WorldWideScience

Sample records for anderson localization excited

  1. Signatures of Anderson localization excited by an optical frequency comb

    KAUST Repository

    Gentilini, S.

    2010-01-25

    We investigate Anderson localization of light as occurring in ultrashort excitations. A theory based on time dependent coupled-mode equations predicts universal features in the spectrum of the transmitted pulse. In particular, the process of strong localization of light is shown to correspond to the formation of peaks in both the amplitude and in the group delay of the transmitted pulse. Parallel ab initio simulations made with finite-difference time-domain codes and molecular dynamics confirm theoretical predictions, while showing that there exists an optimal degree of disorder for the strong localization. © 2010 The American Physical Society.

  2. Anderson localization in metallic nanoparticle arrays

    Science.gov (United States)

    Mai, Zhijie; Lin, Fang; Pang, Wei; Xu, Haitao; Tan, Suiyan; Fu, Shenhe; Li, Yongyao

    2016-06-01

    Anderson localization has been observed in various types of waves, such as matter waves, optical waves and acoustic waves. Here we reveal that the effect of Anderson localization can be also induced in metallic nonlinear nanoparticle arrays excited by a random electrically driving field. We find that the dipole-induced nonlinearity results in ballistic expansion of dipole intensity during evolution; while the randomness of the external driving field can suppress such an expansion. Increasing the strength of randomness above the threshold value, a localized pattern of dipole intensity can be generated in the metallic nanoparticle arrays. By means of statistics, the mean intensity distribution of the dipoles reveals the formation of Anderson localization. We further show that the generated Anderson localization is highly confined, with its size down to the scale of incident wavelength. The reported results might facilitate the manipulations of electromagnetic fields in the scale of wavelength.

  3. Anderson localization in metallic nanoparticle arrays

    CERN Document Server

    Mai, Zhijie; Pang, Wei; Xu, Haitao; Tan, Suiyan; Fu, Shenhe; Li, Yongyao

    2016-01-01

    Anderson localization has been observed in various types of waves, such as matter waves, optical waves and acoustic waves. Here we reveal that the effect of Anderson localization can be also induced in metallic nonlinear nanoparticle arrays excited by a random electrically driving field. We find that the dipole-induced nonlinearity results in ballistic expansion of dipole intensity during evolution; while the randomness of the external driving field can suppress such an expansion. Increasing the strength of randomness above the threshold value, a localized pattern of dipole intensity can be generated in the metallic nanoparticle arrays. By means of statistics, the mean intensity distribution of the dipoles reveals the formation of Anderson localization. We further show that the generated Anderson localization is highly confined, with its size down to the scale of incident wavelength. The reported results might facilitate the manipulations of electromagnetic fields in the scale of wavelength.

  4. 50 Years of Anderson Localization

    CERN Document Server

    Abrahams, Elihu

    2010-01-01

    In his groundbreaking paper Absence of diffusion in certain random lattices (1958), Philip W. Anderson originated, described and developed the physical principles underlying the phenomenon of the localization of quantum objects due to disorder. Anderson's 1977 Nobel Prize citation featured that paper, which was fundamental for many subsequent developments in condensed matter theory and technical applications. After more than a half century, the subject continues to be of fundamental importance. In particular, in the last 25 years, the phenomenon of localization has proved to be crucial for the

  5. Anderson localization from classical trajectories

    OpenAIRE

    Brouwer, Piet W.; Altland, Alexander

    2008-01-01

    We show that Anderson localization in quasi-one dimensional conductors with ballistic electron dynamics, such as an array of ballistic chaotic cavities connected via ballistic contacts, can be understood in terms of classical electron trajectories only. At large length scales, an exponential proliferation of trajectories of nearly identical classical action generates an abundance of interference terms, which eventually leads to a suppression of transport coefficients. We quantitatively descri...

  6. Effect of coulomb interaction on Anderson localization

    International Nuclear Information System (INIS)

    We study the quantum mechanics of interacting particles in a disordered system, and in particular, what happens to Anderson localisation when interaction is taken into account. In the first part, one looks at the excited states of two particles in one dimension. For this model, it has been shown (Shepelyansky 1994) that a local repulsive interaction can partially destroy Anderson localisation. Here, we show that this model has similarities with the three-dimensional Anderson model at the metal-insulator transition. In particular, the maximum of rigidity obtained in the spectral statistics correspond to some intermediary statistics that cannot be described by random matrix theory neither by a Poisson statistics. The wave functions show a multifractal behaviour and the spreading of the center of mass of a wave packet is logarithmic in time. The second part deals with the ground state of a finite density of spinless fermions in two dimensions. After the scaling theory of localisation, it was commonly accepted that there was no metal in two dimensions. This idea has been challenged by the observation of a metal-insulator transition in low density electron gas (Kravchenko et al. 1994). We propose a scenario in which a metallic phase occurs between the Anderson insulator and the pinned Wigner crystal. This intermediate phase is characterized by an alignment of the local currents flowing in the system. (author)

  7. Anderson localization in nonlocal nonlinear media

    OpenAIRE

    Folli, Viola; Conti, Claudio

    2012-01-01

    The effect of focusing and defocusing nonlinearities on Anderson localization in highly nonlocal media is theoretically and numerically investigated. A perturbative approach is developed to solve the nonlocal nonlinear Schroedinger equation in the presence of a random potential, showing that nonlocality stabilizes Anderson states.

  8. Probing the statistical properties of Anderson localization with quantum emitters

    DEFF Research Database (Denmark)

    Smolka, Stephan; Nielsen, Henri Thyrrestrup; Sapienza, Luca;

    2011-01-01

    embedded in disordered photonic crystal waveguides as light sources. Anderson-localized modes are efficiently excited and the analysis of the photoluminescence spectra allows us to explore their statistical properties, for example the localization length and average loss length. With increasing the amount...

  9. Random nanolasing in the Anderson localized regime

    DEFF Research Database (Denmark)

    Liu, Jin; Garcia, P. D.; Ek, Sara;

    2014-01-01

    multiple scattering. The applicability of random lasers has been limited due to multidirectional emission, lack of tunability, and strong mode competition with chaotic fluctuations due to a weak mode confinement. The regime of Anderson localization of light has been proposed for obtaining stable multimode...... random lasing, and initial work concerned macroscopic one-dimensional layered media. Here, we demonstrate on-chip random nanolasers where the cavity feedback is provided by the intrinsic disorder. The strong confinement achieved by Anderson localization reduces the spatial overlap between lasing modes...

  10. Universal mechanism for Anderson and weak localization.

    Science.gov (United States)

    Filoche, Marcel; Mayboroda, Svitlana

    2012-09-11

    Localization of stationary waves occurs in a large variety of vibrating systems, whether mechanical, acoustical, optical, or quantum. It is induced by the presence of an inhomogeneous medium, a complex geometry, or a quenched disorder. One of its most striking and famous manifestations is Anderson localization, responsible for instance for the metal-insulator transition in disordered alloys. Yet, despite an enormous body of related literature, a clear and unified picture of localization is still to be found, as well as the exact relationship between its many manifestations. In this paper, we demonstrate that both Anderson and weak localizations originate from the same universal mechanism, acting on any type of vibration, in any dimension, and for any domain shape. This mechanism partitions the system into weakly coupled subregions. The boundaries of these subregions correspond to the valleys of a hidden landscape that emerges from the interplay between the wave operator and the system geometry. The height of the landscape along its valleys determines the strength of the coupling between the subregions. The landscape and its impact on localization can be determined rigorously by solving one special boundary problem. This theory allows one to predict the localization properties, the confining regions, and to estimate the energy of the vibrational eigenmodes through the properties of one geometrical object. In particular, Anderson localization can be understood as a special case of weak localization in a very rough landscape. PMID:22927384

  11. Anderson localization of light with topological dislocations

    CERN Document Server

    Lobanov, Valery E; Vysloukh, Victor A; Torner, Lluis

    2013-01-01

    We predict Anderson localization of light with nested screw topological dislocations propagating in disordered two-dimensional arrays of hollow waveguides illuminated by vortex beams. The phenomenon manifests itself in the statistical presence of topological dislocations in ensemble-averaged output distributions accompanying standard disorder-induced localization of light spots. Remarkably, screw dislocations are captured by the light spots despite the fast and irregular transverse displacements and topological charge flipping undertaken by the dislocations due to the disorder. The statistical averaged modulus of the output local topological charge depends on the initial vorticity carried by the beam.

  12. Distribution of critical temperature at Anderson localization

    Science.gov (United States)

    Gammag, Rayda; Kim, Ki-Seok

    2016-05-01

    Based on a local mean-field theory approach at Anderson localization, we find a distribution function of critical temperature from that of disorder. An essential point of this local mean-field theory approach is that the information of the wave-function multifractality is introduced. The distribution function of the Kondo temperature (TK) shows a power-law tail in the limit of TK→0 regardless of the Kondo coupling constant. We also find that the distribution function of the ferromagnetic transition temperature (Tc) gives a power-law behavior in the limit of Tc→0 when an interaction parameter for ferromagnetic instability lies below a critical value. However, the Tc distribution function stops the power-law increasing behavior in the Tc→0 limit and vanishes beyond the critical interaction parameter inside the ferromagnetic phase. These results imply that the typical Kondo temperature given by a geometric average always vanishes due to finite density of the distribution function in the TK→0 limit while the typical ferromagnetic transition temperature shows a phase transition at the critical interaction parameter. We propose that the typical transition temperature serves a criterion for quantum Griffiths phenomena vs smeared transitions: Quantum Griffiths phenomena occur above the typical value of the critical temperature while smeared phase transitions result at low temperatures below the typical transition temperature. We speculate that the ferromagnetic transition at Anderson localization shows the evolution from quantum Griffiths phenomena to smeared transitions around the critical interaction parameter at low temperatures.

  13. Kolmogorov turbulence, Anderson localization and KAM integrability

    Science.gov (United States)

    Shepelyansky, D. L.

    2012-06-01

    The conditions for emergence of Kolmogorov turbulence, and related weak wave turbulence, in finite size systems are analyzed by analytical methods and numerical simulations of simple models. The analogy between Kolmogorov energy flow from large to small spacial scales and conductivity in disordered solid state systems is proposed. It is argued that the Anderson localization can stop such an energy flow. The effects of nonlinear wave interactions on such a localization are analyzed. The results obtained for finite size system models show the existence of an effective chaos border between the Kolmogorov-Arnold-Moser (KAM) integrability at weak nonlinearity, when energy does not flow to small scales, and developed chaos regime emerging above this border with the Kolmogorov turbulent energy flow from large to small scales.

  14. Anderson localization and momentum-space entanglement

    International Nuclear Information System (INIS)

    We consider Anderson localization and the associated metal–insulator transition for non-interacting fermions in D = 1, 2 space dimensions in the presence of spatially correlated on-site random potentials. To assess the nature of the wave function, we follow a recent proposal to study momentum-space entanglement. For a D = 1 model with long-range disorder correlations, both the entanglement spectrum and the entanglement entropy allow us to clearly distinguish between extended and localized states based upon a single realization of disorder. However, for other models, including the D = 2 case with long-range correlated disorder, we find that the method is not similarly successful. We analyze the reasons for its failure, concluding that the much desired generalization to higher dimensions may be problematic. (paper)

  15. Controlling Anderson localization in disordered photonic crystal waveguides

    DEFF Research Database (Denmark)

    Garcia-Fernández, David; Smolka, Stephan; Stobbe, Søren;

    2010-01-01

    In most experiments on Anderson localization so far, only completely random systems without any long-range correlation between the scattering sites have been used, meaning that the Anderson localized modes cannot be controlled. Strongly confined modes were recently observed in the slow-light regime...... of a disordered photonic crystal waveguide and attributed to Anderson localization. We have tested this hypothesis by measuring the light localization length, ξloc, in a disordered photonic crystal waveguide and checked explicitly the criterion of one dimensional Anderson localization that ξloc is...... shorter than the waveguide length LS. Our measurements demonstrate for the first time the close relation between light localization and density of states, which can be used ultimately for controlling Anderson localized modes....

  16. Controlling Anderson localization in disordered photonic crystal waveguides

    DEFF Research Database (Denmark)

    Garcia-Fernández, David; Smolka, Stephan; Stobbe, Søren; Lodahl, Peter

    2010-01-01

    In most experiments on Anderson localization so far, only completely random systems without any long-range correlation between the scattering sites have been used, meaning that the Anderson localized modes cannot be controlled. Strongly confined modes were recently observed in the slow-light regime...

  17. Controlling Anderson localization in disordered photonic crystal waveguides

    DEFF Research Database (Denmark)

    Smolka, Stephan; Garcia, Pedro D.; Lodahl, Peter

    2010-01-01

    We prove Anderson localization in the slow-light regime of a photonic crystal waveguide by measuring the ensemble-averaged localization length which is controlled by the dispersion of the disordered photonic crystal waveguide.......We prove Anderson localization in the slow-light regime of a photonic crystal waveguide by measuring the ensemble-averaged localization length which is controlled by the dispersion of the disordered photonic crystal waveguide....

  18. Transverse Anderson localization of light: a tutorial review

    OpenAIRE

    Mafi, Arash

    2015-01-01

    This tutorial review gives an overview of the transverse Anderson localization of light in one and two transverse dimensions. A pedagogical approach is followed throughout the presentation, where many aspects of localization are illustrated by means of a few simple models. The tutorial starts with some basic aspects of random matrix theory, and light propagation through and reflection from a random stack of dielectric slabs. Transverse Anderson localization of light in one- and two-dimensiona...

  19. Controlling Anderson localization in disordered photonic crystal waveguides

    DEFF Research Database (Denmark)

    Garcia-Fernández, David; Smolka, Stephan; Stobbe, Søren;

    structures [1,2]. Originally proposed for electrons by P. W. Anderson [3], only completely random systems without any long-range correlation between the scattering sites have been used so far, meaning that the Anderson-localized modes cannot be controlled. In disordered photonic crystals, these modes are...... predicted to appear at frequencies in or near a band gap [4] providing a possible way to control Anderson-localized modes. We have tested this hypothesis by measuring the light localization length, ξ, in a disordered photonic crystal waveguide (PCW) as a function of the dispersive slowdown factor of light...... of the waveguide. Our measurements demonstrate for the first time the close relation between light localization and density of states [5], which can be used ultimately for controlling the extension and spectral position of Anderson-localized modes....

  20. Cavity quantum electrodynamics in the Anderson-localized regime

    DEFF Research Database (Denmark)

    Sapienza, Luca; Nielsen, Henri Thyrrestrup; Stobbe, Søren;

    2010-01-01

    We experimentally measure, by means of time-resolved photoluminescence spectroscopy, a 15-fold enhancement of the spontaneous emission decay rate of single semiconductor quantum dots coupled to disorder-induced Anderson-localized modes with efficiencies reaching 94%....

  1. Anderson localization of spinons in a spin-1/2 antiferromagnetic Heisenberg chain

    OpenAIRE

    Pan, B. Y.; Zhou, S. Y.; Hong, X. C.; Qiu, X; Li, S. Y.

    2012-01-01

    Anderson localization is a general phenomenon of wave physics, which stems from the interference between multiple scattering paths1,2. It was originally proposed for electrons in a crystal, but later was also observed for light3-5, microwaves6, ultrasound7,8, and ultracold atoms9-12. Actually, in a crystal, besides electrons there may exist other quasiparticles such as magnons and spinons. However the search for Anderson localization of these magnetic excitations is rare so far. Here we repor...

  2. Multiple-beam Propagation in an Anderson Localized Optical Fiber

    CERN Document Server

    Karbasi, Salman; Mafi, Arash

    2012-01-01

    We investigate the simultaneous propagation of multiple beams in a disordered Anderson localized optical fiber. The profiles of each beam fall off exponentially, enabling multiple channels at high-density. We examine the influence of fiber bends on the movement of the beam positions, which we refer to as drift. We investigate the extent of the drift of localized beams induced by macro-bending and show that it is possible to design Anderson localized optical fibers which can be used for practical beam-multiplexing applications.

  3. Absence of Anderson localization in certain random lattices

    OpenAIRE

    Choi, Wonjun; Yin, Cheng; Hooper, Ian R.; Bernes, William L.; Bertolotti, Jacopo

    2016-01-01

    We report on the transition between an Anderson localized regime and a conductive regime in a 1D scattering system with correlated disorder. We show experimentally that when long-range correlations, in the form of a power-law spectral density with power larger than 2, are introduced the localization length becomes much bigger than the sample size and the transmission peaks typical of an Anderson localized system merge into a pass band. As other forms of long-range correlations are known to ha...

  4. Interplay of Anderson localization and strong interaction in disordered systems

    International Nuclear Information System (INIS)

    We study the interplay of disorder localization and strong local interactions within the Anderson-Hubbard model. Taking into account local Mott-Hubbard physics and static screening of the disorder potential, the system is mapped onto an effective single-particle Anderson model, which is studied within the self-consistent theory of electron localization. For fermions, we find rich nonmonotonic behavior of the localization length ξ, particularly in two-dimensional systems, including an interaction-induced exponential enhancement of ξ for small and intermediate disorders and a strong reduction of ξ due to hopping suppression by strong interactions. In three dimensions, we identify for half filling a Mott-Hubbard-assisted Anderson localized phase existing between the metallic and the Mott-Hubbard-gapped phases. For small U there is re-entrant behavior from the Anderson localized phase to the metallic phase. For bosons, the unrestricted particle occupation number per lattice site yields a monotonic enhancement of ξ as a function of decreasing interaction, which we assume to persist until the superfluid Bose-Einstein condensate phase is entered. Besides, we study cold atomic gases expanding, by a diffusion process, in a weak random potential. We show that the density-density correlation function of the expanding gas is strongly affected by disorder and we estimate the typical size of a speckle spot, i.e., a region of enhanced or depleted density. Both a Fermi gas and a Bose-Einstein condensate (in a mean-field approach) are considered. (orig.)

  5. Interplay of Anderson localization and strong interaction in disordered systems

    Energy Technology Data Exchange (ETDEWEB)

    Henseler, Peter

    2010-01-15

    We study the interplay of disorder localization and strong local interactions within the Anderson-Hubbard model. Taking into account local Mott-Hubbard physics and static screening of the disorder potential, the system is mapped onto an effective single-particle Anderson model, which is studied within the self-consistent theory of electron localization. For fermions, we find rich nonmonotonic behavior of the localization length {xi}, particularly in two-dimensional systems, including an interaction-induced exponential enhancement of {xi} for small and intermediate disorders and a strong reduction of {xi} due to hopping suppression by strong interactions. In three dimensions, we identify for half filling a Mott-Hubbard-assisted Anderson localized phase existing between the metallic and the Mott-Hubbard-gapped phases. For small U there is re-entrant behavior from the Anderson localized phase to the metallic phase. For bosons, the unrestricted particle occupation number per lattice site yields a monotonic enhancement of {xi} as a function of decreasing interaction, which we assume to persist until the superfluid Bose-Einstein condensate phase is entered. Besides, we study cold atomic gases expanding, by a diffusion process, in a weak random potential. We show that the density-density correlation function of the expanding gas is strongly affected by disorder and we estimate the typical size of a speckle spot, i.e., a region of enhanced or depleted density. Both a Fermi gas and a Bose-Einstein condensate (in a mean-field approach) are considered. (orig.)

  6. A modal perspective on the transverse Anderson localization of light in disordered optical lattices

    CERN Document Server

    Karbasi, Salman; Mafi, Arash

    2013-01-01

    We frame the transverse Anderson localization of light in a one-dimensional disordered optical lattice in the language of localized propagating eigenmodes. The modal analysis allows us to explore localization behavior of a disordered lattice independent of the properties of the external excitation. Various localization-related phenomena, such as the periodic revival of a propagating Anderson-localized beam are easily explained in modal language. We characterize the localization strength by the average width of the guided modes and carry out a detailed analysis of localization behavior as a function of the optical and geometrical parameters of the disordered lattice. We also show that in order to obtain a minimum average mode width, the average width of the individual random sites in the disordered lattice must be larger than the wavelength of the light by approximately a factor of two or more, and the optimum site width for the maximum localization depends on the design parameters of the disordered lattice.

  7. Controlling Anderson localization in disordered photonic crystal waveguides

    DEFF Research Database (Denmark)

    Garcia-Fernández, David; Smolka, Stephan; Stobbe, Søren; Lodahl, Peter

    Quantum optics and quantum information technologies require enhancement of light-matter interaction by, for example, confining light in a small volume. A very recently demonstrated route towards light confinement makes use of multiple scattering of light and wave interference in disordered photonic...... structures [1,2]. Originally proposed for electrons by P. W. Anderson [3], only completely random systems without any long-range correlation between the scattering sites have been used so far, meaning that the Anderson-localized modes cannot be controlled. In disordered photonic crystals, these modes are...

  8. Cavity quantum electrodynamics with Anderson-localized modes

    DEFF Research Database (Denmark)

    Sapienza, Luca; Nielsen, Henri Thyrrestrup; Stobbe, Søren;

    2010-01-01

    factor of 15 on resonance with the Anderson-localized mode, and 94% of the emitted single photons coupled to the mode. Disordered photonic media thus provide an efficient platform for quantum electrodynamics, offering an approach to inherently disorder-robust quantum information devices....

  9. Transverse Anderson localization of light: a tutorial review

    CERN Document Server

    Mafi, Arash

    2015-01-01

    This tutorial review gives an overview of the transverse Anderson localization of light in one and two transverse dimensions. A pedagogical approach is followed throughout the presentation, where many aspects of localization are illustrated by means of a few simple models. The tutorial starts with some basic aspects of random matrix theory, and light propagation through and reflection from a random stack of dielectric slabs. Transverse Anderson localization of light in one- and two-dimensional coupled waveguide arrays is subsequently established and discussed. Recent experimental observations of localization and image transport in disordered optical fibers are discussed. More advanced topics, such as hyper-transport in longitudinally varying disordered waveguides, the impact of nonlinearity, and propagation of partially coherent and quantum light, are also examined.

  10. Absence of Anderson localization in certain random lattices

    CERN Document Server

    Choi, Wonjun; Hooper, Ian R; Bernes, William L; Bertolotti, Jacopo

    2016-01-01

    We report on the transition between an Anderson localized regime and a conductive regime in a 1D scattering system with correlated disorder. We show experimentally that when long-range correlations, in the form of a power-law spectral density with power larger than 2, are introduced the localization length becomes much bigger than the sample size and the transmission peaks typical of an Anderson localized system merge into a pass band. As other forms of long-range correlations are known to have the opposite effect, i.e. to enhance localization, our results show that care is needed when discussing the effects of correlations, as different kinds of long-range correlations can give rise to very different behavior.

  11. Photon transport enhanced by transverse Anderson localization in disordered superlattices

    CERN Document Server

    Hsieh, Pin-Chun; McMillan, James; Tsai, Min-An; Lu, Ming; Panoiu, Nicolae; Wong, Chee Wei

    2014-01-01

    One of the daunting challenges in optical physics is to accurately control the flow of light at the subwavelength scale, by patterning the optical medium one can design anisotropic media. The light transport can also be significantly affected by Anderson localization, namely the wave localization in a disordered medium, a ubiquitous phenomenon in wave physics. Here we report the photon transport and collimation enhanced by transverse Anderson localization in chip-scale dispersion engineered anisotropic media. We demonstrate a new type of anisotropic photonic structure in which diffraction is nearly completely arrested by cascaded resonant tunneling through transverse guided resonances. By perturbing the shape of more than 4,000 scatterers in these superlattices we add structural disordered in a controlled manner and uncover the mechanism of disorder-induced transverse localization at the chip-scale. Arrested spatial divergence is captured in the power-law scaling, along with exponential asymmetric mode profil...

  12. Many-body Anderson localization in one-dimensional systems

    Science.gov (United States)

    Delande, Dominique; Sacha, Krzysztof; Płodzień, Marcin; Avazbaev, Sanat K.; Zakrzewski, Jakub

    2013-04-01

    We show, using quasi-exact numerical simulations, that Anderson localization in a disordered one-dimensional potential survives in the presence of attractive interaction between particles. The localization length of the particles' center of mass—computed analytically for weak disorder—is in good agreement with the quasi-exact numerical observations using the time evolving block decimation algorithm. Our approach allows for simulation of the entire experiment including the final measurement of all atom positions.

  13. Quantum-classical correspondence in multimensional nonlinear systems: Anderson localization and "superdiffusive" solitons

    KAUST Repository

    Brambila, Danilo

    2012-01-01

    We have theoretically studied Anderson localization in a 2D+1 nonlinear kicked rotor model. The system shows a very rich dynamical behavior, where the Anderson localization is suppressed and soliton wave-particles undergo a superdiffusive motion.

  14. Multi-Scale Jacobi Method for Anderson Localization

    Science.gov (United States)

    Imbrie, John Z.

    2015-11-01

    A new KAM-style proof of Anderson localization is obtained. A sequence of local rotations is defined, such that off-diagonal matrix elements of the Hamiltonian are driven rapidly to zero. This leads to the first proof via multi-scale analysis of exponential decay of the eigenfunction correlator (this implies strong dynamical localization). The method has been used in recent work on many-body localization (Imbrie in On many-body localization for quantum spin chains, arXiv:1403.7837 URL"/> , 2014).

  15. Experimental observation of Anderson localization in laser-kicked molecular rotors

    CERN Document Server

    Bitter, Martin

    2016-01-01

    We observe and study the phenomenon of Anderson localization in a system of true quantum kicked rotors. Nitrogen molecules in a supersonic molecular jet are cooled down to 27~K and are rotationally excited by a periodic train of 24~high-intensity femtosecond pulses. Exponential distribution of the molecular angular momentum - the most unambiguous signature of Anderson localization - is measured directly by means of coherent Raman scattering. We demonstrate the suppressed growth of the molecular rotational energy with the number of laser kicks and study the dependence of the localization length on the kick strength. Both timing and amplitude noise in the pulse train is shown to destroy the localization and revive the diffusive growth of angular momentum.

  16. Quasiperiodic driving of Anderson localized waves in one dimension

    OpenAIRE

    Hatami, H.; Danieli, C.; Bodyfelt, J. D.; Flach, S

    2016-01-01

    We consider a quantum particle in a one-dimensional disordered lattice with Anderson localization, in the presence of multi-frequency perturbations of the onsite energies. Using the Floquet representation, we transform the eigenvalue problem into a Wannier-Stark basis. Each frequency component contributes either to a single channel or a multi-channel connectivity along the lattice, depending on the control parameters. The single channel regime is essentially equivalent to the undriven case. T...

  17. Quasiperiodic driving of Anderson localized waves in one dimension

    Science.gov (United States)

    Hatami, H.; Danieli, C.; Bodyfelt, J. D.; Flach, S.

    2016-06-01

    We consider a quantum particle in a one-dimensional disordered lattice with Anderson localization in the presence of multifrequency perturbations of the onsite energies. Using the Floquet representation, we transform the eigenvalue problem into a Wannier-Stark basis. Each frequency component contributes either to a single channel or a multichannel connectivity along the lattice, depending on the control parameters. The single-channel regime is essentially equivalent to the undriven case. The multichannel driving increases substantially the localization length for slow driving, showing two different scaling regimes of weak and strong driving, yet the localization length stays finite for a finite number of frequency components.

  18. Integrals of motion for one-dimensional Anderson localized systems

    Science.gov (United States)

    Modak, Ranjan; Mukerjee, Subroto; Yuzbashyan, Emil A.; Shastry, B. Sriram

    2016-03-01

    Anderson localization is known to be inevitable in one-dimension for generic disordered models. Since localization leads to Poissonian energy level statistics, we ask if localized systems possess ‘additional’ integrals of motion as well, so as to enhance the analogy with quantum integrable systems. We answer this in the affirmative in the present work. We construct a set of nontrivial integrals of motion for Anderson localized models, in terms of the original creation and annihilation operators. These are found as a power series in the hopping parameter. The recently found Type-1 Hamiltonians, which are known to be quantum integrable in a precise sense, motivate our construction. We note that these models can be viewed as disordered electron models with infinite-range hopping, where a similar series truncates at the linear order. We show that despite the infinite range hopping, all states but one are localized. We also study the conservation laws for the disorder free Aubry-Andre model, where the states are either localized or extended, depending on the strength of a coupling constant. We formulate a specific procedure for averaging over disorder, in order to examine the convergence of the power series. Using this procedure in the Aubry-Andre model, we show that integrals of motion given by our construction are well-defined in localized phase, but not so in the extended phase. Finally, we also obtain the integrals of motion for a model with interactions to lowest order in the interaction.

  19. Defect-controlled Anderson localization of light in photonic lattices

    International Nuclear Information System (INIS)

    The transverse localization of light in a disordered photonic lattice with a central defect is analyzed numerically. The effect of different input beam widths on various regimes of Anderson localization is investigated. The inclusion of a defect enhances the localization of both narrow and broad beams, as compared to the lattice with no defect. But, in the case of a broad beam a higher disorder level is needed to reach the same localization as for a narrow input beam. It is also investigated how the transverse localization of light in such geometries depends on both the strength of disorder and the strength of nonlinearity in the system. While in the linear regime the localization is most pronounced in the lattice with the defect, in the nonlinear regime this is not the case. (paper)

  20. Effect of coulomb interaction on Anderson localization; Effet de l'interaction coulombienne sur la localisation d'Anderson dans des systemes de basses dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Waintal, X

    1999-09-10

    We study the quantum mechanics of interacting particles in a disordered system, and in particular, what happens to Anderson localisation when interaction is taken into account. In the first part,one looks at the excited states of two particles in one dimension. For this model, it has been shown (Shepelyansky 1994) that a local repulsive interaction can partially destroy Anderson localisation. Here, we show that this model has similarities with the three-dimensional Anderson model at the metal-insulator transition. In particular, the maximum of rigidity obtained in the spectral statistics correspond to some intermediary statistics that cannot be described by random matrix theory neither by a Poisson statistics. The wave functions show a multifractal behaviour and the spreading of the center of mass of a wave packet is logarithmic in time. The second part deals with the ground state of a finite density of spinless fermions in two dimensions. After the scaling theory of localisation, it was commonly accepted that there was no metal in two dimensions. This idea has been challenged by the observation of a metal-insulator transition in low density electron gas (Kravchenko et al. 1994). We propose a scenario in which a metallic phase occurs between the Anderson insulator and the pinned Wigner crystal. This intermediate phase is characterized by an alignment of the local currents flowing in the system. (author)

  1. Transversal Anderson localization of sound in acoustic waveguide arrays

    International Nuclear Information System (INIS)

    We present designs of one-dimensional acoustic waveguide arrays and investigate wave propagation inside. Under the condition of single identical waveguide mode and weak coupling, the acoustic wave motion in waveguide arrays can be modeled with a discrete mode-coupling theory. The coupling constants can be retrieved from simulations or experiments as the function of neighboring waveguide separations. Sound injected into periodic arrays gives rise to the discrete diffraction, exhibiting ballistic or extended transport in transversal direction. But sound injected into randomized waveguide arrays readily leads to Anderson localization transversally. The experimental results show good agreement with simulations and theoretical predictions. (paper)

  2. Experimental Observation of Two-Dimensional Anderson Localization with the Atomic Kicked Rotor

    OpenAIRE

    Manai, Isam; Clément, Jean-François; Chicireanu, Radu; Hainaut, Clément; Garreau, Jean Claude; Szriftgiser, Pascal; Delande, Dominique

    2015-01-01

    Dimension 2 is expected to be the lower critical dimension for Anderson localization in a time-reversal-invariant disordered quantum system: the dynamics is generically localized in dimension lower than 2, while it presents a transition from a diffusive regime at weak disorder to a localized regime at strong disorder in dimension larger than 2. We use an atomic quasiperiodically kicked rotor – equivalent to a two-dimensional Anderson-like model – to experimentally study Anderson localization ...

  3. Anderson localization in metamaterials and other complex media

    CERN Document Server

    Gredeskul, Sergey A; Asatrian, Ara A; Bliokh, Konstantin Y; Bliokh, Yuri P; Freilikher, Valentin D; Shadrivov, Ilya V

    2012-01-01

    We review some recent (mostly ours) results on the Anderson localization of light and electron waves in complex disordered systems, including: (i) left-handed metamaterials, (ii) magneto-active optical structures, (iii) graphene superlattices, and (iv) nonlinear dielectric media. First, we demonstrate that left-handed metamaterials can significantly suppress localization of light and lead to an anomalously enhanced transmission. This suppression is essential at the long-wavelength limit in the case of normal incidence, at specific angles of oblique incidence (Brewster anomaly), and in the vicinity of the zero-epsilon or zero-mu frequencies for dispersive metamaterials. Remarkably, in disordered samples comprised of alternating normal and left-handed metamaterials, the reciprocal Lyapunov exponent and reciprocal transmittance increment can differ from each other. Second, we study magneto-active multilayered structures, which exhibit nonreciprocal localization of light depending on the direction of propagation ...

  4. Experimental Observation of Two-Dimensional Anderson Localization with the Atomic Kicked Rotor.

    Science.gov (United States)

    Manai, Isam; Clément, Jean-François; Chicireanu, Radu; Hainaut, Clément; Garreau, Jean Claude; Szriftgiser, Pascal; Delande, Dominique

    2015-12-11

    Dimension 2 is expected to be the lower critical dimension for Anderson localization in a time-reversal-invariant disordered quantum system. Using an atomic quasiperiodic kicked rotor-equivalent to a two-dimensional Anderson-like model-we experimentally study Anderson localization in dimension 2 and we observe localized wave function dynamics. We also show that the localization length depends exponentially on the disorder strength and anisotropy and is in quantitative agreement with the predictions of the self-consistent theory for the 2D Anderson localization. PMID:26705619

  5. Density of states controls Anderson localization in disordered photonic crystal waveguides

    DEFF Research Database (Denmark)

    Garcia-Fernández, David; Smolka, Stephan; Stobbe, Søren;

    2010-01-01

    We prove Anderson localization in a disordered photonic crystal waveguide by measuring the ensemble-averaged extinction mean-free path, ℓe, which is controlled by the dispersion in the photon density of states (DOS) of the photonic crystal waveguide. Except for the very low DOS case, where out...... demonstrates the close relation between Anderson localization and the DOS in disordered photonic crystals, which opens a promising route to controlling and exploiting Anderson-localized modes for efficient light confinement....

  6. Quantum resonance, Anderson localisation and selective rotational excitation in periodically kicked molecules

    Directory of Open Access Journals (Sweden)

    Averbukh I. Sh.

    2013-03-01

    Full Text Available We show that molecules kicked periodically by laser pulses currently used in molecular alignment experiments allow to observe effects of the periodically kicked quantum rotor in a real rotational system. Among these effects are Anderson localisation in angular momentum and the scaling of the quantum resonance. Based on this, we propose a new scheme for selective molecular rotational excitation.

  7. Information Transmission and Anderson Localization in two-dimensional networks of firing-rate neurons

    Science.gov (United States)

    Natale, Joseph; Hentschel, George

    Firing-rate networks offer a coarse model of signal propagation in the brain. Here we analyze sparse, 2D planar firing-rate networks with no synapses beyond a certain cutoff distance. Additionally, we impose Dale's Principle to ensure that each neuron makes only or inhibitory outgoing connections. Using spectral methods, we find that the number of neurons participating in excitations of the network becomes insignificant whenever the connectivity cutoff is tuned to a value near or below the average interneuron separation. Further, neural activations exceeding a certain threshold stay confined to a small region of space. This behavior is an instance of Anderson localization, a disorder-induced phase transition by which an information channel is rendered unable to transmit signals. We discuss several potential implications of localization for both local and long-range computation in the brain. This work was supported in part by Grants JSMF/ 220020321 and NSF/IOS/1208126.

  8. All-solid-state cavity QED using Anderson-localized modes in disordered photonic crystal waveguides

    DEFF Research Database (Denmark)

    Lodahl, Peter; Sapienza, Luca; Nielsen, Henri Thyrrestrup;

    2010-01-01

    We employ Anderson-localized modes in deliberately disordered photonic crystal waveguides to confine light and enhance the interaction with matter. A 15-fold enhancement of the decay rate of a single quantum dot is observed meaning that 94% of the emitted single photons are coupled to an Anderson...

  9. Two-photon Anderson localization in a disordered quadratic waveguide array

    International Nuclear Information System (INIS)

    We theoretically investigate two-photon Anderson localization in a χ (2) waveguide array with off-diagonal disorder. The nonlinear parametric down-conversion process would enhance both the single-photon and the two-photon Anderson localization. In the strong disorder regime, the two-photon position correlation exhibits a bunching distribution around the pumped waveguides, which is independent of pumping conditions and geometrical structures of waveguide arrays. Quadratic nonlinearity can be supplied as a new ingredient for Anderson localization. Also, our results pave the way for engineering quantum states through nonlinear quantum walks. (paper)

  10. Routes Towards Anderson-Like Localization of Bose-Einstein Condensates in Disordered Optical Lattices

    Science.gov (United States)

    Schulte, T.; Drenkelforth, S.; Kruse, J.; Ertmer, W.; Arlt, J.; Sacha, K.; Zakrzewski, J.; Lewenstein, M.

    2005-10-01

    We investigate, both experimentally and theoretically, possible routes towards Anderson-like localization of Bose-Einstein condensates in disordered potentials. The dependence of this quantum interference effect on the nonlinear interactions and the shape of the disorder potential is investigated. Experiments with an optical lattice and a superimposed disordered potential reveal the lack of Anderson localization. A theoretical analysis shows that this absence is due to the large length scale of the disorder potential as well as its screening by the nonlinear interactions. Further analysis shows that incommensurable superlattices should allow for the observation of the crossover from the nonlinear screening regime to the Anderson localized case within realistic experimental parameters.

  11. Routes Towards Anderson-Like Localization of Bose-Einstein Condensates in Disordered Optical Lattices

    International Nuclear Information System (INIS)

    We investigate, both experimentally and theoretically, possible routes towards Anderson-like localization of Bose-Einstein condensates in disordered potentials. The dependence of this quantum interference effect on the nonlinear interactions and the shape of the disorder potential is investigated. Experiments with an optical lattice and a superimposed disordered potential reveal the lack of Anderson localization. A theoretical analysis shows that this absence is due to the large length scale of the disorder potential as well as its screening by the nonlinear interactions. Further analysis shows that incommensurable superlattices should allow for the observation of the crossover from the nonlinear screening regime to the Anderson localized case within realistic experimental parameters

  12. Quantum resonance, Anderson localization and selective manipulations in molecular mixtures by ultrashort laser pulses

    CERN Document Server

    Floß, Johannes

    2011-01-01

    We demonstrate that the current laser technology used for field-free molecular alignment via a cascade of Raman rotational transitions allows for observing long-discussed non-linear quantum phenomena in the dynamics of the periodically kicked rotor. This includes the scaling of the absorbed energy near the conditions of quantum resonance and Anderson-like localization in the angular momentum. Based on these findings, we suggest a novel approach to tunable selective rotational excitation and alignment in a molecular mixture, using trains of short laser pulses. We demonstrate the efficiency of this approach by applying it to a mixture of two nitrogen isotopologues (14N2 and 15N2), and show that strong selectivity is possible even at room temperature.

  13. Localization of optical excitations on random surfaces: SNOM studies

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.

    1999-01-01

    Localization of optical excitations on nanostructured metal surfaces and fractal colloid silver aggregates are studied by using a scanning near-field optical microscope (SNOM). The SNOM images obtained in both configurations exhibit spatially localized (within 150 to 250 nm) light intensity enhan...... enhancement by up to two orders of magnitude. The observed phenomena are related to strong (Anderson) localization of quasi-two-dimensional light waves....

  14. Non-compact local excitations in spin glasses

    OpenAIRE

    Lamarcq, J.; Bouchaud, J.-P.; Martin, O. C.; Mezard, M.

    2001-01-01

    We study numerically the local low-energy excitations in the 3-d Edwards-Anderson model for spin glasses. Given the ground state, we determine the lowest-lying connected cluster of flipped spins with a fixed volume containing one given spin. These excitations are not compact, having a fractal dimension close to two, suggesting an analogy with lattice animals. Also, their energy does not grow with their size; the associated exponent is slightly negative whereas the one for compact clusters is ...

  15. Localized Excitations from Localized Unitary Operators

    CERN Document Server

    Sivaramakrishnan, Allic

    2016-01-01

    Localized unitary operators are basic probes of locality and causality in quantum systems: localized unitary operators create localized excitations in entangled states. Working with an explicit form, we explore the properties of these operators in quantum mechanics and quantum field theory. We show that, unlike unitary operators, local non-unitary operators generically create non-local excitations. We present a local picture for quantum systems in which localized experimentalists can only act through localized Hamiltonian deformations, and therefore localized unitary operators. We demonstrate that localized unitary operators model certain quantum quenches exactly. We show how the Reeh-Schlieder theorem follows intuitively from basic properties of entanglement, non-unitary operators, and the local picture. We show that a recent quasi-particle picture for excited-state entanglement entropy in conformal field theories is not universal for all local operators. We prove a causality relation for entanglement entrop...

  16. Image transport through a disordered optical fiber mediated by transverse Anderson localization

    CERN Document Server

    Karbasi, Salman; Koch, Karl W; Hawkins, Thomas; Ballato, John; Mafi, Arash

    2013-01-01

    Transverse Anderson localization of light allows localized optical-beam-transport through a transversely-disordered and longitudinally-invariant medium. Its successful implementation in disordered optical fibers recently resulted in the simultaneous propagation of multiple beams in a single strand of an optical fiber, suggesting potential applications for spatial beam multiplexing and image transport. We present what is, to the best of our knowledge, the first demonstration of optical image transport using transverse Anderson localization of light. The image transport quality obtained in the polymer disordered optical fiber is comparable with or better than some of the best commercially available multicore imaging fibers with less pixelation and higher contrast. A proof-of-concept glass version is also evaluated and further optimization is discussed. Our results open the way to device-level implementation of the transverse Anderson localization of light with potential applications in biological and medical im...

  17. Transverse Anderson localization of light near Dirac points of photonic nanostructures

    CERN Document Server

    Deng, Hanying; Malomed, Boris A; Panoiu, Nicolae C; Ye, Fangwei

    2015-01-01

    We perform a comparative study of the Anderson localization of light beams in disordered layered photonic nanostructures that, in the limit of periodic layer distribution, possess either a Dirac point or a Bragg gap in the spectrum of the wavevectors. In particular, we demonstrate that the localization length of the Anderson modes increases when the width of the Bragg gap decreases, such that in the vanishingly small bandgap limit, namely when a Dirac point is formed, even extremely high levels of disorders are unable to localize the optical modes located near the Dirac point. A comparative analysis of the key features of the propagation of Anderson modes formed in the Bragg gap or near the Dirac point is also presented. Our findings could provide valuable guidelines in assessing the influence of structural disorder on the functionality of a broad array of optical nanodevices.

  18. Observation of migrating transverse Anderson localizations of light in nonlocal media

    CERN Document Server

    Leonetti, Marco; Mafi, Arash; Conti, Claudio

    2014-01-01

    We report the experimental observation of the interaction and attraction of many localized modes in a two dimensional (2D) system realized by a disordered optical fiber supporting transverse Anderson localization. We show that a nonlocal optically nonlinear response of thermal origin alters the localization length by an amount determined by the optical power and also induces an action at a distance between the localized modes and their spatial migration. Evidence of a collective and strongly interacting regime is given.

  19. Spectral statistics for the discrete Anderson model in the localized regime

    CERN Document Server

    Germinet, François

    2010-01-01

    We report on recent results on the spectral statistics of the discrete Anderson model in the localized phase. Our results show, in particular, that, for the discrete Anderson Hamiltonian with smoothly distributed random potential at sufficiently large coupling, the limit of the level spacing distribution is that of i.i.d. random variables distributed according to the density of states of the random Hamiltonian. This text is a contribution to the proceedings of the conference "Spectra of Random Operators and Related Topics" held at Kyoto University, 02-04/12/09 organized by N. Minami and N. Ueki.

  20. Single-ion-pair fluorescence ratios in ruby and Anderson localization

    Science.gov (United States)

    Chu, S.; Gibbs, H. M.; Passner, A.

    1981-12-01

    The experiment of Koo, Walker, and Geschwind (KWG) presenting evidence for a mobility edge separating localized and extended states has been repeated and extended. Although some of the features reported by KWG were seen, there are notable qualitative and quantitative differences in our work. We conclude that there is no compelling evidence for an Anderson transition in ruby.

  1. Anderson localization through Polyakov loops: lattice evidence and Random matrix model

    OpenAIRE

    Bruckmann, Falk; Kovács, Tamás G.; Schierenberg, Sebastian

    2011-01-01

    We investigate low-lying fermion modes in SU(2) gauge theory at temperatures above the phase transition. Both staggered and overlap spectra reveal transitions from chaotic (random matrix) to integrable (Poissonian) behavior accompanied by an increasing localization of the eigenmodes. We show that the latter are trapped by local Polyakov loop fluctuations. Islands of such "wrong" Polyakov loops can therefore be viewed as defects leading to Anderson localization in gauge theories. We find stron...

  2. Unified description of perturbation theory and band center anomaly in one-dimensional Anderson localization

    International Nuclear Information System (INIS)

    We calculated numerically the localization length of one-dimensional Anderson model with diagonal disorder. For weak disorder, we showed that the localization length changes continuously as the energy changes from the band center to the boundary of the anomalous region near the band edge. We found that all the localization lengths for different disorder strengths and different energies collapse onto a single curve, which can be fitted by a simple equation. Thus the description of the perturbation theory and the band center anomaly were unified into this equation. -- Highlights: → We study the band center anomaly of one-dimensional Anderson localization. → We study numerically the Lyapunov exponent through a parametrization method of the transfer matrix. → We give a unified equation to describe the band center anomaly and perturbation theory.

  3. Scaling analysis of transverse Anderson localization in a disordered optical waveguide

    CERN Document Server

    Abaie, Behnam

    2016-01-01

    The intention of this manuscript is twofold. First, the mode-width probability density function (PDF) is introduced as a powerful statistical tool to study and compare the transverse Anderson localization properties of a disordered one dimensional optical waveguide. Second, by analyzing the scaling properties of the mode-width PDF with the transverse size of the waveguide, it is shown that the mode-width PDF gradually converges to a terminal configuration. Therefore, it may not be necessary to study a real-sized disordered structure in order to obtain its statistical localization properties and the same PDF can be obtained for a substantially smaller structure. This observation is important because it can reduce the often demanding computational effort that is required to study the statistical properties of Anderson localization in disordered waveguides. Using the mode-width PDF, substantial information about the impact of the waveguide parameters on its localization properties is extracted. This information ...

  4. Non-compact local excitations in spin-glasses

    Science.gov (United States)

    Lamarcq, J.; Bouchaud, J.-P.; Martin, O. C.; Mézard, M.

    2002-05-01

    We study numerically the local low-energy excitations in the 3d Edwards-Anderson model for spin-glasses. Given the ground state, we determine the lowest-lying connected cluster of flipped spins with a fixed volume containing one given spin. These excitations are not compact, having a fractal dimension close to two, suggesting an analogy with lattice animals. Also, their energy does not grow with their size; the associated exponent is slightly negative whereas the one for compact clusters is positive. These findings call for a modification of the basic hypotheses underlying the droplet model.

  5. Controlling Anderson localization in disordered heterostrctures with Lévy-type distribution

    International Nuclear Information System (INIS)

    In this paper, we propose a disordered heterostructure in which the distribution of the refractive index of one of its constituents follows a Lévy-type distribution characterized by the exponent α. For the normal and oblique incidences, the effect of α variation on the localization length is investigated in different frequency ranges. As a result, the controllability of Anderson localization can be achieved by changing the exponent α in the disordered structure having heavy tailed distribution. (paper)

  6. Light focusing in the Anderson Regime

    CERN Document Server

    Leonetti, Marco; Mafi, Arash; Conti, Claudio

    2014-01-01

    Anderson localization is a regime in which diffusion is inhibited and waves (also electromagnetic waves) get localized. Here we exploit adaptive optics to achieve focusing in disordered optical fibers in the Anderson regime. By wavefront shaping and optimization, we observe the generation of a propagation invariant beam, where light is trapped transversally by disorder, and show that Anderson localizations can be also excited by extended speckled beams. We demonstrate that disordered fibers allow a more efficient focusing action with respect to standard fibers in a way independent of their length, because of the propagation invariant features and cooperative action of transverse localizations.

  7. Anderson localization through Polyakov loops: Lattice evidence and random matrix model

    International Nuclear Information System (INIS)

    We investigate low-lying fermion modes in SU(2) gauge theory at temperatures above the phase transition. Both staggered and overlap spectra reveal transitions from chaotic (random matrix) to integrable (Poissonian) behavior accompanied by an increasing localization of the eigenmodes. We show that the latter are trapped by local Polyakov loop fluctuations. Islands of such ''wrong'' Polyakov loops can therefore be viewed as defects leading to Anderson localization in gauge theories. We find strong similarities in the spatial profile of these localized staggered and overlap eigenmodes. We discuss possible interpretations of this finding and present a sparse random matrix model that reproduces these features.

  8. Anderson localization through Polyakov loops: Lattice evidence and random matrix model

    Science.gov (United States)

    Bruckmann, Falk; Kovács, Tamás G.; Schierenberg, Sebastian

    2011-08-01

    We investigate low-lying fermion modes in SU(2) gauge theory at temperatures above the phase transition. Both staggered and overlap spectra reveal transitions from chaotic (random matrix) to integrable (Poissonian) behavior accompanied by an increasing localization of the eigenmodes. We show that the latter are trapped by local Polyakov loop fluctuations. Islands of such “wrong” Polyakov loops can therefore be viewed as defects leading to Anderson localization in gauge theories. We find strong similarities in the spatial profile of these localized staggered and overlap eigenmodes. We discuss possible interpretations of this finding and present a sparse random matrix model that reproduces these features.

  9. Anderson localization through Polyakov loops: lattice evidence and Random matrix model

    CERN Document Server

    Bruckmann, Falk; Schierenberg, Sebastian

    2011-01-01

    We investigate low-lying fermion modes in SU(2) gauge theory at temperatures above the phase transition. Both staggered and overlap spectra reveal transitions from chaotic (random matrix) to integrable (Poissonian) behavior accompanied by an increasing localization of the eigenmodes. We show that the latter are trapped by local Polyakov loop fluctuations. Islands of such "wrong" Polyakov loops can therefore be viewed as defects leading to Anderson localization in gauge theories. We find strong similarities in the spatial profile of these localized staggered and overlap eigenmodes. We discuss possible interpretations of this finding and present a sparse random matrix model that reproduces these features.

  10. Transverse Anderson Localization in Disordered Glass Optical Fibers: A Review

    Directory of Open Access Journals (Sweden)

    Arash Mafi

    2014-07-01

    Full Text Available Disordered optical fibers show novel waveguiding properties that can be used for various device applications, such as beam-multiplexed optical communications and endoscopic image transport. The strong transverse scattering from the transversely disordered optical fibers results in transversely confined beams that can freely propagate in the longitudinal direction, similar to conventional optical fibers, with the advantage that any point in the cross section of the fiber can be used for beam transport. For beam multiplexing and imaging applications, it is highly desirable to make the localized beam radius as small as possible. This requires large refractive index differences between the materials that define the random features in the disordered fiber. Here, disordered glass-air fibers are briefly reviewed, where randomly placed airholes in a glass matrix provide the sufficiently large refractive index difference of 0.5 for strong random transverse scattering. The main future challenge for the fabrication of an optimally disordered glass-air fibers is to increase the fill-fraction of airholes to nearly 50% for maximum beam confinement.

  11. Anderson localization of electrons in single crystals: Li (x) Fe(7)Se(8).

    Science.gov (United States)

    Ying, Tianping; Gu, Yueqiang; Chen, Xiao; Wang, Xinbo; Jin, Shifeng; Zhao, Linlin; Zhang, Wei; Chen, Xiaolong

    2016-02-01

    Anderson (disorder-induced) localization, proposed more than half a century ago, has inspired numerous efforts to explore the absence of wave diffusions in disordered media. However, the proposed disorder-induced metal-insulator transition (MIT), associated with the nonpropagative electron waves, has hardly been observed in three-dimensional (3D) crystalline materials, let alone single crystals. We report the observation of an MIT in centimeter-size single crystals of Li x Fe7Se8 induced by lattice disorder. Both specific heat and infrared reflectance measurements reveal the presence of considerable electronic states in the vicinity of the Fermi level when the MIT occurs, suggesting that the transition is not due to Coulomb repulsion mechanism. The 3D variable range hopping regime evidenced by electrical transport measurements at low temperatures indicates the localized nature of the electronic states on the Fermi level. Quantitative analyses of carrier concentration, carrier mobility, and simulated density of states (DOS) fully support that Li x Fe7Se8 is an Anderson insulator. On the basis of these results, we provide a unified DOS picture to explain all the experimental results, and a schematic diagram for finding other potential Anderson insulators. This material will thus serve as a rich playground for both theoretical and experimental investigations on MITs and disorder-induced phenomena. PMID:26989781

  12. Simulation of Anderson localization in two-dimensional ultracold gases for pointlike disorder

    Science.gov (United States)

    Morong, W.; DeMarco, B.

    2015-08-01

    Anderson localization has been observed for a variety of media, including ultracold atomic gases with speckle disorder in one and three dimensions. However, observation of Anderson localization in a two-dimensional geometry for ultracold gases has been elusive. We show that a cause of this difficulty is the relatively high percolation threshold of a speckle potential in two dimensions, resulting in strong classical localization. We propose a realistic pointlike disorder potential that circumvents this percolation limit with localization lengths that are experimentally observable. The percolation threshold is evaluated for experimentally realistic parameters, and a regime of negligible classical trapping is identified. Localization lengths are determined via scaling theory, using both exact scattering cross sections and the Born approximation, and by direct simulation of the time-dependent Schrödinger equation. We show that the Born approximation can underestimate the localization length by four orders of magnitude at low energies, while exact cross sections and scaling theory provide an upper bound. Achievable experimental parameters for observing localization in this system are proposed.

  13. Coalescence of Anderson-localized modes at an exceptional point in 2D random media

    CERN Document Server

    Bachelard, Nicolas; Arlandis, Julien; Touzani, Rachid; Sebbah, Patrick

    2014-01-01

    In non-hermitian systems, the particular position at which two eigenstates coalesce under a variation of a parameter in the complex plane is called an exceptional point. A non-perturbative theory is proposed which describes the evolution of modes in 2D open dielectric systems when permittivity distribution is modified. We successfully test this theory in a 2D disordered system to predict the position in the parameter space of the exceptional point between two Anderson-localized states. We observe that the accuracy of the prediction depends on the number of localized states accounted for. Such an exceptional point is experimentally accessible in practically relevant disordered photonic systems

  14. Anderson Localization of Light in the Presence of Non-linear Effects

    OpenAIRE

    Bührer, Wolfgang

    2012-01-01

    The goal of the thesis presented here, was to further investigate the findings of Dr. Störzer in order to prove the wave nature of Anderson Localization. For this, two different approaches and setups were used.The first was a single photon counting Time-of-Flight setup, but with increased laser power and less noise in the detection part, where band pass filters were used as a crude spectrometer for analysing the spectral distribution of the photons travelling through highly turbid random medi...

  15. Probing Anderson localization of light by weak non-linear effects

    International Nuclear Information System (INIS)

    Breakdown of wave transport due to strong disorder is a universal phenomenon known as Anderson localization (AL). It occurs because of the macroscopic population of reciprocal multiple scattering paths, which in three dimensional systems happens at a critical scattering strength. Intensities on these random loops should thus be highly increased relative to those of a diffusive sample. In order to highlight localized modes of light, we exploit the optical nonlinearities of TiO2. Power dependent and spectrally resolved time of flight distribution measurements in transmission through slabs of TiO2 powders at various turbidities reveal that mostly long loops are affected by nonlinearities and that the deviations from diffusive transport observed at long times are due to these localized modes. Our data are a first step in the experimental investigation of the interplay between nonlinear effects and AL in 3D. (fast track communication)

  16. Anderson Localization in high temperature QCD: background configuration properties and Dirac eigenmodes

    CERN Document Server

    Cossu, Guido

    2016-01-01

    We investigate the properties of the background gauge field configurations that act as disorder for the Anderson localization mechanism in the Dirac spectrum of QCD at high temperatures. We compute the eigenmodes of the M\\"obius domain-wall fermion operator on configurations generated for the $SU(3)$ gauge theory with two flavors of fermions, in the temperature range $[0.9,1.9]T_c$. We identify the source of localization of the eigenmodes with gauge configurations that are self-dual and support negative fluctuations of the Polyakov loop $P_L$, in the high temperature sea of $P_L\\sim 1$. The dependence of these observations on the boundary conditions of the valence operator is studied. We also investigate the spatial overlap of the left-handed and right-handed projected eigenmodes in correlation with the localization and the corresponding eigenvalue. We discuss an interpretation of the results in terms of monopole-instanton structures.

  17. Anderson localization in high temperature QCD: background configuration properties and Dirac eigenmodes

    Science.gov (United States)

    Cossu, Guido; Hashimoto, Shoji

    2016-06-01

    We investigate the properties of the background gauge field configurations that act as disorder for the Anderson localization mechanism in the Dirac spectrum of QCD at high temperatures. We compute the eigenmodes of the Möbius domain-wall fermion operator on configurations generated for the SU(3) gauge theory with two flavors of fermions, in the temperature range [0.9, 1.9]T c . We identify the source of localization of the eigenmodes with gauge configurations that are self-dual and support negative fluctuations of the Polyakov loop P L , in the high temperature sea of P L ˜ 1. The dependence of these observations on the boundary conditions of the valence operator is studied. We also investigate the spatial overlap of the left-handed and right-handed projected eigenmodes in correlation with the localization and the corresponding eigenvalue. We discuss an interpretation of the results in terms of monopole-instanton structures.

  18. Investigation of Anderson localization in disordered heterostructures irradiated by a Gaussian beam

    Science.gov (United States)

    Ardakani, Abbas Ghasempour

    2016-02-01

    The propagation of a Gaussian beam through a one-dimensional disordered media is studied. By employing the transfer matrix method, the localization length as a function of frequency is calculated for different values of transverse coordinate r. It is demonstrated that the localization length significantly depends on r in different frequency ranges. This result is in contrast to those reported for a plane wave incident on disordered structures in which the localization length is transversely constant. For some frequency regions, the peak of localization length is red-shifted and becomes smaller with increasing the transverse coordinate. At some frequencies, the system is in the localized state for particular values of r, while at other r values the system is in the extend regime at the same frequencies. It is observed that the quality of localization at each frequency depends on r. To quantify the localization behavior of the whole Gaussian beam, a modified localization length is defined in terms of the input and output powers of the Gaussian beam where the dependence of Anderson localization on the transverse coordinate is considered. It is suggested that this modified localization length is used in experiments performed for study of wave propagation in one-dimensional random media under illumination of laser beams.

  19. Suppression of Anderson localization in a graphene sheet applied by a random voltage pattern

    International Nuclear Information System (INIS)

    We theoretically study the transport of electronic waves through a graphene sheet applied by a random voltage pattern in which the magnitudes and/or the widths of the voltages are random. When the magnitudes of the voltages exceed the electronic energy, the applied region can be considered as left-handed (LH) layers. Compared to the disordered structures with right-handed (RH) layers only, the spectra of the (average) density of states and the localization lengths in mixed random structures with RH and LH layers all show the suppression of Anderson localization, owing to the phase compensation effect of LH layers that reduces the long-range interference in the random system.

  20. Efficient Localization Bounds in a Continuous N-Particle Anderson Model with Long-Range Interaction

    Science.gov (United States)

    Chulaevsky, Victor

    2016-04-01

    We establish strong dynamical and exponential spectral localization for a class of multi-particle Anderson models in a Euclidean space with an alloy-type random potential and a sub-exponentially decaying interaction of infinite range. For the first time in the mathematical literature, the uniform decay bounds on the eigenfunction correlators (EFCs) at low energies are proved, in the multi-particle continuous configuration space, in the (symmetrized) norm-distance, which is a natural distance in the multi-particle configuration space, and not in the Hausdorff distance. This results in uniform bounds on the EFCs in arbitrarily large but bounded domains in the physical configuration space, and not only in the actually infinite space, as in prior works on multi-particle localization in Euclidean spaces.

  1. On the question of possible experimental observation of Anderson localization of the neutron

    International Nuclear Information System (INIS)

    A possible experiment for observation of the Anderson localization of the neutron is discussed. It is shown that the localized state may be formed in the process of inelastic downscattering of thermal or cold neutrons in a highly disordered substance with low neutron capture and upscattering cross sections. According to the sense of localization of the particle, its probability density exponentially decays outside a certain region of localization. Localized particles have exponentially small chances of running away from a random system. Any particle outside the localized energy band has an exponentially small probability of getting inside a random system. Neutrons localized in this way may be captured or inelastically upscattered to the thermal (cold) energy range with a time constant dependent on the corresponding cross sections. The most convenient substances for realizing such experiments are strong coherent neutron scatters with low capture and upscattering cross sections at low temperatures. These are Be, BeO, C, D2, D2O and CO2. The lifetime of trapped (localized) neutrons in the sample is measured by counting the upscattered neutrons with neutron counter surrounding the sample. Estimations of experimental parameters relevant to such an experiment are given

  2. Statistical measurements of quantum emitters coupled to Anderson-localized modes in disordered photonic-crystal waveguides

    CERN Document Server

    Javadi, Alisa; Sapienza, Luca; Thyrrestrup, Henri; Lodahl, Peter

    2013-01-01

    Optical nanostructures have proven to be meritorious for tailoring the emission properties of quantum emitters. However, unavoidable fabrication imperfections may represent a nuisance. Quite remarkably, disorder offers new opportunities since light can be efficiently confined by random multiple scattering leading to Anderson localization. Here we investigate the effect of such disorder-induced cavities on the emission dynamics of single quantum dots embedded in disordered photonic-crystal waveguides. We present time-resolved measurements of both the total emission from Anderson-localized cavities and from single emitters that are coupled to the cavities. We observe both strongly inhibited and enhanced decay rates relative to the rate of spontaneous emission in a homogeneous medium. From a statistical analysis, we report an average Purcell factor of 2 in without any control on the quantum dot - cavity detuning. By spectrally tuning individual quantum dots into resonance with Anderson-localized modes, a maximum...

  3. Level repulsion exponent β for many-body localization transitions and for Anderson localization transitions via Dyson Brownian motion

    Science.gov (United States)

    Monthus, Cécile

    2016-03-01

    The generalization of the Dyson Brownian motion approach of random matrices to Anderson localization (AL) models (Chalker et al 1996 Phys. Rev. Lett. 77 554) and to many-body localization (MBL) Hamiltonians (Serbyn and Moore 2015 arXiv:1508.07293) is revisited to extract the level repulsion exponent β, where β =1 in the delocalized phase governed by the Wigner-Dyson statistics, β =0 , in the localized phase governed by the Poisson statistics, and 0 {{|}2} for the same eigenstate m  =  n and for consecutive eigenstates m  =  n  +  1. For the Anderson localization tight-binding Hamiltonian with random on-site energies h i , we find β =2{{Y}n,n+1}(N)/≤ft({{Y}n,n}(N)-{{Y}n,n+1}(N)\\right) in terms of the density correlation matrix {{Y}nm}(N)\\equiv {\\sum}i=1N| {{|}2}| {{|}2} for consecutive eigenstates m  =  n  +  1, while the diagonal element m  =  n corresponds to the inverse participation ratio {{Y}nn}(N)\\equiv {\\sum}i=1N| {{|}4} of the eigenstate |{φn}> .

  4. Nonreciprocal Anderson localization in one-dimensional ternary disordered media containing magnetized plasma layers

    International Nuclear Information System (INIS)

    This paper proposes a one-dimensional random structure composed of three types of alternating layers of dielectric and magnetized plasma materials. By employing the transfer matrix method, the localization lengths of the waves propagating in opposite directions are calculated. The numerical results demonstrate that nonreciprocal features appear in the averaged localization length and individual transmission resonances. However, in the short wavelength regime, the nonreciprocal behavior of the averaged localization length disappears, and the maximum of differential transmission decreases. The author investigates the effects of the external magnetic field, incident angle, collision frequency, and plasma density of the plasma layer on the reciprocal properties. The frequencies at which nonreciprocity occurs depend on the external magnetic field. Thus, it is possible to realize a photonic diode that is tunable with the external magnetic field. Also found is that for small angles of incidence no significant difference exists between the localization lengths of the forward and backward waves. There is a lower limit for the plasma density of the magnetized plasma layers to obtain nonreciprocal Anderson localization. As the collision frequency increases, the nonreciprocal features of the proposed random system survive. (papers)

  5. Dual nature of localization in guiding systems with randomly corrugated boundaries: Anderson-type versus entropic

    International Nuclear Information System (INIS)

    coexist in waveguide-like systems with randomly corrugated boundaries, specifically, the entropic localization and the one-dimensional Anderson (disorder-driven) localization. If the particular mode propagates across the rough segment ballistically, the Fabry–Pérot-type oscillations should be observed in the conductance, which are suppressed for the mode transferred in the Anderson-localized regime

  6. Commensurability effects in one-dimensional Anderson localization: Anomalies in eigenfunction statistics

    International Nuclear Information System (INIS)

    Highlights: → Statistics of normalized eigenfunctions in one-dimensional Anderson localization at E = 0 is studied. → Moments of inverse participation ratio are calculated. → Equation for generating function is derived at E = 0. → An exact solution for generating function at E = 0 is obtained. → Relation of the generating function to the phase distribution function is established. - Abstract: The one-dimensional (1d) Anderson model (AM), i.e. a tight-binding chain with random uncorrelated on-site energies, has statistical anomalies at any rational point f=(2a)/(λE) , where a is the lattice constant and λE is the de Broglie wavelength. We develop a regular approach to anomalous statistics of normalized eigenfunctions ψ(r) at such commensurability points. The approach is based on an exact integral transfer-matrix equation for a generating function Φr(u, φ) (u and φ have a meaning of the squared amplitude and phase of eigenfunctions, r is the position of the observation point). This generating function can be used to compute local statistics of eigenfunctions of 1d AM at any disorder and to address the problem of higher-order anomalies at f=p/q with q > 2. The descender of the generating function Pr(φ)≡Φr(u=0,φ) is shown to be the distribution function of phase which determines the Lyapunov exponent and the local density of states. In the leading order in the small disorder we derived a second-order partial differential equation for the r-independent ('zero-mode') component Φ(u, φ) at the E = 0 (f=1/2 ) anomaly. This equation is nonseparable in variables u and φ. Yet, we show that due to a hidden symmetry, it is integrable and we construct an exact solution for Φ(u, φ) explicitly in quadratures. Using this solution we computed moments Im = N2m> (m ≥ 1) for a chain of the length N → ∞ and found an essential difference between their m-behavior in the center-of-band anomaly and for energies outside this anomaly. Outside the anomaly the

  7. Numerical Renormalization Group Study of Probability Distributions for Local Fluctuations in the Anderson-Holstein and Holstein-Hubbard Models

    OpenAIRE

    Hewson, Alex C.; Bauer, Johannes

    2010-01-01

    We show that information on the probability density of local fluctuations can be obtained from a numerical renormalisation group calculation of a reduced density matrix. We apply this approach to the Anderson-Holstein impurity model to calculate the ground state probability density $\\rho(x)$ for the displacement $x$ of the local oscillator. From this density we can deduce an effective local potential for the oscillator and compare its form with that obtained from a semiclassical approximation...

  8. Forward approximation as a mean-field approximation for the Anderson and many-body localization transitions

    Science.gov (United States)

    Pietracaprina, Francesca; Ros, Valentina; Scardicchio, Antonello

    2016-02-01

    In this paper we analyze the predictions of the forward approximation in some models which exhibit an Anderson (single-body) or many-body localized phase. This approximation, which consists of summing over the amplitudes of only the shortest paths in the locator expansion, is known to overestimate the critical value of the disorder which determines the onset of the localized phase. Nevertheless, the results provided by the approximation become more and more accurate as the local coordination (dimensionality) of the graph, defined by the hopping matrix, is made larger. In this sense, the forward approximation can be regarded as a mean-field theory for the Anderson transition in infinite dimensions. The sum can be efficiently computed using transfer matrix techniques, and the results are compared with the most precise exact diagonalization results available. For the Anderson problem, we find a critical value of the disorder which is 0.9 % off the most precise available numerical value already in 5 spatial dimensions, while for the many-body localized phase of the Heisenberg model with random fields the critical disorder hc=4.0 ±0.3 is strikingly close to the most recent results obtained by exact diagonalization. In both cases we obtain a critical exponent ν =1 . In the Anderson case, the latter does not show dependence on the dimensionality, as it is common within mean-field approximations. We discuss the relevance of the correlations between the shortest paths for both the single- and many-body problems, and comment on the connections of our results with the problem of directed polymers in random medium.

  9. Energy level statistics at the metal-insulator transition in the Anderson model of localization with anisotropic hopping

    OpenAIRE

    Milde, Frank; R{ö}mer, Rudolf A.

    1998-01-01

    Recently, a metal-insulator transition (MIT) was found in the anisotropic Anderson model of localization by transfer-matrix methods (TMM). This MIT has been also investigated by multifractal analysis (MFA) and the same critical disorders $W_c$ have been obtained within the accuracy of the data. We now employ energy level statistics (ELS) to further characterize the MIT. We find a crossover of the nearest-neighbor level spacing distribution $P(s)$ from GOE statistics at small disorder indicati...

  10. Persistence of energy-dependent localization in the Anderson-Hubbard model with increasing system size and doping.

    Science.gov (United States)

    Daley, P; Wortis, R

    2016-05-01

    Non-interacting systems with bounded disorder have been shown to exhibit sharp density of state peaks at the band edge which coincide with an energy range of abruptly suppressed localization. Recent work has shown that these features also occur in the presence of on-site interactions in ensembles of two-site Anderson-Hubbard systems at half filling. Here we demonstrate that this effect in interacting systems persists away from half filling, and moreover that energy regions with suppressed localization continue to appear in ensembles of larger systems despite a loss of sharp features in the density of states. PMID:27022884

  11. Local excitations in mean field spin glasses

    OpenAIRE

    Krzakala, F.; G.PARISI()

    2003-01-01

    We address the question of geometrical as well as energetic properties of local excitations in mean field Ising spin glasses. We study analytically the Random Energy Model and numerically a dilute mean field model, first on tree-like graphs, equivalent to a replica symmetric computation, and then directly on finite connectivity random lattices. In the first model, characterized by a discontinuous replica symmetry breaking, we found that the energy of finite volume excitation is infinite where...

  12. Modal analysis of the impact of the boundaries on transverse Anderson localization in a one-dimensional disordered optical lattice

    Science.gov (United States)

    Abaie, Behnam; Hosseini, Seyed Rasoul; Karbasi, Salman; Mafi, Arash

    2016-04-01

    Impact of the boundaries on transversely localized modes of a truncated one-dimensional disordered optical lattice is numerically studied. The results show lower modal number density near the boundaries compared with the bulk, while the average decay rate of the tail of localized modes is the same near the boundaries as in the bulk. It is suggested that the perceived suppressed localization near the boundaries is due to a lower mode density: on average, it is less probable to excite a localized mode near the boundaries; however, once it is excited, its localization is with the same exponential decay rate as any other localized mode.

  13. Observation of Replica Symmetry Breaking in the 1D Anderson Localization Regime in an Erbium-Doped Random Fiber Laser

    CERN Document Server

    Gomes, Anderson S L; Pincheira, Pablo I R; Moura, André L; Gagné, Mathieu; Kashyap, Raman; Raposo, Ernesto P; de Araújo, Cid B

    2016-01-01

    The analogue of the paramagnetic to spin-glass phase transition in disordered magnetic systems, leading to the phenomenon of replica symmetry breaking, has been recently demonstrated in a two-dimensional random laser consisting of an organic-based amorphous solid-state thin film. We report here the first demonstration of replica symmetry breaking in a one-dimensional photonic system consisting of an erbium-doped random fiber laser operating in the continuous-wave regime based on a unique random fiber grating system, which plays the role of the random scatterers and operates in the Anderson localization regime. The clear transition from a photonic paramagnetic to a photonic spin glass phase, characterized by the probability distribution function of the Parisi overlap, was verified and characterized. In this unique system, the radiation field interacts only with the gain medium, and the fiber grating, which provides the disordered feedback mechanism, does not interfere with the pump.

  14. Transport in the three-dimensional Anderson model: an analysis of the dynamics at scales below the localization length

    Energy Technology Data Exchange (ETDEWEB)

    Steinigeweg, Robin [Institut fuer Theoretische Physik, Technische Universitaet Braunschweig, Mendelsohnstrasse 3, D-38106 Braunschweig (Germany); Niemeyer, Hendrik; Gemmer, Jochen, E-mail: r.steinigeweg@tu-bs.d, E-mail: jgemmer@uos.d [Fachbereich Physik, Universitaet Osnabrueck, Barbarastrasse 7, D-49069 Osnabrueck (Germany)

    2010-11-15

    Single-particle transport in disordered potentials is investigated at scales below the localization length. The dynamics at those scales is concretely analyzed for the three-dimensional Anderson model with Gaussian on-site disorder. This analysis particularly includes the dependence of characteristic transport quantities on the amount of disorder and the energy interval, e.g. the mean free path that separates ballistic and diffusive transport regimes. For these regimes mean velocities and diffusion constants are quantitatively given. Using the Boltzmann equation in the limit of weak disorder, we reveal the known energy dependences of transport quantities. By the application of the time-convolutionless projection operator technique in the limit of strong disorder, we obtain evidence for much less pronounced energy dependences. All our results are partially confirmed by the numerically exact solution of the time-dependent Schroedinger equation or by approximative numerical integrators. A comparison with other findings in the literature is also provided.

  15. Anderson localization of light in a colloidal suspension (TiO2@silica).

    Science.gov (United States)

    Jimenez-Villar, Ernesto; da Silva, Iran F; Mestre, Valdeci; de Oliveira, Paulo C; Faustino, Wagner M; de Sá, Gilberto F

    2016-06-01

    In recent years, there has been dramatic progress in the photonics field in disordered media, ranging from applications in solar collectors, photocatalyzers, random lasing, and other novel photonic functions, to investigations into fundamental topics, such as light confinement and other phenomena involving photon interactions. This paper reports several pieces of experimental evidence of localization transition in a strongly disordered scattering medium composed of a colloidal suspension of core-shell nanoparticles (TiO2@silica) in ethanol solution. We demonstrate the crossover from a diffusive transport to a localization transition regime as the nanoparticle concentration is increased, and that an enhanced absorption effect arises at localization transition. PMID:26804337

  16. Anderson localization of light in a colloidal suspension (TiO2@silica)

    Science.gov (United States)

    Jimenez-Villar, Ernesto; da Silva, Iran F.; Mestre, Valdeci; de Oliveira, Paulo C.; Faustino, Wagner M.; de Sá, Gilberto F.

    2016-05-01

    In recent years, there has been dramatic progress in the photonics field in disordered media, ranging from applications in solar collectors, photocatalyzers, random lasing, and other novel photonic functions, to investigations into fundamental topics, such as light confinement and other phenomena involving photon interactions. This paper reports several pieces of experimental evidence of localization transition in a strongly disordered scattering medium composed of a colloidal suspension of core-shell nanoparticles (TiO2@silica) in ethanol solution. We demonstrate the crossover from a diffusive transport to a localization transition regime as the nanoparticle concentration is increased, and that an enhanced absorption effect arises at localization transition.In recent years, there has been dramatic progress in the photonics field in disordered media, ranging from applications in solar collectors, photocatalyzers, random lasing, and other novel photonic functions, to investigations into fundamental topics, such as light confinement and other phenomena involving photon interactions. This paper reports several pieces of experimental evidence of localization transition in a strongly disordered scattering medium composed of a colloidal suspension of core-shell nanoparticles (TiO2@silica) in ethanol solution. We demonstrate the crossover from a diffusive transport to a localization transition regime as the nanoparticle concentration is increased, and that an enhanced absorption effect arises at localization transition. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07540h

  17. Anderson localization and its ramifications disorder, phase coherence and electron correlations

    CERN Document Server

    Kettemann, S

    2003-01-01

    The phenomenon of localization of the electronic wave function in a random medium can be regarded as the key manifestation of quantum coherence in a condensed matter system. As one of the most remarkable phenomena in condensed matter physics discovered in the 20th century, the localization problem is an indispensable part of the theory of the quantum Hall effects and rivals superconductivity in its significance as a manifestation of quantum coherence at a macroscopic scale. The present volume, written by some of the leading experts in the field, is intended to highlight some of the recent progress in the field of localization, with particular emphasis on the effect of interactions on quantum coherence. The chapters are written in textbook style and should serve as a reliable and thorough introduction for advanced students or researchers already working in the field of mesoscopic physics.

  18. Measurement-induced disturbance near Anderson localization in one-dimensional systems

    International Nuclear Information System (INIS)

    We study the localization transition in several typical one-dimensional single-particle systems by means of measurement-induced disturbance (MID). The results show that the MID presents a rapid drop around the boundary between the localized state and extended ones, and the corresponding first-order derivative exhibits a behavior of divergence around the critical point for deterministic on-site potential systems (e.g. the quasi-periodic model). These characteristics can capture a phase diagram as well as the traditional method. For the non-deterministic on-site systems (e.g. the random dimer model), the states around the resonant energies possess relatively large values for MID, which means that they are extended. In addition, as the random potential ϵ b exceeds the critical value, the states possessing a large MID vanish completely. These results show that MID can be useful in detecting localization transition in these typical one-dimensional systems. (paper)

  19. Anderson localization at the edge of a 2D topological insulator

    Science.gov (United States)

    Khalaf, Eslam; Ostrovsky, Pavel

    We study transport via edge modes in a disordered 2D topological insulator allowing for the presence of non-protected diffusive channels in addition to the topologically protected edge channels. This scenario can be realized at the interface between two quantum Hall system, in a Weyl semimetal in a magnetic field or at the edge of a quantum spin Hall system. The edge transport is described by a one-dimensional field theory in the form of a supersymmetric non-linear sigma model with a topological term. The transfer-matrix formalism is employed to map the problem to the problem of finding the eigenfunctions of a certain operator on a symmetric superspace. The latter problem is solved exactly for all symmetry classes, enabling us to obtain the full counting statistics and mesoscopic conductance fluctuations in the system. Our main finding is that disorder is much more effective in localizing the diffusive (non-protected) channels in the presence of topologically protected ones. This manifests itself as a suppression of the shot noise and conductance fluctuations at scales much shorter than the localization length.

  20. Local excitations of a spin glass in a magnetic field

    Science.gov (United States)

    Lamarcq, J.; Bouchaud, J.-P.; Martin, O. C.

    2003-07-01

    We study the minimum energy clusters (MEC) above the ground state for the 3-d Edwards-Anderson Ising spin glass in a magnetic field. For fields B below 0.4, we find that the field has almost no effect on the excitations that we can probe, of volume V⩽64. As found previously for B=0, their energies decrease with V, and their magnetization remains very small (even slightly negative). For larger fields, both the MEC energy and magnetization grow with V, as expected in a paramagnetic phase. However, all results appear to scale as BV (instead of B(V) as expected from droplet arguments), suggesting that the spin glass phase is destroyed by any small field. Finally, the geometry of the MEC is completely insensitive to the field, giving further credence that they are lattice animals, in the presence or the absence of a field.

  1. The Anderson Current Loop

    Science.gov (United States)

    Anderson, Karl F.

    1994-01-01

    Four-wire-probe concept applied to electrical-resistance transducers. Anderson current loop is excitation-and-signal-conditioning circuit suitable for use with strain gauges, resistance thermometers, and other electrical-resistance transducers mounted in harsh environments. Used as alternative to Wheatstone bridge. Simplifies signal-conditioning problem, enabling precise measurement of small changes in resistance of transducer. Eliminates some uncertainties in Wheatstone-bridge resistance-change measurements in flight research. Current loop configuration makes effects of lead-wire and contact resistances insignificantly small. Also provides output voltage that varies linearly with change in gauge resistance, and does so at double sensitivity of Wheatstone bridge.

  2. Quantum entanglement of localized excited states at finite temperature

    OpenAIRE

    Caputa, Pawel; Simón, Joan; Štikonas, Andrius(School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, King’s Buildings, Edinburgh, EH9 3FD, U.K.); Takayanagi, Tadashi

    2015-01-01

    In this work we study the time evolutions of (Renyi) entanglement entropy of locally excited states in two dimensional conformal field theories (CFTs) at finite temperature.We consider excited states created by acting with local operators on thermal states and give both field theoretic and holographic calculations. In free field CFTs, we find that the growth of Renyi entanglement entropy at finite temperature is reduced compared to the zero temperature result by a small quantity proportional ...

  3. Linear and Non-linear Rabi Oscillations of a Two-Level System Resonantly Coupled to an Anderson-Localized Mode

    CERN Document Server

    Bachelard, Nicolas; Sebbah, Patrick; Vanneste, Christian

    2014-01-01

    We use time-domain numerical simulations of a two-dimensional (2D) scattering system to study the interaction of a collection of emitters resonantly coupled to an Anderson-localized mode. For a small electric field intensity, we observe the strong coupling between the emitters and the mode, which is characterized by linear Rabi oscillations. Remarkably, a larger intensity induces non-linear interaction between the emitters and the mode, referred to as the dynamical Stark effect, resulting in non-linear Rabi oscillations. The transition between both regimes is observed and an analytical model is proposed which accurately describes our numerical observations.

  4. Quantum dimensions from local operator excitations in the Ising model

    CERN Document Server

    Caputa, Pawel

    2016-01-01

    We compare the time evolution of entanglement measures after local operator excitation in the critical Ising model with predictions from conformal field theory. For the spin operator and its descendants we find that Renyi entropies of a block of spins increase by a constant that matches the logarithm of the quantum dimension of the conformal family. However, for the energy operator we find a small constant contribution that differs from the conformal field theory answer equal to zero. We argue that the mismatch is caused by the subtleties in the identification between the local operators in conformal field theory and their lattice counterpart. Our results indicate that evolution of entanglement measures in locally excited states not only constraints this identification, but also can be used to extract non-trivial data about the conformal field theory that governs the critical point. We generalize our analysis to the Ising model away from the critical point, states with multiple local excitations, as well as t...

  5. Transverse Chiral Optical Forces by Locally Excited Surface Plasmon Polaritons

    CERN Document Server

    Alizadeh, M H

    2015-01-01

    Recently the new concepts of transverse spin angular momentum and Belinfante spin momentum of evanescent waves have drawn considerable attention. Here, we investigate these novel physical properties of electromagnetic fields in the context of locally excited surface plasmon polaritons. We demonstrate, both analytically and numerically, that locally excited surface plasmon polaritons possess transverse spin angular momentum and Belinfante momentum with rich and non-trivial characteristics. We also show that the transverse spin angular momentum of locally excited surface plasmon polaritons leads to the emergence of transverse chiral forces in opposite directions for chiral objects of different handedness. The magnitude of such a transverse force is comparable to the optical gradient force and scattering forces. This finding may pave the way for realization of optical separation of chiral biomolecules.

  6. Quantum entanglement of localized excited states at finite temperature

    Science.gov (United States)

    Caputa, Pawel; Simón, Joan; Štikonas, Andrius; Takayanagi, Tadashi

    2015-01-01

    In this work we study the time evolutions of (Renyi) entanglement entropy of locally excited states in two dimensional conformal field theories (CFTs) at finite temperature. We consider excited states created by acting with local operators on thermal states and give both field theoretic and holographic calculations. In free field CFTs, we find that the growth of Renyi entanglement entropy at finite temperature is reduced compared to the zero temperature result by a small quantity proportional to the width of the localized excitations. On the other hand, in finite temperature CFTs with classical gravity duals, we find that the entanglement entropy approaches a characteristic value at late time. This behaviour does not occur at zero temperature. We also study the mutual information between the two CFTs in the thermofield double (TFD) formulation and give physical interpretations of our results.

  7. Quantum Entanglement of Localized Excited States at Finite Temperature

    CERN Document Server

    Caputa, Pawel; Stikonas, Andrius; Takayanagi, Tadashi

    2014-01-01

    In this work we study the time evolutions of (Renyi) entanglement entropy of locally excited states in two dimensional conformal field theories (CFTs) at finite temperature. We consider excited states created by acting with local operators on thermal states and give both field theoretic and holographic calculations. In free field CFTs, we find that the growth of Renyi entanglement entropy at finite temperature is reduced compared to the zero temperature result by a small quantity proportional to the width of the localized excitations. On the other hand, in finite temperature CFTs with classical gravity duals, we find that the entanglement entropy approaches a characteristic value at late time. This behaviour does not occur at zero temperature. We also study the mutual information between the two CFTs in the thermofield double (TFD) formulation and give physical interpretations of our results.

  8. Efficiency of local surface plasmon polariton excitation on ridges

    DEFF Research Database (Denmark)

    Radko, I.P.; Bozhevolnyi, S.I.; Brucoli, G.;

    2008-01-01

    The issue of efficient local coupling of light into surface plasmon polariton (SPP) modes is an important concern in miniaturization of plasmonic components. Here we present experimental and numerical investigations of efficiency of local SPP excitation on gold ridges of rectangular profile...... positioned on a gold film. The excitation is accomplished by illuminating the metal surface normally with a focused laser beam. Wavelength dependence and dependence of the efficiency on geometrical parameters of ridges are examined. Using leakage radiation microscopy, the efficiency of ˜20% is demonstrated...... experimentally. Numerical simulations based on Green’s tensor approach are in good agreement with the experiment and allow suggesting an optimization of parameters for improving the efficiency of SPP excitation....

  9. Parametric Excitation, Localization and Synchronization in Nonlinear Hydrodynamical Systems

    CERN Document Server

    Goldobin, Denis S

    2008-01-01

    The dissertation contains 4 original chapters: 1) Parametric excitation of Soret-driven convection of binary mixture in a horizontal porous layer. 2) Soret-driven convection in a horizontal porous layer from a heat or concentration source. 3) Localization of convective flows under randomly inhomogeneous heating. 4) Synchrony of nonlinear systems driven by common noise.

  10. Excitation and geometrically matched local encoding of curved slices.

    Science.gov (United States)

    Weber, Hans; Gallichan, Daniel; Schultz, Gerrit; Cocosco, Chris A; Littin, Sebastian; Reichardt, Wilfried; Welz, Anna; Witschey, Walter; Hennig, Jürgen; Zaitsev, Maxim

    2013-05-01

    In this work, the concept of excitation and geometrically matched local in-plane encoding of curved slices (ExLoc) is introduced. ExLoc is based on a set of locally near-orthogonal spatial encoding magnetic fields, thus maintaining a local rectangular shape of the individual voxels and avoiding potential problems arising due to highly irregular voxel shapes. Unlike existing methods for exciting curved slices based on multidimensional radiofrequency-pulses, excitation and geometrically matched local encoding of curved slices does not require long duration or computationally expensive radiofrequency-pulses. As each encoding field consists of a superposition of potentially arbitrary (spatially linear or nonlinear) magnetic field components, the resulting field shape can be adapted with high flexibility to the specific region of interest. For extended nonplanar structures, this results in improved relevant volume coverage for fewer excited slices and thus increased efficiency. In addition to the mathematical description for the generation of dedicated encoding fields and data reconstruction, a verification of the ExLoc concept in phantom experiments and examples for in vivo curved single and multislice imaging are presented. PMID:22711656

  11. Anderson Anderson,美国

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Design Concept: "Wuhan Blue Prototype" A highlight of the concept is its integration with the local neighbourhood.The building and site planning will be coordinated with the existing planned facilities with a great lawn leading up from the community entrance toward a community gym and shopping centre. The Blue Sky Prototype itself is planned as an open-air network of pedestrian streets and public gardens at ground level winding up to vertical floor plates. The front doors of each unit will open to wide open-air streets and the sky.

  12. Causal Evolutions of Bulk Local Excitations from CFT

    CERN Document Server

    Goto, Kanato; Takayanagi, Tadashi

    2016-01-01

    Bulk localized excited states in an AdS spacetime can be constructed from Ishibashi states with respect to the global conformal symmetry in the dual CFT. We study boundary two point functions of primary operators in the presence of bulk localized excitations in two dimensional CFTs. From two point functions in holographic CFTs, we observe causal propagations of radiations when the mass of dual bulk scalar field is close to the BF bound. This behavior for holographic CFTs is consistent with the locality and causality in classical gravity duals. We also show that this cannot be seen in free fermion CFTs. Moreover, we find that the short distance behavior of two point functions is universal and obeys the relation which generalizes the first law of entanglement entropy.

  13. Local structural excitations and critical temperature of supported superconducting oxides

    International Nuclear Information System (INIS)

    High resolution IR spectra for the following complex oxides: La2CuO4, Nd2CuO4, YBa2Cu3O7-x, BaBiO3, HgCaBaCuO (at cations ratio 1223) were obtained for studying the role of oxygen sublattice in formation of electrophysical properties of superconducting oxide ceramics. Frequencies of vibration spectra sensitive to lattice distortions, oxygen content and occurrence of its excited states, were revealed. The assumption on local structural excitations and role of donor-acceptor interactions in formation of high-temperature superconductivity was confirmed

  14. Local excitations in mean-field spin glasses

    Science.gov (United States)

    Krzakala, F.; Parisi, G.

    2004-06-01

    We address the question of geometrical as well as energetic properties of local excitations in mean-field Ising spin glasses. We study analytically the Random Energy Model and numerically a dilute mean-field model, first on tree-like graphs, equivalent to a replica-symmetric computation, and then directly on finite-connectivity random lattices. In the first model, characterized by a discontinuous replica symmetry breaking, we found that the energy of finite-volume excitation is infinite, whereas in the dilute mean-field model, described by a continuous replica symmetry breaking, it slowly decreases with sizes and saturates at a finite value, in contrast with what would be naively expected. The geometrical properties of these excitations are similar to those of lattice animals or branched polymers. We discuss the meaning of these results in terms of replica symmetry breaking and also possible relevance in finite-dimensional systems.

  15. Localized excitations in superconducting point contacts: probing the Andreev doublet

    International Nuclear Information System (INIS)

    The Josephson effect describes the coherent coupling between superconductors and the resulting supercurrent. Microscopically, it arises from the existence of discrete quasiparticle states, localized at the weak link, the Andreev bound states. They come in doublets in each conduction channel of the weak link, with energies symmetric about the Fermi energy and opposite supercurrents. Each Andreev doublet gives rise to four states: the ground state |-> and the excited state |+>, with even parity, and the excited odd states |↑> and |↓>. Is it possible to address and control Andreev doublets? This thesis describes two sets of experiments designed to answer this question using the most basic Josephson element, a one-atom contact between two superconducting electrodes. In a first experiment, we have observed and characterized the excited odd states |↑> and |↓>. As expected for a spin-degenerate system, they do not carry supercurrent. In this experiment the excitation was uncontrolled and resulted from trapping of spurious quasiparticles. We have measured the lifetime of the odd states: under some condition, it is found to exceed 100 μs. The second experiment is a photon-absorption spectroscopy of the Andreev doublet. It was performed by using a Josephson junction as an integrated on-chip microwave emitter and detector. The observed Andreev transitions correspond to excitation from the ground state |->to the excited even state |+>, and are well accounted for by our quantum model. This result opens the way to coherent manipulation of this two level system. The direct observation of the excited Andreev state, either by quasiparticle-injection or photon-absorption, strongly supports the mesoscopic theory of the Josephson effect. It shows that in addition to the phase difference, each channel of a Josephson weak link possesses an internal fermionic degree of freedom. It could be used to code information in a novel type of superconducting qubit. (author)

  16. Enhanced Electromagnetic Chirality by Locally Excited Surface Plasmon Polaritons

    CERN Document Server

    Alizadeh, M H

    2015-01-01

    The possibility to enhance chiral light-matter interactions through plasmonic nanostructures provides entirely new opportunities for greatly improving the detection limits of chiroptical spectroscopies down to the single molecule level. The most pronounced of these chiral interactions occur in the ultraviolet (UV) range of the electromagnetic spectrum, which is difficult to access with conventional localized plasmon resonance based sensors. Although Surface Plasmon Polaritons (SPPs) on noble metal films can sustain resonances in the desired spectral range, their transverse magnetic nature has been an obstacle for enhancing chiroptical effects. Here we demonstrate, both analytically and numerically, that SPPs excited by near-field sources can exhibit rich and non-trivial chiral characteristics. In particular, we show that the excitation of SPPs by a chiral source not only results in a locally enhanced optical chirality but also achieves manifold enhancement of net optical chirality. Our finding that SPPs facil...

  17. Direct observation of localized dipolar excitations on rough nanostructured surfaces

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Markel, V.A.; Coello, V.;

    1998-01-01

    Using a photon scanning tunneling microscope (operating alternatively at the wavelengths of 594 and 633 nm) with shear-force feedback we image the topography of silver colloid fractals simultaneously with a near-field intensity distribution. We observe that near-field optical images exhibit...... spatially localized (within 150-250 nm) intensity enhancement by one to two orders of magnitude. These bright light spots are found to be sensitive to the light wavelength, polarization, and angle of incidence. We relate the observed phenomenon to the localization of resonant dipolar excitations in random...

  18. Excitations and management of the nonlinear localized gap modes

    Indian Academy of Sciences (India)

    Bishwajyoti Dey

    2015-11-01

    We discuss about the theory of nonlinear localized excitations, such as soliton and compactons in the gap of the linear spectrum of the nonlinear systems. We show how the gap originates in the linear spectrum using examples of a few systems, such as nonlinear lattices, Bose–Einstein condensates in optical lattice and systems represented by coupled nonlinear evolution equations. We then analytically show the excitation of solitons and compacton-like solutions in the gap of the linear spectrum of a system of coupled Korteweg–de Vries (KdV) equations with linear and nonlinear dispersions. Finally, we discuss about the theory of Feshbach resonance management and dispersion management of the soliton solutions.

  19. The London-Anderson-Englert-Brout-Higgs-Guralnik-Hagen-Kibble-Weinberg mechanism and Higgs boson reveal the unity and future excitement of physics

    CERN Document Server

    Allen, Roland E

    2013-01-01

    The particle recently discovered by the CMS and ATLAS collaborations at CERN is almost certainly a Higgs boson, fulfilling a quest that can be traced back to three seminal high energy papers of 1964, but which is intimately connected to ideas in other areas of physics that go back much further. One might oversimplify the history of the features which (i) give mass to the W and Z particles that mediate the weak nuclear interaction, (ii) effectively break gauge invariance, (iii) eliminate physically unacceptable Nambu-Goldstone bosons, and (iv) give mass to fermions (like the electron) by collectively calling them the London-Anderson-Englert-Brout-Higgs-Guralnik-Hagen-Kibble-Weinberg mechanism. More important are the implications for the future: a Higgs boson appears to point toward supersymmetry, since new physics is required to protect its mass from enormous quantum corrections, while the discovery of neutrino masses seems to point toward grand unification of the nongravitational forces.

  20. Local excitation and collection in polymeric fluorescent microstructures

    Science.gov (United States)

    Henrique, Franciele Renata; Mendonca, Cleber Renato

    2016-04-01

    Integrated photonics has gained attention in recent years due to its wide range of applications which span from biology to optical communications. The use of polymer-based platforms for photonic devices is of great interest because organic compounds can be easily incorporated to polymers, enabling modifications to the system physical properties. The two-photon polymerization technique has emerged as an interesting tool for the production of three-dimensional polymeric microstructures. However, for their further incorporation in photonic devices it is necessary to develop methods to perform optical excitation and signal collection on such microstructures. With such purpose, we demonstrate approaches to perform local excitation and collection in polymeric microstructures doped with fluorescent dyes, employing tapered fibers. The obtained results indicate that fiber tapers are suitable to couple light in and out of fluorescent polymeric microstructures, paving the way for their incorporation in photonic devices. We also show that microstructures doped with more than one dye can be used as built-in broadband light sources to photonic circuits and their emission spectrum can be tuned by the right choice of the excitation position.

  1. Damage Localization of Offshore Platforms Under Ambient Excitation

    Institute of Scientific and Technical Information of China (English)

    杨和振; 李华军; 王树青

    2003-01-01

    In this paper Nondestructive Damage Detection (NDD) for offshore platforms is investigated under operational conditions. As is known, there is no easy way to measure ambient excitation, so damage detection methods based on ambient excitation have become very vital for the Structural Health Monitoring (SHM) of offshore platforms. The modal parameters (natural frequencies, damping ratios and mode shapes) are identified from structural response data with the Natural Excitation Technique (NExT) in conjunction with the Eigensystem Realization Algorithm (ERA). A new method of damage detection is presented, which utilizes the invariance property of element modal strain energy. This method is to assign element modal strain energy to two parts, and defines two damage detection indicators. One is compression modal strain energy change ratio (CMSECR); the other is flexural modal strain energy change ratio (FMSECR). The present modal strain energy is obtained by incomplete modal shape and structural stiffness matrix. Structural health monitoring is thus accomplished via monitoring the elemental CMSECR and FMSECR. Several damage cases are simulated by an offshore platform numerical model, and presented to illustrate the utility of the proposed method. According to the damage localization results, the proposed method is shown to be effective and precise for complex structural damage detection.

  2. Quantum Entanglement of Locally Excited States in Maxwell Theory

    CERN Document Server

    Nozaki, Masahiro

    2016-01-01

    In 4 dimensional Maxwell gauge theory, we study the changes of (Renyi) entangle-ment entropy which are defined by subtracting the entropy for the ground state from the one for the locally excited states generated by acting with the gauge invariant local operators on the state. The changes for the operators which we consider in this paper reflect the electric-magnetic duality. The late-time value of changes can be interpreted in terms of electromagnetic quasi-particles. When the operator constructed of both electric and magnetic fields acts on the ground state, it shows that the operator acts on the late-time structure of quantum entanglement differently from free scalar fields.

  3. Parametric excitation of multiple resonant radiations from localized wavepackets

    CERN Document Server

    Conforti, Matteo; Mussot, Arnaud; Kudlinski, Alexandre

    2015-01-01

    Fundamental physical phenomena such as laser-induced ionization, driven quantum tunneling, Faraday waves, Bogoliubov quasiparticle excitations, and the control of new states of matter rely on time-periodic driving of the system. A remarkable property of such driving is that it can induce the localized (bound) states to resonantly couple to the continuum. Therefore experiments that allow for enlightening and controlling the mechanisms underlying such coupling are of paramount importance. We implement such an experiment in a special fiber optics system characterized by a dispersion oscillating along the propagation coordinate, which mimics "time". The quasi-momentum associated with such periodic perturbation is responsible for the efficient coupling of energy from the localized wave-packets sustained by the fiber nonlinearity into free-running linear dispersive waves (continuum), at multiple resonant frequencies. Remarkably, the observed resonances can be explained by means of a unified approach, regardless of ...

  4. Angle-resolved photoemission spectroscopy of the insulating NaxWO3: Anderson localization, polaron formation, and remnant Fermi surface.

    Science.gov (United States)

    Raj, S; Hashimoto, D; Matsui, H; Souma, S; Sato, T; Takahashi, T; Sarma, D D; Mahadevan, Priya; Oishi, S

    2006-04-14

    The electronic structure of the insulating sodium tungsten bronze, Na(0.025)WO(3), is investigated by high-resolution angle-resolved photoemission spectroscopy. We find that near-E(F) states are localized due to the strong disorder arising from random distribution of Na+ ions in the WO(3) lattice, which makes the system insulating. The temperature dependence of photoemission spectra provides direct evidence for polaron formation. The remnant Fermi surface of the insulator is found to be the replica of the real Fermi surface in the metallic system. PMID:16712121

  5. Tumor downstaging and sphincter preservation with preoperative chemoradiation in locally advanced rectal cancer: the M. D. Anderson Cancer Center experience

    International Nuclear Information System (INIS)

    Purpose: To evaluate the rates of tumor downstaging after preoperative chemoradiation for locally advanced rectal cancer. Materials and Methods: Preoperative chemoradiotherapy (CTX/XRT) that delivered 45 Gy in 25 fractions over 5 weeks with continuous infusion 5-fluorouracil (300 mg/m2/day) was given to 117 patients. The pretreatment stage distribution, as determined by endorectal ultrasound (u), included uT2N0 in 2%, uT3N0 in 47%, uT3N1 in 49%, and uT4N0 in 2% of cases; endorectal ultrasound was not performed in 13% of cases (15 patients). Approximately 6 weeks after completion of CTX/XRT, surgery was performed. Results: The pathological tumor stages were Tis-2N0 in 26%, T2N1 in 5%, T3N0 in 21%, T3N1 in 15%, T4N0 in 5%, and T4N1 in 1%; a complete response (CR) to preoperative CTX/XRT was pathologically confirmed in 32 (27%) of patients. Tumor downstaging occurred in 72 (62%) cases. Only 3% of cases had pathologic evidence of progressive disease. Pretreatment tumor size (1 T-stage level was accomplished in 45% of those downstaged. Overall, a sphincter-saving (SP) procedure was possible in 59% of patients and an abdominoperineal resection (APR) was required in 41% of cases. Factors predictive of SP included downstaging (p 40 years (p 6 cm from the anal verge, SP was performed in 14 of the 15 (93%) patients with a CR and 32 of 33 (97%) of patients with residual disease (p < 0.00004). Conclusions: Significant tumor downstaging results from preoperative chemoradiation allowing sphincter sparing surgery in over 40% of patients whose tumors were located < 6 cm from the anal verge and who otherwise would have required colostomy

  6. Probing the Locality of Excited States with Linear Algebra.

    Science.gov (United States)

    Etienne, Thibaud

    2015-04-14

    This article reports a novel theoretical approach related to the analysis of molecular excited states. The strategy introduced here involves gathering two pieces of physical information, coming from Hilbert and direct space operations, into a general, unique quantum mechanical descriptor of electronic transitions' locality. Moreover, the projection of Hilbert and direct space-derived indices in an Argand plane delivers a straightforward way to visually probe the ability of a dye to undergo a long- or short-range charge-transfer. This information can be applied, for instance, to the analysis of the electronic response of families of dyes to light absorption by unveiling the trend of a given push-pull chromophore to increase the electronic cloud polarization magnitude of its main transition with respect to the size extension of its conjugated spacer. We finally demonstrate that all the quantities reported in this article can be reliably approximated by a linear algebraic derivation, based on the contraction of detachment/attachment density matrices from canonical to atomic space. This alternative derivation has the remarkable advantage of a very low computational cost with respect to the previously used numerical integrations, making fast and accurate characterization of large molecular systems' excited states easily affordable. PMID:26574379

  7. Development of a radio frequency excited local impedance probe

    International Nuclear Information System (INIS)

    Local void fraction measurements were made with a Karlsruhe type impedance probe. The probe was operated at radiofrequency to minimize sensitivity to liquid phase resistivity. Two types of signal thresholding were used: level and derivative. A dual beam X-ray system was used as a calibration standard for the radio frequency excited impedance probe. Calibration was performed in vertical air/water flows. Derivative thresholding was found to be preferable to level thresholding, however, in both schemes hydrodynamic and surface tension effects were observed below a liquid superficial velocity of 0.5 m/s. Table salt (NaCl) was added to the water to verify the probe's response to changing water resistivity. Derivative thresholding appeared to work quite well but level thresholding was found to be inadequate due to the change in capacitance. (orig.)

  8. Localized nonlinear excitations in diffusive Hindmarsh-Rose neural networks.

    Science.gov (United States)

    Moukam Kakmeni, F M; Inack, E M; Yamakou, E M

    2014-05-01

    We study localized nonlinear excitations in diffusive Hindmarsh-Rose neural networks. We show that the Hindmarsh-Rose model can be reduced to a modified Complex Ginzburg-Landau equation through the application of a perturbation technique. We equally report on the presence of envelop solitons of the nerve impulse in this neural network. From the biological point of view, this result suggests that neurons can participate in a collective processing of information, a relevant part of which is shared over all neurons but not concentrated at the single neuron level. By employing the standard linear stability analysis, the growth rate of the modulational instability is derived as a function of the wave number and systems parameters. PMID:25353873

  9. New localized excitations in a (2+1)-dimensional Broer-Kaup system

    Institute of Scientific and Technical Information of China (English)

    Bai Cheng-Lin; Liu Xi-Qiang; Zhao Hong

    2005-01-01

    Starting with the extended homogeneous balance method and a variable separation approach, a general variable separation solution of the Broer-Kaup system is derived. In addition to the usual localized coherent soliton excitations like dromions, lumps, rings, breathers, instantons, oscillating soliton excitations, peakon and fractal localized solutions,some new types of localized excitations, such as compacton and folded excitations, are obtained by introducing appropriate lower-dimensional piecewise smooth functions and multiple-valued functions, and some interesting novel features of these structures are revealed.

  10. Efficiency of local surface plasmon polariton excitation on ridges

    DEFF Research Database (Denmark)

    Radko, Ilya; Bozhevolnyi, Sergey I.; Boltasseva, Alexandra;

    2008-01-01

    We investigate experimentally and numerically the efficiency of surface plasmon polariton excitation by a focused laser beam using gold ridges. The dependence of the efficiency on geometrical parameters of ridges and wavelength dependence are examined. The experimental measurements accomplished...

  11. Interview with Philip W. Anderson

    International Nuclear Information System (INIS)

    Phil Anderson, Professor of Physics at Princeton University, has devoted his career to research in theoretical physics. He is a member of the National Academy of Science and the American Academy of Arts and Sciences, a foreign member of the Royal Society, and a foreign associate of the Accademia Lincei in Rome. The Americal Physical Society awarded him the Oliver E. Buckley Solid State Physics Prize in 1964. In 1977 he won the Nobel Prize in Physics with J.H. van Vleck and N.F. Mott. His work has encompassed a broad range of subjects: quantum theory of condensed matter, broken symmetry, transport theory and localization, random statistical systems, spectral line broadening, superfluidity in helium and neutron stars, magnetism, and superconductivity. His avocations include ''hiking, the game of GO, Romanesque architecture, and the human condition.'' In this interview he explains his RVB theory of the oxide superconductors and its historical context

  12. Local density approximation for exchange in excited-state density functional theory

    OpenAIRE

    Harbola, Manoj K.; Samal, Prasanjit

    2004-01-01

    Local density approximation for the exchange energy is made for treatment of excited-states in density-functional theory. It is shown that taking care of the state-dependence of the LDA exchange energy functional leads to accurate excitation energies.

  13. Localization of atomic excitation beyond the diffraction limit using electromagnetically induced transparency

    Science.gov (United States)

    Miles, J. A.; Das, Diptaranjan; Simmons, Z. J.; Yavuz, D. D.

    2015-09-01

    We experimentally demonstrate the localization of excitation between hyperfine ground states of 87Rb atoms to as small as λ /13 -wide spatial regions. We use ultracold atoms trapped in a dipole trap and utilize electromagnetically induced transparency (EIT) for the atomic excitation. The localization is achieved by combining a spatially varying coupling laser (standing wave) with the intensity dependence of EIT. The excitation is fast (150 ns laser pulses) and the dark-state fidelity can be made higher than 94% throughout the standing wave. Because the width of the localized regions is much smaller than the wavelength of the driving light, traditional optical imaging techniques cannot resolve the localized features. Therefore, to measure the excitation profile, we use an autocorrelation-like method where we perform two EIT sequences separated by a time delay, during which we move the standing wave.

  14. Damage Localization and Quantification of Earthquake Excited RC-Frames

    DEFF Research Database (Denmark)

    Skjærbæk, P.S.; Nielsen, Søren R.K.; Kirkegaard, Poul Henning;

    In the paper a recently proposed method for damage localization and quantification of RC-structures from response measurements is tested on experimental data. The method investigated requires at least one response measurement along the structure and the ground surface acceleration. Further, the t...

  15. Non-local effects of edge excitations in the quantum Hall regime

    OpenAIRE

    Deviatov, E. V.; Lorke, A; Biasiol, G.; Sorba, L.

    2010-01-01

    We use a novel sample geometry to study non-local effects of edge excitations in the integer quantum Hall effect regime. We find that the condition of local equilibrium at the quantum Hall edge is affected by the diffusion of dynamically polarized nuclei. Our analysis indicates, that the nuclear diffusion is effectively one-dimensional in the present experiment.

  16. Multiple-Resonance Local Wave Functions for Accurate Excited States in Quantum Monte Carlo.

    Science.gov (United States)

    Zulfikri, Habiburrahman; Amovilli, Claudio; Filippi, Claudia

    2016-03-01

    We introduce a novel class of local multideterminant Jastrow-Slater wave functions for the efficient and accurate treatment of excited states in quantum Monte Carlo. The wave function is expanded as a linear combination of excitations built from multiple sets of localized orbitals that correspond to the bonding patterns of the different Lewis resonance structures of the molecule. We capitalize on the concept of orbital domains of local coupled-cluster methods, which is here applied to the active space to select the orbitals to correlate and construct the important transitions. The excitations are further grouped into classes, which are ordered in importance and can be systematically included in the Jastrow-Slater wave function to ensure a balanced description of all states of interest. We assess the performance of the proposed wave function in the calculation of vertical excitation energies and excited-state geometry optimization of retinal models whose π → π* state has a strong intramolecular charge-transfer character. We find that our multiresonance wave functions recover the reference values of the total energies of the ground and excited states with only a small number of excitations and that the same expansion can be flexibly used at very different geometries. Furthermore, significant computational saving can also be gained in the orbital optimization step by selectively mixing occupied and virtual orbitals based on spatial considerations without loss of accuracy on the excitation energy. Our multiresonance wave functions are therefore compact, accurate, and very promising for the calculation of multiple excited states of different character in large molecules. PMID:26761421

  17. Nuclear charge-exchange excitations in localized covariant density functional theory

    International Nuclear Information System (INIS)

    The recent progress in the studies of nuclear charge-exchange excitations with localized covariant density functional theory is briefly presented, by taking the fine structure of spin-dipole excitations in 16O as an example. It is shown that the constraints introduced by the Fock terms of the relativistic Hartree-Fock scheme into the particle-hole residual interactions are straightforward and robust. (authors)

  18. Nuclear charge-exchange excitations in localized covariant density functional theory

    CERN Document Server

    Liang, H Z; Nakatsukasa, T; Niu, Z M; Ring, P; Roca-Maza, X; Van Giai, N; Zhao, P W

    2014-01-01

    The recent progress in the studies of nuclear charge-exchange excitations with localized covariant density functional theory is briefly presented, by taking the fine structure of spin-dipole excitations in 16O as an example. It is shown that the constraints introduced by the Fock terms of the relativistic Hartree-Fock scheme into the particle-hole residual interactions are straightforward and robust.

  19. Excitation Localization/Delocalization Isomerism in a Strongly Coupled Covalent Dimer of 1,3-Diphenylisobenzofuran

    Energy Technology Data Exchange (ETDEWEB)

    Schrauben, Joel N.; Akdag, Akin; Wen, Jin; Havlas, Zdenek; Ryerson, Joseph L.; Smith, Millie B.; Michl, Josef; Johnson, Justin C.

    2016-05-26

    Two isomers of both the lowest excited singlet (S1) and triplet (T1) states of the directly para, para'-connected covalent dimer of the singlet-fission chromophore 1,3-diphenylisobenzofuran have been observed. In one isomer, excitation is delocalized over both halves of the dimer, and in the other, it is localized on one or the other half. For a covalent dimer in solution, such 'excitation isomerism' is extremely rare. The vibrationally relaxed isomers do not interconvert, and their photophysical properties, including singlet fission, differ significantly.

  20. Lithuania 1940 / Herbert Foster Anderson

    Index Scriptorium Estoniae

    Foster Anderson, Herbert

    2004-01-01

    Stseenid Leedu ennesõjaaegsest pealinnast Kaunasest briti ärimehe H. Foster Andersoni silme läbi 1940. aastal. Lühikokkuvõte raamatust: Foster Anderson, Herbert. Borderline Russia. London : Cresset press, 1942

  1. The Price-Anderson Act

    International Nuclear Information System (INIS)

    The Price-Anderson Act establishes nuclear liability law in the United States. First passed in 1957, it has influenced other nuclear liability legislation around the world. The insurer response the nuclear accident at Three Mile Island in 1979 demonstrates the application of the Act in a real life situation. The Price-Anderson Act is scheduled to be renewed in 2002, and the future use of commercial nuclear power in tge United States will be influenced by this renewal. (author)

  2. Localized operator partitioning method for electronic excitation energies in the time-dependent density functional formalism

    CERN Document Server

    Nagesh, Jayashree; Brumer, Paul; Izmaylov, Artur F

    2016-01-01

    We extend the localized operator partitioning method (LOPM) [J. Nagesh, A.F. Izmaylov, and P. Brumer, J. Chem. Phys. 142, 084114 (2015)] to the time-dependent density functional theory (TD-DFT) framework to partition molecular electronic energies of excited states in a rigorous manner. A molecular fragment is defined as a collection of atoms using Stratman-Scuseria-Frisch atomic partitioning. A numerically efficient scheme for evaluating the fragment excitation energy is derived employing a resolution of the identity to preserve standard one- and two-electron integrals in the final expressions. The utility of this partitioning approach is demonstrated by examining several excited states of two bichromophoric compounds: 9-((1-naphthyl)-methyl)-anthracene and 4-((2-naphthyl)-methyl)-benzaldehyde. The LOPM is found to provide nontrivial insights into the nature of electronic energy localization that are not accessible using simple density difference analysis.

  3. Localized Beampipe Heating due to $e^-$ Capture and Nuclear Excitation in Heavy Ion Colliders

    OpenAIRE

    Klein, Spencer R.

    2000-01-01

    At heavy ion colliders, two major sources of beam loss are expected to be $e^+e^-$ production, where the $e^-$ is bound to one of the nuclei, and photonuclear excitation and decay via neutron emission. Both processes alter the ions charged to mass ratio by well defined amounts, creating beams of particles with altered magnetic rigidity. These beams will deposit their energy in a localized region of the accelerator, causing localized heating, The size of the target region depends on the collid...

  4. Excitation by Axon Terminal GABA Spillover in a Sound Localization Circuit.

    Science.gov (United States)

    Weisz, Catherine J C; Rubio, Maria E; Givens, Richard S; Kandler, Karl

    2016-01-20

    Synapses from neurons of the medial nucleus of the trapezoid body (MNTB) onto neurons of the lateral superior olive (LSO) in the auditory brainstem are glycinergic in maturity, but also GABAergic and glutamatergic in development. The role for this neurotransmitter cotransmission is poorly understood. Here we use electrophysiological recordings in brainstem slices from P3-P21 mice to demonstrate that GABA release evoked from MNTB axons can spill over to neighboring MNTB axons and cause excitation by activating GABAAR. This spillover excitation generates patterns of staggered neurotransmitter release from different MNTB axons resulting in characteristic "doublet" postsynaptic currents in LSO neurons. Postembedding immunogold labeling and electron microscopy provide evidence that GABAARs are localized at MNTB axon terminals. Photolytic uncaging of p-hydroxyphenacyl (pHP) GABA demonstrates backpropagation of GABAAR-mediated depolarizations from MNTB axon terminals to the soma, some hundreds of microns away. These somatic depolarizations enhanced somatic excitability by increasing the probability of action potential generation. GABA spillover excitation between MNTB axon terminals may entrain neighboring MNTB neurons, which may play a role in the developmental refinement of the MNTB-LSO pathway. Axonal spillover excitation persisted beyond the second postnatal week, suggesting that this mechanism may play a role in sound localization, by providing new avenues of communication between MNTB neurons via their distal axonal projections. Significance statement: In this study, a new mechanism of neuronal communication between auditory synapses in the mammalian sound localization pathway is described. Evidence is provided that the inhibitory neurotransmitter GABA can spill over between axon terminals to cause excitation of nearby synapses to further stimulate neurotransmitter release. Excitatory GABA spillover between inhibitory axon terminals may have important implications

  5. Covalent bonding effect on the mean excitation energy of H2 with the local plasma model

    Science.gov (United States)

    Kamaratos, E.

    1984-01-01

    Chemical bonding is taken into account explicitly in the determination of the mean excitation energy (I) for stopping power of H2 with the local plasma approximation by employing molecular electronic wave functions for H2 for the first time. This procedure leads to a new value for IH2 that is higher than all accepted experimental and theoretical values.

  6. Localized excitations in discrete nonlinear Schrodinger systems: Effects of nonlocal dispersive interactions and noise

    DEFF Research Database (Denmark)

    Rasmussen, Kim; Christiansen, Peter Leth; Johansson, Magnus; Gaididei, Yuri B.; Mingaleev, S.F.

    with nearest-neighbor coupling we discuss the stability of highly localized, "breather-like", excitations under the influence of thermal fluctuations. Numerical analysis shows that the lifetime of the breather is aln,aps finite and in a large parameter region inversely proportional to the noise...

  7. Phil Anderson's Magnetic Ideas in Science

    CERN Document Server

    Coleman, Piers

    2016-01-01

    In Philip W. Anderson's research, magnetism has always played a special role, providing a prism through which other more complex forms of collective behavior and broken symmetry could be examined. I discuss his work on magnetism from the 1950s, where his early work on antiferromagnetism led to the pseudospin treatment of superconductivity - to the 70s and 80s, highlighting his contribution to the physics of local magnetic moments. Phil's interest in the mechanism of moment formation, and screening evolved into the modern theory of the Kondo effect and heavy fermions.

  8. Potential-energy surfaces of local excited states from subsystem- and selective Kohn–Sham-TDDFT

    International Nuclear Information System (INIS)

    Research highlights: ► Application of selective TDDFT for potential-energy surfaces. ► Improved eigenvector guesses for convergence speed-up. ► Intuitive single-orbital transition picture breaks down in adsorbate–surface model. ► Comparison of frozen-density embedding with classical point-charge models. ► Frozen-density embedding yields smooth potential-energy surfaces for adsorbate states. - Abstract: Calculating excited-state potential-energy surfaces for systems with a large number of close-lying excited states requires the identification of the relevant electronic transitions for several geometric structures. Time-dependent density functional theory (TDDFT) is very efficient in such calculations, but the assignment of local excited states of the active molecule can be difficult. We compare the results of the frozen-density embedding (FDE) method with those of standard Kohn–Sham density-functional theory (KS-DFT) and simpler QM/MM-type methods. The FDE results are found to be more accurate for the geometry dependence of excitation energies than classical models. We also discuss how selective iterative diagonalization schemes can be exploited to directly target specific excitations for different structures. Problems due to strongly interacting orbital transitions and possible solutions are discussed. Finally, we apply FDE and the selective KS-TDDFT to investigate the potential energy surface of a high-lying π → π∗ excitation in a pyridine molecule approaching a silver cluster.

  9. Nonlinear Response of Localized Excitons: Effects of the Excitation-Induced Dephasing

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, Wolfgang Werner; Birkedal, Dan;

    1997-01-01

    The polarization dependence of the ultrafast nonlinear response of localized excitons in GaAs/AlGaAs quantum wells has been investigated by spectrally resolved, transient four-wave mixing. The role of the excitation-induced dephasing in the delay dependence of the signal is discussed in detail. In...... particular, we show experimentally that the excitation-induced dephasing gives rise to a photon echo in inhomogeneous systems. We develop a simple analytical model for the delay dependence of the signal, which enables us to deduce the dephasing time from the four-wave mixing decay....

  10. Local probing of magnetic films by optical excitation of magnetostatic waves

    Science.gov (United States)

    Chernov, A. I.; Kozhaev, M. A.; Vetoshko, P. M.; Dodonov, D. V.; Prokopov, A. R.; Shumilov, A. G.; Shaposhnikov, A. N.; Berzhanskii, V. N.; Zvezdin, A. K.; Belotelov, V. I.

    2016-06-01

    Excitation of volume and surface magnetostatic spin waves in ferrite garnet films by circularly polarized laser pulses utilizing to the inverse magnetooptical Faraday effect has been studied experimentally. The region of excitation of the magnetostatic spin waves is determined by the diameter of the laser beam (˜10 μm). At the same time, the characteristic propagation length of the modes is 30 μm. A method of finding the local characteristics of a magnetic film, in particular, the cubic and uniaxial anisotropy constants, based on the analysis of the azimuthal-angle dependence of the spectrum of the magnetostatic spin waves has been proposed.

  11. Dimensional Dependence of Critical Exponent of the Anderson Transition in the Orthogonal Universality Class

    OpenAIRE

    Ueoka, Yoshiki; Slevin, Keith

    2014-01-01

    We report improved numerical estimates of the critical exponent of the Anderson transition in Anderson's model of localization in $d=4$ and $d=5$ dimensions. We also report a new Borel-Pad\\'e analysis of existing $\\epsilon$ expansion results that incorporates the asymptotic behaviour for $d\\to \\infty$ and gives better agreement with available numerical results.

  12. Fluorescence and phosphorescence from individual C$_{60}$ molecules excited by local electron tunneling

    OpenAIRE

    Ćavar, Elizabeta; Blüm, Marie-Christine; Pivetta, Marina; Patthey, François; Chergui, Majed; Schneider, Wolf-Dieter

    2005-01-01

    Using the highly localized current of electrons tunneling through a double barrier Scanning Tunneling Microscope (STM) junction, we excite luminescence from a selected C$_{60}$ molecule in the surface layer of fullerene nanocrystals grown on an ultrathin NaCl film on Au(111). In the observed luminescence fluorescence and phosphorescence spectra, pure electronic as well as vibronically induced transitions of an individual C$_{60}$ molecule are identified, leading to unambiguous chemical recogn...

  13. Conductance fluctuations in a macroscopic 3-dimensional Anderson insulator

    International Nuclear Information System (INIS)

    We report magnetoconductance experiment on a amorphous Yx-Si1-x alloy (∼0.3). which is an Anderson insulator where spin-orbit scattering is strong. Two principal and new features emerge from the data: the first one is an halving of the localization length by the application of a magnetic field of about 2.5 Teslas. This effect is predicted by a new approach of transport in Anderson insulators where basic symetry considerations are the most important ingredient. The second one is the observation of reproducible conductance fluctuations at very low temperature in this macroscopic 3 D amorphous material

  14. Spatial organization of vegetation arising from non-local excitation with local inhibition in tropical rainforests

    Science.gov (United States)

    Thompson, Sally; Katul, Gabriel; Terborgh, John; Alvarez-Loayza, Patricia

    2009-06-01

    The Janzen-Connell (JC) effect, which hypothesizes that recruitment and growth of seedlings is positively correlated to the distance from the parent tree, is shown to generate highly organized vegetation biomass spatial patterns when coupled to a revised Fisher-Kolmogorov (FK) equation. Spatial organization arises through a novel mechanism of non-local activation and local inhibition. Over a single generation, the revised FK model calculations predict a “hen and chicks” dynamic pattern with mature trees surrounded by new seedlings growing at characteristic spatial distances in agreement with field data. Over longer timescales, the importance of stochastic dynamics, such as those associated with randomly occurring light gaps, increase thereby causing a substantial deviation between predictions from the deterministic FK model and its stochastic counterpart derived to account for such random disturbances. At still longer timescales, however, statistical measures of the spatial organization, specifically the spatial density of mature trees and their minimum spacing, converge between these two model representations.

  15. An Anderson-like model of the QCD chiral transition

    CERN Document Server

    Giordano, Matteo; Pittler, Ferenc

    2016-01-01

    We study the problems of chiral symmetry breaking and eigenmode localisation in finite-temperature QCD by looking at the lattice Dirac operator as a random Hamiltonian. We recast the staggered Dirac operator into an unconventional three-dimensional Anderson Hamiltonian ("Dirac-Anderson Hamiltonian") carrying internal degrees of freedom, with disorder provided by the fluctuations of the gauge links. In this framework, we identify the features relevant to chiral symmetry restoration and localisation of the low-lying Dirac eigenmodes in the ordering of the local Polyakov lines, and in the related correlation between spatial links across time slices, thus tying the two phenomena to the deconfinement transition. We then build a toy model based on QCD and on the Dirac-Anderson approach, replacing the Polyakov lines with spin variables and simplifying the dynamics of the spatial gauge links, but preserving the above-mentioned relevant dynamical features. Our toy model successfully reproduces the main features of the...

  16. Spin susceptibility of Anderson impurities in arbitrary conduction bands

    Science.gov (United States)

    Fang, Tie-Feng; Tong, Ning-Hua; Cao, Zhan; Sun, Qing-Feng; Luo, Hong-Gang

    2015-10-01

    Spin susceptibility of Anderson impurities is a key quantity in understanding the physics of Kondo screening. Traditional numerical renormalization group (NRG) calculation of the impurity contribution χimp to susceptibility, defined originally by Wilson in a flat wide band, has been generalized before to structured conduction bands. The results brought about non-Fermi-liquid and diamagnetic Kondo behaviors in χimp, even when the bands are not gapped at the Fermi energy. Here, we use the full density-matrix (FDM) NRG to present high-quality data for the local susceptibility χloc and to compare them with χimp obtained by the traditional NRG. Our results indicate that those exotic behaviors observed in χimp are unphysical. Instead, the low-energy excitations of the impurity in arbitrary bands only without gap at the Fermi energy are still a Fermi liquid and paramagnetic. We also demonstrate that unlike the traditional NRG yielding χloc less accurate than χimp, the FDM method allows a high-precision dynamical calculation of χloc at much reduced computational cost, with an accuracy at least one order higher than χimp. Moreover, artifacts in the FDM algorithm to χimp and origins of the spurious non-Fermi-liquid and diamagnetic features are clarified. Our work provides an efficient high-precision algorithm to calculate the spin susceptibility of impurity for arbitrary structured bands, while negating the applicability of Wilson's definition to such cases.

  17. Resonance Raman spectra of organic molecules absorbed on inorganic semiconducting surfaces: Contribution from both localized intramolecular excitation and intermolecular charge transfer excitation

    Energy Technology Data Exchange (ETDEWEB)

    Ye, ChuanXiang [Department of Chemical Physics, University of Science and Technology of China, Hefei 230026 (China); Zhao, Yi, E-mail: yizhao@xmu.edu.cn, E-mail: liangwz@xmu.edu.cn [State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Liang, WanZhen, E-mail: yizhao@xmu.edu.cn, E-mail: liangwz@xmu.edu.cn [Department of Chemical Physics, University of Science and Technology of China, Hefei 230026 (China); State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China)

    2015-10-21

    The time-dependent correlation function approach for the calculations of absorption and resonance Raman spectra (RRS) of organic molecules absorbed on semiconductor surfaces [Y. Zhao and W. Z. Liang, J. Chem. Phys. 135, 044108 (2011)] is extended to include the contribution of the intermolecular charge transfer (CT) excitation from the absorbers to the semiconducting nanoparticles. The results demonstrate that the bidirectionally interfacial CT significantly modifies the spectral line shapes. Although the intermolecular CT excitation makes the absorption spectra red shift slightly, it essentially changes the relative intensities of mode-specific RRS and causes the oscillation behavior of surface enhanced Raman spectra with respect to interfacial electronic couplings. Furthermore, the constructive and destructive interferences of RRS from the localized molecular excitation and CT excitation are observed with respect to the electronic coupling and the bottom position of conductor band. The interferences are determined by both excitation pathways and bidirectionally interfacial CT.

  18. Resonance Raman spectra of organic molecules absorbed on inorganic semiconducting surfaces: Contribution from both localized intramolecular excitation and intermolecular charge transfer excitation

    International Nuclear Information System (INIS)

    The time-dependent correlation function approach for the calculations of absorption and resonance Raman spectra (RRS) of organic molecules absorbed on semiconductor surfaces [Y. Zhao and W. Z. Liang, J. Chem. Phys. 135, 044108 (2011)] is extended to include the contribution of the intermolecular charge transfer (CT) excitation from the absorbers to the semiconducting nanoparticles. The results demonstrate that the bidirectionally interfacial CT significantly modifies the spectral line shapes. Although the intermolecular CT excitation makes the absorption spectra red shift slightly, it essentially changes the relative intensities of mode-specific RRS and causes the oscillation behavior of surface enhanced Raman spectra with respect to interfacial electronic couplings. Furthermore, the constructive and destructive interferences of RRS from the localized molecular excitation and CT excitation are observed with respect to the electronic coupling and the bottom position of conductor band. The interferences are determined by both excitation pathways and bidirectionally interfacial CT

  19. Spatial organization of vegetation arising from non-local excitation with local inhibition in forests

    Science.gov (United States)

    Thompson, S. E.; Katul, G. G.; Terborgh, J.; Alvarez-Loayza, P.

    2009-12-01

    Pattern formation in the biogeosciences is not limited to consideration of granular and fluid phenomena, but also occurs due to interactions within ecological systems. Here we present a novel mechanism of non-local activation and local inhibition that arises in the dynamics of competition and predation associated with parent trees and their seedlings. These dynamics, known as the Janzen-Connell (JC) effect, arise when recruitment and growth of seedlings is positively correlated to the distance from the parent tree. Such effects generate highly organized vegetation biomass spatial patterns when coupled to a revised Fisher-Kolmogorov (FK) equation. Over a single generation, the revised FK model calculations predict a "hen and chicks" dynamic pattern with mature trees surrounded by new seedlings growing at characteristic spatial distances in agreement with field data. Over longer timescales, the importance of stochastic dynamics, such as those associated with randomly occurring light gaps, increase thereby causing a substantial deviation between predictions from the deterministic FK model and its stochastic counterpart derived to account for such random disturbances. At still longer timescales, however, statistical measures of the spatial organization, specifically the spatial density of mature trees and their minimum spacing, converge between the two model representations.

  20. Ultrahigh Enhancement of Electromagnetic Fields by Exciting Localized with Extended Surface Plasmons

    CERN Document Server

    Li, Anran; Abdulhalim, Ibrahim; Li, Shuzhou

    2015-01-01

    Excitation of localized surface plasmons (LSPs) of metal nanoparticles (NPs) residing on a flat metal film has attracted great attentions recently due to the enhanced electromagnetic (EM) fields found to be higher than the case of NPs on a dielectric substrate. In the present work, it is shown that even much higher enhancement of EM fields is obtained by exciting the LSPs through extended surface plasmons (ESPs) generated at the metallic film surface using the Kretschmann-Raether configuration. We show that the largest EM field enhancement and the highest surface-enhanced fluorescence intensity are obtained when the incidence angle is the ESP resonance angle of the underlying metal film. The finite-difference time-domain simulations indicate that excitation of LSPs using ESPs can generate 1-3 orders higher EM field intensity than direct excitation of the LSPs using incidence from free space. The ultrahigh enhancement is attributed to the strong confinement of the ESP waves in the vertical direction. The drast...

  1. Stark effect of interfering electronic states: Localization of the nπ* excitations in toluquinone

    Science.gov (United States)

    Galaup, J. P.; Trommsdorff, H. P.

    1984-04-01

    High-precision Stark measurements on oriented single crystals of toluquinone at low temperatures have been performed and lead to an assessment of the electronic parenthood of the levels giving rise to the complex spectral region of interference between the two nearby nπ* excited states. The origin bands of the lowest excited singlet and triplet states are characterized by a measure of their factor-group splittings and an evaluation of the change in dipole moment and in polarizability upon excitation. The value of the change in dipole moment is shown to vary strongly between different vibrational levels of the lower state and an evaluation of the degree of localization of the electronic excitation on one CO group is made. The previous assignment of the second nπ* state is confirmed by the sign of the corresponding Stark shift. From measurements on crystals having been oriented in an electric field the absolute orientation of the polar crystal as well as the sign of the pyroelectric coefficient are proposed.

  2. Regular and irregular patterns of self-localized excitation in arrays of coupled phase oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Wolfrum, Matthias; Omel' chenko, Oleh E. [Weierstrass Institute, Mohrenstrasse 39, Berlin 10117 (Germany); Sieber, Jan [College of Engineering, Mathematics and Physical Sciences, University of Exeter, North Park Road, Exeter EX4 4QF (United Kingdom)

    2015-05-15

    We study a system of phase oscillators with nonlocal coupling in a ring that supports self-organized patterns of coherence and incoherence, called chimera states. Introducing a global feedback loop, connecting the phase lag to the order parameter, we can observe chimera states also for systems with a small number of oscillators. Numerical simulations show a huge variety of regular and irregular patterns composed of localized phase slipping events of single oscillators. Using methods of classical finite dimensional chaos and bifurcation theory, we can identify the emergence of chaotic chimera states as a result of transitions to chaos via period doubling cascades, torus breakup, and intermittency. We can explain the observed phenomena by a mechanism of self-modulated excitability in a discrete excitable medium.

  3. Anderson Localization in the Induced Disorder System

    Science.gov (United States)

    Fei-Fei, Lu; Chun-Fang, Wang

    2016-07-01

    Not Available Supported by the National Natural Science Foundation of China under Grant Nos 11104185, 11174084 and 10934011, and the National Basic Research Program of China under Grant No 2012CB921904.

  4. Excited states studied with density functional theory using local and non-local potentials

    International Nuclear Information System (INIS)

    and for large-gap insulators. A better possibility is to adjust them individually to the studied systems. In this case the question remains to be solved how to determine the proper values of the parameters for a particular system. This question was investigated in the course of this thesis. Different properties were tested as starting point to determine the parameters automatically in a selfconsistent way. Another recently introduced approach is diagonal-only hybrid DFT which allows to obtain results of comparable quality in greatly reduced computation time. It was investigated how this approach can be combined with adjusting the parameters of the hybrid functional to the particular systems so that fast and correct calculations are possible. The TB-mBJ potential is based on the Becke-Johnson-potential which was proposed in 2006 and serves as an approximation to the exact exchange potential. Its speed is comparable to DFT calculations using standard functionals such as the local density approximation. This fact makes it an attractive alternative to more expensive approaches such as the above mentioned hybrid DFT. In this thesis its performance was studied for different classes of solids such as non-magnetic and (anti-)ferromagnetic semiconductors and metals. The resulting band gaps are compared to results from hybrid DFT and many-body perturbation theory. Furthermore the ability of TB-mBJ to predict other properties like magnetic moments or electric field gradients was investigated. The reasons behind cases where TB-mBJ works well and cases where it fails were analyzed as well. Based on the information gained by these investigations possible ways to further improvement were tested. (author)

  5. Localized excitations in discrete nonlinear Schrodinger systems: Effects of nonlocal dispersive interactions and noise

    DEFF Research Database (Denmark)

    Rasmussen, Kim; Christiansen, Peter Leth; Johansson, Magnus;

    1998-01-01

    with nearest-neighbor coupling we discuss the stability of highly localized, "breather-like", excitations under the influence of thermal fluctuations. Numerical analysis shows that the lifetime of the breather is aln,aps finite and in a large parameter region inversely proportional to the noise......A one-dimensional discrete nonlinear Schrodinger (DNLS) model with the power dependence, r(-s) on the distance r, of dispersive interactions is proposed. The stationary states of the system are studied both analytically and numerically. Two kinds of trial functions, exp-like and sech-like are...

  6. The Anderson transition due to random spin-orbit coupling in two-dimension

    OpenAIRE

    Asada, Yoichi; Slevin, Keith; Ohtsuki, Tomi

    2003-01-01

    We report an analysis of the Anderson transition in an SU(2) model with chiral symmetry. Clear single parameter scaling behaviour is observed. We estimate the critical exponent for the divergence of the localization length to be $\

  7. Femtosecond excitations in metallic nanostructures. From ultrafast light confinement to a local electron source

    Energy Technology Data Exchange (ETDEWEB)

    Ropers, C.

    2007-07-11

    This thesis contributes to the understanding of optical excitations in metallic nanostructures. In experiments on selected model structures, the dynamics of these excitations and their electromagnetic spatial modes are investigated with femtosecond temporal and nanometer spatial resolution, respectively. Angle- and time-resolved transmission experiments on metallic thin film gratings demonstrate the dominant role resonant surface plasmon polaritons (SPPs) play in the optical properties of such structures. The lifetimes of these excitations are determined, and it is shown that coherent couplings among SPP-resonances result in drastic lifetime modifications. Near the visible part of the spectrum, subradiant SPP lifetimes of up to 200 femtoseconds are observed, which is considerably longer than previously expected for these structures. The spatial SPP mode profiles are imaged using a custom-built near-field optical microscope. The experiments reveal a direct correlation between the spatial mode structure and the dynamics of different SPP resonances. Coupling-induced SPP band gaps are identified as splittings into symmetric and antisymmetric surface modes. These findings allow for an interpretation of the near-field optical image contrast in terms of the contributions of different vectorial components of the electromagnetic near-field. A selective imaging of different electric and magnetic field components is demonstrated for various types of near-field probes. Furthermore, the excitation of SPPs in periodic structures is employed in a novel type of near-field tip. The resonant excitation of SPPs in a nanofabricated grating on the shaft of a sharp metallic tip results in their concentration at the tip apex. The final part of the thesis highlights the importance of optical field enhancements for the local generation of nonlinear optical signals at the apex of sharp metallic tips. Specifically, the observation of intense multiphoton electron emission after femtosecond

  8. Localization of bleomycin in a single living cell using three-photon excitation microscopy

    Science.gov (United States)

    Abraham, Anil T.; Brautigan, David L.; Hecht, Sidney M.; Periasamy, Ammasi

    2001-04-01

    Bleomycin has been used in the clinic as a chemotherapeutic agent for the treatment of several neoplasms, including non-Hodgkins lymphomas, squamous cell carcinomas, and testicular tumors. The effectiveness of bleomycin is believed to be derived from its ability to bind and oxidatively cleave DNA in the presence of a iron cofactor in vivo. A substantial amount of data on BLM has been collected, there is little information concerning the effects of bleomycin in living cells. In order to obtain data pertinent to the effects of BLM in intact cells, we have exploited the intrinsic fluorescence property of bleomycin to monitor the uptake of the drug in mammalian cells. We employed two light microscopy techniques, a wide-field and three-photon excitation (760 nm) fluorescence microscopy. Treatment of HeLa cells with bleomycin resulted in rapid to localization within the cells. In addition data collected from the wide field experiments, three-photon excitation of BLM which considerably reduced the phototoxic effect compared with UV light excitation in the wide-field microscopy indicated co-localization of the drug to regions of the cytoplasm occupied by the endoplasmic reticulum probe, DiOC5. The data clearly indicates that the cellular uptake of bleomycin after one minute includes the nucleus as well as in cytoplasm. Contrary to previous studies, which indicate chromosomal DNA as the target of bleomycin, the current findings suggest that the drug is distributed to many areas within the cell, including the endoplasmic reticulum, an organelle that is known to contain ribonucleic acids.

  9. LoFEx — A local framework for calculating excitation energies: Illustrations using RI-CC2 linear response theory

    Science.gov (United States)

    Baudin, Pablo; Kristensen, Kasper

    2016-06-01

    We present a local framework for the calculation of coupled cluster excitation energies of large molecules (LoFEx). The method utilizes time-dependent Hartree-Fock information about the transitions of interest through the concept of natural transition orbitals (NTOs). The NTOs are used in combination with localized occupied and virtual Hartree-Fock orbitals to generate a reduced excitation orbital space (XOS) specific to each transition where a standard coupled cluster calculation is carried out. Each XOS is optimized to ensure that the excitation energies are determined to a predefined precision. We apply LoFEx in combination with the RI-CC2 model to calculate the lowest excitation energies of a set of medium-sized organic molecules. The results demonstrate the black-box nature of the LoFEx approach and show that significant computational savings can be gained without affecting the accuracy of CC2 excitation energies.

  10. An Anderson-like model of the QCD chiral transition

    Science.gov (United States)

    Giordano, Matteo; Kovács, Tamás G.; Pittler, Ferenc

    2016-06-01

    We study the problems of chiral symmetry breaking and eigenmode localisation in finite-temperature QCD by looking at the lattice Dirac operator as a random Hamiltonian. We recast the staggered Dirac operator into an unconventional three-dimensional Anderson Hamiltonian ("Dirac-Anderson Hamiltonian") carrying internal degrees of freedom, with disorder provided by the fluctuations of the gauge links. In this framework, we identify the features relevant to chiral symmetry restoration and localisation of the low-lying Dirac eigenmodes in the ordering of the local Polyakov lines, and in the related correlation between spatial links across time slices, thus tying the two phenomena to the deconfinement transition. We then build a toy model based on QCD and on the Dirac-Anderson approach, replacing the Polyakov lines with spin variables and simplifying the dynamics of the spatial gauge links, but preserving the above-mentioned relevant dynamical features. Our toy model successfully reproduces the main features of the QCD spectrum and of the Dirac eigenmodes concerning chiral symmetry breaking and localisation, both in the ordered (deconfined) and disordered (confined) phases. Moreover, it allows us to study separately the roles played in the two phenomena by the diagonal and the off-diagonal terms of the Dirac-Anderson Hamiltonian. Our results support our expectation that chiral symmetry restoration and localisation of the low modes are closely related, and that both are triggered by the deconfinement transition.

  11. Evidence for Cation-Controlled Excited-State Localization in a Ruthenium Polypyridyl Compound.

    Science.gov (United States)

    Beauvilliers, Evan E; Meyer, Gerald J

    2016-08-01

    The visible absorption and photoluminescence (PL) properties of the four neutral ruthenium diimine compounds [Ru(bpy)2(dcb)] (B2B), [Ru(dtb)2(dcb)] (D2B), [Ru(bpy)2(dcbq)] (B2Q), and [Ru(dtb)2(dcbq)] (D2Q), where bpy is 2,2'-bipyridine, dcb is 4,4'-(CO2(-))2-bpy, dtb is 4,4'-(tert-butyl)2-bpy, and dcbq is 4,4'-(CO2(-))2-2,2'-biquinoline, are reported in the presence of Lewis acidic cations present in fluid solutions at room temperature. In methanol solutions, the measured spectra were insensitive to the presence of these cations, while in acetonitrile a significant red shift in the PL spectra (≤1400 cm(-1)) was observed consistent with stabilization of the metal-to-ligand charge transfer (MLCT) excited state through Lewis acid-base adduct formation. No significant spectral changes were observed in control experiments with the tetrabutylammonium cation. Titration data with Li(+), Na(+), Mg(2+), Ca(2+), Zn(2+), Al(3+), Y(3+), and La(3+) showed that the extent of stabilization saturated at high cation concentration with magnitudes that scaled roughly with the cation charge-to-size ratio. The visible absorption spectra of D2Q was particularly informative due to the presence of two well-resolved MLCT absorption bands: (1) Ru → bpy, λmax ≈ 450 nm; and (2) Ru → dcbq, λmax ≈ 540 nm. The higher-energy band blue-shifted and the lower-energy band red-shifted upon cation addition. The PL intensity and lifetime of the excited state of B2B first increased with cation addition without significant shifts in the measured spectra, behavior attributed to a cation-induced change in the localization of the emissive excited state from bpy to dcb. The importance of excited-state localization and stabilization for solar energy conversion is discussed. PMID:27391279

  12. Quantum criticality at the Anderson transition: A typical medium theory perspective

    Science.gov (United States)

    Mahmoudian, Samiyeh; Tang, Shao; Dobrosavljević, Vladimir

    2015-10-01

    We present a complete analytical and numerical solution of the typical medium theory (TMT) for the Anderson metal-insulator transition. This approach self-consistently calculates the typical amplitude of the electronic wave functions, thus representing the conceptually simplest order-parameter theory for the Anderson transition. We identify all possible universality classes for the critical behavior, which can be found within such a mean-field approach. This provides insights into how interaction-induced renormalizations of the disorder potential may produce qualitative modifications of the critical behavior. We also formulate a simplified description of the leading critical behavior, thus obtaining an effective Landau theory for Anderson localization.

  13. Self-Localized Quasi-Particle Excitation in Quantum Electrodynamics and Its Physical Interpretation

    CERN Document Server

    Feranchuk, Ilya D

    2007-01-01

    The self-localized quasi-particle excitation of the electron-positron field (EPF) is found for the first time in the framework of a standard form of the quantum electrodynamics. This state is interpreted as the ``physical'' electron (positron) and it allows one to solve the following problems: i) to express the ``primary'' charge $e_0$ and the mass $m_0$ of the ``bare'' electron in terms of the observed values of $e$ and $m$ of the ``physical'' electron without any infinite parameters and by essentially nonperturbative way; ii) to consider $\\mu$-meson as another self-localized EPF state and to estimate the ratio $m_{\\mu}/m$; iii) to prove that the self-localized state is Lorentz-invariant and its energy spectrum corresponds to the relativistic free particle with the observed mass $m$; iv) to show that the expansion in a power of the observed charge $e \\ll 1$ corresponds to the strong coupling expansion in a power of the ``primary'' charge $e^{-1}_0 \\sim e $ when the interaction between the ``physical'' electr...

  14. Self-Localized Quasi-Particle Excitation in Quantum Electrodynamics and Its Physical Interpretation

    Science.gov (United States)

    Feranchuk, Ilya D.; Feranchuk, Sergey I.

    2007-12-01

    The self-localized quasi-particle excitation of the electron-positron field (EPF) is found for the first time in the framework of a standard form of the quantum electrodynamics. This state is interpreted as the ''physical'' electron (positron) and it allows one to solve the following problems: i) to express the ''primary'' charge e0 and the mass m0 of the ''bare'' electron in terms of the observed values of e and m of the ''physical'' electron without any infinite parameters and by essentially nonperturbative way; ii) to consider μ-meson as another self-localized EPF state and to estimate the ratio mμ/m; iii) to prove that the self-localized state is Lorentz-invariant and its energy spectrum corresponds to the relativistic free particle with the observed mass m; iv) to show that the expansion in a power of the observed charge e << 1 corresponds to the strong coupling e! xpansion in a power of the ''primary'' charge e-10 ~ e when the interaction between the ``physical'' electron and the transverse electromagnetic field is considered by means of the perturbation theory and all terms of this series are free from the ultraviolet divergence.

  15. Self-Localized Quasi-Particle Excitation in Quantum Electrodynamics and Its Physical Interpretation

    Directory of Open Access Journals (Sweden)

    Ilya D. Feranchuk

    2007-12-01

    Full Text Available The self-localized quasi-particle excitation of the electron-positron field (EPF is found for the first time in the framework of a standard form of the quantum electrodynamics. This state is interpreted as the ''physical'' electron (positron and it allows one to solve the following problems: i to express the ''primary'' charge $e_0$ and the mass $m_0$ of the ''bare'' electron in terms of the observed values of $e$ and $m$ of the ''physical'' electron without any infinite parameters and by essentially nonperturbative way; ii to consider $mu$-meson as another self-localized EPF state and to estimate the ratio $m_mu/m$; iii to prove that the self-localized state is Lorentz-invariant and its energy spectrum corresponds to the relativistic free particle with the observed mass $m$; iv to show that the expansion in a power of the observed charge $e ll 1$ corresponds to the strong coupling expansion in a power of the ''primary'' charge $e^{-1}_0 sim e$ when the interaction between the ''physical'' electron and the transverse electromagnetic field is considered by means of the perturbation theory and all terms of this series are free from the ultraviolet divergence.

  16. Localization of scalar massless excitations in self-gravitating $SO(10)$ kinks

    CERN Document Server

    Chavez, Rafael; Rodriguez, R Omar

    2016-01-01

    Three self-gravitating $SO(10)$ kinks inducing asymptotically the breaking pattern $SO(10)\\rightarrow SU(5)$ are determined which can be distinguished by the unbroken group on each of them: $SO(10)$ for the first kink and $SO(6)\\times SU(2)\\times U(1)$ and $SU(4)\\times SO(2)\\times U(1)$ for the second and third kink respectively. The scenarios are perturbed by considering small excitations on the fields; in particular, the metric fluctuations are parameterized in terms of tensor, vector and scalar modes. All these modes as well as the perturbations of the scalar field are rewritten as gauge-invariant variables. With regarding the tensor and vector fluctuations, for a four dimensional observer, the standard results are obtained: while the massless graviton is localized on the wall the graviphotons propagate freely in the bulk. On the other hand, for the scalar excitations in correspondence with the symmetry on the kink, both along the broken generators and along the some unbroken generators, normalizable zero ...

  17. From global to local: exploring the relationship between parameters and behaviors in models of electrical excitability.

    Science.gov (United States)

    Fletcher, Patrick; Bertram, Richard; Tabak, Joel

    2016-06-01

    Models of electrical activity in excitable cells involve nonlinear interactions between many ionic currents. Changing parameters in these models can produce a variety of activity patterns with sometimes unexpected effects. Further more, introducing new currents will have different effects depending on the initial parameter set. In this study we combined global sampling of parameter space and local analysis of representative parameter sets in a pituitary cell model to understand the effects of adding K (+) conductances, which mediate some effects of hormone action on these cells. Global sampling ensured that the effects of introducing K (+) conductances were captured across a wide variety of contexts of model parameters. For each type of K (+) conductance we determined the types of behavioral transition that it evoked. Some transitions were counterintuitive, and may have been missed without the use of global sampling. In general, the wide range of transitions that occurred when the same current was applied to the model cell at different locations in parameter space highlight the challenge of making accurate model predictions in light of cell-to-cell heterogeneity. Finally, we used bifurcation analysis and fast/slow analysis to investigate why specific transitions occur in representative individual models. This approach relies on the use of a graphics processing unit (GPU) to quickly map parameter space to model behavior and identify parameter sets for further analysis. Acceleration with modern low-cost GPUs is particularly well suited to exploring the moderate-sized (5-20) parameter spaces of excitable cell and signaling models. PMID:27033230

  18. Benedict Andersons forestillede fællesskaber

    DEFF Research Database (Denmark)

    Ivarsson, Søren

    2007-01-01

    Artiklen diskuterer Benedict Andersons analyse af nationalismens opståen i en kolonial kontekst og den kritik som Partha Chatterjee har rejst mod denne. Udgivelsesdato: Januar 2008......Artiklen diskuterer Benedict Andersons analyse af nationalismens opståen i en kolonial kontekst og den kritik som Partha Chatterjee har rejst mod denne. Udgivelsesdato: Januar 2008...

  19. Excitation of XPS spectra from nanoscaled particles by local generation of x-rays

    International Nuclear Information System (INIS)

    In preliminary work, the authors have shown that use of an aluminum substrate to support a distribution of copper particles enables their characteristic photoelectrons to be observed within the Auger electron spectrum generated by an incident electron beam. This observation raises the possibility of the use of chemical shifts and the corresponding Auger parameter to identify the chemical states present on the surface of individual submicrometer particles within a mixture. In this context, the technique has an advantage in that, unlike conventional Auger electron spectroscopy, the electron beam does not dwell on the particle but on the substrate adjacent to it. Given the importance, for both medical and toxicological reasons, of the surface composition of such particles, the authors have continued to explore the potential of this development. In this contribution, the authors show that proximal excitation of x-rays is equally successful with magnesium substrates. In some regions of the x-ray photoelectron spectrum, the much larger Auger peaks generated by the electron beam can cause inconvenient clustering of Auger and photoelectron peaks. As in conventional x-ray photoelectron spectroscopy, the ability to switch between Al and Mg sources is useful in such situations. In this context, the authors have extended the studies to iron particles where the authors show that use of Al or Mg substrates, as necessary, can make a contribution to clear identification of individual components in the Fe 2p peaks. For this development in electron spectroscopy to achieve its full potential, it is necessary to optimize the beam conditions used to generate the local x-ray to give good selectivity of a given particle. Measurements made in support of this will be given. Of greater concern is a possible problem of local heating associated with x-ray generation. The authors continue to explore this problem and report some progress in minimizing heating of the particle while maintaining

  20. Critical parameters from generalised multifractal analysis at the Anderson transition

    OpenAIRE

    Rodriguez, Alberto; Vasquez, Louella J.; Slevin, Keith; Römer, Rudolf A.

    2010-01-01

    We propose a generalization of multifractal analysis that is applicable to the critical regime of the Anderson localization-delocalization transition. The approach reveals that the behavior of the probability distribution of wavefunction amplitudes is sufficient to characterize the transition. In combination with finite-size scaling, this formalism permits the critical parameters to be estimated without the need for conductance or other transport measurements. Applying this method to high-pre...

  1. Fermi-liquid theory for the single-impurity Anderson model

    Science.gov (United States)

    Mora, Christophe; Moca, Cǎtǎlin Paşcu; von Delft, Jan; Zaránd, Gergely

    2015-08-01

    We generalize Nozières' Fermi-liquid theory for the low-energy behavior of the Kondo model to that of the single-impurity Anderson model. In addition to the electrons' phase shift at the Fermi energy, the low-energy Fermi-liquid theory is characterized by four Fermi-liquid parameters: the two given by Nozières that enter to first order in the excitation energy, and two additional ones that enter to second order and are needed away from particle-hole symmetry. We express all four parameters in terms of zero-temperature physical observables, namely the local charge and spin susceptibilities and their derivatives with respect to the local level position. We determine these in terms of the bare parameters of the Anderson model using Bethe ansatz and numerical renormalization group (NRG) calculations. Our low-energy Fermi-liquid theory applies throughout the crossover from the strong-coupling Kondo regime via the mixed-valence regime to the empty-orbital regime. From the Fermi-liquid theory, we determine the conductance through a quantum dot symmetrically coupled to two leads in the regime of small magnetic field, low temperature, and small bias voltage, and compute the coefficients of the ˜B2 , ˜T2 , and ˜V2 terms exactly in terms of the Fermi-liquid parameters. The coefficients of T2, V2, and B2 are found to change sign during the Kondo to empty-orbital crossover. The crossover becomes universal in the limit that the local interaction is much larger than the level width. For completeness, we also compute the shot noise and discuss the resulting Fano factor.

  2. Chirp- and random-based coded ultrasonic excitation for localized blood-brain barrier opening

    Science.gov (United States)

    Kamimura, H. A. S.; Wang, S.; Wu, S.-Y.; Karakatsani, M. E.; Acosta, C.; Carneiro, A. A. O.; Konofagou, E. E.

    2015-10-01

    Chirp- and random-based coded excitation methods have been proposed to reduce standing wave formation and improve focusing of transcranial ultrasound. However, no clear evidence has been shown to support the benefits of these ultrasonic excitation sequences in vivo. This study evaluates the chirp and periodic selection of random frequency (PSRF) coded-excitation methods for opening the blood-brain barrier (BBB) in mice. Three groups of mice (n  =  15) were injected with polydisperse microbubbles and sonicated in the caudate putamen using the chirp/PSRF coded (bandwidth: 1.5-1.9 MHz, peak negative pressure: 0.52 MPa, duration: 30 s) or standard ultrasound (frequency: 1.5 MHz, pressure: 0.52 MPa, burst duration: 20 ms, duration: 5 min) sequences. T1-weighted contrast-enhanced MRI scans were performed to quantitatively analyze focused ultrasound induced BBB opening. The mean opening volumes evaluated from the MRI were 9.38+/- 5.71 mm3, 8.91+/- 3.91 mm3and 35.47+/- 5.10 mm3 for the chirp, random and regular sonications, respectively. The mean cavitation levels were 55.40+/- 28.43 V.s, 63.87+/- 29.97 V.s and 356.52+/- 257.15 V.s for the chirp, random and regular sonications, respectively. The chirp and PSRF coded pulsing sequences improved the BBB opening localization by inducing lower cavitation levels and smaller opening volumes compared to results of the regular sonication technique. Larger bandwidths were associated with more focused targeting but were limited by the frequency response of the transducer, the skull attenuation and the microbubbles optimal frequency range. The coded methods could therefore facilitate highly localized drug delivery as well as benefit other transcranial ultrasound techniques that use higher pressure levels and higher precision to induce the necessary bioeffects in a brain region while avoiding damage to the surrounding healthy tissue.

  3. Superconductivity in Anderson lattice model

    International Nuclear Information System (INIS)

    We study the superconducting instabilities generated by the inclusion in the Anderson lattice model of a density-density attractive potential between correlated electrons on nearest-neighbouring sites. Using a description of the normal phase based on a perturbative expansion around the atomic limit, we treat the attractive potential in the broken symmetry Hartree-Fock scheme and analyze which of the possible symmetries of the superconducting order parameter leads to the highest possible transition temperature in the case of a two-dimensional square lattice. For values of the on-site f-repulsion large compared to the hopping amplitude, a suppression of any possible superconducting phase occurs, regardless of the of the symmetry of the order parameter. (author)

  4. Tracking local spin-dynamics via high-energy quasi-molecular excitations in a spin-orbit Mott insulator

    OpenAIRE

    Nembrini, Nicola; Peli, Simone; Banfi, Francesco; Ferrini, Gabriele; Singh, Yogesh; Gegenwart, Philipp; Comin, Riccardo; Foyevtsova, Kateryna; Damascelli, Andrea; Avella, Adolfo; Giannetti, Claudio

    2016-01-01

    We use time- and energy-resolved optical spectroscopy to investigate the coupling of electron-hole excitations to the local magnetic environment in the relativistic Mott insulator Na$_2$IrO$_3$. We show that, on the picosecond timescale, the photoinjected electron-hole pairs delocalize on the hexagons of the Ir lattice forming quasi-molecular orbital (QMO) excitations and exchanging energy with the short-range ordered magnetic background. Our results provide a unifying picture of the physics ...

  5. Price-Anderson Law - reports on Price-Anderson issues

    International Nuclear Information System (INIS)

    Five of the six papers in this study are by experts outside the nuclear industry, and deal with fear, risk, and risk management as they apply to the review of the Price-Anderson Act. The purpose of the Act is to encourage private enterprise to develop a reliable source of electric power and to protect the public from the financial consequences of injury or damage that may occur during the process. The titles of the five papers are: (1) the effects of ionizing radiation on human health, (2) proof of causation through expert opinion evidence in low-level radiation cases, (3) a critical review of the probability of causation method, (4) the nuclear liability claims experience of the nuclear insurance pools, (5) review of nuclear liability compensation systems applicable to reactors outside the United States, and (6) the economic foundations of limited liability for nuclear reactor accidents. A separate abstract was prepared for each of the papers for EDB, EPA, and INS

  6. Topological approximation of the nonlinear Anderson model

    Science.gov (United States)

    Milovanov, Alexander V.; Iomin, Alexander

    2014-06-01

    We study the phenomena of Anderson localization in the presence of nonlinear interaction on a lattice. A class of nonlinear Schrödinger models with arbitrary power nonlinearity is analyzed. We conceive the various regimes of behavior, depending on the topology of resonance overlap in phase space, ranging from a fully developed chaos involving Lévy flights to pseudochaotic dynamics at the onset of delocalization. It is demonstrated that the quadratic nonlinearity plays a dynamically very distinguished role in that it is the only type of power nonlinearity permitting an abrupt localization-delocalization transition with unlimited spreading already at the delocalization border. We describe this localization-delocalization transition as a percolation transition on the infinite Cayley tree (Bethe lattice). It is found in the vicinity of the criticality that the spreading of the wave field is subdiffusive in the limit t →+∞. The second moment of the associated probability distribution grows with time as a power law ∝ tα, with the exponent α =1/3 exactly. Also we find for superquadratic nonlinearity that the analog pseudochaotic regime at the edge of chaos is self-controlling in that it has feedback on the topology of the structure on which the transport processes concentrate. Then the system automatically (without tuning of parameters) develops its percolation point. We classify this type of behavior in terms of self-organized criticality dynamics in Hilbert space. For subquadratic nonlinearities, the behavior is shown to be sensitive to the details of definition of the nonlinear term. A transport model is proposed based on modified nonlinearity, using the idea of "stripes" propagating the wave process to large distances. Theoretical investigations, presented here, are the basis for consistency analysis of the different localization-delocalization patterns in systems with many coupled degrees of freedom in association with the asymptotic properties of the

  7. Tunable local excitation of surface plasmon polaritons by sum-frequency generation in ZnO nanowires

    Science.gov (United States)

    Brincker, Mads; Pedersen, Kjeld; Skovsen, Esben

    2015-12-01

    Tunable local excitation of surface plasmon polaritons (SPP) by sum-frequency generation (SFG) in Zinc Oxide (ZnO) nanowires on a smooth and thin silver film has been studied by applying angle resolved leakage radiation spectroscopy. SFG between an infrared (IR) source, with a variable wavelength in the telecom range between 1350 nm and 1550 nm, and a near-infrared (NIR) source with a fixed wavelength of 790 nm resulted in the excitation of SPP's at wavelengths between 498 nm and 523 nm. The SFG to SPP coupling efficiency was studied as a function of the excitation angle and the wavelength of the IR source. It was shown that the SPP coupling was most efficient at oblique excitation angles, and that SFG in ZnO nanowires allows for the coherent conversion of optical signals at telecom frequencies to SPP's with frequencies within the visible range.

  8. Student trainee report of Walter L. Anderson

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The following report is intended to summarize the activities of Walter L. Anderson, Student Trainee (Wildlife Biology) at Malheur National Wildlife Refuge during...

  9. Enhanced Wegner and Minami estimates and eigenvalue statistics of random Anderson models at spectral edges

    CERN Document Server

    Germinet, François

    2011-01-01

    We consider the discrete Anderson model and prove enhanced Wegner and Minami estimates where the interval length is replaced by the IDS computed on the interval. We use these estimates to improve on the description of finite volume eigenvalues and eigenfunctions obtained in a previous paper. As a consequence of the improved description of eigenvalues and eigenfunctions, we revisit a number of results on the spectral statistics in the localized regime and extend their domain of validity, namely : - the local spectral statistics for the unfolded eigenvalues; - the local asymptotic ergodicity of the unfolded eigenvalues; In dimension 1, for the standard Anderson model, the improvement enables us to obtain the local spectral statistics at band edge, that is in the Lifshitz tail regime. In higher dimensions, this works for modified Anderson models.

  10. My Random Walks in Anderson's Garden

    CERN Document Server

    Baskaran, G

    2016-01-01

    Anderson's Garden is a drawing presented to Philip W. Anderson on the eve of his 60th birthday celebration, in 1983. This cartoon (Fig. 1), whose author is unknown, succinctly depicts some of Anderson's pre-1983 works, as a blooming garden. As an avid reader of Anderson's papers, random walk in Anderson's garden had become a part of my routine since graduate school days. This was of immense help and prepared me for a wonderful collaboration with the gardener himself, on the resonating valence bond (RVB) theory of High Tc cuprates and quantum spin liquids, at Princeton. The result was bountiful - the first (RVB mean field) theory for i) quantum spin liquids, ii) emergent fermi surfaces in Mott insulators and iii) superconductivity in doped Mott insulators. Beyond mean field theory - i) emergent gauge fields, ii) Ginzbuerg Landau theory with RVB gauge fields, iii) prediction of superconducting dome, iv) an early identification and study of a non-fermi liquid normal state of cuprates and so on. Here I narrate th...

  11. Localized Excitations of (2+1)-Dimensional Korteweg-de Vries System Derived from a Periodic Wave Solution

    Institute of Scientific and Technical Information of China (English)

    QIANG Ji-Ye; FEI Jin-Xi; CAI Gui-Ping; ZHENG Chun-Long

    2007-01-01

    With the aid of an improved projective approach and a linear variable separation method,new types of variable separation solutions (including solitary wave solutions,periodic wave solutions,and rational function solutions)with arbitrary functions for (2+1)-dimensional Korteweg-de Vries system are derived.Usually,in terms of solitary wave solutions and rational function solutions,one can find some important localized excitations.However,based on the derived periodic wave solution in this paper,we find that some novel and significant localized coherent excitations such as dromions,peakons,stochastic fractal patterns,regular fractal patterns,chaotic line soliton patterns as well as chaotic patterns exist in the KdV system as considering appropriate boundary conditions and/or initial qualifications.

  12. New localized excitations and cross-like fractal structures to the (2+1)-dimensional Broer–Kaup system

    Indian Academy of Sciences (India)

    Zitian Li

    2014-09-01

    A broad general variable separation solution with two arbitrary lower-dimensional functions of the (2+1)-dimensional Broer–Kaup (BK) equations was derived by means of a projective equation method and a variable separation hypothesis. Based on the derived variable separation excitation, some new special types of localized solutions such as oscillating solitons, instantonlike and cross-like fractal structures are revealed by selecting appropriate functions of the general variable separation solution.

  13. Local scale transformation method with more than one scalar functions for description of monopole excitations in nuclei

    International Nuclear Information System (INIS)

    An extension of the Local-Scale Transformation Method (LSTM) by inclusion of N scalar functions is suggested. An application of LSTM to the Hartree-Fock theory is considered. By means of the suggested approach an investigation of the 'breathing' monopole excitation mode within the Adiabatic limit of the Time-Dependent Hartree-Fock Theory (ATDHF) is carried out. Numeric results in a particular case of pure scale transformation using the Skyrme forces for the nucleus 16O are obtained

  14. Consideration of one-particle excited atom states in local scale transformation method (LSTM) on Hartree-Fock theory level

    International Nuclear Information System (INIS)

    The energy of the atom electron system is a functional of the local-scale function. The minimal value of this functional is greatest lower band of the atom energy in certain class wave functions. This class has obtained after a local-scale point transformation of the chosen model wave function which is not varied. A slater determinant with excited electron states is chosen in this survey as a model wave function. After the local scaling of this wave function the atom energy of corresponding state becomes the functional of the local scale transformation function. The minimization of this functional gives to the atom some energy corresponding to the considered state. LSTM also allows to obtain one-particle energy of the electron in excited state. In contrast to the Hartree-Fock method in the offered approach the variation over all one-particle orbitals is replaced by the variation over only one function. The case of variation over more than one local scale transformation function is also presented. (author)

  15. Describing excited state relaxation and localization in TiO2 nanoparticles using TD-DFT

    International Nuclear Information System (INIS)

    We have investigated the description of excited state relaxation in naked and hydrated TiO2 nanoparticles using Time-Dependent Density Functional Theory (TD-DFT) with three common hybrid exchange-correlation (XC) potentials; B3LYP, CAM-B3LYP and BHLYP. Use of TD-CAM-B3LYP and TD-BHLYP yields qualitatively similar results for all structures, which are also consistent with predictions of coupled cluster theory for small particles. TD-B3LYP, in contrast, is found to make rather different predictions; including apparent conical intersections for certain particles that are not observed with TD-CAM-B3LYP nor with TD-BHLYP. In line with our previous observations for vertical excitations, the issue with TD-B3LYP appears to be the inherent tendency of TD-B3LYP, and other XC potentials with no or a low percentage of Hartree-Fock Like Exchange, to spuriously stabilize the energy of charge-transfer (CT) states. Even in the case of hydrated particles, for which vertical excitations are generally well described with all XC potentials, the use of TD-B3LYP appears to result in CT-problems for certain particles. We hypothesize that the spurious stabilization of CT-states by TD-B3LYP even may drive the excited state optimizations to different excited state geometries than those obtained using TD-CAM-B3LYP or TD-BHLYP. In conclusion, focusing on the TD-CAM-B3LYP and TD-BHLYP results, excited state relaxation in naked and hydrated TiO2 nanoparticles is predicted to be associated with a large Stokes' shift

  16. Localization phenomena in interacting Rydberg lattice gases with position disorder

    CERN Document Server

    Marcuzzi, Matteo; Barredo, Daniel; de Léséleuc, Sylvain; Labuhn, Henning; Lahaye, Thierry; Browaeys, Antoine; Levi, Emanuele; Lesanovsky, Igor

    2016-01-01

    Disordered systems provide paradigmatic instances of ergodicity breaking and localization phenomena. Here we explore the dynamics of excitations in a system of Rydberg atoms held in optical tweezers. The finite temperature produces an intrinsic uncertainty in the atomic positions, which translates into quenched correlated disorder in the interatomic interaction strengths. In a simple approach, the dynamics in the many-body Hilbert space can be understood in terms of a one-dimensional Anderson-like model with disorder on every other site, featuring both localized and delocalized states. We conduct an experiment on an eight-atom chain and observe a clear suppression of excitation transfer. Our experiment accesses a regime which is described by a two-dimensional Anderson model on a "trimmed" square lattice. Our results thus provide a concrete example in which the absence of excitation propagation in a many-body system is directly related to Anderson-like localization in the Hilbert space, which is believed to be...

  17. Excitation of localized modes and mechanism of random lasing forming in random media

    Institute of Scientific and Technical Information of China (English)

    WANG Hong; LIU Jinsong; WANG Kejia; HAN Yanling

    2006-01-01

    Laser phenomena in random media have been studied based on the localized theory for lightwave in random media. The relationship between random lasing modes and localized modes has been investigated by directly solving Maxwell equations numerically via the finite difference time domain method. The spatial distribution and the spectra of localized modes are obtained for both passive and active random media. The results show that random lasing modes directly originate from the localized modes inside the random medium. In the presence of gain, any one of the localized modes can be amplified and can serve as random lasing mode.

  18. Topology dependent quantities at the Anderson transition

    OpenAIRE

    Slevin, Keith; Ohtsuki, Tomi; Kawarabayashi, Tohru

    2000-01-01

    The boundary condition dependence of the critical behavior for the three dimensional Anderson transition is investigated. A strong dependence of the scaling function and the critical conductance distribution on the boundary conditions is found, while the critical disorder and critical exponent are found to be independent of the boundary conditions.

  19. Corrections to scaling at the Anderson transition

    OpenAIRE

    Slevin, Keith; Ohtsuki, Tomi

    1998-01-01

    We report a numerical analysis of corrections to finite size scaling at the Anderson transition due to irrelevant scaling variables and non-linearities of the scaling variables. By taking proper account of these corrections, the universality of the critical exponent for the orthogonal universality class for three different distributions of the random potential is convincingly demonstrated.

  20. Local excitation and interference of surface phonon polaritons studied by near-field infrared microscopy.

    Science.gov (United States)

    Huber, A J; Ocelic, N; Hillenbrand, R

    2008-03-01

    We demonstrate that mid-infrared surface phonon polariton excitation, propagation and interference can be studied by scattering-type near-field optical microscopy (s-SNOM). In our experiments we image surface phonon polaritons (SPPs) propagating on flat SiC crystals. They are excited by weakly focused illumination of single or closely spaced metal disks we fabricated on the SiC surface by conventional photolithography. SPP imaging is performed by pseudo-heterodyne interferometric detection of infrared light scattered by the metal tip of our s-SNOM. The pseudo-heterodyne technique simultaneously yields optical amplitude and phase images which allows us to measure the SPP wave vector--including its sign--and the propagation length and further to study SPP interference. High resolution imaging of SPPs could be applied to investigate for example SPP focusing or heat transfer by SPPs in low dimensional nanostructures. PMID:18331484

  1. Exact finite volume expectation values of local operators in excited states

    CERN Document Server

    Pozsgay, B; Takacs, G

    2014-01-01

    We present a conjecture for the exact expression of finite volume expectation values in excited states in integrable quantum field theories, which is an extension of an earlier conjecture to the case of general diagonal factorized scattering with bound states and a nontrivial bootstrap structure. The conjectured expression is a spectral expansion which uses the exact form factors and the excited state thermodynamic Bethe Ansatz as building blocks. The conjecture is proven for the case of the trace of the energy-moment tensor. Concerning its validity for more general operators, we provide numerical evidence using the truncated conformal space approach. It is found that the expansion fails to be well-defined for small values of the volume in cases when the singularity structure of the TBA equations undergoes a non-trivial rearrangement under some critical value of the volume. Despite these shortcomings, the conjectured expression is expected to be valid for all volumes for most of the excited states, and as an ...

  2. Mechanism of oxidative stress generation in cells by localized near-infrared femtosecond laser excitation

    Science.gov (United States)

    He, Hao; Chan, Kam Tai; Kong, Siu Kai; Lee, Rebecca Kit Ying

    2009-12-01

    We examined the effect of femtosecond (fs) and continuous wave (CW) lasers at near-infrared range on the creation of reactive oxygen species in a human liver cancer cell line. By controlling the mitochondria electron transport chain (ETC), it was found that a major part of the oxidative stress was generated by the laser induced thermal effect on the mitochondria while the remaining part was created by direct free electron liberation by the fs pulses, which could be observed after breaking the ETC. The study helps clarify the major effects produced on animal cells when excited by fs lasers.

  3. Spatial dispersion effects upon local excitation of extrinsic plasmons in a graphene micro-disk

    Science.gov (United States)

    Mencarelli, D.; Bellucci, S.; Sindona, A.; Pierantoni, L.

    2015-11-01

    Excitation of surface plasmon waves in extrinsic graphene is studied using a full-wave electromagnetic field solver as analysis engine. Particular emphasis is placed on the role played by spatial dispersion due to the finite size of the two-dimensional material at the micro-scale. A simple instructive set up is considered where the near field of a wire antenna is held at sub-micrometric distance from a disk-shaped graphene patch. The key-input of the simulation is the graphene conductivity tensor at terahertz frequencies, being modeled by the Boltzmann transport equation for the valence and conduction electrons at the Dirac points (where a linear wave-vector dependence of the band energies is assumed). The conductivity equation is worked out in different levels of approximations, based on the relaxation time ansatz with an additional constraint for particle number conservation. Both drift and diffusion currents are shown to significantly contribute to the spatially dispersive anisotropic features of micro-scale graphene. More generally, spatial dispersion effects are predicted to influence not only plasmon propagation free of external sources, but also typical scanning probe microscopy configurations. The paper sets the focus on plasmon excitation phenomena induced by near field probes, being a central issue for the design of optical devices and photonic circuits.

  4. Dynamic localization of electronic excitation in photosynthetic complexes revealed with chiral two-dimensional spectroscopy

    Science.gov (United States)

    Fidler, Andrew F.; Singh, Ved P.; Long, Phillip D.; Dahlberg, Peter D.; Engel, Gregory S.

    2014-02-01

    Time-resolved ultrafast optical probes of chiral dynamics provide a new window allowing us to explore how interactions with such structured environments drive electronic dynamics. Incorporating optical activity into time-resolved spectroscopies has proven challenging because of the small signal and large achiral background. Here we demonstrate that two-dimensional electronic spectroscopy can be adapted to detect chiral signals and that these signals reveal how excitations delocalize and contract following excitation. We dynamically probe the evolution of chiral electronic structure in the light-harvesting complex 2 of purple bacteria following photoexcitation by creating a chiral two-dimensional mapping. The dynamics of the chiral two-dimensional signal directly reports on changes in the degree of delocalization of the excitonic states following photoexcitation. The mechanism of energy transfer in this system may enhance transfer probability because of the coherent coupling among chromophores while suppressing fluorescence that arises from populating delocalized states. This generally applicable spectroscopy will provide an incisive tool to probe ultrafast transient molecular fluctuations that are obscured in non-chiral experiments.

  5. The Interplay between Localized and Propagating Plasmonic Excitations Tracked in Space and Time

    DEFF Research Database (Denmark)

    Lemke, Christoph; Leißner, Till; Evlyukhin, Andrey;

    2014-01-01

    In this work, the mutual coupling and coherent interaction of propagating and localized surface plasmons within a model-type plasmonic assembly is experimentally demonstrated, imaged, and analyzed. Using interferometric time-resolved photoemission electron microscopy the interplay between...... ultrashort surface plasmon polariton wave packets and plasmonic nanoantennas is monitored on subfemtosecond time scales. The data reveal real-time insights into dispersion and localization of electromagnetic fields as governed by the elementary modes determining the functionality of plasmonic operation units....

  6. Controlling Spiral Dynamics in Excitable Media by a Weakly Localized Pacing

    Institute of Scientific and Technical Information of China (English)

    LI Bing-Wei; SUN Li-Li; CHEN Bin; YING He-Ping

    2007-01-01

    @@ Spiral dynamics controlled by a weakly localized pacing around the spiral tip is investigated. Numerical simulations show two distinct characteristics when the pacing is applied with the weak amplitude for suitable frequencies:for a rigidly rotating spiral, a transition from rigid rotation to meandering motion is observed, and for unstable spiral waves, spiral breakup can be prevented. Successfully preventing spiral breakup is relevant to the modulation of the tip trajectory induced by a localized pacing.

  7. Some Ergodic Theorems for a Parabolic Anderson Model

    Institute of Scientific and Technical Information of China (English)

    Yong LIU; Feng Xia YANG

    2012-01-01

    In this paper,we study some ergodic theorems of a class of linear systems of interacting diffusions,which is a parabolic Anderson model.First,under the assumption that the transition kernel a =(a(i,j))i,j∈s is doubly stochastic,we obtain the long-time convergence to an invariant probability measure Vh starting from a bounded a-harmonic function h based on self-duality property,and then we show the convergence to the invariant probability measure vh holds for a broad class of initial distributions.Second,if (a(i,j))i,j∈s is transient and symmetric,and the diffusion parameter c remains below a threshold,we are able to determine the set of extremal invariant probability measures with finite second moment.Finally,in the case that the transition kernel (a(i,j))i,j∈s is doubly stochastic and satisfies Case Ⅰ (see Case Ⅰ in [Shiga,T.:An interacting system in population genetics.J.Math.Kyoto Univ.,20,213-242 (1980)]),we show that this parabolic Anderson model locally dies out independent of the diffusion parameter c.

  8. Chiral Condensate and Mott-Anderson Freeze-Out

    International Nuclear Information System (INIS)

    We present the idea of a Mott-Anderson freeze-out that suggests a key role of the localization of the hadron wave functions when traversing the hadronization transition. The extension of hadron wave functions in dense matter is governed by the behavior of the chiral quark condensate such that its melting at finite temperatures and chemical potentials entails an increase of the size of hadrons and thus their geometrical strong interaction cross sections. It is demonstrated within a schematic resonance gas model, that a kinetic freeze-out condition reveals a correlation with the reduction of the chiral condensate in the phase diagram up to 50% of its vacuum value. Generalizing the description of the chiral condensate by taking into account a full hadron resonance gas such correlation gets distorted. We discuss, that this may be due to our approximations in calculating the chiral condensate which disregard both, in-medium effects on hadron masses and hadron-hadron interactions. The latter, in particular due to quark exchange reactions, could lead to a delocalization of the hadron wave functions in accordance with the picture of a Mott-Anderson transition. (author)

  9. Anderson introduces a new biomass baler

    Energy Technology Data Exchange (ETDEWEB)

    D' amour, L.; Lavoie, F. [Anderson Group Co., Chesterville, PQ (Canada)

    2010-07-01

    Canadian-based Anderson Group Company has developed an innovative round baler for harvesting a large variety of woody biomass. The baler was initially developed in 2005 in collaboration with the University Laval and Agriculture and Agri-Food Canada. The third generation BIOBALER{sup TM} is currently built, engineered and commercialized by Anderson. It can produce up to 40 bales/hr in short rotations woody crops such as willow and hybrid poplar. The unit can harvest brushes up to 125 mm in diameter. A standard tractor can pull the BIOBALER in fallow or abandoned land, under power transmission lines, and between planted trees. The patented BIOBALER includes a mulcher head attachment, a choice of long or short swivel tongue, a fixed chamber and an undercarriage frame.

  10. Integrative Medicine Program- MD Anderson Cancer Center

    OpenAIRE

    Lee, Richard T.

    2012-01-01

    The Integrative Medicine Program at MD Anderson Cancer Center was first established in 1998.  Our mission is to empower patients with cancer and their families to become active partners in their own physical, psycho-spiritual, and social health through personalized education and evidenced-based clinical care to optimize health, quality of life, and clinical outcomes across the cancer continuum.  The program consists of three main components: clinical care, research, and education.  The Integr...

  11. Transport of localized and extended excitations in chains embedded with randomly distributed linear and nonlinear n -mers

    Science.gov (United States)

    López-González, Dany; Molina, Mario I.

    2016-03-01

    We examine the transport of extended and localized excitations in one-dimensional linear chains populated by linear and nonlinear symmetric identical n -mers (with n =3 , 4, 5, and 6), randomly distributed. First, we examine the transmission of plane waves across a single linear n -mer, paying attention to its resonances, and looking for parameters that allow resonances to merge. Within this parameter regime we examine the transmission of plane waves through a disordered and nonlinear segment composed by n -mers randomly placed inside a linear chain. It is observed that nonlinearity tends to inhibit the transmission, which decays as a power law at long segment lengths. This behavior still holds when the n -mer parameters do not obey the resonance condition. On the other hand, the mean square displacement exponent of an initially localized excitation does not depend on nonlinearity at long propagation distances z , and shows a superdiffusive behavior ˜z1.8 for all n -mers, when parameters obey the resonance merging condition; otherwise the exponent reverts back to the random dimer model value ˜z1.5 .

  12. Collective excitations of dipolar gases based on local tunneling in ultracold superlattices

    CERN Document Server

    Cao, L; Deng, X; Schmelcher, P

    2016-01-01

    The collective dynamics of a dipolar fermionic quantum gas confined in a one-dimensional double-well superlattice is explored. The fermionic gas resides in a paramagnetic-like ground state in the weak interaction regime, upon which a new type of collective dynamics is found when applying a local perturbation. This dynamics is composed of the local tunneling of fermions in separate supercells, and is a pure quantum effect, with no classical counterpart. Due to the presence of the dipolar interactions the local tunneling transports through the entire superlattice, giving rise to a collective dynamics. A well-defined momentum-energy dispersion relation is identified in the ab-initio simulations demonstrating the phonon-like behavior. The phonon-like characteristic is also confirmed by an analytical description of the dynamics within a semiclassical picture.

  13. Analysis of localized diabatic states beyond the condon approximation for excitation energy transfer processes.

    Science.gov (United States)

    Alguire, Ethan C; Fatehi, Shervin; Shao, Yihan; Subotnik, Joseph E

    2014-12-26

    In a previous paper [ Fatehi , S. ; et al. J. Chem. Phys. 2013 , 139 , 124112 ], we demonstrated a practical method by which analytic derivative couplings of Boys-localized CIS states can be obtained. In this paper, we now apply that same method to the analysis of triplet-triplet energy transfer systems studied by Closs and collaborators [ Closs , G. L. ; et al. J. Am. Chem. Soc. 1988 , 110 , 2652 ]. For the systems examined, we are able to conclude that (i) the derivative coupling in the BoysOV basis is negligible, and (ii) the diabatic coupling will likely change little over the configuration space explored at room temperature. Furthermore, we propose and evaluate an approximation that allows for the inexpensive calculation of accurate diabatic energy gradients, called the "strictly diabatic" approximation. This work highlights the effectiveness of diabatic state analytic gradient theory in realistic systems and demonstrates that localized diabatic states can serve as an acceptable approximation to strictly diabatic states. PMID:24447246

  14. A rational reduction of CI expansions: combining localized molecular orbitals and selected charge excitations.

    Science.gov (United States)

    Krah, Tim; Ben Amor, Nadia; Maynau, Daniel; Berger, J A; Robert, Vincent

    2014-07-01

    Based on localized molecular orbitals, the proposed method reduces large configuration interaction (CI) spaces while maintaining agreement with reference values. Our strategy concentrates the numerical effort on physically pertinent CI-contributions and is to be considered as a tool to tackle large systems including numerous open-shells. To show the efficiency of our method we consider two 4-electron parent systems. First, we illustrate our approach by describing the van der Waals interactions in the (H2)2 system. By systematically including local correlation, dispersion and charge transfer mechanisms, we show that 90% of the reference full CI dissociation energy of the H2 dimer is reproduced using only 3% of the full CI space. Second, the conformational cis/trans rotation barrier of the butadiene molecule is remarkably reproduced (97% of the reference value) with less than 1% of the reference space. This work paves the way to numerical strategies which afford the electronic structure determination of large open-shell systems avoiding the exponential limitation. At the same time, a physical analysis of the contents of the wave function is offered. PMID:24935105

  15. Lifshitz transitions in magnetic phases of the periodic Anderson model

    International Nuclear Information System (INIS)

    We investigate the reconstruction of a Fermi surface, which is called a Lifshitz transition, in magnetically ordered phases of the periodic Anderson model on a square lattice with a finite Coulomb interaction between f electrons. We apply the variational Monte Carlo method to the model by using the Gutzwiller wavefunctions for the paramagnetic, antiferromagnetic, ferromagnetic, and charge-density-wave states. We find that an antiferromagnetic phase is realized around half-filling and a ferromagnetic phase is realized when the system is far away from half-filling. In both magnetic phases, Lifshitz transitions take place. By analyzing the electronic states, we conclude that the Lifshitz transitions to large ordered-moment states can be regarded as itinerant-localized transitions of the f electrons. (author)

  16. Unconstitutionality of Section 170 (e) of the price Anderson Act

    International Nuclear Information System (INIS)

    Several environmental protection groups in the State of North Carolina have recently contested the conformity with the United States Constitution of Section 170 (e) of the Atomic Energy Act (Price-Anderson Act). The court seized of the question (the United States District Court for the western district of North Carolina, Charlotte Division) held in March 1977 that this Section and the other provisions of the Atomic Energy Act concerning implementation of the $560 million limitation of liability for nuclear damage were unconstitutional and unenforceable insofar as they applied to nuclear incidents occurring inside the United States. The defendants, the former United States Atomic Energy Commission and its then Commissioners as well as the Duke Power Company (the local electricity company) will appeal this decision. The note on case law analyses the arguments retained by the court. (NEA)

  17. Localized excitations in discrete nonlinear Schrödinger systems: Effects of nonlocal dispersive interactions and noise

    Science.gov (United States)

    Rasmussen, K. Ø.; Christiansen, P. L.; Johansson, M.; Gaididei, Yu. B.; Mingaleev, S. F.

    1998-03-01

    A one-dimensional discrete nonlinear Schrödinger (DNLS) model with the power dependence, r- s on the distance r, of dispersive interactions is proposed. The stationary states of the system are studied both analytically and numerically. Two kinds of trial functions, exp-like and sech-like are exploited and the results of both approaches are compared. Both on-site and inter-site stationary states are investigated. It is shown that for s sufficiently large all features of the model are qualitatively the same as in the DNLS model with nearest-neighbor interaction. For s less than some critical value, scr, there is an interval of bistability where two stable stationary states exist at each excitation number. The bistability of on-site solitons may occur for dipole-dipole dispersive interaction ( s = 3), while scr for inter-site solitions is close to 2.1. In the framework of the DNLS equation with nearest-neighbor coupling we discuss the stability of highly localized, “breather-like”, excitations under the influence of thermal fluctuations. Numerical analysis shows that the lifetime of the breather is always finite and in a large parameter region inversely proportional to the noise variance for fixed damping and nonlinearity. We also find that the decay rate of the breather decreases with increasing nonlinearity and with increasing damping.

  18. Conservation laws, radiative decay rates, and excited state localization in organometallic complexes with strong spin-orbit coupling.

    Science.gov (United States)

    Powell, B J

    2015-01-01

    There is longstanding fundamental interest in 6-fold coordinated d(6) (t(2g)(6)) transition metal complexes such as [Ru(bpy)3](2+) and Ir(ppy)3, particularly their phosphorescence. This interest has increased with the growing realisation that many of these complexes have potential uses in applications including photovoltaics, imaging, sensing, and light-emitting diodes. In order to design new complexes with properties tailored for specific applications a detailed understanding of the low-energy excited states, particularly the lowest energy triplet state, T1, is required. Here we describe a model of pseudo-octahedral complexes based on a pseudo-angular momentum representation and show that the predictions of this model are in excellent agreement with experiment - even when the deviations from octahedral symmetry are large. This model gives a natural explanation of zero-field splitting of T1 and of the relative radiative rates of the three sublevels in terms of the conservation of time-reversal parity and total angular momentum modulo two. We show that the broad parameter regime consistent with the experimental data implies significant localization of the excited state. PMID:26123864

  19. Influence of an amorphous wall on the distribution of localized excitations in a colloidal glass-forming liquid

    Science.gov (United States)

    Gokhale, Shreyas; Hima Nagamanasa, K.; Sood, A. K.; Ganapathy, Rajesh

    2016-07-01

    Elucidating the nature of the glass transition has been the holy grail of condensed matter physics and statistical mechanics for several decades. A phenomenological aspect that makes glass formation a conceptually formidable problem is that structural and dynamic correlations in glass-forming liquids are too subtle to be captured at the level of conventional two-point functions. As a consequence, a host of theoretical techniques, such as quenched amorphous configurations of particles, have been devised and employed in simulations and colloid experiments to gain insights into the mechanisms responsible for these elusive correlations. Very often, though, the analysis of spatio-temporal correlations is performed in the context of a single theoretical framework, and critical comparisons of microscopic predictions of competing theories are thereby lacking. Here, we address this issue by analysing the distribution of localized excitations, which are building blocks of relaxation as per the dynamical facilitation (DF) theory, in the presence of an amorphous wall, a construct motivated by the random first-order transition theory (RFOT). We observe that spatial profiles of the concentration of excitations exhibit complex features such as non-monotonicity and oscillations. Moreover, the smoothly varying part of the concentration profile yields a length scale {ξc} , which we compare with a previously computed length scale {ξ\\text{dyn}} . Our results suggest a method to assess the role of dynamical facilitation in governing structural relaxation in glass-forming liquids.

  20. Near-field optical microscopy of localized excitations on rough surfaces: influence of a probe

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.

    1999-01-01

    calculate the self consistent field intensity at the site of a probe dipole scanning over resonantly interacting object dipoles and show that the intensity distribution deviates from that existing in the absence of a probe. I demonstrate that this difference increases with an increase in the polarizability...... of the probe dipole, resulting eventually in a completely different intensity distribution, The calculations also show that the perturbation of the intensity distribution due to the presence of a probe decreases with an increase in the probe-sample distance. In order to evaluate the degree of...... perturbation, I suggest comparing the images obtained at different probe-sample distances, Finally I formulate a simple rule of thumb that allows one to roughly estimate the probe-sample coupling when imaging localized elicitations....

  1. Does the regulation of local excitation-inhibition balance aid in recovery of functional connectivity? A computational account.

    Science.gov (United States)

    Vattikonda, Anirudh; Surampudi, Bapi Raju; Banerjee, Arpan; Deco, Gustavo; Roy, Dipanjan

    2016-08-01

    Computational modeling of the spontaneous dynamics over the whole brain provides critical insight into the spatiotemporal organization of brain dynamics at multiple resolutions and their alteration to changes in brain structure (e.g. in diseased states, aging, across individuals). Recent experimental evidence further suggests that the adverse effect of lesions is visible on spontaneous dynamics characterized by changes in resting state functional connectivity and its graph theoretical properties (e.g. modularity). These changes originate from altered neural dynamics in individual brain areas that are otherwise poised towards a homeostatic equilibrium to maintain a stable excitatory and inhibitory activity. In this work, we employ a homeostatic inhibitory mechanism, balancing excitation and inhibition in the local brain areas of the entire cortex under neurological impairments like lesions to understand global functional recovery (across brain networks and individuals). Previous computational and empirical studies have demonstrated that the resting state functional connectivity varies primarily due to the location and specific topological characteristics of the lesion. We show that local homeostatic balance provides a functional recovery by re-establishing excitation-inhibition balance in all areas that are affected by lesion. We systematically compare the extent of recovery in the primary hub areas (e.g. default mode network (DMN), medial temporal lobe, medial prefrontal cortex) as well as other sensory areas like primary motor area, supplementary motor area, fronto-parietal and temporo-parietal networks. Our findings suggest that stability and richness similar to the normal brain dynamics at rest are achievable by re-establishment of balance. PMID:27177761

  2. Integrative Medicine Program- MD Anderson Cancer Center

    Directory of Open Access Journals (Sweden)

    Richard T Lee

    2012-06-01

    Full Text Available The Integrative Medicine Program at MD Anderson Cancer Center was first established in 1998.  Our mission is to empower patients with cancer and their families to become active partners in their own physical, psycho-spiritual, and social health through personalized education and evidenced-based clinical care to optimize health, quality of life, and clinical outcomes across the cancer continuum.  The program consists of three main components: clinical care, research, and education.  The Integrative Medicine Center provides clinical services to patients through individual and group programs.  The clinical philosophy of the center is to work collaboratively with the oncology teams to build comprehensive and integrative care plans that are personalized, evidence-based, and safe with the goal of improving clinical outcomes.  The individual services comprise of integrative oncology consultation, acupuncture, meditation, music therapy, nutrition, and oncology massage.  The center also provides a variety of group programs including meditation, yoga, tai chi, cooking classes and others.  Over the past 13 years, over 70,000 patients and families have participated in services and programs offered by the center.  The research portfolio focuses on three main areas: mind-body interventions, acupuncture, and meditation.  This lecture will focus on providing an overview of the Integrative Medicine Program at MD Anderson with a focus on the clinical services provided.  Participants will learn about the integrative clinical model and how this is applied to the care of cancer patients at MD Anderson Cancer Center.  Current and future research topics will be discussed as well as patient cases.

  3. Evaluating the Anderson-Darling Distribution

    Directory of Open Access Journals (Sweden)

    George Marsaglia

    2004-02-01

    Full Text Available Except for n = 1, only the limit as n approaches infinity for the distribution of the Anderson-Darling test for uniformity has been found, and that in so complicated a form that published values for a few percentiles had to be determined by numerical integration, saddlepoint or other approximation methods. We give here our method for evaluating that asymptotic distribution to great accuracy--directly, via series with two-term recursions. We also give, for any particular n, a procedure for evaluating the distribution to the fourth digit, based on empirical CDF's from samples of size 1010 .

  4. High pressure luminescence studies of localized excitations in ZnS doped with Pb2+ and Mn2+

    International Nuclear Information System (INIS)

    High pressure luminescence measurements have been made on ZnS doped with Pb+2 and Mn+2. The data include changes in peak energy and shape, integrated intensities, and lifetimes. These localized emissions are treated in terms of a single configuration coordinate model. For Pb+2 the emission peak shifted to lower energy by a moderate amount and narrowed. For excitation in the Pb+2 absorption the intensity was independent of pressure, which is consistent with the fact that the energy barrier for radiationless return to the ground state was high at all pressures. For excitation in the ZnS absorption edge the intensity decreased significantly with pressure above about 80 kbar. Data on shifts of the conduction band with pressure would indicate that one is approaching a transition from a direct to indirect transition at high pressure so that decrease in emission intensity may be associated with decreased absorption efficiency. The Mn+2 emission peak shifted strongly to lower energy with increasing pressure. The direction and magnitude of the shift were consistent with the predictions of ligand field theory. The intensity doubled in 100 kbar, while the lifetime decreased by roughly a factor of 2. These results could be described in terms of a model for a phonon assisted transition. In addition, peak location, intensity, and lifetime measurements were made on ZnS:Pb:Mn. There is clear evidence of energy transfer by exchange, but in addition there is a nonradiative process in the doubly doped crystal which affects both intensities and lifetimes

  5. Anderson transition in the three dimensional symplectic universality class

    OpenAIRE

    Asada, Yoichi; Slevin, Keith; Ohtsuki, Tomi

    2004-01-01

    We study the Anderson transition in the SU(2) model and the Ando model. We report a new precise estimate of the critical exponent for the symplectic universality class of the Anderson transition. We also report numerical estimation of the $\\beta$ function.

  6. Perturbation theory for Lyapunov exponents of an Anderson model on a strip

    CERN Document Server

    Schulz-Baldes, H

    2003-01-01

    It is proven that the localization length of an Anderson model on a strip of width $L$ is bounded above by $L/\\lambda^2$ for small values of the coupling constant $\\lambda$ of the disordered potential. For this purpose, a new formalism is developed in order to calculate the bottom Lyapunov exponent associated with random products of large symplectic matrices perturbatively in the coupling constant of the randomness.

  7. Determinant method and quantum simulations of many-body effects in a single impurity Anderson model

    International Nuclear Information System (INIS)

    We present a short description of a quantum Monte Carlo technique that has proved useful for simulating many-body effects in systems of interacting fermins at finite temperatures. We then report our preliminary results using this technique on a single impurity Anderson model. Examples of such many-body effects as local moment formation, Kondo behavior, and mixed valence phenomena found in the simulations are shown

  8. Determinant method and quantum simulations of many-body effects in a single impurity Anderson model

    International Nuclear Information System (INIS)

    A short description is presented of a quantum Monte Carlo technique, often referred to as the determinant method, that has proved useful for simulating many-body effects in systems of interacting fermions at finite temperatures. Preliminary results using this technique on a single impurity Anderson model are reported. Examples of such many-body effects as local moment formation, Kondo behavior, and mixed valence phenomena found in the simulations are shown. 10 refs., 3 figs

  9. Plea for European Price Anderson legislation

    International Nuclear Information System (INIS)

    The paper analyses the essential features and the basic differences in nuclear liability and coverage in the United States where the problem is governed by the Price-Anderson legislation, and the Member States of the European Community which adhere to the Paris Convention on Third Party Liability in the Field of Nuclear Energy. The paper undertakes to show that it is possible to introduce into the European Community certain elements of the American regime, in particular the solidarity of nuclear operators and the retroactive premium coverage without violating the basic principles of the Paris Convention. Consequently the paper advocates the adoption of such rules in Europe as a step towards harmonisation of nuclear coverage and safety and a means to reduce government interference. (author)

  10. Slow Relaxation in Anderson Critical Systems

    Science.gov (United States)

    Choi, Soonwon; Yao, Norman; Choi, Joonhee; Kucsko, Georg; Lukin, Mikhail

    2016-05-01

    We study the single particle dynamics in disordered systems with long range hopping, focusing on the critical cases, i.e., the hopping amplitude decays as 1 /rd in d-dimension. We show that with strong on-site potential disorder, the return probability of the particle decays as power-law in time. As on-site potential disorder decreases, the temporal profile smoothly changes from a simple power-law to the sum of multiple power-laws with exponents ranged from 0 to νmax. We analytically compute the decay exponents using a simple resonance counting argument, which quantitatively agrees with exact numerical results. Our result implies that the dynamics in Anderson Critical systems are dominated by resonances. Harvard-MIT CUA, Kwanjeong Educational Fellowship, AFOSR MURI, Samsung Scholarship.

  11. Anderson Exploration Ltd. 1998 annual report

    International Nuclear Information System (INIS)

    In 1998, Anderson Exploration's undeveloped land inventory in the western provinces decreased 7% to 3,183,000 net acres largely due to lease expiries and drilling activity. The undeveloped land base is located 63% in Alberta, 19% in British Columbia, 17% in Saskatchewan, and 1% in Manitoba. During 1998, Anderson Exploration participated in drilling 446 wells for oil and gas vs. 669 for 1997. The average working interest in the wells was 63% vs. 64% in 1997. In 1998, the company spent $109 million on the construction of field gathering systems and production facilities vs. $123 million in 1997. In 1998, the company's gas sales increased to 555 million cubic feet per day from 549 million cubic feet per day in 1997. Crude oil sales averaged 29,808 barrels per day in 1998, an increase of 9% over the 1997 production. In 1998, the company replaced 148% of production with proven reserve additions, net of revisions, by spending 163% of cash flow from operations on capital spending. After a volatile year in 1 997, natural gas prices stabilized somewhat in 1998. A modest price increase was experienced in 1997. The company's average plant gate natural gas price increased modestly in 1998 to $1.94 per thousand cubic feet, marking the 3rd consecutive price increase. The company owns an average interest of 10.4% in two straddle plants at Empress, Alberta. The company operates and is a 50% owner of Federated Pipe Lines Ltd. The company is committed to protecting the health and safety of all employees and the public, as well as preserving the quality of the environment

  12. Damage detection of metro tunnel structure through transmissibility function and cross correlation analysis using local excitation and measurement

    Science.gov (United States)

    Feng, Lei; Yi, Xiaohua; Zhu, Dapeng; Xie, Xiongyao; Wang, Yang

    2015-08-01

    In a modern metropolis, metro rail systems have become a dominant mode for mass transportation. The structural health of a metro tunnel is closely related to public safety. Many vibration-based techniques for detecting and locating structural damage have been developed in the past several decades. However, most damage detection techniques and validation tests are focused on bridge and building structures; very few studies have been reported on tunnel structures. Among these techniques, transmissibility function and cross correlation analysis are two well-known diagnostic approaches. The former operates in frequency domain and the latter in time domain. Both approaches can be applied to detect and locate damage through acceleration data obtained from sensor arrays. Furthermore, the two approaches can directly utilize structural response data without requiring excitation measurement, which offers advantages in field testing on a large structure. In this research, a numerical finite element model of a metro tunnel is built and different types of structural defects are introduced at multiple locations of the tunnel. Transmissibility function and cross correlation analysis are applied to perform structural damage detection and localization, based on simulated structural vibration data. Numerical results demonstrate that the introduced defects can be successfully identified and located. The sensitivity and feasibility of the two approaches have been verified when sufficient distribution of measurement locations is available. Damage detection results of the two different approaches are compared and discussed.

  13. Localized Spatial Soliton Excitations Equation with Variable Nonlinearity in (2 +1)-Dimensional Nonlinear SchrSdinger and an External Potential

    Institute of Scientific and Technical Information of China (English)

    钟卫平; Milivoj R. Belic; HUANG Ting-Wen

    2012-01-01

    We report on the localized spatial soliton excitations in the multidimensional nonlinear Schrodinger equation with radially variable nonlinearity coefficient and an external potential. By using Hirota's binary differential operators, we determine a variety of external potentials and nonlinearity coefficients that can support nonlinear localized solutions of different but desired forms. For some specific external potentials and nonlinearity coefficients, we discuss features of the corresponding (2+1)-dimensional multisolitonic solutions, including ring solitons, lump solitons, and soliton clusters.

  14. Critical exponent for the Anderson transition in the three-dimensional orthogonal universality class

    International Nuclear Information System (INIS)

    We report a careful finite size scaling study of the metal–insulator transition in Anderson's model of localization. We focus on the estimation of the critical exponent ν that describes the divergence of the localization length. We verify the universality of this critical exponent for three different distributions of the random potential: box, normal and Cauchy. Our results for the critical exponent are consistent with the measured values obtained in experiments on the dynamical localization transition in the quantum kicked rotor realized in a cold atomic gas. (paper)

  15. Magnetic field induced quantum phase transitions in the two-impurity Anderson model

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Lujun [Los Alamos National Laboratory; Zhu, Jian - Xin [Los Alamos National Laboratory

    2010-11-17

    In the two-impurity Anderson model, the inter-impurity spin exchange interaction favors a spin singlet state between two impurities leading to the localization of quasiparticles. We show that a local uniform magnetic field can delocalize the quasiparticies to restore the Kondo resonance. This transition is found to be continuous, accompanied by not only the divergence of the staggered (anti ferromagnetic) susceptibility, but also the divergence of the uniform spin susceptibility. This implies that the magnetic field induced quantum phase transitions in Kondo systems are in favor of the local critical type.

  16. Transverse Anderson Localization in Disordered Glass Optical Fibers: A Review

    OpenAIRE

    Arash Mafi; Salman Karbasi; Koch, Karl W.; Thomas Hawkins; John Ballato

    2014-01-01

    Disordered optical fibers show novel waveguiding properties that can be used for various device applications, such as beam-multiplexed optical communications and endoscopic image transport. The strong transverse scattering from the transversely disordered optical fibers results in transversely confined beams that can freely propagate in the longitudinal direction, similar to conventional optical fibers, with the advantage that any point in the cross section of the fiber can be used for beam t...

  17. Localized excitations with and without propagating properties in (2+1)-dimensions obtained by a mapping approach

    Institute of Scientific and Technical Information of China (English)

    Zheng Chun-Long; Fang Jian-Ping; Chen Li-Qun

    2005-01-01

    By means of an extended mapping approach, a new type of variable-separation excitation is derived with two arbitrary functions in a (2+1)-dimensional modified dispersive water-wave system. Based on the derived variable-separation excitation, abundant nonpropagating and propagating solitons such as dromions, rings, peakons and compactons are revealed by selecting appropriate functions in this paper.

  18. Numerical verification of universality for the Anderson transition

    OpenAIRE

    Slevin, Keith; Ohtsuki, Tomi

    2001-01-01

    We analyze the scaling behavior of the higher Lyapunov exponents at the Anderson transition. We estimate the critical exponent and verify its universality and that of the critical conductance distribution for box, Gaussian and Lorentzian distributions of the random potential.

  19. Martin Anderson valis "Joonase lähetamise" / Priit Kuusk

    Index Scriptorium Estoniae

    Kuusk, Priit, 1938-

    2000-01-01

    M. Anderson kommenteeris ameerika muusikaajakirjas "Fanfare" viit talle kõige enam mõju avaldanud heliplaati, sh. R. Tobiase oratooriumi "Joonase lähetamine" CD-plaati (BIS). M. Andersoni huvist eesti muusika vastu

  20. 2011 South Carolina DNR Lidar: Tricounty (Anderson, Oconee, Pickens)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Towill Inc. collected LiDAR for over 3,500 square miles in York, Pickens, Anderson, and Oconee Counties in South Carolina. The nominal pulse spacing for this...

  1. Scaling of the conductance distribution near the Anderson transition

    OpenAIRE

    Slevin, Keith; Markoš, Peter; Ohtsuki, Tomi

    2002-01-01

    The single parameter scaling hypothesis is the foundation of our understanding of the Anderson transition. However, the conductance of a disordered system is a fluctuating quantity which does not obey a one parameter scaling law. It is essential to investigate the scaling of the full conductance distribution to establish the scaling hypothesis. We present a clear cut numerical demonstration that the conductance distribution indeed obeys one parameter scaling near the Anderson transition.

  2. Finite Size Scaling Analysis of the Anderson Transition

    OpenAIRE

    Kramer, Bernhard; MacKinnon, Angus; Ohtsuki, Tomi; Slevin, Keith

    2010-01-01

    This chapter describes the progress made during the past three decades in the finite size scaling analysis of the critical phenomena of the Anderson transition. The scaling theory of localisation and the Anderson model of localisation are briefly sketched. The finite size scaling method is described. Recent results for the critical exponents of the different symmetry classes are summarised. The importance of corrections to scaling are emphasised. A comparison with experiment is made, and a di...

  3. The Anderson transition: time reversal symmetry and universality

    OpenAIRE

    Slevin, Keith; Ohtsuki, Tomi

    1997-01-01

    We report a finite size scaling study of the Anderson transition. Different scaling functions and different values for the critical exponent have been found, consistent with the existence of the orthogonal and unitary universality classes which occur in the field theory description of the transition. The critical conductance distribution at the Anderson transition has also been investigated and different distributions for the orthogonal and unitary classes obtained.

  4. Ferromagnetic order in the one-dimensional Anderson lattice

    International Nuclear Information System (INIS)

    Using bosonization an effective Hamiltonian is derived for the one-dimensional Anderson lattice model in the Toulouse limit. The effective Hamiltonian exhibits ferromagnetic ground state in the intermediate coupling regime. - Highlights: • 1D Anderson lattice is bosonized in the Toulouse limit. • The obtained effective Hamiltonian exhibits ferromagnetic order. • Ferromagnetism is due to a double-exchange mechanism. • The ferromagnetic transition has been identified to be an order–disorder transition

  5. Many-body localization: Entanglement and efficient numerical simulations

    Science.gov (United States)

    Pollmann, Frank

    Many-body localization (MBL) occurs in isolated quantum systems when Anderson localization persists in the presence of finite interactions. To understand this phenomenon, the development of new efficient numerical methods to find highly excited many-body eigenstates is essential. In this talk, we will discuss two complimentary approaches to simulate MBL systems: First, we introduce a variant of the density-matrix renormalization group (DMRG) method that obtains individual highly excited eigenstates of MBL systems to machine precision accuracy at moderate to large disorder. This method explicitly takes advantage of the local spatial structure and the low entanglement which is characteristic for MBL eigenstates. Second, we propose an approach to directly find an approximate compact representation of the diagonalizing unitary by using a variational unitary matrix-product operator.

  6. Anderson metal-insulator transitions with classical magnetic impurities

    Science.gov (United States)

    Jung, Daniel; Kettemann, Stefan; Slevin, Keith

    2016-04-01

    We study numerically the effects of classical magnetic impurities on the Anderson metal-insulator transition. We find that a small concentration of Heisenberg impurities enhances the critical disorder amplitude Wc with increasing exchange coupling strength J . The resulting scaling with J is analyzed which supports an anomalous scaling prediction by Wegner due to the combined breaking of time-reversal and spin-rotational symmetry. Moreover, we find that the presence of magnetic impurities lowers the critical correlation length exponent ν and enhances the multifractality parameter α0. The new value of ν improves the agreement with the value measured in experiments on the metal-insulator transition (MIT) in doped semiconductors like phosphor-doped silicon, where a finite density of magnetic moments is known to exist in the vicinity of the MIT. The results are obtained by a finite-size scaling analysis of the geometric mean of the local density of states which is calculated by means of the kernel polynomial method. We establish this combination of numerical techniques as a method to obtain critical properties of disordered systems quantitatively.

  7. Localized excitation of magnetostatic surface spin waves in yttrium iron garnet by shorted coaxial probe detected via spin pumping and rectification effect

    Energy Technology Data Exchange (ETDEWEB)

    Soh, Wee Tee, E-mail: a0046479@u.nus.edu; Ong, C. K. [Center for Superconducting and Magnetic Materials, Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551 (Singapore); Peng, Bin [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2015-04-21

    We demonstrate the localized excitation and dc electrical detection of magnetostatic surface spin waves (MSSWs) in yttrium iron garnet (YIG) by a shorted coaxial probe. Thin films of NiFe and Pt are patterned at different regions onto a common bulk YIG substrate. A shorted coaxial probe is used to excite spin precession locally near various patterned regions. The dc voltages across the corresponding regions are recorded. For excitation of the Pt regions, the dc voltage spectra are dominated by the spin pumping of MSSWs from YIG, where various modes can be clearly distinguished. For the NiFe region, it is also found that spin pumping from MSSWs generated in YIG dominated the spectra, indicating that the spin pumped currents are dissipated into charge currents via the inverse Spin Hall effect (ISHE) in NiFe. For all regions, dc signals from YIG MSSWs are observed to be much stronger than the ferromagnetic resonance (FMR) uniform mode, likely due to the nature of the microwave excitation. The results indicate the potential of this probe for microwave imaging via dc detection of spin dynamics in continuous and patterned films.

  8. Investigation of Anderson lattice behavior in Yb1-xLuxAl3

    International Nuclear Information System (INIS)

    Measurements of magnetic susceptibility χ(T), specific heat C(T), Hall coefficient RH(T), and Yb valence ν = 2 + nf [f-occupation number nf (T) determined from Yb L3 x-ray absorption measurements] were carried out on single crystals of Yb1-xLuxAl3. The low temperature anomalies observed in χ(T) and C(T) corresponding to an energy scale Tcoh ∼ 40 K in the intermediate valence, Kondo lattice compound YbAl3 are suppressed by Lu concentrations as small as 5% suggesting these low-T anomalies are extremely sensitive to disorder and, therefore, are a true coherence effect. By comparing the temperature dependence of various physical quantities to the predictions of the Anderson Impurity Model, the slow crossover behavior observed in YbAl3, in which the data evolve from a low-temperature coherent, Fermi-liquid regime to a high temperature local moment regime more gradually than predicted by the Anderson Impurity Model, appears to evolve to fast crossover behavior at x ∼ 0.7 where the evolution is more rapid than predicted. These two phenomena found in Yb1-xLuxAl3, i.e., the low-T anomalies and the slow/fast crossover behavior are discussed in relation to recent theories of the Anderson lattice

  9. Local scale transformation method and natural orbital approach for the description of some ground and monopole excited state characteristics of nuclei

    International Nuclear Information System (INIS)

    The extended local-scale transformation method (LSTM) in combination with the natural orbital representation is applied to investigate the nuclear ground state local density and momentum distributions. The 'breathing' monopole excitation mode is considered within this approach and the adiabatic limit of the time-dependent Hartree-Fock theory (ATDHF). Numeric calculations for the nucleus 16O with the effective Skyrme forces have been carried out. The occupation numbers are determined, taking into account the experimantal charge density distribution data. 2 figs., 1 tab., 13 refs

  10. Superdiffusive transport and energy localization in disordered granular crystals

    Science.gov (United States)

    Martínez, Alejandro J.; Kevrekidis, P. G.; Porter, Mason A.

    2016-02-01

    We study the spreading of initially localized excitations in one-dimensional disordered granular crystals. We thereby investigate localization phenomena in strongly nonlinear systems, which we demonstrate to differ fundamentally from localization in linear and weakly nonlinear systems. We conduct a thorough comparison of wave dynamics in chains with three different types of disorder—an uncorrelated (Anderson-like) disorder and two types of correlated disorders (which are produced by random dimer arrangements)—and for two types of initial conditions (displacement excitations and velocity excitations). We find for strongly precompressed (i.e., weakly nonlinear) chains that the dynamics depend strongly on the type of initial condition. In particular, for displacement excitations, the long-time asymptotic behavior of the second moment m˜2 of the energy has oscillations that depend on the type of disorder, with a complex trend that differs markedly from a power law and which is particularly evident for an Anderson-like disorder. By contrast, for velocity excitations, we find that a standard scaling m˜2˜tγ (for some constant γ ) applies for all three types of disorder. For weakly precompressed (i.e., strongly nonlinear) chains, m˜2 and the inverse participation ratio P-1 satisfy scaling relations m˜2˜tγ and P-1˜t-η , and the dynamics is superdiffusive for all of the cases that we consider. Additionally, when precompression is strong, the inverse participation ratio decreases slowly (with η disorder, and the dynamics leads to a partial localization around the core and the leading edge of a propagating wave packet. For an Anderson-like disorder, displacement perturbations lead to localization of energy primarily in the core, and velocity perturbations cause the energy to be divided between the core and the leading edge. This localization phenomenon does not occur in the sonic-vacuum regime, which yields the surprising result that the energy is no longer

  11. The band-centre anomaly in the 1D Anderson model with correlated disorder

    International Nuclear Information System (INIS)

    We study the band-centre anomaly in the one-dimensional Anderson model with weak correlated disorder. Our analysis is based on the Hamiltonian map approach; the correspondence between the discrete model and its continuous counterpart is discussed in detail. We obtain analytical expressions of the localization length and of the invariant measure of the phase variable, valid for energies in a neighbourhood of the band centre. By applying these general results to specific forms of correlated disorder, we show how correlations can enhance or suppress the anomaly at the band centre. (paper)

  12. Interpretation of high-dimensional numerical results for the Anderson transition

    International Nuclear Information System (INIS)

    The existence of the upper critical dimension dc2 = 4 for the Anderson transition is a rigorous consequence of the Bogoliubov theorem on renormalizability of φ4 theory. For d ≥ 4 dimensions, one-parameter scaling does not hold and all existent numerical data should be reinterpreted. These data are exhausted by the results for d = 4, 5 from scaling in quasi-one-dimensional systems and the results for d = 4, 5, 6 from level statistics. All these data are compatible with the theoretical scaling dependences obtained from Vollhardt and Wolfle’s self-consistent theory of localization. The widespread viewpoint that dc2 = ∞ is critically discussed

  13. A scaling limit theorem for the parabolic Anderson model with exponential potential

    CERN Document Server

    Lacoin, Hubert

    2010-01-01

    The parabolic Anderson problem is the Cauchy problem for the heat equation with random potential and localized initial condition. In this paper we consider potentials which are constant in time and independent exponentially distributed in space. We study the growth rate of the total mass of the solution in terms of weak and almost sure limit theorems, and the spatial spread of the mass in terms of a scaling limit theorem. The latter result shows that in this case, just like in the case of heavy tailed potentials, the mass gets trapped in a single relevant island with high probability.

  14. Superdiffusive transport and energy localization in disordered granular crystals.

    Science.gov (United States)

    Martínez, Alejandro J; Kevrekidis, P G; Porter, Mason A

    2016-02-01

    We study the spreading of initially localized excitations in one-dimensional disordered granular crystals. We thereby investigate localization phenomena in strongly nonlinear systems, which we demonstrate to differ fundamentally from localization in linear and weakly nonlinear systems. We conduct a thorough comparison of wave dynamics in chains with three different types of disorder-an uncorrelated (Anderson-like) disorder and two types of correlated disorders (which are produced by random dimer arrangements)-and for two types of initial conditions (displacement excitations and velocity excitations). We find for strongly precompressed (i.e., weakly nonlinear) chains that the dynamics depend strongly on the type of initial condition. In particular, for displacement excitations, the long-time asymptotic behavior of the second moment m̃(2) of the energy has oscillations that depend on the type of disorder, with a complex trend that differs markedly from a power law and which is particularly evident for an Anderson-like disorder. By contrast, for velocity excitations, we find that a standard scaling m̃(2)∼t(γ) (for some constant γ) applies for all three types of disorder. For weakly precompressed (i.e., strongly nonlinear) chains, m̃(2) and the inverse participation ratio P(-1) satisfy scaling relations m̃(2)∼t(γ) and P(-1)∼t(-η), and the dynamics is superdiffusive for all of the cases that we consider. Additionally, when precompression is strong, the inverse participation ratio decreases slowly (with ηwave packet. For an Anderson-like disorder, displacement perturbations lead to localization of energy primarily in the core, and velocity perturbations cause the energy to be divided between the core and the leading edge. This localization phenomenon does not occur in the sonic-vacuum regime, which yields the surprising result that the energy is no longer contained in strongly nonlinear waves but instead is spread across many sites. In this regime, the

  15. Conductance statistics near the Anderson transition

    OpenAIRE

    Markos, P.

    2002-01-01

    Paper reviews recent numerical data for the conductance distribution of disordered systems in the critical regime and in the localized regime. Of particular interest is the non-analytical form of the critical conductance distribution in the 3D and 4D systems, non-Gaussian form of the distribution of P(ln g) in localized 3D systems.

  16. Magnetic Moments of Chromium-Doped Gold Clusters: The Anderson Impurity Model in Finite Systems

    CERN Document Server

    Hirsch, K; Langenberg, A; Niemeyer, M; Langbehn, B; Möller, T; Terasaki, A; Issendorff, B v; Lau, J T

    2013-01-01

    The magnetic moment of a single impurity atom in a finite free electron gas is studied in a combined x-ray magnetic circular dichroism spectroscopy and density functional theory study of size-selected free chromium-doped gold clusters. The observed size-dependence of the local magnetic moment can essentially be understood in terms of the Anderson impurity model. Electronic shell closure in the host metal minimizes the interaction of localized impurity states with the confined free electron gas and preserves the full magnetic moment of $\\unit[5]{\\mu_B}$ in $\\mathrm{CrAu}_{2}^{+}$ and $\\mathrm{CrAu}_{6}^{+}$ clusters. Even for open-shell species, large local moments are observed that scale with the energy gap of the gold cluster. This indicates that an energy gap in the free electron gas generally stabilizes the local magnetic moment of the impurity.

  17. Local SAR, global SAR, transmitter power and excitation accuracy trade-offs in low flip-angle parallel transmit pulse design

    OpenAIRE

    Guérin, Bastien; Gebhardt, Matthias; Cauley, Steven; Adalsteinsson, Elfar; Wald, Lawrence L.

    2013-01-01

    Purpose We propose a constrained optimization approach for designing parallel transmit (pTx) pulses satisfying all regulatory and hardware limits. We study the trade-offs between excitation accuracy, local and global specific absorption rate (SAR), and maximum and average power for small flip-angle pTx (eight channels) spokes pulses in the torso at 3 T and in the head at 7 T. Methods We compare the trade-offs between the above-mentioned quantities using the L-curve method. We use a p...

  18. Localization of Spinons in Random Majumdar-Ghosh Chains

    Science.gov (United States)

    Roux, Guillaume; Lavarelo, Arthur

    2014-03-01

    We study the effect of disorder on frustrated dimerized spin-1/2 chains at the Majumdar-Ghosh point. Using variational methods and density-matrix renormalization group approaches, we identify two localization mechanisms for spinons which are the deconfined fractional elementary excitations of these chains. The first one belongs to the Anderson localization class and dominates at the random Majumdar-Ghosh point. There, spinons remain gapped and localize in Lifshitz states whose localization length is analytically obtained. The other mechanism is a random confinement mechanism which induces an effective interaction between spinons and brings the initially gapped antiferromagnetic chain into a gapless and partially polarized phase for arbitrarily small disorder. This Imry-Ma mechanism induces domains which statistics is analyzed. Last, the connection to the real-space renormalization group method suited for the strong disorder limit is discussed.

  19. Anderson-Witting transport coefficients for flows in general relativity

    CERN Document Server

    Ambrus, Victor E

    2016-01-01

    The transport coefficients induced by the Anderson-Witting approximation of the collision term in the relativistic Boltzmann equation are derived for close to equilibrium flows in general relativity. Using the tetrad formalism, it is shown that the expression for these coefficients is the same as that obtained on flat space-time, in agreement with the generalized equivalence principle.

  20. Spectral density method to Anderson-Holstein model

    International Nuclear Information System (INIS)

    Two-parameter spectral density function of a magnetic impurity electron in a non-magnetic metal is calculated within the framework of the Anderson-Holstein model using the spectral density approximation method. The effect of electron-phonon interaction on the spectral function is investigated

  1. Magnetic susceptibility of a two-channel Anderson model

    International Nuclear Information System (INIS)

    Temperature-dependent magnetic susceptibility is calculated for a two-channel Anderson model, by using the numerical renormalization group plus an interleaving procedure to recover the continuum of the conduction band. Fermi- and non-Fermi-liquid fixed points can be obtained in the low-temperature regime of the model susceptibility

  2. Magnetic susceptibility of a two-channel Anderson model

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, J.V.B.; Oliveira, L.N. de; Cox, D.L.; Libero, V.L. E-mail: valter@if.sc.usp.br

    2001-05-01

    Temperature-dependent magnetic susceptibility is calculated for a two-channel Anderson model, by using the numerical renormalization group plus an interleaving procedure to recover the continuum of the conduction band. Fermi- and non-Fermi-liquid fixed points can be obtained in the low-temperature regime of the model susceptibility.

  3. An Anderson Impurity Model for Efficient Sampling of Adiabatic Potential Energy Surfaces of Transition Metal Complexes

    CERN Document Server

    La Bute-Montiago X; Cox, D L

    2004-01-01

    We present a model intended for rapid sampling of ground and excited state potential energy surfaces for first-row transition metal active sites. The method is computationally inexpensive and is suited for dynamics simulations where (1) adiabatic states are required "on-the-fly" and (2) the primary source of the electronic coupling between the diabatic states is the perturbative spin-orbit interaction among the 3d electrons. The model Hamiltonian we develop is a variant of the Anderson impurity model and achieves efficiency through a physically motivated basis set reduction based on the large value of the d-d Coulomb interaction U_{d} and a Lanczos matrix diagonalization routine to solve for eigenvalues. The model parameters are constrained by fits to the partial density of states (PDOS) obtained from ab initio density functional theory calculations. For a particular application of our model we focus on electron-transfer occuring between cobalt ions solvated by ammonium, incorporating configuration interactio...

  4. Anderson transition on the Cayley tree as a traveling wave critical point for various probability distributions

    International Nuclear Information System (INIS)

    For Anderson localization on the Cayley tree, we study the statistics of various observables as a function of the disorder strength W and the number N of generations. We first consider the Landauer transmission TN. In the localized phase, its logarithm follows the traveling wave form TN≅(ln TN)-bar + ln t* where (i) the disorder-averaged value moves linearly (ln(TN))-bar≅-N/ξloc and the localization length diverges as ξloc∼(W-Wc)-νloc with νloc = 1 and (ii) the variable t* is a fixed random variable with a power-law tail P*(t*) ∼ 1/(t*)1+β(W) for large t* with 0 N are governed by rare events. In the delocalized phase, the transmission TN remains a finite random variable as N → ∞, and we measure near criticality the essential singularity (ln(T∞))-bar∼-|Wc-W|-κT with κT ∼ 0.25. We then consider the statistical properties of normalized eigenstates Σx|ψ(x)|2 = 1, in particular the entropy S = -Σx|ψ(x)|2ln |ψ(x)|2 and the inverse participation ratios (IPR) Iq = Σx|ψ(x)|2q. In the localized phase, the typical entropy diverges as Styp∼( W-Wc)-νS with νS 1.5, whereas it grows linearly as Styp(N) ∼ N in the delocalized phase. Finally for the IPR, we explain how closely related variables propagate as traveling waves in the delocalized phase. In conclusion, both the localized phase and the delocalized phase are characterized by the traveling wave propagation of some probability distributions, and the Anderson localization/delocalization transition then corresponds to a traveling/non-traveling critical point. Moreover, our results point toward the existence of several length scales that diverge with different exponents ν at criticality

  5. Comparative study of many-body perturbation theory and time-dependent density functional theory in the out-of-equilibrium Anderson model

    OpenAIRE

    Uimonen, A. -M.; Khosravi, E.; Stan, A.; Stefanucci, Gianluca; Kurth, S.; Van Leeuwen, R; Gross, E. K. U.

    2011-01-01

    We study time-dependent electron transport through an Anderson model. The electronic interactions on the impurity site are included via the self-energy approximations at Hartree-Fock (HF), second Born (2B), GW, and T-matrix levels as well as within a time-dependent density functional (TDDFT) scheme based on the adiabatic Bethe-ansatz local density approximation (ABALDA) for the exchange-correlation potential. The Anderson model is driven out of equilibrium by applying a bias to the leads, and...

  6. Conservation laws, radiative decay rates, and excited state localization in organometallic complexes with strong spin-orbit coupling

    CERN Document Server

    Powell, B J

    2015-01-01

    There is longstanding fundamental interest in 6-fold coordinated $d^6$ ($t_{2g}^6$) transition metal complexes such as [Ru(bpy)$_3$]$^{2+}$ and Ir(ppy)$_3$, particularly their phosphorescence. This interest has increased with the growing realisation that many of these complexes have potential uses in applications including photovoltaics, imaging, sensing, and light-emitting diodes. In order to design new complexes with properties tailored for specific applications a detailed understanding of the low-energy excited states, particularly the lowest energy triplet state, $T_1$, is required. Here we describe a model of pseudo-octahedral complexes based on a pseudo-angular momentum representation and show that the predictions of this model are in excellent agreement with experiment - even when the deviations from octahedral symmetry are large. This model gives a natural explanation of zero-field splitting of $T_1$ and of the relative radiative rates of the three sublevels in terms of the conservation of time-revers...

  7. Unified parameter for localization in isotope-selective rotational excitation of diatomic molecules using a train of optical pulses

    OpenAIRE

    Matsuoka, Leo

    2015-01-01

    We obtained a simple theoretical unified parameter for the characterization of rotational population propagation of diatomic molecules in a periodic train of resonant optical pulses. The parameter comprises the peak intensity and interval between the pulses, and the level energies of the initial and final rotational states of the molecule. Using the unified parameter, we can predict the upper and lower boundaries of probability localization on the rotational level network, including the effec...

  8. Delocalization and Sensitivity of Quantum Wavepacket in Coherently Perturbed Kicked Anderson Model

    Directory of Open Access Journals (Sweden)

    Hiroaki Yamada

    2004-03-01

    Full Text Available Abstract: We consider quantum diffusion of the initially localized wavepacket in one-dimensional kicked disordered system with classical coherent perturbation. The wavepacket localizes in the unperturbed kicked Anderson model. However, the wavepacket get delocalized even by coupling with monochromatic perturbation. We call the state "dynamically delocalized state". It is numerically shown that the delocalized wavepacket spread obeying diffusion law, and the perturbation strength dependence of the diffusion rate is given. The sensitivity of the delocalized state is also shown by the time-reversal experiment after random change in phase of the wavepacket. Moreover, it is found that the diffusion strongly depend on the initial phase of the perturbation. We discuss a relation between the "classicalization" of the quantum wave packet and the time-dependence of the initial phase dependence. The complex structure of the initial phase dependence is related to the entropy production in the quantum system.

  9. Time-dependent Mott transition in the periodic Anderson model with nonlocal hybridization

    Science.gov (United States)

    Hofmann, Felix; Potthoff, Michael

    2016-08-01

    The time-dependent Mott transition in a periodic Anderson model with off-site, nearest-neighbor hybridization is studied within the framework of nonequilibrium self-energy functional theory. Using the two-site dynamical-impurity approximation, we compute the real-time dynamics of the optimal variational parameter and of different observables initiated by sudden quenches of the Hubbard-U and identify the critical interaction. The time-dependent transition is orbital selective, i.e., in the final state, reached in the long-time limit after the quench to the critical interaction, the Mott gap opens in the spectral function of the localized orbitals only. We discuss the dependence of the critical interaction and of the final-state effective temperature on the hybridization strength and point out the various similarities between the nonequilibrium and the equilibrium Mott transition. It is shown that these can also be smoothly connected to each other by increasing the duration of a U-ramp from a sudden quench to a quasi-static process. The physics found for the model with off-site hybridization is compared with the dynamical Mott transition in the single-orbital Hubbard model and with the dynamical crossover found for the real-time dynamics of the conventional Anderson lattice with on-site hybridization.

  10. Detection of Influenza Virus with Specific Subtype by Using Localized Surface Plasmons Excited on a Flat Metal Surface

    Science.gov (United States)

    Ning, Jun; Nagata, Kotaro; Ainai, Akira; Hasegawa, Hideki; Kano, Hiroshi

    2013-08-01

    We report on a method to determine subtype of influenza viruses by using surface plasmons localized in microscopic region on a flat metal surface. In this method, refractive index variation arisen from interactions between viruses and their monoclonal antibodies is measured. The developed sensor shows stability of refractive index in the order of 10-4 against sample exchange. In our experiment, A/H1N1 viruses are distinguished from A/H3N2 viruses by using monoclonal antibodies immobilized on the metal surface. Since the measurement probe has the volume of ˜6 al, the method has potential to handle multiple subtypes in the measurement of a sample with ultra small volume.

  11. Smoothed universal correlations in the two-dimensional Anderson model

    OpenAIRE

    Uski, V.; Mehlig, B.; R.A. Romer; Schreiber, M.

    1998-01-01

    We report on calculations of smoothed spectral correlations in the two-dimensional Anderson model for weak disorder. As pointed out in (M. Wilkinson, J. Phys. A: Math. Gen. 21, 1173 (1988)), an analysis of the smoothing dependence of the correlation functions provides a sensitive means of establishing consistency with random matrix theory. We use a semiclassical approach to describe these fluctuations and offer a detailed comparison between numerical and analytical calculations for an exhaust...

  12. Perturbative Interpretation of Adaptive Thouless-Anderson-Palmer Free Energy

    OpenAIRE

    Yasuda, Muneki; Takahashi, Chako; Tanaka, Kazuyuki

    2016-01-01

    In conventional well-known derivation methods for the adaptive Thouless-Anderson-Palmer (TAP) free energy, special assumptions that are difficult to mathematically justify except in some mean-field models, must be made. Here, we present a new adaptive TAP free energy derivation method. Using this derivation technique, without any special assumptions, the adaptive TAP free energy can be simply obtained as a high-temperature expansion of the Gibbs free energy.

  13. Perturbative Interpretation of Adaptive Thouless-Anderson-Palmer Free Energy

    Science.gov (United States)

    Yasuda, Muneki; Takahashi, Chako; Tanaka, Kazuyuki

    2016-07-01

    In conventional well-known derivation methods for the adaptive Thouless-Anderson-Palmer (TAP) free energy, special assumptions that are difficult to mathematically justify except in some mean-field models, must be made. Here, we present a new adaptive TAP free energy derivation method. Using this derivation technique, without any special assumptions, the adaptive TAP free energy can be simply obtained as a high-temperature expansion of the Gibbs free energy.

  14. Spectra of Anderson Type Models with Decaying Randomness

    Indian Academy of Sciences (India)

    M Krishna; K B Sinha

    2001-05-01

    In this paper we consider some Anderson type models, with free parts having long range tails with the random perturbations decaying at different rates in different directions and prove that there is a.c. spectrum in the model which is pure. In addition, we show that there is pure point spectrum outside some interval. Our models include potentials decaying in all directions in which case absence of singular continuous spectrum is also shown.

  15. Experimental determination of critical exponents in Anderson localisation of light

    OpenAIRE

    Aegerter, Christof M.; Störzer, Martin; Maret, Georg

    2006-01-01

    Anderson localisation predicts a phase transition in transport, where the diffuse spread of particles comes to a halt with the introduction of a critical amount of disorder. This is due to constructive interference on closed multiple scattering loops which leads to a renormalisation of the diffusion coefficient. This can be described by a slowing-down of diffusion, where the diffusion coefficient decreases with time according to a power law with an exponent a. In the case of strong localisati...

  16. Non-random perturbations of the Anderson Hamiltonian

    CERN Document Server

    Molchanov, S

    2010-01-01

    The Anderson Hamiltonian $H_0=-\\Delta+V(x,\\omega)$ is considered, where $V$ is a random potential of Bernoulli type. The operator $H_0$ is perturbed by a non-random, continuous potential $-w(x) \\leq 0$, decaying at infinity. It will be shown that the borderline between finitely, and infinitely many negative eigenvalues of the perturbed operator, is achieved with a decay of $O(\\ln^{-2/d} |x|)$.

  17. Modified Bose-Einstein and Fermi-Dirac statistics if excitations are localized on an intermediate length scale: Applications to non-Debye specific heat

    Science.gov (United States)

    Chamberlin, Ralph V.; Davis, Bryce F.

    2013-10-01

    Disordered systems show deviations from the standard Debye theory of specific heat at low temperatures. These deviations are often attributed to two-level systems of uncertain origin. We find that a source of excess specific heat comes from correlations between quanta of energy if excitations are localized on an intermediate length scale. We use simulations of a simplified Creutz model for a system of Ising-like spins coupled to a thermal bath of Einstein-like oscillators. One feature of this model is that energy is quantized in both the system and its bath, ensuring conservation of energy at every step. Another feature is that the exact entropies of both the system and its bath are known at every step, so that their temperatures can be determined independently. We find that there is a mismatch in canonical temperature between the system and its bath. In addition to the usual finite-size effects in the Bose-Einstein and Fermi-Dirac distributions, if excitations in the heat bath are localized on an intermediate length scale, this mismatch is independent of system size up to at least 106 particles. We use a model for correlations between quanta of energy to adjust the statistical distributions and yield a thermodynamically consistent temperature. The model includes a chemical potential for units of energy, as is often used for other types of particles that are quantized and conserved. Experimental evidence for this model comes from its ability to characterize the excess specific heat of imperfect crystals at low temperatures.

  18. Decoherence-induced conductivity in the one-dimensional Anderson model

    Energy Technology Data Exchange (ETDEWEB)

    Stegmann, Thomas; Wolf, Dietrich E. [Department of Physics, University of Duisburg-Essen and CENIDE, 47048 Duisburg (Germany); Ujsághy, Orsolya [Department of Theoretical Physics, Budapest University of Technology and Economics, Budafoki út 8., H-1521 Budapest (Hungary)

    2014-08-20

    We study the effect of decoherence on the electron transport in the one-dimensional Anderson model by means of a statistical model [1, 2, 3, 4, 5]. In this model decoherence bonds are randomly distributed within the system, at which the electron phase is randomized completely. Afterwards, the transport quantity of interest (e.g. resistance or conductance) is ensemble averaged over the decoherence configurations. Averaging the resistance of the sample, the calculation can be performed analytically. In the thermodynamic limit, we find a decoherence-driven transition from the quantum-coherent localized regime to the Ohmic regime at a critical decoherence density, which is determined by the second-order generalized Lyapunov exponent (GLE) [4].

  19. Effective cluster typical medium theory for the diagonal Anderson disorder model in one- and two-dimensions

    International Nuclear Information System (INIS)

    We develop a cluster typical medium theory to study localization in disordered electronic systems. Our formalism is able to incorporate non-local correlations beyond the local typical medium theory in a systematic way. The cluster typical medium theory utilizes the momentum-resolved typical density of states and hybridization function to characterize the localization transition. We apply the formalism to the Anderson model of localization in one- and two-dimensions. In one-dimension, we find that the critical disorder strength scales inversely with the linear cluster size with a power law, Wc ∼ (1/Lc)1/ν, whereas in two-dimensions, the critical disorder strength decreases logarithmically with the linear cluster size. Our results are consistent with previous numerical work and are in agreement with the one-parameter scaling theory. (paper)

  20. Price-Anderson Nuclear Safety Enforcement Program. 1996 Annual report

    International Nuclear Information System (INIS)

    This first annual report on DOE's Price Anderson Amendments Act enforcement program covers the activities, accomplishments, and planning for calendar year 1996. It also includes the infrastructure development activities of 1995. It encompasses the activities of the headquarters' Office of Enforcement in the Office of Environment, Safety and Health (EH) and Investigation and the coordinators and technical advisors in DOE's Field and Program Offices and other EH Offices. This report includes an overview of the enforcement program; noncompliances, investigations, and enforcement actions; summary of significant enforcement actions; examples where enforcement action was deferred; and changes and improvements to the program

  1. Note: Work function change measurement via improved Anderson method

    International Nuclear Information System (INIS)

    We propose the modification to the Anderson method of work function change (Δϕ) measurements. In this technique, the kinetic energy of the probing electrons is already low enough for non-destructive investigation of delicate molecular systems. However, in our implementation, all electrodes including filament of the electron gun are polarized positively. As a consequence, electron bombardment of any elements of experimental system is eliminated. Our modification improves cleanliness of the ultra-high vacuum system. As an illustration of the solution capabilities, we present Δϕ of the Ag(100) surface induced by cobalt phthalocyanine layers

  2. The parabolic Anderson model and long-range percolation

    OpenAIRE

    Erhard, Dirk

    2014-01-01

    This thesis has two parts. The first part deals with the parabolic Anderson model, which is a stochastic differential equation. It models the evolution of a field of particles performing independent simple random walks with binary branching. The focus of this work is on the exponential growth rate of the solution, where several basic properties are derived. The second part deals with two long-range percolation models. The occupied set of the first model is obtained by taking the union of a co...

  3. Note: Work function change measurement via improved Anderson method

    Energy Technology Data Exchange (ETDEWEB)

    Sabik, A., E-mail: sabik@ifd.uni.wroc.pl; Gołek, F.; Antczak, G. [Institute of Experimental Physics, University of Wrocław, Wrocław (Poland)

    2015-05-15

    We propose the modification to the Anderson method of work function change (Δϕ) measurements. In this technique, the kinetic energy of the probing electrons is already low enough for non-destructive investigation of delicate molecular systems. However, in our implementation, all electrodes including filament of the electron gun are polarized positively. As a consequence, electron bombardment of any elements of experimental system is eliminated. Our modification improves cleanliness of the ultra-high vacuum system. As an illustration of the solution capabilities, we present Δϕ of the Ag(100) surface induced by cobalt phthalocyanine layers.

  4. Implementation of legislation amending the Price--Anderson Act

    International Nuclear Information System (INIS)

    Proposed amendments for the implementation of the Price-Anderson Act require both persons licensed to possess plutonium in the amount of 5 kilograms or more and persons licensed to process plutonium in the amount of 1 kilogram or more for use in plutonium processing and fuel fabrication plants to maintain financial protection in the amount of $125 million. Indemnity coverage would be extended to such licensee at $5,000 per year. The Commission does not intend to extend separate coverage under the Act to transportation of nuclear materials. A proposed date of implementation is August 1977

  5. Changes of the local magnetic properties of the optically excited Nd3+ ions and their manifestation in the near IR spectra of the Nd0.5Gd0.5Fe3(BO3)4 crystal

    Science.gov (United States)

    Malakhovskii, A. V.; Gnatchenko, S. L.; Kachur, I. S.; Piryatinskaya, V. G.; Temerov, V. L.

    2016-02-01

    Polarized absorption spectra of f-f transitions 4I9/2 → 4F3/2 and (2H9/2 + 4F5/2) in the Nd3+ ion in the Nd0.5Gd0.5Fe3(BO3)4 single crystal were studied as a function of temperature in the range of 2-40 K and as a function of magnetic field in the range of 0-65 kOe at 2 K. It was found out that the selection rules for f-f electron transitions substantially changed in the magnetically ordered state of the crystal, and they strongly depended on the orientation of the Fe and Nd ions magnetic moments relative to the light polarization. The splitting of the ground and excited states of the Nd3+ ion in the exchange field of the Fe sublattice were determined. It was revealed that the value of the exchange splitting (the exchange interaction) in the excited states did not correlate with the theoretical Landé factors. The Landé factors of the excited states were experimentally found. In general, the local magnetic properties in the vicinity of the excited ion depend substantially on its electron state. In particular: (1) in one of the excited states a weak ferromagnetic moment appears, (2) the changes of type of the local magnetic anisotropy take place in some excited states, and (3) in some excited states the energetically favorable orientation of the Nd3+ ion magnetic moment is opposite to that in the ground state. In some excited states the nonequivalent Nd3+ centers were found out.

  6. 五强溪电厂机组进口励磁系统的国产化改造分析%Localization of Imported Unit Excitation System of Wu Qiang Xi Power Plant

    Institute of Scientific and Technical Information of China (English)

    易赤宇

    2014-01-01

    本文主要介绍五强溪电厂机组进口励磁系统国产化改造的成功应用,以及改造情况、实施效果的对比分析。%This paper nainly introduces the successful localization of the imported unit excitation system of Wu Qiang Xi Power Plant,and presents a comparative analysis of the localization condition and application effect.

  7. Price-Anderson Act - the third decade. Report to Congress

    International Nuclear Information System (INIS)

    Subsection 170p. of the Atomic Energy Act of 1954, as amended, requires that the Commission submit to the Congress by August 1, 1983, a detailed report on the need for continuation or modification of Section 170 of the Act, the Price-Anderson provisions. The report is divided into four sections with detailed subject reports appended to the main report. Sections I through III include an examination of issues that the Commission was required by statute to study (i.e., condition of the nuclear industry, state of knowledge of nuclear safety, and availability of private insurance), and discussion of other issues of interest and importance to the Congress and to the public. The subjects covered are as follows: (1) overview of the Price-Anderson system; (2) the state of knowledge of nuclear safety; (3) availability of private insurance; (4) conditions of the nuclear industry; (5) causality and proof of damages; (6) limitation of liability and subsidy; and (7) a proposal that would provide for removal of the limitation of liability but with limited annual liability payments. Section IV of the report contains conclusions and recommendations. Section V contains a bibliography

  8. Mesoscopic Anderson Box: Connecting Weak to Strong Coupling

    Science.gov (United States)

    Liu, Dong E.; Burdin, Sebastien; Baranger, Harold U.; Ullmo, Denis

    2011-03-01

    Both the weakly coupled and strong coupling Anderson impurity problem are characterized by a Fermi-liquid theory with weakly interacting quasiparticles. In an Anderson box, mesoscopic fluctuations of the effective single particle properties will be large. We study how the statistical fluctuations in these two problems are connected. We use random matrix theory and the slave boson mean field approximation (SBMF, at low temperature) to address this question, obtaining the following results. First, for a resonant level model such as results from the SBMF approximation, we find the joint distribution of energy levels with and without the resonant level present. Second, if only energy levels within the Kondo resonance are considered, the distribution of perturbed levels collapse to one universal form for both GOE and GUE for all values of the coupling V. Finally, a purely Fermi liquid method is developed for calculating the perturbed levels within the Kondo resonance. Comparing the levels that result to those of the SBMF, we find remarkable agreement.

  9. Eigenfunction structure and scaling of two interacting particles in the one-dimensional Anderson model

    Science.gov (United States)

    Frahm, Klaus M.

    2016-04-01

    The localization properties of eigenfunctions for two interacting particles in the one-dimensional Anderson model are studied for system sizes up to N = 5000 sites corresponding to a Hilbert space of dimension ≈107 using the Green function Arnoldi method. The eigenfunction structure is illustrated in position, momentum and energy representation, the latter corresponding to an expansion in non-interacting product eigenfunctions. Different types of localization lengths are computed for parameter ranges in system size, disorder and interaction strengths inaccessible until now. We confirm that one-parameter scaling theory can be successfully applied provided that the condition of N being significantly larger than the one-particle localization length L1 is verified. The enhancement effect of the two-particle localization length L2 behaving as L2 ~ L21 is clearly confirmed for a certain quite large interval of optimal interactions strengths. Further new results for the interaction dependence in a very large interval, an energy value outside the band center, and different interaction ranges are obtained.

  10. Anderson transition of Bogoliubov quasiparticles in the quasiperiodic kicked rotor

    OpenAIRE

    Vermersch, Benoit; Delande, Dominique; Garreau, Jean Claude

    2014-01-01

    We study the dynamics of Bogoliubov excitations of a Bose-Einstein condensate in the quasiperiodic kicked rotor. In the weakly interacting regime, the condensate is stable and both the condensate and the excitations undergo a phase transition from a quasilocalized to a diffusive regime. The corresponding critical exponents are identical for the condensate and the excitations, and compare very well with the value $\

  11. Possible Anderson transition below two dimensions in disordered systems of noninteracting electrons

    OpenAIRE

    Asada, Yoichi; Slevin, Keith; Ohtsuki, Tomi

    2005-01-01

    We investigate the possibility of an Anderson transition below two dimensions in disordered systems of non-interacting electrons with symplectic symmetry. Numerical analysis of energy level statistics and conductance statistics on Sierpinski carpets with spin-orbit coupling indicates the occurrence of an Anderson transition below two dimensions.

  12. Finite-size corrections for ground states of Edwards-Anderson spin glasses

    Science.gov (United States)

    Boettcher, Stefan; Falkner, Stefan

    2012-05-01

    Extensive computations of ground-state energies of the Edwards-Anderson spin glass on bond-diluted, hypercubic lattices are conducted in dimensions d=3, ..., 7. Results are presented for bond densities exactly at the percolation threshold, p=pc, and deep within the glassy regime, p>pc, where finding ground states is one of the hardest combinatorial optimization problems. Finite-size corrections of the form 1/Nω are shown to be consistent throughout with the prediction ω=1-y/d, where y refers to the "stiffness" exponent that controls the formation of domain wall excitations at low temperatures. At p=pc, an extrapolation for d→∞ appears to match our mean-field results for these corrections. In the glassy phase, however, ω does not approach its anticipated mean-field value of 2/3, obtained from simulations of the Sherrington-Kirkpatrick spin glass on an N-clique graph. Instead, the value of ω reached at the upper critical dimension matches another type of mean-field spin glass models, namely those on sparse random networks of regular degree called Bethe lattices.

  13. Bolometers equipped with thin film Anderson insulator sensors: their resolution for nuclear recoil events

    International Nuclear Information System (INIS)

    Bolometers are very low temperature detectors which measure a deposited energy by the resulting thermal effects. All the excitations in its absorber finally convert to heat (phonons), so that bolometers are universal detectors capable of measuring radiation's energy, even if it has no ionizing component. The ultimate resolution of a bolometer, from the thermodynamical point of view, is a decreasing function of the operating temperature. However, in the case of nuclear recoil events in a solid absorber, trapping effects degrade the resolution. These phenomena are studied here in order to find the resolution limit in ion beam analysis and in direct searches for WIMPs (the hypothetical candidates for non baryonic Dark Matter). Bolometers of different masses and geometries, all equipped with NbxSi1-x thin film sensors, were made and characterized. The properties of these films as an Anderson insulator, and their sensitivities to the non-equilibrium phonons are studied. Furthermore, the experimental resolution in the thermal and athermal regimes were compared. The best resolution obtained is 0.34% (18 keV on 5.5 MeV alpha particles). This result is above the theoretical resolution estimated in this work, so that these bolometers could achieve further progresses. (author)

  14. Anderson localisation of visible light on a nanophotonic chip

    CERN Document Server

    Crane, Tom; Sapienza, Luca

    2016-01-01

    Controlling the propagation of visible light on a chip is of tremendous interest in research areas such as energy harvesting, imaging, sensing and biology. Technological advances allow us to control light at the nanoscale and to strongly enhance the light-matter interaction in highly engineered devices. However, compared to state-of-the-art two-dimensional optical cavities operating at longer wavelengths, the quality factor of on-chip visible light confinement is several orders of magnitude lower. Our approach makes use of fabrication imperfections to trap light: we demonstrate, for the first time, Anderson localisation of visible light on a chip. Remarkably, compared to quality factors of engineered cavities, disorder-induced localisation proves to be more efficient in trapping light than highly engineered devices, thus reversing the trend observed so far. We measure light-confinement quality factors as high as 7600 and, by implementing a sensitive imaging technique, we directly visualise the localised modes...

  15. Price-Anderson Nuclear Safety Enforcement Program. 1997 annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This report summarizes activities in the Department of Energy's Price-Anderson Amendments Act (PAAA) Enforcement Program in calendar year 1997 and highlights improvements planned for 1998. The DOE Enforcement Program involves the Office of Enforcement and Investigation in the DOE Headquarters Office of Environment, Safety and Health, as well as numerous PAAA Coordinators and technical advisors in DOE Field and Program Offices. The DOE Enforcement Program issued 13 Notices of Violation (NOV`s) in 1997 for cases involving significant or potentially significant nuclear safety violations. Six of these included civil penalties totaling $440,000. Highlights of these actions include: (1) Brookhaven National Laboratory Radiological Control Violations / Associated Universities, Inc.; (2) Bioassay Program Violations at Mound / EG and G, Inc.; (3) Savannah River Crane Operator Uptake / Westinghouse Savannah River Company; (4) Waste Calciner Worker Uptake / Lockheed-Martin Idaho Technologies Company; and (5) Reactor Scram and Records Destruction at Sandia / Sandia Corporation (Lockheed-Martin).

  16. Price-Anderson Nuclear Safety Enforcement Program. 1997 annual report

    International Nuclear Information System (INIS)

    This report summarizes activities in the Department of Energy's Price-Anderson Amendments Act (PAAA) Enforcement Program in calendar year 1997 and highlights improvements planned for 1998. The DOE Enforcement Program involves the Office of Enforcement and Investigation in the DOE Headquarters Office of Environment, Safety and Health, as well as numerous PAAA Coordinators and technical advisors in DOE Field and Program Offices. The DOE Enforcement Program issued 13 Notices of Violation (NOV's) in 1997 for cases involving significant or potentially significant nuclear safety violations. Six of these included civil penalties totaling $440,000. Highlights of these actions include: (1) Brookhaven National Laboratory Radiological Control Violations / Associated Universities, Inc.; (2) Bioassay Program Violations at Mound / EG ampersand G, Inc.; (3) Savannah River Crane Operator Uptake / Westinghouse Savannah River Company; (4) Waste Calciner Worker Uptake / Lockheed-Martin Idaho Technologies Company; and (5) Reactor Scram and Records Destruction at Sandia / Sandia Corporation (Lockheed-Martin). Sandia / Sandia Corporation (Lockheed-Martin)

  17. Quasiparticle many-body dynamics of the Anderson model

    International Nuclear Information System (INIS)

    The paper addresses the many-body quasiparticle dynamics of the Anderson impurity model at finite temperatures in the framework of the equation-of-motion method. We find a new exact identity relating the one-particle and many-particle Green's Functions. Using this identity we present a consistent and general scheme for a construction of generalised mean fields (elastic scattering corrections) and self-energy (inelastic scattering) in terms of the Dyson equation. A new approach for the complex expansion for the single-particle propagator in terms of the Coulomb repulsion U and hybridization V is proposed. Using the exact identity, the essentially new many-body dynamical solution of SIAM has been derived. This approach offers a new way for the systematic construction of the approximative interpolating dynamical solutions of the strongly correlated electron systems. 47 refs

  18. The parabolic Anderson model random walk in random potential

    CERN Document Server

    König, Wolfgang

    2016-01-01

    This is a comprehensive survey on the research on the parabolic Anderson model – the heat equation with random potential or the random walk in random potential – of the years 1990 – 2015. The investigation of this model requires a combination of tools from probability (large deviations, extreme-value theory, e.g.) and analysis (spectral theory for the Laplace operator with potential, variational analysis, e.g.). We explain the background, the applications, the questions and the connections with other models and formulate the most relevant results on the long-time behavior of the solution, like quenched and annealed asymptotics for the total mass, intermittency, confinement and concentration properties and mass flow. Furthermore, we explain the most successful proof methods and give a list of open research problems. Proofs are not detailed, but concisely outlined and commented; the formulations of some theorems are slightly simplified for better comprehension.

  19. Atomic Bose and Anderson Glasses in Optical Lattices

    Science.gov (United States)

    Damski, B.; Zakrzewski, J.; Santos, L.; Zoller, P.; Lewenstein, M.

    2003-08-01

    An ultracold atomic Bose gas in an optical lattice is shown to provide an ideal system for the controlled analysis of disordered Bose lattice gases. This goal may be easily achieved under the current experimental conditions by introducing a pseudorandom potential created by a second additional lattice or, alternatively, by placing a speckle pattern on the main lattice. We show that, for a noncommensurable filling factor, in the strong-interaction limit, a controlled growing of the disorder drives a dynamical transition from superfluid to Bose-glass phase. Similarly, in the weak interaction limit, a dynamical transition from superfluid to Anderson-glass phase may be observed. In both regimes, we show that even very low-intensity disorder-inducing lasers cause large modifications of the superfluid fraction of the system.

  20. Nuclear excitation in plasma

    International Nuclear Information System (INIS)

    4 main electromagnetic excitation processes of atomic nuclei in hot dense plasma are reviewed: the black body photon absorption, the electron inelastic scattering, the nuclear excitation by electron capture (NEEC effect) and the nuclear excitation by electron transition (NEET effect). Experimental results on Ta181m are commented and an experiment showing the NEEC effect on Fe57 is described. A model including all the phenomena of excitation and de-excitation of a nuclear state in plasma, has been developed. Predictions about the evolution of the life-time of a nuclear excited state as a function of the temperature and density are made. A complete calculation of the NEET effect of the first excited state of U235 in a local thermodynamic equilibrium plasma is presented. Some experimental works on the excitation of U235m in a laser-produced plasma are discussed. The NEET effect on Hg201 in a laser-produced plasma is also considered in both theoretical and experimental aspects

  1. Nuclear structure studies using the high resolution spectrometer at the Los Alamos Clinton P. Anderson Meson Physics Facility. Progress report

    International Nuclear Information System (INIS)

    The research is concerned with obtaining detailed microscopic nuclear structure information (both ground state and excited state) through analyses of experimental data which have been, and which will be, obtained using the High Resolution Spectrometer (HRS) at the Los Alamos Clinton P. Anderson Meson Physics Facility (LAMPF). Five types of experimental/theoretical studies constitute the present research program: (1) those providing nucleon-nucleon (N-N) data which describe the free N-N interaction at small momentum transfer (the starting point for analyses based on the impulse approximation), (2) those providing data which determine how the nuclear medium modifies the free amplitudes (leading to effective amplitudes for analyses based on the impulse approximation), (3) those which provide data that validate fundamental ideas implicit in the formulation of the microscopic theories, (4) those which provide data to be analyzed to provide detailed nuclear structure information, and (5) those which provide critical evaluations of the formulations of the microscopic theories themselves

  2. Nuclear structure studies using the High Resolution Spectrometer at the Los Alamos Clinton P. Anderson Meson Physics Facility. Progress report

    International Nuclear Information System (INIS)

    The research described in this document is concerned with obtaining detailed microscopic nuclear structure information (both ground state and excited state) through analysis of experimental data which have been, and which will be, obtained using the High Resolution Spectrometer (HRS) at the Los Alamos Clinton P. Anderson Meson Physics Facility (LAMPF). Three types of experiments and related theoretical work constitute the research programs: (1) those which provide nucleon-nucleon data to determine the key amplitudes required for microscopic analysis of intermediate energy p-nucleus elastic and inelastic scattering data, (2) those which provide data that validate fundamental ideas implicit in the formulation of the microscopic theories, and (3) those which provide data to be analyzed to provide detailed nuclear structure information

  3. Localized excitations in competing bond-order-wave, charge-density-wave and spin-density-wave systems II: Competing charge-density-wave and spin-density-wave

    International Nuclear Information System (INIS)

    The extended Peierls-Hubbard model is used to study the competition of the spin-density-wave (SDW) and charge-density-wave (CDW) states as well as the attendant localized excitations in quasi-one-dimensional systems like MX-chains. The ground state properties are first studied as a function of the Coulomb interaction U and the on-site electron-phonon coupling λ2. The SDW state dominates in the region of large U and small λ2, while the CDW state prevails in the opposite limit. In the intermediate region these two states compete with each other, one being stable, whereas the other being metastable. The localized excitations (polarons and excitons) are studied in detail in each region using the Bogoliubov-de Gennes formalism. The self-trapped excitons (STE) in the CDW dominating regime contain locally non-vanishing SDW distortions and vice versa. As λ2 increases, the number of bound states changes from two to four for the exciton case and from two to three for the polaron case. Upon its further increase, one type of STE with a certain pattern of SDW distortion and charge transfer is transforming into another type of STE with a different pattern. The possibilities of verifying the ground state properties in optical and transport experiments and identifying these local excitations in Raman and ENDOR measurements are discussed. (author). 25 refs, 11 figs

  4. Nuclear-structure studies using the high-resolution spectrometer at the Los Alamos Clinton P. Anderson Meson Physics Facility. Progress report

    International Nuclear Information System (INIS)

    This document contains a description of the ongoing medium-energy nuclear-physics research program supported by the US Department of Energy with The University of Texas at Austin. A major part of the work is associated with research done using the High Resolution Spectrometer (HRS) at the Los Alamos Clinton P. Anderson Meson Physics Facility (LAMPF); this research focuses on: (1) providing data which test microscopic models of the medium - energy proton + nucleus interaction; (2) providing data which are to be analyzed to provide new nuclear-structure information (both ground state and excited state); and (3) developing and improving the models themselves. Publications are listed

  5. Excitation-dependent variation in local symmetry in Ba2Mg(BO3)2 evidenced by Eu3+ luminescent structural probe

    Science.gov (United States)

    Jayakiruba, S.; Kumar, Gautam; Lakshminarasimhan, N.

    2016-05-01

    Eu3+ luminescence was studied in Ba2Mg(BO3)2 by selectively substituting at Mg site. The parent host Ba2Mg(BO3)2 and Ba2Mg0.9Eu0.05Li0.05(BO3)2 were synthesized by conventional solid state reaction method. Their isostructural nature was confirmed using powder X-ray diffraction technique. The photoluminescence excitation spectrum of Eu3+ exhibited a broad Eu3+sbnd O2- charge transfer band with a maximum at 253 nm along with other excitation transitions. The emission characteristics of Eu3+ were found to be excitation wavelength-dependent. The equally intense magnetic and electric dipole transitions for excitation under longer wavelengths showed the presence of Eu3+ at a site with non-inversion symmetry. Excitation using 253 nm resulted in the predominant magnetic dipole transition revealing Eu3+ at a site with inversion symmetry. The difference in the relative intensities of magnetic and electric dipole transitions originates from the change in symmetry around Eu3+ in Ba2Mg(BO3)2 under different excitations.

  6. Localization of light in a disordered medium

    Science.gov (United States)

    Wiersma, Diederik S.; Bartolini, Paolo; Lagendijk, Ad; Righini, Roberto

    1997-12-01

    Among the unusual transport properties predicted for disordered materials is the Anderson localization phenomenon. This is a disorder-induced phase transition in the electron-transport behaviour from the classical diffusion regime, in which the well-known Ohm's law holds, to a localized state in which the material behaves as an insulator. The effect finds its origin in the interference of electrons that have undergone multiple scattering by defects in the solid. A similar phenomenon is anticipated for multiple scattering of electromagnetic waves, but with one important simplification: unlike electrons, photons do not interact with one another. This makes transport of photons in disordered materials an ideal model system in which to study Anderson localization. Here we report direct experimental evidence for Anderson localization of light in optical experiments performed on very strongly scattering semiconductor powders.

  7. Excited states

    CERN Document Server

    Lim, Edward C

    1974-01-01

    Excited States, Volume I reviews radiationless transitions, phosphorescence microwave double resonance through optical spectra in molecular solids, dipole moments in excited states, luminescence of polar molecules, and the problem of interstate interaction in aromatic carbonyl compounds. The book discusses the molecular electronic radiationless transitions; the double resonance techniques and the relaxation mechanisms involving the lowest triplet state of aromatic compounds; as well as the optical spectra and relaxation in molecular solids. The text also describes dipole moments and polarizab

  8. Verification of Anderson Superexchange in MnO via Magnetic Pair Distribution Function Analysis and ab initio Theory

    Science.gov (United States)

    Frandsen, Benjamin A.; Brunelli, Michela; Page, Katharine; Uemura, Yasutomo J.; Staunton, Julie B.; Billinge, Simon J. L.

    2016-05-01

    We present a temperature-dependent atomic and magnetic pair distribution function (PDF) analysis of neutron total scattering measurements of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. The known antiferromagnetic ground-state structure fits the low-temperature data closely with refined parameters that agree with conventional techniques, confirming the reliability of the newly developed magnetic PDF method. The measurements performed in the paramagnetic phase reveal significant short-range magnetic correlations on a ˜1 nm length scale that differ substantially from the low-temperature long-range spin arrangement. Ab initio calculations using a self-interaction-corrected local spin density approximation of density functional theory predict magnetic interactions dominated by Anderson superexchange and reproduce the measured short-range magnetic correlations to a high degree of accuracy. Further calculations simulating an additional contribution from a direct exchange interaction show much worse agreement with the data. The Anderson superexchange model for MnO is thus verified by experimentation and confirmed by ab initio theory.

  9. Verification of Anderson Superexchange in MnO via Magnetic Pair Distribution Function Analysis and ab initio Theory.

    Science.gov (United States)

    Frandsen, Benjamin A; Brunelli, Michela; Page, Katharine; Uemura, Yasutomo J; Staunton, Julie B; Billinge, Simon J L

    2016-05-13

    We present a temperature-dependent atomic and magnetic pair distribution function (PDF) analysis of neutron total scattering measurements of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. The known antiferromagnetic ground-state structure fits the low-temperature data closely with refined parameters that agree with conventional techniques, confirming the reliability of the newly developed magnetic PDF method. The measurements performed in the paramagnetic phase reveal significant short-range magnetic correlations on a ∼1  nm length scale that differ substantially from the low-temperature long-range spin arrangement. Ab initio calculations using a self-interaction-corrected local spin density approximation of density functional theory predict magnetic interactions dominated by Anderson superexchange and reproduce the measured short-range magnetic correlations to a high degree of accuracy. Further calculations simulating an additional contribution from a direct exchange interaction show much worse agreement with the data. The Anderson superexchange model for MnO is thus verified by experimentation and confirmed by ab initio theory. PMID:27232042

  10. Price--Anderson Act: the insurance industry's view

    International Nuclear Information System (INIS)

    The insurance industry feels the expense of providing insurance coverage under the Price-Anderson Act is justified because it encouraged development of nuclear power and assured protection for the public in the event of an accident. Insurance pools have been instituted in about 20 countries in order to distribute the risk on a worldwide basis. Changes in the original Act allow an off-site claimant to get compensation with defense waived and provide for the transition of financial responsibility from the public to the private sector. To date the pools have refunded $9.7 of $12.7 million (73 percent) of the premiums to the insured and the remainder has grown into a $45 million fund, which reflects the success of the nuclear industry and the regulatory agencies in establishing a safe record. This record covers 60 power reactors, 50 research and development reactors, waste disposal sites, and about 50 nuclear facilities. With the exception of reactor operators and fuel reprocessors, the insurance is voluntary at premiums ranging from $1000 to $260,000. A total of $600,000 has been paid in claims

  11. The completeness problem in the impurity Anderson model

    International Nuclear Information System (INIS)

    With the recent development of the nanoscopic technology, the impurity Anderson model (AIM) was experimentally realized in quantum dot devices, and there is renewed interest in the study of the Kondo physics of the AIM. Several Green's functions approximations by the equation of motion method (EOM), that incorporates the Kondo effect through a digamma function, have been presented in the literature as an adequate tool to describe, at least qualitatively, the Kondo effect. However, these approximations present several drawbacks: they are no longer valid as the temperature decreases below the Kondo temperature, because the logarithmic divergence of the digamma function makes the spectral density at the chemical potential to vanish, and the Friedel sum rule and the completeness in the occupation numbers are not fulfilled. In this work we present a critical discussion comparing the results of digamma approximations GF with the atomic approach, recently developed by some of us, that satisfy the completeness and the Friedel sum rule. We present results for the density of states, the Friedel sum rule and the completeness

  12. Magnetic flux creep in HTSC and Anderson-Kim theory

    International Nuclear Information System (INIS)

    The theoretical and experimental data on flux creep in high-temperature superconductors (HTSC) were analyzed in the review paper. On the one hand, the main attention is paid to the most striking experimental results which have had a significant influence on the investigations of flux creep in HTSC. On the other hand, the analysis of theoretical studies is concentrated on the works, which explain the features of flux creep on the basis of the Anderson-Kim (AK) theory modifications, and received previously unsufficient attention. However, it turned out that the modified AK theory could explain a lot of features of flux creep in HTSC: the scaling behaviour of current-voltage curves of HTSC, the finite rate of flux creep at ultra low temperatures, the logarithmic dependence of effective pinning potential as a function of transport current and its decrease with temperature. The harmonic potential field which is used in this approach makes it possible to solve accurately the both problems: viscous vortex motion and flux creep in this field. Moreover the distribution of pinning potential and the interaction of vortices with each other are taken into account in the approach. Thus, the modification of the AK theory consists, essentially, in its detailed elaboration and approaching to real situations in superconductors

  13. What should the Price--Anderson Act accomplish

    International Nuclear Information System (INIS)

    A historical review of the Price-Anderson Act's goals is followed by recommendations for amendments to improve guarantees of public safety. Failures of the original Act are identified as its failure to cover some accident situations appropriately and to provide incentives for promoting public safety. Legislation should correct these problems and be extended to all energy areas. Legislation based on worst-case situations is not found to be meaningful in terms of increasing safety or estimating comprehensive compensation because it relies on invalidated assumptions, which are still useful in safety awareness. Legislation could take the direction of putting 1.5 percent of the reactor cost into a fund, with the vendor and licensee contributing equal parts. When an incident occurs at any reactor, another one percent is put in by every reactor plus a $1 million penalty proportioned among those responsible. The Federal government would cover amounts above the fund, which would have no limit. Compensation to public funds by the industry would be a social decision based on the social and economic impact

  14. Non-Fermi liquid fixed points of a two-channel Anderson model

    International Nuclear Information System (INIS)

    A generalized two-channel Anderson Hamiltonian is diagonalized via the numerical renormalization group. The spectrum shows non-Fermi liquid fixed point for isotropic channel hybridization and normal Fermi liquid for the anisotropic case

  15. Wyodak-Anderson clinker in the Powder River Basin, Wyoming and Montana (prbclkg.shp)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This ArcView shapefile contains a polygon representation of the Wyodak-Anderson clinker in the Powder River Basin, Wyoming and Montana. This theme was created...

  16. Non-Fermi liquid fixed points of a two-channel Anderson model

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, J.V.B.; Oliveira, L.N. de; Cox, D.L.; Libero, V.L. E-mail: valter@if.sc.usp.br

    2001-05-01

    A generalized two-channel Anderson Hamiltonian is diagonalized via the numerical renormalization group. The spectrum shows non-Fermi liquid fixed point for isotropic channel hybridization and normal Fermi liquid for the anisotropic case.

  17. Thomas Anderson Goudge and the introduction of symbolic logic at the University of Toronto

    OpenAIRE

    Anellis, Irving H.

    1997-01-01

    Thomas Anderson Goudge was the first member of the philosophy department faculty to teach a course in modern mathematical logic at the University of Toronto. We provide here a brief discussion of the origin of Goudge's interest in logic and of how he came to introduce symbolic logic courses into the philosophy department curriculum at the University of Toronto. Much of the information presented here is based upon John G. Slater's three-page essay "Thomas Anderson Goudge" pre...

  18. Slow dynamics in a two-dimensional Anderson-Hubbard model

    Science.gov (United States)

    Bar Lev, Yevgeny; Reichman, David R.

    2016-02-01

    We study the real-time dynamics of a two-dimensional Anderson-Hubbard model using nonequilibrium self-consistent perturbation theory within the second-Born approximation. When compared with exact diagonalization performed on small clusters, we demonstrate that for strong disorder this technique approaches the exact result on all available timescales, while for intermediate disorder, in the vicinity of the many-body localization transition, it produces quantitatively accurate results up to nontrivial times. Our method allows for the treatment of system sizes inaccessible by any numerically exact method and for the complete elimination of finite-size effects for the times considered. We show that for a sufficiently strong disorder the system becomes nonergodic, while for intermediate disorder strengths and for all accessible timescales transport in the system is strictly subdiffusive. We argue that these results are incompatible with a simple percolation picture, but are consistent with the heuristic random resistor network model where subdiffusion may be observed for long times until a crossover to diffusion occurs. The prediction of slow finite-time dynamics in a two-dimensional interacting and disordered system can be directly verified in future cold-atoms experiments.

  19. Study of Localization for the Forced Vibration of Mistuned Bladed Disks Based on Engine Orders of Excitation%基于激励阶次的失谐叶盘振动响应局部化研究

    Institute of Scientific and Technical Information of China (English)

    张宏远; 袁惠群; 寇海江

    2016-01-01

    为了评估不同激励阶次和不同失谐标准差对叶盘系统结构振动的局部化影响,针对航空发动机压气机叶盘系统有限元模型,考虑榫槽和榫头的非线性接触,采用子结构模态综合法,通过引入相对振动局部化因子,研究了在不同激励阶次下的谐调和失谐两种情况下叶盘系统振动响应,分析不同失谐标准差下失谐叶盘系统的振动响应局部化特性,讨论了激励阶次对失谐叶盘系统位移和应变能的影响规律。结果表明,激励阶次对失谐叶盘系统频率、位移和应变能分布影响显著,随着激励阶次的增加,相对局部化因子呈现先增大再减小的趋势。%In order to evaluate the effect of localization for various engine orders of excitation and levels of mistuning on mistuned bladed disks,the finite element model of aero-engine compressor’ s bladed disks was established.Considering the non-linear contact problem of tenon and mortise, the localization of various engine orders of excitation of mistuned bladed disks was studied by adopting the component mode synthesis method and introducing the relative localization factors. The effect of displacement and strain energy for various engine orders of excitation of mistuned bladed disks was discussed,whose results indicated that the engine orders of excitation have significant effect on frequency,displacement and strain energy.With the increase of engine orders of excitation,the relative localization factors tend to first increase and then drop.

  20. Parabolic Anderson Model in a Dynamic Random Environment: Random Conductances

    Science.gov (United States)

    Erhard, D.; den Hollander, F.; Maillard, G.

    2016-06-01

    The parabolic Anderson model is defined as the partial differential equation ∂ u( x, t)/ ∂ t = κ Δ u( x, t) + ξ( x, t) u( x, t), x ∈ ℤ d , t ≥ 0, where κ ∈ [0, ∞) is the diffusion constant, Δ is the discrete Laplacian, and ξ is a dynamic random environment that drives the equation. The initial condition u( x, 0) = u 0( x), x ∈ ℤ d , is typically taken to be non-negative and bounded. The solution of the parabolic Anderson equation describes the evolution of a field of particles performing independent simple random walks with binary branching: particles jump at rate 2 d κ, split into two at rate ξ ∨ 0, and die at rate (- ξ) ∨ 0. In earlier work we looked at the Lyapunov exponents λ p(κ ) = limlimits _{tto ∞} 1/t log {E} ([u(0,t)]p)^{1/p}, quad p in {N} , qquad λ 0(κ ) = limlimits _{tto ∞} 1/2 log u(0,t). For the former we derived quantitative results on the κ-dependence for four choices of ξ : space-time white noise, independent simple random walks, the exclusion process and the voter model. For the latter we obtained qualitative results under certain space-time mixing conditions on ξ. In the present paper we investigate what happens when κΔ is replaced by Δ𝓚, where 𝓚 = {𝓚( x, y) : x, y ∈ ℤ d , x ˜ y} is a collection of random conductances between neighbouring sites replacing the constant conductances κ in the homogeneous model. We show that the associated annealed Lyapunov exponents λ p (𝓚), p ∈ ℕ, are given by the formula λ p({K} ) = {sup} {λ p(κ ) : κ in {Supp} ({K} )}, where, for a fixed realisation of 𝓚, Supp(𝓚) is the set of values taken by the 𝓚-field. We also show that for the associated quenched Lyapunov exponent λ 0(𝓚) this formula only provides a lower bound, and we conjecture that an upper bound holds when Supp(𝓚) is replaced by its convex hull. Our proof is valid for three classes of reversible ξ, and for all 𝓚

  1. Attractive Hubbard model with disorder and the generalized Anderson theorem

    International Nuclear Information System (INIS)

    Using the generalized DMFT+Σ approach, we study the influence of disorder on single-particle properties of the normal phase and the superconducting transition temperature in the attractive Hubbard model. A wide range of attractive potentials U is studied, from the weak coupling region, where both the instability of the normal phase and superconductivity are well described by the BCS model, to the strong-coupling region, where the superconducting transition is due to Bose-Einstein condensation (BEC) of compact Cooper pairs, formed at temperatures much higher than the superconducting transition temperature. We study two typical models of the conduction band with semi-elliptic and flat densities of states, respectively appropriate for three-dimensional and two-dimensional systems. For the semi-elliptic density of states, the disorder influence on all single-particle properties (e.g., density of states) is universal for an arbitrary strength of electronic correlations and disorder and is due to only the general disorder widening of the conduction band. In the case of a flat density of states, universality is absent in the general case, but still the disorder influence is mainly due to band widening, and the universal behavior is restored for large enough disorder. Using the combination of DMFT+Σ and Nozieres-Schmitt-Rink approximations, we study the disorder influence on the superconducting transition temperature Tc for a range of characteristic values of U and disorder, including the BCS-BEC crossover region and the limit of strong-coupling. Disorder can either suppress Tc (in the weak-coupling region) or significantly increase Tc (in the strong-coupling region). However, in all cases, the generalized Anderson theorem is valid and all changes of the superconducting critical temperature are essentially due to only the general disorder widening of the conduction band

  2. Excitation spectra in Kondo insulators

    International Nuclear Information System (INIS)

    It is shown that the exotic strong local characters in the Kondo insulator are difficult to understand based on the band model and the localized Kondo electron model based on the local picture can explain the essential characteristics, in particular characteristic excitation spectra with two peak structure, which is caused through the transition of the localized Kondo electron. Excitation spectra in SmB6, YbB12 and Ce3Bi4Pt3 are shown to be explained by the above model. On the other hand, that of the pseudo gap Kondo insulator CeNiSn is shown to be substantially different. (orig.)

  3. Electronic Raman scattering with excitation between localized states observed in the zinc M{sub 2,3} soft x-ray spectra of ZnS

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, L.; Callcott, T.A.; Jia, J.J. [Univ. of Tennessee, Knoxville, TN (United States)] [and others

    1997-04-01

    Zn M{sub 2,3} soft x-ray fluorescence (SXF) spectra of ZnS and ZnS{sub .5}Se{sub .5} excited near threshold show strong inelastic scattering effects that can be explained using a simple model and an inelastic scattering theory based on second order perturbation theory. This scattering is often called electronic resonance Raman scattering. Tulkki and Aberg have developed this theory in detail for atomic systems, but their treatment can be applied to solid systems by utilizing electronic states characteristic of solids rather than of atomic systems.

  4. Localized excitations in competing bond-order-wave, charge-density-wave and spin-density-wave systems 1: Competing bond-order-wave and charge-density-wave

    International Nuclear Information System (INIS)

    The interplay between electron-phonon and electron-electron interactions in quasi-one-dimensional systems can give rise to competition and possible coexistence of various symmetry broken ground states like bond-order-wave (BOW), charge-density-wave (CDW) and spin-density-wave (SDW). The halogen-bridged mixed-valence transition-metal linear chain complexes (HMMC or MX chains) is a typical example of such systems. In this and a companion paper, we study the ground states and localized excitations like polarons and excitons in these competing systems using a single band Peierls-Hubbard model and the Bogoliubov-de Gennes formalism. We first focus on configurations of these excitations and number of bound states within the gap in competing BOW and CDW systems as functions of the electron-phonon coupling strength. The lattice relaxation approach to quasi-one-dimensional systems, developed by Su and Yu earlier, has been applied to study the radiative and non-radiative transitions of these excitations. A non-monotonic dependence of the relaxation rate on the coupling strength is predicted from the theory and is mainly due to the emergence of new bound states inside the gap. The possible connection of this effect with photoluminescence experiments is discussed. Similar phenomena may occur in other quasi-one-dimensional systems as well. (author). 28 refs, 13 figs, 1 tab

  5. Excited Delirium

    Directory of Open Access Journals (Sweden)

    Takeuchi, Asia

    2011-02-01

    Full Text Available Excited (or agitated delirium is characterized by agitation, aggression, acute distress and sudden death, often in the pre-hospital care setting. It is typically associated with the use of drugs that alter dopamine processing, hyperthermia, and, most notably, sometimes with death of the affected person in the custody of law enforcement. Subjects typically die from cardiopulmonary arrest, although the cause is debated. Unfortunately an adequate treatment plan has yet to be established, in part due to the fact that most patients die before hospital arrival. While there is still much to be discovered about the pathophysiology and treatment, it is hoped that this extensive review will provide both police and medical personnel with the information necessary to recognize and respond appropriately to excited delirium. [West J Emerg Med. 2011;12(1:77-83.

  6. Excited baryons

    International Nuclear Information System (INIS)

    The status of the theory of the low-energy approach to hadron structure is reviewed briefly by surveying a few relevant models. A few examples of tests needed to sort out the predictions of different models pertaining to the quark-gluon structure of hadrons are discussed, and given the resulting physics objectives, a few experimental options for excited baryon research at CFBAF are suggested

  7. Spatial and temporal localization of light in two dimensions

    CERN Document Server

    Máximo, Carlos E; Courteille, Philippe W; Kaiser, Robin; Bachelard, Romain

    2015-01-01

    Quasi-resonant scattering of light in two dimensions can be described either as a scalar or as a vectorial electromagnetic wave. Performing a scaling analysis we observe in both cases long lived modes, yet only the scalar case exhibits Anderson localized modes together with extremely long mode lifetimes. We show that the localization length of these modes is influenced only by their position, and not their lifetime. Investigating the reasons for the absence of localization, it appears that both the coupling of several polarizations and the presence of near-field terms are able to prevent long lifetimes and Anderson localization.

  8. John Anderson's development of (situational) realism and its bearing on psychology today.

    Science.gov (United States)

    Hibberd, Fiona J

    2009-10-01

    In 1927, the Scottish philosopher John Anderson arrived in Australia to take up the chair of Philosophy at the University of Sydney. By the late 1930s, the "macrostructure" of his realist system was in place. It includes a theory of process and a substantial metaphysics, one that opposes positivism, linguistic philosophy and all forms of idealism. However, beyond Australia it remains largely unknown, despite its bearing on a number of current issues in psychology and the social sciences generally. This article outlines Anderson's transition from Hegelian idealism to realism, describes aspects of his ontology and epistemology, compares some of Anderson's ideas with Dewey's pragmatism and explains their relevance to present-day psychology. PMID:20027696

  9. Anderson localization in a partially random Bragg grating and a conserved area theorem

    CERN Document Server

    Mafi, Arash

    2015-01-01

    We investigate the gradual emergence of the disorder-related phenomena in intermediate regimes between a deterministic periodic Bragg grating and a fully random grating and highlight two critical properties of partially disordered Bragg gratings. First, the integral of the logarithm of the transmittance over the reciprocal wavevector space is a conserved quantity. Therefore, adding disorder merely redistributes the transmittance over the reciprocal space. Second, for any amount of disorder, the average transmittance decays exponentially with the number of grating layers in the simple form of $\\exp(-\\eta N)$ for sufficiently large $N$, where $\\eta$ is a constant and $N$ is the number of layers. Conversely, the simple exponential decay form does not hold for small $N$ except for a highly disordered system. Implications of these findings are demonstrated.

  10. Multifractality to Photonic Crystal & Self-Organization to Metamaterials through Anderson Localizations & Group/Gauge Theory

    Science.gov (United States)

    Hidajatullah-Maksoed, Widastra

    2015-04-01

    Arthur Cayley at least investigate by creating the theory of permutation group[F:∖∖Group_theory.htm] where in cell elements addressing of the lattice Qmf used a Cayley tree, the self-afine object Qmf is described by the combination of the finite groups of rotation & inversion and the infinite groups of translation & dilation[G Corso & LS Lacena: ``Multifractal lattice and group theory'', Physica A: Statistical Mechanics &Its Applications, 2005, v 357, issue I, h 64-70; http://www.sciencedirect.com/science/articel/pii/S0378437105005005 ] hence multifractal can be related to group theory. Many grateful Thanks to HE. Mr. Drs. P. SWANTORO & HE. Mr. Ir. SARWONO KUSUMAATMADJA.

  11. beta-Function of Anderson localization transition in three dimensions at unitary symmetry

    Science.gov (United States)

    Neogi, Sanghamitra

    In recent years, with the advances in experimental techniques, the characteristic length scales of the materials synthesized, are becoming increasingly small. Many of these microscopic structures found their places in important commercial applications. However, the thermal loads imposed on these devices and structures create a major obstacle toward their applicability. This challenge is driving a renewed interest among researchers from various disciplines, toward the topic of thermal management. The interest in the topic of thermal transport in small scale structures, served as the motivation for the work performed in this dissertation. More specifically, the following topics were investigated: • Transport in One-Dimensional Nonlinear Systems: Thermal transport in materials can be explained in terms of the diffusive motion of the heat carriers at the microscopic level. An important and surprising situation emerges in some low dimensional model systems; the thermal conductivity diverges with system size. It was shown (Toda, 1979) that nonlinearity has an important effect on the heat transport in low dimensional systems. We investigate the transport of energy in a nonlinear one-dimensional chain. We show that solitons are spontaneous generated when we apply forcing functions at the end of the chain. We investigate the different characteristics of these solitons generated in the chain. • Transport in Fluids --- Study of Pair Distribution Function: Thermal transport in fluids depends on the distribution of particles in the fluid. It is well known that the two-particle distribution function can describe most of the thermodynamic properties for classical fluids in thermal equilibrium. We review the approximate integral equation theories (Percus-Yevick, Hypernetted chain approximation) to obtain the pair distribution functions of classical fluids. We find that these methods are highly dependent on the choice of the thermodynamic parameters of the fluid. We solve several Lennard-Jones fluid systems with different density and temperature values and prepare a density-temperature compressibility diagram. This diagram shows the region of applicability of these theories and helps us obtain the pair distribution function for a Lennard-Jones fluid with known thermodynamic parameters. We also suggest a modification of the integral-equation theories to obtain the pair distribution functions of quantum fluids. • Thermal Transport Across Interfaces: When thermal energy is transported from one material to another, there is a discontinuity in temperature at the interface between them. This thermal boundary resistance is known as Kapitza resistance. The scattering of phonons at interfaces is one of the main reasons behind the presence of thermal boundary resistance. We explore the scattering of acoustic waves at several solid-solid interfaces using lattice dynamical methods. We derive matrix equations to obtain the reflection and transmission coefficients for an acoustic wave incident on the interface. These coefficients can reproduce the familiar expressions in the continuum limit and are consistent with the conservation relations. We discuss a method to obtain the thermal boundary resistance for neutral solid-fluid interfaces. The acoustic mismatch theory works poorly for solid-fluid interfaces. One reason is that this theory only includes the long wavelength acoustic phonons. Our theory includes all the phonon modes in the solid and all the sound modes in the fluid, in the calculation of the thermal boundary resistance. We provide an application of this method to obtain the thermal boundary resistance at the interface between solid Argon and liquid Neon. Our method yields the value for Kapitza conductance for solid Argon-fluid Neon interface as 0.0374GW/Km2.

  12. Designed Assembly of Heterometallic Cluster Organic Frameworks Based on Anderson-Type Polyoxometalate Clusters.

    Science.gov (United States)

    Li, Xin-Xiong; Wang, Yang-Xin; Wang, Rui-Hu; Cui, Cai-Yan; Tian, Chong-Bin; Yang, Guo-Yu

    2016-05-23

    A new approach to prepare heterometallic cluster organic frameworks has been developed. The method was employed to link Anderson-type polyoxometalate (POM) clusters and transition-metal clusters by using a designed rigid tris(alkoxo) ligand containing a pyridyl group to form a three-fold interpenetrated anionic diamondoid structure and a 2D anionic layer, respectively. This technique facilitates the integration of the unique inherent properties of Anderson-type POM clusters and cuprous iodide clusters into one cluster organic framework. PMID:27061042

  13. Anomalous electrical resistivity and Hall constant of Anderson lattice with finite f-band width

    CERN Document Server

    Panwar, S S

    2002-01-01

    We study here an extension of the periodic Anderson model by considering finite f-band width. A variational method is used to study the temperature dependence of electronic transport properties of Anderson lattice for different values of the f-band width. The electrical resistivity rho(T) and Hall constant R sub H (T) calculated show qualitatively the features experimentally observed in heavy fermion materials. We find that as f-band width increases, the low temperature peak in rho(T) disappears, while the low-temperature peak in R sub H (T) becomes sharper. (author)

  14. Anomalous electrical resistivity and Hall constant of Anderson lattice with finite f-band width

    International Nuclear Information System (INIS)

    We study here an extension of the periodic Anderson model by considering finite f-band width. A variational method is used to study the temperature dependence of electronic transport properties of Anderson lattice for different values of the f-band width. The electrical resistivity ρ(T) and Hall constant RH(T) calculated show qualitatively the features experimentally observed in heavy fermion materials. We find that as f-band width increases, the low temperature peak in ρ(T) disappears, while the low-temperature peak in RH(T) becomes sharper. (author)

  15. Anderson transitions: multifractal or non-multifractal statistics of the transmission as a function of the scattering geometry

    International Nuclear Information System (INIS)

    The scaling theory of Anderson localization is based on a global conductance gL that remains a random variable of order O(1) at criticality. One realization of such a conductance is the Landauer transmission for many transverse channels. On the other hand, the statistics of the one-channel Landauer transmission between two local probes is described by a multifractal spectrum that can be related to the singularity spectrum of individual eigenstates. To better understand the relations between these two types of results, we consider various scattering geometries that interpolate between these two cases and analyze the statistics of the corresponding transmissions. We present detailed numerical results for the power-law random banded matrices (PRBM model). Our conclusions are: (i) in the presence of one isolated incoming wire and many outgoing wires, the transmission has the same multifractal statistics as the local density of states of the site where the incoming wire arrives and (ii) in the presence of backward scattering channels with respect to case (i), the statistics of the transmission is not multifractal anymore, but becomes monofractal. Finally, we also describe how these scattering geometries influence the statistics of the transmission off criticality

  16. Multifractality and quantum-to-classical crossover in the Coulomb anomaly at the Mott–Anderson metal–insulator transition

    International Nuclear Information System (INIS)

    We study the interaction-driven localization transition, which a recent experiment (Richardella et al 2010 Science 327 665) in Ga1−xMnxAs has shown to come along with the multifractal behavior of the local density of states (LDoS) and the intriguing persistence of critical correlations close to the Fermi level. We show that the bulk of these phenomena can be understood within a Hartree–Fock (HF) treatment of disordered, Coulomb-interacting spinless fermions. A scaling analysis of the LDoS correlation demonstrates multifractality with the correlation dimension d2 ≈ 1.57, which is significantly larger than at a non-interacting Anderson transition and is compatible with the experimental value dexp2 = 1.8 ± 0.3. At the interaction-driven transition, the states at the Fermi level become critical, while the bulk of the spectrum remains delocalized up to substantially stronger interactions. The mobility edge stays close to the Fermi energy in a wide range of disorder strength, as the interaction strength is further increased. The localization transition is concomitant with the quantum-to-classical crossover in the shape of the pseudo-gap in the tunneling density of states, and with the proliferation of metastable HF solutions that suggest the onset of a glassy regime with poor screening properties. (paper)

  17. Dynamical Localization in Kicked Quantum Rotors

    CERN Document Server

    Kamalov, Andrei; Bucksbaum, Philip H

    2015-01-01

    The periodically $\\delta$-kicked quantum linear rotor is known to experience non-classical bounded energy growth due to quantum dynamical localization in angular momentum space. We study the effect of random deviations of the kick period in simulations and experiments. This breaks the energy and angular momentum localization and increases the rotational alignment, which is the analog of the onset of Anderson localization in 1-D chains.

  18. Local magnetic properties of multiferroic Nd{sub 0.5}Gd{sub 0.5}Fe{sub 3}(BO{sub 3}){sub 4} in the excited states of Nd{sup 3+} ion

    Energy Technology Data Exchange (ETDEWEB)

    Malakhovskii, A.V., E-mail: malakha@iph.krasn.ru [L. V. Kirensky Institute of Physics, Siberian Branch of Russian Academy of Sciences, 660036 Krasnoyarsk (Russian Federation); Gnatchenko, S.L.; Kachur, I.S.; Piryatinskaya, V.G. [B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 61103 Kharkov (Ukraine); Sukhachev, A.L.; Temerov, V.L. [L. V. Kirensky Institute of Physics, Siberian Branch of Russian Academy of Sciences, 660036 Krasnoyarsk (Russian Federation)

    2015-02-01

    Polarized absorption spectra of single-crystal Nd{sub 0.5}Gd{sub 0.5}Fe{sub 3}(BO{sub 3}){sub 4} were studied in the region of the transition {sup 4}I{sub 9/2}→({sup 4}G{sub 5/2}+{sup 2}G{sub 7/2}) in Nd{sup 3+} ion as a function of temperature (2–34 K) and magnetic field (0–65 kOe). The spectra of natural circular dichroism were measured in the range of 5–40 K. It was found out that the local magnetic properties in the vicinity of the excited ion substantially depended on its state. In particular, a weak ferromagnetic moment appears in some excited states. It was found out that the selection rules for electron transitions in the magnetically ordered state substantially deviated from those in the paramagnetic state of the crystal. They are different for different transitions and they are very sensitive to the orientation of the sublattice magnetic moment relative to the light polarization. In the spectrum of the natural circular dichroism, the transition is revealed which is not observed in the absorption spectrum. - Highlights: • Temperature and field dependences of f-f transitions in Nd{sub 0.5}Gd{sub 0.5}Fe{sub 3}(BO{sub 3}){sub 4}. • Natural circular dichroism in Nd{sub 0.5}Gd{sub 0.5}Fe{sub 3}(BO{sub 3}){sub 4} below T{sub N}. • Weak ferromagnetic moment was identified in some excited 4f states. • Selection rules for f-f transitions substantially change below T{sub N}. • Intensities of f-f transitions strongly depend on magnetic moment orientation.

  19. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold

    Science.gov (United States)

    Casida, Mark E.; Jamorski, Christine; Casida, Kim C.; Salahub, Dennis R.

    1998-03-01

    This paper presents an evaluation of the performance of time-dependent density-functional response theory (TD-DFRT) for the calculation of high-lying bound electronic excitation energies of molecules. TD-DFRT excitation energies are reported for a large number of states for each of four molecules: N2, CO, CH2O, and C2H4. In contrast to the good results obtained for low-lying states within the time-dependent local density approximation (TDLDA), there is a marked deterioration of the results for high-lying bound states. This is manifested as a collapse of the states above the TDLDA ionization threshold, which is at -ɛHOMOLDA (the negative of the highest occupied molecular orbital energy in the LDA). The -ɛHOMOLDA is much lower than the true ionization potential because the LDA exchange-correlation potential has the wrong asymptotic behavior. For this reason, the excitation energies were also calculated using the asymptotically correct potential of van Leeuwen and Baerends (LB94) in the self-consistent field step. This was found to correct the collapse of the high-lying states that was observed with the LDA. Nevertheless, further improvement of the functional is desirable. For low-lying states the asymptotic behavior of the exchange-correlation potential is not critical and the LDA potential does remarkably well. We propose criteria delineating for which states the TDLDA can be expected to be used without serious impact from the incorrect asymptotic behavior of the LDA potential.

  20. Non-Fermi liquid and Fermi liquid in two-channel anderson lattice model. Theory for PrA2Al20 (A = V, Ti) and PrIr2Zn20

    International Nuclear Information System (INIS)

    We theoretically investigate electronic states and physical properties in a two-channel Anderson lattice model to understand the non-Fermi liquid behaviors observed in PrV2Al20 and PrIr2Zn20, whose ground state of the crystalline electric field for a local f-electron is the Γ3 non-Kramers doublet of f2-configuration and whose excited state is the Γ7 Kramers doublet of f1-configuration. We use the expansion from the limit of the large degeneracy N of the ground state (1/N-expansion), with N being the spin–orbital degeneracy. The inclusion of the self-energy of conduction electrons up to the order of O(1/N) leads to heavy electrons with channel and spin–orbit degeneracies. We find that the electrical resistivity is proportional to the temperature T in the limit T → 0 and follows the √T-law in a wide temperature region, i.e., Tx < T < T0, where the typical values of Tx and T0 are Tx ∼ 10-3TK and T0 ∼ 10-2TK, respectively, TK being the Kondo temperature of the model. We also find non-Fermi liquid behaviors at T ≪ TK in a series of physical quantities; chemical potential, specific heat, and magnetic susceptibility, which explain the non-Fermi liquid behaviors observed in PrV2Al20 and PrIr2Zn20. At the same time, we find that the Fermi liquid behavior becomes prominent for the system with a small hybridization between f- and conduction electrons, explaining the Fermi liquid behaviors observed in PrTi2Al20. (author)

  1. 78 FR 41835 - Inflation Adjustments to the Price-Anderson Act Financial Protection Regulations

    Science.gov (United States)

    2013-07-12

    ... made the initial changes to the Price-Anderson Act amounts on October 27, 2005 (70 FR 61885), and the first periodic inflation adjustments on September 29, 2008 (73 FR 56451). This final rule makes the... Writing,'' published June 10, 1998 (63 FR 31883). X. Backfit Analysis and Issue Finality The NRC...

  2. Financial analysis of potential retrospective premium assessments under the Price-Anderson system

    International Nuclear Information System (INIS)

    Ten representative nuclear utilities have been analyzed over the period 1981 to 1983 to evaluate the effects of three levels of retrospective premiums on various financial indicators. This analysis continues and expands on earlier analyses prepared as background for deliberations by the US Congress for possible extension or modification of the Price-Anderson Act

  3. Adaptive and self-averaging Thouless-Anderson-Palmer mean-field theory for probabilistic modeling

    DEFF Research Database (Denmark)

    Opper, Manfred; Winther, Ole

    2001-01-01

    We develop a generalization of the Thouless-Anderson-Palmer (TAP) mean-field approach of disorder physics. which makes the method applicable to the computation of approximate averages in probabilistic models for real data. In contrast to the conventional TAP approach, where the knowledge of the...

  4. Tractable approximations for probabilistic models: The adaptive Thouless-Anderson-Palmer mean field approach

    DEFF Research Database (Denmark)

    Opper, Manfred; Winther, Ole

    2001-01-01

    We develop an advanced mean held method for approximating averages in probabilistic data models that is based on the Thouless-Anderson-Palmer (TAP) approach of disorder physics. In contrast to conventional TAP. where the knowledge of the distribution of couplings between the random variables is...

  5. Ilu võitlus koleduse välja vastu / Rebekka Lotman ; kommenteerinud Mart Anderson

    Index Scriptorium Estoniae

    Lotman, Rebekka, 1978-

    2009-01-01

    Konkursside "25 kauneimat Eesti raamatut" ja "Viis kauneimat Eesti lasteraamatut" võidutööde näitus Eesti Rahvusraamatukogus. Võidutööde valikut kommenteerib žürii esimees Mart Anderson. Loetletud 2008. aasta 25 kaunimat raamatut. Nimekiri: 2008. aasta 25 kauneimat raamatut

  6. Ago Anderson pälvis Helmi Tohvelmani preemia / Karin Klaus

    Index Scriptorium Estoniae

    Klaus, Karin

    2009-01-01

    13. oktoobril anti Endla teatri näitlejale Ago Andersonile üle Helmi Tohvelmani auhind. Pidulik sündmus toimus Väätsa põhikoolis, Tohvelmani kodukohas. Anderson pälvis tunnustuse kui kerge kehakeelega näitleja

  7. 75 FR 34170 - Plastic Omnium Automotive Exteriors, LLC, Anderson, SC; Plastic Omnium Automotive Exteriors, LLC...

    Science.gov (United States)

    2010-06-16

    ..., South Carolina. The notice was published in the Federal Register April 23, 2010 (75 FR 21356). The... Employment and Training Administration Plastic Omnium Automotive Exteriors, LLC, Anderson, SC; Plastic Omnium Automotive Exteriors, LLC, Troy, MI; Amended Certification Regarding Eligibility To Apply for...

  8. Mean-field theory for the f2-f3 Anderson impurity

    International Nuclear Information System (INIS)

    A uranium impurity whose lovest ionic configurations are f2 and F3 is considered in a j j - coupling scheme in the limit of zero j.j coupling. A mean field theory to the f2-f3 Anderson - Coleman Hamiltonian is presented which is found to give useful results for ground state properties over whole range of f - occupations. (author)

  9. The Egg as a Symbol——Analysis of Sherwood Anderson's The Egg

    Institute of Scientific and Technical Information of China (English)

    孙慧春; 李伟

    2009-01-01

    @@ A naive narrator in Sherwood Anderson's The Egg leads the reader to witness the various experiences of his family related with eggs.The egg is a dominant theme in their living and an inseparable part of their family.The egg means something that he could only feel directly as a na(i)ve boy.

  10. An asymptotically normal G-estimate for the Anderson-Fisher discriminant function

    Energy Technology Data Exchange (ETDEWEB)

    Girko, V.L.; Pavlenko, T.V. [Kiev State Univ. (Ukraine)

    1994-06-05

    Conditions under which a G-estimate of the Anderson-Fisher discriminant function is asymptotically normal are investigated. This estimate decreases by an order of magnitude the quantity of observations needed for a given level of accuracy on the part of an estimate and is thus of significant interest for practical applications. 3 refs.

  11. Nuclear structure studies using the high resolution spectrometer at the Los Alamos Clinton P. Anderson Meson Physics Facility: Progress report, [1986-1987

    International Nuclear Information System (INIS)

    A major part of the work done this past year was associated with research conducted at the Los Alamos Clinton P. Anderson Meson Physics Facility (LAMPF) using the High Resolution Spectrometer (HRS) and the External Proton Beam (EPB). The research focussed on (1) providing p + nucleus data which test nonrelativistic and relativistic models of the medium energy proton + nucleus interaction, (2) providing (p,p) and (p,n) data which are to be analyzed to provide new nuclear structure information (both ground state and excited state), (3) providing nucleon + nucleon data to aid in the systematic study of the fundamental nucleon-nucleon interaction, (4) developing and improving the pA models themselves, and (5) initiating new experimental programs whose goals are to search for new phenomena in nuclear physics

  12. Wildlife Protection, Mitigation, and Enhancement Plans, Anderson Ranch and Black Canyon Facilities: Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Meuleman, G. Allyn

    1987-06-01

    Under direction of the Pacific Northwest Electric Power Planning and Conservation Act of 1980, and the subsequent Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program, projects have been developed in Idaho to mitigate the impacts to wildlife habitat and production due to the development and operation of the Anderson Ranch and Black Canyon Facilities (i.e., dam, power plant, and reservoir areas). The Anderson Ranch Facility covered about 4812 acres of wildlife habitat while the Black Canyon Facility covered about 1115 acres. These acreages include dam and power plant staging areas. A separate mitigation plan has been developed for each facility. A modified Habitat Evaluation Procedure (HEP) was used to assess the benefits of the mitigation plans to wildlife. The interagency work group used the target species Habitat Units (HU's) lost at each facility as a guideline during the mitigation planning process, while considering the needs of wildlife in the areas. Totals of 9619 and 2238 target species HU's were estimated to be lost in the Anderson Ranch and Black Canyon Facility areas, respectively. Through a series of projects, the mitigation plans will provide benefits of 9620 target species HU's to replace Anderson Ranch wildlife impacts and benefits of 2195 target species HU's to replace Black Canyon wildlife impacts. Target species to be benefited by the Anderson Ranch and/or Black Canyon mitigation plans include the mallard, Canada goose, mink, yellow warbler, black-capped chickadee, ruffed grouse, mule deer, blue grouse, sharp-tailed grouse, ring-necked pheasant, and peregrine falcon.

  13. Localization in lattice gauge theory and a new multigrid method

    International Nuclear Information System (INIS)

    We show numerically that the lowest eigenmodes of the 2-dimensional Laplace-operator with SU(2) gauge couplings are strongly localized. A connection is drawn to the Anderson-Localization problem. A new Multigrid algorithm, capable to deal with these modes, shows no critical slowing down for this problem. (orig.)

  14. Effect of wave localization on plasma instabilities. Ph.D. Thesis

    Science.gov (United States)

    Levedahl, William Kirk

    1987-01-01

    The Anderson model of wave localization in random media is involved to study the effect of solar wind density turbulence on plasma processes associated with the solar type III radio burst. ISEE-3 satellite data indicate that a possible model for the type III process is the parametric decay of Langmuir waves excited by solar flare electron streams into daughter electromagnetic and ion acoustic waves. The threshold for this instability, however, is much higher than observed Langmuir wave levels because of rapid wave convection of the transverse electromagnetic daughter wave in the case where the solar wind is assumed homogeneous. Langmuir and transverse waves near critical density satisfy the Ioffe-Reigel criteria for wave localization in the solar wind with observed density fluctuations -1 percent. Numerical simulations of wave propagation in random media confirm the localization length predictions of Escande and Souillard for stationary density fluctations. For mobile density fluctuations localized wave packets spread at the propagation velocity of the density fluctuations rather than the group velocity of the waves. Computer simulations using a linearized hybrid code show that an electron beam will excite localized Langmuir waves in a plasma with density turbulence. An action principle approach is used to develop a theory of non-linear wave processes when waves are localized. A theory of resonant particles diffusion by localized waves is developed to explain the saturation of the beam-plasma instability. It is argued that localization of electromagnetic waves will allow the instability threshold to be exceeded for the parametric decay discussed above.

  15. Strategies in Localization Proofs for One-Dimensional Random Schrödinger Operators

    Indian Academy of Sciences (India)

    Günter Stolz

    2002-02-01

    Recent results on localization, both exponential and dynamical, for various models of one-dimensional, continuum, random Schrödinger operators are reviewed. This includes Anderson models with indefinite single site potentials, the Bernoulli–Anderson model, the Poisson model, and the random displacement model. Among the tools which are used to analyse these models are generalized spectral averaging techniques and results from inverse spectral and scattering theory. A discussion of open problems is included.

  16. Liability coverage under the Price-Anderson Act for high level waste shipments and disposal

    International Nuclear Information System (INIS)

    The Price-Anderson Act provides the basis for a national system of liability protection for accidents arising out of nuclear activities. Private nuclear liability insurance and/or government indemnity is provided to certain Nuclear Regulatory Commission (NRC) licensees (principally operators of nuclear reactors) and certain Department of Energy (DOE) contractors (those whose activities DOE considers involve a risk of public liability for a substantial nuclear incident). As presently envisioned, both the coverage extended by the NRC to its licensees shipping spent fuel from reactors and the indemnity coverage extended by the DOE to its contractors operating a DOE repository under the Nuclear Waste Policy Act will be utilized to provide public liability protection for spent fuel shipments and disposal. Increased attention is being given to assuring a seamless web of protection provided under the Price-Anderson Act to Federal licensees and contractors

  17. The astronomizings of Dr. Anderson and the curious case of his disappearing nova

    CERN Document Server

    Shears, Jeremy

    2012-01-01

    Dr. Thomas David Anderson (1853-1932) was a Scottish amateur astronomer famed for his discovery of two bright novae: Nova Aurigae 1891 and Nova Persei 1901. He also discovered more than 50 variable stars as well as making independent discoveries of Nova Aquilae 1918 and comet 17P/Holmes in 1892. At the age of seventy, in 1923, he reported his discovery of a further nova, this time in Cygnus. This was set to be the culmination of a lifetime devoted to scanning the night sky, but unfortunately no one was able to confirm it. This paper discusses Anderson's life leading up to the discovery and considers whether it was real or illusory.

  18. Wildlife Impact Assessment: Anderson Ranch, Black Canyon, and Boise Diversion Projects, Idaho. Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Meuleman, G. Allyn

    1986-05-01

    This report presents an analysis of impacts on wildlife and their habitats as a result of construction and operation of the US Bureau of Reclamation's Anderson Ranch, Black Canyon, and Boise Diversion Projects in Idaho. The objectives were to: (1) determine the probable impacts of development and operation of the Anderson Ranch, Black Canyon, and Boise Diversion Projects to wildlife and their habitats; (2) determine the wildlife and habitat impacts directly attributable to hydroelectric development and operation; (3) briefly identify the current major concerns for wildlife in the vicinities of the hydroelectric projects; and (4) provide for consultation and coordination with interested agencies, tribes, and other entities expressing interest in the project.

  19. Scaling law and critical exponent for {alpha}{sub 0} at the 3D Anderson transition

    Energy Technology Data Exchange (ETDEWEB)

    Slevin, K. [Department of Physics, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Rodriguez, A.; Roemer, R.A. [Department of Physics and Centre for Scientific Computing, University of Warwick, Coventry, CV4 7AL (United Kingdom); Vasquez, L.J.

    2009-12-15

    We use high-precision, large system-size wave function data to analyse the scaling properties of the multifractal spectra around the disorder-induced three-dimensional Anderson transition in order to extract the critical exponents of the transition. Using a previously suggested scaling law, we find that the critical exponent {nu} is significantly larger than suggested by previous results. We speculate that this discrepancy is due to the use of an oversimplified scaling relation. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  20. Review of Philip Anderson, 2008, The Secret Life of Real Estate

    OpenAIRE

    Mason Gaffney

    2009-01-01

    Anderson establishes the reality of an 18-year cycle in real estate prices, 1800 to date, emphasizing the land element, mainly urban land and subsoil resources. He relates this to privatization, which he calls "enclosure", although he does not trace the history back to the 16th Century enclosure movement in England, nor recommend undoing privatization. He supports his thesis with a wealth of data, surveying a wide literature of secondary sources. He finds the same sequence of leading and lagg...

  1. Tractable approximations for probabilistic models: The adaptive Thouless-Anderson-Palmer mean field approach

    OpenAIRE

    Opper, Manfred; Winther, Ole

    2001-01-01

    We develop an advanced mean held method for approximating averages in probabilistic data models that is based on the Thouless-Anderson-Palmer (TAP) approach of disorder physics. In contrast to conventional TAP. where the knowledge of the distribution of couplings between the random variables is required. our method adapts to the concrete couplings. We demonstrate the validity of our approach, which is so far restricted to models with nonglassy behavior? by replica calculations for a wide clas...

  2. Imagined and imaginary whales: Benedict Anderson, Salman Rushdie and George Orwell

    OpenAIRE

    Hubble, N

    2002-01-01

    George Orwell, anticipating many of the arguments made by Benedict Anderson in the “Patriotism and Racism” chapter of Imagined Communities, illuminated patriotism and nationalism as shifting aspects of a wider dialectical interplay between an identification with imagined communities and a loyalty to humanity. Orwell's essay “Inside the Whale” can be seen, contrary to Salman Rushdie's criticism that it advocates quietism, as an essay about imaginary homelands. In this reading the whale is a me...

  3. Interplay between magnetic correlation and evolution of Fermi liquid in the periodic Anderson model

    International Nuclear Information System (INIS)

    A simple effective scheme to improve the self energy obtained by the dynamical mean field theory is proposed, in which a feedback of magnetic fluctuations is taken into account. We demonstrate effectiveness of the scheme for the two-dimensional periodic Anderson model by investigating the effect of the magnetic fluctuation in the formation of heavy quasiparticles. It is found that the spectral intensity near the Fermi level is strongly suppressed by the antiferromagnetic fluctuation slightly above the magnetic instability.

  4. The exhaustion problem in the periodic Anderson model: An X-boson approach

    International Nuclear Information System (INIS)

    We study the thermodynamical properties of the periodic Anderson model (PAM), within the X-boson approach. The exhaustion problem is studied and we calculate the entropy and the specific heat for the heavy fermion Kondo regime (HF-K) of the PAM. We compute numerically the evolution of the Kondo lattice TKL and the Fermi liquid T* temperatures as function of the conduction electron occupation number nc. The results obtained are consistent with others reported in the literature for the Kondo lattice

  5. Economic Impact of the 32nd Annual Peter Anderson Arts and Crafts Festival, Ocean Springs, Mississippi

    OpenAIRE

    Myles, Albert E.; Carter, Rachael

    2011-01-01

    Evaluating the Economic Impact of Festivals and Special Events: Lessons From the 32st Annual Peter Anderson Arts and Crafts Festival in Ocean Springs, Mississippi Background: Festivals are an integral part of the economies of most communities in Mississippi. The economic benefits of festivals can be assigned a dollar value, but no amount of money will accurately reflect the personal and social benefits of these events. Festivals can increase tourism in the area. These events not only bring ou...

  6. Entanglement in One-Dimensional Anderson Model with Long-Range Correlated Disorder

    Institute of Scientific and Technical Information of China (English)

    GUO Zi-Zheng

    2008-01-01

    @@ By using the measure of concurrence,the entanglement of the ground state in the one-dimensional Anderson model is studied with consideration of the long-range correlations. Three kinds of correlations are discussed.We compare the effects of the long-rang Gaussian and power-law correlations between the site energies on the concurrence,and demonstrate the existence of the band structure of the concurrence in the power-law case.

  7. Wyodak-Anderson coal zone study limit in the Powder River Basin, Wyoming and Montana (wabndg.shp)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This ArcView shapefile contains a polygon representing the study area for the Wyodak-Anderson coal zone in the Powder River Basin, Wyoming and Montana. This theme...

  8. Unioned layer for the Wyodak-Anderson coal zone in the Powder River Basin, Montana and Wyoming (wafing.shp)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This ArcView shapefile contains a polygon representation of numerous themes associated with the Wyodak-Anderson coal zone. The purpose for this theme is to allow...

  9. Overburden above the Wyodak-Anderson coal zone in the Powder River Basin, Wyoming and Montana, 1999 (waovbg.shp)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This shapefile contains a representation of the overburden above the Wyodak-Anderson coal zone. This theme was created specifically for the National Coal Resource...

  10. Band excitation Kelvin probe force microscopy utilizing photothermal excitation

    International Nuclear Information System (INIS)

    A multifrequency open loop Kelvin probe force microscopy (KPFM) approach utilizing photothermal as opposed to electrical excitation is developed. Photothermal band excitation (PthBE)-KPFM is implemented here in a grid mode on a model test sample comprising a metal-insulator junction with local charge-patterned regions. Unlike the previously described open loop BE-KPFM, which relies on capacitive actuation of the cantilever, photothermal actuation is shown to be highly sensitive to the electrostatic force gradient even at biases close to the contact potential difference (CPD). PthBE-KPFM is further shown to provide a more localized measurement of true CPD in comparison to the gold standard ambient KPFM approach, amplitude modulated KPFM. Finally, PthBE-KPFM data contain information relating to local dielectric properties and electronic dissipation between tip and sample unattainable using conventional single frequency KPFM approaches

  11. Electronic structure of vitamin B12 within the framework of the Haldane-Anderson impurity model

    Science.gov (United States)

    Kandemir, Zafer; Mayda, Selma; Bulut, Nejat

    2015-03-01

    We study the electronic structure of vitamin B12 (cyanocobalamine C63H88CoN14O14P) by using the framework of the multi-orbital single-impurity Haldane-Anderson model of a transition-metal impurity in a semiconductor host. Here, our purpose is to understand the many-body effects originating from the transition-metal impurity. In this approach, the cobalt 3 d orbitals are treated as the impurity states placed in a semiconductor host which consists of the rest of the molecule. The parameters of the resulting effective Haldane-Anderson model are obtained within the Hartree-Fock approximation for the electronic structure of the molecule. The quantum Monte Carlo technique is then used to calculate the one-electron and magnetic correlation functions of this effective Haldane-Anderson model for vitamin B12. We find that new states form inside the semiconductor gap due to the on-site Coulomb interaction at the impurity 3 d orbitals and that these states become the highest occupied molecular orbitals. In addition, we present results on the charge distribution and spin correlations around the Co atom. We compare the results of this approach with those obtained by the density-functional theory calculations.

  12. Price-Anderson - where we've been, where we're going

    International Nuclear Information System (INIS)

    The Price-Anderson Act, which became law on September 2, 1957, as part of the Atomic Energy Act of 1954, provides a system to pay funds for claims by members of the public for personal injury and property damage resulting from a nuclear accident. The Act as it now operates entails a two-part insurance system for large utility licensees. The first consists of $160 million in primary nuclear liability insurance purchased by utilities operating large nuclear power plants. Under the second part, these utilities could be assessed up to $5 million per reactor per accident for damages exceeding $160 million. With 101 large power reactors now licensed, the primary and secondary insurance presently totals $665 million. The present Price-Anderson Act expires on August 1, 1987. There are presently two bills H.R. 3653 and S. 1225 being actively considered by the Congress for modification and extension of Price-Anderson. Hearings have been held and the two bills have been marked up and reported out by the Senate and House oversight committees

  13. Analysis of the characteristics of patients with open tibial fractures of Gustilo and Anderson type III

    Directory of Open Access Journals (Sweden)

    Frederico Carlos Jaña Neto

    2016-04-01

    Full Text Available OBJECTIVE: To analyze the characteristics of patients with Gustilo-Anderson Type III open tibial fractures treated at a tertiary care hospital in São Paulo between January 2013 and August 2014. METHODS: This was a cross-sectional retrospective study. The following data were gathered from the electronic medical records: age; gender; diagnosis; trauma mechanism; comorbidities; associated fractures; Gustilo and Anderson, Tscherne and AO classifications; treatment (initial and definitive; presence of compartment syndrome; primary and secondary amputations; MESS (Mangled Extremity Severity Score index; mortality rate; and infection rate. RESULTS: 116 patients were included: 81% with fracture type IIIA, 12% IIIB and 7% IIIC; 85% males; mean age 32.3 years; and 57% victims of motorcycle accidents. Tibial shaft fractures were significantly more prevalent (67%. Eight patients were subjected to amputation: one primary case and seven secondary cases. Types IIIC (75% and IIIB (25% predominated among the patients subjected to secondary amputation. The MESS index was greater than 7 in 88% of the amputees and in 5% of the limb salvage group. CONCLUSION: The profile of patients with open tibial fracture of Gustilo and Anderson Type III mainly involved young male individuals who were victims of motorcycle accidents. The tibial shaft was the segment most affected. Only 7% of the patients underwent amputation. Given the current controversy in the literature about amputation or salvage of severely injured lower limbs, it becomes necessary to carry out prospective studies to support clinical decisions.

  14. Analysis of the characteristics of patients with open tibial fractures of Gustilo and Anderson type III☆

    Science.gov (United States)

    Jaña Neto, Frederico Carlos; de Paula Canal, Marina; Alves, Bernardo Aurélio Fonseca; Ferreira, Pablício Martins; Ayres, Jefferson Castro; Alves, Robson

    2016-01-01

    Objective To analyze the characteristics of patients with Gustilo–Anderson Type III open tibial fractures treated at a tertiary care hospital in São Paulo between January 2013 and August 2014. Methods This was a cross-sectional retrospective study. The following data were gathered from the electronic medical records: age; gender; diagnosis; trauma mechanism; comorbidities; associated fractures; Gustilo and Anderson, Tscherne and AO classifications; treatment (initial and definitive); presence of compartment syndrome; primary and secondary amputations; MESS (Mangled Extremity Severity Score) index; mortality rate; and infection rate. Results 116 patients were included: 81% with fracture type IIIA, 12% IIIB and 7% IIIC; 85% males; mean age 32.3 years; and 57% victims of motorcycle accidents. Tibial shaft fractures were significantly more prevalent (67%). Eight patients were subjected to amputation: one primary case and seven secondary cases. Types IIIC (75%) and IIIB (25%) predominated among the patients subjected to secondary amputation. The MESS index was greater than 7 in 88% of the amputees and in 5% of the limb salvage group. Conclusion The profile of patients with open tibial fracture of Gustilo and Anderson Type III mainly involved young male individuals who were victims of motorcycle accidents. The tibial shaft was the segment most affected. Only 7% of the patients underwent amputation. Given the current controversy in the literature about amputation or salvage of severely injured lower limbs, it becomes necessary to carry out prospective studies to support clinical decisions. PMID:27069881

  15. Nuclear liability insurance. The Price-Anderson reparations system and the claims experience of the nuclear industry

    International Nuclear Information System (INIS)

    This article reviews nuclear liability legislation in the United States (Price-Anderson Act) and discusses the amount of nuclear liability insurance presently available as well as the plan proposed by the insurance pools which represents a fundamental change in the Price-Anderson indemnity programme. It also reports on the claims presented for the accident at Three Mile Island and contains tables which reproduce claims history in general and annual numbers of monitored onsite workers. (NEA)

  16. Quantum criticality of the two-channel pseudogap Anderson model: universal scaling in linear and non-linear conductance

    Science.gov (United States)

    Wu, Tsan-Pei; Wang, Xiao-Qun; Guo, Guang-Yu; Anders, Frithjof; Chung, Chung-Hou

    2016-05-01

    The quantum criticality of the two-lead two-channel pseudogap Anderson impurity model is studied. Based on the non-crossing approximation (NCA) and numerical renormalization group (NRG) approaches, we calculate both the linear and nonlinear conductance of the model at finite temperatures with a voltage bias and a power-law vanishing conduction electron density of states, {ρ\\text{c}}(ω )\\propto |ω -{μ\\text{F}}{{|}r} (0  energy {μ\\text{F}} . At a fixed lead-impurity hybridization, a quantum phase transition from the two-channel Kondo (2CK) to the local moment (LM) phase is observed with increasing r from r  =  0 to r={{r}\\text{c}}law scalings from the well-known \\sqrt{T} or \\sqrt{V} form is found. Moreover, novel power-law scalings in conductances at the 2CK-LM quantum critical point are identified. Clear distinctions are found on the critical exponents between linear and non-linear conductance at criticality. The implications of these two distinct quantum critical properties for the non-equilibrium quantum criticality in general are discussed.

  17. Resources available for nuclear power plant emergencies under the Price-Anderson Act and the Robert T. Stafford Disaster Relief and Emergency Assistance Act

    International Nuclear Information System (INIS)

    Through a series of TABLETOP exercises and other events that involved participation by State and Federal organizations, the need was identified for further explanation of financial and other related resources available to individuals and State and local governments in a major emergency at a nuclear power plant. A group with representatives from the Nuclear Regulatory commission, the Federal Emergency Management Agency, and the American Nuclear Insurers/Mutual Atomic Energy Liability Underwriters was established to work toward this end. This report is the result of that effort. This document is not meant to modify, undermine, or replace any other planning document (e.g., the Federal Radiological Emergency Response Plan or the Federal Response Plan). Its purpose is to clarify issues that have surfaced regarding resources available under the Price-Anderson and Stafford Acts

  18. The localization transition at finite temperatures: electric and thermal transport

    OpenAIRE

    Imry, Yoseph; Amir, Ariel

    2010-01-01

    The Anderson localization transition is considered at finite temperatures. This includes the electrical conductivity as well as the electronic thermal conductivity and the thermoelectric coefficients. An interesting critical behavior of the latter is found. A method for characterizing the conductivity critical exponent, an important signature of the transition, using the conductivity and thermopower measurements, is outlined.

  19. An alternative functional renormalization group approach to the single impurity Anderson model

    OpenAIRE

    Kinza, Michael; Ortloff, Jutta; Bauer, Johannes; Honerkamp, Carsten

    2012-01-01

    We present an alternative functional renormalization group (fRG) approach to the single-impurity Anderson model at finite temperatures. Starting with the exact self-energy and interaction vertex of a small system ('core') containing a correlated site, we switch on the hybridization with a non-interacting bath in the fRG-flow and calculate spectra of the correlated site. Different truncations of the RG-flow-equations and choices of the core are compared and discussed. Furthermore we calculate ...

  20. Data Center Energy Efficiency and Renewable Energy Site Assessment: Anderson Readiness Center; Salem, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, I.; Van Geet, O.

    2014-06-01

    This report summarizes the results from the data center energy efficiency and renewable energy site assessment conducted for the Oregon Army National Guard in Salem, Oregon. A team led by NREL conducted the assessment of the Anderson Readiness Center data centers March 18-20, 2014 as part of ongoing efforts to reduce energy use and incorporate renewable energy technologies where feasible. Although the data centers in this facility account for less than 5% of the total square footage, they are estimated to be responsible for 70% of the annual electricity consumption.

  1. Ward identities for the Anderson impurity model: derivation via functional methods and the exact renormalization group

    International Nuclear Information System (INIS)

    Using functional methods and the exact renormalization group we derive Ward identities for the Anderson impurity model. In particular, we present a non-perturbative proof of the Yamada-Yosida identities relating certain coefficients in the low-energy expansion of the self-energy to the thermodynamic particle number and spin susceptibilities of the impurity. Our proof underlines the relation of the Yamada-Yosida identities to the U(1) x U(1) symmetry associated with the particle number and spin conservation in a magnetic field.

  2. STS-118 Astronaut Williams and Expedition 15 Engineer Anderson Perform EVA

    Science.gov (United States)

    2007-01-01

    As the construction continued on the International Space Station (ISS), STS-118 Astronaut Dave Williams, representing the Canadian Space Agency, participated in the fourth and final session of Extra Vehicular Activity (EVA). During the 5 hour space walk, Williams and Expedition 15 engineer Clay Anderson (out of frame) installed the External Wireless Instrumentation System Antenna, attached a stand for the shuttle robotic arm extension boom, and retrieved the two Materials International Space Station Experiments (MISSE) for return to Earth. MISSE collects information on how different materials weather in the environment of space.

  3. The Anderson-Darling test of fit for the power law distribution from left censored samples

    CERN Document Server

    Coronel-Brizio, H F

    2010-01-01

    Maximum likelihood estimation and a test of fit based on the Anderson-Darling statistic is presented for the case of the power law distribution when the parameters are estimated from a left-censored sample. Expressions for the maximum likelihood estimators and tables of asymptotic percentage points for the A^2 statistic are given. The technique is illustrated for data from the Dow Jones Industrial Average index, an example of high theoretical and practical importance in Econophysics, Finance, Physics, Biology and, in general, in other related Sciences such as Complexity Sciences.

  4. Anomalous temperature dependency of the Anderson-Grüneisen parameters in high ionic conductors

    International Nuclear Information System (INIS)

    The Anderson-Grüneisen (AG) parameter carries information on the anharmonicity of the atomic vibrations of the materials. Therefore, its study is expected to provide useful insights to understand the ion transport properties in solids. However, few attentions on the AG parameter of ionic conductors have been paid till now. In the present paper, a comparative study on the temperature dependence of the AG parameter in superionic materials and other crystals is presented. It is shown that the AG parameter of superionic materials exhibit anomalously large temperature dependencies. The relations of this finding with the material properties of ionic conductors are briefly discussed.

  5. Weak Anderson localisation in reverberation rooms and its effect on the uncertainty of sound power measurements

    DEFF Research Database (Denmark)

    Jacobsen, Finn

    2011-01-01

    The effect known as ‘weak Anderson localisation’, ‘coherent backscattering’ or ‘enhanced backscattering’ is a physical phenomenon that occurs in random systems, e.g., disordered media and linear wave systems, including reverberation rooms: the mean square response is increased at the drive point....... In a reverberation room this means that one can expect an increase of the reverberant sound field at the position of the source that generates the sound field. This affects the sound power output of the source and is therefore of practical concern. However, because of the stronger direct sound field...... implications for the uncertainty of sound power measurements....

  6. NMR quantum simulation of localization effects induced by decoherence

    OpenAIRE

    Alvarez, Gonzalo A.; Suter, Dieter

    2010-01-01

    The loss of coherence in quantum mechanical superposition states limits the time for which quantum information remains useful. Similarly, it limits the distance over which quantum information can be transmitted, resembling Anderson localization, where disorder causes quantum mechanical states to become localized. Here, we investigate in a nuclear spin-based quantum simulator, the localization of the size of spin clusters that are generated by a Hamiltonian driving the transmission of informat...

  7. Electronic structure and correlations of vitamin B12 studied within the Haldane-Anderson impurity model

    Science.gov (United States)

    Kandemir, Zafer; Mayda, Selma; Bulut, Nejat

    2016-04-01

    We study the electronic structure and correlations of vitamin B12 (cyanocobalamine) by using the framework of the multi-orbital single-impurity Haldane-Anderson model of a transition-metal impurity in a semiconductor host. The parameters of the effective Haldane-Anderson model are obtained within the Hartree-Fock (HF) approximation. The quantum Monte Carlo (QMC) technique is then used to calculate the one-electron and magnetic correlation functions of this effective model. We observe that new states form inside the semiconductor gap found by HF due to the intra-orbital Coulomb interaction at the impurity 3d orbitals. In particular, the lowest unoccupied states correspond to an impurity bound state, which consists of states from mainly the CN axial ligand and the corrin ring as well as the Co eg-like orbitals. We also observe that the Co (3d) orbitals can develop antiferromagnetic correlations with the surrounding atoms depending on the filling of the impurity bound states. In addition, we make comparisons of the HF+QMC data with the density functional theory calculations. We also discuss the photoabsorption spectrum of cyanocobalamine.

  8. Portuguese validation of the Symptom Inventory of the M.D. Anderson Cancer Center

    Directory of Open Access Journals (Sweden)

    Adriane Cristina Bernat Kolankiewicz

    2014-12-01

    Full Text Available Objective To analyze the reliability and validity of the psychometric properties of the Brazilian version of the instrument for symptom assessment, titled MD Anderson Symptom Inventory - core. Method A cross-sectional study with 268 cancer patients in outpatient treatment, in the municipality of Ijuí, state of Rio Grande do Sul, Brazil. Results The Cronbach’s alpha for the MDASI general, symptoms and interferences was respectively (0.857, (0.784 and (0.794. The factor analysis showed adequacy of the data (0.792. In total, were identified four factors of the principal components related to the symptoms. Factor I: sleep problems, distress (upset, difficulties in remembering things and sadness. Factor II: dizziness, nausea, lack of appetite and vomiting. Factor III: drowsiness, dry mouth, numbness and tingling. Factor IV: pain, fatigue and shortness of breath. A single factor was revealed in the component of interferences with life (0.780, with prevalence of activity in general (59.7%, work (54.9% and walking (49.3%. Conclusion The Brazilian version of the MD Anderson Symptom Inventory - core showed adequate psychometric properties in the studied population.

  9. Dr Walter Henry Anderson (1870-1937) and the mission hospital at Safed, Palestine.

    Science.gov (United States)

    Stokes, Gordon S

    2013-02-01

    Walter Henry Anderson, a brewer's clerk in Burton-upon-Trent, became a missionary doctor, supported by a society promoting welfare and evangelism in Jewish communities abroad. His family background was rich in pastoral ministry at home and adventure abroad. Arguably, this background played a part in his decision to serve the Jews of Safed. His life in Palestine entailed much enterprise and hardship as he raised a family, fought disease and set up a mission hospital serving not only the Jewish community but persons of all faiths. His years in Palestine, from 1894 to 1915, were times of peace in the Middle East before the turmoil unleashed by the Great War. Jews from the Diaspora were gaining an increasing foothold in Palestine, their 'Promised Land'. Themes of that era - the rise of Zionism, confrontation between Judaism and evangelical Christianity, conflict between immigrant Jew and Palestinian Arab and the remarkable travels of Lawrence of Arabia were interwoven with the lives of Dr Anderson and his family. PMID:23610230

  10. Analysis of Anderson Acceleration on a Simplified Neutronics/Thermal Hydraulics System

    Energy Technology Data Exchange (ETDEWEB)

    Toth, Alex [North Carolina State University (NCSU), Raleigh; Kelley, C. T. [North Carolina State University (NCSU), Raleigh; Slattery, Stuart R [ORNL; Hamilton, Steven P [ORNL; Clarno, Kevin T [ORNL; Pawlowski, R. P. P. [Sandia National Laboratories (SNL)

    2015-01-01

    ABSTRACT A standard method for solving coupled multiphysics problems in light water reactors is Picard iteration, which sequentially alternates between solving single physics applications. This solution approach is appealing due to simplicity of implementation and the ability to leverage existing software packages to accurately solve single physics applications. However, there are several drawbacks in the convergence behavior of this method; namely slow convergence and the necessity of heuristically chosen damping factors to achieve convergence in many cases. Anderson acceleration is a method that has been seen to be more robust and fast converging than Picard iteration for many problems, without significantly higher cost per iteration or complexity of implementation, though its effectiveness in the context of multiphysics coupling is not well explored. In this work, we develop a one-dimensional model simulating the coupling between the neutron distribution and fuel and coolant properties in a single fuel pin. We show that this model generally captures the convergence issues noted in Picard iterations which couple high-fidelity physics codes. We then use this model to gauge potential improvements with regard to rate of convergence and robustness from utilizing Anderson acceleration as an alternative to Picard iteration.

  11. Extending the Newns-Anderson model to molecules with floppy degrees of freedom. Validation by electronic structure calculations

    CERN Document Server

    Baldea, Ioan

    2012-01-01

    In cases where reorganization is important, present theoretical studies of molecular transport have inherently to resort to models. The Newns-Anderson model is ubiquitous for this purpose but, to author's knowledge, attempts to validate/challenge this model by microscopic calculations are missing in the literature. In this work, results of electronic structure calculations are presented, which demonstrate that the conventional Newns-Anderson model fails to describe redox-active tunneling junctions of recent experimental interest. For the case considered, the ($4, 4^\\prime$)-bipyridine molecule, the failure traces back to the floppy degree of freedom represented by the relative rotation of the two pyridine rings. Expressions that generalize the Newns-Anderson model are deduced, which include significant anharmonicities. These expressions can be straightforwardly utilized as input information in calculations of the partially coherent transport.

  12. Alternating Anderson-Richardson method: An efficient alternative to preconditioned Krylov methods for large, sparse linear systems

    CERN Document Server

    Suryanarayana, Phanish; Pask, John E

    2016-01-01

    We generalize the recently proposed Alternating Anderson-Jacobi (AAJ) method (Pratapa et al., J. Comput. Phys. (2016), 306, 43--54) to include preconditioning, and demonstrate its efficiency and scaling in the solution of large, sparse linear systems on parallel computers. The resulting preconditioned Alternating Anderson-Richardson (AAR) method reduces to the AAJ method for a particular choice of preconditioner. The AAR method employs Anderson extrapolation at periodic intervals within a preconditioned Richardson iteration to accelerate convergence. In this work, we develop a version of the method that is particularly well suited for scalable high-performance computing. In applications to Helmholtz and Poisson equations, we show that the strong and weak parallel scaling of AAR is superior to both Generalized Minimal Residual (GMRES) and Conjugate Gradient (CG) methods, using the same preconditioning, in large-scale parallel calculations employing up to 110,592 computational cores. Moreover, we find that the ...

  13. The Discovery of Anti-Matter The Autobiography of Carl David Anderson, the Youngest Man to Win the Nobel Prize

    CERN Document Server

    1999-01-01

    In 1936, at age 31, Carl David Anderson became the second youngest Nobel laureate for his discovery of antimatter when he observed positrons in a cloud chamber.He is responsible for developing rocket power weapons that were used in World War II.He was born in New York City in 1905 and was educated in Los Angeles. He served for many years as a physics professor at California Institute of Technology. Prior to Oppenheimer, Anderson was offered the job of heading the Los Alamos atomic bomb program but could not assume the role because of family obligations.He was a pioneer in studying cosmic rays

  14. Excited atoms. Vozbuzhdennye atomy

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, B.M.

    1982-01-01

    An examination is made of the properties of excited atoms and molecules, the processes of their formation in a gas and plasma, and the diffusion of excited atoms in a gas. A presentation is made of the processes in which excited and metastable atoms and molecules in a gas are destroyed upon collision with electrons, atoms, and molecules. A study is made of the relaxation of excited states during collisions - excitation transfer, depolarization, transitions between fine structure states, etc. Information is given on ionization that includes the participation of excited atoms - the Penning process, associative ionization. An examination is made of highly excited states of atoms and the processes that take place during their participation. The book is intended for personnel in the area of physics and chemistry of plasma, atomic and molecular physics, chemical physics as well as in allied areas of physics. 1280 references, 52 figures, 76 tables.

  15. IEEE Milestone at CERN - W Cleon Anderson (right), president of the Institute of Electrical and Electronics Engineers, unveils the Milestone plaque at CERN, together with Georges Charpak

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    At a ceremony on 26 September at CERN, W Cleon Anderson, president of the Institute of Electrical and Electronics Engineers (IEEE), formally dedicated a "Milestone" plaque in recognition of the invention of electronic particle detectors at CERN. The plaque was unveiled by Anderson and Georges Charpak, the Nobel-prize winning inventor of wire-chamber technology at CERN.

  16. Plasmoelectronics: coupling plasmonic excitation with electron flow.

    Science.gov (United States)

    Warren, Scott C; Walker, David A; Grzybowski, Bartosz A

    2012-06-19

    Explorations of the coupling of light and charge via localized surface plasmons have led to the discovery that plasmonic excitation can influence macroscopic flows of charge and, conversely, that charging events can change the plasmonic excitation. We discuss recent theory and experiments in the emerging field of plasmoelectronics, with particular emphasis on the application of these materials to challenges in nanotechnology, energy use, and sensing. PMID:22385329

  17. Nuclear structure studies using the high resolution spectrometer at the Los Alamos Clinton P. Anderson Meson Physics Facility: Annual progress report, [1987-1988

    International Nuclear Information System (INIS)

    This document constitutes the (1987 to 1988) progress report for the ongoing medium energy nuclear physics research program supported by the US Department of Energy with the University of Texas at Austin. A major part of the work has been and will continue to be associated with research done at the Los Alamos Clinton P. Anderson Meson Physics Facility (LAMPF) using the High Resolution Spectrometer (HRS), the External Proton Beam (EPB), and the new Neutron Time of Flight Facility (NTOF). Other research is done at the Fermi National Accelerator Laboratory (FNAL). The research focuses on (1) providing proton + nucleus data which test nonrelativistic and relativistic models of the medium energy proton + nucleus interaction, (2) providing (p,p) and (p,n) data which are to be analyzed to provide new nuclear structure information (both ground state and excited state), (3) providing nucleon + nucleon data to aid in the systematic study of the fundamental nucleon-nucleon interaction, (4) developing and improving the proton + nucleus theoretical models themselves, and (5) initiating new experimental programs whose goals are to search for new phenomena in nuclear physics. 182 refs., 71 figs., 5 tabs

  18. Leveraging Anderson Acceleration for improved convergence of iterative solutions to transport systems

    International Nuclear Information System (INIS)

    In this note we demonstrate that using Anderson Acceleration (AA) in place of a standard Picard iteration can not only increase the convergence rate but also make the iteration more robust for two transport applications. We also compare the convergence acceleration provided by AA to that provided by moment-based acceleration methods. Additionally, we demonstrate that those two acceleration methods can be used together in a nested fashion. We begin by describing the AA algorithm. At this point, we will describe two application problems, one from neutronics and one from plasma physics, on which we will apply AA. We provide computational results which highlight the benefits of using AA, namely that we can compute solutions using fewer function evaluations, larger time-steps, and achieve a more robust iteration

  19. Multichannel Numerical Renormalization Group study of the Anderson Hamiltonian with multiple impurities

    Science.gov (United States)

    Stokes, James; Konik, Robert

    2014-03-01

    Using the Numerical Renormalization Group (NRG), the low energy sector of the Anderson Hamiltonian with two impurities in parallel has been previously argued to be consistent with an underscreened spin-1 Kondo effect (R. Zitko and J. Bonca, Phys. Rev. B 76, 241305 (2007); Logan et al., Phys. Rev. B 80, 125117 (2009)). Bethe Ansatz and slave boson calculations have given the ground state as a singlet (M. Kulkarni and R. M. Konik, Phys. Rev. B 83, 245121 (2011)). As an attempt to understand these differences, we have developed a modified NRG routine that takes into account the multiple channels arising from the logarithmic discretization of the Fermi sea. This could conceivably allow for more complicated screening processes suggested by the Bethe ansatz computations. Results of studies using this code for various numbers of impurities and channels will be presented and discussed in relationship to these conflicting views.

  20. Positivity of Lyapunov exponents for Anderson-type models on two coupled strings

    Directory of Open Access Journals (Sweden)

    Hakim Boumaza

    2007-03-01

    Full Text Available We study two models of Anderson-type random operators on two deterministically coupled continuous strings. Each model is associated with independent, identically distributed four-by-four symplectic transfer matrices, which describe the asymptotics of solutions. In each case we use a criterion by Gol'dsheid and Margulis (i.e. Zariski denseness of the group generated by the transfer matrices in the group of symplectic matrices to prove positivity of both leading Lyapunov exponents for most energies. In each case this implies almost sure absence of absolutely continuous spectrum (at all energies in the first model and for sufficiently large energies in the second model. The methods used allow for singularly distributed random parameters, including Bernoulli distributions.

  1. Leveraging Anderson Acceleration for improved convergence of iterative solutions to transport systems

    Energy Technology Data Exchange (ETDEWEB)

    Willert, Jeffrey; Taitano, William T.; Knoll, Dana

    2014-09-15

    In this note we demonstrate that using Anderson Acceleration (AA) in place of a standard Picard iteration can not only increase the convergence rate but also make the iteration more robust for two transport applications. We also compare the convergence acceleration provided by AA to that provided by moment-based acceleration methods. Additionally, we demonstrate that those two acceleration methods can be used together in a nested fashion. We begin by describing the AA algorithm. At this point, we will describe two application problems, one from neutronics and one from plasma physics, on which we will apply AA. We provide computational results which highlight the benefits of using AA, namely that we can compute solutions using fewer function evaluations, larger time-steps, and achieve a more robust iteration.

  2. Classical mapping for Hubbard operators: Application to the double-Anderson model

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bin; Miller, William H. [Department of Chemistry and Kenneth S. Pitzer Center for Theoretical Chemistry, University of California, and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Levy, Tal J.; Rabani, Eran [School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel)

    2014-05-28

    A classical Cartesian mapping for Hubbard operators is developed to describe the nonequilibrium transport of an open quantum system with many electrons. The mapping of the Hubbard operators representing the many-body Hamiltonian is derived by using analogies from classical mappings of boson creation and annihilation operators vis-à-vis a coherent state representation. The approach provides qualitative results for a double quantum dot array (double Anderson impurity model) coupled to fermionic leads for a range of bias voltages, Coulomb couplings, and hopping terms. While the width and height of the conduction peaks show deviations from the master equation approach considered to be accurate in the limit of weak system-leads couplings and high temperatures, the Hubbard mapping captures all transport channels involving transition between many electron states, some of which are not captured by approximate nonequilibrium Green function closures.

  3. Financial protection against nuclear hazards: thirty years' experience under the Price-Anderson Act

    International Nuclear Information System (INIS)

    Supplementing earlier reports on ways to provide financial protection against the potential hazards involved in the production of nuclear energy by analyzing the issues raised in the Silkwood v. Kerr-McGee Corporation decision, the author explores the impact of the case on the availability of funds to compensate the public and any increased exposure of the nuclear industry or the federal government to public liability. She concludes that the decision will have a significant impact on the day-to-day administration of claims, and could lead to higher premiums. The court would have to determine the priority given to claims in the event of a catastrophic accident, in which case the only significant impact would be under amendments to the Price-Anderson Act which resulted in elimination of its coverage or a substantial increase in or elimination of the limitation on liability

  4. Theory of the Anderson impurity model: The Schrieffer endash Wolff transformation reexamined

    International Nuclear Information System (INIS)

    We test the method of infinitesimal unitary transformations recently introduced by Wegner on the Anderson single impurity model. It is demonstrated that infinitesimal unitary transformations in contrast to the Schrieffer endash Wolff transformation allow the construction of an effective Kondo Hamiltonian consistent with the established results in this well understood model. The main reason for this is the intrinsic energy scale separation of Wegner close-quote s approach with respect to arbitrary energy differences coupled by matrix elements. This allows the construction of an effective Hamiltonian without facing a vanishing energy denominator problem. Similar energy denominator problems are troublesome in many models. Infinitesimal unitary transformations have the potential to provide a general framework for the systematic derivation of effective Hamiltonians without such problems. Copyright copyright 1996 Academic Press, Inc

  5. Anderson-Holstein model in two flavors of the noncrossing approximation

    Science.gov (United States)

    Chen, Hsing-Ta; Cohen, Guy; Millis, Andrew J.; Reichman, David R.

    2016-05-01

    The dynamical interplay between electron-electron interactions and electron-phonon coupling is investigated within the Anderson-Holstein model, a minimal model for open quantum systems that embody these effects. The influence of phonons on spectral and transport properties is explored in equilibrium, for nonequilibrium steady state and for transient dynamics after a quench. Both the particle-hole symmetric and the more generic particle-hole asymmetric cases are studied. The treatment is based on two complementary noncrossing approximations, the first of which is constructed around the weak-coupling limit and the second around the polaron limit. In general, the two methods disagree in nontrivial ways, indicating that more reliable approaches to the problem are needed. The frameworks used here can form the starting point for numerically exact methods based on bold-line continuous-time quantum Monte Carlo algorithms capable of treating open systems simultaneously coupled to multiple fermionic and bosonic baths.

  6. The Fate of Rural Hell. Asceticism and Desire in Buddhist Thailand, Benedict Anderson

    OpenAIRE

    Rozenberg, Guillaume

    2014-01-01

    Dans cet ouvrage bref, de la taille d’un gros article (d’ailleurs initialement publié comme tel dans une revue de langue thaïe), agrémenté de nombreuses photographies, Benedict Anderson s’interroge sur un étrange monastère, Wat Phai Rong Wua, qu’il a eu l’occasion de visiter pour la première fois en 1975 et où est il retourné à plusieurs reprises depuis. Cette « sorte de Disneyland religieux » (p. 4), situé dans une zone rurale de la province de Suphanburi, abrite sur plus de 200 000 mètres c...

  7. Buildup of the Kondo effect from real-time effective action for the Anderson impurity model

    Science.gov (United States)

    Bock, Sebastian; Liluashvili, Alexander; Gasenzer, Thomas

    2016-07-01

    The nonequilibrium time evolution of a quantum dot is studied by means of dynamic equations for time-dependent Green's functions derived from a two-particle-irreducible (2PI) effective action for the Anderson impurity model. Coupling the dot between two leads at different voltages, the dynamics of the current through the dot is investigated. We show that the 2PI approach is capable of describing the dynamical buildup of the Kondo effect, which shows up as a sharp resonance in the spectral function, with a width exponentially suppressed in the electron self-coupling on the dot. An external voltage applied to the dot is found to deteriorate the Kondo effect at the hybridization scale. The dynamic equations are evaluated within different nonperturbative resummation schemes, within the direct, particle-particle, and particle-hole channels, as well as their combination, and the results compared with those from other methods.

  8. Oblique Axis Body Fracture: An Unstable Subtype of Anderson Type III Odontoid Fractures—Apropos of Two Cases

    Directory of Open Access Journals (Sweden)

    Hirokazu Takai

    2016-01-01

    Full Text Available Purpose. Anderson type III odontoid fractures have traditionally been considered stable and treated conservatively. However, unstable cases with unfavorable results following conservative treatment have been reported. Methods. We present the cases of two patients who sustained minimally displaced Anderson type III fractures with a characteristic fracture pattern that we refer to as “oblique type axis body fracture.” Results. The female patients aged 90 and 72 years, respectively, were both diagnosed with minimally displaced Anderson type III fractures. Both fractures had a characteristic “oblique type” fracture pattern. The first patient was treated conservatively with cervical spine immobilization in a semirigid collar. However, gross displacement was noted at the 6-week follow-up visit. The second patient was therefore treated operatively by C1–C3/4 posterior fusion and the course was uneventful. Conclusions. Oblique type axis body fractures resemble a highly unstable subtype of Anderson type III fractures with the potential of severe secondary deformity following conservative treatment, irrespective of initial grade of displacement. The authors therefore warrant a high index of suspicion for this injury and suggest early operative stabilization.

  9. Scully : võin ka lolli mängida / Gillian Anderson ; tõlk. Triin Tael

    Index Scriptorium Estoniae

    Anderson, Gillian

    2008-01-01

    USA sarjale "The X-Files" põhinev teine järjefilm "Salatoimikud: Ma tahan uskuda" ("The X-Files: I Want to Believe") : režissöör Chris Carter : peaosades David Duchovny, Gillian Anderson : Ameerika Ühendriigid - Kanada 2008. Intervjuu ilmus juulis portaalis USA Weekend

  10. 77 FR 72906 - Chessie Logistics Co., LLC-Acquisition and Operation Exemption-J. Emil Anderson & Son, Inc.

    Science.gov (United States)

    2012-12-06

    ... Surface Transportation Board Chessie Logistics Co., LLC--Acquisition and Operation Exemption-- J. Emil Anderson & Son, Inc. Chessie Logistics Co., LLC (Chessie), a noncarrier, has filed a verified notice of... copy of each pleading must be served on Ariel A. Erbacher, Legal Counsel, Chessie Logistics Co.,...

  11. Localization of phonon-polaritons in disordered polar media

    OpenAIRE

    Satanin, Arkadii; Joe, Yong; Kim, Chang Sub; Vasilevskiy, Mikhail

    2005-01-01

    The localization of the hybrid modes of phonons and photons in polar matter is investigated in the presence of random scatterers theoretically. We employ the self-consistent generalized Born-Huang approach to derive effective equations describing the phonon-polariton fields. Based on these equations, the density of states and various localization properties are exploited in two-dimensional systems both analytically and numerically within the framework of the Anderson model with a non-Hermi...

  12. Phase diagram and reentrance for the 3D Edwards–Anderson model using information theory

    International Nuclear Information System (INIS)

    Data compressor techniques are used to study the phase diagram of the generalized Edwards–Anderson model in three dimensions covering the full range of mixture between ferromagnetic (concentration 1−x) and antiferromagnetic interactions (concentration x). The recently proposed data compressor wlzip is used to recognize criticality by the maximum information content in the files storing the simulation processes. The method allows not only the characterization of the ferromagnetic to paramagnetic (FP) transition (x<0.22, or x>0.78) but also it equally well yields the spin-glass to paramagnetic (SP) transition (0.22Anderson model. • Ferromagnetic to paramagnetic and spin-glass to paramagnetic transitions are found. • A reentrant behavior is reported near the triple point. • Data compressor wlzip can operate for the full range of the phase diagram. • Results are robust with respect to equilibration and lattices size effects are small

  13. The role of Rh on a substituted Al Anderson heteropolymolybdate: Thermal and hydrotreating catalytic behavior

    Energy Technology Data Exchange (ETDEWEB)

    Cabello, Carmen I. [Centro de Investigacion y Desarrollo en Ciencias Aplicadas Dr. Jorge J. Ronco, CINDECA - CONICET-Universidad Nacional de La Plata, Calle 47 No 257 (1900) La Plata, Buenos Aires (Argentina)]. E-mail: ccabello@quimica.unlp.edu.ar; Munoz, Mercedes [Centro de Investigacion y Desarrollo en Ciencias Aplicadas Dr. Jorge J. Ronco, CINDECA - CONICET-Universidad Nacional de La Plata, Calle 47 No 257 (1900) La Plata, Buenos Aires (Argentina); Botto, Irma L. [Centro de Quimica Inorganica CEQUINOR - CONICET-Universidad Nacional de La Plata (1900) La Plata, Buenos Aires (Argentina); Payen, Edmond [Unite de Catalyse et de Chimie du Solide, UCCS UMR CNRS 8181, Universite des Sciences et Technologies de Lille, Bat. C3, 59655 Villeneuve d' Ascq Cedex (France)

    2006-08-01

    The influence of Rh heteroatom on the molybdenum reducibility in the Anderson-type heteropolyoxomolybdate structure of formula (NH{sub 4}){sub 3}[RhMo{sub 6}O{sub 24}H{sub 6}].7H{sub 2}O was investigated by means of TPR technique. With comparative purposes, the thermal behavior in non-reducing conditions was also carried out by means of TGA-DTA studies. The study was performed by XRD, SEM, EDAX and FTIR-Raman techniques. Results were related to those preliminary measurements over other XMo{sub 6} Anderson phases. Likewise, Rh(III)-Al(III) formal replacement in the RhMo{sub 6} structural arrangement was proved. The formation of a solid solution in a limited range of composition (up to 0.25 Rh) was established in order to explore the catalytic performance of {gamma}-Al{sub 2}O{sub 3} supported planar heteropolyoxomolybdate, aiming at optimizing the noble metal content in the catalytic system. Preliminary measurements of RhMo{sub 6}/{gamma}-Al{sub 2}O{sub 3} and (Rh, Al)Mo{sub 6}/{gamma}-Al{sub 2}O{sub 3} activity for HDS and HYD processes were also performed. These results were compared to those obtained for CoMo{sub 6}/{gamma}-Al{sub 2}O{sub 3} system in similar operating conditions and other conventional catalytic systems. The potentiality and scope of RhMo{sub 6} catalytic system for the HDS and HYD processes were analyzed.

  14. Excited states v.6

    CERN Document Server

    Lim, Edward C

    2013-01-01

    Excited States, Volume 6 is a collection of papers that discusses the excited states of molecules. The first paper discusses the linear polyene electronic structure and potential surfaces, considering both the theoretical and experimental approaches in such electronic states. This paper also reviews the theory of electronic structure and cites some experimental techniques on polyene excitations, polyene spectroscopic phenomenology, and those involving higher states of polyenes and their triplet states. Examples of these experimental studies of excited states involve the high-resolution one-pho

  15. Excited states 2

    CERN Document Server

    Lim, Edward C

    2013-01-01

    Excited States, Volume 2 is a collection of papers that deals with molecules in the excited states. The book describes the geometries of molecules in the excited electronic states. One paper describes the geometries of a diatomic molecule and of polyatomic molecules; it also discusses the determination of the many excited state geometries of molecules with two, three, or four atoms by techniques similar to diatomic spectroscopy. Another paper introduces an ordered theory related to excitons in pure and mixed molecular crystals. This paper also presents some experimental data such as those invo

  16. Low-lying excitations in a strongly interacting Fermi gas

    Science.gov (United States)

    Vale, Christopher; Hoinka, Sascha; Dyke, Paul; Lingham, Marcus

    2016-05-01

    We present measurements of the low-lying excitation spectrum of a strongly interacting Fermi gas across the Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein condensate (BEC) crossover using Bragg spectroscopy. By focussing the Bragg lasers onto the central volume of the cloud we can probe atoms at near-uniform density allowing measurement of the homogeneous density-density response function. The Bragg wavevector is set to be approximately half of the Fermi wavevector to probe the collective response. Below the superfluid transition temperature the Bragg spectra dominated by the Bogoliubov-Anderson phonon mode. Single particle excitations become visible at energies greater than twice the pairing gap. As interactions are tuned from the BCS to BEC regime the phonon and single particle modes separate apart and both the pairing gap and speed of sound can be directly read off in certain regions of the crossover. Single particle pair-breaking excitations become heavily suppressed as interactions are tuned from the BCS to BEC regimes.

  17. Percolation of optical excitation mediated by near-field interactions

    CERN Document Server

    Naruse, Makoto; Takahashi, Taiki; Aono, Masashi; Akahane, Kouichi; D'Acunto, Mario; Hori, Hirokazu; Thylen, Lars; Katori, Makoto; Ohtsu, Motoichi

    2016-01-01

    Optical excitation transfer in nanostructured matter has been intensively studied in various material systems for versatile applications. Herein, we discuss the percolation of optical excitations in randomly organized nanostructures caused by optical near-field interactions governed by Yukawa potential in a two-dimensional stochastic model. The model results demonstrate the appearance of two phases of percolation of optical excitation as a function of the localization degree of near-field interaction. Moreover, it indicates sublinear scaling with percolation distance when the light localization is strong. The results provide fundamental insights into optical excitation transfer and will facilitate the design and analysis of nanoscale signal-transfer characteristics.

  18. Superposition of Fragment Excitations for Excited States of Large Clusters with Application to Helium Clusters.

    Science.gov (United States)

    Closser, Kristina D; Ge, Qinghui; Mao, Yuezhi; Shao, Yihan; Head-Gordon, Martin

    2015-12-01

    We develop a local excited-state method, based on the configuration interaction singles (CIS) wave function, for large atomic and molecular clusters. This method exploits the properties of absolutely localized molecular orbitals (ALMOs), which strictly limits the total number of excitations, and results in formal scaling with the third power of the system size for computing the full spectrum of ALMO-CIS excited states. The derivation of the equations and design of the algorithm are discussed in detail, with particular emphasis on the computational scaling. Clusters containing ∼500 atoms were used in evaluating the scaling, which agrees with the theoretical predictions, and the accuracy of the method is evaluated with respect to standard CIS. A pioneering application to the size dependence of the helium cluster spectrum is also presented for clusters of 25-231 atoms, the largest of which results in the computation of 2310 excited states per sampled cluster geometry. PMID:26609558

  19. Excited states 4

    CERN Document Server

    Lim, Edward C

    2013-01-01

    Excited States, Volume 4 is a collection of papers that deals with the excited states of molecular activity. One paper investigates the resonance Raman spectroscopy as the key to vibrational-electronic coupling. This paper reviews the basic theory of Raman scattering; it also explains the derivation of the Raman spectra, excitation profiles, and depolarization ratios for simple resonance systems. Another paper reviews the magnetic properties of triplet states, including the zero-field resonance techniques, the high-field experiments, and the spin Hamiltonian. This paper focuses on the magnetic

  20. Excited Charm States

    International Nuclear Information System (INIS)

    Characteristics of mass spectra and decays of orbitally excited charm mesons and baryons, expected on the basis of quark models and Heavy Quark Symmetry, are briefly described. The difficulties associated with measurements on these excited states are discussed. The accuracy and reliability of currently available experimental information is examined. The reasons, for the widely accepted spin-parity assignments to the observed excited mesons and baryons, are stated. Finally, the experimental data, with the accepted spin-parity assignments, is compared with expectations based on quark models and Heavy Quark Symmetry

  1. MANAGEMENT OF OPEN FRACTURE OF TIBIA DIAPHYSIS (GUSTILO - ANDERSON CL ASSIFICATION TYPE - II AND ABOVE

    Directory of Open Access Journals (Sweden)

    Viral

    2015-05-01

    Full Text Available BACKGROUND: Open tibia diaphysis fractures are complex injuries a ssociated with a high incidence of soft tissue complications and union. Management of it varies with soft tissue and its outcome requires an aggressive approach towards patient along with revision surgery, so study was conducted to assess the outcome of cl osed proximal tibia fracture management. AIM AND OBJECTIVES: The study was conducted to assess the outcome of compound fractures of tibia managed by interlocking Intra - medullary nailing or External Fixator, to evaluate the incidence of complications and ne ed for secondary procedures in these open fractures and to assess various factors/variables that may affect the outcome of such fractures when treated by these implants. STUDY DESIGN: Prospective type , MATERIALS AND METHODS : 50 consecutive closed tibial pl ateau fractures were included in this study. All fractures were classified according to Gustilo Anderson classification.There were 42 men and 8 women The study was conducted between June 2009 and October 2011 at the Department of Orthopaedics, New Civil hospital, Surat after the Ethical committee approval. The final outcome was assessed using the Modified Ketenjian’s Criteria. The results were analysed using different parameters; male vs. female, age distribution, mode of trauma, functional outcomes and c omplications etc. RESULTS AND CONCLUSION: The average age was 35.6 years with the fracture being more common in the 2 nd to 5th decades. 90 % sustained fracture due to road traffic accident. The most common location of fracture was middle 3rd shaft of tibia (50% and most common type was Open Grade 2 (52% fracture according to Gustilo - Anderson classification. Patients treated by Interlocking nailing(n=33 group had high (90.9% chances of union at final follow up, while only 70.58% of patients had union tre ated by external fixator group(n=17. Functional evaluation were assessed by modified Ketenjian’s criteria, with

  2. Organic-inorganic hybrids constructed by Anderson-type polyoxoanions and copper coordination complexes

    International Nuclear Information System (INIS)

    Four organic-inorganic hybrid compounds based on Anderson-type polyoxoanions, namely, {[Cu(2,2'-bpy)(H2O)3]2[Cr(OH)6Mo6O18]}{[Cu(2,2'-bpy)(H2O)Cl][Cu(2,2'-bpy) (H2O)(NO3)][Cr(OH)6Mo6O18]}.18H2O (1), [Cu(2,2'-bpy)(H2O)2Cl]{[Cu(2,2'-bpy)(H2O)2][Cr(OH)6Mo6O18]}.4H2O (2), (H3O){[Cu(2,2'-bpy)(H2O)2]2[Cu(2,2'-bpy)(H2O)]2}[Cr(OH)6Mo6O18]3.36H2O (3), and (H3O){[Cu(2,2'-bpy)(H2O)2]2[Cu(2,2'-bpy)(H2O)]2}[Al(OH)6Mo6O18]3.33H2O (4), were isolated by conventional solution method, and crystal structures have been determined by single-crystal X-ray diffraction. Among them, compound 1 displays a discrete supramolecular structure, compound 2 shows a chainlike structure with chloro-copper complexes as counteranions, and compounds 3 and 4 are isomorphic and exhibit unique 3D open frameworks with lattice water molecules residing in the channels. The compounds 3 and 4 represent the first example of 3D organic-inorganic hybrid compounds in the TMs/2,2'-bpy/POMs system. Investigation of the reaction conditions reveals that the geometry and size of the anions together with its coordinating abilities to the metal centers have a decisive influence on both the composition and the dimensionality of the final compounds. - Graphical Abstract: Four organic-inorganic hybrids based on Anderson-type polyoxoanions have been synthesized. Compound 1 displays a discrete structure, 2 shows a chainlike structure, 3 and 4 are isomorphic and exhibit unique 3D open frameworks with lattice waters residing in the channels. The different structures suggest that the overall structures of the compounds are influenced by the nature of the acidic anions

  3. The Anderson nomograms for permanent interstitial prostate implants: a briefing for practitioners

    International Nuclear Information System (INIS)

    Purpose: The objective of this report is to re-evaluate the role of the Anderson nomograms in treatment planning for permanent prostate implants. The incentive for revisiting this topic concerns three issues: (1) Although nomograms continue to be used in many centers for ordering seeds, few centers use them during treatment planning; (2) Whereas nomograms were designed to deliver a minimum peripheral dose for a uniform distribution of seeds in the gland, many practitioners use peripheral seed loading patterns to reduce urethral toxicity; and (3) As preoperative and intraoperative treatment planning is becoming standard, the apparent role of nomograms is diminished. The nomogram method is reviewed in terms of: (1) total activity predicted, (2) target coverage (as planned in the operating room and as calculated from postimplant computed tomography studies), and (3) reproducibility (i.e., patient-to-patient and planner-to-planner variability). In each case, the computer-optimization system for intraoperative planning currently in use at our institution was taken as the 'gold standard'. Methods and Materials: We compared for the same patient the results of nomogram planning to those yielded by genetic algorithm (GA) optimization in terms of total activity predicted (n=20 cases) and percent target coverage (n=5 cases). Furthermore, we examined retrospectively the dosimetry of 61 prostate implants planned with the GA (n=27) and the current implementation of Anderson nomograms (n=34). Results: Nomogram predictions of the total activity required are in good agreement (within 10%) with the GA-planned activity. However, computer-optimized plans consistently yield superior plans, as reflected in both pre- and postimplant analyses. We find also that user (specifically, treatment planner) implementation of the nomograms may be a major source of variability in nomogram planning - a difficulty to which robust computer optimization is less prone. Conclusions: Nomograms continue to

  4. Isobar excitations in nuclei

    International Nuclear Information System (INIS)

    This paper covers the following aspects of isobar excitations in nuclei: Nuclear spin response; Electromagnetic probes; Pion-nuclear reactions; Baryon charge exchange reactions; Charge exchange reactions on nuclei; and Exclusive spectra

  5. Excitable Scale Free Networks

    CERN Document Server

    Copelli, Mauro

    2007-01-01

    When a simple excitable system is continuously stimulated by a Poissonian external source, the response function (mean activity versus stimulus rate) generally shows a linear saturating shape. This is experimentally verified in some classes of sensory neurons, which accordingly present a small dynamic range (defined as the interval of stimulus intensity which can be appropriately coded by the mean activity of the excitable element), usually about one or two decades only. The brain, on the other hand, can handle a significantly broader range of stimulus intensity, and a collective phenomenon involving the interaction among excitable neurons has been suggested to account for the enhancement of the dynamic range. Since the role of the pattern of such interactions is still unclear, here we investigate the performance of a scale-free (SF) network topology in this dynamic range problem. Specifically, we study the transfer function of disordered SF networks of excitable Greenberg-Hastings cellular automata. We obser...

  6. Characterizing and improving generalized belief propagation algorithms on the 2D Edwards–Anderson model

    International Nuclear Information System (INIS)

    We study the performance of different message passing algorithms in the two-dimensional Edwards–Anderson model. We show that the standard belief propagation (BP) algorithm converges only at high temperature to a paramagnetic solution. Then, we test a generalized belief propagation (GBP) algorithm, derived from a cluster variational method (CVM) at the plaquette level. We compare its performance with BP and with other algorithms derived under the same approximation: double loop (DL) and a two-way message passing algorithm (HAK). The plaquette-CVM approximation improves BP in at least three ways: the quality of the paramagnetic solution at high temperatures, a better estimate (lower) for the critical temperature, and the fact that the GBP message passing algorithm converges also to nonparamagnetic solutions. The lack of convergence of the standard GBP message passing algorithm at low temperatures seems to be related to the implementation details and not to the appearance of long range order. In fact, we prove that a gauge invariance of the constrained CVM free energy can be exploited to derive a new message passing algorithm which converges at even lower temperatures. In all its region of convergence this new algorithm is faster than HAK and DL by some orders of magnitude

  7. Basic Properties of Conductivity and Normal Hall Effect in the Periodic Anderson Model

    Science.gov (United States)

    Watanabe, Shinji; Miyake, Kazumasa

    2016-04-01

    Exact formulas of diagonal conductivity σxx and Hall conductivity σxy are derived from the Kubo formula in hybridized two-orbital systems with arbitrary band dispersions. On the basis of the theoretical framework for the Fermi liquid based on these formulas, the ground-state properties of the periodic Anderson model with electron correlation and weak impurity scattering are studied on the square lattice. It is shown that imbalance of the mass-renormalization factors causes remarkable increase in σxx and σxy in the valence-fluctuation regime as the f level increases while the cancellation of the renormalization factors causes slight increase in σxx and σxy in the Kondo regime. The Hall coefficient RH shows almost constant behavior in both the regimes. Near half filling, RH is expressed by the total hole density as R{H} = 1/(bar{n}{hole}e) while RH approaches zero near quarter filling, which reflects the curvature of the Fermi surface. These results hold as far as the damping rate for f electrons is less than about 10% of the renormalized hybridization gap. From these results we discuss pressure dependence of residual resistivity and normal Hall effect in Ce- and Yb-based heavy electron systems.

  8. An inventory of wetlands in the East Fork Poplar Creek floodplain, Anderson and Roane Counties, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-12-01

    An inventory of wetlands within the floodplain of East Fork Poplar Creek (EFPC) in Anderson and Roane Counties, Tennessee was conducted during October, 1991 through May, 1992 for the US Department of Energy (DOE) by the US Army Corps of Engineers, Nashville District. About 15 miles of EFPC channel and 500 acres of its floodplain are contaminated with mercury and other contaminants released from the Y-12 Plant on the DOE Oak Ridge Reservation. The wetland inventory will serve as baseline information for DOE`s remedial action planning and National Environmental Policy Act compliance efforts related to the contamination. In order to provide broad wetland determinations beyond which future wetland definitions are unlikely to expand, the 1989 Federal Manual for Identifying And Delineating Jurisdictional Wetlands was utilized. Using the manual`s methodology in a contaminated system under the approved health and safety plan presented some unique problems, resulting in intrusive sampling for field indicators of hydric soils being accomplished separately from observation of other criteria. Beginning with wetland areas identified on National Wetland Inventory Maps, the entire floodplain was examined for presence of wetland criteria, and 17 wetlands were identified ranging from 0.01 to 2.81 acres in size. The majority of wetlands identified were sized under 1 acre. Some of the wetlands identified were not delineated on the National Wetland Inventory Maps, and much of the wetland area delineated on the maps did not meet the criteria under the 1989 manual.

  9. Nonequilibrium transport in the Anderson-Holstein model with interfacial screening

    Science.gov (United States)

    Perfetto, Enrico; Stefanucci, Gianluca

    Image charge effects in nanoscale junctions with strong electron-phonon coupling open the way to unexplored physical scenarios. Here we present a comprehensive study of the transport properties of the Anderson-Holstein model in the presence of dot-lead repulsion. We propose an accurate many-body approach to deal with the simultaneous occurrence of the Franck-Condon blockade and the screening-induced enhancement of the polaron mobility. Remarkably, we find that a novel mechanism of negative differential conductance origins from the competition between the charge blocking due to the electron-phonon interaction and the charge deblocking due to the image charges. An experimental setup to observe this phenomenon is discussed. References [1]E. Perfetto, G. Stefanucci and M. Cini, Phys. Rev. B 85, 165437 (2012). [2] E. Perfetto and G. Stefanucci, Phys. Rev. B 88, 245437 (2013). [3] E. Perfetto and G. Stefanucci, Journal of Computational Electronics 14, 352 (2015). E.P. and G.S. acknowledge funding by MIUR FIRB Grant No. RBFR12SW0J.

  10. Initiating tumor banking for translational research: MD Anderson and Liverpool experience.

    Science.gov (United States)

    Mishra, A; Pandey, A; Shaw, R

    2007-01-01

    The ultimate progress in the cancer diagnosis and therapy has only been possible with the ongoing translational research that is likely to play a very important role in future as well. Hence the importance of such translation from bedside to bench and vis versa cannot be over-emphasized. Accordingly it has become more important to collect tumor samples along with the clinical information in a systematic manner to perform a good basic science research in future. With a population of over a billion and a heavy burden of cancer, India has the 'biggest' potential to establish the 'largest' tumor bank across the globe. Establishing a tumor bank involves money and manpower that may not be feasible across most of the centers in India. Taking into the considering the model of tumor banking of the two leading institutions of the world (MD Anderson Cancer Center, USA and University Hospital Aintree, Liverpool UK), this article presents the salient tips for a center in India to get started with tumor banking with minimal investment. Furthermore a simplified form of ethical consent is presented for the centers to adapt unanimously. PMID:17401220

  11. : Community of Inquiry en E-learning : à propos du modèle de Garrison et d'Anderson

    OpenAIRE

    Jézégou, Annie

    2010-01-01

    This article is based on a constructively critical analysis of the model of community of inquiry developed by Garrison and Anderson (2003) as part of a research conducted in the area of e-learning. The authors claim that certain collaborative interactions create "distant presence" fostering the emergence of a community of inquiry which has a positive influence on individual and collective learning. More specifically, the article points out that until now, the model's theoretical foundations h...

  12. Community of Inquiry en E-learning : à propos du modèle de Garrison et d'Anderson

    OpenAIRE

    Jézégou, Annie

    2010-01-01

    This article is based on a constructively critical analysis of the model of Community of Inquiry developed by Garrison and Anderson (2003) as part of research conducted in the area of e-learning. The authors claim that certain collaborative interactions create “distant presence” fostering the emergence of a community of inquiry which has a positive influence on individual and collective learning. More specifically, the article points out that until now the model's theoretical foundations had ...

  13. Book review: Windows of opportunity: how women seize peace negotiations for political change by Miriam J. Anderson

    OpenAIRE

    Thomson, Jennifer

    2016-01-01

    Why, even when women have not been intimately involved in conflicts, do peace agreements so frequently contain reference to their rights? In Windows of Opportunity: How Women Seize Peace Negotiations for Political Change, Miriam J. Anderson examines how provisions relating to gender and women’s rights have been part of peace negotiations through three case studies of conflict resolution in Burundi, Macedonia and Northern Ireland as well as discussion of 195 peace agreements signed between 197...

  14. Nailing the Coffin Shut on Doubts that Violent Video Games Stimulate Aggression ∼Comment on Anderson et al. (2010).

    OpenAIRE

    Huesmann, L. Rowell

    2010-01-01

    Over the past half-century the mass media, including video games, have become important socializers of children. Observational learning theory has evolved into social-cognitive information processing models that explain that what a child observes in any venue has both short-term and long-term influences on the child's behaviors and cognitions. Anderson's (2010) extensive meta-analysis of the effects of violent video games confirms what these theories predict and what prior research about othe...

  15. The Paean of Old People’s Love--The Appreciation and Analysis of Burns’John Anderson, My Jo

    Institute of Scientific and Technical Information of China (English)

    李圣轩

    2013-01-01

    Robert Burns is a great Romanticism poet in Scotland; his poem absorbs the essence of Scotland ballad, and has the national feature. The poem John Anderson, My Jo, Burns chooses the subject matter from the old people’s love and praises their love as if praises the beautiful setting sun. This paper aims to appreciate this poem from the perspective of rhythm, content and form.

  16. Two independent pivotal statistics that test location and misspecification and add-up to the Anderson-Rubin statistic

    OpenAIRE

    Kleibergen, F.R.

    2002-01-01

    We extend the novel pivotal statistics for testing the parameters in the instrumental variables regression model. We show that these statistics result from a decomposition of the Anderson-Rubin statistic into two independent pivotal statistics. The first statistic is a score statistic that tests location and the second statistic tests misspecification. We obtain the conditional distribution of the likelihood ratio statistic that tests location in case of multiple parameters of interest. This ...

  17. Quantum Electrodynamics with Semiconductor Quantum Dots Coupled to Anderson‐localized Random Cavities

    DEFF Research Database (Denmark)

    Sapienza, Luca; Nielsen, Henri Thyrrestrup; Stobbe, Søren;

    2011-01-01

    spontaneous emission decay rate by up to a factor 15 and an efficiency of channeling single photons into Anderson-localized modes reaching values as high as 94%. These results prove that disordered photonic media provide an efficient platform for quantum electrodynamics, offering a novel route to quantum...

  18. Clinical use of the combined Sclarovsky Birnbaum Severity and Anderson Wilkins Acuteness scores from the pre-hospital ECG in ST-segment elevation myocardial infarction

    DEFF Research Database (Denmark)

    Fakhri, Yama; Schoos, Mikkel M; Clemmensen, Peter;

    2014-01-01

    This review summarizes the electrocardiographic changes during an evolving ST segment elevation myocardial infarction and discusses associated electrocardiographic scores and the potential use of these indices in clinical practice, in particular the ECG scores developed by Anderson and Wilkins...

  19. Influence of local spin polarization to the Kondo effect

    Institute of Scientific and Technical Information of China (English)

    LI Huan; GUO Wei

    2007-01-01

    We use the spin non-degenerate single impurity Anderson model to investigate the influence of the local spin polarization to the Kondo effect. By using the Schrieffer-Wolff transformation, we obtain a generalized s-d exchange Hamiltonian, which describes the interaction between a polarized local spin and conduction electrons. In this case, the singlet is no longer an eigenstate as shown by variational calculations where the splitting of the local energy △= εd↑ - εd↓ can be arbitrarily small. The local spin polarization generates the instability of the singlet ground state of the S = 1/2 s-d exchange model.

  20. Route to strong localization of light: The role of disorder

    KAUST Repository

    Molinari, Diego P.

    2012-01-01

    By employing Random Matrix Theory (RMT) and firstprinciple calculations, we investigated the behavior of Anderson localization in 1D, 2D and 3D systems characterized by a varying disorder. In particular, we considered random binary layer sequences in 1D and structurally disordered photonic crystals in two and three dimensions. We demonstrated the existence of a unique optimal degree of disorder that yields the strongest localization possible. In this regime, localized modes are constituted by defect states, which can show subwavelength confinement properties. These results suggest that disorder offers a new avenue for subwavelength light localization in purely dielectric media. © 2012 Optical Society of America.

  1. Spin-selective localization of correlated lattice fermions

    Science.gov (United States)

    Skolimowski, J.; Vollhardt, D.; Byczuk, K.

    2015-09-01

    The interplay between local, repulsive interactions and disorder acting only on one spin orientation of lattice fermions ("spin-dependent disorder") is investigated. The nonmagnetic disorder vs interaction phase diagram is computed using dynamical mean-field theory in combination with the geometric average over disorder. The latter determines the typical local density of states and is therefore sensitive to Anderson localization. The effect of spin-dependent disorder is found to be very different from that of conventional disorder. In particular, it destabilizes the metallic solution and leads to a spin-selective, localized phase at weak interactions and strong disorder.

  2. Excitable solitons in a semiconductor laser with a saturable absorber

    Science.gov (United States)

    Turconi, Margherita; Prati, Franco; Barland, Stéphane; Tissoni, Giovanna

    2015-11-01

    Self-pulsing cavity solitons may exist in a semiconductor laser with an intracavity saturable absorber. They show locally the passive Q -switching behavior that is typical of lasers with saturable absorbers in the plane-wave approximation. Here we show that excitable cavity solitons are also possible in a suitable parameter range and characterize their excitable dynamics and properties.

  3. Nuclear structure studies using the high resolution spectrometer at The Los Alamos Clinton P. Anderson Meson Physics Facility. Technical progress report

    International Nuclear Information System (INIS)

    A major part of the work is associated with research done using the High Resolution Spectrometer (HRS) at the Los Alamos Clinton P. Anderson Meson Physics Facility (LAMPF); this research focuses on (1) providing data which test nonrelativistic and relativistic microscopic models of the medium energy proton + nucleus interaction, (2) providing data which are to be analyzed to provide new nuclear structure information (both ground state and excited state), and (3) developing and improving the models themselves. Progress is detailed on the following studies: (A) the relativistic impulse approximation; (B) Exp 425/433/479: p + nucleus elastic and inelastic scattering at 500 MeV; (C) Exp 654: measurement of spin-rotation parameter Q for 800 MeV p + nucleus elastic scattering; (D) Exp 470: reactive content of the optical potential at 800 MeV; (E) Exp 642: 800 MeV (vector p,p') inclusive cross sections and analyzing powers; (F) Exp 392: a measurement of the Wolfenstein amplitudes for p - p and p - n scattering at 800 MeV; (G) Exp 626: measurement of triple scattering parameters for 800 MeV inclusive (vector p,p') on 1H, 2H, and 12C; (H) Exp 686U: P + 208Pb elastic and inelastic scattering at 318 MeV; (I) Exp 736: P + 40,48Ca, 54Fe elastic scattering at 318 MeV; (J) Exp 563: P + P elastic scattering at 500 and 800 MeV; (K) Exp 760: P + 1H, 40Ca, and 208Pb elastic and inelastic scattering at 650 MeV; (L) BNL Exp 758: observation of hypernuclei in the 12C(π+,K+)/sub lambda/12C reaction; (M) theoretical study of kaon + nucleus elastic and inelastic scattering; and (N) theoretical determination of effective interactions. Publications are listed

  4. 1/(n-1) expansion for an Anderson impurity with N-fold degeneracy: a new large-N scheme based on a perturbation theory in U

    International Nuclear Information System (INIS)

    Full text: We describe a new large-N approach, which is referred to as 1/(N-1) expansion, to an N-fold degenerate Anderson impurity model with a finite Coulomb interaction U [1,2]. This approach is different from the usual 1/N expansion [3], non-crossing approximation [4], and recent developments [5,6] along the conventional large-N theory which is based on a perturbation expansion with respect to the tunneling matrix element v, between the impurity and conduction electrons, and on a scaling that takes Nv2 as a constant independent of N. In contrast, our formulation starts with the perturbation theory in U, for which a standard Feynman-diagrammatic analysis is applicable. Then, the perturbation series in U is reorganized as an expansion in powers of 1/(N-1), using the scaling that takes u=(N-1)U as an independent variable. The factor N-1 represents the number of interacting orbitals, excluding the one prohibited by the Pauli principle. This approach can be regarded as a fermionic analogue of an expansion scheme that was constructed for the bosonic N-component φ4 model for critical phenomena [7], and can be used to explore low-energy properties of quantum impurities and also lattice-fermion systems such as the Hubbard and periodic Anderson models. Our expansion scheme provides the Hartree-Fock (HF) approximation at zero order, where the limit N → ∞ is taken keeping u finite. Then, to leading order in 1/(N-1) it describes the Hartree-Fock random phase approximation (HF-RPA). The higher-order corrections, starting from order 1/(N-1)2 terms, describe systematically the fluctuations beyond the HF-RPA. We have calculated the renormalized parameters for the local-Fermi-liquid ground state up to terms of order 1/(N-1)2, and found that the results agree very closely with the exact numerical-renormalization-group results already at N=4, where the degeneracy is still not large. This ensures the reliability of our approach for N≥4. Note that the case for N=2 corresponds

  5. Vacuum excitation by sudden (dis-)appearance of a Dirichlet wall in a cavity

    CERN Document Server

    Harada, Tomohiro; Miyamoto, Umpei

    2016-01-01

    Vacuum excitation by time-varying boundary conditions is not only of fundamental importance but also has recently been confirmed in a laboratory experiment. In this paper, we study the vacuum excitation of a scalar field by the instantaneous appearance and disappearance of a both-sided Dirichlet wall in the middle of a 1D cavity, as toy models of bifurcating and merging spacetimes, respectively. It is shown that the energy flux emitted positively diverges on the null lines emanating from the (dis-)appearance event, which is analogous to the result of Anderson and DeWitt. This result suggests that the semiclassical effect prevents the spacetime both from bifurcating and merging. In addition, we argue that the diverging flux in the disappearance case plays an interesting role to compensate for the lowness of ambient energy density after the disappearance, which is lower than the zero-point level.

  6. Vacuum excitation by sudden appearance and disappearance of a Dirichlet wall in a cavity

    Science.gov (United States)

    Harada, Tomohiro; Kinoshita, Shunichiro; Miyamoto, Umpei

    2016-07-01

    Vacuum excitation by time-varying boundary conditions is not only of fundamental importance but also has recently been confirmed in a laboratory experiment. In this paper, we study the vacuum excitation of a scalar field by the instantaneous appearance and disappearance of a two-sided Dirichlet wall in the middle of a one-dimensional cavity, as toy models of bifurcating and merging spacetimes, respectively. It is shown that the energy flux emitted positively diverges on the null lines emanating from the appearance and disappearance events, which is analogous to the result of Anderson and DeWitt. This result suggests that the semiclassical effect prevents the spacetime both from bifurcating and merging. In addition, we argue that the diverging flux in the disappearance case plays an interesting role to compensate for the low ambient energy density after the disappearance, which is lower than the zero-point level.

  7. Localization in lattice QCD (with emphasis on practical implications)

    OpenAIRE

    Golterman, Maarten; Shamir, Yigal

    2003-01-01

    When Anderson localization takes place in a quenched disordered system, a continuous symmetry can be broken spontaneously without accompanying Goldstone bosons. Elaborating on this observation we propose a unified, microscopic physical picture of the phase diagram of both quenched and unquenched QCD with two flavors of Wilson fermions. The phase with Goldstone bosons -- by definition the Aoki phase -- is always identified as the region where the mobility edge of the (hermitian) Wilson operato...

  8. Many-body-localization transition: strong multifractality spectrum for matrix elements of local operators

    Science.gov (United States)

    Monthus, Cécile

    2016-07-01

    For short-ranged disordered quantum models in one dimension, the many-body-localization is analyzed via the adaptation to the many-body context (Serbyn et al 2015 Phys. Rev. X 5 041047) of the Thouless point of view on the Anderson transition: the question is whether a local interaction between two long chains is able to reshuffle completely the eigenstates (delocalized phase with a volume-law entanglement) or whether the hybridization between tensor states remains limited (many-body-localized phase with an area-law entanglement). The central object is thus the level of hybridization induced by the matrix elements of local operators, as compared with the difference of diagonal energies. The multifractal analysis of these matrix elements of local operators is used to analyze the corresponding statistics of resonances. Our main conclusion is that the critical point is characterized by the strong-multifractality spectrum f(0≤slant α ≤slant 2)=\\fracα{2} , well known in the context of Anderson localization in spaces of effective infinite dimensionality, where the size of the Hilbert space grows exponentially with the volume. Finally, the possibility of a delocalized non-ergodic phase near criticality is discussed.

  9. Soft multipole excitations

    International Nuclear Information System (INIS)

    The origin of soft multipole states in halo nuclei is discussed by using a double square well potential. It is found that the huge enhancement of the transition strength near particle threshold energy is caused by the coherent contribution of particle and hole wave functions from an extremely large radial distance R=10∼45 fm. The soft excitation is thus characterized as an independent particle-hole excitation rather than a coherent superposition of particle-hole states. The characteristic feature of the soft mode is demonstrated to manifest itself in the response to the momentum dependent transition operator. (author) 12 refs., 4 figs., 1 tab

  10. Hardness and excitation energy

    Indian Academy of Sciences (India)

    Á Nagy

    2005-09-01

    The concept of the ensemble Kohn-Sham hardness is introduced. It is shown that the first excitation energy can be given by the Kohn-Sham hardness (i.e. the energy difference of the ground-state lowest unoccupied and highest occupied levels) plus an extra term coming from the partial derivative of the ensemble exchange-correlation energy with respect to the weighting factor in the limit → 0. It is proposed that the first excitation energy can be used as a reactivity index instead of the hardness.

  11. Effect of electron-electron interaction near the metal-insulator transition in doped semiconductors studied within the local density approximation

    OpenAIRE

    Harashima, Yosuke; Slevin, Keith

    2012-01-01

    We report a numerical analysis of Anderson localization in a model of a doped semiconductor. The model incorporates the disorder arising from the random spatial distribution of the donor impurities and takes account of the electron-electron interactions between the carriers using density functional theory in the local density approximation. Preliminary results suggest that the model exhibits a metal-insulator transition.

  12. Excitation of Stellar Pulsations

    DEFF Research Database (Denmark)

    Houdek, G.

    2012-01-01

    In this review I present an overview of our current understanding of the physical mechanisms that are responsible for the excitation of pulsations in stars with surface convection zones. These are typically cooler stars such as the δ Scuti stars, and stars supporting solar-like oscillations....

  13. Fuzzballs with internal excitations

    CERN Document Server

    Kanitscheider, Ingmar; Taylor, Marika

    2007-01-01

    We construct general 2-charge D1-D5 horizon-free non-singular solutions of IIB supergravity on T^4 and K3 describing fuzzballs with excitations in the internal manifold; these excitations are characterized by arbitrary curves. The solutions are obtained via dualities from F1-P solutions of heterotic and type IIB on T^4 for the K3 and T^4 cases, respectively. We compute the holographic data encoded in these solutions, and show that the internal excitations are captured by vevs of chiral primaries associated with the middle cohomology of T^4 or K3. We argue that each geometry is dual to a specific superposition of R ground states determined in terms of the Fourier coefficients of the curves defining the supergravity solution. We compute vevs of chiral primaries associated with the middle cohomology and show that they indeed acquire vevs in the superpositions corresponding to fuzzballs with internal excitations, in accordance with the holographic results. We also address the question of whether the fuzzball prog...

  14. Excited lepton search

    International Nuclear Information System (INIS)

    Using the CELLO detector at PETRA a search has been made for excited leptons by studying e+e- interactions which yield l+l-γγ, l+l-γ and γγ final states, where l = e, μ or tau. Good agreement with QED is observed and new limits are set on esup(*), μsup(*), and tausup(*) production.

  15. Excited lepton search

    International Nuclear Information System (INIS)

    Using the CELLO detector at PETRA we have searched for excited leptons by studying e+e- interactions which yield rho+rho-γγ, rho+rho-γ and γγ final states, where l=e, μ or tau. We observe good agreement with QED and set new limits on e*, μ* and tau* production

  16. Asymmetric Magnon Excitation by Spontaneous Toroidal Ordering

    Science.gov (United States)

    Hayami, Satoru; Kusunose, Hiroaki; Motome, Yukitoshi

    2016-05-01

    The effects of spontaneous toroidal ordering on magnetic excitation are theoretically investigated for a localized spin model that includes a staggered Dzyaloshinsky-Moriya interaction and anisotropic exchange interactions, which arise from the antisymmetric spin-orbit coupling and the multiorbital correlation effect. We show that the model exhibits a Néel-type antiferromagnetic order, which simultaneously accompanies a ferroic toroidal order. We find that the occurrence of toroidal order modulates the magnon dispersion in an asymmetric way with respect to the wave number: a toroidal dipole order on the zigzag chain leads to a band-bottom shift, while a toroidal octupole order on the honeycomb lattice gives rise to a valley splitting. These asymmetric magnon excitations could be a source of unusual magnetic responses, such as nonreciprocal magnon transport. A variety of modulations are discussed while changing the lattice and magnetic symmetries. The implications regarding candidate materials for asymmetric magnon excitations are presented.

  17. Localization on the landscape and eternal inflation

    International Nuclear Information System (INIS)

    We investigate the validity of the assertion that eternal inflation populates the landscape of string theory. We verify that bubble solutions do not satisfy the Klein–Gordon equation for the landscape potential. Solutions to the landscape potential within the formalism of quantum cosmology are Anderson localized wavefunctions. These are inconsistent with inflating bubble solutions. The physical reasons behind the failure of a relation between eternal inflation and the landscape are rooted in quantum phenomena such as interference between wavefunction concentrated around the various vacua in the landscape. (paper)

  18. Nonlinear excitations in biomolecules

    International Nuclear Information System (INIS)

    The aim of the workshop entitled ''Nonlinear Excitations in Biomolecules'' is to attempt to bridge the gap between the physicists and biologists communities which is mainly due to language and cultural barriers. The progress of nonlinear science in the last few decades which have shown that the combination of nonlinearity, which characterize most biological phenomena, and cooperative effects in a system having a large number of degrees of freedom, can give rise to coherent excitations with remarkable properties. New concepts, such as solitons nd nonlinear energy localisation have become familiar to physicists and applied mathematicians. It is thus tempting to make an analogy between these coherent excitations and the exceptional stability of some biological processes, such as for instance DNA transcription, which require the coordination of many events in the ever changing environment of a cell. Physicists are now invoking nonlinear excitations to describe and explain many bio-molecular processes while biologists often doubt that the seemingly infinite variety of phenomena that they are attempting to classify can be reduced to such simple concepts. A large part of the meeting is devoted to tutorial lectures rather than to latest research results. The book provides a pedagogical introduction to the two topics forming the backbone of the meeting: the theory of nonlinear excitations and solitons, and their application in biology; and the structure and function of biomolecules, as well as energy and charge transport in biophysics. In order to emphasize the link between physics and biology, the volume is not divided along these two topics but according to biological subjects. Each chapter starts with a short introduction attempting to help the reader to find his way among the contributions and point out the connection between them. 23 lectures over the 32 presented have been selected and refers to quantum properties of macro-molecules. (J.S.)

  19. Diseño Mc. Lean‐Anderson aplicado para obtener recubrimientos de electrodos aleados con carbono, cromo y titanio//Mc. Lean‐Anderson design applied for recovered electrodes obtaining with carbon, chrome and titanium alloys

    OpenAIRE

    Carlos René Gómez-Pérez; Ana Paula Perotti; Alejandro García-Rodríguez; José Antônio Esmerio-Mazzaferro; Arnaldo Rubén-Gonzalez; Ivan Guerra-Machado

    2013-01-01

    En el trabajo se estudia el comportamiento de electrodos recubiertos destinados al relleno superficial con el proceso de soldadura manual (SMAW, Shielded Metal Arc Welding). Para el diseño experimental se aplican un procedimiento de cálculo para el revestimiento y un plan de mezclas del tipo Mc. Lean-Anderson. En el diseño se conjuga una matriz compuesta por Calcita (26,73 %), Ferrosilicio (19,02 %),Ferromanganeso (16,58 %), Rutilo (26,69 %), Silicato de Potasio (11,70 %) y diferentes cargas ...

  20. Terpenos y flavonoides glicosídicos de Tetrapterys heterophylla (Griseb.) W.R. Anderson (Malpighiaceae) Terpenes and glycoside flavonoids from Tetrapterys heterophylla (Griseb.) W.R. Anderson (Malpighiceae)

    OpenAIRE

    A. Berenice Aguilar-Guadarrama; María Yolanda Ríos

    2007-01-01

    Tetrapterys heterophylla (Griseb.) W.R. Anderson (Malpighiaceae) es una especie que se caracteriza por un alto contenido de vitamina C en sus frutos. En su estudio fitoquímico, se obtuvo como resultado el aislamiento y la identificación de 13 metabolitos secundarios: friedelina, lupeol, α- y β-amirina, epóxido de cariofileno, β-sitosterol, β-D-glucópiranosido de β-sitosterilo, glucosa, 3-O-b-D-glucopiranosilquercetina, 3-O-b-D-galactopiranosilquercetina, 3-O-β-D-...

  1. Localization and diffusion in Ising-type quantum networks

    International Nuclear Information System (INIS)

    We investigate the effect of phase randomness in Ising-type quantum networks. These networks model a large class of physical systems. They describe micro- and nanostructures or arrays of optical elements such as beam splitters (interferometers) or parameteric amplifiers. Most of these stuctures are promising candidates for quantum information processing networks. We demonstrate that such systems exhibit two very distinct types of behavior. For certain network configurations (parameters), they show quantum localization similar to Anderson localization whereas classical stochastic behavior is observed in other cases. We relate these findings to the standard theory of quantum localization

  2. NMR quantum simulation of localization effects induced by decoherence

    CERN Document Server

    Alvarez, Gonzalo A

    2010-01-01

    The loss of coherence in quantum mechanical superposition states limits the time for which quantum information remains useful. Similarly, it limits the distance over which quantum information can be transmitted, resembling Anderson localization, where disorder causes quantum mechanical states to become localized. Here, we investigate in a nuclear spin-based quantum simulator, the localization of the size of spin clusters that are generated by a Hamiltonian driving the transmission of information, while a variable-strength perturbation counteracts the spreading. We find that the system reaches a dynamic equilibrium size, which decreases with the square of the perturbation strength.

  3. Non-equilibrium STLS approach to transport properties of single impurity Anderson model

    International Nuclear Information System (INIS)

    In this work, using the non-equilibrium Keldysh formalism, we study the effects of the electron–electron interaction and the electron-spin correlation on the non-equilibrium Kondo effect and the transport properties of the symmetric single impurity Anderson model (SIAM) at zero temperature by generalizing the self-consistent method of Singwi, Tosi, Land, and Sjolander (STLS) for a single-band tight-binding model with Hubbard type interaction to out of equilibrium steady-states. We at first determine in a self-consistent manner the non-equilibrium spin correlation function, the effective Hubbard interaction, and the double-occupancy at the impurity site. Then, using the non-equilibrium STLS spin polarization function in the non-equilibrium formalism of the iterative perturbation theory (IPT) of Yosida and Yamada, and Horvatic and Zlatic, we compute the spectral density, the current–voltage characteristics and the differential conductance as functions of the applied bias and the strength of on-site Hubbard interaction. We compare our spectral densities at zero bias with the results of numerical renormalization group (NRG) and depict the effects of the electron–electron interaction and electron-spin correlation at the impurity site on the aforementioned properties by comparing our numerical result with the order U2 IPT. Finally, we show that the obtained numerical results on the differential conductance have a quadratic universal scaling behavior and the resulting Kondo temperature shows an exponential behavior. -- Highlights: •We introduce for the first time the non-equilibrium method of STLS for Hubbard type models. •We determine the transport properties of SIAM using the non-equilibrium STLS method. •We compare our results with order-U2 IPT and NRG. •We show that non-equilibrium STLS, contrary to the GW and self-consistent RPA, produces the two Hubbard peaks in DOS. •We show that the method keeps the universal scaling behavior and correct

  4. Non-equilibrium STLS approach to transport properties of single impurity Anderson model

    Energy Technology Data Exchange (ETDEWEB)

    Rezai, Raheleh, E-mail: R_Rezai@sbu.ac.ir; Ebrahimi, Farshad, E-mail: Ebrahimi@sbu.ac.ir

    2014-04-15

    In this work, using the non-equilibrium Keldysh formalism, we study the effects of the electron–electron interaction and the electron-spin correlation on the non-equilibrium Kondo effect and the transport properties of the symmetric single impurity Anderson model (SIAM) at zero temperature by generalizing the self-consistent method of Singwi, Tosi, Land, and Sjolander (STLS) for a single-band tight-binding model with Hubbard type interaction to out of equilibrium steady-states. We at first determine in a self-consistent manner the non-equilibrium spin correlation function, the effective Hubbard interaction, and the double-occupancy at the impurity site. Then, using the non-equilibrium STLS spin polarization function in the non-equilibrium formalism of the iterative perturbation theory (IPT) of Yosida and Yamada, and Horvatic and Zlatic, we compute the spectral density, the current–voltage characteristics and the differential conductance as functions of the applied bias and the strength of on-site Hubbard interaction. We compare our spectral densities at zero bias with the results of numerical renormalization group (NRG) and depict the effects of the electron–electron interaction and electron-spin correlation at the impurity site on the aforementioned properties by comparing our numerical result with the order U{sup 2} IPT. Finally, we show that the obtained numerical results on the differential conductance have a quadratic universal scaling behavior and the resulting Kondo temperature shows an exponential behavior. -- Highlights: •We introduce for the first time the non-equilibrium method of STLS for Hubbard type models. •We determine the transport properties of SIAM using the non-equilibrium STLS method. •We compare our results with order-U2 IPT and NRG. •We show that non-equilibrium STLS, contrary to the GW and self-consistent RPA, produces the two Hubbard peaks in DOS. •We show that the method keeps the universal scaling behavior and correct

  5. Exotic nuclear excitations

    CERN Document Server

    Pancholi, S C

    2011-01-01

    By providing the reader with a foundational background in high spin nuclear structure physics and exploring exciting current discoveries in the field, this book presents new phenomena in a clear and compelling way. The quest for achieving the highest spin states has resulted in some remarkable successes which this monograph will address in comprehensive detail. The text covers an array of pertinent subject matter, including the rotational alignment and bandcrossings, magnetic rotation, triaxial strong deformation and wobbling motion and chirality in nuclei. Dr. Pancholi offers his readers a clearly-written and up-to-date treatment of the topics covered. The prerequisites for a proper appreciation are courses in nuclear physics and nuclear models and measurement techniques of observables like gamma-ray energies, intensities, multi-fold coincidences, angular correlations or distributions, linear polarization, internal conversion coefficients, short lifetime (pico-second range) of excited states etc. and instrum...

  6. Excited nuclei fragmentation

    International Nuclear Information System (INIS)

    Experimental indications leading to the thought of a very excited nucleus fragmentation are resumed. Theoretical approaches are briefly described; they are used to explain the phenomenon in showing off they are based on a minimum information principle. This model is based on time dependent Thomas-Fermi calculation which allows the mean field effect description, and with a site-bound percolation model which allows the fluctuation description

  7. Cytokines and brain excitability

    OpenAIRE

    Galic, Michael A.; Riazi, Kiarash; Pittman, Quentin J.

    2011-01-01

    Cytokines are molecules secreted by peripheral immune cells, microglia, astrocytes and neurons in the central nervous system. Peripheral or central inflammation is characterized by an upregulation of cytokines and their receptors in the brain. Emerging evidence indicates that pro-inflammatory cytokines modulate brain excitability. Findings from both the clinical literature and from in vivo and in vitro laboratory studies suggest that cytokines can increase seizure susceptibility and may be in...

  8. Harmonically excited orbital variations

    International Nuclear Information System (INIS)

    Rephrasing the equations of motion for orbital maneuvers in terms of Lagrangian generalized coordinates instead of Newtonian rectangular cartesian coordinates can make certain harmonic terms in the orbital angular momentum vector more readily apparent. In this formulation the equations of motion adopt the form of a damped harmonic oscillator when torques are applied to the orbit in a variationally prescribed manner. The frequencies of the oscillator equation are in some ways unexpected but can nonetheless be exploited through resonant forcing functions to achieve large secular variations in the orbital elements. Two cases are discussed using a circular orbit as the control case: (1) large changes in orbital inclination achieved by harmonic excitation rather than one impulsive velocity change, and (2) periodic and secular changes to the longitude of the ascending node using both stable and unstable excitation strategies. The implications of these equations are also discussed for both artificial satellites and natural satellites. For the former, two utilitarian orbits are suggested, each exploiting a form of harmonic excitation. 5 refs

  9. Robust adaptive control design for generator excitation

    OpenAIRE

    Ni, Y.; Lan, Z.; Gan, D

    2006-01-01

    In this paper a new nonlinear robust adaptive excitation control strategy for multi-machine power systems is presented. The designed controller is adaptive to unknown generator parameters, and robust to model errors or disturbances. It is locally implemented and independent of network topology or load conditions. In the paper the power system model is presented and the control law and adaptive law are derived. The close-loop system stability is proven. Computer test results show clearly that ...

  10. Empirical calibration of local magnitude datasets versus moment magnitude in Italy

    OpenAIRE

    Gasperini, P.; Università di Bologna; Lolli, B.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia; Vannucci, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia

    2013-01-01

    Using general orthogonal regressions (GORs), we calibrated local magnitudes, estimated in Italy using various methods in different periods of time from 1981 to 2010, with a set of homogeneous moment magnitudes (Mw). Magnitude uncertainties, necessary for the application of GOR methods, are inferred by a trial-anderror procedure based on a priori information and empirical regression results. We found that local magnitudes determined using real or synthesized Wood–Anderson waveforms (ML) scale ...

  11. Charge transfer excitations from excited state Hartree-Fock subsequent minimization scheme

    Energy Technology Data Exchange (ETDEWEB)

    Theophilou, Iris, E-mail: i.theophilou@fz-juelich.de [Peter Grunberg Institut (PGI) Forschungszentrum Jülich, D-52425 Jülich (Germany); Tassi, M.; Thanos, S. [Institute for Advanced Materials, Physicochemical Processes, Nanotechnology and Microsystems, ‘Demokritos’ National Center for Scientific Research, 15310 Athens (Greece)

    2014-04-28

    Photoinduced charge-transfer processes play a key role for novel photovoltaic phenomena and devices. Thus, the development of ab initio methods that allow for an accurate and computationally inexpensive treatment of charge-transfer excitations is a topic that nowadays attracts a lot of scientific attention. In this paper we extend an approach recently introduced for the description of single and double excitations [M. Tassi, I. Theophilou, and S. Thanos, Int. J. Quantum Chem. 113, 690 (2013); M. Tassi, I. Theophilou, and S. Thanos, J. Chem. Phys. 138, 124107 (2013)] to allow for the description of intermolecular charge-transfer excitations. We describe an excitation where an electron is transferred from a donor system to an acceptor one, keeping the excited state orthogonal to the ground state and avoiding variational collapse. These conditions are achieved by decomposing the space spanned by the Hartree-Fock (HF) ground state orbitals into four subspaces: The subspace spanned by the occupied orbitals that are localized in the region of the donor molecule, the corresponding for the acceptor ones and two more subspaces containing the virtual orbitals that are localized in the neighborhood of the donor and the acceptor, respectively. Next, we create a Slater determinant with a hole in the subspace of occupied orbitals of the donor and a particle in the virtual subspace of the acceptor. Subsequently we optimize both the hole and the particle by minimizing the HF energy functional in the corresponding subspaces. Finally, we test our approach by calculating the lowest charge-transfer excitation energies for a set of tetracyanoethylene-hydrocarbon complexes that have been used earlier as a test set for such kind of excitations.

  12. Development of the M. D. Anderson Cancer Center Gynecologic Applicators for the Treatment of Cervical Cancer: Historical Analysis

    International Nuclear Information System (INIS)

    Purpose: To provide historical background on the development and initial studies of the gynecological (gyn) applicators developed by Dr. Gilbert H. Fletcher, a radiation oncologist and chairperson from 1948 to 1981 of the department at the M.D. Anderson Hospital (MDAH) for Cancer Research in Houston, TX, and to acknowledge the previously unrecognized contribution that Dr. Leonard G. Grimmett, a radiation physicist and chairperson from 1949 to 1951 of the physics department at MDAH, made to the development of the gynecological applicators. Methods and Materials: We reviewed archival materials from the Historical Resource Center and from the Department of Radiation Physics at University of Texas M. D. Anderson Cancer Center, as well as contemporary published papers, to trace the history of the applicators. Conclusions: Dr. Fletcher’s work was influenced by the work on gynecologic applicators in the 1940s in Europe, especially work done at the Royal Cancer Hospital in London. Those efforts influenced not only Dr. Fletcher’s approach to the design of the applicators but also the methods used to perform in vivo measurements and determine the dose distribution. Much of the initial development of the dosimetry techniques and measurements at MDAH were carried out by Dr. Grimmett.

  13. Ferromagnetism and metal-half-metal-insulator transitions in a frustrated periodic Anderson-like organic polymer

    International Nuclear Information System (INIS)

    The ferromagnetism and quantum phase transitions of a periodic Anderson-like organic polymer, in which the next-nearest-neighboring hopping results in frustration, are investigated by means of many-body Green's function theory. It is found that the ground state lies in half-metallic and paramagnetic metallic states for weak and relatively strong frustrations, respectively. At finite temperatures, a ferrimagnetic order and two different ferromagnetic phases are unveiled. In a magnetic field, in addition to 1/3 magnetization plateau, it presents three cusps and three critical fields indicating metal-half-metal and half-metal-insulator transitions, respectively, which are closely related to the energy bands controlled by the field. - Highlights: • The ferromagnetism and quantum phase transitions of a frustrated periodic Anderson-like organic polymer are investigated by Green's function theory. • At finite temperatures, a ferrimagnetic order and two different ferromagnetic phases are unveiled. • In a magnetic field, we reveal the metal-half-metal and half-metal-insulator transitions

  14. 腹腔镜下 Cohen 及改良 Glenn-Anderson 输尿管膀胱再植术的疗效比较%A Comparison Between Laparoscopic Modified Glenn-Anderson and Cohen Ureteric Reimplantation

    Institute of Scientific and Technical Information of China (English)

    习林云; 何大维; 刘星; 华燚; 刘俊宏; 刘丰; 林涛; 魏光辉

    2015-01-01

    目的:探讨腹腔镜Cohen及改良Glenn-Anderson输尿管膀胱再植术治疗儿童输尿管膀胱连接部畸形的临床效果。方法回顾性分析我院2005年12月~2012年2月输尿管膀胱连接处疾病96例资料。前30例行Cohen术,后66例行改良Glenn-Anderson术。术后随访1年,比较2组手术时间、出血量、术后住院时间、并发症及术后输尿管积水恢复情况。结果2组各有1例中转开放手术,其余腹腔镜完成手术者2组手术时间[(129±30)min vs.(139±42)min,t=-1.177,P=0.242],术中出血量[(17.9±10.4)ml vs.(18.6±10.5)ml,t=-0.266,P=0.791],术后住院时间[(9.5±1.4)d vs.(9.2±1.4)d,t=0.941,P=0.349]差异均无显著性。 Cohen组1例术中皮下气肿,1例术后反复尿路感染,改良Glenn-Anderson组1例膀胱穿刺孔出血,2组并发症发生率差异无显著性(χ2=0.533,P=0.465)。术后1年Cohen组随访30例33根输尿管,改良Glenn-Anderson组随访53例57根输尿管,均无积水加重病例,改良Glenn-Anderson组输尿管恢复较Cohen组更好(恢复正常、缩小、无缓解分别为54、3、0侧和21、9、3侧,Z=-3.842,P=0.000),肾积水恢复情况2组差异无显著性(Z=-0.121,P=0.904)。结论腹腔镜下Cohen及改良Glenn-Anderson术式都具有安全有效、容易学习、具有微创优势的特点,后者输尿管直径缩小更明显。%Objective To describe the clinical efficacy of laparoscopic modified Glenn-Anderson and Cohen ureteric reimplantation for congenital malformation of vesicoureteral junction in children. Methods A retrospective review of 96 patients who underwent ureteric reimplantation from December 2005 to February 2012 was conducted.The first 30 cases were given Cohen procedure, while the remaining 66 cases underwent modified Glenn-Anderson procedure. The follow-up period was 1

  15. Price-Anderson Act Amendments Act of 1986. A report submitted to the Senate, Ninety-Ninth Congress, Second Session, May 21, 1986

    International Nuclear Information System (INIS)

    The report on proposed legislation (S. 1225) to amend the Price-Anderson Act provisions of the Atomic Energy Act to extend and improve the procedures for compensating the public in the event of a nuclear accident is favorable, but suggest some changes. The bill reauthorizes the Price-Anderson indemnification system for 25 years, increases funds available for victim compensation, and expedites congressional procedures for responding with additional action as needed in the event of the theft or an accident involving nuclear materials. The report outlines the background and need for the legislation, gives a section-by-section analysis, and presents additional views and statements of committee members

  16. Excitation-energy sorting in superfluid fission dynamics

    Directory of Open Access Journals (Sweden)

    Schmidt K.-H.

    2010-10-01

    Full Text Available It is now well established that at moderate excitation energies the nucleus temperature does not vary with increasing excitation energy. We show that, as a consequence, two nuclei with different temperatures brought into contact show a rather surprising energy-sorting mechanism where the hotter nucleus transfers all its excitation energy to the colder one. The scission configuration of the fission process offers a unique possibility to observe this phenomenon. The energy-sorting mechanism is clearly reflected by the mean number of prompt neutrons as a function of the fragment mass and by the dependence of the local even-odd effect with mass asymmetry.

  17. Excitation-energy sorting in superfluid fission dynamics

    International Nuclear Information System (INIS)

    It is now well established that at moderate excitation energies the nucleus temperature does not vary with increasing excitation energy. We show that, as a consequence, two nuclei with different temperatures brought into contact show a rather surprising energy-sorting mechanism where the hotter nucleus transfers all its excitation energy to the colder one. The scission configuration of the fission process offers a unique possibility to observe this phenomenon. The energy-sorting mechanism is clearly reflected by the mean number of prompt neutrons as a function of the fragment mass and by the dependence of the local even-odd effect with mass asymmetry. (authors)

  18. Universal role of quantum uncertainty in Anderson metal-insulator transition

    Science.gov (United States)

    Cheng, W. W.; Zhang, Z. J.; Gong, L. Y.; Zhao, S. M.

    2016-07-01

    We explore quantum uncertainty, based on Wigner-Yanase skew information, in various one-dimensional single-electron wave functions. For the power-law function and eigenfunctions in the Aubry-André model, the electronic localization properties are well-defined. For them, we find that quantum uncertainty is relatively small and large for delocalized and localized states, respectively. And around the transition points, the first-order derivative of the quantum uncertainty exhibits singular behavior. All these characters can be used as signatures of the transition from a delocalized phase to a localized one. With this criterion, we also study the quantum uncertainty in one-dimensional disorder system with long-range correlated potential. The results show that the first-order derivative of spectrum-averaged quantum uncertainty is minimal at a certain correlation exponent αm for a finite system, and has perfect finite-size scaling behaviors around αm. By extrapolating αm, the threshold value αc ≃ 1.56 ± 0.02 is obtained for the infinite system. Thus we give another perspective and propose a consistent interpretation for the discrepancies about localization property in the long-range correlated potential model. These results suggest that the quantum uncertainty can provide us with a new physical intuition to the localization transition in these models.

  19. Quantum criticality of the two-channel pseudogap Anderson model: universal scaling in linear and non-linear conductance.

    Science.gov (United States)

    Wu, Tsan-Pei; Wang, Xiao-Qun; Guo, Guang-Yu; Anders, Frithjof; Chung, Chung-Hou

    2016-05-01

    The quantum criticality of the two-lead two-channel pseudogap Anderson impurity model is studied. Based on the non-crossing approximation (NCA) and numerical renormalization group (NRG) approaches, we calculate both the linear and nonlinear conductance of the model at finite temperatures with a voltage bias and a power-law vanishing conduction electron density of states, [Formula: see text] (0  conductances at the 2CK-LM quantum critical point are identified. Clear distinctions are found on the critical exponents between linear and non-linear conductance at criticality. The implications of these two distinct quantum critical properties for the non-equilibrium quantum criticality in general are discussed. PMID:27045815

  20. Numerical study of the overlap Lee–Yang singularities in the three-dimensional Edwards–Anderson model

    International Nuclear Information System (INIS)

    We have characterized numerically, using the Janus computer, the Lee–Yang complex singularities related to the overlap in the 3D Ising spin-glass with binary couplings over a wide range of temperatures (both in the critical and in the spin-glass phase). Studying the behavior of the zeros at the critical point, we have obtained an accurate measurement of the anomalous dimension in very good agreement with the values quoted in the literature. In addition, by studying the density of the zeros we have been able to characterize the phase transition and to investigate the Edwards–Anderson order parameter in the spin-glass phase, finding agreement with the values obtained using more conventional techniques. (paper)

  1. Insertion-release of guest species and ionic conduction in polyoxometalate solids with a layer-like Anderson structure

    International Nuclear Information System (INIS)

    The precipitation of Na+ and K+ mixed salts of Anderson type [SbW6O24]7- by addition of excess of NaNO3 and NaCl yielded polycrystalline powders of Na2.5K5.3[SbW6O24](NO3)0.8.12H2O (1) and Na2K5.35[SbW6O24]Cl0.35.12H2O (2), respectively. The two compounds are isomorphous and exhibit a layer-like Anderson (LLA) type structure, which consists of [SbW6O24]7--containing layers and interstitial Na+, K+, NO3- or Cl-, and water O atoms. Recrystallization of 1 and 2 from hot water yielded Na2K5.4[SbW6O24](NO3)0.4.12H2O (1-recry) and Na2K5.25[SbW6O24]Cl0.25.12H2O (2-recry) as a result of partial release of NO3- and Cl- (and Na+ and K+ for charge compensation). Dehydration of 1 and 2 at 400 and 500 oC (1-dehyd400 and 2-dehyd500) caused a shrinkage of lattice, but their the LLA structures retained. Simulation of X-ray diffraction (XRD) patterns for the dehydrated forms allowed to presume that the each [SbW6O24]7- anion had been 30o-rotated within its molecular plane in order to avoid intermolecular repulsion. A compressed powder of 1-dehyd400 exhibited fast alkaline-ion conduction with a bulk conductivity of 1.2x10-2 Ω-1 cm-1 at 400 oC. The hosting of a sufficient amount of NO3- together with Na+ for charge compensation into the lattice is crucial for high conduction. -- Graphical abstract: Two compounds Na2.5K5.3[SbW6O24](NO3)0.8.12H2O (1) and Na2K5.35[SbW6O24]Cl0.35.12H2O (2) possessing a layer-like Anderson (LLA) structure exhibited pseudo intercalation-deintercalation behavior. The dehydrated form of 1 is a high alkaline cation conductor with a conductivity of 1.2x10-2 Ω-1 cm-1 at 400 oC. Display Omitted Research highlights: → Layer-like Anderson-type POM solid accommodates and releases NO3- and Cl-. → The POM exhibits reversible dehydration by heat treatment. → The dehydration involves rotation of POM molecule retaining layer structure. → The dehydrated POM shows good Na+ and K+ conduction.

  2. Nuclear structure studies using the high resolution spectrometer at the Los Alamos Clinton P. Anderson Meson Physics Facility. Progress report

    International Nuclear Information System (INIS)

    This document constitutes a progress report (1984 to 1985) and renewal proposal for the ongoing medium energy nuclear physics research program. The research efforts were carried out with the High Resolution Spectrometer (HRS) at the Los Alamos Clinton P. Anderson Meson Physics Facility (LAMPF) and at Brookhaven National Laboratory. The LAMPF research includes (1) p+ nucleus scattering data for a test of nonrelativistic and relativistic models of medium energy interaction; (2) data for nuclear structure information; (3) proton + nucleon data for the study of the fundamental nucleon-nucleon interaction; and (4) development of the above models. The Brookhaven work is a study of the formation and use of hypernuclei as a tool for nuclear studies. Individual reports are indexed separately

  3. Architectural/historical assessment of the Oak Ridge National Laboratory, Oak Ridge Reservation, Anderson and Roane Counties, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Carver, M.; Slater, M.

    The Department of Energy (DOE) is required by the National Historic Preservation Act (NHPA) of 1966, as amended, to identify any properties under its jurisdiction that are included in or eligible for inclusion in the National Register of Historic Places (National Register). In March 1993 Duvall & Associates, Inc., was engaged to survey the Oak Ridge National Laboratory (ORNL), a DOE facility located on the Oak Ridge Reservation (ORR) in Anderson and Roane Counties, Tennessee, and to prepare a determination of National Register eligibility for all ORNL properties. The purpose of this report is to summarize the results of research into the historical context of ORNL and at to identify historic properties at ORNL that are included in present or eligible for inclusion in the National Register. The identification of archaeological properties at ORNL that are included and eligible for inclusion in the National Register Clinton is addressed in a separate report.

  4. Clinical use of the combined Sclarovsky Birnbaum Severity and Anderson Wilkins Acuteness scores from the pre-hospital ECG in ST-segment elevation myocardial infarction.

    Science.gov (United States)

    Fakhri, Yama; Schoos, Mikkel M; Clemmensen, Peter; Sejersten, Maria

    2014-01-01

    This review summarizes the electrocardiographic changes during an evolving ST segment elevation myocardial infarction and discusses associated electrocardiographic scores and the potential use of these indices in clinical practice, in particular the ECG scores developed by Anderson and Wilkins estimating the acuteness of myocardial ischemia and Sclarovsky-Birnbaum's grades of ischemia evaluating the severity of ongoing ischemia. PMID:24792905

  5. Variable induction of vitellogenin genes in the varroa mite, Varroa destructor (Anderson & Trueman) by the honeybee, Apis mellifera L, host and its environment

    Science.gov (United States)

    Transcript levels of vitellogenins (Vgs) in the varroa mite, Varroa destructor (Anderson & Trueman) were variably induced by interactions between the developing honeybee as a food source and the capped honeybee cell environment. Transcripts for 2 Vgs of varroa mites were sequenced and putative Vg pr...

  6. Molecular orbital excitations in cuprates

    OpenAIRE

    Kim, Young-June; Hill, J. P.; Gu, G. D.; Chou, F. C.; Wakimoto, S.; Birgeneau, R. J.; Komiya, Seiki; Ando, Yoichi; Motoyama, N.; Kojima, K. M.; Uchida, S; Casa, D.; Gog, T.

    2004-01-01

    We report resonant inelastic x-ray scattering studies of electronic excitations in a wide variety of cuprate compounds. Specifically, we focus on the charge-transfer type excitation of an electron from a bonding molecular orbital to an antibonding molecular orbital in a copper oxygen plaquette. Both the excitation energy and the amount of dispersion are found to increase significantly as the copper oxygen bond-length is reduced. We also find that the estimated bond-length dependence of the ho...

  7. Subsurface excitations in a metal

    DEFF Research Database (Denmark)

    Ray, M. P.; Lake, R. E.; Sosolik, C. E.; Thomsen, Lasse Bjørchmar; Nielsen, Gunver; Chorkendorff, Ib; Hansen, Ole

    2009-01-01

    We investigate internal hot carrier excitations in a Au thin film bombarded by hyperthermal and low energy alkali and noble gas ions. Excitations within the thin film of a metal-oxide-semiconductor device are measured revealing that ions whose velocities fall below the classical threshold given by...... the free-electron model of a metal still excite hot carriers. Excellent agreement between these results and a nonadiabatic model that accounts for the time-varying ion-surface interaction indicates that the measured excitations are due to semilocalized electrons near the metal surface....

  8. Fission fragment excited laser system

    Science.gov (United States)

    McArthur, David A.; Tollefsrud, Philip B.

    1976-01-01

    A laser system and method for exciting lasing action in a molecular gas lasing medium which includes cooling the lasing medium to a temperature below about 150 K and injecting fission fragments through the lasing medium so as to preferentially excite low lying vibrational levels of the medium and to cause population inversions therein. The cooled gas lasing medium should have a mass areal density of about 5 .times. 10.sup.-.sup.3 grams/square centimeter, relaxation times of greater than 50 microseconds, and a broad range of excitable vibrational levels which are excitable by molecular collisions.

  9. Anderson Metal-Insulator Transitions With Classical Magnetic Impurities: Supplemental material

    OpenAIRE

    Jung, Daniel; Slevin, Keith; Kettemann, Stefan

    2015-01-01

    In the supplemental materials we justify our choice of the number of Chebychev moments used within the kernel polynomial method, show some preliminary results for the large coupling behavior, discuss possible correlation effects in the local density of states, estimate the spin relaxation length and introduce the goodness of fit probability that is used to assess the quality of the fits.

  10. High energy magnetic excitations

    International Nuclear Information System (INIS)

    The report emphasizes that the current development in condensed matter physics opens a research field fit to inelastic neutron scattering experiments in the eV range which is easilly accessed by spallation neutron sources. Several important subjects adopted at thermal reactors are shown. It is desired to extend the implementation of the spectroscopic experiments for investigation of higher energy magnetic excitations. For La2CuO4, which is the mother crystal of the first high Tc materials found by Bednortz and Muller, it seems to be believed that the magnetism is well characterized by the two-dimensional Heisenberg antiferromagnetic Hamiltonian, and it is widely accepted that the magnetism is a most probable progenitor of high Tc superconductors. The unusual properties of spin correlations in this crystal have been studied extensively by standard neutron scattering techniques with steady neutrons at BNL. FeSi is not ordered magnetically but shows a very unique feature of temperature induced magnetism, which also has been studied extensively by using the thermal neutron scattering technique at BNL. In these experiments, polarized neutrons are indispensable to extract the clean magnetic components out of other components of non-magnetic scattering. (N.K.)

  11. Macroscopic dynamics of thermal nuclear excitations

    International Nuclear Information System (INIS)

    The concept of kinetic temperature as a local dynamical variable of thermal nuclear collective motion is formulated using long-mean-free-path approach based on the Landau-Vlasov kinetic equation. In the Fermi drop model the thermal fluid dynamics of the spherical nucleus is analyzed. It is shown that in a compressible Fermi liquid the temperature pulses propagate in the form of spherical wave in phase with the acoustic wave. The thermal and compressional excitations are caused by the isotropic harmonic oscillations of the Fermi sphere in momentum space. (author) 25 refs.; 2 figs

  12. Damage Localization and Quantification of Earthquake Excited RC-Frames

    DEFF Research Database (Denmark)

    Skjærbæk, P. S.; Nielsen, Søren R. K.; Kirkegaard, Poul Henning;

    1998-01-01

    each of the ground motion events the storey accelerations were measured by accelerometers. After application of the last earthquake sequence to the structure the frames were cut into pieces and each of the beams and columns was statically tested and damage assessment was performed using the obtained...

  13. Multiple phonon excitation in nuclei

    International Nuclear Information System (INIS)

    The studies of multiphonon excitations in nuclei are reviewed both from the theoretical and experimental points of view. The presence of giant resonances in nuclei is described in the framework of macroscopic and microscopic models and the relative merits of different probes to excite such states are illustrated. The existence of giant resonances built on excited states is stressed. An exhaustive description of the theoretical estimates of the properties of the multiphonon states is presented. The theory predicts that such multiple collective excitations should closely follow a harmonic pattern. Recent experimental results on the double giant dipole resonance using the (π+π-) double charge exchange reaction are shown. The status of the search for isoscalar multiphonon excitations by means of the strong nuclear potential produced by heavy ions is presented. Conclusions are drawn and new prospects are discussed. (authors) 293 refs., 67 figs., 8 tabs

  14. Adiabatic quenches and characterization of amplitude excitations in a continuous quantum phase transition.

    Science.gov (United States)

    Hoang, Thai M; Bharath, Hebbe M; Boguslawski, Matthew J; Anquez, Martin; Robbins, Bryce A; Chapman, Michael S

    2016-08-23

    Spontaneous symmetry breaking occurs in a physical system whenever the ground state does not share the symmetry of the underlying theory, e.g., the Hamiltonian. This mechanism gives rise to massless Nambu-Goldstone modes and massive Anderson-Higgs modes. These modes provide a fundamental understanding of matter in the Universe and appear as collective phase or amplitude excitations of an order parameter in a many-body system. The amplitude excitation plays a crucial role in determining the critical exponents governing universal nonequilibrium dynamics in the Kibble-Zurek mechanism (KZM). Here, we characterize the amplitude excitations in a spin-1 condensate and measure the energy gap for different phases of the quantum phase transition. At the quantum critical point of the transition, finite-size effects lead to a nonzero gap. Our measurements are consistent with this prediction, and furthermore, we demonstrate an adiabatic quench through the phase transition, which is forbidden at the mean field level. This work paves the way toward generating entanglement through an adiabatic phase transition. PMID:27503886

  15. Electronic excitation as a mode of heat dissipation in laser-driven cluster plasmas

    International Nuclear Information System (INIS)

    Electrons streaming out of laser plasma are known for non-local heat transport and energy deposition by the ionization wave. At 100 eV electron temperature, since the electronic excitation cross section is comparable to that of ionization for Ar and CO2, a non-local excitation wave akin to the ionization wave is envisaged where energy deposition in excitations forms a excited cluster sheath beyond the laser focus. Here, we show that nano-cluster systems have the right parameters to form such an exciton sheath and experimentally demonstrate this via charge transfer reactions

  16. [Biophysics of nerve excitation].

    Science.gov (United States)

    Kol'e, O R; Maksimov, G V

    2010-01-01

    The studies testifying to the presence of the interrelation between the physiological functions of the organism and physical and chemical processes in nerves are discussed. Changes in some physical and chemical parameters observed both upon elicited rhythmic exaltation of nerves and during the spontaneous rhythmic activity of neurons are analyzed. Upon rhythmic exaltation, a complex of physical and chemical processes is triggered, and reversible structural and metabolic rearrangements at the subcellular and molecular levels occur that do not take place during the generation of a single action potential. Thus, only in conditions of rhythmic exaltation of a nerve, it is possible to reveal those processes that provide exaltation of nerves in the organism. The future possibilities of the investigations combining the biophysical and physiological approaches are substantiated. Characteristic changes in physicochemical parameters are observed in nerves during the generation of a series of action potentials of different frequency and duration ("frequency dependence") under normal physiological conditions, as well as in extreme situations and in nerve pathology. The structural and metabolic rearrangements are directly related to the mode of rhythmic exaltation and proceed both in the course of rhythmic exaltation and after its termination. Participation and the basic components of the nervous fulcrum (an axon, Shwan cell, myelin, subcellular organelles) in the realization of rhythmic exaltation is shown. In the coordination of all processes involved in rhythmic exaltation, the main role is played by the systems of redistribution and transport of intercellular and endocellular calcium. The idea is put forward that myelin of nerve fibers is not only an isolator, but also an "intercellular depot" of calcium and participates in the redistribution of different ions. Thus, the rhythmic excitation is of great importance in the realization of some physiological functions, the

  17. Diseño Mc. Lean‐Anderson aplicado para obtener recubrimientos de electrodos aleados con carbono, cromo y titanio//Mc. Lean‐Anderson design applied for recovered electrodes obtaining with carbon, chrome and titanium alloys

    Directory of Open Access Journals (Sweden)

    Carlos René Gómez-Pérez

    2013-05-01

    Full Text Available En el trabajo se estudia el comportamiento de electrodos recubiertos destinados al relleno superficial con el proceso de soldadura manual (SMAW, Shielded Metal Arc Welding. Para el diseño experimental se aplican un procedimiento de cálculo para el revestimiento y un plan de mezclas del tipo Mc. Lean-Anderson. En el diseño se conjuga una matriz compuesta por Calcita (26,73 %, Ferrosilicio (19,02 %,Ferromanganeso (16,58 %, Rutilo (26,69 %, Silicato de Potasio (11,70 % y diferentes cargas de aleación conformadas por Grafito (2 ≤ X1 ≤ 10 %, Ferro Cromo (5 ≤ X2 ≤ 35 %, ferrotungsteno (5 ≤ X3 ≤ 10 % y matriz (60 ≤ X4 ≤ 80 %. En el trabajo se ofrecen criterios sobre la selección de los niveles límites a explorar durante el plan experimental, a partir de consideraciones sobre los materiales empleados, sus rangos y el procedimiento de fabricación de los electrodos.Palabras claves: electrodos recubiertos, recubrimientos de electrodos, smaw, diseño de experimentos, relleno superficial._______________________________________________________________________________AbstractIn the present work the behavior of recovered electrodes for superficial filler with Shielded Metal Arc Welding (SMAW process is study. For the experimental design a coating calculation procedure and a Mc. Lean- Anderson type experimental plan are used. On the experimental design a matrix, composed by Calcite (26,73 %, Ferrosilicio (19,02%, Ferromanganese (16,58%, Rutile (26,69%, Potassium Silicate (11,70 %, and a alloy, conformed by Graphite (2 ≤ X1 ≤ 10, Ferro Chromium (5 ≤ X2 ≤ 35 %, ferrotungsteno (5 ≤ X3 ≤ 10 % and matrix (60 ≤ X4 ≤ 80 % is conjugated. In the work some criteria on the selection of the levels limits to explore during the experimental plan are offer, starting from considerations on the materials employees, their ranges and the procedure of production of the electrodes.Key words: recovered electrodes, electrodes coating, smaw

  18. Uniform excitations in magnetic nanoparticles

    DEFF Research Database (Denmark)

    Mørup, Steen; Frandsen, Cathrine; Hansen, Mikkel Fougt

    2010-01-01

    We present a short review of the magnetic excitations in nanoparticles below the superparamagnetic blocking temperature. In this temperature regime, the magnetic dynamics in nanoparticles is dominated by uniform excitations, and this leads to a linear temperature dependence of the magnetization...... and the magnetic hyperfine field, in contrast to the Bloch T3/2 law in bulk materials. The temperature dependence of the average magnetization is conveniently studied by Mössbauer spectroscopy. The energy of the uniform excitations of magnetic nanoparticles can be studied by inelastic neutron scattering....

  19. Uniform excitations in magnetic nanoparticles

    Directory of Open Access Journals (Sweden)

    Steen Mørup

    2010-11-01

    Full Text Available We present a short review of the magnetic excitations in nanoparticles below the superparamagnetic blocking temperature. In this temperature regime, the magnetic dynamics in nanoparticles is dominated by uniform excitations, and this leads to a linear temperature dependence of the magnetization and the magnetic hyperfine field, in contrast to the Bloch T3/2 law in bulk materials. The temperature dependence of the average magnetization is conveniently studied by Mössbauer spectroscopy. The energy of the uniform excitations of magnetic nanoparticles can be studied by inelastic neutron scattering.

  20. Effet de l'interaction coulombienne sur la localisation d'Anderson dans le gaz bidimensionnel d'électrons

    Science.gov (United States)

    Fleury, G.

    2010-09-01

    Nous étudions l’effet des interactions coulombiennes sur la localisation d’Anderson dans le gaz bidimensionnel d’électrons désordonné. L’objectif est de statuer sur la question de l’existence de métaux à deux dimensions. En l’absence d’interaction, la théorie d’échelle de la localisation prédit qu’un désordre infinitésimal suffit à localiser la fonction d’onde électronique et donc à rendre le système isolant à température nulle (Abrahams et al., 1979). Dans certaines limites extrêmes, les interactions peuvent être prises en compte et l’on aboutit également à un état isolant. Cependant, aucune théorie analytique ne permet de traiter le régime quantique non-perturbatif où désordre et interaction sont intermédiaires. Expérimentalement, il est possible de l’explorer dans des échantillons de haute mobilité et basse densité. Depuis 1994, des comportements métalliques inexpliqués y ont été observés (Kravchenko et al., 1994). Nous avons mis au point une méthode numérique permettant d’étudier le problème couplé de la localisation d’Anderson en présence d’interaction. Cette méthode mêle Monte Carlo quantique à température nulle et théorie d’échelle pour la conductance de Thouless. Nous trouvons que la théorie d’échelle de la localisation est préservée en présence d’interaction et donc que le gaz bidimensionnel, même corrélé, est isolant à température nulle. Nos résultats montrent de plus que les interactions délocalisent le gaz bidimensionnel et que cet effet de délocalisation est accru en présence de dégénérescence de vallées. Ils nous permettent de proposer un mécanisme simple rendant compte des principales caractéristiques des comportements métalliques observés expérimentalement.