WorldWideScience

Sample records for anderson localization excited

  1. Signatures of Anderson localization excited by an optical frequency comb

    KAUST Repository

    Gentilini, S.

    2010-01-25

    We investigate Anderson localization of light as occurring in ultrashort excitations. A theory based on time dependent coupled-mode equations predicts universal features in the spectrum of the transmitted pulse. In particular, the process of strong localization of light is shown to correspond to the formation of peaks in both the amplitude and in the group delay of the transmitted pulse. Parallel ab initio simulations made with finite-difference time-domain codes and molecular dynamics confirm theoretical predictions, while showing that there exists an optimal degree of disorder for the strong localization. © 2010 The American Physical Society.

  2. Probing the statistical properties of Anderson localization with quantum emitters

    International Nuclear Information System (INIS)

    Smolka, Stephan; Thyrrestrup, Henri; Sapienza, Luca; Lehmann, Tau B; Rix, Kristian R; GarcIa, Pedro D; Lodahl, Peter; Froufe-Perez, Luis S

    2011-01-01

    Wave propagation in disordered media can be strongly modified by multiple scattering and wave interference. Ultimately, the so-called Anderson-localized regime is reached when the waves become strongly confined in space. So far, Anderson localization of light has been probed in transmission experiments by measuring the intensity of an external light source after propagation through a disordered medium. However, discriminating between Anderson localization and losses in these experiments remains a major challenge. In this paper, we present an alternative approach where we use quantum emitters embedded in disordered photonic crystal waveguides as light sources. Anderson-localized modes are efficiently excited and the analysis of the photoluminescence spectra allows us to explore their statistical properties, for example the localization length and average loss length. With increasing the amount of disorder induced in the photonic crystal, we observe a pronounced increase in the localization length that is attributed to changes in the local density of states, a behavior that is in stark contrast to entirely random systems. The analysis may pave the way for accurate models and the control of Anderson localization in disordered photonic crystals.

  3. Effect of coulomb interaction on Anderson localization

    International Nuclear Information System (INIS)

    Waintal, X.

    1999-01-01

    We study the quantum mechanics of interacting particles in a disordered system, and in particular, what happens to Anderson localisation when interaction is taken into account. In the first part, one looks at the excited states of two particles in one dimension. For this model, it has been shown (Shepelyansky 1994) that a local repulsive interaction can partially destroy Anderson localisation. Here, we show that this model has similarities with the three-dimensional Anderson model at the metal-insulator transition. In particular, the maximum of rigidity obtained in the spectral statistics correspond to some intermediary statistics that cannot be described by random matrix theory neither by a Poisson statistics. The wave functions show a multifractal behaviour and the spreading of the center of mass of a wave packet is logarithmic in time. The second part deals with the ground state of a finite density of spinless fermions in two dimensions. After the scaling theory of localisation, it was commonly accepted that there was no metal in two dimensions. This idea has been challenged by the observation of a metal-insulator transition in low density electron gas (Kravchenko et al. 1994). We propose a scenario in which a metallic phase occurs between the Anderson insulator and the pinned Wigner crystal. This intermediate phase is characterized by an alignment of the local currents flowing in the system. (author)

  4. 50 Years of Anderson Localization

    CERN Document Server

    Abrahams, Elihu

    2010-01-01

    In his groundbreaking paper Absence of diffusion in certain random lattices (1958), Philip W. Anderson originated, described and developed the physical principles underlying the phenomenon of the localization of quantum objects due to disorder. Anderson's 1977 Nobel Prize citation featured that paper, which was fundamental for many subsequent developments in condensed matter theory and technical applications. After more than a half century, the subject continues to be of fundamental importance. In particular, in the last 25 years, the phenomenon of localization has proved to be crucial for the

  5. Anderson localization on a simplex

    International Nuclear Information System (INIS)

    Ossipov, A

    2013-01-01

    We derive a field-theoretical representation for the moments of the eigenstates in the generalized Anderson model. The representation is exact and can be used for the Anderson model with generic non-random hopping elements in any dimensions. We apply this method to the simplex model, for which the hopping amplitude between any two lattice sites is the same, and find that the eigenstates are localized at any strength of disorder. Our analytical predictions are in excellent agreement with the results of numerical simulations. (paper)

  6. Strong Anderson localization in cold atom quantum quenches

    OpenAIRE

    Micklitz, T.; Müller, C. A.; Altland, A.

    2013-01-01

    Signatures of strong Anderson localization in the momentum distribution of a cold atom cloud after a quantum quench are studied. We consider a quasi one-dimensional cloud initially prepared in a well defined momentum state, and expanding for some time in a disorder speckle potential. Anderson localization leads to a formation of a coherence peak in the \\emph{forward} scattering direction (as opposed to the common weak localization backscattering peak). We present a microscopic, and fully time...

  7. Anderson localization of light near boundaries of disordered photonic lattices

    International Nuclear Information System (INIS)

    Jovic, Dragana M.; Kivshar, Yuri S.; Denz, Cornelia; Belic, Milivoj R.

    2011-01-01

    We study numerically the effect of boundaries on Anderson localization of light in truncated two-dimensional photonic lattices in a nonlinear medium. We demonstrate suppression of Anderson localization at the edges and corners, so that stronger disorder is needed near the boundaries to obtain the same localization as in the bulk. We find that the level of suppression depends on the location in the lattice (edge vs corner), as well as on the strength of disorder. We also discuss the effect of nonlinearity on various regimes of Anderson localization.

  8. Many-body Anderson localization of strongly interacting bosons in random lattices

    International Nuclear Information System (INIS)

    Katzer, Roman

    2015-05-01

    In the present work, we investigate the problem of many-body localization of strongly interacting bosons in random lattices within the disordered Bose-Hubbard model. This involves treating both the local Mott-Hubbard physics as well as the non-local quantum interference processes, which give rise to the phenomenon of Anderson localization, within the same theory. In order to determine the interaction induced transition to the Mott insulator phase, it is necessary to treat the local particle interaction exactly. Therefore, here we use a mean-field approach that approximates only the kinetic term of the Hamiltonian. This way, the full problem of interacting bosons on a random lattice is reduced to a local problem of a single site coupled to a particle bath, which has to be solved self-consistently. In accordance to previous works, we find that a finite disorder width leads to a reduced size of the Mott insulating regions. The transition from the superfluid phase to the Bose glass phase is driven by the non-local effect of Anderson localization. In order to describe this transition, one needs to work within a theory that is non-local as well. Therefore, here we introduce a new approach to the problem. Based on the results for the local excitation spectrum obtained within the mean-field theory, we reduce the full, interacting model to an effective, non-interacting model by applying a truncation scheme to the Hilbert space. Evaluating the long-ranged current density within this approximation, we identify the transition from the Bose glass to the superfluid phase with the Anderson transition of the effective model. Resolving this transition using the self-consistent theory of localization, we obtain the full phase diagram of the disordered Bose-Hubbard model in the regime of strong interaction and larger disorder. In accordance to the theorem of inclusions, we find that the Mott insulator and the superfluid phase are always separated by the compressible, but insulating

  9. Probing the statistical properties of Anderson localization with quantum emitters

    DEFF Research Database (Denmark)

    Smolka, Stephan; Nielsen, Henri Thyrrestrup; Sapienza, Luca

    2011-01-01

    experiments by measuring the intensity of an external light source after propagation through a disordered medium. However, discriminating between Anderson localization and losses in these experiments remains a major challenge. In this paper, we present an alternative approach where we use quantum emitters...... of disorder induced in the photonic crystal, we observe a pronounced increase in the localization length that is attributed to changes in the local density of states, a behavior that is in stark contrast to entirely random systems. The analysis may pave the way for accurate models and the control of Anderson......Wave propagation in disordered media can be strongly modified by multiple scattering and wave interference. Ultimately, the so-called Anderson-localized regime is reached when the waves become strongly confined in space. So far, Anderson localization of light has been probed in transmission...

  10. Strong Anderson localization in cold atom quantum quenches.

    Science.gov (United States)

    Micklitz, T; Müller, C A; Altland, A

    2014-03-21

    Signatures of Anderson localization in the momentum distribution of a cold atom cloud after a quantum quench are studied. We consider a quasi-one-dimensional cloud initially prepared in a well-defined momentum state, and expanding for some time in a disorder speckle potential. Quantum interference generates a peak in the forward scattering amplitude which, unlike the common weak localization backscattering peak, is a signature of strong Anderson localization. We present a nonperturbative, and fully time resolved description of the phenomenon, covering the entire diffusion-to-localization crossover. Our results should be observable by present day experiments.

  11. Cavity quantum electrodynamics in the Anderson-localized regime

    DEFF Research Database (Denmark)

    Sapienza, Luca; Nielsen, Henri Thyrrestrup; Stobbe, Søren

    2010-01-01

    We experimentally measure, by means of time-resolved photoluminescence spectroscopy, a 15-fold enhancement of the spontaneous emission decay rate of single semiconductor quantum dots coupled to disorder-induced Anderson-localized modes with efficiencies reaching 94%.......We experimentally measure, by means of time-resolved photoluminescence spectroscopy, a 15-fold enhancement of the spontaneous emission decay rate of single semiconductor quantum dots coupled to disorder-induced Anderson-localized modes with efficiencies reaching 94%....

  12. Two-photon Anderson localization in a disordered quadratic waveguide array

    International Nuclear Information System (INIS)

    Bai, Y F; Xu, P; Lu, L L; Zhong, M L; Zhu, S N

    2016-01-01

    We theoretically investigate two-photon Anderson localization in a χ (2) waveguide array with off-diagonal disorder. The nonlinear parametric down-conversion process would enhance both the single-photon and the two-photon Anderson localization. In the strong disorder regime, the two-photon position correlation exhibits a bunching distribution around the pumped waveguides, which is independent of pumping conditions and geometrical structures of waveguide arrays. Quadratic nonlinearity can be supplied as a new ingredient for Anderson localization. Also, our results pave the way for engineering quantum states through nonlinear quantum walks. (paper)

  13. Effect of coulomb interaction on Anderson localization; Effet de l'interaction coulombienne sur la localisation d'Anderson dans des systemes de basses dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Waintal, X

    1999-09-10

    We study the quantum mechanics of interacting particles in a disordered system, and in particular, what happens to Anderson localisation when interaction is taken into account. In the first part,one looks at the excited states of two particles in one dimension. For this model, it has been shown (Shepelyansky 1994) that a local repulsive interaction can partially destroy Anderson localisation. Here, we show that this model has similarities with the three-dimensional Anderson model at the metal-insulator transition. In particular, the maximum of rigidity obtained in the spectral statistics correspond to some intermediary statistics that cannot be described by random matrix theory neither by a Poisson statistics. The wave functions show a multifractal behaviour and the spreading of the center of mass of a wave packet is logarithmic in time. The second part deals with the ground state of a finite density of spinless fermions in two dimensions. After the scaling theory of localisation, it was commonly accepted that there was no metal in two dimensions. This idea has been challenged by the observation of a metal-insulator transition in low density electron gas (Kravchenko et al. 1994). We propose a scenario in which a metallic phase occurs between the Anderson insulator and the pinned Wigner crystal. This intermediate phase is characterized by an alignment of the local currents flowing in the system. (author)

  14. On the Anderson localization conjecture in Dusty Plasma

    Science.gov (United States)

    Liaw, Constanze; Busse, Kyle; Matthews, Lorin; Hyde, Truell

    2015-11-01

    In 1958, Anderson suggested that sufficiently large impurities in a semi-conductor could lead to spatial localization of electrons. This idea unfolded into the field of Anderson Localization, one of the most fascinating phenomena in solid-state physics as it plays a major role in the conductive properties of imperfectly ordered materials. The Anderson Localization Conjecture claims that random disorder of any strength causes localization of electrons in the medium. The problem has proven to be highly non-trivial. Over the years the community has argued whether spatial localization occurs in 2D for small impurities. From a mathematical standpoint, the conjecture is still considered an open question. In 2013, Liaw challenged the commonly held assumption that localization holds in 2D by introducing a new mathematically more rigorous method to test for extended states, and applying it to the discrete random Schrödinger operator. One of the advantages of the underlying method is its versatility. It can be applied to any ordered system such as colloids, crystals, and atomic lattices. In a cross-disciplinary effort we merge this method with a numerical code used to simulate 2D physics systems, in preparation for experimentally testing the theory against complex plasma crystals.

  15. Random nanolasing in the Anderson localized regime

    DEFF Research Database (Denmark)

    Liu, Jin; Garcia, P. D.; Ek, Sara

    2014-01-01

    The development of nanoscale optical devices for classical and quantum photonics is affected by unavoidable fabrication imperfections that often impose performance limitations. However, disorder may also enable new functionalities, for example in random lasers, where lasing relies on random...... multiple scattering. The applicability of random lasers has been limited due to multidirectional emission, lack of tunability, and strong mode competition with chaotic fluctuations due to a weak mode confinement. The regime of Anderson localization of light has been proposed for obtaining stable multimode...... random lasing, and initial work concerned macroscopic one-dimensional layered media. Here, we demonstrate on-chip random nanolasers where the cavity feedback is provided by the intrinsic disorder. The strong confinement achieved by Anderson localization reduces the spatial overlap between lasing modes...

  16. Quantum-classical correspondence in multimensional nonlinear systems: Anderson localization and "superdiffusive" solitons

    KAUST Repository

    Brambila, Danilo; Fratalocchi, Andrea

    2012-01-01

    We have theoretically studied Anderson localization in a 2D+1 nonlinear kicked rotor model. The system shows a very rich dynamical behavior, where the Anderson localization is suppressed and soliton wave-particles undergo a superdiffusive motion.

  17. Interplay of Anderson localization and strong interaction in disordered systems

    Energy Technology Data Exchange (ETDEWEB)

    Henseler, Peter

    2010-01-15

    We study the interplay of disorder localization and strong local interactions within the Anderson-Hubbard model. Taking into account local Mott-Hubbard physics and static screening of the disorder potential, the system is mapped onto an effective single-particle Anderson model, which is studied within the self-consistent theory of electron localization. For fermions, we find rich nonmonotonic behavior of the localization length {xi}, particularly in two-dimensional systems, including an interaction-induced exponential enhancement of {xi} for small and intermediate disorders and a strong reduction of {xi} due to hopping suppression by strong interactions. In three dimensions, we identify for half filling a Mott-Hubbard-assisted Anderson localized phase existing between the metallic and the Mott-Hubbard-gapped phases. For small U there is re-entrant behavior from the Anderson localized phase to the metallic phase. For bosons, the unrestricted particle occupation number per lattice site yields a monotonic enhancement of {xi} as a function of decreasing interaction, which we assume to persist until the superfluid Bose-Einstein condensate phase is entered. Besides, we study cold atomic gases expanding, by a diffusion process, in a weak random potential. We show that the density-density correlation function of the expanding gas is strongly affected by disorder and we estimate the typical size of a speckle spot, i.e., a region of enhanced or depleted density. Both a Fermi gas and a Bose-Einstein condensate (in a mean-field approach) are considered. (orig.)

  18. Interplay of Anderson localization and strong interaction in disordered systems

    International Nuclear Information System (INIS)

    Henseler, Peter

    2010-01-01

    We study the interplay of disorder localization and strong local interactions within the Anderson-Hubbard model. Taking into account local Mott-Hubbard physics and static screening of the disorder potential, the system is mapped onto an effective single-particle Anderson model, which is studied within the self-consistent theory of electron localization. For fermions, we find rich nonmonotonic behavior of the localization length ξ, particularly in two-dimensional systems, including an interaction-induced exponential enhancement of ξ for small and intermediate disorders and a strong reduction of ξ due to hopping suppression by strong interactions. In three dimensions, we identify for half filling a Mott-Hubbard-assisted Anderson localized phase existing between the metallic and the Mott-Hubbard-gapped phases. For small U there is re-entrant behavior from the Anderson localized phase to the metallic phase. For bosons, the unrestricted particle occupation number per lattice site yields a monotonic enhancement of ξ as a function of decreasing interaction, which we assume to persist until the superfluid Bose-Einstein condensate phase is entered. Besides, we study cold atomic gases expanding, by a diffusion process, in a weak random potential. We show that the density-density correlation function of the expanding gas is strongly affected by disorder and we estimate the typical size of a speckle spot, i.e., a region of enhanced or depleted density. Both a Fermi gas and a Bose-Einstein condensate (in a mean-field approach) are considered. (orig.)

  19. Cavity quantum electrodynamics with Anderson-localized modes

    DEFF Research Database (Denmark)

    Sapienza, Luca; Nielsen, Henri Thyrrestrup; Stobbe, Søren

    2010-01-01

    by a factor of 15 on resonance with the Anderson-localized mode, and 94% of the emitted single photons coupled to the mode. Disordered photonic media thus provide an efficient platform for quantum electrodynamics, offering an approach to inherently disorder-robust quantum information devices.......A major challenge in quantum optics and quantum information technology is to enhance the interaction between single photons and single quantum emitters. This requires highly engineered optical cavities that are inherently sensitive to fabrication imperfections. We have demonstrated a fundamentally...... different approach in which disorder is used as a resource rather than a nuisance. We generated strongly confined Anderson-localized cavity modes by deliberately adding disorder to photonic crystal waveguides. The emission rate of a semiconductor quantum dot embedded in the waveguide was enhanced...

  20. Image transport through a disordered optical fibre mediated by transverse Anderson localization

    Science.gov (United States)

    Karbasi, Salman; Frazier, Ryan J.; Koch, Karl W.; Hawkins, Thomas; Ballato, John; Mafi, Arash

    2014-02-01

    Transverse Anderson localization of light allows localized optical-beam-transport through a transversely disordered and longitudinally invariant medium. Its successful implementation in disordered optical fibres recently resulted in the propagation of localized beams of radii comparable to that of conventional optical fibres. Here we demonstrate optical image transport using transverse Anderson localization of light. The image transport quality obtained in the polymer disordered optical fibre is comparable to or better than some of the best commercially available multicore image fibres with less pixelation and higher contrast. It is argued that considerable improvement in image transport quality can be obtained in a disordered fibre made from a glass matrix with near wavelength-size randomly distributed air-holes with an air-hole fill-fraction of 50%. Our results open the way to device-level implementation of the transverse Anderson localization of light with potential applications in biological and medical imaging.

  1. Destruction of Anderson localization by nonlinearity in kicked rotator at different effective dimensions

    International Nuclear Information System (INIS)

    Ermann, L; Shepelyansky, D L

    2014-01-01

    We study numerically the frequency modulated kicked nonlinear rotator with effective dimension d=1,2,3,4. We follow the time evolution of the model up to 10 9 kicks and determine the exponent α of subdiffusive spreading which changes from 0.35 to 0.5 when the dimension changes from d = 1 to 4. All results are obtained in a regime of relatively strong Anderson localization well below the Anderson transition point existing for d = 3, 4. We explain that this variation of the exponent is different from the usual d− dimensional Anderson models with local nonlinearity where α drops with increasing d. We also argue that the renormalization arguments proposed by Cherroret N et al (arXiv:1401.1038) are not valid for this model and the Anderson model with local nonlinearity in d = 3. (paper)

  2. Anderson localization and ballooning eigenfunctions

    International Nuclear Information System (INIS)

    Dewar, R.L.; Cuthbert, P.

    1999-01-01

    In solving the ballooning eigenvalue for a low-aspect-ratio stellarator equilibrium it is found that the quasiperiodic behaviour of the equilibrium quantities along a typical magnetic field line can lead to localization of the ballooning eigenfunction (Anderson localization) even in the limit of zero shear. This localization leads to strong field-line dependence of the ballooning eigenvalue, with different branches attaining their maximum growth rates on different field lines. A method is presented of estimating the field-line dependence of various eigenvalue branches by using toroidal and poloidal symmetry operations on the shear-free ballooning equation to generate an approximate set of eigenfunctions. These zero-shear predictions are compared with accurate numerical solutions for the H-1 Heliac and are shown to give a qualitatively correct picture, but finite shear corrections will be needed to give quantitative predictions

  3. Anderson Localization from the Berry-Curvature Interchange in Quantum Anomalous Hall Systems

    Science.gov (United States)

    Han, Yulei; Qiao, Zhenhua

    In this talk, we theoretically investigate the localization mechanism of the quantum anomalous Hall effect (QAHE) in the presence of spin-flip disorders. We show that the QAHE stays quantized at weak disorders, then enters a Berry-curvature mediated metallic phase at moderate disorders, and finally goes into the Anderson insulating phase at strong disorders. From the phase diagram, we find that at the charge neutrality point although the QAHE is most robust against disorders, the corresponding metallic phase is much easier to be localized into the Anderson insulating phase due to the interchange of Berry curvatures carried, respectively, by the conduction and valence bands. In the end, we provide a phenomenological picture related to the topological charges to better understand the underlying physical origin of the QAHE Anderson localization.

  4. Permittivity disorder induced Anderson localization in magnetophotonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Abdi-Ghaleh, R., E-mail: r.abdi@bonabu.ac.ir [Department of Laser and Optical Engineering, University of Bonab, 5551761167 Bonab (Iran, Islamic Republic of); Namdar, A. [Faculty of Physics, University of Tabriz, 5166614766 Tabriz (Iran, Islamic Republic of)

    2016-11-15

    This theoretical study was carried out to investigate the permittivity disorder induced Anderson localization of light in one-dimensional magnetophotonic crystals. It was shown that the disorder create the resonant transmittance modes associated with enhanced Faraday rotations inside the photonic band gap. The average localization length of the right- and left-handed circular polarizations (RCP and LCP), the total transmittance together with the ensemble average of the RCP and LCP phases, and the Faraday rotation of the structure were also investigated. For this purpose, the off-diagonal elements of the permittivity tensor were varied for various wavelengths of incident light. The obtained results revealed the nonreciprocal property of circular eigen modes. This study can potentially open up a new aspect for utilizing the disorder magnetophotonic structures in nonreciprocal systems such as isolators and circulators. - Highlights: • We theoretically investigated the permittivity disorder induced Anderson localization of light in magnetophotonic crystals. • The disorder considered in the diagonal elements of the permittivity tensor of magneto-optical layers. • The disorder create the resonant transmittance modes associated with enhanced Faraday rotations in the photonic band gap. • The average localization length of the circular polarizations and the ensemble average of their phases were investigated. • The obtained results revealed the nonreciprocal property of circular eigen modes.

  5. Wigner-like crystallization of Anderson-localized electron systems with low electron densities

    CERN Document Server

    Slutskin, A A; Pepper, M

    2002-01-01

    We consider an electron system under conditions of strong Anderson localization, taking into account interelectron long-range Coulomb repulsion. We establish that at sufficiently low electron densities and sufficiently low temperatures the Coulomb electron interaction brings about ordering of the Anderson-localized electrons into a structure that is close to an ideal (Wigner) crystal lattice, provided the dimension of the system is > 1. This Anderson-Wigner glass (AWG) is a new macroscopic electron state that, on the one hand, is beyond the conventional Fermi glass concept, and on the other hand, qualitatively differs from the known 'plain' Wigner glass (inherent in self-localized electron systems) in that the random slight electron displacements from the ideal crystal sites essentially depend on the electron density. With increasing electron density the AWG is found to turn into the plain Wigner glass or Fermi glass, depending on the width of the random spread of the electron levels. It is shown that the res...

  6. Controlling Anderson localization in disordered photonic crystal waveguides

    DEFF Research Database (Denmark)

    Garcia-Fernández, David; Smolka, Stephan; Stobbe, Søren

    2010-01-01

    Quantum optics and quantum information technologies require enhancement of light-matter interaction by, for example, confining light in a small volume. A very recently demonstrated route towards light confinement makes use of multiple scattering of light and wave interference in disordered photonic...... structures [1,2]. Originally proposed for electrons by P. W. Anderson [3], only completely random systems without any long-range correlation between the scattering sites have been used so far, meaning that the Anderson-localized modes cannot be controlled. In disordered photonic crystals, these modes...... denoted by ng. By coupling light into a PCW with a tapered fiber (Fig. 1a), we have measured the ensemble-averaged exponential decay of the light distribution in the range 885 nm

  7. Integrals of motion for one-dimensional Anderson localized systems

    International Nuclear Information System (INIS)

    Modak, Ranjan; Mukerjee, Subroto; Yuzbashyan, Emil A; Shastry, B Sriram

    2016-01-01

    Anderson localization is known to be inevitable in one-dimension for generic disordered models. Since localization leads to Poissonian energy level statistics, we ask if localized systems possess ‘additional’ integrals of motion as well, so as to enhance the analogy with quantum integrable systems. We answer this in the affirmative in the present work. We construct a set of nontrivial integrals of motion for Anderson localized models, in terms of the original creation and annihilation operators. These are found as a power series in the hopping parameter. The recently found Type-1 Hamiltonians, which are known to be quantum integrable in a precise sense, motivate our construction. We note that these models can be viewed as disordered electron models with infinite-range hopping, where a similar series truncates at the linear order. We show that despite the infinite range hopping, all states but one are localized. We also study the conservation laws for the disorder free Aubry–Andre model, where the states are either localized or extended, depending on the strength of a coupling constant. We formulate a specific procedure for averaging over disorder, in order to examine the convergence of the power series. Using this procedure in the Aubry–Andre model, we show that integrals of motion given by our construction are well-defined in localized phase, but not so in the extended phase. Finally, we also obtain the integrals of motion for a model with interactions to lowest order in the interaction. (paper)

  8. Anderson localization and momentum-space entanglement

    International Nuclear Information System (INIS)

    Andrade, Eric C; Steudtner, Mark; Vojta, Matthias

    2014-01-01

    We consider Anderson localization and the associated metal–insulator transition for non-interacting fermions in D = 1, 2 space dimensions in the presence of spatially correlated on-site random potentials. To assess the nature of the wave function, we follow a recent proposal to study momentum-space entanglement. For a D = 1 model with long-range disorder correlations, both the entanglement spectrum and the entanglement entropy allow us to clearly distinguish between extended and localized states based upon a single realization of disorder. However, for other models, including the D = 2 case with long-range correlated disorder, we find that the method is not similarly successful. We analyze the reasons for its failure, concluding that the much desired generalization to higher dimensions may be problematic. (paper)

  9. Wigner-like crystallization of Anderson-localized electron systems with low electron densities

    International Nuclear Information System (INIS)

    Slutskin, A.A.; Kovtun, H.A.; Pepper, M.

    2002-01-01

    We consider an electron system under conditions of strong Anderson localization, taking into account interelectron long-range Coulomb repulsion. We establish that at sufficiently low electron densities and sufficiently low temperatures the Coulomb electron interaction brings about ordering of the Anderson-localized electrons into a structure that is close to an ideal (Wigner) crystal lattice, provided the dimension of the system is > 1. This Anderson-Wigner glass (AWG) is a new macroscopic electron state that, on the one hand, is beyond the conventional Fermi glass concept, and on the other hand, qualitatively differs from the known 'plain' Wigner glass (inherent in self-localized electron systems) in that the random slight electron displacements from the ideal crystal sites essentially depend on the electron density. With increasing electron density the AWG is found to turn into the plain Wigner glass or Fermi glass, depending on the width of the random spread of the electron levels. It is shown that the residual disorder of the AWG is characterized by a multi-valley ground-state degeneracy akin to that in a spin glass. Some general features of the AWG are discussed, and a new conduction mechanism of a creep type is predicted

  10. All-solid-state cavity QED using Anderson-localized modes in disordered photonic crystal waveguides

    DEFF Research Database (Denmark)

    Lodahl, Peter; Sapienza, Luca; Nielsen, Henri Thyrrestrup

    2010-01-01

    We employ Anderson-localized modes in deliberately disordered photonic crystal waveguides to confine light and enhance the interaction with matter. A 15-fold enhancement of the decay rate of a single quantum dot is observed meaning that 94% of the emitted single photons are coupled to an Anderson...

  11. Mott-Hubbard transition and Anderson localization: A generalized dynamical mean-field theory approach

    International Nuclear Information System (INIS)

    Kuchinskii, E. Z.; Nekrasov, I. A.; Sadovskii, M. V.

    2008-01-01

    The DOS, the dynamic (optical) conductivity, and the phase diagram of a strongly correlated and strongly disordered paramagnetic Anderson-Hubbard model are analyzed within the generalized dynamical mean field theory (DMFT + Σ approximation). Strong correlations are taken into account by the DMFT, and disorder is taken into account via an appropriate generalization of the self-consistent theory of localization. The DMFT effective single-impurity problem is solved by a numerical renormalization group (NRG); we consider the three-dimensional system with a semielliptic DOS. The correlated metal, Mott insulator, and correlated Anderson insulator phases are identified via the evolution of the DOS and dynamic conductivity, demonstrating both the Mott-Hubbard and Anderson metal-insulator transition and allowing the construction of the complete zero-temperature phase diagram of the Anderson-Hubbard model. Rather unusual is the possibility of a disorder-induced Mott insulator-to-metal transition

  12. Unified description of perturbation theory and band center anomaly in one-dimensional Anderson localization

    International Nuclear Information System (INIS)

    Kang, Kai; Qin, Shaojing; Wang, Chuilin

    2011-01-01

    We calculated numerically the localization length of one-dimensional Anderson model with diagonal disorder. For weak disorder, we showed that the localization length changes continuously as the energy changes from the band center to the boundary of the anomalous region near the band edge. We found that all the localization lengths for different disorder strengths and different energies collapse onto a single curve, which can be fitted by a simple equation. Thus the description of the perturbation theory and the band center anomaly were unified into this equation. -- Highlights: → We study the band center anomaly of one-dimensional Anderson localization. → We study numerically the Lyapunov exponent through a parametrization method of the transfer matrix. → We give a unified equation to describe the band center anomaly and perturbation theory.

  13. Chaos-assisted tunneling in the presence of Anderson localization.

    Science.gov (United States)

    Doggen, Elmer V H; Georgeot, Bertrand; Lemarié, Gabriel

    2017-10-01

    Tunneling between two classically disconnected regular regions can be strongly affected by the presence of a chaotic sea in between. This phenomenon, known as chaos-assisted tunneling, gives rise to large fluctuations of the tunneling rate. Here we study chaos-assisted tunneling in the presence of Anderson localization effects in the chaotic sea. Our results show that the standard tunneling rate distribution is strongly modified by localization, going from the Cauchy distribution in the ergodic regime to a log-normal distribution in the strongly localized case, for both a deterministic and a disordered model. We develop a single-parameter scaling description which accurately describes the numerical data. Several possible experimental implementations using cold atoms, photonic lattices, or microwave billiards are discussed.

  14. Topology vs. Anderson localization: non-perturbative solutions in one dimension

    OpenAIRE

    Altland, Alexander; Bagrets, Dmitry; Kamenev, Alex

    2014-01-01

    We present an analytic theory of quantum criticality in quasi one-dimensional topological Anderson insulators. We describe these systems in terms of two parameters $(g,\\chi)$ representing localization and topological properties, respectively. Certain critical values of $\\chi$ (half-integer for $\\Bbb{Z}$ classes, or zero for $\\Bbb{Z}_2$ classes) define phase boundaries between distinct topological sectors. Upon increasing system size, the two parameters exhibit flow similar to the celebrated t...

  15. Chiral phase transition and Anderson localization in the instanton liquid model for QCD

    International Nuclear Information System (INIS)

    Garcia-Garcia, Antonio M.; Osborn, James C.

    2006-01-01

    We study the spectrum and eigenmodes of the QCD Dirac operator in a gauge background given by an instanton liquid model (ILM) at temperatures around the chiral phase transition. Generically we find the Dirac eigenvectors become more localized as the temperature is increased. At the chiral phase transition, both the low lying eigenmodes and the spectrum of the QCD Dirac operator undergo a transition to localization similar to the one observed in a disordered conductor. This suggests that Anderson localization is the fundamental mechanism driving the chiral phase transition. We also find an additional temperature dependent mobility edge (separating delocalized from localized eigenstates) in the bulk of the spectrum which moves toward lower eigenvalues as the temperature is increased. In both regions, the origin and the bulk, the transition to localization exhibits features of a 3D Anderson transition including multifractal eigenstates and spectral properties that are well described by critical statistics. Similar results are obtained in both the quenched and the unquenched case though the critical temperature in the unquenched case is lower. Finally we argue that our findings are not in principle restricted to the ILM approximation and may also be found in lattice simulations

  16. Anderson localization through Polyakov loops: Lattice evidence and random matrix model

    International Nuclear Information System (INIS)

    Bruckmann, Falk; Schierenberg, Sebastian; Kovacs, Tamas G.

    2011-01-01

    We investigate low-lying fermion modes in SU(2) gauge theory at temperatures above the phase transition. Both staggered and overlap spectra reveal transitions from chaotic (random matrix) to integrable (Poissonian) behavior accompanied by an increasing localization of the eigenmodes. We show that the latter are trapped by local Polyakov loop fluctuations. Islands of such ''wrong'' Polyakov loops can therefore be viewed as defects leading to Anderson localization in gauge theories. We find strong similarities in the spatial profile of these localized staggered and overlap eigenmodes. We discuss possible interpretations of this finding and present a sparse random matrix model that reproduces these features.

  17. Localized superconductors

    International Nuclear Information System (INIS)

    Ma, M.; Lee, P.A.

    1985-01-01

    We study the effects of Anderson localization on superconductivity by using a Bardeen-Cooper-Schrieffer (BCS)-type trial wave function which pairs electrons in exact time-reversed eigenstates of the single-particle Hamiltonian. Within this approximation, and neglecting localization effects on the effective Coulomb repulsion and the electron-phonon coupling, we find that superconductivity persists below the mobility edge. In fact, Anderson's theorem is valid in the localized phase as long as rhoΔ 0 L/sup d/ > 1 (rho is the density of states averaged over +- Δ 0 of the Fermi energy, Δ 0 the BCS gap parameter, and L the localization length). Hence the gap order parameter Δ(r) remains uniform in space at the BCS value Δ 0 . The superfluid density and response to electromagnetic perturbations, however, show marked differences from the ''dirty superconductor'' regime. For rhoΔ 0 L/sup d/ < 1, Δ(r) fluctuates spatially and eventually drops to zero. In the limit when states are site localized, the system crosses over into the ''Anderson negative-U glass.'' Considerations beyond the trial wave-function approximation will speed up the destruction of superconductivity. The superconductor formed from localized states has the property that its quasiparticle excitations are also localized. Such excitations can be probed by observing the normal current in a tunneling junction

  18. Comment on 'Exact analytical solution for the generalized Lyapunov exponent of the two-dimensional Anderson localization'

    International Nuclear Information System (INIS)

    Markos, P; Schweitzer, L; Weyrauch, M

    2004-01-01

    In a recent publication, Kuzovkov et al (2002 J. Phys.: Condens. Matter. 14 13777) announced an analytical solution of the two-dimensional Anderson localization problem via the calculation of a generalized Lyapunov exponent using signal theory. Surprisingly, for certain energies and small disorder strength they observed delocalized states. We study the transmission properties of the same model using well-known transfer matrix methods. Our results disagree with the findings obtained using signal theory. We point to the possible origin of this discrepancy and comment on the general strategy of using a generalized Lyapunov exponent for studying Anderson localization. (comment)

  19. Density of states controls Anderson localization in disordered photonic crystal waveguides

    DEFF Research Database (Denmark)

    Garcia-Fernández, David; Smolka, Stephan; Stobbe, Søren

    2010-01-01

    We prove Anderson localization in a disordered photonic crystal waveguide by measuring the ensemble-averaged extinction mean-free path, ℓe, which is controlled by the dispersion in the photon density of states (DOS) of the photonic crystal waveguide. Except for the very low DOS case, where out......-of-plane losses are non-negligible, ℓe can be approximated to be the localization length ξ. The extinction mean-free path shows a fivefold variation between the low- and the high-DOS regime, and it becomes shorter than the sample length thus giving rise to strongly confined modes. The dispersive behavior of ℓe...

  20. The two-hole ground state of the Hubbard-Anderson model, approximated by a variational RVB-type wave function

    NARCIS (Netherlands)

    Traa, M.R.M.J.; Traa, M.R.M.J.; Caspers, W.J.; Caspers, W.J.; Banning, E.J.; Banning, E.J.

    1994-01-01

    In this paper the Hubbard-Anderson model on a square lattice with two holes is studied. The ground state (GS) is approximated by a variational RVB-type wave function. The holes interact by exchange of a localized spin excitation (SE), which is created or absorbed if a hole moves to a

  1. Probing Anderson localization of light by weak non-linear effects

    International Nuclear Information System (INIS)

    Sperling, T; Bührer, W; Maret, G; Ackermann, M; Aegerter, C M

    2014-01-01

    Breakdown of wave transport due to strong disorder is a universal phenomenon known as Anderson localization (AL). It occurs because of the macroscopic population of reciprocal multiple scattering paths, which in three dimensional systems happens at a critical scattering strength. Intensities on these random loops should thus be highly increased relative to those of a diffusive sample. In order to highlight localized modes of light, we exploit the optical nonlinearities of TiO 2 . Power dependent and spectrally resolved time of flight distribution measurements in transmission through slabs of TiO 2 powders at various turbidities reveal that mostly long loops are affected by nonlinearities and that the deviations from diffusive transport observed at long times are due to these localized modes. Our data are a first step in the experimental investigation of the interplay between nonlinear effects and AL in 3D. (fast track communication)

  2. Topology versus Anderson localization: Nonperturbative solutions in one dimension

    Science.gov (United States)

    Altland, Alexander; Bagrets, Dmitry; Kamenev, Alex

    2015-02-01

    We present an analytic theory of quantum criticality in quasi-one-dimensional topological Anderson insulators. We describe these systems in terms of two parameters (g ,χ ) representing localization and topological properties, respectively. Certain critical values of χ (half-integer for Z classes, or zero for Z2 classes) define phase boundaries between distinct topological sectors. Upon increasing system size, the two parameters exhibit flow similar to the celebrated two-parameter flow of the integer quantum Hall insulator. However, unlike the quantum Hall system, an exact analytical description of the entire phase diagram can be given in terms of the transfer-matrix solution of corresponding supersymmetric nonlinear sigma models. In Z2 classes we uncover a hidden supersymmetry, present at the quantum critical point.

  3. Quantum jumps on Anderson attractors

    Science.gov (United States)

    Yusipov, I. I.; Laptyeva, T. V.; Ivanchenko, M. V.

    2018-01-01

    In a closed single-particle quantum system, spatial disorder induces Anderson localization of eigenstates and halts wave propagation. The phenomenon is vulnerable to interaction with environment and decoherence that is believed to restore normal diffusion. We demonstrate that for a class of experimentally feasible non-Hermitian dissipators, which admit signatures of localization in asymptotic states, quantum particle opts between diffusive and ballistic regimes, depending on the phase parameter of dissipators, with sticking about localization centers. In a diffusive regime, statistics of quantum jumps is non-Poissonian and has a power-law interval, a footprint of intermittent locking in Anderson modes. Ballistic propagation reflects dispersion of an ordered lattice and introduces the second timescale for jumps, resulting in non-nonmonotonous probability distribution. Hermitian dephasing dissipation makes localization features vanish, and Poissonian jump statistics along with normal diffusion are recovered.

  4. Electron localization in liquid hydrocarbons: The Anderson model

    International Nuclear Information System (INIS)

    Hug, Gordon L.; Mozumder, A.

    2008-01-01

    Anderson's model is applied for initial localization in liquid hydrocarbons (particularly n-alkanes) in conjunction with certain results of scaling theory. Medium connectivity is calculated using experimental X-ray data on liquid structure, from which critical disorder (W/V) c is computed, where W is diagonal disorder and V is the transfer energy. Actual W prevailing in the liquid is computed from anisotropic molecular polarizability. V is estimated by a heuristic procedure originating in scaling theory. These values are used to compute the percentage of initially delocalized states available for low-energy electrons in alkane liquids. This percentage decreases monotonically from methane (100%) to n-pentane and beyond (0%). In ethane and propane, the initial states are highly delocalized (97.6% and 83.9%, respectively). Subsequent trapping changes the situation as evidenced in mobility studies. Butane presents a partially, intermediate delocalized case (53.2%)

  5. The Anderson model for electron localisation

    International Nuclear Information System (INIS)

    Pruisken, A.M.M.; Schaefer, L.

    1982-01-01

    The Anderson model for localisation problems is treated with field theory employing the replica trick. We show that no valid perturbation theory results out of the usual (S2)2 formalism due to mishandling of symmetries. The problem is reformulated in terms of matrix fields. It is shown that the Anderson model asymptotically exhibits an exact local gauge symmetry. Elimination of massive longitudinal components leads to a non-compact sigma model, obtained earlier for the description of electronic disorder. We thus establish that the Anderson model is in the same universality class as Wegner's gauge invariant real matrix model. (orig.)

  6. Classical diffusion, Anderson localization, and spectral statistics in billiard chains

    International Nuclear Information System (INIS)

    Dittrich, T.; Doron, E.; Smilansky, U.

    1993-03-01

    We study spectral properties of quasi one-dimensional extended systems that show deterministic diffusion on the classical level and Anderson localization in the quantal description. Using semiclassical arguments, we relate to universal aspects of the spectral fluctuations to features of the set of classical periodic orbits, expressed in terms of probability to perform periodic motion, that are likewise universal. This allows to derive an analytical expression for the spectral form factor which reflects the diffusive nature of the corresponding classical dynamics. It defines a novel spectral universality class which covers the transition between GOE statistics in the limit of a small ratio of the system size to the localization length, corresponding to the metallic regime of disordered systems, to Poissonian level fluctuations in the opposite limit. Our semiclassical predictions are illustrated and confirmed by a numerical investigation of aperiodic chains of chaotic billiards. (authors)

  7. Theoretical studies of Anderson impurity models

    International Nuclear Information System (INIS)

    Glossop, M.T.

    2000-01-01

    A Local Moment Approach (LMA) is developed for single-particle excitations of a symmetric single impurity Anderson model (SIAM) with a soft-gap hybridization vanishing at the Fermi level, Δ I ∝ vertical bar W vertical bar r with r > 0, and for the generic asymmetric case of the 'normal' (r = 0) SIAM. In all cases we work within a two-self-energy description with local moments introduced explicitly from the outset, and in which single-particle excitations are coupled dynamically to low-energy transverse spin fluctuations. For the soft-gap symmetric SIAM, the resultant theory is applicable on all energy scales, and captures both the spin-fluctuation regime of strong coupling (large-U), as well as the weak coupling regime where it is perturbatively exact for those r-domains in which perturbation theory in U is non-singular. While the primary emphasis is on single-particle dynamics, the quantum phase transition between strong coupling (SC) and local moment (LM) phases can also be addressed directly; for the spin-fluctuation regime in particular a number of asymptotically exact results are thereby obtained, notably for the behaviour of the critical U c (r) separating SC/LM states and the Kondo scale w m (r) characteristic of the SC phase. Results for both single-particle spectra and SG/LM phase boundaries are found to agree well with recent numerical renormalization group (NRG) studies; and a number of further testable predictions are made. Single-particle spectra are examined systematically for both SC and LM states; in particular, for all 0 ≤ r 0 SC phase which, in agreement with conclusions drawn from recent NRG work, may be viewed as a non-trivial but natural generalization of Fermi liquid physics. We also reinvestigate the problem via the NRG in light of the predictions arising from the LMA: all are borne out and excellent agreement is found. For the asymmetric single impurity Anderson model (ASIAM) we establish general conditions which must be satisfied

  8. Efficient numerical simulations of many-body localized systems

    Energy Technology Data Exchange (ETDEWEB)

    Pollmann, Frank [Max-Planck-Institut fuer Physik komplexer Systeme, 01187 Dresden (Germany); Khemani, Vedika; Sondhi, Shivaji [Physics Department, Princeton University, Princeton, NJ 08544 (United States)

    2016-07-01

    Many-body localization (MBL) occurs in isolated quantum systems when Anderson localization persists in the presence of finite interactions. To understand this phenomenon, the development of new, efficient numerical methods to find highly excited eigenstates is essential. We introduce a variant of the density-matrix renormalization group (DMRG) method that obtains individual highly excited eigenstates of MBL systems to machine precision accuracy at moderate-large disorder. This method explicitly takes advantage of the local spatial structure characterizing MBL eigenstates.

  9. Kondo-Anderson transitions

    Science.gov (United States)

    Kettemann, S.; Mucciolo, E. R.; Varga, I.; Slevin, K.

    2012-03-01

    Dilute magnetic impurities in a disordered Fermi liquid are considered close to the Anderson metal-insulator transition (AMIT). Critical power-law correlations between electron wave functions at different energies in the vicinity of the AMIT result in the formation of pseudogaps of the local density of states. Magnetic impurities can remain unscreened at such sites. We determine the density of the resulting free magnetic moments in the zero-temperature limit. While it is finite on the insulating side of the AMIT, it vanishes at the AMIT, and decays with a power law as function of the distance to the AMIT. Since the fluctuating spins of these free magnetic moments break the time-reversal symmetry of the conduction electrons, we find a shift of the AMIT, and the appearance of a semimetal phase. The distribution function of the Kondo temperature TK is derived at the AMIT, in the metallic phase, and in the insulator phase. This allows us to find the quantum phase diagram in an external magnetic field B and at finite temperature T. We calculate the resulting magnetic susceptibility, the specific heat, and the spin relaxation rate as a function of temperature. We find a phase diagram with finite-temperature transitions among insulator, critical semimetal, and metal phases. These new types of phase transitions are caused by the interplay between Kondo screening and Anderson localization, with the latter being shifted by the appearance of the temperature-dependent spin-flip scattering rate. Accordingly, we name them Kondo-Anderson transitions.

  10. Anderson localization with second quantized fields in a coupled array of waveguides

    International Nuclear Information System (INIS)

    Thompson, Clinton; Vemuri, Gautam; Agarwal, G. S.

    2010-01-01

    We report a theoretical study of Anderson localization of nonclassical light in an array of waveguides in which neighboring waveguides are evanescently coupled and in which the disorder can be added in a controlled manner. We use squeezed light at the input to investigate the effects of nonclassicality and compare the results with those obtained by using conventional classical fields, such as a coherent field and a Gaussian field. Our results show that there is an enhancement in fluctuations of localized light due to the medium's disorder. We find superbunching of the localized light, which may be useful for enhancing the interaction between radiation and matter. Another important consequence of sub-Poissonian statistics of the incoming light is to quench the total fluctuations at the output. Finally, we show that as a result of the multiplicative noise in the problem, the output field is far from Gaussian even if the input is a coherent field.

  11. Commensurability effects in one-dimensional Anderson localization: Anomalies in eigenfunction statistics

    International Nuclear Information System (INIS)

    Kravtsov, V.E.; Yudson, V.I.

    2011-01-01

    Highlights: → Statistics of normalized eigenfunctions in one-dimensional Anderson localization at E = 0 is studied. → Moments of inverse participation ratio are calculated. → Equation for generating function is derived at E = 0. → An exact solution for generating function at E = 0 is obtained. → Relation of the generating function to the phase distribution function is established. - Abstract: The one-dimensional (1d) Anderson model (AM), i.e. a tight-binding chain with random uncorrelated on-site energies, has statistical anomalies at any rational point f=(2a)/(λ E ) , where a is the lattice constant and λ E is the de Broglie wavelength. We develop a regular approach to anomalous statistics of normalized eigenfunctions ψ(r) at such commensurability points. The approach is based on an exact integral transfer-matrix equation for a generating function Φ r (u, φ) (u and φ have a meaning of the squared amplitude and phase of eigenfunctions, r is the position of the observation point). This generating function can be used to compute local statistics of eigenfunctions of 1d AM at any disorder and to address the problem of higher-order anomalies at f=p/q with q > 2. The descender of the generating function P r (φ)≡Φ r (u=0,φ) is shown to be the distribution function of phase which determines the Lyapunov exponent and the local density of states. In the leading order in the small disorder we derived a second-order partial differential equation for the r-independent ('zero-mode') component Φ(u, φ) at the E = 0 (f=1/2 ) anomaly. This equation is nonseparable in variables u and φ. Yet, we show that due to a hidden symmetry, it is integrable and we construct an exact solution for Φ(u, φ) explicitly in quadratures. Using this solution we computed moments I m = N 2m > (m ≥ 1) for a chain of the length N → ∞ and found an essential difference between their m-behavior in the center-of-band anomaly and for energies outside this anomaly. Outside the

  12. Perfect absorption in nanotextured thin films via Anderson-localized photon modes

    Science.gov (United States)

    Aeschlimann, Martin; Brixner, Tobias; Differt, Dominik; Heinzmann, Ulrich; Hensen, Matthias; Kramer, Christian; Lükermann, Florian; Melchior, Pascal; Pfeiffer, Walter; Piecuch, Martin; Schneider, Christian; Stiebig, Helmut; Strüber, Christian; Thielen, Philip

    2015-10-01

    The enhancement of light absorption in absorber layers is crucial in a number of applications, including photovoltaics and thermoelectrics. The efficient use of natural resources and physical constraints such as limited charge extraction in photovoltaic devices require thin but efficient absorbers. Among the many different strategies used, light diffraction and light localization at randomly nanotextured interfaces have been proposed to improve absorption. Although already exploited in commercial devices, the enhancement mechanism for devices with nanotextured interfaces is still subject to debate. Using coherent two-dimensional nanoscopy and coherent light scattering, we demonstrate the existence of localized photonic states in nanotextured amorphous silicon layers as used in commercial thin-film solar cells. Resonant absorption in these states accounts for the enhanced absorption in the long-wavelength cutoff region. Our observations establish that Anderson localization—that is, strong localization—is a highly efficient resonant absorption enhancement mechanism offering interesting opportunities for the design of efficient future absorber layers.

  13. Anomalously suppressed localization in the two-channel Anderson model

    International Nuclear Information System (INIS)

    Nguyen, Ba Phi; Kim, Kihong

    2012-01-01

    We study numerically the localization properties of a two-channel quasi-one-dimensional Anderson model with uncorrelated diagonal disorder within the nearest-neighbor tight-binding approximation. We calculate and analyze the disorder-averaged transmittance and the Lyapunov exponent. We find that the localization of the entire system is enhanced by increasing the interchain hopping strength t-tilde. From the numerical investigation of the energy dependence of the Lyapunov exponent for many different interchain hopping strengths, we find that apart from the band center anomaly, which usually occurs in strictly one-dimensional disordered systems, additional anomalies appear at special spectral points. They are found to be associated with the interchain hopping strength and occur at E=± t-tilde/2 and ± t-tilde. We find that the anomalies at E=± t-tilde are associated with the π-coupling occurring within one energy band and those at E=± t-tilde/2 are associated with the π-coupling occurring between two different energy bands. Despite having a similar origin, these two anomalies have distinct characteristics in their dependence on the strength of disorder. We also show that for a suitable range of parameter values, effectively delocalized states are observed in finite-size systems. (paper)

  14. The Anderson localization problem, the Fermi-Pasta-Ulam paradox and the generalized diffusion approach

    Science.gov (United States)

    Kuzovkov, V. N.

    2011-12-01

    The goal of this paper is twofold. First, based on the interpretation of a quantum tight-binding model in terms of a classical Hamiltonian map, we consider the Anderson localization (AL) problem as the Fermi-Pasta-Ulam (FPU) effect in a modified dynamical system containing both stable and unstable (inverted) modes. Delocalized states in the AL are analogous to the stable quasi-periodic motion in FPU, whereas localized states are analogous to thermalization, respectively. The second aim is to use the classical Hamilton map for a simplified derivation of exact equations for the localization operator H(z). The latter was presented earlier (Kuzovkov et al 2002 J. Phys.: Condens. Matter 14 13777) treating the AL as a generalized diffusion in a dynamical system. We demonstrate that counter-intuitive results of our studies of the AL are similar to the FPU counter-intuitivity.

  15. The Anderson localization problem, the Fermi-Pasta-Ulam paradox and the generalized diffusion approach

    International Nuclear Information System (INIS)

    Kuzovkov, V N

    2011-01-01

    The goal of this paper is twofold. First, based on the interpretation of a quantum tight-binding model in terms of a classical Hamiltonian map, we consider the Anderson localization (AL) problem as the Fermi-Pasta-Ulam (FPU) effect in a modified dynamical system containing both stable and unstable (inverted) modes. Delocalized states in the AL are analogous to the stable quasi-periodic motion in FPU, whereas localized states are analogous to thermalization, respectively. The second aim is to use the classical Hamilton map for a simplified derivation of exact equations for the localization operator H(z). The latter was presented earlier (Kuzovkov et al 2002 J. Phys.: Condens. Matter 14 13777) treating the AL as a generalized diffusion in a dynamical system. We demonstrate that counter-intuitive results of our studies of the AL are similar to the FPU counter-intuitivity.

  16. Localizations in cellular automata with mutualistic excitation rules

    International Nuclear Information System (INIS)

    Adamatzky, Andrew

    2009-01-01

    Every cell of two-dimensional cellular automaton with eight-cell neighborhood takes three states: resting, excited and refractory, and updates excited to refractory and refractory to resting states unconditionally. A resting cell excites depending on number of excited and refractory neighbors. We made exhaustive study of spatio-temporal excitation dynamics for all rules of this type and selected several classes of rules. The classes supporting self-localizations are studied in details. We uncover basic types of mobile (gliders) and stationary localizations, and characterize their morphology and dynamics.

  17. Superdiffusive transport and energy localization in disordered granular crystals

    Science.gov (United States)

    Martínez, Alejandro J.; Kevrekidis, P. G.; Porter, Mason A.

    2016-02-01

    We study the spreading of initially localized excitations in one-dimensional disordered granular crystals. We thereby investigate localization phenomena in strongly nonlinear systems, which we demonstrate to differ fundamentally from localization in linear and weakly nonlinear systems. We conduct a thorough comparison of wave dynamics in chains with three different types of disorder—an uncorrelated (Anderson-like) disorder and two types of correlated disorders (which are produced by random dimer arrangements)—and for two types of initial conditions (displacement excitations and velocity excitations). We find for strongly precompressed (i.e., weakly nonlinear) chains that the dynamics depend strongly on the type of initial condition. In particular, for displacement excitations, the long-time asymptotic behavior of the second moment m˜2 of the energy has oscillations that depend on the type of disorder, with a complex trend that differs markedly from a power law and which is particularly evident for an Anderson-like disorder. By contrast, for velocity excitations, we find that a standard scaling m˜2˜tγ (for some constant γ ) applies for all three types of disorder. For weakly precompressed (i.e., strongly nonlinear) chains, m˜2 and the inverse participation ratio P-1 satisfy scaling relations m˜2˜tγ and P-1˜t-η , and the dynamics is superdiffusive for all of the cases that we consider. Additionally, when precompression is strong, the inverse participation ratio decreases slowly (with η disorder, and the dynamics leads to a partial localization around the core and the leading edge of a propagating wave packet. For an Anderson-like disorder, displacement perturbations lead to localization of energy primarily in the core, and velocity perturbations cause the energy to be divided between the core and the leading edge. This localization phenomenon does not occur in the sonic-vacuum regime, which yields the surprising result that the energy is no longer

  18. Dual nature of localization in guiding systems with randomly corrugated boundaries: Anderson-type versus entropic

    International Nuclear Information System (INIS)

    Tarasov, Yu.V.; Shostenko, L.D.

    2015-01-01

    coexist in waveguide-like systems with randomly corrugated boundaries, specifically, the entropic localization and the one-dimensional Anderson (disorder-driven) localization. If the particular mode propagates across the rough segment ballistically, the Fabry–Pérot-type oscillations should be observed in the conductance, which are suppressed for the mode transferred in the Anderson-localized regime

  19. Localized excitations and the geometry of the 1nπ* excited states of pyrazine

    International Nuclear Information System (INIS)

    Kleier, D.A.; Martin, R.L.; Wadt, W.R.; Moomaw, W.R.

    1982-01-01

    Previous theoretical work has shown that the lowest excited singlet state of pyrazine, the π* 1 B 3 u state, is best described in terms of interacting excitations localized on each nitrogen. The present work refines the localized excitation model and considers its implications for the geometry of the 1 B 3 u state. Hartree-Fock calculations show that the best single configuration description of the nπ* state has broken ( 1 B 1 ) symmetry with the excitation strongly localized at one end of the molcule. If the symmetry-restricted hf result is used for reference, this localization describes an important correlation effect. The excited-state geometry was probed using configuration interaction wave functions based on the symmetry-restricted orbitals, as well as properly symmetrized ''valance-bond'' wave functions based on the broken symmetry solutions. Both descriptions lead to a very flat potential for a b/sub 1u/ vibrational mode. This mode reduces the molecular geometry from D/sub 2h/ to C/sub 2v/. We present spectroscopic evidence of our own and of other workers which is consistent with such a flat potential

  20. Statistics of excitations in the electron glass model

    Science.gov (United States)

    Palassini, Matteo

    2011-03-01

    We study the statistics of elementary excitations in the classical electron glass model of localized electrons interacting via the unscreened Coulomb interaction in the presence of disorder. We reconsider the long-standing puzzle of the exponential suppression of the single-particle density of states near the Fermi level, by measuring accurately the density of states of charged and electron-hole pair excitations via finite temperature Monte Carlo simulation and zero-temperature relaxation. We also investigate the statistics of large charge rearrangements after a perturbation of the system, which may shed some light on the slow relaxation and glassy phenomena recently observed in a variety of Anderson insulators. In collaboration with Martin Goethe.

  1. Magnetoresistance Probe of Ultrathin Mn5Ge3 Films with Anderson Weak Localization

    International Nuclear Information System (INIS)

    Li-Jun, Chen; De-Yong, Wang; Qing-Feng, Zhan; Wei, He; Qing-An, Li

    2008-01-01

    We present the magnetoresistance measurements of ultrathin Mn 5 Ge 3 films with different thicknesses at low temperatures. Owing to the lattice mismatch between Mn 5 Ge 3 and Ge (111), the thickness of Mn 5 Ge 3 films has a significant effect on the magnetoresistance. When the thickness of Mn is more than 72 monolayers (MLs), the magnetoresistance of the Mn 5 Ge 3 films appears a peak at about 6kOe, which shows that the magnetoresistance results from the Anderson weak localization effect and the variable range hopping in the presence of a magnetic field. The magnetic and semiconducting properties indicate that the Mn 5 Ge 3 film is a potential material for spin injection. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  2. Non-Fermi liquid behaviour in an extended Anderson model

    International Nuclear Information System (INIS)

    Liu Yuliang; Su Zhaobin; Yu Lu.

    1996-08-01

    An extended Anderson model, including screening channels (non-hybridizing, but interacting with the local orbit), is studied within the Anderson-Yuval approach, originally devised for the single-chanell Kondo problem. By comparing the perturbation expansions of this model and a generalized resonant level model, the spin-spin correlation functions are calculated which show non-Fermi liquid exponent depending on the strength of the scattering potential. The relevance of this result to experiments in some heavy fermion systems is briefly discussed. (author). 31 refs

  3. Subwavelength Localization of Atomic Excitation Using Electromagnetically Induced Transparency

    Directory of Open Access Journals (Sweden)

    J. A. Miles

    2013-09-01

    Full Text Available We report an experiment in which an atomic excitation is localized to a spatial width that is a factor of 8 smaller than the wavelength of the incident light. The experiment utilizes the sensitivity of the dark state of electromagnetically induced transparency (EIT to the intensity of the coupling laser beam. A standing-wave coupling laser with a sinusoidally varying intensity yields tightly confined Raman excitations during the EIT process. The excitations, located near the nodes of the intensity profile, have a width of 100 nm. The experiment is performed using ultracold ^{87}Rb atoms trapped in an optical dipole trap, and atomic localization is achieved with EIT pulses that are approximately 100 ns long. To probe subwavelength atom localization, we have developed a technique that can measure the width of the atomic excitations with nanometer spatial resolution.

  4. Superdiffusive transport and energy localization in disordered granular crystals

    International Nuclear Information System (INIS)

    Martinez, Alejandro J.; Kevrekidis, Panagiotis G.; Porter, Mason A.

    2016-01-01

    We study the spreading of initially localized excitations in one-dimensional disordered granular crystals. We thereby investigate localization phenomena in strongly nonlinear systems, which we demonstrate to be fundamentally different from localization in linear and weakly nonlinear systems. We conduct a thorough comparison of wave dynamics in chains with three different types of disorder: an uncorrelated (Anderson-like) disorder and two types of correlated disorders (which are produced by random dimer arrangements), and for two families of initial conditions: displacement perturbations and velocity perturbations. We find for strongly precompressed (i.e., weakly nonlinear) chains that the dynamics strongly depends on the initial condition. Furthermore, for displacement perturbations, the long-time asymptotic behavior of the second moment m ~ 2 has oscillations that depend on the type of disorder, with a complex trend that is markedly different from a power law and which is particularly evident for an Anderson-like disorder

  5. Conductance fluctuations in a macroscopic 3-dimensional Anderson insulator

    International Nuclear Information System (INIS)

    Sanquer, M.

    1990-01-01

    We report magnetoconductance experiment on a amorphous Y x -Si 1-x alloy (∼0.3). which is an Anderson insulator where spin-orbit scattering is strong. Two principal and new features emerge from the data: the first one is an halving of the localization length by the application of a magnetic field of about 2.5 Teslas. This effect is predicted by a new approach of transport in Anderson insulators where basic symetry considerations are the most important ingredient. The second one is the observation of reproducible conductance fluctuations at very low temperature in this macroscopic 3 D amorphous material

  6. Steady-State Anderson Accelerated Coupling of Lattice Boltzmann and Navier–Stokes Solvers

    KAUST Repository

    Atanasov, Atanas

    2016-10-17

    We present an Anderson acceleration-based approach to spatially couple three-dimensional Lattice Boltzmann and Navier–Stokes (LBNS) flow simulations. This allows to locally exploit the computational features of both fluid flow solver approaches to the fullest extent and yields enhanced control to match the LB and NS degrees of freedom within the LBNS overlap layer. Designed for parallel Schwarz coupling, the Anderson acceleration allows for the simultaneous execution of both Lattice Boltzmann and Navier–Stokes solver. We detail our coupling methodology, validate it, and study convergence and accuracy of the Anderson accelerated coupling, considering three steady-state scenarios: plane channel flow, flow around a sphere and channel flow across a porous structure. We find that the Anderson accelerated coupling yields a speed-up (in terms of iteration steps) of up to 40% in the considered scenarios, compared to strictly sequential Schwarz coupling.

  7. Quantum entanglement of localized excited states at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Caputa, Paweł [Yukawa Institute for Theoretical Physics (YITP), Kyoto University,Kyoto 606-8502 (Japan); Nordita, KTH Royal Institute of Technology and Stockholm University,Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden); Simón, Joan; Štikonas, Andrius [School of Mathematics and Maxwell Institute for Mathematical Sciences,University of Edinburgh,King’s Buildings, Edinburgh EH9 3FD (United Kingdom); Takayanagi, Tadashi [Yukawa Institute for Theoretical Physics (YITP), Kyoto University,Kyoto 606-8502 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU),University of Tokyo,Kashiwa, Chiba 277-8582 (Japan)

    2015-01-20

    In this work we study the time evolutions of (Renyi) entanglement entropy of locally excited states in two dimensional conformal field theories (CFTs) at finite temperature. We consider excited states created by acting with local operators on thermal states and give both field theoretic and holographic calculations. In free field CFTs, we find that the growth of Renyi entanglement entropy at finite temperature is reduced compared to the zero temperature result by a small quantity proportional to the width of the localized excitations. On the other hand, in finite temperature CFTs with classical gravity duals, we find that the entanglement entropy approaches a characteristic value at late time. This behaviour does not occur at zero temperature. We also study the mutual information between the two CFTs in the thermofield double (TFD) formulation and give physical interpretations of our results.

  8. Statistics of anomalously localized states at the center of band E = 0 in the one-dimensional Anderson localization model

    International Nuclear Information System (INIS)

    Kravtsov, V E; Yudson, V I

    2013-01-01

    We consider the distribution function P(|ψ| 2 ) of the eigenfunction amplitude at the center-of-band (E = 0) anomaly in the one-dimensional tight-binding chain with weak uncorrelated on-site disorder (the one-dimensional Anderson model). The special emphasis is on the probability of the anomalously localized states (ALS) with |ψ| 2 much larger than the inverse typical localization length ℓ 0 . Using the recently found solution for the generating function Φ an (u, ϕ) we obtain the ALS probability distribution P(|ψ| 2 ) at |ψ| 2 ℓ 0 ≫ 1. As an auxiliary preliminary step, we found the asymptotic form of the generating function Φ an (u, ϕ) at u ≫ 1 which can be used to compute other statistical properties at the center-of-band anomaly. We show that at moderately large values of |ψ| 2 ℓ 0 , the probability of ALS at E = 0 is smaller than at energies away from the anomaly. However, at very large values of |ψ| 2 ℓ 0 , the tendency is inverted: it is exponentially easier to create a very strongly localized state at E = 0 than at energies away from the anomaly. We also found the leading term in the behavior of P(|ψ| 2 ) at small |ψ| 2 ≪ ℓ −1 0 and show that it is consistent with the exponential localization corresponding to the Lyapunov exponent found earlier by Kappus and Wegner. (paper)

  9. The effects of disorder and interactions on the Anderson transition in doped graphene

    International Nuclear Information System (INIS)

    Song Yun; Song Hongkang; Feng Shiping

    2011-01-01

    We undertake an exact numerical study of the effects of disorder on the Anderson localization of electronic states in graphene. Analyzing the scaling behaviors of inverse participation ratio and geometrically averaged density of states, we find that the Anderson metal-insulator transition can be introduced by the presence of quenched random disorder. In contrast with the conventional picture of localization, four mobility edges can be observed for the honeycomb lattice with specific disorder strength and impurity concentration. Considering the screening effects of interactions on disorder potentials, the experimental findings of the scale enlargements of puddles can be explained by reviewing the effects of both interactions and disorder.

  10. Spectral correlations in Anderson insulating wires

    Science.gov (United States)

    Marinho, M.; Micklitz, T.

    2018-01-01

    We calculate the spectral level-level correlation function of Anderson insulating wires for all three Wigner-Dyson classes. A measurement of its Fourier transform, the spectral form factor, is within reach of state-of-the-art cold atom quantum quench experiments, and we find good agreement with recent numerical simulations of the latter. Our derivation builds on a representation of the level-level correlation function in terms of a local generating function which may prove useful in other contexts.

  11. An Anderson-like model of the QCD chiral transition

    International Nuclear Information System (INIS)

    Giordano, Matteo; Kovács, Tamás G.; Pittler, Ferenc

    2016-01-01

    We study the problems of chiral symmetry breaking and eigenmode localisation in finite-temperature QCD by looking at the lattice Dirac operator as a random Hamiltonian. We recast the staggered Dirac operator into an unconventional three-dimensional Anderson Hamiltonian (“Dirac-Anderson Hamiltonian”) carrying internal degrees of freedom, with disorder provided by the fluctuations of the gauge links. In this framework, we identify the features relevant to chiral symmetry restoration and localisation of the low-lying Dirac eigenmodes in the ordering of the local Polyakov lines, and in the related correlation between spatial links across time slices, thus tying the two phenomena to the deconfinement transition. We then build a toy model based on QCD and on the Dirac-Anderson approach, replacing the Polyakov lines with spin variables and simplifying the dynamics of the spatial gauge links, but preserving the above-mentioned relevant dynamical features. Our toy model successfully reproduces the main features of the QCD spectrum and of the Dirac eigenmodes concerning chiral symmetry breaking and localisation, both in the ordered (deconfined) and disordered (confined) phases. Moreover, it allows us to study separately the roles played in the two phenomena by the diagonal and the off-diagonal terms of the Dirac-Anderson Hamiltonian. Our results support our expectation that chiral symmetry restoration and localisation of the low modes are closely related, and that both are triggered by the deconfinement transition.

  12. Disorder-induced localization of excitability in an array of coupled lasers

    Science.gov (United States)

    Lamperti, M.; Perego, A. M.

    2017-10-01

    We report on the localization of excitability induced by disorder in an array of coupled semiconductor lasers with a saturable absorber. Through numerical simulations we show that the exponential localization of excitable waves occurs if a certain critical amount of randomness is present in the coupling coefficients among the lasers. The results presented in this Rapid Communication demonstrate that disorder can induce localization in lattices of excitable nonlinear oscillators, and can be of interest in the study of photonics-based random networks, neuromorphic systems, and, by analogy, in biology, in particular, in the investigation of the collective dynamics of neuronal cell populations.

  13. Efficiency of local surface plasmon polariton excitation on ridges

    DEFF Research Database (Denmark)

    Radko, I.P.; Bozhevolnyi, S.I.; Brucoli, G.

    2008-01-01

    The issue of efficient local coupling of light into surface plasmon polariton (SPP) modes is an important concern in miniaturization of plasmonic components. Here we present experimental and numerical investigations of efficiency of local SPP excitation on gold ridges of rectangular profile...... positioned on a gold film. The excitation is accomplished by illuminating the metal surface normally with a focused laser beam. Wavelength dependence and dependence of the efficiency on geometrical parameters of ridges are examined. Using leakage radiation microscopy, the efficiency of ˜20% is demonstrated...

  14. Perturbation theory of the periodic Anderson lattice and superconductivity

    International Nuclear Information System (INIS)

    Geertsuma, W.

    1988-01-01

    In this paper the author develops a perturbation calculation of the second and fourth order interparticle interaction in band states, based on the Periodic Anderson Lattice. The author shows that 4th order interparticle interactions giving rise to the well known Kondo effect vanish in the superconducting ground state. This term survives in the presence of a magnetic field. Pair excitations can only give rise to an appreciable attractive contribution when the d states are less than half filled and the pair energy is near the Fermi level. The only important attractive interaction comes from the normal fourth order terms

  15. Localization of atomic excitation beyond the diffraction limit using electromagnetically induced transparency

    Science.gov (United States)

    Miles, J. A.; Das, Diptaranjan; Simmons, Z. J.; Yavuz, D. D.

    2015-09-01

    We experimentally demonstrate the localization of excitation between hyperfine ground states of 87Rb atoms to as small as λ /13 -wide spatial regions. We use ultracold atoms trapped in a dipole trap and utilize electromagnetically induced transparency (EIT) for the atomic excitation. The localization is achieved by combining a spatially varying coupling laser (standing wave) with the intensity dependence of EIT. The excitation is fast (150 ns laser pulses) and the dark-state fidelity can be made higher than 94% throughout the standing wave. Because the width of the localized regions is much smaller than the wavelength of the driving light, traditional optical imaging techniques cannot resolve the localized features. Therefore, to measure the excitation profile, we use an autocorrelation-like method where we perform two EIT sequences separated by a time delay, during which we move the standing wave.

  16. Localization of optical excitations on random surfaces: SNOM studies

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.

    1999-01-01

    Localization of optical excitations on nanostructured metal surfaces and fractal colloid silver aggregates are studied by using a scanning near-field optical microscope (SNOM). The SNOM images obtained in both configurations exhibit spatially localized (within 150 to 250 nm) light intensity...

  17. The Price-Anderson Act

    International Nuclear Information System (INIS)

    Jones, R.

    2000-01-01

    The Price-Anderson Act establishes nuclear liability law in the United States. First passed in 1957, it has influenced other nuclear liability legislation around the world. The insurer response the nuclear accident at Three Mile Island in 1979 demonstrates the application of the Act in a real life situation. The Price-Anderson Act is scheduled to be renewed in 2002, and the future use of commercial nuclear power in tge United States will be influenced by this renewal. (author)

  18. Perturbation expansion theory corrected from basis set superposition error. I. Locally projected excited orbitals and single excitations.

    Science.gov (United States)

    Nagata, Takeshi; Iwata, Suehiro

    2004-02-22

    The locally projected self-consistent field molecular orbital method for molecular interaction (LP SCF MI) is reformulated for multifragment systems. For the perturbation expansion, two types of the local excited orbitals are defined; one is fully local in the basis set on a fragment, and the other has to be partially delocalized to the basis sets on the other fragments. The perturbation expansion calculations only within single excitations (LP SE MP2) are tested for water dimer, hydrogen fluoride dimer, and colinear symmetric ArM+ Ar (M = Na and K). The calculated binding energies of LP SE MP2 are all close to the corresponding counterpoise corrected SCF binding energy. By adding the single excitations, the deficiency in LP SCF MI is thus removed. The results suggest that the exclusion of the charge-transfer effects in LP SCF MI might indeed be the cause of the underestimation for the binding energy. (c) 2004 American Institute of Physics.

  19. Disorder-induced trapping versus Anderson localization in Bose-Einstein condensates expanding in disordered potentials

    International Nuclear Information System (INIS)

    Sanchez-Palencia, L; Clement, D; Lugan, P; Bouyer, P; Aspect, A

    2008-01-01

    We theoretically investigate the localization of an expanding Bose-Einstein condensate (BEC) with repulsive atom-atom interactions in a disordered potential. We focus on the regime where the initial inter-atomic interactions dominate over the kinetic energy and the disorder. At equilibrium in a trapping potential and for the considered small disorder, the condensate shows a Thomas-Fermi shape modified by the disorder. When the condensate is released from the trap, a strong suppression of the expansion is obtained in contrast to the situation in a periodic potential with similar characteristics. This effect crucially depends on both the momentum distribution of the expanding BEC and the strength of the disorder. For strong disorder as in the experiments reported by Clement et al 2005 Phys. Rev. Lett. 95 170409 and Fort et al 2005 Phys. Rev. Lett. 95 170410, the suppression of the expansion results from the fragmentation of the core of the condensate and from classical reflections from large modulations of the disordered potential in the tails of the condensate. We identify the corresponding disorder-induced trapping scenario for which large atom-atom interactions and strong reflections from single modulations of the disordered potential play central roles. For weak disorder, the suppression of the expansion signals the onset of Anderson localization, which is due to multiple scattering from the modulations of the disordered potential. We compute analytically the localized density profile of the condensate and show that the localization crucially depends on the correlation function of the disorder. In particular, for speckle potentials the long-range correlations induce an effective mobility edge in 1D finite systems. Numerical calculations performed in the mean-field approximation support our analysis for both strong and weak disorder

  20. Local density approximation for exchange in excited-state density functional theory

    OpenAIRE

    Harbola, Manoj K.; Samal, Prasanjit

    2004-01-01

    Local density approximation for the exchange energy is made for treatment of excited-states in density-functional theory. It is shown that taking care of the state-dependence of the LDA exchange energy functional leads to accurate excitation energies.

  1. Variational theory of valence fluctuations: Ground states and quasiparticle excitations of the Anderson lattice model

    Science.gov (United States)

    Brandow, B. H.

    1986-01-01

    A variational study of ground states of the orbitally nondegenerate Anderson lattice model, using a wave function with one variational parameter per Bloch state k, has been extended to deal with essentially metallic systems having a nonintegral number of electrons per site. Quasiparticle excitations are obtained by direct appeal to Landau's original definition for interacting Fermi liquids, scrEqp(k,σ)=δEtotal/δn qp(k,σ). This approach provides a simple and explicit realization of the Luttinger picture of a periodic Fermi liquid. A close correspondence is maintained between the ``interacting'' (U=∞) system and the corresponding ``noninteracting'' (U=0) case, i.e., ordinary band theory; the result can be described as a renormalized band or renormalized hybridization theory. The occupation-number distribution for the conduction orbitals displays a finite discontinuity at the Fermi surface. If the d-f hybridization is nonzero throughout the Brillouin zone, the quasiparticle spectrum will always exhibit a gap, although this gap becomes exponentially small (i.e., of order TK) in the Kondo-lattice regime. In the ``ionic'' case with precisely two electrons per site, such a system may therefore exhibit an insulating (semiconducting) gap. The quasiparticle state density exhibits a prominent spike on each side of the spectral gap, just as in the elementary hybridization model (the U=0 case). For the metallic case, with a nonintegral number of electrons per site, the Fermi level falls within one of the two sharp density peaks. The effective mass at the Fermi surface tends to be very large; enhancements by a factor >~102 are quite feasible. The foregoing variational theory has also been refined by means of a trial wave function having two variational parameters per Bloch state k. The above qualitative features are all retained, with some quantitative differences, but there are also some qualitatively new features. The most interesting of these is the appearance, within

  2. Nonlinear localized excitations in magnets with a weak exchange interaction as a soliton problem

    International Nuclear Information System (INIS)

    Gvozdikova, M.V.; Kovalev, A.S.

    1998-01-01

    The spin dynamics of soliton-like localized excitations in a discrete ferromagnet chain with an easy axis anisotropy and a weak exchange interaction is studied. The connection of these excitations with longwave magnetic solitons is discussed. The localized excitation frequency dependence on exchange interaction is found for a fixed number of spin deviation. It is shown that this dependence modifies essentially when the exchange interaction becomes comparable with an anisotropy value

  3. Floor response spectra of WWER-1000, NPP Kozloduy generated from local seismic excitation

    International Nuclear Information System (INIS)

    Bojadziev, Z.; Kostov, M.

    1996-01-01

    The seismic review level characteristics for the Kozloduy NPP site were set to 0.2 g and a respective free field acceleration response spectra were derived after a profound site conformation project. Accordingly a separate investigation is recommended for local seismic excitation. The goals of the analyses are: to define the seismic motion characteristics from local seismic sources; to perform structural analyses and in-structure spectra generation for local seismic excitation; and to compare the forces (spectra) from local events with those generated as seismic design review basis

  4. Theoretical study of the dependence of single impurity Anderson model on various parameters within distributional exact diagonalization method

    Science.gov (United States)

    Syaina, L. P.; Majidi, M. A.

    2018-04-01

    Single impurity Anderson model describes a system consisting of non-interacting conduction electrons coupled with a localized orbital having strongly interacting electrons at a particular site. This model has been proven successful to explain the phenomenon of metal-insulator transition through Anderson localization. Despite the well-understood behaviors of the model, little has been explored theoretically on how the model properties gradually evolve as functions of hybridization parameter, interaction energy, impurity concentration, and temperature. Here, we propose to do a theoretical study on those aspects of a single impurity Anderson model using the distributional exact diagonalization method. We solve the model Hamiltonian by randomly generating sampling distribution of some conducting electron energy levels with various number of occupying electrons. The resulting eigenvalues and eigenstates are then used to define the local single-particle Green function for each sampled electron energy distribution using Lehmann representation. Later, we extract the corresponding self-energy of each distribution, then average over all the distributions and construct the local Green function of the system to calculate the density of states. We repeat this procedure for various values of those controllable parameters, and discuss our results in connection with the criteria of the occurrence of metal-insulator transition in this system.

  5. Geometrical foundations and results on a problem suggested in a paper by Anderson et al

    International Nuclear Information System (INIS)

    Gonzalez Gascon, F.; Moreno Insertis, F.; Rodriguez Camino, E.

    1978-01-01

    A global treatment is given to the problem proposed by Anderson et al. of finding second order differential equations not admitting pointlike transformations of symmetry but admitting families of local symmetries of non-pointlike character

  6. Localized hole effects in inner-shell excitation

    International Nuclear Information System (INIS)

    Rescigno, T.N.; Orel, A.E.

    1983-01-01

    Ab initio calculations of valence shell ionization potentials have shown that orbital relaxation and correlation differences usually make contributions of comparable magnitude. In marked contrast to this observation is the situation for deep core ionization, where correlation differences (approx. 1 eV) play a relatively minor role compared to orbital relaxation (approx. 20 eV). Theoretical calculations have shown that this relaxation is most easily described if the 1s-vacancy created by a K-shell excitation is allowed to localize on one of the atomic centers. For molecules possessing a center of inversion, this means that the molecular orbitals that best describe the final state do not transform as any irreducible representation of the molecular point group. Recent experimental work by Shaw, King, Read and Cvejanovic and by Stefani and coworkers has prompted us to carry out further calculations on N 2 , as well as analogous investigations of 1s/sub N/ → π* excitation in NO and N 2 O. The generalized oscillator strengths display a striking similarity and point to the essential correctness of the localized hole picture for N 2 . The theoretical calculations are briefly described, followed by a summary of the results and comparison to experiment, followed by a short discussion

  7. Parametric instabilities excited by localized pumps near the lower-hybrid frequency

    International Nuclear Information System (INIS)

    Kuo, Y.Y.; Chen, L.

    1976-04-01

    Parametric instabilities excited in non-uniform plasmas by spatially localized pump fields oscillating near the local lower-hybrid frequency are analytically investigated. Corresponding threshold conditions, temporal growth rates, and spatial amplification factors are obtained for the oscillating-two-stream instability and the decay instabilities due to nonlinear electron and ion Landau dampings

  8. Anomaly in the band centre of the one-dimensional Anderson model

    Science.gov (United States)

    Kappus, M.; Wegner, F.

    1981-03-01

    We calculate the density of states and various characteristic lengths of the one-dimensional Anderson model in the limit of weak disorder. All these quantities show anomalous fluctuations near the band centre. This has already been observed for the density of states in a different model by Gorkov and Dorokhov, and is in close agreement with a Monte-Carlo calculation for the localization length by Czycholl, Kramer and Mac-Kinnon.

  9. Momentum Distribution Functions in a One-Dimensional Extended Periodic Anderson Model

    Directory of Open Access Journals (Sweden)

    I. Hagymási

    2015-01-01

    Full Text Available We study the momentum distribution of the electrons in an extended periodic Anderson model, where the interaction, Ucf, between itinerant and localized electrons is taken into account. In the symmetric half-filled model, due to the increase of the interorbital interaction, the f electrons become more and more delocalized, while the itinerancy of conduction electrons decreases. Above a certain value of Ucf the f electrons become again localized together with the conduction electrons. In the less than half-filled case, we observe that Ucf causes strong correlations between the f electrons in the mixed valence regime.

  10. Numerical analysis of the Anderson localization

    International Nuclear Information System (INIS)

    Markos, P.

    2006-01-01

    The aim of this paper is to demonstrate, by simple numerical simulations, the main transport properties of disordered electron systems. These systems undergo the metal insulator transition when either Fermi energy crosses the mobility edge or the strength of the disorder increases over critical value. We study how disorder affects the energy spectrum and spatial distribution of electronic eigenstates in the diffusive and insulating regime, as well as in the critical region of the metal-insulator transition. Then, we introduce the transfer matrix and conductance, and we discuss how the quantum character of the electron propagation influences the transport properties of disordered samples. In the weakly disordered systems, the weak localization and anti-localization as well as the universal conductance fluctuation are numerically simulated and discussed. The localization in the one dimensional system is described and interpreted as a purely quantum effect. Statistical properties of the conductance in the critical and localized regimes are demonstrated. Special attention is given to the numerical study of the transport properties of the critical regime and to the numerical verification of the single parameter scaling theory of localization. Numerical data for the critical exponent in the orthogonal models in dimension 2 < d ≤ 5 are compared with theoretical predictions. We argue that the discrepancy between the theory and numerical data is due to the absence of the self-averaging of transmission quantities. This complicates the analytical analysis of the disordered systems. Finally, theoretical methods of description of weakly disordered systems are explained and their possible generalization to the localized regime is discussed. Since we concentrate on the one-electron propagation at zero temperature, no effects of electron-electron interaction and incoherent scattering are discussed in the paper (Author)

  11. Localization of nonlinear excitations in curved waveguides

    DEFF Research Database (Denmark)

    Gaididei, Yu. B.; Christiansen, Peter Leth; Kevrekidis, P. G.

    2005-01-01

    numerical simulations of the nonlinear problem and in this case localized excitations are found to persist. We found also interesting relaxational dynamics. Analogies of the present problem in context related to atomic physics and particularly to Bose–Einstein condensation are discussed.......Motivated by the examples of a curved waveguide embedded in a photonic crystal and cold atoms moving in a waveguide created by a spatially inhomogeneous electromagnetic field, we examine the effects of geometry in a 'quantum channel' of parabolic form. Starting with the linear case we derive exact...

  12. The topological Anderson insulator phase in the Kane-Mele model

    Science.gov (United States)

    Orth, Christoph P.; Sekera, Tibor; Bruder, Christoph; Schmidt, Thomas L.

    2016-04-01

    It has been proposed that adding disorder to a topologically trivial mercury telluride/cadmium telluride (HgTe/CdTe) quantum well can induce a transition to a topologically nontrivial state. The resulting state was termed topological Anderson insulator and was found in computer simulations of the Bernevig-Hughes-Zhang model. Here, we show that the topological Anderson insulator is a more universal phenomenon and also appears in the Kane-Mele model of topological insulators on a honeycomb lattice. We numerically investigate the interplay of the relevant parameters, and establish the parameter range in which the topological Anderson insulator exists. A staggered sublattice potential turns out to be a necessary condition for the transition to the topological Anderson insulator. For weak enough disorder, a calculation based on the lowest-order Born approximation reproduces quantitatively the numerical data. Our results thus considerably increase the number of candidate materials for the topological Anderson insulator phase.

  13. Spatially localized, temporally quasiperiodic, discrete nonlinear excitations

    International Nuclear Information System (INIS)

    Cai, D.; Bishop, A.R.; Gronbech-Jensen, N.

    1995-01-01

    In contrast to the commonly discussed discrete breather, which is a spatially localized, time-periodic solution, we present an exact solution of a discrete nonlinear Schroedinger breather which is a spatially localized, temporally quasiperiodic nonlinear coherent excitation. This breather is a multiple-soliton solution in the sense of the inverse scattering transform. A discrete breather of multiple frequencies is conceptually important in studies of nonlinear lattice systems. We point out that, for this breather, the incommensurability of its frequencies is a discrete lattice effect and these frequencies become commensurate in the continuum limit. To understand the dynamical properties of the breather, we also discuss its stability and its behavior in the presence of an external potential. Finally, we indicate how to obtain an exact N-soliton breather as a discrete generalization of the continuum multiple-soliton solution

  14. Local excitation of surface plasmon polaritons by second-harmonic generation in crystalline organic nanofibers

    DEFF Research Database (Denmark)

    Skovsen, Esben; Søndergaard, Thomas; Fiutowski, Jacek

    2012-01-01

    Coherent local excitation of surface plasmon polaritons (SPPs) by second-harmonic generation (SHG) in aligned crystalline organic functionalized para-phenylene nanofibers deposited on a thin silver film is demonstrated. The excited SPPs are characterized using angle-resolved leakage radiation...

  15. Lithuania 1940 / Herbert Foster Anderson

    Index Scriptorium Estoniae

    Foster Anderson, Herbert

    2004-01-01

    Stseenid Leedu ennesõjaaegsest pealinnast Kaunasest briti ärimehe H. Foster Andersoni silme läbi 1940. aastal. Lühikokkuvõte raamatust: Foster Anderson, Herbert. Borderline Russia. London : Cresset press, 1942

  16. Perturbation theory for Lyapunov exponents of an Anderson model on a strip

    CERN Document Server

    Schulz-Baldes, H

    2003-01-01

    It is proven that the localization length of an Anderson model on a strip of width $L$ is bounded above by $L/\\lambda^2$ for small values of the coupling constant $\\lambda$ of the disordered potential. For this purpose, a new formalism is developed in order to calculate the bottom Lyapunov exponent associated with random products of large symplectic matrices perturbatively in the coupling constant of the randomness.

  17. PWA90 Workshop : Marking the Scientific Accomplishments of Philip W. Anderson

    CERN Document Server

    Coleman, PIers; Kotliar, Gabi; Ong, Phuan; Stein, Daniel L; Yu, Clare; PWA90 : a lifetime of emergence

    2016-01-01

    In a remarkable career spanning more than six decades, Philip W Anderson has made many fundamental contributions to physics. As codified in his oft-quoted phrase "More is Different", Anderson has been the most forceful and persuasive proponent of the radical, but now ubiquitous, viewpoint of emergent phenomena: truly fundamental concepts that can and do emerge from studies of Nature at each layer of complexity or energy scale. Anderson's ideas have also extended deeply into other areas of physics, including the Anderson–Higgs mechanism and the dynamics of pulsars. PWA90: A Lifetime of Emergence is a volume of original scientific essays and personal reminiscences of Philip W Anderson by experts in the field, that were presented as part of "PWA90: Emergent Frontiers of Condensed Matter" meeting held at Princeton in December 2013 to highlight Anderson's contributions to physics.

  18. Universal Fluctuations in Spectra of Disordered Systems at the Anderson Transition

    OpenAIRE

    Zharekeshev, Isa Kh.; Kramer, Bernhard

    1995-01-01

    Using the level--spacing distribution and the total probability function of the numbers of levels in a given energy interval we analyze the crossover of the level statistics between the delocalized and the localized regimes. By numerically calculating the electron spectra of systems of up to $32^3$ lattice sites described by the Anderson Hamiltonian it is shown that the distribution $P(s)$ of neighboring spacings is {\\em scale- independent} at the metal-insulator transition. For large spacing...

  19. Investigation of Anderson lattice behavior in Yb1-xLuxAl3

    International Nuclear Information System (INIS)

    Bauer, E.D.; Booth, C.H.; Lawrence, J.M.; Hundley, M.F.; Sarrao, J.L.; Thompson, J.D.; Riseborough, P.S.; Ebihara, T.

    2003-01-01

    Measurements of magnetic susceptibility χ(T), specific heat C(T), Hall coefficient R H (T), and Yb valence ν = 2 + n f [f-occupation number n f (T) determined from Yb L 3 x-ray absorption measurements] were carried out on single crystals of Yb 1-x Lu x Al 3 . The low temperature anomalies observed in χ(T) and C(T) corresponding to an energy scale T coh ∼ 40 K in the intermediate valence, Kondo lattice compound YbAl 3 are suppressed by Lu concentrations as small as 5% suggesting these low-T anomalies are extremely sensitive to disorder and, therefore, are a true coherence effect. By comparing the temperature dependence of various physical quantities to the predictions of the Anderson Impurity Model, the slow crossover behavior observed in YbAl 3 , in which the data evolve from a low-temperature coherent, Fermi-liquid regime to a high temperature local moment regime more gradually than predicted by the Anderson Impurity Model, appears to evolve to fast crossover behavior at x ∼ 0.7 where the evolution is more rapid than predicted. These two phenomena found in Yb 1-x Lu x Al 3 , i.e., the low-T anomalies and the slow/fast crossover behavior are discussed in relation to recent theories of the Anderson lattice

  20. Localized excitations in nonlinear complex systems current state of the art and future perspectives

    CERN Document Server

    Cuevas-Maraver, Jesús; Frantzeskakis, Dimitri; Karachalios, Nikos; Kevrekidis, Panayotis; Palmero-Acebedo, Faustino

    2014-01-01

    The study of nonlinear localized excitations is a long-standing challenge for research in basic and applied science, as well as engineering, due to their importance in understanding and predicting phenomena arising in nonlinear and complex systems, but also due to their potential for the development and design of novel applications. This volume is a compilation of chapters representing the current state-of-the-art on the field of localized excitations and their role in the dynamics of complex physical systems.

  1. Louisa Garrett Anderson (1873-1943), surgeon and suffragette.

    Science.gov (United States)

    Geddes, Jennian F

    2008-11-01

    Louisa Garrett Anderson, daughter of Britain's first woman doctor, has been largely forgotten today despite the fact that her contribution to the women's movement was as great as that of her mother. Recognized by her contemporaries as an important figure in the suffrage campaign, Anderson chose to lend her support through high-profile action, being one of the few women doctors in her generation who risked their professional as well as their personal reputation in the fight for women's rights by becoming a suffragette - in her case, even going so far as to spend a month in prison for breaking a window on a demonstration. On the outbreak of war, with only the clinical experience she had gained as outpatient surgeon in a women's hospital, Anderson established a series of women-run military hospitals where she was a Chief Surgeon. The most successful was the Endell Street Military Hospital in London, funded by the Royal Army Medical Corps and the only army hospital ever to be run and staffed entirely by women. Believing that a doctor had an obligation to take a lead in public affairs, Anderson continued campaigning for women's issues in the unlikely setting of Endell Street, ensuring that their activities remained in the public eye through constant press coverage. Anderson's achievement was that her work played no small part in expunging the stigma of the militant years in the eyes of the public and - more importantly - was largely instrumental in putting women doctors on equal terms with their male colleagues.

  2. Bound state and localization of excitation in many-body open systems

    Science.gov (United States)

    Cui, H. T.; Shen, H. Z.; Hou, S. C.; Yi, X. X.

    2018-04-01

    We study the exact bound state and time evolution for single excitations in one-dimensional X X Z spin chains within a non-Markovian reservoir. For the bound state, a common feature is the localization of single excitations, which means the spontaneous emission of excitations into the reservoir is prohibited. Exceptionally, the pseudo-bound state can be found, for which the single excitation has a finite probability of emission into the reservoir. In addition, a critical energy scale for bound states is also identified, below which only one bound state exists, and it is also the pseudo-bound state. The effect of quasirandom disorder in the spin chain is also discussed; such disorder induces the single excitation to locate at some spin sites. Furthermore, to display the effect of bound state and disorder on the preservation of quantum information, the time evolution of single excitations in spin chains is studied exactly. An interesting observation is that the excitation can stay at its initial location with high probability only when the bound state and disorder coexist. In contrast, when either one of them is absent, the information of the initial state can be erased completely or becomes mixed. This finding shows that the combination of bound state and disorder can provide an ideal mechanism for quantum memory.

  3. Localization of Bogoliubov quasiparticles in interacting Bose gases with correlated disorder

    International Nuclear Information System (INIS)

    Lugan, P.; Sanchez-Palencia, L.

    2011-01-01

    We study the Anderson localization of Bogoliubov quasiparticles (elementary many-body excitations) in a weakly interacting Bose gas of chemical potential μ subjected to a disordered potential V. We introduce a general mapping (valid for weak inhomogeneous potentials in any dimension) of the Bogoliubov-de Gennes equations onto a single-particle Schroedinger-like equation with an effective potential. For disordered potentials, the Schroedinger-like equation accounts for the scattering and localization properties of the Bogoliubov quasiparticles. We derive analytically the localization lengths for correlated disordered potentials in the one-dimensional geometry. Our approach relies on a perturbative expansion in V/μ, which we develop up to third order, and we discuss the impact of the various perturbation orders. Our predictions are shown to be in very good agreement with direct numerical calculations. We identify different localization regimes: For low energy, the effective disordered potential exhibits a strong screening by the quasicondensate density background, and localization is suppressed. For high-energy excitations, the effective disordered potential reduces to the bare disordered potential, and the localization properties of quasiparticles are the same as for free particles. The maximum of localization is found at intermediate energy when the quasicondensate healing length is of the order of the disorder correlation length. Possible extensions of our work to higher dimensions are also discussed.

  4. Insurance and nuclear power: The Price-Anderson act

    International Nuclear Information System (INIS)

    Whipple, C.

    1985-01-01

    This chapter evaluates the Price-Anderson Act, which establishes procedures for insuring nuclear facilities (including nuclear power plants) and was enacted in order to protect the public and to encourage the development of a private nuclear energy industry. Under the Act, the aggregate liability of the reactor operator, the US NRC, or any others who might be at fault (e.g. equipment manufacturers) is limited to $560 million. The reactor operator assumes all public liability, including that of the manufacturers of the plant or its equipment. The Price-Anderson Act has been criticized on the grounds that the limitation on liability removes a significant safety incentive and that the public would not be protected in the event of accident damages exceeding $ million. It is pointed out that under Price-Anderson, the limitation on liability at $560 million is not intended to be absolute

  5. Anderson, Prof. Basil Williams

    Indian Academy of Sciences (India)

    Home; Fellowship. Fellow Profile. Elected: 1964 Honorary. Anderson, Prof. Basil Williams. Date of birth: 3 July 1901. Date of death: 24 February 1984. YouTube; Twitter; Facebook; Blog. Academy News. IAS Logo. 29th Mid-year meeting. Posted on 19 January 2018. The 29th Mid-year meeting of the Academy will be held ...

  6. Localized excitations in superconducting point contacts: probing the Andreev doublet

    International Nuclear Information System (INIS)

    Bretheau, L.

    2013-01-01

    The Josephson effect describes the coherent coupling between superconductors and the resulting supercurrent. Microscopically, it arises from the existence of discrete quasiparticle states, localized at the weak link, the Andreev bound states. They come in doublets in each conduction channel of the weak link, with energies symmetric about the Fermi energy and opposite supercurrents. Each Andreev doublet gives rise to four states: the ground state |-> and the excited state |+>, with even parity, and the excited odd states |↑> and |↓>. Is it possible to address and control Andreev doublets? This thesis describes two sets of experiments designed to answer this question using the most basic Josephson element, a one-atom contact between two superconducting electrodes. In a first experiment, we have observed and characterized the excited odd states |↑> and |↓>. As expected for a spin-degenerate system, they do not carry supercurrent. In this experiment the excitation was uncontrolled and resulted from trapping of spurious quasiparticles. We have measured the lifetime of the odd states: under some condition, it is found to exceed 100 μs. The second experiment is a photon-absorption spectroscopy of the Andreev doublet. It was performed by using a Josephson junction as an integrated on-chip microwave emitter and detector. The observed Andreev transitions correspond to excitation from the ground state |->to the excited even state |+>, and are well accounted for by our quantum model. This result opens the way to coherent manipulation of this two level system. The direct observation of the excited Andreev state, either by quasiparticle-injection or photon-absorption, strongly supports the mesoscopic theory of the Josephson effect. It shows that in addition to the phase difference, each channel of a Josephson weak link possesses an internal fermionic degree of freedom. It could be used to code information in a novel type of superconducting qubit. (author) [fr

  7. Anderson introduces a new biomass baler

    Energy Technology Data Exchange (ETDEWEB)

    D' amour, L.; Lavoie, F. [Anderson Group Co., Chesterville, PQ (Canada)

    2010-07-01

    Canadian-based Anderson Group Company has developed an innovative round baler for harvesting a large variety of woody biomass. The baler was initially developed in 2005 in collaboration with the University Laval and Agriculture and Agri-Food Canada. The third generation BIOBALER{sup TM} is currently built, engineered and commercialized by Anderson. It can produce up to 40 bales/hr in short rotations woody crops such as willow and hybrid poplar. The unit can harvest brushes up to 125 mm in diameter. A standard tractor can pull the BIOBALER in fallow or abandoned land, under power transmission lines, and between planted trees. The patented BIOBALER includes a mulcher head attachment, a choice of long or short swivel tongue, a fixed chamber and an undercarriage frame.

  8. MD Anderson's Population Health Approaches to Cancer Prevention.

    Science.gov (United States)

    Foxhall, Lewis; Moreno, Mark; Hawk, Ernest

    2018-02-01

    Texas's size and unique population demographics present challenges to addressing the state's cancer burden. The University of Texas MD Anderson Cancer Center is one of 69 National Cancer Institute-designated cancer centers across the United States. While these centers traditionally have focused on research, education and training, and providing research-driven patient care, they are in a unique position to collaboratively advance population health through cancer control. Unlike the traditional academic model of a three-legged stool representing research, education, and patient care, MD Anderson's mission includes a fourth leg that incorporates population health approaches. MD Anderson has leveraged state- and national-level data and freely available resources to develop population-health priorities and a set of evidence-based actions across policy, public and professional education, and community-based clinical service domains to address these priorities. Population health approaches complement dissemination and implementation research and treatment, and will be increasingly needed to address the growing cancer burden in Texas and the nation.

  9. Analysis of Anderson-Grueneisen parameter under high temperature in alkaline earthoxides

    International Nuclear Information System (INIS)

    Pandey, Vipra; Gupta, Seema; Tomar, D.S.; Goyal, S.C.

    2010-01-01

    The Anderson-Grueneisen parameter (δ) is of considerable importance to Earth scientists because it sets limitations on the thermo-elastic properties of the lower mantle and core. However, there are several formulations on the Grueneisen parameter, which are in frequent use and predict varying dependence of δ as a function of temperature. In this paper, the expressions for thermal expansion, thermal expansion coefficients and bulk modulus are obtained considering the anharmonic dependence on temperature and are applied to study these constants to alkaline earth oxides. Using the derived expressions, we have shown that different parameters on which the Anderson-Grueneisen parameter (δ) depends are temperature dependent, but above all the Anderson-Grueneisen parameter (δ) is independent of temperature. The results obtained have been found to be comparable to experimental data. -- Research Highlights: → The Anderson-Grueneisen parameter (δ) is independent of temperature. → Three parameters, volume coefficient of thermal expansion, bulk modulus, and the Anderson-Grueneisen parameter, can completely describe the thermo-physical behavior of a solid. → Useful in analyzing the thermo-elastic behavior, microscopic behavior, internal structure and other related properties of AEO.

  10. Resonance Raman spectra of organic molecules absorbed on inorganic semiconducting surfaces: Contribution from both localized intramolecular excitation and intermolecular charge transfer excitation

    International Nuclear Information System (INIS)

    Ye, ChuanXiang; Zhao, Yi; Liang, WanZhen

    2015-01-01

    The time-dependent correlation function approach for the calculations of absorption and resonance Raman spectra (RRS) of organic molecules absorbed on semiconductor surfaces [Y. Zhao and W. Z. Liang, J. Chem. Phys. 135, 044108 (2011)] is extended to include the contribution of the intermolecular charge transfer (CT) excitation from the absorbers to the semiconducting nanoparticles. The results demonstrate that the bidirectionally interfacial CT significantly modifies the spectral line shapes. Although the intermolecular CT excitation makes the absorption spectra red shift slightly, it essentially changes the relative intensities of mode-specific RRS and causes the oscillation behavior of surface enhanced Raman spectra with respect to interfacial electronic couplings. Furthermore, the constructive and destructive interferences of RRS from the localized molecular excitation and CT excitation are observed with respect to the electronic coupling and the bottom position of conductor band. The interferences are determined by both excitation pathways and bidirectionally interfacial CT

  11. Quantum transport through disordered 1D wires: Conductance via localized and delocalized electrons

    International Nuclear Information System (INIS)

    Gopar, Víctor A.

    2014-01-01

    Coherent electronic transport through disordered systems, like quantum wires, is a topic of fundamental and practical interest. In particular, the exponential localization of electron wave functions-Anderson localization-due to the presence of disorder has been widely studied. In fact, Anderson localization, is not an phenomenon exclusive to electrons but it has been observed in microwave and acoustic experiments, photonic materials, cold atoms, etc. Nowadays, many properties of electronic transport of quantum wires have been successfully described within a scaling approach to Anderson localization. On the other hand, anomalous localization or delocalization is, in relation to the Anderson problem, a less studied phenomenon. Although one can find signatures of anomalous localization in very different systems in nature. In the problem of electronic transport, a source of delocalization may come from symmetries present in the system and particular disorder configurations, like the so-called Lévy-type disorder. We have developed a theoretical model to describe the statistical properties of transport when electron wave functions are delocalized. In particular, we show that only two physical parameters determine the complete conductance distribution

  12. Under fire: the Price--Anderson Act

    Energy Technology Data Exchange (ETDEWEB)

    Yeany, P R

    1978-07-01

    The Price-Anderson Act, considered by some to be essential to the future of nuclear power plants, was recently ruled unconstitutional by a Federal District Court. If the protection of limited liabilities is removed, private industry could not risk participating in the nuclear power industry. Arguments which led to the court's decision reflected concerns over the release of radioactivity and the loss of property values, the effects of heated wastewater on lakes and rivers, and the threat of an accident. The Court found in favor of the plaintiffs on the legal grounds for the suit and found the Price-Anderson Act to be in violation of both Due Process and Equal Protection Clauses. The Court suggested other schemes for spreading the risk. The Supreme Court later overruled the lower Court's decision. 11 references.

  13. Value of epicardial potential maps in localizing pre-excitation sites for radiofrequency ablation. A simulation study

    Science.gov (United States)

    Hren, Rok

    1998-06-01

    Using computer simulations, we systematically investigated the limitations of an inverse solution that employs the potential distribution on the epicardial surface as an equivalent source model in localizing pre-excitation sites in Wolff-Parkinson-White syndrome. A model of the human ventricular myocardium that features an anatomically accurate geometry, an intramural rotating anisotropy and a computational implementation of the excitation process based on electrotonic interactions among cells, was used to simulate body surface potential maps (BSPMs) for 35 pre-excitation sites positioned along the atrioventricular ring. Two individualized torso models were used to account for variations in torso boundaries. Epicardial potential maps (EPMs) were computed using the L-curve inverse solution. The measure for accuracy of the localization was the distance between a position of the minimum in the inverse EPMs and the actual site of pre-excitation in the ventricular model. When the volume conductor properties and lead positions of the torso were precisely known and the measurement noise was added to the simulated BSPMs, the minimum in the inverse EPMs was at 12 ms after the onset on average within cm of the pre-excitation site. When the standard torso model was used to localize the sites of onset of the pre-excitation sequence initiated in individualized male and female torso models, the mean distance between the minimum and the pre-excitation site was cm for the male torso and cm for the female torso. The findings of our study indicate that a location of the minimum in EPMs computed using the inverse solution can offer non-invasive means for pre-interventional planning of the ablative treatment.

  14. Similarities between the Hubbard and Periodic Anderson Models at Finite Temperatures

    International Nuclear Information System (INIS)

    Held, K.; Huscroft, C.; Scalettar, R. T.; McMahan, A. K.

    2000-01-01

    The single band Hubbard and the two band periodic Anderson Hamiltonians have traditionally been applied to rather different physical problems--the Mott transition and itinerant magnetism, and Kondo singlet formation and scattering off localized magnetic states, respectively. In this paper, we compare the magnetic and charge correlations, and spectral functions, of the two systems. We show quantitatively that they exhibit remarkably similar behavior, including a nearly identical topology of the finite temperature phase diagrams at half filling. We address potential implications of this for theories of the rare earth ''volume collapse'' transition. (c) 2000 The American Physical Society

  15. Charge transport through superconductor/Anderson-insulator interfaces

    International Nuclear Information System (INIS)

    Frydman, A.; Ovadyahu, Z.

    1997-01-01

    We report on a study of charge transport through superconductor-insulator-superconductor and normal metal endash insulator endash superconductor structures (SIS and NIS junctions, respectively) where the insulator is of the Anderson type. Devices which are characterized by a junction resistance larger than 10 kΩ show behavior which is typical of Giaever tunnel junctions. In structures having smaller resistance, several peculiar features are observed. In the SIS junctions, Josephson coupling is detected over distances much larger then the typical insulator localization length. In addition, a series of resistance peaks appears at voltages of 2Δ/n, where Δ is the superconducting gap. The NIS Junctions exhibit a large resistance dip at subgap bias. We discuss possible interpretations of these findings and suggest that they may result from the presence of high transmission channels through the barrier region. copyright 1997 The American Physical Society

  16. Localization of Cold Atoms in State-Dependent Optical Lattices via a Rabi Pulse

    International Nuclear Information System (INIS)

    Horstmann, Birger; Duerr, Stephan; Roscilde, Tommaso

    2010-01-01

    We propose a novel realization of Anderson localization in nonequilibrium states of ultracold atoms in an optical lattice. A Rabi pulse transfers part of the population to a different internal state with infinite effective mass. These frozen atoms create a quantum superposition of different disorder potentials, localizing the mobile atoms. For weakly interacting mobile atoms, Anderson localization is obtained. The localization length increases with increasing disorder and decreasing interaction strength, contrary to the expectation for equilibrium localization.

  17. Price-Anderson Act: Congressional review begins

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    Every 10 years Congress reviews, amends, and extends the Price-Anderson Act of 1957, which was designed to encourage the new nuclear industry by guaranteeing insurance beyond the level provided by private insurers. The Nuclear Regulatory Commission is recommending five congressional actions for the 1987 extension: reauthorization, replacement of the absolute insurance limitation with an annual limitation of liability, raising the retrospective premium per reactor per incident from $5 million to $10 million, raising the statute of limitations on claims for 20 to 30 years, and retaining current language dealing with extraordinary events. Two bills, H.R. 421 and H.R. 3277, were introduced with provisions that broaden the opportunity for victims compensation and eliminate the subsidy aspect. Hearings began in July, with reactions from the National Taxpayers Union and Nuclear insurance underwriters in conflict over the limitations on liability. DOE and DOE contractors urge continuation of the Price-Anderson limitation

  18. Pressure induced valence transitions in the Anderson lattice model

    International Nuclear Information System (INIS)

    Bernhard, B.H.; Coqblin, B.

    2009-01-01

    We apply the equation of motion method to the Anderson lattice model, which describes the physical properties of heavy fermion compounds. In particular, we focus here on the variation of the number of f electrons with pressure, associated to the crossover from the Kondo regime to the intermediate valence regime. We treat here the non-magnetic case and introduce an improved approximation, which consists of an alloy analogy based decoupling for the Anderson lattice model. It is implemented by partial incorporation of the spatial correlations contained in higher-order Green's functions involved in the problem that have been formerly neglected. As it has been verified in the framework of the Hubbard model, the alloy analogy avoids the breakdown of sum rules and is more appropriate to explore the asymmetric case of the periodic Anderson Hamiltonian. The densities of states for a simple cubic lattice are calculated for various values of the model parameters V, t, E f , and U.

  19. X-slave boson approach to the periodic Anderson model

    International Nuclear Information System (INIS)

    Franco, R.; Figueira, M.S.; Foglio, M.E.

    2001-01-01

    The periodic anderson model (PAM) in the limit U=∞, can be studied by employing the Hubbard X operators to project out the unwanted states. In a previous work, we have studied the cumulant expansion of this Hamiltonian employing the hybridization as a perturbation, but probability conservation of the local states (completeness) is not usually satisfied when partial expansions like the 'chain approximation (CHA)' are employed. To consider this problem, we use a technique similar to the one employed by Coleman to treat the same problem with slave-bosons in the mean-field approximation. Assuming a particular renormalization for hybridization, we obtain a description that avoids an unwanted phase transition that appears in the mean-field slave-boson method at intermediate temperatures

  20. 75 FR 34170 - Plastic Omnium Automotive Exteriors, LLC, Anderson, SC; Plastic Omnium Automotive Exteriors, LLC...

    Science.gov (United States)

    2010-06-16

    ... Omnium Automotive Exteriors, LLC, Anderson, SC; Plastic Omnium Automotive Exteriors, LLC, Troy, MI... the Anderson, South Carolina location of Plastic Omnium Automotive Exteriors, LLC, working out of Troy... certification to include workers in support of the Anderson, South Carolina facility working out of Troy...

  1. Effects of correlated hybridization in the single-impurity Anderson model

    Science.gov (United States)

    Líbero, Valter; Veiga, Rodrigo

    2013-03-01

    The development of new materials often dependents on the theoretical foundations which study the microscopic matter, i.e., the way atoms interact and create distinct configurations. Among the interesting materials, those with partially filled d or f orbitals immersed in nonmagnetic metals have been described by the Anderson model, which takes into account Coulomb correlation (U) when a local level (energy Ed) is doubled occupied, and an electronic hybridization between local levels and conduction band states. In addition, here we include a correlated hybridization term, which depends on the local-level occupation number involved. This term breaks particle-hole symmetry (even when U + 2Ed = 0), enhances charge fluctuations on local levels and as a consequence strongly modifies the crossover between the Hamiltonian fixed-points, even suppressing one or other. We exemplify these behaviors showing data obtained from the Numerical Renormalization Group (NRG) computation for the impurity temperature-dependent specific heat, entropy and magnetic susceptibility. The interleaving procedure is used to recover the continuum spectrum after the NRG-logarithmic discretization of the conduction band. Fundação de Amparo à Pesquisa do Estado de São Paulo - FAPESP.

  2. Time-dependent reflection at the localization transition

    Science.gov (United States)

    Skipetrov, Sergey E.; Sinha, Aritra

    2018-03-01

    A short quasimonochromatic wave packet incident on a semi-infinite disordered medium gives rise to a reflected wave. The intensity of the latter decays as a power law, 1 /tα , in the long-time limit. Using the one-dimensional Aubry-André model, we show that in the vicinity of the critical point of Anderson localization transition, the decay slows down, and the power-law exponent α becomes smaller than both α =2 found in the Anderson localization regime and α =3 /2 expected for a one-dimensional random walk of classical particles.

  3. Negative pressure wound therapy for Gustilo Anderson grade IIIb open tibial fractures

    Directory of Open Access Journals (Sweden)

    Chul Hyun Park

    2016-01-01

    Conclusion: Staged treatment using NPWT decreased the risks of infection and requirement of flap surgeries in Gustilo Anderson grade IIIb open tibial fractures. Therefore, staged treatment using NPWT could be a useful treatment option for Gustilo Anderson grade IIIb open tibial fractures.

  4. Ground state and elementary excitations of a model valence-fluctuation system

    International Nuclear Information System (INIS)

    Brandow, B.H.

    1979-01-01

    The nature of the valence fluctuation problem is described, and motivations are given for an Anderson-lattice model Hamiltonian. A simple trial wave function is posed for the ground state, and the variational problem is solved. This demonstrates clearly that there is no Kondo-like divergence; the present concentrated Kondo problem is thus more simple mathematically than the sngle-impurity problem. Elementary excitations are studies by the Green's function techniques of Zubarev and Hubbard. Quenching of local moments and a large specific heat are found at low temperatures. The quasi-particle spectrum exhibits a gap, but epsilon/sub F/ does not lie in this gap. The insulation-like feature of SmB 6 , SmS, and TmSe at very low temperatures is explained in terms of a strongly reduced mobility for states near the gap, and reasons are given why this feature is not observed in other valence-fluctuation compounds. 73 references

  5. U.S. Price - Anderson Act - Prospects for Amendment and Extension

    International Nuclear Information System (INIS)

    Brown, O. F.

    2002-01-01

    In enacting the Price-Anderson Act in 1957, the United States created the world's first national nuclear liability regime. At its inception, the Act provided US$560 million of nuclear hazards liability coverage for power plants and certain other nuclear facilities. Today, the amount is about US$9.5 billion for each of 106 nuclear power plants in the United States, by far the highest monetary coverage of any nuclear liability regime in the world. The Price-Anderson Act's authority for new nuclear power plants has been extended periodically by the U.S. Congress since 1957. The last fifteen-year extension enacted in 1988 will expire on August 1st, unless again renewed. What will expire on that date is the authority to cover new nuclear power plants licensed by the U.S. Nuclear Regulatory Commission. Each existing power plant will continue to be covered for the life of the plant, even if Congress does not reauthorize the Act. Price-Anderson extension bills now have passed both the U.S. House of Representatives in November 2001 and Senate in April 2002. This Price-Anderson Act reauthorization has not been very controversial, and is expected to occur without significant changes in nuclear power plant coverage. However, the House and Senate bills may not be reconciled before August 1st when the Act's authority for new nuclear power plants expires. Given the fact that the events in the United States last September 11th have given rise to concerns about terrorism and nuclear damage coverage, this paper also addresses the fact that the Price-Anderson Act covers acts of terrorism. (author)

  6. Localization noise in deep subwavelength plasmonic devices

    Science.gov (United States)

    Ghoreyshi, Ali; Victora, R. H.

    2018-05-01

    The grain shape dependence of absorption has been investigated in metal-insulator thin films. We demonstrate that randomness in the size and shape of plasmonic particles can lead to Anderson localization of polarization modes in the deep subwavelength regime. These localized modes can contribute to significant variation in the local field. In the case of plasmonic nanodevices, the effects of the localized modes have been investigated by mapping an electrostatic Hamiltonian onto the Anderson Hamiltonian in the presence of a random vector potential. We show that local behavior of the optical beam can be understood in terms of the weighted local density of the localized modes of the depolarization field. Optical nanodevices that operate on a length scale with high variation in the density of states of localized modes will experience a previously unidentified localized noise. This localization noise contributes uncertainty to the output of plasmonic nanodevices and limits their scalability. In particular, the resulting impact on heat-assisted magnetic recording is discussed.

  7. On Absence of Pure Singular Spectrum of Random Perturbations and in Anderson Model at Low Disorde

    CERN Document Server

    Grinshpun, V

    2006-01-01

    Absence of singular component, with probability one, in the conductivity spectra of bounded random perturbations of multidimensional finite-difference Hamiltonians, is for the first time rigorously established under certain conditions ensuring either absence of pure point, or absence of pure absolutely continuous component in the corresponding regions of spectra. The main technical tool applied is the theory of rank-one perturbations of singular spectra. The respective new result (the non-mixing property) is applied to establish existence and bounds of the (non-empty) pure absolutely continuous component in the spectrum of the Anderson model with bounded random potential in dimension 2 at low disorder. The new (1999) result implies, via the trace-class perturbation analysis, the Anderson model with the unbounded potential to have only pure point spectrum (complete system of localized wave-functions) with probability one in arbitrary dimension. The new technics, based on the resolvent reduction formula, and ex...

  8. Determinant method and quantum simulations of many-body effects in a single impurity Anderson model

    International Nuclear Information System (INIS)

    Gubernatis, J.E.; Olson, T.; Scalapino, D.J.; Sugar, R.L.

    1985-01-01

    A short description is presented of a quantum Monte Carlo technique, often referred to as the determinant method, that has proved useful for simulating many-body effects in systems of interacting fermions at finite temperatures. Preliminary results using this technique on a single impurity Anderson model are reported. Examples of such many-body effects as local moment formation, Kondo behavior, and mixed valence phenomena found in the simulations are shown. 10 refs., 3 figs

  9. Mott transitions in the periodic Anderson model

    International Nuclear Information System (INIS)

    Logan, David E; Galpin, Martin R; Mannouch, Jonathan

    2016-01-01

    The periodic Anderson model (PAM) is studied within the framework of dynamical mean-field theory, with particular emphasis on the interaction-driven Mott transition it contains, and on resultant Mott insulators of both Mott–Hubbard and charge-transfer type. The form of the PAM phase diagram is first deduced on general grounds using two exact results, over the full range of model parameters and including metallic, Mott, Kondo and band insulator phases. The effective low-energy model which describes the PAM in the vicinity of a Mott transition is then shown to be a one-band Hubbard model, with effective hoppings that are not in general solely nearest neighbour, but decay exponentially with distance. This mapping is shown to have a range of implications for the physics of the problem, from phase boundaries to single-particle dynamics; all of which are confirmed and supplemented by NRG calculations. Finally we consider the locally degenerate, non-Fermi liquid Mott insulator, to describe which requires a two-self-energy description. This is shown to yield a number of exact results for the associated local moment, charge, and interaction-renormalised levels, together with a generalisation of Luttinger’s theorem to the Mott insulator. (paper)

  10. Nuclear liability and the Price--Anderson Act

    International Nuclear Information System (INIS)

    Wilson, R.

    1977-01-01

    The Price-Anderson Act is viewed as meeting public needs in a unique and responsible way, reflecting the far-sightedness of those involved in the early development of nuclear power who saw the importance of building safety into each step of the program. An extension of the Act is advised as a first step in recognizing that many potential and real disasters (e.g., dam breaks, floods, etc.) are man-made rather than ''Acts of God''. Rather than abolish the Price-Anderson Act because it is unique, the case is made for extending it to cover these other situations. Provisions of the Act are examined in terms of the role of negligence in nuclear accidents, and the conclusion is reached that public concern for reactor safety should not be affected. Limited assets on the part of insurers and insurance pools have made government involvement important but not a real subsidy because of high premiums. Premiums in the new amendment are paid retroactively when there is an accident, which relieves the problem of anticipating what premiums may be needed in the future. This limits government liability and, combined with the waiver of defenses against liability, offers better protection for the public. Recommendations for allowing tort law to operate above the $560 million Price-Anderson limits are criticized, and a counter proposal is made for reassessing the figure at an appropriate limit and extending insurance to competitive industries

  11. Probing the Locality of Excited States with Linear Algebra.

    Science.gov (United States)

    Etienne, Thibaud

    2015-04-14

    This article reports a novel theoretical approach related to the analysis of molecular excited states. The strategy introduced here involves gathering two pieces of physical information, coming from Hilbert and direct space operations, into a general, unique quantum mechanical descriptor of electronic transitions' locality. Moreover, the projection of Hilbert and direct space-derived indices in an Argand plane delivers a straightforward way to visually probe the ability of a dye to undergo a long- or short-range charge-transfer. This information can be applied, for instance, to the analysis of the electronic response of families of dyes to light absorption by unveiling the trend of a given push-pull chromophore to increase the electronic cloud polarization magnitude of its main transition with respect to the size extension of its conjugated spacer. We finally demonstrate that all the quantities reported in this article can be reliably approximated by a linear algebraic derivation, based on the contraction of detachment/attachment density matrices from canonical to atomic space. This alternative derivation has the remarkable advantage of a very low computational cost with respect to the previously used numerical integrations, making fast and accurate characterization of large molecular systems' excited states easily affordable.

  12. Anderson localization in bipartite lattices

    International Nuclear Information System (INIS)

    Fabrizio, Michele; Castellani, Claudio

    2000-01-01

    We study the localization properties of a disordered tight-binding Hamiltonian on a generic bipartite lattice close to the band center. By means of a fermionic replica trick method, we derive the effective non-linear σ-model describing the diffusive modes, which we analyse by using the Wilson-Polyakov renormalization group. In addition to the standard parameters which define the non-linear σ-model, namely, the conductance and the external frequency, a new parameter enters, which may be related to the fluctuations of the staggered density of states. We find that, when both the regular hopping and the disorder only couple one sublattice to the other, the quantum corrections to the Kubo conductivity vanish at the band center, thus implying the existence of delocalized states. In two dimensions, the RG equations predict that the conductance flows to a finite value, while both the density of states and the staggered density of states fluctuations diverge. In three dimensions, we find that, sufficiently close to the band center, all states are extended, independently of the disorder strength. We also discuss the role of various symmetry breaking terms, as a regular hopping between same sublattices, or an on-site disorder

  13. Anderson localization in bipartite lattices

    International Nuclear Information System (INIS)

    Fabrizio, M.; Castellani, C.

    2000-04-01

    We study the localization properties of a disordered tight-binding Hamiltonian on a generic bipartite lattice close to the band center. By means of a fermionic replica trick method, we derive the effective non-linear σ-model describing the diffusive modes, which we analyse by using the Wilson-Polyakov renormalization group. In addition to the standard parameters which define the non-linear σ-model, namely the conductance and the external frequency, a new parameter enters, which may be related to the fluctuations of the staggered density of states. We find that, when both the regular hopping and the disorder only couple one sublattice to the other, the quantum corrections to the Kubo conductivity vanish at the band center, thus implying the existence of delocalized states. In two dimensions, the RG equations predict that the conductance flows to a finite value, while both the density of states and the staggered density of states fluctuations diverge. In three dimensions, we find that, sufficiently close to the band center, all states are extended, independently of the disorder strength. We also discuss the role of various symmetry breaking terms, as a regular hopping between same sublattices, or an on-site disorder. (author)

  14. Superconducting instabilities in the finite U Anderson lattice model

    International Nuclear Information System (INIS)

    Karbowski, J.

    1995-01-01

    We have investigated superconducting instabilities in the finite U Anderson lattice model within the Zou-Anderson slave boson representation in the Kondo lattice limit appropriate for heavy fermion systems. We found Cooper instability in the p channel and a repulsion in both the s and d channels. Based on the above mechanism of pairing, we have derived a ratio of the Gruneisen parameters Γ(T c )/Γ(T K ) which can be negative or positive, consistent with the experimental data. This result cannot be achieved in the U=∞ limit, which gives only positive values for this ratio. ((orig.))

  15. Anderson localisation and optical-event horizons in rogue-soliton generation.

    Science.gov (United States)

    Saleh, Mohammed F; Conti, Claudio; Biancalana, Fabio

    2017-03-06

    We unveil the relation between the linear Anderson localisation process and nonlinear modulation instability. Anderson localised modes are formed in certain temporal intervals due to the random background noise. Such localised modes seed the formation of solitary waves that will appear during the modulation instability process at those preferred intervals. Afterwards, optical-event horizon effects between dispersive waves and solitons produce an artificial collective acceleration that favours the collision of solitons, which could eventually lead to a rogue-soliton generation.

  16. Management of Gustilo Anderson III B open tibial fractures by primary fascio-septo-cutaneous local flap and primary fixation: The 'fix and shift' technique.

    Science.gov (United States)

    Ramasamy, P R

    2017-01-01

    Open fractures of tibia have posed great difficulty in managing both the soft tissue and the skeletal components of the injured limb. Gustilo Anderson III B open tibial fractures are more difficult to manage than I, II, and III A fractures. Stable skeletal fixation with immediate soft tissue cover has been the key to the successful outcome in treating open tibial fractures, in particular, Gustilo Anderson III B types. If the length of the open wound is larger and if the exposed surface of tibial fracture and tibial shaft is greater, then the management becomes still more difficult. Thirty six Gustilo Anderson III B open tibial fractures managed between June 2002 and December 2013 with "fix and shift" technique were retrospectively reviewed. All the 36 patients managed by this technique had open wounds measuring >5 cm (post debridement). Under fix and shift technique, stable fixation involved primary external fixator application or primary intramedullary nailing of the tibial fracture and immediate soft tissue cover involved septocutaneous shift, i.e., shifting of fasciocutaneous segments based on septocutaneous perforators. Primary fracture union rate was 50% and reoperation rate (bone stimulating procedures) was 50%. Overall fracture union rate was 100%. The rate of malunion was 14% and deep infection was 16%. Failure of septocutaneous shift was 2.7%. There was no incidence of amputation. Management of Gustilo Anderson III B open tibial fractures with "fix and shift" technique has resulted in better outcome in terms of skeletal factors (primary fracture union, overall union, and time for union and malunion) and soft tissue factors (wound healing, flap failure, access to secondary procedures, and esthetic appearance) when compared to standard methods adopted earlier. Hence, "fix and shift" could be recommended as one of the treatment modalities for open III B tibial fractures.

  17. Phase Diagrams of Three-Dimensional Anderson and Quantum Percolation Models Using Deep Three-Dimensional Convolutional Neural Network

    Science.gov (United States)

    Mano, Tomohiro; Ohtsuki, Tomi

    2017-11-01

    The three-dimensional Anderson model is a well-studied model of disordered electron systems that shows the delocalization-localization transition. As in our previous papers on two- and three-dimensional (2D, 3D) quantum phase transitions [J. Phys. Soc. Jpn. 85, 123706 (2016), 86, 044708 (2017)], we used an image recognition algorithm based on a multilayered convolutional neural network. However, in contrast to previous papers in which 2D image recognition was used, we applied 3D image recognition to analyze entire 3D wave functions. We show that a full phase diagram of the disorder-energy plane is obtained once the 3D convolutional neural network has been trained at the band center. We further demonstrate that the full phase diagram for 3D quantum bond and site percolations can be drawn by training the 3D Anderson model at the band center.

  18. John Anderson's development of (situational) realism and its bearing on psychology today.

    Science.gov (United States)

    Hibberd, Fiona J

    2009-10-01

    In 1927, the Scottish philosopher John Anderson arrived in Australia to take up the chair of Philosophy at the University of Sydney. By the late 1930s, the "macrostructure" of his realist system was in place. It includes a theory of process and a substantial metaphysics, one that opposes positivism, linguistic philosophy and all forms of idealism. However, beyond Australia it remains largely unknown, despite its bearing on a number of current issues in psychology and the social sciences generally. This article outlines Anderson's transition from Hegelian idealism to realism, describes aspects of his ontology and epistemology, compares some of Anderson's ideas with Dewey's pragmatism and explains their relevance to present-day psychology.

  19. Multi-Phase Combustion and Transport Processes Under the Influence of Acoustic Excitation

    Science.gov (United States)

    2014-01-01

    waveguide. Alcohol fuels (ethanol and methonal) as well as aviation fuel replacements ( Fischer -Tropsch (FT) synfuel and an FT blend with JP-8) were studied...replacements ( Fischer -Tropsch (FT) synfuel and an FT blend with JP-8) were studied here. During acoustic excitation, the flame surrounding the droplet was...Wegener is approved. Chris R. Anderson Jeff D. Eldredge Ivett A. Leyva Owen I. Smith Ann R. Karagozian, Committee Chair University of California, Los

  20. Price-Anderson Law - reports on Price-Anderson issues

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Five of the six papers in this study are by experts outside the nuclear industry, and deal with fear, risk, and risk management as they apply to the review of the Price-Anderson Act. The purpose of the Act is to encourage private enterprise to develop a reliable source of electric power and to protect the public from the financial consequences of injury or damage that may occur during the process. The titles of the five papers are: (1) the effects of ionizing radiation on human health, (2) proof of causation through expert opinion evidence in low-level radiation cases, (3) a critical review of the probability of causation method, (4) the nuclear liability claims experience of the nuclear insurance pools, (5) review of nuclear liability compensation systems applicable to reactors outside the United States, and (6) the economic foundations of limited liability for nuclear reactor accidents. A separate abstract was prepared for each of the papers for EDB, EPA, and INS

  1. Feature inference with uncertain categorization: Re-assessing Anderson's rational model.

    Science.gov (United States)

    Konovalova, Elizaveta; Le Mens, Gaël

    2017-09-18

    A key function of categories is to help predictions about unobserved features of objects. At the same time, humans are often in situations where the categories of the objects they perceive are uncertain. In an influential paper, Anderson (Psychological Review, 98(3), 409-429, 1991) proposed a rational model for feature inferences with uncertain categorization. A crucial feature of this model is the conditional independence assumption-it assumes that the within category feature correlation is zero. In prior research, this model has been found to provide a poor fit to participants' inferences. This evidence is restricted to task environments inconsistent with the conditional independence assumption. Currently available evidence thus provides little information about how this model would fit participants' inferences in a setting with conditional independence. In four experiments based on a novel paradigm and one experiment based on an existing paradigm, we assess the performance of Anderson's model under conditional independence. We find that this model predicts participants' inferences better than competing models. One model assumes that inferences are based on just the most likely category. The second model is insensitive to categories but sensitive to overall feature correlation. The performance of Anderson's model is evidence that inferences were influenced not only by the more likely category but also by the other candidate category. Our findings suggest that a version of Anderson's model which relaxes the conditional independence assumption will likely perform well in environments characterized by within-category feature correlation.

  2. Near-field optical microscopy of localized excitations on rough surfaces: influence of a probe

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.

    1999-01-01

    Starting from the general principles of near-field optical microscopy. I consider the influence of a probe when being used to image localized dipolar excitations and suggest a way of evaluating the perturbation thus introduced. Using the rigorous microscopic (electric) point-dipole description, I...

  3. Mott Transition of Cerium Compound CeCu2Si2 in the Anderson ...

    African Journals Online (AJOL)

    The Exact-Diagonalization (ED) technique is applied to the Single Site Impurity Anderson Model (SIAM) and the Periodic Anderson Model (PAM) to elucidate the nature of the ground-state energy and the phase diagram of the two models. The results obtained show a smooth phase transition from an antiferromagnetic ...

  4. Critical excitation spectrum of a quantum chain with a local three-spin coupling.

    Science.gov (United States)

    McCabe, John F; Wydro, Tomasz

    2011-09-01

    Using the phenomenological renormalization group (PRG), we evaluate the low-energy excitation spectrum along the critical line of a quantum spin chain having a local interaction between three Ising spins and longitudinal and transverse magnetic fields, i.e., a Turban model. The low-energy excitation spectrum found with the PRG agrees with the spectrum predicted for the (D(4),A(4)) conformal minimal model under a nontrivial correspondence between translations at the critical line and discrete lattice translations. Under this correspondence, the measurements confirm a prediction that the critical line of this quantum spin chain and the critical point of the two-dimensional three-state Potts model are in the same universality class.

  5. Critical excitation spectrum of a quantum chain with a local three-spin coupling

    International Nuclear Information System (INIS)

    McCabe, John F.; Wydro, Tomasz

    2011-01-01

    Using the phenomenological renormalization group (PRG), we evaluate the low-energy excitation spectrum along the critical line of a quantum spin chain having a local interaction between three Ising spins and longitudinal and transverse magnetic fields, i.e., a Turban model. The low-energy excitation spectrum found with the PRG agrees with the spectrum predicted for the (D 4 ,A 4 ) conformal minimal model under a nontrivial correspondence between translations at the critical line and discrete lattice translations. Under this correspondence, the measurements confirm a prediction that the critical line of this quantum spin chain and the critical point of the two-dimensional three-state Potts model are in the same universality class.

  6. Topological approximation of the nonlinear Anderson model

    Science.gov (United States)

    Milovanov, Alexander V.; Iomin, Alexander

    2014-06-01

    We study the phenomena of Anderson localization in the presence of nonlinear interaction on a lattice. A class of nonlinear Schrödinger models with arbitrary power nonlinearity is analyzed. We conceive the various regimes of behavior, depending on the topology of resonance overlap in phase space, ranging from a fully developed chaos involving Lévy flights to pseudochaotic dynamics at the onset of delocalization. It is demonstrated that the quadratic nonlinearity plays a dynamically very distinguished role in that it is the only type of power nonlinearity permitting an abrupt localization-delocalization transition with unlimited spreading already at the delocalization border. We describe this localization-delocalization transition as a percolation transition on the infinite Cayley tree (Bethe lattice). It is found in the vicinity of the criticality that the spreading of the wave field is subdiffusive in the limit t →+∞. The second moment of the associated probability distribution grows with time as a power law ∝ tα, with the exponent α =1/3 exactly. Also we find for superquadratic nonlinearity that the analog pseudochaotic regime at the edge of chaos is self-controlling in that it has feedback on the topology of the structure on which the transport processes concentrate. Then the system automatically (without tuning of parameters) develops its percolation point. We classify this type of behavior in terms of self-organized criticality dynamics in Hilbert space. For subquadratic nonlinearities, the behavior is shown to be sensitive to the details of definition of the nonlinear term. A transport model is proposed based on modified nonlinearity, using the idea of "stripes" propagating the wave process to large distances. Theoretical investigations, presented here, are the basis for consistency analysis of the different localization-delocalization patterns in systems with many coupled degrees of freedom in association with the asymptotic properties of the

  7. Management of Gustilo Anderson III B open tibial fractures by primary fascio-septo-cutaneous local flap and primary fixation: The ′fix and shift′ technique

    Directory of Open Access Journals (Sweden)

    P R Ramasamy

    2017-01-01

    Full Text Available Background: Open fractures of tibia have posed great difficulty in managing both the soft tissue and the skeletal components of the injured limb. Gustilo Anderson III B open tibial fractures are more difficult to manage than I, II, and III A fractures. Stable skeletal fixation with immediate soft tissue cover has been the key to the successful outcome in treating open tibial fractures, in particular, Gustilo Anderson III B types. If the length of the open wound is larger and if the exposed surface of tibial fracture and tibial shaft is greater, then the management becomes still more difficult. Materials and Methods: Thirty six Gustilo Anderson III B open tibial fractures managed between June 2002 and December 2013 with "fix and shift" technique were retrospectively reviewed. All the 36 patients managed by this technique had open wounds measuring >5 cm (post debridement. Under fix and shift technique, stable fixation involved primary external fixator application or primary intramedullary nailing of the tibial fracture and immediate soft tissue cover involved septocutaneous shift, i.e., shifting of fasciocutaneous segments based on septocutaneous perforators. Results: Primary fracture union rate was 50% and reoperation rate (bone stimulating procedures was 50%. Overall fracture union rate was 100%. The rate of malunion was 14% and deep infection was 16%. Failure of septocutaneous shift was 2.7%. There was no incidence of amputation. Conclusion: Management of Gustilo Anderson III B open tibial fractures with "fix and shift" technique has resulted in better outcome in terms of skeletal factors (primary fracture union, overall union, and time for union and malunion and soft tissue factors (wound healing, flap failure, access to secondary procedures, and esthetic appearance when compared to standard methods adopted earlier. Hence, "fix and shift" could be recommended as one of the treatment modalities for open III B tibial fractures.

  8. Anderson localization in metamaterials with compositional disorder

    Science.gov (United States)

    Torres-Herrera, E. J.; Izrailev, F. M.; Makarov, N. M.

    2011-11-01

    We consider one-dimensional periodic-on-average bi-layered models with random perturbations in dielectric constants of both basic slabs composing the structure unit-cell. We show that when the thicknesses da and db of basic layers are essentially nonequal, da ≠ db, the localization length Lloc is described by the universal expression for two cases: (a) both layers are made from right-handed materials (the RH-RH model), (b) the a layers are of a right-handed material while the b layers are of a left-handed material (the RH-LH model). For these models the derived expression for Lloc includes all possible correlations between two disorders. However, when da = db the RH-LH model exhibits a highly nontrivial properties originated from inhomogeneous distribution of the phase of propagating wave, even in the case of white-noise disorder. We analytically show that in this case the localization length diverges in the conventional second order in perturbation parameters. Therefore, recently numerically discovered anomalies in Lloc are due to the next order of approximation. On the other hand, for the RH-RH model the general expression for Lloc remains valid for da = db as well.

  9. Supersonic Localized Excitations Mediate Microscopic Dynamic Failure

    Science.gov (United States)

    Ghaffari, H. O.; Griffith, W. A.; Pec, M.

    2017-12-01

    A moving rupture front activates a fault patch by increasing stress above a threshold strength level. Subsequent failure yields fast slip which releases stored energy in the rock. A fraction of the released energy is radiated as seismic waves carrying information about the earthquake source. While this simplified model is widely accepted, the detailed evolution from the onset of dynamic failure to eventual re-equilibration is still poorly understood. To study dynamic failure of brittle solids we indented thin sheets of single mineral crystals and recorded the emitted ultrasound signals (high frequency analogues to seismic waves) using an array of 8 to 16 ultrasound probes. The simple geometry of the experiments allows us to unravel details of dynamic stress history of the laboratory earthquake sources. A universal pattern of failure is observed. First, stress increases over a short time period (1 - 2 µs), followed by rapid weakening (≈ 15 µs). Rapid weakening is followed by two distinct relaxation phases: a temporary quasi-steady state phase (10 µs) followed by a long-term relaxation phase (> 50 µs). We demonstrate that the dynamic stress history during failure is governed by formation and interaction of local non-dispersive excitations, or solitons. The formation and annihilation of solitons mediates the microscopic fast weakening phase, during which extreme acceleration and collision of solitons lead to non-Newtonian behavior and Lorentz contraction, i.e. shortening of solitons' characteristic length. Interestingly, a soliton can propagate as fast as 37 km/s, much faster than the p-wave velocity, implying that a fraction of the energy transmits through soliton excitations. The quasi-steady state phase delays the long-term ageing of the damaged crystal, implying a potentially weaker material. Our results open new horizons for understanding the complexity of earthquake sources, and, more generally, non-equilibrium relaxation of many body systems.

  10. Quantum critical phase and Lifshitz transition in an extended periodic Anderson model

    International Nuclear Information System (INIS)

    Laad, M S; Koley, S; Taraphder, A

    2012-01-01

    We study the quantum phase transition in f-electron systems as a quantum Lifshitz transition driven by selective-Mott localization in a realistic extended Anderson lattice model. Using dynamical mean-field theory (DMFT), we find that a quantum critical phase with anomalous ω/T scaling separates a heavy Landau-Fermi liquid from ordered phase(s). This non-Fermi liquid state arises from a lattice orthogonality catastrophe originating from orbital-selective Mott localization. Fermi surface reconstruction occurs via the interplay between and penetration of the Green function zeros to the poles, leading to violation of Luttinger’s theorem in the strange metal. We show how this naturally leads to scale-invariant responses in transport. Thus, our work represents a specific DMFT realization of the hidden-FL and FL* theories, and holds promise for the study of ‘strange’ metal phases in quantum matter. (fast track communication)

  11. Light localization in cold and dense atomic ensemble

    International Nuclear Information System (INIS)

    Sokolov, Igor

    2017-01-01

    We report on results of theoretical analysis of possibilities of light strong (Anderson) localization in a cold atomic ensemble. We predict appearance of localization in dense atomic systems in strong magnetic field. We prove that in absence of the field the light localization is impossible. (paper)

  12. Localization of Dirac-like excitations in graphene in the presence of smooth inhomogeneous magnetic fields.

    Science.gov (United States)

    Roy, Pratim; Ghosh, Tarun Kanti; Bhattacharya, Kaushik

    2012-02-08

    The present paper discusses magnetic confinement of the Dirac excitations in graphene in the presence of inhomogeneous magnetic fields. In the first case a magnetic field directed along the z axis whose magnitude is proportional to 1/r is chosen. In the next case we choose a more realistic magnetic field which does not blow up at the origin and gradually fades away from the origin. The magnetic fields chosen do not have any finite/infinite discontinuity for finite values of the radial coordinate. The novelty of the two magnetic fields is related to the equations which are used to find the excited spectra of the excitations. It turns out that the bound state solutions of the two-dimensional hydrogen atom problem are related to the spectra of graphene excitations in the presence of the 1/r (inverse-radial) magnetic field. For the other magnetic field profile one can use the knowledge of the bound state spectrum of a two-dimensional cutoff Coulomb potential to dictate the excitation spectra of graphene. The spectrum of the graphene excitations in the presence of the inverse-radial magnetic field can be exactly solved while the other case cannot be. In the later case we give the localized solutions of the zero-energy states in graphene.

  13. Anderson transition on the Cayley tree as a traveling wave critical point for various probability distributions

    International Nuclear Information System (INIS)

    Monthus, Cecile; Garel, Thomas

    2009-01-01

    For Anderson localization on the Cayley tree, we study the statistics of various observables as a function of the disorder strength W and the number N of generations. We first consider the Landauer transmission T N . In the localized phase, its logarithm follows the traveling wave form T N ≅(ln T N )-bar + ln t* where (i) the disorder-averaged value moves linearly (ln(T N ))-bar≅-N/ξ loc and the localization length diverges as ξ loc ∼(W-W c ) -ν loc with ν loc = 1 and (ii) the variable t* is a fixed random variable with a power-law tail P*(t*) ∼ 1/(t*) 1+β(W) for large t* with 0 N are governed by rare events. In the delocalized phase, the transmission T N remains a finite random variable as N → ∞, and we measure near criticality the essential singularity (ln(T ∞ ))-bar∼-|W c -W| -κ T with κ T ∼ 0.25. We then consider the statistical properties of normalized eigenstates Σ x |ψ(x)| 2 = 1, in particular the entropy S = -Σ x |ψ(x)| 2 ln |ψ(x)| 2 and the inverse participation ratios (IPR) I q = Σ x |ψ(x)| 2q . In the localized phase, the typical entropy diverges as S typ ∼( W-W c ) -ν S with ν S ∼ 1.5, whereas it grows linearly as S typ (N) ∼ N in the delocalized phase. Finally for the IPR, we explain how closely related variables propagate as traveling waves in the delocalized phase. In conclusion, both the localized phase and the delocalized phase are characterized by the traveling wave propagation of some probability distributions, and the Anderson localization/delocalization transition then corresponds to a traveling/non-traveling critical point. Moreover, our results point toward the existence of several length scales that diverge with different exponents ν at criticality

  14. Anderson localization in metamaterials with compositional disorder

    International Nuclear Information System (INIS)

    Torres-Herrera, E.J.; Izrailev, F.M.; Makarov, N.M.

    2011-01-01

    We consider one-dimensional periodic-on-average bi-layered models with random perturbations in dielectric constants of both basic slabs composing the structure unit-cell. We show that when the thicknesses da and db of basic layers are essentially nonequal, da not = db, the localization length L-l-o-c is described by the universal expression for two cases: (a) both layers are made from right-handed materials (the RH-RH model), (b) the a layers are of a right-handed material while the b layers are of a left-handed material (the RH-LH model). For these models the derived expression for L-l-o-c includes all possible correlations between two disorders. However, when da = db the RH-LH model exhibits a highly nontrivial properties originated from inhomogeneous distribution of the phase of propagating wave, even in the case of white-noise disorder. We analytically show that in this case the localization length diverges in the conventional second order in perturbation parameters. Therefore, recently numerically discovered anomalies in L-l-o-c are due to the next order of approximation. On the other hand, for the RH-RH model the general expression for Lloc remains valid for da = db as well.

  15. Local CC2 response method for triplet states based on Laplace transform: excitation energies and first-order properties.

    Science.gov (United States)

    Freundorfer, Katrin; Kats, Daniel; Korona, Tatiana; Schütz, Martin

    2010-12-28

    A new multistate local CC2 response method for calculating excitation energies and first-order properties of excited triplet states in extended molecular systems is presented. The Laplace transform technique is employed to partition the left/right local CC2 eigenvalue problems as well as the linear equations determining the Lagrange multipliers needed for the properties. The doubles part in the equations can then be inverted on-the-fly and only effective equations for the singles part must be solved iteratively. The local approximation presented here is adaptive and state-specific. The density-fitting method is utilized to approximate the electron-repulsion integrals. The accuracy of the new method is tested by comparison to canonical reference values for a set of 12 test molecules and 62 excited triplet states. As an illustrative application example, the lowest four triplet states of 3-(5-(5-(4-(bis(4-(hexyloxy)phenyl)amino)phenyl)thiophene-2-yl)thiophene-2-yl)-2-cyanoacrylic acid, an organic sensitizer for solar-cell applications, are computed in the present work. No triplet charge-transfer states are detected among these states. This situation contrasts with the singlet states of this molecule, where the lowest singlet state has been recently found to correspond to an excited state with a pronounced charge-transfer character having a large transition strength.

  16. Optical Excitation of Carbon Nanotubes Drives Localized Diazonium Reactions

    Science.gov (United States)

    2016-01-01

    Covalent chemistries have been widely used to modify carbon nanomaterials; however, they typically lack the precision and efficiency required to directly engineer their optical and electronic properties. Here, we show, for the first time, that visible light which is tuned into resonance with carbon nanotubes can be used to drive their functionalization by aryldiazonium salts. The optical excitation accelerates the reaction rate 154-fold (±13) and makes it possible to significantly improve the efficiency of covalent bonding to the sp2 carbon lattice. Control experiments suggest that the reaction is dominated by a localized photothermal effect. This light-driven reaction paves the way for precise nanochemistry that can directly tailor carbon nanomaterials at the optical and electronic levels. PMID:27588432

  17. Analytical realization of finite-size scaling for Anderson localization. Does the band of critical states exist for d > 2?

    International Nuclear Information System (INIS)

    Suslov, I. M.

    2006-01-01

    An analytical realization is suggested for the finite-size scaling algorithm based on the consideration of auxiliary quasi-1D systems. Comparison of the obtained analytical results with the results of numerical calculations indicates that the Anderson transition point splits into the band of critical states. This conclusion is supported by direct numerical evidence (Edwards, Thouless, 1972; Last, Thouless, 1974; Schreiber, 1985). The possibility of restoring the conventional picture still exists but requires a radical reinterpretation of the raw numerical data

  18. Scaling behavior of Anderson transition in system with two types of disorder

    International Nuclear Information System (INIS)

    Xiong Shijie; Xing, D.Y.; Evangelou, S.N.; Sheng, D.N.

    2003-01-01

    We present numerical results for a specific phase diagram of the Anderson transition in a model with two types of disorder: the diagonal disorder W 1 , and the off-diagonal disorder W 2 originated from double-exchange interactions. The critical line separating localization and delocalization regions in the W 1 -W 2 phase diagram exhibits zigzag oscillations. This results in multiple critical values of W 2 if W 1 is fixed, although a single critical value of W 1 usually appears when W 2 is fixed. By applying magnetic field the period of oscillations is shortened. Near the critical line the system shows universal scaling behavior with critical exponent dependent only on the field

  19. The United States nuclear liability regime under the Price-Anderson Act

    International Nuclear Information System (INIS)

    Brown, O. F.

    2011-01-01

    The 1958 U. S. Price-Anderson Act created the worlds first national nuclear liability regime. It now provides US $12,6 Billion of nuclear liability coverage for the 104 nuclear power plants in the United States, by far the highest monetary coverage of any nuclear liability regime in the world. Each power plant operator provides nuclear hazards coverage for anyone liable through a combination of private insurance from the American nuclear insurance pool (now US$ 375 million) and a retrospective assessment (now US$111,9 million per power plant per incident plus 5 percent for claims and costs). The United States in 2008 ratified the International Atomic Energy Agency's Convention on Supplementary Compensation for Nuclear Damage (CSC). and is promoting it as the basis for a more global nuclear liability regime uniting States that are party to the Vienna Convention or the Paris Convention, or have a domestic law consistent with the CSC Annex. The CSC Annex was written to grad father the Price-Anderson Acts economic channeling of liability to the installation operator. The omnibus feature of Price-Anderson is similar to the legal channeling of all liability to the installation operator under the international nuclear liability conventions and domestic laws of many other countries. The Price-Anderson system (like the Vienna and Paris Conventions) does not provide liability coverage for nuclear damage to or loss of use of on-site property. (Author)

  20. Unconstitutionality of Section 170 (e) of the price Anderson Act

    International Nuclear Information System (INIS)

    1977-01-01

    Several environmental protection groups in the State of North Carolina have recently contested the conformity with the United States Constitution of Section 170 (e) of the Atomic Energy Act (Price-Anderson Act). The court seized of the question (the United States District Court for the western district of North Carolina, Charlotte Division) held in March 1977 that this Section and the other provisions of the Atomic Energy Act concerning implementation of the $560 million limitation of liability for nuclear damage were unconstitutional and unenforceable insofar as they applied to nuclear incidents occurring inside the United States. The defendants, the former United States Atomic Energy Commission and its then Commissioners as well as the Duke Power Company (the local electricity company) will appeal this decision. The note on case law analyses the arguments retained by the court. (NEA) [fr

  1. Martin Anderson valis "Joonase lähetamise" / Priit Kuusk

    Index Scriptorium Estoniae

    Kuusk, Priit, 1938-

    2000-01-01

    M. Anderson kommenteeris ameerika muusikaajakirjas "Fanfare" viit talle kõige enam mõju avaldanud heliplaati, sh. R. Tobiase oratooriumi "Joonase lähetamine" CD-plaati (BIS). M. Andersoni huvist eesti muusika vastu

  2. Localized Beampipe Heating due to $e^{-}$ Capture and Nuclear Excitation in Heavy Ion Colliders

    CERN Document Server

    Klein, S R

    2001-01-01

    At heavy ion colliders, two major sources of beam loss are expected to be $e^+e^-$ production, where the $e^-$ is bound to one of the nuclei, and photonuclear excitation and decay via neutron emission. Both processes alter the ions charged to mass ratio by well defined amounts, creating beams of particles with altered magnetic rigidity. These beams will deposit their energy in a localized region of the accelerator, causing localized heating, The size of the target region depends on the collider optics. For medium and heavy ions, at design luminosity at the Large Hadron Collider, local heating may be more than an order of magnitude higher than expected. This could cause magnet quenches if the local cooling is inadequate. The altered-rigidity beams will also produce localized radiation damage. The beams could also be extracted and used for fixed target experiments.

  3. Quantum Electrodynamics with Semiconductor Quantum Dots Coupled to Anderson‐localized Random Cavities

    DEFF Research Database (Denmark)

    Sapienza, Luca; Nielsen, Henri Thyrrestrup; Stobbe, Søren

    2011-01-01

    of the spontaneous emission decay rate by up to a factor 15 and an efficiency of channeling single photons into Anderson-localized modes reaching values as high as 94%. These results prove that disordered photonic media provide an efficient platform for quantum electrodynamics, offering a novel route to quantum......We demonstrate that the spontaneous emission decay rate of semiconductor quantum dots can be strongly modified by the coupling to disorder-induced Anderson-localized photonic modes. We experimentally measure, by means of time-resolved photoluminescence spectroscopy, the enhancement...

  4. Negative pressure wound therapy for Gustilo Anderson grade IIIb open tibial fractures.

    Science.gov (United States)

    Park, Chul Hyun; Shon, Oog Jin; Kim, Gi Beom

    2016-09-01

    Traditionally, Gustilo Anderson grade IIIb open tibial fractures have been treated by initial wide wound debridement, stabilization of fracture with external fixation, and delayed wound closure. The purpose of this study is to evaluate the clinical and radiological results of staged treatment using negative pressure wound therapy (NPWT) for Gustilo Anderson grade IIIb open tibial fractures. 15 patients with Gustilo Anderson grade IIIb open tibial fractures, treated using staged protocol by a single surgeon between January 2007 and December 2011 were reviewed in this retrospective study. The clinical results were assessed using a Puno scoring system for severe open fractures of the tibia at the last followup. The range of motion (ROM) of the knee and ankle joints and postoperative complication were evaluated at the last followup. The radiographic results were assessed using time to bone union, coronal and sagittal angulations and a shortening at the last followup. The mean score of Puno scoring system was 87.4 (range 67-94). The mean ROM of the knee and ankle joints was 121.3° (range 90°-130°) and 37.7° (range 15°-50°), respectively. Bone union developed in all patients and the mean time to union was 25.3 weeks (range 16-42 weeks). The mean coronal angulation was 2.1° (range 0-4°) and sagittal was 2.7° (range 1-4°). The mean shortening was 4.1 mm (range 0-8 mm). Three patients had partial flap necrosis and 1 patient had total flap necrosis. There was no superficial and deep wound infection. Staged treatment using NPWT decreased the risks of infection and requirement of flap surgeries in Gustilo Anderson grade IIIb open tibial fractures. Therefore, staged treatment using NPWT could be a useful treatment option for Gustilo Anderson grade IIIb open tibial fractures.

  5. Studying Online Behavior: Comment on Anderson et al. 2014

    Directory of Open Access Journals (Sweden)

    Kevin Lewis

    2015-01-01

    Full Text Available As social scientists increasingly employ data from online sources, it is important that we acknowledge both the advantages an limitations of this research. The latter have received comparatively little public attention. In this comment, I argue that a recent article by Anderson and colleagues: 1 inadequately describes the study sample; 2 inadequately describes how the website operates; and 3 inadequately develops the paper’s central measures — such that it is difficult to evaluate the generalizability, veracity, and importance of their claims and impossible to replicate their findings. These limitations are not unique to the Anderson et al. article; rather, they point to a set of concerns that all researchers in this growing and important line of study need to address if our work is to have enduring impact.

  6. Eigenfunction statistics for Anderson model with Hölder continuous ...

    Indian Academy of Sciences (India)

    The Institute of Mathematical Sciences, Taramani, Chennai 600 113, India ... Anderson model; Hölder continuous measure; Poisson statistics. ...... [4] Combes J-M, Hislop P D and Klopp F, An optimal Wegner estimate and its application to.

  7. Enhanced electric and magnetic response of a THz sub-wavelength fiber excited by a localized source

    DEFF Research Database (Denmark)

    Atakaramians, Shaghik; Stefani, Alessio; Shardivov, Ilya V.

    2017-01-01

    the magnetic response of the coupled system when excited with an electric dipole oriented along the circumference of the fiber. This result introduces a new platform for achieving enhanced magnetic response, which is the fundamental building block for metamaterial devices. Here we investigate experimentally......Recently we have shown that a nanofiber excited by a localized electric source can have enhanced electric and magnetic response depending of the relative orientation of the source and the fiber [1]. We have demonstrated that the dielectric nanofiber can suppress the electric response and enhance...

  8. Kondo dynamics of quasiparticle tunneling in a two-reservoir Anderson model.

    Science.gov (United States)

    Hong, Jongbae

    2011-07-13

    We study the Kondo dynamics in a two-reservoir Anderson impurity model in which quasiparticle tunneling occurs between two reservoirs. We show that singlet hopping is an essential component of Kondo dynamics in the quasiparticle tunneling. We prove that two resonant tunneling levels exist in the two-reservoir Anderson impurity model and the quasiparticle tunnels through one of these levels when a bias is applied. The Kondo dynamics is explained by obtaining the retarded Green's function. We obtain the analytic expressions of the spectral weights of coherent peaks by analyzing the Green's function at the atomic limit.

  9. Kondo dynamics of quasiparticle tunneling in a two-reservoir Anderson model

    International Nuclear Information System (INIS)

    Hong, Jongbae

    2011-01-01

    We study the Kondo dynamics in a two-reservoir Anderson impurity model in which quasiparticle tunneling occurs between two reservoirs. We show that singlet hopping is an essential component of Kondo dynamics in the quasiparticle tunneling. We prove that two resonant tunneling levels exist in the two-reservoir Anderson impurity model and the quasiparticle tunnels through one of these levels when a bias is applied. The Kondo dynamics is explained by obtaining the retarded Green's function. We obtain the analytic expressions of the spectral weights of coherent peaks by analyzing the Green's function at the atomic limit.

  10. Exciter switch

    Science.gov (United States)

    Mcpeak, W. L.

    1975-01-01

    A new exciter switch assembly has been installed at the three DSN 64-m deep space stations. This assembly provides for switching Block III and Block IV exciters to either the high-power or 20-kW transmitters in either dual-carrier or single-carrier mode. In the dual-carrier mode, it provides for balancing the two drive signals from a single control panel located in the transmitter local control and remote control consoles. In addition to the improved switching capabilities, extensive monitoring of both the exciter switch assembly and Transmitter Subsystem is provided by the exciter switch monitor and display assemblies.

  11. Anomalous resonance of the symmetric single-impurity Anderson model in the presence of pairing fluctuations

    International Nuclear Information System (INIS)

    Guang-Ming Zhang; Lu Yu

    1998-10-01

    We consider the symmetric single-impurity Anderson model in the presence of pairing fluctuations. In the isotropic limit, the degrees of freedom of the local impurity are separated into hybridizing and non-hybridizing modes. The self-energy for the hybridizing modes can be obtained exactly, leading to two subbands centered at ±U/2. For the non-hybridizing modes, the second order perturbation yields a singular resonance of the marginal Fermi liquid form. By multiplicative renormalization, the self-energy is derived exactly, showing the resonance is pinned at the Fermi level, while its strength is weakened by renormalization. (author)

  12. Time of Anderson-Fabry Disease Detection and Cardiovascular Presentation

    Directory of Open Access Journals (Sweden)

    K. Selthofer-Relatic

    2018-01-01

    Full Text Available Background. Anderson-Fabry disease is an X-linked inherited disease, which manifests in a different manner depending on gender and genotype. Making a working diagnosis of Anderson-Fabry disease is difficult because of several reasons: (a that it is a multiorgan disease with wide variety of phenotypes, (b different timelines of presentation, (c gender differences, and (d possible coexistence with other comorbidities. Late-onset/cardiac type of presentation with minimal involvement of other organs can additionally make diagnosis difficult. Aim. To describe different cardiac manifestations at different time points in the course of the disease: (1 72-year-old female (echocardiography detection, heterozygote, significant left and mild right ventricular hypertrophy; (2 62-year-old male (echocardiography detection, hemizygote, left ventricular hypertrophy, implanted cardiac pacemaker, a performed percutaneous coronary intervention after myocardial infarction, degenerative medium degree aortic valve stenosis; (3 45-year-old female (asymptomatic/family screening, heterozygote, thickened mitral papillary muscle, mild left ventricular hypertrophy, first degree diastolic dysfunction; and (4 75-year-old female (symptomatic/family screening, heterozygote, cardiomyopathy with reduced left ventricular ejection fraction after heart surgery (mitral valve annuloplasty and plastic repair of the tricuspid valve. Conclusion. All patients have Anderson-Fabry disease but with different clinical presentations depending on the gender, the type of mutation, and the time of detection. All these features can make the patients’ profiles unique and delay the time of detection.

  13. Focal Reduction in Cardiac 123I-Metaiodobenzylguanidine Uptake in Patients With Anderson-Fabry Disease.

    Science.gov (United States)

    Yamamoto, Saori; Suzuki, Hideaki; Sugimura, Koichiro; Tatebe, Shunsuke; Aoki, Tatsuo; Miura, Masanobu; Yaoita, Nobuhiro; Sato, Haruka; Kozu, Katuya; Ota, Hideki; Takanami, Kentaro; Takase, Kei; Shimokawa, Hiroaki

    2016-11-25

    It remains to be elucidated whether cardiac sympathetic nervous activity is impaired in patients with Anderson-Fabry disease (AFD).Methods and Results:We performed 123 I-meta-iodobenzylguanidine (MIBG) scintigraphy and gadolinium-enhanced cardiovascular magnetic resonance (CMR) in 5 AFD patients. MIBG uptake in the inferolateral wall, where wall thinning and delayed enhancement were noted on CMR, was significantly lower compared with the anteroseptal wall. The localized reduction in MIBG uptake was also noted in 2 patients with no obvious abnormal findings on CMR. Cardiac sympathetic nervous activity is impaired in AFD before development of structural myocardial abnormalities. (Circ J 2016; 80: 2550-2551).

  14. Regular and irregular patterns of self-localized excitation in arrays of coupled phase oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Wolfrum, Matthias; Omel' chenko, Oleh E. [Weierstrass Institute, Mohrenstrasse 39, Berlin 10117 (Germany); Sieber, Jan [College of Engineering, Mathematics and Physical Sciences, University of Exeter, North Park Road, Exeter EX4 4QF (United Kingdom)

    2015-05-15

    We study a system of phase oscillators with nonlocal coupling in a ring that supports self-organized patterns of coherence and incoherence, called chimera states. Introducing a global feedback loop, connecting the phase lag to the order parameter, we can observe chimera states also for systems with a small number of oscillators. Numerical simulations show a huge variety of regular and irregular patterns composed of localized phase slipping events of single oscillators. Using methods of classical finite dimensional chaos and bifurcation theory, we can identify the emergence of chaotic chimera states as a result of transitions to chaos via period doubling cascades, torus breakup, and intermittency. We can explain the observed phenomena by a mechanism of self-modulated excitability in a discrete excitable medium.

  15. Hanbury Brown and Twiss correlations of Anderson localized waves

    International Nuclear Information System (INIS)

    Lahini, Y.; Bromberg, Y.; Silberberg, Y.; Shechtman, Y.; Szameit, A.; Christodoulides, D. N.; Morandotti, R.

    2011-01-01

    When light waves propagate through disordered photonic lattices, they can eventually become localized due to multiple scattering effects. Here we show experimentally that while the evolution and localization of the photon density distribution is similar in the two cases of diagonal and off-diagonal disorder, the density-density correlation carries a distinct signature of the type of disorder. We show that these differences reflect a symmetry in the spectrum and eigenmodes that exists in off-diagonally disordered lattices but is absent in lattices with diagonal disorder.

  16. Aproximació a l'univers fílmic de Wes Anderson: existeix una marca autoral?

    OpenAIRE

    Cadena Hernández, Adrià

    2016-01-01

    Al llarg del anys Wes Anderson s'ha postulat com un dels directors contemporanis més importants i influents. Aquest estudi revisa la totalitat de la seva filmografia, centrant-se en la seva última pel·lícula "The Grand Budapest Hotel". L'anàlisi pretén verificar si Wes Anderson pot ser considerat o no autor de les seves pel·lícules en base a les pautes estipulades per la política d'autors provinent de la Nouvelle Vague. A lo largo de los últimos años Wes Anderson se ha postulado como uno d...

  17. Evolutional Properties of Localized Excitations for Generalized Broer-Kaup System in (2+1) Dimensions

    International Nuclear Information System (INIS)

    Zheng Chunlong; Ye Jianfeng; Xu Yuan

    2006-01-01

    Using a special Painleve-Baecklund transformation as well as the extended mapping approach and the linear superposition theorem, we obtain new families of variable separation solutions to the (2+1)-dimensional generalized Broer-Kaup (GBK) system. Based on the derived exact solution, we reveal some novel evolutional behaviors of localized excitations, i.e. fission and fusion phenomena in the (2+1)-dimensional GBK system.

  18. Localization properties of one-dimensional electrified chains

    International Nuclear Information System (INIS)

    Ouasti, R.; Brezini, A.; Zekri, N.

    1993-08-01

    A Kronig-Penney model with a constant electric filed for a non-interacting electron is used to study the transmission properties of Anderson transition in one-dimensional (1-D) systems with disordered strengths of δ-function potentials. we examined the cases where the potential varies uniformly from O to W (barriers) or from -W to O (wells) for a given disorder W. Mainly, we observe unexpected abrupt transition at the points E + Fx = n 2 π 2 . However, these transitions are related to the small oscillations observed by Soukoulis et al. in the mixed case (wells and barriers). An interesting feature in the wells is that in the presence of a small field the states become more localized and the localization length decrease up to a minimum for a critical value F m . In the end, we have studied the effect of the disorder on the Anderson transition by the mean of the participation ratio and the localization length. (author). 27 refs, 6 figs

  19. Interpolation solution of the single-impurity Anderson model

    International Nuclear Information System (INIS)

    Kuzemsky, A.L.

    1990-10-01

    The dynamical properties of the single-impurity Anderson model (SIAM) is studied using a novel Irreducible Green's Function method (IGF). The new solution for one-particle GF interpolating between the strong and weak correlation limits is obtained. The unified concept of relevant mean-field renormalizations is indispensable for strong correlation limit. (author). 21 refs

  20. Calculations of the excitation energies of all-trans and 11,12s-dicis retinals using localized molecular orbitals obtained by the elongation method

    Science.gov (United States)

    Kurihara, Youji; Aoki, Yuriko; Imamura, Akira

    1997-09-01

    In the present article, the excitation energies of the all-trans and the 11,12s-dicis retinals were calculated by using the elongation method. The geometries of these molecules were optimized with the 4-31G basis set by using the GAUSSIAN 92 program. The wave functions for the calculation of the excitation energies were obtained with CNDO/S approximation by the elongation method, which enables us to analyze electronic structures of aperiodic polymers in terms of the exciton-type local excitation and the charge transfer-type excitation. The excitation energies were calculated by using the single excitation configuration interaction (SECI) on the basis of localized molecular orbitals (LMOs). The LMOs were obtained in the process of the elongation method. The configuration interaction (CI) matrices were diagonalized by Davidson's method. The calculated results were in good agreement with the experimental data for absorption spectra. In order to consider the isomerization path from 11,12s-dicis to all-trans retinals, the barriers to the rotations about C11-C12 double and C12-C13 single bonds were evaluated.

  1. Can 3D light localization be reached in ‘white paint’?

    International Nuclear Information System (INIS)

    Sperling, T; Schertel, L; Aubry, G J; Maret, G; Ackermann, M; Aegerter, C M

    2016-01-01

    When waves scatter multiple times in 3D random media, a disorder driven phase transition from diffusion to localization may occur (Anderson 1958 Phys. Rev. 109 1492–505; Abrahams et al 1979 Phys. Rev. Lett. 42 673–6). In ‘The question of classical localization: a theory of white paint?’ Anderson suggested the possibility to observe light localization in TiO 2 samples (Anderson 1985 Phil. Mag. B 52 505–9). We recently claimed the observation of localization effects measuring photon time of flight (ToF) distributions (Störzer et al 2006 Phys. Rev. Lett. 96 063904) and evaluating transmission profiles (TPs) (Sperling et al 2013 Nat. Photonics 7 48–52) in such TiO 2 samples. Here we present a careful study of the long time tail of ToF distributions and the long time behavior of the TP width for very thin samples and different turbidities that questions the localization interpretation. We further show new data that allow an alternative consistent explanation of these previous data by a fluorescence process. An adapted diffusion model including an appropriate exponential fluorescence decay accounts for the shape of the ToF distributions and the TP width. These observations question whether the strong localization regime can be reached with visible light scattering in polydisperse TiO 2 samples, since the disorder parameter can hardly be increased any further in such a ‘white paint’ material. (paper)

  2. Many-body localization dynamics from a one-particle perspective

    Energy Technology Data Exchange (ETDEWEB)

    Lezama Mergold Love, Talia; Bera, Soumya; Bardarson, Jens Hjorleifur [Max Planck Institute for the Physics of Complex Systems, Dresden (Germany)

    2016-07-01

    Systems exhibiting many-body localization (Anderson insulators in the presence of interactions) present a novel class of nonergodic phases of matter. The study of entanglement, in terms of both exact eigenstates and its time evolution after quenches, has been useful to reveal the salient signatures of these systems. Similarly to the entanglement entropy of exact eigenstates, the one-particle density matrix can be used as a tool to characterize the many-body localization transition with its eigenvalues showing a Fermi-liquid like step discontinuity in the localized phase. However, this analysis distinguishes the Fock-space structure of the eigenstates from the real space. Here, we present numerical evidence for dynamical signatures of the many-body localized phase for a closed fermionic system, using the one-particle density matrix and its time evolution after a global quench. We discuss and compare our results with the well-known logarithmic spreading of entanglement (a dynamical signature of this phase, absent in the Anderson insulator).

  3. Valence change in rare earth semiconductors in many-impurity Anderson model

    International Nuclear Information System (INIS)

    Kocharyan, A.N.

    1986-01-01

    Green functions averaged over point impurity localization are found out in the simplest many-impurity model of rare earth semiconductor taking into account local Coulomb repulsion and hybridization of s- and f-electrons. Analytical expressions for s- and f-electron states density are obtained in the appoximation linear in can centration. Behaviour of a state density nearly the continuous spectrum edge and in the vicinity of the f-level is studied as a function of electron parameters. A comparison with the Anderson one-impurity model is performed. It is shown that essential energy spectrum conversion occurs in the case of a great number of impurities close to the continuous spectrum. Continuous spectrum boundaries are found out, and conditions are defined, at which the forbidden energy gap occurs in the continuous spectrum nearly a f-level. Effect of the coherent conversion of spectrum on behaviour of valence in changing f-level position is analyzed. It is shown that in the lack of electron-lattice interaction the phase transition with valence change occurs in a smooth manner as in the model with strictly periodic Andersen lattice

  4. Interaction effect in the Kondo energy of the periodic Anderson-Hubbard model

    Science.gov (United States)

    Itai, K.; Fazekas, P.

    1996-07-01

    We extend the periodic Anderson model by switching on a Hubbard U for the conduction band. The nearly integral valent limit of the Anderson-Hubbard model is studied with the Gutzwiller variational method. The lattice Kondo energy shows U dependence both in the prefactor and the exponent. Switching on U reduces the Kondo scale, which can be understood to result from the blocking of hybridization. At half filling, we find a Brinkman-Rice-type transition from a Kondo insulator to a Mott insulator. Our findings should be relevant for a number of correlated two-band models of recent interest.

  5. Local excitation-inhibition ratio for synfire chain propagation in feed-forward neuronal networks

    Science.gov (United States)

    Guo, Xinmeng; Yu, Haitao; Wang, Jiang; Liu, Jing; Cao, Yibin; Deng, Bin

    2017-09-01

    A leading hypothesis holds that spiking activity propagates along neuronal sub-populations which are connected in a feed-forward manner, and the propagation efficiency would be affected by the dynamics of sub-populations. In this paper, how the interaction between local excitation and inhibition effects on synfire chain propagation in feed-forward network (FFN) is investigated. The simulation results show that there is an appropriate excitation-inhibition (EI) ratio maximizing the performance of synfire chain propagation. The optimal EI ratio can significantly enhance the selectivity of FFN to synchronous signals, which thereby increases the stability to background noise. Moreover, the effect of network topology on synfire chain propagation is also investigated. It is found that synfire chain propagation can be maximized by an optimal interlayer linking probability. We also find that external noise is detrimental to synchrony propagation by inducing spiking jitter. The results presented in this paper may provide insights into the effects of network dynamics on neuronal computations.

  6. Application of Local Fourier Transform to Mathematical Simulation of Synchronous Machines with Valve Excitation Systems

    Directory of Open Access Journals (Sweden)

    Fedotov A.

    2017-02-01

    Full Text Available The article proposes a method of mathematical simulation of electrical machines with thyristor exciters on the basis of the local Fourier transform. The present research demonstrates that this method allows switching from a variable structure model to a constant structure model. Transition from the continuous variables to the discrete variables is used. The numerical example is given in the paper.

  7. New Theoretical Developments in Exploring Electronically Excited States: Including Localized Configuration Interaction Singles and Application to Large Helium Clusters

    Science.gov (United States)

    Closser, Kristina Danielle

    superpositions of atomic states with surface states appearing close to the atomic excitation energies and interior states being blue shifted by up to ≈2 eV. The dynamics resulting from excitation of He_7 were subsequently explored using ab initio molecular dynamics (AIMD). These simulations were performed with classical adiabatic dynamics coupled to a new state-following algorithm on CIS potential energy surfaces. Most clusters were found to completely dissociate and resulted in a single excited atomic state (90%), however, some trajectories formed bound, He*2 (3%), and a few yielded excited trimers (<0.5%). Comparisons were made with available experimental information on much larger clusters. Various applications of this state following algorithm are also presented. In addition to AIMD, these include excited-state geometry optimization and minimal energy path finding via the growing string method. When using state following we demonstrate that more physical results can be obtained with AIMD calculations. Also, the optimized geometries of three excited states of cytosine, two of which were not found without state following, and the minimal energy path between the lowest two singlet excited states of protonated formaldimine are offered as example applications. Finally, to address large clusters, a local variation of CIS was developed. This method exploits the properties of absolutely localized molecular orbitals (ALMOs) to limit the total number of excitations to scaling only linearly with cluster size, which results in formal scaling with the third power of the system size. The derivation of the equations and design of the algorithm are discussed in detail, and computational timings as well as a pilot application to the size dependence of the helium cluster spectrum are presented.

  8. Lattice relaxation theory of localized excitations in quasi-one-dimensional systems

    International Nuclear Information System (INIS)

    Wang Chuilin; Su Zhaobin; Yu Lu.

    1993-04-01

    The lattice relaxation theory developed earlier by Su and Yu for solitons and polarons in conducting polymers is applied to systems with both electron-phonon and electron-electron interactions, described by a single band Peierls-Hubbard model. The localized excitations in the competing bond-order-wave (BOW), charge-density-wave (CDW) and spin-density-wave (SDW) systems show interesting new features in their dynamics. In particular, a non-monotonic dependence of the relaxation rate on the coupling strength is predicted from the theory. The possible connection of this effect with photo-luminescence experiments is discussed. Similar phenomena may occur in other quasi-one-dimensional systems as well. (author). 21 refs, 4 figs

  9. Exciton polaritons and their one-dimensional localization in disordered structure with quantum wells

    International Nuclear Information System (INIS)

    Kosobukin, V.A.

    2003-01-01

    The Anderson light localization theory by disordered ultrathin layers (quantum wells), uniform in lateral directions and featuring intrinsic optical resonances, is presented. A model of the layers with delta-function resonance dielectric polarization is suggested for solution of the multiple scattering problem. Allowance made for interlayer disorder, one- and two-phoron characteristics of electromagnetic transfer, i.e. average energy density and the length of the Anderson light localization were calculated in analytical form. It is shown that in disordered structure average electromagnetic field is propagated as polaritons formed due to excessive emission of excitons between the quantum wells [ru

  10. Variational local moment approach: From Kondo effect to Mott transition in correlated electron systems

    International Nuclear Information System (INIS)

    Kauch, Anna; Byczuk, Krzysztof

    2012-01-01

    The variational local moment approach (VLMA) solution of the single impurity Anderson model is presented. It generalizes the local moment approach of Logan et al. by invoking the variational principle to determine the lengths of local moments and orbital occupancies. We show that VLMA is a comprehensive, conserving and thermodynamically consistent approximation and treats both Fermi and non-Fermi liquid regimes as well as local moment phases on equal footing. We tested VLMA on selected problems. We solved the single- and multi-orbital impurity Anderson model in various regions of parameters, where different types of Kondo effects occur. The application of VLMA as an impurity solver of the dynamical mean-field theory, used to solve the multi-orbital Hubbard model, is also addressed.

  11. Strategies in localization proofs for one-dimensional random ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    tools which are used to analyse these models are generalized spectral .... Thinking of pn rather than Xi as the defining parameters, we therefore have smoothness ...... Anderson model, where dynamical localization away from the critical ...

  12. Ago Anderson pälvis Helmi Tohvelmani preemia / Karin Klaus

    Index Scriptorium Estoniae

    Klaus, Karin

    2009-01-01

    13. oktoobril anti Endla teatri näitlejale Ago Andersonile üle Helmi Tohvelmani auhind. Pidulik sündmus toimus Väätsa põhikoolis, Tohvelmani kodukohas. Anderson pälvis tunnustuse kui kerge kehakeelega näitleja

  13. Femtosecond excitations in metallic nanostructures. From ultrafast light confinement to a local electron source

    Energy Technology Data Exchange (ETDEWEB)

    Ropers, C.

    2007-07-11

    This thesis contributes to the understanding of optical excitations in metallic nanostructures. In experiments on selected model structures, the dynamics of these excitations and their electromagnetic spatial modes are investigated with femtosecond temporal and nanometer spatial resolution, respectively. Angle- and time-resolved transmission experiments on metallic thin film gratings demonstrate the dominant role resonant surface plasmon polaritons (SPPs) play in the optical properties of such structures. The lifetimes of these excitations are determined, and it is shown that coherent couplings among SPP-resonances result in drastic lifetime modifications. Near the visible part of the spectrum, subradiant SPP lifetimes of up to 200 femtoseconds are observed, which is considerably longer than previously expected for these structures. The spatial SPP mode profiles are imaged using a custom-built near-field optical microscope. The experiments reveal a direct correlation between the spatial mode structure and the dynamics of different SPP resonances. Coupling-induced SPP band gaps are identified as splittings into symmetric and antisymmetric surface modes. These findings allow for an interpretation of the near-field optical image contrast in terms of the contributions of different vectorial components of the electromagnetic near-field. A selective imaging of different electric and magnetic field components is demonstrated for various types of near-field probes. Furthermore, the excitation of SPPs in periodic structures is employed in a novel type of near-field tip. The resonant excitation of SPPs in a nanofabricated grating on the shaft of a sharp metallic tip results in their concentration at the tip apex. The final part of the thesis highlights the importance of optical field enhancements for the local generation of nonlinear optical signals at the apex of sharp metallic tips. Specifically, the observation of intense multiphoton electron emission after femtosecond

  14. Intramolecular evolution from a locally excited state to an excimer-like state in a multichromophoric dendrimer evidenced by a femtosecond fluorescence upconversion study

    NARCIS (Netherlands)

    Karni, Y.; Jordens, S.; Belder, G. De; Schweitzer, G.; Hofkens, J.; Gensch, T.; Maus, M.; Schryver, F.C. De; Herrmann, A.; Müllen, K.

    1999-01-01

    A time-resolved fluorescence upconversion study on a polyphenylene dendrimer with eight peryleneimide chromophores on the surface and on a monochromophoric model compound is reported. The time-dependent fluorescence spectra of the dendrimer show that the initial excitation is into a locally excited

  15. Localization for off-diagonal disorder and for continuous Schroedinger operators

    International Nuclear Information System (INIS)

    Delyon, F.; Souillard, B.; Simon, B.

    1987-01-01

    We extend the proof of localization by Delyon, Levy, and Souillard to accommodate the Anderson model with off-diagonal disorder and the continuous Schroedinger equation with a random potential. (orig.)

  16. Generating Localized Nonlinear Excitations in the Fermi-Pasta-Ulam-Tsingou chains

    Science.gov (United States)

    Westley, Alexandra; Sen, Surajit

    Here, we will discuss properties of energy trapping in the decorated Fermi-Pasta-Ulam-Tsingou (FPUT) mass-spring chains with quadratic and quartic coupling terms. It is well-known that the FPUT system admits highly localized nonlinear excitations (LNE) which are stable for long periods of time. We seek to generate these LNEs at will by creating regions in the chain of stiffer or softer springs, or by placing mass impurities throughout. We will show that NLEs tend to coalesce in regions of stiff springs from random perturbations throughout the system. These locations may serve as extremely powerful energy traps or heat sinks in certain materials. Furthermore, we will demonstrate that this process occurs by means of trapping solitary (or anti-solitary) waves into tight spaces.

  17. Electron-tunneling observation of local excited states in manganese-doped indium

    International Nuclear Information System (INIS)

    Tsang, J.; Ginsberg, D.M.

    1980-01-01

    We have measured the electron-tunneling characteristics of a dilute indium-manganese alloy. Well-defined structure was observed, corresponding to a band of local excited states within the energy gap. The measurements were made on two samples, and were quantitatively compared with the theory of Shiba and of Rusinov. We obtained good agreement of the tunneling data with the theory by taking into account only s-wave scattering of conduction electrons from the magnetic-impurity atoms. Even better agreement was obtained by including p- and d-wave scattering. Only by including these higher partial waves could we account for the magnitude of the observed depression of the transition temperature. The phase shifts used are in good agreement with band-theory values calculated recently

  18. New periodic wave solutions, localized excitations and their interaction for (2+1)-dimensional Burgers equation

    International Nuclear Information System (INIS)

    Ma Hongcai; Ge Dongjie; Yu Yaodong

    2008-01-01

    Based on the Bäcklund method and the multilinear variable separation approach (MLVSA), this paper nds a general solution including two arbitrary functions for the (2+1)-dimensional Burgers equations. Then a class of new doubly periodic wave solutions for (2+1)-dimensional Burgers equations is obtained by introducing appropriate Jacobi elliptic functions, Weierstrass elliptic functions and their combination in the general solutions (which contains two arbitrary functions). Two types of limit cases are considered. Firstly, taking one of the moduli to be unity and the other zero, it obtains particular wave (called semi-localized) patterns, which is periodic in one direction, but localized in the other direction. Secondly, if both moduli are tending to 1 as a limit, it derives some novel localized excitations (two-dromion solution). (general)

  19. Magnetic order and Kondo effect in the Anderson-lattice model

    International Nuclear Information System (INIS)

    Bernhard, B.H.; Aguiar, C.; Kogoutiouk, I.; Coqblin, B.

    2007-01-01

    The Anderson-lattice model has been extensively developed to account for the properties of many anomalous rare-earth compounds and in particular for the competition between the Kondo effect and an antiferromagnetic (AF) phase in a cubic lattice. Here we apply the higher-order decoupling of the equations of motion for the Green Functions (GF) introduced in [H.G. Luo, S.J. Wang, Phys. Rev. B 62 (2000) 1485]. We obtain an improved description of the phase diagram, where the AF phase subsists in a smaller range of the model parameters. As higher-order GF are included in the chain of equations, we are able to calculate directly the local spin-flip correlation function † ↓ d † ↑ f ↑ d ↓ >. As a further improvement to the previous approximation of [B.H. Bernhard, C. Aguiar, B. Coqblin, Physica B 378-380 (2006) 712], we obtain a reduced range of existence for the AF phase for the symmetric half-filled case and then we discuss the competition between the AF order and the Kondo effect as a function of the band filling

  20. Light in complex dielectrics

    NARCIS (Netherlands)

    Schuurmans, F.J.P.

    1999-01-01

    In this thesis the properties of light in complex dielectrics are described, with the two general topics of "modification of spontaneous emission" and "Anderson localization of light". The first part focuses on the spontaneous emission rate of an excited atom in a dielectric host with variable

  1. Anomalous electrical resistivity and Hall constant of Anderson lattice with finite f-band width

    International Nuclear Information System (INIS)

    Panwar, Sunil; Singh, Ishwar

    2002-01-01

    We study here an extension of the periodic Anderson model by considering finite f-band width. A variational method is used to study the temperature dependence of electronic transport properties of Anderson lattice for different values of the f-band width. The electrical resistivity ρ(T) and Hall constant R H (T) calculated show qualitatively the features experimentally observed in heavy fermion materials. We find that as f-band width increases, the low temperature peak in ρ(T) disappears, while the low-temperature peak in R H (T) becomes sharper. (author)

  2. JUSTICE IN EDUCATION: EVALUATING THE SATZ-ANDERSON RESPONSE

    Directory of Open Access Journals (Sweden)

    Valentin Stoian

    2016-06-01

    Full Text Available The paper aims to evaluate the reply offered by philosophers of educational justice Elizabeth Anderson and Debra Satz to the challenge posed by Harry Brighouse and Adam Swift. According to the latter two authors, the positional character of education undermines the application of sufficientarian principles to the distribution of educational resources. In the Brighouse-Swift view, a good is positional when its crucial characteristic is how much one possesses of it in relation to others. The two philosophers argue that education has this characteristic. Satz and Anderson reply that sufficientarianism can also survive in education, as the current educational structure should be modified. They maintain that the argument for an adequate minimum can diffuse the positionality objection and that by modifying the social structure to allow for other avenues of social mobility one can put less stress on formal education. The paper rejects the two claims and argues against sufficientarianism in education. Firstly, it puts forward the idea that any minimum is politically debatable and not an adequate reply to the positionality objection. The paper then rejects the second claim by arguing that it requires too much social engineering and that education under conditions of equality fits the purpose of social mobility much better

  3. Ferromagnetism in the two-dimensional periodic Anderson model

    International Nuclear Information System (INIS)

    Batista, C. D.; Bonca, J.; Gubernatis, J. E.

    2001-01-01

    Using the constrained-path Monte Carlo method, we studied the magnetic properties of the two-dimensional periodic Anderson model for electron fillings between 1/4 and 1/2. We also derived two effective low-energy theories to assist in interpreting the numerical results. For 1/4 filling, we found that the system can be a Mott or a charge-transfer insulator, depending on the relative values of the Coulomb interaction and the charge-transfer gap between the two noninteracting bands. The insulator may be a paramagnet or antiferromagnet. We concentrated on the effect of electron doping on these insulating phases. Upon doping we obtained a partially saturated ferromagnetic phase for low concentrations of conduction electrons. If the system were a charge-transfer insulator, we would find that the ferromagnetism is induced by the well-known Ruderman-Kittel-Kasuya-Yosida interaction. However, we found a novel correlated hopping mechanism inducing the ferromagnetism in the region where the nondoped system is a Mott insulator. Our regions of ferromagnetism spanned a much smaller doping range than suggested by recent slave boson and dynamical mean-field theory calculations, but they were consistent with that obtained by density-matrix renormalization group calculations of the one-dimensional periodic Anderson model

  4. Anderson Exploration Ltd. 1998 annual report

    International Nuclear Information System (INIS)

    1999-01-01

    In 1998, Anderson Exploration's undeveloped land inventory in the western provinces decreased 7% to 3,183,000 net acres largely due to lease expiries and drilling activity. The undeveloped land base is located 63% in Alberta, 19% in British Columbia, 17% in Saskatchewan, and 1% in Manitoba. During 1998, Anderson Exploration participated in drilling 446 wells for oil and gas vs. 669 for 1997. The average working interest in the wells was 63% vs. 64% in 1997. In 1998, the company spent $109 million on the construction of field gathering systems and production facilities vs. $123 million in 1997. In 1998, the company's gas sales increased to 555 million cubic feet per day from 549 million cubic feet per day in 1997. Crude oil sales averaged 29,808 barrels per day in 1998, an increase of 9% over the 1997 production. In 1998, the company replaced 148% of production with proven reserve additions, net of revisions, by spending 163% of cash flow from operations on capital spending. After a volatile year in 1 997, natural gas prices stabilized somewhat in 1998. A modest price increase was experienced in 1997. The company's average plant gate natural gas price increased modestly in 1998 to $1.94 per thousand cubic feet, marking the 3rd consecutive price increase. The company owns an average interest of 10.4% in two straddle plants at Empress, Alberta. The company operates and is a 50% owner of Federated Pipe Lines Ltd. The company is committed to protecting the health and safety of all employees and the public, as well as preserving the quality of the environment

  5. Self-Localized Quasi-Particle Excitation in Quantum Electrodynamics and Its Physical Interpretation

    Directory of Open Access Journals (Sweden)

    Ilya D. Feranchuk

    2007-12-01

    Full Text Available The self-localized quasi-particle excitation of the electron-positron field (EPF is found for the first time in the framework of a standard form of the quantum electrodynamics. This state is interpreted as the ''physical'' electron (positron and it allows one to solve the following problems: i to express the ''primary'' charge $e_0$ and the mass $m_0$ of the ''bare'' electron in terms of the observed values of $e$ and $m$ of the ''physical'' electron without any infinite parameters and by essentially nonperturbative way; ii to consider $mu$-meson as another self-localized EPF state and to estimate the ratio $m_mu/m$; iii to prove that the self-localized state is Lorentz-invariant and its energy spectrum corresponds to the relativistic free particle with the observed mass $m$; iv to show that the expansion in a power of the observed charge $e ll 1$ corresponds to the strong coupling expansion in a power of the ''primary'' charge $e^{-1}_0 sim e$ when the interaction between the ''physical'' electron and the transverse electromagnetic field is considered by means of the perturbation theory and all terms of this series are free from the ultraviolet divergence.

  6. Price-Anderson Act and nuclear insurance

    International Nuclear Information System (INIS)

    Long, J.D.; Long, D.P.

    1979-01-01

    The nuclear incident at Three Mile Island has served to intensify debate about elimination of the federal limit on liability of utilities (and others) for operation of private nuclear reactions and about elimination of possible federal indemnification of utilities (or others) for claims paid in nuclear incidents. Not all those who debate these issues appear to be fully informed about the present nuclear liability and insurance system. This paper provides a brief description of the Price-Anderson Act, as amended, and of the operation of the nuclear insurance pools. It also includes a comment on the recent federal district court award against the Kerr-McGee Corporation

  7. Charge transfer excitations from excited state Hartree-Fock subsequent minimization scheme

    International Nuclear Information System (INIS)

    Theophilou, Iris; Tassi, M.; Thanos, S.

    2014-01-01

    Photoinduced charge-transfer processes play a key role for novel photovoltaic phenomena and devices. Thus, the development of ab initio methods that allow for an accurate and computationally inexpensive treatment of charge-transfer excitations is a topic that nowadays attracts a lot of scientific attention. In this paper we extend an approach recently introduced for the description of single and double excitations [M. Tassi, I. Theophilou, and S. Thanos, Int. J. Quantum Chem. 113, 690 (2013); M. Tassi, I. Theophilou, and S. Thanos, J. Chem. Phys. 138, 124107 (2013)] to allow for the description of intermolecular charge-transfer excitations. We describe an excitation where an electron is transferred from a donor system to an acceptor one, keeping the excited state orthogonal to the ground state and avoiding variational collapse. These conditions are achieved by decomposing the space spanned by the Hartree-Fock (HF) ground state orbitals into four subspaces: The subspace spanned by the occupied orbitals that are localized in the region of the donor molecule, the corresponding for the acceptor ones and two more subspaces containing the virtual orbitals that are localized in the neighborhood of the donor and the acceptor, respectively. Next, we create a Slater determinant with a hole in the subspace of occupied orbitals of the donor and a particle in the virtual subspace of the acceptor. Subsequently we optimize both the hole and the particle by minimizing the HF energy functional in the corresponding subspaces. Finally, we test our approach by calculating the lowest charge-transfer excitation energies for a set of tetracyanoethylene-hydrocarbon complexes that have been used earlier as a test set for such kind of excitations

  8. Periodic Anderson model with correlated conduction electrons: Variational and exact diagonalization study

    Science.gov (United States)

    Hagymási, I.; Itai, K.; Sólyom, J.

    2012-06-01

    We investigate an extended version of the periodic Anderson model (the so-called periodic Anderson-Hubbard model) with the aim to understand the role of interaction between conduction electrons in the formation of the heavy-fermion and mixed-valence states. Two methods are used: (i) variational calculation with the Gutzwiller wave function optimizing numerically the ground-state energy and (ii) exact diagonalization of the Hamiltonian for short chains. The f-level occupancy and the renormalization factor of the quasiparticles are calculated as a function of the energy of the f orbital for a wide range of the interaction parameters. The results obtained by the two methods are in reasonably good agreement for the periodic Anderson model. The agreement is maintained even when the interaction between band electrons, Ud, is taken into account, except for the half-filled case. This discrepancy can be explained by the difference between the physics of the one- and higher-dimensional models. We find that this interaction shifts and widens the energy range of the bare f level, where heavy-fermion behavior can be observed. For large-enough Ud this range may lie even above the bare conduction band. The Gutzwiller method indicates a robust transition from Kondo insulator to Mott insulator in the half-filled model, while Ud enhances the quasiparticle mass when the filling is close to half filling.

  9. La importancia de Comunidades imaginadas y de Benedict Anderson

    Directory of Open Access Journals (Sweden)

    Craig Calhoun

    2017-01-01

    Full Text Available El remarcable libro Comunidades imaginadas de Benedict Anderson reconfiguró el estudio de las naciones y el nacionalismo. Sorprendentemente original, rompió con el excesivo énfasis que hasta el momento se ponía en el continente europeo y con los argumentos falsamente polarizados sobre si las naciones existían desde siempre o eran meros epifenómenos de los estados modernos. Comunidades imaginadas dirige la atención a la dinámica de la imaginación organizada social y culturalmente como proceso que se encuentra en el corazón de la cultura política, la comprensión de uno mismo y la solidaridad, idea que, como innovación de primer orden en la comprensión de los ‘imaginarios sociales’, tuvo una influencia que va más allá del estudio del nacionalismo. Sin embargo, el enfoque de Anderson conservó el incapié en las condiciones materiales que configuran la cultura y en las instituciones que facilitan su reproducción, desde periódicos y novelas a censos, mapas y museos.

  10. Price-Anderson Act - the third decade. Report to Congress

    International Nuclear Information System (INIS)

    Saltzman, J.

    1983-12-01

    Subsection 170p. of the Atomic Energy Act of 1954, as amended, requires that the Commission submit to the Congress by August 1, 1983, a detailed report on the need for continuation or modification of Section 170 of the Act, the Price-Anderson provisions. The report is divided into four sections with detailed subject reports appended to the main report. Sections I through III include an examination of issues that the Commission was required by statute to study (i.e., condition of the nuclear industry, state of knowledge of nuclear safety, and availability of private insurance), and discussion of other issues of interest and importance to the Congress and to the public. The subjects covered are as follows: (1) overview of the Price-Anderson system; (2) the state of knowledge of nuclear safety; (3) availability of private insurance; (4) conditions of the nuclear industry; (5) causality and proof of damages; (6) limitation of liability and subsidy; and (7) a proposal that would provide for removal of the limitation of liability but with limited annual liability payments. Section IV of the report contains conclusions and recommendations. Section V contains a bibliography

  11. Localized excitation of magnetostatic surface spin waves in yttrium iron garnet by shorted coaxial probe detected via spin pumping and rectification effect

    International Nuclear Information System (INIS)

    Soh, Wee Tee; Ong, C. K.; Peng, Bin

    2015-01-01

    We demonstrate the localized excitation and dc electrical detection of magnetostatic surface spin waves (MSSWs) in yttrium iron garnet (YIG) by a shorted coaxial probe. Thin films of NiFe and Pt are patterned at different regions onto a common bulk YIG substrate. A shorted coaxial probe is used to excite spin precession locally near various patterned regions. The dc voltages across the corresponding regions are recorded. For excitation of the Pt regions, the dc voltage spectra are dominated by the spin pumping of MSSWs from YIG, where various modes can be clearly distinguished. For the NiFe region, it is also found that spin pumping from MSSWs generated in YIG dominated the spectra, indicating that the spin pumped currents are dissipated into charge currents via the inverse Spin Hall effect (ISHE) in NiFe. For all regions, dc signals from YIG MSSWs are observed to be much stronger than the ferromagnetic resonance (FMR) uniform mode, likely due to the nature of the microwave excitation. The results indicate the potential of this probe for microwave imaging via dc detection of spin dynamics in continuous and patterned films

  12. Oblique Axis Body Fracture: An Unstable Subtype of Anderson Type III Odontoid Fractures—Apropos of Two Cases

    Directory of Open Access Journals (Sweden)

    Hirokazu Takai

    2016-01-01

    Full Text Available Purpose. Anderson type III odontoid fractures have traditionally been considered stable and treated conservatively. However, unstable cases with unfavorable results following conservative treatment have been reported. Methods. We present the cases of two patients who sustained minimally displaced Anderson type III fractures with a characteristic fracture pattern that we refer to as “oblique type axis body fracture.” Results. The female patients aged 90 and 72 years, respectively, were both diagnosed with minimally displaced Anderson type III fractures. Both fractures had a characteristic “oblique type” fracture pattern. The first patient was treated conservatively with cervical spine immobilization in a semirigid collar. However, gross displacement was noted at the 6-week follow-up visit. The second patient was therefore treated operatively by C1–C3/4 posterior fusion and the course was uneventful. Conclusions. Oblique type axis body fractures resemble a highly unstable subtype of Anderson type III fractures with the potential of severe secondary deformity following conservative treatment, irrespective of initial grade of displacement. The authors therefore warrant a high index of suspicion for this injury and suggest early operative stabilization.

  13. Nuclear structure studies using the high resolution spectrometer at the Los Alamos Clinton P. Anderson Meson Physics Facility: Progress report, [1986-1987

    International Nuclear Information System (INIS)

    Hoffmann, G.W.

    1986-12-01

    A major part of the work done this past year was associated with research conducted at the Los Alamos Clinton P. Anderson Meson Physics Facility (LAMPF) using the High Resolution Spectrometer (HRS) and the External Proton Beam (EPB). The research focussed on (1) providing p + nucleus data which test nonrelativistic and relativistic models of the medium energy proton + nucleus interaction, (2) providing (p,p) and (p,n) data which are to be analyzed to provide new nuclear structure information (both ground state and excited state), (3) providing nucleon + nucleon data to aid in the systematic study of the fundamental nucleon-nucleon interaction, (4) developing and improving the pA models themselves, and (5) initiating new experimental programs whose goals are to search for new phenomena in nuclear physics

  14. Design of a Municipal Yard Waste Composting Facility for Anderson County, South Carolina

    National Research Council Canada - National Science Library

    Klapmeyer, Michael

    2003-01-01

    .... Large-scale composting is a proven method by which Anderson County can demonstrate sound environmental stewardship while drastically reducing the volume of waste entering county landfills, thereby...

  15. Molecular excited states from the SCAN functional

    Science.gov (United States)

    Tozer, David J.; Peach, Michael J. G.

    2018-06-01

    The performance of the strongly constrained and appropriately normed (SCAN) meta-generalised gradient approximation exchange-correlation functional is investigated for the calculation of time-dependent density-functional theory molecular excitation energies of local, charge-transfer and Rydberg character, together with the excited ? potential energy curve in H2. The SCAN results frequently resemble those obtained using a global hybrid functional, with either a standard or increased fraction of exact orbital exchange. For local excitations, SCAN can exhibit significant triplet instability problems, resulting in imaginary triplet excitation energies for a number of cases. The Tamm-Dancoff approximation offers a simple approach to improve the situation, but the excitation energies are still significantly underestimated. Understanding the origin of these (near)-triplet instabilities may provide useful insight into future functional development.

  16. Localization transition in SU(3) gauge theory

    Science.gov (United States)

    Kovács, Tamás G.; Vig, Réka Á.

    2018-01-01

    We study the Anderson-like localization transition in the spectrum of the Dirac operator of quenched QCD. Above the deconfining transition we determine the temperature dependence of the mobility edge separating localized and delocalized eigenmodes in the spectrum. We show that the temperature where the mobility edge vanishes and localized modes disappear from the spectrum coincides with the critical temperature of the deconfining transition. We also identify topological charge related close to zero modes in the Dirac spectrum and show that they account for only a small fraction of localized modes, a fraction that is rapidly falling as the temperature increases.

  17. Excited-state density functional theory

    International Nuclear Information System (INIS)

    Harbola, Manoj K; Hemanadhan, M; Shamim, Md; Samal, P

    2012-01-01

    Starting with a brief introduction to excited-state density functional theory, we present our method of constructing modified local density approximated (MLDA) energy functionals for the excited states. We show that these functionals give accurate results for kinetic energy and exchange energy compared to the ground state LDA functionals. Further, with the inclusion of GGA correction, highly accurate total energies for excited states are obtained. We conclude with a brief discussion on the further direction of research that include the construction of correlation energy functional and exchange potential for excited states.

  18. Anderson localization and its ramifications disorder, phase coherence and electron correlations

    CERN Document Server

    Kettemann, S

    2003-01-01

    The phenomenon of localization of the electronic wave function in a random medium can be regarded as the key manifestation of quantum coherence in a condensed matter system. As one of the most remarkable phenomena in condensed matter physics discovered in the 20th century, the localization problem is an indispensable part of the theory of the quantum Hall effects and rivals superconductivity in its significance as a manifestation of quantum coherence at a macroscopic scale. The present volume, written by some of the leading experts in the field, is intended to highlight some of the recent progress in the field of localization, with particular emphasis on the effect of interactions on quantum coherence. The chapters are written in textbook style and should serve as a reliable and thorough introduction for advanced students or researchers already working in the field of mesoscopic physics.

  19. Variational Wavefunction for the Periodic Anderson Model with Onsite Correlation Factors

    Science.gov (United States)

    Kubo, Katsunori; Onishi, Hiroaki

    2017-01-01

    We propose a variational wavefunction containing parameters to tune the probabilities of all the possible onsite configurations for the periodic Anderson model. We call it the full onsite-correlation wavefunction (FOWF). This is a simple extension of the Gutzwiller wavefunction (GWF), in which one parameter is included to tune the double occupancy of the f electrons at the same site. We compare the energy of the GWF and the FOWF evaluated by the variational Monte Carlo method and that obtained with the density-matrix renormalization group method. We find that the energy is considerably improved in the FOWF. On the other hand, the physical quantities do not change significantly between these two wavefunctions as long as they describe the same phase, such as the paramagnetic phase. From these results, we not only demonstrate the improvement by the FOWF, but we also gain insights on the applicability and limitation of the GWF to the periodic Anderson model.

  20. Variational wavefunction for the periodic anderson model with onsite correlation factors

    International Nuclear Information System (INIS)

    Kubo, Katsunori; Onishi, Hiroaki

    2017-01-01

    We propose a variational wavefunction containing parameters to tune the probabilities of all the possible onsite configurations for the periodic Anderson model. We call it the full onsite-correlation wavefunction (FOWF). This is a simple extension of the Gutzwiller wavefunction (GWF), in which one parameter is included to tune the double occupancy of the f electrons at the same site. We compare the energy of the GWF and the FOWF evaluated by the variational Monte Carlo method and that obtained with the density-matrix renormalization group method. We find that the energy is considerably improved in the FOWF. On the other hand, the physical quantities do not change significantly between these two wavefunctions as long as they describe the same phase, such as the paramagnetic phase. From these results, we not only demonstrate the improvement by the FOWF, but we also gain insights on the applicability and limitation of the GWF to the periodic Anderson model. (author)

  1. Successful salvage therapy with Daptomycin for osteomyelitis caused by methicillin-resistant Staphylococcus aureus in a renal transplant recipient with Fabry-Anderson disease

    Directory of Open Access Journals (Sweden)

    Polilli Ennio

    2012-03-01

    Full Text Available Abstract Daptomycin is licensed in adults for the management of Staphylococcus aureus methicillin-resistant infections, including bone and skin complicated infections. We describe for the first time its use in a renal transplant recipient for Fabry-Anderson Disease with right heel osteomyelitis. The patient was unresponsive to first-line Teicoplanin and second-line Tigecycline, whereas he was successfully treated with third-line Daptomycin monotherapy at 4 mg/Kg/qd for 4 weeks. Local debridement was performed in advance of each line of treatment.

  2. Magnitude of localized magnetic moments in metals

    International Nuclear Information System (INIS)

    Kiwi, M.; Pestana, E.; Ramirez, R.

    1979-01-01

    The magnitude of the localized magnetic moment of a transition or rare earth element impurity in a metal is evaluated within the framework of the Anderson model. Rotational invariance is preserved throughout. Graphs of the magnitude of the magnetization as a function of the relevant parameters of the model are provided and discussed. (author)

  3. Steady-State Anderson Accelerated Coupling of Lattice Boltzmann and Navier–Stokes Solvers

    KAUST Repository

    Atanasov, Atanas; Uekermann, Benjamin; Pachajoa Mejí a, Carlos; Bungartz, Hans-Joachim; Neumann, Philipp

    2016-01-01

    to the fullest extent and yields enhanced control to match the LB and NS degrees of freedom within the LBNS overlap layer. Designed for parallel Schwarz coupling, the Anderson acceleration allows for the simultaneous execution of both Lattice Boltzmann and Navier

  4. Plea for European Price Anderson legislation

    International Nuclear Information System (INIS)

    Roser, T.

    1992-01-01

    The paper analyses the essential features and the basic differences in nuclear liability and coverage in the United States where the problem is governed by the Price-Anderson legislation, and the Member States of the European Community which adhere to the Paris Convention on Third Party Liability in the Field of Nuclear Energy. The paper undertakes to show that it is possible to introduce into the European Community certain elements of the American regime, in particular the solidarity of nuclear operators and the retroactive premium coverage without violating the basic principles of the Paris Convention. Consequently the paper advocates the adoption of such rules in Europe as a step towards harmonisation of nuclear coverage and safety and a means to reduce government interference. (author)

  5. Condensate localization by mesoscale disorder in high-Tc superconductors

    International Nuclear Information System (INIS)

    Kumar, N.

    1994-06-01

    We propose and solve approximately a phenomenological model for Anderson localization of the macroscopic wavefunction for an inhomogeneous superconductor quench-disordered on the mesoscale of the order of the coherence length ξ 0 . Our treatment is based on the non-linear Schroedinger equation resulting from the Ginzburg-Landau free-energy functional having a spatially random coefficient representing spatial disorder of the pairing interaction. Linearization of the equation, valid close to the critical temperature T c , or to the upper critical field H c2 (T c ) maps it to the Anderson localization problem with T c identified with the mobility edge. For the highly anisotropic high-T c materials and thin (2D) films in the quantum Hall geometry, we predict windows of re-entrant superconductivity centered at integrally spaced temperature values. Our model treatment also provides a possible explanation for the critical current J c perpendicular becoming non-zero on cooling before J c parallel does in some high-T c superconductors. (author). 18 refs

  6. Incipient localization and tight-binding superconductivity: Tsub(c) calculation

    International Nuclear Information System (INIS)

    Kolley, E.; Kolley, W.

    1984-01-01

    Localization effects on the superconducting transition temperature Tsub(c) are examined in strongly disordered three-dimensional systems. A tight-binding formulation of strong-coupling superconductivity is combined, after configuration averaging, with the self-consistent treatment of Anderson localization developed by Vollhardt and Woelfle. The Coulomb interaction becomes retarded via the joint local local density of states, giving rise to an enhancement of the pseudopotential. Numerical Tsub(c) results as a function of disorder are compared with another theoretical work and experimental values for some high-Tsub(c) materials. (orig.)

  7. Wes Andersons färgstarka värld : En studie av färg i film

    OpenAIRE

    Hallenquist, Peter

    2009-01-01

      Abstract The focus of this essay is the american director Wes Anderson and the use of colour in his films. I also put some focus on colour as a neglected element in film studies, and what has caused this neglect. In my own research, I have analysed three of Anderson's films: Bottle Rocket (1996), The Royal Tenenbaums (2001) and The Darjeeling Limited (2007). To get a broad sense of a films use of colour, I have investigated the colour scheme, the colours of the costumes, as well as colour p...

  8. Collective Kondo effect in the Anderson-Hubbard lattice

    Science.gov (United States)

    Fazekas, P.; Itai, K.

    1997-02-01

    The periodic Anderson model is extended by switching on a Hubbard U for the conduction electrons. We use the Gutzwiller variational method to study the nearly integral valent limit. The lattice Kondo energy contains the U-dependent chemical potential of the Hubbard subsystem in the exponent, and the correlation-induced band narrowing in the prefactor. Both effects tend to suppress the Kondo scale, which can be understood to result from the blocking of hybridization. At half-filling, we find a Brinkman-Rice-type transition from a Kondo insulator to a Mott insulator.

  9. A functional integral approach without slave bosons to the Anderson model

    International Nuclear Information System (INIS)

    Nguyen Ngoc Thuan; Nguyen Toan Thang; Coqblin, B.; Bhattacharjee, A.; Hoang Anh Tuan.

    1994-06-01

    We developed the technique of the functional integral method without slave bosons for the Periodic Anderson Model (PAM) suggested by Sarker for treating the Hubbard Model. This technique allowed us to obtain an analytical expression of Green functions containing U-dependence that is omitted in the formalism with slave bosons. (author). 9 refs

  10. Localized and Extended States in a Disordered Trap

    International Nuclear Information System (INIS)

    Pezze, Luca; Sanchez-Palencia, Laurent

    2011-01-01

    We study Anderson localization in a disordered potential combined with an inhomogeneous trap. We show that the spectrum displays both localized and extended states, which coexist at intermediate energies. In the region of coexistence, we find that the extended states result from confinement by the trap and are weakly affected by the disorder. Conversely, the localized states correspond to eigenstates of the disordered potential, which are only affected by the trap via an inhomogeneous energy shift. These results are relevant to disordered quantum gases and we propose a realistic scheme to observe the coexistence of localized and extended states in these systems.

  11. Local CC2 response method based on the Laplace transform: Analytic energy gradients for ground and excited states

    Energy Technology Data Exchange (ETDEWEB)

    Ledermüller, Katrin; Schütz, Martin, E-mail: martin.schuetz@chemie.uni-regensburg.de [Institute of Physical and Theoretical Chemistry, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg (Germany)

    2014-04-28

    A multistate local CC2 response method for the calculation of analytic energy gradients with respect to nuclear displacements is presented for ground and electronically excited states. The gradient enables the search for equilibrium geometries of extended molecular systems. Laplace transform is used to partition the eigenvalue problem in order to obtain an effective singles eigenvalue problem and adaptive, state-specific local approximations. This leads to an approximation in the energy Lagrangian, which however is shown (by comparison with the corresponding gradient method without Laplace transform) to be of no concern for geometry optimizations. The accuracy of the local approximation is tested and the efficiency of the new code is demonstrated by application calculations devoted to a photocatalytic decarboxylation process of present interest.

  12. Local CC2 response method based on the Laplace transform: analytic energy gradients for ground and excited states.

    Science.gov (United States)

    Ledermüller, Katrin; Schütz, Martin

    2014-04-28

    A multistate local CC2 response method for the calculation of analytic energy gradients with respect to nuclear displacements is presented for ground and electronically excited states. The gradient enables the search for equilibrium geometries of extended molecular systems. Laplace transform is used to partition the eigenvalue problem in order to obtain an effective singles eigenvalue problem and adaptive, state-specific local approximations. This leads to an approximation in the energy Lagrangian, which however is shown (by comparison with the corresponding gradient method without Laplace transform) to be of no concern for geometry optimizations. The accuracy of the local approximation is tested and the efficiency of the new code is demonstrated by application calculations devoted to a photocatalytic decarboxylation process of present interest.

  13. Local CC2 response method based on the Laplace transform: Analytic energy gradients for ground and excited states

    International Nuclear Information System (INIS)

    Ledermüller, Katrin; Schütz, Martin

    2014-01-01

    A multistate local CC2 response method for the calculation of analytic energy gradients with respect to nuclear displacements is presented for ground and electronically excited states. The gradient enables the search for equilibrium geometries of extended molecular systems. Laplace transform is used to partition the eigenvalue problem in order to obtain an effective singles eigenvalue problem and adaptive, state-specific local approximations. This leads to an approximation in the energy Lagrangian, which however is shown (by comparison with the corresponding gradient method without Laplace transform) to be of no concern for geometry optimizations. The accuracy of the local approximation is tested and the efficiency of the new code is demonstrated by application calculations devoted to a photocatalytic decarboxylation process of present interest

  14. Non-Fermi Liquid Behavior and Continuously Tunable Resistivity Exponents in the Anderson-Hubbard Model at Finite Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Niravkumar D. [The Univ. of Tennessee, Knoxville, TN (United States); Mukherjee, Anamitra [National Institute of Science Education and Research, Jatni (India); Kaushal, Nitin [The Univ. of Tennessee, Knoxville, TN (United States); Moreo, Adriana [The Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dagotto, Elbio R. [The Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-24

    Here, we employ a recently developed computational many-body technique to study for the first time the half-filled Anderson-Hubbard model at finite temperature and arbitrary correlation U and disorder V strengths. Interestingly, the narrow zero temperature metallic range induced by disorder from the Mott insulator expands with increasing temperature in a manner resembling a quantum critical point. Our study of the resistivity temperature scaling Tα for this metal reveals non-Fermi liquid characteristics. Moreover, a continuous dependence of α on U and V from linear to nearly quadratic is observed. We argue that these exotic results arise from a systematic change with U and V of the “effective” disorder, a combination of quenched disorder and intrinsic localized spins.

  15. Local magnitude, duration magnitude and seismic moment of Dahshour 1992 earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Dessokey, M.M.; Abdelwahed, M.F. [National research Institute of Astronomy and Geophysics, Cairo (Egypt). Dept. of Seismology; Hussein, H.M.; Abdelrahman, El. M. [Cairo Univ., Cairo (Egypt). Dept. of Geophysics

    2000-02-01

    Local magnitude M{sub L} have been calculated for 56 earthquakes of the Dahshour 1992 sequence using simulated records of the KEG broadband station and estimated calibration function of the area. The measurements, derived by the simulated Wood Anderson seismograms, are analysed and discussed.

  16. Matrix continued-fraction calculation of localization length in disordered systems

    International Nuclear Information System (INIS)

    Pastawski, H.M.; Weisz, J.F.

    1983-01-01

    A Matrix Continued-Fraction method is used to study the localization length of the states at the band center of a two dimensional crystals with disorder given by the Anderson model. It is found that exponentially localized states which scale according to the work of Mac Kinnon and Kramer, becomes weakly localized as the disorder becomes weaker, and there is some critical disorder for which the localization length does not saturate with the width of the strips, this confirms the resuts found by Pichard and Sarma. Weakly localized states are also found in one dimension for w/v [pt

  17. Matrix continued-fraction calculation of localization length in disordered systems

    International Nuclear Information System (INIS)

    Pastawski, H.M.; Weisz, J.F.

    1983-01-01

    A Matrix Continued-Fraction method is used to study the localization length of the states at the band center of a two dimensional crystal with disorder given by the Anderson model. It is found that exponentially localized states, which scale according to the work of Mac Kinnon and Kramer, becomes weakly localized as the disorder becomes weaker, and there is some critical disorder for which the localization length does not saturate with the width of the strips, this confirms the results found by Pichard and Sarma. Weakly localized states are also found in one dimension for w/v [pt

  18. Multi-particle Anderson Localisation: Induction on the Number of Particles

    International Nuclear Information System (INIS)

    Chulaevsky, Victor; Suhov, Yuri

    2009-01-01

    This paper is a follow-up of our recent papers Chulaevsky and Suhov (Commun Math Phys 283:479-489, 2008) and Chulaevsky and Suhov (Commun Math Phys in press, 2009) covering the two-particle Anderson model. Here we establish the phenomenon of Anderson localisation for a quantum N-particle system on a lattice with short-range interaction and in presence of an IID external potential with sufficiently regular marginal cumulative distribution function (CDF). Our main method is an adaptation of the multi-scale analysis (MSA; cf. Froehlich and Spencer, Commun Math Phys 88:151-184, 1983; Froehlich et al., Commun Math Phys 101:21-46, 1985; von Dreifus and Klein, Commun Math Phys 124:285-299, 1989) to multi-particle systems, in combination with an induction on the number of particles, as was proposed in our earlier manuscript (Chulaevsky and Suhov 2007). Recently, Aizenman and Warzel (2008) proved spectral and dynamical localisation for N-particle lattice systems with a short-range interaction, using an extension of the Fractional-Moment Method (FMM) developed earlier for single-particle models in Aizenman and Molchanov (Commun Math Phys 157:245-278, 1993) and Aizenman et al. (Commun Math Phys 224:219-253, 2001) (see also references therein) which is also combined with an induction on the number of particles

  19. Localized magnetic excitations for a line of magnetic impurities in a transverse Ising thin film ferromagnet

    International Nuclear Information System (INIS)

    Leite, R.V.; Oliveira Filho, L.O. de; Milton Pereira, J.; Cottam, M.G.; Costa Filho, R.N.

    2009-01-01

    A Green's function method is used to obtain the spectrum of spin excitations associated with a linear array of magnetic impurities implanted in a ferromagnetic thin film. The equations of motion for the Green's functions of the anisotropic film are written in the framework of the Ising model in a transverse field. The frequencies of localized modes are calculated as a function of the interaction parameters for the exchange coupling between impurity-spin pairs, host-spin pairs, and impurity-host neighbors, as well as the effective field parameter at the impurity sites.

  20. Ilu võitlus koleduse välja vastu / Rebekka Lotman ; kommenteerinud Mart Anderson

    Index Scriptorium Estoniae

    Lotman, Rebekka, 1978-

    2009-01-01

    Konkursside "25 kauneimat Eesti raamatut" ja "Viis kauneimat Eesti lasteraamatut" võidutööde näitus Eesti Rahvusraamatukogus. Võidutööde valikut kommenteerib žürii esimees Mart Anderson. Loetletud 2008. aasta 25 kaunimat raamatut. Nimekiri: 2008. aasta 25 kauneimat raamatut

  1. Harmonic excitations in quasicrystals

    International Nuclear Information System (INIS)

    Luck, J.M.

    1986-03-01

    The harmonic excitations (phonons) of quasicrystals are studied in a simple one-dimensional model. The spectrum is a Cantor set, which exhibits selfsimilarity properties. The eigenstates are generically ''critical'', i.e. neither extended nor localized

  2. Financial analysis of potential retrospective premium assessments under the Price-Anderson system

    International Nuclear Information System (INIS)

    Wood, R.S.

    1985-04-01

    Ten representative nuclear utilities have been analyzed over the period 1981 to 1983 to evaluate the effects of three levels of retrospective premiums on various financial indicators. This analysis continues and expands on earlier analyses prepared as background for deliberations by the US Congress for possible extension or modification of the Price-Anderson Act

  3. Annealed asymptotics for the parabolic Anderson model with a moving catalyst

    NARCIS (Netherlands)

    Gärtner, J.; Heydenreich, M.O.

    2006-01-01

    This paper deals with the solution u to the parabolic Anderson equation ¿u/¿t=¿¿u+¿u on the lattice . We consider the case where the potential ¿ is time-dependent and has the form ¿(t,x)=d0(x-Yt) with Yt being a simple random walk with jump rate 2d. The solution u may be interpreted as the

  4. Prospects of Anderson's theorem for disordered cuprate superconductors

    Science.gov (United States)

    Ghosal, Amit; Chakraborty, Debmalya; Kaushal, Nitin

    2018-05-01

    We develop a simple pairing theory of superconductivity in strongly correlated d-wave superconductors for up to a moderate strength of disorder. Our description implements the key ideas of Anderson, originally proposed for disordered s-wave superconductors, but in addition takes care of the inherent strong electronic repulsion in these compounds, as well as the inhomogeneities. We first obtain the self-consistent one-particle states, that capture the effects of disorder exactly, and strong correlations using Gutzwiller approximation. These 'normal states' (at zero temperature) when coupled through BCS-type pairing attractions, produces results which are nearly identical to those from a more sophisticated Gutzwiller augmented Bogoliubov-de Gennes analysis.

  5. Melissa L. Anderson: APA/APAGS Award for Distinguished Graduate Student in Professional Psychology

    Science.gov (United States)

    American Psychologist, 2012

    2012-01-01

    Presents a short biography of the winner of the American Psychological Association/American Psychological Association of Graduate Students Award for Distinguished Graduate Student in Professional Psychology. The 2012 winner is Melissa L. Anderson for her ongoing commitment to understanding, treating, and preventing domestic violence in Deaf women…

  6. Efficiency of local surface plasmon polariton excitation on ridges

    DEFF Research Database (Denmark)

    Radko, Ilya; Bozhevolnyi, Sergey I.; Boltasseva, Alexandra

    2008-01-01

    We investigate experimentally and numerically the efficiency of surface plasmon polariton excitation by a focused laser beam using gold ridges. The dependence of the efficiency on geometrical parameters of ridges and wavelength dependence are examined. The experimental measurements accomplished...

  7. Many electron variational ground state of the two dimensional Anderson lattice

    International Nuclear Information System (INIS)

    Zhou, Y.; Bowen, S.P.; Mancini, J.D.

    1991-02-01

    A variational upper bound of the ground state energy of two dimensional finite Anderson lattices is determined as a function of lattice size (up to 16 x 16). Two different sets of many-electron basis vectors are used to determine the ground state for all values of the coulomb integral U. This variational scheme has been successfully tested for one dimensional models and should give good estimates in two dimensions

  8. Anderson-Hynes pyeloplasty with isthmotomy and lateropexy in horseshoe kidneys with pelviureteric junction obstruction in children

    Directory of Open Access Journals (Sweden)

    Shasanka Shekhar Panda

    2014-01-01

    Full Text Available Objective: The objective of this study was to evaluate the results of Anderson-Hynes pyeloplasty with isthmotomy and lateropexy in horseshoe kidney with pelviureteric junction obstruction (PUJO. Materials and Methods: Medical records of patients of horseshoe kidney with PUJO operated in our institute between June 1998 and June 2012 were reviewed. Anderson-Hynes pyeloplasty with isthmotomy and lateropexy was performed in all patients. The surgical outcome was evaluated with emphasis on the changes in degree of hydronephrosis by ultrasonography, renal drainage and function assessed by diuretic renal scans. Results: We studied the records of eight children of horseshoe kidney having unilateral PUJO. Obstruction was caused by a crossing lower-pole vessel in two cases, a high ureteral insertion in three and narrowing of the PUJ in three cases. Post-operative follow-up (median 4.4 years, range 18 months to 10 years revealed improved renal function and good drainage in all cases. Hydronephrosis disappeared in 3, 4 showed Grade 1 and one showed Grade 2 hydronephrosis. All children are doing well and have no symptoms. Conclusion: Anderson-Hynes pyeloplasty with isthmotomy and lateropexy is a highly effective and safe procedure for treating PUJO in horseshoe kidney in children.

  9. Evidence of excited state localization and static disorder in LH2 investigated by 2D-polarization single-molecule imaging at room temperature.

    Science.gov (United States)

    Tubasum, Sumera; Camacho, Rafael; Meyer, Matthias; Yadav, Dheerendra; Cogdell, Richard J; Pullerits, Tõnu; Scheblykin, Ivan G

    2013-12-07

    Two-dimensional polarization fluorescence imaging of single light harvesting complexes 2 (LH2) of Rps. acidophila was carried out to investigate the polarization properties of excitation and fluorescence emission simultaneously, at room temperature. In two separate experiments we excited LH2 with a spectrally narrow laser line matched to the absorption bands of the two chromophore rings, B800 and B850, thereby indirectly and directly triggering fluorescence of the B850 exciton state. A correlation analysis of the polarization modulation depths in excitation and emission for a large number of single complexes was performed. Our results show, in comparison to B800, that the B850 ring is a more isotropic absorber due to the excitonic nature of its excited states. At the same time, we observed a strong tendency for LH2 to emit with dipolar character, from which preferential localization of the emissive exciton, stable for minutes, is inferred. We argue that the observed effects can consistently be explained by static energetic disorder and/or deformation of the complex, with possible involvement of exciton self-trapping.

  10. Die Welt als Puppenhaus. Die verzauberten Filme des Wes Anderson als Retrospektive im Kino Xenix

    OpenAIRE

    Binotto, Johannes

    2012-01-01

    Nur gerade sieben Filme hat der Regisseur und Autor Wes Anderson bisher gemacht, damit aber ein einzigartiges Œuvre geschaffen. Das Xenix zeigt diese melancholischen und verspielten Kunstwerke, zusammen mit Filmen, die als Inspiration dienten.

  11. Excitation of terahertz modes localized on a layered superconductor: Anomalous dispersion and resonant transmission

    Science.gov (United States)

    Apostolov, S. S.; Makarov, N. M.; Yampol'skii, V. A.

    2018-01-01

    We study theoretically the optic transmission through a slab of layered superconductor separated from two dielectric leads by spatial gaps. Based on the transfer matrix formalism along with the Josephson plasma electrodynamic approach, we derive analytic expressions for the transmittance and identify the conditions for the perfect transmission. The special interest of the study is focused on the resonant transmission, which occurs when the wave does not propagate in the spatial gaps. Far from the resonance, the transmittance is exponentially small due to the total internal reflection from the lead-gap interface. However, the excitation of electromagnetic modes localized on the layered superconductor gives rise to a remarkable resonant enhancement of the transmission. Moreover, this phenomenon is significantly modified for the layered superconductors in comparison with usual dielectrics or conductors. The dispersion curves for the modes localized on the layered superconductor are proved to be nonmonotonic, thus resulting in the specific dependence of the transmittance T on the incidence angle θ . In particular, we predict the onset of two resonant peaks in the T (θ ) dependence and their subsequent merge into the broadened single peak with increasing of the wave frequency. Our analytical results are demonstrated by numerical data.

  12. Price-Anderson Nuclear Safety Enforcement Program. 1996 Annual report

    International Nuclear Information System (INIS)

    1996-01-01

    This first annual report on DOE's Price Anderson Amendments Act enforcement program covers the activities, accomplishments, and planning for calendar year 1996. It also includes the infrastructure development activities of 1995. It encompasses the activities of the headquarters' Office of Enforcement in the Office of Environment, Safety and Health (EH) and Investigation and the coordinators and technical advisors in DOE's Field and Program Offices and other EH Offices. This report includes an overview of the enforcement program; noncompliances, investigations, and enforcement actions; summary of significant enforcement actions; examples where enforcement action was deferred; and changes and improvements to the program

  13. Elementary excitations in single-chain magnets

    Science.gov (United States)

    Lutz, Philipp; Aguilà, David; Mondal, Abhishake; Pinkowicz, Dawid; Marx, Raphael; Neugebauer, Petr; Fâk, Björn; Ollivier, Jacques; Clérac, Rodolphe; van Slageren, Joris

    2017-09-01

    Single-chain magnets (SCMs) are one-dimensional coordination polymers or spin chains that display slow relaxation of the magnetization. Typically their static magnetic properties are described by the Heisenberg model, while the description of their dynamic magnetic properties is based on an Ising-like model. The types of excitations predicted by these models (collective vs localized) are quite different. Therefore we probed the nature of the elementary excitations for two SCMs abbreviated Mn2Ni and Mn2Fe , as well as a mononuclear derivative of the Mn2Fe chain, by means of high-frequency electron paramagnetic resonance spectroscopy (HFEPR) and inelastic neutron scattering (INS). We find that the HFEPR spectra of the chains are clearly distinct from those of the monomer. The momentum transfer dependence of the INS intensity did not reveal significant dispersion, indicating an essentially localized nature of the excitations. At the lowest temperatures these are modified by the occurrence of short-range correlations.

  14. Route to strong localization of light: The role of disorder

    KAUST Repository

    Molinari, Diego P.; Fratalocchi, Andrea

    2012-01-01

    By employing Random Matrix Theory (RMT) and firstprinciple calculations, we investigated the behavior of Anderson localization in 1D, 2D and 3D systems characterized by a varying disorder. In particular, we considered random binary layer sequences in 1D and structurally disordered photonic crystals in two and three dimensions. We demonstrated the existence of a unique optimal degree of disorder that yields the strongest localization possible. In this regime, localized modes are constituted by defect states, which can show subwavelength confinement properties. These results suggest that disorder offers a new avenue for subwavelength light localization in purely dielectric media. © 2012 Optical Society of America.

  15. Twisting Anderson pseudospins with light: Quench dynamics in THz-pumped BCS superconductors

    Science.gov (United States)

    Chou, Yang-Zhi; Liao, Yunxiang; Foster, Matthew

    We study the preparation and the detection of coherent far-from-equilibrium BCS superconductor dynamics in THz pump-probe experiments. In a recent experiment, an intense monocycle THz pulse with center frequency ω = Δ was injected into a superconductor with BCS gap Δ the post-pump evolution was detected via the optical conductivity. It was argued that nonlinear coupling of the pump to the Anderson pseudospins of the superconductor induces coherent dynamics of the Higgs mode Δ (t) . We validate this picture in a 2D BCS model with a combination of exact numerics and the Lax reduction, and we compute the dynamical phase diagram. The main effect of the pump is to scramble the orientations of Anderson pseudospins along the Fermi surface by twisting them in the xy-plane. We show that more intense pulses can induce a far-from-equilibrium gapless phase (phase I), originally predicted in the context of interaction quenches. We show that the THz pump can reach phase I at much lower energy densities than an interaction quench, and we demonstrate that Lax reduction provides a quantitative tool for computing coherent BCS dynamics. We also compute the optical conductivity for the states discussed here.

  16. Anderson-Type Polyoxometalates Functionalized by Tetrathiafulvalene Groups: Synthesis, Electrochemical Studies, and NLO Properties.

    Science.gov (United States)

    Boulmier, Amandine; Vacher, Antoine; Zang, Dejin; Yang, Shu; Saad, Ali; Marrot, Jérôme; Oms, Olivier; Mialane, Pierre; Ledoux, Isabelle; Ruhlmann, Laurent; Lorcy, Dominique; Dolbecq, Anne

    2018-04-02

    Three polyoxometalates (POMs) functionalized by tetrathiafulvalene (TTF) molecules have been synthesized by a coupling reaction between the Anderson-type POMs [MnMo 6 O 18 {(OCH 2 ) 3 CNH 2 } 2 ] 3- or [AlMo 6 O 18 (OH) 3 {(OCH 2 ) 3 CNH 2 }] 3- and the TTF carboxylic acid derivative (MeS) 3 TTF(S-CH 2 -CO 2 H). The monofunctionalized TTF-AlMo 6 POM contains one TTF group covalently grafted on an Al Anderson platform. The symmetrical TTF-MnMo 6 -TTF POM possesses two TTF groups grafted on each side of a Mn Anderson derivative while the asymmetrical TTF-MnMo 6 -SP POM contains a TTF and a spiropyran groups. These three trianionic species have been characterized by elemental analysis, 1 H and 13 C NMR, FT-IR spectroscopy, ESI-MS spectrometry, and single-crystal X-ray diffraction (for TTF-MnMo 6 -TTF). In the solid state, the grafted TTF molecules of TTF-MnMo 6 -TTF POMs interact via S···S and π···π interactions and form chains. The electrochemical properties of the complexes reflect the contributions of both the inorganic POM and the TTF moieties. Despite adsorption of the oxidized hybrid species on the Pt grid working electrode, UV-vis-NIR spectroelectrochemical investigations evidence peaks characteristic of the oxidation of the TTF units. Finally, hyper-Rayleigh scattering (HRS) measurements show that the three novel TTF derivatives exhibit β values between 20 and 37 × 10 -30 esu. Moreover it is observed that the oxidation of the TTF moieties by Fe 3+ ions increases the NLO response. These values are in the order of magnitude of that found for the well-known 4-dimethylamino- N-methyl-4-stilbazolium (DAS + ) cation (β = 60 × 10 -30 esu).

  17. Scully : võin ka lolli mängida / Gillian Anderson ; tõlk. Triin Tael

    Index Scriptorium Estoniae

    Anderson, Gillian

    2008-01-01

    USA sarjale "The X-Files" põhinev teine järjefilm "Salatoimikud: Ma tahan uskuda" ("The X-Files: I Want to Believe") : režissöör Chris Carter : peaosades David Duchovny, Gillian Anderson : Ameerika Ühendriigid - Kanada 2008. Intervjuu ilmus juulis portaalis USA Weekend

  18. Plasmon assisted control of photo-induced excitation energy transfer in a molecular chain

    Science.gov (United States)

    Wang, Luxia; May, Volkhard

    2017-08-01

    The strong and ultrafast laser pulse excitation of a molecular chain in close vicinity to a spherical metal nano-particle (MNP) is studied theoretically. Due to local-field enhancement around the MNP, pronounced excited-state formation has to be expected for the part of the chain which is in proximity to the MNP. Here, the description of this phenomenon will be based on a uniform quantum theory of the MNP-molecule system. It accounts for local-field effects due to direct consideration of the strong excitation energy transfer coupling between the MNP and the various molecules. The molecule-MNP distances are chosen in such a way as to achieve a correct description of the MNP via dipole-plasmon excitations. Short plasmon life-times are incorporated in the framework of a density matrix approach. By extending earlier work the present description allows for multi-exciton formation and multiple dipole-plasmon excitation. The region of less intense and not-too-short optical excitation is identified as being best suited for excitation energy localization in the chain.

  19. H{sub 2} EXCITATION STRUCTURE ON THE SIGHTLINES TO {delta} SCORPII AND {zeta} OPHIUCI: FIRST RESULTS FROM THE SUB-ORBITAL LOCAL INTERSTELLAR CLOUD EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    France, Kevin; Nell, Nicholas; Kane, Robert; Green, James C. [Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309 (United States); Burgh, Eric B. [SOFIA/USRA, NASA Ames Research Center, M/S N232-12, Moffett Field, CA 94035 (United States); Beasley, Matthew, E-mail: kevin.france@colorado.edu [Planetary Resources, Inc., 93 S Jackson St 50680, Seattle, WA 98104-2818 (United States)

    2013-07-20

    We present the first science results from the Sub-orbital Local Interstellar Cloud Experiment (SLICE): moderate resolution 1020-1070 A spectroscopy of four sightlines through the local interstellar medium. High signal-to-noise (S/N) spectra of {eta} Uma, {alpha} Vir, {delta} Sco, and {zeta} Oph were obtained during a 2013 April 21 rocket flight. The SLICE observations constrain the density, molecular photoexcitation rates, and physical conditions present in the interstellar material toward {delta} Sco and {zeta} Oph. Our spectra indicate a factor of two lower total N(H{sub 2}) than previously reported for {delta} Sco, which we attribute to higher S/N and better scattered light control in the new SLICE observations. We find N(H{sub 2}) = 1.5 Multiplication-Sign 10{sup 19} cm{sup -2} on the {delta} Sco sightline, with kinetic and excitation temperatures of 67 and 529 K, respectively, and a cloud density of n{sub H} = 56 cm{sup -3}. Our observations of the bulk of the molecular sightline toward {zeta} Oph are consistent with previous measurements (N(H{sub 2}) Almost-Equal-To 3 Multiplication-Sign 10{sup 20} cm{sup -2} at T{sub 01}(H{sub 2}) = 66 K and T{sub exc} = 350 K). However, we detect significantly more rotationally excited H{sub 2} toward {zeta} Oph than previously observed. We infer a cloud density in the rotationally excited component of n{sub H} Almost-Equal-To 7600 cm{sup -3} and suggest that the increased column densities of excited H{sub 2} are a result of the ongoing interaction between {zeta} Oph and its environment; also manifest as the prominent mid-IR bowshock observed by WISE and the presence of vibrationally excited H{sub 2} molecules observed by the Hubble Space Telescope.

  20. Norepinephrine ignites local hotspots of neuronal excitation: How arousal amplifies selectivity in perception and memory.

    Science.gov (United States)

    Mather, Mara; Clewett, David; Sakaki, Michiko; Harley, Carolyn W

    2016-01-01

    Emotional arousal enhances perception and memory of high-priority information but impairs processing of other information. Here, we propose that, under arousal, local glutamate levels signal the current strength of a representation and interact with norepinephrine (NE) to enhance high priority representations and out-compete or suppress lower priority representations. In our "glutamate amplifies noradrenergic effects" (GANE) model, high glutamate at the site of prioritized representations increases local NE release from the locus coeruleus (LC) to generate "NE hotspots." At these NE hotspots, local glutamate and NE release are mutually enhancing and amplify activation of prioritized representations. In contrast, arousal-induced LC activity inhibits less active representations via two mechanisms: 1) Where there are hotspots, lateral inhibition is amplified; 2) Where no hotspots emerge, NE levels are only high enough to activate low-threshold inhibitory adrenoreceptors. Thus, LC activation promotes a few hotspots of excitation in the context of widespread suppression, enhancing high priority representations while suppressing the rest. Hotspots also help synchronize oscillations across neural ensembles transmitting high-priority information. Furthermore, brain structures that detect stimulus priority interact with phasic NE release to preferentially route such information through large-scale functional brain networks. A surge of NE before, during, or after encoding enhances synaptic plasticity at NE hotspots, triggering local protein synthesis processes that enhance selective memory consolidation. Together, these noradrenergic mechanisms promote selective attention and memory under arousal. GANE not only reconciles apparently contradictory findings in the emotion-cognition literature but also extends previous influential theories of LC neuromodulation by proposing specific mechanisms for how LC-NE activity increases neural gain.

  1. Exact finite volume expectation values of local operators in excited states

    Energy Technology Data Exchange (ETDEWEB)

    Pozsgay, B. [MTA-BME “Momentum” Statistical Field Theory Research Group,Budafoki út 8, 1111 Budapest (Hungary); Szécsényi, I.M. [Department of Mathematical Sciences, Durham University, South Road, Durham, DH1 3LE (United Kingdom); Institute of Theoretical Physics, Eötvös Loránd University,Pázmány Péter sétány 1/A, 1117 Budapest (Hungary); Takács, G. [MTA-BME “Momentum” Statistical Field Theory Research Group,Budafoki út 8, 1111 Budapest (Hungary); Department of Theoretical Physics, Budapest University of Technology and Economics,Budafoki út 8, 1111 Budapest (Hungary)

    2015-04-07

    We present a conjecture for the exact expression of finite volume expectation values in excited states in integrable quantum field theories, which is an extension of an earlier conjecture to the case of general diagonal factorized scattering with bound states and a nontrivial bootstrap structure. The conjectured expression is a spectral expansion which uses the exact form factors and the excited state thermodynamic Bethe Ansatz as building blocks. The conjecture is proven for the case of the trace of the energy-moment tensor. Concerning its validity for more general operators, we provide numerical evidence using the truncated conformal space approach. It is found that the expansion fails to be well-defined for small values of the volume in cases when the singularity structure of the TBA equations undergoes a non-trivial rearrangement under some critical value of the volume. Despite these shortcomings, the conjectured expression is expected to be valid for all volumes for most of the excited states, and as an expansion above the critical volume for the rest.

  2. Exact finite volume expectation values of local operators in excited states

    International Nuclear Information System (INIS)

    Pozsgay, B.; Szécsényi, I.M.; Takács, G.

    2015-01-01

    We present a conjecture for the exact expression of finite volume expectation values in excited states in integrable quantum field theories, which is an extension of an earlier conjecture to the case of general diagonal factorized scattering with bound states and a nontrivial bootstrap structure. The conjectured expression is a spectral expansion which uses the exact form factors and the excited state thermodynamic Bethe Ansatz as building blocks. The conjecture is proven for the case of the trace of the energy-moment tensor. Concerning its validity for more general operators, we provide numerical evidence using the truncated conformal space approach. It is found that the expansion fails to be well-defined for small values of the volume in cases when the singularity structure of the TBA equations undergoes a non-trivial rearrangement under some critical value of the volume. Despite these shortcomings, the conjectured expression is expected to be valid for all volumes for most of the excited states, and as an expansion above the critical volume for the rest.

  3. Pion inelastic scattering to the first three excited states of lithium-6

    International Nuclear Information System (INIS)

    Kiziah, R.R.

    1984-10-01

    Using the Energetic Pion Channel and Spectrometer system at the Clinton P. Anderson Meson Physics Facility, differential cross sections were measured for π + inelastic scattering to the 3 + , T=0, 2.185-MeV, 0 + , T=1, 3.563-MeV, and 2 + , T=0, 4.25-MeV states of 6 Li at incident pion energies of 120 and 180 MeV and laboratory scattering angles between 15 0 and 47 0 . Excitation functions were measured at a constant momentum transfer of approximately 109 MeV/c for incident pion energies from 100 to 260 MeV. The constant momentum transfer corresponds to the maxima of the angular distributions for π + inelastic scattering to the 3.563-MeV level. Microscopic calculations using the distorted-wave impulse approximation (DWIA) agree well with the measured angular distributions and excitation functions for the 2.185- and 4.25-MeV levels. However, microscopic DWIA calculations do not adequately reproduce the measured angular distributions for the 3.563-MeV level and fail to reproduce the observed anomalous excitation function. The shape of the 3.563-MeV excitation function is similar to that previously observed for π +- inelastic scattering to the 1 + , T=1, 15.11-MeV state of 12 C. The same mechanism may be responsible for the observed excitation functions of both ΔS=ΔT=1 transitions. A possible mechanism is the direct excitation of Δ particle-nucleon hole (Δ-h) components in the final state wave functions. Within the Δ-h model interpretation, the peak of the 3.563-MeV excitation function is reproduced with an estimated probability amplitude for the Δ-h component of the 3.563-MeV state with respect to the ground state of 0.01 less than or equal to β less than or equal to 0.13, a range of values of β consistent with the range estimated for the 15.11-MeV level of 12 C (0.026 less than or equal to β less than or equal to 0.096)

  4. Combining Anderson's Model in the Teaching of Art Appreciation for Undergraduate Students

    Science.gov (United States)

    Subramaniam, Maithreyi; Basaree, Ruzaika Omar; Hanafi, Jaffri; Putih, Abu Talib

    2016-01-01

    This study utilized 33 students taking creative communication design 3 in the third year of the graphic design and multimedia program, using an Anderson's model in teaching art appreciation. The quantitative research design and procedures were employed in this study. An experimental research using the quasi-experimental design, a single-group…

  5. Pressure-induced emission band separation of the hybridized local and charge transfer excited state in a TPE-based crystal.

    Science.gov (United States)

    Liu, Xuedan; Li, Aisen; Xu, Weiqing; Ma, Zhiyong; Jia, Xinru

    2018-05-08

    We herein report a newly synthesized simple molecule, named TPE[double bond, length as m-dash]C4, with twisted D-A structure. TPE[double bond, length as m-dash]C4 showed two intrinsic emission bands ascribed to the locally excited (LE) state and the intramolecular charge transfer (ICT) state, respectively. In the crystal state, the LE emission band is usually observed. However, by applying hydrostatic pressure to the powder sample and the single crystal sample of TPE[double bond, length as m-dash]C4, dual-fluorescence (445 nm and 532 nm) was emerged under high pressure, owing to the pressure-induced emission band separation of the hybridized local and charge transfer excited state (HLCT). It is found that the emission of TPE[double bond, length as m-dash]C4 is generally determined by the ratio of the LE state to the ICT state. The ICT emission band is much more sensitive to the external pressure than the LE emission band. The HLCT state leads to a sample with different responsiveness to grinding and hydrostatic pressure. This study is of significance in the molecular design of such D-A type molecules and in the control of photoluminescence features by molecular structure. Such results are expected to pave a new way to further understand the relationship between the D-A molecular structure and stimuli-responsive properties.

  6. Exciter For X-Band Transmitter And Receiver

    Science.gov (United States)

    Johns, Carl E.

    1989-01-01

    Report describes developmental X-band exciter for X-band uplink subsystem of Deep Space Network. X-band transmitter-exciting signal expected to have fractional frequency stability of 5.2 X 10 to negative 15th power during 1,000-second integration period. Generates coherent test signals for S- and X-band Block III translator of Deep Space Network, Doppler-reference signal for associated Doppler-extractor system, first-local-oscillator signal for associated receiver, and reference signal for associated ranging subsystem. Tests of prototype exciter show controlling and monitoring and internal phase-correcting loops perform according to applicable design criteria. Measurements of stability of frequency and of single-sideband noise spectral density of transmitter-exciting signal made subsequently.

  7. E. N. Anderson: Caring for place: ecology, ideology, and emotion in traditional landscape management

    Science.gov (United States)

    Susan Stevens Hummel

    2016-01-01

    Anderson is deeply concerned with inadequate responses to ongoing global environmental degradation. Accordingly, he offers cases of traditional societies that survived over long time periods without destroying their environments. His focus is on ways humans think about plants, animals, and landscapes because of his conviction that stories about them are what make us...

  8. Analysis of the characteristics of patients with open tibial fractures of Gustilo and Anderson type III

    Directory of Open Access Journals (Sweden)

    Frederico Carlos Jaña Neto

    2016-04-01

    Full Text Available OBJECTIVE: To analyze the characteristics of patients with Gustilo-Anderson Type III open tibial fractures treated at a tertiary care hospital in São Paulo between January 2013 and August 2014. METHODS: This was a cross-sectional retrospective study. The following data were gathered from the electronic medical records: age; gender; diagnosis; trauma mechanism; comorbidities; associated fractures; Gustilo and Anderson, Tscherne and AO classifications; treatment (initial and definitive; presence of compartment syndrome; primary and secondary amputations; MESS (Mangled Extremity Severity Score index; mortality rate; and infection rate. RESULTS: 116 patients were included: 81% with fracture type IIIA, 12% IIIB and 7% IIIC; 85% males; mean age 32.3 years; and 57% victims of motorcycle accidents. Tibial shaft fractures were significantly more prevalent (67%. Eight patients were subjected to amputation: one primary case and seven secondary cases. Types IIIC (75% and IIIB (25% predominated among the patients subjected to secondary amputation. The MESS index was greater than 7 in 88% of the amputees and in 5% of the limb salvage group. CONCLUSION: The profile of patients with open tibial fracture of Gustilo and Anderson Type III mainly involved young male individuals who were victims of motorcycle accidents. The tibial shaft was the segment most affected. Only 7% of the patients underwent amputation. Given the current controversy in the literature about amputation or salvage of severely injured lower limbs, it becomes necessary to carry out prospective studies to support clinical decisions.

  9. Quasiparticle many-body dynamics of the Anderson model

    International Nuclear Information System (INIS)

    Kuzemskij, A.L.

    1996-01-01

    The paper addresses the many-body quasiparticle dynamics of the Anderson impurity model at finite temperatures in the framework of the equation-of-motion method. We find a new exact identity relating the one-particle and many-particle Green's Functions. Using this identity we present a consistent and general scheme for a construction of generalised mean fields (elastic scattering corrections) and self-energy (inelastic scattering) in terms of the Dyson equation. A new approach for the complex expansion for the single-particle propagator in terms of the Coulomb repulsion U and hybridization V is proposed. Using the exact identity, the essentially new many-body dynamical solution of SIAM has been derived. This approach offers a new way for the systematic construction of the approximative interpolating dynamical solutions of the strongly correlated electron systems. 47 refs

  10. 75 FR 8346 - Proposed CERCLA Administrative Settlement; Anderson-Calhoun Mine and Mill Site, Leadpoint, WA

    Science.gov (United States)

    2010-02-24

    ...-Calhoun Mine and Mill Site, Leadpoint, WA AGENCY: Environmental Protection Agency (EPA). ACTION: Notice...-Calhoun Mine and Mill Site in Leadpoint, Washington, with settling party Blue Tee Corporation. The... Anderson-Calhoun Mine and Mill Site in Leadpoint, Washington, EPA Docket No. CERCLA-10-2010-0105 and should...

  11. Symmetric Anderson impurity model: Magnetic susceptibility, specific heat and Wilson ratio

    Science.gov (United States)

    Zalom, Peter; Pokorný, Vladislav; Janiš, Václav

    2018-05-01

    We extend the spin-polarized effective-interaction approximation of the parquet renormalization scheme from Refs. [1,2] applied on the symmetric Anderson model by adding the low-temperature asymptotics of the total energy and the specific heat. We calculate numerically the Wilson ratio and determine analytically its asymptotic value in the strong-coupling limit. We demonstrate in this way that the exponentially small Kondo scale from the strong-coupling regime emerges in qualitatively the same way in the spectral function, magnetic susceptibility and the specific heat.

  12. Random matrix theory of the energy-level statistics of disordered systems at the Anderson transition

    International Nuclear Information System (INIS)

    Canali, C.M.

    1995-09-01

    We consider a family of random matrix ensembles (RME) invariant under similarity transformations and described by the probability density P(H) exp[-TrV(H)]. Dyson's mean field theory (MFT) of the corresponding plasma model of eigenvalues is generalized to the case of weak confining potential, V(is an element of) ∼ A/2 ln 2 (is an element of). The eigenvalue statistics derived from MFT are shown to deviate substantially from the classical Wigner-Dyson statistics when A c approx. 0.4 the distribution function of the level spacings (LSDF) coincides in a large energy window with the energy LSDF of the three dimensional Anderson model at the metal-insulator transition. For the same A = A c , the RME eigenvalue-number variance is linear and its slope is equal to 0.32 ± 0.02, which is consistent with the value found for the Anderson model at the critical point. (author). 51 refs, 10 figs

  13. Chaotic wave trains in an oscillatory/excitable medium

    International Nuclear Information System (INIS)

    Rabinovitch, A.; Gutman, M.; Biton, Y.; Aviram, I.

    2006-01-01

    We study the chaotic dynamics of a heterogeneous reaction-diffusion medium composed of two uniform regions: one oscillatory, and the other excitable. It is shown that, by altering the diffusion coefficient, local chaotic oscillations can be induced at the interface between regions, which in turn, generate different chaotic sequences of pulses traveling in the excitable region. We analyze the properties of the local chaotic driver, as well as the diffusion-induced transitions. A procedure based on the abnormal frequency-locking phenomenon is proposed for controlling such sequences. Relevance of the obtained results to cardiac dynamics is briefly discussed

  14. The Discovery of Anti-Matter The Autobiography of Carl David Anderson, the Youngest Man to Win the Nobel Prize

    CERN Document Server

    1999-01-01

    In 1936, at age 31, Carl David Anderson became the second youngest Nobel laureate for his discovery of antimatter when he observed positrons in a cloud chamber.He is responsible for developing rocket power weapons that were used in World War II.He was born in New York City in 1905 and was educated in Los Angeles. He served for many years as a physics professor at California Institute of Technology. Prior to Oppenheimer, Anderson was offered the job of heading the Los Alamos atomic bomb program but could not assume the role because of family obligations.He was a pioneer in studying cosmic rays

  15. Detecting many-body-localization lengths with cold atoms

    Science.gov (United States)

    Guo, Xuefei; Li, Xiaopeng

    2018-03-01

    Considering ultracold atoms in optical lattices, we propose experimental protocols to study many-body-localization (MBL) length and criticality in quench dynamics. Through numerical simulations with exact diagonalization, we show that in the MBL phase the perturbed density profile following a local quench remains exponentially localized in postquench dynamics. The size of this density profile after long-time-dynamics defines a localization length, which tends to diverge at the MBL-to-ergodic transition as we increase the system size. The determined localization transition point agrees with previous exact diagonalization calculations using other diagnostics. Our numerical results provide evidence for violation of the Harris-Chayes bound for the MBL criticality. The critical exponent ν can be extracted from our proposed dynamical procedure, which can then be used directly in experiments to determine whether the Harris-Chayes-bound holds for the MBL transition. These proposed protocols to detect localization criticality are justified by benchmarking to the well-established results for the noninteracting three-dimensional Anderson localization.

  16. Many-body excitations and deexcitations in trapped ultracold bosonic clouds

    Science.gov (United States)

    Theisen, Marcus; Streltsov, Alexej I.

    2016-11-01

    We employ the multiconfigurational time-dependent Hartree for bosons (MCTDHB) method to study excited states of interacting Bose-Einstein condensates confined by harmonic and double-well trap potentials. Two approaches to access excitations, one static and the other dynamic, are investigated and contrasted. In static simulations the low-lying excitations are computed by utilizing a linear-response theory constructed on top of a static MCTDHB solution (LR-MCTDHB). Complimentarily, we propose two dynamic protocols that address excitations by propagating the MCTDHB wave function. In particular, we investigate dipolelike oscillations induced by shifting the origin of the confining potential and breathinglike excitations by quenching the frequency of a parabolic part of the trap. To contrast static predictions and dynamic results we compute the time evolution and regard the respective Fourier transform of several local and nonlocal observables. Namely, we study the expectation value of the position operator , its variance Var [x (t )] , and a local density computed at selected positions. We find that the variance is the most sensitive and informative quantity: Along with excitations it contains information about deexcitations even in a linear regime of the induced dynamics. The dynamic protocols are found to access the many-body excitations predicted by the static LR-MCTDHB approach.

  17. Turbulence growth and its dependency of wake vortices on excitation frequency by local body-force around two-dimensional hump

    Science.gov (United States)

    Yakeno, Aiko; Abe, Yoshiaki; Nonomura, Taku; Kawai, Soshi; Fujii, Kozo

    2017-11-01

    We investigated details of wake vortex dynamics to cause turbulence increase and early flow-reattachment under excitation forcing by a plasma actuator setting around a 2D hump numerically. The local body-force was homogeneous in the spanwise direction and bursting temporally. That actuation generates two-dimensional roll vortices and other turbulence motions such like three-dimensional rib structure in downstream. These dynamics depended on the excitation frequency. We tried to discuss multi-scaled vortices separately with considering the temporal phaseaveraged statistics of the excitation frequency and others, those are related to roll vortices and others with rib structure between rolls. It was found that the maximum value of non-periodic fluctuation in downstream correlated with flow-reattachment performance more than that of periodic fluctuation of roll vortices. The amplitude becomes large around separation position in early reattachment cases. The spacial growth rates of peak values in the wall-normal direction are same for high frequency cases, K-H instability modes, however not true for low frequency cases. In high frequency cases, amplitude in the early state of separation plays a significant rule to increase it in downstream. Strategic Programs for Innovative Research of the High Performance Computing Initiative (No. hp120296,hp130001,hp140207, hp150219) Grant-in-Aid for Scientific Research(B) (No. 15K21677) by the MEXT.

  18. 77 FR 72906 - Chessie Logistics Co., LLC-Acquisition and Operation Exemption-J. Emil Anderson & Son, Inc.

    Science.gov (United States)

    2012-12-06

    ... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [Docket No. FD 35700] Chessie Logistics Co., LLC--Acquisition and Operation Exemption-- J. Emil Anderson & Son, Inc. Chessie Logistics Co... served on Ariel A. Erbacher, Legal Counsel, Chessie Logistics Co., LLC, 1001 Green Bay Rd., Unit 204...

  19. Localization in small fcc-particles with surface irregularities and disorder

    International Nuclear Information System (INIS)

    Bucher, J.P.; Bloomfield, L.A.

    1991-01-01

    A numerical eigenvector analysis is used to investigate Anderson localization in small fcc-particles of N = 309 and N = 147 atoms. Special attention is given to the way size and surface roughness of the particles influence the localization behavior. States begin to localize in a non-exponential regime several lattice spacings from the center of localization and finally converge to a fully exponentially-localized regime for strong disorder. For smooth surface particles, it is found that the states localize first at the band bottom and a mobility edge can clearly be defined for increasing disorder. This doesn't seem to be the case for the rougher particles, where the band middle and the band bottom show similar behavior towards localization. Although particles with surface irregularities show an onset of localization for smaller values of the disorder than smooth particles, the localization length is greater. (orig.)

  20. Receiver-exciter controller design

    Science.gov (United States)

    Jansma, P. A.

    1982-01-01

    A description of the general design of both the block 3 and block 4 receiver-exciter controllers for the Deep Space Network (DSN) Mark IV-A System is presented along with the design approach. The controllers are designed to enable the receiver-exciter subsystem (RCV) to be configured, calibrated, initialized and operated from a central location via high level instructions. The RECs are designed to be operated under the control of the DMC subsystem. The instructions are in the form of standard subsystem blocks (SSBs) received via the local area network (LAN). The centralized control provided by RECs and other DSCC controllers in Mark IV-A is intended to reduce DSN operations costs from the Mark III era.

  1. Entanglement entropy of excited states

    International Nuclear Information System (INIS)

    Alba, Vincenzo; Fagotti, Maurizio; Calabrese, Pasquale

    2009-01-01

    We study the entanglement entropy of a block of contiguous spins in excited states of spin chains. We consider the XY model in a transverse field and the XXZ Heisenberg spin chain. For the latter, we developed a numerical application of the algebraic Bethe ansatz. We find two main classes of states with logarithmic and extensive behavior in the dimension of the block, characterized by the properties of excitations of the state. This behavior can be related to the locality properties of the Hamiltonian having a given state as the ground state. We also provide several details of the finite size scaling

  2. Renormalization group-theoretic approach to electron localization in disordered systems

    International Nuclear Information System (INIS)

    Kumar, N.; Heinrichs, J.

    1977-06-01

    The localization problem for the Anderson tight-binding model with site-diagonal (gaussian) disorder is studied, using a previously established analogy between this problem and the statistical mechanics of a zero-component classical field. The equivalent free-energy functional turns out to have complex coefficients in the bilinear terms but involves a real repulsive quartic interaction. The averaged one-electron propagator corresponds to the two-point correlation function for the equivalent statistical problem and the critical point gives the mobility edge, which is identified with the (real) fixed point energy of the associated renormalization group. Since for convergence reasons the conventional perturbative treatment of Wilson's formula is invalid, it is resorted to a non-perturbative approach which leads to a physical fixed point corresponding to a repulsive quartic interaction. The results for the mobility edge in three dimensions and for the critical disorder for an Anderson transition in two dimensions agree well with previous detailed predictions. The critical indices describing the approach of the transition at the mobility edge of various physical quantities, within the epsilon-expansion are also discussed. The more general problem where both diagonal and off-diagonal disorder is present in the Anderson hamiltonian is considered. In this case it is shown that the Hamilton function for the equivalent zero-component classical field model involves an additional biquadratic exchange term. From a simple generalization of Wilson's recursion relation and its non-perturbative solution explicit expressions for the mobility edges for weak diagonal and off-diagonal disorder in two and three dimensions are obtained. Our treatment casts doubts on the validity of recent conclusions about electron localization based on the renormalization group study of the nm-component spin model

  3. Superconductivity in the periodic Anderson model with anisotropic hybridization

    International Nuclear Information System (INIS)

    Sarasua, L.G.; Continentino, Mucio A.

    2003-01-01

    In this work we study superconductivity in the periodic Anderson model with both on-site and intersite hybridization, including the interband Coulomb repulsion. We show that the presence of the intersite hybridization together with the on-site hybridization significantly affects the superconducting properties of the system. The symmetry of the hybridization has a strong influence in the symmetry of the superconducting order parameter of the ground state. The interband Coulomb repulsion may increase or decrease the superconducting critical temperature at small values of this interaction, while is detrimental to superconductivity for strong values. We show that the present model can give rise to positive or negative values of dT c /dP, depending on the values of the system parameters

  4. (dis)Ability and Music Education: Paralympian Patrick Anderson and the Experience of Disability in Music

    Science.gov (United States)

    Bell, Adam Patrick

    2017-01-01

    What does it mean to experience disability in music? Based on interviews with Patrick Anderson--arguably the greatest wheelchair basketball player of all time--this article presents insights into the complexities of the experience of disability in sports and music. Contrasted with music education's tendency to adhere to a medicalized model of…

  5. Magnetic field effects on exciplex-forming systems: the effect on the locally excited fluorophore and its dependence on free energy.

    Science.gov (United States)

    Kattnig, Daniel R; Rosspeintner, Arnulf; Grampp, Günter

    2011-02-28

    This study addresses magnetic field effects in exciplex forming donor-acceptor systems. For moderately exergonic systems, the exciplex and the locally excited fluorophore emission are found to be magneto-sensitive. A previously introduced model attributing this finding to excited state reversibility is confirmed. Systems characterised by a free energy of charge separation up to approximately -0.35 eV are found to exhibit a magnetic field effect on the fluorophore. A simple three-state model of the exciplex is introduced, which uses the reaction distance and the asymmetric electron transfer reaction coordinate as pertinent variables. Comparing the experimental emission band shapes with those predicted by the model, a semi-quantitative picture of the formation of the magnetic field effect is developed based on energy hypersurfaces. The model can also be applied to estimate the indirect contribution of the exchange interaction, even if the perturbative approach fails. The energetic parameters that are essential for the formation of large magnetic field effects on the exciplex are discussed.

  6. Orientation-dependent imaging of electronically excited quantum dots

    Science.gov (United States)

    Nguyen, Duc; Goings, Joshua J.; Nguyen, Huy A.; Lyding, Joseph; Li, Xiaosong; Gruebele, Martin

    2018-02-01

    We previously demonstrated that we can image electronic excitations of quantum dots by single-molecule absorption scanning tunneling microscopy (SMA-STM). With this technique, a modulated laser beam periodically saturates an electronic transition of a single nanoparticle, and the resulting tunneling current modulation ΔI(x0, y0) maps out the SMA-STM image. In this paper, we first derive the basic theory to calculate ΔI(x0, y0) in the one-electron approximation. For near-resonant tunneling through an empty orbital "i" of the nanostructure, the SMA-STM signal is approximately proportional to the electron density |φi) (x0,y0)|nudge quantum dots on the surface and roll them, thus imaging excited state electronic structure of a single quantum dot at different orientations. We use density functional theory to model ODMs at various orientations, for qualitative comparison with the SMA-STM experiment. The model demonstrates that our experimentally observed signal monitors excited states, localized by defects near the surface of an individual quantum dot. The sub-nanometer super-resolution imaging technique demonstrated here could become useful for mapping out the three-dimensional structure of excited states localized by defects within nanomaterials.

  7. Matter-wave localization in disordered cold atom lattices.

    Science.gov (United States)

    Gavish, Uri; Castin, Yvan

    2005-07-08

    We propose to observe Anderson localization of ultracold atoms in the presence of a random potential made of atoms of another species or spin state and trapped at the nodes of an optical lattice, with a filling factor less than unity. Such systems enable a nearly perfect experimental control of the disorder, while the possibility of modeling the scattering potentials by a set of pointlike ones allows an exact theoretical analysis. This is illustrated by a detailed analysis of the one-dimensional case.

  8. Statistical mechanics of stochastic neural networks: Relationship between the self-consistent signal-to-noise analysis, Thouless-Anderson-Palmer equation, and replica symmetric calculation approaches

    International Nuclear Information System (INIS)

    Shiino, Masatoshi; Yamana, Michiko

    2004-01-01

    We study the statistical mechanical aspects of stochastic analog neural network models for associative memory with correlation type learning. We take three approaches to derive the set of the order parameter equations for investigating statistical properties of retrieval states: the self-consistent signal-to-noise analysis (SCSNA), the Thouless-Anderson-Palmer (TAP) equation, and the replica symmetric calculation. On the basis of the cavity method the SCSNA can be generalized to deal with stochastic networks. We establish the close connection between the TAP equation and the SCSNA to elucidate the relationship between the Onsager reaction term of the TAP equation and the output proportional term of the SCSNA that appear in the expressions for the local fields

  9. TDCS modulates cortical excitability in patients with disorders of consciousness

    Directory of Open Access Journals (Sweden)

    Yang Bai

    2017-01-01

    Full Text Available Transcranial direct current stimulation (tDCS has been reported to be a promising technique for consciousness improvement for patients with disorders of consciousness (DOC. However, there has been no direct electrophysiological evidence to demonstrate the efficacy of tDCS on patients with DOC. Therefore, we aim to measure the cortical excitability changes induced by tDCS in patients with DOC, to find electrophysiological evidence supporting the therapeutic efficacy of tDCS on patients with DOC. In this study, we enrolled sixteen patients with DOC, including nine vegetative state (VS and seven minimally conscious state (MCS (six females and ten males. TMS-EEG was applied to assess cortical excitability changes after twenty minutes of anodal tDCS of the left dorsolateral prefrontal cortex. Global cerebral excitability were calculated to quantify cortical excitability in the temporal domain: four time intervals (0–100, 100–200, 200–300, 300-400 ms. Then local cerebral excitability in the significantly altered time windows were investigated (frontal, left/right hemispheres, central, and posterior. Compared to baseline and sham stimulation, we found that global cerebral excitability increased in early time windows (0–100 and 100-200 ms for patients with MCS; for the patients with VS, global cerebral excitability increased in the 0-100 ms interval but decreased in the 300-400 ms interval. The local cerebral excitability was significantly different between MCS and VS. The results indicated that tDCS can effectively modulate the cortical excitability of patients with DOC; and the changes in excitability in temporal and spatial domains are different between patients with MCS and those with VS.

  10. A new dataset of Wood Anderson magnitude from the Trieste (Italy) seismic station

    Science.gov (United States)

    Sandron, Denis; Gentile, G. Francesco; Gentili, Stefania; Rebez, Alessandro; Santulin, Marco; Slejko, Dario

    2014-05-01

    The standard torsion Wood Anderson (WA) seismograph owes its fame to the fact that historically it has been used for the definition of the magnitude of an earthquake (Richter, 1935). With the progress of the technology, digital broadband (BB) seismographs replaced it. However, for historical consistency and homogeneity with the old seismic catalogues, it is still important continuing to compute the so called Wood Anderson magnitude. In order to evaluate WA magnitude, the synthetic seismograms WA equivalent are simulated convolving the waveforms recorded by a BB instrument with a suitable transfer function. The value of static magnification that should be applied in order to simulate correctly the WA instrument is debated. The original WA instrument in Trieste operated from 1971 to 1992 and the WA magnitude (MAW) estimates were regularly reported in the seismic station bulletins. The calculation of the local magnitude was performed following the Richter's formula (Richter, 1935), using the table of corrections factor unmodified from those calibrated for California and without station correction applied (Finetti, 1972). However, the WA amplitudes were computed as vector sum rather than arithmetic average of the horizontal components, resulting in a systematic overestimation of approximately 0.25, depending on the azimuth. In this work, we have retrieved the E-W and N-S components of the original recordings and re-computed MAW according to the original Richter (1935) formula. In 1992, the WA recording were stopped, due to the long time required for the daily development of the photographic paper, the costs of the photographic paper and the progress of the technology. After a decade of interruption, the WA was recovered and modernized by replacing the recording on photographic paper with an electronic device and it continues presently to record earthquakes. The E-W and N-S components records were memorized, but not published till now. Since 2004, next to the WA (few

  11. On excited states in real-time AdS/CFT

    Energy Technology Data Exchange (ETDEWEB)

    Botta-Cantcheff, Marcelo; Martínez, Pedro J.; Silva, Guillermo A. [Instituto de Física de La Plata - CONICET & Departamento de Física - UNLP,C.C. 67, 1900 La Plata (Argentina)

    2016-02-25

    The Skenderis-van Rees prescription, which allows the calculation of time-ordered correlation functions of local operators in CFT’s using holographic methods is studied and applied for excited states. Calculation of correlators and matrix elements of local CFT operators between generic in/out states are carried out in global Lorentzian AdS. We find the precise form of such states, obtain an holographic formula to compute the inner product between them, and using the consistency with other known prescriptions, we argue that the in/out excited states built according to the Skenderis-Van Rees prescription correspond to coherent states in the (large-N) AdS-Hilbert space. This is confirmed by explicit holographic computations. The outcome of this study has remarkable implications on generalizing the Hartle-Hawking construction for wave functionals of excited states in AdS quantum gravity.

  12. Non local theory of excitations applied to the Hubbard model

    International Nuclear Information System (INIS)

    Kakehashi, Y; Nakamura, T; Fulde, P

    2010-01-01

    We propose a nonlocal theory of single-particle excitations. It is based on an off-diagonal effective medium and the projection operator method for treating the retarded Green function. The theory determines the nonlocal effective medium matrix elements by requiring that they are consistent with those of the self-energy of the Green function. This arrows for a description of long-range intersite correlations with high resolution in momentum space. Numerical study for the half-filled Hubbard model on the simple cubic lattice demonstrates that the theory is applicable to the strong correlation regime as well as the intermediate regime of Coulomb interaction strength. Furthermore the results show that nonlocal excitations cause sub-bands in the strong Coulomb interaction regime due to strong antiferromagnetic correlations, decrease the quasi-particle peak on the Fermi level with increasing Coulomb interaction, and shift the critical Coulomb interaction U C2 for the divergence of effective mass towards higher energies at least by a factor of two as compared with that in the single-site approximation.

  13. Theoretical resonant electron-impact vibrational excitation, dissociative recombination and dissociative excitation cross sections of ro-vibrationally excited BeH"+ ion

    International Nuclear Information System (INIS)

    Laporta, V.; Chakrabarti, K.; Celiberto, R.; Janev, R. K.; Mezei, J. Zs.; Niyonzima, S.; Tennyson, J.; Schneider, I.F.

    2017-01-01

    A theoretical study of resonant vibrational excitation, dissociative recombination and dissociative excitation processes of the beryllium monohydride cation, BeH"+ , induced by electron impact, is reported. Full sets of ro-vibrationally-resolved cross sections and of the corresponding Maxwellian rate coefficients are presented for the three processes. Particular emphasis is given to the high-energy behaviour. Potential curves of "2σ"+, "2σ and "2δ symmetries and the corresponding resonance widths, obtained from R-matrix calculations, provide the input for calculations which use a local complex-potential model for resonant collisions in each of the three symmetries. Rotational motion of nuclei and isotopic effects are also discussed. The relevant results are compared with those obtained using a multichannel quantum defect theory method. Full results are available from the Phys4Entry database.

  14. The incorporation of specific tissue/nuclide attenuation data into the Anderson method for producing brachytherapy volume-dose histograms

    International Nuclear Information System (INIS)

    Loft, S.M.; Dale, R.G.

    1990-01-01

    Anderson (1986) has proposed an analytical method for deriving volume-dose histograms relating to three-dimensional brachytherapy distributions. Because the mathematical transformation allows the otherwise dominant effects of the inverse-square fall-off about individual sources to be effectively suppressed, resulting histograms provide the potential for visually and numerically assessing overall quality of a brachytherapy treatment. In this paper the Anderson equations have been combined with the radial-dose polynomials of Dale, which are applicable to a number of tissue/nuclide combinations, and the predictions of the combined formalism used to further investigate the physical aspects of brachytherapy dosimetry. The problems associated with the dosimetry of low-energy γ-emitters such as 125 I are once again highlighted, as are potential advantages of using a radionuclide with an intermediate γ-ray energy. (author)

  15. Adult neurogenesis modifies excitability of the dentate gyrus

    Directory of Open Access Journals (Sweden)

    Taruna eIkrar

    2013-12-01

    Full Text Available Adult-born dentate granule neurons contribute to memory encoding functions of the dentate gyrus (DG such as pattern separation. However, local circuit-mechanisms by which adult-born neurons partake in this process are poorly understood. Computational, neuroanatomical and electrophysiological studies suggest that sparseness of activation in the granule cell layer (GCL is conducive for pattern separation. A sparse coding scheme is thought to facilitate the distribution of similar entorhinal inputs across the GCL to decorrelate overlapping representations and minimize interference. Here we used fast voltage-sensitive dye (VSD imaging combined with laser photostimulation and electrical stimulation to examine how selectively increasing adult DG neurogenesis influences local circuit activity and excitability. We show that DG of mice with more adult-born neurons exhibits decreased strength of neuronal activation and more restricted excitation spread in GCL while maintaining effective output to CA3c. Conversely, blockade of adult hippocampal neurogenesis changed excitability of the DG in the opposite direction. Analysis of GABAergic inhibition onto mature dentate granule neurons in the DG of mice with more adult-born neurons shows a modest readjustment of perisomatic inhibitory synaptic gain without changes in overall inhibitory tone, presynaptic properties or GABAergic innervation pattern. Retroviral labeling of connectivity in mice with more adult-born neurons showed increased number of excitatory synaptic contacts of adult-born neurons onto hilar interneurons. Together, these studies demonstrate that adult hippocampal neurogenesis modifies excitability of mature dentate granule neurons and that this non-cell autonomous effect may be mediated by local circuit mechanisms such as excitatory drive onto hilar interneurons. Modulation of DG excitability by adult-born dentate granule neurons may enhance sparse coding in the GCL to influence pattern

  16. Describing excited state relaxation and localization in TiO2 nanoparticles using TD-DFT

    International Nuclear Information System (INIS)

    Berardo, Enrico; Hu, Han-Shi; Van Dam, Hubertus J. J.; Shevlin, Stephen A.; Woodley, Scott M.; Kowalski, Karol; Zwijnenburg, Martijn A.

    2014-01-01

    We have investigated the description of excited state relaxation in naked and hydrated TiO 2 nanoparticles using Time-Dependent Density Functional Theory (TD-DFT) with three common hybrid exchange-correlation (XC) potentials; B3LYP, CAM-B3LYP and BHLYP. Use of TD-CAM-B3LYP and TD-BHLYP yields qualitatively similar results for all structures, which are also consistent with predictions of coupled cluster theory for small particles. TD-B3LYP, in contrast, is found to make rather different predictions; including apparent conical intersections for certain particles that are not observed with TD-CAM-B3LYP nor with TD-BHLYP. In line with our previous observations for vertical excitations, the issue with TD-B3LYP appears to be the inherent tendency of TD-B3LYP, and other XC potentials with no or a low percentage of Hartree-Fock Like Exchange, to spuriously stabilize the energy of charge-transfer (CT) states. Even in the case of hydrated particles, for which vertical excitations are generally well described with all XC potentials, the use of TD-B3LYP appears to result in CT-problems for certain particles. We hypothesize that the spurious stabilization of CT-states by TD-B3LYP even may drive the excited state optimizations to different excited state geometries than those obtained using TD-CAM-B3LYP or TD-BHLYP. In conclusion, focusing on the TD-CAM-B3LYP and TD-BHLYP results, excited state relaxation in naked and hydrated TiO 2 nanoparticles is predicted to be associated with a large Stokes' shift

  17. Luminescence properties of KCl:Ag{sup -} crystals excited near the fundamental absorption edge

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, Taketoshi, E-mail: buri@p.s.osakafu-u.ac.jp [Department of Physical Science, Graduate School of Science, Osaka Prefecture University, Gakuen-cho 1-1, Naka-ku, Sakai, Osaka 599-8531 (Japan); Hirai, Takeshi [Department of Physical Science, Faculty of Science and Engineering, Ritsumeikan University, Noji Higashi 1-1-1, Kusatsu, Shiga 525-8577 (Japan)

    2012-02-15

    Luminescence properties of KCl single crystals doped with Ag{sup -} centers have been investigated under various excitation energies around the fundamental absorption edge at low temperatures. Under the excitation at 6.89 eV, which is lower than the intrinsic exciton energy by 0.87 eV, the A Prime luminescence band due to the intraionic transition in the Ag{sup -} ion is dominantly observed at 2.91 eV. On the other hand, the excitation at 6.66 eV induces a broad luminescence band at 2.60 eV in addition to the A Prime luminescence band. From the comparison with the localized excitons in KCl:I crystals, the 2.60 eV luminescence band is attributed to the two-center type localized exciton related with the Ag{sup -} ion. The adiabatic potential energy surfaces of the excited states in the Ag{sup -} center and the localized exciton in KCl:Ag{sup -} are discussed. - Highlights: Black-Right-Pointing-Pointer We study the luminescence properties of KCl single crystals doped with Ag{sup -} ions. Black-Right-Pointing-Pointer The excitation around the absorption edge induces a broad luminescence at 2.60 eV. Black-Right-Pointing-Pointer The 2.60 eV luminescence is attributed to the exciton localized at the Ag{sup -} ion. Black-Right-Pointing-Pointer The localized exciton has the two-center type configuration of the relaxed exciton.

  18. Clinton P. Anderson Meson Physics Facility and its operational safety program

    International Nuclear Information System (INIS)

    Putnam, T.M.

    1975-01-01

    The Clinton P. Anderson Meson Physics Facility (LAMPF) at the Los Alamos Scientific Laboratory consists of/ (1) a medium-energy, high-intensity linear proton accelerator; (2) experimental areas designed to support a multidisciplined program of research and practical applications; and (3) support facilities for accelerator operations and the experimental program. The high-intensity primary and secondary beams at LAMPF and the varied research program create many interesting and challenging problems for the Health Physics staff. A brief overview of LAMPF is presented, and the Operational Safety Program is discussed, with emphasis on the radiological safety and health physics aspects

  19. What should the Price--Anderson Act accomplish

    International Nuclear Information System (INIS)

    Kane, G.L.

    1977-01-01

    A historical review of the Price-Anderson Act's goals is followed by recommendations for amendments to improve guarantees of public safety. Failures of the original Act are identified as its failure to cover some accident situations appropriately and to provide incentives for promoting public safety. Legislation should correct these problems and be extended to all energy areas. Legislation based on worst-case situations is not found to be meaningful in terms of increasing safety or estimating comprehensive compensation because it relies on invalidated assumptions, which are still useful in safety awareness. Legislation could take the direction of putting 1.5 percent of the reactor cost into a fund, with the vendor and licensee contributing equal parts. When an incident occurs at any reactor, another one percent is put in by every reactor plus a $1 million penalty proportioned among those responsible. The Federal government would cover amounts above the fund, which would have no limit. Compensation to public funds by the industry would be a social decision based on the social and economic impact

  20. Price--Anderson Act: the insurance industry's view

    International Nuclear Information System (INIS)

    Marrone, J.

    1977-01-01

    The insurance industry feels the expense of providing insurance coverage under the Price-Anderson Act is justified because it encouraged development of nuclear power and assured protection for the public in the event of an accident. Insurance pools have been instituted in about 20 countries in order to distribute the risk on a worldwide basis. Changes in the original Act allow an off-site claimant to get compensation with defense waived and provide for the transition of financial responsibility from the public to the private sector. To date the pools have refunded $9.7 of $12.7 million (73 percent) of the premiums to the insured and the remainder has grown into a $45 million fund, which reflects the success of the nuclear industry and the regulatory agencies in establishing a safe record. This record covers 60 power reactors, 50 research and development reactors, waste disposal sites, and about 50 nuclear facilities. With the exception of reactor operators and fuel reprocessors, the insurance is voluntary at premiums ranging from $1000 to $260,000. A total of $600,000 has been paid in claims

  1. IEEE Milestone at CERN - W Cleon Anderson (right), president of the Institute of Electrical and Electronics Engineers, unveils the Milestone plaque at CERN, together with Georges Charpak

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    At a ceremony on 26 September at CERN, W Cleon Anderson, president of the Institute of Electrical and Electronics Engineers (IEEE), formally dedicated a "Milestone" plaque in recognition of the invention of electronic particle detectors at CERN. The plaque was unveiled by Anderson and Georges Charpak, the Nobel-prize winning inventor of wire-chamber technology at CERN.

  2. Phonon localization transition in relaxor ferroelectric PZN-5%PT

    International Nuclear Information System (INIS)

    Manley, Michael E.; Christianson, Andrew D.; Abernathy, Douglas L.; Sahul, Raffi

    2017-01-01

    Relaxor ferroelectric behavior occurs in many disordered ferroelectric materials but is not well understood at the atomic level. Recent experiments and theoretical arguments indicate that Anderson localization of phonons instigates relaxor behavior by driving the formation of polar nanoregions (PNRs). Here, we use inelastic neutron scattering to observe phonon localization in relaxor ferroelectric PZN-5%PT (0.95[Pb(Zn 1/3 Nb 2/3 )O 3 ]–0.05PbTiO 3 ) and detect additional features of the localization process. In the lead, up to phonon localization on cooling, the local resonant modes that drive phonon localization increase in number. The increase in resonant scattering centers is attributed to a known increase in the number of locally off centered Pb atoms on cooling. The transition to phonon localization occurs when these random scattering centers increase to a concentration where the Ioffe-Regel criterion is satisfied for localizing the phonon. Finally, we also model the effects of damped mode coupling on the observed phonons and phonon localization structure.

  3. Exploring Localization in Nuclear Spin Chains

    Science.gov (United States)

    Wei, Ken Xuan; Ramanathan, Chandrasekhar; Cappellaro, Paola

    2018-02-01

    Characterizing out-of-equilibrium many-body dynamics is a complex but crucial task for quantum applications and understanding fundamental phenomena. A central question is the role of localization in quenching thermalization in many-body systems and whether such localization survives in the presence of interactions. Probing this question in real systems necessitates the development of an experimentally measurable metric that can distinguish between different types of localization. While it is known that the localized phase of interacting systems [many-body localization (MBL)] exhibits a long-time logarithmic growth in entanglement entropy that distinguishes it from the noninteracting case of Anderson localization (AL), entanglement entropy is difficult to measure experimentally. Here, we present a novel correlation metric, capable of distinguishing MBL from AL in high-temperature spin systems. We demonstrate the use of this metric to detect localization in a natural solid-state spin system using nuclear magnetic resonance (NMR). We engineer the natural Hamiltonian to controllably introduce disorder and interactions, and observe the emergence of localization. In particular, while our correlation metric saturates for AL, it slowly keeps increasing for MBL, demonstrating analogous features to entanglement entropy, as we show in simulations. Our results show that our NMR techniques, akin to measuring out-of-time correlations, are well suited for studying localization in spin systems.

  4. New formalism for determining excitation spectra of many-body systems

    International Nuclear Information System (INIS)

    Saito, S.; Zhang, S.B.; Louie, S.G.; Cohen, M.L.

    1990-01-01

    We present a new general formalism for determining the excitation spectrum of interacting many-body systems. The basic assumption is that the number of the excitations is equal to the number of sites. Within this approximation, it is shown that the density-density response functions with two different pure-imaginary energies determine the excitation spectrum. The method is applied to the valence electrons of sodium clusters of differing sizes in the time-dependent local-density approximation (TDLDA). A jellium-sphere background model is used for the ion cores. The excitation spectra obtained in this way represent well the excitation spectra given by the full TDLDA calculation along the real energy axis. Important collective modes are reproduced very well

  5. Two independent pivotal statistics that test location and misspecification and add-up to the Anderson-Rubin statistic

    NARCIS (Netherlands)

    Kleibergen, F.R.

    2002-01-01

    We extend the novel pivotal statistics for testing the parameters in the instrumental variables regression model. We show that these statistics result from a decomposition of the Anderson-Rubin statistic into two independent pivotal statistics. The first statistic is a score statistic that tests

  6. Price-Anderson Act Amendments Act of 1986. A report submitted to the Senate, Ninety-Ninth Congress, Second Session, May 21, 1986

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The report on proposed legislation (S. 1225) to amend the Price-Anderson Act provisions of the Atomic Energy Act to extend and improve the procedures for compensating the public in the event of a nuclear accident is favorable, but suggest some changes. The bill reauthorizes the Price-Anderson indemnification system for 25 years, increases funds available for victim compensation, and expedites congressional procedures for responding with additional action as needed in the event of the theft or an accident involving nuclear materials. The report outlines the background and need for the legislation, gives a section-by-section analysis, and presents additional views and statements of committee members

  7. Off-resonant vibrational excitation: Orientational dependence and spatial control of photofragments

    DEFF Research Database (Denmark)

    Machholm, Mette; Henriksen, Niels Engholm

    2000-01-01

    Off-resonant and resonant vibrational excitation with short intense infrared (IR) laser pulses creates localized oscillating wave packets, but differs by the efficiency of the excitation and surprisingly by the orientational dependence. Orientational selectivity of the vibrational excitation...... of randomly oriented heteronuclear diatomic molecules can be obtained under simultaneous irradiation by a resonant and an off-resonant intense IR laser pulse: Molecules with one initial orientation will be vibrationally excited, while those with the opposite orientation will be at rest. The orientation-dependent...... distribution. (C) 2000 American Institute of Physics....

  8. Random matrix theory of the energy-level statistics of disordered systems at the Anderson transition

    Energy Technology Data Exchange (ETDEWEB)

    Canali, C M

    1995-09-01

    We consider a family of random matrix ensembles (RME) invariant under similarity transformations and described by the probability density P(H) exp[-TrV(H)]. Dyson`s mean field theory (MFT) of the corresponding plasma model of eigenvalues is generalized to the case of weak confining potential, V(is an element of) {approx} A/2 ln{sup 2}(is an element of). The eigenvalue statistics derived from MFT are shown to deviate substantially from the classical Wigner-Dyson statistics when A < 1. By performing systematic Monte Carlo simulations on the plasma model, we compute all the relevant statistical properties of the RME with weak confinement. For A{sub c} approx. 0.4 the distribution function of the level spacings (LSDF) coincides in a large energy window with the energy LSDF of the three dimensional Anderson model at the metal-insulator transition. For the same A = A{sub c}, the RME eigenvalue-number variance is linear and its slope is equal to 0.32 {+-} 0.02, which is consistent with the value found for the Anderson model at the critical point. (author). 51 refs, 10 figs.

  9. Excitation mechanisms of Er optical centers in GaN epilayers

    International Nuclear Information System (INIS)

    George, D. K.; Hawkins, M. D.; McLaren, M.; Vinh, N. Q.; Jiang, H. X.; Lin, J. Y.; Zavada, J. M.

    2015-01-01

    We report direct evidence of two mechanisms responsible for the excitation of optically active Er 3+ ions in GaN epilayers grown by metal-organic chemical vapor deposition. These mechanisms, resonant excitation via the higher-lying inner 4f shell transitions and band-to-band excitation of the semiconductor host, lead to narrow emission lines from isolated and the defect-related Er optical centers. However, these centers have different photoluminescence spectra, local defect environments, decay dynamics, and excitation cross sections. The photoluminescence at 1.54 μm from the isolated Er optical center which can be excited by either mechanism has the same decay dynamics, but possesses a much higher excitation cross-section under band-to-band excitation. In contrast, the photoluminescence at 1.54 μm from the defect-related Er optical center can only be observed through band-to-band excitation but has the largest excitation cross-section. These results explain the difficulty in achieving gain in Er doped GaN and indicate approaches for realization of optical amplification, and possibly lasing, at room temperature

  10. Nuclear structure studies using the high resolution spectrometer at the Los Alamos Clinton P. Anderson Meson Physics Facility: Annual progress report, [1987-1988

    International Nuclear Information System (INIS)

    1987-09-01

    This document constitutes the (1987 to 1988) progress report for the ongoing medium energy nuclear physics research program supported by the US Department of Energy with the University of Texas at Austin. A major part of the work has been and will continue to be associated with research done at the Los Alamos Clinton P. Anderson Meson Physics Facility (LAMPF) using the High Resolution Spectrometer (HRS), the External Proton Beam (EPB), and the new Neutron Time of Flight Facility (NTOF). Other research is done at the Fermi National Accelerator Laboratory (FNAL). The research focuses on (1) providing proton + nucleus data which test nonrelativistic and relativistic models of the medium energy proton + nucleus interaction, (2) providing (p,p) and (p,n) data which are to be analyzed to provide new nuclear structure information (both ground state and excited state), (3) providing nucleon + nucleon data to aid in the systematic study of the fundamental nucleon-nucleon interaction, (4) developing and improving the proton + nucleus theoretical models themselves, and (5) initiating new experimental programs whose goals are to search for new phenomena in nuclear physics. 182 refs., 71 figs., 5 tabs

  11. Resources available for nuclear power plant emergencies under the Price-Anderson Act and the Robert T. Stafford Disaster Relief and Emergency Assistance Act

    International Nuclear Information System (INIS)

    1992-07-01

    Through a series of TABLETOP exercises and other events that involved participation by State and Federal organizations, the need was identified for further explanation of financial and other related resources available to individuals and State and local governments in a major emergency at a nuclear power plant. A group with representatives from the Nuclear Regulatory commission, the Federal Emergency Management Agency, and the American Nuclear Insurers/Mutual Atomic Energy Liability Underwriters was established to work toward this end. This report is the result of that effort. This document is not meant to modify, undermine, or replace any other planning document (e.g., the Federal Radiological Emergency Response Plan or the Federal Response Plan). Its purpose is to clarify issues that have surfaced regarding resources available under the Price-Anderson and Stafford Acts

  12. Laser pulses for coherent xuv Raman excitation

    Science.gov (United States)

    Greenman, Loren; Koch, Christiane P.; Whaley, K. Birgitta

    2015-07-01

    We combine multichannel electronic structure theory with quantum optimal control to derive femtosecond-time-scale Raman pulse sequences that coherently populate a valence excited state. For a neon atom, Raman target populations of up to 13% are obtained. Superpositions of the ground and valence Raman states with a controllable relative phase are found to be reachable with up to 4.5% population and arbitrary phase control facilitated by the pump pulse carrier-envelope phase. Analysis of the optimized pulse structure reveals a sequential mechanism in which the valence excitation is reached via a fast (femtosecond) population transfer through an intermediate resonance state in the continuum rather than avoiding intermediate-state population with simultaneous or counterintuitive (stimulated Raman adiabatic passage) pulse sequences. Our results open a route to coupling valence excitations and core-hole excitations in molecules and aggregates that locally address specific atoms and represent an initial step towards realization of multidimensional spectroscopy in the xuv and x-ray regimes.

  13. Twisting Anderson pseudospins with light: Quench dynamics in terahertz-pumped BCS superconductors

    Science.gov (United States)

    Chou, Yang-Zhi; Liao, Yunxiang; Foster, Matthew S.

    2017-03-01

    We study the preparation (pump) and the detection (probe) of far-from-equilibrium BCS superconductor dynamics in THz pump-probe experiments. In a recent experiment [R. Matsunaga, Y. I. Hamada, K. Makise, Y. Uzawa, H. Terai, Z. Wang, and R. Shimano, Phys. Rev. Lett. 111, 057002 (2013), 10.1103/PhysRevLett.111.057002], an intense monocycle THz pulse with center frequency ω ≃Δ was injected into a superconductor with BCS gap Δ ; the subsequent postpump evolution was detected via the optical conductivity. It was argued that nonlinear coupling of the pump to the Anderson pseudospins of the superconductor induces coherent dynamics of the Higgs (amplitude) mode Δ (t ) . We validate this picture in a two-dimensional BCS model with a combination of exact numerics and the Lax reduction method, and we compute the nonequilibrium phase diagram as a function of the pump intensity. The main effect of the pump is to scramble the orientations of Anderson pseudospins along the Fermi surface by twisting them in the x y plane. We show that more intense pump pulses can induce a far-from-equilibrium phase of gapless superconductivity ("phase I"), originally predicted in the context of interaction quenches in ultracold atoms. We show that the THz pump method can reach phase I at much lower energy densities than an interaction quench, and we demonstrate that Lax reduction (tied to the integrability of the BCS Hamiltonian) provides a general quantitative tool for computing coherent BCS dynamics. We also calculate the Mattis-Bardeen optical conductivity for the nonequilibrium states discussed here.

  14. Localization in f-shell metals

    International Nuclear Information System (INIS)

    Harrison, W.A.

    1984-01-01

    Anderson's theory of local moments is applied to the f-shell metals with the use of parameters for the electronic structure given earlier. A criterion for localization (abrupt in this theory) of Z/sub f/ levels per atom is that the resonance width be less than 2U sin 2 (πZ/sub f//14), with U the intra-atomic repulsion associated with s-f transfer. Americium and the heavier actinides satisfy this criterion, as do all the rare earths except cerium; plutonium is borderline. The traditional term ''localized state'' is used here though ''correlated state'' would be more appropriate. For the cases considered the localized states are found to have net spin (or moment) but that is not a necessary condition. They are found to contribute to the f-band pressure on the crystal, but reduced by a factor of about W/sub f//3U, equal to 0.09 for americium, where W/sub f/ is the itinerant f-band width. The localized f levels may themselves be thought to form bands, but with reduced width, and they may even have Fermi surface, though that was not found for the systems considered. A comparison of this state with band ferromagnetism is made. An approximate calculation of the total energy of the localized and delocalized states as a function of volume correctly predicted the large volume and localization for americium

  15. The Anderson model as a matrix model

    International Nuclear Information System (INIS)

    Magnen, J.; Poirot, G.; Rivasseau, V.

    1997-01-01

    In this paper we describe a strategy to study the Anderson model of an electron in a random potential at weak coupling by a renormalization group analysis. There is an interesting technical analogy between this problem and the theory of random matrices. In d = 2 the random matrices which appear are approximately of the free type well known to physicists and mathematicians, and their asymptotic eigenvalue distribution is therefore simply Wigner's law. However in d = 3 the natural random matrices that appear have non-trivial constraints of a geometrical origin. It would be interesting to develop a general theory of these constrained random matrices, which presumably play an interesting role for many non-integrable problems related to diffusion. We present a first step in this direction, namely a rigorous bound on the tail of the eigenvalue distribution of such objects based on large deviation and graphical estimates. This bound allows to prove regularity and decay properties of the averaged Green's functions and the density of states for a three dimensional model with a thin conducting band and an energy close to the border of the band, for sufficiently small coupling constant. (orig.)

  16. Two mechanisms of disorder-induced localization in photonic-crystal waveguides

    Science.gov (United States)

    García, P. D.; KiršanskÄ--, G.; Javadi, A.; Stobbe, S.; Lodahl, P.

    2017-10-01

    Unintentional but unavoidable fabrication imperfections in state-of-the-art photonic-crystal waveguides lead to the spontaneous formation of Anderson-localized modes thereby limiting slow-light propagation and its potential applications. On the other hand, disorder-induced cavities offer an approach to cavity-quantum electrodynamics and random lasing at the nanoscale. The key statistical parameter governing the disorder effects is the localization length, which together with the waveguide length determines the statistical transport of light through the waveguide. In a disordered photonic-crystal waveguide, the localization length is highly dispersive, and therefore, by controlling the underlying lattice parameters, it is possible to tune the localization of the mode. In the present work, we study the localization length in a disordered photonic-crystal waveguide using numerical simulations. We demonstrate two different localization regimes in the dispersion diagram where the localization length is linked to the density of states and the photon effective mass, respectively. The two different localization regimes are identified in experiments by recording the photoluminescence from quantum dots embedded in photonic-crystal waveguides.

  17. Tractable approximations for probabilistic models: The adaptive Thouless-Anderson-Palmer mean field approach

    DEFF Research Database (Denmark)

    Opper, Manfred; Winther, Ole

    2001-01-01

    We develop an advanced mean held method for approximating averages in probabilistic data models that is based on the Thouless-Anderson-Palmer (TAP) approach of disorder physics. In contrast to conventional TAP. where the knowledge of the distribution of couplings between the random variables...... is required. our method adapts to the concrete couplings. We demonstrate the validity of our approach, which is so far restricted to models with nonglassy behavior? by replica calculations for a wide class of models as well as by simulations for a real data set....

  18. Effects of noise in excitable systems

    International Nuclear Information System (INIS)

    Lindner, B.; Garcia-Ojalvo, J.; Neiman, A.; Schimansky-Geier, L.

    2004-01-01

    We review the behavior of theoretical models of excitable systems driven by Gaussian white noise. We focus mainly on those general properties of such systems that are due to noise, and present several applications of our findings in biophysics and lasers. As prototypes of excitable stochastic dynamics we consider the FitzHugh-Nagumo and the leaky integrate-and-fire model, as well as cellular automata and phase models. In these systems, taken as individual units or as networks of globally or locally coupled elements, we study various phenomena due to noise, such as noise-induced oscillations, stochastic resonance, stochastic synchronization, noise-induced phase transitions and noise-induced pulse and spiral dynamics. Our approach is based on stochastic differential equations and their corresponding Fokker-Planck equations, treated by both analytical calculations and/or numerical simulations. We calculate and/or measure the rate and diffusion coefficient of the excitation process, as well as spectral quantities like power spectra and degree of coherence. Combined with a multiparametric bifurcation analysis of the corresponding cumulant equations, these approaches provide a comprehensive picture of the multifaceted dynamical behaviour of noisy excitable systems

  19. Nonmagnetic impurity in the spin-gap state

    International Nuclear Information System (INIS)

    Nagaosa, N.; Ng, T.

    1995-01-01

    The effects of nonmagnetic strong scatterers (unitary limit) on magnetic and transport properties are studied for resonating-valence-bond states in both the slave-boson and slave-fermion mean-field theories with the gap for the triplet excitations. In the d-wave pairing state of the slave-boson mean-field theory in two dimensions, there is no true gap for spinons, but the Anderson localization occurs, which leads to the local moment when the repulsive interaction is taken into account. In the slave-fermion mean-field theory, local moments are found bound to nonmagnetic impurities as a result of (staggered) gauge interaction. However, in both theories, localization of spinon does not appear in the resistivity, which shows the classical value for the holon

  20. Cylindrical vector beams of light from an electrically excited plasmonic lens

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Shuiyan, E-mail: shuiyan.cao@u-psud.fr; Le Moal, Eric; Boer-Duchemin, Elizabeth; Dujardin, Gérald [Institut des Sciences Moléculaires d' Orsay, CNRS—Université Paris-Sud (UMR 8214), Orsay (France); Drezet, Aurélien; Huant, Serge [Université Grenoble Alpes, Inst. NEEL, F-38000 Grenoble (France); CNRS, Inst. NEEL, F-38042 Grenoble (France)

    2014-09-15

    The production of cylindrical vector beams from a low-energy, electric, microscale light source is demonstrated both experimentally and theoretically. This is achieved by combining a “plasmonic lens” with the ability to locally and electrically excite propagating surface plasmons on gold films. The plasmonic lens consists of concentric circular subwavelength slits that are etched in a thick gold film. The local excitation arises from the inelastic tunneling of electrons from the tip of a scanning tunneling microscope. We report on the emission of radially polarized beams with an angular divergence of less than ±4°.

  1. Excitation-dependent local symmetry reversal in single host lattice Ba2A(BO3)2:Eu3+ [A = Mg and Ca] phosphors with tunable emission colours.

    Science.gov (United States)

    Jayakiruba, S; Chandrasekaran, S Selva; Murugan, P; Lakshminarasimhan, N

    2017-07-05

    Eu 3+ activated phosphors are widely used as red emitters in various display devices and light emitting diodes (LEDs). The emission characteristics of Eu 3+ depend on the local site symmetry. The present study demonstrates the role of excitation-dependent local symmetry changes due to the structural reorganization on the emission colour tuning of Eu 3+ from orange-red to orange in single host lattices, Ba 2 Mg(BO 3 ) 2 and Ba 2 Ca(BO 3 ) 2 . The choice of these lattices was based on the difference in the extent of strain experienced by the oxygen atoms. The samples with Eu 3+ at Ba or Mg (Ca) sites were synthesized using the conventional high-temperature solid-state reaction method. The samples were characterized using powder XRD, 11 B MAS-NMR, FT-IR, and diffuse reflectance UV-Vis spectroscopic techniques. The room temperature photoluminescence (PL) recorded using different excitation wavelengths revealed a clear difference in the PL emission features due to symmetry reversal from non-inversion to inversion symmetry around Eu 3+ . The reorganization of highly strained oxygen atoms leads to such symmetry reversal. First-principles calculations were used to deduce the optimized structures of the two borate host lattices, and local geometries and their distortions upon Eu 3+ substitution. The outcomes of these calculations support the experimental findings.

  2. Magnetic-field-driven localization of light in a cold-atom gas.

    Science.gov (United States)

    Skipetrov, S E; Sokolov, I M

    2015-02-06

    We discover a transition from extended to localized quasimodes for light in a gas of immobile two-level atoms in a magnetic field. The transition takes place either upon increasing the number density of atoms in a strong field or upon increasing the field at a high enough density. It has many characteristic features of a disorder-driven (Anderson) transition but is strongly influenced by near-field interactions between atoms and the anisotropy of the atomic medium induced by the magnetic field.

  3. Laser amplification in excited dielectrics

    Science.gov (United States)

    Winkler, Thomas; Haahr-Lillevang, Lasse; Sarpe, Cristian; Zielinski, Bastian; Götte, Nadine; Senftleben, Arne; Balling, Peter; Baumert, Thomas

    2018-01-01

    Wide-bandgap dielectrics such as glasses or water are transparent at visible and infrared wavelengths. This changes when they are exposed to ultrashort and highly intense laser pulses. Different interaction mechanisms lead to the appearance of various transient nonlinear optical phenomena. Using these, the optical properties of dielectrics can be controlled from the transparent to the metal-like state. Here we expand this range by a yet unexplored mechanism in excited dielectrics: amplification. In a two-colour pump-probe experiment, we show that a 400 nm femtosecond laser pulse is coherently amplified inside an excited sapphire sample on a scale of a few micrometres. Simulations strongly support the proposed two-photon stimulated emission process, which is temporally and spatially controllable. Consequently, we expect applications in all fields that demand strongly localized amplification.

  4. Quantitative determination of localized tissue oxygen concentration in vivo by two-photon excitation phosphorescence lifetime measurements

    NARCIS (Netherlands)

    Mik, Egbert G.; van Leeuwen, Ton G.; Raat, Nicolaas J.; Ince, Can

    2004-01-01

    This study describes the use of two-photon excitation phosphorescence lifetime measurements for quantitative oxygen determination in vivo. Doubling the excitation wavelength of Pd-porphyrin from visible light to the infrared allows for deeper tissue penetration and a more precise and confined

  5. Price-Anderson Nuclear Safety Enforcement Program. 1997 annual report

    International Nuclear Information System (INIS)

    1998-01-01

    This report summarizes activities in the Department of Energy's Price-Anderson Amendments Act (PAAA) Enforcement Program in calendar year 1997 and highlights improvements planned for 1998. The DOE Enforcement Program involves the Office of Enforcement and Investigation in the DOE Headquarters Office of Environment, Safety and Health, as well as numerous PAAA Coordinators and technical advisors in DOE Field and Program Offices. The DOE Enforcement Program issued 13 Notices of Violation (NOV's) in 1997 for cases involving significant or potentially significant nuclear safety violations. Six of these included civil penalties totaling $440,000. Highlights of these actions include: (1) Brookhaven National Laboratory Radiological Control Violations / Associated Universities, Inc.; (2) Bioassay Program Violations at Mound / EG ampersand G, Inc.; (3) Savannah River Crane Operator Uptake / Westinghouse Savannah River Company; (4) Waste Calciner Worker Uptake / Lockheed-Martin Idaho Technologies Company; and (5) Reactor Scram and Records Destruction at Sandia / Sandia Corporation (Lockheed-Martin). Sandia / Sandia Corporation (Lockheed-Martin)

  6. Study of single-electron excitations by electron microscopy

    International Nuclear Information System (INIS)

    Craven, A.J.; Gibson, J.M.; Howie, A.; Spalding, D.R.

    1978-01-01

    The inelastic scattering of fast electrons by the excitation of L-shell electrons at a stacking fault in silicon has been studied with a scanning transmission electron microscope. It was found that the bright-field stacking fault contrast is preserved in the filtered L-shell-loss signal at 100 eV. This result is discussed in terms of the delocalization of the excitation mechanism. It is concluded that localization effects will typically become significant only for energy transfers greater than 1 keV from a fast electron of energy 80 keV. (author)

  7. Can Measured Synergy Excitations Accurately Construct Unmeasured Muscle Excitations?

    Science.gov (United States)

    Bianco, Nicholas A; Patten, Carolynn; Fregly, Benjamin J

    2018-01-01

    Accurate prediction of muscle and joint contact forces during human movement could improve treatment planning for disorders such as osteoarthritis, stroke, Parkinson's disease, and cerebral palsy. Recent studies suggest that muscle synergies, a low-dimensional representation of a large set of muscle electromyographic (EMG) signals (henceforth called "muscle excitations"), may reduce the redundancy of muscle excitation solutions predicted by optimization methods. This study explores the feasibility of using muscle synergy information extracted from eight muscle EMG signals (henceforth called "included" muscle excitations) to accurately construct muscle excitations from up to 16 additional EMG signals (henceforth called "excluded" muscle excitations). Using treadmill walking data collected at multiple speeds from two subjects (one healthy, one poststroke), we performed muscle synergy analysis on all possible subsets of eight included muscle excitations and evaluated how well the calculated time-varying synergy excitations could construct the remaining excluded muscle excitations (henceforth called "synergy extrapolation"). We found that some, but not all, eight-muscle subsets yielded synergy excitations that achieved >90% extrapolation variance accounted for (VAF). Using the top 10% of subsets, we developed muscle selection heuristics to identify included muscle combinations whose synergy excitations achieved high extrapolation accuracy. For 3, 4, and 5 synergies, these heuristics yielded extrapolation VAF values approximately 5% lower than corresponding reconstruction VAF values for each associated eight-muscle subset. These results suggest that synergy excitations obtained from experimentally measured muscle excitations can accurately construct unmeasured muscle excitations, which could help limit muscle excitations predicted by muscle force optimizations.

  8. High pressure luminescence studies of localized excitations in ZnS doped with Pb2+ and Mn2+

    International Nuclear Information System (INIS)

    House, G.L.; Drickamer, H.G.

    1977-01-01

    High pressure luminescence measurements have been made on ZnS doped with Pb +2 and Mn +2 . The data include changes in peak energy and shape, integrated intensities, and lifetimes. These localized emissions are treated in terms of a single configuration coordinate model. For Pb +2 the emission peak shifted to lower energy by a moderate amount and narrowed. For excitation in the Pb +2 absorption the intensity was independent of pressure, which is consistent with the fact that the energy barrier for radiationless return to the ground state was high at all pressures. For excitation in the ZnS absorption edge the intensity decreased significantly with pressure above about 80 kbar. Data on shifts of the conduction band with pressure would indicate that one is approaching a transition from a direct to indirect transition at high pressure so that decrease in emission intensity may be associated with decreased absorption efficiency. The Mn+ 2 emission peak shifted strongly to lower energy with increasing pressure. The direction and magnitude of the shift were consistent with the predictions of ligand field theory. The intensity doubled in 100 kbar, while the lifetime decreased by roughly a factor of 2. These results could be described in terms of a model for a phonon assisted transition. In addition, peak location, intensity, and lifetime measurements were made on ZnS:Pb:Mn. There is clear evidence of energy transfer by exchange, but in addition there is a nonradiative process in the doubly doped crystal which affects both intensities and lifetimes

  9. Anderson phase-slip theory and loss mechanism of the motion of vortices in superconductors

    International Nuclear Information System (INIS)

    Xu, L.K.; Shan, L.; Tang, Y.L.; Wang, F.; Xu, X.N.; Jin, X.; Nanjing Univ.

    2001-01-01

    The loss mechanism of the super-current is discussed in the frame of Anderson phase-slip theory and G-L theory. In the discussion we also use vortex conservation equations instead of Maxwell equations. It is found that this method is more reasonable to apply the vortex motion induced energy loss in type II superconductors than the traditional deduction in terms of Maxwell equations. Moreover, we propose a new method to determine the effective pinning energy of vortex lines in type II superconductors. (orig.)

  10. Extremely confined gap surface-plasmon modes excited by electrons

    DEFF Research Database (Denmark)

    Raza, Søren; Stenger, Nicolas; Pors, Anders Lambertus

    2014-01-01

    High-spatial and energy resolution electron energy-loss spectroscopy (EELS) can be used for detailed characterization of localized and propagating surface-plasmon excitations in metal nanostructures, giving insight into fundamental physical phenomena and various plasmonic effects. Here, applying...... EELS to ultra-sharp convex grooves in gold, we directly probe extremely confined gap surface-plasmon (GSP) modes excited by swift electrons in nanometre-wide gaps. We reveal the resonance behaviour associated with the excitation of the antisymmetric GSP mode for extremely small gap widths, down to ~5...... mode exploited in plasmonic waveguides with extreme light confinement is a very important factor that should be taken into account in the design of nanoplasmonic circuits and devices....

  11. Emulating weak localization using a solid-state quantum circuit.

    Science.gov (United States)

    Chen, Yu; Roushan, P; Sank, D; Neill, C; Lucero, Erik; Mariantoni, Matteo; Barends, R; Chiaro, B; Kelly, J; Megrant, A; Mutus, J Y; O'Malley, P J J; Vainsencher, A; Wenner, J; White, T C; Yin, Yi; Cleland, A N; Martinis, John M

    2014-10-14

    Quantum interference is one of the most fundamental physical effects found in nature. Recent advances in quantum computing now employ interference as a fundamental resource for computation and control. Quantum interference also lies at the heart of sophisticated condensed matter phenomena such as Anderson localization, phenomena that are difficult to reproduce in numerical simulations. Here, employing a multiple-element superconducting quantum circuit, with which we manipulate a single microwave photon, we demonstrate that we can emulate the basic effects of weak localization. By engineering the control sequence, we are able to reproduce the well-known negative magnetoresistance of weak localization as well as its temperature dependence. Furthermore, we can use our circuit to continuously tune the level of disorder, a parameter that is not readily accessible in mesoscopic systems. Demonstrating a high level of control, our experiment shows the potential for employing superconducting quantum circuits as emulators for complex quantum phenomena.

  12. Cryogenic exciter

    Science.gov (United States)

    Bray, James William [Niskayuna, NY; Garces, Luis Jose [Niskayuna, NY

    2012-03-13

    The disclosed technology is a cryogenic static exciter. The cryogenic static exciter is connected to a synchronous electric machine that has a field winding. The synchronous electric machine is cooled via a refrigerator or cryogen like liquid nitrogen. The static exciter is in communication with the field winding and is operating at ambient temperature. The static exciter receives cooling from a refrigerator or cryogen source, which may also service the synchronous machine, to selected areas of the static exciter and the cooling selectively reduces the operating temperature of the selected areas of the static exciter.

  13. CT-QMC-simulations on the single impurity Anderson model with a superconducting bath

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Florian; Pruschke, Thomas [Institut fuer theoretische Physik, Universitaet Goettingen, Friedrich-Hund-Platz 1, 37077 Goettingen (Germany)

    2016-07-01

    Coupling a heavy fermion impurity to a superconducting lead induces a competition between the Kondo effect and superconductivity in the low temperature regime. This situation has been modeled with a single impurity Anderson model, where the normal state bath is replaced by a BCS-type superconducting bath in mean field approximation. We study this model using a continuous-time quantum Monte Carlo hybridization expansion algorithm. Results include the impurity Green's functions as well as the corresponding spectral functions obtained from analytic continuation. Two side bands are observed which we discuss in the light of Yu-Shiba-Rusinov states.

  14. Além do Octógono: Análise da Imagem de Anderson Silva na Mídia Brasileira

    Directory of Open Access Journals (Sweden)

    Andreza Domingues Stefani

    2013-08-01

    Full Text Available Este artigo analisa como a imagem do lutador de artes marciais Anderson Silva passou a ser retratada no Brasil em programação não esportiva depois da sua vitória no UFC 126. Para isso, realizou-se um estudo de caso da sua entrevista ao programa Fantástico, da Rede Globo, exibida duas semanas depois do combate. Buscou-se, então, compreender a construção da imagem-conceito (BALDISSERA, 2008 e como ela se relaciona à identificação do torcedor com o atleta e à formação de uma marca esportiva forte. Sem deixar de ressaltar o talento de Anderson nos ringues, a matéria procurou relativizar a violência da sua atividade apresentando outros aspectos da sua personalidade. O “novo ídolo” do esporte nacional se tornou um produto simpático e valorizado, consolidando sua marca no mercado esportivo brasileiro e ajudando a popularizar o MMA no Brasil.

  15. Much ado about nothing: the misestimation and overinterpretation of violent video game effects in eastern and western nations: comment on Anderson et al. (2010).

    Science.gov (United States)

    Ferguson, Christopher J; Kilburn, John

    2010-03-01

    The issue of violent video game influences on youth violence and aggression remains intensely debated in the scholarly literature and among the general public. Several recent meta-analyses, examining outcome measures most closely related to serious aggressive acts, found little evidence for a relationship between violent video games and aggression or violence. In a new meta-analysis, C. A. Anderson et al. (2010) questioned these findings. However, their analysis has several methodological issues that limit the interpretability of their results. In their analysis, C. A. Anderson et al. included many studies that do not relate well to serious aggression, an apparently biased sample of unpublished studies, and a "best practices" analysis that appears unreliable and does not consider the impact of unstandardized aggression measures on the inflation of effect size estimates. They also focused on bivariate correlations rather than better controlled estimates of effects. Despite a number of methodological flaws that all appear likely to inflate effect size estimates, the final estimate of r = .15 is still indicative of only weak effects. Contrasts between the claims of C. A. Anderson et al. (2010) and real-world data on youth violence are discussed.

  16. Spin-polarized spin excitation spectroscopy

    International Nuclear Information System (INIS)

    Loth, Sebastian; Lutz, Christopher P; Heinrich, Andreas J

    2010-01-01

    We report on the spin dependence of elastic and inelastic electron tunneling through transition metal atoms. Mn, Fe and Cu atoms were deposited onto a monolayer of Cu 2 N on Cu(100) and individually addressed with the probe tip of a scanning tunneling microscope. Electrons tunneling between the tip and the substrate exchange energy and spin angular momentum with the surface-bound magnetic atoms. The conservation of energy during the tunneling process results in a distinct onset threshold voltage above which the tunneling electrons create spin excitations in the Mn and Fe atoms. Here we show that the additional conservation of spin angular momentum leads to different cross-sections for spin excitations depending on the relative alignment of the surface spin and the spin of the tunneling electron. For this purpose, we developed a technique for measuring the same local spin with a spin-polarized and a non-spin-polarized tip by exchanging the last apex atom of the probe tip between different transition metal atoms. We derive a quantitative model describing the observed excitation cross-sections on the basis of an exchange scattering process.

  17. Mapping the local organization of cell membranes using excitation-polarization-resolved confocal fluorescence microscopy.

    Science.gov (United States)

    Kress, Alla; Wang, Xiao; Ranchon, Hubert; Savatier, Julien; Rigneault, Hervé; Ferrand, Patrick; Brasselet, Sophie

    2013-07-02

    Fluorescence anisotropy and linear dichroism imaging have been widely used for imaging biomolecular orientational distributions in protein aggregates, fibrillar structures of cells, and cell membranes. However, these techniques do not give access to complete orientational order information in a whole image, because their use is limited to parts of the sample where the average orientation of molecules is known a priori. Fluorescence anisotropy is also highly sensitive to depolarization mechanisms such as those induced by fluorescence energy transfer. A fully excitation-polarization-resolved fluorescence microscopy imaging that relies on the use of a tunable incident polarization and a nonpolarized detection is able to circumvent these limitations. We have developed such a technique in confocal epifluorescence microscopy, giving access to new regions of study in the complex and heterogeneous molecular organization of cell membranes. Using this technique, we demonstrate morphological changes at the subdiffraction scale in labeled COS-7 cell membranes whose cytoskeleton is perturbed. Molecular orientational order is also seen to be affected by cholesterol depletion, reflecting the strong interplay between lipid-packing regions and their nearby cytoskeleton. This noninvasive optical technique can reveal local organization in cell membranes when used as a complement to existing methods such as generalized polarization. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Optical excitation of Er centers in GaN epilayers grown by MOCVD

    Science.gov (United States)

    George, D. K.; Hawkins, M. D.; Jiang, H. X.; Lin, J. Y.; Zavada, J. M.; Vinh, N. Q.

    2016-02-01

    In this paper we present results of photoluminescence (PL), photoluminescence excitation (PLE), and time resolved PL spectroscopy of the 4I13/2 → 4I15/2 transition in Er optical centers in GaN epilayers grown by metal-organic chemical vapor deposition. Under resonance excitation via the higher-lying inner 4f shell transitions and band-to-band excitation of the semiconductor host, the PL and PLE spectra reveal an existence of two types of Er optical centers from isolated and the defect-related Er centers in GaN epilayers. These centers have different PL spectra, local defect environments, decay dynamics, and excitation cross-sections. The isolated Er optical center, which can be excited by either excitation mechanism, has the same decay dynamics, but possesses a much higher cross-section under band-to-band excitation. In contrast, the defect-related Er center can only be observed through band-to-band excitation but has the largest crosssection. Our results indicate pathways for efficient optical excitation of Er-doped GaN semiconductors.

  19. Two-photon excited UV fluorescence for protein crystal detection

    International Nuclear Information System (INIS)

    Madden, Jeremy T.; DeWalt, Emma L.; Simpson, Garth J.

    2011-01-01

    Complementary measurements using SONICC and TPE-UVF allow the sensitive and selective detection of protein crystals. Two-photon excited ultraviolet fluorescence (TPE-UVF) microscopy is explored for sensitive protein-crystal detection as a complement to second-order nonlinear optical imaging of chiral crystals (SONICC). Like conventional ultraviolet fluorescence (UVF), TPE-UVF generates image contrast based on the intrinsic fluorescence of aromatic residues, generally producing higher fluorescence emission within crystals than the mother liquor by nature of the higher local protein concentration. However, TPE-UVF has several advantages over conventional UVF, including (i) insensitivity to optical scattering, allowing imaging in turbid matrices, (ii) direct compatibility with conventional optical plates and windows by using visible light for excitation, (iii) elimination of potentially damaging out-of-plane UV excitation, (iv) improved signal to noise through background reduction from out-of-plane excitation and (v) relatively simple integration into instrumentation developed for SONICC

  20. Non-Fermi-liquid theory of a compactified Anderson single-impurity model

    International Nuclear Information System (INIS)

    Zhang, G.; Hewson, A.C.

    1996-01-01

    We consider a version of the symmetric Anderson impurity model (compactified) which has a non-Fermi-liquid weak-coupling regime. We find that in the Majorana fermion representation the perturbation theory can be conveniently developed in terms of Pfaffian determinants and we use this formalism to calculate the impurity free energy, self-energies, and vertex functions. We derive expressions for the impurity and the local conduction-electron charge and spin-dynamical susceptibilities in terms of the impurity self-energies and vertex functions. In the second-order perturbation theory, a linear temperature dependence of the electrical resistivity is obtained, and the leading corrections to the impurity specific heat are found to behave as TlnT. The impurity static susceptibilities have terms in lnT to zero, first, and second order, and corrections of ln 2 T to second order as well. The conduction-electron static susceptibilities, and the singlet superconducting paired static susceptibility at the impurity site, have second-order corrections lnT, which indicate that a singlet conduction-electron pairing resonance forms at the Fermi level (the chemical potential). When the perturbation theory is extended to third order logarithmic divergences are found in the only vertex function Γ 0,1,2,3 (0,0,0,0), which is nonvanishing in the zero-frequency limit. We use the multiplicative renormalization-group (RG) method to sum all the leading-order logarithmic contributions. This gives a weak-coupling low-temperature energy scale T c =Δexp[-(1/9)(πΔ/U) 2 ], which is the combination of the two independent coupling parameters. The RG scaling equation is derived and shows that the dimensionless coupling constant bar U=U/πΔ is increased as the high-energy scale Δ is reduced, so our perturbational results can be justified in the regime T approx-gt T c

  1. Anderson Hamiltonian description of the experimental electronic structure and magnetic interactions of copper oxide superconductors

    International Nuclear Information System (INIS)

    Shen, Z.; Allen, J.W.; Yeh, J.J.

    1987-01-01

    We describe valence-band and core-level photoemission data for copper oxide superconductors using the Anderson Hamiltonian applied to an impurity-cluster configuration-interaction model. We obtain experimental values of the parameters of the model the copper X oxygen charge transfer energy Δ∼0.4 eV, the d-d Coulomb interaction U∼6 eV, and the ligand-d hybridization T∼2.4 eV. Using these parameters, we evaluate the linear Cu-O-Cu superexchange interaction J and find it is dominated by the charge-transfer fluctuations. The magnitude obtained for J is much larger than typical Neel temperatures of these materials, and is somewhat larger than that estimated from applying the resonating-valence-bond picture to La 2 CuO 4 . We point out that for Δ >Δ, the charge-transfer degrees of freedom, and the lattice aspects of the Anderson lattice Hamiltonian, should not be neglected in constructing models for the high-T/sub c/ superconductivity. We also emphasize our resonant-photoemission result that the very small density of states at or near the Fermi level in all these materials has a substantial contribution from Cu 3d states, suggesting their importance for the superconductivity. We report other details of the resonant-photoemission data involving La and Ba states in the materials containing these elements

  2. Absence of localization in a disordered one-dimensional ring threaded by an Aharonov-Bohm flux

    International Nuclear Information System (INIS)

    Heinrichs, Jean

    2009-01-01

    Absence of localization is demonstrated analytically to leading order in weak disorder in a one-dimensional Anderson model of a ring threaded by an Aharonov-Bohm (AB) flux. The result follows from adapting an earlier perturbation treatment of disorder in a superconducting ring subjected to an imaginary vector potential proportional to a depinning field for flux lines bound to random columnar defects parallel to the axis of the ring. The absence of localization in the ring threaded by an AB flux for sufficiently weak disorder is compatible with large free-electron-type persistent current obtained in recent studies of the above model.

  3. Survival probability of a local excitation in a non-Markovian environment: Survival collapse, Zeno and anti-Zeno effects

    International Nuclear Information System (INIS)

    Rufeil-Fiori, E.; Pastawski, H.M.

    2009-01-01

    The decay dynamics of a local excitation interacting with a non-Markovian environment, modeled by a semi-infinite tight-binding chain, is exactly evaluated. We identify distinctive regimes for the dynamics. Sequentially: (i) early quadratic decay of the initial-state survival probability, up to a spreading time t S , (ii) exponential decay described by a self-consistent Fermi Golden Rule, and (iii) asymptotic behavior governed by quantum diffusion through the return processes, leading to an inverse power law decay. At this last cross-over time t R a survival collapse becomes possible. This could reduce the survival probability by several orders of magnitude. The cross-over times t S and t R allow to assess the range of applicability of the Fermi Golden Rule and give the conditions for the observation of the Zeno and anti-Zeno effect.

  4. APA/Psi Chi Edwin B. Newman Graduate Research Award: Samantha F. Anderson.

    Science.gov (United States)

    2017-12-01

    The Edwin B. Newman Graduate Research Award is given jointly by Psi Chi and the American Psychological Association. The award was established to recognize young researchers at the beginning of their professional lives and to commemorate both the 50th anniversary of Psi Chi and the 100th anniversary of psychology as a science (dating from the founding of Wundt's laboratory). The 2017 recipient is Samantha F. Anderson, who was chosen for "an exceptional research paper that responds to psychology's 'replication crisis' by outlining a broader view of success in replication." Her award citation, biography, and a selected bibliography are presented here. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  5. High-energy neutron dosimetry at the Clinton P. Anderson Meson Physics Facility

    International Nuclear Information System (INIS)

    Mallett, M.W.; Vasilik, D.G.; Littlejohn, G.J.; Cortez, J.R.

    1990-01-01

    Neutron energy spectrum measurements performed at the Clinton P. Anderson Meson Physics Facility indicated potential areas for high energy neutron exposure to personnel. The low sensitivity of the Los Alamos thermoluminescent dosimeter (TLD) to high energy neutrons warranted issuing a NTA dosimeter in addition to the TLD badge to employees entering these areas. The dosimeter consists of a plastic holder surrounding NTA film that has been desiccated and sealed in a dry nitrogen environment. A study of the fading of latent images in NTA film demonstrated the success of this packaging method to control the phenomenon. The Los Alamos NTA dosimeter is characterized and the fading study discussed. 10 refs., 4 figs., 2 tabs

  6. O design de produção nos filmes de Wes Anderson

    OpenAIRE

    Cunha, Humberto Thimoteo

    2009-01-01

    Esse projeto pesquisa a relação entre design e cinema, seguindo a linha do design de produção, o estudo da escolha de locações, a disposição de cenários, móveis e objetos. Posteriormente faz uma análise dos filmes do diretor Wes Anderson, buscando a importância dessa atividade no processo de produção dos filmes, analisando elementos de design de produção como objetos cenários e móveis, também elementos de figurino e elementos de pós-produção. A ánalise buscará mostrar que a importância do...

  7. Modified Bose-Einstein and Fermi-Dirac statistics if excitations are localized on an intermediate length scale: applications to non-Debye specific heat.

    Science.gov (United States)

    Chamberlin, Ralph V; Davis, Bryce F

    2013-10-01

    Disordered systems show deviations from the standard Debye theory of specific heat at low temperatures. These deviations are often attributed to two-level systems of uncertain origin. We find that a source of excess specific heat comes from correlations between quanta of energy if excitations are localized on an intermediate length scale. We use simulations of a simplified Creutz model for a system of Ising-like spins coupled to a thermal bath of Einstein-like oscillators. One feature of this model is that energy is quantized in both the system and its bath, ensuring conservation of energy at every step. Another feature is that the exact entropies of both the system and its bath are known at every step, so that their temperatures can be determined independently. We find that there is a mismatch in canonical temperature between the system and its bath. In addition to the usual finite-size effects in the Bose-Einstein and Fermi-Dirac distributions, if excitations in the heat bath are localized on an intermediate length scale, this mismatch is independent of system size up to at least 10(6) particles. We use a model for correlations between quanta of energy to adjust the statistical distributions and yield a thermodynamically consistent temperature. The model includes a chemical potential for units of energy, as is often used for other types of particles that are quantized and conserved. Experimental evidence for this model comes from its ability to characterize the excess specific heat of imperfect crystals at low temperatures.

  8. Electron Energy Loss and One- and Two-Photon Excited SERS Probing of “Hot” Plasmonic Silver Nanoaggregates

    DEFF Research Database (Denmark)

    Kadkhodazadeh, Shima; Wagner, Jakob Birkedal; Joseph, Virginia

    2013-01-01

    in an optical experiment and electron energy loss intensity at energies corresponding to excitation wavelengths used for optical probing. This inverse relation exists independent on specific nanoaggregate geometries and is mainly controlled by the gap size between the particles forming the aggregate. The ratio...... between two- and one-photon excited SERS measured at different excitation wavelengths provides information about local fields in the hottest spots and their dependence on the photon energy. Our data verify experimentally the predicted increase of local optical fields in the hot spots with increasing wave...

  9. Predicted Mobility Edges in One-Dimensional Incommensurate Optical Lattices: An Exactly Solvable Model of Anderson Localization

    International Nuclear Information System (INIS)

    Biddle, J.; Das Sarma, S.

    2010-01-01

    Localization properties of noninteracting quantum particles in one-dimensional incommensurate lattices are investigated with an exponential short-range hopping that is beyond the minimal nearest-neighbor tight-binding model. Energy dependent mobility edges are analytically predicted in this model and verified with numerical calculations. The results are then mapped to the continuum Schroedinger equation, and an approximate analytical expression for the localization phase diagram and the energy dependent mobility edges in the ground band is obtained.

  10. Hubbard physics in the symmetric half-filled periodic anderson-hubbard model

    Science.gov (United States)

    Hagymási, I.; Itai, K.; Sólyom, J.

    2013-05-01

    Two very different methods — exact diagonalization on finite chains and a variational method — are used to study the possibility of a metal-insulator transition in the symmetric half-filled periodic Anderson-Hubbard model. With this aim we calculate the density of doubly occupied d sites ( gn d ) as a function of various parameters. In the absence of on-site Coulomb interaction ( U f ) between f electrons, the two methods yield similar results. The double occupancy of d levels remains always finite just as in the one-dimensional Hubbard model. Exact diagonalization on finite chains gives the same result for finite U f , while the Gutzwiller method leads to a Brinkman-Rice transition at a critical value ( U {/d c }), which depends on U f and V.

  11. Linear-scaling quantum mechanical methods for excited states.

    Science.gov (United States)

    Yam, ChiYung; Zhang, Qing; Wang, Fan; Chen, GuanHua

    2012-05-21

    The poor scaling of many existing quantum mechanical methods with respect to the system size hinders their applications to large systems. In this tutorial review, we focus on latest research on linear-scaling or O(N) quantum mechanical methods for excited states. Based on the locality of quantum mechanical systems, O(N) quantum mechanical methods for excited states are comprised of two categories, the time-domain and frequency-domain methods. The former solves the dynamics of the electronic systems in real time while the latter involves direct evaluation of electronic response in the frequency-domain. The localized density matrix (LDM) method is the first and most mature linear-scaling quantum mechanical method for excited states. It has been implemented in time- and frequency-domains. The O(N) time-domain methods also include the approach that solves the time-dependent Kohn-Sham (TDKS) equation using the non-orthogonal localized molecular orbitals (NOLMOs). Besides the frequency-domain LDM method, other O(N) frequency-domain methods have been proposed and implemented at the first-principles level. Except one-dimensional or quasi-one-dimensional systems, the O(N) frequency-domain methods are often not applicable to resonant responses because of the convergence problem. For linear response, the most efficient O(N) first-principles method is found to be the LDM method with Chebyshev expansion for time integration. For off-resonant response (including nonlinear properties) at a specific frequency, the frequency-domain methods with iterative solvers are quite efficient and thus practical. For nonlinear response, both on-resonance and off-resonance, the time-domain methods can be used, however, as the time-domain first-principles methods are quite expensive, time-domain O(N) semi-empirical methods are often the practical choice. Compared to the O(N) frequency-domain methods, the O(N) time-domain methods for excited states are much more mature and numerically stable, and

  12. Pionic modes of excitation in continuum from the (p,n) reaction

    International Nuclear Information System (INIS)

    Izumoto, T.; Ichimura, M.; Ko, C.M.; Siemens, P.J.; Texas A and M Univ., College Station

    1982-01-01

    The continuum spectra of the 90 Zr(p, n) reaction at Esub(p) = 200 MeV are studied in the DWBA up to high excitation hω(approx. <= 60 MeV) and large momentum transfer q(approx. <= 3 μsub(π)). The response function is obtained in a local-density approximation, taking into account p-h and Δ-h excitations and the short-range correlation g' between them. For small g' approx. <= 0.5, a broad bump due to the opalescence effect can be seen in the calculated cross section at rather low excitation and near q approx. equal to 2.2 μsub(π). However, for larger g', this effect is suppressed, and a broader bump in cross section is located at higher excitation. (orig.)

  13. Electronic-excitation induced radiation damage in glasses

    Energy Technology Data Exchange (ETDEWEB)

    Vigouroux, J P

    1985-01-01

    In order to understand the microscopic nature of radiation induced defects in insulators, we have studied localization of negative and positive charges in amorphous and monocrystalline SiO2. The behaviour of these charges is linked to creation of point defects by electronic excitation. The role of intense electric fields under irradiation is pointed out.

  14. Gabor Weber Local Descriptor for Bovine Iris Recognition

    OpenAIRE

    Sun, Shengnan; Zhao, Lindu; Yang, Shicai

    2013-01-01

    Iris recognition is a robust biometric technology. This paper proposes a novel local descriptor for bovine iris recognition, named Gabor Weber local descriptor (GWLD). We first compute the Gabor magnitude maps for the input bovine iris image, and then calculate the differential excitation and orientation for each pixel over each Gabor magnitude map. After that, we use these differential excitations and orientations to construct the GWLD histogram representation. Finally, histogram intersectio...

  15. Modeling non-locality of plasmonic excitations with a fictitious film

    Science.gov (United States)

    Kong, Jiantao; Shvonski, Alexander; Kempa, Krzysztof

    Non-local effects, requiring a wavevector (q) dependent dielectric response are becoming increasingly important in studies of plasmonic and metamaterial structures. The phenomenological hydrodynamic approximation (HDA) is the simplest, and most often used model, but it often fails. We show that the d-function formalism, exact to first order in q, is a powerful and simple-to-use alternative. Recently, we developed a mapping of the d-function formalism into a purely local fictitious film. This geometric mapping allows for non-local extensions of any local calculation scheme, including FDTD. We demonstrate here, that such mapped FDTD simulation of metallic nanoclusters agrees very well with various experiments.

  16. Sweep excitation with order tracking: A new tactic for beam crack analysis

    Science.gov (United States)

    Wei, Dongdong; Wang, KeSheng; Zhang, Mian; Zuo, Ming J.

    2018-04-01

    Crack detection in beams and beam-like structures is an important issue in industry and has attracted numerous investigations. A local crack leads to global system dynamics changes and produce non-linear vibration responses. Many researchers have studied these non-linearities for beam crack diagnosis. However, most reported methods are based on impact excitation and constant frequency excitation. Few studies have focused on crack detection through external sweep excitation which unleashes abundant dynamic characteristics of the system. Together with a signal resampling technique inspired by Computed Order Tracking, this paper utilize vibration responses under sweep excitations to diagnose crack status of beams. A data driven method for crack depth evaluation is proposed and window based harmonics extracting approaches are studied. The effectiveness of sweep excitation and the proposed method is experimentally validated.

  17. Weak disorder expansion of the invariant measure for the one-dimensional Anderson model

    International Nuclear Information System (INIS)

    Bovier, A.; Klein, A.

    1988-01-01

    We show that the formal perturbation expansion of the invariant measure for the Anderson model in one dimension has singularities at all energies E 0 = 2 cos π(p/q); we derive a modified expansion near these energies that we show to have finite coefficients to all orders. Moreover, we show that the first q - 3 of them coincide with those of the naive expansion, while there is an anomaly in the (q - 2)th term. This also gives a weak disorder expansion for the Liapunov exponent and for the density of states. This generalizes previous results of Kappus and Wegner and of Derrida and Gardner

  18. Range-separated density-functional theory for molecular excitation energies

    International Nuclear Information System (INIS)

    Rebolini, E.

    2014-01-01

    Linear-response time-dependent density-functional theory (TDDFT) is nowadays a method of choice to compute molecular excitation energies. However, within the usual adiabatic semi-local approximations, it is not able to describe properly Rydberg, charge-transfer or multiple excitations. Range separation of the electronic interaction allows one to mix rigorously density-functional methods at short range and wave function or Green's function methods at long range. When applied to the exchange functional, it already corrects most of these deficiencies but multiple excitations remain absent as they need a frequency-dependent kernel. In this thesis, the effects of range separation are first assessed on the excitation energies of a partially-interacting system in an analytic and numerical study in order to provide guidelines for future developments of range-separated methods for excitation energy calculations. It is then applied on the exchange and correlation TDDFT kernels in a single-determinant approximation in which the long-range part of the correlation kernel vanishes. A long-range frequency-dependent second-order correlation kernel is then derived from the Bethe-Salpeter equation and added perturbatively to the range-separated TDDFT kernel in order to take into account the effects of double excitations. (author)

  19. Construction of Vibronic Diabatic Hamiltonian for Excited-State Electron and Energy Transfer Processes.

    Science.gov (United States)

    Xie, Yu; Jiang, Shengshi; Zheng, Jie; Lan, Zhenggang

    2017-12-21

    Photoinduced excited-state electron and energy transfer processes are crucial in biological photoharvesting systems and organic photovoltaic devices. We discuss the construction of a diabatic vibronic Hamiltonian for the proper treatment of these processes involving the projection approach acting on both electronic wave functions and vibrational modes. In the electronic part, the wave function projection approach is used to construct the diabatic Hamiltonian in which both local excited states and charge-transfer states are included on the same footing. For the vibrational degrees of freedom, the vibronic couplings in the diabatic Hamiltonian are obtained in the basis of the pseudonormal modes localized on each monomer site by applying delocalized-to-localized mode projection. This systematic approach allows us to construct the vibronic diabatic Hamiltonian in molecular aggregates.

  20. Seismic response of cable stayed bridges under multi support excitation

    Directory of Open Access Journals (Sweden)

    Mahmoud Reza ُُShiravand

    2017-07-01

    Full Text Available In this Study, the seismic response of cable stayed bridges have been evaluated under multi-support excitations. There are three sources that cause the earthquake wave characteristics change during its propagation path. Local site effect, loss of coherency and wave passage effect are three sources of spatial variation of seismic ground motions. In long span structures, such as cable supported bridges, this phenomenon is more evident and traditional analyzing (uniform excitation may not be valid and be conservative. Thus, it is necessary to investigate the response of cable stayed bridges under non-uniform excitations. For this purpose, the non-uniform time histories were artificially generated using Kriging method based on a set of known time history in the west support of bridge. Nonlinear time history analysis was performed and cables axial force, deck moment, pylons moment and finally drift ratio of bridge have been examined in order to investigate how non-uniform excitation change the seismic response of bridge compared with uniform excitations. Results show non-uniform excitation in some bridge components increase responses and decreases in the others. In non-uniform excitation, although total time history energy is lesser than uniform excitation, it can significantly change the distribution of the forces and makes differential displacement between cables supports and increase the possibility of failure.

  1. Damage-spreading and out-of-equilibrium dynamics in the low-temperature regime of the two-dimensional ± J Edwards–Anderson model

    International Nuclear Information System (INIS)

    Rubio Puzzo, M L; Romá, F; Bustingorry, S; Gleiser, P M

    2010-01-01

    We present results showing the correlation between the out-of-equilibrium dynamics and the equilibrium damage-spreading process in the two-dimensional ± J Edwards–Anderson model at low temperatures. A key ingredient in our analysis is the projection of finite temperature spin configurations onto the ground state topology of the system. In particular, through numerical simulations we correlate ground state information with the out-of-equilibrium dynamics. We also analyse how the propagation of a small perturbation in equilibrated systems is related to the ground state topology. This damage-spreading study unveils the presence of rigid clusters of spins. We claim that these clusters give rise to the slow out-of-equilibrium dynamics observed in the temperature range between the glass temperature T g = 0 of the two-dimensional ± J Edwards–Anderson model and the critical temperature T c of the pure ferromagnetic Ising model

  2. Consideration on excitation mechanisms in a high-power two-jet plasma

    International Nuclear Information System (INIS)

    Zaksas, Natalia P.; Gerasimov, Vladimir A.

    2013-01-01

    The study of excitation mechanisms in the region before the jet confluence of a high-power two-jet plasma used for analysis of different powders has been undertaken. Distribution of excited levels of Fe atoms and ions according to the Boltzmann population was found. Measuring Fe atomic and ionic excitation temperatures showed their considerable difference (≈ 2000–2500 K). The effect of argon on line intensities of a wide range of elements was investigated by the experiment with argon covering. A negligible effect of argon covering on line intensities of atoms with ionization energy of 8 eV was revealed. This is likely to be due to Penning ionization by metastable argon followed by ion recombination with an electron and stepwise de-excitations. A more pronounced effect of argon covering was observed for ionic lines of investigated elements with total excitation energy ranging from 11 to 21 eV. Penning ionization followed by electron impact is believed to be a probable mechanism for ion excitation. The contribution of metastable argon to excitation processes results in departure from local thermodynamic equilibrium and different atomic and ionic excitation temperatures. - Highlights: • Excitation mechanisms were investigated in a high-power TJP. • Boltzmann population of excited levels of Fe atoms and ions takes place. • The considerable difference in Fe atomic and ionic excitation temperatures occurs. • Argon covering was used to study the argon effect on line intensities. • Participation of metastable argon in atom ionization was shown

  3. A Bitslice Implementation of Anderson's Attack on A5/1

    Science.gov (United States)

    Bulavintsev, Vadim; Semenov, Alexander; Zaikin, Oleg; Kochemazov, Stepan

    2018-03-01

    The A5/1 keystream generator is a part of Global System for Mobile Communications (GSM) protocol, employed in cellular networks all over the world. Its cryptographic resistance was extensively analyzed in dozens of papers. However, almost all corresponding methods either employ a specific hardware or require an extensive preprocessing stage and significant amounts of memory. In the present study, a bitslice variant of Anderson's Attack on A5/1 is implemented. It requires very little computer memory and no preprocessing. Moreover, the attack can be made even more efficient by harnessing the computing power of modern Graphics Processing Units (GPUs). As a result, using commonly available GPUs this method can quite efficiently recover the secret key using only 64 bits of keystream. To test the performance of the implementation, a volunteer computing project was launched. 10 instances of A5/1 cryptanalysis have been successfully solved in this project in a single week.

  4. High-frequency asymptotics of the local vertex function. Algorithmic implementations

    Energy Technology Data Exchange (ETDEWEB)

    Tagliavini, Agnese; Wentzell, Nils [Institut fuer Theoretische Physik, Eberhard Karls Universitaet, 72076 Tuebingen (Germany); Institute for Solid State Physics, Vienna University of Technology, 1040 Vienna (Austria); Li, Gang; Rohringer, Georg; Held, Karsten; Toschi, Alessandro [Institute for Solid State Physics, Vienna University of Technology, 1040 Vienna (Austria); Taranto, Ciro [Institute for Solid State Physics, Vienna University of Technology, 1040 Vienna (Austria); Max Planck Institute for Solid State Research, D-70569 Stuttgart (Germany); Andergassen, Sabine [Institut fuer Theoretische Physik, Eberhard Karls Universitaet, 72076 Tuebingen (Germany)

    2016-07-01

    Local vertex functions are a crucial ingredient of several forefront many-body algorithms in condensed matter physics. However, the full treatment of their frequency dependence poses a huge limitation to the numerical performance. A significant advancement requires an efficient treatment of the high-frequency asymptotic behavior of the vertex functions. We here provide a detailed diagrammatic analysis of the high-frequency asymptotic structures and their physical interpretation. Based on these insights, we propose a frequency parametrization, which captures the whole high-frequency asymptotics for arbitrary values of the local Coulomb interaction and electronic density. We present its algorithmic implementation in many-body solvers based on parquet-equations as well as functional renormalization group schemes and assess its validity by comparing our results for the single impurity Anderson model with exact diagonalization calculations.

  5. Anderson localization in one-dimensional quasiperiodic lattice models with nearest- and next-nearest-neighbor hopping

    International Nuclear Information System (INIS)

    Gong, Longyan; Feng, Yan; Ding, Yougen

    2017-01-01

    Highlights: • Quasiperiodic lattice models with next-nearest-neighbor hopping are studied. • Shannon information entropies are used to reflect state localization properties. • Phase diagrams are obtained for the inverse bronze and golden means, respectively. • Our studies present a more complete picture than existing works. - Abstract: We explore the reduced relative Shannon information entropies SR for a quasiperiodic lattice model with nearest- and next-nearest-neighbor hopping, where an irrational number is in the mathematical expression of incommensurate on-site potentials. Based on SR, we respectively unveil the phase diagrams for two irrationalities, i.e., the inverse bronze mean and the inverse golden mean. The corresponding phase diagrams include regions of purely localized phase, purely delocalized phase, pure critical phase, and regions with mobility edges. The boundaries of different regions depend on the values of irrational number. These studies present a more complete picture than existing works.

  6. Anderson localization in one-dimensional quasiperiodic lattice models with nearest- and next-nearest-neighbor hopping

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Longyan, E-mail: lygong@njupt.edu.cn [Information Physics Research Center and Department of Applied Physics, Nanjing University of Posts and Telecommunications, Nanjing, 210003 (China); Institute of Signal Processing and Transmission, Nanjing University of Posts and Telecommunications, Nanjing, 210003 (China); National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Feng, Yan; Ding, Yougen [Information Physics Research Center and Department of Applied Physics, Nanjing University of Posts and Telecommunications, Nanjing, 210003 (China); Institute of Signal Processing and Transmission, Nanjing University of Posts and Telecommunications, Nanjing, 210003 (China)

    2017-02-12

    Highlights: • Quasiperiodic lattice models with next-nearest-neighbor hopping are studied. • Shannon information entropies are used to reflect state localization properties. • Phase diagrams are obtained for the inverse bronze and golden means, respectively. • Our studies present a more complete picture than existing works. - Abstract: We explore the reduced relative Shannon information entropies SR for a quasiperiodic lattice model with nearest- and next-nearest-neighbor hopping, where an irrational number is in the mathematical expression of incommensurate on-site potentials. Based on SR, we respectively unveil the phase diagrams for two irrationalities, i.e., the inverse bronze mean and the inverse golden mean. The corresponding phase diagrams include regions of purely localized phase, purely delocalized phase, pure critical phase, and regions with mobility edges. The boundaries of different regions depend on the values of irrational number. These studies present a more complete picture than existing works.

  7. Characterizing Time Irreversibility in Disordered Fermionic Systems by the Effect of Local Perturbations

    Science.gov (United States)

    Vardhan, Shreya; De Tomasi, Giuseppe; Heyl, Markus; Heller, Eric J.; Pollmann, Frank

    2017-07-01

    We study the effects of local perturbations on the dynamics of disordered fermionic systems in order to characterize time irreversibility. We focus on three different systems: the noninteracting Anderson and Aubry-André-Harper (AAH) models and the interacting spinless disordered t -V chain. First, we consider the effect on the full many-body wave functions by measuring the Loschmidt echo (LE). We show that in the extended or ergodic phase the LE decays exponentially fast with time, while in the localized phase the decay is algebraic. We demonstrate that the exponent of the decay of the LE in the localized phase diverges proportionally to the single-particle localization length as we approach the metal-insulator transition in the AAH model. Second, we probe different phases of disordered systems by studying the time expectation value of local observables evolved with two Hamiltonians that differ by a spatially local perturbation. Remarkably, we find that many-body localized systems could lose memory of the initial state in the long-time limit, in contrast to the noninteracting localized phase where some memory is always preserved.

  8. Resonance localization in tokamaks excited with ICRF waves

    International Nuclear Information System (INIS)

    Kerbel, G.D.; McCoy, M.G.

    1985-01-01

    Advanced wave models used to evaluate ICRH in tokamaks typically use warm plasma theory and allow inhomogeneity in one dimension. The majority of these calculations neglect the fact that gyrocenters experience the inhomogeneity via their motion parallel to the magnetic field. The non-local effects of rotational transform and toroidicity can play a significant role in both the propagation and the absorption physics. In strongly driven systems, wave damping can distort the particle distribution function supporting the wave and this produces changes in the absorption. The most common approach is to use Maxwellian absorption rates. We have developed a bounce-averaged Fokker-Planck quasilinear computational model which evolves the population of particles on more realistic orbits. Each wave-particle resonance has its own specific interaction amplitude within any given volume element; these data need only be generated once, and appropriately stored for efficient retrieval. The wave-particle resonant interaction then serves as a mechanism by which the diffusion of particle populations can proceed among neighboring orbits. The local specific spectral energy absorption rate is directly calculable once the orbit geometry and populations are determined. The code is constructed in such fashion as to accommodate wave propagation models which provide the wave spectral energy density on a poloidal cross-section. Information provided by the calculation includes the local absorption properties of the medium which can then be exploited to evolve the wave field

  9. Coulomb excitation

    International Nuclear Information System (INIS)

    McGowan, F.K.; Stelson, P.H.

    1974-01-01

    The theory of Coulomb excitation and a brief review of pertinent treatments of the Coulomb excitation process that are useful for the analysis of experiments are given. Examples demonstrating the scope of nuclear structure information obtainable from gamma spectroscopy are presented. Direct Elambda excitation of 232 Th is discussed in terms of the one phonon octupole vibrational spectrum. B(MI) reduced transition probabilities resulting from Coulomb excitation of odd-A deformed nuclei with heavy ions are presented as a test of the rotational model. The use of gamma ray coincidence and particle-gamma coincidence as tools for investigating Coulomb excitation is discussed. (U.S.)

  10. Classical mapping for Hubbard operators: Application to the double-Anderson model

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bin; Miller, William H. [Department of Chemistry and Kenneth S. Pitzer Center for Theoretical Chemistry, University of California, and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Levy, Tal J.; Rabani, Eran [School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel)

    2014-05-28

    A classical Cartesian mapping for Hubbard operators is developed to describe the nonequilibrium transport of an open quantum system with many electrons. The mapping of the Hubbard operators representing the many-body Hamiltonian is derived by using analogies from classical mappings of boson creation and annihilation operators vis-à-vis a coherent state representation. The approach provides qualitative results for a double quantum dot array (double Anderson impurity model) coupled to fermionic leads for a range of bias voltages, Coulomb couplings, and hopping terms. While the width and height of the conduction peaks show deviations from the master equation approach considered to be accurate in the limit of weak system-leads couplings and high temperatures, the Hubbard mapping captures all transport channels involving transition between many electron states, some of which are not captured by approximate nonequilibrium Green function closures.

  11. d-wave superconductivity in the frustrated two-dimensional periodic Anderson model

    Directory of Open Access Journals (Sweden)

    Wei Wu

    2015-02-01

    Full Text Available Superconductivity in heavy-fermion materials can sometimes appear in the incoherent regime and in proximity to an antiferromagnetic quantum critical point. Here, we study these phenomena using large-scale determinant quantum Monte Carlo simulations and the dynamical cluster approximation with various impurity solvers for the periodic Anderson model with frustrated hybridization. We obtain solid evidence for a d_{x^{2}−y^{2}} superconducting phase arising from an incoherent normal state in the vicinity of an antiferromagnetic quantum critical point. There is a coexistence region, and the width of the superconducting dome increases with frustration. Through a study of the pairing dynamics, we find that the retarded spin fluctuations give the main contribution to the pairing glue. These results are relevant for unconventional superconductivity in the Ce-115 family of heavy fermions.

  12. Effect of interchain coupling on the excited polaron in conjugated polymers

    International Nuclear Information System (INIS)

    Li, Xiao-xue; Chen, Gang

    2017-01-01

    Based on the one-dimensional extended Su–Schrieffer–Heeger model, we theoretically investigate the effect of interchain coupling on the formation and polarization of the single-excited state of polaron in conjugated polymers. It is found that there exists a turnover value of the coupling strength, over which the excited polaron could not be formed in either of the two coupled chains. Instead, a polaron-like particle is localized at the center of each chain. In addition, we also find that the reverse polarization of the excited polaron could be enhanced for some cases in polymer when the interchain coupling becomes strong until it exceeds the critical value. - Highlights: • Effect of interchain coupling on the single-excited state of polaron is studied. • When coupling strength exceeds critical value, the excited polaron is dissociated. • Soliton pair could be dissociated into polaron-like particle with strong coupling. • Reverse polarization of excited polaron is enhanced by weak interchain coupling. • Reverse polarization is obtained more easily in solid film of polymer molecules.

  13. Effect of interchain coupling on the excited polaron in conjugated polymers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiao-xue, E-mail: sps_lixx@ujn.edu.cn; Chen, Gang, E-mail: ss_cheng@ujn.edu.cn

    2017-02-05

    Based on the one-dimensional extended Su–Schrieffer–Heeger model, we theoretically investigate the effect of interchain coupling on the formation and polarization of the single-excited state of polaron in conjugated polymers. It is found that there exists a turnover value of the coupling strength, over which the excited polaron could not be formed in either of the two coupled chains. Instead, a polaron-like particle is localized at the center of each chain. In addition, we also find that the reverse polarization of the excited polaron could be enhanced for some cases in polymer when the interchain coupling becomes strong until it exceeds the critical value. - Highlights: • Effect of interchain coupling on the single-excited state of polaron is studied. • When coupling strength exceeds critical value, the excited polaron is dissociated. • Soliton pair could be dissociated into polaron-like particle with strong coupling. • Reverse polarization of excited polaron is enhanced by weak interchain coupling. • Reverse polarization is obtained more easily in solid film of polymer molecules.

  14. Identification of the low-energy excitations in a quantum critical system

    Directory of Open Access Journals (Sweden)

    Tom Heitmann

    2017-05-01

    Full Text Available We have identified low-energy magnetic excitations in a doped quantum critical system by means of polarized neutron scattering experiments. The presence of these excitations could explain why Ce(Fe0.76Ru0.242Ge2 displays dynamical scaling in the absence of local critical behavior or long-range spin-density wave criticality. The low-energy excitations are associated with the reorientations of the superspins of fully ordered, isolated magnetic clusters that form spontaneously upon lowering the temperature. The system houses both frozen clusters and dynamic clusters, as predicted by Hoyos and Vojta [Phys. Rev. B 74, 140401(R (2006].

  15. Direct conversion of graphite into diamond through electronic excited states

    CERN Document Server

    Nakayama, H

    2003-01-01

    An ab initio total energy calculation has been performed for electronic excited states in diamond and rhombohedral graphite by the full-potential linearized augmented plane wave method within the framework of the local density approximation (LDA). First, calculations for the core-excited state in diamond have been performed to show that the ab initio calculations based on the LDA describe the wavefunctions in the electronic excited states as well as in the ground state quite well. Fairly good coincidence with both experimental data and theoretical prediction has been obtained for the lattice relaxation of the core exciton state. The results of the core exciton state are compared with nitrogen-doped diamond. Next, the structural stability of rhombohedral graphite has been investigated to examine the possibility of the transition into the diamond structure through electronic excited states. While maintaining the rhombohedral symmetry, rhombohedral graphite can be spontaneously transformed to cubic diamond. Tota...

  16. Gabor Weber Local Descriptor for Bovine Iris Recognition

    Directory of Open Access Journals (Sweden)

    Shengnan Sun

    2013-01-01

    Full Text Available Iris recognition is a robust biometric technology. This paper proposes a novel local descriptor for bovine iris recognition, named Gabor Weber local descriptor (GWLD. We first compute the Gabor magnitude maps for the input bovine iris image, and then calculate the differential excitation and orientation for each pixel over each Gabor magnitude map. After that, we use these differential excitations and orientations to construct the GWLD histogram representation. Finally, histogram intersection is adopted to measure the similarity between different GWLD histograms. The experimental results on the SEU bovine iris database verify the representation power of our proposed local descriptor.

  17. Interplay of long-range and short-range Coulomb interactions in an Anderson-Mott insulator

    Science.gov (United States)

    Baćani, Mirko; Novak, Mario; Orbanić, Filip; Prša, Krunoslav; Kokanović, Ivan; Babić, Dinko

    2017-07-01

    In this paper, we tackle the complexity of coexisting disorder and Coulomb electron-electron interactions (CEEIs) in solids by addressing a strongly disordered system with intricate CEEIs and a screening that changes both with charge carrier doping level Q and temperature T . We report on an experimental comparative study of the T dependencies of the electrical conductivity σ and magnetic susceptibility χ of polyaniline pellets doped with dodecylbenzenesulfonic acid over a wide range. This material is special within the class of doped polyaniline by exhibiting in the electronic transport a crossover between a low-T variable range hopping (VRH) and a high-T nearest-neighbor hopping (NNH) well below room temperature. Moreover, there is evidence of a soft Coulomb gap ΔC in the disorder band, which implies the existence of a long-range CEEI. Simultaneously, there is an onsite CEEI manifested as a Hubbard gap U and originating in the electronic structure of doped polyaniline, which consists of localized electron states with dynamically varying occupancy. Therefore, our samples represent an Anderson-Mott insulator in which long-range and short-range CEEIs coexist. The main result of the study is the presence of a crossover between low- and high-T regimes not only in σ (T ) but also in χ (T ) , the crossover temperature T* being essentially the same for both observables over the entire doping range. The relatively large electron localization length along the polymer chains results in U being small, between 12 and 20 meV for the high and low Q , respectively. Therefore, the thermal energy at T* is sufficiently large to lead to an effective closing of the Hubbard gap and the consequent appearance of NNH in the electronic transport within the disorder band. ΔC is considerably larger than U , decreasing from 190 to 30 meV as Q increases, and plays the role of an activation energy in the NNH.

  18. Anderson localization of ballooning modes, quantum chaos and the stability of compact quasiaxially symmetric stellarators

    International Nuclear Information System (INIS)

    Redi, M.H.; Johnson, J.L.; Klasky, S.; Canik, J.; Dewar, R.L.; Cooper, W.A.

    2002-01-01

    The radially local magnetohydrodynamic (MHD) ballooning stability of a compact, quasiaxially symmetric stellarator (QAS), is examined just above the ballooning beta limit with a method that can lead to estimates of global stability. Here MHD stability is analyzed through the calculation and examination of the ballooning mode eigenvalue isosurfaces in the 3-space (s,α,θ k ); s is the edge normalized toroidal flux, α is the field line variable, and θ k is the perpendicular wave vector or ballooning parameter. Broken symmetry, i.e., deviations from axisymmetry, in the stellarator magnetic field geometry causes localization of the ballooning mode eigenfunction, and gives rise to new types of nonsymmetric eigenvalue isosurfaces in both the stable and unstable spectrum. For eigenvalues far above the marginal point, isosurfaces are topologically spherical, indicative of strong 'quantum chaos'. The complexity of QAS marginal isosurfaces suggests that finite Larmor radius stabilization estimates will be difficult and that fully three-dimensional, high-n MHD computations are required to predict the beta limit

  19. Electroluminescence from graphene excited by electron tunneling

    International Nuclear Information System (INIS)

    Beams, Ryan; Bharadwaj, Palash; Novotny, Lukas

    2014-01-01

    We use low-energy electron tunneling to excite electroluminescence in single layer graphene. Electrons are injected locally using a scanning tunneling microscope and the luminescence is analyzed using a wide-angle optical imaging system. The luminescence can be switched on and off by inverting the tip–sample bias voltage. The observed luminescence is explained in terms of a hot luminescence mechanism. (paper)

  20. Comment on "Many-body localization in Ising models with random long-range interactions"

    Science.gov (United States)

    Maksymov, Andrii O.; Rahman, Noah; Kapit, Eliot; Burin, Alexander L.

    2017-11-01

    This Comment is dedicated to the investigation of many-body localization in a quantum Ising model with long-range power-law interactions r-α, relevant for a variety of systems ranging from electrons in Anderson insulators to spin excitations in chains of cold atoms. It has earlier been argued [arXiv:cond-mat/0611387 (2005); Phys. Rev. B 91, 094202 (2015), 10.1103/PhysRevB.91.094202] that this model obeys the dimensional constraint suggesting the delocalization of all finite-temperature states in the thermodynamic limit for α ≤2 d in a d -dimensional system. This expectation conflicts with the recent numerical studies of the specific interacting spin model of Li et al. [Phys. Rev. A 94, 063625 (2016), 10.1103/PhysRevA.94.063625]. To resolve this controversy we reexamine the model of Li et al. [Phys. Rev. A 94, 063625 (2016), 10.1103/PhysRevA.94.063625] and demonstrate that the infinite-temperature states there obey the dimensional constraint. The earlier developed scaling theory for the critical system size required for delocalization is extended to small exponents 0 ≤α ≤d . The disagreements between the two works are explained by the nonstandard selection of investigated states in the ordered phase in the work of Li et al. [Phys. Rev. A 94, 063625 (2016)type="doi" specific-use="suppress-display">10.1103/PhysRevA.94.063625].

  1. The histological basis of late gadolinium enhancement cardiovascular magnetic resonance in a patient with Anderson-Fabry disease

    OpenAIRE

    Moon, J. C.; Sheppard, M.; Reed, E.; Lee, P.; Elliott, P. M.; Pennell, D. J.

    2006-01-01

    Anderson-Fabry Disease (AFD) is a storage disease that mimics hypertrophic cardiomyopathy. Late gadolinium enhancement (LGE) by cardiovascular magnetic resonance occurs in approximately 50% of patients in the basal inferolateral LV wall, but how an intracellular storage disease causes focal LGE is unknown. We present a whole-heart histological validation that LGE is caused by focal myocardial collagen scarring. This scarring may be the substrate for electrical re-entry and sudden arrhythmic d...

  2. Local magnitude scale for Valle Medio del Magdalena region, Colombia

    Science.gov (United States)

    Londoño, John Makario; Romero, Jaime A.

    2017-12-01

    A local Magnitude (ML) scale for Valle Medio del Magdalena (VMM) region was defined by using 514 high quality earthquakes located at VMM area and inversion of 2797 amplitude values of horizontal components of 17 stations seismic broad band stations, simulated in a Wood-Anderson seismograph. The derived local magnitude scale for VMM region was: ML =log(A) + 1.3744 ∗ log(r) + 0.0014776 ∗ r - 2.397 + S Where A is the zero-to-peak amplitude in nm in horizontal components, r is the hypocentral distance in km, and S is the station correction. Higher values of ML were obtained for VMM region compared with those obtained with the current formula used for ML determination, and with California formula. With this new scale ML values are adjusted to local conditions beneath VMM region leading to more realistic ML values. Moreover, with this new ML scale the seismicity caused by tectonic or fracking activity at VMM region can be monitored more accurately.

  3. Variable flip angle excitation for reduced acquisition time magnetic resonance imaging

    International Nuclear Information System (INIS)

    Mills, T.C.; Ortendahl, D.A.; Hylton, N.M.; Carlson, J.W.; Crooks, L.E.; Kaufman, L.

    1987-01-01

    This paper describes an MRI technique which can be used to acquire images at short TR values while maintaining the sensitivity to disease found in longer TR images. For spin echo imaging there are three acquisition parameters that can be set in the imaging protocol; TR, the repetition interval; TE, the time of echo and Θ, the excitation flip angle. Standard imaging techniques set Θ to 90 degrees regardless of the TR value. With Θ fixed, imaging systems have been optimized by varying the value for TE and TR with the results in general indicating the need for long TR values. However, if the flip angle is included as a variable acquisition parameter the optimal operating point can be changed. The solution to the Bloch equation shows a functional relationship between the flip angle and the ratio TR/T1. This functionality was first observed by Ernst and Anderson as a method to increase the signal generated in fourier transform magnetic resonance spectroscopy. When TR/T1<1 the optimum flip angle for producing maximum magnetization in the transverse plane is less then 90 degrees. Therefore, by reducing both TR and flip angle it is possible to maintain signal intensity while reducing the time of data acquisition

  4. Excitation of resonances of microspheres on an optical fiber

    Science.gov (United States)

    Serpengüzel, A.; Arnold, S.; Griffel, G.

    1995-04-01

    Morphology-dependent resonances (MDR's) of solid microspheres are excited by using an optical fiber coupler. The narrowest measured MDR linewidths are limited by the excitation laser linewidth ( < 0.025 nm). Only MDR's, with an on-resonance to off-resonance intensity ratio of 104, contribute to scattering. The intensity of various resonance orders is understood by the localization principle and the recently developed generalized Lorentz-Mie theory. The microsphere fiber system has potential for becoming a building block in dispersive microphotonics. The basic physics underlying our approach may be considered a harbinger for the coupling of active photonic microstructures such as microdisk lasers.

  5. Breatherlike excitations in discrete lattices with noise and nonlinear damping

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Gaididei, Yuri B.; Johansson, Magnus

    1997-01-01

    We discuss the stability of highly localized, ''breatherlike,'' excitations in discrete nonlinear lattices under the influence of thermal fluctuations. The particular model considered is the discrete nonlinear Schrodinger equation in the regime of high nonlinearity, where temperature effects...

  6. Development and Implementation of Biological Circuits Using Excitable and Non-Excitable Cells

    Energy Technology Data Exchange (ETDEWEB)

    Casasnovas-Orus, V.; Gomez-Cid, L.; Hernandez-Romero, I.; Fuentes, L.; Guillem, M.S.; Atienza, F.; Fernandez-Aviles, F.; Climent, A.M.

    2016-07-01

    Compared to conventional computation systems, living beings require reduced power and raw materials consumption, inviting to explore the concept of biological circuits. In this project, a proof-of-concept of logical biocircuits using cell patterns has been developed. These were based upon differential ionic communication between cells, being the cells types used excitable and non-excitable, modeled by cardiomyocytes and fibroblasts correspondingly. To begin, patterns for the basic logic computation blocks were designed, including the OR gate, AND gate and logic memory. The designs were evaluated with mathematical models and in vitro experiments. Results of mathematical modeling indicated that theoretical approval of the biocircuit function. Regarding in vitro biocircuit implementation, three different selective cell localization techniques proved useful for the pattern creation. Evaluation with optical mapping confirmed the operation of the OR gate and logic memory. More resolution in the cell placement strategy will be needed to observe the proper AND gate operation. Thus, fine-tuning of the implementation process will enable the construction of more complex biocircuits that will take on clinical applications relating to electric stimulation of tissues and programmed drug delivery. (Author)

  7. Luminescence and excited state dynamics in Bi3+-doped LiLaP4O12 phosphates

    International Nuclear Information System (INIS)

    Babin, V.; Chernenko, K.; Demchenko, P.; Mihokova, E.; Nikl, M.; Pashuk, I.; Shalapska, T.; Voloshinovskii, A.; Zazubovich, S.

    2016-01-01

    Photo- and X-ray-excited luminescence characteristics of Bi-doped LiLaP 4 O 12 phosphates with different bismuth contents (from 1 to 25 at% in the melt) are investigated in the 4.2–300 K temperature range and compared with the characteristics of the undoped LiLaP 4 O 12 phosphate. The broad 2.95 eV emission band of LiLaP 4 O 12 :Bi excited around 5.4 eV is found to arise from the bismuth dopant. Relatively large FWHM and Stokes shift of the emission band and especially the data on the low-temperature decay kinetics of the 2.95 eV emission and its temperature dependence, indicating a very small spin-orbit splitting energy of the corresponding excited state, allow the conclusion that this emission arises from the radiative decay of the triplet state of an exciton localized around a Bi 3+ ion. No spectral bands are observed, arising from the electron transitions between the energy levels of Bi 3+ ions. Phenomenological model is proposed for the description of the excited state dynamics of the Bi 3+ -related localized exciton in LiLaP 4 O 12 :Bi and the parameters of the triplet localized exciton state are determined. Keywords: Photoluminescence; Time-resolved spectroscopy; Excited states; Bi 3+ centers; LiLaP 4 O 12 :Bi powders

  8. Phonon response of some heavy Fermion systems in dynamic limit

    Science.gov (United States)

    Sahoo, Jitendra; Shadangi, Namita; Nayak, Pratibindhya

    2017-05-01

    The phonon excitation spectrum of some Heavy Fermion (HF) systems in the presence of electron-phonon interaction is studied in the dynamic limit (ω≠0). The renormalized excitation phonon frequencies (ω˜ = ω/ω0) are evaluated through Periodic Anderson Model (PAM) in the presence of electron-phonon interaction using Zubarev-type double time temperature-dependent Green function. The calculated renormalized phonon energy is analyzed through the plots of (ω˜ = ω/ω0) against temperature for different system parameters like effective coupling strength ‘g’ and the position of f-level ‘d’. The observed behavior is analyzed and found to agree with the general features of HF systems found in experiments. Further, it is observed that in finite but small q-values the propagating phonons harden and change to localized peaks.

  9. Theory of the Anderson impurity model: The Schrieffer endash Wolff transformation reexamined

    International Nuclear Information System (INIS)

    Kehrein, S.K.; Mielke, A.

    1996-01-01

    We test the method of infinitesimal unitary transformations recently introduced by Wegner on the Anderson single impurity model. It is demonstrated that infinitesimal unitary transformations in contrast to the Schrieffer endash Wolff transformation allow the construction of an effective Kondo Hamiltonian consistent with the established results in this well understood model. The main reason for this is the intrinsic energy scale separation of Wegner close-quote s approach with respect to arbitrary energy differences coupled by matrix elements. This allows the construction of an effective Hamiltonian without facing a vanishing energy denominator problem. Similar energy denominator problems are troublesome in many models. Infinitesimal unitary transformations have the potential to provide a general framework for the systematic derivation of effective Hamiltonians without such problems. Copyright copyright 1996 Academic Press, Inc

  10. Quantum criticality and first-order transitions in the extended periodic Anderson model

    Science.gov (United States)

    Hagymási, I.; Itai, K.; Sólyom, J.

    2013-03-01

    We investigate the behavior of the periodic Anderson model in the presence of d-f Coulomb interaction (Udf) using mean-field theory, variational calculation, and exact diagonalization of finite chains. The variational approach based on the Gutzwiller trial wave function gives a critical value of Udf and two quantum critical points (QCPs), where the valence susceptibility diverges. We derive the critical exponent for the valence susceptibility and investigate how the position of the QCP depends on the other parameters of the Hamiltonian. For larger values of Udf, the Kondo regime is bounded by two first-order transitions. These first-order transitions merge into a triple point at a certain value of Udf. For even larger Udf valence skipping occurs. Although the other methods do not give a critical point, they support this scenario.

  11. The density of states for the Bi-dimensional Anderson model in the presence of a magnetic field with quantum plaque flux

    International Nuclear Information System (INIS)

    Kuehl, N.M.

    1987-01-01

    The regularity properties of the integrated density of states and the state density of the Anderson bidimensional tight-binding model, in the presence of a uniform magnetic field, perpendicular to the plane of the system by means of quantum flux with plaques, are studied. (A.C.A.S.) [pt

  12. A ballistic transport model for electronic excitation following particle impact

    Science.gov (United States)

    Hanke, S.; Heuser, C.; Weidtmann, B.; Wucher, A.

    2018-01-01

    We present a ballistic model for the transport of electronic excitation energy induced by keV particle bombardment onto a solid surface. Starting from a free electron gas model, the Boltzmann transport equation (BTE) is employed to follow the evolution of the temporal and spatial distribution function f (r → , k → , t) describing the occupation probability of an electronic state k → at position r → and time t. Three different initializations of the distribution function are considered: i) a thermal distribution function with a locally and temporally elevated electron temperature, ii) a peak excitation at a specific energy above the Fermi level with a quasi-isotropic distribution in k-space and iii) an anisotropic peak excitation with k-vectors oriented in a specific transport direction. While the first initialization resembles a distribution function which may, for instance, result from electronic friction of moving atoms within an ion induced collision cascade, the peak excitation can in principle result from an autoionization process after excitation in close binary collisions. By numerically solving the BTE, we study the electronic energy exchange along a one dimensional transport direction to obtain a time and space resolved excitation energy distribution function, which is then analyzed in view of general transport characteristics of the chosen model system.

  13. Ionic wave propagation and collision in an excitable circuit model of microtubules

    Science.gov (United States)

    Guemkam Ghomsi, P.; Tameh Berinyoh, J. T.; Moukam Kakmeni, F. M.

    2018-02-01

    In this paper, we report the propensity to excitability of the internal structure of cellular microtubules, modelled as a relatively large one-dimensional spatial array of electrical units with nonlinear resistive features. We propose a model mimicking the dynamics of a large set of such intracellular dynamical entities as an excitable medium. We show that the behavior of such lattices can be described by a complex Ginzburg-Landau equation, which admits several wave solutions, including the plane waves paradigm. A stability analysis of the plane waves solutions of our dynamical system is conducted both analytically and numerically. It is observed that perturbed plane waves will always evolve toward promoting the generation of localized periodic waves trains. These modes include both stationary and travelling spatial excitations. They encompass, on one hand, localized structures such as solitary waves embracing bright solitons, dark solitons, and bisolitonic impulses with head-on collisions phenomena, and on the other hand, the appearance of both spatially homogeneous and spatially inhomogeneous stationary patterns. This ability exhibited by our array of proteinic elements to display several states of excitability exposes their stunning biological and physical complexity and is of high relevance in the description of the developmental and informative processes occurring on the subcellular scale.

  14. Parasitic excitation of ion Bernstein waves from a Faraday shielded fast wave loop antenna

    International Nuclear Information System (INIS)

    Skiff, F.; Ono, M.; Colestock, P.; Wong, K.L.

    1984-12-01

    Parasitic excitation of ion Bernstein waves is observed from a Faraday shielded fast wave loop antenna in the ion cyclotron frequency range. Local analysis of the Vlasov-Maxwell equations demonstrates the role of plasma density gradient in the coupling process. The effects of plasma density and of parallel wave number on the excitation process are investigated

  15. Categorical QSAR models for skin sensitization based on local lymph node assay measures and both ground and excited state 4D-fingerprint descriptors

    Science.gov (United States)

    Liu, Jianzhong; Kern, Petra S.; Gerberick, G. Frank; Santos-Filho, Osvaldo A.; Esposito, Emilio X.; Hopfinger, Anton J.; Tseng, Yufeng J.

    2008-06-01

    In previous studies we have developed categorical QSAR models for predicting skin-sensitization potency based on 4D-fingerprint (4D-FP) descriptors and in vivo murine local lymph node assay (LLNA) measures. Only 4D-FP derived from the ground state (GMAX) structures of the molecules were used to build the QSAR models. In this study we have generated 4D-FP descriptors from the first excited state (EMAX) structures of the molecules. The GMAX, EMAX and the combined ground and excited state 4D-FP descriptors (GEMAX) were employed in building categorical QSAR models. Logistic regression (LR) and partial least square coupled logistic regression (PLS-CLR), found to be effective model building for the LLNA skin-sensitization measures in our previous studies, were used again in this study. This also permitted comparison of the prior ground state models to those involving first excited state 4D-FP descriptors. Three types of categorical QSAR models were constructed for each of the GMAX, EMAX and GEMAX datasets: a binary model (2-state), an ordinal model (3-state) and a binary-binary model (two-2-state). No significant differences exist among the LR 2-state model constructed for each of the three datasets. However, the PLS-CLR 3-state and 2-state models based on the EMAX and GEMAX datasets have higher predictivity than those constructed using only the GMAX dataset. These EMAX and GMAX categorical models are also more significant and predictive than corresponding models built in our previous QSAR studies of LLNA skin-sensitization measures.

  16. Analysis of progressive distorsion. Validation of the method based on effective primary stress. Discussion of Anderson's experimental data

    International Nuclear Information System (INIS)

    Moulin, Didier.

    1981-02-01

    An empirical rule usable for design by analysis against progressive distorsion has been set up from experiments conducted in C.E.N. Saclay. This rule is checked with experimental data obtained by W.F. ANDERSON, this experiment is sufficiently different from the Saclay one to evaluate the merits of the rule. The satisfactory results achieved, are another validation of the efficiency diagram on which the method is based [fr

  17. Multi-frequency excitation

    KAUST Repository

    Younis, Mohammad I.

    2016-03-10

    Embodiments of multi-frequency excitation are described. In various embodiments, a natural frequency of a device may be determined. In turn, a first voltage amplitude and first fixed frequency of a first source of excitation can be selected for the device based on the natural frequency. Additionally, a second voltage amplitude of a second source of excitation can be selected for the device, and the first and second sources of excitation can be applied to the device. After applying the first and second sources of excitation, a frequency of the second source of excitation can be swept. Using the methods of multi- frequency excitation described herein, new operating frequencies, operating frequency ranges, resonance frequencies, resonance frequency ranges, and/or resonance responses can be achieved for devices and systems.

  18. GABAergic modulation of DC stimulation-induced motor cortex excitability shifts in humans.

    Science.gov (United States)

    Nitsche, Michael A; Liebetanz, David; Schlitterlau, Anett; Henschke, Undine; Fricke, Kristina; Frommann, Kai; Lang, Nicolas; Henning, Stefan; Paulus, Walter; Tergau, Frithjof

    2004-05-01

    Weak transcranial DC stimulation (tDCS) of the human motor cortex results in excitability shifts during and after the end of stimulation, which are most probably localized intracortically. Anodal stimulation enhances excitability, whereas cathodal stimulation reduces it. Although the after-effects of tDCS are NMDA receptor-dependent, nothing is known about the involvement of additional receptors. Here we show that pharmacological strengthening of GABAergic inhibition modulates selectively the after-effects elicited by anodal tDCS. Administration of the GABA(A) receptor agonist lorazepam resulted in a delayed, but then enhanced and prolonged anodal tDCS-induced excitability elevation. The initial absence of an excitability enhancement under lorazepam is most probably caused by a loss of the anodal tDCS-generated intracortical diminution of inhibition and enhancement of facilitation, which occurs without pharmacological intervention. The reasons for the late-occurring excitability enhancement remain unclear. Because intracortical inhibition and facilitation are not changed in this phase compared with pre-tDCS values, excitability changes originating from remote cortical or subcortical areas could be involved.

  19. Quantifying the intrinsic amount of fabrication disorder in photonic-crystal waveguides from optical far-field intensity measurements

    DEFF Research Database (Denmark)

    Garcia-Fernandez, Pedro David; Javadi, Alisa; Nielsen, Henri Thyrrestrup

    2013-01-01

    Residual disorder due to fabrication imperfections has important impact in nanophotonics where it may degrade device performance by increasing radiation loss or spontaneously trap light by Anderson localization. We propose and demonstrate experimentally a method of quantifying the intrinsic amount...... of disorder in state-of-the-art photonic-crystal waveguides from far-field measurements of the Anderson-localized modes. This is achieved by comparing the spectral range where Anderson localization is observed to numerical simulations, and the method offers sensitivity down to 1nm....

  20. Spontaneous emission of quantum dots in disordered photonic crystal waveguides

    DEFF Research Database (Denmark)

    Sapienza, Luca; Nielsen, Henri Thyrrestrup; Stobbe, Søren

    2010-01-01

    We report on the enhancement of the spontaneous emission rate of single semiconductor quantum dots embedded in a photonic crystal waveguide with engineered disorder. Random high-Q cavities, that are signature of Anderson localization, are measured in photoluminescence experiments and appear...... in the slow light regime of the waveguide mode. Time resolved experiments show a 15-fold enhancement of the spontaneous emission rate, with coupling efficiencies of single photons into Anderson localized cavity modes of 94%. These results show that the performances of Anderson-localized cavities...

  1. Disorder-induced localization in crystalline phase-change materials.

    Science.gov (United States)

    Siegrist, T; Jost, P; Volker, H; Woda, M; Merkelbach, P; Schlockermann, C; Wuttig, M

    2011-03-01

    Localization of charge carriers in crystalline solids has been the subject of numerous investigations over more than half a century. Materials that show a metal-insulator transition without a structural change are therefore of interest. Mechanisms leading to metal-insulator transition include electron correlation (Mott transition) or disorder (Anderson localization), but a clear distinction is difficult. Here we report on a metal-insulator transition on increasing annealing temperature for a group of crystalline phase-change materials, where the metal-insulator transition is due to strong disorder usually associated only with amorphous solids. With pronounced disorder but weak electron correlation, these phase-change materials form an unparalleled quantum state of matter. Their universal electronic behaviour seems to be at the origin of the remarkable reproducibility of the resistance switching that is crucial to their applications in non-volatile-memory devices. Controlling the degree of disorder in crystalline phase-change materials might enable multilevel resistance states in upcoming storage devices.

  2. Hilar mossy cell circuitry controlling dentate granule cell excitability

    Directory of Open Access Journals (Sweden)

    Seiichiro eJinde

    2013-02-01

    Full Text Available Glutamatergic hilar mossy cells of the dentate gyrus can either excite or inhibit distant granule cells, depending on whether their direct excitatory projections to granule cells or their projections to local inhibitory interneurons dominate. However, it remains controversial whether the net effect of mossy cell loss is granule cell excitation or inhibition. Clarifying this controversy has particular relevance to temporal lobe epilepsy, which is marked by dentate granule cell hyperexcitability and extensive loss of dentate hilar mossy cells. Two diametrically opposed hypotheses have been advanced to explain this granule cell hyperexcitability – the dormant basket cell and the irritable mossy cell hypotheses. The dormant basket cell hypothesis proposes that mossy cells normally exert a net inhibitory effect on granule cells and therefore their loss causes dentate granule cell hyperexcitability. The irritable mossy cell hypothesis takes the opposite view that mossy cells normally excite granule cells and that the surviving mossy cells in epilepsy increase their activity, causing granule cell excitation. The inability to eliminate mossy cells selectively has made it difficult to test these two opposing hypotheses. To this end, we developed a transgenic toxin-mediated, mossy cell-ablation mouse line. Using these mutants, we demonstrated that the extensive elimination of hilar mossy cells causes granule cell hyperexcitability, although the mossy cell loss observed appeared insufficient to cause clinical epilepsy. In this review, we focus on this topic and also suggest that different interneuron populations may mediate mossy cell-induced translamellar lateral inhibition and intralamellar recurrent inhibition. These unique local circuits in the dentate hilar region may be centrally involved in the functional organization of the dentate gyrus.

  3. Nailing the coffin shut on doubts that violent video games stimulate aggression: comment on Anderson et al. (2010).

    Science.gov (United States)

    Huesmann, L Rowell

    2010-03-01

    Over the past half century the mass media, including video games, have become important socializers of children. Observational learning theory has evolved into social-cognitive information processing models that explain that what a child observes in any venue has both short-term and long-term influences on the child's behaviors and cognitions. C. A. Anderson et al.'s (2010) extensive meta-analysis of the effects of violent video games confirms what these theories predict and what prior research about other violent mass media has found: that violent video games stimulate aggression in the players in the short run and increase the risk for aggressive behaviors by the players later in life. The effects occur for males and females and for children growing up in Eastern or Western cultures. The effects are strongest for the best studies. Contrary to some critics' assertions, the meta-analysis of C. A. Anderson et al. is methodologically sound and comprehensive. Yet the results of meta-analyses are unlikely to change the critics' views or the public's perception that the issue is undecided because some studies have yielded null effects, because many people are concerned that the implications of the research threaten freedom of expression, and because many people have their identities or self-interests closely tied to violent video games.

  4. Development of the M. D. Anderson Cancer Center Gynecologic Applicators for the Treatment of Cervical Cancer: Historical Analysis

    International Nuclear Information System (INIS)

    Yordy, John S.; Almond, Peter R.; Delclos, Luis

    2012-01-01

    Purpose: To provide historical background on the development and initial studies of the gynecological (gyn) applicators developed by Dr. Gilbert H. Fletcher, a radiation oncologist and chairperson from 1948 to 1981 of the department at the M.D. Anderson Hospital (MDAH) for Cancer Research in Houston, TX, and to acknowledge the previously unrecognized contribution that Dr. Leonard G. Grimmett, a radiation physicist and chairperson from 1949 to 1951 of the physics department at MDAH, made to the development of the gynecological applicators. Methods and Materials: We reviewed archival materials from the Historical Resource Center and from the Department of Radiation Physics at University of Texas M. D. Anderson Cancer Center, as well as contemporary published papers, to trace the history of the applicators. Conclusions: Dr. Fletcher’s work was influenced by the work on gynecologic applicators in the 1940s in Europe, especially work done at the Royal Cancer Hospital in London. Those efforts influenced not only Dr. Fletcher’s approach to the design of the applicators but also the methods used to perform in vivo measurements and determine the dose distribution. Much of the initial development of the dosimetry techniques and measurements at MDAH were carried out by Dr. Grimmett.

  5. Fluorescent molecular probes based on excited state prototropism in lipid bilayer membrane

    Science.gov (United States)

    Mohapatra, Monalisa; Mishra, Ashok K.

    2012-03-01

    Excited state prototropism (ESPT) is observed in molecules having one or more ionizable protons, whose proton transfer efficiency is different in ground and excited states. The interaction of various ESPT molecules like naphthols and intramolecular ESPT (ESIPT) molecules like hydroxyflavones etc. with different microheterogeneous media have been studied in detail and excited state prototropism as a probe concept has been gaining ground. The fluorescence of different prototropic forms of such molecules, on partitioning to an organized medium like lipid bilayer membrane, often show sensitive response to the local environment with respect to the local structure, physical properties and dynamics. Our recent work using 1-naphthol as an ESPT fluorescent molecular probe has shown that the incorporation of monomeric bile salt molecules into lipid bilayer membranes composed from dipalmitoylphosphatidylcholine (DPPC, a lung surfactant) and dimyristoylphosphatidylcholine (DMPC), in solid gel and liquid crystalline phases, induce appreciable wetting of the bilayer up to the hydrocarbon core region, even at very low (fisetin, an ESIPT molecule having antioxidant properties, in lipid bilayer membrane has been sensitively monitored from its intrinsic fluorescence behaviour.

  6. EPR investigation of electronic excitations in rare gas solids (Review Article)

    Science.gov (United States)

    Zhitnikov, R. A.; Dmitriev, Yu. A.

    1998-10-01

    The methods are described for producing unstable paramagnetic excited states in rare gas cryocrystals Ne, Ar, Kr, and Xe through the trapping, in the cryocrystals growing from the gas phase, the products of the gas discharge taking place in the same or other rare gas. The paper presents a technique and results of an observation and investigation of excited states in rare gas cryocrystals with electron paramagnetic resonance (EPR). The discovered unstable paramagnetic centers are interpreted as being local metastable excited np5(n+1)s atomic-type states in rare gas cryocrystals which are subject to the action of the anisotropic electric field resulted from the crystal surroundings distorted by the center. An account is given of the mechanisms for formation of observed paramagnetic excited states in cryocrystals which arise owing to the excitation energy of the metastable 3P2 atoms of Ne, Ar, Kr, Xe and He 23S1 and 21S0 atoms that form in the discharge in an appropriate gas and trap in the growing cryocrystal.

  7. Core excitation and de-excitation spectroscopies of free atoms and molecules

    International Nuclear Information System (INIS)

    Ueda, Kiyoshi

    2006-01-01

    This article provides a review of the current status of core excitation and de-excitation spectroscopy studies of free atoms molecules using a high-resolution soft X-ray monochromator and a high-resolution electron energy analyzer, installed in the soft X-ray photochemistry beam line at SPring-8. Experimental results are discussed for 1s excitation of Ne, O 1s excitation of CO and H 2 O, and F 1s excitation of CF 4 . (author)

  8. Local magnitude, duration magnitude and seismic moment of Dahshour 1992 earthquakes

    Directory of Open Access Journals (Sweden)

    M. F. Abdelwahed

    2000-06-01

    Full Text Available Local magnitudes ML have been calculated for 56 earthquakes of the Dahshour 1992 sequence using simulated records of the KEG broadband station and the estimated calibration function of the Dahshour area. These were compared with their corresponding values of duration magnitudes obtained from the analog short period seismograms of the HLW station. The local magnitudes M L and the duration magnitudes M D for this region imply a linear relation as follows: M L = 1.2988 (± 0.04 M D – 0.9032 (± 0.14. Seismic moment has also been estimated for these events using simple measurements from the time domain records. These measurements based on the simulated Wood Anderson seismograms are used for the local magnitude (ML estimation. The derived relationship between seismic moment (M 0 and magnitude (M L is: log (M 0 = 0.954 (± 0.019 M L + 17.258 (± 0.075.

  9. Adaptive and self-averaging Thouless-Anderson-Palmer mean-field theory for probabilistic modeling

    DEFF Research Database (Denmark)

    Opper, Manfred; Winther, Ole

    2001-01-01

    We develop a generalization of the Thouless-Anderson-Palmer (TAP) mean-field approach of disorder physics. which makes the method applicable to the computation of approximate averages in probabilistic models for real data. In contrast to the conventional TAP approach, where the knowledge...... of the distribution of couplings between the random variables is required, our method adapts to the concrete set of couplings. We show the significance of the approach in two ways: Our approach reproduces replica symmetric results for a wide class of toy models (assuming a nonglassy phase) with given disorder...... distributions in the thermodynamic limit. On the other hand, simulations on a real data model demonstrate that the method achieves more accurate predictions as compared to conventional TAP approaches....

  10. Position-dependent radiative transfer as a tool for studying Anderson localization: Delay time, time-reversal and coherent backscattering

    Science.gov (United States)

    van Tiggelen, B. A.; Skipetrov, S. E.; Page, J. H.

    2017-05-01

    Previous work has established that the localized regime of wave transport in open media is characterized by a position-dependent diffusion coefficient. In this work we study how the concept of position-dependent diffusion affects the delay time, the transverse confinement, the coherent backscattering, and the time reversal of waves. Definitions of energy transport velocity of localized waves are proposed. We start with a phenomenological model of radiative transfer and then present a novel perturbational approach based on the self-consistent theory of localization. The latter allows us to obtain results relevant for realistic experiments in disordered quasi-1D wave guides and 3D slabs.

  11. Nonadiabatic excited-state molecular dynamics: On-the-fly limiting of essential excited states

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Tammie [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Naumov, Artem [Skolkovo Institute of Science and Technology, Moscow 143026 (Russian Federation); Fernandez-Alberti, Sebastian [Universidad Nacional de Quilmes, Roque Saenz Pea 352, B1876BXD Bernal (Argentina); Tretiak, Sergei, E-mail: serg@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2016-12-20

    The simulation of nonadiabatic dynamics in extended molecular systems involving hundreds of atoms and large densities of states is particularly challenging. Nonadiabatic coupling terms (NACTs) represent a significant numerical bottleneck in surface hopping approaches. Rather than using unreliable NACT cutting schemes, here we develop “on-the-fly” state limiting methods to eliminate states that are no longer essential for the non-radiative relaxation dynamics as a trajectory proceeds. We propose a state number criteria and an energy-based state limit. The latter is more physically relevant by requiring a user-imposed energy threshold. For this purpose, we introduce a local kinetic energy gauge by summing contributions from atoms within the spatial localization of the electronic wavefunction to define the energy available for upward hops. The proposed state limiting schemes are implemented within the nonadiabatic excited-state molecular dynamics framework to simulate photoinduced relaxation in poly-phenylene vinylene (PPV) and branched poly-phenylene ethynylene (PPE) oligomers for benchmark evaluation.

  12. Relative excitation functions for singly-excited and core-excited levels of S V--S IX populated by the beam-foil interaction

    International Nuclear Information System (INIS)

    Moenke, D.; Bengtsson, P.; Engstroem, L.; Hutton, R.; Jupen, C.; Kirm, M.; Westerlind, M.

    1994-01-01

    We have investigated the relative excitation functions for low-lying singly excited and low-lying core-excited levels in S V (S 4+ ) to S IX (S 8+ ) after beam-foil excitation using ions in the energy range 2--10 MeV. The spectral line intensities have been normalized to the same number of particles at each ion energy and corrections for the level lifetimes have been made. The overall accuracy of the measured relative excitation function at each energy and charge state is estimated to be better than 2%. A comparison of the relative excitation functions for singly excited and core-excited lines shows a difference in S VII, but not in S VI

  13. Effects of doping on spin correlations in the periodic Anderson model

    International Nuclear Information System (INIS)

    Bonca, J.; Gubernatis, J.E.

    1998-01-01

    We studied the effects of hole doping on spin correlations in the two-dimensional periodic Anderson model, mainly at the full and three-quarters-full lower bands cases. In the full lower band case, strong antiferromagnetic correlations develop when the on-site repulsive interaction strength U becomes comparable to the quasiparticle bandwidth. In the three-quarters full case, a kind of spin correlation develops that is consistent with the resonance between a (π,0) and a (0,π) spin-density wave. In this state the spins on different sublattices appear uncorrelated. Hole doping away from the completely full case rapidly destroys the long-range antiferromagnetic correlations, in a manner reminiscent of the destruction of antiferromagnetism in the Hubbard model. In contrast to the Hubbard model, the doping does not shift the peak in the magnetic structure factor from the (π,π) position. At dopings intermediate to the full and three-quarters full cases, only weak spin correlations exist. copyright 1998 The American Physical Society

  14. Orbital dynamics of the Anderson--Brinkman--Morel phase of superfluid 3He

    International Nuclear Information System (INIS)

    Cross, M.C.

    1977-01-01

    The orbital dynamics of the Anderson--Brinkman--Morel (ABM) phase of helium 3 is studied in both the hydrodynamic and collisionless limits. The complete equations for the orbital motion in the hydrodynamic limit are written down and the important parameters are evaluated by simple arguments. In the collisionless limit the matrix kinetic equation, not including the dipole interaction or Fermi liquid corrections, is inverted exactly to give a form that explicitly displays the various collective modes possible. The existence of an intrinsic orbital angular momentum density of order rho/sub s/h (T/sub c//E/sub f/) 2 and the ''moment of intertia'' term suggested by Leggett and Takagi is confirmed, and a physical understanding of their origin is given. However, in both collisionless and hydrodynamic limits the interaction with the normal fluid dominates the motion except very near zero temperature

  15. Photo-induced-heat localization on nanostructured metallic glasses

    Science.gov (United States)

    Uzun, Ceren; Kahler, Niloofar; Grave de Peralta, Luis; Kumar, Golden; Bernussi, Ayrton A.

    2017-09-01

    Materials with large photo-thermal energy conversion efficiency are essential for renewable energy applications. Photo-excitation is an effective approach to generate controlled and localized heat at relatively low excitation optical powers. However, lateral heat diffusion to the surrounding illuminated areas accompanied by low photo-thermal energy conversion efficiency remains a challenge for metallic surfaces. Surface nanoengineering has proven to be a successful approach to further absorption and heat generation. Here, we show that pronounced spatial heat localization and high temperatures can be achieved with arrays of amorphous metallic glass nanorods under infrared optical illumination. Thermography measurements revealed marked temperature contrast between illuminated and non-illuminated areas even under low optical power excitation conditions. This attribute allowed for generating legible photo-induced thermal patterns on textured metallic glass surfaces.

  16. Clinical use of the combined Sclarovsky Birnbaum Severity and Anderson Wilkins Acuteness scores from the pre-hospital ECG in ST-segment elevation myocardial infarction

    DEFF Research Database (Denmark)

    Fakhri, Yama; Schoos, Mikkel M; Clemmensen, Peter

    2014-01-01

    This review summarizes the electrocardiographic changes during an evolving ST segment elevation myocardial infarction and discusses associated electrocardiographic scores and the potential use of these indices in clinical practice, in particular the ECG scores developed by Anderson and Wilkins...

  17. Fermi liquid and non-Fermi liquid in M-channel N fold degenerate anderson lattice

    International Nuclear Information System (INIS)

    Tsuruta, Atsushi; Ono, Yoshiaki; Matsuura, Tamifusa; Kuroda, Yoshihiro; Kobayashi, Akito; Deguchi, Ken

    1999-01-01

    We investigate Fermi liquid in the single-channel U-infinite N fold degenerate Anderson lattice with use of the expansion from the large limit of the spin-orbital degeneracy N. By collecting all diagrams up to O(N -2 ) of the imaginary part of the self-energy of the conduction electrons, the sum of those is shown to be given by a form proportional to ω 2 + π 2 T 2 up to O(N -2 ) in the single-channel model. On the other hand, the imaginary part of the self-energy of O(N -1 ) in the multichannel model has more singular frequency-/temperature-dependence, so the system is regarded as non-Fermi liquid. (author)

  18. Selective excitation of the yellow and blue luminescence in n- and p-doped Gallium Nitride

    International Nuclear Information System (INIS)

    Colton, John S.

    2000-01-01

    GaN is an interesting material: technologically very useful, but still having many unexplained features. Two such features are the broad defect-related luminescence bands: the YL of n-type GaN and the BL of Mg-doped p-type GaN. We have employed selective excitation to investigate these bands. In the case of the YL, most of the previous evidence has supported a recombination model between distant donors and acceptors, most likely a transition involving a shallow donor to a deep acceptor. Our selective excitation experiments have resolved finer structures within the YL. Our results indicate that the YL in bulk samples is related to the YL in film samples. We suggest that selectively excited YL involves recombination at DAP complexes, rather than between spatially distant DAPs (however other recombination channels, including that of distant DAPs may become significant under other excitation conditions). Characteristics of the DAP complexes within our YL model include (a) an electron localization energy of around 60-70 meV, (b) a localized phonon energy of around 40 meV, and (c) excited states of the complex at 200 and 370 meV above the ground state. In the case of the BL, the deep defect responsible for the BL is unknown, and there may not even be a deep defect involved. Also in dispute is the role of potential fluctuations in the properties of the BL. Our results have been explain in a model whereby emission is from DAPs, and significant effects are produced by doping-related potential fluctuations and disorder. Characteristics of the our model for the BL include (a) an Urbach tail, having width E 0 = 33 meV, (b) a strong electron-LO phonon coupling occurring with a Frank-Condon shift of ∼ 180 meV between excitation and emission, (c) a mobility gap at 2.8 eV, separating highly mobile states and highly localized states, and (d) PL-like behavior for excitation energies larger than 2.8 eV, having a blue-shift with increasing excitation energy caused by the increased

  19. Fast Magnetosonic Waves Observed by Van Allen Probes: Testing Local Wave Excitation Mechanism

    Science.gov (United States)

    Min, Kyungguk; Liu, Kaijun; Wang, Xueyi; Chen, Lunjin; Denton, Richard E.

    2018-01-01

    Linear Vlasov theory and particle-in-cell (PIC) simulations for electromagnetic fluctuations in a homogeneous, magnetized, and collisionless plasma are used to investigate a fast magnetosonic wave event observed by the Van Allen Probes. The fluctuating magnetic field observed exhibits a series of spectral peaks at harmonics of the proton cyclotron frequency Ωp and has a dominant compressional component, which can be classified as fast magnetosonic waves. Furthermore, the simultaneously observed proton phase space density exhibits positive slopes in the perpendicular velocity space, ∂fp/∂v⊥>0, which can be a source for these waves. Linear theory analyses and PIC simulations use plasma and field parameters measured in situ except that the modeled proton distribution is modified to have larger ∂fp/∂v⊥ under the assumption that the observed distribution corresponds to a marginally stable state when the distribution has already been scattered by the excited waves. The results show that the positive slope is the source of the proton cyclotron harmonic waves at propagation quasi-perpendicular to the background magnetic field, and as a result of interactions with the excited waves the evolving proton distribution progresses approximately toward the observed distribution.

  20. Soil structure interaction analysis of buried tank subjected to vertical excitations

    International Nuclear Information System (INIS)

    Wong, C.K.; Stine, M.; Wagenblast, G.; Farnworth, S.

    1995-09-01

    Underground High Level Waste Storage Tanks are subjected to strigent seismic requirements At some DOE sites, many existing waste storage tanks are of the double-shell tank design. In this configuration, the concrete outer structure acts as the vault and provides secondary confinement for the primary steel waste storage tank. To ensure the safety of the design and a good understanding of the seismic response of the concrete confinement structure, seismic analysis, including the effects of Soil-Structure Interaction (SSI), is generally performed with special purpose SSI computer analysis programs. Generally, the seismic SSI response due to vertical excitation is considered to be secondary to those of the horizontal excitation. In this paper, a detailed evaluation of the SSI response due to vertical excitation is presented and is shown to merit equal consideration relative to the horizontal excitation. The geometry and relative dimensions (i.e. flexibility) of the structure can have significant influence on the vertical seismic SSI response in local region(s) of the concrete structure

  1. Local magnetic properties of multiferroic Nd0.5Gd0.5Fe3(BO3)4 in the excited states of Nd3+ ion

    International Nuclear Information System (INIS)

    Malakhovskii, A.V.; Gnatchenko, S.L.; Kachur, I.S.; Piryatinskaya, V.G.; Sukhachev, A.L.; Temerov, V.L.

    2015-01-01

    Polarized absorption spectra of single-crystal Nd 0.5 Gd 0.5 Fe 3 (BO 3 ) 4 were studied in the region of the transition 4 I 9/2 →( 4 G 5/2 + 2 G 7/2 ) in Nd 3+ ion as a function of temperature (2–34 K) and magnetic field (0–65 kOe). The spectra of natural circular dichroism were measured in the range of 5–40 K. It was found out that the local magnetic properties in the vicinity of the excited ion substantially depended on its state. In particular, a weak ferromagnetic moment appears in some excited states. It was found out that the selection rules for electron transitions in the magnetically ordered state substantially deviated from those in the paramagnetic state of the crystal. They are different for different transitions and they are very sensitive to the orientation of the sublattice magnetic moment relative to the light polarization. In the spectrum of the natural circular dichroism, the transition is revealed which is not observed in the absorption spectrum. - Highlights: • Temperature and field dependences of f-f transitions in Nd 0.5 Gd 0.5 Fe 3 (BO 3 ) 4 . • Natural circular dichroism in Nd 0.5 Gd 0.5 Fe 3 (BO 3 ) 4 below T N . • Weak ferromagnetic moment was identified in some excited 4f states. • Selection rules for f-f transitions substantially change below T N . • Intensities of f-f transitions strongly depend on magnetic moment orientation

  2. Dynamics of the edge excitations in the FQH effects

    International Nuclear Information System (INIS)

    Wen, X.G.

    1994-01-01

    Fractional quantum Hall effects (FQHE) discovered by Tsui, Stormer and Gossard open a new era in theory of strongly correlated system. In the first time the authors have to completely abandon the theories based on the single-body picture and use an intrinsic many-body theory proposed by Laughlin and others to describe the FQHE. Due to the repulsive interaction, the strongly correlated FQH liquid is an incompressible state despite the first Landau level is only partially filled. All the bulk excitations in the FQH states have finite energy gaps. The FQH states and insulators are similar in the sense that both states have finite energy gap and short ranged electron propagators. Because of this similarity, it is puzzling that the FQH systems apparently have very different transport properties than ordinary insulators. Halperin first point out that the integral quantum Hall (IQH) states contain gapless edge excitations. Although the electronic states in the bulk are localized, the electronic states at the edge of the sample are extended. Therefore the nontrivial transport properties of the IQH states come from the gapless edge excitations. Such an edge transport picture has been supported by many experiments. One also found that the edge excitations in the IQH states are described by a chiral 1D Fermi liquid theory. Here, the authors review the dynamical theory of the edge excitations in the FQH effects

  3. Irreversible Markov chains in spin models: Topological excitations

    Science.gov (United States)

    Lei, Ze; Krauth, Werner

    2018-01-01

    We analyze the convergence of the irreversible event-chain Monte Carlo algorithm for continuous spin models in the presence of topological excitations. In the two-dimensional XY model, we show that the local nature of the Markov-chain dynamics leads to slow decay of vortex-antivortex correlations while spin waves decorrelate very quickly. Using a Fréchet description of the maximum vortex-antivortex distance, we quantify the contributions of topological excitations to the equilibrium correlations, and show that they vary from a dynamical critical exponent z∼ 2 at the critical temperature to z∼ 0 in the limit of zero temperature. We confirm the event-chain algorithm's fast relaxation (corresponding to z = 0) of spin waves in the harmonic approximation to the XY model. Mixing times (describing the approach towards equilibrium from the least favorable initial state) however remain much larger than equilibrium correlation times at low temperatures. We also describe the respective influence of topological monopole-antimonopole excitations and of spin waves on the event-chain dynamics in the three-dimensional Heisenberg model.

  4. Symptom recovery after thoracic surgery: Measuring patient-reported outcomes with the MD Anderson Symptom Inventory.

    Science.gov (United States)

    Fagundes, Christopher P; Shi, Qiuling; Vaporciyan, Ara A; Rice, David C; Popat, Keyuri U; Cleeland, Charles S; Wang, Xin Shelley

    2015-09-01

    Measuring patient-reported outcomes (PROs) has become increasingly important for assessing quality of care and guiding patient management. However, PROs have yet to be integrated with traditional clinical outcomes (such as length of hospital stay), to evaluate perioperative care. This study aimed to use longitudinal PRO assessments to define the postoperative symptom recovery trajectory in patients undergoing thoracic surgery for lung cancer. Newly diagnosed patients (N = 60) with stage I or II non-small cell lung cancer who underwent either standard open thoracotomy or video-assisted thoracoscopic surgery lobectomy reported multiple symptoms from before surgery to 3 months after surgery, using the MD Anderson Symptom Inventory. We conducted Kaplan-Meier analyses to determine when symptoms returned to presurgical levels and to mild-severity levels during recovery. The most-severe postoperative symptoms were fatigue, pain, shortness of breath, disturbed sleep, and drowsiness. The median time to return to mild symptom severity for these 5 symptoms was shorter than the time to return to baseline severity, with fatigue taking longer. Recovery from pain occurred more quickly for patients who underwent lobectomy versus thoracotomy (8 vs 18 days, respectively; P = .022). Patients who had poor preoperative performance status or comorbidities reported higher postoperative pain (all P < .05). Assessing symptoms from the patient's perspective throughout the postoperative recovery period is an effective strategy for evaluating perioperative care. This study demonstrates that the MD Anderson Symptom Inventory is a sensitive tool for detecting symptomatic recovery, with an expected relationship among surgery type, preoperative performance status, and comorbid conditions. Copyright © 2015 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  5. Thermal conductivity of electron-doped CaMnO3 perovskites: Local lattice distortions and optical phonon thermal excitation

    International Nuclear Information System (INIS)

    Wang Yang; Sui Yu; Wang Xianjie; Su Wenhui; Liu Xiaoyang; Fan, Hong Jin

    2010-01-01

    The thermal transport properties of a series of electron-doped CaMnO 3 perovskites have been investigated. Throughout the temperature range 5-300 K, phonon thermal conductivity is dominant, and both electron and spin wave contributions are negligible. The short phonon mean free paths in this system result in the relatively low thermal conductivities. The strong phonon scatterings stem from the A-site mismatch and bond-length fluctuations induced by local distortions of MnO 6 octahedra. The thermal conductivity in the magnetically ordered state is enhanced as a result of the decrease in spin-phonon scattering. The results also indicate that above the magnetic ordering temperature, observable thermal excitation of optical phonons occurs. The contribution of optical phonons to thermal conductivity becomes non-negligible and is proposed to play an important role in the glass-like thermal transport behavior (i.e. positive temperature dependence of the thermal conductivity) in the paramagnetic state. These features can be understood in terms of an expression of thermal conductivity that includes both acoustic and optical phonon terms.

  6. Field emission properties and strong localization effect in conduction mechanism of nanostructured perovskite LaNiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Kamble, Ramesh B., E-mail: rbk.physics@coep.ac.in [Department of Physics, Indian Institute of Science, Bangalore 560012, Karnataka (India); Department of Physics, College of Engineering, Pune 411005, Maharashtra (India); Tanty, Narendra; Patra, Ananya; Prasad, V. [Department of Physics, Indian Institute of Science, Bangalore 560012, Karnataka (India)

    2016-08-22

    We report the potential field emission of highly conducting metallic perovskite lanthanum nickelate (LaNiO{sub 3}) from the nanostructured pyramidal and whisker shaped tips as electron emitters. Nano particles of lanthanum nickelate (LNO) were prepared by sol-gel route. Structural and morphological studies have been carried out. Field emission of LNO exhibited high emission current density, J = 3.37 mA/cm{sup 2} at a low threshold electric field, E{sub th} = 16.91 V/μm, obeying Fowler–Nordheim tunneling. The DC electrical resistivity exhibited upturn at 11.6 K indicating localization of electron at low temperature. Magnetoresistance measurement at different temperatures confirmed strong localization in nanostructured LNO obeying Anderson localization effect at low temperature.

  7. σ-SCF: A direct energy-targeting method to mean-field excited states.

    Science.gov (United States)

    Ye, Hong-Zhou; Welborn, Matthew; Ricke, Nathan D; Van Voorhis, Troy

    2017-12-07

    The mean-field solutions of electronic excited states are much less accessible than ground state (e.g., Hartree-Fock) solutions. Energy-based optimization methods for excited states, like Δ-SCF (self-consistent field), tend to fall into the lowest solution consistent with a given symmetry-a problem known as "variational collapse." In this work, we combine the ideas of direct energy-targeting and variance-based optimization in order to describe excited states at the mean-field level. The resulting method, σ-SCF, has several advantages. First, it allows one to target any desired excited state by specifying a single parameter: a guess of the energy of that state. It can therefore, in principle, find all excited states. Second, it avoids variational collapse by using a variance-based, unconstrained local minimization. As a consequence, all states-ground or excited-are treated on an equal footing. Third, it provides an alternate approach to locate Δ-SCF solutions that are otherwise hardly accessible by the usual non-aufbau configuration initial guess. We present results for this new method for small atoms (He, Be) and molecules (H 2 , HF). We find that σ-SCF is very effective at locating excited states, including individual, high energy excitations within a dense manifold of excited states. Like all single determinant methods, σ-SCF shows prominent spin-symmetry breaking for open shell states and our results suggest that this method could be further improved with spin projection.

  8. Magnetic flux creep in HTSC and Anderson-Kim theory

    International Nuclear Information System (INIS)

    Lykov, A.N.

    2014-01-01

    The theoretical and experimental data on flux creep in high-temperature superconductors (HTSC) were analyzed in the review paper. On the one hand, the main attention is paid to the most striking experimental results which have had a significant influence on the investigations of flux creep in HTSC. On the other hand, the analysis of theoretical studies is concentrated on the works, which explain the features of flux creep on the basis of the Anderson-Kim (AK) theory modifications, and received previously unsufficient attention. However, it turned out that the modified AK theory could explain a lot of features of flux creep in HTSC: the scaling behaviour of current-voltage curves of HTSC, the finite rate of flux creep at ultra low temperatures, the logarithmic dependence of effective pinning potential as a function of transport current and its decrease with temperature. The harmonic potential field which is used in this approach makes it possible to solve accurately the both problems: viscous vortex motion and flux creep in this field. Moreover the distribution of pinning potential and the interaction of vortices with each other are taken into account in the approach. Thus, the modification of the AK theory consists, essentially, in its detailed elaboration and approaching to real situations in superconductors

  9. Laser-excited fluorescence spectroscopy of oxide glasses

    International Nuclear Information System (INIS)

    Weber, M.J.

    1977-01-01

    Laser-induced fluorescence line narrowing was applied to investigate the local fields and interactions of paramagnetic ions in oxide glasses. Studies included the site dependence of energy levels, radiative and nonradiative transition probabilities, homogeneous line broadening, and ion--ion energy transfer of rare earth ions. These results and the experimental techniques are reviewed briefly; the use of paramagnetic ions other than the rare earths is also considered. Recently, laser-excited fluorescence spectroscopy was used to investigate modifications in the local structure of lithium borate glass caused by compositional changes and phase separation and the site dependence of nonradiative relaxation of paramagnetic ions by multiphonon processes. These results and their implications are discussed. 6 figures

  10. Resonantly enhanced production of excited fragments of gaseous molecules following core-level excitation

    International Nuclear Information System (INIS)

    Chen, J.M.; Lu, K.T.; Lee, J.M.; Ho, S.C.; Chang, H.W.; Lee, Y.Y.

    2005-01-01

    State-selective dissociation dynamics for the excited fragments of gaseous Si(CH 3 ) 2 Cl 2 following Cl 2p and Si 2p core-level excitations have been investigated by resonant photoemission spectroscopy and dispersed UV/optical fluorescence spectroscopy. The main features in the gaseous Si(CH 3 ) 2 Cl 2 fluorescence spectrum are identified as the emission from excited Si*, Si + *, CH* and H*. The core-to-Rydberg excitations at both Si 2p and Cl 2p edges lead to a noteworthy production of not only the excited atomic fragments, neutral and ionic (Si*, Si + *) but also the excited diatomic fragments (CH*). In particular, the excited neutral atomic fragments Si* are significantly reinforced. The experimental results provide deeper insight into the state-selective dissociation dynamics for the excited fragments of molecules via core-level excitation

  11. Electron-tunneling observation of localized excited states in superconducting manganese-doped lead

    International Nuclear Information System (INIS)

    Tsang, J.; Ginsberg, D.M.

    1980-01-01

    We have made electron-tunneling measurements on a dilute, superconducting lead-manganese alloy. A well-defined structure was observed in the ac-conductance--voltage curves, indicating excited states within the BCS energy gap. These states were partially accounted for by Shiba theory when spin-dependent s-, p-, and d-wave scattering were included. The phase shifts used in doing that were the results of band calculations. The experimental data also show the existence of a broad background density of states in the energy gap, which cannot be accounted for by the theory

  12. Excitation spectra and wave functions of quasiparticle bound states in bilayer Rashba superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Higashi, Yoichi, E-mail: higashiyoichi@ms.osakafu-u.ac.jp [Department of Mathematical Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531 (Japan); Nagai, Yuki [CCSE, Japan Atomic Energy Agency, 178-4-4, Wakashiba, Kashiwa, Chiba 277-0871 (Japan); Yoshida, Tomohiro [Graduate School of Science and Technology, Niigata University, Niigata 950-2181 (Japan); Kato, Masaru [Department of Mathematical Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531 (Japan); Yanase, Youichi [Department of Physics, Niigata University, Niigata 950-2181 (Japan)

    2015-11-15

    Highlights: • We focus on the pair-density wave state in bilayer Rashba superconductors. • The zero energy Bogoliubov wave functions are localized at the edge and vortex core. • We investigate the excitation spectra of edge and vortex bound states. - Abstract: We study the excitation spectra and the wave functions of quasiparticle bound states at a vortex and an edge in bilayer Rashba superconductors under a magnetic field. In particular, we focus on the quasiparticle states at the zero energy in the pair-density wave state in a topologically non-trivial phase. We numerically demonstrate that the quasiparticle wave functions with zero energy are localized at both the edge and the vortex core if the magnetic field exceeds the critical value.

  13. Many-body localization proximity effects in platforms of coupled spins and bosons

    Science.gov (United States)

    Marino, J.; Nandkishore, R. M.

    2018-02-01

    We discuss the onset of many-body localization in a one-dimensional system composed of a XXZ quantum spin chain and a Bose-Hubbard model linearly coupled together. We consider two complementary setups, depending whether spatial disorder is initially imprinted on spins or on bosons; in both cases, we explore the conditions for the disordered portion of the system to localize by proximity of the other clean half. Assuming that the dynamics of one of the two parts develops on shorter time scales than the other, we can adiabatically eliminate the fast degrees of freedom, and derive an effective Hamiltonian for the system's remainder using projection operator techniques. Performing a locator expansion on the strength of the many-body interaction term or on the hopping amplitude of the effective Hamiltonian thus derived, we present results on the stability of the many-body localized phases induced by proximity effect. We also briefly comment on the feasibility of the proposed model through modern quantum optics architectures, with the long-term perspective to realize experimentally, in composite open systems, Anderson or many-body localization proximity effects.

  14. Nailing the Coffin Shut on Doubts that Violent Video Games Stimulate Aggression ∼Comment on Anderson et al. (2010).

    OpenAIRE

    Huesmann, L. Rowell

    2010-01-01

    Over the past half-century the mass media, including video games, have become important socializers of children. Observational learning theory has evolved into social-cognitive information processing models that explain that what a child observes in any venue has both short-term and long-term influences on the child's behaviors and cognitions. Anderson's (2010) extensive meta-analysis of the effects of violent video games confirms what these theories predict and what prior research about othe...

  15. Excitation of beta Alfven eigenmodes in Tore-Supra

    International Nuclear Information System (INIS)

    Nguyen, C; Garbet, X; Sabot, R; Goniche, M; Maget, P; Basiuk, V; Decker, J; Elbeze, D; Huysmans, G T A; Macor, A; Segui, J-L; Schneider, M; Eriksson, L-G

    2009-01-01

    Modes oscillating at the acoustic frequency and identified as beta Alfven eigenmodes (BAEs) have been observed in Tore-Supra under ion cyclotron resonant heating. In this paper, the linear excitation threshold of these modes, thought to be driven by suprathermal ions, is calculated and compared with Tore-Supra observations. Similar studies of the linear excitation threshold of energetic particles driven modes were carried out previously for toroidal Alfven eigenmodes or fishbones. In the case of BAEs, the main point is to understand whether the energetic particle drive is able to exceed ion Landau damping, which is expected to be important in the acoustic frequency range. For this, the BAE dispersion relation is computed and simplified in order to derive a tractable excitation criterion suitable for comparison with experiments. The observation of BAEs in Tore-Supra is found to be in agreement with the calculated criterion and confirms the possibility to trigger these modes in the presence of ion Landau damping. Moreover, the conducted analysis clearly puts forward the role of the global tunable parameters which play a role in the BAE excitation (the magnetic field, the density etc), as well as the role of some plasma profiles. In particular, the outcome of a modification of the shear or of the heating localization is found to be non-negligible and it is discussed in the paper.

  16. Excitation of propagating surface plasmons with a scanning tunnelling microscope.

    Science.gov (United States)

    Wang, T; Boer-Duchemin, E; Zhang, Y; Comtet, G; Dujardin, G

    2011-04-29

    Inelastic electron tunnelling excitation of propagating surface plasmon polaritons (SPPs) on a thin gold film is demonstrated. This is done by combining a scanning tunnelling microscope (STM) with an inverted optical microscope. Analysis of the leakage radiation in both the image and Fourier planes unambiguously shows that the majority (up to 99.5%) of the detected photons originate from propagating SPPs with propagation lengths of the order of 10  µm. The remaining photon emission is localized under the STM tip and is attributed to a tip-gold film coupled plasmon resonance as evidenced by the bimodal spectral distribution and enhanced emission intensity observed using a silver STM tip for excitation.

  17. Excitation of propagating surface plasmons with a scanning tunnelling microscope

    International Nuclear Information System (INIS)

    Wang, T; Boer-Duchemin, E; Zhang, Y; Comtet, G; Dujardin, G

    2011-01-01

    Inelastic electron tunnelling excitation of propagating surface plasmon polaritons (SPPs) on a thin gold film is demonstrated. This is done by combining a scanning tunnelling microscope (STM) with an inverted optical microscope. Analysis of the leakage radiation in both the image and Fourier planes unambiguously shows that the majority (up to 99.5%) of the detected photons originate from propagating SPPs with propagation lengths of the order of 10 μm. The remaining photon emission is localized under the STM tip and is attributed to a tip-gold film coupled plasmon resonance as evidenced by the bimodal spectral distribution and enhanced emission intensity observed using a silver STM tip for excitation.

  18. Excitation of propagating surface plasmons with a scanning tunnelling microscope

    Energy Technology Data Exchange (ETDEWEB)

    Wang, T; Boer-Duchemin, E; Zhang, Y; Comtet, G; Dujardin, G, E-mail: Elizabeth.Boer-Duchemin@u-psud.fr [Institut des Sciences Moleculaire d' Orsay (ISMO), CNRS Universite Paris-Sud, 91405 Orsay (France)

    2011-04-29

    Inelastic electron tunnelling excitation of propagating surface plasmon polaritons (SPPs) on a thin gold film is demonstrated. This is done by combining a scanning tunnelling microscope (STM) with an inverted optical microscope. Analysis of the leakage radiation in both the image and Fourier planes unambiguously shows that the majority (up to 99.5%) of the detected photons originate from propagating SPPs with propagation lengths of the order of 10 {mu}m. The remaining photon emission is localized under the STM tip and is attributed to a tip-gold film coupled plasmon resonance as evidenced by the bimodal spectral distribution and enhanced emission intensity observed using a silver STM tip for excitation.

  19. The histological basis of late gadolinium enhancement cardiovascular magnetic resonance in a patient with Anderson-Fabry disease.

    Science.gov (United States)

    Moon, James C; Sheppard, Mary; Reed, Emma; Lee, Phillip; Elliott, Perry M; Pennell, Dudley J

    2006-01-01

    Anderson-Fabry Disease (AFD) is a storage disease that mimics hypertrophic cardiomyopathy. Late gadolinium enhancement (LGE) by cardiovascular magnetic resonance occurs in approximately 50% of patients in the basal inferolateral LV wall, but how an intracellular storage disease causes focal LGE is unknown. We present a whole-heart histological validation that LGE is caused by focal myocardial collagen scarring. This scarring may be the substrate for electrical re-entry and sudden arrhythmic death. The reasons for this distribution of fibrosis are unclear, but may reflect inhomogeneous left ventricular wall stress.

  20. Damage Localization and Quantification of Earthquake Excited RC-Frames

    DEFF Research Database (Denmark)

    Skjærbæk, P.S.; Nielsen, Søren R.K.; Kirkegaard, Poul Henning

    In the paper a recently proposed method for damage localization and quantification of RC-structures from response measurements is tested on experimental data. The method investigated requires at least one response measurement along the structure and the ground surface acceleration. Further, the t...

  1. Quantum Theories of Self-Localization

    Science.gov (United States)

    Bernstein, Lisa Joan

    In the classical dynamics of coupled oscillator systems, nonlinearity leads to the existence of stable solutions in which energy remains localized for all time. Here the quantum-mechanical counterpart of classical self-localization is investigated in the context of two model systems. For these quantum models, the terms corresponding to classical nonlinearities modify a subset of the stationary quantum states to be particularly suited to the creation of nonstationary wavepackets that localize energy for long times. The first model considered here is the Quantized Discrete Self-Trapping model (QDST), a system of anharmonic oscillators with linear dispersive coupling used to model local modes of vibration in polyatomic molecules. A simple formula is derived for a particular symmetry class of QDST systems which gives an analytic connection between quantum self-localization and classical local modes. This formula is also shown to be useful in the interpretation of the vibrational spectra of some molecules. The second model studied is the Frohlich/Einstein Dimer (FED), a two-site system of anharmonically coupled oscillators based on the Frohlich Hamiltonian and motivated by the theory of Davydov solitons in biological protein. The Born-Oppenheimer perturbation method is used to obtain approximate stationary state wavefunctions with error estimates for the FED at the first excited level. A second approach is used to reduce the first excited level FED eigenvalue problem to a system of ordinary differential equations. A simple theory of low-energy self-localization in the FED is discussed. The quantum theories of self-localization in the intrinsic QDST model and the extrinsic FED model are compared.

  2. Triplet excited state properties in variable gap π-conjugated donor–acceptor–donor chromophores

    KAUST Repository

    Cekli, Seda; Winkel, Russell W.; Alarousu, Erkki; Mohammed, Omar F.; Schanze, Kirk S.

    2016-01-01

    A series of variable band-gap donor–acceptor–donor (DAD) chromophores capped with platinum(II) acetylide units has been synthesized and fully characterized by electrochemical and photophysical methods, with particular emphasis placed on probing triplet excited state properties. A counter-intuitive trend of increasing fluorescence quantum efficiency and lifetime with decreasing excited state energy (optical gap) is observed across the series of DAD chromophores. Careful study of the excited state dynamics, including triplet yields (as inferred from singlet oxygen sensitization), reveals that the underlying origin of the unusual trend in the fluorescence parameters is that the singlet–triplet intersystem crossing rate and yield decrease with decreasing optical gap. It is concluded that the rate of intersystem crossing decreases as the LUMO is increasingly localized on the acceptor unit in the DAD chromophore, and this result is interpreted as arising because the extent of spin–orbit coupling induced by the platinum heavy metal centers decreases as the LUMO is more localized on the acceptor. In addition to the trend in intersystem crossing, the results show that the triplet decay rates follow the Energy Gap Law correlation over a 1.8 eV range of triplet energy and 1000-fold range of triplet decay rates. Finally, femtosecond transient absorption studies for the DAD chromophores reveals a strong absorption in the near-infrared region which is attributed to the singlet excited state. This spectral band appears to be general for DAD chromophores, and may be a signature of the charge transfer (CT) singlet excited state.

  3. Triplet excited state properties in variable gap π-conjugated donor–acceptor–donor chromophores

    KAUST Repository

    Cekli, Seda

    2016-02-12

    A series of variable band-gap donor–acceptor–donor (DAD) chromophores capped with platinum(II) acetylide units has been synthesized and fully characterized by electrochemical and photophysical methods, with particular emphasis placed on probing triplet excited state properties. A counter-intuitive trend of increasing fluorescence quantum efficiency and lifetime with decreasing excited state energy (optical gap) is observed across the series of DAD chromophores. Careful study of the excited state dynamics, including triplet yields (as inferred from singlet oxygen sensitization), reveals that the underlying origin of the unusual trend in the fluorescence parameters is that the singlet–triplet intersystem crossing rate and yield decrease with decreasing optical gap. It is concluded that the rate of intersystem crossing decreases as the LUMO is increasingly localized on the acceptor unit in the DAD chromophore, and this result is interpreted as arising because the extent of spin–orbit coupling induced by the platinum heavy metal centers decreases as the LUMO is more localized on the acceptor. In addition to the trend in intersystem crossing, the results show that the triplet decay rates follow the Energy Gap Law correlation over a 1.8 eV range of triplet energy and 1000-fold range of triplet decay rates. Finally, femtosecond transient absorption studies for the DAD chromophores reveals a strong absorption in the near-infrared region which is attributed to the singlet excited state. This spectral band appears to be general for DAD chromophores, and may be a signature of the charge transfer (CT) singlet excited state.

  4. Electrical field excitation in non-uniform plasma by a modulated electron beam

    International Nuclear Information System (INIS)

    Anisimov, I.O.; Borisov, O.A.

    2000-01-01

    Excitation of electric fields due to a modulated electron beam in a warm non-uniform plasma is treated for weak beams in warm plasma. It is shown that the maximum electric field magnitude that is reached near the local plasma resonance point depends significantly on the direction of the electron stream motion. In collisional plasma the magnitude of the Langmuir wave that propagates to the subcritical plasma also depends on the direction of the electron stream motion. The motion of the modulated electron stream front results in beatings between oscillations on the modulation frequency and on the local electron plasma frequencies at the initial moment. Later these beatings damp in the supercritical plasma, whereas in the subcritical plasma they are transformed into spatial beatings between the field of the modulated electron stream and the excited Langmuir wave. (orig.)

  5. σ-SCF: A direct energy-targeting method to mean-field excited states

    Science.gov (United States)

    Ye, Hong-Zhou; Welborn, Matthew; Ricke, Nathan D.; Van Voorhis, Troy

    2017-12-01

    The mean-field solutions of electronic excited states are much less accessible than ground state (e.g., Hartree-Fock) solutions. Energy-based optimization methods for excited states, like Δ-SCF (self-consistent field), tend to fall into the lowest solution consistent with a given symmetry—a problem known as "variational collapse." In this work, we combine the ideas of direct energy-targeting and variance-based optimization in order to describe excited states at the mean-field level. The resulting method, σ-SCF, has several advantages. First, it allows one to target any desired excited state by specifying a single parameter: a guess of the energy of that state. It can therefore, in principle, find all excited states. Second, it avoids variational collapse by using a variance-based, unconstrained local minimization. As a consequence, all states—ground or excited—are treated on an equal footing. Third, it provides an alternate approach to locate Δ-SCF solutions that are otherwise hardly accessible by the usual non-aufbau configuration initial guess. We present results for this new method for small atoms (He, Be) and molecules (H2, HF). We find that σ-SCF is very effective at locating excited states, including individual, high energy excitations within a dense manifold of excited states. Like all single determinant methods, σ-SCF shows prominent spin-symmetry breaking for open shell states and our results suggest that this method could be further improved with spin projection.

  6. Excited states 2

    CERN Document Server

    Lim, Edward C

    2013-01-01

    Excited States, Volume 2 is a collection of papers that deals with molecules in the excited states. The book describes the geometries of molecules in the excited electronic states. One paper describes the geometries of a diatomic molecule and of polyatomic molecules; it also discusses the determination of the many excited state geometries of molecules with two, three, or four atoms by techniques similar to diatomic spectroscopy. Another paper introduces an ordered theory related to excitons in pure and mixed molecular crystals. This paper also presents some experimental data such as those invo

  7. Macroscopic dynamics of thermal nuclear excitations

    International Nuclear Information System (INIS)

    Bastrukov, S.I.; Deak, F.; Kiss, A.; Seres, Z.

    1989-11-01

    The concept of kinetic temperature as a local dynamical variable of thermal nuclear collective motion is formulated using long-mean-free-path approach based on the Landau-Vlasov kinetic equation. In the Fermi drop model the thermal fluid dynamics of the spherical nucleus is analyzed. It is shown that in a compressible Fermi liquid the temperature pulses propagate in the form of spherical wave in phase with the acoustic wave. The thermal and compressional excitations are caused by the isotropic harmonic oscillations of the Fermi sphere in momentum space. (author) 25 refs.; 2 figs

  8. Plastic deformation of solids viewed as a self-excited wave process

    International Nuclear Information System (INIS)

    Zuev, L.B.; Danilov, V.I.

    1998-01-01

    A self-excited wave model of plastic flow in crystalline solids is proposed. Experimental data on plastic flow in single crystals and polycrystalline solids involving different mechanisms have been correlated. The main types of strain localization in the materials investigated have been established and correlated with the respective stages of plastic flow curves. The best observing conditions have been defined for the major types of autowaves emerging by plastic deformation. The synergetic concepts of self-organization are shown to apply to description of plastic deformation. Suggested is a self-excited wave model of plastic flow in materials with different mechanisms of deformation. (orig.)

  9. Local and global nonlinear dynamics of a parametrically excited rectangular symmetric cross-ply laminated composite plate

    International Nuclear Information System (INIS)

    Ye Min; Lu Jing; Zhang Wei; Ding Qian

    2005-01-01

    The present investigation deals with nonlinear dynamic behavior of a parametrically excited simply supported rectangular symmetric cross-ply laminated composite thin plate for the first time. The governing equation of motion for rectangular symmetric cross-ply laminated composite thin plate is derived by using von Karman equation. The geometric nonlinearity and nonlinear damping are included in the governing equations of motion. The Galerkin approach is used to obtain a two-degree-of-freedom nonlinear system under parametric excitation. The method of multiple scales is utilized to transform the second-order non-autonomous differential equations to the first-order averaged equations. Using numerical method, the averaged equations are analyzed to obtain the steady state bifurcation responses. The analysis of stability for steady state bifurcation responses in laminated composite thin plate is also given. Under certain conditions laminated composite thin plate may have two or multiple steady state bifurcation solutions. Jumping phenomenon occurs in the steady state bifurcation solutions. The chaotic motions of rectangular symmetric cross-ply laminated composite thin plate are also found by using numerical simulation. The results obtained here demonstrate that the periodic, quasi-periodic and chaotic motions coexist for a parametrically excited fore-edge simply supported rectangular symmetric cross-ply laminated composite thin plate under certain conditions

  10. Luminescent materials: probing the excited state of emission centers by spectroscopic methods

    International Nuclear Information System (INIS)

    Mihóková, E; Nikl, M

    2015-01-01

    We review recent methods employed to study the excited state of rare-earth centers in various luminescent and scintillating materials. The focus is on processes that help determine localization of the excited state within the material band gap, namely photoionization and thermally stimulated ionization. Then the tunneling process between the luminescence center and the trapping state is addressed. We describe the experimental implementation of methods recently developed to study these processes. We report theoretical models helping the data interpretation. We also present application to currently investigated materials. (topical review)

  11. Scaling of multiplicity distribution in hadron collisions and diffractive-excitation like models

    International Nuclear Information System (INIS)

    Buras, A.J.; Dethlefsen, J.M.; Koba, Z.

    1974-01-01

    Multiplicity distribution of secondary particles in inelastic hadron collision at high energy is studied in the semiclassical impact parameter representation. The scaling function is shown to consist of two factors: one geometrical and the other dynamical. We propose a specific choice of these factors, which describe satisfactorily the elastic scattering, the ratio of elastic to total cross-section and the simple scaling behaviour of multiplicity distribution in p-p collisions. Two versions of diffractive-excitation like models (global and local excitation) are presented as interpretation of our choice of dynamical factor. (author)

  12. Theory of spin and lattice wave dynamics excited by focused laser pulses

    Science.gov (United States)

    Shen, Ka; Bauer, Gerrit E. W.

    2018-06-01

    We develop a theory of spin wave dynamics excited by ultrafast focused laser pulses in a magnetic film. We take into account both the volume and surface spin wave modes in the presence of applied, dipolar and magnetic anisotropy fields and include the dependence on laser spot exposure size and magnetic damping. We show that the sound waves generated by local heating by an ultrafast focused laser pulse can excite a wide spectrum of spin waves (on top of a dominant magnon–phonon contribution). Good agreement with recent experiments supports the validity of the model.

  13. Self-consistent hole motion and spin excitations in a quantum antiferromagnet

    International Nuclear Information System (INIS)

    Su, Z.B.; Yu, L.; Li, Y.M.; Lai, W.Y.

    1989-12-01

    A new quantum Bogoliubov-de Gennes (BdeG) formalism is developed to study the self-consistent motion of holes and spin excitations in a quantum antiferromagnet within the generalized t-J model. On the one hand, the effects of local distortion of spin configurations and the renormalization of the hole motion due to virtual excitations of the distorted spin background are treated on an equal footing to obtain the hole wave function and its spectrum, as well as the effective mass for a propagating hole. On the other hand, the change of the spin excitation spectrum and the spin correlations due to the presence of dynamical holes are studied within the same adiabatic approximation. The stability of the hole states with respect to such changes justifies the self-consistency of the proposed formalism. (author). 25 refs, 6 figs, 1 tab

  14. Corticospinal excitability changes to anodal tDCS elucidated with NIRS-EEG joint-imaging

    DEFF Research Database (Denmark)

    Jindal, Utkarsh; Sood, Mehak; Chowdhury, Shubhajit Roy

    2015-01-01

    Transcranial direct current stimulation (tDCS) has been shown to modulate corticospinal excitability. We used near-infrared spectroscopy (NIRS) - electroencephalography (EEG) joint-imaging during and after anodal tDCS to measure changes in mean cerebral haemoglobin oxygen saturation (rSO2) along...... with changes in the log-transformed mean-power of EEG within 0.5 Hz - 11.25 Hz. In two separate studies, we investigated local post-tDCS alterations from baseline at the site of anodal tDCS using NIRS-EEG/tDCS joint-imaging as well as local post-tDCS alterations in motor evoked potentials (MEP...... that the innovative technologies for portable NIRS-EEG neuroimaging may be leveraged to objectively quantify the progress (e.g., corticospinal excitability alterations) and dose tDCS intervention as an adjuvant treatment during neurorehabilitation....

  15. Financial protection against nuclear hazards: thirty years' experience under the Price-Anderson Act

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    Supplementing earlier reports on ways to provide financial protection against the potential hazards involved in the production of nuclear energy by analyzing the issues raised in the Silkwood v. Kerr-McGee Corporation decision, the author explores the impact of the case on the availability of funds to compensate the public and any increased exposure of the nuclear industry or the federal government to public liability. She concludes that the decision will have a significant impact on the day-to-day administration of claims, and could lead to higher premiums. The court would have to determine the priority given to claims in the event of a catastrophic accident, in which case the only significant impact would be under amendments to the Price-Anderson Act which resulted in elimination of its coverage or a substantial increase in or elimination of the limitation on liability

  16. Improving Rydberg Excitations within Time-Dependent Density Functional Theory with Generalized Gradient Approximations: The Exchange-Enhancement-for-Large-Gradient Scheme.

    Science.gov (United States)

    Li, Shaohong L; Truhlar, Donald G

    2015-07-14

    Time-dependent density functional theory (TDDFT) with conventional local and hybrid functionals such as the local and hybrid generalized gradient approximations (GGA) seriously underestimates the excitation energies of Rydberg states, which limits its usefulness for applications such as spectroscopy and photochemistry. We present here a scheme that modifies the exchange-enhancement factor to improve GGA functionals for Rydberg excitations within the TDDFT framework while retaining their accuracy for valence excitations and for the thermochemical energetics calculated by ground-state density functional theory. The scheme is applied to a popular hybrid GGA functional and tested on data sets of valence and Rydberg excitations and atomization energies, and the results are encouraging. The scheme is simple and flexible. It can be used to correct existing functionals, and it can also be used as a strategy for the development of new functionals.

  17. Collective Excitations in Protein as a Measure of Balance Between its Softness and Rigidity

    International Nuclear Information System (INIS)

    Shrestha, Utsab R.; Bhowmik, Debsindhu; Van Delinder, Kurt W.; Mamontov, Eugene; O’Neill, Hugh

    2017-01-01

    Here, we elucidate the protein activity from the perspective of protein softness and flexibility by studying the collective phonon-like excitations in a globular protein, human serum albumin (HSA), and taking advantage of the state-of-the-art inelastic X-ray scattering (IXS) technique. Such excitations demonstrate that the protein becomes softer upon thermal denaturation due to disruption of weak noncovalent bonds. On the other hand, no significant change in the local excitations is detected in ligand- (drugs) bound HSA compared to the ligand-free HSA. These results clearly suggest that the protein conformational flexibility and rigidity are balanced by the native protein structure for biological activity.

  18. Collective Excitations in Protein as a Measure of Balance Between its Softness and Rigidity

    Energy Technology Data Exchange (ETDEWEB)

    Shrestha, Utsab R. [Wayne State Univ., Detroit, MI (United States). Dept. of Physics and Astronomy; Bhowmik, Debsindhu [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computational Science and Engineering Division; Van Delinder, Kurt W. [Wayne State Univ., Detroit, MI (United States). Dept. of Physics and Astronomy; Mamontov, Eugene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical and Engineering Materials Division; O’Neill, Hugh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Biology and Soft Matter Division; Zhang, Qiu [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Biology and Soft Matter Division; Alatas, Ahmet [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source; Chu, Xiang-Qiang [Wayne State Univ., Detroit, MI (United States). Dept. of Physics and Astronomy

    2017-01-12

    Here, we elucidate the protein activity from the perspective of protein softness and flexibility by studying the collective phonon-like excitations in a globular protein, human serum albumin (HSA), and taking advantage of the state-of-the-art inelastic X-ray scattering (IXS) technique. Such excitations demonstrate that the protein becomes softer upon thermal denaturation due to disruption of weak noncovalent bonds. On the other hand, no significant change in the local excitations is detected in ligand- (drugs) bound HSA compared to the ligand-free HSA. These results clearly suggest that the protein conformational flexibility and rigidity are balanced by the native protein structure for biological activity.

  19. Atypical Distribution of Late Gadolinium Enhancement of the Left Ventricle on Cardiac Magnetic Resonance in Classical Anderson-Fabry Disease

    OpenAIRE

    Kasuya, Shusuke; Suzuki, Masayo; Inaoka, Tsutomu; Odashima, Masayuki; Nakatsuka, Tomoya; Ishikawa, Rumiko; Tokuyama, Wataru; Terada, Hitoshi

    2016-01-01

    Anderson-Fabry disease (AFD) is an X-linked lysosomal storage disorder caused by a deficiency of alpha-galactosidase A. Approximately 50% of patients with AFD may have cardiac involvement. Gadolinium-enhanced cardiac magnetic resonance (CMR) is useful for the diagnosis of cardiac involvement of AFD by recognizing typical late gadolinium enhancement (LGE) patterns. We report a 48-year-old man with cardiac involvement in classical AFD, showing atypical distribution of the LGE at the mid-lateral...

  20. Development of the Fragment Molecular Orbital Method for Calculating Nonlocal Excitations in Large Molecular Systems.

    Science.gov (United States)

    Fujita, Takatoshi; Mochizuki, Yuji

    2018-04-19

    We developed the fragment-based method for calculating nonlocal excitations in large molecular systems. This method is based on the multilayer fragment molecular orbital method and the configuration interaction single (CIS) wave function using localized molecular orbitals. The excited-state wave function for the whole system is described as a superposition of configuration state functions (CSFs) for intrafragment excitations and for interfragment charge-transfer excitations. The formulation and calculations of singlet excited-state Hamiltonian matrix elements in the fragment CSFs are presented in detail. The efficient approximation schemes for calculating the matrix elements are also presented. The computational efficiency and the accuracy were evaluated using the molecular dimers and molecular aggregates. We confirmed that absolute errors of 50 meV (relative to the conventional calculations) are achievable for the molecular systems in their equilibrium geometries. The perturbative electron correlation correction to the CIS excitation energies is also demonstrated. The present theory can compute a large number of excited states in large molecular systems; in addition, it allows for the systematic derivation of a model exciton Hamiltonian. These features are useful for studying excited-state dynamics in condensed molecular systems based on the ab initio electronic structure theory.

  1. Electronic-excitation energy transfer in heterogeneous dye solutions under laser excitation

    International Nuclear Information System (INIS)

    Levshin, L.V.; Mukushev, B.T.; Saletskii, A.M.

    1995-01-01

    An experimental study has been made of electronic-excitation energy transfer (EEET) among dye molecules of different types for different exciting-fight wavelengths and temperatures. Upon selective laser excitation of the donor, the inhomogeneous broadening of molecular levels increases the probability of EEET from the donor to acceptor molecules. The efficiency of this process is directly proportional to the acceptor molecule concentration and is temperature dependent. The EEET is accompanied by the spectral migration of energy among donor molecules, which reduces the fluorescence quantum efficiency of the donor. Increasing the frequency of the exciting light decreases in the donor fluorescence quantum efficiency. An increase in the acceptor molecule concentration results in a decrease of the spectral migration of excitation in the donor molecule system. 5 refs., 5 figs

  2. Parametric resonance of intrinsic localized modes in coupled cantilever arrays

    International Nuclear Information System (INIS)

    Kimura, Masayuki; Matsushita, Yasuo; Hikihara, Takashi

    2016-01-01

    In this study, the parametric resonances of pinned intrinsic localized modes (ILMs) were investigated by computing the unstable regions in parameter space consisting of parametric excitation amplitude and frequency. In the unstable regions, the pinned ILMs were observed to lose stability and begin to fluctuate. A nonlinear Klein–Gordon, Fermi–Pasta–Ulam-like, and mixed lattices were investigated. The pinned ILMs, particularly in the mixed lattice, were destabilized by parametric resonances, which were determined by comparing the shapes of the unstable regions with those in the Mathieu differential equation. In addition, traveling ILMs could be generated by parametric excitation. - Highlights: • Destabilization of intrinsic localized modes (ILMs) by parametric excitation is investigated for FPU, NKG, and mixed lattices. • Frequency and amplitude of parametric excitation is determined based on characteristic multipliers of ILMs. • Unstable regions for the mixed lattice case show very similar shape to those of the Mathieu equation. • ILMs become unstable by causing parametric resonance.

  3. Parametric resonance of intrinsic localized modes in coupled cantilever arrays

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Masayuki, E-mail: kimura.masayuki.8c@kyoto-u.ac.jp [Department of Electrical Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510 (Japan); Matsushita, Yasuo [Advanced Mathematical Institute, Osaka City University, 3-3-138 Sughimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Hikihara, Takashi [Department of Electrical Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510 (Japan)

    2016-08-19

    In this study, the parametric resonances of pinned intrinsic localized modes (ILMs) were investigated by computing the unstable regions in parameter space consisting of parametric excitation amplitude and frequency. In the unstable regions, the pinned ILMs were observed to lose stability and begin to fluctuate. A nonlinear Klein–Gordon, Fermi–Pasta–Ulam-like, and mixed lattices were investigated. The pinned ILMs, particularly in the mixed lattice, were destabilized by parametric resonances, which were determined by comparing the shapes of the unstable regions with those in the Mathieu differential equation. In addition, traveling ILMs could be generated by parametric excitation. - Highlights: • Destabilization of intrinsic localized modes (ILMs) by parametric excitation is investigated for FPU, NKG, and mixed lattices. • Frequency and amplitude of parametric excitation is determined based on characteristic multipliers of ILMs. • Unstable regions for the mixed lattice case show very similar shape to those of the Mathieu equation. • ILMs become unstable by causing parametric resonance.

  4. Deviations from excitation equilibrium in optically thick mercury arc plasmas

    International Nuclear Information System (INIS)

    Karabourniotis, D.; Couris, S.; Damelincourt, J.J.

    1989-01-01

    Up to date mercury arcs at pressure greater than 1 atm have been investigated as plasma systems in local thermodynamic equilibrium (LTE) state. These studies have been motivated by the applications of mercury arcs, e.g., in the lighting industry. The LTE-assumption simplifies the use of spectroscopic diagnostics and the performance of species-concentration calculations. A high pressure mercury arc of about 1 atm had been considered in two possibilities: excitation and gas temperatures are the same, the electron temperature is higher and excitation and electron temperatures are the same, the gas temperature is lower. Recent measurements in mercury arcs reveal the existence of severe departures from thermal equilibrium and suggest the absence of excitation equilibrium in the axis and in the periphery in such an arc. The deviation from equilibrium leads to complicated distributions, such that the system cannot be described correctly by any single temperature. This becomes quite complicated when plasma inhomogeneity and strong reabsorption of the radiation are present

  5. Strong Localization in Disordered Media: Analysis of the Backscattering Cone

    KAUST Repository

    Delgado, Edgar

    2012-06-01

    A very interesting effect in light propagation through a disordered system is Anderson localization of light, this phenomenon emerges as the result of multiple scattering of waves by electric inhomogeneities like spatial variations of index of refraction; as the amount of scattering is increased, light propagation is converted from quasi-diffusive to exponentially localized, with photons confined in a limited spatial region characterized by a fundamental quantity known as localization length. Light localization is strongly related to another interference phenomenon emerged from the multiple scattering effect: the coherent backscattering effect. In multiple scattering of waves, in fact, coherence is preserved in the backscattering direction and produces a reinforcement of the field flux originating an observable peak in the backscattered intensity, known as backscattering cone. The study of this peak provide quantitative information about the transport properties of light in the material. In this thesis we report a complete FDTD ab-initio study of light localization and coherent backscattering. In particular, we consider a supercontinuum pulse impinging on a sample composed of randomly positioned scatterers. We study coherent backscattering by averaging over several realizations of the sample properties. We study then the coherent backscattering cone properties as the relative permittivity of the sample is changed, relating the latter with the light localization inside the sample. We demonstrate important relationships between the width of the backscattering cone and the localization length, which shows a linear proportionality in the strong localization regime.

  6. Stochastic output error vibration-based damage detection and assessment in structures under earthquake excitation

    Science.gov (United States)

    Sakellariou, J. S.; Fassois, S. D.

    2006-11-01

    A stochastic output error (OE) vibration-based methodology for damage detection and assessment (localization and quantification) in structures under earthquake excitation is introduced. The methodology is intended for assessing the state of a structure following potential damage occurrence by exploiting vibration signal measurements produced by low-level earthquake excitations. It is based upon (a) stochastic OE model identification, (b) statistical hypothesis testing procedures for damage detection, and (c) a geometric method (GM) for damage assessment. The methodology's advantages include the effective use of the non-stationary and limited duration earthquake excitation, the handling of stochastic uncertainties, the tackling of the damage localization and quantification subproblems, the use of "small" size, simple and partial (in both the spatial and frequency bandwidth senses) identified OE-type models, and the use of a minimal number of measured vibration signals. Its feasibility and effectiveness are assessed via Monte Carlo experiments employing a simple simulation model of a 6 storey building. It is demonstrated that damage levels of 5% and 20% reduction in a storey's stiffness characteristics may be properly detected and assessed using noise-corrupted vibration signals.

  7. Vibrational-rotational excitation: chemical reactions of vibrationally excited molecules

    International Nuclear Information System (INIS)

    Moore, C.B.; Smith, I.W.M.

    1979-03-01

    This review considers a limited number of systems, particularly gas-phase processes. Excited states and their preparation, direct bimolecular reactions, reactions of highly excited molecules, and reactions in condensed phases are discussed. Laser-induced isotope separation applications are mentioned briefly. 109 references

  8. On isospin excitation energy

    International Nuclear Information System (INIS)

    Li Wenfei; Zhang Fengshou; Chen Liewen

    2001-01-01

    Within the framework of Hartree-Fock theory using the extended Skyrme effective interaction, the isospin excitation energy as a function of relative neutron excess δ was investigated at different temperatures and densities. It was found that the isospin excitation energy decreased with the increment of temperature and/or the decrement of density. The authors pointed out that the decrement of isospin excitation energy was resulted from the weakening of quantum effect with increment of temperature and/or decrement of density. Meanwhile, the relationship between the isospin excitation energy and the symmetry energy was discussed and found that the symmetry energy was just a part of the isospin excitation energy. With increasing temperature and decreasing density, the contribution of the symmetry energy to the isospin excitation energy becomes more and more important. The isospin excitation energy as a function of relative neutron excess was also investigated using different potential parameters. The results shows that the isospin excitation energy is almost independent of the incompressibility and the effective mass, but strongly depends on the symmetry energy strength coefficient, which indicates that it is possible to extract the symmetry energy of the nuclear equation of state by investigating the isospin excitation energy in experiments

  9. A Short History of the Theory and Experimental Discovery of Superfluidity in 3He

    Science.gov (United States)

    Brinkman, W. F.

    I discuss the development of the theory and experiments on superfluid 3He. After the discovery of superfluidity in 3He by Osheroff, Richardson and Lee, Phil Anderson quickly recruited Doug Osheroff to come to Bell Labs and set up a dilution fridge to continue his experiments. One of the mysteries at that time was how the high-temperature A-phase, which has a gapless excitation spectrum, could be stabilized relative to the fully gapped, lower temperature B-phase. I explain how Phil Anderson and I developed the spin fluctuation theory of the A-phase of superfluid 3He which accounted for its stability, leading to the Anderson-Brinkman-Morel (ABM) theory of the superfluid A-phase...

  10. Nuclear liability insurance: the Price-Anderson reparations system and the claims experience of the nuclear industry

    International Nuclear Information System (INIS)

    Marrone, J.

    1983-01-01

    The manner in which the Price-Anderson Law operates to provide reparations is reviewed, and the changes made in the law by Congress in 1975 are outlined. Nuclear liability insurers' response to the Three Mile Island accident is described, including emergency assistance funds advanced to qualified evacuees and the claims and litigations that followed. Other nuclear liability claims that have been asserted are described as being brought chiefly by onsite workers. Good health physics protection of workers is acknowledged, but the need to improve record keeping for transient workers is stressed. The nuclear industry is urged to implement a more effective record-keeping program for such workers

  11. Spin-isotropic continuum of spin excitations in antiferromagnetically ordered Fe1.07Te

    Science.gov (United States)

    Song, Yu; Lu, Xingye; Regnault, L.-P.; Su, Yixi; Lai, Hsin-Hua; Hu, Wen-Jun; Si, Qimiao; Dai, Pengcheng

    2018-02-01

    Unconventional superconductivity typically emerges in the presence of quasidegenerate ground states, and the associated intense fluctuations are likely responsible for generating the superconducting state. Here we use polarized neutron scattering to study the spin space anisotropy of spin excitations in Fe1.07Te exhibiting bicollinear antiferromagnetic (AF) order, the parent compound of FeTe1 -xSex superconductors. We confirm that the low-energy spin excitations are transverse spin waves, consistent with a local-moment origin of the bicollinear AF order. While the ordered moments lie in the a b plane in Fe1.07Te , it takes less energy for them to fluctuate out of plane, similar to BaFe2As2 and NaFeAs. At energies above E ≳20 meV, we find magnetic scattering to be dominated by an isotropic continuum that persists up to at least 50 meV. Although the isotropic spin excitations cannot be ascribed to spin waves from a long-range-ordered local-moment antiferromagnet, the continuum can result from the bicollinear magnetic order ground state of Fe1.07Te being quasidegenerate with plaquette magnetic order.

  12. Hartree-Fock study of the Anderson metal-insulator transition in the presence of Coulomb interaction: Two types of mobility edges and their multifractal scaling exponents

    Science.gov (United States)

    Lee, Hyun-Jung; Kim, Ki-Seok

    2018-04-01

    We investigate the role of Coulomb interaction in the multifractality of Anderson metal-insulator transition, where the Coulomb interaction is treated within the Hartree-Fock approximation, but disorder effects are taken into account exactly. An innovative technical aspect in our simulation is to utilize the Ewald-sum technique, which allows us to introduce the long-range nature of the Coulomb interaction into Hartree-Fock self-consistent equations of order parameters more accurately. This numerical simulation reproduces the Altshuler-Aronov correction in a metallic state and the Efros-Shklovskii pseudogap in an insulating phase, where the density of states ρ (ω ) is evaluated in three dimensions. Approaching the quantum critical point of a metal-insulator transition from either the metallic or insulting phase, we find that the density of states is given by ρ (ω ) ˜|ω| 1 /2 , which determines one critical exponent of the McMillan-Shklovskii scaling theory. Our main result is to evaluate the eigenfunction multifractal scaling exponent αq, given by the Legendre transformation of the fractal dimension τq, which characterizes the scaling behavior of the inverse participation ratio with respect to the system size L . Our multifractal analysis leads us to identify two kinds of mobility edges, one of which occurs near the Fermi energy and the other of which appears at a high energy, where the density of states at the Fermi energy shows the Coulomb-gap feature. We observe that the multifractal exponent at the high-energy mobility edge remains to be almost identical to that of the Anderson localization transition in the absence of Coulomb interactions. On the other hand, we find that the multifractal exponent near the Fermi energy is more enhanced than that at the high-energy mobility edge, suspected to result from interaction effects. However, both the multifractal exponents do not change even if the strength of the Coulomb interaction varies. We also show that the

  13. Ultrasonic investigation of phonon localization in a disordered three-dimensional 'mesoglass'

    International Nuclear Information System (INIS)

    Page, J H; Hu, H; Skipetrov, S; Tiggelen, B A van

    2007-01-01

    One of the long standing questions in phonon physics has been whether or not the Anderson localization of acoustic phonons can be demonstrated unambiguously in disordered materials. In this paper, this question is addressed by reporting signatures of the localization of ultrasonic waves in a 'mesoglass' made from a disordered three-dimensional network of aluminum beads. In the upper part of the intermediate frequency regime, which extends over the range of frequencies where the acoustic phonon wavelength is comparable with the sizes of the pores and beads, the intensity distributions of the speckle patterns due to strong multiple scattering show clear departures from Rayleigh statistics, with a variance that increases with frequency. This intensity distribution can be fitted with a stretched exponential, consistent with recent predictions for localization. In this frequency range, the time-of-flight profile of the transmitted intensity exhibits a non-exponential decay, which may be construed as a slowing down of the phonon diffusion coefficient with propagation time. These results are interpreted using recent theoretical predictions based on the self-consistent theory of the dynamics of localization, showing that our experimental data are consistent with the localization of acoustic waves in this mesoglass, and further elucidating their behaviour

  14. Near field imaging of transient collisional excitation x-ray laser

    International Nuclear Information System (INIS)

    Tanaka, Momoko; Kado, Masataka; Hasegawa, Noboru; Kawachi, Tetsuya; Sukegawa, Kouta; Lu, Peixiang; Nagashima, Akira; Kato, Yoshiaki

    2001-01-01

    We observed the spatial profile of the transient collisional excitation Ni-like Ag laser (λ=13.9 nm) for various plasma lengths using the near field imaging method. The gain coefficient of the x-ray laser was estimated as 24 cm -1 . The gain region was a 50 μm crescent shape and included localized high gain areas. (author)

  15. VizieR Online Data Catalog: Radio observations of Galactic WISE HII regions (Anderson+, 2015)

    Science.gov (United States)

    Anderson, L. D.; Armentrout, W. P.; Johnstone, B. M.; Bania, T. M.; Balser, D. S.; Wenger, T. V.; Cunningham, V.

    2016-01-01

    We draw our targets from the MIR objects in the WISE catalog of Anderson+, 2014, J/ApJS/212/1. We also include in our sample Sharpless H II regions (Sharpless 1959, VII/20). See section 2 for further details. Our observations were made with the GBT 100m telescope from 2012 July through 2014 August. There are seven radio recombination lines (RRLs) that can be cleanly observed simultaneously with the GBT in the X-band: H87α to H93α. We average these seven RRLs (each at two orthogonal polarizations) to create a single average RRL spectrum. We followed the same GBT observational procedure as in the original HRDS (Green Bank Telescope H II Region Discovery Survey (GBT HRDS; Bania et al. 2010ApJ...718L.106B). (3 data files).

  16. Diseño Mc. Lean‐Anderson aplicado para obtener recubrimientos de electrodos aleados con carbono, cromo y titanio//Mc. Lean‐Anderson design applied for recovered electrodes obtaining with carbon, chrome and titanium alloys

    Directory of Open Access Journals (Sweden)

    Carlos René Gómez-Pérez

    2013-05-01

    Full Text Available En el trabajo se estudia el comportamiento de electrodos recubiertos destinados al relleno superficial con el proceso de soldadura manual (SMAW, Shielded Metal Arc Welding. Para el diseño experimental se aplican un procedimiento de cálculo para el revestimiento y un plan de mezclas del tipo Mc. Lean-Anderson. En el diseño se conjuga una matriz compuesta por Calcita (26,73 %, Ferrosilicio (19,02 %,Ferromanganeso (16,58 %, Rutilo (26,69 %, Silicato de Potasio (11,70 % y diferentes cargas de aleación conformadas por Grafito (2 ≤ X1 ≤ 10 %, Ferro Cromo (5 ≤ X2 ≤ 35 %, ferrotungsteno (5 ≤ X3 ≤ 10 % y matriz (60 ≤ X4 ≤ 80 %. En el trabajo se ofrecen criterios sobre la selección de los niveles límites a explorar durante el plan experimental, a partir de consideraciones sobre los materiales empleados, sus rangos y el procedimiento de fabricación de los electrodos.Palabras claves: electrodos recubiertos, recubrimientos de electrodos, smaw, diseño de experimentos, relleno superficial._______________________________________________________________________________AbstractIn the present work the behavior of recovered electrodes for superficial filler with Shielded Metal Arc Welding (SMAW process is study. For the experimental design a coating calculation procedure and a Mc. Lean- Anderson type experimental plan are used. On the experimental design a matrix, composed by Calcite (26,73 %, Ferrosilicio (19,02%, Ferromanganese (16,58%, Rutile (26,69%, Potassium Silicate (11,70 %, and a alloy, conformed by Graphite (2 ≤ X1 ≤ 10, Ferro Chromium (5 ≤ X2 ≤ 35 %, ferrotungsteno (5 ≤ X3 ≤ 10 % and matrix (60 ≤ X4 ≤ 80 % is conjugated. In the work some criteria on the selection of the levels limits to explore during the experimental plan are offer, starting from considerations on the materials employees, their ranges and the procedure of production of the electrodes.Key words: recovered electrodes, electrodes coating, smaw

  17. Elementary excitations in nuclei

    International Nuclear Information System (INIS)

    Lemmer, R.H.

    1987-01-01

    The role of elementary quasi-particle and quasi-hole excitations is reviewed in connection with the analysis of data involving high-lying nuclear states. This article includes discussions on: (i) single quasi-hole excitations in pick-up reactions, (ii) the formation of single quasi-hole and quasi-particle excitations (in different nuclei) during transfer reactions, followed by (iii) quasi-particle quasi-hole excitations in the same nucleus that are produced by photon absorption. Finally, the question of photon absorption in the vicinity of the elementary Δ resonance is discussed, where nucleonic as well as nuclear degrees of freedom can be excited

  18. Luminescence and excited state dynamics in Bi{sup 3+}-doped LiLaP{sub 4}O{sub 12} phosphates

    Energy Technology Data Exchange (ETDEWEB)

    Babin, V. [Institute of Physics AS CR, Cukrovarnicka 10, 16200 Prague (Czech Republic); Chernenko, K., E-mail: nuclearphys@yandex.ru [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Peter the Great Saint-Petersburg Polytechnic University, Polytekhnicheskaya 29, 195251 St.Petersburg (Russian Federation); Demchenko, P. [Ivan Franko National University of Lviv, Kyryla i Mefodiya 8a, 79005 Lviv (Ukraine); Mihokova, E.; Nikl, M. [Institute of Physics AS CR, Cukrovarnicka 10, 16200 Prague (Czech Republic); Pashuk, I. [Ivan Franko National University of Lviv, Kyryla i Mefodiya 8a, 79005 Lviv (Ukraine); Shalapska, T. [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Voloshinovskii, A. [Ivan Franko National University of Lviv, Kyryla i Mefodiya 8a, 79005 Lviv (Ukraine); Zazubovich, S. [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia)

    2016-08-15

    Photo- and X-ray-excited luminescence characteristics of Bi-doped LiLaP{sub 4}O{sub 12} phosphates with different bismuth contents (from 1 to 25 at% in the melt) are investigated in the 4.2–300 K temperature range and compared with the characteristics of the undoped LiLaP{sub 4}O{sub 12} phosphate. The broad 2.95 eV emission band of LiLaP{sub 4}O{sub 12}:Bi excited around 5.4 eV is found to arise from the bismuth dopant. Relatively large FWHM and Stokes shift of the emission band and especially the data on the low-temperature decay kinetics of the 2.95 eV emission and its temperature dependence, indicating a very small spin-orbit splitting energy of the corresponding excited state, allow the conclusion that this emission arises from the radiative decay of the triplet state of an exciton localized around a Bi{sup 3+} ion. No spectral bands are observed, arising from the electron transitions between the energy levels of Bi{sup 3+} ions. Phenomenological model is proposed for the description of the excited state dynamics of the Bi{sup 3+}-related localized exciton in LiLaP{sub 4}O{sub 12}:Bi and the parameters of the triplet localized exciton state are determined. Keywords: Photoluminescence; Time-resolved spectroscopy; Excited states; Bi{sup 3+} centers; LiLaP{sub 4}O{sub 12}:Bi powders.

  19. Theoretical and experimental study of resonant inelastic X-ray scattering for NiO

    International Nuclear Information System (INIS)

    Kotani, A.; Matsubara, M.; Uozumi, T.; Ghiringhelli, G.; Fracassi, F.; Dallera, C.; Tagliaferri, A.; Brookes, N.B.; Braicovich, L.

    2006-01-01

    Resonant inelastic X-ray scattering (RIXS) spectra for Ni 2p to 3d excitation and 3d to 2p de-excitation of NiO are studied both theoretically and experimentally. Theoretical calculations with a single impurity Anderson model (SIAM) describe the charge transfer (CT) and d-d excitations in RIXS, and detailed study is made for the CT energy. High resolution RIXS measurements reveal the precise d-d excitation structure and its polarization dependence, and they are well reproduced by the SIAM calculation

  20. Quanty for core level spectroscopy - excitons, resonances and band excitations in time and frequency domain

    International Nuclear Information System (INIS)

    Haverkort, Maurits W.

    2016-01-01

    Depending on the material and edge under consideration, core level spectra manifest themselves as local excitons with multiplets, edge singularities, resonances, or the local projected density of states. Both extremes, i.e., local excitons and non-interacting delocalized excitations are theoretically well under control. Describing the intermediate regime, where local many body interactions and band-formation are equally important is a challenge. Here we discuss how Quanty , a versatile quantum many body script language, can be used to calculate a variety of different core level spectroscopy types on solids and molecules, both in the frequency as well as the time domain. The flexible nature of Quanty allows one to choose different approximations for different edges and materials. For example, using a newly developed method merging ideas from density renormalization group and quantum chemistry [1-3], Quanty can calculate excitons, resonances and band-excitations in x-ray absorption, photoemission, x-ray emission, fluorescence yield, non-resonant inelastic x-ray scattering, resonant inelastic x-ray scattering and many more spectroscopy types. Quanty can be obtained from: http://www.quanty.org. (paper)

  1. Characterizing human activity induced impulse and slip-pulse excitations through structural vibration

    Science.gov (United States)

    Pan, Shijia; Mirshekari, Mostafa; Fagert, Jonathon; Ramirez, Ceferino Gabriel; Chung, Albert Jin; Hu, Chih Chi; Shen, John Paul; Zhang, Pei; Noh, Hae Young

    2018-02-01

    Many human activities induce excitations on ambient structures with various objects, causing the structures to vibrate. Accurate vibration excitation source detection and characterization enable human activity information inference, hence allowing human activity monitoring for various smart building applications. By utilizing structural vibrations, we can achieve sparse and non-intrusive sensing, unlike pressure- and vision-based methods. Many approaches have been presented on vibration-based source characterization, and they often either focus on one excitation type or have limited performance due to the dispersion and attenuation effects of the structures. In this paper, we present our method to characterize two main types of excitations induced by human activities (impulse and slip-pulse) on multiple structures. By understanding the physical properties of waves and their propagation, the system can achieve accurate excitation tracking on different structures without large-scale labeled training data. Specifically, our algorithm takes properties of surface waves generated by impulse and of body waves generated by slip-pulse into account to handle the dispersion and attenuation effects when different types of excitations happen on various structures. We then evaluate the algorithm through multiple scenarios. Our method achieves up to a six times improvement in impulse localization accuracy and a three times improvement in slip-pulse trajectory length estimation compared to existing methods that do not take wave properties into account.

  2. Nonlocal analysis of the excitation of the geodesic acoustic mode by drift waves

    DEFF Research Database (Denmark)

    Guzdar, P.N.; Kleva, R.G.; Chakrabarti, N.

    2009-01-01

    The geodesic acoustic modes (GAMs) are typically observed in the edge region of toroidal plasmas. Drift waves have been identified as a possible cause of excitation of GAMs by a resonant three wave parametric process. A nonlocal theory of excitation of these modes in inhomogeneous plasmas typical...... of the edge region of tokamaks is presented in this paper. The continuum GAM modes with coupling to the drift waves can create discrete "global" unstable eigenmodes localized in the edge "pedestal" region of the plasma. Multiple resonantly driven unstable radial eigenmodes can coexist on the edge pedestal....

  3. Pairing-bag excitations in small-coherence-length superconductors

    International Nuclear Information System (INIS)

    Bishop, A.R.; Lomdahl, P.S.; Schrieffer, J.R.; Trugman, S.A.

    1988-01-01

    Localized baglike solutions in the pairing theory of superconductivity are studied. Starting from the Bogoliubov--de Gennes equations on a two-dimensional square lattice for half-filled negative-U Hubbard model, cigar- and star-shaped bags are numerically obtained, inside of which the order parameter is reduced, self-consistently trapping an added quasiparticle. These nonlinear excitations are important when the coherence length is small as for the new high-temperature superconductors. Several experimental consequences are discussed

  4. Local quantum thermal susceptibility

    Science.gov (United States)

    de Pasquale, Antonella; Rossini, Davide; Fazio, Rosario; Giovannetti, Vittorio

    2016-09-01

    Thermodynamics relies on the possibility to describe systems composed of a large number of constituents in terms of few macroscopic variables. Its foundations are rooted into the paradigm of statistical mechanics, where thermal properties originate from averaging procedures which smoothen out local details. While undoubtedly successful, elegant and formally correct, this approach carries over an operational problem, namely determining the precision at which such variables are inferred, when technical/practical limitations restrict our capabilities to local probing. Here we introduce the local quantum thermal susceptibility, a quantifier for the best achievable accuracy for temperature estimation via local measurements. Our method relies on basic concepts of quantum estimation theory, providing an operative strategy to address the local thermal response of arbitrary quantum systems at equilibrium. At low temperatures, it highlights the local distinguishability of the ground state from the excited sub-manifolds, thus providing a method to locate quantum phase transitions.

  5. A scalable piezoelectric impulse-excited energy harvester for human body excitation

    International Nuclear Information System (INIS)

    Pillatsch, P; Yeatman, E M; Holmes, A S

    2012-01-01

    Harvesting energy from low-frequency and non-harmonic excitations typical of human motion presents specific challenges. While resonant devices do have an advantage in environments where the excitation frequency is constant, and while they can make use of the entire proof mass travel range in the case of excitation amplitudes that are smaller than the internal displacement limit, they are not suitable for body applications since the frequencies are random and the amplitudes tend to be larger than the device size. In this paper a piezoelectric, impulse-excited approach is presented. A cylindrical proof mass actuates an array of piezoelectric bi-morph beams through magnetic attraction. After the initial excitation these transducers are left to vibrate at their natural frequency. This increases the operational frequency range as well as the electromechanical coupling. The principle of impulse excitation is discussed and a centimetre-scale functional model is introduced as a proof of concept. The obtained data show the influence of varying the frequency, acceleration and proof mass. Finally, a commercially available integrated circuit for voltage regulation is tested. At a frequency of 2 Hz and an acceleration of 2.7 m s −2 a maximal power output of 2.1 mW was achieved. (paper)

  6. Electron impact excitation and ionization of laser-excited sodium atoms Na*(7d)

    International Nuclear Information System (INIS)

    Nienhaus, J.; Dorn, A.; Mehlhorn, W.; Zatsarinny, O.I.

    1997-01-01

    We have investigated the ejected-electron spectrum following impact excitation and ionization of laser-excited Na * (nl) atoms by 1.5 keV electrons. By means of two-laser excitation 3s → 3p 3/2 → 7d and subsequent cascading transitions about 8% (4%) of the target atoms were in excited states with n > 3 (7d). The experimental ejected-electron spectrum due to the decay of Auger and autoionization states of laser-excited atoms Na * (nl) with n = 4-7 has been fully interpreted by comprehensive calculations of the energies, cross sections and decay probabilities of the corresponding states. The various processes contributing to the ejected-electron spectrum are with decreasing magnitude: 2s ionization leading to 2s2p 6 nl Auger states, 2p → 3s excitation leading to 2p 5 3s( 1 P)nl autoionization states and 2s → 3l' excitation leading to 2s2p 6 3l'( 1 L)nl autoionization states. (Author)

  7. A vueltas con la alfabetización visual: lenguaje y significado en las películas de Wes Anderson

    OpenAIRE

    Ferreras Rodríguez, José Gabriel; Leite, Lucimeire Virgilio

    2008-01-01

    El presente artículo tiene por objetivo discutir algunos elementos del concepto de la alfabetización visual, aplicando, luego, las herramientas de análisis de imágenes a las películas de Wes Anderson, como ejemplos del manejo intencional de las imágenes para transmitir determinados significados. The present article aims to discuss, firstly, some elements encompassed in the definition of visual literary and, secondly, to apply some image analysis tools to Wes Anderson’s movies, as examples ...

  8. A vueltas con la alfabetización visual: lenguaje y significado en las películas de Wes Anderson

    OpenAIRE

    José Gabriel Ferreras Rodríguez; Lucimeire Vergilio Leite

    2008-01-01

    El presente artículo tiene por objetivo discutir algunos elementos del concepto de la alfabetización visual, aplicando, luego, las herramientas de análisis de imágenes a las películas de Wes Anderson, como ejemplos del manejo intencional de las imágenes para transmitir determinados significados. The present article aims to discuss, firstly, some elements encompassed in the definition of visual literary and, secondly, to apply some image analysis tools to Wes Anderson’s movies, as examples of...

  9. Omnidirectional excitation of sidewall gap-plasmons in a hybrid gold-nanoparticle/aluminum-nanopore structure

    Directory of Open Access Journals (Sweden)

    Chatdanai Lumdee

    2016-06-01

    Full Text Available The gap-plasmon resonance of a gold nanoparticle inside a nanopore in an aluminum film is investigated in polarization dependent single particle microscopy and spectroscopy. Scattering and transmission measurements reveal that gap-plasmons of this structure can be excited and observed under normal incidence excitation and collection, in contrast to the more common particle-on-a-mirror structure. Correlation of numerical simulations with optical spectroscopy suggests that a local electric field enhancement factor in excess of 50 is achieved under normal incidence excitation, with a hot-spot located near the top surface of the structure. It is shown that the strong field enhancement from this sidewall gap-plasmon mode can be efficiently excited over a broad angular range. The presented plasmonic structure lends itself to implementation in low-cost, chemically stable, easily addressable biochemical sensor arrays providing large optical field enhancement factors.

  10. Spatial dispersion effects upon local excitation of extrinsic plasmons in a graphene micro-disk

    Science.gov (United States)

    Mencarelli, D.; Bellucci, S.; Sindona, A.; Pierantoni, L.

    2015-11-01

    Excitation of surface plasmon waves in extrinsic graphene is studied using a full-wave electromagnetic field solver as analysis engine. Particular emphasis is placed on the role played by spatial dispersion due to the finite size of the two-dimensional material at the micro-scale. A simple instructive set up is considered where the near field of a wire antenna is held at sub-micrometric distance from a disk-shaped graphene patch. The key-input of the simulation is the graphene conductivity tensor at terahertz frequencies, being modeled by the Boltzmann transport equation for the valence and conduction electrons at the Dirac points (where a linear wave-vector dependence of the band energies is assumed). The conductivity equation is worked out in different levels of approximations, based on the relaxation time ansatz with an additional constraint for particle number conservation. Both drift and diffusion currents are shown to significantly contribute to the spatially dispersive anisotropic features of micro-scale graphene. More generally, spatial dispersion effects are predicted to influence not only plasmon propagation free of external sources, but also typical scanning probe microscopy configurations. The paper sets the focus on plasmon excitation phenomena induced by near field probes, being a central issue for the design of optical devices and photonic circuits.

  11. Ion cyclotron wave excitation by double resonance coupling

    International Nuclear Information System (INIS)

    Fasoli, A.; Good, T.N.; Paris, P.J.; Skiff, F.; Tran, M.Q.

    1990-07-01

    A modulated high frequency wave is used to remotely excite low frequency oscillations in a linear, strongly magnetized plasma column. An electromagnetic wave is launched as an extraordinary mode across the plasma by an external waveguide in the Upper Hybrid frequency regime f=f UH =f ce =8 GHz, with P≤2 W. By frequency modulating (at f FM =1-60 kHz, with f ci ≅30 kHz) the pump wave, the resonant layer is swept radially across the profile and perpendicularly to the field lines at f=f FM . The resulting radial oscillation of the electron linear and non linear pressure can be considered to act as a source term for the ion wave. A localized virtual antenna is thereby created inside the plasma. Measurements of the ion dielectric response (interferograms and perturbed distribution functions) via laser induced fluorescence identify the two branches (forward, or ion-acoustic-like, and backward, or Bernstein, modes) of the electrostatic dispersion relation in the ion cyclotron frequency range. By changing the modulation bandwidth, and thus the spatial excursion of the oscillating resonant layer, a control on the perpendicular wavelength of the excited mode can be exerted. In particular, the possibility of selective excitation of the ion Bernstein wave is demonstrated experimentally. (author) 38 refs., 13 figs

  12. Stick-Slip Analysis of a Drill String Subjected to Deterministic Excitation and Stochastic Excitation

    Directory of Open Access Journals (Sweden)

    Hongyuan Qiu

    2016-01-01

    Full Text Available Using a finite element model, this paper investigates the torsional vibration of a drill string under combined deterministic excitation and random excitation. The random excitation is caused by the random friction coefficients between the drill bit and the bottom of the hole and assumed as white noise. Simulation shows that the responses under random excitation become random too, and the probabilistic distribution of the responses at each discretized time instant is obtained. The two points, entering and leaving the stick stage, are examined with special attention. The results indicate that the two points become random under random excitation, and the distributions are not normal even when the excitation is assumed as Gaussian white noise.

  13. Impulse excitation scanning acoustic microscopy for local quantification of Rayleigh surface wave velocity using B-scan analysis

    Science.gov (United States)

    Cherry, M.; Dierken, J.; Boehnlein, T.; Pilchak, A.; Sathish, S.; Grandhi, R.

    2018-01-01

    A new technique for performing quantitative scanning acoustic microscopy imaging of Rayleigh surface wave (RSW) velocity was developed based on b-scan processing. In this technique, the focused acoustic beam is moved through many defocus distances over the sample and excited with an impulse excitation, and advanced algorithms based on frequency filtering and the Hilbert transform are used to post-process the b-scans to estimate the Rayleigh surface wave velocity. The new method was used to estimate the RSW velocity on an optically flat E6 glass sample, and the velocity was measured at ±2 m/s and the scanning time per point was on the order of 1.0 s, which are both improvement from the previous two-point defocus method. The new method was also applied to the analysis of two titanium samples, and the velocity was estimated with very low standard deviation in certain large grains on the sample. A new behavior was observed with the b-scan analysis technique where the amplitude of the surface wave decayed dramatically on certain crystallographic orientations. The new technique was also compared with previous results, and the new technique has been found to be much more reliable and to have higher contrast than previously possible with impulse excitation.

  14. Application of an excited state LDA exchange energy functional for the calculation of transition energy of atoms within time-independent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Shamim, Md; Harbola, Manoj K, E-mail: sami@iitk.ac.i, E-mail: mkh@iitk.ac.i [Department of Physics, Indian Institute of Technology, Kanpur 208 016 (India)

    2010-11-14

    Transition energies of a new class of excited states (two-gap systems) of various atoms are calculated in time-independent density functional formalism by using a recently proposed local density approximation exchange energy functional for excited states. It is shown that the excitation energies calculated with this functional compare well with those calculated with exact exchange theories.

  15. Application of an excited state LDA exchange energy functional for the calculation of transition energy of atoms within time-independent density functional theory

    International Nuclear Information System (INIS)

    Shamim, Md; Harbola, Manoj K

    2010-01-01

    Transition energies of a new class of excited states (two-gap systems) of various atoms are calculated in time-independent density functional formalism by using a recently proposed local density approximation exchange energy functional for excited states. It is shown that the excitation energies calculated with this functional compare well with those calculated with exact exchange theories.

  16. Electron-excited molecule interactions

    International Nuclear Information System (INIS)

    Christophorou, L.G.; Tennessee Univ., Knoxville, TN

    1991-01-01

    In this paper the limited but significant knowledge to date on electron scattering from vibrationally/rotationally excited molecules and electron scattering from and electron impact ionization of electronically excited molecules is briefly summarized and discussed. The profound effects of the internal energy content of a molecule on its electron attachment properties are highlighted focusing in particular on electron attachment to vibrationally/rotationally and to electronically excited molecules. The limited knowledge to date on electron-excited molecule interactions clearly shows that the cross sections for certain electron-molecule collision processes can be very different from those involving ground state molecules. For example, optically enhanced electron attachment studies have shown that electron attachment to electronically excited molecules can occur with cross sections 10 6 to 10 7 times larger compared to ground state molecules. The study of electron-excited molecule interactions offers many experimental and theoretical challenges and opportunities and is both of fundamental and technological significance. 54 refs., 15 figs

  17. Emergent Percolation Length and Localization in Random Elastic Networks

    Directory of Open Access Journals (Sweden)

    Ariel Amir

    2013-06-01

    Full Text Available We study, theoretically and numerically, a minimal model for phonons in a disordered system. For sufficient disorder, the vibrational modes of this classical system can become Anderson localized, yet this problem has received significantly less attention than its electronic counterpart. We find rich behavior in the localization properties of the phonons as a function of the density, frequency, and spatial dimension. We use a percolation analysis to argue for a Debye spectrum at low frequencies for dimensions higher than one, and for a localization-delocalization transition (at a critical frequency above two dimensions. We show that in contrast to the behavior in electronic systems, the transition exists for arbitrarily large disorder, albeit with an exponentially small critical frequency. The structure of the modes reflects a divergent percolation length that arises from the disorder in the springs without being explicitly present in the definition of our model. Within the percolation approach, we calculate the speed of sound of the delocalized modes (phonons, which we corroborate with numerics. We find the critical frequency of the localization transition at a given density and find good agreement of these predictions with numerical results using a recursive Green-function method that was adapted for this problem. The connection of our results to recent experiments on amorphous solids is discussed.

  18. a simple a simple excitation control excitation control excitation

    African Journals Online (AJOL)

    eobe

    field voltages determined follow a simple quadratic relationship that offer a very simple control scheme, dependent on only the stator current. Keywords: saturated reactances, no-load field voltage, excitation control, synchronous generators. 1. Introduction. Introduction. Introduction. The commonest generator in use today is ...

  19. Two-photon mapping of localized field enhancements in thin nanostrip antennas

    DEFF Research Database (Denmark)

    Beermann, I.; Novikov, S.M.; Søndergaard, Thomas

    2008-01-01

    scanning optical microscopy, in which two-photon-excited photoluminescence (TPL) excited with a strongly focused laser beam at the wavelength 745 nm is detected. We use TPL images to map the local field enhancements from individual nanostrips at a resolution of 0.35µm and compare results with theoretical......Resonant scattering and local field enhancements by 11-nm-thin gold nanostrip antennas due to constructive interference of counter propagating slow surface plasmon polaritons is investigated. We characterize nanostrips of widths between 50-530 nm using both reflection spectroscopy and nonlinear...

  20. Excited states v.6

    CERN Document Server

    Lim, Edward C

    1982-01-01

    Excited States, Volume 6 is a collection of papers that discusses the excited states of molecules. The first paper discusses the linear polyene electronic structure and potential surfaces, considering both the theoretical and experimental approaches in such electronic states. This paper also reviews the theory of electronic structure and cites some experimental techniques on polyene excitations, polyene spectroscopic phenomenology, and those involving higher states of polyenes and their triplet states. Examples of these experimental studies of excited states involve the high-resolution one-pho