and experiments of electrothermal atomic absorption...
From Linear to Non-linear Supersymmetry via Functional Integration
Kallosh, Renata; Murli, Divyanshu
2016-01-01
We derive a complete pure de Sitter supergravity action with non-linearly realized supersymmetry and its rigid limit, the Volkov-Akulov action, from the corresponding models with linear supersymmetry, by computing the path integral in the limit of infinite sgoldstino mass. In this, we use a non-Gaussian functional integration formula that was recently discovered in a derivation of de Sitter supergravity from the superconformal theory. We also present explicit examples of pure dS supergravity and the case with one matter multiplet. These two simple examples serve as a test and a demo of the universal action formula valid for de Sitter supergravities with general matter coupling.
Relativistic calculations of giant resonances with non-linear models
International Nuclear Information System (INIS)
The nuclear isoscalar and isovector giant resonances in stable and unstable nuclei are studied in the framework of the relativistic random phase approximation. The meson propagators with non-linear self-interactions are constructed in momentum space from the second variation of the action. It is found that relativistic models with relatively large values of the compression modulus can nevertheless describe satisfactorily the breathing mode energy in 208Pb. Results for isovector monopole resonances in closed shell nuclei, and for the giant dipole resonance in Argon isotopes are also discussed
Non Linear Analysis of MPPT for Power Quality Improvement
Directory of Open Access Journals (Sweden)
S. Sankar
2015-08-01
Full Text Available In this study the conventional inverter interfacing renewable energy sources with the grid, without any additional hardware cost. Here, the main idea is the maximum utilization of inverter rating which is most of the time underutilized due to intermittent nature of RES. Based on the non-linear characteristics of PV, these thesis designs a VSS controller to realize the maximum power output of PV arrays. The output power from renewable energy sources fluctuates because of weather variations. This study proposes an effective power quality control strategy of renewable energy sources connected to power system using Photovoltaic (PV array. If the main controller used is a PR controller, any dc offset in a control loop will propagate through the system and the inverter terminal voltage will have a nonzero average value. In this strategy both load and inverter current sensing is required to compensate the load current harmonics. The non-linear load current harmonics may result in voltage harmonics and can create a serious PQ problem in the power system network.
Polycarbonate-Based Blends for Optical Non-linear Applications
Stanculescu, F.; Stanculescu, A.
2016-02-01
This paper presents some investigations on the optical and morphological properties of the polymer (matrix):monomer (inclusion) composite materials obtained from blends of bisphenol A polycarbonate and amidic monomers. For the preparation of the composite films, we have selected monomers characterised by a maleamic acid structure and synthesised them starting from maleic anhydride and aniline derivatives with -COOH, -NO2, -N(C2H5)2 functional groups attached to the benzene ring. The composite films have been deposited by spin coating using a mixture of two solutions, one containing the matrix and the other the inclusion, both components of the composite system being dissolved in the same solvent. The optical transmission and photoluminescence properties of the composite films have been investigated in correlation with the morphology of the films. The scanning electron microscopy and atomic force microscopy have revealed a non-uniform morphology characterised by the development of two distinct phases. We have also investigated the generation of some optical non-linear (ONL) phenomena in these composite systems. The composite films containing as inclusions monomers characterised by the presence of one -COOH or two -NO2 substituent groups to the aromatic nucleus have shown the most intense second-harmonic generation (SHG). The second-order optical non-linear coefficients have been evaluated for these films, and the effect of the laser power on the ONL behaviour of these materials has also been emphasised.
Non-linear Plasma Wake Growth of Electron Holes
Hutchinson, I H; Zhou, C
2015-01-01
An object's wake in a plasma with small Debye length that drifts \\emph{across} the magnetic field is subject to electrostatic electron instabilities. Such situations include, for example, the moon in the solar wind wake and probes in magnetized laboratory plasmas. The instability drive mechanism can equivalently be considered drift down the potential-energy gradient or drift up the density-gradient. The gradients arise because the plasma wake has a region of depressed density and electrostatic potential into which ions are attracted along the field. The non-linear consequences of the instability are analysed in this paper. At physical ratios of electron to ion mass, neither linear nor quasilinear treatment can explain the observation of large-amplitude perturbations that disrupt the ion streams well before they become ion-ion unstable. We show here, however, that electron holes, once formed, continue to grow, driven by the drift mechanism, and if they remain in the wake may reach a maximum non-linearly stable...
Non-linear leak currents affect mammalian neuron physiology
Directory of Open Access Journals (Sweden)
Shiwei eHuang
2015-11-01
Full Text Available In their seminal works on squid giant axons, Hodgkin and Huxley approximated the membrane leak current as Ohmic, i.e. linear, since in their preparation, sub-threshold current rectification due to the influence of ionic concentration is negligible. Most studies on mammalian neurons have made the same, largely untested, assumption. Here we show that the membrane time constant and input resistance of mammalian neurons (when other major voltage-sensitive and ligand-gated ionic currents are discounted varies non-linearly with membrane voltage, following the prediction of a Goldman-Hodgkin-Katz-based passive membrane model. The model predicts that under such conditions, the time constant/input resistance-voltage relationship will linearize if the concentration differences across the cell membrane are reduced. These properties were observed in patch-clamp recordings of cerebellar Purkinje neurons (in the presence of pharmacological blockers of other background ionic currents and were more prominent in the sub-threshold region of the membrane potential. Model simulations showed that the non-linear leak affects voltage-clamp recordings and reduces temporal summation of excitatory synaptic input. Together, our results demonstrate the importance of trans-membrane ionic concentration in defining the functional properties of the passive membrane in mammalian neurons as well as other excitable cells.
Non linear Fierz-Pauli theory from torsion and bigravity
Deffayet, Cédric
2011-01-01
The non linear aspects of a recently proposed model of massive spin-2 particles with propagating torsion are studied. We obtain a nonlinear equation which reduces at linear order to a generalized Fierz-Pauli equation in any background space-time with or without a vanishing torsion. We contrast those results with properties of a class of bigravity theories in an arbitrary background Einstein manifold. It is known that the non perturbative spectrum of the bigravity model has 8 propagating physical degrees of freedom. This is identical to the physical propagating degrees of freedom of the massive spin-2 torsion model at the linearized order. The obtained non linear version of the Fierz-Pauli field equations, however, contains terms absent in the bigravity case which indicates that the curved space generalization of the unique flat space space Fierz-Pauli equation is not unique. Moreover, in the torsion massive gravity model the Fierz-Pauli field appears as a derivative of fundamental fields. This, however, does ...
Axial Non-linear Dynamic Soil-Pile Interaction - Keynote
Directory of Open Access Journals (Sweden)
Holeyman A.
2014-01-01
Full Text Available This keynote lecture describes recent analytical and numerical advances in the modeling of the axial nonlinear dynamic interaction between a single pile and its embedding soil. On one hand, analytical solutions are developed for assessing the nonlinear axial dynamic response of the shaft of a pile subjected to dynamic loads, and in particular to vibratory loads. Radial inhomogeneity arising from shear modulus degradation is evaluated over a range of parameters and compared with those obtained by other authors and by a numerical radial discrete model simulating the pile and soil movements from integration of the laws of motion. New approximate non linear solutions for axial pile shaft behaviour developed from general elastodynamic equations are presented and compared to existing linear solutions. The soil non linear behaviour and its ability to dissipate mechanical energy upon cyclic loading are shown to have a significant influence on the mechanical impedance provided by the surrounding soil against pile shaft movement. The limitations of over-simplified modelling of pile response are highlighted.
Non-linear effects in the Boltzmann equation
International Nuclear Information System (INIS)
The Boltzmann equation is studied by defining an integral transformation of the energy distribution function for an isotropic and homogeneous gas. This transformation may be interpreted as a linear superposition of equilibrium states with variable temperatures. It is shown that the temporal evolution features of the distribution function are determined by the singularities of said transformation. This method is applied to Maxwell and Very Hard Particle interaction models. For the latter, the solution of the Boltzmann equation with the solution of its linearized version is compared, finding out many basic discrepancies and non-linear effects. This gives a hint to propose a new rational approximation method with a clear physical meaning. Applying this technique, the relaxation features of the BKW (Bobylev, Krook anf Wu) mode is analyzed, finding a conclusive counter-example for the Krook and Wu conjecture. The anisotropic Boltzmann equation for Maxwell models is solved as an expansion in terms of the eigenfunctions of the corresponding linearized collision operator, finding interesting transient overpopulation and underpopulation effects at thermal energies as well as a new preferential spreading effect. By analyzing the initial collision, a criterion is established to deduce the general features of the final approach to equilibrium. Finally, it is shown how to improve the convergence of the eigenfunction expansion for high energy underpopulated distribution functions. As an application of this theory, the linear cascade model for sputtering is analyzed, thus finding out that many differences experimentally observed are due to non-linear effects. (M.E.L.)
Polycarbonate-Based Blends for Optical Non-linear Applications.
Stanculescu, F; Stanculescu, A
2016-12-01
This paper presents some investigations on the optical and morphological properties of the polymer (matrix):monomer (inclusion) composite materials obtained from blends of bisphenol A polycarbonate and amidic monomers. For the preparation of the composite films, we have selected monomers characterised by a maleamic acid structure and synthesised them starting from maleic anhydride and aniline derivatives with -COOH, -NO2, -N(C2H5)2 functional groups attached to the benzene ring. The composite films have been deposited by spin coating using a mixture of two solutions, one containing the matrix and the other the inclusion, both components of the composite system being dissolved in the same solvent. The optical transmission and photoluminescence properties of the composite films have been investigated in correlation with the morphology of the films. The scanning electron microscopy and atomic force microscopy have revealed a non-uniform morphology characterised by the development of two distinct phases. We have also investigated the generation of some optical non-linear (ONL) phenomena in these composite systems. The composite films containing as inclusions monomers characterised by the presence of one -COOH or two -NO2 substituent groups to the aromatic nucleus have shown the most intense second-harmonic generation (SHG). The second-order optical non-linear coefficients have been evaluated for these films, and the effect of the laser power on the ONL behaviour of these materials has also been emphasised. PMID:26873262
Parameter Scaling in Non-Linear Microwave Tomography
DEFF Research Database (Denmark)
Jensen, Peter Damsgaard; Rubæk, Tonny; Talcoth, Oskar;
2012-01-01
Non-linear microwave tomographic imaging of the breast is a challenging computational problem. The breast is heterogeneous and contains several high-contrast and lossy regions, resulting in large differences in the measured signal levels. This implies that special care must be taken when the imag......Non-linear microwave tomographic imaging of the breast is a challenging computational problem. The breast is heterogeneous and contains several high-contrast and lossy regions, resulting in large differences in the measured signal levels. This implies that special care must be taken when...... the imaging problem is formulated. Under such conditions, microwave imaging systems will most often be considerably more sensitive to changes in the electromagnetic properties in certain regions of the breast. The result is that the parameters might not be reconstructed correctly in the less sensitive regions...... introduced as a measure of the sensitivity. The scaling of the parameters is shown to improve performance of the microwave imaging system when applied to reconstruction of images from 2-D simulated data and measurement data....
Modified non-linear Burgers' equations and cosmic ray shocks
Zank, G. P.; Webb, G. M.; Mckenzie, J. F.
1988-01-01
A reductive perturbation scheme is used to derive a generalized non-linear Burgers' equation, which includes the effects of dispersion, in the long wavelength regime for the two-fluid hydrodynamical model used to describe cosmic ray acceleration by the first-order Fermi process in astrophysical shocks. The generalized Burger's equation is derived for both relativistic and non-relativistic cosmic ray shocks, and describes the time evolution of weak shocks in the theory of diffusive shock acceleration. The inclusion of dispersive effects modifies the phase velocity of the shock obtained from the lower order non-linear Burger's equation through the introduction of higher order terms from the long wavelength dispersion equation. The travelling wave solution of the generalized Burgers' equation for a single shock shows that larger cosmic ray pressures result in broader shock transitions. The results for relativistic shocks show a steepening of the shock as the shock speed approaches the relativistic cosmic ray sound speed. The dependence of the shock speed on the cosmic ray pressure is also discussed.
Polycarbonate-Based Blends for Optical Non-linear Applications.
Stanculescu, F; Stanculescu, A
2016-12-01
This paper presents some investigations on the optical and morphological properties of the polymer (matrix):monomer (inclusion) composite materials obtained from blends of bisphenol A polycarbonate and amidic monomers. For the preparation of the composite films, we have selected monomers characterised by a maleamic acid structure and synthesised them starting from maleic anhydride and aniline derivatives with -COOH, -NO2, -N(C2H5)2 functional groups attached to the benzene ring. The composite films have been deposited by spin coating using a mixture of two solutions, one containing the matrix and the other the inclusion, both components of the composite system being dissolved in the same solvent. The optical transmission and photoluminescence properties of the composite films have been investigated in correlation with the morphology of the films. The scanning electron microscopy and atomic force microscopy have revealed a non-uniform morphology characterised by the development of two distinct phases. We have also investigated the generation of some optical non-linear (ONL) phenomena in these composite systems. The composite films containing as inclusions monomers characterised by the presence of one -COOH or two -NO2 substituent groups to the aromatic nucleus have shown the most intense second-harmonic generation (SHG). The second-order optical non-linear coefficients have been evaluated for these films, and the effect of the laser power on the ONL behaviour of these materials has also been emphasised.
Primordial black holes in linear and non-linear regimes
Allahyari, Alireza; Abolhasani, Ali Akbar
2016-01-01
Using the concept of apparent horizon for dynamical black holes, we revisit the formation of primordial black holes (PBH) in the early universe for both linear and non-linear regimes. First, we develop the perturbation theory for spherically symmetric spacetimes to study the formation of spherical PBHs in linear regime and we fix two gauges. We also introduce a well defined gauge invariant quantity for the expansion. Using this quantity, we argue that PBHs do not form in the linear regime. Finally, we study the non-linear regime. We adopt the spherical collapse picture by taking a closed FRW model in the radiation dominated era to investigate PBH formation. Taking the initial condition of the spherical collapse from the linear theory of perturbations, we allow for both density and velocity perturbations. Our model gives a constraint on the velocity perturbation. This model also predicts that the apparent horizon of PBHs forms when $\\delta > 3$. Applying the sound horizon constraint, we have shown the threshol...
A non-linear model of information seeking behaviour
Directory of Open Access Journals (Sweden)
Allen E. Foster
2005-01-01
Full Text Available The results of a qualitative, naturalistic, study of information seeking behaviour are reported in this paper. The study applied the methods recommended by Lincoln and Guba for maximising credibility, transferability, dependability, and confirmability in data collection and analysis. Sampling combined purposive and snowball methods, and led to a final sample of 45 inter-disciplinary researchers from the University of Sheffield. In-depth semi-structured interviews were used to elicit detailed examples of information seeking. Coding of interview transcripts took place in multiple iterations over time and used Atlas-ti software to support the process. The results of the study are represented in a non-linear Model of Information Seeking Behaviour. The model describes three core processes (Opening, Orientation, and Consolidation and three levels of contextual interaction (Internal Context, External Context, and Cognitive Approach, each composed of several individual activities and attributes. The interactivity and shifts described by the model show information seeking to be non-linear, dynamic, holistic, and flowing. The paper concludes by describing the whole model of behaviours as analogous to an artist's palette, in which activities remain available throughout information seeking. A summary of key implications of the model and directions for further research are included.
Phil Anderson's Magnetic Ideas in Science
Coleman, Piers
2016-01-01
In Philip W. Anderson's research, magnetism has always played a special role, providing a prism through which other more complex forms of collective behavior and broken symmetry could be examined. I discuss his work on magnetism from the 1950s, where his early work on antiferromagnetism led to the pseudospin treatment of superconductivity - to the 70s and 80s, highlighting his contribution to the physics of local magnetic moments. Phil's interest in the mechanism of moment formation, and screening evolved into the modern theory of the Kondo effect and heavy fermions.
Non-linear Particle Acceleration in Oblique Shocks
Ellison, D C; Jones, F C; Ellison, Donald C.; Baring, Matthew G.; Jones, Frank C.
1996-01-01
We have developed a Monte Carlo technique for self-consistently calculating the hydrodynamic structure of oblique, steady-state shocks, together with the first-order Fermi acceleration process and associated non-thermal particle distributions. This is the first internally consistent treatment of modified shocks that includes cross-field diffusion of particles. Our method overcomes the injection problem faced by analytic descriptions of shock acceleration, and the lack of adequate dynamic range and artificial suppression of cross-field diffusion faced by plasma simulations; it currently provides the most broad and versatile description of collisionless shocks undergoing efficient particle acceleration. We present solutions for plasma quantities and particle distributions upstream and downstream of shocks, illustrating the strong differences observed between non-linear and test-particle cases. It is found that there are only marginal differences in the injection efficiency and resultant spectra for two extreme ...
Responding to non-linear internationalisation of public policy
DEFF Research Database (Denmark)
Daugbjerg, Carsten
2016-01-01
the relationship between developments in the GATT and WTO farm trade negotiations and the reform trajectory of the EU's Common Agricultural Policy (CAP) from the early 1990s to 2013. Until 2008, the EU gradually changed the support instruments of the CAP to limit their trade distorting impact. After the Doha Round......The transfer of regulatory authority to international organisations can initiate domestic policy reform. The internationalisation process can be a one-off transfer of authority to international institutions or an ongoing process. In the latter situation, the level of internationalisation may...... be gradually increased by expanding the regulatory scope of the regime or by deepening it. However, internationalisation processes may also involve stalemate or even reversal. How do domestic policy makers respond to such non-linear internationalisation? To answer this question, this paper analyzes...
Non-Linear Canonical Transformations in Classical and Quantum Mechanics
Brodlie, A
2004-01-01
$p$-Mechanics is a consistent physical theory which describes both classical and quantum mechanics simultaneously through the representation theory of the Heisenberg group. In this paper we describe how non-linear canonical transformations affect $p$-mechanical observables and states. Using this we show how canonical transformations change a quantum mechanical system. We seek an operator on the set of $p$-mechanical observables which corresponds to the classical canonical transformation. In order to do this we derive a set of integral equations which when solved will give us the coherent state expansion of this operator. The motivation for these integral equations comes from the work of Moshinsky and a variety of collaborators. We consider a number of examples and discuss the use of these equations for non-bijective transformations.
Quantum uncertainty and non-linear dissipative dynamics
International Nuclear Information System (INIS)
We propose a non-linear generalization of the Schroedinger equation. From this view point all the stationary states of the Schroedinger equation appear as a kind of limit cycles, all semi stable, except the ground state which is stable. This model is applied to spin relaxation and to the damped harmonic oscillator. The first example gives a microscopic model of phenomenological theories of Bloch and Redfield, in particular the permanent states appear as asymptotic states. In the second example one shows that the solution corresponding to a coherent initial state is itself, at each time, a coherent state, and that it evolves like in the corresponding classical problem. This generalization of the Schroedinger equation is used to construct a dynamics of the quantum measurement process. In this model no statistical mixtures, nor quantum jumps appear, all the ''quantum indeterminism'' beeing related to the beginning of the measurement, at the time of the encounter of the system and the measurement apparatus
Biometric Authentication System using Non-Linear Chaos
Directory of Open Access Journals (Sweden)
Dr.N.Krishnan
2010-08-01
Full Text Available A major concern nowadays for any Biometric Credential Management System is its potential vulnerability to protect its information sources; i.e. protecting a genuine user’s template from both internal and external threats. These days’ biometric authentication systems face various risks. One of the most serious threats is the ulnerability of the template's database. An attacker with access to a reference template could try to impersonate a legitimate user by reconstructing the biometric sample and by creating a physical spoof.Susceptibility of the database can have a disastrous impact on the whole authentication system. The potential disclosure of digitally stored biometric data raises serious concerns about privacy and data protection. Therefore, we propose a method which would integrate conventional cryptography techniques with biometrics. In this work, we present a biometric crypto system which encrypts the biometric template and the encryption is done by generating pseudo random numbers, based on non-linear dynamics.
Some contributions to non-linear physic: Mathematical problems
International Nuclear Information System (INIS)
The main results contained in this report are the following: i ) Lagrangian universality holds in a precisely defined weak sense. II ) Isolation of 5th order polynomial evolution equations having high order conservation laws. III ) Hamiltonian formulation of a wide class of non-linear evolution equations. IV) Some properties of the symmetries of Gardner-like systems. v) Characterization of the range and Kernel of ζ/ζ uα, |α | - 1. vi) A generalized variational approach and application to the anharmonic oscillator. v II ) Relativistic correction and quasi-classical approximation to the anechoic oscillator. VII ) Properties of a special class of 6th-order anharmonic oscillators. ix) A new method for constructing conserved densities In PDE. (Author) 97 refs
Non-linear properties of strongly pumped lasers
Koganov, G A; Koganov, Gennady A.; Shuker, Reuben
1998-01-01
Bloch equations for the atomic population and the polarization/coherence and the equation of motion for the photon number in a laser are solved in steady state as a function of the pump rate. Two level atom and two modes of three levels atom are investigated. Close to threshold the usual linear dependence of the intensity on the pump rate in found for all cases. However, far above threshold strongly nonlinear dependence is encountered. In the cases for which the pump connects the lower lasing state to one of the excited states the character of the non-linearity differs crucially from the cases when the pump in not related directly to the lower lasing state. Non-monotonic dependence of laser intensity upon the pump rate is predicted. Detailed discussion of the nonlinear behavior is presented, including saturation and depletion effects.
The mathematics of non-linear metrics for nested networks
Wu, Rui-Jie; Shi, Gui-Yuan; Zhang, Yi-Cheng; Mariani, Manuel Sebastian
2016-10-01
Numerical analysis of data from international trade and ecological networks has shown that the non-linear fitness-complexity metric is the best candidate to rank nodes by importance in bipartite networks that exhibit a nested structure. Despite its relevance for real networks, the mathematical properties of the metric and its variants remain largely unexplored. Here, we perform an analytic and numeric study of the fitness-complexity metric and a new variant, called minimal extremal metric. We rigorously derive exact expressions for node scores for perfectly nested networks and show that these expressions explain the non-trivial convergence properties of the metrics. A comparison between the fitness-complexity metric and the minimal extremal metric on real data reveals that the latter can produce improved rankings if the input data are reliable.
Non-linear Kalman filters for calibration in radio interferometry
Tasse, Cyril
2014-01-01
We present a new calibration scheme based on a non-linear version of Kalman filter that aims at estimating the physical terms appearing in the Radio Interferometry Measurement Equation (RIME). We enrich the filter's structure with a tunable data representation model, together with an augmented measurement model for regularization. We show using simulations that it can properly estimate the physical effects appearing in the RIME. We found that this approach is particularly useful in the most extreme cases such as when ionospheric and clock effects are simultaneously present. Combined with the ability to provide prior knowledge on the expected structure of the physical instrumental effects (expected physical state and dynamics), we obtain a fairly cheap algorithm that we believe to be robust, especially in low signal-to-noise regime. Potentially the use of filters and other similar methods can represent an improvement for calibration in radio interferometry, under the condition that the effects corrupting visib...
Black Hole Hair Removal: Non-linear Analysis
Jatkar, Dileep P; Srivastava, Yogesh K
2009-01-01
BMPV black holes in flat transverse space and in Taub-NUT space have identical near horizon geometries but different microscopic degeneracies. It has been proposed that this difference can be accounted for by different contribution to the degeneracies of these black holes from hair modes, -- degrees of freedom living outside the horizon. In this paper we explicitly construct the hair modes of these two black holes as finite bosonic and fermionic deformations of the black hole solution satisfying the full non-linear equations of motion of supergravity and preserving the supersymmetry of the original solutions. Special care is taken to ensure that these solutions do not have any curvature singularity at the future horizon when viewed as the full ten dimensional geometry. We show that after removing the contribution due to the hair degrees of freedom from the microscopic partition function, the partition functions of the two black holes agree.
Non-linear optical crystal vibration sensing device
Energy Technology Data Exchange (ETDEWEB)
Kalibjian, R.
1992-12-31
The report describes a non-linear optical crystal vibration sensing device including a photorefractive crystal and a laser. The laser produces a coherent light beam which is split by a beam splitter into a first laser beam and a second laser beam. After passing through the crystal the first laser beam is counter-propagated back upon itself by a retro-mirror, creating a third laser beam . The laser beams are modulated, due to the mixing effect within the crystal by vibration of the crystal. In the third laser beam modulation is stable and such modulation is converted by a photodetector into a usable electrical output, intensity modulated in accordance with vibration applied to the crystal.
Non linear wave plugging of a theta-pinch plasma
International Nuclear Information System (INIS)
A potencial possibility of confining theta-pinch plasma with high power laser beam is examined. The physical process involved is a laser plasma interaction, which can be modeled by non linear cubic polarizability. By means of solutions of wave equations and with the assumption of circular polarization we show that on plasma surface, there are eletromagnetic field gradient forces that can confine plasma, where the peaks of plasma density are in phase with the minimum of electric field (when efects of absorption by collisions are ignored). Also, we present a new formulation to generalize ponderomotive force, where adicional damping mechanism is considered. In this case, peaks of plasma density are in phase with the peaks of electric field. (Author)
Linear and non-linear bias: predictions vs. measurements
Hoffmann, Kai; Gaztanaga, Enrique
2016-01-01
We study the linear and non-linear bias parameters which determine the mapping between the distributions of galaxies and the full matter density fields, comparing different measurements and predictions. Accociating galaxies with dark matter haloes in the MICE Grand Challenge N-body simulation we directly measure the bias parameters by comparing the smoothed density fluctuations of halos and matter in the same region at different positions as a function of smoothing scale. Alternatively we measure the bias parameters by matching the probablility distributions of halo and matter density fluctuations, which can be applied to observations. These direct bias measurements are compared to corresponding measurements from two-point and different third-order correlations, as well as predictions from the peak-background model, which we presented in previous articles using the same data. We find an overall variation of the linear bias measurements and predictions of $\\sim 5 \\%$ with respect to results from two-point corr...
Conditional Cumulants in Weakly Non-linear Regime
Pan, J; Pan, Jun; Szapudi, Istvan
2004-01-01
Conditional cumulants form a set of unique statistics which represent a sensible compromise between N-point correlation functions and cumulants measured from moments of counts in cells. They share accurate edge corrected estimators with $N$-point correlation functions, yet, they are as straightforward to measure and interpret as counts in cells. The conditional cumulants have three equivalent views as i) degenerate N-point correlation functions ii) or integrated monopole moments of the bispectrum iii) they are closely related to neighbour counts. We compute the predictions of weakly non-linear perturbation theory for conditional cumulants and compare them with measurements in simulations, both in real and redshift space. We find excellent agreement between theory and simulations, especially on scales >~20Mpc. Due to their advantageous statistical properties and well understood dynamics, we propose conditional cumulants as tools for high precision cosmology. Potential applications include constraining bias and...
On a non-linear transformation between Brownian martingales
Shkolnikov, Mykhaylo
2012-01-01
The paper studies a non-linear transformation between Brownian martingales, which is given by the inverse of the pricing operator in the mathematical finance terminology. Subsequently, the solvability of systems of equations corresponding to such transformations is investigated. The latter give rise to novel monotone pathwise couplings of an arbitrary number of certain diffusion processes with varying diffusion coefficients. In the case that there is an uncountable number of these diffusion processes and that the index set is an interval such couplings can be viewed as models for the growth of one-dimensional random surfaces. With this motivation in mind, we derive the appropriate stochastic partial differential equations for the growth of such surfaces.
Robust C subroutines for non-linear optimization
DEFF Research Database (Denmark)
Brock, Pernille; Madsen, Kaj; Nielsen, Hans Bruun
2004-01-01
This report presents a package of robust and easy-to-use C subroutines for solving unconstrained and constrained non-linear optimization problems. The intention is that the routines should use the currently best algorithms available. All routines have standardized calls, and the user does not have...... by changing 1 to 0. The present report is a new and updated version of a previous report NI-91-03 with the same title, [16]. Both the previous and the present report describe a collection of subroutines, which have been translated from Fortran to C. The reason for writing the present report is that some...... of the C subroutines have been replaced by more effective and robust versions translated from the original Fortran subroutines to C by the Bandler Group, see [1]. Also the test examples have been modi ed to some extent. For a description of the original Fortran subroutines see the report [17]. The software...
An empirical evaluation of non-linear trading rules.
Directory of Open Access Journals (Sweden)
Sosvilla-Rivero, Simón
2003-01-01
Full Text Available In this paper we investigate the profitability of non-linear trading rules based on nearest neighbour (NN predictors. Applying this investment strategy to the New York Stock Exchange, our results suggest that, taking into account transaction costs, the NN-based trading rule is superior to both a riskadjusted buy-and-hold strategy and a linear ARIMA-based strategy in terms of returns for all of the years studied (1997-2002. Regarding other profitability measures, the NN-based trading rule yields higher Sharpe ratios than the ARIMA-based strategy for all of the years in the sample except for 2001. As for 2001, in 36 out of the 101 cases considered, the ARIMA-based strategy gives higher Sharpe ratios than those from the NN-trading rule, in 18 cases the opposite is true, and in the remaining 36 cases both strategies yield the same ratios.
Transformation matrices between non-linear and linear differential equations
Sartain, R. L.
1983-01-01
In the linearization of systems of non-linear differential equations, those systems which can be exactly transformed into the second order linear differential equation Y"-AY'-BY=0 where Y, Y', and Y" are n x 1 vectors and A and B are constant n x n matrices of real numbers were considered. The 2n x 2n matrix was used to transform the above matrix equation into the first order matrix equation X' = MX. Specially the matrix M and the conditions which will diagonalize or triangularize M were studied. Transformation matrices P and P sub -1 were used to accomplish this diagonalization or triangularization to return to the solution of the second order matrix differential equation system from the first order system.
Detector noise statistics in the non-linear regime
Shopbell, P. L.; Bland-Hawthorn, J.
1992-01-01
The statistical behavior of an idealized linear detector in the presence of threshold and saturation levels is examined. It is assumed that the noise is governed by the statistical fluctuations in the number of photons emitted by the source during an exposure. Since physical detectors cannot have infinite dynamic range, our model illustrates that all devices have non-linear regimes, particularly at high count rates. The primary effect is a decrease in the statistical variance about the mean signal due to a portion of the expected noise distribution being removed via clipping. Higher order statistical moments are also examined, in particular, skewness and kurtosis. In principle, the expected distortion in the detector noise characteristics can be calibrated using flatfield observations with count rates matched to the observations. For this purpose, some basic statistical methods that utilize Fourier analysis techniques are described.
Computational models of signalling networks for non-linear control.
Fuente, Luis A; Lones, Michael A; Turner, Alexander P; Stepney, Susan; Caves, Leo S; Tyrrell, Andy M
2013-05-01
Artificial signalling networks (ASNs) are a computational approach inspired by the signalling processes inside cells that decode outside environmental information. Using evolutionary algorithms to induce complex behaviours, we show how chaotic dynamics in a conservative dynamical system can be controlled. Such dynamics are of particular interest as they mimic the inherent complexity of non-linear physical systems in the real world. Considering the main biological interpretations of cellular signalling, in which complex behaviours and robust cellular responses emerge from the interaction of multiple pathways, we introduce two ASN representations: a stand-alone ASN and a coupled ASN. In particular we note how sophisticated cellular communication mechanisms can lead to effective controllers, where complicated problems can be divided into smaller and independent tasks.
On the Non-linear Motion of IGS Station
Institute of Scientific and Technical Information of China (English)
YAO Yibin
2007-01-01
With the daily SINEX files of the IGS, the time series of IGS stations are obtained using an independently developed software under generalized network adjustment models with coordinate patterns. From the time series, non-linear motions are found. With spectral analysis method, the variation frequency (annual period and semi-annual period) of the site velocity is found. Moreover, the empirical model of the velocity variation of the station has been established by regression analysis method based on the weekly solution coordinate series of the station. With respect to the velocity of the IGS tracking station,it was better to model the variation periodically or to give a velocity periodically using a piece-wise linear function rather than a linear variable to estimate its bias.
Comparison of Simulated and Measured Non-linear Ultrasound Fields
DEFF Research Database (Denmark)
Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt
2011-01-01
simulation program Field II, which will be used to generate the source for the AS simulation. The generated non-linear ultrasound eld is measured by a hydrophone in the focal plane. The second harmonic component from the measurement is compared with the AS simulation, which is used to calculate both...... fundamental and second harmonic elds. The focused piston transducer with a center frequency of 5 MHz is excited by a waveform generator emitting a 6-cycle sine wave. The hydrophone is mounted in the focal plane 118 mm from the transducer. The point spread functions at the focal depth from Field II...... and measurements are illustrated. The FWHM (full width at half maximum) values are 1.96 mm for the measurement and 1.84 mm for the Field II simulation. The fundamental and second harmonic components of the experimental results are plotted compared with the AS simulations. The RMS (root mean square) errors...
New holographic dark energy model with non-linear interaction
Oliveros, A
2014-01-01
In this paper the cosmological evolution of a holographic dark energy model with a non-linear interaction between the dark energy and dark matter components in a FRW type flat universe is analysed. In this context, the deceleration parameter $q$ and the equation state $w_{\\Lambda}$ are obtained. We found that, as the square of the speed of sound remains positive, the model is stable under perturbations since early times; it also shows that the evolution of the matter and dark energy densities are of the same order for a long period of time, avoiding the so--called coincidence problem. We have also made the correspondence of the model with the dark energy densities and pressures for the quintessence and tachyon fields. From this correspondence we have reconstructed the potential of scalar fields and their dynamics.
Non-linear PIC simulation in a penning trap
Energy Technology Data Exchange (ETDEWEB)
Delzanno, G. L. (Gian L.); Lapenta, G. M. (Giovanni M.); Finn, J. M. (John M.)
2001-01-01
We study the non-linear dynamics of a Penning trap plasma, including the effect of the finite length and end curvature of the plasma column. A new cylindrical PIC code, called KANDINSKY, has been implemented by using a new interpolation scheme. The principal idea is to calculate the volume of each cell from a particle volume, in the same manner as it is done for the cell charge. With this new method, the density is conserved along streamlines and artificial sources of compressibility are avoided. The code has been validated with a reference Eulerian fluid code. We compare the dynamics of three different models: a model with compression effects, the standard Euler model and a geophysical fluid dynamics model. The results of our investigation prove that Penning traps can really be used to simulate geophysical fluids.
Characterization of porous media structure by non linear NMR methods.
Capuani, S; Alesiani, M; Alessandri, F M; Maraviglia, B
2001-01-01
In this paper we discuss the possibility of modifying the multiple spin echoes existing theory, developed for a homogeneous system, to describe also an inhomogeneous system such as a porous medium. We report here the first experimental application of MSE methods to materials like travertine. The ratio A(2)/A(1) from water in travertine presents minima for characteristic values of the delay time tau, like what was previously observed in the trabecular bone. By a judicious choice of the delay time tau and of the G gradient strength, the MSE sequence can be made sensitive to a specific length-scale of the sample heterogeneity. Furthermore the MSE image shows a particular new contrast that makes the non linear NMR method very attractive for the assessment of variations of the porous structure in porous systems. PMID:11445306
Mathematical and Numerical Methods for Non-linear Beam Dynamics
Herr, W
2014-01-01
Non-linear effects in accelerator physics are important for both successful operation of accelerators and during the design stage. Since both of these aspects are closely related, they will be treated together in this overview. Some of the most important aspects are well described by methods established in other areas of physics and mathematics. The treatment will be focused on the problems in accelerators used for particle physics experiments. Although the main emphasis will be on accelerator physics issues, some of the aspects of more general interest will be discussed. In particular, we demonstrate that in recent years a framework has been built to handle the complex problems in a consistent form, technically superior and conceptually simpler than the traditional techniques. The need to understand the stability of particle beams has substantially contributed to the development of new techniques and is an important source of examples which can be verified experimentally. Unfortunately, the documentation of ...
Non-linear numerical Schemes in General Relativity
Sperhake, U
2002-01-01
This thesis describes the application of numerical techniques to solve Einstein's field equations in three distinct cases. First we present the first long-term stable second order convergent Cauchy characteristic matching code in cylindrical symmetry including both gravitational degrees of freedom. Compared with previous work we achieve a substantial simplification of the evolution equations as well as the relations at the interface by factoring out the z-Killing direction via the Geroch decomposition in both the Cauchy and the characteristic region. In the second part we numerically solve the equations for static and dynamic cosmic strings of infinite length coupled to gravity and provide the first fully non-linear evolutions of cosmic strings in curved spacetimes. The inclusion of null infinity as part of the numerical grid allows us to apply suitable boundary conditions on the metric and the matter fields to suppress unphysical divergent solutions. The code is used to study the interaction between a Weber-...
Non-linear Dynamics of Speech in Schizophrenia
DEFF Research Database (Denmark)
Fusaroli, Riccardo; Simonsen, Arndis; Weed, Ethan;
(discriminant function) to classify speech production as either belonging to the control or the schizophrenia group, based solely on acoustic features. Methods We analyze the speech production of 57 Danish adults with first-episode of schizophrenia (23F 34M, Mean Age=22.93 SD=3.46) and 57 matched controls. All......Background The speech of patients with schizophrenia is often described as monotonous, flat and without emotion. Distinctive speech patterns are qualitatively assessed in the diagnostic process and deeply impact the quality of everyday social interactions. In this project, we investigate and model...... speech patterns of people with schizophrenia contrasting them with matched controls and in relation to positive and negative symptoms. We employ both traditional measures (pitch mean and range, pause number and duration, speech rate, etc.) and 2) non-linear techniques measuring the temporal structure...
Considering Complexity: Toward A Strategy for Non-linear Analysis
Directory of Open Access Journals (Sweden)
Ken Hatt
2009-01-01
Full Text Available This paper explores complexity and a strategy for non-linear analysis with a consistent ontological, epistemological and methodological orientation. Complexity is defined and approaches in the natural sciences, ecosystems research, discursive studies and the social sciences are reviewed. In social science, theoretical efforts associated with problems of social order (Luhmann, critical sociology (Byrne and post-structuralism (Cilliers as well as representative studies are examined. The review concludes that there is need for an approach that will address morphogenesis and facilitate analysis of multilateral mutual causal relations. The remainder of the paper approaches these matters by outlining Archer’s approach to morphogenesis, Maruyama’s morphogenetic casual-loop model of epistemology and illustrating Maruyama’s method for analysis which employs both positive and negative feedback loops. The result is a strategy based on morphogenetic causal loop models that can be used to analyze structuring and the connections through which structures may be reproduced or transformed.
Ueoka, Yoshiki; Slevin, Keith
2014-01-01
We report improved numerical estimates of the critical exponent of the Anderson transition in Anderson's model of localization in $d=4$ and $d=5$ dimensions. We also report a new Borel-Pad\\'e analysis of existing $\\epsilon$ expansion results that incorporates the asymptotic behaviour for $d\\to \\infty$ and gives better agreement with available numerical results.
STABILITY, BIFURCATIONS AND CHAOS IN UNEMPLOYMENT NON-LINEAR DYNAMICS
Directory of Open Access Journals (Sweden)
Pagliari Carmen
2013-07-01
Full Text Available The traditional analysis of unemployment in relation to real output dynamics is based on some empirical evidences deducted from Okun’s studies. In particular the so called Okun’s Law is expressed in a linear mathematical formulation, which cannot explain the fluctuation of the variables involved. Linearity is an heavy limit for macroeconomic analysis and especially for every economic growth study which would consider the unemployment rate among the endogenous variables. This paper deals with an introductive study about the role of non-linearity in the investigation of unemployment dynamics. The main idea is the existence of a non-linear relation between the unemployment rate and the gap of GDP growth rate from its trend. The macroeconomic motivation of this idea moves from the consideration of two concatenate effects caused by a variation of the unemployment rate on the real output growth rate. These two effects are concatenate because there is a first effect that generates a secondary one on the same variable. When the unemployment rate changes, the first effect is the variation in the level of production in consequence of the variation in the level of such an important factor as labour force; the secondary effect is a consecutive variation in the level of production caused by the variation in the aggregate demand in consequence of the change of the individual disposal income originated by the previous variation of production itself. In this paper the analysis of unemployment dynamics is carried out by the use of the logistic map and the conditions for the existence of bifurcations (cycles are determined. The study also allows to find the range of variability of some characteristic parameters that might be avoided for not having an absolute unpredictability of unemployment dynamics (deterministic chaos: unpredictability is equivalent to uncontrollability because of the total absence of information about the future value of the variable to
Periodic solutions of a non-linear wave equation with homogeneous boundary conditions
Energy Technology Data Exchange (ETDEWEB)
Rudakov, I A [M.V. Lomonosov Moscow State University, Moscow (Russian Federation)
2006-02-28
We prove the existence of time-periodic solutions of a non-linear wave equation with homogeneous boundary conditions. The non-linear term either has polynomial growth or satisfies a 'non-resonance' condition.
Keesman, K.J.
2006-01-01
In this short paper for the panel discussion on ¿Experience and challenges in identification of non-linear systems¿ some major issues with respect to identification of non-linear biochemical and environmental systems are presented.
ANALYSIS OF HIGH FIELD NON-LINEAR LOSSES ON SRF SURFACES DUE TO SPECIFIC TOPOGRAPHIC ROUGHNESS
Energy Technology Data Exchange (ETDEWEB)
Chen Xu,Charles Reece,Michael Kelley
2012-07-01
The high-field performance of SRF cavities will eventually be limited by the realization of fundamental material limits, whether it is Hc1 or Hsh, or some derivative thereof, at which the superconductivity is lost. Before reaching this fundamental field limit at the macro level, it must be encountered at localized, perhaps microscopic, sites of field enhancement due to local topography. If such sites are small enough, they may produce thermally stabilized normal-conducting regions which contribute non-linear losses when viewed from the macro resonant field perspective, and thus produce degradation in Q0. We have undertaken a calculation of local surface magnetic field enhancement from specific fine topographic structure by conformal mapping method and numerically. A solution of the resulting normal conducting volume has been derived and the corresponding RF Ohmic loss simulated.
Unger, Johannes; Hametner, Christoph; Jakubek, Stefan; Quasthoff, Marcus
2014-12-01
An accurate state of charge (SoC) estimation of a traction battery in hybrid electric non-road vehicles, which possess higher dynamics and power densities than on-road vehicles, requires a precise battery cell terminal voltage model. This paper presents a novel methodology for non-linear system identification of battery cells to obtain precise battery models. The methodology comprises the architecture of local model networks (LMN) and optimal model based design of experiments (DoE). Three main novelties are proposed: 1) Optimal model based DoE, which aims to high dynamically excite the battery cells at load ranges frequently used in operation. 2) The integration of corresponding inputs in the LMN to regard the non-linearities SoC, relaxation, hysteresis as well as temperature effects. 3) Enhancements to the local linear model tree (LOLIMOT) construction algorithm, to achieve a physical appropriate interpretation of the LMN. The framework is applicable for different battery cell chemistries and different temperatures, and is real time capable, which is shown on an industrial PC. The accuracy of the obtained non-linear battery model is demonstrated on cells with different chemistries and temperatures. The results show significant improvement due to optimal experiment design and integration of the battery non-linearities within the LMN structure.
Non-linear response in optical materials using ultra-short laser technology
Ashkenasi, David
2007-02-01
Ultra-short lasers at elevated peek powers combined with fairly moderate single pulse energies are able to induce very interesting non-linear optical interaction channels, such as multi-photon absorption, self-phase modulation and self focusing. These non-linear optical effects can be utilized to obtain surprising material reactions inside the bulk of optical dielectrics. With a certain degree of physical understanding and engineering experience, the material reaction can be controlled and optimized to generate e.g. internal markings, wave guides, 3d data storages or diffractive optical elements. As an example, laser-induced coloring of several type of glasses have been obtained at ultra-short bulk excitation, showing a strong resemblance to surface defects observed in most glasses after ionizing (e.g. X- and gamma-ray) hard radiation treatment. These laser-induced "color-centers" can alter the optical properties in dispersion and extinction locally in a well-defined volume, which can be described as a local change in the complex refractory index (n+ik). The implementation of this new technology can be characterized as "nik-engineering". New experimental results on laser-induced sub-surface modifications utilizing near infrared femtosecond and picosecond laser pulses inside different types of transparent dielectrics are presented and discussed in respect to the potential of "nik-engineering".
International Nuclear Information System (INIS)
This thesis presents a microscopic model for the non-linear fluctuating hydrodynamic of superfluid helium (4 He), model developed by means of the Maximum Entropy Method (Maxent). In the chapter 1, it is demonstrated the necessity to developing a microscopic model for the fluctuating hydrodynamic of the superfluid helium, starting from to show a brief overview of the theories and experiments developed in order to explain the behavior of the superfluid helium. On the other hand, it is presented the Morozov heuristic method for the construction of the non-linear hydrodynamic fluctuating of simple fluid. Method that will be generalized for the construction of the non-linear fluctuating hydrodynamic of the superfluid helium. Besides, it is presented a brief summary of the content of the thesis. In the chapter 2, it is reproduced the construction of a Generalized Fokker-Planck equation, (GFP), for a distribution function associated with the coarse grained variables. Function defined with aid of a nonequilibrium statistical operator ρhutFP that is evaluated as Wigneris function through ρCG obtained by Maxent. Later this equation of GFP is reduced to a non-linear local FP equation from considering a slow and Markov process in the coarse grained variables. In this equation appears a matrix Dmn defined with a nonequilibrium coarse grained statistical operator ρhutCG, matrix elements are used in the construction of the non-linear fluctuating hydrodynamics equations of the superfluid helium. In the chapter 3, the Lagrange multipliers are evaluated for to determine ρhutCG by means of the local equilibrium statistical operator ρhutl-tilde with the hypothesis that the system presents small fluctuations. Also are determined the currents associated with the coarse grained variables and furthermore are evaluated the matrix elements Dmn but with aid of a quasi equilibrium statistical operator ρhutqe instead of the local equilibrium operator ρhutl-tilde. Matrix elements that
State-variable analysis of non-linear circuits with a desk computer
Cohen, E.
1981-01-01
State variable analysis was used to analyze the transient performance of non-linear circuits on a desk top computer. The non-linearities considered were not restricted to any circuit element. All that is required for analysis is the relationship defining each non-linearity be known in terms of points on a curve.
The tanh-coth method combined with the Riccati equation for solving non-linear equation
Energy Technology Data Exchange (ETDEWEB)
Bekir, Ahmet [Dumlupinar University, Art-Science Faculty, Department of Mathematics, Kuetahya (Turkey)], E-mail: abekir@dumlupinar.edu.tr
2009-05-15
In this work, we established abundant travelling wave solutions for some non-linear evolution equations. This method was used to construct solitons and traveling wave solutions of non-linear evolution equations. The tanh-coth method combined with Riccati equation presents a wider applicability for handling non-linear wave equations.
Conductance fluctuations in a macroscopic 3-dimensional Anderson insulator
International Nuclear Information System (INIS)
We report magnetoconductance experiment on a amorphous Yx-Si1-x alloy (∼0.3). which is an Anderson insulator where spin-orbit scattering is strong. Two principal and new features emerge from the data: the first one is an halving of the localization length by the application of a magnetic field of about 2.5 Teslas. This effect is predicted by a new approach of transport in Anderson insulators where basic symetry considerations are the most important ingredient. The second one is the observation of reproducible conductance fluctuations at very low temperature in this macroscopic 3 D amorphous material
Anderson wall and Bloch oscillations in molecular rotation
Floß, Johannes
2014-01-01
We describe a universal behavior of linear molecules excited by a periodic train of short laser pulses under quantum resonance conditions. In a rigid rotor the resonance causes an unlimited ballistic growth of the angular momentum. We show that the centrifugal distortion of rotating molecules eventually halts the growth, by causing Anderson localization beyond a critical value of the angular momentum -- the Anderson wall. Its position solely depends on the molecular rotational constants and lies in the range of a few tens of hbar. Below the wall, rotational excitation oscillates with the number of pulses due to a mechanism similar to Bloch oscillations in crystalline solids. We suggest optical experiments capable of observing the rotational Anderson wall and Bloch oscillations at ambient conditions with the help of existing laser technology.
Anderson wall and BLOCH oscillations in molecular rotation.
Floß, Johannes; Averbukh, Ilya Sh
2014-07-25
We describe a universal behavior of linear molecules excited by a periodic train of short laser pulses under quantum resonance conditions. In a rigid rotor, the resonance causes an unlimited ballistic growth of the angular momentum. We show that the centrifugal distortion of rotating molecules eventually halts the growth, by causing Anderson localization beyond a critical value of the angular momentum--the Anderson wall. Its position solely depends on the molecular rotational constants and lies in the range of a few tens of ℏ. Below the wall, rotational excitation oscillates with the number of pulses due to a mechanism similar to Bloch oscillations in crystalline solids. We suggest optical experiments capable of observing the rotational Anderson wall and Bloch oscillations at near-ambient conditions with the help of existing laser technology.
An Anderson-like model of the QCD chiral transition
Giordano, Matteo; Pittler, Ferenc
2016-01-01
We study the problems of chiral symmetry breaking and eigenmode localisation in finite-temperature QCD by looking at the lattice Dirac operator as a random Hamiltonian. We recast the staggered Dirac operator into an unconventional three-dimensional Anderson Hamiltonian ("Dirac-Anderson Hamiltonian") carrying internal degrees of freedom, with disorder provided by the fluctuations of the gauge links. In this framework, we identify the features relevant to chiral symmetry restoration and localisation of the low-lying Dirac eigenmodes in the ordering of the local Polyakov lines, and in the related correlation between spatial links across time slices, thus tying the two phenomena to the deconfinement transition. We then build a toy model based on QCD and on the Dirac-Anderson approach, replacing the Polyakov lines with spin variables and simplifying the dynamics of the spatial gauge links, but preserving the above-mentioned relevant dynamical features. Our toy model successfully reproduces the main features of the...
Non-linear evolution of the cosmic neutrino background
Energy Technology Data Exchange (ETDEWEB)
Villaescusa-Navarro, Francisco; Viel, Matteo [INAF/Osservatorio Astronomico di Trieste, Via Tiepolo 11, 34143, Trieste (Italy); Bird, Simeon [Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ, 08540 (United States); Peña-Garay, Carlos, E-mail: villaescusa@oats.inaf.it, E-mail: spb@ias.edu, E-mail: penya@ific.uv.es, E-mail: viel@oats.inaf.it [Instituto de Física Corpuscular, CSIC-UVEG, E-46071, Paterna, Valencia (Spain)
2013-03-01
We investigate the non-linear evolution of the relic cosmic neutrino background by running large box-size, high resolution N-body simulations which incorporate cold dark matter (CDM) and neutrinos as independent particle species. Our set of simulations explore the properties of neutrinos in a reference ΛCDM model with total neutrino masses between 0.05-0.60 eV in cold dark matter haloes of mass 10{sup 11}−10{sup 15} h{sup −1}M{sub s}un, over a redshift range z = 0−2. We compute the halo mass function and show that it is reasonably well fitted by the Sheth-Tormen formula, once the neutrino contribution to the total matter is removed. More importantly, we focus on the CDM and neutrino properties of the density and peculiar velocity fields in the cosmological volume, inside and in the outskirts of virialized haloes. The dynamical state of the neutrino particles depends strongly on their momentum: whereas neutrinos in the low velocity tail behave similarly to CDM particles, neutrinos in the high velocity tail are not affected by the clustering of the underlying CDM component. We find that the neutrino (linear) unperturbed momentum distribution is modified and mass and redshift dependent deviations from the expected Fermi-Dirac distribution are in place both in the cosmological volume and inside haloes. The neutrino density profiles around virialized haloes have been carefully investigated and a simple fitting formula is provided. The neutrino profile, unlike the cold dark matter one, is found to be cored with core size and central density that depend on the neutrino mass, redshift and mass of the halo, for halos of masses larger than ∼ 10{sup 13.5}h{sup −1}M{sub s}un. For lower masses the neutrino profile is best fitted by a simple power-law relation in the range probed by the simulations. The results we obtain are numerically converged in terms of neutrino profiles at the 10% level for scales above ∼ 200 h{sup −1}kpc at z = 0, and are stable with
Non-linear controls on the persistence of La Nina
Di Nezio, P. N.; Deser, C.
2013-12-01
Non-linear controls on the persistence of La Nina Pedro DiNezio and Clara Deser Up to half of the observed La Nina events last for two years or more. Most El Nino events, in contrast, last no longer than one year. The physical processes causing this asymmetry in the duration of warm and cold ENSO events is unknown. The persistence of La Nina, not only exacerbates the climate impacts, especially in regions prone to drought, but also is highly unpredictable. In this talk we will explore the nonlinear processes that generate the persistence of La Nina in observations and in CCSM4 - a coupled climate model that simulates this feature realistically. First, we develop a non-linear delayed-oscillator model (nonlinDO) based on CCSM4's heat budget. All positive and negative feedbacks of nonlinDO capture the nonlinear and seasonal dependence exhibited by CCSM4. The nonlinear behavior is due to: 1) weaker atmospheric damping of cold events with respect to warm events, 2) stronger wind response for large warm events, and 3) weaker coupling between thermocline and sea-surface temperature anomalies when the thermocline deepens. We force the simple model with white Gaussian noise resulting in seasonal modulation of variance and skewness, and a spectral peak, that are in agreement with CCSM4. Sensitivity experiments with nonlinDO show that the thermocline nonlinearity (3) is the sole process controlling the duration of La Nina events. Linear ENSO theory indicates that La Nina events drive a delayed thermocline deepening that leads to their demise. However, the thermocline nonlinearity (3) renders this response ineffective as La Nina events become stronger. This diminishing of the delayed-thermocline feedback prevents the equatorial Pacific from returning to neutral or warm conditions and cold conditions persist for a second year. Observations show evidence for this thermocline nonlinearity suggesting that this process could be at work in the real world. Last, we show evidence that
FREE NON-LINEAR VIBRATION OF AXIALLY MOVING BEAMS WITH FIXED ENDS
Institute of Scientific and Technical Information of China (English)
Yang Xiaodong; Chen Liqun
2005-01-01
The free non-linear vibration of axially moving, elastic, and tensioned beams on fixed supports is investigated in this paper. Two types of non-linearity, namely, the differential type and integro-differential type, are analyzed. Approximate solutions are sought using the method of multiple scales. The contribution of non-linearity to the response increases with the axial speed,and grows most rapidly near the critical speed. It has been found that the differential type nonlinearity is stronger than the integro-differential type non-linearity by analyzing the non-linear effects on natural frequencies.
Non-linear evolution of f(R) cosmologies II: power spectrum
Oyaizu, Hiroaki; Hu, Wayne
2008-01-01
We carry out a suite of cosmological simulations of modified action f(R) models where cosmic acceleration arises from an alteration of gravity instead of dark energy. These models introduce an extra scalar degree of freedom which enhances the force of gravity below the inverse mass or Compton scale of the scalar. The simulations exhibit the so-called chameleon mechanism, necessary for satisfying local constraints on gravity, where this scale depends on environment, in particular the depth of the local gravitational potential. We find that the chameleon mechanism can substantially suppress the enhancement of power spectrum in the non-linear regime if the background field value is comparable to or smaller than the depth of the gravitational potentials of typical structures. Nonetheless power spectrum enhancements at intermediate scales remain at a measurable level for models even when the expansion history is indistinguishable from a cosmological constant, cold dark matter model. Simple scaling relations that t...
Non-linear modulation of short wavelength compressional Alfven eigenmodes
Energy Technology Data Exchange (ETDEWEB)
Fredrickson, E. D.; Gorelenkov, N. N.; Podesta, M.; Gerhardt, S. P.; Bell, R. E.; Diallo, A.; LeBlanc, B. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Bortolon, A. [University of California, Irvine, California 92697 (United States); Crocker, N. A. [University of California, Los Angeles, California 90095 (United States); Levinton, F. M.; Yuh, H. [Nova Photonics, Princeton, New Jersey 08543 (United States)
2013-04-15
Most Alfvenic activity in the frequency range between toroidal Alfven eigenmodes and roughly one half of the ion cyclotron frequency on National Spherical Torus eXperiment [Ono et al., Nucl. Fusion 40, 557 (2000)], that is, approximately 0.3 MHz up to Almost-Equal-To 1.2 MHz, are modes propagating counter to the neutral beam ions. These have been modeled as Compressional and Global Alfven Eigenmodes (CAE and GAE) and are excited through a Doppler-shifted cyclotron resonance with the beam ions. There is also a class of co-propagating modes at higher frequency than the counter-propagating CAE and GAE. These modes have been identified as CAE, and are seen mostly in the company of a low frequency, n = 1 kink-like mode. In this paper, we present measurements of the spectrum of these high frequency CAE (hfCAE) and their mode structure. We compare those measurements to a simple model of CAE and present a predator-prey type model of the curious non-linear coupling of the hfCAE and the low frequency kink-like mode.
Non-linear controllers in ship tracking control system
Institute of Scientific and Technical Information of China (English)
LESZEK M
2005-01-01
The cascade systems which stabilize the transverse deviation of the ship in relation to the set path is presented. The ship's path is determined as a broken line with specified coordinates of way points. Three controllers are used in the system. The main primary controller is the trajectory controller. The set value of heading for the course control system or angular velocity for the turning control system is generated. The course control system is used on the straight line of the set trajectory while the turning controller is used during a change of the set trajectory segment. The characteristics of the non-linear controllers are selected in such a way that the properties of the control system with the rate of turn controller are modelled by the first-order inertia, while the system with the course keeping controller is modelled by a second-order linear term. The presented control system is tested in computer simulation. Some results of simulation tests are presented and discussed.
NLHB : A Non-Linear Hopper Blum Protocol
Madhavan, Mukundan; Sankarasubramaniam, Yogesh; Viswanathan, Kapali
2010-01-01
In this paper, we propose a light-weight provably-secure authentication protocol called the NLHB protocol, which is a variant of the HB protocol. The HB protocol uses the complexity of decoding linear codes for security against passive attacks. In contrast, security for the NLHB protocol is proved by reducing passive attacks to the problem of decoding a class of non-linear codes\\footnote that are provably hard. We demonstrate that the existing passive attacks on the HB protocol family, which have contributed to considerable reduction in its effective key-size, are ineffective against the NLHB protocol. From the evidence, we conclude that smaller-key sizes are sufficient for the NLHB protocol to achieve the same level of passive attack security as the HB Protocol. Further, for this choice of parameters, we provide an implementation instance for the NLHB protocol for which the Prover/Verifier complexity is lower than the HB protocol, enabling authentication on very low-cost devices like RFID tags. Finally, in t...
Non-linear vorticity upsurge in Burgers flow
Lam, F
2016-01-01
We demonstrate that numerical solutions of Burgers' equation can be obtained by a scale-totality algorithm for fluids of small viscosity (down to one billionth). Two sets of initial data, modelling simple shears and wall boundary layers, are chosen for our computations. Most of the solutions are carried out well into the fully turbulent regime over finely-resolved scales in space and in time. It is found that an abrupt spatio-temporal concentration in shear constitutes an essential part during the flow evolution. The vorticity surge has been instigated by the non-linearity complying with instantaneous enstrophy production while ad hoc disturbances play no role in the process. In particular, the present method predicts the precipitous vorticity re-distribution and accumulation, predominantly over localised regions of minute dimension. The growth rate depends on viscosity and is a strong function of initial data. Nevertheless, the long-time energy decay is history-independent and is inversely proportional to ti...
Non-linear Constitutive Model for the Oligocarbonate Polyurethane Material
Institute of Scientific and Technical Information of China (English)
Marek Pawlikowski
2014-01-01
The polyurethane,which was the subject of the constitutive research presented in the paper,was based on oligocarbonate diols Desmophen C2100 produced by Bayer@.The constitutive modelling was performed with a view to applying the material as the inlay of intervertebral disc prostheses.The polyurethane was assumed to be non-linearly viscohyperelastic,isotropic and incompressible.The constitutive equation was derived from the postulated strain energy function.The elastic and rheological constants were identified on the basis of experimental tests,i.e.relaxation tests and monotonic uniaxial tests at two different strain rates,i.e.λ =0.1 min-1 and λ =1.0 min-1.The stiffness tensor was derived and introduced to Abaqus@finite element (FE) software in order to numerically validate the constitutive model.The results of the constants identification and numerical implementation show that the derived constitutive equation is fully adequate to model stress-strain behavior of the polyurethane material.
STATISTICAL BASED NON-LINEAR MODEL UPDATING USING FEATURE EXTRACTION
Energy Technology Data Exchange (ETDEWEB)
Schultz, J.F.; Hemez, F.M. [and others
2000-10-01
This research presents a new method to improve analytical model fidelity for non-linear systems. The approach investigates several mechanisms to assist the analyst in updating an analytical model based on experimental data and statistical analysis of parameter effects. The first is a new approach at data reduction called feature extraction. This is an expansion of the update metrics to include specific phenomena or character of the response that is critical to model application. This is an extension of the classical linear updating paradigm of utilizing the eigen-parameters or FRFs to include such devices as peak acceleration, time of arrival or standard deviation of model error. The next expansion of the updating process is the inclusion of statistical based parameter analysis to quantify the effects of uncertain or significant effect parameters in the construction of a meta-model. This provides indicators of the statistical variation associated with parameters as well as confidence intervals on the coefficients of the resulting meta-model, Also included in this method is the investigation of linear parameter effect screening using a partial factorial variable array for simulation. This is intended to aid the analyst in eliminating from the investigation the parameters that do not have a significant variation effect on the feature metric, Finally an investigation of the model to replicate the measured response variation is examined.
Non-linear evolution of the cosmic neutrino background
Villaescusa-Navarro, Francisco; Peña-Garay, Carlos; Viel, Matteo
2012-01-01
We investigate the non-linear evolution of the relic cosmic neutrino background by running large box-size, high resolution N-body simulations. Our set of simulations explore the properties of neutrinos in a reference $\\Lambda$CDM model with total neutrino masses between 0.05-0.60 eV in cold dark matter haloes of mass $10^{11}-10^{15}$ $h^{-1}$M$_{\\odot}$, over a redshift range $z=0-2$. We compute the halo mass function and show that it is reasonably well fitted by the Sheth-Tormen formula. More importantly, we focus on the CDM and neutrino properties of the density and peculiar velocity fields in the cosmological volume, inside and in the outskirts of virialized haloes. The dynamical state of the neutrino particles depends strongly on their momentum: whereas neutrinos in the low velocity tail behave similarly to CDM particles, neutrinos in the high velocity tail are not affected by the clustering of the underlying CDM component. We find that the neutrino (linear) unperturbed momentum distribution is modified ...
Non-linear model for compression tests on articular cartilage.
Grillo, Alfio; Guaily, Amr; Giverso, Chiara; Federico, Salvatore
2015-07-01
Hydrated soft tissues, such as articular cartilage, are often modeled as biphasic systems with individually incompressible solid and fluid phases, and biphasic models are employed to fit experimental data in order to determine the mechanical and hydraulic properties of the tissues. Two of the most common experimental setups are confined and unconfined compression. Analytical solutions exist for the unconfined case with the linear, isotropic, homogeneous model of articular cartilage, and for the confined case with the non-linear, isotropic, homogeneous model. The aim of this contribution is to provide an easily implementable numerical tool to determine a solution to the governing differential equations of (homogeneous and isotropic) unconfined and (inhomogeneous and isotropic) confined compression under large deformations. The large-deformation governing equations are reduced to equivalent diffusive equations, which are then solved by means of finite difference (FD) methods. The solution strategy proposed here could be used to generate benchmark tests for validating complex user-defined material models within finite element (FE) implementations, and for determining the tissue's mechanical and hydraulic properties from experimental data.
Non-linear calibration models for near infrared spectroscopy.
Ni, Wangdong; Nørgaard, Lars; Mørup, Morten
2014-02-27
Different calibration techniques are available for spectroscopic applications that show nonlinear behavior. This comprehensive comparative study presents a comparison of different nonlinear calibration techniques: kernel PLS (KPLS), support vector machines (SVM), least-squares SVM (LS-SVM), relevance vector machines (RVM), Gaussian process regression (GPR), artificial neural network (ANN), and Bayesian ANN (BANN). In this comparison, partial least squares (PLS) regression is used as a linear benchmark, while the relationship of the methods is considered in terms of traditional calibration by ridge regression (RR). The performance of the different methods is demonstrated by their practical applications using three real-life near infrared (NIR) data sets. Different aspects of the various approaches including computational time, model interpretability, potential over-fitting using the non-linear models on linear problems, robustness to small or medium sample sets, and robustness to pre-processing, are discussed. The results suggest that GPR and BANN are powerful and promising methods for handling linear as well as nonlinear systems, even when the data sets are moderately small. The LS-SVM is also attractive due to its good predictive performance for both linear and nonlinear calibrations.
The non-linear evolution of jet quenching
Iancu, Edmond
2014-01-01
We construct a generalization of the JIMWLK Hamiltonian, going beyond the eikonal approximation, which governs the high-energy evolution of the scattering between a dilute projectile and a dense target with an arbitrary longitudinal extent (a nucleus, or a slice of quark-gluon plasma). Different physical regimes refer to the ratio $L/\\tau$ between the longitudinal size $L$ of the target and the lifetime $\\tau$ of the gluon fluctuations. When $L/\\tau \\ll 1$, meaning that the target can be effectively treated as a shockwave, we recover the JIMWLK Hamiltonian, as expected. When $L/\\tau \\gg 1$, meaning that the fluctuations live inside the target, the new Hamiltonian governs phenomena like the transverse momentum broadening and the radiative energy loss, which accompany the propagation of an energetic parton through a dense QCD medium. Using this Hamiltonian, we derive a non-linear equation for the dipole amplitude (a generalization of the BK equation), which describes the high-energy evolution of jet quenching. ...
Non-linear iterative strategy for nem refinement and extension
International Nuclear Information System (INIS)
The following work is related to the non-linear iterative strategy developed by K. Smith to solve the Nodal Expansion Method (NEM) representation of the neutron diffusion equations. We show how to improve this strategy and how to adapt it to time dependant problems. This work has been done in the NESTLE code, developed at North Carolina State University. When using Smith's strategy, one ends up with a two-node problem which corresponds to a matrix with a fixed structure and a size of 16 x 16 (for a 2 group representation). We show how to reduce this matrix into 2 equivalent systems which sizes are 4 x 4 and 8 x 8. The whole problem needs many of these 2 node problems solution. Therefore the gain in CPU time reaches 45% in the nodal part of the code. To adapt Smith's strategy to time dependent problems, the idea is to get the same structure of the 2 node problem system as in steady-state calculation. To achieve this, one has to approximate the values of the past time-step and of the previous by a second order polynomial and to treat it as a source term. We show here how to make this approximation consistent and accurate. (authors). 1 tab., 2 refs
Experimental study of a linear/non-linear flux rope
Energy Technology Data Exchange (ETDEWEB)
DeHaas, Timothy; Gekelman, Walter; Van Compernolle, Bart [Department of Physics and Astronomy, University of California, Los Angeles, California 90095 (United States)
2015-08-15
Flux ropes are magnetic structures of helical field lines, accompanied by spiraling currents. Commonly observed on the solar surface extending into the solar atmosphere, flux ropes are naturally occurring and have been observed by satellites in the near earth and in laboratory environments. In this experiment, a single flux rope (r = 2.5 cm, L = 1100 cm) was formed in the cylindrical, magnetized plasma of the Large Plasma Device (LaPD, L = 2200 cm, r{sub plasma} = 30 cm, n{sub o} = 10{sup 12 }cm{sup −3}, T{sub e} = 4 eV, He). The flux rope was generated by a DC discharge between an electron emitting cathode and anode. This fixes the rope at its source while allowing it to freely move about the anode. At large currents (I > πr{sup 2}B{sub 0}c/2 L), the flux rope becomes helical in structure and oscillates about a central axis. Under varying Alfven speeds and injection current, the transition of the flux rope from stable to kink-unstable was examined. As it becomes non-linear, oscillations in the magnetic signals shift from sinusoidal to Sawtooth-like, associated with elliptical motion of the flux rope; or the signal becomes intermittent as its current density increases.
Non-linear Least Squares Fitting in IDL with MPFIT
Markwardt, Craig B
2009-01-01
MPFIT is a port to IDL of the non-linear least squares fitting program MINPACK-1. MPFIT inherits the robustness of the original FORTRAN version of MINPACK-1, but is optimized for performance and convenience in IDL. In addition to the main fitting engine, MPFIT, several specialized functions are provided to fit 1-D curves and 2-D images; 1-D and 2-D peaks; and interactive fitting from the IDL command line. Several constraints can be applied to model parameters, including fixed constraints, simple bounding constraints, and "tying" the value to another parameter. Several data weighting methods are allowed, and the parameter covariance matrix is computed. Extensive diagnostic capabilities are available during the fit, via a call-back subroutine, and after the fit is complete. Several different forms of documentation are provided, including a tutorial, reference pages, and frequently asked questions. The package has been translated to C and Python as well. The full IDL and C packages can be found at http://purl.co...
Non-linear crustal corrections in high-resolution regional waveform seismic tomography
Marone, Federica; Romanowicz, Barbara
2007-07-01
We compare 3-D upper mantle anisotropic structures beneath the North American continent obtained using standard and improved crustal corrections in the framework of Non-linear Asymptotic Coupling Theory (NACT) applied to long period three component fundamental and higher mode surface waveform data. Our improved approach to correct for crustal structure in high-resolution regional waveform tomographic models goes beyond the linear perturbation approximation, and is therefore more accurate in accounting for large variations in Moho topography within short distances as observed, for instance, at ocean-continent margins. This improved methodology decomposes the shallow-layer correction into a linear and non-linear part and makes use of 1-D sensitivity kernels defined according to local tectonic structure, both for the forward computation and for the computation of sensitivity kernels for inversion. The comparison of the 3-D upper mantle anisotropic structures derived using the standard and improved crustal correction approaches shows that the model norm is not strongly affected. However, significant variations are observed in the retrieved 3-D perturbations. The largest differences in the velocity models are present below 250 km depth and not in the uppermost mantle, as would be expected. We suggest that inaccurate crustal corrections preferentially map into the least constrained part of the model and therefore accurate corrections for shallow-layer structure are essential to improve our knowledge of parts of the upper mantle where our data have the smallest sensitivity.
Non-linear analysis and the design of Pumpkin Balloons: stress, stability and viscoelasticity
Rand, J. L.; Wakefield, D. S.
Tensys have a long-established background in the shape generation and load analysis of architectural stressed membrane structures Founded upon their inTENS finite element analysis suite these activities have broadened to encompass lighter than air structures such as aerostats hybrid air-vehicles and stratospheric balloons Winzen Engineering couple many years of practical balloon design and fabrication experience with both academic and practical knowledge of the characterisation of the non-linear viscoelastic response of the polymeric films typically used for high-altitude scientific balloons Both companies have provided consulting services to the NASA Ultra Long Duration Balloon ULDB Program Early implementations of pumpkin balloons have shown problems of geometric instability characterised by improper deployment and these difficulties have been reproduced numerically using inTENS The solution lies in both the shapes of the membrane lobes and also the need to generate a biaxial stress field in order to mobilise in-plane shear stiffness Balloons undergo significant temperature and pressure variations in flight The different thermal characteristics between tendons and film can lead to significant meridional stress Fabrication tolerances can lead to significant local hoop stress concentrations particularly adjacent to the base and apex end fittings The non-linear viscoelastic response of the envelope film acts positively to help dissipate stress concentrations However creep over time may produce lobe geometry variations that may
Munck, Sebastian; Miskiewicz, Katarzyna; Sannerud, Ragna; Menchon, Silvia A; Jose, Liya; Heintzmann, Rainer; Verstreken, Patrik; Annaert, Wim
2012-05-01
Visualization of organelles and molecules at nanometer resolution is revolutionizing the biological sciences. However, such technology is still limited for many cell biologists. We present here a novel approach using photobleaching microscopy with non-linear processing (PiMP) for sub-diffraction imaging. Bleaching of fluorophores both within the single-molecule regime and beyond allows visualization of stochastic representations of sub-populations of fluorophores by imaging the same region over time. Our method is based on enhancing the probable positions of the fluorophores underlying the images. The random nature of the bleached fluorophores is assessed by calculating the deviation of the local actual bleached fluorescence intensity to the average bleach expectation as given by the overall decay of intensity. Subtracting measured from estimated decay images yields differential images. Non-linear enhancement of maxima in these diffraction-limited differential images approximates the positions of the underlying structure. Summing many such processed differential images yields a super-resolution PiMP image. PiMP allows multi-color, three-dimensional sub-diffraction imaging of cells and tissues using common fluorophores and can be implemented on standard wide-field or confocal systems.
Anderson Localization in the Induced Disorder System
Fei-Fei, Lu; Chun-Fang, Wang
2016-07-01
Not Available Supported by the National Natural Science Foundation of China under Grant Nos 11104185, 11174084 and 10934011, and the National Basic Research Program of China under Grant No 2012CB921904.
Khan, Masood; Hashim; Hussain, M.; Azam, M.
2016-08-01
This paper presents a study of the magnetohydrodynamic (MHD) boundary layer flow of a non-Newtonian Carreau fluid over a convectively heated surface. The analysis of heat transfer is further performed in the presence of non-linear thermal radiation. The appropriate transformations are employed to bring the governing equations into dimensionless form. The numerical solutions of the partially coupled non-linear ordinary differential equations are obtained by using the Runge-Kutta Fehlberg integration scheme. The influence of non-dimensional governing parameters on the velocity, temperature, local skin friction coefficient and local Nusselt number is studied and discussed with the help of graphs and tables. Results proved that there is significant decrease in the velocity and the corresponding momentum boundary layer thickness with the growth in the magnetic parameter. However, a quite the opposite is true for the temperature and the corresponding thermal boundary layer thickness.
Stormo, Arne; Lengliné, Olivier; Schmittbuhl, Jean; Hansen, Alex
2016-05-01
We compare experimental observations of a slow interfacial crack propagation along an heterogeneous interface to numerical simulations using a soft-clamped fiber bundle model. The model consists of a planar set of brittle fibers between a deformable elastic half-space and a rigid plate with a square root shape that imposes a non linear displacement around the process zone. The non-linear square-root rigid shape combined with the long range elastic interactions is shown to provide more realistic displacement and stress fields around the crack tip in the process zone and thereby significantly improving the predictions of the model. Experiments and model are shown to share a similar self-affine roughening of the crack front both at small and large scales and a similar distribution of the local crack front velocity. Numerical predictions of the Family-Viscek scaling for both regimes are discussed together with the local velocity distribution of the fracture front.
The non-linear initiation of diapirs and plume heads
Bercovici, David; Kelly, Amanda
1997-04-01
A simple theory is devised to describe the non-linear feedback mechanisms involved in the initial growth of a single diapir or plume head from a low viscosity channel overlain by a much more viscous layer. Such feedbacks arise primarily from the relation between the growth of a proto-diapir (i.e. an undulation on the upper boundary of the low viscosity channel) and the draining of the low viscosity channel. In the period of time between its initial exponential growth (characterized by linear stability analysis) and its separation from the low viscosity channel as a fully formed diapir, the proto-diapir can undergo a significant cessation in its development due to deflation of the low viscosity channel; i.e. the proto-diapir's growth can essentially stall for a long period of time before it separates and begins its ascent through the overlying medium. The theory is used to determine a criterion for separation of the diapir from the low viscosity channel that is in terms of the geometrical and mechanical properties of the channel, instead of the ad hoc volume flux widely used in many models of mantle plumes and plume heads (e.g. Whitehead and Luther, 1975; Richards et al., 1989; Olson, 1990; Sleep, 1990; Bercovici and Mahoney, 1994). From this separation criterion, self-consistent scaling laws can be formulated to relate the size of the fully developed diapir and its trailing conduit to the properties of the initial channel, instead of to the ad hoc volume flux. Basic laboratory experiments involving highly viscous fluids are presented and demonstrate that the so-called 'stalling' period between initial growth and separation does indeed occur. These results suggest that nascent mantle plume heads may stall for extended periods at the base of the mantle and thereby contribute to variations in thickness of the D″ layer.
Phenomenon of life: between equilibrium and non-linearity.
Galimov, E M
2004-12-01
A model of ordering applicable to biological evolution is presented. It is shown that a steady state (more precisely approaching to a steady state) system of irreversible processes, under conditions of disproportionation of entropy, produces a lower-entropy product, that is, ordering. The ordering is defined as restricting of degrees of freedom: freedom of motion, interactions etc. The model differs from previous ones in that it relates the ordering to processes running not far from equilibrium, described in the linear field of non-equilibrium thermodynamics. It is shown that a system, which includes adenosine triphosphate (ATP) to adenosine diphosphate (ADP) conversion meets the demands of the physical model: it provides energy maintaining steady state conditions, and hydrolysis of ATP proceeding with consumption of water can be tightly conjugated with the most important reactions of synthesis of organic polymers (peptides, nucleotide chains etc.), which proceed with release of water. For these and other reasons ATP seems to be a key molecule of prebiotic evolution. It is argued that the elementary chemical reaction proceeding under control of an enzyme is not necessarily far from equilibrium. The experimental evidence supporting this idea, is presented. It is based on isotope data. Carbon isotope distribution in biochemical systems reveals regularity, which is inherent to steady state systems of chemical reactions, proceeding not far from equilibrium. In living organisms this feature appears at the statistical level, as many completely irreversible and non-linear processes occur in organisms. However not-far-from-equilibrium reactions are inherent to biochemical systems as a matter of principle. They are reconcilable with biochemical behavior. Extant organisms are highly evolved entities which, however, show in their basis the same features, as the simplest chemical systems must have had been involved in the origin of life. Some consequences following from the
A test to evaluation non-linear soil structure interaction
International Nuclear Information System (INIS)
JNES is planning a new project to study non-linear soil-structure interaction (SSI) effect under large earthquake ground motions equivalent to and/or over a design earthquake ground motion of S2. Concerning the SSI test, it is pointed out that handling of the scale effect of the specimen taking into account the surrounding soil on the earthquake response evaluation to the actual structure is essential issue for the scaled model test. Thus, for the test, the largest specimen possible and the biggest input motion possible are necessary. Taking into account the above issues, new test methodology, which utilizes artificial earthquake ground motion, is considered desirable if it can be performed at a realistic cost. With this motivation, we have studied the test methodology which applying blasting power as for a big earthquake ground motion. The information from a coalmine company in the U.S.A. indicates that the works performed in the surface coalmine to blast a rock covering a coal layer generates a big artificial ground motion, which is similar to earthquake ground motion. Application of this artificial earthquake ground motion for the SSI test is considered very promising because the blasting work is carried out periodically for mining coal so that we can apply artificial motions generated by the work if we construct a building model at a closed point to the blasting work area. The major purposes of the test are to understand (a) basic earthquake response characteristics of a Nuclear Power Plant (NPP) reactor building when a large earthquake strikes the NPP site and (b) nonlinear characteristics of SSI phenomenon during a big earthquake. In the paper of ICONE-13, we will introduce the test method and basic characteristics of measured artificial ground motions generated by the blasting works on an actual site. (authors)
The Anderson transition due to random spin-orbit coupling in two-dimension
Asada, Yoichi; Slevin, Keith; Ohtsuki, Tomi
2003-01-01
We report an analysis of the Anderson transition in an SU(2) model with chiral symmetry. Clear single parameter scaling behaviour is observed. We estimate the critical exponent for the divergence of the localization length to be $\
Johansen, A; Johansen, Anders; Youdin, Andrew
2007-01-01
We present simulations of the non-linear evolution of streaming instabilities in protoplanetary disks. The two components of the disk, gas treated with grid hydrodynamics and solids treated as superparticles, are mutually coupled by drag forces. We find that the initially laminar equilibrium flow spontaneously develops into turbulence in our unstratified local model. Marginally coupled solids (that couple to the gas on a Keplerian time-scale) trigger an upward cascade to large particle clumps with peak overdensities above 100. The clumps evolve dynamically by losing material downstream to the radial drift flow while receiving recycled material from upstream. Smaller, more tightly coupled solids produce weaker turbulence with more transient overdensities on smaller length scales. The net inward radial drift is decreased for marginally coupled particles, whereas the tightly coupled particles migrate faster in the saturated turbulent state. The turbulent diffusion of solid particles, measured by their random wal...
An implicit meshless scheme for the solution of transient non-linear Poisson-type equations
Bourantas, Georgios
2013-07-01
A meshfree point collocation method is used for the numerical simulation of both transient and steady state non-linear Poisson-type partial differential equations. Particular emphasis is placed on the application of the linearization method with special attention to the lagging of coefficients method and the Newton linearization method. The localized form of the Moving Least Squares (MLS) approximation is employed for the construction of the shape functions, in conjunction with the general framework of the point collocation method. Computations are performed for regular nodal distributions, stressing the positivity conditions that make the resulting system stable and convergent. The accuracy and the stability of the proposed scheme are demonstrated through representative and well-established benchmark problems. © 2013 Elsevier Ltd.
Non-linear modeling of the plasma response to RMPs in ASDEX Upgrade
Orain, F; Viezzer, E; Dunne, M; Becoulet, M; Cahyna, P; Huijsmans, G T A; Morales, J; Willensdorfer, M; Suttrop, W; Kirk, A; Pamela, S; Strumberger, E; Guenter, S; Lessig, A
2016-01-01
The plasma response to Resonant Magnetic Perturbations (RMPs) in ASDEX Upgrade is modeled with the non-linear resistive MHD code JOREK, using input profiles that match those of the experiments as closely as possible. The RMP configuration for which Edge Localized Modes are best mitigated in experiments is related to the largest edge kink response observed near the X-point in modeling. On the edge resonant surfaces q = m=n, the coupling between the m + 2 kink component and the m resonant component is found to induce the amplification of the resonant magnetic perturbation. The ergodicity and the 3D-displacement near the X-point induced by the resonant ampli?cation can only partly explain the density pumpout observed in experiments.
Fast spatial beam shaping by acousto-optic diffraction for 3D non-linear microscopy.
Akemann, Walther; Léger, Jean-François; Ventalon, Cathie; Mathieu, Benjamin; Dieudonné, Stéphane; Bourdieu, Laurent
2015-11-01
Acousto-optic deflection (AOD) devices offer unprecedented fast control of the entire spatial structure of light beams, most notably their phase. AOD light modulation of ultra-short laser pulses, however, is not straightforward to implement because of intrinsic chromatic dispersion and non-stationarity of acousto-optic diffraction. While schemes exist to compensate chromatic dispersion, non-stationarity remains an obstacle. In this work we demonstrate an efficient AOD light modulator for stable phase modulation using time-locked generation of frequency-modulated acoustic waves at the full repetition rate of a high power laser pulse amplifier of 80 kHz. We establish the non-local relationship between the optical phase and the generating acoustic frequency function and verify the system for temporal stability, phase accuracy and generation of non-linear two-dimensional phase functions.
Non-linear dependence and teleconnections in climate data: sources, relevance, nonstationarity
Hlinka, Jaroslav; Vejmelka, Martin; Novotná, Dagmar; Paluš, Milan
2012-01-01
Quantification of relations between measured variables of interest by statistical measures of dependence is a common step in analysis of climate data. The term "connectivity" is used in the network context including the study of complex coupled dynamical systems. The choice of dependence measure is key for the results of the subsequent analysis and interpretation. The use of linear Pearson's correlation coefficient is widespread and convenient. On the other side, as the climate is widely acknowledged to be a nonlinear system, nonlinear connectivity quantification methods, such as those based on information-theoretical concepts, are increasingly used for this purpose. In this paper we outline an approach that enables well informed choice of connectivity method for a given type of data, improving the subsequent interpretation of the results. The presented multi-step approach includes statistical testing, quantification of the specific non-linear contribution to the interaction information, localization of nodes...
Fast spatial beam shaping by acousto-optic diffraction for 3D non-linear microscopy.
Akemann, Walther; Léger, Jean-François; Ventalon, Cathie; Mathieu, Benjamin; Dieudonné, Stéphane; Bourdieu, Laurent
2015-11-01
Acousto-optic deflection (AOD) devices offer unprecedented fast control of the entire spatial structure of light beams, most notably their phase. AOD light modulation of ultra-short laser pulses, however, is not straightforward to implement because of intrinsic chromatic dispersion and non-stationarity of acousto-optic diffraction. While schemes exist to compensate chromatic dispersion, non-stationarity remains an obstacle. In this work we demonstrate an efficient AOD light modulator for stable phase modulation using time-locked generation of frequency-modulated acoustic waves at the full repetition rate of a high power laser pulse amplifier of 80 kHz. We establish the non-local relationship between the optical phase and the generating acoustic frequency function and verify the system for temporal stability, phase accuracy and generation of non-linear two-dimensional phase functions. PMID:26561090
International Nuclear Information System (INIS)
This article presents the first computation of the complete bispectrum of the cosmic microwave background temperature anisotropies arising from the evolution of all cosmic fluids up to second order, including neutrinos. Gravitational couplings, electron density fluctuations and the second order Boltzmann equation are fully taken into account. Comparison to limiting cases that appeared previously in the literature are provided. These are regimes for which analytical insights can be given. The final results are expressed in terms of equivalent fNL for different configurations. It is found that for moments up to lmax = 2000, the signal generated by non-linear effects is equivalent to fNL ≅ 5 for both local-type and equilateral-type primordial non-Gaussianity
Non-linearity correction of Schottky diode THz detector system using CSR burst from storage ring
International Nuclear Information System (INIS)
We show a practical method to calibrate non-linearity of Schottky diode detector for the short-pulsed THz radiation from the electron storage ring. A frequency distribution of pulse area was measured at three distances of the detector from the radiation source. Non-linearity correction function was obtained by a condition that the three distribution should be the same with non-linearity correction and reduction factor by the distance. (author)
Can Early Dark Energy be Detected in Non-Linear Structure?
Francis, Matthew J.; Lewis, Geraint F.; Linder, Eric V.
2008-01-01
We present the first study of early dark energy cosmologies using N-body simulations to investigate the formation of non-linear structure. In contrast to expectations from semi-analytic approaches, we find that early dark energy does not imprint a unique signature on the statistics of non-linear structures. Investigating the non-linear power spectra and halo mass functions, we show that universal mass functions hold for early dark energy, making its presence difficult to distinguish from $\\La...
Directory of Open Access Journals (Sweden)
P. C. Stolk
2009-01-01
Full Text Available Chambers are widely used to measure surface fluxes of nitrous oxide (N_{2}O. Usually linear regression is used to calculate the fluxes from the chamber data. Non-linearity in the chamber data can result in an underestimation of the flux. Non-linear regression models are available for these data, but are not commonly used. In this study we compared the fit of linear and non-linear regression models to determine significant non-linearity in the chamber data. We assessed the influence of this significant non-linearity on the annual fluxes.
For a two year dataset from an automatic chamber we calculated the fluxes with linear and non-linear regression methods. Based on the fit of the methods 32% of the data was defined significant non-linear. Significant non-linearity was not recognized by the goodness of fit of the linear regression alone. Using non-linear regression for these data and linear regression for the rest, increases the annual flux with 21% to 53% compared to the flux determined from linear regression alone.
We suggest that differences this large are due to leakage through the soil. Macropores or a coarse textured soil can add to fast leakage from the chamber. Yet, also for chambers without leakage non-linearity in the chamber data is unavoidable, due to feedback from the increasing concentration in the chamber. To prevent a possibly small, but systematic underestimation of the flux, we recommend comparing the fit of a linear regression model with a non-linear regression model. The non-linear regression model should be used if the fit is significantly better. Open questions are how macropores affect chamber measurements and how optimization of chamber design can prevent this.
Non-linearity parameter / of binary liquid mixtures at elevated pressures
Indian Academy of Sciences (India)
J D Pandey; J Chhabra; R Dey; V Sanguri; R Verma
2000-09-01
When sound waves of high amplitude propagate, several non-linear effects occur. Ultrasonic studies in liquid mixtures provide valuable information about structure and interaction in such systems. The present investigation comprises of theoretical evaluation of the acoustic non-linearity parameter / of four binary liquid mixtures using Tong and Dong equation at high pressures and = 303.15 K. Thermodynamic method has also been used to calculate the non-linearity parameter after making certain approximations.
DEFF Research Database (Denmark)
Tornøe, Christoffer Wenzel; Agersø, Henrik; Madsen, Henrik;
2004-01-01
The standard software for non-linear mixed-effect analysis of pharmacokinetic/phar-macodynamic (PK/PD) data is NONMEM while the non-linear mixed-effects package NLME is an alternative as tong as the models are fairly simple. We present the nlmeODE package which combines the ordinary differential...... equation (ODE) solver package odesolve and the non-Linear mixed effects package NLME thereby enabling the analysis of complicated systems of ODEs by non-linear mixed-effects modelling. The pharmacokinetics of the anti-asthmatic drug theophylline is used to illustrate the applicability of the nlme...
2013-01-01
This book consists of twenty seven chapters, which can be divided into three large categories: articles with the focus on the mathematical treatment of non-linear problems, including the methodologies, algorithms and properties of analytical and numerical solutions to particular non-linear problems; theoretical and computational studies dedicated to the physics and chemistry of non-linear micro-and nano-scale systems, including molecular clusters, nano-particles and nano-composites; and, papers focused on non-linear processes in medico-biological systems, including mathematical models of ferments, amino acids, blood fluids and polynucleic chains.
Mustafa, M; Mushtaq, A; Hayat, T; Alsaedi, A
2016-01-01
Present study explores the MHD three-dimensional rotating flow and heat transfer of ferrofluid induced by a radiative surface. The base fluid is considered as water with magnetite-Fe3O4 nanoparticles. Novel concept of non-linear radiative heat flux is considered which produces a non-linear energy equation in temperature field. Conventional transformations are employed to obtain the self-similar form of the governing differential system. The arising system involves an interesting temperature ratio parameter which is an indicator of small/large temperature differences in the flow. Numerical simulations with high precision are determined by well-known shooting approach. Both uniform stretching and rotation have significant impact on the solutions. The variation in velocity components with the nanoparticle volume fraction is non-monotonic. Local Nusselt number in Fe3O4-water ferrofluid is larger in comparison to the pure fluid even at low particle concentration. PMID:26894690
Directory of Open Access Journals (Sweden)
M Mustafa
Full Text Available Present study explores the MHD three-dimensional rotating flow and heat transfer of ferrofluid induced by a radiative surface. The base fluid is considered as water with magnetite-Fe3O4 nanoparticles. Novel concept of non-linear radiative heat flux is considered which produces a non-linear energy equation in temperature field. Conventional transformations are employed to obtain the self-similar form of the governing differential system. The arising system involves an interesting temperature ratio parameter which is an indicator of small/large temperature differences in the flow. Numerical simulations with high precision are determined by well-known shooting approach. Both uniform stretching and rotation have significant impact on the solutions. The variation in velocity components with the nanoparticle volume fraction is non-monotonic. Local Nusselt number in Fe3O4-water ferrofluid is larger in comparison to the pure fluid even at low particle concentration.
An Anderson-like model of the QCD chiral transition
Giordano, Matteo; Kovács, Tamás G.; Pittler, Ferenc
2016-06-01
We study the problems of chiral symmetry breaking and eigenmode localisation in finite-temperature QCD by looking at the lattice Dirac operator as a random Hamiltonian. We recast the staggered Dirac operator into an unconventional three-dimensional Anderson Hamiltonian ("Dirac-Anderson Hamiltonian") carrying internal degrees of freedom, with disorder provided by the fluctuations of the gauge links. In this framework, we identify the features relevant to chiral symmetry restoration and localisation of the low-lying Dirac eigenmodes in the ordering of the local Polyakov lines, and in the related correlation between spatial links across time slices, thus tying the two phenomena to the deconfinement transition. We then build a toy model based on QCD and on the Dirac-Anderson approach, replacing the Polyakov lines with spin variables and simplifying the dynamics of the spatial gauge links, but preserving the above-mentioned relevant dynamical features. Our toy model successfully reproduces the main features of the QCD spectrum and of the Dirac eigenmodes concerning chiral symmetry breaking and localisation, both in the ordered (deconfined) and disordered (confined) phases. Moreover, it allows us to study separately the roles played in the two phenomena by the diagonal and the off-diagonal terms of the Dirac-Anderson Hamiltonian. Our results support our expectation that chiral symmetry restoration and localisation of the low modes are closely related, and that both are triggered by the deconfinement transition.
Non-linear blend coding in the moth antennal lobe emerges from random glomerular networks
Directory of Open Access Journals (Sweden)
Alberto eCapurro
2012-04-01
Full Text Available Neural responses to odor blends often interact at different stages of the olfactory pathway. The first olfactory processing center in insects, the antennal lobe (AL, exhibits a complex network connectivity. We attempt to determine if non-linear blend interactions can arise purely as a function of the AL network connectivity itself, without necessitating additional factors such as competitive ligand binding at the periphery or intrinsic cellular properties. To assess this, we compared blend interactions among responses from single neurons recorded intracellularly in the AL of the moth M. sexta with those generated using a population-based computational model constructed from the morphologically-based connectivity pattern of projection neurons (PNs and local interneurons (LNs with randomized connection probabilities, from which we excluded detailed intrinsic neuronal properties. The model accurately predicted most of the proportions of blend interaction types observed in the physiological data. Our simulations also indicate that input from LNs is important in establishing both the type of blend interaction and the nature of the neuronal response (excitation or inhibition exhibited by AL neurons. For LNs, the only input that significantly impacted the blend interaction type was received from other LNs, while for PNs the input from olfactory sensory neurons (OSNs and other PNs contributed agonistically with the LN input to shape the AL output. Our results demonstrate that non-linear blend interactions can be a natural consequence of AL connectivity, and highlight the importance of lateral inhibition as a key feature of blend coding to be addressed in future experimental and computational studies.
Measurements of non-linear noise re-distribution in an SOA
DEFF Research Database (Denmark)
Öhman, Filip; Tromborg, Bjarne; Mørk, Jesper;
2004-01-01
Measurements of the noise statistics after a semiconductor optical amplifier (SOA) demonstrate non-linear noise re-distribution with a strong power and bandwidth dependence.......Measurements of the noise statistics after a semiconductor optical amplifier (SOA) demonstrate non-linear noise re-distribution with a strong power and bandwidth dependence....
A Master Equation for Multi-Dimensional Non-Linear Field Theories
Park, Q H
1992-01-01
A master equation ( $n$ dimensional non--Abelian current conservation law with mutually commuting current components ) is introduced for multi-dimensional non-linear field theories. It is shown that the master equation provides a systematic way to understand 2-d integrable non-linear equations as well as 4-d self-dual equations and, more importantly, their generalizations to higher dimensions.
Comparison of different non-linear equations and corresponding unitarization schemes
Selyugin, O. V.; Cudell, Jean-René
2006-01-01
Different forms of non-linear equations which mimic parton saturation in the non-perturbative regime are examined. These equations lead to corresponding unitarization schemes in the impact parameter representation of the hadron scattering amplitude. It is shown how specific properties of the non-linear equations reflect different features of the diffraction processes.
Robust Non-Linear Control of a 400 kW Wind Turbine
DEFF Research Database (Denmark)
Tøffner-Clausen, S.; Andersen, Palle; Knudsen, Torben
1996-01-01
The purpose of this paper is to describe a robust non-linear control design for a variable pitch constant speed 400 kW horisontal axis wind turbine.......The purpose of this paper is to describe a robust non-linear control design for a variable pitch constant speed 400 kW horisontal axis wind turbine....
Benedict Andersons forestillede fællesskaber
DEFF Research Database (Denmark)
Ivarsson, Søren
2007-01-01
Artiklen diskuterer Benedict Andersons analyse af nationalismens opståen i en kolonial kontekst og den kritik som Partha Chatterjee har rejst mod denne. Udgivelsesdato: Januar 2008......Artiklen diskuterer Benedict Andersons analyse af nationalismens opståen i en kolonial kontekst og den kritik som Partha Chatterjee har rejst mod denne. Udgivelsesdato: Januar 2008...
Generalized non-linear strength theory and transformed stress space
Institute of Scientific and Technical Information of China (English)
无
2004-01-01
-clay model (Closure), ASCE, J. Engrg. Mech., 2001, 127(6): 631-633.［14］Matsuoka, H., Yao, Y. P., Sun, D. A., The Cam-clay models revised by the SMP criterion, Soils and Foundations, 1999, 39(1): 81-95.［15］Yao, Y. P., Luo, T., New transformed stress space and its application, Proc. of 7th Numerical Calculation and Analysis on Geomechanics (in Chinese), Dalian: Dalian University of Technology Press, 2001, 16-22.［16］Roscoe, K. H., Schofield, A. N., Thurairajah, A., Yielding of clay in states wetter than critical, Geotechnique, 1963, 13(3): 211-240.［17］Sheng, Z. J., Reasonable expression of elastoplastic stress-strain relationship of soils, Chinese Journal of Geotechnical Engineering (in Chinese), 1980, 2(2): 11-19.［18］Jiang, J. J., Non-linear Finite Element Analysis on Reinforced Concrete Structure (in Chinese), Xi'an: Shanxi Science and Technology Press, 1994, 24-34.［19］Chen, W. F., Constitutive Equations for Engineering Materials, Vol. 1 (translated by Yu, T. Q. et al.) (in Chinese), Wuhan: Huazhong University of Science and Technology Press, 2001, 199-218.［20］Lee, K. L., Seed, H. B., Drained strength characteristics of sands, Journal of the Soil Mechanics and Foundations Division, ASCE, 1967, 93(6): 117-141.［21］Yu, M. H., Zan, Y. W., Zhao, J., A unified strength criterion for rock material, Int. J. Rock Mech. Min. Sci., 2002, 39: 975-989.［22］Launay, P., Gachon, H., Strain and ultimate strength of concrete under triaxial stresses, Special Publication, SP-34, ACI, 1970, 1: 269-282.［23］Lade, P. V., Inel, S., Rotational kinematics hardening model for sand: Part Ⅰ concept of rotating yield and plastic potential surfaces, Computers and Geotechnics, 1997, 21(3): 183-216.［24］Guo, Z. H., Strength and Deformation of Concrete (in Chinese), Beijing: Tsinghua University Press, 1997, 156-156.［25］Willam, K. J., Warnke, E. P., Constitutive model for the triaxial behavior of concrete, International Association for Bridge and Structural
Rigatos, Gerasimos G
2016-06-01
It is proven that the model of the p53-mdm2 protein synthesis loop is a differentially flat one and using a diffeomorphism (change of state variables) that is proposed by differential flatness theory it is shown that the protein synthesis model can be transformed into the canonical (Brunovsky) form. This enables the design of a feedback control law that maintains the concentration of the p53 protein at the desirable levels. To estimate the non-measurable elements of the state vector describing the p53-mdm2 system dynamics, the derivative-free non-linear Kalman filter is used. Moreover, to compensate for modelling uncertainties and external disturbances that affect the p53-mdm2 system, the derivative-free non-linear Kalman filter is re-designed as a disturbance observer. The derivative-free non-linear Kalman filter consists of the Kalman filter recursion applied on the linearised equivalent of the protein synthesis model together with an inverse transformation based on differential flatness theory that enables to retrieve estimates for the state variables of the initial non-linear model. The proposed non-linear feedback control and perturbations compensation method for the p53-mdm2 system can result in more efficient chemotherapy schemes where the infusion of medication will be better administered.
Rigatos, Gerasimos G
2016-06-01
It is proven that the model of the p53-mdm2 protein synthesis loop is a differentially flat one and using a diffeomorphism (change of state variables) that is proposed by differential flatness theory it is shown that the protein synthesis model can be transformed into the canonical (Brunovsky) form. This enables the design of a feedback control law that maintains the concentration of the p53 protein at the desirable levels. To estimate the non-measurable elements of the state vector describing the p53-mdm2 system dynamics, the derivative-free non-linear Kalman filter is used. Moreover, to compensate for modelling uncertainties and external disturbances that affect the p53-mdm2 system, the derivative-free non-linear Kalman filter is re-designed as a disturbance observer. The derivative-free non-linear Kalman filter consists of the Kalman filter recursion applied on the linearised equivalent of the protein synthesis model together with an inverse transformation based on differential flatness theory that enables to retrieve estimates for the state variables of the initial non-linear model. The proposed non-linear feedback control and perturbations compensation method for the p53-mdm2 system can result in more efficient chemotherapy schemes where the infusion of medication will be better administered. PMID:27187988
Non-linear ultimate strength and stability limit state analysis of a wind turbine blade
DEFF Research Database (Denmark)
Rosemeier, Malo; Berring, Peter; Branner, Kim
2016-01-01
According to the design codes for wind turbine blades, it is sufficient to evaluate the blade's limit states using solely a linear analysis. This study, however, shows the need of non-linear analyses in blade design. Therefore, a geometrically non-linear structural response of a 34 m blade under...... flap-wise loading has been compared with a linear response to determine the blade's resistance in the ultimate strength and stability limit states. The linear analysis revealed an unrealistic failure mechanism and failure mode. Further, it did not capture the highly non-linear response of the blade...... of an imperfection. The more realistic non-linear approaches yielded more optimistic results than the mandatory linear bifurcation analysis. Consequently, the investigated blade designed after the lesser requirements was sufficient. Using the non-linear approaches, considering inter-fibre failure as the critical...
Water environmental planning considering the influence of non-linear characteristics
Institute of Scientific and Technical Information of China (English)
ZENG Guang-ming; QIN Xiao-sheng; WANG Wei; HUANG Guo-he; LI Jian-bing; B. Statzner
2003-01-01
In practical water environmental planning, the influence of the non-linear characteristics on the benefit of environmental investment was seldom taken into consideration. This paper demonstrates that there exist a lot of non-linear behaviors in water environment by emphatically analyzing the influence of the non-linear characteristics of the economic scale, the meandering river and the model on water environmental planning, which will make a certain impact on the water environmental planning that sometimes cannot be neglected. This paper also preliminarily explores how to integrate the non-linear characteristics into water environmental planning. The results showed that compared with traditional methods, water environmental planning considering non-linear characteristics has its prevalence and it is necessary to develop the relevant planning theories and methods.
A COMPUTER PROGRAMME FOR THE NON-LINEAR ANALYSIS OF COMPLETE STRUCTURES
Directory of Open Access Journals (Sweden)
Turgay ÇOŞGUN
2003-02-01
Full Text Available The progress made on the analysis of the structures by using non-linear theory and the significant findings on both theorical and empirical works, enable better understanding of the behaviours of structures under external loads. Determination of the failure load and designing the structures accordingly requires developments of analysis methods, which take both the non-linear behaviour of structural elements and the non-linear effects of geometric changes into consideration. Therefore, in this study, a FORTRAN code, which analyses structures and calculates the failure loads by considering the non-linear behaviour of materials under increasing loads (due to the non-linear relationship of stress-strain and moment-curvature and second-order theory of structural systems is developed.
Critical parameters from generalised multifractal analysis at the Anderson transition
Rodriguez, Alberto; Vasquez, Louella J.; Slevin, Keith; Römer, Rudolf A.
2010-01-01
We propose a generalization of multifractal analysis that is applicable to the critical regime of the Anderson localization-delocalization transition. The approach reveals that the behavior of the probability distribution of wavefunction amplitudes is sufficient to characterize the transition. In combination with finite-size scaling, this formalism permits the critical parameters to be estimated without the need for conductance or other transport measurements. Applying this method to high-pre...
Directory of Open Access Journals (Sweden)
2007-01-01
Full Text Available Hysteresis is a rate-independent non-linearity that is expressed through thresholds, switches, and branches. Exceedance of a threshold, or the occurrence of a turning point in the input, switches the output onto a particular output branch. Rate-independent branching on a very large set of switches with non-local memory is the central concept in the new definition of hysteresis. Hysteretic loops are a special case. A self-consistent mathematical description of hydrological systems with hysteresis demands a new non-linear systems theory of adequate generality. The goal of this paper is to establish this and to show how this may be done. Two results are presented: a conceptual model for the hysteretic soil-moisture characteristic at the pedon scale and a hysteretic linear reservoir at the catchment scale. Both are based on the Preisach model. A result of particular significance is the demonstration that the independent domain model of the soil moisture characteristic due to Childs, Poulavassilis, Mualem and others, is equivalent to the Preisach hysteresis model of non-linear systems theory, a result reminiscent of the reduction of the theory of the unit hydrograph to linear systems theory in the 1950s. A significant reduction in the number of model parameters is also achieved. The new theory implies a change in modelling paradigm.
GROWTH ANALYSIS IN RABBIT USING GOMPERTZ NON-LINEAR MODEL
Directory of Open Access Journals (Sweden)
A. Setiaji
2014-10-01
Full Text Available An experiment was conducted to compare the growth curve of rabbit. Three breeds of rabbit,namely Indonesian Local Rabbit (IL, Flamish Giant (FG and Rex (R were used in the study.Individual body weights of each breed was measured from birth to 63 days of age with 3-days interval.Those periodical data were separated into different sex, be then it was averaged to analysis growthpattern. Growth curve parameters were estimated to fit growth data. There was no difference in bodyweight between sexs within breed. Indonesian local rabbit had the lowest body weight. The resultsshowed that growth curve paramaters among three breeds were significantly different (P<0.05 for bothsexes. FG had the highest value of asymptotic mature weight, followed by R and IL. In conclusion,Gompertz model was excellent fit for the growth data in rabbit with a high coefficient determination (R2= 0.999.
Non-linear electrodynamics and the variation of the fine structure constant
Mbelek, Jean Paul; Mosquera Cuesta, Herman J.
2008-09-01
It has been claimed that during the late-time history of our Universe, the fine structure constant of electromagnetism, α, has been increasing. The conclusion is achieved after looking at the separation between lines of ions like CIV, MgII, SiII, FeII, among others in the absorption spectra of very distant quasars, and comparing them with their counterparts obtained in the laboratory. However, in the meantime, other teams have claimed either a null result or a decreasing α with respect to the cosmic time. Also, the current precision of laboratory tests does not allow one to either comfort or reject any of these astronomical observations. Here, we suggest that as photons are the sidereal messengers, a non-linear electrodynamics (NLED) description of the interaction of photons with the weak local background magnetic fields of a gas cloud absorber around the emitting quasar can reconcile the Chand et al. and Levshakov et al. findings with the negative variation found by Murphy et al. and Webb et al., and also to find a bridge with the positive variation argued more recently by Levshakov et al. We also show that NLED photon propagation in a vacuum permeated by a background magnetic field presents a full agreement with constraints from Oklo natural reactor data. Finally, we show that NLED may render a null result only in a narrow range of the local background magnetic field which should be the case of both the claims by Chand et al. and by Srianand et al.
Taming the non-linearity problem in GPR full-waveform inversion for high contrast media
Meles, Giovanni; Greenhalgh, Stewart; van der Kruk, Jan; Green, Alan; Maurer, Hansruedi
2012-03-01
We present a new algorithm for the inversion of full-waveform ground-penetrating radar (GPR) data. It is designed to tame the non-linearity issue that afflicts inverse scattering problems, especially in high contrast media. We first investigate the limitations of current full-waveform time-domain inversion schemes for GPR data and then introduce a much-improved approach based on a combined frequency-time-domain analysis. We show by means of several synthetic tests and theoretical considerations that local minima trapping (common in full bandwidth time-domain inversion) can be avoided by starting the inversion with only the low frequency content of the data. Resolution associated with the high frequencies can then be achieved by progressively expanding to wider bandwidths as the iterations proceed. Although based on a frequency analysis of the data, the new method is entirely implemented by means of a time-domain forward solver, thus combining the benefits of both frequency-domain (low frequency inversion conveys stability and avoids convergence to a local minimum; whereas high frequency inversion conveys resolution) and time-domain methods (simplicity of interpretation and recognition of events; ready availability of FDTD simulation tools).
Application of non-linear discretetime feedback regulators with assignable closed-loop dynamics
Directory of Open Access Journals (Sweden)
Dubljević Stevan
2003-01-01
Full Text Available In the present work the application of a new approach is demonstrated to a discrete-time state feedback regulator synthesis with feedback linearization and pole-placement for non-linear discrete-time systems. Under the simultaneous implementation of a non-linear coordinate transformation and a non-linear state feedback law computed through the solution of a system of non-linear functional equations, both the feedback linearization and pole-placement design objectives were accomplished. The non-linear state feedback regulator synthesis method was applied to a continuous stirred tank reactor (CSTR under non-isothermal operating conditions that exhibits steady-state multiplicity. The control objective was to regulate the reactor at the middle unstable steady state by manipulating the rate of input heat in the reactor. Simulation studies were performed to evaluate the performance of the proposed non-linear state feedback regulator, as it was shown a non-linear state feedback regulator clearly outperformed a standard linear one, especially in the presence of adverse disturbance under which linear regulation at the unstable steady state was not feasible.
International Nuclear Information System (INIS)
Unexpected non-linear boiling water reactor (BWR) instability events in various plants, e.g. LaSalle II in 1988 and Oskarshamn II in 1990 amongst others, emphasize the major safety relevance and the existence of parameter regions with unstable behavior. A detailed description of the complete dynamical non-linear behavior is of paramount importance for BWR operation. An extension of state-of-the-art methodology towards a more general stability description, also applicable in the non-linear region, could lead to a deeper understanding of non-linear BWR stability phenomena. With the intention of a full non-linear stability analysis of the two-phase BWR system, the present paper aims at a general non-linear methodology capable to achieve reliable and numerical stable reduced order models (ROMs), representing the dynamical behavior of an original system based on a small number of transients. Model-specific options and aspects of the proposed methodology are focused on and illustrated by means of a strongly non-linear dynamical system showing complex oscillating behavior. Prediction capability of the proposed methodology is also addressed. (orig.)
Mott transitions in the periodic Anderson model
Logan, David E.; Galpin, Martin R.; Mannouch, Jonathan
2016-11-01
The periodic Anderson model (PAM) is studied within the framework of dynamical mean-field theory, with particular emphasis on the interaction-driven Mott transition it contains, and on resultant Mott insulators of both Mott-Hubbard and charge-transfer type. The form of the PAM phase diagram is first deduced on general grounds using two exact results, over the full range of model parameters and including metallic, Mott, Kondo and band insulator phases. The effective low-energy model which describes the PAM in the vicinity of a Mott transition is then shown to be a one-band Hubbard model, with effective hoppings that are not in general solely nearest neighbour, but decay exponentially with distance. This mapping is shown to have a range of implications for the physics of the problem, from phase boundaries to single-particle dynamics; all of which are confirmed and supplemented by NRG calculations. Finally we consider the locally degenerate, non-Fermi liquid Mott insulator, to describe which requires a two-self-energy description. This is shown to yield a number of exact results for the associated local moment, charge, and interaction-renormalised levels, together with a generalisation of Luttinger’s theorem to the Mott insulator.
Non-linear Galactic Dynamos and The Magnetic Pitch Angle
Chamandy, Luke
2015-01-01
Pitch angles $p$ of the large-scale magnetic fields $\\overline{\\bf{\\it{B}}}$ of spiral galaxies have previously been inferred from observations to be systematically larger in magnitude than predicted by standard mean-field dynamo theory. This discrepancy is more pronounced if dynamo growth has saturated, which is reasonable to assume given that such fields are generally inferred to be close to energy equipartition with the interstellar turbulence. This 'pitch angle problem' is explored using local numerical mean-field dynamo solutions as well as asymptotic analytical solutions. It is first shown that solutions in the saturated or kinematic regimes depend on only 5 dynamo parameters, two of which are tightly constrained by observations of galaxy rotation curves. The remaining 3-dimensional (dimensionless) parameter space can be constrained to some extent using theoretical arguments. Predicted values of $|p|$ can be as large as $\\sim40^\\circ$, which is similar to the largest values inferred from observations, b...
Price-Anderson Law - reports on Price-Anderson issues
International Nuclear Information System (INIS)
Five of the six papers in this study are by experts outside the nuclear industry, and deal with fear, risk, and risk management as they apply to the review of the Price-Anderson Act. The purpose of the Act is to encourage private enterprise to develop a reliable source of electric power and to protect the public from the financial consequences of injury or damage that may occur during the process. The titles of the five papers are: (1) the effects of ionizing radiation on human health, (2) proof of causation through expert opinion evidence in low-level radiation cases, (3) a critical review of the probability of causation method, (4) the nuclear liability claims experience of the nuclear insurance pools, (5) review of nuclear liability compensation systems applicable to reactors outside the United States, and (6) the economic foundations of limited liability for nuclear reactor accidents. A separate abstract was prepared for each of the papers for EDB, EPA, and INS
Non-linear dynamics and contacts of an unbalanced flexible rotor supported on ball bearings
Sinou, Jean-Jacques
2009-01-01
This study deals with the non-linear dynamic response of a flexible rotor supported by ball bearings. The excitation is due to unbalance force. The finite element rotor system is composed of a shaft with one disk, two flexible bearing supports and a ball bearing element where the non-linearities are due to both the radial clearance and the Herztian contact between races and rolling elements. A numerical analysis is performed to analyze the non-linear behavior of this bearing rotor by using th...
Non-linear excitation of quantum emitters in two-dimensional hexagonal boron nitride
Schell, Andreas W; Takashima, Hideaki; Takeuchi, Shigeki; Aharonovich, Igor
2016-01-01
Two-photon absorption is an important non-linear process employed for high resolution bio-imaging and non-linear optics. In this work we realize two-photon excitation of a quantum emitter embedded in a two-dimensional material. We examine defects in hexagonal boron nitride and show that the emitters exhibit similar spectral and quantum properties under one-photon and two-photon excitation. Furthermore, our findings are important to deploy two-dimensional hexagonal boron nitride for quantum non-linear photonic applications.
On the nucleon-nucleon potential obtained from non-linear coupling
International Nuclear Information System (INIS)
The static limit of a pseudoscalar symmetric meson theory of nuclear forces is examined. The Born-Oppenheimer potential is determined for the case of two very heavy nucleons exchanging pseudoscalar isovector pions with non-linear coupling. It is found that the non-linear terms induced by the γ5 coupling are cancelled by the additional pion-nucleon coupling of the non-linear sigma model. The nucleon-nucleon potential thus obtained is the same as the Yukava potential except for strength at different separations between the two nucleons
Characterization Of any Non-linear Boolean function Using A Set of Linear Operators
Sahoo, Sudhakar; Choudhury, Pabitra Pal; Chakraborty, Mithun
2008-01-01
Global dynamics of a non-linear Cellular Automata is, in general irregular, asymmetric and unpredictable as opposed to that of a linear CA, which is highly systematic and tractable. In the past efforts have been made to systematize non-linear CA evolutions in the light of Boolean derivatives and Jacobian Matrices. In this paper two different efforts have been made: first we try to systematize non-linear CA evolution in the light of deviant states and non-deviant states. For all the non-devian...
H∞ Synthesis Method for Control of Non-linear Flexible Joint Models
Axelsson, Patrik; Pipeleers, Goele; Helmersson, Anders; Norrlöf, Mikael
2014-01-01
An H∞ synthesis method for control of a flexible joint, with non-linear spring characteristic, is proposed. The first step of the synthesis method is to extend the joint model with an uncertainty description of the stiffness parameter. In the second step, a non-linear optimisation problem, based on nominal performance and robust stability requirements, has to be solved. Using the Lyapunov shaping paradigm and a change of variables, the non-linear optimisation problem can be rewritten as a con...
Non-linear behaviour of free-edge shallow spherical shells: Effect of the geometry
Touzé, Cyril; Thomas, Olivier
2006-01-01
International audience Non-linear vibrations of free-edge shallow spherical shells are investigated, in order to predict the trend of non-linearity (hardening/softening behaviour) for each mode of the shell, as a function of its geometry. The analog for thin shallow shells of von Kármán's theory for large deflection of plates is used. The main difficulty in predicting the trend of non-linearity relies in the truncation used for the analysis of the partial differential equations (PDEs) of m...
SOME PROBLEMS CONCERNING FREE NON-LINEAR VIBRATIONS OF BEAM STRUCTURES
Directory of Open Access Journals (Sweden)
S. V. Bosakov
2008-01-01
Full Text Available The paper analyzes an influence of physical non-linearity material account on vibrations of single beams with various support fixing. The authors also analyze power criteria for existing stable periodic vibrations and dependence of vibration period on initial power is determined in the paper. Accurate values of an amplitude and non-linear bending vibration period of beams have been also determined as a conservative system with due account of initial conditions. A number of examples are given that clearly illustrate the obtained solutions and show an influence rate of the mentioned effects on amplitude-frequency characteristics of non-linear systems.
Non-Linear Rheological Properties and Neutron Scattering Investigation on Dilute Ring-Linear Blends
DEFF Research Database (Denmark)
Pyckhout-Hintzen, W.; Bras, A.R.; Wischnewski, A.;
Linear and non-linear Rheology on dilute blends of polystyrene ring polymers in linear matrix is combined with Small Angle Neutron Scattering (SANS) investigations. In this way 2 different entanglement interactions become clear. After stretching the samples to different hencky strains up to 2...... with interpenetrating linear chains. At the same time the non-linear rheological and mechanical data fit to a non-affine slip-tube model as for moderately crosslinked networks and to interchain pressure models or a modified non-linear Doi-Edwards description for the observed strain hardening during the extensional...
Modeling and Non-Linear Self-Tuning Robust Trajectory Control of an Autonomous Underwater Vehicle
Directory of Open Access Journals (Sweden)
Thor Inge Fossen
1988-10-01
Full Text Available A non-linear self-tuning algorithm is demonstrated for an autonomous underwater vehicle. Tighter control is achieved by a non-linear parameter identification algorithm which reduces the parameter uncertainty bounds. Expensive hydrodynamic tests for parameter determination can thus be avoided. Excellent tracking performance and robustness to parameter uncertainty are guaranteed through a robust control strategy based on the estimated parameters. The nonlinear control law is highly robust for imprecise models and the neglected dynamics. The non-linear self-tuning control strategy is simulated for the horizontal positioning of an underwater vehicle.
Approximate Stream Function wavemaker theory for highly non-linear waves in wave flumes
DEFF Research Database (Denmark)
Zhang, H.W.; Schäffer, Hemming Andreas
2007-01-01
An approximate Stream Function wavemaker theory for highly non-linear regular waves in flumes is presented. This theory is based on an ad hoe unified wave-generation method that combines linear fully dispersive wavemaker theory and wave generation for non-linear shallow water waves. This is done...... by applying a dispersion correction to the paddle position obtained for non-linear long waves. The method is validated by a number of wave flume experiments while comparing with results of linear wavemaker theory, second-order wavemaker theory and Cnoidal wavemaker theory within its range of application....
Solving non-linear Horn clauses using a linear Horn clause solver
DEFF Research Database (Denmark)
Kafle, Bishoksan; Gallagher, John Patrick; Ganty, Pierre
2016-01-01
In this paper we show that checking satisfiability of a set of non-linear Horn clauses (also called a non-linear Horn clause program) can be achieved using a solver for linear Horn clauses. We achieve this by interleaving a program transformation with a satisfiability checker for linear Horn...... clauses (also called a solver for linear Horn clauses). The program transformation is based on the notion of tree dimension, which we apply to a set of non-linear clauses, yielding a set whose derivation trees have bounded dimension. Such a set of clauses can be linearised. The main algorithm...
Numerical Simulation of Seabed Response and Liquefaction due to Non-linear Waves
Institute of Scientific and Technical Information of China (English)
ZHANG Jin-feng; ZHANG Qing-he; HAN Tao; QIN Chong-ren
2005-01-01
Based on Biot's consolidation theory, a two-dimensional model for computation of the seabed response to waves is presented with the finite element method. Numerical results for different wave conditions are obtained, and the effects of wave non-linearity on the wave-induced seabed response are examined. Moreover, the wave-induced momentary liquefaction in uniform and inhomogeneous seabeds is investigated. It is shown that the wave non-linearity affects the distribution of the wave-induced pore pressure and effective stresses, while the influence of wave non-linearity on the seabed liquefaction potential is not so significant.
Forecasting South African Inflation Using Non-Linear Models: A Weighted Loss-Based Evaluation
Pejman Bahramian; Mehmet Balcilar; Rangan Gupta; Kanda, Patrick T.
2014-01-01
The conduct of inflation targeting is heavily dependent on accurate inflation forecasts. Non-linear models have increasingly featured, along with linear counterparts, in the forecasting literature. In this study, we focus on forecasting South African infl ation by means of non-linear models and using a long historical dataset of seasonally-adjusted monthly inflation rates spanning from 1921:02 to 2013:01. For an emerging market economy such as South Africa, non-linearities can be a salient fe...
Forecasting South African Ination Using Non-linear Models: A Weighted Loss-based Evaluation
Pejman Bahramian; Mehmet Balcilar; Rangan Gupta; Kanda, Patrick T.
2014-01-01
The conduct of in ation targeting is heavily dependent on accurate in ation forecasts. Non-linear models have increasingly featured, along with linear counterparts, in the forecasting literature. In this study, we focus on forecasting South African in ation by means of non-linear models and using a long historical dataset of seasonally-adjusted monthly in ation rates spanning from 1921:02 to 2013:01. For an emerging market economy such as South Africa, non-linearities can be a salient feature...
Topological approximation of the nonlinear Anderson model
Milovanov, Alexander V.; Iomin, Alexander
2014-06-01
We study the phenomena of Anderson localization in the presence of nonlinear interaction on a lattice. A class of nonlinear Schrödinger models with arbitrary power nonlinearity is analyzed. We conceive the various regimes of behavior, depending on the topology of resonance overlap in phase space, ranging from a fully developed chaos involving Lévy flights to pseudochaotic dynamics at the onset of delocalization. It is demonstrated that the quadratic nonlinearity plays a dynamically very distinguished role in that it is the only type of power nonlinearity permitting an abrupt localization-delocalization transition with unlimited spreading already at the delocalization border. We describe this localization-delocalization transition as a percolation transition on the infinite Cayley tree (Bethe lattice). It is found in the vicinity of the criticality that the spreading of the wave field is subdiffusive in the limit t →+∞. The second moment of the associated probability distribution grows with time as a power law ∝ tα, with the exponent α =1/3 exactly. Also we find for superquadratic nonlinearity that the analog pseudochaotic regime at the edge of chaos is self-controlling in that it has feedback on the topology of the structure on which the transport processes concentrate. Then the system automatically (without tuning of parameters) develops its percolation point. We classify this type of behavior in terms of self-organized criticality dynamics in Hilbert space. For subquadratic nonlinearities, the behavior is shown to be sensitive to the details of definition of the nonlinear term. A transport model is proposed based on modified nonlinearity, using the idea of "stripes" propagating the wave process to large distances. Theoretical investigations, presented here, are the basis for consistency analysis of the different localization-delocalization patterns in systems with many coupled degrees of freedom in association with the asymptotic properties of the
Institute of Scientific and Technical Information of China (English)
张洪生; 洪广文; 丁平兴; 曹振轶
2001-01-01
In this paper, the characteristics of different forms of mild slope equations for non-linear wave are analyzed, and new non-linear theoretic models for wave propagation are presented, with non-linear terms added to the mild slope equations for non-stationary linear waves and dissipative effects considered. Numerical simulation models are developed of non-linear wave propagation for waters of mildly varying topography with complicated boundary, and the effects are studied of different non-linear corrections on calculation results of extended mild slope equations. Systematical numerical simulation tests show that the present models can effectively reflect non-linear effects.
Systematic treatment of non-linear effects in Baryon Acoustic Oscillations
Ivanov, Mikhail M
2016-01-01
In this contribution we will discuss the non-linear effects in the baryon acoustic oscillations and present a systematic and controllable way to account for them within time-sliced perturbation theory.
Finite-time H∞ filtering for non-linear stochastic systems
Hou, Mingzhe; Deng, Zongquan; Duan, Guangren
2016-09-01
This paper describes the robust H∞ filtering analysis and the synthesis of general non-linear stochastic systems with finite settling time. We assume that the system dynamic is modelled by Itô-type stochastic differential equations of which the state and the measurement are corrupted by state-dependent noises and exogenous disturbances. A sufficient condition for non-linear stochastic systems to have the finite-time H∞ performance with gain less than or equal to a prescribed positive number is established in terms of a certain Hamilton-Jacobi inequality. Based on this result, the existence of a finite-time H∞ filter is given for the general non-linear stochastic system by a second-order non-linear partial differential inequality, and the filter can be obtained by solving this inequality. The effectiveness of the obtained result is illustrated by a numerical example.
Estimations of non-linearities in structural vibrations of string musical instruments
Ege, Kerem; Boutillon, Xavier
2012-01-01
Under the excitation of strings, the wooden structure of string instruments is generally assumed to undergo linear vibrations. As an alternative to the direct measurement of the distortion rate at several vibration levels and frequencies, we characterise weak non-linearities by a signal-model approach based on cascade of Hammerstein models. In this approach, in a chain of two non-linear systems, two measurements are sufficient to estimate the non-linear contribution of the second (sub-)system which cannot be directly linearly driven, as a function of the exciting frequency. The experiment consists in exciting the instrument acoustically. The linear and non-linear contributions to the response of (a) the loudspeaker coupled to the room, (b) the instrument can be separated. Some methodological issues will be discussed. Findings pertaining to several instruments - one piano, two guitars, one violin - will be presented.
Technique of Seismic Restriction and Time-Lapse Logging Non-linear Inversion
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
In order to create 3D distribution model of reservoir operating parameters for prediction residual oil distribution, implement reservoir behavior monitoring and optimize reservoir management, non-linear inversion,
Mathematical Methods in Wave Propagation: Part 2--Non-Linear Wave Front Analysis
Jeffrey, Alan
1971-01-01
The paper presents applications and methods of analysis for non-linear hyperbolic partial differential equations. The paper is concluded by an account of wave front analysis as applied to the piston problem of gas dynamics. (JG)
Non-Linearity in Wide Dynamic Range CMOS Image Sensors Utilizing a Partial Charge Transfer Technique
Directory of Open Access Journals (Sweden)
Izhal Abdul Halin
2009-11-01
Full Text Available The partial charge transfer technique can expand the dynamic range of a CMOS image sensor by synthesizing two types of signal, namely the long and short accumulation time signals. However the short accumulation time signal obtained from partial transfer operation suffers of non-linearity with respect to the incident light. In this paper, an analysis of the non-linearity in partial charge transfer technique has been carried, and the relationship between dynamic range and the non-linearity is studied. The results show that the non-linearity is caused by two factors, namely the current diffusion, which has an exponential relation with the potential barrier, and the initial condition of photodiodes in which it shows that the error in the high illumination region increases as the ratio of the long to the short accumulation time raises. Moreover, the increment of the saturation level of photodiodes also increases the error in the high illumination region.
Institute of Scientific and Technical Information of China (English)
陈化; 罗壮初
2002-01-01
In this paper the authors study a class of non-linear singular partial differential equation in complex domain Ct × Cnx. Under certain assumptions, they prove the existence and uniqueness of holomorphic solution near origin of Ct × Cnx.
Understanding and Ameliorating Non-Linear Phase and Amplitude Responses in AMCW Lidar
Directory of Open Access Journals (Sweden)
John P. Godbaz
2011-12-01
Full Text Available Amplitude modulated continuous wave (AMCW lidar systems commonly suffer from non-linear phase and amplitude responses due to a number of known factors such as aliasing and multipath inteference. In order to produce useful range and intensity information it is necessary to remove these perturbations from the measurements. We review the known causes of non-linearity, namely aliasing, temporal variation in correlation waveform shape and mixed pixels/multipath inteference. We also introduce other sources of non-linearity, including crosstalk, modulation waveform envelope decay and non-circularly symmetric noise statistics, that have been ignored in the literature. An experimental study is conducted to evaluate techniques for mitigation of non-linearity, and it is found that harmonic cancellation provides a significant improvement in phase and amplitude linearity.
The Expansion of Dynamic Solving Process About a Class of Non-linear Programming Problems
Institute of Scientific and Technical Information of China (English)
ZANG Zhen-chun
2001-01-01
In this paper, we research non-linear programming problems which have a given specialstructure, some simple forms of this kind structure have been solved in some papers, here we focus on othercomplex ones.
Multiscale plant wakes, turbulence and non linear scaling flexible effects
Vila, Teresa; Redondo, Jose M.; Velasco, David
2010-05-01
We present velocity ADV measurements and flow visualization of the turbulent wakes behind plant arrays, as these are often fractal in nature, we compare the multifractal spectra and the turbulence structure behind the wakes. Both statistical measures allowing to calculate integral lengthscales and their profiles modified by the plant cannopies [1,2] as well as intermittency and spectral behaviour are also measured [3,4]. We distinguish several momentum transfer mechanisms between the cannopy and the flow, an internal one where lateral turbulent tensions are dominant, and another one just above the plant average height dominated by vertical Reynolds stresses. Visualization of flow over individual plant models show the role of coherent vortices triggered by plant elasticity. The deformation rate of the plants and their Youngs modulus may be correlated with overal plant drag and geometry. This is modified strongly in fractal canopies. Large turbulent integral scales are linked to rugosity and the scaling of the waves.[5,6] Pearlescence experiments where local shear is visualized and numerical simulations of Fractal grids are compared following [7]. [1] Nepf,H.M. Drag, turbulence and diffusion in flow through emergent vegetation. Water Resources Res. 35(2)(1999) [2] Ben Mahjoub,O., Redondo J.M. and Babiano A. Jour.Structure functions in complex flows. Flow Turbulence and Combustion 59, 299-313. [3] El-Hakim, O. Salama, M. Velocity distribution inside and above branched flexible roughness. ASCE Journal of Irrigation and Drainage Engineering, Vol. 118, No 6, (November/December 1992) 914-927. [4] Finnigan,J. Turbulence in plant canopies. Annu. Rev. Fluid Mech. 2000 , Vol. 32: 519-571. [5] Ikeda, S., Kanazawa, M. Three- dimensional organized vortices above flexible water plants. ASCE Journal of Hydraulic Engineering, Vol. 122, No 11, (1996) 634-640. [6] Velasco, D.,Bateman A.,Redondo J.M and Medina V. An open channel flow experimental and theorical study of resistance and
Student trainee report of Walter L. Anderson
US Fish and Wildlife Service, Department of the Interior — The following report is intended to summarize the activities of Walter L. Anderson, Student Trainee (Wildlife Biology) at Malheur National Wildlife Refuge during...
A two level non linear inverse control structure for rotorcraft trajectory tracking
Mora-Camino, Félix
2007-01-01
The purpose of this communication is to investigate the usefulness of the non linear inverse control approach to solve the trajectory tracking problem for a four rotor aircraft. After introducing simplifying assumptions, the flight dynamics equations for the four rotor aircraft are considered. A trajectory tracking control structure based on a two layer non linear inverse approach is then proposed. A supervision level is introduced to take into account the actuator limitations.
An Extension of the Blinder-Oaxaca Decomposition to Non-Linear Models
Bauer, Thomas K.; Sinning, Mathias
2006-01-01
In this paper, a general Blinder-Oaxaca decomposition is derived that can also be applied to non-linear models, which allows the differences in a non-linear outcome variable between two groups to be decomposed into a part that is explained by differences in observed characteristics and a part attributable to differences in the estimated coeffcients. Departing from this general model, we show how it can be applied to different models with discrete and limited dependent variables.
On the geometry of classically integrable two-dimensional non-linear sigma models
Mohammedi, N.
2008-01-01
A master equation expressing the classical integrability of two-dimensional non-linear sigma models is found. The geometrical properties of this equation are outlined. In particular, a closer connection between integrability and T-duality transformations is emphasised. Finally, a whole new class of integrable non-linear sigma models is found and all their corresponding Lax pairs depend on a spectral parameter.
Measurements and simulations of non-linear noise re-distribution in an SOA
DEFF Research Database (Denmark)
Öhman, Filip; Tromborg, Bjarne; Mørk, Jesper;
2004-01-01
Measurements and statistical simulations demonstrate that a semiconductor optical amplifier (SOA) induces non-linear noise re-distribution with a strong power and bandwidth dependence. © 2004 Optical Society of America......Measurements and statistical simulations demonstrate that a semiconductor optical amplifier (SOA) induces non-linear noise re-distribution with a strong power and bandwidth dependence. © 2004 Optical Society of America...
MCMC for non-linear state space models using ensembles of latent sequences
Shestopaloff, Alexander Y.; Neal, Radford M.
2013-01-01
Non-linear state space models are a widely-used class of models for biological, economic, and physical processes. Fitting these models to observed data is a difficult inference problem that has no straightforward solution. We take a Bayesian approach to the inference of unknown parameters of a non-linear state model; this, in turn, requires the availability of efficient Markov Chain Monte Carlo (MCMC) sampling methods for the latent (hidden) variables and model parameters. Using the ensemble ...
How does non-linear dynamics affect the baryon acoustic oscillation?
Sugiyama, Naonori S.; Spergel, David N
2013-01-01
We study the non-linear behavior of the baryon acoustic oscillation in the power spectrum and the correlation function by decomposing the dark matter perturbations into the short- and long-wavelength modes. The evolution of the dark matter fluctuations can be described as a global coordinate transformation caused by the long-wavelength displacement vector acting on short-wavelength matter perturbation undergoing non-linear growth. Using this feature, we investigate the well known cancellation...
SOME PROBLEMS CONCERNING FREE NON-LINEAR VIBRATIONS OF BEAM STRUCTURES
S. V. Bosakov; N. S. Schetko
2015-01-01
The paper analyzes an influence of physical non-linearity material account on vibrations of single beams with various support fixing. The authors also analyze power criteria for existing stable periodic vibrations and dependence of vibration period on initial power is determined in the paper. Accurate values of an amplitude and non-linear bending vibration period of beams have been also determined as a conservative system with due account of initial conditions. A number of examples are given ...
Forced oscillators with non-linear spring: A simple analytical approach
International Nuclear Information System (INIS)
An analytical method of finding the amplitude frequency and phase frequency characteristics of a forced oscillator with non-linear restoring force is proposed. The non-linear restoring force is simply fitted by a linear one with varying stiffness. The analytical expression of amplitude frequency characteristics predicts the jump or bifurcation points; and keeps highly consistent with the numerical results. This method can be used to both smooth and piecewise linear restoring force.
Forced oscillators with non-linear spring: A simple analytical approach
Energy Technology Data Exchange (ETDEWEB)
Wang, S. [Centre for Applied Dynamics Research, School of Engineering, King' s College, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom); Science School, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China)], E-mail: wsmbj@yahoo.com.cn; Wiercigroch, M. [Centre for Applied Dynamics Research, School of Engineering, King' s College, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom)
2009-08-30
An analytical method of finding the amplitude frequency and phase frequency characteristics of a forced oscillator with non-linear restoring force is proposed. The non-linear restoring force is simply fitted by a linear one with varying stiffness. The analytical expression of amplitude frequency characteristics predicts the jump or bifurcation points; and keeps highly consistent with the numerical results. This method can be used to both smooth and piecewise linear restoring force.
On the geometry of classically integrable two-dimensional non-linear sigma models
Energy Technology Data Exchange (ETDEWEB)
Mohammedi, N., E-mail: nouri@lmpt.univ-tours.f [Laboratoire de Mathematiques et Physique Theorique (CNRS - UMR 6083), Universite Francois Rabelais de Tours, Faculte des Sciences et Techniques, Parc de Grandmont, F-37200 Tours (France)
2010-11-11
A master equation expressing the zero curvature representation of the equations of motion of a two-dimensional non-linear sigma models is found. The geometrical properties of this equation are outlined. Special attention is paid to those representations possessing a spectral parameter. Furthermore, a closer connection between integrability and T-duality transformations is emphasised. Finally, new integrable non-linear sigma models are found and all their corresponding Lax pairs depend on a spectral parameter.
Evaluation of non-linear blending in dual-energy computed tomography
Energy Technology Data Exchange (ETDEWEB)
Holmes, David R. [Biomedical Imaging Resource, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905 (United States)], E-mail: holmes.david3@mayo.edu; Fletcher, Joel G. [Department of Radiology, Mayo Clinic College of Medicine (United States); Apel, Anja [Siemens Medical Solutions USA, Inc. (United States); Huprich, James E.; Siddiki, Hassan; Hough, David M. [Department of Radiology, Mayo Clinic College of Medicine (United States); Schmidt, Bernhard [Siemens Medical Solutions USA, Inc. (United States); Flohr, Thomas G. [Department of Radiology, Mayo Clinic College of Medicine (United States); Robb, Richard [Biomedical Imaging Resource, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905 (United States); McCollough, Cynthia; Wittmer, Michael [Department of Radiology, Mayo Clinic College of Medicine (United States); Eusemann, Christian [Siemens Medical Solutions USA, Inc. (United States)
2008-12-15
Dual-energy CT scanning has significant potential for disease identification and classification. However, it dramatically increases the amount of data collected and therefore impacts the clinical workflow. One way to simplify image review is to fuse CT datasets of different tube energies into a unique blended dataset with desirable properties. A non-linear blending method based on a modified sigmoid function was compared to a standard 0.3 linear blending method. The methods were evaluated in both a liver phantom and patient study. The liver phantom contained six syringes of known CT contrast which were placed in a bovine liver. After scanning at multiple tube currents (45, 55, 65, 75, 85, 95, 105, and 115 mAs for the 140-kV tube), the datasets were blended using both methods. A contrast-to-noise (CNR) measure was calculated for each syringe. In addition, all eight scans were normalized using the effective dose and statistically compared. In the patient study, 45 dual-energy CT scans were retrospectively mixed using the 0.3 linear blending and modified sigmoid blending functions. The scans were compared visually by two radiologists. For the 15, 45, and 64 HU syringes, the non-linear blended images exhibited similar CNR to the linear blended images; however, for the 79, 116, and 145 HU syringes, the non-linear blended images consistently had a higher CNR across dose settings. The radiologists qualitatively preferred the non-linear blended images of the phantom. In the patient study, the radiologists preferred non-linear blending in 31 of 45 cases with a strong preference in bowel and liver cases. Non-linear blending of dual energy data can provide an improvement in CNR over linear blending and is accompanied by a visual preference for non-linear blended images. Further study on selection of blending parameters and lesion conspicuity in non-linear blended images is being pursued.
Identification of a Non-Linear Landing Gear Model Using Nature-Inspired Optimization
Directory of Open Access Journals (Sweden)
Felipe A.C. Viana
2008-01-01
Full Text Available This work deals with the application of a nature-inspired optimization technique to solve an inverse problem represented by the identification of an aircraft landing gear model. The model is described in terms of the landing gear geometry, internal volumes and areas, shock absorber travel, tire type, and gas and oil characteristics of the shock absorber. The solution to this inverse problem can be obtained by using classical gradient-based optimization methods. However, this is a difficult task due to the existence of local minima in the design space and the requirement of an initial guess. These aspects have motivated the authors to explore a nature-inspired approach using a method known as LifeCycle Model. In the present formulation two nature-based methods, namely the Genetic Algorithms and the Particle Swarm Optimization were used. An optimization problem is formulated in which the objective function represents the difference between the measured characteristics of the system and its model counterpart. The polytropic coefficient of the gas and the damping parameter of the shock absorber are assumed as being unknown: they are considered as design variables. As an illustration, experimental drop test data, obtained under zero horizontal speed, were used in the non-linear landing gear model updating of a small aircraft.
Energy Technology Data Exchange (ETDEWEB)
Lorber, A.A.; Carey, G.F.; Bova, S.W.; Harle, C.H. [Univ. of Texas, Austin, TX (United States)
1996-12-31
The connection between the solution of linear systems of equations by iterative methods and explicit time stepping techniques is used to accelerate to steady state the solution of ODE systems arising from discretized PDEs which may involve either physical or artificial transient terms. Specifically, a class of Runge-Kutta (RK) time integration schemes with extended stability domains has been used to develop recursion formulas which lead to accelerated iterative performance. The coefficients for the RK schemes are chosen based on the theory of Chebyshev iteration polynomials in conjunction with a local linear stability analysis. We refer to these schemes as Chebyshev Parameterized Runge Kutta (CPRK) methods. CPRK methods of one to four stages are derived as functions of the parameters which describe an ellipse {Epsilon} which the stability domain of the methods is known to contain. Of particular interest are two-stage, first-order CPRK and four-stage, first-order methods. It is found that the former method can be identified with any two-stage RK method through the correct choice of parameters. The latter method is found to have a wide range of stability domains, with a maximum extension of 32 along the real axis. Recursion performance results are presented below for a model linear convection-diffusion problem as well as non-linear fluid flow problems discretized by both finite-difference and finite-element methods.
Diboson excess and $Z'$-predictions via left-right non-linear Higgs
Shu, Jing
2016-01-01
The excess events reported by the ATLAS Collaboration in the $WZ$-final state, and by the CMS Collaboration in the $e^+\\!e^- jj$, $Wh$ and $jj$-final states, may be induced by the decays of a heavy boson $W'$ in the 1.8-2 TeV mass range, here modelled via the larger local group $SU(2)_L\\times SU(2)_R\\times U(1)_{B-L}$ in a non-linear dynamical Higgs scenario. The $W'$-production cross section at the 13 TeV LHC is around 700-1200 fb. This framework also predicts a heavy $Z'$ boson with a mass of 2.5-4 TeV, and some decay channels testable in the LHC Run II. We determine the cross section times branching fractions for the dijet, dilepton and top-pair $Z'$-decay channels at the 13 TeV LHC around 2.3, 7.1, 70.2 fb respectively, for $M_{Z'}= 2.5$ TeV, while one/two orders of magnitude smaller for the dijet/dilepton and top-pair modes at $M_{Z'}= 4$ TeV. Non-zero contributions from the effective operators, and the underlying Higgs sector of the model, will induce sizeable enhancement in the $W^+W^-$ and $Z h$-final...
Perspectives for quantum state engineering via high non-linearity in a double-EIT regime
Paternostro, M; Ham, B S
2003-01-01
We analyse the possibilities for quantum state engineering offered by a model for Kerr-type non-linearity enhanced by electromagnetically induced transparency (EIT), which was recently proposed by Petrosyan and Kurizki [{\\sl Phys. Rev. A} {\\bf 65}, 33833 (2002)]. We go beyond the semiclassical treatment and derive a quantum version of the model with both a full Hamiltonian approach and an analysis in terms of dressed states. The preparation of an entangled coherent state via a cross-phase modulation effect is demonstrated. We briefly show that the violation of locality for such an entangled coherent state is robust against low detection efficiency. Finally, we investigate the possibility of a bi-chromatic photon blockade realized via the interaction of a low density beam of atoms with a bi-modal electromagnetic cavity which is externally driven. We show the effectiveness of the blockade effect even when more than a single atom is inside the cavity. The possibility to control two different cavity modes allows ...
Non-linear station motions in the DGFI realization of the ITRF2014
Seitz, Manuela; Bloßfeld, Mathis; Angermann, Detlef; Schmid, Ralf
2016-04-01
The DGFI Terrestrial Reference Frame DTRF2014 is the most recent realization of the International Terrestrial Reference System computed by DGFI-TUM. It comprises 3-dimensional station coordinates and velocities which are estimated in a common adjustment together with Earth orientation parameters (EOP). The input data for the DTRF2014 are observations of the four fundamental space geodetic techniques (GNSS, VLBI, SLR and DORIS) from 1979 until 2015 as well as terrestrial difference vectors (local ties) between the technique-specific reference points. In previous ITRS realizations, the motions of the crust-fixed reference points were approximated through linear velocities. Un-modeled and/or residual non-linear station motions were neglected and, therefore, deteriorated station coordinates, velocities as well as commonly adjusted EOP. For the DTRF2014, geophysical non-tidal loading corrections provided by the IERS Global Geophysical Fluids Center (IERS-GGFC) which account for atmospheric and hydrological effects were considered. In this study, we present the strategy to apply non-tidal loading corrections at the normal equation level of the Gauss-Markov model. We compare DTRF2014 solutions with and without non-tidal loading corrections and investigate their impact on TRF parameters (station coordinates, velocities, geodetic datum) and EOP. Furthermore, a validation of different DTRF2014 solutions with independent ITRS realizations computed by other institutions is shown.
Penalized Ensemble Kalman Filters for High Dimensional Non-linear Systems
Hou, Elizabeth; Hero, Alfred O
2016-01-01
The ensemble Kalman filter (EnKF) is a data assimilation technique that uses an ensemble of models, updated with data, to track the time evolution of a non-linear system. It does so by using an empirical approximation to the well-known Kalman filter. Unfortunately, its performance suffers when the ensemble size is smaller than the state space, as is often the case for computationally burdensome models. This scenario means that the empirical estimate of the state covariance is not full rank and possibly quite noisy. To solve this problem in this high dimensional regime, a computationally fast and easy to implement algorithm called the penalized ensemble Kalman filter (PEnKF) is proposed. Under certain conditions, it can be proved that the PEnKF does not require more ensemble members than state dimensions in order to have good performance. Further, the proposed approach does not require special knowledge of the system such as is used by localization methods. These theoretical results are supported with superior...
Non-linear imaging techniques visualize the lipid profile of C. elegans
Mari, Meropi; Petanidou, Barbara; Palikaras, Konstantinos; Fotakis, Costas; Tavernarakis, Nektarios; Filippidis, George
2015-07-01
The non-linear techniques Second and Third Harmonic Generation (SHG, THG) have been employed simultaneously to record three dimensional (3D) imaging and localize the lipid content of the muscular areas (ectopic fat) of Caenorhabditis elegans (C. elegans). Simultaneously, Two-Photon Fluorescence (TPEF) was used initially to localize the stained lipids with Nile Red, but also to confirm the THG potential to image lipids successfully. In addition, GFP labelling of the somatic muscles, proves the initial suggestion of the existence of ectopic fat on the muscles and provides complementary information to the SHG imaging of the pharynx. The ectopic fat may be related to a complex of pathological conditions including type-2 diabetes, hypertension and cardiovascular diseases. The elucidation of the molecular path leading to the development of metabolic syndrome is a vital issue with high biological significance and necessitates accurate methods competent of monitoring lipid storage distribution and dynamics in vivo. THG microscopy was employed as a quantitative tool to monitor the lipid accumulation in non-adipose tissues in the pharyngeal muscles of 12 unstained specimens while the SHG imaging revealed the anatomical structure of the muscles. The ectopic fat accumulation on the pharyngeal muscles increases in wild type (N2) C. elegans between 1 and 9 days of adulthood. This suggests a correlation of the ectopic fat accumulation with the aging. Our results can provide new evidence relating the deposition of ectopic fat with aging, but also validate SHG and THG microscopy modalities as new, non-invasive tools capable of localizing and quantifying selectively lipid accumulation and distribution.
Short- and long-term variations in non-linear dynamics of heart rate variability
DEFF Research Database (Denmark)
Kanters, J K; Højgaard, M V; Agner, E;
1996-01-01
OBJECTIVES: The purpose of the study was to investigate the short- and long-term variations in the non-linear dynamics of heart rate variability, and to determine the relationships between conventional time and frequency domain methods and the newer non-linear methods of characterizing heart rate...... be described as a single chaotic system. Instead heart rate variability consists of intertwined periods with different non-linear dynamics. It is hypothesized that the heart rate is governed by a system with multiple "strange" attractors.......OBJECTIVES: The purpose of the study was to investigate the short- and long-term variations in the non-linear dynamics of heart rate variability, and to determine the relationships between conventional time and frequency domain methods and the newer non-linear methods of characterizing heart rate...... variability. METHODS: Twelve healthy subjects were investigated by 3-h ambulatory ECG recordings repeated on 3 separate days. Correlation dimension, non-linear predictability, mean heart rate, and heart rate variability in the time and frequency domains were measured and compared with the results from...
Correction of non-linear thickness effects in HAADF STEM electron tomography
Energy Technology Data Exchange (ETDEWEB)
Van den Broek, W., E-mail: wouter.vandenbroek@uni-ulm.de [Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Rosenauer, A. [Institut fuer Festkoerperphysik (IFP), Universitaet Bremen, Otto-Hahn-Allee 1, 28359 Bremen (Germany); Goris, B.; Martinez, G.T.; Bals, S.; Van Aert, S.; Van Dyck, D. [Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium)
2012-05-15
In materials science, high angle annular dark field scanning transmission electron microscopy is often used for tomography at the nanometer scale. In this work, it is shown that a thickness dependent, non-linear damping of the recorded intensities occurs. This results in an underestimated intensity in the interior of reconstructions of homogeneous particles, which is known as the cupping artifact. In this paper, this non-linear effect is demonstrated in experimental images taken under common conditions and is reproduced with a numerical simulation. Furthermore, an analytical derivation shows that these non-linearities can be inverted if the imaging is done quantitatively, thus preventing cupping in the reconstruction. -- Highlights: Black-Right-Pointing-Pointer In HAADF STEM, a thickness dependent, non-linear damping of the projected intensities occurs. Black-Right-Pointing-Pointer In tomography, this leads to underestimated intensities in the interior of homogeneous particles, the cupping artifact. Black-Right-Pointing-Pointer The non-linear damping is demonstrated in experimental images and reproduced with numerical simulations. Black-Right-Pointing-Pointer The non-linear damping can be undone if the imaging is done quantitatively. Black-Right-Pointing-Pointer Experimental proof is provided showing that cupping can be prevented.
Germinet, François
2011-01-01
We consider the discrete Anderson model and prove enhanced Wegner and Minami estimates where the interval length is replaced by the IDS computed on the interval. We use these estimates to improve on the description of finite volume eigenvalues and eigenfunctions obtained in a previous paper. As a consequence of the improved description of eigenvalues and eigenfunctions, we revisit a number of results on the spectral statistics in the localized regime and extend their domain of validity, namely : - the local spectral statistics for the unfolded eigenvalues; - the local asymptotic ergodicity of the unfolded eigenvalues; In dimension 1, for the standard Anderson model, the improvement enables us to obtain the local spectral statistics at band edge, that is in the Lifshitz tail regime. In higher dimensions, this works for modified Anderson models.
Non-linear forcing singular vector of a two-dimensional quasi-geostrophic model
Directory of Open Access Journals (Sweden)
Wansuo Duan
2013-02-01
Full Text Available We propose a non-linear forcing singular vector (NFSV approach to infer the effect of non-linearity on the predictability associated with model errors. The NFSV is a generalisation of the forcing singular vector (FSV to non-linear fields and acts as a tendency perturbation that results in a significantly large perturbation growth. In predictability studies, the NFSV, as a tendency error, may provide useful information about model errors that cause severe prediction uncertainties. In this article, a two-dimensional quasi-geostrophic (QG model is used to study NFSVs and make a comparison between NFSVs and FSVs. We choose two basic flows: the first is a zonal steady flow (Ref-1, and the second is a meridional steady flow (Ref-2. The results demonstrate that the corresponding NFSVs contain a phase where the stream function tends to be contracted around regions of strong velocity shear. Furthermore, the NFSVs for the Ref-1 tend to have a meridional asymmetric spatial structure. Due to the absence of non-linearity, FSVs tend to have a larger spatial extension than NFSVs; in particular, the FSVs for the Ref-1 are almost symmetric in the stream function component. The prediction errors caused by FSVs in the non-linear QG model are generally smaller than those caused by FSVs in the linearised QG model; therefore, the non-linearity in the QG model would significantly saturate the perturbation growth. Nevertheless, the prediction errors caused by NFSVs (especially for the Ref-1 in the non-linear QG model are larger than those caused by FSVs, which further implies that the tendency errors of NFSV structures tend to reduce the damping effect of the non-linearity on the perturbation growth and are more applicable than those of FSV structures to describing the optimal mode of the model errors. The differences between NFSVs and FSVs demonstrate the usefulness of NFSVs in revealing the effects of non-linearity on predictability. The NFSV may be a useful non-linear
Hartikainen, Jouni; Seppanen, Mari; Sarkka, Simo
2012-01-01
Latent force models (LFMs) are flexible models that combine mechanistic modelling principles (i.e., physical models) with non-parametric data-driven components. Several key applications of LFMs need non-linearities, which results in analytically intractable inference. In this work we show how non-linear LFMs can be represented as non-linear white noise driven state-space models and present an efficient non-linear Kalman filtering and smoothing based method for approximate state and parameter ...
Simultaneous 160 Gb/s Add-Drop Multiplexing in a Non-Linear Optical Loop Mirror
DEFF Research Database (Denmark)
Mulvad, Hans Christian Hansen; Oxenløwe, Leif Katsuo; Galili, Michael;
2006-01-01
We report on a demonstration of error-free simultaneous add-drop multiplexing of 160 Gb/s data in a non-linear optical loop mirror composed of 100 m highly non-linear fibre......We report on a demonstration of error-free simultaneous add-drop multiplexing of 160 Gb/s data in a non-linear optical loop mirror composed of 100 m highly non-linear fibre...
A New Method for Non-linear and Non-stationary Time Series Analysis:
The Hilbert Spectral Analysis
CERN. Geneva
2000-01-01
A new method for analysing non-linear and non-stationary data has been developed. The key part of the method is the Empirical Mode Decomposition method with which any complicated data set can be decomposed into a finite and often small number of Intrinsic Mode Functions (IMF). An IMF is defined as any function having the same numbers of zero crossing and extreme, and also having symmetric envelopes defined by the local maximal and minima respectively. The IMF also admits well-behaved Hilbert transform. This decomposition method is adaptive, and, therefore, highly efficient. Since the decomposition is based on the local characteristic time scale of the data, it is applicable to non-linear and non-stationary processes. With the Hilbert transform, the Intrinsic Mode Functions yield instantaneous frequencies as functions of time that give sharp identifications of imbedded structures. The final presentation of the results is an energy-frequency-time distribution, designated as the Hilbert Spectrum. Classical non-l...
Non-linear vibrational modes in biomolecules: A periodic orbits description
Energy Technology Data Exchange (ETDEWEB)
Kampanarakis, Alexandros [Department of Chemistry, University of Crete, and Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH), Vasilika Vouton, Heraklion 71110, Crete (Greece); Farantos, Stavros C., E-mail: farantos@iesl.forth.gr [Department of Chemistry, University of Crete, and Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH), Vasilika Vouton, Heraklion 71110, Crete (Greece); Daskalakis, Vangelis; Varotsis, Constantinos [Department of Environmental Science and Technology, Cyprus University of Technology, 31 Archbishop Kyprianos St., P.O. Box 50329, 3603 Lemesos (Cyprus)
2012-05-03
Graphical abstract: Vibrational frequency shifts in Fe{sup IV} = O species of the active site of cytochrome c oxidase are attributed to changes in the surrounding Coulomb field. Periodic orbits analysis assists to find the most anharmonic modes in model biomolecules. Highlights: Black-Right-Pointing-Pointer Periodic orbits are extended to multidimensional potentials of biomolecules. Black-Right-Pointing-Pointer Highly anharmonic vibrational modes and center-saddle bifurcations are detected. Black-Right-Pointing-Pointer Vibrational frequencies shifts in Oxoferryl species of CcO are observed. - Abstract: The vibrational harmonic normal modes of a molecule, which are valid at energies close to an equilibrium point (a minimum, maximum or saddle of the potential energy surface), are extended by periodic orbits to high energies where anharmonicity and coupling of the degrees of freedom are significant. In this way the assignment of the spectra, and thus the extraction of dynamics in highly excited molecules, can be obtained. New vibrational modes emanating from bifurcations of periodic orbits and long living localized trajectories signal the birth and localization of new quantum states. In this article we review and further study non-linear vibrational modes for model biomolecules such as alanine dipeptide and the active site in the oxoferryl oxidation state of the enzyme cytochrome c oxidase. We locate periodic orbits which exhibit high anhamonicity and lead to center-saddle bifurcations. These modes are associated to an isomerization process in alanine dipeptide and to frequency shifts in the oxoferryl observed by modifying the Coulomb field around the Imidazole-Fe{sup IV} = O species.
Towards time-dependent current-density-functional theory in the non-linear regime.
Escartín, J M; Vincendon, M; Romaniello, P; Dinh, P M; Reinhard, P-G; Suraud, E
2015-02-28
Time-Dependent Density-Functional Theory (TDDFT) is a well-established theoretical approach to describe and understand irradiation processes in clusters and molecules. However, within the so-called adiabatic local density approximation (ALDA) to the exchange-correlation (xc) potential, TDDFT can show insufficiencies, particularly in violently dynamical processes. This is because within ALDA the xc potential is instantaneous and is a local functional of the density, which means that this approximation neglects memory effects and long-range effects. A way to go beyond ALDA is to use Time-Dependent Current-Density-Functional Theory (TDCDFT), in which the basic quantity is the current density rather than the density as in TDDFT. This has been shown to offer an adequate account of dissipation in the linear domain when the Vignale-Kohn (VK) functional is used. Here, we go beyond the linear regime and we explore this formulation in the time domain. In this case, the equations become very involved making the computation out of reach; we hence propose an approximation to the VK functional which allows us to calculate the dynamics in real time and at the same time to keep most of the physics described by the VK functional. We apply this formulation to the calculation of the time-dependent dipole moment of Ca, Mg and Na2. Our results show trends similar to what was previously observed in model systems or within linear response. In the non-linear domain, our results show that relaxation times do not decrease with increasing deposited excitation energy, which sets some limitations to the practical use of TDCDFT in such a domain of excitations.
Non-Linearly Interacting Ghost Dark Energy in Brans-Dicke Cosmology
Ebrahimi, E
2016-01-01
In this paper we extend the form of interaction term into the non-linear regime in the ghost dark energy model. A general form of non-linear interaction term is presented and cosmic dynamic equations are obtained. Next, the model is detailed for two special choice of the non-linear interaction term. According to this the universe transits at suitable time ($z\\sim 0.8$) from deceleration to acceleration phase which alleviate the coincidence problem. Squared sound speed analysis revealed that for one class of non-linear interaction term $v_s^2$ can gets positive. This point is an impact of the non-linear interaction term and we never find such behavior in non interacting and linearly interacting ghost dark energy models. Also statefinder parameters are introduced for this model and we found that for one class the model meets the $\\Lambda CDM$ while in the second choice although the model approaches the $\\Lambda CDM$ but never touch that.
Alkhalifah, Tariq Ali
2012-09-25
Traveltime inversion focuses on the geometrical features of the waveform (traveltimes), which is generally smooth, and thus, tends to provide averaged (smoothed) information of the model. On other hand, general waveform inversion uses additional elements of the wavefield including amplitudes to extract higher resolution information, but this comes at the cost of introducing non-linearity to the inversion operator, complicating the convergence process. We use unwrapped phase-based objective functions in waveform inversion as a link between the two general types of inversions in a domain in which such contributions to the inversion process can be easily identified and controlled. The instantaneous traveltime is a measure of the average traveltime of the energy in a trace as a function of frequency. It unwraps the phase of wavefields yielding far less non-linearity in the objective function than that experienced with conventional wavefields, yet it still holds most of the critical wavefield information in its frequency dependency. However, it suffers from non-linearity introduced by the model (or reflectivity), as reflections from independent events in our model interact with each other. Unwrapping the phase of such a model can mitigate this non-linearity as well. Specifically, a simple modification to the inverted domain (or model), can reduce the effect of the model-induced non-linearity and, thus, make the inversion more convergent. Simple numerical examples demonstrate these assertions.
Non-linear buckling of an FGM truncated conical shell surrounded by an elastic medium
International Nuclear Information System (INIS)
In this paper, the non-linear buckling of the truncated conical shell made of functionally graded materials (FGMs) surrounded by an elastic medium has been studied using the large deformation theory with von Karman–Donnell-type of kinematic non-linearity. A two-parameter foundation model (Pasternak-type) is used to describe the shell–foundation interaction. The FGM properties are assumed to vary continuously through the thickness direction. The fundamental relations, the modified Donnell type non-linear stability and compatibility equations of the FGM truncated conical shell resting on the Pasternak-type elastic foundation are derived. By using the Superposition and Galerkin methods, the non-linear stability equations for the FGM truncated conical shell is solved. Finally, influences of variations of Winkler foundation stiffness and shear subgrade modulus of the foundation, compositional profiles and shell characteristics on the dimensionless critical non-linear axial load are investigated. The present results are compared with the available data for a special case. -- Highlights: • Nonlinear buckling of FGM conical shell surrounded by elastic medium is studied. • Pasternak foundation model is used to describe the shell–foundation interaction. • Nonlinear basic equations are derived. • Problem is solved by using Superposition and Galerkin methods. • Influences of various parameters on the nonlinear critical load are investigated
Non-linear models in focus localization, seizure detection and prediction
DEFF Research Database (Denmark)
Henriksen, Jonas
One of the most devastating problems for epilepsy patients is the unpredictable nature of seizures. Not knowing when or where a seizure occurs has severe consequences in social interaction, ability to work, driving a car, go swimming etc. Traditionally the patient and the doctor work together...
Energy Technology Data Exchange (ETDEWEB)
Ramos, Daniel, E-mail: daniel.ramos@csic.es; Frank, Ian W.; Deotare, Parag B.; Bulu, Irfan; Lončar, Marko [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States)
2014-11-03
We investigate the coupling between mechanical and optical modes supported by coupled, freestanding, photonic crystal nanobeam cavities. We show that localized cavity modes for a given gap between the nanobeams provide weak optomechanical coupling with out-of-plane mechanical modes. However, we show that the coupling can be significantly increased, more than an order of magnitude for the symmetric mechanical mode, due to optical resonances that arise from the interaction of the localized cavity modes with standing waves formed by the reflection from thesubstrate. Finally, amplification of motion for the symmetric mode has been observed and attributed to the strong optomechanical interaction of our hybrid system. The amplitude of these self-sustained oscillations is large enough to put the system into a non-linear oscillation regime where a mixing between the mechanical modes is experimentally observed and theoretically explained.
Sammer, G
1998-05-01
In the investigation of heart rate and heart rate variability, the discrimination between mental workload, physical activity and respiration is known to be methodologically difficult. At most, heart rate variability measures are more likely to be coarse-grained measures with variability confounded by heart rate. Moreover, the spectral analysis of heart rate variability shows broad-band frequency characteristics, pointing towards non-stationarity or non-linearity. From this it is suggested to focus on non-linear dynamic analyses that are variance-insensitive. The experimental section of the paper focuses on the estimation of two non-linear measures for both heartbeat dynamics and respiration, the correlation dimension indicating complexity and the Lyapunov exponents indicating predictability. The results indicate that the complexity of heart dynamics is related to the type of task and that the predictability of heart dynamics is related to the amount of load. PMID:9613233
Directory of Open Access Journals (Sweden)
Jesús Poza
2012-01-01
Full Text Available Alzheimer's Disease (AD is considered the most prevalent form of dementia. A definite AD diagnosis is established after examination of brain tissue. However, an accurate identification should be attempted to effectively apply therapeutic strategies. The aim of the present study was to perform regional analysis of spontaneous magnetoencephalographic (MEG activity to describe brain dynamics in AD. Several spectral and non-linear parameters were calculated to obtain a comprehensive description of the spatial abnormalities in brain dynamics. Our findings showed a significant global slowing of MEG activity in AD, as well as a significant loss of irregularity and complexity in several brain regions. Spectral and non-linear parameters reached classification accuracies of around 80%. The results suggest the potential usefulness of spectral and non-linear parameters to characterize the cognitive and functional abnormalities of dementia. These parameters can yield information useful in clinical AD diagnosis and provide further insights on underlying brain dynamics.
Analytical results for non-linear Compton scattering in short intense laser pulses
Seipt, Daniel; Rykovanov, Sergey; Surzhykov, Andrey; Fritzsche, Stephan
2016-01-01
We study in detail the strong-field QED process of non-linear Compton scattering in short intense laser pulses. Our main focus is placed on how the spectrum of the backscattered laser light depends on the shape and duration of the initial short intensive pulse. Although this pulse shape dependence is very complicated and highly non-linear, and has never been addressed explicitly, our analysis reveals that all the dependence on the laser pulse shape is contained in a three-parameter master integral. Here we present completely analytical expressions the non-linear Compton spectrum in terms of a master integral. Moreover, we analyse the universal behaviour of the shape of the spectrum for very high harmonic lines.
Applications of Kalman filters based on non-linear functions to numerical weather predictions
Directory of Open Access Journals (Sweden)
G. Galanis
2006-10-01
Full Text Available This paper investigates the use of non-linear functions in classical Kalman filter algorithms on the improvement of regional weather forecasts. The main aim is the implementation of non linear polynomial mappings in a usual linear Kalman filter in order to simulate better non linear problems in numerical weather prediction. In addition, the optimal order of the polynomials applied for such a filter is identified. This work is based on observations and corresponding numerical weather predictions of two meteorological parameters characterized by essential differences in their evolution in time, namely, air temperature and wind speed. It is shown that in both cases, a polynomial of low order is adequate for eliminating any systematic error, while higher order functions lead to instabilities in the filtered results having, at the same time, trivial contribution to the sensitivity of the filter. It is further demonstrated that the filter is independent of the time period and the geographic location of application.
Series solutions of non-linear Riccati differential equations with fractional order
Energy Technology Data Exchange (ETDEWEB)
Cang Jie; Tan Yue; Xu Hang [School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China); Liao Shijun [School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China)], E-mail: sjliao@sjtu.edu.cn
2009-04-15
In this paper, based on the homotopy analysis method (HAM), a new analytic technique is proposed to solve non-linear Riccati differential equation with fractional order. Different from all other analytic methods, it provides us with a simple way to adjust and control the convergence region of solution series by introducing an auxiliary parameter h. Besides, it is proved that well-known Adomian's decomposition method is a special case of the homotopy analysis method when h = -1. This work illustrates the validity and great potential of the homotopy analysis method for the non-linear differential equations with fractional order. The basic ideas of this approach can be widely employed to solve other strongly non-linear problems in fractional calculus.
Hyperdiffusion in non-linear, large and small-scale turbulent dynamos
Subramanian, K
2003-01-01
The generation of large-scale magnetic fields is generically accompanied by the more rapid growth of small-scale fields. The growing Lorentz force due to these fields back reacts on the turbulence to saturate the mean-field and small-scale dynamos. For the mean-field dynamo, in a quasi-linear treatment of this saturation, it is generally thought that, while the alpha-effect gets renormalised and suppressed by non-linear effects, the turbulent diffusion is left unchanged. We show here that this is not true and the effect of the Lorentz forces, is also to generate additional non-linear hyperdiffusion of the mean field. A combination of such non-linear hyperdiffusion with diffusion at small scales, also arises in a similar treatment of small-scale dynamos, and is crucial to understand its saturation.
Institute of Scientific and Technical Information of China (English)
Pascale KULISA; Cédric DANO
2006-01-01
Three linear two-equation turbulence models k- ε, k- ω and k- 1 and a non-linear k- l model are used for aerodynamic and thermal turbine flow prediction. The pressure profile in the wake and the heat transfer coefficient on the blade are compared with experimental data. Good agreement is obtained with the linear k- l model. No significant modifications are observed with the non-linear model. The balance of transport equation terms in the blade wake is also presented. Linear and non-linear k- l models are evaluated to predict the threedimensional vortices characterising the turbine flows. The simulations show that the passage vortex is the main origin of the losses.
Real-Time Monitoring of Non-linear Suicidal Dynamics: Methodology and a Demonstrative Case Report.
Fartacek, Clemens; Schiepek, Günter; Kunrath, Sabine; Fartacek, Reinhold; Plöderl, Martin
2016-01-01
In recent years, a number of different authors have stressed the usefulness of non-linear dynamic systems approach in suicide research and suicide prevention. This approach applies specific methods of time series analysis and, consequently, it requires a continuous and fine-meshed assessment of the processes under consideration. The technical means for this kind of process assessment and process analysis are now available. This paper outlines how suicidal dynamics can be monitored in high-risk patients by an Internet-based application for continuous self-assessment with integrated tools of non-linear time series analysis: the Synergetic Navigation System. This procedure is illustrated by data from a patient who attempted suicide at the end of a 90-day monitoring period. Additionally, future research topics and clinical applications of a non-linear dynamic systems approach in suicidology are discussed.
On non-linear dynamics of a coupled electro-mechanical system
DEFF Research Database (Denmark)
Darula, Radoslav; Sorokin, Sergey
2012-01-01
Electro-mechanical devices are an example of coupled multi-disciplinary weakly non-linear systems. Dynamics of such systems is described in this paper by means of two mutually coupled differential equations. The first one, describing an electrical system, is of the first order and the second one......, for mechanical system, is of the second order. The governing equations are coupled via linear and weakly non-linear terms. A classical perturbation method, a method of multiple scales, is used to find a steadystate response of the electro-mechanical system exposed to a harmonic close-resonance mechanical...... excitation. The results are verified using a numerical model created in MATLAB Simulink environment. Effect of non-linear terms on dynamical response of the coupled system is investigated; the backbone and envelope curves are analyzed. The two phenomena, which exist in the electro-mechanical system: (a...
DEFF Research Database (Denmark)
Abrahamsen, Trine Julie; Hansen, Lars Kai
2011-01-01
We investigate sparse non-linear denoising of functional brain images by kernel Principal Component Analysis (kernel PCA). The main challenge is the mapping of denoised feature space points back into input space, also referred to as ”the pre-image problem”. Since the feature space mapping...... sparse pre-image reconstruction by Lasso regularization. We find that sparse estimation provides better brain state decoding accuracy and a more reproducible pre-image. These two important metrics are combined in an evaluation framework which allow us to optimize both the degree of sparsity and the non-linearity...... of the kernel embedding. The latter result provides evidence of signal manifold non-linearity in the specific fMRI case study....
Angular spectrum approach for fast simulation of pulsed non-linear ultrasound fields
DEFF Research Database (Denmark)
Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt
2011-01-01
The paper presents an Angular Spectrum Approach (ASA) for simulating pulsed non-linear ultrasound fields. The source of the ASA is generated by Field II, which can simulate array transducers of any arbitrary geometry and focusing. The non-linear ultrasound simulation program - Abersim, is used...... as the reference. A linear array transducer with 64 active elements is simulated by both Field II and Abersim. The excitation is a 2-cycle sine wave with a frequency of 5 MHz. The second harmonic field in the time domain is simulated using ASA. Pulse inversion is used in the Abersim simulation to remove...... the fundamental and keep the second harmonic field, since Abersim simulates non-linear fields with all harmonic components. ASA and Abersim are compared for the pulsed fundamental and second harmonic fields in the time domain at depths of 30 mm, 40 mm (focal depth) and 60 mm. Full widths at -6 dB (FWHM) are f0...
Energy Technology Data Exchange (ETDEWEB)
Russell, Steven J. [Los Alamos National Laboratory; Carlsten, Bruce E. [Los Alamos National Laboratory
2012-06-26
We will quickly go through the history of the non-linear transmission lines (NLTLs). We will describe how they work, how they are modeled and how they are designed. Note that the field of high power, NLTL microwave sources is still under development, so this is just a snap shot of their current state. Topics discussed are: (1) Introduction to solitons and the KdV equation; (2) The lumped element non-linear transmission line; (3) Solution of the KdV equation; (4) Non-linear transmission lines at microwave frequencies; (5) Numerical methods for NLTL analysis; (6) Unipolar versus bipolar input; (7) High power NLTL pioneers; (8) Resistive versus reactive load; (9) Non-lineaer dielectrics; and (10) Effect of losses.
Non-linear Evolution of Rayleigh-Taylor Instability in a Radiation Supported Atmosphere
Jiang, Yan-Fei; Stone, James
2012-01-01
The non-linear regime of Rayleigh-Taylor instability (RTI) in a radiation supported atmosphere, consisting of two uniform fluids with different densities, is studied numerically. We perform simulations using our recently developed numerical algorithm for multi-dimensional radiation hydrodynamics based on a variable Eddington tensor as implemented in Athena, focusing on the regime where scattering opacity greatly exceeds absorption opacity. We find that the radiation field can reduce the growth and mixing rate of RTI, but this reduction is only significant when radiation pressure significantly exceeds gas pressure. Small scale structures are also suppressed in this case. In the non-linear regime, dense fingers sink faster than rarefied bubbles can rise, leading to asymmetric structures about the interface. By comparing the calculations that use a variable Eddington tensor (VET) versus the Eddington approximation, we demonstrate that anisotropy in the radiation field can affect the non-linear development of RTI...
Non-linear regression model for spatial variation in precipitation chemistry for South India
Siva Soumya, B.; Sekhar, M.; Riotte, J.; Braun, Jean-Jacques
Chemical composition of rainwater changes from sea to inland under the influence of several major factors - topographic location of area, its distance from sea, annual rainfall. A model is developed here to quantify the variation in precipitation chemistry under the influence of inland distance and rainfall amount. Various sites in India categorized as 'urban', 'suburban' and 'rural' have been considered for model development. pH, HCO 3, NO 3 and Mg do not change much from coast to inland while, SO 4 and Ca change is subjected to local emissions. Cl and Na originate solely from sea salinity and are the chemistry parameters in the model. Non-linear multiple regressions performed for the various categories revealed that both rainfall amount and precipitation chemistry obeyed a power law reduction with distance from sea. Cl and Na decrease rapidly for the first 100 km distance from sea, then decrease marginally for the next 100 km, and later stabilize. Regression parameters estimated for different cases were found to be consistent ( R2 ˜ 0.8). Variation in one of the parameters accounted for urbanization. Model was validated using data points from the southern peninsular region of the country. Estimates are found to be within 99.9% confidence interval. Finally, this relationship between the three parameters - rainfall amount, coastline distance, and concentration (in terms of Cl and Na) was validated with experiments conducted in a small experimental watershed in the south-west India. Chemistry estimated using the model was in good correlation with observed values with a relative error of ˜5%. Monthly variation in the chemistry is predicted from a downscaling model and then compared with the observed data. Hence, the model developed for rain chemistry is useful in estimating the concentrations at different spatio-temporal scales and is especially applicable for south-west region of India.
Non-linear Langevin model for the early-stage dynamics of electrospinning jets
Lauricella, Marco; Pisignano, Dario; Succi, Sauro
2015-01-01
We present a non-linear Langevin model to investigate the early-stage dynamics of electrified polymer jets in electrospinning experiments. In particular, we study the effects of air drag force on the uniaxial elongation of the charged jet, right after ejection from the nozzle. Numerical simulations show that the elongation of the jet filament close to the injection point is significantly affected by the non-linear drag exerted by the surrounding air. These result provide useful insights for the optimal design of current and future electrospinning experiments.
UNDERSTANDING THE APPLICABILITY OF LINEAR & NON-LINEAR MODELS USING A CASE-BASED STUDY
Gaurav Singh Thakur; Anubhav Gupta; Ankur Bhardwaj; Biju R Mohan
2014-01-01
This paper uses a case based study – “product sales estimation” on real-time data to help us understand the applicability of linear and non-linear models in machine learning and data mining. A systematic approach has been used here to address the given problem statement of sales estimation for a particular set of products in multiple categories by applying both linear and non-linear machine learning techniques on a data set of selected features from the original data set. Feature ...
Evaluation of Linear and Non-Linear Control Schemes Applied to a Hydraulic Servo System
DEFF Research Database (Denmark)
Andersen, Torben Ole; Hansen, Michael Rygaard; Pedersen, Henrik Clemmensen
2005-01-01
Due to the innovation of low-cost electronics such as sensors, microcontrollers etc., the focus on highperformance motion control is increasing. This work focuses on position control of single-input single-output hydraulic servo-systems in general. A hydraulically actuated robotic manipulator...... is used as test facility acting as load for the hydraulic servo system. An experimentally verified non-linear model of the complete system has been developed and used to design a series of both linear and non-linear control schemes. The controllers from each category are compared with respect to design...
Lipschitz Operators and the Solvability of Non-linear Operator Equations
Institute of Scientific and Technical Information of China (English)
Huai Xin CAO; Zong Ben XU
2004-01-01
Let U and V be Banach spaces, L and N be non-linear operators from U into V. L is some basic properties of Lipschitz operators and then discuss the unique solvability, exact solvability,approximate solvability of the operator equations Lx = y and Lx + Nx = y. Under some conditions we prove the equivalence of these solvabilities. We also give an estimation for the relative-errors of the solutions of these two systems and an application of our method to a non-linear control system.
An axisymmetrical non-linear finite element model for induction heating in injection molding tools
DEFF Research Database (Denmark)
Guerrier, Patrick; Nielsen, Kaspar Kirstein; Menotti, Stefano;
2016-01-01
To analyze the heating and cooling phase of an induction heated injection molding tool accurately, the temperature dependent magnetic properties, namely the non-linear B-H curves, need to be accounted for in an induction heating simulation. Hence, a finite element model has been developed...... in to the injection molding tool. The model shows very good agreement with the experimental temperature measurements. It is also shown that the non-linearity can be used without the temperature dependency in some cases, and a proposed method is presented of how to estimate an effective linear...
Non-linear effects on radiation propagation around a charged compact object
Cuzinatto, R R; de Vasconcelos, K C; Medeiros, L G; Pompeia, P J
2015-01-01
The propagation of non-linear electromagnetic waves is carefully analyzed on a curved spacetime created by static spherically symmetric mass and charge distribution. We compute how the non-linear electrodynamics affects the geodesic deviation and the redshift of photons propagating near this massive charged object and, in the linear approximation, the effects of electromagnetic self-interaction can be disparted from the usual Reissner-Nordstr\\"om terms. In the particular case of Euler-Heisenberg effective Lagrangian, we find that these self-interaction effects might be important near charged white dwarfs.
Addressing geometric non-linearities with cantilever MEMS: beyond the Duffing model
Collin, Eddy; Bunkov, Yuriy M.; Godfrin, Henri
2010-01-01
International audience We report on low temperature measurements performed on micro-electro-mechanical systems (MEMS) driven deeply into the non-linear regime. The materials are kept in their elastic domain, while the observed non-linearity is purely of geometrical origin. Two techniques are used, harmonic drive and free decay. For each case, we present an analytic theory ﬁtting the data. The harmonic drive is ﬁt with a Lorentz-like lineshape obtained from an extended version of Landau and...
The Non-Linear Power Spectrum of the Lyman Alpha Forest
Arinyo-i-Prats, Andreu; Miralda-Escudé, Jordi; Viel, Matteo; Cen, Renyue
2015-01-01
The Lyman alpha forest power spectrum has been measured on large scales by the BOSS survey in SDSS-III at $z\\sim 2.3$, has been shown to agree well with linear theory predictions, and has provided the first measurement of Baryon Acoustic Oscillations at this redshift. However, the power at small scales, affected by non-linearities, has not been well examined so far. We present results from a variety of hydrodynamic simulations to predict the redshift space non-linear power spectrum of the Lym...