WorldWideScience

Sample records for andean-patagonian canopied stream

  1. Temporal variations in the diet of the exotic rainbow trout (Oncorhynchus mykiss in an Andean-Patagonian canopied stream Variación temporal en la dieta de la trucha exótica arco iris (Oncorhynchus mykiss en un arroyo forestado de los Andes patagónicos

    Directory of Open Access Journals (Sweden)

    LEONARDO M BURIA

    2009-03-01

    Full Text Available We examined seasonal and diel variation in prey species composition and biomass in the diet of the exotic rainbow trout Oncorhynchus mykiss (Walbaum, 1972. The study was carried out in the upper-forested sections of a low order stream in Andean-Patagonia. We studied the importance of functional feeding groups of aquatic invertebrates and the relative contribution of terrestrial and aquatic prey items in order to assess the pathways connecting terrestrial and aquatic ecosystems along a stream food web. Trout fed on approximately 40 invertebrate species and scrapers were consistently selected, suggesting their increased vulnerability to predation. However in terms of biomass, rainbow trout diet was mostly composed by shredders which emphasized the role of the allochthonous plant detritus pathway in food webs of forested small streams. Trout individuals fed more intensively in spring and summer and during daytime. Terrestrial items constituted a minor proportion of the diet implying that this component did not represent a significant subsidy for this fish population. As a consequence, the top-down effect on the aquatic community does not appear to be dampened since trout do not strongly preyed on terrestrial invertebrates.Se estudió la variación estacional y diaria en la composición y biomasa de las especies presa en la dieta de la exótica trucha arco iris Oncorhynchus mykiss (Walbaum, 1972 en la sección superior de un arroyo boscoso de bajo orden en los Andes patagónicos. Se analizó la importancia de los grupos funcionales alimentarios de invertebrados acuáticos y la contribución relativa de las presas de origen terrestre y acuático para evaluar las vías tróficas que conectan los ecosistemas acuático y terrestre circundantes. Las truchas consumieron aproximadamente unas 40 especies de invertebrados y los raspadores fueron consistentemente seleccionados, sugiriendo una alta vulnerabilidad a la depredación. Sin embargo en términos de

  2. New records in the Tubeufiaceae from Andean Patagonian forests of Argentina

    OpenAIRE

    Sanchez, Romina Magali; Bianchinotti, Maria Virginia

    2017-01-01

    Tubeufiaceae (Pleosporales, Ascomycota) occurring on native trees from the Andean Patagonian forests in Argentina are described and illustrated. Acanthostigma minutum and Tubeufia cerea with its anamorphic state are reported from South America for the first time on Nothofagus dombeyi and N. antarctica, respectively. Both species were up to now only known from the Northern Hemisphere. Fil: Sanchez, Romina Magali. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico ...

  3. Taxonomic review of the species of Helina R.-D. (Diptera: Muscidae) from Andean-Patagonian forests.

    Science.gov (United States)

    Patitucci, Luciano Damián; Mulieri, Pablo Ricardo; Mariluis, Juan Carlos

    2016-08-12

    Helina Robineau-Desvoidy, 1830 is the second genus of Muscidae in terms of richness. This genus includes several species collected at high altitudes and high latitudes, and is poorly studied in the Neotropical region. Only 12 species of Helina have been recorded in the southern limit of South America in the Andean-Patagonian forests. In the present work, we studied all the species known from the Andean-Patagonian forests, with the exception of H. viola Malloch, 1934, present three new species, H. araucana sp. nov., H. dorada sp. nov., and H. ouina sp. nov., and provide the first description of the females of H. australis Carvalho & Pont, 1993 and H. rufoapicata Malloch, 1934. We also propose four new synonymies: H. nigrimana basilaris (Carvalho & Pont, 1993) and H. nigrimana grisea (Malloch, 1934) as new junior synonyms of H. nigrimana (Macquart, 1851); and H. fulvocalyptrata Malloch, 1934 and H. simplex Malloch, 1934 as new junior synonyms of H. chilensis Malloch, 1934. Finally, we provide a generic diagnosis and a new key for the Helina species of the Andean-Patagonian forests, as well as notes on the biology and distribution maps of each specimen, and discuss a preliminary contruction of groups of species.

  4. Application of two-stream model to solar radiation of rice canopy

    International Nuclear Information System (INIS)

    Kawakata, T.

    2005-01-01

    The amount of solar radiation absorbed by a crop canopy is correlated with crop production, and thus it is necessary to estimate both transmission and reflection around the canopy for crop growth models. The 'forward and backward streams' representation of radiation has been refined to account for both transmission and reflection in the crop canopy. However, this model has not been applied to a rice canopy through the growing period. The purpose of this study is to examine whether the two-stream model is applicable to the rice canopy, and to investigate the parameters of the model. The values for both transmittance below the rice canopy and reflectance above it that were derived from the two-stream model represent the observed values throughout the growing period. The inclination factor of leaves (F), which is used in the two-stream model, was almost equivalent to the extinction coefficient of transmittance in the case of the rice canopy

  5. Secondary production of Gammarus pulex Linnaeus in small temperate streams that differ in riparian canopy cover

    NARCIS (Netherlands)

    Franken, R.J.M.; Gardeniers, J.J.P.; Peeters, E.T.H.M.

    2007-01-01

    Variation in the amount of riparian canopy cover affects bioenergetic processes in streams. Effects of canopy opening on environmental parameters including water temperature and the quality and quantity of food resources (leaf litter and/or associated biofilm) are likely to influence detritivore

  6. Relationships of shredders, leaf processing and organic matter along a canopy cover gradient in tropical streams

    OpenAIRE

    Anna C.F. Aguiar; Vinicius Neres-Lima; Timothy P. Moulton

    2017-01-01

    Terrestrial allochthonous organic matter represents a structuring element and an important source of energy and carbon to fauna in small forested streams. However, the role of this matter as a food resource for benthic macroinvertebrates, and consequently, for shredders and their performance in riverine processes, is not clear in low-order tropical streams. Aiming to investigate the relationship between shredders and leaves, we analyzed along a gradient of 8-93% canopy cover biomass and abund...

  7. A model-based comparison of organic matter dynamics between riparian-forested and open-canopy streams

    Directory of Open Access Journals (Sweden)

    Stenroth Karolina

    2014-06-01

    Full Text Available The food webs of forest streams are primarily based upon inputs of organic matter from adjacent terrestrial ecosystems. However, streams that run through open landscapes generally lack closed riparian canopies, and an increasing number of studies indicate that terrestrial organic matter may be an important resource in these systems as well. Combining key abiotically-controlled factors (stream discharge, water temperature, and litter input rate with relevant biotic processes (e.g. macroinvertebrate CPOM consumption, microbial processing, we constructed a model to predict and contrast organic matter dynamics (including temporal variation in CPOM standing crop, CPOM processing rate, FPOM production, and detritivore biomass in small riparian-forested and open-canopy streams. Our modeled results showed that the standing crop of CPOM was similar between riparian-forested and open-canopy streams, despite considerable differences in litter input rate. This unexpected result was partly due to linkages between CPOM supply and consumer abundance that produced higher detritivore biomass in the forest stream than the open-canopy stream. CPOM standing crop in the forest stream was mainly regulated by top-down consumer control, depressing it to a level similar to that of the open-canopy stream. In contrast, CPOM standing crop in the open-canopy stream was primarily controlled by physical factors (litter input rates and discharge, not consumption. This suggests that abiotic processes (e.g. discharge may play a greater role in limiting detrital resource availability and consumer biomass in open-canopy streams than in forest streams. These model results give insight on functional differences that exists among streams and they can be used to predict effects of anthropogenic influences such as forestry, agriculture, urbanization, and climate change on streams and how riparian management and conservation tools can be employed to mitigate undesirable effects.

  8. On the behaviour of a stressed cotton canopy in a direct air stream

    Science.gov (United States)

    Schutt, J. B.; Newcomb, W. W.

    1986-01-01

    Reflectance variations of a stressed cotton canopy were conducted in the presence of a fan-generated air stream to investigate the effects of air movement and the resulting temperature changes on remotely-sensed data. The initial drop in reflectance after application of the air stream was found to be greatest in the morning because leaf turgor was at a maximum, enabling leaves on the windward side of the canopy to assume surprisingly stable vertical positions. By afternoon, a reduction in leaf turgor was responsible for less stem displacement and consequently a reduction in light-trapping capability. However, reflectance oscillations were greater because the leaves had become sufficiently limp to flutter at the edges and about the petioles exposing both adaxial and abaxial surfaces to the incident light.

  9. Influence of riparian canopy on macroinvertebrate composition and food habits of juvenile salmonids in several Oregon streams.

    Science.gov (United States)

    William R. Meehan

    1996-01-01

    The community composition of macroinvertebrates and the feeding habits of juvenile salmonids were studied in eight Oregon streams. Benthic, drift, sticky trap, and water trap samples were taken over a 3-year period, along with stomach samples of the fish. Samples were taken in stream reaches with and without riparian canopy. Both main effects—fish diet versus...

  10. Reexamination and further development of two-stream canopy radiative transfer models for global land modeling

    Science.gov (United States)

    Yuan, Hua; Dai, Yongjiu; Dickinson, Robert E.; Pinty, Bernard; Shangguan, Wei; Zhang, Shupeng; Wang, Lili; Zhu, Siguang

    2017-03-01

    Four representative two-stream canopy radiative transfer models were examined and intercompared using the same configuration. Based on the comparison results, two modifications were introduced to the widely used Dickinson-Sellers model and then incorporated into the Community Land Model (CLM4.5). The modified model was tested against Monte-Carlo simulations and produced significant improvements in the simulated canopy transmittance and albedo values. In direct comparison with MODIS albedo data, the modified model shows good performance over most snow/ice-free vegetated areas, especially for regions that are covered by dense canopy. The modified model shows seasonally dependent behavior mainly in the near-infrared band. Thus, the improvements are not present in all seasons. Large biases are still noticeable in sparsely vegetated areas, in particular for the snow/ice covered regions, that is possibly related to the model, the land surface input data, or even the observations themselves. Further studies focusing on the impact of the seasonal changes in leaf optical properties, the parameterizations for snow/ice covered regions and the case of sparsely vegetated areas, are recommended.

  11. Relationships of shredders, leaf processing and organic matter along a canopy cover gradient in tropical streams

    Directory of Open Access Journals (Sweden)

    Anna C.F. Aguiar

    2017-10-01

    Full Text Available Terrestrial allochthonous organic matter represents a structuring element and an important source of energy and carbon to fauna in small forested streams. However, the role of this matter as a food resource for benthic macroinvertebrates, and consequently, for shredders and their performance in riverine processes, is not clear in low-order tropical streams. Aiming to investigate the relationship between shredders and leaves, we analyzed along a gradient of 8-93% canopy cover biomass and abundance of shredders, accumulated leaves and breakdown rates of local leaves to verify if these parameters were related to shade conditions and to each other. Three hypotheses were tested: i shredder biomass, accumulated leaves and breakdown rates are related to canopy cover and exhibit higher values in shaded sites; ii shredder biomass is positively related to accumulated leaves and breakdown rates; and iii due to the relatively large body size of the important shredders, the association of shredders with leaves and importance to leaf processing should be better expressed in terms of guild biomass than abundance. Shredder biomass varied between 846 and 1506 mg DM m‑2 and accumulated leaves varied between 479 and 1120 g AFDM m-2 across sites. Leaf breakdown rate (k, the only measured variable that varied significantly among sites, varied between -0.0015 and -0.0238 day-1. Neither shredder biomass nor leaf biomass were associated with the shading gradient.  On the other hand, shredder abundance and biomass, mainly represented by Triplectides (Trichoptera, Leptoceridae, was positively related to accumulated leaves within sites and to breakdown rates assessed by leaf packs. Leaf breakdown, as assessed by the experimental leaf packs, was associated with shredder biomass, but not with shredder abundance. This result suggests that macroinvertebrates are important for leaf detritus processing and that their biomass reflects their activity, presumably because it is

  12. STREAM

    DEFF Research Database (Denmark)

    Godsk, Mikkel

    This paper presents a flexible model, ‘STREAM’, for transforming higher science education into blended and online learning. The model is inspired by ideas of active and collaborative learning and builds on feedback strategies well-known from Just-in-Time Teaching, Flipped Classroom, and Peer...... Instruction. The aim of the model is to provide both a concrete and comprehensible design toolkit for adopting and implementing educational technologies in higher science teaching practice and at the same time comply with diverse ambitions. As opposed to the above-mentioned feedback strategies, the STREAM...

  13. Inorganic mercury (Hg2+ uptake by different plankton fractions of Andean Patagonian lakes (Argentina

    Directory of Open Access Journals (Sweden)

    Diéguez M.C.

    2014-07-01

    Full Text Available The species composition and the size structure of natural planktonic food webs may provide essential information to understand the fate of mercury and, in particular, the bioaccumulation pattern of Hg2+ in the water column of lake ecosystems. Heterotrophic and autotrophic picoplankton and phytoplankton are the most important entry points for Hg in aquatic ecosystems since they concentrate Hg2+ and MeHg from ambient water, making them available to planktonic consumers at higher trophic levels of lake food webs. In this investigation we studied the uptake of 197Hg2+ in natural plankton assemblages from four Andean lakes (Nahuel Huapi National Park, Patagonia, Argentina, comprised in the size fractions 0.2-2.7 μm (picoplankton, 0.2-20 μm (pico and nanoplankton and 20-50 μm (microplankton through experiments using Hg2+ labeled with 197Hg2+. The experimental results showed that the uptake of Hg2+ was highest in the smallest plankton fractions (0.2-2.7 μm and 0.2-20 μm compared to the larger fraction comprising microplankton (20-50 um. This pattern was consistent in all lakes, reinforcing the idea that among pelagic organisms, heterotrophic and autotrophic bacteria with the contribution of nanoflagellates and dinoflagellates constitute the main entry point of Hg2+ to the pelagic food web. Moreover, a significant direct relationship was found between the Hg2+ uptake and surface index of the planktonic fractions (SIf. Thus, the smaller planktonic fractions which bore the higher SI were the major contributors to the Hg2+ passing from the abiotic to the biotic pelagic compartments of these Andean lakes.

  14. Climate-driven terrestrial inputs in ultraoligotrophic mountain streams of Andean Patagonia revealed through chromophoric and fluorescent dissolved organic matter.

    Science.gov (United States)

    Garcia, Roberto D; Reissig, Mariana; Queimaliños, Claudia P; Garcia, Patricia E; Dieguez, Maria C

    2015-07-15

    Fluvial networks transport a substantial fraction of the terrestrial production, contributing to the global carbon cycle and being shaped by hydrologic, natural and anthropogenic factors. In this investigation, four Andean Patagonian oligotrophic streams connecting a forested catchment (~125km(2)) and draining to a double-basin large and deep lake (Lake Moreno complex, Northwestern Patagonia), were surveyed to analyze the dynamics of the allochthonous subsidy. The results of a 30month survey showed that the catchment supplies nutrients and dissolved organic matter (DOM) to the streams. The eruption of the Puyehue-Cordón Caulle at the beginning of the study overlapped with seasonal precipitation events. The largest terrestrial input was timed with precipitation which increased particulate materials, nutrients and DOM through enhanced runoff. Baseline suspended solids and nutrients were very low in all the streams (suspended solids: ~1mg/L; total nitrogen: ~0.02mg/L; total phosphorus: ~5μg/L), increasing several fold with runoff. Baseline dissolved organic carbon concentrations (DOC) ranged between 0.15 and 1mg/L peaking up to three-fold. Chromophoric and fluorescent analyses characterized the DOM as of large molecular weight and high aromaticity. Parallel factor modeling (PARAFAC) of DOM fluorescence matrices revealed three components of terrestrial origin, with certain degree of microbial processing: C1 and C2 (terrestrial humic-like compounds) and C3 (protein-like and pigment derived compounds). Seasonal changes in MOD quality represent different breakdown stages of the allochthonous DOM. Our survey allowed us to record and discuss the effects of the Puyehue-Cordón Caulle eruption, showing that due to the high slopes, high current and discharge of the streams the volcanic material was rapidly exported to the Moreno Lake complex. Overall, this survey underscores the magnitude and timing of the allochthonous input revealing the terrestrial subsidy to food webs in

  15. Canopy Chemistry (OTTER)

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: Canopy characteristics: leaf chemistry, specific leaf area, LAI, PAR, IPAR, NPP, standing biomass--see also: Meteorology (OTTER) for associated...

  16. NLCD 2001 - Tree Canopy

    Data.gov (United States)

    Minnesota Department of Natural Resources — The National Land Cover Database 2001 tree canopy layer for Minnesota (mapping zones 39-42, 50-51) was produced through a cooperative project conducted by the...

  17. Radiation Distribution Within a Canopy Profile Calculated by a Multiple-Layer Canopy Scattering Model

    Science.gov (United States)

    Qualls, R. J.; Zhao, W.

    2004-05-01

    processes are represented by a set of linear simultaneous equations that can be solved in a single pass through the equations, without iteration. This achieves computational economy while still accounting for the details of multiple scattering of radiation within the canopy. Compared to the two-stream approximation model, which is not appropriate for directional radiation, our model accounts for the directional scattering of directional radiation on the surface of a leaf angle distribution model. Stability analyses of the model showed that the canopy, with a Leaf Area Index (LAI) within a normal field range from 0 to 7, requires subdivision into about 50 or more layers in order to converge upon its final solution. Satisfactory agreement was obtained between model results and field measurements for downwelling short wave radiation impinging on the soil surface below the canopy and upwelling reflected radiation above the canopy, both for daily total values and for the 20-minute averages throughout the diurnal cycle.

  18. Canopy for VERAView Installation Guide

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ronald W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-12

    With the addition of the 3D volume slicer widget, VERAView now relies on Mayavi and its dependents. Enthought's Canopy Python environment provides everything VERAView needs, and pre-built Canopy versions for Windows, Mac OSX, and Linux can be downloaded.

  19. Gainesville's urban forest canopy cover

    Science.gov (United States)

    Francisco Escobedo; Jennifer A. Seitz; Wayne Zipperer

    2009-01-01

    Ecosystem benefits from trees are linked directly to the amount of healthy urban forest canopy cover. Urban forest cover is dynamic and changes over time due to factors such as urban development, windstorms, tree removals, and growth. The amount of a city's canopy cover depends on its land use, climate, and people's preferences. This fact sheet examines how...

  20. Spatial and seasonal variability of forested headwater stream temperatures in western Oregon, USA

    Science.gov (United States)

    J. A. Leach; D. H. Olson; P. D. Anderson; B. N. I. Eskelson

    2017-01-01

    Thermal regimes of forested headwater streams control the growth and distribution of various aquatic organisms. In a western Oregon, USA, case study we examined: (1) forested headwater stream temperature variability in space and time; (2) relationships between stream temperature patterns and weather, above-stream canopy cover, and geomorphic attributes; and (3) the...

  1. Plant photomorphogenesis and canopy growth

    Energy Technology Data Exchange (ETDEWEB)

    Ballare, C.L.; Scopel, A.L. [Universidad de Buenos Aires (Argentina)

    1994-12-31

    An important motivation for studying photomorphogenesis is to understand the relationships among plant photophysiology in canopies, canopy productivity, and agronomic yield. This understanding is essential to optimize lighting systems used for plant farming in controlled environments (CE) and for the design of genetically engineered crop strains with altered photoresponses. This article provides an overview of some basic principles of plant photomorphogenesis in canopies and discusses their implications for (1) scaling up information on plant photophysiology from individual plants in CE to whole canopies in the field, and (2), designing lighting conditions to increase plant productivity in CE used for agronomic purposes [e.g. space farming in CE Life-Support-Systems]. We concentrate on the visible ({lambda} between 400 and 700 nm) and far red (FR; {lambda} > 700 nm) spectral regions, since the ultraviolet (UV; 280 to 400 nm) is covered by other authors in this volume.

  2. Forests and Their Canopies: Achievements and Horizons in Canopy Science.

    Science.gov (United States)

    Nakamura, Akihiro; Kitching, Roger L; Cao, Min; Creedy, Thomas J; Fayle, Tom M; Freiberg, Martin; Hewitt, C N; Itioka, Takao; Koh, Lian Pin; Ma, Keping; Malhi, Yadvinder; Mitchell, Andrew; Novotny, Vojtech; Ozanne, Claire M P; Song, Liang; Wang, Han; Ashton, Louise A

    2017-06-01

    Forest canopies are dynamic interfaces between organisms and atmosphere, providing buffered microclimates and complex microhabitats. Canopies form vertically stratified ecosystems interconnected with other strata. Some forest biodiversity patterns and food webs have been documented and measurements of ecophysiology and biogeochemical cycling have allowed analyses of large-scale transfer of CO 2 , water, and trace gases between forests and the atmosphere. However, many knowledge gaps remain. With global research networks and databases, and new technologies and infrastructure, we envisage rapid advances in our understanding of the mechanisms that drive the spatial and temporal dynamics of forests and their canopies. Such understanding is vital for the successful management and conservation of global forests and the ecosystem services they provide to the world. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Spatiotemporal variation of macroinvertebrates in relation to canopy cover and other environmental factors in Eriora River, Niger Delta, Nigeria.

    Science.gov (United States)

    Arimoro, Francis O; Obi-Iyeke, Grace E; Obukeni, Prince J O

    2012-10-01

    Canopy cover is well known to influence the distribution of macroinvertebrates in temperate streams. Very little is known about how this factor influences stream communities in Afrotropical streams. The effects and possible interactions of environmental factors and canopy cover on macroinvertebrate community structure (abundance, richness, and diversity) were examined in four stations in Eriora River, southern Nigeria bimonthly from May to November 2010. The river supported diverse macroinvertebrates in which the upstream sampling stations with dense canopy cover were dominated by Decapoda, Ephemeroptera, Odonata, Gastropoda, Trichoptera, and Coleoptera while Diptera and Coleoptera were the benthic organisms found predominant at downstream stations with less canopy cover. Some caddisfly species such as Agapetus agilis, Trichosetodes species and the stonefly Neoperla species were present upstream and were found to be potential bioindicators for a clean ecosystem. The blood worm Chironomus species and Tabanus sp. were abundant at the downstream of the river and are considered potential bioindicators for an organically degrading ecosystem. Some environmental factors varied temporally with significantly higher macroinvertebrate abundance and richness in May. We found out that canopy cover and environmental factors affected macroinvertebrates abundance, diversity, and richness and that the individual taxon had varying responses to these factors. These results help identify the mechanisms underlying the effects of canopy cover and other environmental factors on Afrotropical stream invertebrate communities.

  4. Streams with Strahler Stream Order

    Data.gov (United States)

    Minnesota Department of Natural Resources — Stream segments with Strahler stream order values assigned. As of 01/08/08 the linework is from the DNR24K stream coverages and will not match the updated...

  5. Canopy spectral invariants for remote sensing and model applications

    NARCIS (Netherlands)

    Huang, D.; Knyazikhin, Y.; Dickinson, R.E.; Rautiainen, M.; Stenberg, P.; Disney, M.; Lewis, P.; Cescatti, A.; Tian, Y.; Verhoef, W.; Martonchik, J.V.; Myneni, R.B.

    2007-01-01

    The concept of canopy spectral invariants expresses the observation that simple algebraic combinations of leaf and canopy spectral transmittance and reflectance become wavelength independent and determine a small set of canopy structure specific variables. This set includes the canopy interceptance,

  6. Forests and their canopies: Archievements and horizons in canopy science

    Czech Academy of Sciences Publication Activity Database

    Nakamura, A.; Kitching, R. L.; Cao, M.; Creedy, T. J.; Fayle, Tom Maurice; Freiberg, M.; Hewitt, C. N.; Itioka, T.; Koh, L. P.; Ma, K.; Malhi, Y.; Mitchell, A.; Novotný, Vojtěch; Ozanne, C. M. P.; Song, L.; Wang, H.; Ashton, L. A.

    2017-01-01

    Roč. 32, č. 6 (2017), s. 438-451 ISSN 0169-5347 R&D Projects: GA ČR(CZ) GA16-09427S; GA ČR GB14-36098G EU Projects: European Commission(XE) 669609 - Diversity6continents Institutional support: RVO:60077344 Keywords : biodiversity * canopy * cranes Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 15.268, year: 2016 http://www.sciencedirect.com/science/article/pii/S0169534717300599

  7. Canopy Dynamics in Nanoscale Ionic Materials

    KAUST Repository

    Jespersen, Michael L.

    2010-07-27

    Nanoscale ionic materials (NIMS) are organic - inorganic hybrids in which a core nanostructure is functionalized with a covalently attached corona and an ionically tethered organic canopy. NIMS are engineered to be liquids under ambient conditions in the absence of solvent and are of interest for a variety of applications. We have used nuclear magnetic resonance (NMR) relaxation and pulse-field gradient (PFG) diffusion experiments to measure the canopy dynamics of NIMS prepared from 18-nm silica cores modified by an alkylsilane monolayer possessing terminal sulfonic acid functionality, paired with an amine-terminated ethylene oxide/propylene oxide block copolymer canopy. Carbon NMR studies show that the block copolymer canopy is mobile both in the bulk and in the NIMS and that the fast (ns) dynamics are insensitive to the presence of the silica nanoparticles. Canopy diffusion in the NIMS is slowed relative to the neat canopy, but not to the degree predicted from the diffusion of hard-sphere particles. Canopy diffusion is not restricted to the surface of the nanoparticles and shows unexpected behavior upon addition of excess canopy. Taken together, these data indicate that the liquid-like behavior in NIMS is due to rapid exchange of the block copolymer canopy between the ionically modified nanoparticles. © 2010 American Chemical Society.

  8. Estimating forest canopy fuel parameters using LIDAR data.

    Science.gov (United States)

    Hans-Erik Andersen; Robert J. McGaughey; Stephen E. Reutebuch

    2005-01-01

    Fire researchers and resource managers are dependent upon accurate, spatially-explicit forest structure information to support the application of forest fire behavior models. In particular, reliable estimates of several critical forest canopy structure metrics, including canopy bulk density, canopy height, canopy fuel weight, and canopy base height, are required to...

  9. VitiCanopy: A Free Computer App to Estimate Canopy Vigor and Porosity for Grapevine.

    Science.gov (United States)

    De Bei, Roberta; Fuentes, Sigfredo; Gilliham, Matthew; Tyerman, Steve; Edwards, Everard; Bianchini, Nicolò; Smith, Jason; Collins, Cassandra

    2016-04-23

    Leaf area index (LAI) and plant area index (PAI) are common and important biophysical parameters used to estimate agronomical variables such as canopy growth, light interception and water requirements of plants and trees. LAI can be either measured directly using destructive methods or indirectly using dedicated and expensive instrumentation, both of which require a high level of know-how to operate equipment, handle data and interpret results. Recently, a novel smartphone and tablet PC application, VitiCanopy, has been developed by a group of researchers from the University of Adelaide and the University of Melbourne, to estimate grapevine canopy size (LAI and PAI), canopy porosity, canopy cover and clumping index. VitiCanopy uses the front in-built camera and GPS capabilities of smartphones and tablet PCs to automatically implement image analysis algorithms on upward-looking digital images of canopies and calculates relevant canopy architecture parameters. Results from the use of VitiCanopy on grapevines correlated well with traditional methods to measure/estimate LAI and PAI. Like other indirect methods, VitiCanopy does not distinguish between leaf and non-leaf material but it was demonstrated that the non-leaf material could be extracted from the results, if needed, to increase accuracy. VitiCanopy is an accurate, user-friendly and free alternative to current techniques used by scientists and viticultural practitioners to assess the dynamics of LAI, PAI and canopy architecture in vineyards, and has the potential to be adapted for use on other plants.

  10. Fast matrix treatment of 3-D radiative transfer in vegetation canopies: SPARTACUS-Vegetation 1.1

    Science.gov (United States)

    Hogan, Robin J.; Quaife, Tristan; Braghiere, Renato

    2018-01-01

    A fast scheme is described to compute the 3-D interaction of solar radiation with vegetation canopies. The canopy is split in the horizontal plane into one clear region and one or more vegetated regions, and the two-stream equations are used for each, but with additional terms representing lateral exchange of radiation between regions that are proportional to the area of the interface between them. The resulting coupled set of ordinary differential equations is solved using the matrix-exponential method. The scheme is compared to solar Monte Carlo calculations for idealized scenes from the RAMI4PILPS intercomparison project, for open forest canopies and shrublands both with and without snow on the ground. Agreement is good in both the visible and infrared: for the cases compared, the root-mean-squared difference in reflectance, transmittance and canopy absorptance is 0.020, 0.038 and 0.033, respectively. The technique has potential application to weather and climate modelling.

  11. Stream systems.

    Science.gov (United States)

    Jack E. Williams; Gordon H. Reeves

    2006-01-01

    Restored, high-quality streams provide innumerable benefits to society. In the Pacific Northwest, high-quality stream habitat often is associated with an abundance of salmonid fishes such as chinook salmon (Oncorhynchus tshawytscha), coho salmon (O. kisutch), and steelhead (O. mykiss). Many other native...

  12. Nondestructive, stereological estimation of canopy surface area

    DEFF Research Database (Denmark)

    Wulfsohn, Dvora-Laio; Sciortino, Marco; Aaslyng, Jesper M.

    2010-01-01

    a canopy using the smooth fractionator, (ii) sampling of leaves from the selected plants using the fractionator, and (iii) area estimation of the sampled leaves using point counting. We apply this procedure to estimate the total area of a chrysanthemum (Chrysanthemum morifolium L.) canopy and evaluate both...

  13. Leaf Wetness within a Lily Canopy

    NARCIS (Netherlands)

    Jacobs, A.F.G.; Heusinkveld, B.G.; Klok, E.J.

    2005-01-01

    A wetness duration experiment was carried out within a lily field situated adjacent to coastal dunes in the Netherlands. A within-canopy model was applied to simulate leaf wetness in three layers, with equal leaf area indices, within the canopy. This simulation model is an extension of an existing

  14. Use of the forest canopy by bats.

    Science.gov (United States)

    L. Wunder; A.B. Carey

    1994-01-01

    Of the 15 species of bats in the Pacific Northwest, 11 are known to make regular use of the forest canopy for roosting, foraging, and reproduction. This paper reviews roosting requirements, foraging, and the importance of landscape-scale factors to canopy using species in the Northwest. Many northwest bats use several different types of tree roosts. Common roosting...

  15. The impact of modifying antenna size of photosystem II on canopy photosynthetic efficiency – development of a new canopy photosynthesis model scaling from metabolism to canopy level processes

    Science.gov (United States)

    Canopy photosynthesis describes photosynthesis of an entire crop field and positively correlates with biomass production. Much effort in crop breeding has focused on improving canopy architecture and hence light distribution inside the canopy. Here, we develop a new integrated canopy photosynthesis ...

  16. Microwave Propagation Through Cultural Vegetation Canopies

    Science.gov (United States)

    Tavakoli, Ahad

    The need to understand the interaction of microwaves with vegetation canopies has markedly increased in recent years. This is due to advances made in remote sensing science, microwave technology, and signal processing circuits. One class of the earth's vegetation cover is man-made canopies, such as agricultural fields, orchards, and artificial forests. Contrary to natural vegetation terrain, location, spacing, and density of plants in a man-made vegetation canopy are deterministic quantities. As a result, the semi-deterministic nature of cultural vegetation canopies violate the random assumption of the radiative transfer theory and leads to experimented results that are in variance with model calculations. Hence, an alternative approach is needed to model the interaction of microwaves with such canopies. This thesis examines the propagation behavior through a canopy of corn plants. The corn canopy was selected as a representative of cultural vegetation canopies that are planted in parallel rows with an approximately fixed spacing between adjacent plants. Several experimental measurements were conducted to determine the transmission properties of a corn canopy in the 1-10 GHz range. The measurements which included horizontal propagation through the canopy as well as propagation at oblique incidence, were performed for defoliated canopies and for canopies with leaves. Through experimental observations and model development, the propagation behavior was found to be strongly dependent on the wavelength and the path length. At a wavelength in the neighborhood of 20 cm, for example, it was found that scattering by the stalks was coherent in nature for waves propagating horizontally through the canopy, which necessitated the development of a coherent-field model that uses Bragg scattering to account for the observed interference pattern in the transmitted beam. As the wavelength is made shorter, the semi-random spacing between plants becomes significant relative to the

  17. Bone Canopies in Pediatric Renal Osteodystrophy

    DEFF Research Database (Denmark)

    Pereira, Renata C; Levin Andersen, Thomas; Friedman, Peter A

    2016-01-01

    Pediatric renal osteodystrophy (ROD) is characterized by changes in bone turnover, mineralization, and volume that are brought about by alterations in bone resorption and formation. The resorptive and formative surfaces on the cancellous bone are separated from the marrow cavity by canopies...... consisting of a layer of flat osteoblastic cells. These canopies have been suggested to play a key role in the recruitment of osteoprogenitors during the process of bone remodeling. This study was performed to address the characteristics of the canopies above bone formation and resorption sites...... and their association with biochemical and bone histomorphometric parameters in 106 pediatric chronic kidney disease (CKD) patients (stage 2-5) across the spectrum of ROD. Canopies in CKD patients often appeared as thickened multilayered canopies, similar to previous reports in patients with primary hyperparathyroidism...

  18. Impact of Stream Metabolism on Nitrate Concentrations in an Urban Stream

    Science.gov (United States)

    Ledford, S. H.; Lautz, L.; Vidon, P.; Stella, J. C.

    2016-12-01

    Nitrate dynamics in urban streams differ from many natural streams due to unique water inputs (e.g., wastewater, runoff from impervious cover) and often limited hyporheic exchange. Biogeochemical processes affecting N concentration in streams also differ from more natural systems as in-stream assimilation may be enhanced by biota due to increased primary productivity, while denitrification in stream sediments may be reduced owing to limited carbon input and reduced hyporheic exchange. This study investigates NO3 dynamics in a first-order stream in Syracuse, NY, which has urbanized headwaters with minimal stream-groundwater interaction and no riparian cover, and a natural downstream section, with meandering channel morphology and mature vegetation. Seasonal water sampling, NO3 injection tests and isotopic analysis of NO3 were performed to identify sources and sinks throughout the year, along with measures of filamentous algae density. The urban headwater reach has a maximum NO3 concentration of 0.2 mg N/L in the spring through fall, with a minimum uptake length of 900 m, no canopy cover, and high algae mat density. NO3 increases to 0.8 mg N/L beginning in the fall leaf-off period and continuing into winter in the urban reach. The downstream natural reach has NO3 concentrations between 0.6 and 1.2 mg N/L from December to September but dropped below 0.4 mg N/L in October and November during leaf-off. This section of the stream has almost 100% canopy cover during the summer and low algae mat density. Low NO3 concentrations in the urban reach (open canopy), combined with high algae density, suggest that autotrophic uptake by filamentous green algae is a major assimilatory sink of NO3 in the summer. In the natural reach, the addition of organic matter to the stream at leaf-off led to a strong decrease in N concentration (likely owing to a short-term increase in denitrification) followed by an increase in N concentration in winter as algae/plant uptake ceased. These

  19. Stream Evaluation

    Data.gov (United States)

    Kansas Data Access and Support Center — Digital representation of the map accompanying the "Kansas stream and river fishery resource evaluation" (R.E. Moss and K. Brunson, 1981.U.S. Fish and Wildlife...

  20. VitiCanopy: A Free Computer App to Estimate Canopy Vigor and Porosity for Grapevine

    Directory of Open Access Journals (Sweden)

    Roberta De Bei

    2016-04-01

    Full Text Available Leaf area index (LAI and plant area index (PAI are common and important biophysical parameters used to estimate agronomical variables such as canopy growth, light interception and water requirements of plants and trees. LAI can be either measured directly using destructive methods or indirectly using dedicated and expensive instrumentation, both of which require a high level of know-how to operate equipment, handle data and interpret results. Recently, a novel smartphone and tablet PC application, VitiCanopy, has been developed by a group of researchers from the University of Adelaide and the University of Melbourne, to estimate grapevine canopy size (LAI and PAI, canopy porosity, canopy cover and clumping index. VitiCanopy uses the front in-built camera and GPS capabilities of smartphones and tablet PCs to automatically implement image analysis algorithms on upward-looking digital images of canopies and calculates relevant canopy architecture parameters. Results from the use of VitiCanopy on grapevines correlated well with traditional methods to measure/estimate LAI and PAI. Like other indirect methods, VitiCanopy does not distinguish between leaf and non-leaf material but it was demonstrated that the non-leaf material could be extracted from the results, if needed, to increase accuracy. VitiCanopy is an accurate, user-friendly and free alternative to current techniques used by scientists and viticultural practitioners to assess the dynamics of LAI, PAI and canopy architecture in vineyards, and has the potential to be adapted for use on other plants.

  1. Testing a ground-based canopy model using the wind river canopy crane

    Science.gov (United States)

    Robert Van Pelt; Malcolm P. North

    1999-01-01

    A ground-based canopy model that estimates the volume of occupied space in forest canopies was tested using the Wind River Canopy Crane. A total of 126 trees in a 0.25 ha area were measured from the ground and directly from a gondola suspended from the crane. The trees were located in a low elevation, old-growth forest in the southern Washington Cascades. The ground-...

  2. BOREAS HYD-03 Canopy Density Data

    Data.gov (United States)

    National Aeronautics and Space Administration — The BOREAS HYD-03 team collected several data sets related to the hydrology of forested areas. This data set contains measurements of canopy density (closure) from a...

  3. BOREAS TE-18 Geosail Canopy Reflectance Model

    Data.gov (United States)

    National Aeronautics and Space Administration — The GEOSAIL model was created by combining the SAIL (Scattering from Arbitrarily Inclined Leaves) model with the Jasinski geometric model to simulate canopy spectral...

  4. Uptake of small particles by tree canopies

    International Nuclear Information System (INIS)

    Belot, Y.; Camus, H.; Gauthier, D.; Caput, C.

    1992-01-01

    Most of the deposition data that are available to assess the radiological consequences of an accident have been acquired for low-growing vegetation and are inadapted to forest areas. Consequently, a programme was undertaken to study the deposition of particles on components of different trees and extrapolate the experimental data so obtained to large-scale canopies. The experiments were performed in a wind tunnel allowing canopy components to be exposed to a flow of suspended fluorescent particles of reasonably uniform size. Emphasis was put on particles in the 0.3-1.2 μm subrange, because most of the radioactive particles sampled at long distance from sources are comprised in this size interval. The uptake rates were determined for bare and leaf bearing twigs of several evergreen species (Picea abies, Pinus sylvestris and Quercus ilex), as a function of wind speed and particle size. The deposition rates obtained for the tree components were then used as input to a model that describes the uptake of particles by a large-scale canopy under specified conditions of weather and canopy structure. The model accounts for the diffusion of particles between different strata of the canopy, as well as deposition of particles on the canopy components. It calculates the rates of particle deposition to the horizontal surface of the canopy, and the repartition of the deposited particles within the canopy. Increases in wind speed cause increased deposition, but the effect is less important that it would have been for larger particles. The deposition is relatively insensitive to the size of particles within the subrange considered in this study. 13 refs., 2 figs., 1 tab

  5. Forest Canopy Height Estimation from Calipso Lidar Measurement

    Directory of Open Access Journals (Sweden)

    Lu Xiaomei

    2016-01-01

    Canopy penetration depths at two wavelengths indicate moderately strong relationships for estimating the canopy height. Results show that the CALIOP-derived canopy heights were highly correlated with the ICESat/GLAS-derived values with a mean RMSE of 3.4 m and correlation coefficient (R of 0.89. Our findings present a relationship between the penetration difference and canopy height, which can be used as another metrics for canopy height estimation, except the full waveforms.

  6. Litter breakdown and invertebrate detritivores in a resource-depleted Appalachian stream

    Science.gov (United States)

    Susan L. Eggert; J. Bruce Wallace

    2003-01-01

    We measured breakdown rates of leaves and small wood for the first three years in a stream in which detrital inputs were excluded for 7 years and in a reference stream located in the Appalachian Mountains of North Carolina, USA. Leaf and wood inputs were excluded using a gill-net canopy constructed over a 170-m section of stream. We hypothesized that red maple (

  7. Estimating canopy bulk density and canopy base height for interior western US conifer stands

    Science.gov (United States)

    Seth A. Ex; Frederick W. Smith; Tara L. Keyser; Stephanie A. Rebain

    2016-01-01

    Crown fire hazard is often quantified using effective canopy bulk density (CBD) and canopy base height (CBH). When CBD and CBH are estimated using nonlocal crown fuel biomass allometries and uniform crown fuel distribution assumptions, as is common practice, values may differ from estimates made using local allometries and nonuniform...

  8. Remote sensing of sagebrush canopy nitrogen

    Science.gov (United States)

    Mitchell, Jessica J.; Glenn, Nancy F.; Sankey, Temuulen T.; Derryberry, DeWayne R.; Germino, Matthew J.

    2012-01-01

    This paper presents a combination of techniques suitable for remotely sensing foliar Nitrogen (N) in semiarid shrublands – a capability that would significantly improve our limited understanding of vegetation functionality in dryland ecosystems. The ability to estimate foliar N distributions across arid and semi-arid environments could help answer process-driven questions related to topics such as controls on canopy photosynthesis, the influence of N on carbon cycling behavior, nutrient pulse dynamics, and post-fire recovery. Our study determined that further exploration into estimating sagebrush canopy N concentrations from an airborne platform is warranted, despite remote sensing challenges inherent to open canopy systems. Hyperspectral data transformed using standard derivative analysis were capable of quantifying sagebrush canopy N concentrations using partial least squares (PLS) regression with an R2 value of 0.72 and an R2 predicted value of 0.42 (n = 35). Subsetting the dataset to minimize the influence of bare ground (n = 19) increased R2 to 0.95 (R2 predicted = 0.56). Ground-based estimates of canopy N using leaf mass per unit area measurements (LMA) yielded consistently better model fits than ground-based estimates of canopy N using cover and height measurements. The LMA approach is likely a method that could be extended to other semiarid shrublands. Overall, the results of this study are encouraging for future landscape scale N estimates and represent an important step in addressing the confounding influence of bare ground, which we found to be a major influence on predictions of sagebrush canopy N from an airborne platform.

  9. Surface-atmosphere interactions with coupled within-canopy aerodynamic resistance and canopy reflection.

    Science.gov (United States)

    Timmermans, J.; van der Tol, C.; Verhoef, W.; Su, Z.

    2009-04-01

    Models that describe the exchange of CO2 and H2O between the surface and atmosphere use bulk-parametrization of the within-canopy aerodynamic resistance and leaf area density (eq. LAI). This bulk parametrization is based on the Monin-Obukhov Similarity (MOS) theory. The MOS theory however breaks down for sparse canopies and it cannot couple profiles in the leaf density to profiles in the within-canopy aerodynamic resistance. The objective of this research is to create a simple model that is able to couple the within-canopy aerodynamic resistance and canopy reflection for different levels in the canopy. This model should be able to represent the canopy using as fewer parameters as possible, in order to facilitate inversion of remote sensing imagery. A virtual canopy was simulated using an L-systems approach, Lindenmayer 1968. The L-system approach was chosen because it describes the canopy with fractals. It therefore needs very little inputs to simulate a virtual canopy. A vertical profile of leaf density was calculated for 60 levels from this virtual canopy. The within-canopy aerodynamic resistance was modeled from the vertical leaf density profile using foliage drag coefficient, Massman 1997. A modified version of the SCOPE (Soil Canopy Observations and Photosynthesis) model was used to calculate the H2O and CO2 fluxes using the vertical profiles of leaf density and within-canopy aerodynamic resistance. The simulated fluxes are compared with field measurements over a vineyard and a forested area. The field measurements in both areas are acquired using the same setup: a basic flux tower in addition with an eddy-covariance setup. We present in this article the methodology and the results, as a proof of concept. references Massman, W.J., An Analytical One-Dimensional Model of Momentum Transfer by vegetation of arbitrary structure, Boundary-Layer Meteorology, 1997, 83, 407-421 Lindenmayer, A., Mathematical Models for Cellular Interactions in Development, Journal of

  10. Elements of a dynamic systems model of canopy photosynthesis.

    Science.gov (United States)

    Zhu, Xin-Guang; Song, Qingfeng; Ort, Donald R

    2012-06-01

    Improving photosynthesis throughout the full canopy rather than photosynthesis of only the top leaves of the canopy is central to improving crop yields. Many canopy photosynthesis models have been developed from physiological and ecological perspectives, however most do not consider heterogeneities of microclimatic factors inside a canopy, canopy dynamics and associated energetics, or competition among different plants, and most models lack a direct linkage to molecular processes. Here we described the rationale, elements, and approaches necessary to build a dynamic systems model of canopy photosynthesis. A systems model should integrate metabolic processes including photosynthesis, respiration, nitrogen metabolism, resource re-mobilization and photosynthate partitioning with canopy level light, CO(2), water vapor distributions and heat exchange processes. In so doing a systems-based canopy photosynthesis model will enable studies of molecular ecology and dramatically improve our insight into engineering crops for improved canopy photosynthetic CO(2) uptake, resource use efficiencies and yields. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Modeling Coherent Structures in Canopy Flows

    Science.gov (United States)

    Luhar, Mitul

    2017-11-01

    It is well known that flows over vegetation canopies are characterized by the presence of energetic coherent structures. Since the mean profile over dense canopies exhibits an inflection point, the emergence of such structures is often attributed to a Kelvin-Helmholtz instability. However, though stability analyses provide useful mechanistic insights into canopy flows, they are limited in their ability to generate predictions for spectra and coherent structure. The present effort seeks to address this limitation by extending the resolvent formulation (McKeon and Sharma, 2010, J. Fluid Mech.) to canopy flows. Under the resolvent formulation, the turbulent velocity field is expressed as a superposition of propagating modes, identified via a gain-based (singular value) decomposition of the Navier-Stokes equations. A key advantage of this approach is that it reconciles multiple mechanisms that lead to high amplification in turbulent flows, including modal instability, transient growth, and critical-layer phenomena. Further, individual high-gain modes can be combined to generate more complete models for coherent structure and velocity spectra. Preliminary resolvent-based model predictions for canopy flows agree well with existing experiments and simulations.

  12. BOREAS TE-9 NSA Canopy Biochemistry

    Science.gov (United States)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Margolis, Hank; Charest, Martin; Sy, Mikailou

    2000-01-01

    The BOREAS TE-9 team collected several data sets related to chemical and photosynthetic properties of leaves. This data set contains canopy biochemistry data collected in 1994 in the NSA at the YJP, OJR, OBS, UBS, and OA sites, including biochemistry lignin, nitrogen, cellulose, starch, and fiber concentrations. These data were collected to study the spatial and temporal changes in the canopy biochemistry of boreal forest cover types and how a high-resolution radiative transfer model in the mid-infrared could be applied in an effort to obtain better estimates of canopy biochemical properties using remote sensing. The data are available in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  13. Mean and Turbulent Flow Statistics in a Trellised Agricultural Canopy

    Science.gov (United States)

    Miller, Nathan E.; Stoll, Rob; Mahaffee, Walter F.; Pardyjak, Eric R.

    2017-10-01

    Flow physics is investigated in a two-dimensional trellised agricultural canopy to examine that architecture's unique signature on turbulent transport. Analysis of meteorological data from an Oregon vineyard demonstrates that the canopy strongly influences the flow by channelling the mean flow into the vine-row direction regardless of the above-canopy wind direction. Additionally, other flow statistics in the canopy sub-layer show a dependance on the difference between the above-canopy wind direction and the vine-row direction. This includes an increase in the canopy displacement height and a decrease in the canopy-top shear length scale as the above-canopy flow rotates from row-parallel towards row-orthogonal. Distinct wind-direction-based variations are also observed in the components of the stress tensor, turbulent kinetic energy budget, and the energy spectra. Although spectral results suggest that sonic anemometry is insufficient for resolving all of the important scales of motion within the canopy, the energy spectra peaks still exhibit dependencies on the canopy and the wind direction. These variations demonstrate that the trellised-canopy's effect on the flow during periods when the flow is row-aligned is similar to that seen by sparse canopies, and during periods when the flow is row-orthogonal, the effect is similar to that seen by dense canopies.

  14. Stream Response to an Extreme Defoliation Event

    Science.gov (United States)

    Gold, A.; Loffredo, J.; Addy, K.; Bernhardt, E. S.; Berdanier, A. B.; Schroth, A. W.; Inamdar, S. P.; Bowden, W. B.

    2017-12-01

    Extreme climatic events are known to profoundly impact stream flow and stream fluxes. These events can also exert controls on insect outbreaks, which may create marked changes in stream characteristics. The invasive Gypsy Moth (Lymantria dispar dispar) experiences episodic infestations based on extreme climatic conditions within the northeastern U.S. In most years, gypsy moth populations are kept in check by diseases. In 2016 - after successive years of unusually warm, dry spring and summer weather -gypsy moth caterpillars defoliated over half of Rhode Island's 160,000 forested ha. No defoliation of this magnitude had occurred for more than 30 years. We examined one RI headwater stream's response to the defoliation event in 2016 compared with comparable data in 2014 and 2015. Stream temperature and flow was gauged continuously by USGS and dissolved oxygen (DO) was measured with a YSI EXO2 sonde every 30 minutes during a series of deployments in the spring, summer and fall from 2014-2016. We used the single station, open channel method to estimate stream metabolism metrics. We also assessed local climate and stream temperature data from 2009-2016. We observed changes in stream responses during the defoliation event that suggest changes in ET, solar radiation and heat flux. Although the summer of 2016 had more drought stress (PDSI) than previous years, stream flow occurred throughout the summer, in contrast to several years with lower drought stress when stream flow ceased. Air temperature in 2016 was similar to prior years, but stream temperature was substantially higher than the prior seven years, likely due to the loss of canopy shading. DO declined dramatically in 2016 compared to prior years - more than the rising stream temperatures would indicate. Gross Primary Productivity was significantly higher during the year of the defoliation, indicating more total fixation of inorganic carbon from photo-autotrophs. In 2016, Ecosystem Respiration was also higher and Net

  15. Seedling Canopy Reflectance Spectra, 1992-1993 (ACCP)

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The reflectance spectra of Douglas-fir and bigleaf maple seedling canopies were measured. Canopies varied in fertilizer treatment and leaf area density...

  16. West Coast Canopy-Forming Kelp, 1989-2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data include the general extents of canopy-forming kelp surveys from 1989 to 2014 and a compilation of existing data sets delineating canopy-forming kelp beds...

  17. Wireless sensor networks for canopy temperature sensing and irrigation management

    Science.gov (United States)

    For researchers, canopy temperature measurements have proven useful in characterizing crop water stress and developing protocols for irrigation management. Today, there is heightened interest in using remote canopy temperature measurements for real-time irrigation scheduling. However, without the us...

  18. ASSESSING THE CANOPY INTEGRITY USING CANOPY DIGITAL IMAGES IN SEMIDECIDUOUS FOREST FRAGMENT IN SÃO CARLOS - SP- BRAZIL1

    Directory of Open Access Journals (Sweden)

    Thiago Yamada

    2017-11-01

    Full Text Available ABSTRACT It is well-known that conducting experimental research aiming the characterization of canopy structure of forests can be a difficult and costly task and, generally, requires an expert to extract, in loco, relevant information. Aiming at easing studies related to canopy structures, several techniques have been proposed in the literature and, among them, various are based on canopy digital image analysis. The research work described in this paper empirically compares two techniques that measure the integrity of the canopy structure of a forest fragment; one of them is based on central parts of canopy cover images and, the other, on canopy closure images. For the experiments, 22 central parts of canopy cover images and 22 canopy closure images were used. The images were captured along two transects: T1 (located in the conserved area and T2 (located in the naturally disturbance area. The canopy digital images were computationally processed and analyzed using the MATLAB platform for the canopy cover images and the Gap Light Analyzer (GLA, for the canopy closure images. The results obtained using these two techniques showed that canopy cover images and, among the employed algorithms, the Jseg, characterize the canopy integrity best. It is worth mentioning that part of the analysis can be automatically conducted, as a quick and precise process, with low material costs involved.

  19. The importance of volumetric canopy morphology when modelling drag around riparian vegetation

    Science.gov (United States)

    Boothroyd, Richard; Hardy, Richard; Warburton, Jeff; Marjoribanks, Timothy

    2017-04-01

    Riparian vegetation has a significant impact on the hydraulic functioning of river systems. The bulk of past work concerned with modelling the influence of vegetation on flow has considered vegetation to be morphologically simple, and has generally neglected the complexity and porosity of natural plants, defined herein as the volumetric canopy morphology. However, the volumetric canopy morphology can influence the mean and turbulent properties of the flow, producing spatially heterogeneous downstream velocity fields. By explicitly accounting for this in a computational fluid dynamics (CFD) model, and representing the plant as a porous blockage, complex flow structures and drag can be modelled. For a riparian species, Hebe odora, good agreement with flume measurements are found. Plant shear layer turbulence is shown to be dominated by Kelvin-Helmholtz and Görtler-type vortices, generated through shear instability. Porous representations of the plants, that allow for flow to pass through the plant canopy interior, are compared against fully impermeable plant representations. Penetration of fluid through the canopy in the porous case resembles 'bleed-flow', and this results in a plant wake region that significantly differs from the impermeable case, which is characteristic of wake flow around a traditional bluff body. These results demonstrate the significant effect that the volumetric canopy morphology and porosity of natural plants has on the three-dimensional flow and in-stream drag, and enables a re-evaluation of vegetative flow resistance. The modelled results allow a species dependent Manning's n to be calculated, and this presents an opportunity to move away from the conventional methods of representing vegetation in hydraulic models, in favour of a more physically determined approach. Given the importance of vegetation in river corridor management, and the increasing application of UAV imagery to map riparian vegetation, the numerical scheme developed here

  20. Deploying Fourier Coefficients to Unravel Soybean Canopy Diversity

    OpenAIRE

    Jubery, Talukder Z.; Shook, Johnathon; Parmley, Kyle; Zhang, Jiaoping; Naik, Hsiang S.; Higgins, Race; Sarkar, Soumik; Singh, Arti; Singh, Asheesh K.; Ganapathysubramanian, Baskar

    2017-01-01

    Soybean canopy outline is an important trait used to understand light interception ability, canopy closure rates, row spacing response, which in turn affects crop growth and yield, and directly impacts weed species germination and emergence. In this manuscript, we utilize a methodology that constructs geometric measures of the soybean canopy outline from digital images of canopies, allowing visualization of the genetic diversity as well as a rigorous quantification of shape parameters. Our ch...

  1. Scaling leaf measurements to estimate cotton canopy gas exchange

    Science.gov (United States)

    Diurnal leaf and canopy gas exchange of well watered field grown cotton were measured. Leaf measurements were made with a portable photosynthesis system and canopy measurements with open Canopy Evapo-Transpiration and Assimilation (CETA) systems. Leaf level measurements were arithmetically scaled to...

  2. The influence of light, stream gradient, and iron on Didymosphenia geminata bloom development in the Black Hills, South Dakota

    Science.gov (United States)

    James, Daniel A.; Mosel, Kyle; Chipps, Steven R.

    2014-01-01

    The aquatic nuisance species Didymosphenia geminata was first documented in Rapid Creek of South Dakota’s Black Hills during 2002. Since then, blooms have occurred primarily in a 39-km section of Rapid Creek while blooms were rarely observed in other Black Hills streams. In this study, we evaluated factors related to the presence and development of visible colonies of D. geminata in four streams of the Black Hills. At the watershed scale, stream gradient was negatively associated with the occurrence of D. geminata whereas stream width was positively related to D. geminata presence. At the stream scale, D. geminata coverage was inversely related to canopy coverage and iron concentration. At the local scale, shading by bridges virtually eliminated growth of D. geminata colonies under bridges. At all three scales, proxy measures of light such as stream width, canopy coverage, and bridge shading revealed that light availability was an important factor influencing the presence and coverage of D. geminata colonies. In general, streams that had relatively wide stream reaches (mean = 9.9 m), shallow gradients (mean = 0.22%), and little canopy cover (mean = 13%) were associated with D. geminata blooms. In addition, iron concentrations in streams with D. geminata colonies were lower than in streams without blooms.

  3. Fish diversity in adjacent ambient, thermal, and post-thermal freshwater streams

    International Nuclear Information System (INIS)

    McFarlane, R.W.

    1976-01-01

    The Savannah River Plant area is drained by five streams of various sizes and thermal histories. One has never been thermally stressed, two presently receive thermal effluent, and two formerly received thermal effluent from nuclear production reactors. Sixty-four species of fishes are known to inhabit these streams; 55 species is the highest number obtained from any one stream. Thermal effluent in small streams excludes fish during periods of high temperatures, but the streams are rapidly reinvaded when temperatures subside below lethal limits. Some cyprinids become extinct in nonthermal tributaries upstream from the thermal effluents after extended periods of thermal stress. This extinction is similar to that which follows stream impoundment. Post-thermal streams rapidly recover their fish diversity and abundance. The alteration of the streambed and removal of overhead canopy may change the stream characteristics and modify the post-thermal fish fauna

  4. Canopy arthropod responses to experimental canopy opening and debris deposition in a tropical rainforest subject to hurricanes

    Science.gov (United States)

    Timothy D. Schowalter; Michael R. Willig; Steven J. Presley

    2014-01-01

    We analyzed responses of canopy arthropods on seven representative early and late successional overstory and understory tree species to a canopy trimming experiment designed to separate effects of canopy opening and debris pulse (resulting from hurricane disturbance) in a tropical rainforest ecosystem at the Luquillo Experimental Forest Long-Term Ecological Research (...

  5. Building capacity for providing canopy cover and canopy height at FIA plot locations using high-resolution imagery and leaf-off LiDAR

    Science.gov (United States)

    Rachel Riemann; Jarlath O' Neil-Dunne; Greg C. Liknes

    2012-01-01

    Tree canopy cover and canopy height information are essential for estimating volume, biomass, and carbon; defining forest cover; and characterizing wildlife habitat. The amount of tree canopy cover also influences water quality and quantity in both rural and urban settings. Tree canopy cover and canopy height are currently collected at FIA plots either in the field or...

  6. Biophysical information in asymmetric and symmetric diurnal bidirectional canopy reflectance

    Science.gov (United States)

    Vanderbilt, Vern C.; Caldwell, William F.; Pettigrew, Rita E.; Ustin, Susan L.; Martens, Scott N.; Rousseau, Robert A.; Berger, Kevin M.; Ganapol, B. D.; Kasischke, Eric S.; Clark, Jenny A.

    1991-01-01

    The authors present a theory for partitioning the information content in diurnal bidirectional reflectance measurements in order to detect differences potentially related to biophysical variables. The theory, which divides the canopy reflectance into asymmetric and symmetric functions of solar azimuth angle, attributes asymmetric variation to diurnal changes in the canopy biphysical properties. The symmetric function is attributed to the effects of sunlight interacting with a hypothetical average canopy which would display the average diurnal properties of the actual canopy. The authors analyzed radiometer data collected diurnally in the Thematic Mapper wavelength bands from two walnut canopies that received differing irrigation treatments. The reflectance of the canopies varied with sun and view angles and across seven bands in the visible, near-infrared, and middle infrared wavelength regions. Although one of the canopies was permanently water stressed and the other was stressed in mid-afternoon each day, no water stress signature was unambiguously evident in the reflectance data.

  7. The roles of dimensionality, canopies and complexity in ecosystem monitoring.

    Directory of Open Access Journals (Sweden)

    Christopher H R Goatley

    Full Text Available Canopies are common among autotrophs, increasing their access to light and thereby increasing competitive abilities. If viewed from above canopies may conceal objects beneath them creating a 'canopy effect'. Due to complexities in collecting 3-dimensional data, most ecosystem monitoring programmes reduce dimensionality when sampling, resorting to planar views. The resultant 'canopy effects' may bias data interpretation, particularly following disturbances. Canopy effects are especially relevant on coral reefs where coral cover is often used to evaluate and communicate ecosystem health. We show that canopies hide benthic components including massive corals and algal turfs, and as planar views are almost ubiquitously used to monitor disturbances, the loss of vulnerable canopy-forming corals may bias findings by presenting pre-existing benthic components as an altered system. Our reliance on planar views in monitoring ecosystems, especially coral cover on reefs, needs to be reassessed if we are to better understand the ecological consequences of ever more frequent disturbances.

  8. Modelling the canopy development of bambara groundnut

    DEFF Research Database (Denmark)

    Karunaratne, A.S.; Azam-Ali, S.N.; Al-Shareef, I.

    2010-01-01

    Canopy development of bambara groundnut (Vigna subterranea (L.) Verdc) is affected by temperature stress, drought stress and photoperiod. The quantification of these documented effects by means of a suitable crop model, BAMGRO is presented in this paper. Data on canopy development from five growth...... chamber, four glasshouse and three field experiments were analyzed to calibrate and validate the BAMGRO model to produce simulations for temperature stress, drought stress and photoperiodic effect on two contrasting landraces; Uniswa Red (Swaziland) and S19-3 (Namibia). The daily initiation rate of new...... leaves is calculated by means of a Gaussian function and is altered by temperature stress, drought stress, photoperiod and plant density. The rate in dead leaf number is dependent upon the maximum senescence fraction which can be explained by physiological maturity, mutual shading, temperature stress...

  9. Cockpit canopy shattering using exploding wire techniques

    International Nuclear Information System (INIS)

    Novac, B M; Smith, I R; Downs, P R; Marston, P; Fahey, D

    2007-01-01

    This paper presents the principal experimental results provided by a preliminary investigation into the possibility of using exploding wire (EW) techniques to shatter the plastic cockpit canopy of a modern jet aircraft. The data provided forms the basis for a qualitative understanding of the physics of interaction between the plasma produced by an EW and the surrounding elasto-plastic material in which the wire is embedded. To optimize the shock-wave 'clean cutting' effect, the significance of the material, the dimensions of the exploding wire and the amplitude of the current and voltage pulses are all considered. This leads to important conclusions concerning both the characteristics of the EW and the optimum arrangement of the electrical circuit, with the single most important optimization factor being the peak electrical power input to the EW, rather than the dissipated Joule energy. A full-scale system relevant to an actual cockpit canopy shattering is outlined and relevant results are presented and discussed

  10. Seagrass canopy photosynthetic response is a function of canopy density and light environment: a model for Amphibolis griffithii.

    Directory of Open Access Journals (Sweden)

    John D Hedley

    Full Text Available A three-dimensional computer model of canopies of the seagrass Amphibolis griffithii was used to investigate the consequences of variations in canopy structure and benthic light environment on leaf-level photosynthetic saturation state. The model was constructed using empirical data of plant morphometrics from a previously conducted shading experiment and validated well to in-situ data on light attenuation in canopies of different densities. Using published values of the leaf-level saturating irradiance for photosynthesis, results show that the interaction of canopy density and canopy-scale photosynthetic response is complex and non-linear, due to the combination of self-shading and the non-linearity of photosynthesis versus irradiance (P-I curves near saturating irradiance. Therefore studies of light limitation in seagrasses should consider variation in canopy structure and density. Based on empirical work, we propose a number of possible measures for canopy scale photosynthetic response that can be plotted to yield isoclines in the space of canopy density and light environment. These plots can be used to interpret the significance of canopy changes induced as a response to decreases in the benthic light environment: in some cases canopy thinning can lead to an equivalent leaf level light environment, in others physiological changes may also be required but these alone may be inadequate for canopy survival. By providing insight to these processes the methods developed here could be a valuable management tool for seagrass conservation during dredging or other coastal developments.

  11. The Canopy Horizontal Array Turbulence Study (CHATS): Influence of canopy density and atmospheric stability on turbulent exchange

    Science.gov (United States)

    Patton, E. G.

    2011-12-01

    Understanding the micrometeorology within and above forest canopies is of great interest for many environmental applications such as weather and climate forecasting as well as for vegetation-atmosphere scalar exchanges. Within a canopy, both the ground and the vegetation can act as scalar sources/sinks, where the distribution of canopy sources/sinks depends on the amount and state of the canopy foliage. For deciduous trees, the foliage evolves across a seasonal cycle from bare limbs in winter (no photosynthesis and an open canopy) to rapid growth in spring (increasing photosynthesis and canopy density), to maturity in summer (more constant photosynthesis and canopy density), to senescence and leaf-drop in fall (decreasing photosynthesis and canopy density). Thus a broad spectrum of different conditions occurs through the year, thereby imposing height and seasonal dependence on dynamical and scalar fluxes. The Canopy Horizontal Array Turbulence Study (CHATS) took place in 2007 focusing on a 10 m tall deciduous walnut orchard in Dixon, California (USA). High spatial resolution micrometeorological measurements were deployed aiming to establish the influence of seasonality (prior to, and follwing leaf-out) on canopy exchange. This talk will discuss the sensitivity of velocity, temperature and humidity fields within and above the deciduous walnut orchard at CHATS to the canopy evolution and atmospheric stability.

  12. Experimental manipulation of leaf litter colonization by aquatic invertebrates in a third order tropical stream.

    Science.gov (United States)

    Uieda, V S; Carvalho, E M

    2015-05-01

    Through a manipulative experiment, the colonization of leaf litter by invertebrates was investigated in two sections of a tropical stream (spatial scale) that differed in function of the canopy cover, one with the presence (closed area) and another without riparian vegetation (open area), during one month of the dry and one of the wet season (temporal scale). The work aimed to verify differences related to four variables: season, canopy cover, leaf type and leaf condition. Litter bags containing arboreal and herbaceous leaves (leaf type variable), non-conditioned and preconditioned (leaf condition variable) were placed at the bottom of the stream in each area (canopy cover variable) and season (dry and wet), and removed after 13-day colonization. The analysis of the remaining litter dry mass per leaf bag emphasizes differences related mainly to seasonality, canopy cover and leaf type, although leaf condition was also important when combined with those three factors. Comparing the abundance of invertebrates per treatment, there was a tendency of high predominance of Chironomidae during the dry season and greater taxa diversity and evenness during the wet season, when the water flow increase could alter the availability of microhabitats for local fauna. Even though canopy cover alone was not a significant source of variation in the abundance of invertebrates, the results showed a tendency of a combined effect of canopy cover with seasonality and leaf condition.

  13. Experimental manipulation of leaf litter colonization by aquatic invertebrates in a third order tropical stream

    Directory of Open Access Journals (Sweden)

    VS. Uieda

    Full Text Available Through a manipulative experiment, the colonization of leaf litter by invertebrates was investigated in two sections of a tropical stream (spatial scale that differed in function of the canopy cover, one with the presence (closed area and another without riparian vegetation (open area, during one month of the dry and one of the wet season (temporal scale. The work aimed to verify differences related to four variables: season, canopy cover, leaf type and leaf condition. Litter bags containing arboreal and herbaceous leaves (leaf type variable, non-conditioned and preconditioned (leaf condition variable were placed at the bottom of the stream in each area (canopy cover variable and season (dry and wet, and removed after 13-day colonization. The analysis of the remaining litter dry mass per leaf bag emphasizes differences related mainly to seasonality, canopy cover and leaf type, although leaf condition was also important when combined with those three factors. Comparing the abundance of invertebrates per treatment, there was a tendency of high predominance of Chironomidae during the dry season and greater taxa diversity and evenness during the wet season, when the water flow increase could alter the availability of microhabitats for local fauna. Even though canopy cover alone was not a significant source of variation in the abundance of invertebrates, the results showed a tendency of a combined effect of canopy cover with seasonality and leaf condition.

  14. Improved Windshield and Canopy Protection Development Program

    Science.gov (United States)

    1974-06-01

    canopy shots, i.e., 8" from the beam, 12" from the forward arch. The Impact resulted in a penetration with a football -shaped plug blown Inward...i7;«MpiWW.,i«iS,i»f.«.^^^ CVJ Cte / teä <%1 ^ u- o ro O in H UJ o to o L HH Hh o «^ o = —I ro O \\ N__ o a. CM X UJ

  15. The wave-driven current in coastal canopies

    Science.gov (United States)

    Abdolahpour, Maryam; Hambleton, Magnus; Ghisalberti, Marco

    2017-05-01

    Wave-driven flows over canopies of aquatic vegetation (such as seagrass) are characterized by the generation of a strong, shoreward mean current near the top of the canopy. This shoreward drift, which is observed to be up to 75% of the RMS above-canopy orbital velocity, can have a significant impact on residence times within coastal canopies. There have been limited observations of this current and an accurate formulation of its magnitude is still lacking. Accordingly, this study aims to develop a practical relationship to describe the strength of this current as a function of both wave and canopy characteristics. A simple model for the Lagrangian drift velocity indicates that the magnitude of the wave-driven current increases with the above-canopy oscillatory velocity, the vertical orbital excursion at the top of the canopy, and the canopy density. An extensive laboratory study, using both rigid and (dynamically scaled) flexible model vegetation, was carried out to evaluate the proposed model. Experimental results reveal a strong agreement between predicted and measured current velocities over a wide and realistic range of canopy and wave conditions. The validity of this model is also confirmed through available field measurements. Characterization of this wave-induced mean current will allow an enhanced capacity for predicting residence time, and thus key ecological processes, in coastal canopies.

  16. Canopy soil bacterial communities altered by severing host tree limbs

    Directory of Open Access Journals (Sweden)

    Cody R. Dangerfield

    2017-09-01

    Full Text Available Trees of temperate rainforests host a large biomass of epiphytic plants, which are associated with soils formed in the forest canopy. Falling of epiphytic material results in the transfer of carbon and nutrients from the canopy to the forest floor. This study provides the first characterization of bacterial communities in canopy soils enabled by high-depth environmental sequencing of 16S rRNA genes. Canopy soil included many of the same major taxonomic groups of Bacteria that are also found in ground soil, but canopy bacterial communities were lower in diversity and contained different operational taxonomic units. A field experiment was conducted with epiphytic material from six Acer macrophyllum trees in Olympic National Park, Washington, USA to document changes in the bacterial communities of soils associated with epiphytic material that falls to the forest floor. Bacterial diversity and composition of canopy soil was highly similar, but not identical, to adjacent ground soil two years after transfer to the forest floor, indicating that canopy bacteria are almost, but not completely, replaced by ground soil bacteria. Furthermore, soil associated with epiphytic material on branches that were severed from the host tree and suspended in the canopy contained altered bacterial communities that were distinct from those in canopy material moved to the forest floor. Therefore, the unique nature of canopy soil bacteria is determined in part by the host tree and not only by the physical environmental conditions associated with the canopy. Connection to the living tree appears to be a key feature of the canopy habitat. These results represent an initial survey of bacterial diversity of the canopy and provide a foundation upon which future studies can more fully investigate the ecological and evolutionary dynamics of these communities.

  17. Impact of Canopy Coupling on Canopy Average Stomatal Conductance Across Seven Tree Species in Northern Wisconsin

    Science.gov (United States)

    Ewers, B. E.; Mackay, D. S.; Samanta, S.; Ahl, D. E.; Burrows, S. S.; Gower, S. T.

    2001-12-01

    Land use changes over the last century in northern Wisconsin have resulted in a heterogeneous landscape composed of the following four main forest types: northern hardwoods, northern conifer, aspen/fir, and forested wetland. Based on sap flux measurements, aspen/fir has twice the canopy transpiration of northern hardwoods. In addition, daily transpiration was only explained by daily average vapor pressure deficit across the cover types. The objective of this study was to determine if canopy average stomatal conductance could be used to explain the species effects on tree transpiration. Our first hypothesis is that across all of the species, stomatal conductance will respond to vapor pressure deficit so as to maintain a minimum leaf water potential to prevent catostrophic cavitiation. The consequence of this hypothesis is that among species and individuals there is a proportionality between high stomatal conductance and the sensitivity of stomatal conductance to vapor pressure deficit. Our second hypothesis is that species that do not follow the proportionality deviate because the canopies are decoupled from the atmosphere. To test our two hypotheses we calculated canopy average stomatal conductance from sap flux measurements using an inversion of the Penman-Monteith equation. We estimated the canopy coupling using a leaf energy budget model that requires leaf transpiration and canopy aerodynamic conductance. We optimized the parameters of the aerodynamic conductance model using a Monte Carlo technique across six parameters. We determined the optimal model for each species by selecting parameter sets that resulted in the proportionality of our first hypothesis. We then tested the optimal energy budget models of each species by comparing leaf temperature and leaf width predicted by the models to measurements of each tree species. In red pine, sugar maple, and trembling aspen trees under high canopy coupling conditions, we found the hypothesized proportionality

  18. Computing energy budget within a crop canopy from Penmann's ...

    Indian Academy of Sciences (India)

    R. Narasimhan, Krishtel eMaging Solutions

    iological profiles of the canopy are stated and will be used in simultaneity with the basic equations mentioned above. 3.1 Net radiation. The extinction of net radiation within the canopy can be described by Beer's law: Rn = Rn(h) exp. [. − αrLAI(z/h). ] ,. (10) where h is the height of canopy from the soil sur- face. The extinction ...

  19. Specular, diffuse and polarized imagery of an oat canopy

    Science.gov (United States)

    Vanderbilt, Vern C.; De Venecia, Kurt J.

    1988-01-01

    Light, polarized by specular reflection, has been found to be an important part of the light scattered by several measured plant canopies. The authors investigate for one canopy the relative importance of specularly reflected sunlight, specularly reflected light from other sources including skylight, and diffusely upwelling light. Polarization images are used to gain increased understanding of the radiation transfer process in a plant canopy. Analysis of the results suggests that properly analyzed polarized remotely sensed data, acquired under specific atmospheric conditions by a specially designed sensor, potentially provide measures of physiological and morphological states of plants in a canopy.

  20. Mechanistic study of aerosol dry deposition on vegetated canopies

    International Nuclear Information System (INIS)

    Petroff, A.

    2005-04-01

    The dry deposition of aerosols onto vegetated canopies is modelled through a mechanistic approach. The interaction between aerosols and vegetation is first formulated by using a set of parameters, which are defined at the local scale of one surface. The overall deposition is then deduced at the canopy scale through an up-scaling procedure based on the statistic distribution parameters. This model takes into account the canopy structural and morphological properties, and the main characteristics of the turbulent flow. Deposition mechanisms considered are Brownian diffusion, interception, initial and turbulent impaction, initially with coniferous branches and then with entire canopies of different roughness, such as grass, crop field and forest. (author)

  1. Modeling directional thermal radiance from a forest canopy

    International Nuclear Information System (INIS)

    McGuire, M.J.; Balick, L.K.; Smith, J.A.; Hutchison, B.A.

    1989-01-01

    Recent advances in remote sensing technology have increased interest in utilizing the thermal-infared region to gain additional information about surface features such as vegetation canopies. Studies have shown that sensor view angle, canopy structure, and percentage of canopy coverage can affect the response of a thermal sensor. These studies have been primarily of agricultural regions and there have been relatively few examples describing the thermal characteristics of forested regions. This paper describes an extension of an existing thermal vegetation canopy radiance model which has been modified to partially account for the geometrically rough structure of a forest canopy. Fourier series expansion of a canopy height profile is used to calculate improved view factors which partially account for the directional variations in canopy thermal radiance transfers. The original and updated radiance model predictions are compared with experimental data obtained over a deciduous (oak-hickory) forest site. The experimental observations are also used to document azimuthal and nadir directional radiance variations. Maximum angular variations in measured canopy temperatures were 4–6°C (azimuth) and 2.5°C (nadir). Maximum angular variations in simulated temperatures using the modified rough surface model was 4°C. The rough surface model appeared to be sensitive to large gaps in the canopy height profile, which influenced the resultant predicted temperature. (author)

  2. Radar return from a continuous vegetation canopy

    Science.gov (United States)

    Bush, T. F.; Ulaby, F. T.

    1975-01-01

    The radar backscatter coefficient, sigma deg, of alfalfa was investigated as a function of both radar parameters and the physical characteristics of the alfalfa canopy. Measurements were acquired with an 8-18 GHz FM-CW mobile radar over an angular range of 0 - 70 deg as measured from nadir. The experimental data indicates that the excursions of sigma deg at nadir cover a range of nearly 18 dB during one complete growing cycle. An empirical model for sigma deg was developed which accounts for its variability in terms of soil moisture, plant moisture and plant height.

  3. Evaporation from rain-wetted forest in relation to canopy wetness, canopy cover, and net radiation

    NARCIS (Netherlands)

    Klaassen, W.

    2001-01-01

    Evaporation from wet canopies is commonly calculated using E-PM, the Penman-Monteith equation with zero surface resistance. However, several observations show a lower evaporation from rain-wetted forest. Possible causes for the difference between E-PM and experiments are evaluated to provide rules

  4. Testing the field of dreams hypothesis: functional responses to urbanization and restoration in stream ecosystems.

    Science.gov (United States)

    Sudduth, Elizabeth B; Hassett, Brooke A; Cada, Peter; Bernhardt, Emily S

    2011-09-01

    than unrestored or forested stream reaches; however, we found that variation in stream temperature and canopy cover explained 80% of the variation across streams in nitrate uptake. Because the riparian trees are removed during the first stage of natural channel design projects, the restored streams in this study had significantly less canopy cover and higher summer temperatures than the urban and forested streams with which they were compared.

  5. Stream invertebrate productivity linked to forest subsidies: 37 stream-years of reference and experimental data.

    Science.gov (United States)

    Wallace, J Bruce; Eggert, Susan L; Meyer, Judy L; Webster, Jackson R

    2015-05-01

    Riparian habitats provide detrital subsidies of varying quantities and qualities to recipient ecosystems. We used long-term data from three reference streams (covering 24 stream-years) and 13-year whole-stream organic matter manipulations to investigate the influence of terrestrial detrital quantity and quality on benthic invertebrate community structure, abundance, biomass, and secondary production in rockface (RF) and mixed substrates (MS) of forested headwater streams. Using a mesh canopy covering the entire treatment stream, we examined effects of litter ex'clusion, small- and large-wood removal, and addition of artificial wood (PVC) and leaves of varying quality on organic matter standing crops and invertebrate community structure and function. We assessed differences in functional feeding group distribution between substrate types as influenced by organic matter manipulations and long-term patterns of predator and prey production in manipulated vs. reference years. Particulate organic matter standing crops in MS of the treatment stream declined drastically with each successive year of litter exclusion, approaching zero after three years. Monthly invertebrate biomass and annual secondary production was positively related to benthic organic matter in the MS habitats. Rockface habitats exhibited fewer changes than MS habitats across all organic matter manipulations. With leaf addition, the patterns of functional group distribution among MS and RF habitats returned to patterns seen in reference streams. Secondary production per unit organic matter standing crop was greatest for the leaf addition period, followed by the reference streams, and significantly less for the litter exclusion and wood removal periods. These data indicate that the limited organic matter remaining in the stream following litter exclusion and wood removal was more refractory than that in the reference streams, whereas the added leaf material was more labile and readily converted into

  6. Fluxes of trichloroacetic acid through a conifer forest canopy

    International Nuclear Information System (INIS)

    Stidson, R.T.; Heal, K.V.; Dickey, C.A.; Cape, J.N.; Heal, M.R.

    2004-01-01

    Controlled-dosing experiments with conifer seedlings have demonstrated an above-ground route of uptake for trichloroacetic acid (TCA) from aqueous solution into the canopy, in addition to uptake from the soil. The aim of this work was to investigate the loss of TCA to the canopy in a mature conifer forest exposed only to environmental concentrations of TCA by analysing above- and below-canopy fluxes of TCA and within-canopy instantaneous reservoir of TCA. Concentrations and fluxes of TCA were quantified for one year in dry deposition, rainwater, cloudwater, throughfall, stemflow and litterfall in a 37-year-old Sitka spruce and larch plantation in SW Scotland. Above-canopy TCA deposition was dominated by rainfall (86%), compared with cloudwater (13%) and dry deposition (1%). On average only 66% of the TCA deposition passed through the canopy in throughfall and stemflow (95% and 5%, respectively), compared with 47% of the wet precipitation depth. Consequently, throughfall concentration of TCA was, on average, ∼1.4 x rainwater concentration. There was no significant difference in below-canopy fluxes between Sitka spruce and larch, or at a forest-edge site. Annual TCA deposited from the canopy in litterfall was only ∼1-2% of above-canopy deposition. On average, ∼800 μg m -2 of deposited TCA was lost to the canopy per year, compared with estimates of above-ground TCA storage of ∼400 and ∼300 μg m -2 for Sitka spruce and larch, respectively. Taking into account likely uncertainties in these values (∼±50%), these data yield an estimate for the half-life of within-canopy elimination of TCA in the range 50-200 days, assuming steady-state conditions and that all TCA lost to the canopy is transferred into the canopy material, rather than degraded externally. The observations provide strong indication that an above-ground route is important for uptake of TCA specifically of atmospheric origin into mature forest canopies, as has been shown for seedlings (in

  7. Hierarchical Canopy Dynamics of Electrolyte-Doped Nanoscale Ionic Materials

    KAUST Repository

    Jespersen, Michael L.

    2013-12-23

    Nanoscale ionic materials (NIMs) are organic-inorganic hybrids prepared from ionically functionalized nanoparticles (NP) neutralized by oligomeric polymer counterions. NIMs are designed to behave as liquids under ambient conditions in the absence of solvent and have no volatile organic content, making them useful for a number of applications. We have used nuclear magnetic resonance relaxation and pulsed-field gradient NMR to probe local and collective canopy dynamics in NIMs based on 18-nm silica NPs with a covalently bound anionic corona, neutralized by amine-terminated ethylene oxide/propylene oxide block copolymers. The NMR relaxation studies show that the nanosecond-scale canopy dynamics depend on the degree of neutralization, the canopy radius of gyration, and crowding at the ionically modified NP surface. Two canopy populations are observed in the diffusion experiments, demonstrating that one fraction of the canopy is bound to the NP surface on the time scale (milliseconds) of the diffusion experiment and is surrounded by a more mobile layer of canopy that is unable to access the surface due to molecular crowding. The introduction of electrolyte ions (Na+ or Mg2+) screens the canopy-corona electrostatic interactions, resulting in a reduced bulk viscosity and faster canopy exchange. The magnitude of the screening effect depends upon ion concentration and valence, providing a simple route for tuning the macroscopic properties of NIMs. © 2013 American Chemical Society.

  8. Water stress effects on spatially referenced cotton crop canopy properties

    Science.gov (United States)

    rop canopy temperature is known to be affected by water stress. Canopy reflectance can also be impacted as leaf orientation and color respond to the stress. As sensor systems are investigated for real-time management of irrigation and nitrogen, it is essential to understand how the data from the sen...

  9. Biodiversity Meets the Atmosphere: A Global View of Forest Canopies

    Science.gov (United States)

    C. M. P. Ozanne; D. Anhuf; S. L. Boulter; M. Keller; R. L. Kitching; C. Korner; F. C. Meinzer; A. W. Mitchell; T. Nakashizuka; P. L. Silva Dias; N. E. Stork; S. J. Wright; M Yoshimura

    2003-01-01

    The forest canopy is the functional interface between 90% of Earth’s terrestrial biomass and the atmosphere. Multidisciplinary research in the canopy has expanded concepts of global species richness, physiological processes, and the provision of ecosystem services. Trees respond in a species-specific manner to elevated carbon dioxide levels, while climate change...

  10. Soil carbon estimation from eucalyptus grandis using canopy spectra

    African Journals Online (AJOL)

    Mapping soil fertility parameters, such as soil carbon (C), is fundamentally important for forest management and research related to forest growth and climate change. This study seeks to establish the link between Eucalyptus grandis canopy spectra and soil carbon using raw and continuum-removed spectra. Canopy-level ...

  11. Summertime canopy albedo is sensitive to forest thinning

    NARCIS (Netherlands)

    Otto, J.; Berveiller, D.; Bréon, F.M.; Delpierre, N.; Geppert, G.; Granier, A.; Jans, W.W.P.; Knohl, A.; Moors, E.J.

    2013-01-01

    Despite an emerging body of literature linking canopy albedo to forest management, understanding of the process is still fragmented. We combined a stand-level forest gap model with a canopy radiation transfer model and satellite-derived model parameters to quantify the effects of forest thinning,

  12. The fauna and flora of a kelp bed canopy

    African Journals Online (AJOL)

    The fauna and flora of the canopy of a kelp bed off. Oudekraal, on the Cape Peninsula, is surveyed. Four species of epiphytic algae occur in the kelp canopy, three restricted to. Ecklonia maxima and the fourth to Laminaria pal/ida. Epiphyte biomass is equivalent to 4 - 9% of host standing crop amongst E. maxima, but less ...

  13. Forest canopy BRDF simulation using Monte Carlo method

    NARCIS (Netherlands)

    Huang, J.; Wu, B.; Zeng, Y.; Tian, Y.

    2006-01-01

    Monte Carlo method is a random statistic method, which has been widely used to simulate the Bidirectional Reflectance Distribution Function (BRDF) of vegetation canopy in the field of visible remote sensing. The random process between photons and forest canopy was designed using Monte Carlo method.

  14. Crop canopy BRDF simulation and analysis using Monte Carlo method

    NARCIS (Netherlands)

    Huang, J.; Wu, B.; Tian, Y.; Zeng, Y.

    2006-01-01

    This author designs the random process between photons and crop canopy. A Monte Carlo model has been developed to simulate the Bi-directional Reflectance Distribution Function (BRDF) of crop canopy. Comparing Monte Carlo model to MCRM model, this paper analyzes the variations of different LAD and

  15. Synthesis and Experiments of Inherently Balanced Umbrella Canopy Designs

    NARCIS (Netherlands)

    van der Wijk, V.; Kiper, G.; Yasir, A.

    2015-01-01

    This paper shows how umbrella canopies and umbrella canopy-like mechanisms can be designed inherently balanced. Inherently balanced means that the center of mass of the moving parts remains stationary at a single point for any position of the mechanism simply because of the specific design of the

  16. Carcinogenic ptaquiloside in stream water at base flow and during storm events

    DEFF Research Database (Denmark)

    Strobel, Bjarne W.; Clauson-Kaas, Frederik; Hansen, Hans Chr. Bruun

    2017-01-01

    identified, of which the compound ptaquiloside (PTA) is the most abundant. Ptaquiloside has been shown to be highly water soluble, leachable from bracken fronds and litter, and present in the soil below bracken stands. During storm events throughfall from the bracken canopy was collected as well. Stream...... extraction. Results showed that PTA levels in the stream were highly dependent on precipitation, and was rising considerably during rain events, peaking at 2.28 μg/L, before quickly (... are crucial to measure these 1-2 hours pulses of natural toxins in the stream. Collected canopy through fall showed high amounts of PTA (up to 169 µg/L) leached from bracken fronds during rainfall, with no apparent deterioration of this source throughout the storm event. The results are important...

  17. Drag forces of common plant species in temperate streams: consequences of morphology, velocity and biomass

    DEFF Research Database (Denmark)

    Jensen, Kaj Sand

    2008-01-01

    a variety of environmental conditions and plant traits influences distribution. Drag on the trailing canopy usually increased 15- to 35-fold for a 100-fold increase of biomass suggesting that an even distribution of plants at low density across the stream bed offers greater resistance to downstream flow......Swift flow in streams may physically influence the morphology and distribution of plants. I quantified drag as a function of velocity, biomass and their interaction on the trailing canopy of seven European stream species in an experimental flume and evaluated its importance for species distribution...... of drag with velocity did not differ systematically among inherently streamlined or non-streamlined species while increase of drag with biomass was smallest among non-streamlined shoots which provide greater mutual shelter. At low shoot density, inherently streamlined species usually experienced...

  18. Thermal IR exitance model of a plant canopy

    Science.gov (United States)

    Kimes, D. S.; Smith, J. A.; Link, L. E.

    1981-01-01

    A thermal IR exitance model of a plant canopy based on a mathematical abstraction of three horizontal layers of vegetation was developed. Canopy geometry within each layer is quantitatively described by the foliage and branch orientation distributions and number density. Given this geometric information for each layer and the driving meteorological variables, a system of energy budget equations was determined and solved for average layer temperatures. These estimated layer temperatures, together with the angular distributions of radiating elements, were used to calculate the emitted thermal IR radiation as a function of view angle above the canopy. The model was applied to a lodgepole pine (Pinus contorta) canopy over a diurnal cycle. Simulated vs measured radiometric average temperatures of the midcanopy layer corresponded with 2 C. Simulation results suggested that canopy geometry can significantly influence the effective radiant temperature recorded at varying sensor view angles.

  19. Deploying Fourier Coefficients to Unravel Soybean Canopy Diversity.

    Science.gov (United States)

    Jubery, Talukder Z; Shook, Johnathon; Parmley, Kyle; Zhang, Jiaoping; Naik, Hsiang S; Higgins, Race; Sarkar, Soumik; Singh, Arti; Singh, Asheesh K; Ganapathysubramanian, Baskar

    2016-01-01

    Soybean canopy outline is an important trait used to understand light interception ability, canopy closure rates, row spacing response, which in turn affects crop growth and yield, and directly impacts weed species germination and emergence. In this manuscript, we utilize a methodology that constructs geometric measures of the soybean canopy outline from digital images of canopies, allowing visualization of the genetic diversity as well as a rigorous quantification of shape parameters. Our choice of data analysis approach is partially dictated by the need to efficiently store and analyze large datasets, especially in the context of planned high-throughput phenotyping experiments to capture time evolution of canopy outline which will produce very large datasets. Using the Elliptical Fourier Transformation (EFT) and Fourier Descriptors (EFD), canopy outlines of 446 soybean plant introduction (PI) lines from 25 different countries exhibiting a wide variety of maturity, seed weight, and stem termination were investigated in a field experiment planted as a randomized complete block design with up to four replications. Canopy outlines were extracted from digital images, and subsequently chain coded, and expanded into a shape spectrum by obtaining the Fourier coefficients/descriptors. These coefficients successfully reconstruct the canopy outline, and were used to measure traditional morphometric traits. Highest phenotypic diversity was observed for roundness, while solidity showed the lowest diversity across all countries. Some PI lines had extraordinary shape diversity in solidity. For interpretation and visualization of the complexity in shape, Principal Component Analysis (PCA) was performed on the EFD. PI lines were grouped in terms of origins, maturity index, seed weight, and stem termination index. No significant pattern or similarity was observed among the groups; although interestingly when genetic marker data was used for the PCA, patterns similar to canopy

  20. Deploying Fourier Coefficients to Unravel Soybean Canopy Diversity

    Science.gov (United States)

    Jubery, Talukder Z.; Shook, Johnathon; Parmley, Kyle; Zhang, Jiaoping; Naik, Hsiang S.; Higgins, Race; Sarkar, Soumik; Singh, Arti; Singh, Asheesh K.; Ganapathysubramanian, Baskar

    2017-01-01

    Soybean canopy outline is an important trait used to understand light interception ability, canopy closure rates, row spacing response, which in turn affects crop growth and yield, and directly impacts weed species germination and emergence. In this manuscript, we utilize a methodology that constructs geometric measures of the soybean canopy outline from digital images of canopies, allowing visualization of the genetic diversity as well as a rigorous quantification of shape parameters. Our choice of data analysis approach is partially dictated by the need to efficiently store and analyze large datasets, especially in the context of planned high-throughput phenotyping experiments to capture time evolution of canopy outline which will produce very large datasets. Using the Elliptical Fourier Transformation (EFT) and Fourier Descriptors (EFD), canopy outlines of 446 soybean plant introduction (PI) lines from 25 different countries exhibiting a wide variety of maturity, seed weight, and stem termination were investigated in a field experiment planted as a randomized complete block design with up to four replications. Canopy outlines were extracted from digital images, and subsequently chain coded, and expanded into a shape spectrum by obtaining the Fourier coefficients/descriptors. These coefficients successfully reconstruct the canopy outline, and were used to measure traditional morphometric traits. Highest phenotypic diversity was observed for roundness, while solidity showed the lowest diversity across all countries. Some PI lines had extraordinary shape diversity in solidity. For interpretation and visualization of the complexity in shape, Principal Component Analysis (PCA) was performed on the EFD. PI lines were grouped in terms of origins, maturity index, seed weight, and stem termination index. No significant pattern or similarity was observed among the groups; although interestingly when genetic marker data was used for the PCA, patterns similar to canopy

  1. Prioritized Contact Transport Stream

    Science.gov (United States)

    Hunt, Walter Lee, Jr. (Inventor)

    2015-01-01

    A detection process, contact recognition process, classification process, and identification process are applied to raw sensor data to produce an identified contact record set containing one or more identified contact records. A prioritization process is applied to the identified contact record set to assign a contact priority to each contact record in the identified contact record set. Data are removed from the contact records in the identified contact record set based on the contact priorities assigned to those contact records. A first contact stream is produced from the resulting contact records. The first contact stream is streamed in a contact transport stream. The contact transport stream may include and stream additional contact streams. The contact transport stream may be varied dynamically over time based on parameters such as available bandwidth, contact priority, presence/absence of contacts, system state, and configuration parameters.

  2. Stream corridor management

    Science.gov (United States)

    Richard E. Wehnes

    1989-01-01

    The quality of streams and stream habitat for aquatic life and terrestrial animals in the central hardwood forest can be maintained or enhanced through careful protection, management, and re-establishment of streamside forests.

  3. StreamCat

    Data.gov (United States)

    U.S. Environmental Protection Agency — The StreamCat Dataset provides summaries of natural and anthropogenic landscape features for ~2.65 million streams, and their associated catchments, within the...

  4. Impacts of differing aerodynamic resistance formulae on modeled energy exchange at the above-canopy/within-canopy/soil interface

    Science.gov (United States)

    Application of the Two-Source Energy Balance (TSEB) Model using land surface temperature (LST) requires aerodynamic resistance parameterizations for the flux exchange above the canopy layer, within the canopy air space and at the soil/substrate surface. There are a number of aerodynamic resistance f...

  5. The impact of modifying photosystem antenna size on canopy photosynthetic efficiency-Development of a new canopy photosynthesis model scaling from metabolism to canopy level processes.

    Science.gov (United States)

    Song, Qingfeng; Wang, Yu; Qu, Mingnan; Ort, Donald R; Zhu, Xin-Guang

    2017-12-01

    Canopy photosynthesis (A c ) describes photosynthesis of an entire crop field and the daily and seasonal integrals of A c positively correlate with daily and seasonal biomass production. Much effort in crop breeding has focused on improving canopy architecture and hence light distribution inside the canopy. Here, we develop a new integrated canopy photosynthesis model including canopy architecture, a ray tracing algorithm, and C 3 photosynthetic metabolism to explore the option of manipulating leaf chlorophyll concentration ([Chl]) for greater A c and nitrogen use efficiency (NUE). Model simulation results show that (a) efficiency of photosystem II increased when [Chl] was decreased by decreasing antenna size and (b) the light received by leaves at the bottom layers increased when [Chl] throughout the canopy was decreased. Furthermore, the modelling revealed a modest ~3% increase in A c and an ~14% in NUE was accompanied when [Chl] reduced by 60%. However, if the leaf nitrogen conserved by this decrease in leaf [Chl] were to be optimally allocated to other components of photosynthesis, both A c and NUE can be increased by over 30%. Optimizing [Chl] coupled with strategic reinvestment of conserved nitrogen is shown to have the potential to support substantial increases in A c , biomass production, and crop yields. © 2017 The Authors Plant, Cell & Environment Published by John Wiley & Sons Ltd.

  6. Momentum and scalar transport within a vegetation canopy following atmospheric stability and seasonal canopy changes: the CHATS experiment

    Science.gov (United States)

    Dupont, S.; Patton, E. G.

    2012-07-01

    Momentum and scalar (heat and water vapor) transfer between a walnut canopy and the overlying atmosphere are investigated for two seasonal periods (before and after leaf-out), and for five thermal stability regimes (free and forced convection, near-neutral condition, transition to stable, and stable). Quadrant and octant analyses of momentum and scalar fluxes followed by space-time autocorrelations of observations from the Canopy Horizontal Array Turbulence Study's (CHATS) thirty meter tower help characterize the motions exchanging momentum, heat, and moisture between the canopy layers and aloft. During sufficiently windy conditions, i.e. in forced convection, near-neutral and transition to stable regimes, momentum and scalars are generally transported by sweep and ejection motions associated with the well-known canopy-top "shear-driven" coherent eddy structures. During extreme stability conditions (both unstable and stable), the role of these "shear-driven" structures in transporting scalars decreases, inducing notable dissimilarity between momentum and scalar transport. In unstable conditions, "shear-driven" coherent structures are progressively replaced by "buo-yantly-driven" structures, known as thermal plumes; which appear very efficient at transporting scalars, especially upward thermal plumes above the canopy. Within the canopy, downward thermal plumes become more efficient at transporting scalars than upward thermal plumes if scalar sources are located in the upper canopy. We explain these features by suggesting that: (i) downward plumes within the canopy correspond to large downward plumes coming from above, and (ii) upward plumes within the canopy are local small plumes induced by canopy heat sources where passive scalars are first injected if there sources are at the same location as heat sources. Above the canopy, these small upward thermal plumes aggregate to form larger scale upward thermal plumes. Furthermore, scalar quantities carried by downward

  7. Momentum and scalar transport within a vegetation canopy following atmospheric stability and seasonal canopy changes: the CHATS experiment

    Directory of Open Access Journals (Sweden)

    S. Dupont

    2012-07-01

    Full Text Available Momentum and scalar (heat and water vapor transfer between a walnut canopy and the overlying atmosphere are investigated for two seasonal periods (before and after leaf-out, and for five thermal stability regimes (free and forced convection, near-neutral condition, transition to stable, and stable. Quadrant and octant analyses of momentum and scalar fluxes followed by space-time autocorrelations of observations from the Canopy Horizontal Array Turbulence Study's (CHATS thirty meter tower help characterize the motions exchanging momentum, heat, and moisture between the canopy layers and aloft.

    During sufficiently windy conditions, i.e. in forced convection, near-neutral and transition to stable regimes, momentum and scalars are generally transported by sweep and ejection motions associated with the well-known canopy-top "shear-driven" coherent eddy structures. During extreme stability conditions (both unstable and stable, the role of these "shear-driven" structures in transporting scalars decreases, inducing notable dissimilarity between momentum and scalar transport.

    In unstable conditions, "shear-driven" coherent structures are progressively replaced by "buo-yantly-driven" structures, known as thermal plumes; which appear very efficient at transporting scalars, especially upward thermal plumes above the canopy. Within the canopy, downward thermal plumes become more efficient at transporting scalars than upward thermal plumes if scalar sources are located in the upper canopy. We explain these features by suggesting that: (i downward plumes within the canopy correspond to large downward plumes coming from above, and (ii upward plumes within the canopy are local small plumes induced by canopy heat sources where passive scalars are first injected if there sources are at the same location as heat sources. Above the canopy, these small upward thermal plumes aggregate to form larger scale upward thermal plumes. Furthermore, scalar

  8. Patrones de distribución espacial de ensambles de macroinvertebrados bentónicos de un sistema fluvial Andino Patagónico Spatial distribution patterns of benthic macroinvertebrates assemblages in an Andean Patagonian fluvial system

    Directory of Open Access Journals (Sweden)

    CAROLINA MOYA

    2009-01-01

    Full Text Available En enero de 2006 se estudiaron los patrones espaciales de distribución de comunidades de macroinvertebrados bentónicos de la cuenca hidrográfica del río Baker (45°50' O y 47°55' S y los principales factores controladores, intentando cubrir la mayor variedad de ecosistemas lóticos. Para llevar a cabo el estudio se seleccionaron 27 estaciones de muestreo ubicadas en las diferentes subcuencas del río. En cada estación se realizó una caracterización fisicoquímica del agua (conductividad, oxígeno disuelto, pH, temperatura y turbidez, y se documentaron las características del tramo de río (e.g. ancho del cauce y tipo de sedimento e información cartográfica utilizando un sistema de información geográfica (SIG. Se identificaron un total de 51 taxa que correspondieron en su mayoría a larvas de insectos (80 %. Los grupos con mayor riqueza fueron los órdenes Ephemeroptera (15 taxa, Plecoptera (8 taxa y Trichoptera (8 taxa. Los análisis de clasificación y ordenación realizados con los datos de abundancia, permitieron reconocer siete grupos de estaciones diferentes (A-F que fueron estadísticamente significativos (P In January of 2006 we studied the distributional patterns of benthic macroinvertebrate communities of the Baker river basin (45°50' O and 47°55' S and their main controlling factors trying to cover the greater variety of the lotic ecosystems. To carry out the study, 27 sampling stations were located in the different sub basins of the river. In each station, physical-chemical parameters of the column of water were quantified (conductivity, dissolved oxygen, pH, temperature and turbidity, and documented characteristics of the segment (e.g. wide of the channel and sediment type and cartographic information using a geographic information system (GIS and complemented with cartographic information using GIS. Identified a total of 51 taxa, are mostly insect larvae (80 %. The groups most richness were orders Ephemeroptera (15 taxa, Plecoptera (8 taxa and Trichoptera (8 taxa. The classification and ordination analyses carried out with the data of abundance, allowed to recognize seven groups stations (A-F statistically significant (P < 0.05. The múltiple regression analysis, showed that the environmental variable that accounts for the observed biological patterns, was coverage cobble, explaining 45.1 % the variance of the biological data (r² = 0.44 P < 0.05.

  9. Productivity of Stream Definitions

    NARCIS (Netherlands)

    Endrullis, Jörg; Grabmayer, Clemens; Hendriks, Dimitri; Isihara, Ariya; Klop, Jan

    2007-01-01

    We give an algorithm for deciding productivity of a large and natural class of recursive stream definitions. A stream definition is called ‘productive’ if it can be evaluated continuously in such a way that a uniquely determined stream is obtained as the limit. Whereas productivity is undecidable

  10. Productivity of stream definitions

    NARCIS (Netherlands)

    Endrullis, J.; Grabmayer, C.A.; Hendriks, D.; Isihara, A.; Klop, J.W.

    2008-01-01

    We give an algorithm for deciding productivity of a large and natural class of recursive stream definitions. A stream definition is called ‘productive’ if it can be evaluated continually in such a way that a uniquely determined stream in constructor normal form is obtained as the limit. Whereas

  11. Forest canopy temperatures: dynamics, controls, and relationships with ecosystem fluxes

    Science.gov (United States)

    Still, C. J.; Griffith, D.; Kim, Y.; Law, B. E.; Hanson, C. V.; Kwon, H.; Schulze, M.; Detto, M.; Pau, S.

    2017-12-01

    Temperature strongly affects enzymatic reactions, ecosystem biogeochemistry, and species distributions. Although most focus is on air temperature, the radiative or skin temperature of plants is more relevant. Canopy skin temperature dynamics reflect biophysical, physiological, and anatomical characteristics and interactions with the environment, and can be used to examine forest responses to stresses like droughts and heat waves. Thermal infrared (TIR) imaging allows for extensive temporal and spatial sampling of canopy temperatures, particularly compared to spot measurements using thermocouples. We present results of TIR imaging of forest canopies at eddy covariance flux tower sites in the US Pacific Northwest and in Panama. These forests range from an old-growth temperate rainforest to a second growth semi-arid pine forest to a semi-deciduous tropical forest. Canopy temperature regimes at these sites are highly variable. Canopy temperatures at all forest sites displayed frequent departures from air temperature, particularly during clear sky conditions, with elevated canopy temperatures during the day and depressed canopy temperatures at night compared to air temperature. Comparison of canopy temperatures to fluxes of carbon dioxide, water vapor, and energy reveals stronger relationships than those found with air temperature. Daytime growing season net ecosystem exchange at the pine forest site is better explained by canopy temperature (r2 = 0.61) than air temperature (r2 = 0.52). At the semi-deciduous tropical forest, canopy photosynthesis is highly correlated with canopy temperature (r2 = 0.51), with a distinct optimum temperature for photosynthesis ( 31 °C) that agrees with leaf-level measurements. During the peak of one heat wave at an old-growth temperate rainforest, hourly averaged air temperature exceeded 35 °C, 10 °C above average. Peak hourly canopy temperature approached 40 °C, and leaf-to-air vapor pressure deficit exceeded 6 kPa. These extreme

  12. What Does a Multilayer Canopy Model Tell Us About Our Current Understanding of Snow-Canopy Unloading?

    Science.gov (United States)

    McGowan, L. E.; Paw U, K. T.; Dahlke, H. E.

    2017-12-01

    In the Western U.S., future water resources depend on the forested mountain snowpack. The variations in and estimates of forest mountain snow volume are vital to projecting annual water availability; yet, snow forest processes are not fully known. Most snow models calculate snow-canopy unloading based on time, temperature, Leaf Area Index (LAI), and/or wind speed. While models crudely consider the canopy shape via LAI, current models typically do not consider the vertical canopy structure or varied energetics within multiple canopy layers. Vertical canopy structure influences the spatiotemporal distribution of snow, and therefore ultimately determines the degree and extent by which snow alters both the surface energy balance and water availability. Within the canopy both the snowpack and energetic exposures to the snowpack (wind, shortwave and longwave radiation, turbulent heat fluxes etc.) vary widely in the vertical. The water and energy balance in each layer is dependent on all other layers. For example, increased snow canopy content in the top of the canopy will reduce available shortwave radiation at the bottom and snow unloading in a mid-layer can cascade and remove snow from all the lower layers. We examined vertical interactions and structures of the forest canopy on the impact of unloading utilizing the Advanced Canopy-Atmosphere-Soil-Algorithm (ACASA), a multilayer soil-vegetation-atmosphere numerical model based on higher-order closure of turbulence equations. Our results demonstrate how a multilayer model can be used to elucidate the physical processes of snow unloading, and could help researchers better parameterize unloading in snow-hydrology models.

  13. Importance of terrestrial arthropods as subsidies in lowland Neotropical rain forest stream ecosystems

    Science.gov (United States)

    Small, Gaston E.; Torres, Pedro J.; Schwizer, Lauren M.; Duff, John H.; Pringle, Catherine M.

    2013-01-01

    The importance of terrestrial arthropods has been documented in temperate stream ecosystems, but little is known about the magnitude of these inputs in tropical streams. Terrestrial arthropods falling from the canopy of tropical forests may be an important subsidy to tropical stream food webs and could also represent an important flux of nitrogen (N) and phosphorus (P) in nutrient-poor headwater streams. We quantified input rates of terrestrial insects in eight streams draining lowland tropical wet forest in Costa Rica. In two focal headwater streams, we also measured capture efficiency by the fish assemblage and quantified terrestrially derived N- and P-excretion relative to stream nutrient uptake rates. Average input rates of terrestrial insects ranged from 5 to 41 mg dry mass/m2/d, exceeding previous measurements of aquatic invertebrate secondary production in these study streams, and were relatively consistent year-round, in contrast to values reported in temperate streams. Terrestrial insects accounted for half of the diet of the dominant fish species, Priapicthys annectens. Although terrestrially derived fish excretion was found to be a small flux relative to measured nutrient uptake rates in the focal streams, the efficient capture and processing of terrestrial arthropods by fish made these nutrients available to the local stream ecosystem. This aquatic-terrestrial linkage is likely being decoupled by deforestation in many tropical regions, with largely unknown but potentially important ecological consequences.

  14. Tracking forest canopy dynamics from an automated proximal hyperspectral monitoring system: linking remote sensing observations to leaf level photosynthetic processes

    Science.gov (United States)

    Woodgate, W.; van Gorsel, E.; Hughes, D.; Suarez, L.; Cabello-Leblic, A.; Held, A. A.; Norton, A.; Dempsey, R.

    2017-12-01

    To better understand the vegetation response to climate extremes we have developed a fully automated hyperspectral and thermal monitoring system installed on a flux tower at a mature Eucalypt forest site - Tumbarumba, Australia. The automated system bridges spatial, spectral and temporal scales between satellite and in situ observations. Here, we have been acquiring high resolution panoramic hyperspectral and thermal images of the forest canopy three times per day since mid-2014.A specific focus of the work to date has been linking light use efficiency (LUE) as measured by the flux tower to remote sensing observations from the leaf, to crown, to canopy scale. Specifically, targeted field campaigns were conducted in 2016 to establish the interrelationship between structure, function, and spectra. At the leaf level destructive sampling to quantify photosynthetic pigments was conducted to pick apart the mechanisms contributing to photosynthetic processes of non-photochemical quenching and the resultant changes in observed leaf spectra. At the crown level, Terrestrial Laser Scanning data was used to derive canopy structural information, enabling distance to crown and crown foliage density to be calculated to a fine degree of detail. This information is critical for correcting attenuation of the thermal signal from atmospheric transmission, and to distinguish the relative foliage-to-soil contribution to the thermal and hyperspectral imagery. Ancillary data streams from sap flow and dendrometer devices serve to link leaf, crown and canopy observations.Preliminary results of the leaf and crown level relationships between function and spectra will be discussed. We will demonstrate that operating in a tall canopy (40m) forest can lead to additional complexities. We have found the relationship strength between traditional remote sensing LUE proxies and photosynthetic proxies derived from pigments varies strongly with canopy height and pigment pool size. Additionally, the

  15. Evolution of meteoroid streams

    International Nuclear Information System (INIS)

    Babadzhanov, P.B.; Obrubov, Yu.V.

    1987-01-01

    A meteoroid stream generally considered to be an elliptical ring of relatively small thickness is described. Such shape is attributable to meteoroid streams in an early stage of their evolution. Differences in planetary perturbations influencing the meteoroid particles ejected from the parent body from various points in its orbit at different velocities and time can result in a significant thickening of the stream. Our studies on the evolution of the short-period meteoroid streams have shown that these streams can produce several couples of showers active in different seasons of the year. (author). 5 figs., 7 tabs., 53 res

  16. Medium term ecohydrological response of peatland bryophytes to canopy disturbance

    Science.gov (United States)

    Leonard, Rhoswen; Kettridge, Nick; Krause, Stefan; Devito, Kevin; Granath, Gustaf; Petrone, Richard; Mandoza, Carl; Waddington, James Micheal

    2016-04-01

    Canopy disturbance in northern forested peatlands is widespread. Canopy changes impact the ecohydrological function of moss and peat, which provide the principal carbon store within these carbon rich ecosystems. Different mosses have contrasting contributions to carbon and water fluxes (e.g. Sphagnum fuscum and Pleurozium schreberi) and are strongly influenced by canopy cover. As a result, changes in canopy cover lead to long-term shifts in species composition and associated ecohydrological function. Despite this, the medium-term response to such disturbance, the associated lag in this transition to a new ecohydrological and biogeochemical regime, is not understood. Here we investigate this medium term ecohydrological response to canopy removal using a randomised plot design within a north Albertan peatland. We show no significant ecohydrological change in treatment plots four years after canopy removal. Notably, Pleurozium schreberi and Sphagnum fuscum remained within respective plots post treatment and there was no significant difference in plot resistance to evapotranspiration or carbon exchange. Our results show that canopy removal alone has little impact on bryophyte ecohydrology in the short/medium term. This resistance to disturbance contrasts strongly with dramatic short-term changes observed within mineral soils suggesting that concurrent shifts in the large scale hydrology induced within such disturbances are necessary to cause rapid ecohydrological transitions. Understanding this lagged response is critical to determine the decadal response of carbon and water fluxes in response to disturbance and the rate at which important medium term ecohydrological feedbacks are invoked.

  17. Smartphone based hemispherical photography for canopy structure measurement

    Science.gov (United States)

    Wan, Xuefen; Cui, Jian; Jiang, Xueqin; Zhang, Jingwen; Yang, Yi; Zheng, Tao

    2018-01-01

    The canopy is the most direct and active interface layer of the interaction between plant and environment, and has important influence on energy exchange, biodiversity, ecosystem matter and climate change. The measurement about canopy structure of plant is an important foundation to analyze the pattern, process and operation mechanism of forest ecosystem. Through the study of canopy structure of plant, solar radiation, ambient wind speed, air temperature and humidity, soil evaporation, soil temperature and other forest environmental climate characteristics can be evaluated. Because of its accuracy and effectiveness, canopy structure measurement based on hemispherical photography has been widely studied. However, the traditional method of canopy structure hemispherical photogrammetry based on SLR camera and fisheye lens. This method is expensive and difficult to be used in some low-cost occasions. In recent years, smartphone technology has been developing rapidly. The smartphone not only has excellent image acquisition ability, but also has the considerable computational processing ability. In addition, the gyroscope and positioning function on the smartphone will also help to measure the structure of the canopy. In this paper, we present a smartphone based hemispherical photography system. The system consists of smart phones, low-cost fisheye lenses and PMMA adapters. We designed an Android based App to obtain the canopy hemisphere images through low-cost fisheye lenses and provide horizontal collimation information. In addition, the App will add the acquisition location tag obtained by GPS and auxiliary positioning method in hemisphere image information after the canopy structure hemisphere image acquisition. The system was tested in the urban forest after it was completed. The test results show that the smartphone based hemispherical photography system can effectively collect the high-resolution canopy structure image of the plant.

  18. Benthic invertebrate fauna, small streams

    Science.gov (United States)

    J. Bruce Wallace; S.L. Eggert

    2009-01-01

    Small streams (first- through third-order streams) make up >98% of the total number of stream segments and >86% of stream length in many drainage networks. Small streams occur over a wide array of climates, geology, and biomes, which influence temperature, hydrologic regimes, water chemistry, light, substrate, stream permanence, a basin's terrestrial plant...

  19. Efficient modeling of sun/shade canopy radiation dynamics explicitly accounting for scattering

    Science.gov (United States)

    Bodin, P.; Franklin, O.

    2012-04-01

    The separation of global radiation (Rg) into its direct (Rb) and diffuse constituents (Rg) is important when modeling plant photosynthesis because a high Rd:Rg ratio has been shown to enhance Gross Primary Production (GPP). To include this effect in vegetation models, the plant canopy must be separated into sunlit and shaded leaves. However, because such models are often too intractable and computationally expensive for theoretical or large scale studies, simpler sun-shade approaches are often preferred. A widely used and computationally efficient sun-shade model was developed by Goudriaan (1977) (GOU). However, compared to more complex models, this model's realism is limited by its lack of explicit treatment of radiation scattering. Here we present a new model based on the GOU model, but which in contrast explicitly simulates radiation scattering by sunlit leaves and the absorption of this radiation by the canopy layers above and below (2-stream approach). Compared to the GOU model our model predicts significantly different profiles of scattered radiation that are in better agreement with measured profiles of downwelling diffuse radiation. With respect to these data our model's performance is equal to a more complex and much slower iterative radiation model while maintaining the simplicity and computational efficiency of the GOU model.

  20. Solar wind stream interfaces

    International Nuclear Information System (INIS)

    Gosling, J.T.; Asbridge, J.R.; Bame, S.J.; Feldman, W.C.

    1978-01-01

    Measurements aboard Imp 6, 7, and 8 reveal that approximately one third of all high-speed solar wind streams observed at 1 AU contain a sharp boundary (of thickness less than approx.4 x 10 4 km) near their leading edge, called a stream interface, which separates plasma of distinctly different properties and origins. Identified as discontinuities across which the density drops abruptly, the proton temperature increases abruptly, and the speed rises, stream interfaces are remarkably similar in character from one stream to the next. A superposed epoch analysis of plasma data has been performed for 23 discontinuous stream interfaces observed during the interval March 1971 through August 1974. Among the results of this analysis are the following: (1) a stream interface separates what was originally thick (i.e., dense) slow gas from what was originally thin (i.e., rare) fast gas; (2) the interface is the site of a discontinuous shear in the solar wind flow in a frame of reference corotating with the sun; (3) stream interfaces occur at speeds less than 450 km s - 1 and close to or at the maximum of the pressure ridge at the leading edges of high-speed streams; (4) a discontinuous rise by approx.40% in electron temperature occurs at the interface; and (5) discontinuous changes (usually rises) in alpha particle abundance and flow speed relative to the protons occur at the interface. Stream interfaces do not generally recur on successive solar rotations, even though the streams in which they are embedded often do. At distances beyond several astronomical units, stream interfaces should be bounded by forward-reverse shock pairs; three of four reverse shocks observed at 1 AU during 1971--1974 were preceded within approx.1 day by stream interfaces. Our observations suggest that many streams close to the sun are bounded on all sides by large radial velocity shears separating rapidly expanding plasma from more slowly expanding plasma

  1. Canopy openings and white-tailed deer influence the understory vegetation in mixed oak woodlots

    Science.gov (United States)

    Todd W. Bowersox; Gerald L. Storm; Walter M. Tzilkowski

    1995-01-01

    Effects of canopy opening and white-tailed deer on ground level vegetation are being assessed in south-central Pennsylvania. Herbaceous plants and woody seedlings are being monitored in three unevenaged, mixed oak woodlots at Gettysburg National Military Park. Canopy opening levels on 0.20 ha treatment units were closed (~100% canopy), small (50-60% canopy) and large (...

  2. Canopy Vegetation Influences Ant (Hymenoptera: Formicidae) Communities in Headwater Stream Riparian Zones of Central Appalachia

    Science.gov (United States)

    Johnson, Jonathan T.; Adkins, Joshua K.; Rieske, Lynne K.

    2014-01-01

    Abstract In the eastern United States, eastern hemlock Tusga canadensis (L.) Carriere forests are threatened by the invasive hemlock woolly adelgid, Adelges tsugae, a pest that is causing widespread hemlock mortality. Eastern hemlock is an essential component of forested communities. Adelgid-induced hemlock mortality is causing a shift in forest composition and structure, altering ecosystem function and thereby influencing the arthropod community. Using pitfall traps at three sites, we monitored ground-dwelling arthropods at 30-d intervals in hemlock-dominated and deciduous-dominated forests in central Appalachia over 2 yr. Here, we focus on the ant community (Hymenoptera: Formicidae) collected in the summer months. Ants form a ubiquitous and integral component of the invertebrate community, functioning at various trophic levels as predators, herbivores, and omnivores, and fulfilling important roles in forest ecosystems. We found no difference in overall ant abundance between hemlock-dominated and deciduous-dominated forests but did detect significant differences in the genera Prenolepis between forest types ( P < 0.01) and Aphaenogaster across study locations ( P  = 0.02). Three genera were unique to deciduous forests; one was unique to hemlock forests. Not surprisingly, total formicids and several genera demonstrated temporal differences in abundance, with greater numbers captured in July than in August. As hemlock woolly adelgid-induced mortality of eastern hemlock becomes more pervasive, changes in forest composition and structure are imminent, accompanied by shifts in hemlock associates. PMID:25528753

  3. SAFARI 2000 Canopy Structural Measurements, Kalahari Transect, Wet Season 2001

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set contains leaf area index (LAI), leaf inclination angle, and canopy dimension data from study sites along the Kalahari Transect in southwest...

  4. SNF NS001-TMS Canopy Reflectance 1983-84

    Data.gov (United States)

    National Aeronautics and Space Administration — Canopy spectral reflectance data collected from the NASA C-130-mounted NS001 Thematic Mapper Simulator (TMS) over the Superior National Forest, MN on 13JUL1983,...

  5. Leaf Aging of Amazonian Canopy Trees: Insights to Tropical Ecological Processes and Satellited Detected Canopy Dynamics

    Science.gov (United States)

    Chavana-Bryant, C.; Malhi, Y.; Gerard, F.

    2015-12-01

    Leaf aging is a fundamental driver of changes in leaf traits, thereby, regulating ecosystem processes and remotely-sensed canopy dynamics. Leaf age is particularly important for carbon-rich tropical evergreen forests, as leaf demography (leaf age distribution) has been proposed as a major driver of seasonal productivity in these forests. We explore leaf reflectance as a tool to monitor leaf age and develop a novel spectra-based (PLSR) model to predict age using data from a phenological study of 1,072 leaves from 12 lowland Amazonian canopy tree species in southern Peru. Our results demonstrate monotonic decreases in LWC and Pmass and increase in LMA with age across species; Nmass and Cmassshowed monotonic but species-specific age responses. Spectrally, we observed large age-related variation across species, with the most age-sensitive spectral domains found to be: green peak (550nm), red edge (680-750 nm), NIR (700-850 nm), and around the main water absorption features (~1450 and ~1940 nm). A spectra-based model was more accurate in predicting leaf age (R2= 0.86; %RMSE= 33) compared to trait-based models using single (R2=0.07 to 0.73; %RMSE=7 to 38) and multiple predictors (step-wise analysis; R2=0.76; %RMSE=28). Spectral and trait-based models established a physiochemical basis for the spectral age model. The relative importance of the traits modifying the leaf spectra of aging leaves was: LWC>LMA>Nmass>Pmass,&Cmass. Vegetation indices (VIs), including NDVI, EVI2, NDWI and PRI were all age-dependent. This study highlights the importance of leaf age as a mediator of leaf traits, provides evidence of age-related leaf reflectance changes that have important impacts on VIs used to monitor canopy dynamics and productivity, and proposes a new approach to predicting and monitoring leaf age with important implications for remote sensing.

  6. Coupling nutrient uptake and energy flow in headwater streams

    Energy Technology Data Exchange (ETDEWEB)

    Mulholland, Patrick J [ORNL; Fellows, Christine [Griffith University, Nathan, Queensland, Australia; Valett, H. Maurice [Virginia Polytechnic Institute and State University (Virginia Tech); Dahm, Cliff [University of New Mexico, Albuquerque; Thomas, Steve [University of Nebraska

    2006-08-01

    Nutrient cycling and energy flow in ecosystems are tightly linked through the metabolic processes of organisms. Greater uptake of inorganic nutrients is expected to be associated with higher rates of metabolism [gross primary production (GPP) and respiration (R)], due to assimilatory demand of both autotrophs and heterotrophs. However, relationships between uptake and metabolism should vary with the relative contribution of autochthonous and allochthonous sources of organic matter. To investigate the relationship between metabolism and nutrient uptake, we used whole-stream and benthic chamber methods to measure rates of nitrate-nitrogen (NO{sub 3}-N) uptake and metabolism in four headwater streams chosen to span a range of light availability and therefore differing rates of GPP and contributions of autochthonous carbon. We coupled whole-stream metabolism with measures of NO{sub 3}-N uptake conducted repeatedly over the same stream reach during both day and night, as well as incubating benthic sediments under both light and dark conditions. NO{sub 3}-N uptake was generally greater in daylight compared to dark conditions, and although day-night differences in whole-stream uptake were not significant, light-dark differences in benthic chambers were significant at three of the four sites. Estimates of N demand indicated that assimilation by photoautotrophs could account for the majority of NO{sub 3}-N uptake at the two sites with relatively open canopies. Contrary to expectations, photoautotrophs contributed substantially to NO{sub 3}-N uptake even at the two closed-canopy sites, which had low values of GPP/R and relied heavily on allochthonous carbon to fuel R.

  7. Isoprene emission from tropical forest canopy leaves

    Science.gov (United States)

    Keller, Michael; Lerdau, Manuel

    1999-03-01

    We screened 51 species of trees and vines for isoprene emission by using a tower crane to gain access to the top of the canopy in a semideciduous forest in the Republic of Panama. Of the species screened, 15 emitted isoprene at rates greater than 0.8 nmol m-2 s-1. We measured the influence of light and temperature on emissions. The species-dependent emission rates at 303 K and 1000 μmol m-2 s-1 of incident photosynthetically active radiation ranged from 9 to 43 nmol m-2 s-1 with coefficients of variation of about 20%. Isoprene emission showed a hyperbolic response to light intensity and an exponential response to temperature. We modified an existing algorithm developed for temperate plants to fit the temperature response of these tropical species. We suggest a new algorithm to fit the light response of isoprene emission. The new and modified algorithms are compared to the algorithms developed for temperate plants that are used in global models of isoprene emission. Both sets of algorithms also are compared to additional validation data collected in Panama and to published data on isoprene emission from a tropical dry forest in Puerto Rico. Our comparisons suggest that algorithms developed for temperate plants can significantly underestimate isoprene emissions from tropical forests at high-light and high-temperature levels.

  8. Convection regime between canopy and air in a greenhouse

    OpenAIRE

    Atarassi,Roberto Terumi; Folegatti,Marcos Vinicius; Brasil,René Porfírio Camponez do

    2006-01-01

    The use of covering materials in protected environments modifies the air movement close to the crop canopy compared to external environment, which changes the heat and mass transfer between canopy and air. Several researches have been made in greenhouses to estimate mass and heat flux using dimensionless numbers to characterize the type of convection (forced, free or mixed). The knowledge of which one is dominant allows simplifications and specific approaches. The dominant convection regime b...

  9. Study of momentum transfers within a vegetation canopy

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    reduces to the exponential canopy wind profile, exp {−n(1 − z/h)} and. • if Cd(z) is uniform throughout the canopy and if the effect of sheltering is ignored then ζ(h) reduces to CdLAI. Massman (1997) parameterized the surface drag coefficient Csurf = 2u2. ∗/u(h)2 from which the expo- nential power n can be expressed as n =.

  10. Spatial variability of leaf wetness duration in different crop canopies

    Science.gov (United States)

    Sentelhas, Paulo C.; Gillespie, Terry J.; Batzer, Jean C.; Gleason, Mark L.; Monteiro, José Eduardo B. A.; Pezzopane, José Ricardo M.; Pedro, Mário J.

    2005-07-01

    The spatial variability of leaf wetness duration (LWD) was evaluated in four different height-structure crop canopies: apple, coffee, maize, and grape. LWD measurements were made using painted flat plate, printed-circuit wetness sensors deployed in different positions above and inside the crops, with inclination angles ranging from 30 to 45°. For apple trees, the sensors were installed in 12 east-west positions: 4 at each of the top (3.3 m), middle (2.1 m), and bottom (1.1 m) levels. For young coffee plants (80 cm tall), four sensors were installed close to the leaves at heights of 20, 40, 60, and 80 cm. For the maize and grape crops, LWD sensors were installed in two positions, one just below the canopy top and another inside the canopy. Adjacent to each experiment, LWD was measured above nearby mowed turfgrass with the same kind of flat plate sensor, deployed at 30 cm and between 30 and 45°. We found average LWD varied by canopy position for apple and maize (Pcoffee plants, average LWD did not differ between the top and inside the canopy. The comparison by geometric mean regression analysis between crop and turfgrass LWD measurements showed that sensors at 30 cm over turfgrass provided quite accurate estimates of LWD at the top of the crops, despite large differences in crop height and structure, but poorer estimates for wetness within leaf canopies.

  11. Forest canopy gap distributions in the southern Peruvian Amazon.

    Directory of Open Access Journals (Sweden)

    Gregory P Asner

    Full Text Available Canopy gaps express the time-integrated effects of tree failure and mortality as well as regrowth and succession in tropical forests. Quantifying the size and spatial distribution of canopy gaps is requisite to modeling forest functional processes ranging from carbon fluxes to species interactions and biological diversity. Using high-resolution airborne Light Detection and Ranging (LiDAR, we mapped and analyzed 5,877,937 static canopy gaps throughout 125,581 ha of lowland Amazonian forest in Peru. Our LiDAR sampling covered a wide range of forest physiognomies across contrasting geologic and topographic conditions, and on depositional floodplain and erosional terra firme substrates. We used the scaling exponent of the Zeta distribution (λ as a metric to quantify and compare the negative relationship between canopy gap frequency and size across sites. Despite variable canopy height and forest type, values of λ were highly conservative (λ mean  = 1.83, s  = 0.09, and little variation was observed regionally among geologic substrates and forest types, or at the landscape level comparing depositional-floodplain and erosional terra firme landscapes. λ-values less than 2.0 indicate that these forests are subjected to large gaps that reset carbon stocks when they occur. Consistency of λ-values strongly suggests similarity in the mechanisms of canopy failure across a diverse array of lowland forests in southwestern Amazonia.

  12. The canopy spiders (Araneae of the floodplain forest in Leipzig

    Directory of Open Access Journals (Sweden)

    Otto, Stefan

    2010-10-01

    Full Text Available The canopy spiders of the floodplain forest in Leipzig have become a focus of ecological studies in recent years. In 2006 we sampled 30 tree canopies in the ‘Burgaue’ nature reserve with pyrethrum knock-down fogging, recording 502 adult spiders belonging to 48 species and 11 families. Based on these data and the results of a previous fogging study, the studied spider community was dominated by forest and forest-edge species with a preference for the shrub and canopy strata as well as by spiders of the web spider feeding guild. The community structure was typical for arboreal spider communities from northern temperate forests but very different from communities in the tropics. Species richness and evenness were similar to the old growth near-primary Białowieża Forest in Poland. The checklist of 96 canopy spider species of the floodplain forest of Leipzig includes 54 additions to the spider fauna of Leipzig and vicinity by recent canopy studies and eight first canopy records for Leipzig from our field work. The theridiid Dipoena torva (Thorell, 1875 was recorded for the first time in Saxony. The floodplain forest of Leipzig sustains a large and species-rich arboreal spider community and is thus a valuable habitat for a large proportion of endangered species (12%.

  13. Estimating canopy fuel parameters for Atlantic Coastal Plain forest types.

    Energy Technology Data Exchange (ETDEWEB)

    Parresol, Bernard, R.

    2007-01-15

    Abstract It is necessary to quantify forest canopy characteristics to assess crown fire hazard, prioritize treatment areas, and design treatments to reduce crown fire potential. A number of fire behavior models such as FARSITE, FIRETEC, and NEXUS require as input four particular canopy fuel parameters: 1) canopy cover, 2) stand height, 3) crown base height, and 4) canopy bulk density. These canopy characteristics must be mapped across the landscape at high spatial resolution to accurately simulate crown fire. Currently no models exist to forecast these four canopy parameters for forests of the Atlantic Coastal Plain, a region that supports millions of acres of loblolly, longleaf, and slash pine forests as well as pine-broadleaf forests and mixed species broadleaf forests. Many forest cover types are recognized, too many to efficiently model. For expediency, forests of the Savannah River Site are categorized as belonging to 1 of 7 broad forest type groups, based on composition: 1) loblolly pine, 2) longleaf pine, 3) slash pine, 4) pine-hardwood, 5) hardwood-pine, 6) hardwoods, and 7) cypress-tupelo. These 7 broad forest types typify forests of the Atlantic Coastal Plain region, from Maryland to Florida.

  14. Predicting tropical plant physiology from leaf and canopy spectroscopy.

    Science.gov (United States)

    Doughty, Christopher E; Asner, Gregory P; Martin, Roberta E

    2011-02-01

    A broad regional understanding of tropical forest leaf photosynthesis has long been a goal for tropical forest ecologists, but it has remained elusive due to difficult canopy access and high species diversity. Here we develop an empirical model to predict sunlit, light-saturated, tropical leaf photosynthesis using leaf and simulated canopy spectra. To develop this model, we used partial least squares (PLS) analysis on three tropical forest datasets (159 species), two in Hawaii and one at the biosphere 2 laboratory (B2L). For each species, we measured light-saturated photosynthesis (A), light and CO(2) saturated photosynthesis (A(max)), respiration (R), leaf transmittance and reflectance spectra (400-2,500 nm), leaf nitrogen, chlorophyll a and b, carotenoids, and leaf mass per area (LMA). The model best predicted A [r(2) = 0.74, root mean square error (RMSE) = 2.9 μmol m(-2) s(-1))] followed by R (r(2) = 0.48), and A(max) (r(2) = 0.47). We combined leaf reflectance and transmittance with a canopy radiative transfer model to simulate top-of-canopy reflectance and found that canopy spectra are a better predictor of A (RMSE = 2.5 ± 0.07 μmol m(-2) s(-1)) than are leaf spectra. The results indicate the potential for this technique to be used with high-fidelity imaging spectrometers to remotely sense tropical forest canopy photosynthesis.

  15. Plant canopy light absorption model with application to wheat

    Science.gov (United States)

    Chance, J. E.; Lemaster, E. W.

    1978-01-01

    A light absorption model (LAM) for vegetative plant canopies has been derived from the Suits reflectance model. From the LAM the absorption of light in the photosynthetically active region of the spectrum (400-700 nm) has been calculated for a Penjamo wheat crop for several situations including (a) the percent absorption of the incident radiation by a canopy of LAI 3.1 having a four-layer structure, (b) the percent absorption of light by the individual layers within a four-layer canopy and by the underlying soil, (c) the percent absorption of light by each vegetative canopy layer for variable sun angle, and (d) the cumulative solar energy absorbed by the developing wheat canopy as it progresses from a single layer through its growth stages to a three-layer canopy. This calculation is also presented as a function of the leaf area index and is shown to be in agreement with experimental data reported by Kanemasu on Plainsman V wheat.

  16. CANOPY STRUCTURE AND DEPOSITION EFFICIENCY OF VINEYARD SPRAYERS

    Directory of Open Access Journals (Sweden)

    Gianfranco Pergher

    2007-06-01

    Full Text Available A field study was performed to analyse how deposition efficiency from an axial-fan sprayer was affected by the canopy structure of vines trained to the High Cordon, Low Cordon and Casarsa systems, at beginning of flowering and beginning of berry touch growth stages. An empirical calibration method, providing a dose rate adjustment roughly proportional to canopy height, was used. The canopy structure was assessed using the Point Quadrat method, and determining the leaf area index (LAI and the leaf layer index (LLI. Spray deposits were measured by colorimetry, using a water soluble dye (Tartrazine as a tracer. Correlation between deposits and canopy parameters were analysed and discussed. Foliar deposits per unit leaf area were relatively constant, suggesting that empirical calibration can reduce deposit variability associated with different training systems and growth stages. Total foliar deposition ranged from 33.6% and 82.3% of total spray volume, and increased proportionally with the LLI up to LLI<4. Deposits on bunches significantly decreased with the LLI in the grape zone. The results suggest that sprayer efficiency is improved by a regular, symmetrical canopy, with few leaf layers in the grape zone as in Low Cordon. However, a LLI<3 over the whole canopy and >40% gaps in the foliage both reduced total deposition, and may increase the risk for larger drift losses.

  17. Stream, Lake, and Reservoir Management.

    Science.gov (United States)

    Dai, Jingjing; Mei, Ying; Chang, Chein-Chi

    2017-10-01

    This review on stream, lake, and reservoir management covers selected 2016 publications on the focus of the following sections: Stream, lake, and reservoir management • Water quality of stream, lake, and reservoir • Reservoir operations • Models of stream, lake, and reservoir • Remediation and restoration of stream, lake, and reservoir • Biota of stream, lake, and reservoir • Climate effect of stream, lake, and reservoir.

  18. Hydrography - Streams and Shorelines

    Data.gov (United States)

    California Natural Resource Agency — The hydrography layer consists of flowing waters (rivers and streams), standing waters (lakes and ponds), and wetlands -- both natural and manmade. Two separate...

  19. Hydrography - Streams and Shorelines

    Data.gov (United States)

    California Department of Resources — The hydrography layer consists of flowing waters (rivers and streams), standing waters (lakes and ponds), and wetlands -- both natural and manmade. Two separate...

  20. Dynamics of meteor streams

    International Nuclear Information System (INIS)

    Babadjanov, P.B.; Obrubov, YU.U.

    1987-01-01

    The overwhelming majority of meteor streams are generally assumed to be formed due to the decay of comets. The most effective process of the release of solid particles from a cometary nucleus is their ejection by sublimating gases when the comet approaches the Sun. The results of investigation of the Geminids and Quadrantids meteor stream evolution show that under the influence of planetary perturbations, the stream may originally be flat but then thicken depending on the variation range of orbital inclinations. Eventually, due to planetary perturbations, a meteor stream may take such a shape as to cause the start of several active showers at different solar longitudes

  1. Inventory of miscellaneous streams

    International Nuclear Information System (INIS)

    Lueck, K.J.

    1995-09-01

    On December 23, 1991, the US Department of Energy, Richland Operations Office (RL) and the Washington State Department of Ecology (Ecology) agreed to adhere to the provisions of the Department of Ecology Consent Order. The Consent Order lists the regulatory milestones for liquid effluent streams at the Hanford Site to comply with the permitting requirements of Washington Administrative Code. The RL provided the US Congress a Plan and Schedule to discontinue disposal of contaminated liquid effluent into the soil column on the Hanford Site. The plan and schedule document contained a strategy for the implementation of alternative treatment and disposal systems. This strategy included prioritizing the streams into two phases. The Phase 1 streams were considered to be higher priority than the Phase 2 streams. The actions recommended for the Phase 1 and 2 streams in the two reports were incorporated in the Hanford Federal Facility Agreement and Consent Order. Miscellaneous Streams are those liquid effluents streams identified within the Consent Order that are discharged to the ground but are not categorized as Phase 1 or Phase 2 Streams. This document consists of an inventory of the liquid effluent streams being discharged into the Hanford soil column

  2. Isotopic characteristics of canopies in simulated leaf assemblages

    Science.gov (United States)

    Graham, Heather V.; Patzkowsky, Mark E.; Wing, Scott L.; Parker, Geoffrey G.; Fogel, Marilyn L.; Freeman, Katherine H.

    2014-11-01

    The geologic history of closed-canopy forests is of great interest to paleoecologists and paleoclimatologists alike. Closed canopies have pronounced effects on local, continental and global rainfall and temperature patterns. Although evidence for canopy closure is difficult to reconstruct from the fossil record, the characteristic isotope gradients of the ;canopy effect; could be preserved in leaves and proxy biomarkers. To assess this, we employed new carbon isotopic data for leaves collected in diverse light environments within a deciduous, temperate forest (Maryland, USA) and for leaves from a perennially closed canopy, moist tropical forest (Bosque Protector San Lorenzo, Panamá). In the tropical forest, leaf carbon isotope values range 10‰, with higher δ13Cleaf values occurring both in upper reaches of the canopy, and with higher light exposure and lower humidity. Leaf fractionation (Δleaf) varied negatively with height and light and positively with humidity. Vertical 13C enrichment in leaves largely reflects changes in Δleaf, and does not trend with δ13C of CO2 within the canopy. At the site in Maryland, leaves express a more modest δ13C range (∼6‰), with a clear trend that follows both light and leaf height. Using a model we simulate leaf assemblage isotope patterns from canopy data binned by elevation. The re-sampling (bootstrap) model determined both the mean and range of carbon isotope values for simulated leaf assemblages ranging in size from 10 to over 1000 leaves. For the tropical forest data, the canopy's isotope range is captured with 50 or more randomly sampled leaves. Thus, with a sufficient number of fossil leaves it is possible to distinguish isotopic gradients in an ancient closed canopy forest from those in an open forest. For very large leaf assemblages, mean isotopic values approximate the δ13C of carbon contributed by leaves to soil and are similar to observed δ13Clitter values at forested sites within Panamá, including the

  3. Boreal forest BVOC exchange: emissions versus in-canopy sinks

    Science.gov (United States)

    Zhou, Putian; Ganzeveld, Laurens; Taipale, Ditte; Rannik, Üllar; Rantala, Pekka; Petteri Rissanen, Matti; Chen, Dean; Boy, Michael

    2017-12-01

    A multilayer gas dry deposition model has been developed and implemented into a one-dimensional chemical transport model SOSAA (model to Simulate the concentrations of Organic vapours, Sulphuric Acid and Aerosols) to calculate the dry deposition velocities for all the gas species included in the chemistry scheme. The new model was used to analyse in-canopy sources and sinks, including gas emissions, chemical production and loss, dry deposition, and turbulent transport of 12 featured biogenic volatile organic compounds (BVOCs) or groups of BVOCs (e.g. monoterpenes, isoprene+2-methyl-3-buten-2-ol (MBO), sesquiterpenes, and oxidation products of mono- and sesquiterpenes) in July 2010 at the boreal forest site SMEAR II (Station for Measuring Ecosystem-Atmosphere Relations). According to the significance of modelled monthly-averaged individual source and sink terms inside the canopy, the selected BVOCs were classified into five categories: 1. Most of emitted gases are transported out of the canopy (monoterpenes, isoprene + MBO). 2. Chemical reactions remove a significant portion of emitted gases (sesquiterpenes). 3. Bidirectional fluxes occur since both emission and dry deposition are crucial for the in-canopy concentration tendency (acetaldehyde, methanol, acetone, formaldehyde). 4. Gases removed by deposition inside the canopy are compensated for by the gases transported from above the canopy (acetol, pinic acid, β-caryophyllene's oxidation product BCSOZOH). 5. The chemical production is comparable to the sink by deposition (isoprene's oxidation products ISOP34OOH and ISOP34NO3). Most of the simulated sources and sinks were located above about 0.2 hc (canopy height) for oxidation products and above about 0.4 hc for emitted species except formaldehyde. In addition, soil deposition (including deposition onto understorey vegetation) contributed 11-61 % to the overall in-canopy deposition. The emission sources peaked at about 0.8-0.9 hc, which was higher than 0.6 hc

  4. Dynamics of Invertebrate Diversity in a Tropical Stream

    Directory of Open Access Journals (Sweden)

    Richard G. Pearson

    2014-12-01

    Full Text Available Regional studies of biotic communities are important for characterising their normal spatial and temporal variation, but there are few such studies of tropical streams. This paper describes changes in invertebrate communities in Yuccabine Creek, a seasonal upland rainforest stream in tropical Australia, over three-year and decadal periods. Invertebrate abundance, richness and evenness were temporally stable, except after major drying or wet-season flows, from which they recovered quickly; however, three wet seasons contrasted in abundance patterns. Species’ responses to flood or drought varied depending on life-histories and habitat dynamics. Communities showed contrasts between wet, early-dry and late-dry seasons, with different characteristic species. Current velocity, leaf litter and substratum particle size were the main environmental correlates with species abundances and multivariate scores. Between-decade contrasts were due to antecedent rainfall and loss of canopy cover. Trophic composition varied seasonally, driven by abundances of predators and detritivores. Yuccabine Creek differs from comparable temperate streams in its high diversity of invertebrates, continual recruitment and spring-dominated continual leaf fall; and from some other tropical streams in its seasonal flow regime. Interpretation of invertebrate metrics in these streams needs to account for historical, antecedent and current conditions, but biannual samples would adequately characterise the fauna.

  5. How neighbor canopy architecture affects target plant performance

    Energy Technology Data Exchange (ETDEWEB)

    Tremmel, D.C.; Bazzaz, F.A. (Harvard Univ., Cambridge, MA (United States))

    1993-10-01

    Plant competition occurs through the negative effects that individual plants have on resource availability to neighboring individuals. Therefore competition experiments need to examine how different species change resource availability to their neighbors, and how different species respond to these changes-allocationally, architecturally, and physiologically-through time. In a greenhouse study we used a model system of annuals to examine how canopies of species having differing morphologies differed in their architectures and light-interception abilities, and how different species performed when grown in these canopies. Abutilon theophrasti, Datura stramonium, and Polygonum pensylvanicum were grown as [open quotes]targets[close quotes]. Plants were grown in pots, with one target plant and four neighbor plants. Detailed measurements of neighbor canopy structure and target plant canopy architecture were made at five harvests. Species with different morphologies showed large differences in canopy structure, particularly when grass and forb species were compared. Setaria, a grass, had a more open canopy than the other species (all forbs), and was a consistently weak competitor. Overall, however, the relative effects of different neighbors on target biomass varied with target species. Target biomass was poorly correlated with neighbor biomass and leaf area, but was highly correlated with a measure of target light-interception ability that took into account both target leaf deployment and neighbor light interception. Despite clear differences among neighbor species in canopy structure and effect on light penetration, the results suggest no broad generalizations about the effects of different species as neighbors. Knowledge of morphological, physiological, and life history characteristics of both the target and neighbor species may be necessary to explain the results of their competition. 53 refs., 4 figs., 4 tabs.

  6. LHCb trigger streams optimization

    Science.gov (United States)

    Derkach, D.; Kazeev, N.; Neychev, R.; Panin, A.; Trofimov, I.; Ustyuzhanin, A.; Vesterinen, M.

    2017-10-01

    The LHCb experiment stores around 1011 collision events per year. A typical physics analysis deals with a final sample of up to 107 events. Event preselection algorithms (lines) are used for data reduction. Since the data are stored in a format that requires sequential access, the lines are grouped into several output file streams, in order to increase the efficiency of user analysis jobs that read these data. The scheme efficiency heavily depends on the stream composition. By putting similar lines together and balancing the stream sizes it is possible to reduce the overhead. We present a method for finding an optimal stream composition. The method is applied to a part of the LHCb data (Turbo stream) on the stage where it is prepared for user physics analysis. This results in an expected improvement of 15% in the speed of user analysis jobs, and will be applied on data to be recorded in 2017.

  7. A comparison between wet canopy evaporation estimated by stable isotope ratios of water and canopy interception measured by water balance

    Science.gov (United States)

    Murakami, Shigeki; Hattori, Shohei; Uemura, Ryu

    2017-04-01

    Some papers proved that canopy interception is proportional to rainfall not only on a rain event basis but also on an hourly basis (e.g. Murakami, 2006, J. Hydrol.; Saito et al., 2013, J. Hydrol.). However, theoretically, evaporation does not depend on rainfall amount. These results are enigmatic and we need to reevaluate wet canopy evaporation. We measured gross rainfall and net rainfall in a plastic Christmas tree stand with a height of 165 cm placed on a 180-cm square tray as described in Murakami and Toba (2013, Hydrol. Res. Lett.). The measurement was conducted outside under natural rainfall. We also estimated wet canopy evaporation using stable isotope ratios of water. During a rain event, we manually sampled gross and net rainwater on an hourly basis. Evaporation was calculated using the difference between the δ18O (or δ2H) values in gross and net rainfall using isotope fractionation factor. Total gross rainfall in a target rain event in October, 2014, was 28.0 mm and net rainfall (discharge from the tray) was 22.7 mm, i.e. canopy interception was 5.3 mm (18.9% of gross rainfall). The δ18O (or δ2H) value in net rainfall was higher than that in gross rainfall because of fractionation by evaporation on wet canopy surface. Hourly evaporation calculated by the values of δ18O varied from 2% to 24% of gross rainfall, and the weighted average by hourly gross rainfall was 5.2% of gross rainfall. Further, we estimated rainfall interception using a tank model (Yoshida et al., 1993) assuming constant evaporation rate, i.e. 20% of gross rainfall. Total net rainfall calculated by the model was 23.1 mm, i.e. calculated canopy interception was 4.9 mm (17.5% of gross rainfall). Then, keeping the parameters of the model, we simulated net rainfall using hourly surface evaporation obtained by the δ18O values. Calculated net rainfall was 25.6 mm, i.e. wet canopy evaporation was only 2.4 mm (8.6% of gross rainfall). So far, possible explanation of the discrepancy between

  8. Asteroid/meteorite streams

    Science.gov (United States)

    Drummond, J.

    The independent discovery of the same three streams (named alpha, beta, and gamma) among 139 Earth approaching asteroids and among 89 meteorite producing fireballs presents the possibility of matching specific meteorites to specific asteroids, or at least to asteroids in the same stream and, therefore, presumably of the same composition. Although perhaps of limited practical value, the three meteorites with known orbits are all ordinary chondrites. To identify, in general, the taxonomic type of the parent asteroid, however, would be of great scientific interest since these most abundant meteorite types cannot be unambiguously spectrally matched to an asteroid type. The H5 Pribram meteorite and asteroid 4486 (unclassified) are not part of a stream, but travel in fairly similar orbits. The LL5 Innisfree meteorite is orbitally similar to asteroid 1989DA (unclassified), and both are members of a fourth stream (delta) defined by five meteorite-dropping fireballs and this one asteroid. The H5 Lost City meteorite is orbitally similar to 1980AA (S type), which is a member of stream gamma defined by four asteroids and four fireballs. Another asteroid in this stream is classified as an S type, another is QU, and the fourth is unclassified. This stream suggests that ordinary chondrites should be associated with S (and/or Q) asteroids. Two of the known four V type asteroids belong to another stream, beta, defined by five asteroids and four meteorite-dropping (but unrecovered) fireballs, making it the most probable source of the eucrites. The final stream, alpha, defined by five asteroids and three fireballs is of unknown composition since no meteorites have been recovered and only one asteroid has an ambiguous classification of QRS. If this stream, or any other as yet undiscovered ones, were found to be composed of a more practical material (e.g., water or metalrich), then recovery of the associated meteorites would provide an opportunity for in-hand analysis of a potential

  9. Percent Agriculture Adjacent to Streams

    Data.gov (United States)

    U.S. Environmental Protection Agency — The type of vegetation along a stream influences the water quality in the stream. Intact buffer strips of natural vegetation along streams tend to intercept...

  10. Percent Forest Adjacent to Streams

    Data.gov (United States)

    U.S. Environmental Protection Agency — The type of vegetation along a stream influences the water quality in the stream. Intact buffer strips of natural vegetation along streams tend to intercept...

  11. Simulations of tropical rainforest albedo: is canopy wetness important?

    Directory of Open Access Journals (Sweden)

    Silvia N.M. Yanagi

    Full Text Available Accurate information on surface albedo is essential for climate modelling, especially for regions such as Amazonia, where the response of the regional atmospheric circulation to the changes on surface albedo is strong. Previous studies have indicated that models are still unable to correctly reproduce details of the seasonal variation of surface albedo. Therefore, it was investigated the role of canopy wetness on the simulated albedo of a tropical rainforest by modifying the IBIS canopy radiation transfer code to incorporate the effects of canopy wetness on the vegetation reflectance. In this study, simulations were run using three versions of the land surface/ecosystem model IBIS: the standard version, the same version recalibrated to fit the data of albedo on tropical rainforests and a modified version that incorporates the effects of canopy wetness on surface albedo, for three sites in the Amazon forest at hourly and monthly scales. The results demonstrated that, at the hourly time scale, the incorporation of canopy wetness on the calculations of radiative transfer substantially improves the simulations results, whereas at the monthly scale these changes do not substantially modify the simulated albedo.

  12. Eo-1 Hyperion Measures Canopy Drought Stress In Amazonia

    Science.gov (United States)

    Asner, Gregory P.; Nepstad, Daniel; Cardinot, Gina; Moutinho, Paulo; Harris, Thomas; Ray, David

    2004-01-01

    The central, south and southeast portions of the Amazon Basin experience a period of decreased cloud cover and precipitation from June through November. There are likely important effects of seasonal and interannual rainfall variation on forest leaf area index, canopy water stress, productivity and regional carbon cycling in the Amazon. While both ground and spaceborne studies of precipitation continue to improve, there has been almost no progress made in observing forest canopy responses to rainfall variability in the humid tropics. This shortfall stems from the large stature of the vegetation and great spatial extent of tropical forests, both of which strongly impede field studies of forest responses to water availability. Those few studies employing satellite measures of canopy responses to seasonal and interannual drought (e.g., Bohlman et al. 1998, Asner et al. 2000) have been limited by the spectral resolution and sampling available from Landsat and AVHRR sensors. We report on a study combining the first landscape-level, managed drought experiment in Amazon tropical forest with the first spaceborne imaging spectrometer observations of this experimental area. Using extensive field data on rainfall inputs, soil water content, and both leaf and canopy responses, we test the hypothesis that spectroscopic signatures unique to hyperspectral observations can be used to quantify relative differences in canopy stress resulting from water availability.

  13. Performance of an Ultrasonic Ranging Sensor in Apple Tree Canopies

    Science.gov (United States)

    Escolà, Alexandre; Planas, Santiago; Rosell, Joan Ramon; Pomar, Jesús; Camp, Ferran; Solanelles, Francesc; Gracia, Felip; Llorens, Jordi; Gil, Emilio

    2011-01-01

    Electronic canopy characterization is an important issue in tree crop management. Ultrasonic and optical sensors are the most used for this purpose. The objective of this work was to assess the performance of an ultrasonic sensor under laboratory and field conditions in order to provide reliable estimations of distance measurements to apple tree canopies. To this purpose, a methodology has been designed to analyze sensor performance in relation to foliage ranging and to interferences with adjacent sensors when working simultaneously. Results show that the average error in distance measurement using the ultrasonic sensor in laboratory conditions is ±0.53 cm. However, the increase of variability in field conditions reduces the accuracy of this kind of sensors when estimating distances to canopies. The average error in such situations is ±5.11 cm. When analyzing interferences of adjacent sensors 30 cm apart, the average error is ±17.46 cm. When sensors are separated 60 cm, the average error is ±9.29 cm. The ultrasonic sensor tested has been proven to be suitable to estimate distances to the canopy in field conditions when sensors are 60 cm apart or more and could, therefore, be used in a system to estimate structural canopy parameters in precision horticulture. PMID:22163749

  14. The MODIS Vegetation Canopy Water Content product

    Science.gov (United States)

    Ustin, S. L.; Riano, D.; Trombetti, M.

    2008-12-01

    Vegetation water stress drives wildfire behavior and risk, having important implications for biogeochemical cycling in natural ecosystems, agriculture, and forestry. Water stress limits plant transpiration and carbon gain. The regulation of photosynthesis creates close linkages between the carbon, water, and energy cycles and through metabolism to the nitrogen cycle. We generated systematic weekly CWC estimated for the USA from 2000-2006. MODIS measures the sunlit reflectance of the vegetation in the visible, near-infrared, and shortwave infrared. Radiative transfer models, such as PROSPECT-SAILH, determine how sunlight interacts with plant and soil materials. These models can be applied over a range of scales and ecosystem types. Artificial Neural Networks (ANN) were used to optimize the inversion of these models to determine vegetation water content. We carried out multi-scale validation of the product using field data, airborne and satellite cross-calibration. An Algorithm Theoretical Basis Document (ATBD) of the product is under evaluation by NASA. The CWC product inputs are 1) The MODIS Terra/Aqua surface reflectance product (MOD09A1/MYD09A1) 2) The MODIS land cover map product (MOD12Q1) reclassified to grassland, shrub-land and forest canopies; 3) An ANN trained with PROSPECT-SAILH; 4) A calibration file for each land cover type. The output is an ENVI file with the CWC values. The code is written in Matlab environment and is being adapted to read not only the 8 day MODIS composites, but also daily surface reflectance data. We plan to incorporate the cloud and snow mask and generate as output a geotiff file. Vegetation water content estimates will help predicting linkages between biogeochemical cycles, which will enable further understanding of feedbacks to atmospheric concentrations of greenhouse gases. It will also serve to estimate primary productivity of the biosphere; monitor/assess natural vegetation health related to drought, pollution or diseases

  15. Sunfleck dynamics and canopy structure in a Phaseolus vulgaris L. canopy

    Science.gov (United States)

    Barradas, Victor L.; Jones, Hamlyn G.; Clark, Jerry A.

    Photosynthetic photon flux density (PPFD) fluctuations were quantified in crops of beans (Phaseolus vulgaris L.) in the field as the canopy developed between July and October. Two different methods were used to select sunflecks and shadeflecks. Four ranges of zenith angles (60-70°, 50-60°, 40-50° and 30-40°) were selected for analysing PPFD fluctuations. At the base of the canopy, sunflecks contributed 18%, 53%, 10% and 4% during the 1st, 3rd, 5th and 7th week of growth, respectively. At a height of 20 cm above the soil surface, the respective contributions were 28% and 21% during the 6th and 7th weeks. Sunfleck lengths of 0-5 s were the most frequent, with the greatest number being found with smaller zenith angles. The proportion of short duration sunflecks increased as the growth period advanced. The number of long sunflecks decreased with time, with very few longer than 100 s by the 5th and 7th weeks. The distributions of sunfleck irradiance were similar to normal distributions and irradiance ranged in μmol m-2 s-1 from 600-900, 800-1500 and 1000-1600 respectively at zenith angles of 50-60°, 40-50° and 30-40°. A multiple regression showed that short sunflecks (100 s) depended on zenith angle and Ls. Shadefleck distributions were similar to those for sunflecks but there were fewer of the shortest examples and more of the longest. The best statistical distribution to describe sunflecks and shadeflecks was the gamma distribution, which could provide the basis for the future development of a good model for sunfleck and shadefleck distributions.

  16. Academic streaming in Europe

    DEFF Research Database (Denmark)

    Falaschi, Alessandro; Mønster, Dan; Doležal, Ivan

    2004-01-01

    The TF-NETCAST task force was active from March 2003 to March 2004, and during this time the mem- bers worked on various aspects of streaming media related to the ultimate goal of setting up common services and infrastructures to enable netcasting of high quality content to the academic community...... in Europe. We report on a survey of the use of streaming media in the academic community in Europe, an open source content delivery network, and a portal for announcing live streaming events to the global academic community....

  17. Wadeable Streams Assessment Data

    Science.gov (United States)

    The Wadeable Streams Assessment (WSA) is a first-ever statistically-valid survey of the biological condition of small streams throughout the U.S. The U.S. Environmental Protection Agency (EPA) worked with the states to conduct the assessment in 2004-2005. Data for each parameter sampled in the Wadeable Streams Assessment (WSA) are available for downloading in a series of files as comma separated values (*.csv). Each *.csv data file has a companion text file (*.txt) that lists a dataset label and individual descriptions for each variable. Users should view the *.txt files first to help guide their understanding and use of the data.

  18. The Atmospheric Chemistry and Canopy Exchange Simulation System (ACCESS: model description and application to a temperate deciduous forest canopy

    Directory of Open Access Journals (Sweden)

    R. D. Saylor

    2013-01-01

    Full Text Available Forest canopies are primary emission sources of biogenic volatile organic compounds (BVOCs and have the potential to significantly influence the formation and distribution of secondary organic aerosol (SOA mass. Biogenically-derived SOA formed as a result of emissions from the widespread forests across the globe may affect air quality in populated areas, degrade atmospheric visibility, and affect climate through direct and indirect forcings. In an effort to better understand the formation of SOA mass from forest emissions, a 1-D column model of the multiphase physical and chemical processes occurring within and just above a vegetative canopy is being developed. An initial, gas-phase-only version of this model, the Atmospheric Chemistry and Canopy Exchange Simulation System (ACCESS, includes processes accounting for the emission of BVOCs from the canopy, turbulent vertical transport within and above the canopy and throughout the height of the planetary boundary layer (PBL, near-explicit representation of chemical transformations, mixing with the background atmosphere and bi-directional exchange between the atmosphere and canopy and the atmosphere and forest floor. The model formulation of ACCESS is described in detail and results are presented for an initial application of the modeling system to Walker Branch Watershed, an isoprene-emission-dominated forest canopy in the southeastern United States which has been the focal point for previous chemical and micrometeorological studies. Model results of isoprene profiles and fluxes are found to be consistent with previous measurements made at the simulated site and with other measurements made in and above mixed deciduous forests in the southeastern United States. Sensitivity experiments are presented which explore how canopy concentrations and fluxes of gas-phase precursors of SOA are affected by background anthropogenic nitrogen oxides (NOx. Results from these experiments suggest that the

  19. Experimental relations between airborne and ground measured wheat canopy temperatures

    Science.gov (United States)

    Millard, J. P.; Reginato, R. J.; Idso, S. B.; Jackson, R. D.; Goettelman, R. C.; Leroy, M. J.

    1980-01-01

    Experiments using ground-based measurements of canopy temperatures have shown that plant temperatures are good indicators of plant water stress, and thus are useful for assessing water requirements and predicting yields. An intensive 23-day airborne- and ground-measurement program was conducted in Phoenix, Arizona in 1977 to compare airborne-acquired wheat canopy temperatures with simultaneous ground measurements. For canopies that covered at least 85 percent of the soil surface, airborne measurements differed from ground measurements of plant temperature by less than 2 C. Regardless of the amount of plant cover, the airborne measurements were virtually identical to ground-nadir measurements, and thus represent a combination of plant temperature and solid background temperature.

  20. THE PRE-PENUMBRAL MAGNETIC CANOPY IN THE SOLAR ATMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    MacTaggart, David [School of Mathematics and Statistics University of Glasgow, Glasgow G12 8QW (United Kingdom); Guglielmino, Salvo L.; Zuccarello, Francesca [Dipartimento di Fisica e Astronomia—Sezione Astrofisica, Università di Catania, via S. Sofia 78, I-95123 Catania (Italy)

    2016-11-01

    Penumbrae are the manifestation of magnetoconvection in highly inclined (to the vertical direction) magnetic field. The penumbra of a sunspot tends to form, initially, along the arc of the umbra antipodal to the main region of flux emergence. The question of how highly inclined magnetic field can concentrate along the antipodal curves of umbrae, at least initially, remains to be answered. Previous observational studies have suggested the existence of some form of overlying magnetic canopy that acts as the progenitor for penumbrae. We propose that such overlying magnetic canopies are a consequence of how the magnetic field emerges into the atmosphere and are, therefore, part of the emerging region. We show, through simulations of twisted flux tube emergence, that canopies of highly inclined magnetic field form preferentially at the required locations above the photosphere.

  1. Experimental canopy removal enhances diversity of vernal pond amphibians.

    Science.gov (United States)

    Skelly, David K; Bolden, Susan R; Freidenburg, L Kealoha

    2014-03-01

    Vernal ponds are often treated as protected environments receiving special regulation and management. Within the landscapes where they are found, forest vegetation frequently dominates surrounding uplands and can grow to overtop and shade pond basins. Two bodies of research offer differing views of the role of forest canopy for vernal pond systems. Studies of landscape conversion suggest that removing forest overstory within uplands can cause local extinctions of amphibians by altering terrestrial habitat or hindering movement. Studies of canopy above pond basins imply an opposite relationship; encroachment of overstory vegetation can be associated with local extinctions potentially via changes in light, thermal, and food resource environments. Unresolved uncertainties about the role of forest canopy reveal significant gaps in our understanding of wetland species distributions and dynamics. Any misunderstanding of canopy influences is simultaneously important to managers because current practices emphasize promoting or conserving vegetation growth particularly within buffers immediately adjacent to ponds. We evaluated this apparent contradiction by conducting a landscape-scale, long-term experiment using 14 natural vernal ponds. Tree felling at six manipulated ponds was limited in spatial scope but was nevertheless effective in increasing water temperature. Compared with eight control ponds, manipulated ponds maintained more amphibian species during five years post-manipulation. There was little evidence that any species was negatively influenced, and the reproductive effort of species for which we estimated egg inputs maintained pretreatment population densities in manipulated compared with control ponds. Overall, our experiment shows that a carefully circumscribed reduction of overhead forest canopy can enhance the capacity of vernal ponds to support wildlife diversity and suggests a scale dependence of canopy influences on amphibians. These findings have

  2. Effect of canopy architectural variation on transpiration and thermoregulation

    Science.gov (United States)

    Linn, R.; Banerjee, T.

    2017-12-01

    One of the major scientific questions identified by the NGEE - Tropics campaign is the effect of disturbances such as forest fires, vegetation thinning and land use change on carbon, water and energy fluxes. Answers to such questions can help develop effective forest management strategies and shape policies to mitigate damages under natural and anthropogenic climate change. The absence of horizontal and vertical variation of forest canopy structure in current models is a major source of uncertainty in answering these questions. The current work addresses this issue through a bottom up process based modeling approach to systematically investigate the effect of forest canopy architectural variation on plant physiological response as well as canopy level fluxes. A plant biophysics formulation is used which is based on the following principles: (1) a model for the biochemical demand for CO2 as prescribed by photosynthesis models. This model can differentiate between photosynthesis under light-limited and nutrient-limited scenarios. (2) A Fickian mass transfer model including transfer through the laminar boundary layer on leaves that may be subjected to forced or free convection depending upon the mean velocity and the radiation load; (3) an optimal leaf water use strategy that maximizes net carbon gain for a given transpiration rate to describe the stomatal aperture variation; (4) a leaf-level energy balance to accommodate evaporative cooling. Such leaf level processes are coupled to solutions of atmospheric flow through vegetation canopies. In the first test case, different scenarios of top heavy and bottom heavy (vertical) foliage distributions are investigated within a one-dimensional framework where no horizontal heterogeneity of canopy structure is considered. In another test case, different spatial distributions (both horizontal and vertical) of canopy geometry (land use) are considered, where flow solutions using large eddy simulations (LES) are coupled to the

  3. Canopy effects on snow sublimation from a central Arizona Basin

    Science.gov (United States)

    Svoma, Bohumil M.

    2017-01-01

    Guided by 30 m terrain and forest cover data, snow sublimation from the Salt River basin in the Southwest U.S. is simulated for years 2008 (wet year) and 2007 (dry year). Downscaled meteorological input correlates well (r 0.80) with independent observations at AmeriFlux sites. Additionally, model correlation and bias with eddy-covariance vapor flux observations is comparable to previous localized modeling efforts. Upon a 30% reduction in effective leaf area index, canopy sublimation decreases by 1.29 mm (27.0%) and 1.05 mm (23.0%) at the basin scale for the 2008 and 2007 simulations, respectively. Ground sublimation decreases 0.72 mm (4.75%) in 2008 and only 0.17 mm (1.5%) in 2007. Canopy snow-holding capacity and frequent unloading events at lower elevations limit the variability in canopy sublimation from wet year to dry year at the basin scale. The greater decrease in snowpack sublimation in the wet year is partly due to decreased longwave radiation from the canopy reduction over a more extensive snowpack than the dry year. This decrease overcomes the increased solar radiation and wind speed during winter. A second factor is that a greater extent of the snowpack persisted into spring in 2008 than 2007, and the large increase in shortwave flux upon canopy reduction increases melt rates, reducing duration. Only in heavily forested high elevations (>2900 m above sea level) in 2008 does the snowpack persist long enough into spring to result in increased ground sublimation upon canopy reduction. As forest cover change can occur rapidly, these results are critical from water resource and ecosystem function perspectives.

  4. Acoustic streaming in microchannels

    DEFF Research Database (Denmark)

    Tribler, Peter Muller

    This thesis presents studies of boundary-driven acoustic streaming in microfluidic channels, which is a steady flow of the fluid initiated by the interactions of an oscillating acoustic standing wave and the rigid walls of the microchannel. The studies present analysis of the acoustic resonance......, the acoustic streaming flow, and the forces on suspended microparticles. The work is motivated by the application of particle focusing by acoustic radiation forces in medical, environmental and food sciences. Here acoustic streaming is most often unwanted, because it limits the focusability of particles...... oscillating plates. Furthermore, under general thermodynamic conditions, we derive the time-dependent first- and second-order equations for the conservation of mass, momentum, and energy. The coupling from fluid equations to particle motion is achieved through the expressions for the streaming-induced drag...

  5. Streaming tearing mode

    Science.gov (United States)

    Shigeta, M.; Sato, T.; Dasgupta, B.

    1985-01-01

    The magnetohydrodynamic stability of streaming tearing mode is investigated numerically. A bulk plasma flow parallel to the antiparallel magnetic field lines and localized in the neutral sheet excites a streaming tearing mode more strongly than the usual tearing mode, particularly for the wavelength of the order of the neutral sheet width (or smaller), which is stable for the usual tearing mode. Interestingly, examination of the eigenfunctions of the velocity perturbation and the magnetic field perturbation indicates that the streaming tearing mode carries more energy in terms of the kinetic energy rather than the magnetic energy. This suggests that the streaming tearing mode instability can be a more feasible mechanism of plasma acceleration than the usual tearing mode instability.

  6. Stochastic ice stream dynamics.

    Science.gov (United States)

    Mantelli, Elisa; Bertagni, Matteo Bernard; Ridolfi, Luca

    2016-08-09

    Ice streams are narrow corridors of fast-flowing ice that constitute the arterial drainage network of ice sheets. Therefore, changes in ice stream flow are key to understanding paleoclimate, sea level changes, and rapid disintegration of ice sheets during deglaciation. The dynamics of ice flow are tightly coupled to the climate system through atmospheric temperature and snow recharge, which are known exhibit stochastic variability. Here we focus on the interplay between stochastic climate forcing and ice stream temporal dynamics. Our work demonstrates that realistic climate fluctuations are able to (i) induce the coexistence of dynamic behaviors that would be incompatible in a purely deterministic system and (ii) drive ice stream flow away from the regime expected in a steady climate. We conclude that environmental noise appears to be crucial to interpreting the past behavior of ice sheets, as well as to predicting their future evolution.

  7. Future Roads Near Streams

    Data.gov (United States)

    U.S. Environmental Protection Agency — Roads are a source of auto related pollutants (e.g. gasoline, oil and other engine fluids). When roads are near streams, rain can wash these pollutants directly into...

  8. Roads Near Streams

    Data.gov (United States)

    U.S. Environmental Protection Agency — Roads are a source of auto related pollutants (e.g. gasoline, oil and other engine fluids). When roads are near streams, rain can wash these pollutants directly into...

  9. Trout Stream Special Regulations

    Data.gov (United States)

    Minnesota Department of Natural Resources — This layer shows Minnesota trout streams that have a special regulation as described in the 2006 Minnesota Fishing Regulations. Road crossings were determined using...

  10. DNR 24K Streams

    Data.gov (United States)

    Minnesota Department of Natural Resources — 1:24,000 scale streams captured from USGS seven and one-half minute quadrangle maps, with perennial vs. intermittent classification, and connectivity through lakes,...

  11. Scientific stream pollution analysis

    National Research Council Canada - National Science Library

    Nemerow, Nelson Leonard

    1974-01-01

    A comprehensive description of the analysis of water pollution that presents a careful balance of the biological,hydrological, chemical and mathematical concepts involved in the evaluation of stream...

  12. Relationships Between Canopy Openness, Snow Cover and Ground Temperature.

    Science.gov (United States)

    Mattson, L.

    2004-05-01

    Red pine stands, which have undergone varying degrees of thinning and site preparation, are examined with a view to identifying the relationships which exist between canopy openness, snow cover and ground temperature. More specifically, eight red pine stands, which have been intentionally harvested at varying densities within the National Petawawa Research Forest, have been heavily instrumented for detailed measurements of canopy openness, snow cover characteristics, above and subsurface temperature profiles as well as micro-meteorological conditions. Results allow for the specification of relationships between the effect of thinning and site preparation on the soils thermal regime which, in turn, impacts upon the natural regeneration of the pine.

  13. Endogenous and exogenous control of ecosystem function: N cycling in headwater streams

    Energy Technology Data Exchange (ETDEWEB)

    Mulholland, Patrick J [ORNL; Valett, H. Maurice [Virginia Polytechnic Institute and State University (Virginia Tech); Thomas, Steve [University of Nebraska; Webster, Jackson [Virginia Polytechnic Institute and State University (Virginia Tech); Dahm, Cliff [University of New Mexico, Albuquerque; Fellows, Christine [Griffith University, Nathan, Queensland, Australia; Crenshaw, Chelsea [University of New Mexico, Albuquerque; Peterson, Chris G. [Loyola University

    2008-01-01

    Allochthonous inputs act as resource subsidies to many ecosystems, where they exert strong influences on metabolism and material cycling. At the same time, metabolic theory proposes endogenous thermal control independent of resource supply. To address the relative importance of exogenous and endogenous influences, we quantified spatial and temporal variation in ecosystem metabolism and nitrogen (N) uptake using seasonal releases of {sup 15}N as nitrate in six streams differing in riparian-stream interaction and metabolic character. Nitrate removal was quantified using a nutrient spiraling approach based on measurements of downstream decline in {sup 15}N flux. Respiration (R) and gross primary production (GPP) were measured with whole-stream diel oxygen budgets. Uptake and metabolism metrics were addressed as z scores relative to site means to assess temporal variation. In open-canopied streams, areal uptake (U; {micro}g N {center_dot} m{sup -2} {center_dot} s{sup -1}) was closely related to GPP, metabolic rates increased with temperature, and R was accurately predicted by metabolic scaling relationships. In forested streams, N spiraling was not related to GPP; instead, uptake velocity (v{sub f}; mm/s) was closely related to R. In contrast to open-canopied streams, N uptake and metabolic activity were negatively correlated to temperature and poorly described by scaling laws. We contend that streams differ along a gradient of exogenous and endogenous control that relates to the relative influences of resource subsidies and in-stream energetics as determinants of seasonal patterns of metabolism and N cycling. Our research suggests that temporal variation in the propagation of ecological influence between adjacent systems generates phases when ecosystems are alternatively characterized as endogenously and exogenously controlled.

  14. Endogenous and exogenous control of ecosystem function: N cycling in headwater streams.

    Science.gov (United States)

    Valett, H M; Thomas, S A; Mulholland, P J; Webster, J R; Dahm, C N; Fellows, C S; Crenshaw, C L; Peterson, C G

    2008-12-01

    Allochthonous inputs act as resource subsidies to many ecosystems, where they exert strong influences on metabolism and material cycling. At the same time, metabolic theory proposes endogenous thermal control independent of resource supply. To address the relative importance of exogenous and endogenous influences, we quantified spatial and temporal variation in ecosystem metabolism and nitrogen (N) uptake using seasonal releases of 15N as nitrate in six streams differing in riparian-stream interaction and metabolic character. Nitrate removal was quantified using a nutrient spiraling approach based on measurements of downstream decline in 15N flux. Respiration (R) and gross primary production (GPP) were measured with whole-stream diel oxygen budgets. Uptake and metabolism metrics were addressed as z scores relative to site means to assess temporal variation. In open-canopied streams, areal uptake (U; microg N x m(-2) x s(-1)) was closely related to GPP, metabolic rates increased with temperature, and R was accurately predicted by metabolic scaling relationships. In forested streams, N spiraling was not related to GPP; instead, uptake velocity (v(f); mm/s) was closely related to R. In contrast to open-canopied streams, N uptake and metabolic activity were negatively correlated to temperature and poorly described by scaling laws. We contend that streams differ along a gradient of exogenous and endogenous control that relates to the relative influences of resource subsidies and in-stream energetics as determinants of seasonal patterns of metabolism and N cycling. Our research suggests that temporal variation in the propagation of ecological influence between adjacent systems generates phases when ecosystems are alternatively characterized as endogenously and exogenously controlled.

  15. Collaborative Media Streaming

    OpenAIRE

    Kahmann, Verena

    2008-01-01

    Mit Hilfe der IP-Technologie erbrachte Multimedia-Dienste wie IPTV oder Video-on-Demand sind zur Zeit ein gefragtes Thema. Technisch werden solche Dienste unter dem Begriff "Streaming" eingeordnet. Ein Server sendet Mediendaten kontinuierlich an Empfänger, welche die Daten sofort weiterverarbeiten und anzeigen. Über einen Rückkanal hat der Kunde die Möglichkeit der Einflussnahme auf die Wiedergabe. Eine Weiterentwicklung dieser Streaming-Dienste ist die Möglichkeit, gemeinsam mit anderen dens...

  16. Android Video Streaming

    Science.gov (United States)

    2014-05-01

    ad hoc network established between devices that are in range of each other. 15. SUBJECT TERMS Android, video, streaming, ad hoc 16. SECURITY ...Android PowerManager wake lock settings. Flag Value CPU Screen Keyboard PARTIAL_WAKE_LOCK Ona Off Off SCREEN_DIM_WAKE_LOCK On Dim Off... stock ROM and modifying it as described in Mobile Ad-Hoc Networking on Android Devices (15) allowed the video streaming to work properly over an ad hoc

  17. Solar wind stream evolution

    International Nuclear Information System (INIS)

    Gosling, J.T.

    1978-01-01

    Highlights of the recent progress in understanding the problem of high speed stream evolution with increasing heliocentric distance are reviewed. Crucial to this understanding are the measurements made in the inner solar system by Helios and the outer solar system by Pioneers 10 and 11. When coupled with observations at 1 AU these measurements allow a testing of current theoretical models of stream evolution. 21 references

  18. Streaming Pool: reuse, combine and create reactive streams with pleasure

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    When connecting together heterogeneous and complex systems, it is not easy to exchange data between components. Streams of data are successfully used in industry in order to overcome this problem, especially in the case of "live" data. Streams are a specialization of the Observer design pattern and they provide asynchronous and non-blocking data flow. The ongoing effort of the ReactiveX initiative is one example that demonstrates how demanding this technology is even for big companies. Bridging the discrepancies of different technologies with common interfaces is already done by the Reactive Streams initiative and, in the JVM world, via reactive-streams-jvm interfaces. Streaming Pool is a framework for providing and discovering reactive streams. Through the mechanism of dependency injection provided by the Spring Framework, Streaming Pool provides a so called Discovery Service. This object can discover and chain streams of data that are technologically agnostic, through the use of Stream IDs. The stream to ...

  19. Juvenile coho salmon growth and health in streams across an urbanization gradient

    Science.gov (United States)

    Spanjer, Andrew R.; Moran, Patrick W.; Larsen, Kimberly; Wetzel, Lisa; Hansen, Adam G.; Beauchamp, David A.

    2018-01-01

    Expanding human population and urbanization alters freshwater systems through structural changes to habitat, temperature effects from increased runoff and reduced canopy cover, altered flows, and increased toxicants. Current stream assessments stop short of measuring health or condition of species utilizing these freshwater habitats and fail to link specific stressors mechanistically to the health of organisms in the stream. Juvenile fish growth integrates both external and internal conditions providing a useful indicator of habitat quality and ecosystem health. Thus, there is a need to account for ecological and environmental influences on fish growth accurately. Bioenergetics models can simulate changes in growth and consumption in response to environmental conditions and food availability to account for interactions between an organism's environmental experience and utilization of available resources. The bioenergetics approach accounts for how thermal regime, food supply, and food quality affect fish growth. This study used a bioenergetics modeling approach to evaluate the environmental factors influencing juvenile coho salmon growth among ten Pacific Northwest streams spanning an urban gradient. Urban streams tended to be warmer, have earlier emergence dates and stronger early season growth. However, fish in urban streams experienced increased stress through lower growth efficiencies, especially later in the summer as temperatures warmed, with as much as a 16.6% reduction when compared to fish from other streams. Bioenergetics modeling successfully characterized salmonid growth in small perennial streams as part of a more extensive monitoring program and provides a powerful assessment tool for characterizing mixed life-stage specific responses in urban streams.

  20. Exploring Relationships between Canopy Architecture, Light Distribution, and Photosynthesis in Contrasting Rice Genotypes Using 3D Canopy Reconstruction

    Directory of Open Access Journals (Sweden)

    Alexandra J. Burgess

    2017-05-01

    Full Text Available The arrangement of leaf material is critical in determining the light environment, and subsequently the photosynthetic productivity of complex crop canopies. However, links between specific canopy architectural traits and photosynthetic productivity across a wide genetic background are poorly understood for field grown crops. The architecture of five genetically diverse rice varieties—four parental founders of a multi-parent advanced generation intercross (MAGIC population plus a high yielding Philippine variety (IR64—was captured at two different growth stages using a method for digital plant reconstruction based on stereocameras. Ray tracing was employed to explore the effects of canopy architecture on the resulting light environment in high-resolution, whilst gas exchange measurements were combined with an empirical model of photosynthesis to calculate an estimated carbon gain and total light interception. To further test the impact of different dynamic light patterns on photosynthetic properties, an empirical model of photosynthetic acclimation was employed to predict the optimal light-saturated photosynthesis rate (Pmax throughout canopy depth, hypothesizing that light is the sole determinant of productivity in these conditions. First, we show that a plant type with steeper leaf angles allows more efficient penetration of light into lower canopy layers and this, in turn, leads to a greater photosynthetic potential. Second the predicted optimal Pmax responds in a manner that is consistent with fractional interception and leaf area index across this germplasm. However, measured Pmax, especially in lower layers, was consistently higher than the optimal Pmax indicating factors other than light determine photosynthesis profiles. Lastly, varieties with more upright architecture exhibit higher maximum quantum yield of photosynthesis indicating a canopy-level impact on photosynthetic efficiency.

  1. Estimation of leaf area index for cotton canopies using the LI-COR LAI-2000 plant canopy analyzer

    International Nuclear Information System (INIS)

    Hicks, S.K.; Lascano, R.J.

    1995-01-01

    Measurement of leaf area index (LAI) is useful for understanding cotton (Gossypium hirsutum L.) growth, water use, and canopy light interception. Destructive measurement is time consuming and labor intensive. Our objective was to evaluate sampling procedures using the Li-Cor (Lincoln, NE) LAI 2000 plant canopy analyzer (PCA) for nondestructive estimation of cotton LAI on the southern High Plains of Texas. We evaluated shading as a way to allow PCA measurements in direct sunlight and the influence of solar direction when using this procedure. We also evaluated a test of canopy homogeneity (information required for setting PCA field of view), determined the number of below-canopy measurements required, examined the influence of leaf wilting on PCA LAI determinations, and tested an alternative method (masking the sensor's two outer rings) for calculating LAI from PCA measurements. The best agreement between PCA and destructively measured LAI values was obtained when PCA observations were made either during uniformly overcast conditions or around solar noon using the shading method. Heterogeneous canopies with large gaps between rows required both a restricted (45 degrees) azimuthal field of view and averaging the LAI values for two transects, made with the field of view parallel and then perpendicular to the row direction. This method agreed well (r2 = 0.84) with destructively measured LAI in the range of 0.5 to 3.5 and did not deviate from a 1:1 relationship. The PCA underestimated LAI by greater than or equal 20% when measurements were made on canopies wilted due to water stress. Masking the PCA sensor's outer rings did not improve the relationship between estimated and measured LAI in the range of LAI sampled

  2. LBA-ECO LC-15 Aerodynamic Roughness Maps of Vegetation Canopies, Amazon Basin: 2000

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set, LBA-ECO LC-15 Aerodynamic Roughness Maps of Vegetation Canopies, Amazon Basin: 2000, provides physical roughness maps of vegetation canopies in the...

  3. Tree Canopy Cover for the Circumpolar Taiga-Tundra Ecotone: 2000-2005

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides a map of selected areas with defined tree canopy cover over the circumpolar taiga-tundra ecotone (TTE). Canopy cover was derived from the...

  4. The third RAdiation transfer Model Intercomparison (RAMI) exercise: Documenting progress in canopy reflectance models

    NARCIS (Netherlands)

    Widlowski, J.L.; Taberner, M.; Pinty, B.; Bruniquel-Pinel, V.; Disney, M.I.; Fernandes, R.; Gastellu-Etchegorry, J.P.; Gobron, N.; Kuusk, A.; Lavergne, T.; LeBlanc, S.; Lewis, P.E.; Martin, E.; Mõttus, M.; North, P.R.J.; Qin, W.; Robustelli, M.; Rochdi, N.; Ruiloba, R.; Thompson, R.; Verhoef, W.; Verstraete, M.M.; Xie, D.

    2007-01-01

    [1] The Radiation Transfer Model Intercomparison ( RAMI) initiative benchmarks canopy reflectance models under well-controlled experimental conditions. Launched for the first time in 1999, this triennial community exercise encourages the systematic evaluation of canopy reflectance models on a

  5. Tree Canopy Cover for the Circumpolar Taiga-Tundra Ecotone: 2000-2005

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set provides a map of selected areas with defined tree canopy cover over the circumpolar taiga-tundra ecotone (TTE). Canopy cover was derived...

  6. Streams and their future inhabitants

    DEFF Research Database (Denmark)

    Sand-Jensen, K.; Friberg, N.

    2006-01-01

    In this fi nal chapter we look ahead and address four questions: How do we improve stream management? What are the likely developments in the biological quality of streams? In which areas is knowledge on stream ecology insuffi cient? What can streams offer children of today and adults of tomorrow?...

  7. Tracking forest canopy stress from an automated proximal hyperspectral monitoring system

    Science.gov (United States)

    Woodgate, William; van Gorsel, Eva; Hughes, Dale; Cabello-Leblic, Arantxa

    2016-04-01

    stress is non-uniform with tree height and among different trees. A further objective is to establish a link between these spectral measurements, photosynthetic rate and light use efficiency of the canopy, made possible through integration with tower measured flux data. Accounting for different structural and illumination conditions is integral for future work interpreting and scaling these findings from imagery data. The ultimate aim of this work is to significantly advance our understanding of the impacts of lagged climate effects on vegetation by assimilating relevant remotely sensed data streams into a dynamic-vegetation-enabled land surface model (CABLE) at the regional, continental and global scale.

  8. A comparison of ground-based methods for estimating canopy closure for use in phenology research

    OpenAIRE

    Smith, AM; Ramsay, PM

    2018-01-01

    Abstract Climate change is influencing tree phenology, causing earlier and more prolonged canopy closure in temperate forests. Canopy closure is closely associated with understorey light, so shifts in its timing have wide-reaching consequences for ecological processes in the understorey. Widespread monitoring of forest canopies through time is needed to understand changes in light availability during spring in particular. Canopy openness, derived from hemispherical photography, has frequently...

  9. Application of Lidar remote sensing to the estimation of forest canopy and stand structure

    Science.gov (United States)

    Lefsky, Michael Andrew

    A new remote sensing instrument, SLICER (Scanning Lidar Imager of Canopies by Echo Recovery), has been applied to the problem of remote sensing the canopy and stand structure of two groups of deciduous forests, Tulip Poplar-Oak stands in the vicinity of Annapolis, MD. and bottomland hardwood stands near Williamston, NC. The ability of the SLICER instrument to remotely sense the vertical distribution of canopy structure (Canopy Height Profile), bulk canopy transmittance, and several indices of canopy height has been successfully validated using twelve stands with coincident field and SLICER estimates of canopy structure. Principal components analysis has been applied to canopy height profiles from both field sites, and three significant factors were identified, each closely related to the amount of foliage in a recognizable layer of the forest, either understory, midstory, or overstory. The distribution of canopy structure to these layers is significantly correlated with the size and number of stems supporting them. The same layered structure was shown to apply to both field and SLICER remotely sensed canopy height profiles, and to apply to SLICER remotely sensed canopy profiles from both the bottomland hardwood stands in the coastal plain of North Carolina, and to mesic Tulip-Poplars stands in the upland coastal plain of Maryland. Linear regressions have demonstrated that canopy and stand structure are correlated to both a statistically significant and useful degree. Stand age and stem density is more highly correlated to stand height, while stand basal area and aboveground biomass are more closely related to a new measure of canopy structure, the quadratic mean canopy height. A geometric model of canopy structure has been shown to explain the differing relationships between canopy structure and stand basal area for stands of Eastern Deciduous Forest and Douglas Fir Forest.

  10. Floristic Composition, Tree Canopy Structure and Regeneration in a ...

    African Journals Online (AJOL)

    Floristic composition, plant species diversity, tree canopy structure and regeneration were assessed in a degraded tropical humid rainforest in Nigeria using a systematic line transect sampling technique for plot demarcation. All plants in a plot were identified and classified into families while the diameters and heights of ...

  11. A New Mechanism of Canopy Effect in Unsaturated Freezing Soils

    Directory of Open Access Journals (Sweden)

    Teng Jidong

    2016-01-01

    Full Text Available Canopy effect refers to the phenomenon where moisture accumulates underneath an impervious cover. Field observation reveals that canopy effect can take place in relatively dry soils where the groundwater table is deep and can lead to full saturation of the soil immediately underneath the impervious cover. On the other hand, numerical analysis based on existing theories of heat and mass transfer in unsaturated soils can only reproduce a minor amount of moisture accumulation due to an impervious cover, particularly when the groundwater table is relatively deep. In attempt to explain the observed canopy effect in field, this paper proposes a new mechanism of moisture accumulation in unsaturated freezing soils: vapour transfer in such a soil is accelerated by the process of vapour-ice desublimation. A new approach for modelling moisture and heat movements is proposed, in which the phase change of evaporation, condensation and de-sublimation of vapor flow are taken into account. The computed results show that the proposed model can indeed reproduce the unusual moisture accumulation observed in relatively dry soils. The results also demonstrate that soil freezing fed by vapour transfer can result in a water content close to full saturation. Since vapour transfer is seldom considered in geotechnical design, the canopy effect deserves more attention during construction and earth works in cold and arid regions.

  12. Canopy management, leaf fall and litter quality of dominant tree ...

    African Journals Online (AJOL)

    Small-scale farmers in the banana-coffee agro-zone of Central Uganda plant and maintain trees to provide a range of benefits. However, the impact of trees on soil fertility and crop yields is small. On many farms, trees exist in infinite numbers, compositions, with no proper spacing, sequencing and canopy management ...

  13. Tree canopies facilitate invasion of communal savanna rangelands ...

    African Journals Online (AJOL)

    canopy micro-sites is most likely explained by either seed dispersal patterns imposed by avian dispersal agents and/or micro-site variation. An assessment of population size class structure of Lantana in the communal lands suggested that the ...

  14. Estimates of forest canopy height and aboveground biomass using ICESat.

    Science.gov (United States)

    Michael A. Lefsky; David J. Harding; Michael Keller; Warren B. Cohen; Claudia C. Carabajal; Fernando Del Bom; Maria O. Hunter; Raimundo Jr. de Oliveira

    2005-01-01

    Exchange of carbon between forests and the atmosphere is a vital component of the global carbon cycle. Satellite laser altimetry has a unique capability for estimating forest canopy height, which has a direct and increasingly well understood relationship to aboveground carbon storage. While the Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud and land...

  15. Incorporating Plant Phenology Dynamics in a Biophysical Canopy Model

    Science.gov (United States)

    Barata, Raquel A.; Drewry, Darren

    2012-01-01

    The Multi-Layer Canopy Model (MLCan) is a vegetation model created to capture plant responses to environmental change. Themodel vertically resolves carbon uptake, water vapor and energy exchange at each canopy level by coupling photosynthesis, stomatal conductance and leaf energy balance. The model is forced by incoming shortwave and longwave radiation, as well as near-surface meteorological conditions. The original formulation of MLCan utilized canopy structural traits derived from observations. This project aims to incorporate a plant phenology scheme within MLCan allowing these structural traits to vary dynamically. In the plant phenology scheme implemented here, plant growth is dependent on environmental conditions such as air temperature and soil moisture. The scheme includes functionality that models plant germination, growth, and senescence. These growth stages dictate the variation in six different vegetative carbon pools: storage, leaves, stem, coarse roots, fine roots, and reproductive. The magnitudes of these carbon pools determine land surface parameters such as leaf area index, canopy height, rooting depth and root water uptake capacity. Coupling this phenology scheme with MLCan allows for a more flexible representation of the structure and function of vegetation as it responds to changing environmental conditions.

  16. Amazonian functional diversity from forest canopy chemical assembly.

    Science.gov (United States)

    Asner, Gregory P; Martin, Roberta E; Tupayachi, Raul; Anderson, Christopher B; Sinca, Felipe; Carranza-Jiménez, Loreli; Martinez, Paola

    2014-04-15

    Patterns of tropical forest functional diversity express processes of ecological assembly at multiple geographic scales and aid in predicting ecological responses to environmental change. Tree canopy chemistry underpins forest functional diversity, but the interactive role of phylogeny and environment in determining the chemical traits of tropical trees is poorly known. Collecting and analyzing foliage in 2,420 canopy tree species across 19 forests in the western Amazon, we discovered (i) systematic, community-scale shifts in average canopy chemical traits along gradients of elevation and soil fertility; (ii) strong phylogenetic partitioning of structural and defense chemicals within communities independent of variation in environmental conditions; and (iii) strong environmental control on foliar phosphorus and calcium, the two rock-derived elements limiting CO2 uptake in tropical forests. These findings indicate that the chemical diversity of western Amazonian forests occurs in a regionally nested mosaic driven by long-term chemical trait adjustment of communities to large-scale environmental filters, particularly soils and climate, and is supported by phylogenetic divergence of traits essential to foliar survival under varying environmental conditions. Geographically nested patterns of forest canopy chemical traits will play a role in determining the response and functional rearrangement of western Amazonian ecosystems to changing land use and climate.

  17. Computing energy budget within a crop canopy from Penmann's ...

    Indian Academy of Sciences (India)

    R. Narasimhan, Krishtel eMaging Solutions

    Computing energy budget within a crop canopy from. Penmann's formulae. Mahendra Mohan∗ and K K Srivastava∗∗. ∗Radio and Atmospheric Science Division, National Physical Laboratory, New Delhi 110012, India. ∗∗Department of Chemical Engineering, Institute of Technology, Banaras Hindu University, Varanasi.

  18. Computing energy budget within a crop canopy from Penmann's ...

    Indian Academy of Sciences (India)

    layer model, is rede-fined as a function of micrometeorological and physiological profiles of crop canopy. The sources and sinks of sensible and latent heat uxes are assumed to lie on a fictitious plane called zero-displacement plane. Algorithms ...

  19. Amblyomma tapirellum (Dunn, 1933) collected from tropical forest canopy

    NARCIS (Netherlands)

    Loaiza, J.R.; Miller, M.J.; Bermingham, E.; Sanjur, O.I.; Jansen, P.A.; Rovira, J.R.; Alvarez, E.; Rodriguez, E.; Davis, P.; Dutari, L.C.; Pecor, J.; Foley, D.; Radtke, M.; Pongsiri, M.J.

    2013-01-01

    Free-ranging ticks are widely known to be restricted to the ground level of vegetation. Here, we document the capture of the tick species Amblyomma tapirellum in light traps placed in the forest canopy of Barro Colorado Island, central Panama. A total of forty eight adults and three nymphs were

  20. Tree diversity and canopy cover in cocoa systems in Ghana

    DEFF Research Database (Denmark)

    Asare, Richard; Ræbild, Anders

    2016-01-01

    Cocoa (Theobroma cacao L.) growing systems in Ghana and West Africa consist of diverse tree species and densities.This study was conducted to determine factors that influence tree species configurations and how tree characteristics affect canopy cover in cocoa farms. Eighty-six farmers...

  1. Mapping forest canopy disturbance in the Upper Great Lakes, USA

    Science.gov (United States)

    James D. Garner; Mark D. Nelson; Brian G. Tavernia; Charles H. (Hobie) Perry; Ian W. Housman

    2015-01-01

    A map of forest canopy disturbance was generated for Michigan, Wisconsin, and most of Minnesota using 42 Landsat time series stacks (LTSS) and a vegetation change tracker (VCTw) algorithm. Corresponding winter imagery was used to reduce commission errors of forest disturbance by identifying areas of persistent snow cover. The resulting disturbance age map was classed...

  2. Los Angeles 1-Million tree canopy cover assessment

    Science.gov (United States)

    Gregory E. McPherson; James R. Simpson; Qingfu Xiao; Wu Chunxia

    2008-01-01

    The Million Trees LA initiative intends to chart a course for sustainable growth through planting and stewardship of trees. The purpose of this study was to measure Los Angeles's existing tree canopy cover (TCC), determine if space exists for 1 million additional trees, and estimate future benefits from the planting. High resolution QuickBird remote sensing data,...

  3. A Soil Temperature Model for Closed Canopied Forest Stands

    Science.gov (United States)

    James M. Vose; Wayne T. Swank

    1991-01-01

    A microcomputer-based soil temperature model was developed to predict temperature at the litter-soil interface and soil temperatures at three depths (0.10 m, 0.20 m, and 1.25 m) under closed forest canopies. Comparisons of predicted and measured soil temperatures indicated good model performance under most conditions. When generalized parameters describing soil...

  4. Effect of forest canopy on GPS-based movement data

    Science.gov (United States)

    Nicholas J. DeCesare; John R. Squires; Jay A. Kolbe

    2005-01-01

    The advancing role of Global Positioning System (GPS) technology in ecology has made studies of animal movement possible for larger and more vagile species. A simple field test revealed that lengths of GPS-based movement data were strongly biased (Pof forest canopy. Global Positioning System error added an average of 27.5% additional...

  5. Improving canopy sensor algorithms with soil and weather information

    Science.gov (United States)

    Nitrogen (N) need to support corn (Zea mays L.) production can be highly variable within fields. Canopy reflectance sensing for assessing crop N health has been implemented on many farmers’ fields to side-dress or top-dress variable-rate N application, but at times farmers report the performance of ...

  6. Base Cation Leaching From the Canopy of a Rubber ( Hevea ...

    African Journals Online (AJOL)

    Base cations are essential to the sustainability of forest ecosystems. They are important for neutralizing the acidifying effects of atmospheric deposition. There is the need for in-depth understanding of base cation depletion and leaching from forest canopy. This is important particularly due to the increasing acidification and ...

  7. Blue Oak Canopy Effect on Seasonal Forage Production and Quality

    Science.gov (United States)

    William E. Frost; Neil K. McDougald; Montague W. Demment

    1991-01-01

    Forage production and forage quality were measured seasonally beneath the canopy of blue oak (Quercus douglasii) and in open grassland at the San Joaquin Experimental Range. At the March and peak standing crop sampling dates forage production was significantly greater (p=.05) beneath blue oak compared to open grassland. At most sampling dates, the...

  8. Estimation of in-canopy ammonia sources and sinks in a fertilized Zea mays field

    Science.gov (United States)

    An analytical model was developed that describes the in-canopy vertical distribution of NH3 source and sinks and vertical fluxes in a fertilized agricultural setting using measured in-canopy concentration and wind speed profiles. This model was applied to quantify in-canopy air-s...

  9. Examining conifer canopy structural complexity across forest ages and elevations with LiDAR data

    Science.gov (United States)

    Van R. Kane; Jonathan D. Bakker; Robert J. McGaughey; James A. Lutz; Rolf F. Gersonde; Jerry F. Franklin

    2010-01-01

    LiDAR measurements of canopy structure can be used to classify forest stands into structural stages to study spatial patterns of canopy structure, identify habitat, or plan management actions. A key assumption in this process is that differences in canopy structure based on forest age and elevation are consistent with predictions from models of stand development. Three...

  10. Comparison of LiDAR- and photointerpretation-based estimates of canopy cover

    Science.gov (United States)

    Demetrios Gatziolis

    2012-01-01

    An evaluation of the agreement between photointerpretation- and LiDARbased estimates of canopy cover was performed using 397 90 x 90 m reference areas in Oregon. It was determined that at low canopy cover levels LiDAR estimates tend to exceed those from photointerpretation and that this tendency reverses at high canopy cover levels. Characteristics of the airborne...

  11. Evaporation and the sub-canopy energy environment in a flooded forest

    Science.gov (United States)

    The combination of canopy cover and a free water surface makes the sub-canopy environment of flooded forested wetlands unlike other aquatic or terrestrial systems. The sub-canopy vapor flux and energy budget are not well understood in wetlands, but they importantly control water level and understory...

  12. Simulation of Canopy Leaf Inclination Angle in Rice

    Directory of Open Access Journals (Sweden)

    Xiao-cui ZHANG

    2013-11-01

    Full Text Available A leaf inclination angle distribution model, which is applicable to simulate leaf inclination angle distribution in six heights of layered canopy at different growth stages, was established by component factors affecting plant type in rice. The accuracy of the simulation results was validated by measured values from a field experiment. The coefficient of determination (R2 and the root mean square error (RMSE between the simulated and measured values were 0.9472 and 3.93%, respectively. The simulation results showed that the distribution of leaf inclination angles differed among the three plant types. The leaf inclination angles were larger in the compact variety Liangyoupeijiu with erect leaves than in the loose variety Shanyou 63 with droopy leaves and the intermediate variety Liangyou Y06. The leaf inclination angles were distributed in the lower range in Shanyou 63, which matched up with field measurements. The distribution of leaf inclination angles in the same variety changed throughout the seven growth stages. The leaf inclination angles enlarged gradually from transplanting to booting. During the post-booting period, the leaf inclination angle increased in Shanyou 63 and Liangyou Y06, but changed little in Liangyoupeijiu. At every growth stage of each variety, canopy leaf inclination angle distribution on the six heights of canopy layers was variable. As canopy height increased, the layered leaf area index (LAI decreased in all the three plant types. However, while the leaf inclination angles showed little change in Liangyoupeijiu, they became larger in Shanyou 63 but smaller in Liangyou Y06. The simulation results used in the constructed model were very similar to the actual measurement values. The model provides a method for estimating canopy leaf inclination angle distribution in rice production.

  13. Estimating canopy bulk density and canopy base height for conifer stands in the interior Western United States using the Forest Vegetation Simulator Fire and Fuels Extension.

    Science.gov (United States)

    Seth Ex; Frederick Smith; Tara Keyser; Stephanie Rebain

    2017-01-01

    The Forest Vegetation Simulator Fire and Fuels Extension (FFE-FVS) is often used to estimate canopy bulk density (CBD) and canopy base height (CBH), which are key indicators of crown fire hazard for conifer stands in the Western United States. Estimated CBD from FFE-FVS is calculated as the maximum 4 m running mean bulk density of predefined 0.3 m thick canopy layers (...

  14. Tersail - A numerical model for combined analysis of vegetation canopy bidirectional reflectance and thermal emissions

    Science.gov (United States)

    Hope, Allen S.; Coward, Samuel N.; Petzold, Donald E.

    1988-01-01

    A modification of the Tergra model (Soer, 1977) is presented, which incorporates the scattering from arbitrarily inclined leaves canopy reflectance model (Verhoef and Bunnik, 1981) for the calculation of albedo and canopy resistance. The combined model, known as Tersail, is capable of simulating the relationship between the bidirectional reflectance and the thermal response of a canopy. The accuracy of the model is tested using data over wheat canopies in Phoenix, Arizona, showing that the model is a good simulator of canopy temperatures under a variety of conditions.

  15. Large eddy simulation of the atmospheric boundary layer above a forest canopy

    Science.gov (United States)

    Alam, Jahrul

    2017-11-01

    A goal of this talk is to discuss large eddy simulation (LES) of atmospheric turbulence within and above a canopy/roughness sublayer, where coherent turbulence resembles a turbulent mixing layer. The proposed LES does not resolve the near wall region. Instead, a near surface canopy stress model has been combined with a wall adapting local eddy viscosity model. The canopy stress is represented as a three-dimensional time dependent momentum sink, where the total kinematic drag of the canopy is adjusted based on the measurements in a forest canopy. This LES has been employed to analyze turbulence structures in the canopy/roughness sublayer. Results indicate that turbulence is more efficient at transporting momentum and scalars in the roughness sublayer. The LES result has been compared with the turbulence profile measured over a forest canopy to predict the turbulence statistics in the inertial sublayer above the canopy. Turbulence statistics between the inertial sublayer, the canopy sublayer, and the rough-wall boundary layer have been compared to characterize whether turbulence in the canopy sublayer resembles a turbulent mixing layer or a boundary layer. The canopy turbulence is found dominated by energetic eddies much larger in scale than the individual roughness elements. Financial support from the National Science and Research Council (NSERC), Canada is acknowledged.

  16. Chlorophyll Can Be Reduced in Crop Canopies with Little Penalty to Photosynthesis1[OPEN

    Science.gov (United States)

    Drewry, Darren T.; VanLoocke, Andy; Cho, Young B.

    2018-01-01

    The hypothesis that reducing chlorophyll content (Chl) can increase canopy photosynthesis in soybeans was tested using an advanced model of canopy photosynthesis. The relationship among leaf Chl, leaf optical properties, and photosynthetic biochemical capacity was measured in 67 soybean (Glycine max) accessions showing large variation in leaf Chl. These relationships were integrated into a biophysical model of canopy-scale photosynthesis to simulate the intercanopy light environment and carbon assimilation capacity of canopies with wild type, a Chl-deficient mutant (Y11y11), and 67 other mutants spanning the extremes of Chl to quantify the impact of variation in leaf-level Chl on canopy-scale photosynthetic assimilation and identify possible opportunities for improving canopy photosynthesis through Chl reduction. These simulations demonstrate that canopy photosynthesis should not increase with Chl reduction due to increases in leaf reflectance and nonoptimal distribution of canopy nitrogen. However, similar rates of canopy photosynthesis can be maintained with a 9% savings in leaf nitrogen resulting from decreased Chl. Additionally, analysis of these simulations indicate that the inability of Chl reductions to increase photosynthesis arises primarily from the connection between Chl and leaf reflectance and secondarily from the mismatch between the vertical distribution of leaf nitrogen and the light absorption profile. These simulations suggest that future work should explore the possibility of using reduced Chl to improve canopy performance by adapting the distribution of the “saved” nitrogen within the canopy to take greater advantage of the more deeply penetrating light. PMID:29061904

  17. Impacts of an invasive snail (Tarebia granifera) on nutrient cycling in tropical streams: the role of riparian deforestation in Trinidad, West Indies.

    Science.gov (United States)

    Moslemi, Jennifer M; Snider, Sunny B; Macneill, Keeley; Gilliam, James F; Flecker, Alexander S

    2012-01-01

    Non-native species and habitat degradation are two major catalysts of environmental change and often occur simultaneously. In freshwater systems, degradation of adjacent terrestrial vegetation may facilitate introduced species by altering resource availability. Here we examine how the presence of intact riparian cover influences the impact of an invasive herbivorous snail, Tarebia granifera, on nitrogen (N) cycling in aquatic systems on the island of Trinidad. We quantified snail biomass, growth, and N excretion in locations where riparian vegetation was present or removed to determine how snail demographics and excretion were related to the condition of the riparian zone. In three Neotropical streams, we measured snail biomass and N excretion in open and closed canopy habitats to generate estimates of mass- and area-specific N excretion rates. Snail biomass was 2 to 8 times greater and areal N excretion rates ranged from 3 to 9 times greater in open canopy habitats. Snails foraging in open canopy habitat also had access to more abundant food resources and exhibited greater growth and mass-specific N excretion rates. Estimates of ecosystem N demand indicated that snail N excretion in fully closed, partially closed, and open canopy habitats supplied 2%, 11%, and 16% of integrated ecosystem N demand, respectively. We conclude that human-mediated riparian canopy loss can generate hotspots of snail biomass, growth, and N excretion along tropical stream networks, altering the impacts of an invasive snail on the biogeochemical cycling of N.

  18. Impacts of an invasive snail (Tarebia granifera on nutrient cycling in tropical streams: the role of riparian deforestation in Trinidad, West Indies.

    Directory of Open Access Journals (Sweden)

    Jennifer M Moslemi

    Full Text Available Non-native species and habitat degradation are two major catalysts of environmental change and often occur simultaneously. In freshwater systems, degradation of adjacent terrestrial vegetation may facilitate introduced species by altering resource availability. Here we examine how the presence of intact riparian cover influences the impact of an invasive herbivorous snail, Tarebia granifera, on nitrogen (N cycling in aquatic systems on the island of Trinidad. We quantified snail biomass, growth, and N excretion in locations where riparian vegetation was present or removed to determine how snail demographics and excretion were related to the condition of the riparian zone. In three Neotropical streams, we measured snail biomass and N excretion in open and closed canopy habitats to generate estimates of mass- and area-specific N excretion rates. Snail biomass was 2 to 8 times greater and areal N excretion rates ranged from 3 to 9 times greater in open canopy habitats. Snails foraging in open canopy habitat also had access to more abundant food resources and exhibited greater growth and mass-specific N excretion rates. Estimates of ecosystem N demand indicated that snail N excretion in fully closed, partially closed, and open canopy habitats supplied 2%, 11%, and 16% of integrated ecosystem N demand, respectively. We conclude that human-mediated riparian canopy loss can generate hotspots of snail biomass, growth, and N excretion along tropical stream networks, altering the impacts of an invasive snail on the biogeochemical cycling of N.

  19. Music Streaming in Denmark

    DEFF Research Database (Denmark)

    Pedersen, Rasmus Rex

    This report analyses how a ’per user’ settlement model differs from the ‘pro rata’ model currently used. The analysis is based on data for all streams by WiMP users in Denmark during August 2013. The analysis has been conducted in collaboration with Christian Schlelein from Koda on the basis...

  20. River and Stream Pollution

    Science.gov (United States)

    ... plants to grow. The two most common nutrients found in water are nitrogen and phosphorus. They cause algae to ... streams and rivers clean helps keep all the water downstream clean, too. Other stuff you might ... What's That Word Scientific Dictionary Not sure of what a word ...

  1. The Rabbit Stream Cipher

    DEFF Research Database (Denmark)

    Boesgaard, Martin; Vesterager, Mette; Zenner, Erik

    2008-01-01

    The stream cipher Rabbit was first presented at FSE 2003, and no attacks against it have been published until now. With a measured encryption/decryption speed of 3.7 clock cycles per byte on a Pentium III processor, Rabbit does also provide very high performance. This paper gives a concise...

  2. Stream Management: A Rebirth

    Science.gov (United States)

    Coler, Robert A.; Zatryka, Simon A.

    1974-01-01

    This article describes a stream management course designed to give non-science majors an in-depth study of water quality. The course includes work in determining and measuring water quality parameters and the discussion of management techniques. Construction of a Hewitt Ramp and wing deflectors are illustrated in the article. (MA)

  3. Streaming-video produktion

    DEFF Research Database (Denmark)

    Grønkjær, Poul

    2004-01-01

     E-learning Lab på Aalborg Universitet har i forbindelse med forskningsprojektet Virtuelle Læringsformer og Læringsmiljøer foretaget en række praktiske eksperimenter med streaming-video produktioner. Hensigten med denne artikel er at formidle disse erfaringer. Artiklen beskriver hele produktionsf...... E-learning Lab på Aalborg Universitet har i forbindelse med forskningsprojektet Virtuelle Læringsformer og Læringsmiljøer foretaget en række praktiske eksperimenter med streaming-video produktioner. Hensigten med denne artikel er at formidle disse erfaringer. Artiklen beskriver hele...... produktionsforløbet: fra ide til færdigt produkt, forskellige typer af præsentationer, dramaturgiske overvejelser samt en konceptskitse. Streaming-video teknologien er nu så udviklet med et så tilfredsstillende audiovisuelt udtryk at vi kan begynde at fokusere på, hvilket indhold der er velegnet til at blive gjort...... tilgængeligt uafhængigt af tid og sted. Afslutningsvis er der en række kildehenvisninger, blandt andet en oversigt over de streaming-video produktioner, som denne artikel bygger på....

  4. Numerical Modelling of Streams

    DEFF Research Database (Denmark)

    Vestergaard, Kristian

    In recent years there has been a sharp increase in the use of numerical water quality models. Numeric water quality modeling can be divided into three steps: Hydrodynamic modeling for the determination of stream flow and water levels. Modelling of transport and dispersion of a conservative...

  5. The Rabbit Stream Cipher

    DEFF Research Database (Denmark)

    Boesgaard, Martin; Vesterager, Mette; Zenner, Erik

    2008-01-01

    The stream cipher Rabbit was first presented at FSE 2003, and no attacks against it have been published until now. With a measured encryption/decryption speed of 3.7 clock cycles per byte on a Pentium III processor, Rabbit does also provide very high performance. This paper gives a concise...... description of the Rabbit design and some of the cryptanalytic results available....

  6. Relationships between NDVI, canopy structure, and photosynthesis in three California vegetation types

    International Nuclear Information System (INIS)

    Gamon, J.A.; Field, C.B.; Goulden, M.L.; Griffin, K.L.; Hartley, A.E.; Joel, G.; Penuelas, J.; Valentini, R.

    1995-01-01

    In a range of plant species from three Californian vegetation types, we examined the widely used ''normalized difference vegetation index'' (NDVI) and ''simple ratio'' (SR) as indicators of canopy structure, light absorption, and photosynthetic activity. These indices, which are derived from canopy reflectance in the red and near-infrared wavebands, highlighted phenological differences between evergreen and deciduous canopies. They were poor indicators of total canopy biomass due to the varying abundance of non-green standing biomass in these vegetation types. However, in sparse canopies (leaf area index (LAI) apprxeq 0-2), NDVI was a sensitive indicator of canopy structure and chemical content (green biomass, green leaf area index, chlorophyll content, and foliar nitrogen content). At higher canopy green LAI values ( gt 2; typical of dense shrubs and trees), NDVI was relatively insensitive to changes in canopy structure. Compared to SR, NDVI was better correlated with indicators of canopy structure and chemical content, but was equivalent to the logarithm of SR. In agreement with theoretical expectations, both NDVI and SR exhibited near-linear correlations with fractional PAR intercepted by green leaves over a wide range of canopy densities. Maximum daily photosynthetic rates were positively correlated with NDVI and SR in annual grassland and semideciduous shrubs where canopy development and photosynthetic activity were in synchrony. The indices were also correlated with peak springtime canopy photosynthetic rates in evergreens. However, over most of the year, these indices were poor predictors of photosynthetic performance in evergreen species due to seasonal reductions in photosynthetic radiation-use efficiency that occurred without substantial declines in canopy greenness. Our results support the use of these vegetation indices as remote indicators of PAR absorption, and thus potential photosynthetic activity, even in

  7. Winter radiation extinction and reflection in a boreal pine canopy: measurements and modelling

    International Nuclear Information System (INIS)

    Pomeroy, J.W.; Dion, K.

    1996-01-01

    Predicting the rate of snow melt and intercepted snow sublimation in boreal forests requires an understanding of the effects of snow-covered conifers on the exchange of radiant energy. This study examined the amount of intercepted snow on a jack pine canopy in the boreal forest of central Saskatchewan and the shortwave and net radiation exchange with this canopy, to determine the effect of intercepted snow and canopy structure on shortwave radiation reflection and extinction and net radiation attenuation in a boreal forest. The study focused on clear sky conditions, which are common during winter in the continental boreal forest. Intercepted snow was found to have no influence on the clear-sky albedo of the canopy, the extinction of short wave radiation by the canopy or ratio of net radiation at the canopy top to that at the surface snow cover. Because of the low albedo of the snow-covered canopy, net radiation at the canopy top remains positive and a large potential source of energy for sublimation. The canopy albedo declines somewhat as the extinction efficiency of the underlying canopy increases. The extinction efficiency of short wave radiation in the canopy depends on solar angle because of the approximately horizontal orientation of pine branches. For low solar angles above the horizon, the extinction efficiency is quite low and short wave transmissivity through the canopy is relatively high. As the solar angle increases, extinction increases up to angles of about 50°, and then declines. Extinction of short wave radiation in the canopy strongly influences the attenuation of net radiation by the canopy. Short wave radiation that is extinguished by branches is radiated as long wave, partly downwards to the snow cover. The ratio of net radiation at the canopy top to that at the snow cover surface increases with the extinction of short wave radiation and is negative for low extinction efficiencies. For the pine canopy examined, the daily mean net radiation at

  8. Winter Radiation Extinction and Reflection in a Boreal Pine Canopy: Measurements and Modelling

    Science.gov (United States)

    Pomeroy, J. W.; Dion, K.

    1996-12-01

    Predicting the rate of snowmelt and intercepted snow sublimation in boreal forests requires an understanding of the effects of snow-covered conifers on the exchange of radiant energy. This study examined the amount of intercepted snow on a jack pine canopy in the boreal forest of central Saskatchewan and the shortwave and net radiation exchange with this canopy, to determine the effect of intercepted snow and canopy structure on shortwave radiation reflection and extinction and net radiation attenuation in a boreal forest. The study focused on clear sky conditions, which are common during winter in the continental boreal forest. Intercepted snow was found to have no influence on the clear-sky albedo of the canopy, the extinction of short wave radiation by the canopy or ratio of net radiation at the canopy top to that at the surface snow cover. Because of the low albedo of the snow-covered canopy, net radiation at the canopy top remains positive and a large potential source of energy for sublimation. The canopy albedo declines somewhat as the extinction efficiency of the underlying canopy increases. The extinction efficiency of short wave radiation in the canopy depends on solar angle because of the approximately horizontal orientation of pine branches. For low solar angles above the horizon, the extinction efficiency is quite low and short wave transmissivity through the canopy is relatively high. As the solar angle increases, extinction increases up to angles of about 50̂, and then declines. Extinction of short wave radiation in the canopy strongly influences the attenuation of net radiation by the canopy. Short wave radiation that is extinguished by branches is radiated as long wave, partly downwards to the snow cover. The ratio of net radiation at the canopy top to that at the snow cover surface increases with the extinction of short wave radiation and is negative for low extinction efficiencies. For the pine canopy examined, the daily mean net radiation at the

  9. Distinctive channel geometry and riparian vegetation: A geomorphic classification for arid ephemeral streams

    Science.gov (United States)

    Sutfin, N.; Shaw, J. R.; Wohl, E. E.; Cooper, D.

    2012-12-01

    Interactions between hydrology, channel form, and riparian vegetation along arid ephemeral streams are not thoroughly understood and current stream classifications do not adequately represent variability in channel geometry and associated riparian communities. Relatively infrequent hydrologic disturbances in dryland environments are responsible for creation and maintenance of channel form that supports riparian communities. To investigate the influence of channel characteristics on riparian vegetation in the arid southwestern United States, we develop a geomorphic classification for arid ephemeral streams based on the degree of confinement and the composition of confining material that provide constraints on available moisture. Our conceptual model includes five stream types: 1) bedrock channels entirely confined by exposed bedrock and devoid of persistent alluvium; 2) bedrock with alluvium channels at least partially confined by bedrock but containing enough alluvium to create bedforms that persist through time; 3) incised alluvium channels bound only by unconsolidated alluvial material into which they are incised; 4) braided washes that exhibit multi-thread, braided characteristics regardless of the composition of confining material; and 5) piedmont headwater 0-2nd order streams (Strahler) confined only by unconsolidated alluvium and which initiate as secondary channels on piedmont surfaces. Eighty-six study reaches representing the five stream types were surveyed on the U.S. Army Yuma Proving Ground in the Sonoran Desert of southwestern Arizona. Non-parametric multivariate analysis of variance (PERMANOVA) indicates significant differences between the five stream types with regards to channel geometry (i.e., stream gradient, width-to-depth ratio, the ratio between valley width and channel width (Wv/Wc), shear stress, and unit stream power) and riparian vegetation (i.e., presence and canopy coverage by species, canopy stratum, and life form). Discriminant analysis

  10. Canopy Measurements with a Small Unmanned Aerial System

    Science.gov (United States)

    Peschel, J.

    2015-12-01

    This work discusses the use of a small unmanned aerial system (UAS) for the remote placement of wireless environmental sensors in tree canopies. Remote presence applications occur when one or more humans use a robot to project themselves into an environment in order to complete an inaccessible or time-critical mission. The more difficult problem of physical object manipulation goes one step further by incorporating physical-based interaction, in additional to visualization. Forested environments present especially unique challenges for small UAS versus similar domains (e.g., disaster response, inspection of critical infrastructure) due to the navigation and interaction required with dense tree canopies. This work describes two field investigations that inform: i) the type of physical object manipulation and visualization necessary for sensor placement (ventral, frontal, dorsal), ii) the necessary display form (hybrid) for piloting and sensor placement, and iii) visual feedback mechanisms useful for handling human-robot team role conflicts.

  11. Strengthening the Ubuntu social canopy after the Afrophobic attacks

    Directory of Open Access Journals (Sweden)

    Zorodzai Dube

    2016-03-01

    Full Text Available In view of the aftermath of the Afrophobic attacks in South Africa, this study regards Paul�s emphasis concerning common humanity and morality as a possible lacuna towards strengthening Ubuntu. Paul taught that both the Jews and the Gentiles have their common ancestor � Adam, and that good morality is a better identity marker than ethnicity. In view of the aftermath of the Afrophobic attacks in South Africa, this study suggests that similar arguments can be used to amend the Ubuntu social canopy.Intradisciplinary and/or interdisciplinary implications: This study is interdisciplinary in nature in that it uses perspectives from social sciences to seek solutions towards a more inclusive communityKeywords: Afrophobia; Xenophobia; Ubuntu; Social Canopy; Christ-like Anthropology

  12. Variation in crown light utilization characteristics among tropical canopy trees.

    Science.gov (United States)

    Kitajima, Kaoru; Mulkey, Stephen S; Wright, S Joseph

    2005-02-01

    Light extinction through crowns of canopy trees determines light availability at lower levels within forests. The goal of this paper is the exploration of foliage distribution and light extinction in crowns of five canopy tree species in relation to their shoot architecture, leaf traits (mean leaf angle, life span, photosynthetic characteristics) and successional status (from pioneers to persistent). Light extinction was examined at three hierarchical levels of foliage organization, the whole crown, the outermost canopy and the individual shoots, in a tropical moist forest with direct canopy access with a tower crane. Photon flux density and cumulative leaf area index (LAI) were measured at intervals of 0.25-1 m along multiple vertical transects through three to five mature tree crowns of each species to estimate light extinction coefficients (K). Cecropia longipes, a pioneer species with the shortest leaf life span, had crown LAI <0.5. Among the remaining four species, crown LAI ranged from 2 to 8, and species with orthotropic terminal shoots exhibited lower light extinction coefficients (0.35) than those with plagiotropic shoots (0.53-0.80). Within each type, later successional species exhibited greater maximum LAI and total light extinction. A dense layer of leaves at the outermost crown of a late successional species resulted in an average light extinction of 61% within 0.5 m from the surface. In late successional species, leaf position within individual shoots does not predict the light availability at the individual leaf surface, which may explain their slow decline of photosynthetic capacity with leaf age and weak differentiation of sun and shade leaves. Later-successional tree crowns, especially those with orthotropic branches, exhibit lower light extinction coefficients, but greater total LAI and total light extinction, which contribute to their efficient use of light and competitive dominance.

  13. Modelling bulk canopy resistance from climatic variables for evapotranspiration estimation

    Science.gov (United States)

    Perez, P. J.; Martinez-Cob, A.; Lecina, S.; Castellvi, F.; Villalobos, F. J.

    2003-04-01

    Evapotranspiration is a component of the hydrological cycle whose accurate computation is needed for an adequate management of water resources. In particular, a high level of accuracy in crop evapotranspiration estimation can represent an important saving of economical and water resources at planning and management of irrigated areas. In the evapotranspiration process, bulk canopy resistance (r_c) is a primary factor and its correct modelling remains an important problem in the Penman-Monteith (PM) method, not only for tall crops but also for medium height and short crops under water stress. In this work, an alternative approach for modelling canopy resistance is presented against th PM method with constant canopy resistance. Variable r_c values are computed as function of a climatic resistance and compared with other two models, Katerji and Perrier and Todorovic. Hourly evapotranspiration values (ET_o) over grass were obtained with a weighing lysimeter and an eddy covariance system at the Ebro and Guadalquivir valleys (Spain) respectively. The main objective is to evaluate whether the use of variable rather than fixed r_c values, would improve the ET_o estimates obtained by applying the PM equation under the semiarid conditions of the two sites, where evaporative demand is high particularly during summer.

  14. Thermal constraints on foraging of tropical canopy ants.

    Science.gov (United States)

    Spicer, Michelle Elise; Stark, Alyssa Y; Adams, Benjamin J; Kneale, Riley; Kaspari, Michael; Yanoviak, Stephen P

    2017-04-01

    Small cursorial ectotherms risk overheating when foraging in the tropical forest canopy, where the surfaces of unshaded tree branches commonly exceed 50 °C. We quantified the heating and subsequent cooling rates of 11 common canopy ant species from Panama and tested the hypothesis that ant workers stop foraging at temperatures consistent with the prevention of overheating. We created hot experimental "sunflecks" on existing foraging trails of four ant species from different clades and spanning a broad range of body size, heating rate, and critical thermal maxima (CT max ). Different ant species exhibited very different heating rates in the lab, and these differences did not follow trends predicted by body size alone. Experiments with ant models showed that heating rates are strongly affected by color in addition to body size. Foraging workers of all species showed strong responses to heating and consistently abandoned focal sites between 36 and 44 °C. Atta colombica and Azteca trigona workers resumed foraging shortly after heat was removed, but Cephalotes atratus and Dolichoderus bispinosus workers continued to avoid the heated patch even after >5 min of cooling. Large foraging ants (C. atratus) responded slowly to developing thermal extremes, whereas small ants (A. trigona) evacuated sunflecks relatively quickly, and at lower estimated body temperatures than when revisiting previously heated patches. The results of this study provide the first field-based insight into how foraging ants respond behaviorally to the heterogeneous thermal landscape of the tropical forest canopy.

  15. Assessing canopy performance using carbonyl sulfide (COS) measurements.

    Science.gov (United States)

    Yang, Fulin; Qubaja, Rafat; Tatarinov, Fyodor; Rotenberg, Eyal; Yakir, Dan

    2018-03-25

    Carbonyl sulfide (COS) is a tracer of ecosystem photosynthesis that can advance carbon cycle research from leaf to global scales; however, a range of newly reported caveats related to sink/source strength of various ecosystem components hinder its application. Using comprehensive eddy-covariance and chamber measurements, we systematically measure ecosystem contributions from leaf, stem, soil and litter and were able to close the ecosystem COS budget. The relative contributions of non-photosynthetic components to the overall canopy-scale flux are relatively small (~4% during peak activity season) and can be independently estimated based on their responses to temperature and humidity. Converting COS to photosynthetic CO 2 fluxes based on the leaf relative uptake of COS/CO 2 , faces challenges due to observed daily and seasonal changes. Yet, this ratio converges around a constant value (~1.6), and the variations, dominated by light intensity, were found unimportant on a flux-weighted daily time-scale, indicating a mean ratio of daytime gross-to-net primary productivity of ~2 in our ecosystem. The seasonal changes in the leaf relative uptake ratio may indicate a reduction in mesophyll conductance in winter, and COS-derived canopy conductance permitted canopy temperature estimate consistent with radiative skin temperature. These results support the feasibility of using COS as a powerful and much-needed means of assessing ecosystem function and its response to change. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. Quantitative comparison of canopy conductance models using a Bayesian approach

    Science.gov (United States)

    Samanta, S.; Clayton, M. K.; Mackay, D. S.; Kruger, E. L.; Ewers, B. E.

    2008-09-01

    A quantitative model comparison methodology based on deviance information criterion, a Bayesian measure of the trade-off between model complexity and goodness of fit, is developed and demonstrated by comparing semiempirical transpiration models. This methodology accounts for parameter and prediction uncertainties associated with such models and facilitates objective selection of the simplest model, out of available alternatives, which does not significantly compromise the ability to accurately model observations. We use this methodology to compare various Jarvis canopy conductance model configurations, embedded within a larger transpiration model, against canopy transpiration measured by sap flux. The results indicate that descriptions of the dependence of stomatal conductance on vapor pressure deficit, photosynthetic radiation, and temperature, as well as the gradual variation in canopy conductance through the season are essential in the transpiration model. Use of soil moisture was moderately significant, but only when used with a hyperbolic vapor pressure deficit relationship. Subtle differences in model quality could be clearly associated with small structural changes through the use of this methodology. The results also indicate that increments in model complexity are not always accompanied by improvements in model quality and that such improvements are conditional on model structure. Possible application of this methodology to compare complex semiempirical models of natural systems in general is also discussed.

  17. Height increment of understorey Norway spruces under different tree canopies

    Directory of Open Access Journals (Sweden)

    Olavi Laiho

    2014-02-01

    Full Text Available Background Stands having advance regeneration of spruce are logical places to start continuous cover forestry (CCF in fertile and mesic boreal forests. However, the development of advance regeneration is poorly known. Methods This study used regression analysis to model the height increment of spruce understorey as a function of seedling height, site characteristics and canopy structure. Results An admixture of pine and birch in the main canopy improves the height increment of understorey. When the stand basal area is 20 m2ha-1 height increment is twice as fast under pine and birch canopies, as compared to spruce. Height increment of understorey spruce increases with increasing seedling height. Between-stand and within-stand residual variation in the height increment of understorey spruces is high. The increment of 1/6 fastest-growing seedlings is at least 50% greater than the average. Conclusions The results of this study help forest managers to regulate the density and species composition of the stand, so as to obtain a sufficient height development of the understorey. In pure and almost pure spruce stands, the stand basal area should be low for a good height increment of the understorey.

  18. A canopy trimming experiment in Puerto Rico: the response of litter invertebrate communities to canopy loss and debris deposition in a tropical forest subject to hurricanes

    Science.gov (United States)

    Barbara A. Richardson; Michael J. Richardson; Grizelle Gonzalez; Aaron B. Shiels; Diane S. Srivastava

    2010-01-01

    Hurricanes cause canopy removal and deposition of pulses of litter to the forest floor. A Canopy Trimming Experiment (CTE) was designed to decouple these two factors, and to investigate the separate abiotic and biotic consequences of hurricane-type damage and monitor recovery processes. As part of this experiment, effects on forest floor invertebrate communities were...

  19. Re-Meandering of Lowland Streams

    DEFF Research Database (Denmark)

    Pedersen, Morten Lauge; Kristensen, Klaus Kevin; Friberg, Nikolai

    2014-01-01

    We evaluated the restoration of physical habitats and its influence on macroinvertebrate community structure in 18 Danish lowland streams comprising six restored streams, six streams with little physical alteration and six channelized streams. We hypothesized that physical habitats and macroinver...

  20. Autonomous Byte Stream Randomizer

    Science.gov (United States)

    Paloulian, George K.; Woo, Simon S.; Chow, Edward T.

    2013-01-01

    Net-centric networking environments are often faced with limited resources and must utilize bandwidth as efficiently as possible. In networking environments that span wide areas, the data transmission has to be efficient without any redundant or exuberant metadata. The Autonomous Byte Stream Randomizer software provides an extra level of security on top of existing data encryption methods. Randomizing the data s byte stream adds an extra layer to existing data protection methods, thus making it harder for an attacker to decrypt protected data. Based on a generated crypto-graphically secure random seed, a random sequence of numbers is used to intelligently and efficiently swap the organization of bytes in data using the unbiased and memory-efficient in-place Fisher-Yates shuffle method. Swapping bytes and reorganizing the crucial structure of the byte data renders the data file unreadable and leaves the data in a deconstructed state. This deconstruction adds an extra level of security requiring the byte stream to be reconstructed with the random seed in order to be readable. Once the data byte stream has been randomized, the software enables the data to be distributed to N nodes in an environment. Each piece of the data in randomized and distributed form is a separate entity unreadable on its own right, but when combined with all N pieces, is able to be reconstructed back to one. Reconstruction requires possession of the key used for randomizing the bytes, leading to the generation of the same cryptographically secure random sequence of numbers used to randomize the data. This software is a cornerstone capability possessing the ability to generate the same cryptographically secure sequence on different machines and time intervals, thus allowing this software to be used more heavily in net-centric environments where data transfer bandwidth is limited.

  1. Streaming gravity mode instability

    International Nuclear Information System (INIS)

    Wang Shui.

    1989-05-01

    In this paper, we study the stability of a current sheet with a sheared flow in a gravitational field which is perpendicular to the magnetic field and plasma flow. This mixing mode caused by a combined role of the sheared flow and gravity is named the streaming gravity mode instability. The conditions of this mode instability are discussed for an ideal four-layer model in the incompressible limit. (author). 5 refs

  2. A LIDAR-Based Tree Canopy Characterization under Simulated Uneven Road Condition: Advance in Tree Orchard Canopy Profile Measurement

    Directory of Open Access Journals (Sweden)

    Yue Shen

    2017-01-01

    Full Text Available In real outdoor canopy profile detection, the accuracy of a LIDAR scanner to measure canopy structure is affected by a potentially uneven road condition. The level of error associated with attitude angles from undulations in the ground surface can be reduced by developing appropriate correction algorithm. This paper proposes an offline attitude angle offset correction algorithm based on a 3D affine coordinate transformation. The validity of the correction algorithm is verified by conducting an indoor experiment. The experiment was conducted on an especially designed canopy profile measurement platform. During the experiment, an artificial tree and a tree-shaped carved board were continuously scanned at constant laser scanner travel speed and detection distances under simulated bumpy road conditions. Acquired LIDAR laser scanner raw data was processed offline by exceptionally developed MATLAB program. The obtained results before and after correction method show that the single attitude angle offset correction method is able to correct the distorted data points in tree-shaped carved board profile measurement, with a relative error of 5%, while the compound attitude angle offset correction method is effective to reduce the error associated with compound attitude angle deviation from the ideal scanner pose, with relative error of 7%.

  3. The LHCb Turbo stream

    Energy Technology Data Exchange (ETDEWEB)

    Puig, A., E-mail: albert.puig@cern.ch

    2016-07-11

    The LHCb experiment will record an unprecedented dataset of beauty and charm hadron decays during Run II of the LHC, set to take place between 2015 and 2018. A key computing challenge is to store and process this data, which limits the maximum output rate of the LHCb trigger. So far, LHCb has written out a few kHz of events containing the full raw sub-detector data, which are passed through a full offline event reconstruction before being considered for physics analysis. Charm physics in particular is limited by trigger output rate constraints. A new streaming strategy includes the possibility to perform the physics analysis with candidates reconstructed in the trigger, thus bypassing the offline reconstruction. In the Turbo stream the trigger will write out a compact summary of physics objects containing all information necessary for analyses. This will allow an increased output rate and thus higher average efficiencies and smaller selection biases. This idea will be commissioned and developed during 2015 with a selection of physics analyses. It is anticipated that the turbo stream will be adopted by an increasing number of analyses during the remainder of LHC Run II (2015–2018) and ultimately in Run III (starting in 2020) with the upgraded LHCb detector.

  4. Stream processing health card application.

    Science.gov (United States)

    Polat, Seda; Gündem, Taflan Imre

    2012-10-01

    In this paper, we propose a data stream management system embedded to a smart card for handling and storing user specific summaries of streaming data coming from medical sensor measurements and/or other medical measurements. The data stream management system that we propose for a health card can handle the stream data rates of commonly known medical devices and sensors. It incorporates a type of context awareness feature that acts according to user specific information. The proposed system is cheap and provides security for private data by enhancing the capabilities of smart health cards. The stream data management system is tested on a real smart card using both synthetic and real data.

  5. Modeling canopy-induced turbulence in the Earth system: a unified parameterization of turbulent exchange within plant canopies and the roughness sublayer (CLM-ml v0)

    Science.gov (United States)

    Bonan, Gordon B.; Patton, Edward G.; Harman, Ian N.; Oleson, Keith W.; Finnigan, John J.; Lu, Yaqiong; Burakowski, Elizabeth A.

    2018-04-01

    Land surface models used in climate models neglect the roughness sublayer and parameterize within-canopy turbulence in an ad hoc manner. We implemented a roughness sublayer turbulence parameterization in a multilayer canopy model (CLM-ml v0) to test if this theory provides a tractable parameterization extending from the ground through the canopy and the roughness sublayer. We compared the canopy model with the Community Land Model (CLM4.5) at seven forest, two grassland, and three cropland AmeriFlux sites over a range of canopy heights, leaf area indexes, and climates. CLM4.5 has pronounced biases during summer months at forest sites in midday latent heat flux, sensible heat flux, gross primary production, nighttime friction velocity, and the radiative temperature diurnal range. The new canopy model reduces these biases by introducing new physics. Advances in modeling stomatal conductance and canopy physiology beyond what is in CLM4.5 substantially improve model performance at the forest sites. The signature of the roughness sublayer is most evident in nighttime friction velocity and the diurnal cycle of radiative temperature, but is also seen in sensible heat flux. Within-canopy temperature profiles are markedly different compared with profiles obtained using Monin-Obukhov similarity theory, and the roughness sublayer produces cooler daytime and warmer nighttime temperatures. The herbaceous sites also show model improvements, but the improvements are related less systematically to the roughness sublayer parameterization in these canopies. The multilayer canopy with the roughness sublayer turbulence improves simulations compared with CLM4.5 while also advancing the theoretical basis for surface flux parameterizations.

  6. Microclimate in the vertical profile of wheat, rape and maize canopies

    Directory of Open Access Journals (Sweden)

    Zdeněk Krédl

    2012-01-01

    Full Text Available The differences of air temperature and relative air humidity in wheat, rape and maize canopies at three heights (ground level, effective canopy height and 2 meters above the soil surface, and their comparison with the temperature values of the nearest standard climatological station at the height of 2 meters were studied. The microclimatic data were obtained at the field trial station of the Mendel University in Brno in the Žabčice municipality (South Moravia in the canopies of winter wheat, winter rape and maize and from the standard climatological station located immediately next to the canopies. It was found, that wheat, rape and maize canopies microclimate differed significantly from those of their surrounding environments. The temperature was usually lower in the ground level and effective height in the wheat and rape stands, air humidity was usually higher in these crops. On the other hand, maize canopies had diverse air temperature values during the studied period.

  7. The theoretical relationship between foliage temperature and canopy resistance in sparse crops

    Science.gov (United States)

    Shuttleworth, W. James; Gurney, Robert J.

    1990-01-01

    One-dimensional, sparse-crop interaction theory is reformulated to allow calculation of the canopy resistance from measurements of foliage temperature. A submodel is introduced to describe eddy diffusion within the canopy which provides a simple, empirical simulation of the reported behavior obtained from a second-order closure model. The sensitivity of the calculated canopy resistance to the parameters and formulas assumed in the model is investigated. The calculation is shown to exhibit a significant but acceptable sensitivity to extreme changes in canopy aerodynamics, and to changes in the surface resistance of the substrate beneath the canopy at high and intermediate values of leaf area index. In very sparse crops changes in the surface resistance of the substrate are shown to contaminate the calculated canopy resistance, tending to amplify the apparent response to changes in water availability. The theory is developed to allow the use of a measurement of substrate temperature as an option to mitigate this contamination.

  8. Abundance of green tree frogs and insects in artificial canopy gaps in a bottomland hardwood forest.

    Energy Technology Data Exchange (ETDEWEB)

    Horn, Scott; Hanula, James L.; Ulyshen, Michael D.; Kilgo, John C.

    2005-01-01

    Horn, Scott, James L. Hanula, Michael D. Ulyshen, and John C. Kilgo. 2005. Abundance of green tree frogs and insects in artificial canopy gaps in a bottomland hardwood forest. Am. Midl. Nat. 153:321-326. Abstract: We found more green tree frogs (Hyla cinerea) in canopy gaps than in closed canopy forest. Of the 331 green tree frogs observed, 88% were in canopy gaps. Likewise, higher numbers and biomasses of insects were captured in the open gap habitat. Flies were the most commonly collected insect group accounting for 54% of the total capture. These data suggest that one reason green tree frogs were more abundant in canopy gaps was the increased availability of prey and that small canopy gaps provide early successional habitats that are beneficial to green tree frog populations.

  9. Stream buffer effectiveness in an agriculturally influenced area, southwestern Georgia: responses of water quality, macroinvertebrates, and amphibians.

    Science.gov (United States)

    Muenz, Tara K; Golladay, Stephen W; Vellidis, George; Smith, Lora L

    2006-01-01

    To determine useful metrics for assessing stream water quality in the Southeastern Coastal Plain, we examined differences among two buffered and three unbuffered streams in an agricultural landscape in southwestern Georgia. Potential indicators included amphibian diversity and abundance, aquatic macroinvertebrate populations, riparian vegetative structure, water quality, and stream physical parameters. Variability among sites and treatments (buffered vs. unbuffered) existed, with sites in the same treatment as most similar, and disturbances from a nearby eroding gully strongly affecting one unbuffered site. Of the invertebrate metrics examined, percentages of clingers, Ephemeroptera-Plecoptera-Trichoptera (EPT), Elmidae (Coleoptera), Crustacea (Decapoda and Amphipoda), and dipterans were found to be possible indicators of stream health for perennial streams within this region. Overall, buffered sites showed higher percentages of sensitive invertebrate groups and showed lower and more stable concentrations of nitrate N, suspended solids, and fecal coliforms (FCs). Percent canopy cover was similar among sites; however, riparian vegetative coverage and percent leaf litter were greatest at buffered sites. No differences in amphibian abundance, presence, and absence within the riparian area were apparent between sites; however, instream larval salamanders were more abundant at buffered streams. In this study, stream buffers appeared to decrease nutrient and sediment loads to adjacent streams, enhancing overall water quality. Selected benthic macroinvertebrate metrics and amphibian abundance also appeared sensitive to agricultural influences. Amphibians show potential as indicator candidates, however further information is needed on their responses and tolerances to disturbances from the microhabitat to landscape levels.

  10. Reach-scale effects of riparian forest cover on urban stream ecosystems

    Science.gov (United States)

    Roy, A.H.; Faust, C.L.; Freeman, Mary C.; Meyer, J.L.

    2005-01-01

    We compared habitat and biota between paired open and forested reaches within five small streams (basin area 10?20 km2) in suburban catchments (9%?49% urban land cover) in the Piedmont of Georgia, USA. Stream reaches with open canopies were narrower than forested reaches (4.1 versus 5.0 m, respectively). There were no differences in habitat diversity (variation in velocity, depth, or bed particle size) between open and forested reaches. However, absence of local forest cover corresponded to decreased large wood and increased algal chlorophyll a standing crop biomass. These differences in basal food resources translated into higher densities of fishes in open (9.0 individuals?m?2) versus forested (4.9 individuals?m?2) reaches, primarily attributed to higher densities of the herbivore Campostoma oligolepis. Densities of terrestrial invertebrate inputs were higher in open reaches; however, trends suggested higher biomass of terrestrial inputs in forested reaches and a corresponding higher density of terrestrial prey consumed by water column feeding fishes. Reach-scale biotic integrity (macroinvertebrates, salamanders, and fishes) was largely unaffected by differences in canopy cover. In urbanizing areas where catchment land cover drives habitat and biotic quality, management practices that rely exclusively on forested riparian areas for stream protection are unlikely to be effective at maintaining ecosystem integrity.

  11. Quantifying Forested Riparian Buffer Ability to Ameliorate Stream Temperature in a Missouri Ozark Border Stream of the Central U.S

    Science.gov (United States)

    Bulliner, E. A.; Hubbart, J. A.

    2009-12-01

    Riparian buffers play an important role in modulating stream water quality, including temperature. There is a need to better understand riparian form and function to validate and improve contemporary management practices. Further studies are warranted to characterize energy attenuation by forested riparian canopy layers that normally buffer stream temperature, particularly in the central hardwood forest regions of the United States where relationships between canopy density and stream temperature are unknown. To quantify these complex processes, two intensively instrumented hydroclimate stations were installed along two stream reaches of a riparian stream in central Missouri, USA in the winter of 2008. Hydroclimate stations are located along stream reaches oriented in both cardinal directions, which will allow interpolation of results to other orientations. Each station consists of an array of instrumentation that senses the flux of water and energy into and out of the riparian zone. Reference data are supplied from a nearby flux tower (US DOE) located on top of a forested ridge. The study sites are located within a University of Missouri preserved wildland area on the border of the southern Missouri’s Ozark region, an ecologically distinct region in the central United States. Limestone underlies the study area, resulting in a distinct semi-Karst hydrologic system. Vegetation forms a complex, multi-layered canopy extending from the stream edge through the riparian zone and into surrounding hills. Climate is classified as humid continental, with approximate average annual temperature and precipitation of 13.2°C and 970mm, respectively. Preliminary results (summer 2009 data) indicate incoming short-wave radiation is 24.9% higher at the N-S oriented stream reach relative to the E-W oriented reach. Maximum incoming short wave radiation during the period was 64.5% lower at the N-S reach relative to E-W reach. Average air temperature for the E-W reach was 0.3°C lower

  12. Impact of Vertical Canopy Position on Leaf Spectral Properties and Traits across Multiple Species

    Directory of Open Access Journals (Sweden)

    Tawanda W. Gara

    2018-02-01

    Full Text Available Understanding the vertical pattern of leaf traits across plant canopies provide critical information on plant physiology, ecosystem functioning and structure and vegetation response to climate change. However, the impact of vertical canopy position on leaf spectral properties and subsequently leaf traits across the entire spectrum for multiple species is poorly understood. In this study, we examined the ability of leaf optical properties to track variability in leaf traits across the vertical canopy profile using Partial Least Square Discriminatory Analysis (PLS-DA. Leaf spectral measurements together with leaf traits (nitrogen, carbon, chlorophyll, equivalent water thickness and specific leaf area were studied at three vertical canopy positions along the plant stem: lower, middle and upper. We observed that foliar nitrogen (N, chlorophyll (Cab, carbon (C, and equivalent water thickness (EWT were higher in the upper canopy leaves compared with lower shaded leaves, while specific leaf area (SLA increased from upper to lower canopy leaves. We found that leaf spectral reflectance significantly (P ≤ 0.05 shifted to longer wavelengths in the ‘red edge’ spectrum (685–701 nm in the order of lower > middle > upper for the pooled dataset. We report that spectral bands that are influential in the discrimination of leaf samples into the three groups of canopy position, based on the PLS-DA variable importance projection (VIP score, match with wavelength regions of foliar traits observed to vary across the canopy vertical profile. This observation demonstrated that both leaf traits and leaf reflectance co-vary across the vertical canopy profile in multiple species. We conclude that canopy vertical position has a significant impact on leaf spectral properties of an individual plant’s traits, and this finding holds for multiple species. These findings have important implications on field sampling protocols, upscaling leaf traits to canopy level

  13. Co-optimal distribution of leaf nitrogen and hydraulic conductance in plant canopies.

    Science.gov (United States)

    Peltoniemi, Mikko S; Duursma, Remko A; Medlyn, Belinda E

    2012-05-01

    Leaf properties vary significantly within plant canopies, due to the strong gradient in light availability through the canopy, and the need for plants to use resources efficiently. At high light, photosynthesis is maximized when leaves have a high nitrogen content and water supply, whereas at low light leaves have a lower requirement for both nitrogen and water. Studies of the distribution of leaf nitrogen (N) within canopies have shown that, if water supply is ignored, the optimal distribution is that where N is proportional to light, but that the gradient of N in real canopies is shallower than the optimal distribution. We extend this work by considering the optimal co-allocation of nitrogen and water supply within plant canopies. We developed a simple 'toy' two-leaf canopy model and optimized the distribution of N and hydraulic conductance (K) between the two leaves. We asked whether hydraulic constraints to water supply can explain shallow N gradients in canopies. We found that the optimal N distribution within plant canopies is proportional to the light distribution only if hydraulic conductance, K, is also optimally distributed. The optimal distribution of K is that where K and N are both proportional to incident light, such that optimal K is highest to the upper canopy. If the plant is constrained in its ability to construct higher K to sun-exposed leaves, the optimal N distribution does not follow the gradient in light within canopies, but instead follows a shallower gradient. We therefore hypothesize that measured deviations from the predicted optimal distribution of N could be explained by constraints on the distribution of K within canopies. Further empirical research is required on the extent to which plants can construct optimal K distributions, and whether shallow within-canopy N distributions can be explained by sub-optimal K distributions.

  14. Nitrogen saturation in stream ecosystems.

    Science.gov (United States)

    Earl, Stevan R; Valett, H Maurice; Webster, Jackson R

    2006-12-01

    The concept of nitrogen (N) saturation has organized the assessment of N loading in terrestrial ecosystems. Here we extend the concept to lotic ecosystems by coupling Michaelis-Menten kinetics and nutrient spiraling. We propose a series of saturation response types, which may be used to characterize the proximity of streams to N saturation. We conducted a series of short-term N releases using a tracer (15NO3-N) to measure uptake. Experiments were conducted in streams spanning a gradient of background N concentration. Uptake increased in four of six streams as NO3-N was incrementally elevated, indicating that these streams were not saturated. Uptake generally corresponded to Michaelis-Menten kinetics but deviated from the model in two streams where some other growth-critical factor may have been limiting. Proximity to saturation was correlated to background N concentration but was better predicted by the ratio of dissolved inorganic N (DIN) to soluble reactive phosphorus (SRP), suggesting phosphorus limitation in several high-N streams. Uptake velocity, a reflection of uptake efficiency, declined nonlinearly with increasing N amendment in all streams. At the same time, uptake velocity was highest in the low-N streams. Our conceptual model of N transport, uptake, and uptake efficiency suggests that, while streams may be active sites of N uptake on the landscape, N saturation contributes to nonlinear changes in stream N dynamics that correspond to decreased uptake efficiency.

  15. Making direct use of canopy profiles in vegetation - atmosphere coupling

    Science.gov (United States)

    Ryder, James; Polcher, Jan; Peylin, Philippe; Ottlé, Catherine; Chen, Yiying; van Gorsel, Eva; Haverd, Vanessa; McGrath, Matthew; Naudts, Kim; Otto, Juliane; Valade, Aude; Luyssaert, Sebastiaan

    2015-04-01

    Most coupled land-surface regional models use the 'big-leaf' approach for simulating the sensible and latent heat fluxes of different vegetation types. However, there has been a progression in the types of questions being asked of these models, such as the consequences of land-use change or the behaviour of BVOCs and aerosol. In addition, recent years has seen growth in the availability of in-canopy datasets across a broaded range of species, with which to calibrate these simulations. Hence, there is now an argument for transferring some of the techniques and processes previously used in local, site-based land surface models to the land surface components of models which operate on a regional or even global scale. We describe here the development and evaluation of a vertical canopy energy budget model (Ryder, J et al., 2014) that can be coupled to an atmospheric model such as LMDz. Significantly, the model preserves the implicit coupling of the land-surface to atmosphere interface, which means that run-time efficiences are preserved. This is acheived by means of an interface based on the approach of Polcher et al. (1998) and Best et al. (2004), but newly developed for a canopy column. The model makes use of techniques from site-based models, such as the calculation of vertical turbulence statistics using a second-order closure model (Massman & Weil, 1999), and the distribution of long-wave and short-wave radiation over the profile, the latter using an innovate multilayer albedo scheme (McGrath et al., in prep.). Complete profiles of atmospheric temperature and specific humidity are now calculated, in order to simulate sensible and latent heat fluxes, as well as the leaf temperature at each level in the model. The model is shown to perform stably, and reproduces well flux measurements at an initial test site, across a time period of several days, or over the course of a year. Further applications of the model might be to simulate mixed canopies, the light

  16. Tree Death Not Resulting in Gap Creation: An Investigation of Canopy Dynamics of Northern Temperate Deciduous Forests

    Directory of Open Access Journals (Sweden)

    Jean-Francois Senécal

    2018-01-01

    Full Text Available Several decades of research have shown that canopy gaps drive tree renewal processes in the temperate deciduous forest biome. In the literature, canopy gaps are usually defined as canopy openings that are created by partial or total tree death of one or more canopy trees. In this study, we investigate linkages between tree damage mechanisms and the formation or not of new canopy gaps in northern temperate deciduous forests. We studied height loss processes in unmanaged and managed forests recovering from partial cutting with multi-temporal airborne Lidar data. The Lidar dataset was used to detect areas where canopy height reduction occurred, which were then field-studied to identify the tree damage mechanisms implicated. We also sampled the density of leaf material along transects to characterize canopy structure. We used the dataset of the canopy height reduction areas in a multi-model inference analysis to determine whether canopy structures or tree damage mechanisms most influenced the creation of new canopy gaps within canopy height reduction areas. According to our model, new canopy gaps are created mainly when canopy damage enlarges existing gaps or when height is reduced over areas without an already established dense sub-canopy tree layer.

  17. What is the most prominent factor limiting photosynthesis in different layers of a greenhouse cucumber canopy?

    Science.gov (United States)

    Chen, Tsu-Wei; Henke, Michael; de Visser, Pieter H B; Buck-Sorlin, Gerhard; Wiechers, Dirk; Kahlen, Katrin; Stützel, Hartmut

    2014-09-01

    Maximizing photosynthesis at the canopy level is important for enhancing crop yield, and this requires insights into the limiting factors of photosynthesis. Using greenhouse cucumber (Cucumis sativus) as an example, this study provides a novel approach to quantify different components of photosynthetic limitations at the leaf level and to upscale these limitations to different canopy layers and the whole plant. A static virtual three-dimensional canopy structure was constructed using digitized plant data in GroIMP. Light interception of the leaves was simulated by a ray-tracer and used to compute leaf photosynthesis. Different components of photosynthetic limitations, namely stomatal (S(L)), mesophyll (M(L)), biochemical (B(L)) and light (L(L)) limitations, were calculated by a quantitative limitation analysis of photosynthesis under different light regimes. In the virtual cucumber canopy, B(L) and L(L) were the most prominent factors limiting whole-plant photosynthesis. Diffusional limitations (S(L) + M(L)) contributed Photosynthesis in the lower canopy was more limited by the biochemical capacity, and the upper canopy was more sensitive to light than other canopy parts. Although leaves in the upper canopy received more light, their photosynthesis was more light restricted than in the leaves of the lower canopy, especially when the light condition above the canopy was poor. An increase in whole-plant photosynthesis under diffuse light did not result from an improvement of light use efficiency but from an increase in light interception. Diffuse light increased the photosynthesis of leaves that were directly shaded by other leaves in the canopy by up to 55%. Based on the results, maintaining biochemical capacity of the middle-lower canopy and increasing the leaf area of the upper canopy would be promising strategies to improve canopy photosynthesis in a high-wire cucumber cropping system. Further analyses using the approach described in this study can be expected to

  18. Vertical stratification of beetles (Coleoptera) and flies (Diptera) in temperate forest canopies.

    Science.gov (United States)

    Maguire, Dorothy Y; Robert, Katleen; Brochu, Kristen; Larrivée, Maxim; Buddle, Christopher M; Wheeler, Terry A

    2014-02-01

    Forest canopies support high arthropod biodiversity, but in temperate canopies, little is known about the spatial distribution of these arthropods. This is an important first step toward understanding ecological roles of insects in temperate canopies. The objective of this study was to assess differences in the species composition of two dominant and diverse taxa (Diptera and Coleoptera) along a vertical gradient in temperate deciduous forest canopies. Five sugar maple trees from each of three deciduous forest sites in southern Quebec were sampled using a combination of window and trunk traps placed in three vertical strata (understory, mid-canopy, and upper-canopy) for three sampling periods throughout the summer. Coleoptera species richness and abundance did not differ between canopy heights, but more specimens and species of Diptera were collected in the upper-canopy. Community composition of Coleoptera and Diptera varied significantly by trap height. Window traps collected more specimens and species of Coleoptera than trunk traps, although both trap types should be used to maximize representation of the entire Coleoptera community. There were no differences in abundance, diversity, or composition of Diptera collected between trap types. Our data confirm the relevance of sampling all strata in a forest when studying canopy arthropod biodiversity.

  19. STREAM2016: Streaming Requirements, Experience, Applications and Middleware Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Geoffrey [Indiana Univ., Bloomington, IN (United States); Jha, Shantenu [Rutgers Univ., New Brunswick, NJ (United States); Ramakrishnan, Lavanya [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-10-01

    The Department of Energy (DOE) Office of Science (SC) facilities including accelerators, light sources and neutron sources and sensors that study, the environment, and the atmosphere, are producing streaming data that needs to be analyzed for next-generation scientific discoveries. There has been an explosion of new research and technologies for stream analytics arising from the academic and private sectors. However, there has been no corresponding effort in either documenting the critical research opportunities or building a community that can create and foster productive collaborations. The two-part workshop series, STREAM: Streaming Requirements, Experience, Applications and Middleware Workshop (STREAM2015 and STREAM2016), were conducted to bring the community together and identify gaps and future efforts needed by both NSF and DOE. This report describes the discussions, outcomes and conclusions from STREAM2016: Streaming Requirements, Experience, Applications and Middleware Workshop, the second of these workshops held on March 22-23, 2016 in Tysons, VA. STREAM2016 focused on the Department of Energy (DOE) applications, computational and experimental facilities, as well software systems. Thus, the role of “streaming and steering” as a critical mode of connecting the experimental and computing facilities was pervasive through the workshop. Given the overlap in interests and challenges with industry, the workshop had significant presence from several innovative companies and major contributors. The requirements that drive the proposed research directions, identified in this report, show an important opportunity for building competitive research and development program around streaming data. These findings and recommendations are consistent with vision outlined in NRC Frontiers of Data and National Strategic Computing Initiative (NCSI) [1, 2]. The discussions from the workshop are captured as topic areas covered in this report's sections. The report

  20. Interception storage capacities of tropical rainforest canopy trees

    Science.gov (United States)

    Herwitz, Stanley R.

    1985-04-01

    The rainwater interception storage capacities of mature canopy trees in a tropical rainforest site in northeast Queensland, Australia, were approximated using a combination of field and laboratory measurements. The above-ground vegetative surfaces of five selected species (three flaky-barked; two smooth-barked) were saturated under laboratory conditions in order to establish their maximum interception storage capacities. Average leaf surface interception storages ranged from 112 to 161 ml m -2. The interception storages of bark ranged from 0.51 to 0.97 ml cm -3. These standardized interception storages were applied to estimates of leaf surface area and bark volume for 51 mature canopy trees representing the selected species in the field site. The average whole tree interception storage capacities of the five species ranged from 110 to 5281 per tree and 2.2 to 8.3 mm per unit projected crown area. The highly significant interspecific differences in interception storage capacity suggest that both floristic and demographic data are needed in order to accurately calculate a forest-wide interception storage capacity for species-rich tropical rainforest vegetation. Species with large woody surface areas and small projected crown areas are capable of storing the greatest depth equivalents of rainwater under heavy rainfall conditions. In the case of both the flaky-barked and the smooth-barked species, bark accounted for > 50% of the total interception storage capacity under still-air conditions, and > 80% under turbulent air conditions. The emphasis in past interception studies on the role of leaf surfaces in determining the interception storage capacity of a vegetative cover must be modified for tropical rainforests to include the storage capacity provided by the bark tissue on canopy trees.

  1. Momentum and particle transport in a nonhomogenous canopy

    Science.gov (United States)

    Gould, Andrew W.

    Turbulent particle transport through the air plays an important role in the life cycle of many plant pathogens. In this study, data from a field experiment was analyzed to explore momentum and particle transport within a grape vineyard. The overall goal of these experiments was to understand how the architecture of a sparse agricultural canopy interacts with turbulent flow and ultimately determines the dispersion of airborne fungal plant pathogens. Turbulence in the vineyard canopy was measured using an array of four sonic anemometers deployed at heights z/H 0.4, 0.9, 1.45, and 1.95 where z is the height of the each sonic and H is the canopy height. In addition to turbulence measurements from the sonic anemometers, particle dispersion was measured using inert particles with the approximate size and density of powdery mildew spores and a roto-rod impaction trap array. Measurements from the sonic anemometers demonstrate that first and second order statistics of the wind field are dependent on wind direction orientation with respect to vineyard row direction. This dependence is a result of wind channeling which transfers energy between the velocity components when the wind direction is not aligned with the rows. Although the winds have a strong directional dependence, spectra analysis indicates that the structure of the turbulent flow is not fundamentally altered by the interaction between wind direction and row direction. Examination of a limited number of particle release events indicates that the wind turning and channeling observed in the momentum field impacts particle dispersion. For row-aligned flow, particle dispersion in the direction normal to the flow is decreased relative to the plume spread predicted by a standard Gaussian plume model. For flow that is not aligned with the row direction, the plume is found to rotate in the same manner as the momentum field.

  2. Effects of Crop Canopies on Rain Splash Detachment

    Science.gov (United States)

    Ma, Bo; Yu, Xiaoling; Ma, Fan; Li, Zhanbin; Wu, Faqi

    2014-01-01

    Crops are one of the main factors affecting soil erosion in sloping fields. To determine the characteristics of splash erosion under crop canopies, corn, soybean, millet, and winter wheat were collected, and the relationship among splash erosion, rainfall intensity, and throughfall intensity under different crop canopies was analyzed through artificial rainfall experiments. The results showed that, the mean splash detachment rate on the ground surface was 390.12 g/m2·h, which was lower by 67.81% than that on bare land. The inhibiting effects of crops on splash erosion increased as the crops grew, and the ability of the four crops to inhibit splash erosion was in the order of winter wheat>corn>soybeans>millet. An increase in rainfall intensity could significantly enhance the occurrence of splash erosion, but the ability of crops to inhibit splash erosion was 13% greater in cases of higher rainfall intensity. The throughfall intensity under crop canopies was positively related to the splash detachment rate, and this relationship was more significant when the rainfall intensity was 40 mm/h. Splash erosion tended to occur intensively in the central row of croplands as the crop grew, and the non-uniformity of splash erosion was substantial, with splash erosion occurring mainly between the rows and in the region directly under the leaf margin. This study has provided a theoretical basis for describing the erosion mechanisms of cropland and for assisting soil erosion prediction as well as irrigation and fertilizer management in cultivated fields. PMID:24992386

  3. A canopy-type similarity model for wind farm optimization

    Science.gov (United States)

    Markfort, Corey D.; Zhang, Wei; Porté-Agel, Fernando

    2013-04-01

    The atmospheric boundary layer (ABL) flow through and over wind farms has been found to be similar to canopy-type flows, with characteristic flow development and shear penetration length scales (Markfort et al., 2012). Wind farms capture momentum from the ABL both at the leading edge and from above. We examine this further with an analytical canopy-type model. Within the flow development region, momentum is advected into the wind farm and wake turbulence draws excess momentum in from between turbines. This spatial heterogeneity of momentum within the wind farm is characterized by large dispersive momentum fluxes. Once the flow within the farm is developed, the area-averaged velocity profile exhibits a characteristic inflection point near the top of the wind farm, similar to that of canopy-type flows. The inflected velocity profile is associated with the presence of a dominant characteristic turbulence scale, which may be responsible for a significant portion of the vertical momentum flux. Prediction of this scale is useful for determining the amount of available power for harvesting. The new model is tested with results from wind tunnel experiments, which were conducted to characterize the turbulent flow in and above model wind farms in aligned and staggered configurations. The model is useful for representing wind farms in regional scale models, for the optimization of wind farms considering wind turbine spacing and layout configuration, and for assessing the impacts of upwind wind farms on nearby wind resources. Markfort CD, W Zhang and F Porté-Agel. 2012. Turbulent flow and scalar transport through and over aligned and staggered wind farms. Journal of Turbulence. 13(1) N33: 1-36. doi:10.1080/14685248.2012.709635.

  4. The Phoenix Stream: A Cold Stream in the Southern Hemisphere

    Science.gov (United States)

    Balbinot, E.; Yanny, B.; Li, T. S.; Santiago, B.; Marshall, J. L.; Finley, D. A.; Pieres, A.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Benoit-Lévy, A.; Bernstein, G. M.; Bertin, E.; Brooks, D.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Estrada, J.; Flaugher, B.; Frieman, J.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; March, M.; Martini, P.; Miquel, R.; Nichol, R. C.; Ogando, R.; Romer, A. K.; Sanchez, E.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Thomas, D.; Tucker, D.; Walker, A. R.; DES Collaboration

    2016-03-01

    We report the discovery of a stellar stream in the Dark Energy Survey Year 1 (Y1A1) data. The discovery was made through simple color-magnitude filters and visual inspection of the Y1A1 data. We refer to this new object as the Phoenix stream, after its resident constellation. After subtraction of the background stellar population we detect a clear signal of a simple stellar population. By fitting the ridge line of the stream in color-magnitude space, we find that a stellar population with age τ = 11.5 ± 0.5 Gyr and [Fe/H] cluster (GC) is a probable progenitor. There is no known GC within 5 kpc that is compatible with being the progenitor of the stream, assuming that the stream traces its orbit. We examined overdensities (ODs) along the stream, however, no obvious counterpart-bound stellar system is visible in the coadded images. We also find ODs along the stream that appear to be symmetrically distributed—consistent with the epicyclic OD scenario for the formation of cold streams—as well as a misalignment between the northern and southern part of stream. Despite the close proximity we find no evidence that this stream and the halo cluster NGC 1261 have a common accretion origin linked to the recently found EriPhe OD.

  5. Canopy assemblages of ants in a New Guinea rain forest

    Czech Academy of Sciences Publication Activity Database

    Janda, Milan; Konečná, M.

    2011-01-01

    Roč. 27, č. 1 (2011), s. 83-91 ISSN 0266-4674 R&D Projects: GA AV ČR KJB612230701; GA MŠk LC06073; GA MŠk ME09082; GA ČR GD206/08/H044; GA ČR GA206/09/0115; GA ČR GAP505/10/0673 Institutional research plan: CEZ:AV0Z50070508 Keywords : bait traps * canopy * dominance Subject RIV: EH - Ecology, Behaviour Impact factor: 1.401, year: 2011

  6. Modeling canopy CO2 exchange in the European Russian Arctic

    DEFF Research Database (Denmark)

    Kiepe, Isabell; Friborg, Thomas; Herbst, Mathias

    2013-01-01

    In this study, we use the coupled photosynthesis-stomatal conductance model of Collatz et al. (1991) to simulate the current canopy carbon dioxide exchange of a heterogeneous tundra ecosystem in European Russia. For the parameterization, we used data obtained from in situ leaf level measurements...... in combination with meteorological data from 2008. The modeled CO2 fluxes were compared with net ecosystem exchange (NEE), measured by the eddy covariance technique during the snow-free period in 2008. The findings from this study indicated that the main state parameters of the exchange processes were leaf area...

  7. Tidal Streams Near and Far

    Science.gov (United States)

    Fardal, Mark A.

    2014-06-01

    The Pandas survey of stars in M31's disk and halo is crisscrossed by numerous tidal features from both M31 and the Milky Way. Here I focus on two narrow stellar streams visible in the survey. They have comparable angular extent in the survey (10-13 degrees long versus only 0.3 degree wide), but one is a local Milky Way stream at about 30 kpc and one is in M31, roughly 25 times more distant. I estimate the stellar mass and metallicity in the streams and the distance gradient along them. The kinematics of the M31 stream is sparsely sampled by red giant stars and globular clusters. Bayesian modeling of the stream data yields accurate constraints on the orbital parameters of the streams.

  8. Modeling radiative transfer in tropical rainforest canopies: sensitivity of simulated albedo to canopy architectural and optical parameters

    Directory of Open Access Journals (Sweden)

    Sílvia N. M. Yanagi

    2011-12-01

    Full Text Available This study evaluates the sensitivity of the surface albedo simulated by the Integrated Biosphere Simulator (IBIS to a set of Amazonian tropical rainforest canopy architectural and optical parameters. The parameters tested in this study are the orientation and reflectance of the leaves of upper and lower canopies in the visible (VIS and near-infrared (NIR spectral bands. The results are evaluated against albedo measurements taken above the K34 site at the INPA (Instituto Nacional de Pesquisas da Amazônia Cuieiras Biological Reserve. The sensitivity analysis indicates a strong response to the upper canopy leaves orientation (x up and to the reflectivity in the near-infrared spectral band (rNIR,up, a smaller sensitivity to the reflectivity in the visible spectral band (rVIS,up and no sensitivity at all to the lower canopy parameters, which is consistent with the canopy structure. The combination of parameters that minimized the Root Mean Square Error and mean relative error are Xup = 0.86, rVIS,up = 0.062 and rNIR,up = 0.275. The parameterizations performed resulted in successful simulations of tropical rainforest albedo by IBIS, indicating its potential to simulate the canopy radiative transfer for narrow spectral bands and permitting close comparison with remote sensing products.Este estudo avalia a sensibilidade do albedo da superfície pelo Simulador Integrado da Biosfera (IBIS a um conjunto de parâmetros que representam algumas propriedades arquitetônicas e óticas do dossel da floresta tropical Amazônica. Os parâmetros testados neste estudo são a orientação e refletância das folhas do dossel superior e inferior nas bandas espectrais do visível (VIS e infravermelho próximo (NIR. Os resultados são avaliados contra observações feitas no sítio K34 pertencente ao Instituto Nacional de Pesquisas da Amazônia (INPA na Reserva Biológica de Cuieiras. A análise de sensibilidade indica uma forte resposta aos parâmetros de orienta

  9. Tracking Gendered Streams

    Directory of Open Access Journals (Sweden)

    Maria Eriksson

    2017-10-01

    Full Text Available One of the most prominent features of digital music services is the provision of personalized music recommendations that come about through the profiling of users and audiences. Based on a range of "bot experiments," this article investigates if, and how, gendered patterns in music recommendations are provided by the streaming service Spotify. While our experiments did not give any strong indications that Spotify assigns different taste profiles to male and female users, the study showed that male artists were highly overrepresented in Spotify's music recommendations; an issue which we argue prompts users to cite hegemonic masculine norms within the music industries. Although the results should be approached as historically and contextually contingent, we argue that they point to how gender and gendered tastes may be constituted through the interplay between users and algorithmic knowledge-making processes, and how digital content delivery may maintain and challenge gender relations and gendered power differentials within the music industries. Seen through the lens of critical research on software, music and gender performativity, the experiments thus provide insights into how gender is shaped and attributed meaning as it materializes in contemporary music streams.

  10. Stream Lifetimes Against Planetary Encounters

    Science.gov (United States)

    Valsecchi, G. B.; Lega, E.; Froeschle, Cl.

    2011-01-01

    We study, both analytically and numerically, the perturbation induced by an encounter with a planet on a meteoroid stream. Our analytical tool is the extension of pik s theory of close encounters, that we apply to streams described by geocentric variables. The resulting formulae are used to compute the rate at which a stream is dispersed by planetary encounters into the sporadic background. We have verified the accuracy of the analytical model using a numerical test.

  11. Organized turbulent motions in a hedgerow vineyard: effect of evolving canopy structure

    Science.gov (United States)

    Vendrame, Nadia; Tezza, Luca; Tha Paw U, Kyaw; Pitacco, Andrea

    2017-04-01

    Vegetation-atmosphere exchanges are determined by functional and structural properties of the plants together with environmental forcing. However, a fundamental aspect is the interaction of the canopy with the lower atmosphere. The vegetation deeply alters the composition and physical properties of the air flow, exchanging energy, matter and momentum with it. These processes take place in the bottom part of the atmospheric boundary layer where turbulence is the main mechanism transporting within-canopy air towards the mid- and upper atmospheric boundary layer and vice versa. Canopy turbulence is highly influenced by vegetation drag elements, determining the vertical profile of turbulent moments within the canopy. Canopies organized in rows, like vineyards, show peculiar turbulent transport dynamics. In addition, the morphological structure (phenology) of the vineyard is greatly variable seasonally, shifting from an empty canopy during vine dormancy to dense foliage in summer. The understanding of the canopy ventilation regime is related to several practical applications in vineyard management. For example, within-canopy turbulent motion is very important to predict small particles dispersion, like fungal spores, and minimize infection studying the effect on leaf wetness duration. Our study aims to follow the continuous evolution of turbulence characteristics and canopy structure during the growing season of a hedgerow vineyard, from bud break to fully developed canopy. The field experiment was conducted in a flat extensive vineyard in North-Eastern Italy, using a vertical array of five synchronous sonic anemometers within and above the canopy. Turbulent flow organization was greatly influenced by canopy structure. Turbulent coherent structures involved in momentum transport have been investigated using the classical quadrant analysis and a novel approach to identify dominant temporal scales. Momentum transport in the canopy was dominated by downward gusts showing

  12. Weak Environmental Controls of Tropical Forest Canopy Height in the Guiana Shield

    Directory of Open Access Journals (Sweden)

    Youven Goulamoussène

    2016-09-01

    Full Text Available Canopy height is a key variable in tropical forest functioning and for regional carbon inventories. We investigate the spatial structure of the canopy height of a tropical forest, its relationship with environmental physical covariates, and the implication for tropical forest height variation mapping. Making use of high-resolution maps of LiDAR-derived Digital Canopy Model (DCM and environmental covariates from a Digital Elevation Model (DEM acquired over 30,000 ha of tropical forest in French Guiana, we first show that forest canopy height is spatially correlated up to 2500 m. Forest canopy height is significantly associated with environmental variables, but the degree of correlation varies strongly with pixel resolution. On the whole, bottomland forests generally have lower canopy heights than hillslope or hilltop forests. However, this global picture is very noisy at local scale likely because of the endogenous gap-phase forest dynamic processes. Forest canopy height has been predictively mapped across a pixel resolution going from 6 m to 384 m mimicking a low resolution case of 3 points·km − 2 . Results of canopy height mapping indicated that the error for spatial model with environment effects decrease from 8.7 m to 0.91 m, depending of the pixel resolution. Results suggest that, outside the calibration plots, the contribution of environment in shaping the global canopy height distribution is quite limited. This prevents accurate canopy height mapping based only on environmental information, and suggests that precise canopy height maps, for local management purposes, can only be obtained with direct LiDAR monitoring.

  13. Diurnal Solar Energy Conversion and Photoprotection in Rice Canopies.

    Science.gov (United States)

    Meacham, Katherine; Sirault, Xavier; Quick, W Paul; von Caemmerer, Susanne; Furbank, Robert

    2017-01-01

    Genetic improvement of photosynthetic performance of cereal crops and increasing the efficiency with which solar radiation is converted into biomass has recently become a major focus for crop physiologists and breeders. The pulse amplitude modulated chlorophyll fluorescence technique (PAM) allows quantitative leaf level monitoring of the utilization of energy for photochemical light conversion and photoprotection in natural environments, potentially over the entire crop lifecycle. Here, the diurnal relationship between electron transport rate (ETR) and irradiance was measured in five cultivars of rice (Oryza sativa) in canopy conditions with PAM fluorescence under natural solar radiation. This relationship differed substantially from that observed for conventional short term light response curves measured under controlled actinic light with the same leaves. This difference was characterized by a reduced curvature factor when curve fitting was used to model this diurnal response. The engagement of photoprotective processes in chloroplast electron transport in leaves under canopy solar radiation was shown to be a major contributor to this difference. Genotypic variation in the irradiance at which energy flux into photoprotective dissipation became greater than ETR was observed. Cultivars capable of higher ETR at midrange light intensities were shown to produce greater leaf area over time, estimated by noninvasive imaging. © 2017 American Society of Plant Biologists. All Rights Reserved.

  14. Spatial variation in atmospheric nitrogen deposition on low canopy vegetation

    International Nuclear Information System (INIS)

    Verhagen, Rene; Diggelen, Rudy van

    2006-01-01

    Current knowledge about the spatial variation of atmospheric nitrogen deposition on a local scale is limited, especially for vegetation with a low canopy. We measured nitrogen deposition on artificial vegetation at variable distances of local nitrogen emitting sources in three nature reserves in the Netherlands, differing in the intensity of agricultural practices in the surroundings. In the nature reserve located in the most intensive agricultural region nitrogen deposition decreased with increasing distance to the local farms, until at a distance of 1500 m from the local nitrogen emitting sources the background level of 15 kg N ha -1 yr -1 was reached. No such trend was observed in the other two reserves. Interception was considerably lower than in woodlands and hence affected areas were larger. The results are discussed in relation to the prospects for the conservation or restoration of endangered vegetation types of nutrient-poor soil conditions. - Areas with low canopy vegetation are affected over much larger distances by nitrogen deposition than woodlands

  15. Phylogenetic Structure of Foliar Spectral Traits in Tropical Forest Canopies

    Directory of Open Access Journals (Sweden)

    Kelly M. McManus

    2016-02-01

    Full Text Available The Spectranomics approach to tropical forest remote sensing has established a link between foliar reflectance spectra and the phylogenetic composition of tropical canopy tree communities vis-à-vis the taxonomic organization of biochemical trait variation. However, a direct relationship between phylogenetic affiliation and foliar reflectance spectra of species has not been established. We sought to develop this relationship by quantifying the extent to which underlying patterns of phylogenetic structure drive interspecific variation among foliar reflectance spectra within three Neotropical canopy tree communities with varying levels of soil fertility. We interpreted the resulting spectral patterns of phylogenetic signal in the context of foliar biochemical traits that may contribute to the spectral-phylogenetic link. We utilized a multi-model ensemble to elucidate trait-spectral relationships, and quantified phylogenetic signal for spectral wavelengths and traits using Pagel’s lambda statistic. Foliar reflectance spectra showed evidence of phylogenetic influence primarily within the visible and shortwave infrared spectral regions. These regions were also selected by the multi-model ensemble as those most important to the quantitative prediction of several foliar biochemical traits. Patterns of phylogenetic organization of spectra and traits varied across sites and with soil fertility, indicative of the complex interactions between the environmental and phylogenetic controls underlying patterns of biodiversity.

  16. [Study on spectral reflectance characteristics of hemp canopies].

    Science.gov (United States)

    Tian, Yi-Chen; Jia, Kun; Wu, Bing-Fang; Li, Qiang-Zi

    2010-12-01

    Hemp (Cannabis sativa L.) is a special economic crop and widely used in many field. It is significative for the government to master the information about planting acreage and spatial distribution of hemp for hemp industrial policy decision in China. Remote sensing offers a potential way of monitoring large area for the cultivation of hemp. However, very little study on the spectral properties of hemp is available in the scientific literature. In the present study, the spectral reflectance characteristics of hemp canopy were systematically analyzed based on the spectral data acquired with ASD FieldSpec portable spectrometer. The wavebands and its spectral resolution for discriminating hemp from other plants were identified using difference analysis. The major differences in canopy reflectance of hemp and other plants were observed near 530, 552, 734, 992, 1 213, 1 580 and 2 199 nm, and the maximal difference is near 734 nm. The spectral resolution should be 30 nm or less in visible and near infrared regions, and 50 nm or less in middle infrared regions.

  17. Mapping Wild Leek through the Forest Canopy Using a UAV

    Directory of Open Access Journals (Sweden)

    Marie-Bé Leduc

    2018-01-01

    Full Text Available Wild leek, an endangered plant species of Eastern North America, grows on forest floors and greens up to approximately three weeks before the trees it is typically found under, temporarily allowing it to be observed through the canopy by remote sensing instruments. This paper explores the accuracy with which wild leek can be mapped with a low-flying UAV. Nadir video imagery was obtained using a commercial UAV during the spring of 2017 in Gatineau Park, Quebec. Point clouds were generated from the video frames with the Structure-from-Motion framework, and a multiscale curvature classification was used to separate points on the ground, where wild leek grows, from above-ground points belonging to the forest canopy. Five-cm resolution orthomosaics were created from the ground points, and a threshold value of 0.350 for the green chromatic coordinate (GCC was applied to delineate wild leek from wood, leaves, and other plants on the forest floor, with an F1-score of 0.69 and 0.76 for two different areas. The GCC index was most effective in delineating bigger patches, and therefore often misclassified patches smaller than 30 cm in diameter. Although short flight times and long data processing times are presently technical challenges to upscaling, the low cost and high accuracy of UAV imagery provides a promising method for monitoring the spatial distribution of this endangered species.

  18. Relation between Streaming Potential and Streaming Electrification Generated by Streaming of Water through a Sandwich-type Cell

    OpenAIRE

    Maruyama, Kazunori; Nikaido, Mitsuru; Hara, Yoshinori; Tanizaki, Yoshie

    2012-01-01

    Both streaming potential and accumulated charge of water flowed out were measured simultaneously using a sandwich-type cell. The voltages generated in divided sections along flow direction satisfied additivity. The sign of streaming potential agreed with that of streaming electrification. The relation between streaming potential and streaming electrification was explained from a viewpoint of electrical double layer in glass-water interface.

  19. ADAPTIVE STREAMING OVER HTTP (DASH UNTUK APLIKASI VIDEO STREAMING

    Directory of Open Access Journals (Sweden)

    I Made Oka Widyantara

    2015-12-01

    Full Text Available This paper aims to analyze Internet-based streaming video service in the communication media with variable bit rates. The proposed scheme on Dynamic Adaptive Streaming over HTTP (DASH using the internet network that adapts to the protocol Hyper Text Transfer Protocol (HTTP. DASH technology allows a video in the video segmentation into several packages that will distreamingkan. DASH initial stage is to compress the video source to lower the bit rate video codec uses H.26. Video compressed further in the segmentation using MP4Box generates streaming packets with the specified duration. These packages are assembled into packets in a streaming media format Presentation Description (MPD or known as MPEG-DASH. Streaming video format MPEG-DASH run on a platform with the player bitdash teritegrasi bitcoin. With this scheme, the video will have several variants of the bit rates that gave rise to the concept of scalability of streaming video services on the client side. The main target of the mechanism is smooth the MPEG-DASH streaming video display on the client. The simulation results show that the scheme based scalable video streaming MPEG-DASH able to improve the quality of image display on the client side, where the procedure bufering videos can be made constant and fine for the duration of video views

  20. The impact of urban canopy meteorological forcing on summer photochemistry

    Science.gov (United States)

    Huszár, Peter; Karlický, Jan; Belda, Michal; Halenka, Tomáš; Pišoft, Petr

    2018-03-01

    The regional climate model RegCM4.4, including the surface model CLM4.5, was offline coupled to the chemistry transport model CAMx version 6.30 in order to investigate the impact of the urban canopy induced meteorological changes on the longterm summer photochemistry over central Europe for the 2001-2005 period. First, the urban canopy impact on the meteorological conditions was calculated performing a reference experiment without urban landsurface considered and an experiment with urban surfaces modeled with the urban parameterization within the CLM4.5 model. In accordance with expectations, strong increases of urban surface temperatures (up to 2-3 K), decreases of wind speed (up to -1 ms-1) and increases of vertical turbulent diffusion coefficient (up to 60-70 m2s-1) were found. For the impact on chemistry, these three components were considered. Additionally, we accounted for the effect of temperature enhanced biogenic emission increase. Several experiments were performed by adding these effects one-by-one to the total impact: i.e., first, only the urban temperature impact was considered driving the chemistry model; secondly, the wind impact was added and so on. We found that the impact on biogenic emission account for minor changes in the concentrations of ozone (O3), oxides of nitrogen NOx = NO + NO2 and nitric acid (HNO3). On the other hand, the dominating component acting is the increased vertical mixing, resulting in up to 5 ppbv increase of urban ozone concentrations while causing -2 to -3 ppbv decreases and around 1 ppbv increases of NOx and HNO3 surface concentrations, respectively. The temperature impact alone results in reduction of ozone, increase in NO, decrease in NO2 and increases of HNO3. The wind impact leads, over urban areas, to ozone decreases, increases of NOx and a slight increase in HNO3. The overall impact is similar to the impact of increased vertical mixing alone. The Process Analysis (PA) technique implemented in CAMx was adopted to

  1. Spatial Heterogeneity of the Forest Canopy Scales with the Heterogeneity of an Understory Shrub Based on Fractal Analysis

    Directory of Open Access Journals (Sweden)

    Catherine K. Denny

    2017-04-01

    Full Text Available Spatial heterogeneity of vegetation is an important landscape characteristic, but is difficult to assess due to scale-dependence. Here we examine how spatial patterns in the forest canopy affect those of understory plants, using the shrub Canada buffaloberry (Shepherdia canadensis (L. Nutt. as a focal species. Evergreen and deciduous forest canopy and buffaloberry shrub presence were measured with line-intercept sampling along ten 2-km transects in the Rocky Mountain foothills of west-central Alberta, Canada. Relationships between overstory canopy and understory buffaloberry presence were assessed for scales ranging from 2 m to 502 m. Fractal dimensions of both canopy and buffaloberry were estimated and then related using box-counting methods to evaluate spatial heterogeneity based on patch distribution and abundance. Effects of canopy presence on buffaloberry were scale-dependent, with shrub presence negatively related to evergreen canopy cover and positively related to deciduous cover. The effect of evergreen canopy was significant at a local scale between 2 m and 42 m, while that of deciduous canopy was significant at a meso-scale between 150 m and 358 m. Fractal analysis indicated that buffaloberry heterogeneity positively scaled with evergreen canopy heterogeneity, but was unrelated to that of deciduous canopy. This study demonstrates that evergreen canopy cover is a determinant of buffaloberry heterogeneity, highlighting the importance of spatial scale and canopy composition in understanding canopy-understory relationships.

  2. Up-scaling of water use efficiency from leaf to canopy as based on leaf gas exchange relationships and the modeled in-canopy light distribution

    DEFF Research Database (Denmark)

    Linderson, Maj-Lena; Mikkelsen, Teis Nørgaard; Ibrom, Andreas

    2012-01-01

    WUE estimates based on the turbulent fluxes observed and to be dependent on VDP and light intensity alone, its thus being independent of other environmental factors. Accordingly, canopy WUE can be estimated on the basis of the up-scaled WUE relationships, provided incident PAR and VPD within......The aim of this study was to evaluate the extent to which water use efficiency (WUE) at leaf scale can be used to assess WUE at canopy scale, leaf WUE being assumed to be a constant function of vapor pressure deficit and to thus not be dependent upon other environmental factors or varying leaf...... that WUE can be up-scaled from leaf to canopy on the basis of WUEnormleaf and the PAR distribution within the canopy. The up-scaling conducted was based on this WUEnormleaf – PAR relationship, the lightdistribution being assessed using the MAESTRA model, parameterized in accordance with measurements...

  3. Forest canopy water fluxes can be estimated using canopy structure metrics derived from airborne light detection and ranging (LiDAR)

    DEFF Research Database (Denmark)

    Schumacher, Johannes; Christiansen, Jesper Riis

    2015-01-01

    -species broadleaf/coniferous and mixed forests) in Denmark were used to develop empirical models to estimate TF on a monthly, seasonal, and annual basis. This new approach offers the opportunity to greatly improve predictions of TF on catchment wide scales. Overall, results show that TF can be estimated by Pr......Forests contribute to improve water quality, affect drinking water resources, and therefore influence water supply on a regional level. The forest canopy structure affects the retention of precipitation (Pr) in the canopy and hence the amount of water transferred to the forest floor termed canopy...... and a canopy density metric derived from LiDAR data. In all three types of TF data sets Pr was the variable explaining the majority of the variance in TF. The proportion of explained variance adhering to the LiDAR variable increased from 1.7% for the monthly data set to 12.2% and 19.5% for seasonal and annual...

  4. Piracy in the high trees: ectomycorrhizal fungi from an aerial 'canopy soil' microhabitat.

    Science.gov (United States)

    Orlovich, David A; Draffin, Suzy J; Daly, Robert A; Stephenson, Steven L

    2013-01-01

    The mantle of dead organic material ("canopy soil") associated with the mats of vascular and nonvascular epiphytes found on the branches of trees in the temperate rainforests along the southwestern coast of the South Island of New Zealand were examined for evidence of ectomycorrhizal fungi. DNA sequencing and cluster analysis were used to identify the taxa of fungi present in 74 root tips collected from the canopy soil microhabitat of three old growth Nothofagus menziesii trees in the South West New Zealand World Heritage Area. A diverse assemblage of ectomycorrhizal fungi was found to infect an extensive network of adventitious canopy roots of Nothofagus menziesii in this forest, including 14 phylotypes from nine genera of putative ectomycorrhizal fungi. Seven of the genera identified previously were known to form ectomycorrhizas with terrestrial roots of Nothofagus: Cortinarius, Russula, Cenococcum, Thelephora/Tomentella, Lactarius and Laccaria; two, Clavulina and Leotia, previously have not been reported forming ectomycorrhizas with Nothofagus. Canopy ectomycorrhizas provide an unexpected means for increased host nutrition that may have functional significance in some forest ecosystems. Presumably, canopy ectomycorrhizas on host adventitious roots circumvent the tree-ground-soil nutrient cycle by accessing a wider range of nutrients directly in the canopy than would be possible for non-mycorrhizal or arbuscular mycorrhizal canopy roots. In this system, both host and epiphytes would seem to be in competition for the same pool of nutrients in canopy soil.

  5. Vines and canopy contact: a route for snake predation on parrot nests.

    Science.gov (United States)

    SUSAN E. KOENIG; JOSEPH M. WUNDERLE; ERNESTO C. ENKERLINHOEFLICH

    2007-01-01

    Ornithologists have hypothesized that some tropical forest birds avoid snake predation by nesting in isolated trees that do not have vines and canopy contact with neighbouring trees. Here we review two complementary studies that support this hypothesis by demonstrating (1) that an abundance of vines and an interlocking canopy characterized Jamaican Black-billed Parrot...

  6. The fauna and flora of a kelp bed canopy | Allen | African Zoology

    African Journals Online (AJOL)

    The fauna and flora of the canopy of a kelp bed off Oudekraal, on the Cape Peninsula, Is surveyed. Four species of epiphytic algae occur In the kelp canopy, three restricted to Ecklonia maxima and the fourth to Laminaria pallida. Epiphyte biomass is equivalent to 4-9% of host standing crop amongst E. maxima, but less than ...

  7. Comparing alternative tree canopy cover estimates derived from digital aerial photography and field-based assessments

    Science.gov (United States)

    Tracey S. Frescino; Gretchen G. Moisen

    2012-01-01

    A spatially-explicit representation of live tree canopy cover, such as the National Land Cover Dataset (NLCD) percent tree canopy cover layer, is a valuable tool for many applications, such as defining forest land, delineating wildlife habitat, estimating carbon, and modeling fire risk and behavior. These layers are generated by predictive models wherein their accuracy...

  8. Modeling cotton (Gossypium spp) leaves and canopy using computer aided geometric design (CAGD)

    Science.gov (United States)

    The goal of this research is to develop a geometrically accurate model of cotton crop canopies for exploring changes in canopy microenvironment and physiological function with leaf structure. We develop an accurate representation of the leaves, including changes in three-dimensional folding and orie...

  9. Estimating Canopy Structure in an Amazon Forest from Laser Range Finder and IKONOS Satellite Observations

    Science.gov (United States)

    Gregory P. Asner; Michael Palace; Michael Keller; Rodrigo Pereira Jr.; Jose N. M. Silva; Johan C. Zweede

    2002-01-01

    Canopy structural data can be used for biomass estimation and studies of carbon cycling, disturbance, energy balance, and hydrological processes in tropical forest ecosystems. Scarce information on canopy dimensions reflects the difficulties associated with measuring crown height, width, depth, and area in tall, humid tropical forests. New field and spaceborne...

  10. High-Resolution Forest Canopy Height Estimation in an African Blue Carbon Ecosystem

    Science.gov (United States)

    Lagomasino, David; Fatoyinbo, Temilola; Lee, Seung-Kuk; Simard, Marc

    2015-01-01

    Mangrove forests are one of the most productive and carbon dense ecosystems that are only found at tidally inundated coastal areas. Forest canopy height is an important measure for modeling carbon and biomass dynamics, as well as land cover change. By taking advantage of the flat terrain and dense canopy cover, the present study derived digital surface models (DSMs) using stereophotogrammetric techniques on high-resolution spaceborne imagery (HRSI) for southern Mozambique. A mean-weighted ground surface elevation factor was subtracted from the HRSI DSM to accurately estimate the canopy height in mangrove forests in southern Mozambique. The mean and H100 tree height measured in both the field and with the digital canopy model provided the most accurate results with a vertical error of 1.18-1.84 m, respectively. Distinct patterns were identified in the HRSI canopy height map that could not be discerned from coarse shuttle radar topography mission canopy maps even though the mode and distribution of canopy heights were similar over the same area. Through further investigation, HRSI DSMs have the potential of providing a new type of three-dimensional dataset that could serve as calibration/validation data for other DSMs generated from spaceborne datasets with much larger global coverage. HSRI DSMs could be used in lieu of Lidar acquisitions for canopy height and forest biomass estimation, and be combined with passive optical data to improve land cover classifications.

  11. Leaf-on canopy closure in broadleaf deciduous forests predicted during winter

    Science.gov (United States)

    Twedt, Daniel J.; Ayala, Andrea J.; Shickel, Madeline R.

    2015-01-01

    Forest canopy influences light transmittance, which in turn affects tree regeneration and survival, thereby having an impact on forest composition and habitat conditions for wildlife. Because leaf area is the primary impediment to light penetration, quantitative estimates of canopy closure are normally made during summer. Studies of forest structure and wildlife habitat that occur during winter, when deciduous trees have shed their leaves, may inaccurately estimate canopy closure. We estimated percent canopy closure during both summer (leaf-on) and winter (leaf-off) in broadleaf deciduous forests in Mississippi and Louisiana using gap light analysis of hemispherical photographs that were obtained during repeat visits to the same locations within bottomland and mesic upland hardwood forests and hardwood plantation forests. We used mixed-model linear regression to predict leaf-on canopy closure from measurements of leaf-off canopy closure, basal area, stem density, and tree height. Competing predictive models all included leaf-off canopy closure (relative importance = 0.93), whereas basal area and stem density, more traditional predictors of canopy closure, had relative model importance of ≤ 0.51.

  12. Influences of Herbivory and Canopy Opening Size on Forest Regeneration in a Southern Bottomland Hardwood Forest

    Science.gov (United States)

    Steven B. Castleberry; W. Mark Ford; Carl V. Miller; Winston P. Smith

    2000-01-01

    We examined the effects of white-tailed deer (Odocoileus virginianus) browsing and canopy opening size on relative abundance and diversity of woody and herbaceous regeneration in various sized forest openings in a southern, bottomland hardwood forest over three growing seasons (1995-1997). We created 36 canopy openings (gaps), ranging from 7 to 40m...

  13. Relationships between soil-based management zones and canopy sensing for corn nitrogen management

    Science.gov (United States)

    Integrating soil-based management zones (MZ) with crop-based active canopy sensors to direct spatially variable nitrogen (N) applications has been proposed for improving N fertilizer management of corn (Zea mays L.). Analyses are needed to evaluate relationships between canopy sensing and soil-based...

  14. Integrating soil information into canopy sensor algorithms for improved corn nitrogen rate recommendation

    Science.gov (United States)

    Crop canopy sensors have proven effective at determining site-specific nitrogen (N) needs, but several Midwest states use different algorithms to predict site-specific N need. The objective of this research was to determine if soil information can be used to improve the Missouri canopy sensor algori...

  15. 30 CFR 75.1710 - Canopies or cabs; diesel-powered and electric face equipment.

    Science.gov (United States)

    2010-07-01

    ...-powered and electric face equipment, including shuttle cars, be provided with substantially constructed... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Canopies or cabs; diesel-powered and electric... Miscellaneous § 75.1710 Canopies or cabs; diesel-powered and electric face equipment. In any coal mine where the...

  16. Trait estimation in herbaceous plant assemblages from in situ canopy spectra

    NARCIS (Netherlands)

    Roelofsen, H.D.; Bodegom, van P.M.; Kooistra, L.; Witte, J.M.

    2013-01-01

    Estimating plant traits in herbaceous plant assemblages from spectral reflectance data requires aggregation of small scale trait variations to a canopy mean value that is ecologically meaningful and corresponds to the trait content that affects the canopy spectral signal. We investigated estimation

  17. Towards Automated Characterization of Canopy Layering in Mixed Temperate Forests Using Airborne Laser Scanning

    Directory of Open Access Journals (Sweden)

    Reik Leiterer

    2015-11-01

    Full Text Available Canopy layers form essential structural components, affecting stand productivity and wildlife habitats. Airborne laser scanning (ALS provides horizontal and vertical information on canopy structure simultaneously. Existing approaches to assess canopy layering often require prior information about stand characteristics or rely on pre-defined height thresholds. We developed a multi-scale method using ALS data with point densities >10 pts/m2 to determine the number and vertical extent of canopy layers (canopylayer, canopylength, seasonal variations in the topmost canopy layer (canopytype, as well as small-scale heterogeneities in the canopy (canopyheterogeneity. We first tested and developed the method on a small forest patch (800 ha and afterwards tested transferability and robustness of the method on a larger patch (180,000 ha. We validated the approach using an extensive set of ground data, achieving overall accuracies >77% for canopytype and canopyheterogeneity, and >62% for canopylayer and canopylength. We conclude that our method provides a robust characterization of canopy layering supporting automated canopy structure monitoring.

  18. Ground-Based Robotic Sensing of an Agricultural Sub-Canopy Environment

    Science.gov (United States)

    Burns, A.; Peschel, J.

    2015-12-01

    Airborne remote sensing is a useful method for measuring agricultural crop parameters over large areas; however, the approach becomes limited to above-canopy characterization as a crop matures due to reduced visual access of the sub-canopy environment. During the growth cycle of an agricultural crop, such as soybeans, the micrometeorology of the sub-canopy environment can significantly impact pod development and reduced yields may result. Larger-scale environmental conditions aside, the physical structure and configuration of the sub-canopy matrix will logically influence local climate conditions for a single plant; understanding the state and development of the sub-canopy could inform crop models and improve best practices but there are currently no low-cost methods to quantify the sub-canopy environment at a high spatial and temporal resolution over an entire growth cycle. This work describes the modification of a small tactical and semi-autonomous, ground-based robotic platform with sensors capable of mapping the physical structure of an agricultural row crop sub-canopy; a soybean crop is used as a case study. Point cloud data representing the sub-canopy structure are stored in LAS format and can be used for modeling and visualization in standard GIS software packages.

  19. A polar grid estimator of forest canopy structure metrics using airborne laser scanning data

    Science.gov (United States)

    Nicholas R. Vaughn; Greg P. Asner; Christian P. Giardina

    2013-01-01

    The structure of a forest canopy is the key determinant of light transmission, use and understory availability. Airborne light detection and ranging (LiDAR) has been used successfully to measure multiple canopy structural properties, thereby greatly reducing the fieldwork required to map spatial variation in structure. However, lidar metrics to date do not reflect the...

  20. Regeneration in canopy gaps of tierra-firme forest in the Peruvian Amazon

    DEFF Research Database (Denmark)

    Karsten, Rune Juelsborg; Jovanovic, Milos; Meilby, Henrik

    2013-01-01

    the regeneration dynamics of logging gaps with naturally occuring canopy gaps. In the concession of Consorcio Forestal Amazonico in the region of Ucayali in the Peruvian Amazon, a total of 210 circular sample plots were established in 35 gaps in unmanaged natural forest and 35 canopy gaps in forest managed...

  1. Analyzing transient closed chamber effects on canopy gas exchange for optimizing flux calculation timing

    NARCIS (Netherlands)

    Langensiepen, M.; Kupisch, M.; Wijk, van M.T.; Ewert, F.

    2012-01-01

    Transient type canopy chambers are still the only currently available practical solution for rapid screening of gas-exchange in agricultural fields. The technique has been criticized for its effect on canopy microclimate during measurement which affects the transport regime and regulation of plant

  2. Three-dimensional canopy fuel loading predicted using upward and downward sensing LiDAR systems

    Science.gov (United States)

    Nicholas S. Skowronski; Kenneth L. Clark; Matthew Duveneck; John. Hom

    2011-01-01

    We calibrated upward sensing profiling and downward sensing scanning LiDAR systems to estimates of canopy fuel loading developed from field plots and allometric equations, and then used the LiDAR datasets to predict canopy bulk density (CBD) and crown fuel weight (CFW) in wildfire prone stands in the New Jersey Pinelands. LiDAR-derived height profiles were also...

  3. Tree canopy types constrain plant distributions in ponderosa pine-Gambel oak forests, northern Arizona

    Science.gov (United States)

    Scott R. Abella

    2009-01-01

    Trees in many forests affect the soils and plants below their canopies. In current high-density southwestern ponderosa pine (Pinus ponderosa) forests, managers have opportunities to enhance multiple ecosystem values by manipulating tree density, distribution, and canopy cover through tree thinning. I performed a study in northern Arizona ponderosa...

  4. Ground-based thermal imaging of stream surface temperatures: Technique and evaluation

    Science.gov (United States)

    Bonar, Scott A.; Petre, Sally J.

    2015-01-01

    We evaluated a ground-based handheld thermal imaging system for measuring water temperatures using data from eight southwestern USA streams and rivers. We found handheld thermal imagers could provide considerably more spatial information on water temperature (for our unit one image = 19,600 individual temperature measurements) than traditional methods could supply without a prohibitive amount of effort. Furthermore, they could provide measurements of stream surface temperature almost instantaneously compared with most traditional handheld thermometers (e.g., >20 s/reading). Spatial temperature analysis is important for measurement of subtle temperature differences across waterways, and identification of warm and cold groundwater inputs. Handheld thermal imaging is less expensive and equipment intensive than airborne thermal imaging methods and is useful under riparian canopies. Disadvantages of handheld thermal imagers include their current higher expense than thermometers, their susceptibility to interference when used incorrectly, and their slightly lower accuracy than traditional temperature measurement methods. Thermal imagers can only measure surface temperature, but this usually corresponds to subsurface temperatures in well-mixed streams and rivers. Using thermal imaging in select applications, such as where spatial investigations of water temperature are needed, or in conjunction with stationary temperature data loggers or handheld electronic or liquid-in-glass thermometers to characterize stream temperatures by both time and space, could provide valuable information on stream temperature dynamics. These tools will become increasingly important to fisheries biologists as costs continue to decline.

  5. What Can Hierarchies Do for Data Streams?

    DEFF Research Database (Denmark)

    Yin, Xuepeng; Pedersen, Torben Bach

    Much effort has been put into building data streams management systems for querying data streams. Here, data streams have been viewed as a flow of low-level data items, e.g., sensor readings or IP packet data. Stream query languages have mostly been SQL-based, with the STREAM and TelegraphCQ lang...

  6. Spectral measurements at different spatial scales in potato: relating leaf, plant and canopy nitrogen status

    Science.gov (United States)

    Jongschaap, Raymond E. E.; Booij, Remmie

    2004-09-01

    Chlorophyll contents in vegetation depend on soil nitrogen availability and on crop nitrogen uptake, which are important management factors in arable farming. Crop nitrogen uptake is important, as nitrogen is needed for chlorophyll formation, which is important for photosynthesis, i.e. the conversion of absorbed radiance into plant biomass. The objective of this study was to estimate leaf and canopy nitrogen contents by near and remote sensing observations and to link observations at leaf, plant and canopy level. A theoretical base is presented for scaling-up leaf optical properties to whole plants and crops, by linking different optical recording techniques at leaf, plant and canopy levels through the integration of vertical nitrogen distribution. Field data come from potato experiments in The Netherlands in 1997 and 1998, comprising two potato varieties: Eersteling and Bintje, receiving similar nitrogen treatments (0, 100, 200 and 300 kg N ha -1) in varying application schemes to create differences in canopy nitrogen status during the growing season. Ten standard destructive field samplings were performed to follow leaf area index and crop dry weight evolution. Samples were analysed for inorganic nitrogen and total nitrogen contents. At sampling dates, spectral measurements were taken both at leaf level and at canopy level. At leaf level, an exponential relation between SPAD-502 readings and leaf organic nitrogen contents with a high correlation factor of 0.91 was found. At canopy level, an exponential relation between canopy organic nitrogen contents and red edge position ( λrep, nm) derived from reflectance measurements was found with a good correlation of 0.82. Spectral measurements (SPAD-502) at leaf level of a few square mm were related to canopy reflectance measurements (CropScan™) of approximately 0.44 m 2. Statistical regression techniques were used to optimise theoretical vertical nitrogen profiles that allowed scaling-up leaf chlorophyll measurements

  7. The 4-dimensional plant: effects of wind- induced canopy movement on light fluctuations and photosynthesis

    Directory of Open Access Journals (Sweden)

    Alexandra Jacquelyn Burgess

    2016-09-01

    Full Text Available Physical perturbation of a plant canopy brought about by wind is a ubiquitous phenomenon and yet its biological importance has often been overlooked. This is partly due to the complexity of the issue at hand: wind-induced movement (or mechanical excitation is a stochastic process which is difficult to measure and quantify; plant motion is dependent upon canopy architectural features which, until recently, were difficult to accurately represent and model in 3-dimensions; light patterning throughout a canopy is difficult to compute at high-resolutions, especially when confounded by other environmental variables. Recent studies have reinforced the expectation that canopy architecture is a strong determinant of productivity and yield; however, links between the architectural properties of the plant and its mechanical properties, particularly its response to wind, are relatively unknown. As a result, biologically relevant data relating canopy architecture, light dynamics and short-scale photosynthetic responses in the canopy setting are scarce. Here, we hypothesise that wind-induced movement will have large consequences for the photosynthetic productivity of our crops due to its influence on light patterning. To address this issue, in this study we combined high resolution 3D reconstructions of a plant canopy with a simple representation of canopy perturbation as a result of wind using solid body rotation in order to explore the potential effects on light patterning, interception and photosynthetic productivity. We looked at two different scenarios: firstly a constant distortion where a rice canopy was subject to a permanent distortion throughout the whole day; and secondly, a dynamic distortion, where the canopy was distorted in incremental steps between two extremes at set time points in the day. We find that mechanical canopy excitation substantially alters light dynamics; light distribution and modelled canopy carbon gain. We then discuss methods

  8. Industrial-Strength Streaming Video.

    Science.gov (United States)

    Avgerakis, George; Waring, Becky

    1997-01-01

    Corporate training, financial services, entertainment, and education are among the top applications for streaming video servers, which send video to the desktop without downloading the whole file to the hard disk, saving time and eliminating copyrights questions. Examines streaming video technology, lists ten tips for better net video, and ranks…

  9. Pilot-Streaming: Design Considerations for a Stream Processing Framework for High-Performance Computing

    OpenAIRE

    Andre Luckow; Peter Kasson; Shantenu Jha

    2016-01-01

    This White Paper (submitted to STREAM 2016) identifies an approach to integrate streaming data with HPC resources. The paper outlines the design of Pilot-Streaming, which extends the concept of Pilot-abstraction to streaming real-time data.

  10. Mapping canopy gaps in an indigenous subtropical coastal forest using high resolution WorldView-2 data

    CSIR Research Space (South Africa)

    Malahlela, O

    2014-01-01

    Full Text Available Invasive species usually colonize canopy gaps in tropical and sub-tropical forests, which results in loss of native species. Therefore, an understanding of the location and distribution of canopy gaps will assist in predicting the occurrence...

  11. Hyperspectral data mining to identify relevant canopy spectral features for estimating durum wheat growth, nitrogen status, and yield

    Science.gov (United States)

    Modern hyperspectral sensors permit reflectance measurements of crop canopies in hundreds of narrow spectral wavebands. While these sensors describe plant canopy reflectance in greater detail than multispectral sensors, they also suffer from issues with data redundancy and spectral autocorrelation. ...

  12. Explaining the convector effect in canopy turbulence by means of large-eddy simulation

    Science.gov (United States)

    Banerjee, Tirtha; De Roo, Frederik; Mauder, Matthias

    2017-06-01

    Semi-arid forests are found to sustain a massive sensible heat flux in spite of having a low surface to air temperature difference by lowering the aerodynamic resistance to heat transfer (rH) - a property called the canopy convector effect (CCE). In this work large-eddy simulations are used to demonstrate that the CCE appears more generally in canopy turbulence. It is indeed a generic feature of canopy turbulence: rH of a canopy is found to reduce with increasing unstable stratification, which effectively increases the aerodynamic roughness for the same physical roughness of the canopy. This relation offers a sufficient condition to construct a general description of the CCE. In addition, we review existing parameterizations for rH from the evapotranspiration literature and test to what extent they are able to capture the CCE, thereby exploring the possibility of an improved parameterization.

  13. Variation of directional reflectance factors with structural changes of a developing alfalfa canopy

    Science.gov (United States)

    Kirchner, J. A.; Kimes, D. S.; Mcmurtrey, J. E., III

    1982-01-01

    Directional reflectance factors of an alfalfa canopy were determined and related to canopy structure, agronomic variables, and irradiance conditions at four periods during a cutting cycle. Nadir and off-nadir reflectance factors decreased with increasing biomass in Thematic Mapper band 3(0.63-0.69 micrometer) and increased with increasing biomass in band 4(0.76-0.90 micrometer). The sensor view angle had less impact on perceived reflectance as the alfalfa progressed from an erectophile canopy of stems after harvest to a near planophile canopy of leaves at maturity. Studies of directional reflectance are needed for testing and upgrading vegetation canopy models and to aid in the complex interpretation problems presented by aircraft scanners and pointable satellites where illumination and viewing geometries may vary widely. Distinct changes in the patterns of radiance observed by a sensor as structural and biomass changes occur are keys to monitoring the growth and condition of crops.

  14. Do Small Canopy Gaps Created by Japanese Black Bears Facilitate Fruiting of Fleshy-Fruited Plants?

    Directory of Open Access Journals (Sweden)

    Kazuaki Takahashi

    Full Text Available Japanese black bears often break branches when climbing trees and feeding on fruit in canopies, thereby creating small canopy gaps. However, the role of black bear-created canopy gaps has not been evaluated in the context of multiple forest dynamics. Our hypothesis was that small canopy gaps created by black bears improve light conditions, which facilitates fruiting of adult fleshy-fruited plants located beneath the gaps, and also that this chain interaction depends on interactions among the size of gaps, improved light conditions, forest layers, and life form of plants. The rPPFD, size of black bear-created canopy gaps, and fruiting/non-fruiting of fleshy-fruited plants were investigated in five forest layers beneath black-bear-created canopy gaps and closed canopies of Mongolian oak (Quercus crispula. We found that light conditions improved beneath black bear-disturbed trees with canopy gaps of large size, and the effect of improvement of light conditions was reduced with descending forest layers. Fruiting of fleshy-fruited plants, especially woody lianas and trees, was facilitated by the improvement of light conditions accompanied by an increase in the size of black-bear-created gaps. Data from this study revealed that canopy disturbance by black bears was key for improving light conditions and accelerating fruiting of fleshy-fruited trees and woody lianas in the canopy layers in particular. Therefore, our hypothesis was mostly supported. Our results provide evidence that Japanese black bears have high potential as ecosystem engineers that increase the availability of resources (light and fruit in this study to other species by causing physical state changes in biotic materials (branches of Q. crispula in this study.

  15. Do Small Canopy Gaps Created by Japanese Black Bears Facilitate Fruiting of Fleshy-Fruited Plants?

    Science.gov (United States)

    Takahashi, Kazuaki; Takahashi, Kaori; Washitani, Izumi

    2015-01-01

    Japanese black bears often break branches when climbing trees and feeding on fruit in canopies, thereby creating small canopy gaps. However, the role of black bear-created canopy gaps has not been evaluated in the context of multiple forest dynamics. Our hypothesis was that small canopy gaps created by black bears improve light conditions, which facilitates fruiting of adult fleshy-fruited plants located beneath the gaps, and also that this chain interaction depends on interactions among the size of gaps, improved light conditions, forest layers, and life form of plants. The rPPFD, size of black bear-created canopy gaps, and fruiting/non-fruiting of fleshy-fruited plants were investigated in five forest layers beneath black-bear-created canopy gaps and closed canopies of Mongolian oak (Quercus crispula). We found that light conditions improved beneath black bear-disturbed trees with canopy gaps of large size, and the effect of improvement of light conditions was reduced with descending forest layers. Fruiting of fleshy-fruited plants, especially woody lianas and trees, was facilitated by the improvement of light conditions accompanied by an increase in the size of black-bear-created gaps. Data from this study revealed that canopy disturbance by black bears was key for improving light conditions and accelerating fruiting of fleshy-fruited trees and woody lianas in the canopy layers in particular. Therefore, our hypothesis was mostly supported. Our results provide evidence that Japanese black bears have high potential as ecosystem engineers that increase the availability of resources (light and fruit in this study) to other species by causing physical state changes in biotic materials (branches of Q. crispula in this study).

  16. Canopy tree species drive local heterogeneity in soil nitrogen availability in a lowland tropical forest

    Science.gov (United States)

    Osborne, B. B.; Nasto, M.; Asner, G. P.; Balzotti, C.; Cleveland, C. C.; Taylor, P.; Townsend, A. R.; Porder, S.

    2016-12-01

    The high phylogenetic and functional diversity of tree species in lowland tropical forests make field-based investigations of organismal influences on soil nutrient cycling challenging. Here, we used remotely-detected canopy nitrogen (N) data from the Carnegie Airborne Observatory to identify and characterize ¼ ha plots of a mature forest with either high or low canopy N on the Osa Peninsula in Costa Rica. Specifically we were interested in mechanisms by which foliar N might influence soil N, or the reverse. A non-dimensional scaling analysis suggested that high and low canopy N plots differ in their emergent (≥40 cm DBH) tree communities, though there were few putative N fixers in any of the plots. We found litterfall mass was similar beneath all canopies. However, mean DOC solubility of litter was 0.40% of dry biomass in low canopy N plots compared to 0.26% in high N plots. Additionally, litter leachate C:N was twice as high in litter from the low canopy N plots (61±1.4) compared with litter from the high N plots (30±1.4). We found strong positive correlations between canopy N and concentrations of soil KCl-extractable soil NO3- and net nitrification and net N mineralization rates (N=5; P<0.0001 in all cases). Under high canopy N, mean NO3-N concentrations were roughly an order of magnitude higher than beneath low N canopies (2.7±0.39 and 0.19±0.05, respectively). We hypothesize that differences in litter chemistry lead to differences in leachate quality that promote high soil N under canopies with high foliar N. Our findings suggest that remote sensing of foliar characteristics may offer an effective way to study spatial patterns in soil biogeochemistry in diverse tropical forests.

  17. Waveform- and Terrestrial Lidar Assessment of the Usual (Structural) Suspects in a Forest Canopy

    Science.gov (United States)

    van Aardt, J. A.; Romanczyk, P.; Kelbe, D.; van Leeuwen, M.; Cawse-Nicholson, K.; Gough, C. M.; Kampe, T. U.

    2015-12-01

    Forest inventory has evolved from standard stem diameter-height relationships, to coarse canopy metrics, to more involved ecologically-meaningful variables, such as leaf area index (LAI) and even canopy radiative transfer as a function of canopy gaps, leaf clumping, and leaf angle distributions. Accurate and precise measurement of the latter set of variables presents a challenge to the ecological and modeling communities; however, relatively novel remote sensing modalities, e.g., waveform lidar (wlidar) and terrestrial lidar systems (TLS), have the potential to adress this challenge. Research teams at Rochester Institute of Technology (RIT) and the Virginia Commonwealth University (VCU) have been collaborating with the National Ecological Observation Network (NEON) to assess vegetation canopy structure and variation at the University of Michigan Biological Research Station and the NEON Northeast domain (Harvard Forest, MA). Airborne small-footprint wlidar data, in-situ TLS data, and first-principles, physics-based simulation tools are being used to study (i) the impact of vegetation canopy geometric elements on wlidar signals (twigs and petioles have been deemed negligible), (ii) the analysis of airborne wlidar data for top-down assessment of canopy metrics such as LAI, and (iii) our ability to extract "bottom-up" canopy structure from TLS using scans registered to each other using a novel marker-free registration approach (e.g., basal area: R2=0.82, RMSE=7.43 m2/ha). Such studies indicate that we can potentially assess radiative transfer through vegetation canopies remotely using a vertically-stratified approach with wlidar, and augment such an approach via rapid-scan TLS technology to gain a better understanding of fine-scale variation in canopy structure. This in turn is key to quantifying and modeling radiative transfer based on understanding of forest canopy structural change as a function of ecosystem development, climate, and anthropogenic drivers.

  18. Dynamical modeling of tidal streams

    International Nuclear Information System (INIS)

    Bovy, Jo

    2014-01-01

    I present a new framework for modeling the dynamics of tidal streams. The framework consists of simple models for the initial action-angle distribution of tidal debris, which can be straightforwardly evolved forward in time. Taking advantage of the essentially one-dimensional nature of tidal streams, the transformation to position-velocity coordinates can be linearized and interpolated near a small number of points along the stream, thus allowing for efficient computations of a stream's properties in observable quantities. I illustrate how to calculate the stream's average location (its 'track') in different coordinate systems, how to quickly estimate the dispersion around its track, and how to draw mock stream data. As a generative model, this framework allows one to compute the full probability distribution function and marginalize over or condition it on certain phase-space dimensions as well as convolve it with observational uncertainties. This will be instrumental in proper data analysis of stream data. In addition to providing a computationally efficient practical tool for modeling the dynamics of tidal streams, the action-angle nature of the framework helps elucidate how the observed width of the stream relates to the velocity dispersion or mass of the progenitor, and how the progenitors of 'orphan' streams could be located. The practical usefulness of the proposed framework crucially depends on the ability to calculate action-angle variables for any orbit in any gravitational potential. A novel method for calculating actions, frequencies, and angles in any static potential using a single orbit integration is described in the Appendix.

  19. Coherence Effects in L-Band Active and Passive Remote Sensing of Quasi-Periodic Corn Canopies

    Science.gov (United States)

    Utku, Cuneyt; Lang, Roger H.

    2011-01-01

    Due to their highly random nature, vegetation canopies can be modeled using the incoherent transport theory for active and passive remote sensing applications. Agricultural vegetation canopies however are generally more structured than natural vegetation. The inherent row structure in agricultural canopies induces coherence effects disregarded by the transport theory. The objective of this study is to demonstrate, via Monte-Carlo simulations, these coherence effects on L-band scattering and thermal emission from corn canopies consisting of only stalks.

  20. Effect of smoke on subcanopy shaded light, canopy temperature, and carbon dioxide uptake in an Amazon rainforest

    OpenAIRE

    Doughty, C. E.; Flanner, M. G.; Goulden, M. L.

    2010-01-01

    Daytime Net Ecosystem CO2 uptake (NEE) in an Amazon forest has been shown to increase significantly during smoky periods associated with biomass burning. We investigated whether the increase in CO2 uptake is caused by increased irradiance in the lower canopy, which results from increased above-canopy diffuse light, or by decreased canopy temperature, which results from decreased above-canopy net radiation. We used Sun photometers measuring aerosol optical depth to find nonsmoky (Aerosol Optic...

  1. Stream Habitat Reach Summary - NCWAP [ds158

    Data.gov (United States)

    California Department of Resources — The Stream Habitat - NCWAP - Reach Summary [ds158] shapefile contains in-stream habitat survey data summarized to the stream reach level. It is a derivative of the...

  2. Percent Agriculture Adjacent to Streams (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The type of vegetation along a stream influences the water quality in the stream. Intact buffer strips of natural vegetation along streams tend to intercept...

  3. Percent Forest Adjacent to Streams (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The type of vegetation along a stream influences the water quality in the stream. Intact buffer strips of natural vegetation along streams tend to intercept...

  4. Germination and establishment of Tillandsia eizii (Bromeliaceae) in the canopy of an oak forest in Chiapas, Mexico

    NARCIS (Netherlands)

    Toledo-Aceves, T.; Wolf, J.H.D.

    2008-01-01

    We assessed the effectiveness of repopulating the inner canopy and middle canopy of oak trees with seeds and seedlings of the epiphytic bromeliad Tillandsia eizii. Canopy germination was 4.7 percent, considerably lower than in vitro (92%). Of the tree-germinated seedlings, only 1.5 percent survived

  5. Estimating foliar biochemistry from hyperspectral data in mixed forest canopy

    DEFF Research Database (Denmark)

    Huber Gharib, Silvia; Kneubühler, Mathias; Psomas, Achilleas

    2008-01-01

    data to estimate the foliar concentration of nitrogen, carbon and water in three mixed forest canopies in Switzerland. With multiple linear regression models, continuum-removed and normalized HyMap spectra were related to foliar biochemistry on an individual tree level. The six spectral wavebands used...... in the regression models were selected using both an enumerative branch-and-bound (B&B) and a forward search algorithm. The models estimated foliar concentrations with adjusted R2 values between 0.47 and 0.63, based on the best-sampled study site. Regression models composed of wavebands selected by the B......&B algorithm always performed better than those developed with forward search. When extrapolating nitrogen concentrations from one to another study site, regression models solely based on causal wavebands (known from literature) mostly outperformed models based on all wavebands. The study demonstrates...

  6. Parasite-induced fruit mimicry in a tropical canopy ant.

    Science.gov (United States)

    Yanoviak, S P; Kaspari, M; Dudley, R; Poinar, G

    2008-04-01

    Some parasites modify characteristics of intermediate hosts to facilitate their consumption by subsequent hosts, but examples of parasite-mediated mimicry are rare. Here we report dramatic changes in the appearance and behavior of nematode-parasitized ants such that they resemble ripe fruits in the tropical rain forest canopy. Unlike healthy ants, which are completely black, infected ants have bright red, berry-like gasters full of parasite eggs. The infected gasters are held in a conspicuous elevated position as the ants are walking, and they are easily detached from living ants, which also exhibit reduced defensive responses. This combination of changes presumably makes the infected ants attractive to frugivorous birds, which ingest the red gasters and pass the parasite eggs in their feces. The feces are collected by ants and fed to the developing brood, thus completing the cycle. This is the first documentation of parasites causing apparent fruit mimicry in an animal host to complete their life cycle.

  7. Canopy Level Chlorophyll Fluorescence and the PRI in a Cornfield

    Science.gov (United States)

    Middleton, Elizabeth M.; Cheng, Yen-Ben; Corp, Lawrence A.; Campbell, Petya K. E.; Huemmrich, K. Fred; Zhang, Qingyuan; Kustas, William P.

    2012-01-01

    Two bio-indicators, the Photochemical Reflectance Index (PRI) and solar-induced red and far-red Chlorophyll Fluorescence (SIF), were derived from directional hyperspectral observations and studied in a cornfield on two contrasting days in the growing season. Both red and far-red SIF exhibited higher values on the day when the canopy in the early senescent stage, but only the far-red SIF showed sensitivity to viewing geometry. Consequently, the red/far-red SIF ratio varied greatly among azimuth positions while the largest values were obtained for the "hotspot" at both growth stages. This ratio was lower (approx.0.88 +/- 0.4) in early July than in August when the ratio approached equivalence (near approx.1). In concert, the PRI exhibited stronger responses to both zenith and azimuth angles and different values on the two growth stages. The potential of using these indices to monitor photosynthetic activities needs further investigation

  8. Bayesian analysis for uncertainty estimation of a canopy transpiration model

    Science.gov (United States)

    Samanta, S.; Mackay, D. S.; Clayton, M. K.; Kruger, E. L.; Ewers, B. E.

    2007-04-01

    A Bayesian approach was used to fit a conceptual transpiration model to half-hourly transpiration rates for a sugar maple (Acer saccharum) stand collected over a 5-month period and probabilistically estimate its parameter and prediction uncertainties. The model used the Penman-Monteith equation with the Jarvis model for canopy conductance. This deterministic model was extended by adding a normally distributed error term. This extension enabled using Markov chain Monte Carlo simulations to sample the posterior parameter distributions. The residuals revealed approximate conformance to the assumption of normally distributed errors. However, minor systematic structures in the residuals at fine timescales suggested model changes that would potentially improve the modeling of transpiration. Results also indicated considerable uncertainties in the parameter and transpiration estimates. This simple methodology of uncertainty analysis would facilitate the deductive step during the development cycle of deterministic conceptual models by accounting for these uncertainties while drawing inferences from data.

  9. Microtopographic controls on lowland Amazonian canopy diversity from imaging spectroscopy.

    Science.gov (United States)

    Féret, Jean-Baptiste; Asner, Gregory P

    Microtopographic variation is ubiquitous throughout lowland Amazonia, and it may impart patterns of species richness and abundance, and perhaps community compositional changes. To date, no studies have determined the degree to which lowland microtopography influences forest canopy diversity. We developed the first high-resolution maps of forest canopy diversity in Amazonia, focusing on four landscapes on two river systems in Peru. Spectroscopic images were acquired using the Carnegie Airborne Observatory combined with a new method based on spectral species to map α- and β-diversity. We analyzed spatial patterns in diversity with respect to floodplain and terrace (terra firme) surfaces and in upriver and downriver locations with contrasting landscape morphologies. We found slightly lower average α-diversity in floodplains, but with greater variance than in terrace communities caused by the floodplain mix of swamp forests, anoxic low-diversity ecosystems, and high-diversity areas. β-diversity estimated with the Bray-Curtis dissimilarity (BC) was strongly related to microtopography, with floodplains showing higher internal compositional dissimilarity than terraces. Throughout all landscapes, remotely mapped BC within terrace environments ranged from 0.25 to 0.43, but these values increased 30–77% on floodplains. Upriver landscapes characterized by higher terraces showed more distinct community turnover than did their downstream counterparts. We conclude that microtopography strongly influences β-diversity throughout the study landscapes, but terrain is weakly associated with variation in α-diversity. We uncover the importance of microtopography in determining species composition in lowland Amazonia and highlight the value of imaging spectroscopy for biodiversity research and conservation.

  10. Estimating Canopy Nitrogen Concentration in Sugarcane Using Field Imaging Spectroscopy

    Directory of Open Access Journals (Sweden)

    Marc Souris

    2012-06-01

    Full Text Available The retrieval of nutrient concentration in sugarcane through hyperspectral remote sensing is widely known to be affected by canopy architecture. The goal of this research was to develop an estimation model that could explain the nitrogen variations in sugarcane with combined cultivars. Reflectance spectra were measured over the sugarcane canopy using a field spectroradiometer. The models were calibrated by a vegetation index and multiple linear regression. The original reflectance was transformed into a First-Derivative Spectrum (FDS and two absorption features. The results indicated that the sensitive spectral wavelengths for quantifying nitrogen content existed mainly in the visible, red edge and far near-infrared regions of the electromagnetic spectrum. Normalized Differential Index (NDI based on FDS(750/700 and Ratio Spectral Index (RVI based on FDS(724/700 are best suited for characterizing the nitrogen concentration. The modified estimation model, generated by the Stepwise Multiple Linear Regression (SMLR technique from FDS centered at 410, 426, 720, 754, and 1,216 nm, yielded the highest correlation coefficient value of 0.86 and Root Mean Square Error of the Estimate (RMSE value of 0.033%N (n = 90 with nitrogen concentration in sugarcane. The results of this research demonstrated that the estimation model developed by SMLR yielded a higher correlation coefficient with nitrogen content than the model computed by narrow vegetation indices. The strong correlation between measured and estimated nitrogen concentration indicated that the methods proposed in this study could be used for the reliable diagnosis of nitrogen quantity in sugarcane. Finally, the success of the field spectroscopy used for estimating the nutrient quality of sugarcane allowed an additional experiment using the polar orbiting hyperspectral data for the timely determination of crop nutrient status in rangelands without any requirement of prior

  11. Marsh canopy structure changes and the Deepwater Horizon oil spill

    Science.gov (United States)

    Ramsey, Elijah W.; Rangoonwala, Amina; Jones, Cathleen E.

    2016-01-01

    Marsh canopy structure was mapped yearly from 2009 to 2012 in the Barataria Bay, Louisiana coastal region that was impacted by the 2010 Deepwater Horizon (DWH) oil spill. Based on the previously demonstrated capability of NASA's UAVSAR polarimetric synthetic aperture radar (PolSAR) image data to map Spartina alterniflora marsh canopy structure, structure maps combining the leaf area index (LAI) and leaf angle distribution (LAD, orientation) were constructed for yearly intervals that were directly relatable to the 2010 LAI-LAD classification. The yearly LAI-LAD and LAI difference maps were used to investigate causes for the previously revealed dramatic change in marsh structure from prespill (2009) to postspill (2010, spill cessation), and the occurrence of structure features that exhibited abnormal spatial and temporal patterns. Water level and salinity records showed that freshwater releases used to keep the oil offshore did not cause the rapid growth from 2009 to 2010 in marsh surrounding the inner Bay. Photointerpretation of optical image data determined that interior marsh patches exhibiting rapid change were caused by burns and burn recovery, and that the pattern of 2010 to 2011 LAI decreases in backshore marsh and extending along some tidal channels into the interior marsh were not associated with burns. Instead, the majority of 2010 to 2011 shoreline features aligned with vectors displaying the severity of 2010 shoreline oiling from the DWH spill. Although the association is not conclusive of a causal oil impact, the coexistent pattern is a significant discovery. PolSAR marsh structure mapping provided a unique perspective of marsh biophysical status that enhanced detection of change and monitoring of trends important to management effectiveness.

  12. Spring 5 & reactive streams

    CERN Multimedia

    CERN. Geneva; Clozel, Brian

    2017-01-01

    Spring is a framework widely used by the world-wide Java community, and it is also extensively used at CERN. The accelerator control system is constituted of 10 million lines of Java code, spread across more than 1000 projects (jars) developed by 160 software engineers. Around half of this (all server-side Java code) is based on the Spring framework. Warning: the speakers will assume that people attending the seminar are familiar with Java and Spring’s basic concepts. Spring 5.0 and Spring Boot 2.0 updates (45 min) This talk will cover the big ticket items in the 5.0 release of Spring (including Kotlin support, @Nullable and JDK9) and provide an update on Spring Boot 2.0, which is scheduled for the end of the year. Reactive Spring (1h) Spring Framework 5.0 has been released - and it now supports reactive applications in the Spring ecosystem. During this presentation, we'll talk about the reactive foundations of Spring Framework with the Reactor project and the reactive streams specification. We'll al...

  13. Habitat Restoration and Monitoring in Urban Streams: The Case of Tryon Creek in Portland, OR

    Science.gov (United States)

    Rios Touma, B. P.; Prescott, C.; Axtell, S.; Kondolf, G. M.

    2013-12-01

    Habitat enhancement in urban streams can be important for threatened species but challenging, because of altered catchment hydrology and urban encroachment on floodplains and channel banks. In Portland (OR) restoration actions have been undertaken at the watershed scale (e.g.: storm water management, protection of sites with high watershed value) to improve water quality, and at reach scale, when water quality and quantity are adequate, to increase habitat heterogeneity and stabilize banks. To evaluate reach-scale restoration projects in the Tryon Creek watershed, we sampled benthic macroinvertebrates and conducted habitat quality surveys pre-project and over 4 years post- project. Species sensitive to pollution and diversity of trophic groups increased after restoration. Although taxonomical diversity increased after restoration, but was still low compared to reference streams. We found no significant changes in trait proportions and functional diversity. Functional diversity, proportion of shredders and semivoltine invertebrates were significantly higher in reference streams than the restored stream reaches. We hypothesized that inputs of coarse particulate organic matter and land use at watershed scale may explain the differences in biodiversity between restored and reference stream reaches. Variables such as substrate composition, canopy cover or large wood pieces did not change from pre- to post-project, so could not explain the changes in the community. This may have been partly attributable to insensitivity of the visual estimate methods used, but likely also reflects an importance influence of watershed variables on aquatic biota - suggesting watershed actions may be more effective for the ecological recovery of streams. For future projects, we recommend multihabitat benthic sampling supported by studies of channel geomorphology to better understand stream response to restoration actions.

  14. A Study of Ultrasonic Sensors to Intelligent Estimation of Tree Canopy Volumes

    Directory of Open Access Journals (Sweden)

    M Eskandari

    2015-03-01

    Full Text Available Many research projects have been conducted about using ultrasonic sensors to estimate canopy volume. This study investigates using software applications such as artificial neural network (ANN to improve the estimation of canopy volume by using ultrasonic sensors. A special experimental system was built. The system had three ultrasonic sensors mounted vertically on a wooden pole with an equal distance of 0.6 m. As the wooden pole moves with a constant speed, the ultrasonic sensors measure the thickness of tree canopy with sampling rate of 4 Hz. Experiments were conducted on 5 samples of Benjamin tree at three speed levels of 35,45 and 55 cm s-1 in three replications. The real volume of trees was measured manually with rectangular elements method. After a full passing of ultrasonic sensors, potential features such as canopy diameter, average width of tree canopy and height of the tree canopy were considered as the inputs to the ANN model and the manually volume as the output of the model. Optimal ANN model was selected based on mean square error and correlation coefficient. The results showed that 13-16-7-1 was the optimal neuron numbers in ANN topology for estimating canopy volume.

  15. Episodic Canopy Structural Transformations and Biological Invasion in a Hawaiian Forest

    Directory of Open Access Journals (Sweden)

    Christopher S. Balzotti

    2017-07-01

    Full Text Available The remaining native forests on the Hawaiian Islands have been recognized as threatened by changing climate, increasing insect outbreak, new deadly pathogens, and growing populations of canopy structure-altering invasive species. The objective of this study was to assess long-term, net changes to upper canopy structure in sub-montane forests on the eastern slope of Mauna Kea volcano, Hawai‘i, in the context of continuing climate events, insect outbreaks, and biological invasion. We used high-resolution multi-temporal Light Detection and Ranging (LiDAR data to quantify near-decadal net changes in forest canopy height and gap distributions at a critical transition between alien invaded lowland and native sub-montane forest at the end of a recent drought and host-specific insect (Scotorythra paludicola outbreak. We found that sub-montane forests have experienced a net loss in average canopy height, and therefore structure and aboveground carbon stock. Additionally, where invasive alien tree species co-dominate with native trees, the upper canopy structure became more homogeneous. Tracking the loss of forest canopy height and spatial variation with airborne LiDAR is a cost-effective way to monitor forest canopy health, and to track and quantify ecological impacts of invasive species through space and time.

  16. Total canopy transmittance estimated from small-footprint, full-waveform airborne LiDAR

    Science.gov (United States)

    Milenković, Milutin; Wagner, Wolfgang; Quast, Raphael; Hollaus, Markus; Ressl, Camillo; Pfeifer, Norbert

    2017-06-01

    Canopy transmittance is a directional and wavelength-specific physical parameter that quantifies the amount of radiation attenuated when passing through a vegetation layer. The parameter has been estimated from LiDAR data in many different ways over the years. While early LiDAR methods treated each returned echo equally or weighted the echoes according to their return order, recent methods have focused more on the echo energy. In this study, we suggest a new method of estimating the total canopy transmittance considering only the energy of ground echoes. Therefore, this method does not require assumptions for the reflectance or absorption behavior of vegetation. As the oblique looking geometry of LiDAR is explicitly considered, canopy transmittance can be derived for individual laser beams and can be mapped spatially. The method was applied on a contemporary full-waveform LiDAR data set collected under leaf-off conditions and over a study site that contains two sub regions: one with a mixed (coniferous and deciduous) forest and another that is predominantly a deciduous forest in an alluvial plain. The resulting canopy transmittance map was analyzed for both sub regions and compared to aerial photos and the well-known fractional cover method. A visual comparison with aerial photos showed that even single trees and small canopy openings are visible in the canopy transmittance map. In comparison with the fractional cover method, the canopy transmittance map showed no saturation, i.e., there was better separability between patches with different vegetation structure.

  17. Temporal Variability of Canopy Light Use Efficiency and its Environmental Controls in a Subtropical Mangrove Wetland

    Science.gov (United States)

    Zhu, X.

    2016-12-01

    Mangrove wetlands play an important role in global carbon cycle due to their strong carbon sequestration resulting from high plant carbon assimilation and low soil respiration. However, temporal variability of carbon sequestration in mangrove wetlands is less understood since carbon processes of mangrove wetlands are influenced by many complicated and concurrent environmental controls including tidal activities, site climate and soil conditions. Canopy light use efficiency (LUE), is the most important plant physiological parameter that can be used to describe the temporal dynamics of canopy photosynthesis, and therefore a better characterization of temporal variability of canopy LUE will improve our understanding in mangrove photosynthesis and carbon balance. One of our aims is to study the temporal variability of canopy LUE and its environmental controls in a subtropical mangrove wetland. Half-hourly canopy LUE is derived from eddy covariance (EC) carbon flux and photosynthesis active radiation observations, and half-hourly environmental controls we measure include temperature, humidity, precipitation, radiation, tidal height, salinity, etc. Another aim is to explore the links between canopy LUE and spectral indices derived from near-surface tower-based remote sensing (normalized difference vegetation index, enhanced vegetation index, photochemical reflectance index, solar-induced chlorophyll fluorescence, etc.), and then identify potential quantitative relationships for developing remote sensing-based estimation methods of canopy LUE. At present, some instruments in our in-situ observation system have not yet been installed (planned in next months) and therefore we don't have enough measurements to support our analysis. However, a preliminary analysis of our historical EC and climate observations in past several years indicates that canopy LUE shows strong temporal variability and is greatly affected by environmental factors such as tidal activity. Detailed and

  18. Forest canopy height estimation using double-frequency repeat pass interferometry

    Science.gov (United States)

    Karamvasis, Kleanthis; Karathanassi, Vassilia

    2015-06-01

    In recent years, many efforts have been made in order to assess forest stand parameters from remote sensing data, as a mean to estimate the above-ground carbon stock of forests in the context of the Kyoto protocol. Synthetic aperture radar interferometry (InSAR) techniques have gained traction in last decade as a viable technology for vegetation parameter estimation. Many works have shown that forest canopy height, which is a critical parameter for quantifying the terrestrial carbon cycle, can be estimated with InSAR. However, research is still needed to understand further the interaction of SAR signals with forest canopy and to develop an operational method for forestry applications. This work discusses the use of repeat pass interferometry with ALOS PALSAR (L band) HH polarized and COSMO Skymed (X band) HH polarized acquisitions over the Taxiarchis forest (Chalkidiki, Greece), in order to produce accurate digital elevation models (DEMs) and estimate canopy height with interferometric processing. The effect of wavelength-dependent penetration depth into the canopy is known to be strong, and could potentially lead to forest canopy height mapping using dual-wavelength SAR interferometry at X- and L-band. The method is based on scattering phase center separation at different wavelengths. It involves the generation of a terrain elevation model underneath the forest canopy from repeat-pass L-band InSAR data as well as the generation of a canopy surface elevation model from repeat pass X-band InSAR data. The terrain model is then used to remove the terrain component from the repeat pass interferometric X-band elevation model, so as to enable the forest canopy height estimation. The canopy height results were compared to a field survey with 6.9 m root mean square error (RMSE). The effects of vegetation characteristics, SAR incidence angle and view geometry, and terrain slope on the accuracy of the results have also been studied in this work.

  19. Bayesian analysis of canopy transpiration models: A test of posterior parameter means against measurements

    Science.gov (United States)

    Mackay, D. Scott; Ewers, Brent E.; Loranty, Michael M.; Kruger, Eric L.; Samanta, Sudeep

    2012-04-01

    SummaryBig-leaf models of transpiration are based on the hypothesis that structural heterogeneity within forest canopies can be ignored at stand or larger scales. However, the adoption of big-leaf models is de facto rather than de jure, as forests are never structurally or functionally homogeneous. We tested big-leaf models both with and without modification to include canopy gaps, in a heterogeneous quaking aspen stand having a range of canopy densities. Leaf area index (L) and canopy closure were obtained from biometric data, stomatal conductance parameters were obtained from sap flux measurements, while leaf gas exchange data provided photosynthetic parameters. We then rigorously tested model-data consistency by incrementally starving the models of these measured parameters and using Bayesian Markov Chain Monte Carlo simulation to retrieve the withheld parameters. Model acceptability was quantified with Deviance Information Criterion (DIC), which penalized model accuracy by the number of retrieved parameters. Big-leaf models overestimated canopy transpiration with increasing error as canopy density declined, but models that included gaps had minimal error regardless of canopy density. When models used measured L the other parameters were retrieved with minimal bias. This showed that simple canopy models could predict transpiration in data scarce regions where only L was measured. Models that had L withheld had the lowest DIC values suggesting that they were the most acceptable models. However, these models failed to retrieve unbiased parameter estimates indicating a mismatch between model structure and data. By quantifying model structure and data requirements this new approach to evaluating model-data fusion has advanced the understanding of canopy transpiration.

  20. Canopy seed banks as time capsules of biodiversity in pasture-remnant tree crowns.

    Science.gov (United States)

    Nadkarni, Nalini M; Haber, Willam A

    2009-10-01

    Tropical pastures present multiple barriers to tree regeneration and restoration. Relict trees serve as "regeneration foci" because they ameliorate the soil microclimate and serve as safe spots for dispersers. Here, we describe another mechanism by which remnant trees may facilitate pasture regeneration: the presence of seed banks in the canopy soil that accumulates from decomposing epiphytes within the crowns of mature remnant trees in tropical cloud forest pastures. We compared seed banks of canopy soils (histosols derived from fallen leaves, fruits, flower, and twigs of host trees and epiphytes, dead bryophytes, bark, detritus, dead animals, and microorganisms, and dust that accumulate on trunks and the upper surfaces of large branches) in pastures, canopy soils in primary forest trees, and soil on the forest floor in Monteverde, Costa Rica. There were 5211 epiphytic and terrestrial plant seeds in the three habitats. All habitats were dominated by seeds in a relatively small number of plant families, most of which were primarily woody, animal pollinated, and animal dispersed. The density of seeds on the forest floor was greater than seed density in either pasture-canopy or forest-canopy soils; the latter two did not differ. Eight species in 44 families and 61 genera from all of the habitats were tallied. There were 37 species in the pasture-canopy soil, 33 in the forest-canopy soil, and 57 on the forest floor. Eleven species were common to all habitats. The mean species richness in the pasture canopy was significantly higher than the forest canopy (F =83.38; p banks of pasture trees can function as time capsules by providing propagules that are removed in both space and time from the primary forest. Their presence may enhance the ability of pastures to regenerate more quickly, reinforcing the importance of trees in agricultural settings.

  1. Influence of a forest canopy on velocity and temperature profiles under synoptic conditions

    Science.gov (United States)

    Pattantyus, A.; Hocut, C. M.; Wang, Y.; Creegan, E.; Krishnamurthy, R.; Otarola-Bust, S.; Leo, L. S.; Fernando, H. J. S.

    2017-12-01

    Numerous field campaigns have found the importance of surface conditions on boundary layer evolution. Specifically, soil properties were found to control surface fluxes of heat, moisture, and momentum that significantly modulated the atmospheric boundary layer (ABL) over flat and sparsely vegetated surfaces. There have been increasing numbers of studies related to canopy impacts on the boundary layer, such as CHATS, however few canopy studies over complex terrain have been performed with limited instrumentation. The recent Perdigão campaign greatly augmented the previous datasets available by instrumenting a unique, parallel ridge mountain in Perdigão, Portugal in unprecedented spatial and temporal resolution using traditional mast mounted sensors, instrumented aerial platforms, and remote sensing instrumentation. To aid the canopy studies, the Army Research Laboratory deployed sonic anemometers within the canopy transecting the ridges perpendicularly and placed five additional heavily instrumented meteorological masts on the northeast facing slope to investigate detailed slope flows. At each of these towers, there was an average of six levels of temperature, relative humidity, and wind sensors located above & below the canopy height which allowed a detailed study of the sub-canopy layer. In addition to the towers, two scanning Doppler LiDARs were oriented such that they performed synchronized dual Doppler virtual tower scans, extending from the canopy interface to several hundred meters above. Synoptically forced periods were analyzed to examine: the ABL structure of temperature, moisture, wind, and turbulent kinetic energy. Of particular interest are the shear layer at the canopy interface, recirculation events, as well as ejection and sweep events within the canopy and how these modify surface fluxes along the slopes.

  2. Canopy Stomatal Conductance Unlocks Partitioning of Ecosystem-Atmosphere Carbon and Water Exchanges

    Science.gov (United States)

    Wehr, R. A.; Munger, J. W.; McManus, J. B.; Nelson, D. D.; Zahniser, M. S.; Davidson, E. A.; Wofsy, S. C.; Saleska, S. R.

    2016-12-01

    Stomata are a key nexus in biosphere-atmosphere interactions: the gateway for both carbon gain and water loss by plant canopies. Accurate quantification of canopy stomatal conductance enables partitioning of both evapotranspiration (ET) and net ecosystem-atmosphere CO2 exchange (NEE)—the latter via CO2 isotope flux measurements. To those ends, we determined the behavior of canopy stomatal conductance in a temperate deciduous forest based on heat and water vapor flux measurements, and validated that determination based on uptake of carbonyl sulfide, which also passes through the stomata. We found that the canopy stomatal conductance followed a simple empirical function of leaf area index, light intensity, diffuse light fraction, and leaf-air water vapor gradient. The dependence on light intensity was highly linear, in contrast to the leaf scale, and in contrast to the behavior of canopy photosynthesis. Using canopy stomatal conductance, we partitioned ET and found that evaporation in this ecosystem peaks at the time of the year when soils are driest and atmospheric vapor pressure deficit is low—because soil temperature is an important driver. As stomatal conductance impacts not only the rate of photosynthesis but also the fractionation of carbon isotopes by photosynthesis, we were also able to combine canopy stomatal conductance with CO2 isotope flux measurements in order to partition NEE. We found that: (1) canopy respiration is much less during the day than at night, likely due to the inhibition of leaf respiration by light (that is, the Kok effect), and (2) canopy photosynthetic light-use efficiency does not decline through the summer, in contrast to standard estimates. These results clarify how leaf-level physiological dynamics impact ecosystem-atmosphere gas exchange, and demonstrate the utility of combining multiple tracers to constrain the processes underlying that exchange.

  3. Re-Meandering of Lowland Streams

    DEFF Research Database (Denmark)

    Pedersen, Morten Lauge; Kristensen, Klaus Kevin; Friberg, Nikolai

    2014-01-01

    We evaluated the restoration of physical habitats and its influence on macroinvertebrate community structure in 18 Danish lowland streams comprising six restored streams, six streams with little physical alteration and six channelized streams. We hypothesized that physical habitats...... and macroinvertebrate communities of restored streams would resemble those of natural streams, while those of the channelized streams would differ from both restored and near-natural streams. Physical habitats were surveyed for substrate composition, depth, width and current velocity. Macroinvertebrates were sampled...... along 100 m reaches in each stream, in edge habitats and in riffle/run habitats located in the center of the stream. Restoration significantly altered the physical conditions and affected the interactions between stream habitat heterogeneity and macroinvertebrate diversity. The substrate in the restored...

  4. Hydrography - Boating Special Regulation Streams

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This layer contains those streams/rivers within Pennsylvania that have specifc special regulations related to boating as defined by the Pennsylvania Fish and Boat...

  5. Cellular Subcompartments through Cytoplasmic Streaming.

    Science.gov (United States)

    Pieuchot, Laurent; Lai, Julian; Loh, Rachel Ann; Leong, Fong Yew; Chiam, Keng-Hwee; Stajich, Jason; Jedd, Gregory

    2015-08-24

    Cytoplasmic streaming occurs in diverse cell types, where it generally serves a transport function. Here, we examine streaming in multicellular fungal hyphae and identify an additional function wherein regimented streaming forms distinct cytoplasmic subcompartments. In the hypha, cytoplasm flows directionally from cell to cell through septal pores. Using live-cell imaging and computer simulations, we identify a flow pattern that produces vortices (eddies) on the upstream side of the septum. Nuclei can be immobilized in these microfluidic eddies, where they form multinucleate aggregates and accumulate foci of the HDA-2 histone deacetylase-associated factor, SPA-19. Pores experiencing flow degenerate in the absence of SPA-19, suggesting that eddy-trapped nuclei function to reinforce the septum. Together, our data show that eddies comprise a subcellular niche favoring nuclear differentiation and that subcompartments can be self-organized as a consequence of regimented cytoplasmic streaming. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. On-stream analysis systems

    International Nuclear Information System (INIS)

    Howarth, W.J.; Watt, J.S.

    1982-01-01

    An outline of some commercially available on-stream analysis systems in given. Systems based on x-ray tube/crystal spectrometers, scintillation detectors, proportional detectors and solid-state detectors are discussed

  7. ATLAS Live: Collaborative Information Streams

    CERN Document Server

    Goldfarb, S; The ATLAS collaboration

    2011-01-01

    I report on a pilot project launched in 2010 focusing on facilitating communication and information exchange within the ATLAS Collaboration, through the combination of digital signage software and webcasting. The project, called ATLAS Live, implements video streams of information, ranging from detailed detector and data status to educational and outreach material. The content, including text, images, video and audio, is collected, visualised and scheduled using digital signage software. The system is robust and flexible, utilizing scripts to input data from remote sources, such as the CERN Document Server, Indico, or any available URL, and to integrate these sources into professional-quality streams, including text scrolling, transition effects, inter and intra-screen divisibility. Information is published via the encoding and webcasting of standard video streams, viewable on all common platforms, using a web browser or other common video tool. Authorisation is enforced at the level of the streaming and at th...

  8. Streaming in English Primary Schools

    Science.gov (United States)

    Acland, H.

    1973-01-01

    This paper seeks to extend our knowledge of ability grouping through the reanalysis of two sets of survey data, the Plowden survey (Peaker, 1967) and the NFER streaming survey (Barker Lunn, 1970). (Editor)

  9. STREAMS - Technology Programme. Yearbook 2003

    International Nuclear Information System (INIS)

    2003-01-01

    The STREAMS Technology Programme addresses municipal waste. Municipal waste is composed of waste from households and small businesses. The programme focuses on five areas Waste prevention, Collection, transportation, and management of waste streams, Waste treatment technologies, Waste recycling into raw materials and new products, Landfill technologies. The development projects of the STREAMS Programme utilize a number of different technologies, such as biotechnology, information technology, materials technology, measurement and analysis, and automation technology. Finnish expertise in materials recycling technologies and related electronics and information technology is extremely high on a worldwide scale even though the companies represent SMEs. Started in 2001, the STREAMS programme has a total volume of 27 million euros, half of which is funded by Tekes. The programme runs through the end of 2004. (author)

  10. Transfer of 7Be, 210Pb and 210Po in a forest canopy of Japanese cedar

    International Nuclear Information System (INIS)

    Osaki, S.; Tagawa, Y.; Sugihara, S.; Maeda, Y.; Inokura, Y.

    2003-01-01

    The concentrations of 7 Be, 210 Pb and 210 Po of ca. 60 parts of a whole tree of Japanese cedar and of underlying litter and soil samples were determined for studying their transfer in a forest canopy. The results suggest that the mean residence times of 7 Be and 210 Pb in the forest canopy were ca. 20 and 900 days, respectively, and the dry deposition rate of 7 Be on the forest canopy was about a half of the total deposition rate. (author)

  11. View angle effects in the radiometric measurement of plant canopy temperatures

    Science.gov (United States)

    Kimes, D. S.; Idso, S. B.; Pinter, P. J., Jr.; Reginato, R. J.; Jackson, R. D.

    1980-01-01

    The thermal infrared sensor response from a wheat canopy was extremely non-Lambertian because of spatial variations in energy flow processes; the effective radiant temperature of the sensor varied as much as 13 C with changing view angle. This variation of sensor response was accurately quantified (root-mean-square of deviations between theoretical and measured responses reduced to 1.1 C) as a function of vegetation canopy geometry, vertical temperature distribution of canopy components, and sensor view angle. The results have important implications for optimizing sensor view angles for remote sensing missions.

  12. Estimating the relative water content of leaves in a cotton canopy

    Science.gov (United States)

    Vanderbilt, Vern; Daughtry, Craig; Kupinski, Meredith; Bradley, Christine; French, Andrew; Bronson, Kevin; Chipman, Russell; Dahlgren, Robert

    2017-08-01

    Remotely sensing plant canopy water status remains a long term goal of remote sensing research. Established approaches to estimating canopy water status — the Crop Water Stress Index, the Water Deficit Index and the Equivalent Water Thickness — involve measurements in the thermal or reflective infrared. Here we report plant water status estimates based upon analysis of polarized visible imagery of a cotton canopy measured by ground Multi-Spectral Polarization Imager (MSPI). Such estimators potentially provide access to the plant hydrological photochemistry that manifests scattering and absorption effects in the visible spectral region.

  13. Characterization and Modeling of Atmospheric Flow Within and Above Plant Canopies

    Science.gov (United States)

    Souza Freire Grion, Livia

    The turbulent flow within and above plant canopies is responsible for the exchange of momentum, heat, gases and particles between vegetation and the atmosphere. Turbulence is also responsible for the mixing of air inside the canopy, playing an important role in chemical and biophysical processes occurring in the plants' environment. In the last fifty years, research has significantly advanced the understanding of and ability to model the flow field within and above the canopy, but important issues remain unsolved. In this work, we focus on (i) the estimation of turbulent mixing timescales within the canopy from field data; and (ii) the development of new computationally efficient modeling approaches for the coupled canopy-atmosphere flow field. The turbulent mixing timescale represents how quickly turbulence creates a well-mixed environment within the canopy. When the mixing timescale is much smaller than the timescale of other relevant processes (e.g. chemical reactions, deposition), the system can be assumed to be well-mixed and detailed modeling of turbulence is not critical to predict the system evolution. Conversely, if the mixing timescale is comparable or larger than the other timescales, turbulence becomes a controlling factor for the concentration of the variables involved; hence, turbulence needs to be taken into account when studying and modeling such processes. In this work, we used a combination of ozone concentration and high-frequency velocity data measured within and above the canopy in the Amazon rainforest to characterize turbulent mixing. The eddy diffusivity parameter (used as a proxy for mixing efficiency) was applied in a simple theoretical model of one-dimensional diffusion, providing an estimate of turbulent mixing timescales as a function of height within the canopy and time-of-day. Results showed that, during the day, the Amazon rainforest is characterized by well-mixed conditions with mixing timescales smaller than thirty minutes in the

  14. Abundance of Green Tree Frogs and Insects in Artificial Canopy Gaps in a Bottomland Hardwood Forest.

    Energy Technology Data Exchange (ETDEWEB)

    Horn, Scott; Hanula, James, L.; Ulyshen, Michael D.; Kilgo, John, C.

    2005-04-01

    ABSTRACT - We found more green tree frogs ( Hyla cinerea) n canopv gaps than in closed canopy forest. Of the 331 green tree frogs observed, 88% were in canopv gaps. Likewise, higher numbers and biomasses of insects were captured in the open gap habitat Flies were the most commonlv collected insect group accounting for 54% of the total capture. These data suggest that one reason green tree frogs were more abundant in canopy gaps was the increased availability of prey and that small canopy gaps provide early successional habitats that are beneficial to green tree frog populations.

  15. Impact of forest cover on increases in temperature under the canopy

    Science.gov (United States)

    Rebetez, M.; Renaud, V.,; Von Arx, G.; Dobbertin, M.

    2012-04-01

    Many physical and biological natural systems are changing their seasonal timing due to increases in temperature. Our observations of open-site and below-canopy climatic conditions from 14 sites in Switzerland based on LWF data (Long-term Forest Ecosystem Research) show that there is an important impact of forest cover on temperature under the canopy. This impact strongly differs between daily minimum and maximum temperature, and also depends on season, altitude or forest types. Our results show that the general moderating effect of canopy on below-canopy microclimate was strongest during the growing season, particularly in summer, and depended in a complex way on the general weather situation. It was often strongest during extraordinary warm and dry periods, thus creating relatively stable conditions for plants and regenerating trees under the canopy. The Swiss LWF sites represent different regions, orientations and elevations, from the Jura Mountains to the southern side of the Alps, composed of deciduous, coniferous and mixed forests. Meteorological measurements were carried out under the canopy at the observation plots, and in open areas outside the forest plots. We compared air temperature differences between open-site and below-canopy, relating them to air humidity and other meteorological parameters as well as to site specific conditions. Our results illustrate the moderating effects of different forest ecosystems on temperatures. They show that the cooling impact of the forest on daily maximum temperatures is predominantly determined by the forest composition and by the dominant tree species, i.e. factors strongly linked to the degree of canopy closure, causing greater differences during warmer periods. For daily minimum temperatures (warmer temperatures under the canopy), the differences were greater in conifer forests, the determining factor appearing to be linked more to slope orientation. The most efficient ecosystems for providing a cool shelter during

  16. Effects of salmon-derived nutrients and habitat characteristics on population densities of stream-resident sculpins.

    Directory of Open Access Journals (Sweden)

    Noel R Swain

    Full Text Available Movement of nutrients across ecosystem boundaries can have important effects on food webs and population dynamics. An example from the North Pacific Rim is the connection between productive marine ecosystems and freshwaters driven by annual spawning migrations of Pacific salmon (Oncorhynchus spp. While a growing body of research has highlighted the importance of both pulsed nutrient subsidies and disturbance by spawning salmon, their effects on population densities of vertebrate consumers have rarely been tested, especially across streams spanning a wide range of natural variation in salmon densities and habitat characteristics. We studied resident freshwater prickly (Cottus asper, and coastrange sculpins (C. aleuticus in coastal salmon spawning streams to test whether their population densities are affected by spawning densities of pink and chum salmon (O. gorbuscha and O. keta, as well as habitat characteristics. Coastrange sculpins occurred in the highest densities in streams with high densities of spawning pink and chum salmon. They also were more dense in streams with high pH, large watersheds, less area covered by pools, and lower gradients. In contrast, prickly sculpin densities were higher in streams with more large wood and pools, and less canopy cover, but their densities were not correlated with salmon. These results for coastrange sculpins provide evidence of a numerical population response by freshwater fish to increased availability of salmon subsidies in streams. These results demonstrate complex and context-dependent relationships between spawning Pacific salmon and coastal ecosystems and can inform an ecosystem-based approach to their management and conservation.

  17. nitrogen saturation in stream ecosystems

    OpenAIRE

    Earl, S. R.; Valett, H. M.; Webster, J. R.

    2006-01-01

    The concept of nitrogen (N) saturation has organized the assessment of N loading in terrestrial ecosystems. Here we extend the concept to lotic ecosystems by coupling Michaelis-Menten kinetics and nutrient spiraling. We propose a series of saturation response types, which may be used to characterize the proximity of streams to N saturation. We conducted a series of short-term N releases using a tracer ((NO3)-N-15-N) to measure uptake. Experiments were conducted in streams spanning a gradient ...

  18. Plant science in forest canopies--the first 30 years of advances and challenges (1980-2010).

    Science.gov (United States)

    Lowman, Margaret D; Schowalter, Timothy D

    2012-04-01

    As an emerging subdiscipline of forest biology, canopy science has undergone a transition from observational, 'oh-wow' exploration to a more hypothesis-driven, experimental arena for rigorous field biology. Although efforts to explore forest canopies have occurred for a century, the new tools to access the treetops during the past 30 yr facilitated not only widespread exploration but also new discoveries about the complexity and global effects of this so-called 'eighth continent of the planet'. The forest canopy is the engine that fixes solar energy in carbohydrates to power interactions among forest components that, in turn, affect regional and global climate, biogeochemical cycling and ecosystem services. Climate change, biodiversity conservation, fresh water conservation, ecosystem productivity, and carbon sequestration represent important components of forest research that benefit from access to the canopy for rigorous study. Although some canopy variables can be observed or measured from the ground, vertical and horizontal variation in environmental conditions and processes within the canopy that determine canopy-atmosphere and canopy-forest floor interactions are best measured within the canopy. Canopy science has matured into a cutting-edge subset of forest research, and the treetops also serve as social and economic drivers for sustainable communities, fostering science education and ecotourism. This interdisciplinary context of forest canopy science has inspired innovative new approaches to environmental stewardship, involving diverse stakeholders. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  19. The Northeast Stream Quality Assessment

    Science.gov (United States)

    Van Metre, Peter C.; Riva-Murray, Karen; Coles, James F.

    2016-04-22

    In 2016, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) is assessing stream quality in the northeastern United States. The goal of the Northeast Stream Quality Assessment (NESQA) is to assess the quality of streams in the region by characterizing multiple water-quality factors that are stressors to aquatic life and evaluating the relation between these stressors and biological communities. The focus of NESQA in 2016 will be on the effects of urbanization and agriculture on stream quality in all or parts of eight states: Connecticut, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, and Vermont.Findings will provide the public and policymakers with information about the most critical factors affecting stream quality, thus providing insights about possible approaches to protect the health of streams in the region. The NESQA study will be the fourth regional study conducted as part of NAWQA and will be of similar design and scope to the first three, in the Midwest in 2013, the Southeast in 2014, and the Pacific Northwest in 2015 (http://txpub.usgs.gov/RSQA/).

  20. Fish introductions and light modulate food web fluxes in tropical streams: a whole-ecosystem experimental approach.

    Science.gov (United States)

    Collins, Sarah M; Thomas, Steven A; Heatherly, Thomas; MacNeill, Keeley L; Leduc, Antoine O H C; López-Sepulcre, Andrés; Lamphere, Bradley A; El-Sabaawi, Rana W; Reznick, David N; Pringle, Catherine M; Flecker, Alexander S

    2016-11-01

    Decades of ecological study have demonstrated the importance of top-down and bottom-up controls on food webs, yet few studies within this context have quantified the magnitude of energy and material fluxes at the whole-ecosystem scale. We examined top-down and bottom-up effects on food web fluxes using a field experiment that manipulated the presence of a consumer, the Trinidadian guppy Poecilia reticulata, and the production of basal resources by thinning the riparian forest canopy to increase incident light. To gauge the effects of these reach-scale manipulations on food web fluxes, we used a nitrogen ( 15 N) stable isotope tracer to compare basal resource treatments (thinned canopy vs. control) and consumer treatments (guppy introduction vs. control). The thinned canopy stream had higher primary production than the natural canopy control, leading to increased N fluxes to invertebrates that feed on benthic biofilms (grazers), fine benthic organic matter (collector-gatherers), and organic particles suspended in the water column (filter feeders). Stream reaches with guppies also had higher primary productivity and higher N fluxes to grazers and filter feeders. In contrast, N fluxes to collector-gatherers were reduced in guppy introduction reaches relative to upstream controls. N fluxes to leaf-shredding invertebrates, predatory invertebrates, and the other fish species present (Hart's killifish, Anablepsoides hartii) did not differ across light or guppy treatments, suggesting that effects on detritus-based linkages and upper trophic levels were not as strong. Effect sizes of guppy and canopy treatments on N flux rates were similar for most taxa, though guppy effects were the strongest for filter feeding invertebrates while canopy effects were the strongest for collector-gatherer invertebrates. Combined, these results extend previous knowledge about top-down and bottom-up controls on ecosystems by providing experimental, reach-scale evidence that both pathways can

  1. Vegetation Canopy Structure from NASA EOS Multiangle Imaging

    Science.gov (United States)

    Chopping, M.; Martonchik, J. V.; Bull, M.; Rango, A.; Schaaf, C. B.; Zhao, F.; Wang, Z.

    2008-12-01

    We used red band bidirectional reflectance data from the NASA Multiangle Imaging SpectroRadiometer (MISR) and the MODerate resolution Imaging Spectroradiometer (MODIS) mapped onto a 250 m grid in a multiangle approach to obtain estimates of woody plant fractional cover and crown height through adjustment of the mean radius and mean crown aspect ratio parameters of an hybrid geometric-optical (GO) model. We used a technique to rapidly obtain MISR surface reflectance estimates at 275 m resolution through regression on 1 km MISR land surface estimates previously corrected for atmospheric attenuation using MISR aerosol estimates. MISR data were used to make end of dry season maps from 2000-2007 for parts of southern New Mexico, while MODIS data were used to replicate previous results obtained using MISR for June 2002 over large parts of New Mexico and Arizona. We also examined the applicability of this method in Alaskan tundra and forest by adjusting the GO model against MISR data for winter (March 2000) and summer (August 2008) scenes. We found that the GO model crown aspect ratio from MISR followed dominant shrub species distributions in the USDA, ARS Jornada Experimental Range, enabling differentiation of the more spherical crowns of creosotebush (Larrea tridentata) from the more prolate crowns of honey mesquite (Prosopis glandulosa). The measurement limits determined from 2000-2007 maps for a large part of southern New Mexico are ~0.1 in fractional shrub crown cover and ~3 m in mean canopy height (results obtained using data acquired shortly after precipitation events that radically darkened and altered the structure and angular response of the background). Typical standard deviations over the period for 12 sites covering a range of cover types are on the order of 0.05 in crown cover and 2 m in mean canopy height. We found that the GO model can be inverted to retrieve reasonable distributions of canopy parameters in southwestern environments using MODIS V005 red

  2. Restoration of a forested wetland ecosystem in a thermally impacted stream corridor

    International Nuclear Information System (INIS)

    Nelson, E.A.; McKee, W.H. Jr.; Dulohery, C.J.

    1995-01-01

    The Savannah River Swamp is a 3,020 Ha forested wetland on the floodplain of the Savannah River and is located on the Department of Energy's Savannah River Site (SRS). Major impacts to the swamp hydrology occurred with the completion of the production reactors and one coal-fired powerhouse at the SRS in the early 1950's. Water was pumped from the Savannah River, through secondary heat exchangers of the reactors, and discharged into three of the tributary streams that flow into the swamp. This continued from 1954 to 1988 at various levels. The sustained increases in water volume resulted in overflow of the original stream banks and the creation of additional floodplains. Accompanying this was considerable erosion of the original stream corridor and deposition of a deep silt layer on the newly formed delta. Heated water was discharged directly into Pen Branch and water temperature in the stream often exceeded 50 C. The nearly continuous flood of the swamp, the thermal load of the water, and the heavy silting resulted in complete mortality of the original vegetation in large areas of the floodplain. Research has been ongoing to determine methods to reintroduce tree species characteristic of more mature forested wetlands. The goal of the restoration is to create structural and biological diversity in the forest canopy by establishing a mix of species typically present in riparian and wetland forests of the area

  3. Coho salmon dependence on intermittent streams.

    Science.gov (United States)

    P.J. Wigington; J.L. Ebersole; M.E. Colvin; S.G. Leibowitz; B. Miller; B. Hansen; H. Lavigne; D. White; J.P. Baker; M.R. Church; J.R. Brooks; M.A. Cairns; J.E. Compton

    2006-01-01

    In this paper, we quantify the contributions of intermittent streams to coho salmon production in an Oregon coastal watershed. We provide estimates of (1) proportion of spawning that occurred in intermittent streams, (2) movement of juveniles into intermittent streams, (3) juvenile survival in intermittent and perennial streams during winter, and (4) relative size of...

  4. Streaming Process Discovery and Conformance Checking

    DEFF Research Database (Denmark)

    Burattin, Andrea

    2018-01-01

    Streaming process discovery, streaming conformance checking, and streaming process mining in general (also known as online process mining) are disciplines which analyze event streams to extract a process model or to assess their conformance with respect to a given reference model. The main...

  5. Unique Challenges to (Federal) Enterprise Streaming

    Science.gov (United States)

    Walls, Bryan

    2006-01-01

    Enterprise streaming has different parameters than consumer Streaming. The government enterprise has some differences on top of that. I'd like to highlight some issues shared by the Federal government as a whole, with a closer look at streaming within NASA. Then we'll look at NASA's strategy for streaming.

  6. Process for humidifying a gaseous fuel stream

    International Nuclear Information System (INIS)

    Sederquist, R. A.

    1985-01-01

    A fuel gas stream for a fuel cell is humidified by a recirculating hot liquid water stream using the heat of condensation from the humidified stream as the heat to vaporize the liquid water. Humidification is accomplished by directly contacting the liquid water with the dry gas stream in a saturator to evaporate a small portion of water. The recirculating liquid water is reheated by direct contact with the humidified gas stream in a condenser, wherein water is condensed into the liquid stream. Between the steps of humidifying and condensing water from the gas stream it passes through the fuel cell and additional water, in the form of steam, is added thereto

  7. Relative lack of regeneration of shade-intolerant canopy species in some South African forests

    CSIR Research Space (South Africa)

    Midgley, JJ

    1995-01-01

    Full Text Available tent to have higher concentrations of leaf nitrogen, suggesting that they are shade-intolerant species. Similarly the canopy species which are recruiting adequately have low level of leaf nitrogen....

  8. Soil characteristics under legume and non-legume tree canopies in ...

    African Journals Online (AJOL)

    %, 100% and 150% the distance from tree trunk to canopy edge of leguminous sabiá (Mimosa caesalpiniifolia Benth.) and espinheiro (Machaerium aculeatum Raddi) and non-legume cajueiro (Anacardium occidentale L.) and jaqueira ...

  9. LBA-ECO LC-15 Aerodynamic Roughness Maps of Vegetation Canopies, Amazon Basin: 2000

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set provides physical roughness maps of vegetation canopies in the Amazon Basin. The images are estimates of aerodynamic roughness length (Z0)...

  10. 3D super resolution range-gated imaging for canopy reconstruction and measurement

    Science.gov (United States)

    Huang, Hantao; Wang, Xinwei; Sun, Liang; Lei, Pingshun; Fan, Songtao; Zhou, Yan

    2018-01-01

    In this paper, we proposed a method of canopy reconstruction and measurement based on 3D super resolution range-gated imaging. In this method, high resolution 2D intensity images are grasped by active gate imaging, and 3D images of canopy are reconstructed by triangular-range-intensity correlation algorithm at the same time. A range-gated laser imaging system(RGLIS) is established based on 808 nm diode laser and gated intensified charge-coupled device (ICCD) camera with 1392´1040 pixels. The proof experiments have been performed for potted plants located 75m away and trees located 165m away. The experiments show it that can acquire more than 1 million points per frame, and 3D imaging has the spatial resolution about 0.3mm at the distance of 75m and the distance accuracy about 10 cm. This research is beneficial for high speed acquisition of canopy structure and non-destructive canopy measurement.

  11. Upper canopy pollinators of Eucryphia cordifolia Cav., a tree of South American temperate rain forest

    Directory of Open Access Journals (Sweden)

    Cecilia Smith-Ramírez

    2016-05-01

    Full Text Available Ecological processes in the upper canopy of temperate forests have been seldom studied because of the limited accessibility. Here, we present the results of the first survey of the pollinator assemblage and the frequency of insect visits to flowers in the upper branches of ulmo, Eucryphia cordifolia Cav., an emergent 30-40 m-tall tree in rainforests of Chiloé Island, Chile. We compared these findings with a survey of flower visitors restricted to lower branches of E. cordifolia 1- in the forest understory, 2- in lower branches in an agroforestry area. We found 10 species of pollinators in canopy, and eight, 12 and 15 species in understory, depending of tree locations. The main pollinators of E. cordifolia in the upper canopy differed significantly from the pollinator assemblage recorded in lower tree branches. We conclude that the pollinator assemblages of the temperate forest canopy and interior are still unknown.

  12. SAFARI 2000 Leaf Area Index and Canopy Structure, Kalahari Transect, 1999-2000

    Data.gov (United States)

    National Aeronautics and Space Administration — Data from the Tracing Radiation and Architecture of Canopies (TRAC) instrument were collected at five sites along the International Geosphere-Biosphere Programme...

  13. A physical model of the bidirectional reflectance of vegetation canopies. I - Theory. II - Inversion and validation

    Science.gov (United States)

    Verstraete, Michel M.; Pinty, Bernard; Dickinson, Robert E.

    1990-01-01

    A new physically based analytical model of the bidirectional reflectance of vegetation canopies is derived. The model expresses the bidirectional reflectance field of a semiinfinite canopy as a combination of functions describing (1) the optical properties of the leaves through their single-scattering albedo and their phase function, (2) the average distribution of leaf orientations, and (3) the architecture of the canopy. The model is validated against laboratory and ground-based measurements in the visible and IR spectral regions, taken over two vegetation covers. The intrinsic optical properties of leaves and the information on the geometrical canopy arrangements in space were obtained using an inversion procedure based on a nonlinear optimization technique. Model predictions of bidirectional reflectances obtained using the inversion procedure compare well with actual observations.

  14. ECHIDNA LIDAR Campaigns: Forest Canopy Imagery and Field Data, U.S.A., 2007-2009

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set contains forest canopy scan data from the Echidna Validation Instrument (EVI) and field measurements data from three campaigns conducted in...

  15. LiDAR-derived Vegetation Canopy Structure, Great Smoky Mountains National Park, 2011

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset provides multiple-return LiDAR-derived vegetation canopy structure at 30-meter spatial resolution for the Great Smoky Mountains National Park (GSMNP)....

  16. Model for absorption and release of gaseous materials by forest canopies

    International Nuclear Information System (INIS)

    Murphy, C.E. Jr.

    1976-01-01

    A model of the physical processes defining the absorption and release of materials by a forest canopy has been developed. The model deals with the turbulent transport of gaseous materials in the surface boundary layer near the canopy, the turbulent transport in the canopy atmosphere, the transport through the boundary layer near the leaf and soil surface, and the solution of the gaseous materials in intracellular fluids and subsequent diffusion into the leaf cells. The model is used to simulate the uptake of molecular tritium by the forest canopy and the subsequent release of tritiated water. Results of dynamic simulations of tritium uptake and release are compared with data collected at the time of a release of molecular tritium to the atmosphere

  17. CMS: Mangrove Canopy Characteristics and Land Cover Change, Tanzania, 1990-2014

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides canopy height, land cover change, and stand age estimates for mangrove forests in the Rufiji River Delta in Tanzania. The estimates were...

  18. Effect of Vertical Canopy Architecture on Transpiration, Thermoregulation and Carbon Assimilation

    Directory of Open Access Journals (Sweden)

    Tirtha Banerjee

    2018-04-01

    Full Text Available Quantifying the impact of natural and anthropogenic disturbances such as deforestation, forest fires and vegetation thinning among others on net ecosystem—atmosphere exchanges of carbon dioxide, water vapor and heat—is an important aspect in the context of modeling global carbon, water and energy cycles. The absence of canopy architectural variation in horizontal and vertical directions is a major source of uncertainty in current climate models attempting to address these issues. This manuscript demonstrates the importance of considering the vertical distribution of foliage density by coupling a leaf level plant biophysics model with analytical solutions of wind flow and light attenuation in a horizontally homogeneous canopy. It is demonstrated that plant physiological response in terms of carbon assimilation, transpiration and canopy surface temperature can be widely different for two canopies with the same leaf area index (LAI but different leaf area density distributions, under several conditions of wind speed, light availability, soil moisture availability and atmospheric evaporative demand.

  19. SAFARI 2000 Leaf Area Index and Canopy Structure, Kalahari Transect, 1999-2000

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: Data from the Tracing Radiation and Architecture of Canopies (TRAC) instrument were collected at five sites along the International Geosphere-Biosphere...

  20. Assimilating satellite-based canopy height within an ecosystem model to estimate aboveground forest biomass

    Science.gov (United States)

    Joetzjer, E.; Pillet, M.; Ciais, P.; Barbier, N.; Chave, J.; Schlund, M.; Maignan, F.; Barichivich, J.; Luyssaert, S.; Hérault, B.; von Poncet, F.; Poulter, B.

    2017-07-01

    Despite advances in Earth observation and modeling, estimating tropical biomass remains a challenge. Recent work suggests that integrating satellite measurements of canopy height within ecosystem models is a promising approach to infer biomass. We tested the feasibility of this approach to retrieve aboveground biomass (AGB) at three tropical forest sites by assimilating remotely sensed canopy height derived from a texture analysis algorithm applied to the high-resolution Pleiades imager in the Organizing Carbon and Hydrology in Dynamic Ecosystems Canopy (ORCHIDEE-CAN) ecosystem model. While mean AGB could be estimated within 10% of AGB derived from census data in average across sites, canopy height derived from Pleiades product was spatially too smooth, thus unable to accurately resolve large height (and biomass) variations within the site considered. The error budget was evaluated in details, and systematic errors related to the ORCHIDEE-CAN structure contribute as a secondary source of error and could be overcome by using improved allometric equations.

  1. CMS: LiDAR-derived Tree Canopy Cover for Pennsylvania, USA, 2008

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides estimated high-resolution (1-m) tree canopy cover for the state of Pennsylvania, USA, in 2008. The data were derived from 2006-2008...

  2. ECHIDNA LIDAR Campaigns: Forest Canopy Imagery and Field Data, U.S.A., 2007-2009

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains forest canopy scan data from the Echidna Validation Instrument (EVI) and field measurements data from three campaigns conducted in the United...

  3. CMS: Mangrove Canopy Height from High-resolution Stereo Image Pairs, Mozambique, 2012

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides canopy height estimates for mangrove forests at 0.6 x 0.6 m resolution in three study sites located in southeastern Mozambique, Africa: two...

  4. CLPX-Ground: Sub-Canopy Energetics at the Local Scale Observation Site (LSOS)

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set consists of solar and longwave radiation data from beneath two pine canopies (one uniform, one discontinuous) at the Local Scale Observation Site...

  5. CMS: LiDAR-derived Canopy Height, Elevation for Sites in Kalimantan, Indonesia, 2014

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset provides canopy height and elevation data products derived from airborne LiDAR data collected over 90 sites on the island of Borneo in late 2014. The...

  6. CMS: GLAS LiDAR-derived Global Estimates of Forest Canopy Height, 2004-2008

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides estimates of forest canopy height derived from the Geoscience Laser Altimeter System (GLAS) LiDAR instrument that was aboard the NASA Ice,...

  7. CLPX-Ground: Sub-Canopy Energetics at the Local Scale Observation Site (LSOS), Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set consists of solar and longwave radiation data from beneath two pine canopies (one uniform, one discontinuous) at the Local Scale Observation Site...

  8. CMS: Mangrove Canopy Height Estimates from Remote Imagery, Zambezi Delta, Mozambique

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides high resolution canopy height estimates for mangrove forests in the Zambezi Delta, Mozambique, Africa. The estimates were derived from three...

  9. The reduction of storm surge by vegetation canopies: Three-dimensional simulations

    Science.gov (United States)

    Sheng, Y. Peter; Lapetina, Andrew; Ma, Gangfeng

    2012-10-01

    Significant buffering of storm surges by vegetation canopies has been suggested by limited observations and simple numerical studies, particularly following recent Hurricanes Katrina, Rita, and Wilma. Here we simulate storm surge and inundation over idealized topographies using a three-dimensional vegetation-resolving storm surge model coupled to a shallow water wave model and show that a sufficiently wide and tall vegetation canopy reduces inundation on land by 5 to 40 percent, depending upon various storm and canopy parameters. Effectiveness of the vegetation in dissipating storm surge and inundation depends on the intensity and forward speed of the hurricane, as well as the density, height, and width of the vegetation canopy. Reducing the threat to coastal vegetation from development, sea level rise, and other anthropogenic factors would help to protect many coastal regions against storm surges.

  10. CMS: LiDAR-derived Biomass, Canopy Height and Cover, Sonoma County, California, 2013

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides estimates of above-ground biomass (AGB), canopy height, and percent tree cover at 30-m spatial resolution for Sonoma County, California, USA,...

  11. The arthropod community of Scots pine (Pinus sylvestris L.) canopies in Norway

    Czech Academy of Sciences Publication Activity Database

    Thunes, K. H.; Skartveit, J.; Gjerde, I.; Starý, Josef; Solhoy, T.; Fjellberg, A.; Kobro, S.; Nakahara, S.; zur Strassen, R.; Vierbergen, G.; Szadziewski, R.; Hagan, D. V.; Grogan Jr., W. L.; Jonassen, T.; Aakra, K.; Anonby, J.; Greve, L.; Aukema, B.; Heller, K.; Michelsen, V.; Haenni, J.-P.; Emeljanov, A. F.; Douwes, P.; Berggren, K.; Franzen, J.; Disney, R. H. L.; Prescher, S.; Johanson, K. A.; Mamaev, B.; Podenas, S.; Andersen, S.; Gaimari, S. D.; Nartshuk, E.; Soli, G. E. E.; Papp, L.; Midtgaard, F.; Andersen, A.; von Tschirnhaus, M.; Bächli, G.; Olsen, K. M.; Olsvik, H.; Földvári, M.; Raastad, J. E.; Hansen, L. O.; Djursvoll, P.

    2004-01-01

    Roč. 15, - (2004), s. 65-90 ISSN 0785-8760 Institutional research plan: CEZ:AV0Z6066911 Keywords : arthropod community * Scots pine * canopies Subject RIV: EH - Ecology, Behaviour Impact factor: 0.298, year: 2004

  12. Tree STEM and Canopy Biomass Estimates from Terrestrial Laser Scanning Data

    Science.gov (United States)

    Olofsson, K.; Holmgren, J.

    2017-10-01

    In this study an automatic method for estimating both the tree stem and the tree canopy biomass is presented. The point cloud tree extraction techniques operate on TLS data and models the biomass using the estimated stem and canopy volume as independent variables. The regression model fit error is of the order of less than 5 kg, which gives a relative model error of about 5 % for the stem estimate and 10-15 % for the spruce and pine canopy biomass estimates. The canopy biomass estimate was improved by separating the models by tree species which indicates that the method is allometry dependent and that the regression models need to be recomputed for different areas with different climate and different vegetation.

  13. TREE STEM AND CANOPY BIOMASS ESTIMATES FROM TERRESTRIAL LASER SCANNING DATA

    Directory of Open Access Journals (Sweden)

    K. Olofsson

    2017-10-01

    Full Text Available In this study an automatic method for estimating both the tree stem and the tree canopy biomass is presented. The point cloud tree extraction techniques operate on TLS data and models the biomass using the estimated stem and canopy volume as independent variables. The regression model fit error is of the order of less than 5 kg, which gives a relative model error of about 5 % for the stem estimate and 10–15 % for the spruce and pine canopy biomass estimates. The canopy biomass estimate was improved by separating the models by tree species which indicates that the method is allometry dependent and that the regression models need to be recomputed for different areas with different climate and different vegetation.

  14. Architecture of Iberian canopy tree species in relation to wood density, shade tolerance and climate

    NARCIS (Netherlands)

    Poorter, L.; Lianes, E.; Moreno-de las Heras, M.; Zavala, M.A.

    2012-01-01

    Tree architecture has important consequences for tree performance as it determines resource capture, mechanical stability and dominance over competitors. We analyzed architectural relationships between stem and crown dimensions for 13 dominant Iberian canopy tree species belonging to the Pinaceae

  15. Premature loss of bone remodeling compartment canopies is associated with deficient bone formation

    DEFF Research Database (Denmark)

    Jensen, Pia Rosgaard; Andersen, Thomas Levin; Søe, Kent

    2011-01-01

    A remarkable property of bone remodeling is that osteoblasts form bone matrix exactly where and when osteoclasts have removed it. The bone remodeling compartment (BRC) canopies that cover bone surfaces undergoing remodeling, were proposed to be critical players in this mechanism. Here, we provide...... support to this hypothesis by analyzing the changes in prevalence of BRC canopies during the progress of the remodeling cycle in a cohort of healthy individuals and in patients with endogenous Cushing's syndrome (CS), and by relating these changes in prevalence with the extent of bone forming surfaces....... Both cohorts showed almost 100% canopy coverage above resorbing osteoclasts, and only about 76% above bone forming surfaces. This indicates that BRC canopies are invariably associated with the early stage of the remodeling cycle, but may disappear later. Interestingly, in control and two thirds...

  16. Fuel-cell engine stream conditioning system

    Science.gov (United States)

    DuBose, Ronald Arthur

    2002-01-01

    A stream conditioning system for a fuel cell gas management system or fuel cell engine. The stream conditioning system manages species potential in at least one fuel cell reactant stream. A species transfer device is located in the path of at least one reactant stream of a fuel cell's inlet or outlet, which transfer device conditions that stream to improve the efficiency of the fuel cell. The species transfer device incorporates an exchange media and a sorbent. The fuel cell gas management system can include a cathode loop with the stream conditioning system transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell related to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.

  17. Wave-frequency flows within a near-bed vegetation canopy

    Science.gov (United States)

    Henderson, Stephen M.; Norris, Benjamin K.; Mullarney, Julia C.; Bryan, Karin R.

    2017-09-01

    We study water flows and wave dissipation within near-bed pneumatophore canopies at the wave-exposed fringe of a mangrove forest on Cù Lao Dung Island, in the Mekong Delta. To evaluate canopy drag, the three-dimensional geometry of pneumatophore stems growing upward from the buried lateral roots of Sonneratia caseolaris mangroves was reconstructed from photogrammetric surveys. In cases where hydrodynamic measurements were obtained, up to 84 stems per square meter were observed, with stem heights basal diameters 0.01-0.02 m. The parameter a = (frontal area of pneumatophores blocking the flow)/(canopy volume) ranged from zero to 1.8 m-1. Within-canopy water velocity displayed a phase lead and slight attenuation relative to above-canopy flows. The phase lead was frequency-dependent, ranging from 0 to 30 degrees at the frequencies of energetic waves (> 0.1 Hz), and up to 90 degrees at lower frequencies. A model is developed for wave-induced flows within the vertically variable canopy. Scaling suggests that acceleration-induced forces and vertical mixing were negligible at wave frequencies. Consistent with theory, drag-induced vertical variability in velocity scaled with Λ =Tw / (2 πTf) , where Tw = wave period, Tf = 2 / (CD a | u |) is the frictional time scale, CD ≈ 2 is the drag coefficient, and | u | is a typical flow speed. For fixed wave conditions (| u | and Tw), theory predicts increasing dissipation with increasing vegetation density (i.e. increasing a), until a maximum is reached for order-one Λ. For larger Λ, within-canopy flow is so inhibited by drag that further increases in a reduce within-canopy dissipation. For observed cases, Λ ⩽ 0.38 at energetic wave frequencies, so wave dissipation near the forest edge is expected to increase with increasing pneumatophore canopy density. However, under different wave conditions, the most dense canopies may occasionally approach the dissipation maximum (Λ ≈ 1). Predicted dissipation by the pneumatophore

  18. Estimating cotton canopy ground cover from remotely sensed scene reflectance

    International Nuclear Information System (INIS)

    Maas, S.J.

    1998-01-01

    Many agricultural applications require spatially distributed information on growth-related crop characteristics that could be supplied through aircraft or satellite remote sensing. A study was conducted to develop and test a methodology for estimating plant canopy ground cover for cotton (Gossypium hirsutum L.) from scene reflectance. Previous studies indicated that a relatively simple relationship between ground cover and scene reflectance could be developed based on linear mixture modeling. Theoretical analysis indicated that the effects of shadows in the scene could be compensated for by averaging the results obtained using scene reflectance in the red and near-infrared wavelengths. The methodology was tested using field data collected over several years from cotton test plots in Texas and California. Results of the study appear to verify the utility of this approach. Since the methodology relies on information that can be obtained solely through remote sensing, it would be particularly useful in applications where other field information, such as plant size, row spacing, and row orientation, is unavailable

  19. CrossVit: Enhancing Canopy Monitoring Management Practices in Viticulture

    Directory of Open Access Journals (Sweden)

    Alessandro Matese

    2013-06-01

    Full Text Available A new wireless sensor network (WSN, called CrossVit, and based on MEMSIC products, has been tested for two growing seasons in two vineyards in Italy. The aims are to evaluate the monitoring performances of the new WSN directly in the vineyard and collect air temperature, air humidity and solar radiation data to support vineyard management practices. The WSN consists of various levels: the Master/Gateway level coordinates the WSN and performs data aggregation; the Farm/Server level takes care of storing data on a server, data processing and graphic rendering; Nodes level is based on a network of peripheral nodes consisting of a MDA300 sensor board and Iris module and equipped with thermistors for air temperature, photodiodes for global and diffuse solar radiation, and an HTM2500LF sensor for relative humidity. The communication levels are: WSN links between gateways and sensor nodes by ZigBee, and long-range GSM/GPRS links between gateways and the server farm level. The system was able to monitor the agrometeorological parameters in the vineyard: solar radiation, air temperature and air humidity, detecting the differences between the canopy treatments applied. The performance of CrossVit, in terms of monitoring and reliability of the system, have been evaluated considering: its handiness, cost-effective, non-invasive dimensions and low power consumption.

  20. Tree-mycorrhizal associations detected remotely from canopy spectral properties.

    Science.gov (United States)

    Fisher, Joshua B; Sweeney, Sean; Brzostek, Edward R; Evans, Tom P; Johnson, Daniel J; Myers, Jonathan A; Bourg, Norman A; Wolf, Amy T; Howe, Robert W; Phillips, Richard P

    2016-07-01

    A central challenge in global ecology is the identification of key functional processes in ecosystems that scale, but do not require, data for individual species across landscapes. Given that nearly all tree species form symbiotic relationships with one of two types of mycorrhizal fungi - arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi - and that AM- and ECM-dominated forests often have distinct nutrient economies, the detection and mapping of mycorrhizae over large areas could provide valuable insights about fundamental ecosystem processes such as nutrient cycling, species interactions, and overall forest productivity. We explored remotely sensed tree canopy spectral properties to detect underlying mycorrhizal association across a gradient of AM- and ECM-dominated forest plots. Statistical mining of reflectance and reflectance derivatives across moderate/high-resolution Landsat data revealed distinctly unique phenological signals that differentiated AM and ECM associations. This approach was trained and validated against measurements of tree species and mycorrhizal association across ~130 000 trees throughout the temperate United States. We were able to predict 77% of the variation in mycorrhizal association distribution within the forest plots (P < 0.001). The implications for this work move us toward mapping mycorrhizal association globally and advancing our understanding of biogeochemical cycling and other ecosystem processes. © 2016 John Wiley & Sons Ltd.

  1. A photosynthesis-based two-leaf canopy stomatal ...

    Science.gov (United States)

    A coupled photosynthesis-stomatal conductance model with single-layer sunlit and shaded leaf canopy scaling is implemented and evaluated in a diagnostic box model with the Pleim-Xiu land surface model (PX LSM) and ozone deposition model components taken directly from the meteorology and air quality modeling system—WRF/CMAQ (Weather Research and Forecast model and Community Multiscale Air Quality model). The photosynthesis-based model for PX LSM (PX PSN) is evaluated at a FLUXNET site for implementation against different parameterizations and the current PX LSM approach with a simple Jarvis function (PX Jarvis). Latent heat flux (LH) from PX PSN is further evaluated at five FLUXNET sites with different vegetation types and landscape characteristics. Simulated ozone deposition and flux from PX PSN are evaluated at one of the sites with ozone flux measurements. Overall, the PX PSN simulates LH as well as the PX Jarvis approach. The PX PSN, however, shows distinct advantages over the PX Jarvis approach for grassland that likely result from its treatment of C3 and C4 plants for CO2 assimilation. Simulations using Moderate Resolution Imaging Spectroradiometer (MODIS) leaf area index (LAI) rather than LAI measured at each site assess how the model would perform with grid averaged data used in WRF/CMAQ. MODIS LAI estimates degrade model performance at all sites but one site having exceptionally old and tall trees. Ozone deposition velocity and ozone flux along with LH

  2. Quantifying Ancient Maya Land Use Legacy Effects on Contemporary Rainforest Canopy Structure

    Directory of Open Access Journals (Sweden)

    Jessica N. Hightower

    2014-11-01

    Full Text Available Human land use legacies have significant and long-lasting ecological impacts across landscapes. Investigating ancient (>400 years legacy effects can be problematic due to the difficulty in detecting specific, historic land uses, especially those hidden beneath dense canopies. Caracol, the largest (~200 km2 Maya archaeological site in Belize, was abandoned ca. A.D. 900, leaving behind myriad structures, causeways, and an extensive network of agricultural terraces that persist beneath the architecturally complex tropical forest canopy. Airborne LiDAR enables the detection of these below-canopy archaeological features while simultaneously providing a detailed record of the aboveground 3-dimensional canopy organization, which is indicative of a forest’s ecological function. Here, this remote sensing technology is used to determine the effects of ancient land use legacies on contemporary forest structure. Canopy morphology was assessed by extracting LiDAR point clouds (0.25 ha plots from LiDAR-identified terraced (n = 150 and non-terraced (n = 150 areas on low (0°–10°, medium (10°–20°, and high (>20° slopes. We calculated the average canopy height, canopy openness, and vertical diversity from the LiDAR returns, with topographic features (i.e., slope, elevation, and aspect as covariates. Using a PerMANOVA procedure, we determined that forests growing on agricultural terraces exhibited significantly different canopy structure from those growing on non-terraced land. Terraces appear to mediate the effect of slope, resulting in less structural variation between slope and non-sloped land and yielding taller, more closed, more vertically diverse forests. These human land uses abandoned >1000 years ago continue to impact contemporary tropical rainforests having implications related to arboreal habitat and carbon storage.

  3. Impact of Canopy Openness on Spider Communities: Implications for Conservation Management of Formerly Coppiced Oak Forests

    Science.gov (United States)

    Košulič, Ondřej; Michalko, Radek; Hula, Vladimír

    2016-01-01

    Traditional woodland management created a mosaic of differently aged patches providing favorable conditions for a variety of arthropods. After abandonment of historical ownership patterns and traditional management and the deliberate transformation to high forest after World War II, large forest areas became darker and more homogeneous. This had significant negative consequences for biodiversity. An important question is whether even small-scale habitat structures maintained by different levels of canopy openness in abandoned coppiced forest may constitute conditions suitable for forest as well as open habitat specialists. We investigated the effect of canopy openness in former traditionally coppiced woodlands on the species richness, functional diversity, activity density, conservation value, and degree of rareness of epigeic spiders. In each of the eight studied locations, 60-m-long transect was established consisting of five pitfall traps placed at regular 15 m intervals along the gradient. Spiders were collected from May to July 2012. We recorded 90 spider species, including high proportions of xeric specialists (40%) and red-listed threatened species (26%). The peaks of conservation indicators, as well as spider community abundance, were shifted toward more open canopies. On the other hand, functional diversity peaked at more closed canopies followed by a rapid decrease with increasing canopy openness. Species richness was highest in the middle of the canopy openness gradient, suggesting an ecotone effect. Ordinations revealed that species of conservation concern tended to be associated with sparse and partly opened canopy. The results show that the various components of biodiversity peaked at different levels of canopy openness. Therefore, the restoration and suitable forest management of such conditions will retain important diversification of habitats in formerly coppiced oak forest stands. We indicate that permanent presence of small-scale improvements

  4. Impact of Canopy Openness on Spider Communities: Implications for Conservation Management of Formerly Coppiced Oak Forests.

    Directory of Open Access Journals (Sweden)

    Ondřej Košulič

    Full Text Available Traditional woodland management created a mosaic of differently aged patches providing favorable conditions for a variety of arthropods. After abandonment of historical ownership patterns and traditional management and the deliberate transformation to high forest after World War II, large forest areas became darker and more homogeneous. This had significant negative consequences for biodiversity. An important question is whether even small-scale habitat structures maintained by different levels of canopy openness in abandoned coppiced forest may constitute conditions suitable for forest as well as open habitat specialists. We investigated the effect of canopy openness in former traditionally coppiced woodlands on the species richness, functional diversity, activity density, conservation value, and degree of rareness of epigeic spiders. In each of the eight studied locations, 60-m-long transect was established consisting of five pitfall traps placed at regular 15 m intervals along the gradient. Spiders were collected from May to July 2012. We recorded 90 spider species, including high proportions of xeric specialists (40% and red-listed threatened species (26%. The peaks of conservation indicators, as well as spider community abundance, were shifted toward more open canopies. On the other hand, functional diversity peaked at more closed canopies followed by a rapid decrease with increasing canopy openness. Species richness was highest in the middle of the canopy openness gradient, suggesting an ecotone effect. Ordinations revealed that species of conservation concern tended to be associated with sparse and partly opened canopy. The results show that the various components of biodiversity peaked at different levels of canopy openness. Therefore, the restoration and suitable forest management of such conditions will retain important diversification of habitats in formerly coppiced oak forest stands. We indicate that permanent presence of small

  5. Measurement of incoming radiation below forest canopies: A comparison of different radiometer configurations

    OpenAIRE

    Webster, Clare; Rutter, Nick; Zahner, Franziska; Jonas, Tobias

    2016-01-01

    Ground-based, sub-canopy measurements of incoming shortwave and longwave radiation are frequently used to drive and validate energy balance and snowmelt models. These sub-canopy measurements are frequently obtained using different configurations (linear or distributed; stationary or moving) of radiometer arrays that are installed to capture the spatial and temporal variability of longwave and shortwave radiation. Three different radiometer configurations (stationary distributed, stationary li...

  6. Influence of Forest-Canopy Morphology and Relief on Spectral Characteristics of Taiga Forests

    Science.gov (United States)

    Zhirin, V. M.; Knyazeva, S. V.; Eydlina, S. P.

    2017-12-01

    The article deals with the results of a statistical analysis reflecting tendencies (trends) of the relationship between spectral characteristics of taiga forests, indicators of the morphological structure of forest canopy and illumination of the territory. The study was carried out on the example of the model forest territory of the Priangarskiy taiga region of Eastern Siberia (Krasnoyarsk krai) using historical data (forest inventory 1992, Landsat 5 TM 16.06.1989) and the digital elevation model. This article describes a method for determining the quantitative indicator of morphological structure of forest canopy based on taxation data, and the authors propose to subdivide the morphological structure into high complexity, medium complexity, and relatively simple. As a result of the research, dependences of average values of spectral brightness in near and short-wave infrared channels of a Landsat 5 TM image for dark-coniferous, light-coniferous and deciduous forests from the degree of complexity of the forest-canopy structure are received. A high level of variance and maximum brightness average values are marked in green moss (hilocominosa) dark-coniferous and various-grass (larioherbosa) dark-coniferous forests and light-coniferous forests with a complex structure of canopy. The parvifoliate forests are characterized by high values of brightness in stands with a relatively simple structure of the canopy and by a small variance in brightness of any degree of the structure of the canopy complexity. The increase in brightness for the lit slopes in comparison with shaded ones in all stands with a difficult morphological canopy structure is revealed. However, the brightness values of the lit and shaded slopes do not differ for stands with a medium complexity of the structure. It is noted that, in addition to the indicator of the forest-canopy structure, the possible impact on increasing the variance of spectral brightness for the taxation plot has a variability of the

  7. Remote measurement of canopy water content in giant sequoias (Sequoiadendron giganteum) during drought

    Science.gov (United States)

    Martin, Roberta E.; Asner, Gregory P.; Francis, Emily; Ambrose, Anthony; Baxter, Wendy; Das, Adrian J.; Vaughn, Nicolas R.; Paz-Kagan, Tarin; Dawson, Todd E.; Nydick, Koren R.; Stephenson, Nathan L.

    2018-01-01

    California experienced severe drought from 2012 to 2016, and there were visible changes in the forest canopy throughout the State. In 2014, unprecedented foliage dieback was recorded in giant sequoia (Sequoiadendron giganteum) trees in Sequoia National Park, in the southern California Sierra Nevada mountains. Although visible changes in sequoia canopies can be recorded, biochemical and physiological responses to drought stress in giant sequoia canopies are not well understood. Ground-based measurements provide insight into the mechanisms of drought responses in trees, but are often limited to few individuals, especially in trees of tall stature such as giant sequoia. Recent studies demonstrate that remotely measured forest canopy water content (CWC) is a general indicator of canopy response to drought, but the underpinning leaf- to canopy-level causes of observed variation in CWC remain poorly understood. We combined field and airborne remote sensing measurements taken in 2015 and 2016 to assess the biophysical responses of giant sequoias to drought. In 49 study trees, CWC was related to leaf water potential, but not to the other foliar traits, suggesting that changes in CWC were made at whole-canopy rather than leaf scales. We found a non-random, spatially varying pattern in mapped CWC, with lower CWC values at lower elevation and along the outer edges of the groves. This pattern was also observed in empirical measurements of foliage dieback from the ground, and in mapped CWC across multiple sequoia groves in this region, supporting the hypothesis that drought stress is expressed in canopy-level changes in giant sequoias. The fact that we can clearly detect a relationship between CWC and foliage dieback, even without taking into account prior variability or new leaf growth, strongly suggests that remotely sensed CWC, and changes in CWC, are a useful measure of water stress in giant sequoia, and valuable for assessing and managing these iconic forests in drought.

  8. Effects of microhabitat and large-scale land use on stream salamander occupancy in the coalfields of Central Appalachia

    Science.gov (United States)

    Sweeten, Sara E.; Ford, W. Mark

    2016-01-01

    Large-scale coal mining practices, particularly surface coal extraction and associated valley fills as well as residential wastewater discharge, are of ecological concern for aquatic systems in central Appalachia. Identifying and quantifying alterations to ecosystems along a gradient of spatial scales is a necessary first-step to aid in mitigation of negative consequences to aquatic biota. In central Appalachian headwater streams, apart from fish, salamanders are the most abundant vertebrate predator that provide a significant intermediate trophic role linking aquatic and terrestrial food webs. Stream salamander species are considered to be sensitive to aquatic stressors and environmental alterations, as past research has shown linkages among microhabitat parameters, large-scale land use such as urbanization and logging, and salamander abundances. However, there is little information examining these relationships between environmental conditions and salamander occupancy in the coalfields of central Appalachia. In the summer of 2013, 70 sites (sampled two to three times each) in the southwest Virginia coalfields were visited to collect salamanders and quantify stream and riparian microhabitat parameters. Using an information-theoretic framework, effects of microhabitat and large-scale land use on stream salamander occupancy were compared. The findings indicate that Desmognathus spp. occupancy rates are more correlated to microhabitat parameters such as canopy cover than to large-scale land uses. However, Eurycea spp. occupancy rates had a strong association with large-scale land uses, particularly recent mining and forest cover within the watershed. These findings suggest that protection of riparian habitats is an important consideration for maintaining aquatic systems in central Appalachia. If this is not possible, restoration riparian areas should follow guidelines using quick-growing tree species that are native to Appalachian riparian areas. These types of trees

  9. Quantitative detection of settled coal dust over green canopy

    Science.gov (United States)

    Brook, Anna; Sahar, Nir

    2017-04-01

    The main task of environmental and geoscience applications are efficient and accurate quantitative classification of earth surfaces and spatial phenomena. In the past decade, there has been a significant interest in employing spectral unmixing in order to retrieve accurate quantitative information latent in in situ data. Recently, the ground-truth and laboratory measured spectral signatures promoted by advanced algorithms are proposed as a new path toward solving the unmixing problem in semi-supervised fashion. This study presents a practical implementation of field spectroscopy as a quantitative tool to detect settled coal dust over green canopy in free/open environment. Coal dust is a fine powdered form of coal, which is created by the crushing, grinding, and pulverizing of coal. Since the inelastic nature of coal, coal dust can be created during transportation, or by mechanically handling coal. Coal dust, categorized at silt-clay particle size, of particular concern due to heavy metals (lead, mercury, nickel, tin, cadmium, mercury, antimony, arsenic, isotopes of thorium and strontium) which are toxic also at low concentrations. This hazard exposes risk on both environment and public health. It has been identified by medical scientist around the world as causing a range of diseases and health problems, mainly heart and respiratory diseases like asthma and lung cancer. It is due to the fact that the fine invisible coal dust particles (less than 2.5 microns) long lodge in the lungs and are not naturally expelled, so long-term exposure increases the risk of health problems. Numerus studies reported that data to conduct study of geographic distribution of the very fine coal dust (smaller than PM 2.5) and related health impacts from coal exports, is not being collected. Sediment dust load in an indoor environment can be spectrally assessed using reflectance spectroscopy (Chudnovsky and Ben-Dor, 2009). Small amounts of particulate pollution that may carry a signature

  10. Modeling the radiation transfer of discontinuous canopies: results for gap probability and single-scattering contribution

    Science.gov (United States)

    Zhao, Feng; Zou, Kai; Shang, Hong; Ji, Zheng; Zhao, Huijie; Huang, Wenjiang; Li, Cunjun

    2010-10-01

    In this paper we present an analytical model for the computation of radiation transfer of discontinuous vegetation canopies. Some initial results of gap probability and bidirectional gap probability of discontinuous vegetation canopies, which are important parameters determining the radiative environment of the canopies, are given and compared with a 3- D computer simulation model. In the model, negative exponential attenuation of light within individual plant canopies is assumed. Then the computation of gap probability is resolved by determining the entry points and exiting points of the ray with the individual plants via their equations in space. For the bidirectional gap probability, which determines the single-scattering contribution of the canopy, a gap statistical analysis based model was adopted to correct the dependence of gap probabilities for both solar and viewing directions. The model incorporates the structural characteristics, such as plant sizes, leaf size, row spacing, foliage density, planting density, leaf inclination distribution. Available experimental data are inadequate for a complete validation of the model. So it was evaluated with a three dimensional computer simulation model for 3D vegetative scenes, which shows good agreement between these two models' results. This model should be useful to the quantification of light interception and the modeling of bidirectional reflectance distributions of discontinuous canopies.

  11. NDVI as a predictor of canopy arthropod biomass in the Alaskan arctic tundra.

    Science.gov (United States)

    Sweet, Shannan K; Asmus, Ashley; Rich, Matthew E; Wingfield, John; Gough, Laura; Boelman, Natalie T

    2015-04-01

    The physical and biological responses to rapid arctic warming are proving acute, and as such, there is a need to monitor, understand, and predict ecological responses over large spatial and temporal scales. The use of the normalized difference vegetation index (NDVI) acquired from airborne and satellite sensors addresses this need, as it is widely used as a tool for detecting and quantifying spatial and temporal dynamics of tundra vegetation cover, productivity, and phenology. Such extensive use of the NDVI to quantify vegetation characteristics suggests that it may be similarly applied to characterizing primary and secondary consumer communities. Here, we develop empirical models to predict canopy arthropod biomass with canopy-level measurements of the NDVI both across and within distinct tundra vegetation communities over four growing seasons in the Arctic Foothills region of the Brooks Range, Alaska, USA. When canopy arthropod biomass is predicted with the NDVI across all four growing seasons, our overall model that includes all four vegetation communities explains 63% of the variance in canopy arthropod biomass, whereas our models specific to each of the four vegetation communities explain 74% (moist tussock tundra), 82% (erect shrub tundra), 84% (riparian shrub tundra), and 87% (dwarf shrub tundra) of the observed variation in canopy arthropod biomass. Our field-based study suggests that measurements of the NDVI made from air- and spaceborne sensors may be able to quantify spatial and temporal variation in canopy arthropod biomass at landscape to regional scales.

  12. Soil types and forest canopy structures in southern Missouri: A first look with AIS data

    Science.gov (United States)

    Green, G. M.; Arvidson, R. E.

    1986-01-01

    Spectral reflectance properties of deciduous oak-hickory forests covering the eastern half of the Rolla Quadrangle were examined using Thematic Mapper (TM) data acquired in August and December, 1982 and Airborne Imaging Spectrometer (AIS) data acquired in August, 1985. For the TM data distinctly high relative reflectance values (greater than 0.3) in the near infrared (Band 4, 0.73 to 0.94 micrometers) correspond to regions characterized by xeric (dry) forests that overlie soils with low water retention capacities. These soils are derived primarily from rhyolites. More mesic forests characterized by lower TM band 4 relative reflectances are associated with soils of higher retention capacities derived predominately from non-cherty carbonates. The major factors affecting canopy reflectance appear to be the leaf area index (LAI) and leaf optical properties. The Suits canopy reflectance model predicts the relative reflectance values for the xeric canopies. The mesic canopy reflectance is less well matched and incorporation of canopy shadowing caused by the irregular nature of the mesic canopy may be necessary. Preliminary examination of high spectral resolution AIS data acquired in August of 1985 reveals no more information than found in the broad band TM data.

  13. Sunscreening fungal pigments influence the vertical gradient of pendulous lichens in boreal forest canopies.

    Science.gov (United States)

    Färber, Leonie; Sølhaug, Knut Asbjorn; Esseen, Per-Anders; Bilger, Wolfgang; Gauslaa, Yngvar

    2014-06-01

    Pendulous lichens dominate canopies of boreal forests, with dark Bryoria species in the upper canopy vs. light Alectoria and Usnea species in lower canopy. These genera offer important ecosystem services such as winter forage for reindeer and caribou. The mechanism behind this niche separation is poorly understood. We tested the hypothesis that species-specific sunscreening fungal pigments protect underlying symbiotic algae differently against high light, and thus shape the vertical canopy gradient of epiphytes. Three pale species with the reflecting pigment usnic acid (Alectoria sarmentosa, Usnea dasypoga, U. longissima) and three with dark, absorbing melanins (Bryoria capillaris, B. fremontii, B. fuscescens) were compared. We subjected the lichens to desiccation stress with and without light, and assessed their performance with chlorophyll fluorescence. Desiccation alone only affected U. longissima. By contrast, light in combination with desiccation caused photoinhibitory damage in all species. Usnic lichens were significantly more susceptible to light during desiccation than melanic ones. Thus, melanin is a more efficient light-screening pigment than usnic acid. Thereby, the vertical gradient of pendulous lichens in forest canopies is consistent with a shift in type and functioning of sunscreening pigments, from high-light-tolerant Bryoria in the upper to susceptible Alectoria and Usnea in the lower canopy.

  14. Coupling Fine-Scale Root and Canopy Structure Using Ground-Based Remote Sensing

    Directory of Open Access Journals (Sweden)

    Brady S. Hardiman

    2017-02-01

    Full Text Available Ecosystem physical structure, defined by the quantity and spatial distribution of biomass, influences a range of ecosystem functions. Remote sensing tools permit the non-destructive characterization of canopy and root features, potentially providing opportunities to link above- and belowground structure at fine spatial resolution in functionally meaningful ways. To test this possibility, we employed ground-based portable canopy LiDAR (PCL and ground penetrating radar (GPR along co-located transects in forested sites spanning multiple stages of ecosystem development and, consequently, of structural complexity. We examined canopy and root structural data for coherence (i.e., correlation in the frequency of spatial variation at multiple spatial scales ≤10 m within each site using wavelet analysis. Forest sites varied substantially in vertical canopy and root structure, with leaf area index and root mass more becoming even vertically as forests aged. In all sites, above- and belowground structure, characterized as mean maximum canopy height and root mass, exhibited significant coherence at a scale of 3.5–4 m, and results suggest that the scale of coherence may increase with stand age. Our findings demonstrate that canopy and root structure are linked at characteristic spatial scales, which provides the basis to optimize scales of observation. Our study highlights the potential, and limitations, for fusing LiDAR and radar technologies to quantitatively couple above- and belowground ecosystem structure.

  15. Comparison of infrared canopy temperature in a rubber plantation and tropical rain forest

    Science.gov (United States)

    Song, Qing-Hai; Deng, Yun; Zhang, Yi-Ping; Deng, Xiao-Bao; Lin, You-Xing; Zhou, Li-Guo; Fei, Xue-Hai; Sha, Li-Qing; Liu, Yun-Tong; Zhou, Wen-Jun; Gao, Jin-Bo

    2017-10-01

    Canopy temperature is a result of the canopy energy balance and is driven by climate conditions, plant architecture, and plant-controlled transpiration. Here, we evaluated canopy temperature in a rubber plantation (RP) and tropical rainforest (TR) in Xishuangbanna, southwestern China. An infrared temperature sensor was installed at each site to measure canopy temperature. In the dry season, the maximum differences (Tc - Ta) between canopy temperature (Tc) and air temperature (Ta) in the RP and TR were 2.6 and 0.1 K, respectively. In the rainy season, the maximum (Tc - Ta) values in the RP and TR were 1.0 and -1.1 K, respectively. There were consistent differences between the two forests, with the RP having higher (Tc - Ta) than the TR throughout the entire year. Infrared measurements of Tc can be used to calculate canopy stomatal conductance in both forests. The difference in (Tc - Ta) at three gc levels with increasing direct radiation in the RP was larger than in the TR, indicating that change in (Tc - Ta) in the RP was relatively sensitive to the degree of stomatal closure.

  16. Turbulent mixing and removal of ozone within an Amazon rainforest canopy

    Science.gov (United States)

    Freire, L. S.; Gerken, T.; Ruiz-Plancarte, J.; Wei, D.; Fuentes, J. D.; Katul, G. G.; Dias, N. L.; Acevedo, O. C.; Chamecki, M.

    2017-03-01

    Simultaneous profiles of turbulence statistics and mean ozone mixing ratio are used to establish a relation between eddy diffusivity and ozone mixing within the Amazon forest. A one-dimensional diffusion model is proposed and used to infer mixing time scales from the eddy diffusivity profiles. Data and model results indicate that during daytime conditions, the upper (lower) half of the canopy is well (partially) mixed most of the time and that most of the vertical extent of the forest can be mixed in less than an hour. During nighttime, most of the canopy is predominantly poorly mixed, except for periods with bursts of intermittent turbulence. Even though turbulence is faster than chemistry during daytime, both processes have comparable time scales in the lower canopy layers during nighttime conditions. Nonchemical loss time scales (associated with stomatal uptake and dry deposition) for the entire forest are comparable to turbulent mixing time scale in the lower canopy during the day and in the entire canopy during the night, indicating a tight coupling between turbulent transport and dry deposition and stomatal uptake processes. Because of the significant time of day and height variability of the turbulent mixing time scale inside the canopy, it is important to take it into account when studying chemical and biophysical processes happening in the forest environment. The method proposed here to estimate turbulent mixing time scales is a reliable alternative to currently used models, especially for situations in which the vertical distribution of the time scale is relevant.

  17. Spectrodirectional Investigation of a Geometric-Optical Canopy Reflectance Model by Laboratory Simulation

    Science.gov (United States)

    Stanford, Adam Christopher

    Canopy reflectance models (CRMs) can accurately estimate vegetation canopy biophysical-structural information such as Leaf Area Index (LAI) inexpensively using satellite imagery. The strict physical basis which geometric-optical CRMs employ to mathematically link canopy bidirectional reflectance and structure allows for the tangible replication of a CRM's geometric abstraction of a canopy in the laboratory, enabling robust CRM validation studies. To this end, the ULGS-2 goniometer was used to obtain multiangle, hyperspectral (Spectrodirectional) measurements of a specially-designed tangible physical model forest, developed based upon the Geometric-Optical Mutual Shadowing (GOMS) CRM, at three different canopy cover densities. GOMS forward-modelled reflectance values had high levels of agreement with ULGS-2 measurements, with obtained reflectance RMSE values ranging from 0.03% to 0.1%. Canopy structure modelled via GOMS Multiple-Forward-Mode (MFM) inversion had varying levels of success. The methods developed in this thesis can potentially be extended to more complex CRMs through the implementation of 3D printing.

  18. Biological processes dominate seasonality of remotely sensed canopy greenness in an Amazon evergreen forest.

    Science.gov (United States)

    Wu, Jin; Kobayashi, Hideki; Stark, Scott C; Meng, Ran; Guan, Kaiyu; Tran, Ngoc Nguyen; Gao, Sicong; Yang, Wei; Restrepo-Coupe, Natalia; Miura, Tomoaki; Oliviera, Raimundo Cosme; Rogers, Alistair; Dye, Dennis G; Nelson, Bruce W; Serbin, Shawn P; Huete, Alfredo R; Saleska, Scott R

    2018-03-01

    Satellite observations of Amazon forests show seasonal and interannual variations, but the underlying biological processes remain debated. Here we combined radiative transfer models (RTMs) with field observations of Amazon forest leaf and canopy characteristics to test three hypotheses for satellite-observed canopy reflectance seasonality: seasonal changes in leaf area index, in canopy-surface leafless crown fraction and/or in leaf demography. Canopy RTMs (PROSAIL and FLiES), driven by these three factors combined, simulated satellite-observed seasonal patterns well, explaining c. 70% of the variability in a key reflectance-based vegetation index (MAIAC EVI, which removes artifacts that would otherwise arise from clouds/aerosols and sun-sensor geometry). Leaf area index, leafless crown fraction and leaf demography independently accounted for 1, 33 and 66% of FLiES-simulated EVI seasonality, respectively. These factors also strongly influenced modeled near-infrared (NIR) reflectance, explaining why both modeled and observed EVI, which is especially sensitive to NIR, captures canopy seasonal dynamics well. Our improved analysis of canopy-scale biophysics rules out satellite artifacts as significant causes of satellite-observed seasonal patterns at this site, implying that aggregated phenology explains the larger scale remotely observed patterns. This work significantly reconciles current controversies about satellite-detected Amazon phenology, and improves our use of satellite observations to study climate-phenology relationships in the tropics. No claim to original US Government works New Phytologist © 2017 New Phytologist Trust.

  19. Effects of Kaolin Application on Light Absorption and Distribution, Radiation Use Efficiency and Photosynthesis of Almond and Walnut Canopies

    Science.gov (United States)

    Rosati, Adolfo; Metcalf, Samuel G.; Buchner, Richard P.; Fulton, Allan E.; Lampinen, Bruce D.

    2007-01-01

    Background and Aims Kaolin applied as a suspension to plant canopies forms a film on leaves that increases reflection and reduces absorption of light. Photosynthesis of individual leaves is decreased while the photosynthesis of the whole canopy remains unaffected or even increases. This may result from a better distribution of light within the canopy following kaolin application, but this explanation has not been tested. The objective of this work was to study the effects of kaolin application on light distribution and absorption within tree canopies and, ultimately, on canopy photosynthesis and radiation use efficiency. Methods Photosynthetically active radiation (PAR) incident on individual leaves within the canopy of almond (Prunus dulcis) and walnut (Juglans regia) trees was measured before and after kaolin application in order to study PAR distribution within the canopy. The PAR incident on, and reflected and transmitted by, the canopy was measured on the same day for kaolin-sprayed and control trees in order to calculate canopy PAR absorption. These data were then used to model canopy photosynthesis and radiation use efficiency by a simple method proposed in previous work, based on the photosynthetic response to incident PAR of a top-canopy leaf. Key Results Kaolin increased incident PAR on surfaces of inner-canopy leaves, although there was an estimated 20 % loss in PAR reaching the photosynthetic apparatus, due to increased reflection. Assuming a 20 % loss of PAR, modelled photosynthesis and photosynthetic radiation use efficiency (PRUE) of kaolin-coated leaves decreased by only 6·3 %. This was due to (1) more beneficial PAR distribution within the kaolin-sprayed canopy, and (2) with decreasing PAR, leaf photosynthesis decreases less than proportionally, due to the curvature of the photosynthesis response-curve to PAR. The relatively small loss in canopy PRUE (per unit of incident PAR), coupled with the increased incident PAR on the leaf surface on

  20. Incorporating Canopy Cover for Airborne-Derived Assessments of Forest Biomass in the Tropical Forests of Cambodia

    Science.gov (United States)

    Singh, Minerva; Evans, Damian; Coomes, David A.; Friess, Daniel A.; Suy Tan, Boun; Samean Nin, Chan

    2016-01-01

    This research examines the role of canopy cover in influencing above ground biomass (AGB) dynamics of an open canopied forest and evaluates the efficacy of individual-based and plot-scale height metrics in predicting AGB variation in the tropical forests of Angkor Thom, Cambodia. The AGB was modeled by including canopy cover from aerial imagery alongside with the two different canopy vertical height metrics derived from LiDAR; the plot average of maximum tree height (Max_CH) of individual trees, and the top of the canopy height (TCH). Two different statistical approaches, log-log ordinary least squares (OLS) and support vector regression (SVR), were used to model AGB variation in the study area. Ten different AGB models were developed using different combinations of airborne predictor variables. It was discovered that the inclusion of canopy cover estimates considerably improved the performance of AGB models for our study area. The most robust model was log-log OLS model comprising of canopy cover only (r = 0.87; RMSE = 42.8 Mg/ha). Other models that approximated field AGB closely included both Max_CH and canopy cover (r = 0.86, RMSE = 44.2 Mg/ha for SVR; and, r = 0.84, RMSE = 47.7 Mg/ha for log-log OLS). Hence, canopy cover should be included when modeling the AGB of open-canopied tropical forests. PMID:27176218

  1. Incorporating Canopy Cover for Airborne-Derived Assessments of Forest Biomass in the Tropical Forests of Cambodia.

    Directory of Open Access Journals (Sweden)

    Minerva Singh

    Full Text Available This research examines the role of canopy cover in influencing above ground biomass (AGB dynamics of an open canopied forest and evaluates the efficacy of individual-based and plot-scale height metrics in predicting AGB variation in the tropical forests of Angkor Thom, Cambodia. The AGB was modeled by including canopy cover from aerial imagery alongside with the two different canopy vertical height metrics derived from LiDAR; the plot average of maximum tree height (Max_CH of individual trees, and the top of the canopy height (TCH. Two different statistical approaches, log-log ordinary least squares (OLS and support vector regression (SVR, were used to model AGB variation in the study area. Ten different AGB models were developed using different combinations of airborne predictor variables. It was discovered that the inclusion of canopy cover estimates considerably improved the performance of AGB models for our study area. The most robust model was log-log OLS model comprising of canopy cover only (r = 0.87; RMSE = 42.8 Mg/ha. Other models that approximated field AGB closely included both Max_CH and canopy cover (r = 0.86, RMSE = 44.2 Mg/ha for SVR; and, r = 0.84, RMSE = 47.7 Mg/ha for log-log OLS. Hence, canopy cover should be included when modeling the AGB of open-canopied tropical forests.

  2. Effects of structural complexity on within-canopy light environments and leaf traits in a northern mixed deciduous forest.

    Science.gov (United States)

    Fotis, Alexander T; Curtis, Peter S

    2017-10-01

    Canopy structure influences forest productivity through its effects on the distribution of radiation and the light-induced changes in leaf physiological traits. Due to the difficulty of accessing and measuring forest canopies, few field-based studies have quantitatively linked these divergent scales of canopy functioning. The objective of our study was to investigate how canopy structure affects light profiles within a forest canopy and whether leaves of mature trees adjust morphologically and biochemically to the light environments characteristic of canopies with different structural complexity. We used a combination of light detection and ranging (LiDAR) data and hemispherical photographs to quantify canopy structure and light environments, respectively, and a telescoping pole to sample leaves. Leaf mass per area (LMA), nitrogen on an area basis (Narea) and chlorophyll on a mass basis (Chlmass) were measured in red maple (Acer rubrum), american beech (Fagus grandifolia), white pine (Pinus strobus), and northern red oak (Quercus rubra) at different heights in plots with similar leaf area index but contrasting canopy complexity (rugosity). We found that more complex canopies had greater porosity and reduced light variability in the midcanopy while total light interception was unchanged relative to less complex canopies. Leaf phenotypes of F. grandifolia, Q. rubra and P. strobus were more sun-acclimated in the midstory of structurally complex canopies while leaf phenotypes of A. rubrum were more shade-acclimated (lower LMA) in the upper canopy of more complex stands, despite no differences in total light interception. Broadleaf species showed further differences in acclimation with increased Narea and reduced Chlmass in leaves with higher LMA, while P. strobus showed no change in Narea and Chlmass with higher LMA. Our results provide new insight on how light distribution and leaf acclimation in mature trees might be altered when natural and anthropogenic

  3. Spatial Structure of Soil Macrofauna Diversity and Tree Canopy in Riparian Forest of Maroon River

    Directory of Open Access Journals (Sweden)

    Ehsan Sayad

    2017-02-01

    Full Text Available Introduction: Sustainability and maintenance of riparian vegetation or restoring of degraded sites is critical to sustain inherent ecosystem function and values. Description of patterns in species assemblages and diversity is an essential step before generating hypotheses in functional ecology. If we want to have information about ecosystem function, soil biodiversity is best considered by focusing on the groups of soil organisms that play major roles in ecosystem functioning when exploring links with provision of ecosystem services. Information about the spatial pattern of soil biodiversity at the regional scale is limited though required, e.g. for understanding regional scale effects of biodiversity on ecosystem processes. The practical consequences of these findings are useful for sustainable management of soils and in monitoring soil quality. Soil macrofauna play significant, but largely ignored roles in the delivery of ecosystem services by soils at plot and landscape scales. One main reason responsible for the absence of information about biodiversity at regional scale is the lack of adequate methods for sampling and analyzing data at this dimension. An adequate approach for the analysis of spatial patterns is a transect study in which samples are taken in a certain order and with a certain distance between samples. Geostatistics provide descriptive tools such as variogram to characterize the spatial pattern of continuous and categorical soil attributes. This method allows assessment of consistency of spatial patterns as well as the scale at which they are expressed. This study was conducted to analyze spatial patterns of soil macrofauna in relation to tree canopy in the riparian forest landscape of Maroon. Materilas and Methods: The study was carried out in the Maroon riparian forest of the southeasternIran (30o 38/- 30 o 39/ N and 50 o 9/- 50 o 10/ E. The climate of the study area is semi-arid. Average yearly rainfall is about 350.04 mm

  4. ATLAS Live: Collaborative Information Streams

    CERN Document Server

    Goldfarb, S; The ATLAS collaboration

    2010-01-01

    I report on a pilot project launched in 2010 focusing on facilitating communication and information exchange within the ATLAS Collaboration, through the combination of digital signage software and webcasting. The project, called ATLAS Live, implements video streams of information, ranging from detailed detector and data status to educational and outreach material. The content, including text, images, video and audio, is collected, visualised and scheduled using the SCALA digital signage software system. The system is robust and flexible, allowing for the usage of scripts to input data from remote sources, such as the CERN Document Server, Indico, or any available URL, and to integrate these sources into professional-quality streams, including text scrolling, transition effects, inter and intrascreen divisibility. The video is made available to the collaboration or public through the encoding and webcasting of standard video streams, viewable on all common platforms, using a web browser or other common video t...

  5. Comparison of active and passive stream restoration

    DEFF Research Database (Denmark)

    Kristensen, Esben Astrup; Thodsen, Hans; Dehli, Bjarke

    2013-01-01

    Modification and channelization of streams and rivers have been conducted extensively throughout the world during the past century. Subsequently, much effort has been directed at re-creating the lost habitats and thereby improving living conditions for aquatic organisms. However, as restoration...... methods are plentiful, it is difficult to determine which one to use to get the anticipated result. The aim of this study was to compare two commonly used methods in small Danish streams to improve the physical condition: re-meandering and passive restoration through cease of maintenance. Our...... investigation included measurement of the physical conditions in 29 stream reaches covering four different groups: (1) re-meandered streams, (2) LDC streams (the least disturbed streams available), (3) passively restored streams (>10 years stop of aintenance) and (4) channelized and non-restored streams. The in-stream...

  6. CAMS: OLAPing Multidimensional Data Streams Efficiently

    Science.gov (United States)

    Cuzzocrea, Alfredo

    In the context of data stream research, taming the multidimensionality of real-life data streams in order to efficiently support OLAP analysis/mining tasks is a critical challenge. Inspired by this fundamental motivation, in this paper we introduce CAMS (C ube-based A cquisition model for M ultidimensional S treams), a model for efficiently OLAPing multidimensional data streams. CAMS combines a set of data stream processing methodologies, namely (i) the OLAP dimension flattening process, which allows us to obtain dimensionality reduction of multidimensional data streams, and (ii) the OLAP stream aggregation scheme, which aggregates data stream readings according to an OLAP-hierarchy-based membership approach. We complete our analytical contribution by means of experimental assessment and analysis of both the efficiency and the scalability of OLAPing capabilities of CAMS on synthetic multidimensional data streams. Both analytical and experimental results clearly connote CAMS as an enabling component for next-generation Data Stream Management Systems.

  7. Modeling canopy-level productivity: is the "big-leaf" simplification acceptable?

    Science.gov (United States)

    Sprintsin, M.; Chen, J. M.

    2009-05-01

    The "big-leaf" approach to calculating the carbon balance of plant canopies assumes that canopy carbon fluxes have the same relative responses to the environment as any single unshaded leaf in the upper canopy. Widely used light use efficiency models are essentially simplified versions of the big-leaf model. Despite its wide acceptance, subsequent developments in the modeling of leaf photosynthesis and measurements of canopy physiology have brought into question the assumptions behind this approach showing that big leaf approximation is inadequate for simulating canopy photosynthesis because of the additional leaf internal control on carbon assimilation and because of the non-linear response of photosynthesis on leaf nitrogen and absorbed light, and changes in leaf microenvironment with canopy depth. To avoid this problem a sunlit/shaded leaf separation approach, within which the vegetation is treated as two big leaves under different illumination conditions, is gradually replacing the "big-leaf" strategy, for applications at local and regional scales. Such separation is now widely accepted as a more accurate and physiologically based approach for modeling canopy photosynthesis. Here we compare both strategies for Gross Primary Production (GPP) modeling using the Boreal Ecosystem Productivity Simulator (BEPS) at local (tower footprint) scale for different land cover types spread over North America: two broadleaf forests (Harvard, Massachusetts and Missouri Ozark, Missouri); two coniferous forests (Howland, Maine and Old Black Spruce, Saskatchewan); Lost Creek shrubland site (Wisconsin) and Mer Bleue petland (Ontario). BEPS calculates carbon fixation by scaling Farquhar's leaf biochemical model up to canopy level with stomatal conductance estimated by a modified version of the Ball-Woodrow-Berry model. The "big-leaf" approach was parameterized using derived leaf level parameters scaled up to canopy level by means of Leaf Area Index. The influence of sunlit

  8. Vegetation Indices for Mapping Canopy Foliar Nitrogen in a Mixed Temperate Forest

    Directory of Open Access Journals (Sweden)

    Zhihui Wang

    2016-06-01

    Full Text Available Hyperspectral remote sensing serves as an effective tool for estimating foliar nitrogen using a variety of techniques. Vegetation indices (VIs are a simple means of retrieving foliar nitrogen. Despite their popularity, few studies have been conducted to examine the utility of VIs for mapping canopy foliar nitrogen in a mixed forest context. In this study, we assessed the performance of 32 vegetation indices derived from HySpex airborne hyperspectral images for estimating canopy mass-based foliar nitrogen concentration (%N in the Bavarian Forest National Park. The partial least squares regression (PLSR was performed for comparison. These vegetation indices were classified into three categories that are mostly correlated to nitrogen, chlorophyll, and structural properties such as leaf area index (LAI. %N was destructively measured in 26 broadleaf, needle leaf, and mixed stand plots to represent the different species and canopy structure. The canopy foliar %N is defined as the plot-level mean foliar %N of all species weighted by species canopy foliar mass fraction. Our results showed that the variance of canopy foliar %N is mainly explained by functional type and species composition. The normalized difference nitrogen index (NDNI produced the most accurate estimation of %N (R2CV = 0.79, RMSECV = 0.26. A comparable estimation of %N was obtained by the chlorophyll index Boochs2 (R2CV = 0.76, RMSECV = 0.27. In addition, the mean NIR reflectance (800–850 nm, representing canopy structural properties, also achieved a good accuracy in %N estimation (R2CV = 0.73, RMSECV = 0.30. The PLSR model provided a less accurate estimation of %N (R2CV = 0.69, RMSECV = 0.32. We argue that the good performance of all three categories of vegetation indices in %N estimation can be attributed to the synergy among plant traits (i.e., canopy structure, leaf chemical and optical properties while these traits may converge across plant species for evolutionary reasons. Our

  9. Chlorophyll fluorescence tracks seasonal variations of photosynthesis from leaf to canopy in a temperate forest.

    Science.gov (United States)

    Yang, Hualei; Yang, Xi; Zhang, Yongguang; Heskel, Mary A; Lu, Xiaoliang; Munger, J William; Sun, Shucun; Tang, Jianwu

    2017-07-01

    Accurate estimation of terrestrial gross primary productivity (GPP) remains a challenge despite its importance in the global carbon cycle. Chlorophyll fluorescence (ChlF) has been recently adopted to understand photosynthesis and its response to the environment, particularly with remote sensing data. However, it remains unclear how ChlF and photosynthesis are linked at different spatial scales across the growing season. We examined seasonal relationships between ChlF and photosynthesis at the leaf, canopy, and ecosystem scales and explored how leaf-level ChlF was linked with canopy-scale solar-induced chlorophyll fluorescence (SIF) in a temperate deciduous forest at Harvard Forest, Massachusetts, USA. Our results show that ChlF captured the seasonal variations of photosynthesis with significant linear relationships between ChlF and photosynthesis across the growing season over different spatial scales (R 2  = 0.73, 0.77, and 0.86 at leaf, canopy, and satellite scales, respectively; P < 0.0001). We developed a model to estimate GPP from the tower-based measurement of SIF and leaf-level ChlF parameters. The estimation of GPP from this model agreed well with flux tower observations of GPP (R 2  = 0.68; P < 0.0001), demonstrating the potential of SIF for modeling GPP. At the leaf scale, we found that leaf F q '/F m ', the fraction of absorbed photons that are used for photochemistry for a light-adapted measurement from a pulse amplitude modulation fluorometer, was the best leaf fluorescence parameter to correlate with canopy SIF yield (SIF/APAR, R 2  = 0.79; P < 0.0001). We also found that canopy SIF and SIF-derived GPP (GPP SIF ) were strongly correlated to leaf-level biochemistry and canopy structure, including chlorophyll content (R 2  = 0.65 for canopy GPP SIF and chlorophyll content; P < 0.0001), leaf area index (LAI) (R 2  = 0.35 for canopy GPP SIF and LAI; P < 0.0001), and normalized difference vegetation index (NDVI) (R 2  = 0.36 for

  10. Pollutant transport in natural streams

    International Nuclear Information System (INIS)

    Buckner, M.R.; Hayes, D.W.

    1975-01-01

    A mathematical model has been developed to estimate the downstream effect of chemical and radioactive pollutant releases to tributary streams and rivers. The one-dimensional dispersion model was employed along with a dead zone model to describe stream transport behavior. Options are provided for sorption/desorption, ion exchange, and particle deposition in the river. The model equations are solved numerically by the LODIPS computer code. The solution method was verified by application to actual and simulated releases of radionuclides and other chemical pollutants. (U.S.)

  11. Stream-processing pipelines: processing of streams on multiprocessor architecture

    NARCIS (Netherlands)

    Kavaldjiev, N.K.; Smit, Gerardus Johannes Maria; Jansen, P.G.

    In this paper we study the timing aspects of the operation of stream-processing applications that run on a multiprocessor architecture. Dependencies are derived for the processing and communication times of the processors in such a system. Three cases of real-time constrained operation and four

  12. Stream Bank Erosion Rates of Small Missouri Streams

    Science.gov (United States)

    Sedimentation of surface waters in the United States is a significant environmental concern. Investigating land use impacts on stream bank erosion rates is intended to lead to the development of improved management practices and provide the basis for targeting the placement of management practices t...

  13. Specifics of soil temperature under winter oilseed rape canopy

    Science.gov (United States)

    Krčmářová, Jana; Středa, Tomáš; Pokorný, Radovan

    2014-09-01

    The aim of this study was to evaluate the course of soil temperature under the winter oilseed rape canopy and to determine relationships between soil temperature, air temperature and partly soil moisture. In addition, the aim was to describe the dependence by means of regression equations usable for pests and pathogens prediction, crop development, and yields models. The measurement of soil and near the ground air temperatures was performed at the experimental field Žabiče (South Moravia, the Czech Republic). The course of temperature was determined under or in the winter oilseed rape canopy during spring growth season in the course of four years (2010 - 2012 and 2014). In all years, the standard varieties (Petrol, Sherpa) were grown, in 2014 the semi-dwarf variety PX104 was added. Automatic soil sensors were positioned at three depths (0.05, 0.10 and 0.20 m) under soil surface, air temperature sensors in 0.05 m above soil surfaces. The course of soil temperature differs significantly between standard (Sherpa and Petrol) and semi-dwarf (PX104) varieties. Results of the cross correlation analysis showed, that the best interrelationships between air and soil temperature were achieved in 2 hours delay for the soil temperature in 0.05 m, 4 hour delay for 0.10 m and 7 hour delay for 0.20 m for standard varieties. For semi-dwarf variety, this delay reached 6 hour for the soil temperature in 0.05 m, 7 hour delay for 0.10 m and 11 hour for 0.20 m. After the time correction, the determination coefficient (R2) reached values from 0.67 to 0.95 for 0.05 m, 0.50 to 0.84 for 0.10 m in variety Sherpa during all experimental years. For variety PX104 this coefficient reached values from 0.51 to 0.72 in 0.05 m depth and from 0.39 to 0.67 in 0.10 m depth in the year 2014. The determination coefficient in the 0.20 m depth was lower for both varieties; its values were from 0.15 to 0.65 in variety Sherpa. In variety PX104 the values of R2 from 0.23 to 0.57 were determined. When using

  14. Canopy uptake of atmospheric N deposition at a conifer forest: part I -canopy N budget, photosynthetic efficiency and net ecosystem exchange

    International Nuclear Information System (INIS)

    Sievering, H.; Tomaszewski, T.; Torizzo, J.

    2007-01-01

    Global carbon cycle assessments of anthropogenic nitrogen (N) deposition influences on carbon sequestration often assume enhanced sequestration results. This assumption was evaluated at a Rocky Mountains spruce-fir forest. Forest canopy N uptake (CNU) of atmospheric N deposition was estimated by combining event wet and throughfall N fluxes with gradient measured HNO 3 and NH 3 as well as inferred (NO x and particulate N) dry fluxes. Approximately 80% of the growing-season 3 kg N/ha total deposition is retained in canopy foliage and branches. This CNU constitutes ∼1/3 of canopy growing season new N supply at this conifer forest site. Daytime net ecosystem exchange (NEE) significantly (P = 0.006) and negatively (CO 2 uptake) correlated with CNU. Multiple regression indicates ∼20% of daytime NEE may be attributed to CNU (P < 0.02); more than soil water content. A wet deposition N-amendment study (Tomaszewski and Sievering), at canopy spruce branches, increased their growing-season CNU by 40-50% above ambient. Fluorometry and gas exchange results show N-amended spruce branches had greater photosynthetic efficiency and higher carboxylation rates than control and untreated branches. N-amended branches had 25% less photoinhibition, with a 5-9% greater proportion of foliar-N-in-Rubisco. The combined results provide, partly, a mechanistic explanation for the NEE dependence on CNU

  15. A canopy trimming experiment in Puerto Rico: The response of litter decomposition and nutrient release to canopy opening and debris deposition in a subtropical wet forest

    Science.gov (United States)

    G. Gonzalez; D.J. Lodge; B.A. Richardson; M.J. Richardson

    2014-01-01

    In this study, we used a replicated factorial design to separate the individual and interacting effects of two main components of a severe hurricane – canopy opening and green debris deposition on leaf litter decay in the tabonuco forest in the Luquillo Mountains of Puerto Rico. We quantify changes in percent mass remaining (PMR), the concentration and absolute amounts...

  16. Missing Peroxy Radical Sources Within a Rural Forest Canopy

    Science.gov (United States)

    Wolfe, G. M.; Cantrell, C.; Kim, S.; Mauldin, R. L., III; Karl, T.; Harley, P.; Turnipseed, A.; Zheng, W.; Flocke, F.; Apel, E. C.; hide

    2013-01-01

    Organic peroxy (RO2) and hydroperoxy (HO2) radicals are key intermediates in the photochemical processes that generate ozone, secondary organic aerosol and reactive nitrogen reservoirs throughout the troposphere. In regions with ample biogenic hydrocarbons, the richness and complexity of peroxy radical chemistry presents a significant challenge to current-generation models, especially given the scarcity of measurements in such environments. We present peroxy radical observations acquired within a Ponderosa pine forest during the summer 2010 Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics and Nitrogen - Rocky Mountain Organic Carbon Study (BEACHON-ROCS). Total peroxy radical mixing ratios reach as high as 180 pptv and are among the highest yet recorded. Using the comprehensive measurement suite to constrain a near-explicit 0-D box model, we investigate the sources, sinks and distribution of peroxy radicals below the forest canopy. The base chemical mechanism underestimates total peroxy radicals by as much as a factor of 3. Since primary reaction partners for peroxy radicals are either measured (NO) or under-predicted (HO2 and RO2, i.e. self-reaction), missing sources are the most likely explanation for this result. A close comparison of model output with observations reveals at least two distinct source signatures. The first missing source, characterized by a sharp midday maximum and a strong dependence on solar radiation, is consistent with photolytic production of HO2. The diel profile of the second missing source peaks in the afternoon and suggests a process that generates RO2 independently of sun-driven photochemistry, such as ozonolysis of reactive hydrocarbons. The maximum magnitudes of these missing sources (approximately 120 and 50 pptv min-1, respectively) are consistent with previous observations alluding to unexpectedly intense oxidation within forests. We conclude that a similar mechanism may underlie many such observations.

  17. Bromeliad catchments as habitats for methanogenesis in tropical rainforest canopies

    Directory of Open Access Journals (Sweden)

    Shana K. Goffredi

    2011-12-01

    Full Text Available Tropical epiphytic plants within the family Bromeliaceae are unusual in that they possess foliage capable of retaining water and impounded material. This creates an acidic (pH 3.5-6.5 and anaerobic (< 1 ppm O2 environment suspended in the canopy. Results from a Costa Rican rainforest show that most bromeliads (n = 75/86 greater than ~20 cm in plant height or ~4-5 cm tank depth, showed presence of methanogens within the lower anoxic horizon of the tank. Archaea were dominated by methanogens (77-90% of recovered ribotypes and community structure, although variable, was generally comprised of a single type, closely related to either hydrogenotrophic Methanoregula or Methanocella, a specific clade of aceticlastic Methanosaeta, or Methanosarcina. Juvenile bromeliads, or those species, such as Guzmania, with shallow tanks, generally did not possess methanogens, as assayed by PCR specific for methanogen 16S rRNA genes, nor did artificial catchments (~ 100 ml volume, in place 6-12 months prior to sample collection. Methanogens were not detected in soil (n = 20, except in one case, in which the dominant ribotype was different from nearby bromeliads. Recovery of methyl coenzyme M reductase genes supported the occurrence of hydrogenotrophic and aceticlastic methanogens within bromeliad tanks, as well as the trend, via QPCR analysis of mcrA, of increased methanogenic capacity with increased plant height. Methane production rates of up to 300 nmol CH4 ml tank water -1 day-1 were measured in microcosm experiments. These results suggest that bromeliad-associated archaeal communities may play an important role in the cycling of carbon in neotropical forests.

  18. Nutrition modifies critical thermal maximum of a dominant canopy ant.

    Science.gov (United States)

    Bujan, Jelena; Kaspari, Michael

    2017-10-01

    While adaptive responses to climate gradients are increasingly documented, little is known about how individuals alter their upper thermal tolerances. Long-term increases in dietary carbohydrates can elevate upper thermal tolerances in insects. We explored how the nutritional state of a Neotropical canopy ant governs its CT max - the temperature at which individuals lose muscle control. We predicted that Azteca chartifex workers recently fed a carbohydrate-rich diet, such as honeydew and extrafloral nectar, would use that energy to increase their CT max . Moreover, if a carbohydrate-rich diet increases CT max , then we predicted that ants from colonies with high CT max s feed at a lower trophic level, and thus have a higher carbon:nitrogen ratio. We used A. chartifex colonies from a long-term fertilization experiment where phosphorus addition increased A. chartifex foraging activity with respect to controls. As foraging activity can be governed by resource availability, we first measured CT max of field collected colonies. In freshly collected field colonies, CT max was 2°C higher in control plots. This difference disappeared when ants were provided with only water for 10h. Ants were then provided with a 10% sucrose solution ad lib which increased CT max by 5°C. We thus support the hypothesis that enhanced carbohydrate nutrition enables higher thermal tolerance, but this does not appear to be linked to colony trophic status, higher carbon:nitrogen ratios, or higher total body phosphorus. This short-term thermal plasticity linked to carbohydrate nutrition demonstrates the importance of ant diet in shaping their physiological traits. It is especially relevant to ant species that maintain high abundance by feeding on plant exudates. In a rapidly warming world, carbohydrate availability and use may represent a new element for predicting population and community responses of herbivorous insects. Copyright © 2017. Published by Elsevier Ltd.

  19. Quantitative detection of settled dust over green canopy

    Science.gov (United States)

    Brook, Anna

    2016-04-01

    The main task of environmental and geoscience applications are efficient and accurate quantitative classification of earth surfaces and spatial phenomena. In the past decade, there has been a significant interest in employing hyperspectral unmixing in order to retrieve accurate quantitative information latent in hyperspectral imagery data. Recently, the ground-truth and laboratory measured spectral signatures promoted by advanced algorithms are proposed as a new path toward solving the unmixing problem of hyperspectral imagery in semi-supervised fashion. This paper suggests that the sensitivity of sparse unmixing techniques provides an ideal approach to extract and identify dust settled over/upon green vegetation canopy using hyperspectral airborne data. Atmospheric dust transports a variety of chemicals, some of which pose a risk to the ecosystem and human health (Kaskaoutis, et al., 2008). Many studies deal with the impact of dust on particulate matter (PM) and atmospheric pollution. Considering the potential impact of industrial pollutants, one of the most important considerations is the fact that suspended PM can have both a physical and a chemical impact on plants, soils, and water bodies. Not only can the particles covering surfaces cause physical distortion, but particles of diverse origin and different chemistries can also serve as chemical stressors and cause irreversible damage. Sediment dust load in an indoor environment can be spectrally assessed using reflectance spectroscopy (Chudnovsky and Ben-Dor, 2009). Small amounts of particulate pollution that may carry a signature of a forthcoming environmental hazard are of key interest when considering the effects of pollution. According to the most basic distribution dynamics, dust consists of suspended particulate matter in a fine state of subdivision that are raised and carried by wind. In this context, it is increasingly important to first, understand the distribution dynamics of pollutants, and

  20. Riparian influences on stream fish assemblage structure in urbanizing streams

    Science.gov (United States)

    Roy, A.H.; Freeman, B.J.; Freeman, Mary C.

    2007-01-01

    We assessed the influence of land cover at multiple spatial extents on fish assemblage integrity, and the degree to which riparian forests can mitigate the negative effects of catchment urbanization on stream fish assemblages. Riparian cover (urban, forest, and agriculture) was determined within 30 m buffers at longitudinal distances of 200 m, 1 km, and the entire network upstream of 59 non-nested fish sampling locations. Catchment and riparian land cover within the upstream network were highly correlated, so we were unable to distinguish between those variables. Most fish assemblage variables were related to % forest and % urban land cover, with the strongest relations at the largest spatial extent of land cover (catchment), followed by riparian land cover in the 1-km and 200-m reach, respectively. For fish variables related to urban land cover in the catchment, we asked whether the influence of riparian land cover on fish assemblages was dependent on the amount of urban development in the catchment. Several fish assemblage metrics (endemic richness, endemic:cosmopolitan abundance, insectivorous cyprinid richness and abundance, and fluvial specialist richness) were all best predicted by single variable models with % urban land cover. However, endemic:cosmopolitan richness, cosmopolitan abundance, and lentic tolerant abundance were related to % forest cover in the 1-km stream reach, but only in streams that had <15% catchment urban land cover. In these cases, catchment urbanization overwhelmed the potential mitigating effects of riparian forests on stream fishes. Together, these results suggest that catchment land cover is an important driver of fish assemblages in urbanizing catchments, and riparian forests are important but not sufficient for protecting stream ecosystems from the impacts of high levels of urbanization.

  1. Fossil Leaves and Fossil Leaf n-Alkanes: Reconstructing the First Closed Canopied Rainforests

    Science.gov (United States)

    Graham, H. V.; Freeman, K. H.

    2013-12-01

    Although the age and location is disputed, the rise of the first closed-canopy forest is likely linked with the expansion of angiosperms in the late Cretacous or early Cenozoic. The carbon isotope 'canopy effect' reflects the extent of canopy closure, and is well documented in δ13C values of the leaves and leaf lipids in modern forests. To test the extent of canopy closure among the oldest documented angiosperm tropical forests, we analyzed isotopic characteristics of leaf fossils and leaf waxes from the Guaduas and Cerrejón Formations. The Guaduas Fm. (Maastrichtian) contains some of the earliest angiosperm fossils in the Neotropics, and both leaf morphology and pollen records at this site suggest an open-canopy structure. The Cerrejón Fm. (Paleocene) contains what are believed to be the first recorded fossil leaves from a closed-canopy forest. We analyzed the bulk carbon isotope content (δ13Cleaf) of 199 fossil leaves, as well as the n-alkane concentration and chain-length distribution, and δ13C of alkanes (δ13Clipid) of 73 fossil leaves and adjacent sediment samples. Fossil leaves are dominated by eudicots and include ten modern plant families (Apocynaceae, Bombaceae, Euphorbaceae, Fabaceae, Lauraceae, Malvaceae, Meliaceae, Menispermaceae, Moraceae, Sapotaceae). We interpreted extent of canopy coverage based on the range of δ13Cleaf values. The narrow range of δ13C values in leaves from the Guaduas Fm (2.7‰) is consistent with an open canopy. A significantly wider range in values (6.3‰) suggests a closed-canopy signature for site 0315 of the Cerrejón Fm,. In contrast, at Site 0318, a lacustrine deposit, leaves had a narrow range (3.3‰) in δ13C values, and this is not consistent with a closed-canopy, but is consistent with leaf assemblages from a forest edge. Leaves that accumulate in lake sediments tend to be biased toward plants living at the lake edge, which do not experience closed-canopy conditions, and do not express the isotopic

  2. Parameterization and sensitivity analyses of a radiative transfer model for remote sensing plant canopies

    Science.gov (United States)

    Hall, Carlton Raden

    A major objective of remote sensing is determination of biochemical and biophysical characteristics of plant canopies utilizing high spectral resolution sensors. Canopy reflectance signatures are dependent on absorption and scattering processes of the leaf, canopy properties, and the ground beneath the canopy. This research investigates, through field and laboratory data collection, and computer model parameterization and simulations, the relationships between leaf optical properties, canopy biophysical features, and the nadir viewed above-canopy reflectance signature. Emphasis is placed on parameterization and application of an existing irradiance radiative transfer model developed for aquatic systems. Data and model analyses provide knowledge on the relative importance of leaves and canopy biophysical features in estimating the diffuse absorption a(lambda,m-1), diffuse backscatter b(lambda,m-1), beam attenuation alpha(lambda,m-1), and beam to diffuse conversion c(lambda,m-1 ) coefficients of the two-flow irradiance model. Data sets include field and laboratory measurements from three plant species, live oak (Quercus virginiana), Brazilian pepper (Schinus terebinthifolius) and grapefruit (Citrus paradisi) sampled on Cape Canaveral Air Force Station and Kennedy Space Center Florida in March and April of 1997. Features measured were depth h (m), projected foliage coverage PFC, leaf area index LAI, and zenith leaf angle. Optical measurements, collected with a Spectron SE 590 high sensitivity narrow bandwidth spectrograph, included above canopy reflectance, internal canopy transmittance and reflectance and bottom reflectance. Leaf samples were returned to laboratory where optical and physical and chemical measurements of leaf thickness, leaf area, leaf moisture and pigment content were made. A new term, the leaf volume correction index LVCI was developed and demonstrated in support of model coefficient parameterization. The LVCI is based on angle adjusted leaf

  3. Effects of diffuse radiation on canopy gas exchange processes in a forest ecosystem

    Science.gov (United States)

    Knohl, Alexander; Baldocchi, Dennis D.

    2008-06-01

    Forest ecosystems across the globe show an increase in ecosystem carbon uptake efficiency under conditions with high fraction of diffuse radiation. Here, we combine eddy covariance flux measurements at a deciduous temperate forest in central Germany with canopy-scale modeling using the biophysical multilayer model CANVEG to investigate the impact of diffuse radiation on various canopy gas exchange processes and to elucidate the underlying mechanisms. Increasing diffuse radiation enhances canopy photosynthesis by redistributing the solar radiation load from light saturated sunlit leaves to nonsaturated shade leaves. Interactions with atmospheric vapor pressure deficit and reduced leaf respiration are only of minor importance to canopy photosynthesis. The response strength of carbon uptake to diffuse radiation depends on canopy characteristics such as leaf area index and leaf optical properties. Our model computations shows that both canopy photosynthesis and transpiration increase initially with diffuse fraction, but decrease after an optimum at a diffuse fraction of 0.45 due to reduction in global radiation. The initial increase in canopy photosynthesis exceeds the increase in transpiration, leading to a rise in water-use-efficiency. Our model predicts an increase in carbon isotope discrimination with water-use-efficiency resulting from differences in the leaf-to-air vapor pressure gradient and atmospheric vapor pressure deficit. This finding is in contrast to those predicted with simple big-leaf models that do not explicitly calculate leaf energy balance. At an annual scale, we estimate a decrease in annual carbon uptake for a potential increase in diffuse fraction, since diffuse fraction was beyond the optimum for 61% of the data.

  4. Leaf and Canopy Level Detection of Fusarium Virguliforme (Sudden Death Syndrome in Soybean

    Directory of Open Access Journals (Sweden)

    Ittai Herrmann

    2018-03-01

    Full Text Available Pre-visual detection of crop disease is critical for food security. Field-based spectroscopic remote sensing offers a method to enable timely detection, but still requires appropriate instrumentation and testing. Soybean plants were spectrally measured throughout a growing season to assess the capacity of leaf and canopy level spectral measurements to detect non-visual foliage symptoms induced by Fusarium virguliforme (Fv, which causes sudden death syndrome. Canopy reflectance measurements were made using the Piccolo Doppio dual field-of-view, two-spectrometer (400 to 1630 nm system on a tractor. Leaf level measurements were obtained, in different plots, using a handheld spectrometer (400 to 2500 nm. Partial least squares discriminant analysis (PLSDA was applied to the spectroscopic data to discriminate between Fv-inoculated and control plants. Canopy and leaf spectral data allowed identification of Fv infection, prior to visual symptoms, with classification accuracy of 88% and 91% for calibration, 79% and 87% for cross-validation, and 82% and 92% for validation, respectively. Differences in wavelengths important to prediction by canopy vs. leaf data confirm that there are different bases for accurate predictions among methods. Partial least square regression (PLSR was used on a late-stage canopy level data to predict soybean seed yield, with calibration, cross-validation and validation R2 values 0.71, 0.59 and 0.62 (p < 0.01, respectively, and validation root mean square error of 0.31 t·ha−1. Spectral data from the tractor mounted system are thus sensitive to the expression of Fv root infection at canopy scale prior to canopy symptoms, suggesting such systems may be effective for precision agricultural research and management.

  5. Mechanistic Processes Controlling Persistent Changes of Forest Canopy Structure After 2005 Amazon Drought

    Science.gov (United States)

    Shi, Mingjie; Liu, Junjie; Zhao, Maosheng; Yu, Yifan; Saatchi, Sassan

    2017-12-01

    The long-term impact of Amazonian drought on canopy structure has been observed in ground and remote sensing measurements. However, it is still unclear whether it is caused by biotic (e.g., plant structure damage) or environmental (e.g., water deficiency) factors. We used the Community Land Model version 4.5 (CLM4.5) and radar backscatter observations from SeaWinds Scatterometer on board QuikSCAT (QSCAT) satellite to investigate the relative role of biotic and environmental factors in controlling the forest canopy disturbance and recovery processes after the 2005 Amazonian drought. We validated the CLM4.5 simulation of the drought impact and the recovery of leaf carbon (C) pool, an indicator of canopy structure, over southwestern Amazonia with QSCAT backscatter observations, which are sensitive to canopy structure change. We found that the leaf C pool simulated by CLM4.5 recovered to the 2000-2009 mean level (343 g C m-2) in 3 years after a sharp decrease in 2005, consistent with the QSCAT observed slow recovery. Through sensitivity experiments, we found that the slow C recovery was primarily due to biotic factors represented by the canopy damage and reduction of plant C pools. The recovery of soil water and the coupling between water and C pools, which is an environmental factor, only contributes 24% to the leaf C recovery. The results showed (1) the strength of scatterometer backscatter measurements in capturing canopy damage over tropical forests and in validating C cycle models and (2) the biotic factors play the dominant role in regulating the drought induced disturbance and persistent canopy changes in CLM4.5.

  6. Characterizing olive grove canopies by means of ground-based hemispherical photography and spaceborne RADAR data.

    Science.gov (United States)

    Molina, Iñigo; Morillo, Carmen; García-Meléndez, Eduardo; Guadalupe, Rafael; Roman, Maria Isabel

    2011-01-01

    One of the main strengths of active microwave remote sensing, in relation to frequency, is its capacity to penetrate vegetation canopies and reach the ground surface, so that information can be drawn about the vegetation and hydrological properties of the soil surface. All this information is gathered in the so called backscattering coefficient (σ(0)). The subject of this research have been olive groves canopies, where which types of canopy biophysical variables can be derived by a specific optical sensor and then integrated into microwave scattering models has been investigated. This has been undertaken by means of hemispherical photographs and gap fraction procedures. Then, variables such as effective and true Leaf Area Indices have been estimated. Then, in order to characterize this kind of vegetation canopy, two models based on Radiative Transfer theory have been applied and analyzed. First, a generalized two layer geometry model made up of homogeneous layers of soil and vegetation has been considered. Then, a modified version of the Xu and Steven Water Cloud Model has been assessed integrating the canopy biophysical variables derived by the suggested optical procedure. The backscattering coefficients at various polarized channels have been acquired from RADARSAT 2 (C-band), with 38.5° incidence angle at the scene center. For the soil simulation, the best results have been reached using a Dubois scattering model and the VV polarized channel (r(2) = 0.88). In turn, when effective LAI (LAI(eff)) has been taken into account, the parameters of the scattering canopy model are better estimated (r(2) = 0.89). Additionally, an inversion procedure of the vegetation microwave model with the adjusted parameters has been undertaken, where the biophysical values of the canopy retrieved by this methodology fit properly with field measured values.

  7. Mapping Forest Canopy Height Across Large Areas by Upscaling ALS Estimates with Freely Available Satellite Data

    Directory of Open Access Journals (Sweden)

    Phil Wilkes

    2015-09-01

    Full Text Available Operational assessment of forest structure is an on-going challenge for land managers, particularly over large, remote or inaccessible areas. Here, we present an easily adopted method for generating a continuous map of canopy height at a 30 m resolution, demonstrated over 2.9 million hectares of highly heterogeneous forest (canopy height 0–70 m in Victoria, Australia. A two-stage approach was utilized where Airborne Laser Scanning (ALS derived canopy height, captured over ~18% of the study area, was used to train a regression tree ensemble method; random forest. Predictor variables, which have a global coverage and are freely available, included Landsat Thematic Mapper (Tasselled Cap transformed, Moderate Resolution Imaging Spectroradiometer Normalized Difference Vegetation Index time series, Shuttle Radar Topography Mission elevation data and other ancillary datasets. Reflectance variables were further processed to extract additional spatial and temporal contextual and textural variables. Modeled canopy height was validated following two approaches; (i random sample cross validation; and (ii with 108 inventory plots from outside the ALS capture extent. Both the cross validation and comparison with inventory data indicate canopy height can be estimated with a Root Mean Square Error (RMSE of ≤ 31% (~5.6 m at the 95th percentile confidence interval. Subtraction of the systematic component of model error, estimated from training data error residuals, rescaled canopy height values to more accurately represent the response variable distribution tails e.g., tall and short forest. Two further experiments were carried out to test the applicability and scalability of the presented method. Results suggest that (a no improvement in canopy height estimation is achieved when models were constructed and validated for smaller geographic areas, suggesting there is no upper limit to model scalability; and (b training data can be captured over a small

  8. VEGNET - a novel terrestrial laser scanner for daily monitoring of forest canopy dynamics

    Science.gov (United States)

    Griebel, A.; Arndt, S. K.; Newnham, G.; Culvenor, D.; Bennett, L. T.

    2015-12-01

    Leaf area index (LAI) or plant area index (PAI) are commonly used to represent canopy structure and dynamics, but daily estimation of these variables using traditional ground-based methods is impractical and prone to multiple errors during data acquisition and processing. Existing terrestrial laser scanners can provide accurate representation of forest canopy structure, but the sensors are expensive, data processing is complex, and measurements are typically confined to a single event, which severely limits their utility in the interpretation of canopy trends indicated by remotely sensed data. We tested a novel, low-cost terrestrial laser scanner for its capacity to provide reliable and successive assessments of canopy PAI in an evergreen eucalypt forest. Daily scans were made by three scanners at one forest site over a three-year period, providing mostly consecutive estimates of PAI, and of vertical structure profiles (as Plant Area Volume Density, PAVD). Data filtering, involving objective statistical methods to identify outliers, indicated that scan quality was adversely affected by moist weather and moderate wind speeds (>4 m s-1), suggesting limited utility in some forest environments. We found strong agreement between lidar-derived PAI estimates, and those from monthly hemispherical images (±0.1 PAI); with both methods indicating mostly stable PAI over multiple seasons. The PAVD profiles from the laser scanner indicated that leaf flush in the upper canopy concomitantly balanced leaf loss from the middle canopy in summer, which was consistent with measured summer peaks in litter fall. This clearly illustrated the advantages of three-dimensional lidar data over traditional two-dimensional PAI estimates in monitoring tree phenology, and in interpreting changes in canopy reflectance as detected by air- and space-borne remotely sensed data.

  9. Video Streaming in Online Learning

    Science.gov (United States)

    Hartsell, Taralynn; Yuen, Steve Chi-Yin

    2006-01-01

    The use of video in teaching and learning is a common practice in education today. As learning online becomes more of a common practice in education, streaming video and audio will play a bigger role in delivering course materials to online learners. This form of technology brings courses alive by allowing online learners to use their visual and…

  10. Streaming Algorithms for Line Simplification

    DEFF Research Database (Denmark)

    Abam, Mohammad; de Berg, Mark; Hachenberger, Peter

    2010-01-01

    this problem in a streaming setting, where we only have a limited amount of storage, so that we cannot store all the points. We analyze the competitive ratio of our algorithms, allowing resource augmentation: we let our algorithm maintain a simplification with 2k (internal) points and compare the error of our...

  11. Analysis of streaming media systems

    NARCIS (Netherlands)

    Lu, Y.

    2010-01-01

    Multimedia services have been popping up at tremendous speed in recent years. A large number of these multimedia streaming systems are introduced to the consumer market. Internet Service Providers, Telecommunications Operators, Service/Content Providers, and end users are interested in the

  12. ALIENS IN WESTERN STREAM ECOSYSTEMS

    Science.gov (United States)

    The USEPA's Environmental Monitoring and Assessment Program conducted a five year probability sample of permanent mapped streams in 12 western US states. The study design enables us to determine the extent of selected riparian invasive plants, alien aquatic vertebrates, and some ...

  13. Efficient architectures for streaming applications

    NARCIS (Netherlands)

    Smit, Gerardus Johannes Maria; Kokkeler, Andre B.J.; Wolkotte, P.T.; van de Burgwal, M.D.; Heysters, P.M.; Athanas, P.; Becker, J.; Brebner, G.; Teich, J.

    2006-01-01

    This presentation will focus on algorithms and reconfigurable tiled architectures for streaming DSP applications. The tile concept will not only be applied on chip level but also on board-level and system-level. The tile concept has a number of advantages: (1) depending on the requirements more or

  14. Stretch-minimising stream surfaces

    KAUST Repository

    Barton, Michael

    2015-05-01

    We study the problem of finding stretch-minimising stream surfaces in a divergence-free vector field. These surfaces are generated by motions of seed curves that propagate through the field in a stretch minimising manner, i.e., they move without stretching or shrinking, preserving the length of their arbitrary arc. In general fields, such curves may not exist. How-ever, the divergence-free constraint gives rise to these \\'stretch-free\\' curves that are locally arc-length preserving when infinitesimally propagated. Several families of stretch-free curves are identified and used as initial guesses for stream surface generation. These surfaces are subsequently globally optimised to obtain the best stretch-minimising stream surfaces in a given divergence-free vector field. Our algorithm was tested on benchmark datasets, proving its applicability to incompressible fluid flow simulations, where our stretch-minimising stream surfaces realistically reflect the flow of a flexible univariate object. © 2015 Elsevier Inc. All rights reserved.

  15. QStream: A Suite of Streams

    NARCIS (Netherlands)

    J. Winter (Joost); R. Heckel; S. Milius

    2013-01-01

    htmlabstractWe present a simple tool in Haskell, QStream, implementing the technique of coinductive counting by making use of Haskell's built-in coinduction capabilities. We furthermore provide a number of useful tools for stream exploration, including a number of pretty print functions and

  16. Continuous sampling from distributed streams

    DEFF Research Database (Denmark)

    Graham, Cormode; Muthukrishnan, S.; Yi, Ke

    2012-01-01

    A fundamental problem in data management is to draw and maintain a sample of a large data set, for approximate query answering, selectivity estimation, and query planning. With large, streaming data sets, this problem becomes particularly difficult when the data is shared across multiple distribu......A fundamental problem in data management is to draw and maintain a sample of a large data set, for approximate query answering, selectivity estimation, and query planning. With large, streaming data sets, this problem becomes particularly difficult when the data is shared across multiple...... distributed sites. The main challenge is to ensure that a sample is drawn uniformly across the union of the data while minimizing the communication needed to run the protocol on the evolving data. At the same time, it is also necessary to make the protocol lightweight, by keeping the space and time costs low...... for each participant. In this article, we present communication-efficient protocols for continuously maintaining a sample (both with and without replacement) from k distributed streams. These apply to the case when we want a sample from the full streams, and to the sliding window cases of only the W most...

  17. Miscellaneous Waste Stream strategy document

    International Nuclear Information System (INIS)

    Stoltz, D.L.

    1992-07-01

    This strategy document addresses objectives and implementation for the Miscellaneous Waste Stream (MWS) program through FY1996. Its intention is to develop's comprehensive pollution prevention/hazard minimization program for MWS projects. The overall focus of this program is aimed at pollution prevention/hazard minimization for MWS processes and involves the elimination/minimization of processes and materials that result in pollutant releases to all environmental media. The document is divided into three categories of initial issues identified from funded MWS projects: waste streams, assessment tools, and waste characterization and worker exposure methods development. Initial strategy requires the development of a baseline of major waste streams at each facility and the identification of MWS issues and proposed solutions. Goals and schedules will evolve as these new issues are identified. Applicable pollution prevention/hazard minimization technologies will be identified, prioritized, and employed to address each issue commensurate with funding availability. Options will then be chosen and the proven technologies transferred to other sites, including commercial industry. Most notably, this strategy document calls for a 50 percent volume and toxicity reduction by CY1995 in the miscellaneous waste streams generated by processes within the MWS

  18. Stomatal Conductance, Plant Hydraulics, and Multilayer Canopies: A New Paradigm for Earth System Models or Unnecessary Uncertainty

    Science.gov (United States)

    Bonan, G. B.

    2016-12-01

    Soil moisture stress is a key regulator of canopy transpiration, the surface energy budget, and land-atmosphere coupling. Many land surface models used in Earth system models have an ad-hoc parameterization of soil moisture stress that decreases stomatal conductance with soil drying. Parameterization of soil moisture stress from more fundamental principles of plant hydrodynamics is a key research frontier for land surface models. While the biophysical and physiological foundations of such parameterizations are well-known, their best implementation in land surface models is less clear. Land surface models utilize a big-leaf canopy parameterization (or two big-leaves to represent the sunlit and shaded canopy) without vertical gradients in the canopy. However, there are strong biometeorological and physiological gradients in plant canopies. Are these gradients necessary to resolve? Here, I describe a vertically-resolved, multilayer canopy model that calculates leaf temperature and energy fluxes, photosynthesis, stomatal conductance, and leaf water potential at each level in the canopy. In this model, midday leaf water stress manifests in the upper canopy layers, which receive high amounts of solar radiation, have high leaf nitrogen and photosynthetic capacity, and have high stomatal conductance and transpiration rates (in the absence of leaf water stress). Lower levels in the canopy become water stressed in response to longer-term soil moisture drying. I examine the role of vertical gradients in the canopy microclimate (solar radiation, air temperature, vapor pressure, wind speed), structure (leaf area density), and physiology (leaf nitrogen, photosynthetic capacity, stomatal conductance) in determining above canopy fluxes and gradients of transpiration and leaf water potential within the canopy.

  19. Aeroacoustics of Three-Stream Jets

    Science.gov (United States)

    Henderson, Brenda S.

    2012-01-01

    Results from acoustic measurements of noise radiated from a heated, three-stream, co-annular exhaust system operated at subsonic conditions are presented. The experiments were conducted for a range of core, bypass, and tertiary stream temperatures and pressures. The nozzle system had a fan-to-core area ratio of 2.92 and a tertiary-to-core area ratio of 0.96. The impact of introducing a third stream on the radiated noise for third-stream velocities below that of the bypass stream was to reduce high frequency noise levels at broadside and peak jet-noise angles. Mid-frequency noise radiation at aft observation angles was impacted by the conditions of the third stream. The core velocity had the greatest impact on peak noise levels and the bypass-to-core mass flow ratio had a slight impact on levels in the peak jet-noise direction. The third-stream jet conditions had no impact on peak noise levels. Introduction of a third jet stream in the presence of a simulated forward-flight stream limits the impact of the third stream on radiated noise. For equivalent ideal thrust conditions, two-stream and three-stream jets can produce similar acoustic spectra although high-frequency noise levels tend to be lower for the three-stream jet.

  20. UPSCALING OF SOLAR INDUCED CHLOROPHYLL FLUORESCENCE FROM LEAF TO CANOPY USING THE DART MODEL AND A REALISTIC 3D FOREST SCENE

    Directory of Open Access Journals (Sweden)

    W. Liu

    2017-10-01

    Full Text Available Solar induced chlorophyll a fluorescence (SIF has been shown to be an excellent proxy of photosynthesis at multiple scales. However, the mechanical linkages between fluorescence and photosynthesis at the leaf level cannot be directly applied at canopy or field scales, as the larger scale SIF emission depends on canopy structure. This is especially true for the forest canopies characterized by high horizontal and vertical heterogeneity. While most of the current studies on SIF radiative transfer in plant canopies are based on the assumption of a homogeneous canopy, recently codes have been developed capable of simulation of fluorescence signal in explicit 3-D forest canopies. Here we present a canopy SIF upscaling method consisting of the integration of the 3-D radiative transfer model DART and a 3-D object model BLENDER. Our aim was to better understand the effect of boreal forest canopy structure on SIF for a spatially explicit forest canopy.

  1. Upscaling of Solar Induced Chlorophyll Fluorescence from Leaf to Canopy Using the Dart Model and a Realistic 3d Forest Scene

    Science.gov (United States)

    Liu, W.; Atherton, J.; Mõttus, M.; MacArthur, A.; Teemu, H.; Maseyk, K.; Robinson, I.; Honkavaara, E.; Porcar-Castell, A.

    2017-10-01

    Solar induced chlorophyll a fluorescence (SIF) has been shown to be an excellent proxy of photosynthesis at multiple scales. However, the mechanical linkages between fluorescence and photosynthesis at the leaf level cannot be directly applied at canopy or field scales, as the larger scale SIF emission depends on canopy structure. This is especially true for the forest canopies characterized by high horizontal and vertical heterogeneity. While most of the current studies on SIF radiative transfer in plant canopies are based on the assumption of a homogeneous canopy, recently codes have been developed capable of simulation of fluorescence signal in explicit 3-D forest canopies. Here we present a canopy SIF upscaling method consisting of the integration of the 3-D radiative transfer model DART and a 3-D object model BLENDER. Our aim was to better understand the effect of boreal forest canopy structure on SIF for a spatially explicit forest canopy.

  2. Streaming Visual Analytics Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Kristin A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burtner, Edwin R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kritzstein, Brian P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Brisbois, Brooke R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mitson, Anna E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-03-31

    How can we best enable users to understand complex emerging events and make appropriate assessments from streaming data? This was the central question addressed at a three-day workshop on streaming visual analytics. This workshop was organized by Pacific Northwest National Laboratory for a government sponsor. It brought together forty researchers and subject matter experts from government, industry, and academia. This report summarizes the outcomes from that workshop. It describes elements of the vision for a streaming visual analytic environment and set of important research directions needed to achieve this vision. Streaming data analysis is in many ways the analysis and understanding of change. However, current visual analytics systems usually focus on static data collections, meaning that dynamically changing conditions are not appropriately addressed. The envisioned mixed-initiative streaming visual analytics environment creates a collaboration between the analyst and the system to support the analysis process. It raises the level of discourse from low-level data records to higher-level concepts. The system supports the analyst’s rapid orientation and reorientation as situations change. It provides an environment to support the analyst’s critical thinking. It infers tasks and interests based on the analyst’s interactions. The system works as both an assistant and a devil’s advocate, finding relevant data and alerts as well as considering alternative hypotheses. Finally, the system supports sharing of findings with others. Making such an environment a reality requires research in several areas. The workshop discussions focused on four broad areas: support for critical thinking, visual representation of change, mixed-initiative analysis, and the use of narratives for analysis and communication.

  3. Canopy spectral and chemical diversity from lowland to tree line in the Western Amazon using CAO-VSWIR

    Science.gov (United States)

    Martin, R. E.; Asner, G. P.

    2012-12-01

    Canopy chemistry and spectroscopy offer insight into community assembly and ecosystem processes in high-diversity tropical forests. Results from one lowland site in the Peruvian Amazon suggests both an environmental and an evolutionary component of canopy trait development however, the degree to which larger environmental differences influence diversity in canopy traits and their respective spectroscopic signatures across remains poorly understood. The spectranomics approach explicitly connects phylogenetic, chemical and spectral patterns in tropical canopies providing the basis for analysis, while high-fidelity, airborne remote sensing measurements extend plot-level data to landscape-scale, achieving a comprehensive view of the region. In 2011, the Carnegie Airborne Observatory (CAO) was used to sample a large region of the Western Amazon Basin in southeastern Peru, extending from lowlands to tree line in the Andean mountains. The CAO Visible-Shortwave Imaging Spectrometer (VSWIR) collected 480-band high-fidelity imaging spectroscopy data of the forest canopy, while its high-resolution LiDAR captured information on canopy structure and the underlying terrain. The data were used to quantify relationships between environmental gradients and canopy chemical and spectral diversity. Results suggest strong environmental control with additional phylogenetic influence over canopy spectral and chemical properties, particularly those related to structure, defense and metabolic function. Data from CAO-VSWIR extends the large range in canopy chemical and spectral diversity related to environmental factors across the Western Amazon Basin.

  4. Incorporating Canopy Cover for Airborne-Derived Assessments of Forest Biomass in the Tropical Forests of Cambodia

    OpenAIRE

    Singh, Minerva; Evans, Damian; Coomes, David A.; Friess, Daniel A.; Suy Tan, Boun; Samean Nin, Chan

    2016-01-01

    This research examines the role of canopy cover in influencing above ground biomass (AGB) dynamics of an open canopied forest and evaluates the efficacy of individual-based and plot-scale height metrics in predicting AGB variation in the tropical forests of Angkor Thom, Cambodia. The AGB was modeled by including canopy cover from aerial imagery alongside with the two different canopy vertical height metrics derived from LiDAR; the plot average of maximum tree height (Max_CH) of individual tre...

  5. CO2-induced decrease of canopy stomatal conductance of mature conifer and broadleaved trees

    Science.gov (United States)

    Tor-ngern, P.; Oren, R.; Ward, E. J.; Palmroth, S.; McCarthy, H. R.; domec, J.

    2013-12-01

    Together with canopy leaf area, mean canopy stomatal conductance (GS) controls forest-atmosphere exchanges of energy and mass. Expectations for stomatal response to elevated atmospheric [CO2] (CO2E) based on seedling studies range from large decreases of conductance in foliage of broadleaved species to little or no response in conifers. These responses are not directly translatable to forest canopies, and their underlying mechanisms are ill-defined. The uncertainty of canopy-scale stomatal response to CO2E reduces confidence in modeled predictions of future forest productivity and carbon sequestration, and of partitioning of net radiation between latent and sensible heat flux. Thus, debates on the potential effects of CO2E-induced stomatal closure continue. We used a Free-Air CO2 Enrichment (FACE) experiment in a 27-year-old, 25 m tall forest, to generate a whole-canopy CO2-response and test whether canopy-scale GS response to CO2E of widely distributed, fast growing shade-intolerant species, Pinus taeda (L.) and co-occurring broadleaved species dominated by Liquidambar styraciflua (L.), was indirectly affected by slow changes such as hydraulic adjustments and canopy development, as opposed to quickly responding to CO2 concentrations in the leaf-internal air space. Our results show indirect CO2E-induced reductions of GS of 10% and 30%, respectively, and no signs of a direct stomatal response even as CO2E was pushed to 685 μmol mol-1 (~1.8 of ambient). Modeling the effect of CO2E on the water, energy and carbon cycles of forests must consider slow-response indirect mechanisms producing large variation in the reduction of GS, such as the previously observed inconsistent CO2E effect on canopy leaf area and plant hydraulics. Moreover, the new generation of CO2E studies in forests must allow indirect effects caused by, e.g., hydraulic adjustments and canopy development, to play out. Such acclimation will be particularly prolonged in slowly developing ecosystems, such

  6. Cytoplasmic Streaming in the Drosophila Oocyte.

    Science.gov (United States)

    Quinlan, Margot E

    2016-10-06

    Objects are commonly moved within the cell by either passive diffusion or active directed transport. A third possibility is advection, in which objects within the cytoplasm are moved with the flow of the cytoplasm. Bulk movement of the cytoplasm, or streaming, as required for advection, is more common in large cells than in small cells. For example, streaming is observed in elongated plant cells and the oocytes of several species. In the Drosophila oocyte, two stages of streaming are observed: relatively slow streaming during mid-oogenesis and streaming that is approximately ten times faster during late oogenesis. These flows are implicated in two processes: polarity establishment and mixing. In this review, I discuss the underlying mechanism of streaming, how slow and fast streaming are differentiated, and what we know about the physiological roles of the two types of streaming.

  7. What Can Hierarchies Do for Data Streams?

    DEFF Research Database (Denmark)

    Yin, Xuepeng; Pedersen, Torben Bach

    2007-01-01

    Abstract. Much effort has been put into building data streams management systems for querying data streams. However, the query languages have mostly been SQL-based and aimed for low-level analysis of base data; therefore, there has been little work on supporting OLAP-like queries that provide real......-time multidimensional and summarized views of stream data. In this paper, we introduce a multi-dimensional stream query language and its formal semantics. Our approach turns low-level data streams into informative high-level aggregates and enables multi-dimensional and granular OLAP queries against data streams, which...... supports the requirements of today’s real time enterprises much better. A comparison with the STREAM CQL language shows that our approach is more flexible and powerful for high-level OLAP queries, as well as far more compact and concise. Classification: Real-time OLAP, Streaming data, Real-time decision...

  8. A recirculating stream aquarium for ecological studies.

    Science.gov (United States)

    Gordon H. Reeves; Fred H. Everest; Carl E. McLemore

    1983-01-01

    Investigations of the ecological behavior of fishes often require studies in both natural and artificial stream environments. We describe a large, recirculating stream aquarium and its controls, constructed for ecological studies at the Forestry Sciences Laboratory in Corvallis.

  9. Physiological characteristics of high yield under cluster planting: photosynthesis and canopy microclimate of cotton

    Directory of Open Access Journals (Sweden)

    Ting-ting Xie

    2016-01-01

    Full Text Available Cotton produces more biomass and economic yield when cluster planting pattern (three plants per hole than in a traditional planting pattern (one plant per hole, even at similar plant densities, indicating that individual plant growth is promoted by cluster planting. The causal factors for this improved growth induced by cluster planting pattern, the light interception, canopy microclimate and photosynthetic rate of cotton were investigated in an arid region of China. The results indicated that the leaf area index and light interception were higher in cluster planting, and significantly different from those in traditional planting during the middle and late growth stages. Cotton canopy humidity at different growth stages was increased but canopy temperatures were reduced by cluster planting. In the later growth stage of cluster planting, the leaf chlorophyll content was higher and the leaf net photosynthetic rate and canopy photosynthetic rate were significantly increased in comparing with traditional planting pattern. We concluded that differences in canopy light interception and photosynthetic rate were the primary factors responsible for increased biomass production and economic yield in cluster planting compared with the traditional planting of cotton.

  10. A Numerical Study of Near-Field Dispersion within and above Forest Canopies

    Science.gov (United States)

    Edburg, Steven; Stock, David; Lamb, Brian; Thistle, Harold

    2004-11-01

    Pine beetle infestations have impacted recreational uses, wildlife habitat, and silvicultural practice in forest stands throughout the US and Canada. Pheromone releases are used by forest managers as an anti-aggregation technique to protect high value forest stands against the pine beetle. As a result, near-field pheromone dispersion patterns are needed to develop effective forest management techniques. Recent field experiments have shown a strong link between tracer gas dispersion, meteorological data and canopy density. However, field experiments are limited by cost, location, meteorological conditions etc. Analytical and numerical models are a cost effective solution to study multiple cases, while having control over meteorological parameters. In this research, numerical simulations were conducted, and the Reynolds stress model, RSM, and large eddy simulation, LES, were used to predict near-field concentrations of a tracer gas in a pine canopy. The canopy was represented with porous media based on leaf area index and basal area. Unstable atmospheric conditions were prescribed with solar radiation absorption in the canopy. Results were compared with meteorological data and thirty minute concentration averages from a field experiment. The steady RSM solution showed reasonable comparison with experimental data, although it did not capture the dynamics of the flow. Unsteady LES captured the time dependency of the flow and dispersion patterns. Future work will consist of modeling canopies that are not continuous and dispersion during stable atmospheric conditions. Bursting and sweeping affects on dispersion will also be investigated.

  11. A Comparison of Mangrove Canopy Height Using Multiple Independent Measurements from Land, Air, and Space

    Science.gov (United States)

    Lagomasino, David; Fatoyinbo, Temilola; Lee, SeungKuk; Feliciano, Emanuelle; Trettin, Carl; Simard, Marc

    2016-01-01

    Canopy height is one of the strongest predictors of biomass and carbon in forested ecosystems. Additionally, mangrove ecosystems represent one of the most concentrated carbon reservoirs that are rapidly degrading as a result of deforestation, development, and hydrologic manipulation. Therefore, the accuracy of Canopy Height Models (CHM) over mangrove forest can provide crucial information for monitoring and verification protocols. We compared four CHMs derived from independent remotely sensed imagery and identified potential errors and bias between measurement types. CHMs were derived from three spaceborne datasets; Very-High Resolution (VHR) stereophotogrammetry, TerraSAR-X add-on for Digital Elevation Measurement (DEM), and Shuttle Radar Topography Mission (TanDEM-X), and lidar data which was acquired from an airborne platform. Each dataset exhibited different error characteristics that were related to spatial resolution, sensitivities of the sensors, and reference frames. Canopies over 10 meters were accurately predicted by all CHMs while the distributions of canopy height were best predicted by the VHR CHM. Depending on the guidelines and strategies needed for monitoring and verification activities, coarse resolution CHMs could be used to track canopy height at regional and global scales with finer resolution imagery used to validate and monitor critical areas undergoing rapid changes.

  12. Impact of 3D Canopy Structure on Remote Sensing Vegetation Index and Solar Induced Chlorophyll Fluorescence

    Science.gov (United States)

    Zeng, Y.; Berry, J. A.; Jing, L.; Qinhuo, L.

    2017-12-01

    Terrestrial ecosystem plays a critical role in removing CO2 from atmosphere by photosynthesis. Remote sensing provides a possible way to monitor the Gross Primary Production (GPP) at the global scale. Vegetation Indices (VI), e.g., NDVI and NIRv, and Solar Induced Fluorescence (SIF) have been widely used as a proxy for GPP, while the impact of 3D canopy structure on VI and SIF has not be comprehensively studied yet. In this research, firstly, a unified radiative transfer model for visible/near-infrared reflectance and solar induced chlorophyll fluorescence has been developed based on recollision probability and directional escape probability. Then, the impact of view angles, solar angles, weather conditions, leaf area index, and multi-layer leaf angle distribution (LAD) on VI and SIF has been studied. Results suggest that canopy structure plays a critical role in distorting pixel-scale remote sensing signal from leaf-scale scattering. In thin canopy, LAD affects both of the remote sensing estimated GPP and real GPP, while in dense canopy, SIF variations are mainly due to canopy structure, instead of just due to physiology. At the microscale, leaf angle reflects the plant strategy to light on the photosynthesis efficiency, and at the macroscale, a priori knowledge of leaf angle distribution for specific species can improve the global GPP estimation by remote sensing.

  13. [Photosynthetic rate, transpiration rate, and water use efficiency of cotton canopy in oasis edge of Linze].

    Science.gov (United States)

    Xie, Ting-Ting; Su, Pei-Xi; Gao, Song

    2010-06-01

    The measurement system of Li-8100 carbon flux and the modified assimilation chamber were used to study the photosynthetic characteristics of cotton (Gossypium hirsutum L.) canopy in the oasis edge region in middle reach of Heihe River Basin, mid Hexi Corridor of Gansu. At the experimental site, soil respiration and evaporation rates were significantly higher in late June than in early August, and the diurnal variation of canopy photosynthetic rate showed single-peak type. The photosynthetic rate was significantly higher (P water use efficiency in late June and early August was (15.67 +/- 1.77) mmol CO2 x mol(-1) H2O and (23.08 +/- 5.54) mmol CO2 x mol(-1) H2O, respectively, but the difference was not significant (P > 0.05). Both in late June and in early August, the canopy photosynthetic rate was positively correlated with air temperature, PAR, and soil moisture content, suggesting that there was no midday depression of photosynthesis in the two periods. In August, the canopy photosynthetic rate and transpiration rate decreased significantly, because of the lower soil moisture content and leaf senescence, but the canopy water use efficiency had no significant decrease.

  14. "The Coral Reef Micro-Canopy": A New Concept in Coral Ecophysiology

    Science.gov (United States)

    Wangpraseurt, D.; Kühl, M.

    2016-02-01

    Terrestrial plant canopies are highly optimised photosynthetic systems. The high photosynthetic efficiency is achieved on a systems level and is the result of two characteristic traits: 1) the incident irradiance is strongly diffused and redistributed by elements of the canopy and 2) the photosynthetic apparatus is photoacclimated to the local light environment. Our recent studies of coral tissue optics and in vivo photosynthesis have revealed that similar canopy characteristics occur on a microscale within the coral tissue. In the present talk we propose the "Coral Micro-Canopy" theory. We reveal new insight into the light handling strategies of coral tissues and then show how such light management can optimise photosynthesis, both on the algal cell level and on the tissue systems level. We propose that coral tissue optical properties and Symbiodinium photoadaptation in response to local light microgradients within the tissue work in concert to optimise energy acquisition of the coral tissue system. We argue that the evolution of flexible light scattering tissues is an important feature that enables highly efficient photosynthesis in symbiont-bearing corals. The coral micro-canopy theory is discussed with respect to our basic understanding of coral ecophysiology and stress physiology.

  15. A Comparison of Mangrove Canopy Height Using Multiple Independent Measurements from Land, Air, and Space

    Directory of Open Access Journals (Sweden)

    David Lagomasino

    2016-04-01

    Full Text Available Canopy height is one of the strongest predictors of biomass and carbon in forested ecosystems. Additionally, mangrove ecosystems represent one of the most concentrated carbon reservoirs that are rapidly degrading as a result of deforestation, development, and hydrologic manipulation. Therefore, the accuracy of Canopy Height Models (CHM over mangrove forest can provide crucial information for monitoring and verification protocols. We compared four CHMs derived from independent remotely sensed imagery and identified potential errors and bias between measurement types. CHMs were derived from three spaceborne datasets; Very-High Resolution (VHR stereophotogrammetry, TerraSAR-X add-on for Digital Elevation Measurement, and Shuttle Radar Topography Mission (TanDEM-X, and lidar data which was acquired from an airborne platform. Each dataset exhibited different error characteristics that were related to spatial resolution, sensitivities of the sensors, and reference frames. Canopies over 10 m were accurately predicted by all CHMs while the distributions of canopy height were best predicted by the VHR CHM. Depending on the guidelines and strategies needed for monitoring and verification activities, coarse resolution CHMs could be used to track canopy height at regional and global scales with finer resolution imagery used to validate and monitor critical areas undergoing rapid changes.

  16. Stable isotope canopy effects for sympatric monkeys at Tai Forest, Cote d'Ivoire.

    Science.gov (United States)

    Krigbaum, John; Berger, Michael H; Daegling, David J; McGraw, W Scott

    2013-08-23

    This study tests the hypothesis that vertical habitat preferences of different monkey species inhabiting closed canopy rainforest are reflected in oxygen isotopes. We sampled bone from seven sympatric cercopithecid species in the Taï forest, Côte d'Ivoire, where long-term study has established taxon-specific patterns of habitat use and diet. Modern rib samples (n = 34) were examined for oxygen (δ(18)Oap) and carbon (δ(13)Cap) from bone apatite ('bioapatite'), and carbon (δ(13)Cco) and nitrogen (δ(15)Nco) from bone collagen. Results are consistent for C3 feeders in a closed canopy habitat. Low irradiance and evapotranspiration, coupled with high relative humidity and recycled CO2 in forest understory, contribute to observed isotopic variability. Both δ(13)Cco and δ(13)Cap results reflect diet; however, δ(13)C values are not correlated with species preference for canopy height. By contrast, δ(18)Oap results are correlated with mean observed height and show significant vertical partitioning between taxa feeding at ground, lower and upper canopy levels. This oxygen isotope canopy effect has important palaeobiological implications for reconstructing vertical partitioning among sympatric primates and other species in tropical forests.

  17. Natural canopy bridges effectively mitigate tropical forest fragmentation for arboreal mammals.

    Science.gov (United States)

    Gregory, Tremaine; Carrasco-Rueda, Farah; Alonso, Alfonso; Kolowski, Joseph; Deichmann, Jessica L

    2017-06-20

    Linear infrastructure development and resulting habitat fragmentation are expanding in Neotropical forests, and arboreal mammals may be disproportionately impacted by these linear habitat clearings. Maintaining canopy connectivity through preservation of connecting branches (i.e. natural canopy bridges) may help mitigate that impact. Using camera traps, we evaluated crossing rates of a pipeline right-of-way in a control area with no bridges and in a test area where 13 bridges were left by the pipeline construction company. Monitoring all canopy crossing points for a year (7,102 canopy camera nights), we confirmed bridge use by 25 mammal species from 12 families. With bridge use beginning immediately after exposure and increasing over time, use rates were over two orders of magnitude higher than on the ground. We also found a positive relationship between a bridge's use rate and the number of species that used it, suggesting well-used bridges benefit multiple species. Data suggest bridge use may be related to a combination of bridge branch connectivity, multiple connections, connectivity to adjacent forest, and foliage cover. Given the high use rate and minimal cost, we recommend all linear infrastructure projects in forests with arboreal mammal populations include canopy bridges.

  18. Simulating sunflower canopy temperatures to infer root-zone soil water potential

    Science.gov (United States)

    Choudhury, B. J.; Idso, S. B.

    1983-01-01

    A soil-plant-atmosphere model for sunflower (Helianthus annuus L.), together with clear sky weather data for several days, is used to study the relationship between canopy temperature and root-zone soil water potential. Considering the empirical dependence of stomatal resistance on insolation, air temperature and leaf water potential, a continuity equation for water flux in the soil-plant-atmosphere system is solved for the leaf water potential. The transpirational flux is calculated using Monteith's combination equation, while the canopy temperature is calculated from the energy balance equation. The simulation shows that, at high soil water potentials, canopy temperature is determined primarily by air and dew point temperatures. These results agree with an empirically derived linear regression equation relating canopy-air temperature differential to air vapor pressure deficit. The model predictions of leaf water potential are also in agreement with observations, indicating that measurements of canopy temperature together with a knowledge of air and dew point temperatures can provide a reliable estimate of the root-zone soil water potential.

  19. The Effect of Stem- and Canopy-Scale Turbulence on Sediment Dynamics within Submerged Vegetation.

    Science.gov (United States)

    Tinoco, R. O.; San Juan Blanco, J. E.; Prada, A. F.

    2017-12-01

    Stem- and canopy-scale turbulence generated by submerged patches of vegetation plays a paramount role on sediment transport within aquatic ecosystems such as wetlands, marshes, mangrove forests, and coastal regions, as dense patches dampen velocities and mean bed stresses within the plants, while also increasing turbulence intensity through stem-scale wakes and canopy-scale eddies. To explore the interactions between such processes, laboratory experiments are conducted using rigid cylinders placed in a staggered configuration as vegetation elements, embedded on a non-cohesive sediment bed in a racetrack flume. Quantitative imaging is used to characterize the flow field and the associated suspended sediment concentration throughout the water column at different submergence ratios, defined as the ratio between water depth, H, and plant height, h, to investigate the role of canopy-scale eddies formed at the top of the canopy, and their interaction with near-bed flow structures, on sediment dynamics. Turbulent kinetic energy, turbulent intensity, and Reynolds stresses are quantified within and above the array to clearly identify the contributions from bed generated turbulence and vegetation generated turbulence, at both stem- and canopy-scale, as submergence ratio increases from emergent, H/h=1, to fully submerged, H/h=5, conditions. The experimental results are compared with transport models to highlight the need for a multi-scale approach to represent flow-vegetation-sediment interactions.

  20. ASSESSMENT OF MANGROVE FOREST DEGRADATION THROUGH CANOPY FRACTIONAL COVER IN KARIMUNJAWA ISLAND, CENTRAL JAVA, INDONESIA

    Directory of Open Access Journals (Sweden)

    Muhammad Kamal

    2016-10-01

    Full Text Available The Karimunjawa Islands mangrove forest has been subjected to various direct and indirect human disturbances in the recent years. If not properly managed, this disturbance will lead to the degradation of mangrove habitat health. Assessing forest canopy fractional cover (fc using remote sensing data is one way of measuring mangrove forest degradation. This study aims to (1 estimate the forest canopy fc using a semi-empirical method, (2 assess the accuracy of the fc estimation and (3 create mangrove forest degradation from the canopy fc results. A sample set of in-situ fc was collected using the hemispherical camera for model development and accuracy assessment purposes. We developed semi-empirical relationship models between pixel values of ALOS AVNIR-2 image (10m pixel size and field fc, using Enhanced Vegetation Index (EVI as a proxy of the image spectral response. The results show that the EVI provides reasonable estimation accuracy of mangrove canopy fc in Karimunjawa Island with the values ranged from 0.17 to 0.96 (n = 69. The low fc values correspond to vegetation opening and gaps caused by human activities or mangrove dieback. The high fc values correspond to the healthy and dense mangrove stands, especially the Rhizophora sp formation at the seafront. The results of this research justify the use of simple canopy fractional cover model for assessing the mangrove forest degradation status in the study area. Further research is needed to test the applicability of this approach at different sites.

  1. Temperate and Tropical Forest Canopies are Already Functioning beyond Their Thermal Thresholds for Photosynthesis

    Directory of Open Access Journals (Sweden)

    Alida C. Mau

    2018-01-01

    Full Text Available Tropical tree species have evolved under very narrow temperature ranges compared to temperate forest species. Studies suggest that tropical trees may be more vulnerable to continued warming compared to temperate species, as tropical trees have shown declines in growth and photosynthesis at elevated temperatures. However, regional and global vegetation models lack the data needed to accurately represent such physiological responses to increased temperatures, especially for tropical forests. To address this need, we compared instantaneous photosynthetic temperature responses of mature canopy foliage, leaf temperatures, and air temperatures across vertical canopy gradients in three forest types: tropical wet, tropical moist, and temperate deciduous. Temperatures at which maximum photosynthesis occurred were greater in the tropical forests canopies than the temperate canopy (30 ± 0.3 °C vs. 27 ± 0.4 °C. However, contrary to expectations that tropical species would be functioning closer to threshold temperatures, photosynthetic temperature optima was exceeded by maximum daily leaf temperatures, resulting in sub-optimal rates of carbon assimilation for much of the day, especially in upper canopy foliage (>10 m. If trees are unable to thermally acclimate to projected elevated temperatures, these forests may shift from net carbon sinks to sources, with potentially dire implications to climate feedbacks and forest community composition.

  2. Effects of Fetch on Turbulent Flow and Pollutant Dispersion Within a Cubical Canopy

    Science.gov (United States)

    Michioka, Takenobu; Takimoto, Hiroshi; Ono, Hiroki; Sato, Ayumu

    2018-03-01

    The effects of fetch on turbulent flow and pollutant dispersion within a canopy formed by regularly-spaced cubical objects is investigated using large-eddy simulation. Six tracer gases are simultaneously released from a ground-level continuous pollutant line source placed parallel to the spanwise axis at the first, second, third, fifth, seventh and tenth rows. Beyond the seventh row, the standard deviations of the fluctuations in the velocity components and the Reynolds shear stresses reach nearly equivalent states. Low-frequency turbulent flow is generated near the bottom surface around the first row and develops as the fetch increases. The turbulent flow eventually passes through the canopy at a near-constant interval. The mean concentration within the canopy reaches a near-constant value beyond the seventh row. In the first and second rows, narrow coherent structures frequently affect the pollutant escape from the top of the canopy. These structures increase in width as the fetch increases, and they mainly affect the removal of pollutants from the canopy.

  3. Mapping and Monitoring Stream Aquatic Habitat With a Narrow-Beam Green Lidar

    Science.gov (United States)

    McKean, J.; Wright, W.; Kinzel, P.; Isaak, D.

    2006-12-01

    Stream environments are structured by complex biophysical processes that operate across multiple spatial and temporal scales. Disentangling these multiscalar and multicausal relationships is difficult, but fundamental to understanding, managing, and monitoring channel aquatic ecosystems. Standard field wading surveys of stream physical habitat are limited by cost and logistics to relatively small, isolated samples. Traditional remotely sensed surveys, including methods such as photogrammetry and near-infrared lidar, suffer from attenuation by water and do not directly map submerged channel topography. The Experimental Advanced Airborne Research Lidar (EAARL) is a full-waveform lidar with a unique ability to simultaneously map, with relatively high resolution, subaqueous and subaerial topography and the vegetation canopy. We have used the EAARL instrument to investigate two dissimilar stream ecosystems. We mapped 40km of low gradient, meandering, gravel-bed streams in central Idaho that are spawning habitat for threatened Chinook salmon. We are using the continuous three-dimensional channel maps to quantitatively explore how channel features affect the distribution of salmon spawning at multiple spatial scales and how modern stream and floodplain topography is related to post-glacial valley evolution. In contrast, the Platte River in central Nebraska is a wide and shallow, sand-bedded river that provides habitat for migratory water birds, including endangered species such as the whooping crane and least tern. Multi-temporal EAARL data are being used to map and monitor the physical response of the Platte River to habitat improvement projects that include in-channel and riparian vegetation removal and river flow augmentation to limit vegetation encroachment.

  4. Nutrient Processing in Urban Headwater Streams and Floodplains Following Restoration (Invited)

    Science.gov (United States)

    McMillan, S. K.; Noe, G. B.; Tuttle, A. K.; Jennings, G. M.

    2013-12-01

    Efforts are underway in multiple metropolitan regions to restore degraded urban streams by engineering channels to improve stability and geomorphic complexity, replanting riparian vegetation and connecting floodplains. While extensive research has been conducted on the capacity for riparian zones to buffer nutrient loads in natural systems, we know relatively little about their influence on water chemistry in restored streams. Similarly, low-order streams have long been recognized as hot spots for nutrient transformations with instream modifications during restoration seeking to reestablish these functions. Through this research, we investigated the time trajectory for recovery of both instream and floodplain nutrient transformations in series of restored streams in North Carolina, USA with a range of restoration ages and design approaches. Rates of N and P net mineralization and denitrifying enzyme activity in floodplain sediments were positively correlated with monthly sedimentation rates and soil carbon pools. Multiple linear regression analysis of seasonal reach scale nitrate (1.4-116 mg m-2 h-1) and phosphate (1.0 - 97 mg m-2 h-1) uptake rates highlighted the importance of background concentration and temperature but also sediment carbon, which was closely correlated with canopy cover and restoration age. Similar patterns were observed in seasonal measurements of denitrification rates in streambed sediments that were significant higher near geomorphic features with either greater hyporheic flow or deposition of organic matter (average of 4.87×0.45 mg m-2 h-1 compared to 3.26×0.27 mg m-2 h-1, pmetabolism. These shifts in carbon supply as a stream restoration project matures have the potential to greatly influence biogeochemical processes in multiple ways and thereby overall water quality.

  5. Energy from streaming current and potential

    NARCIS (Netherlands)

    Olthuis, Wouter; Schippers, Bob; Eijkel, Jan C.T.; van den Berg, Albert

    2005-01-01

    It is investigated how much energy can be delivered by a streaming current source. A streaming current and subsequent streaming potential originate when double layer charge is transported by hydrodynamic flow. Theory and a network model of such a source is presented and initial experimental results

  6. Maximizing Resource Utilization in Video Streaming Systems

    Science.gov (United States)

    Alsmirat, Mohammad Abdullah

    2013-01-01

    Video streaming has recently grown dramatically in popularity over the Internet, Cable TV, and wire-less networks. Because of the resource demanding nature of video streaming applications, maximizing resource utilization in any video streaming system is a key factor to increase the scalability and decrease the cost of the system. Resources to…

  7. Reconfigurable Multicore Architectures for Streaming Applications

    NARCIS (Netherlands)

    Smit, Gerardus Johannes Maria; Kokkeler, Andre B.J.; Rauwerda, G.K.; Jacobs, J.W.M.; Nicolescu, G.; Mosterman, P.J.

    2009-01-01

    This chapter addresses reconfigurable heterogenous and homogeneous multicore system-on-chip (SoC) platforms for streaming digital signal processing applications, also called DSP applications. In streaming DSP applications, computations can be specified as a data flow graph with streams of data items

  8. Stream dynamics: An overview for land managers

    Science.gov (United States)

    Burchard H. Heede

    1980-01-01

    Concepts of stream dynamics are demonstrated through discussion of processes and process indicators; theory is included only where helpful to explain concepts. Present knowledge allows only qualitative prediction of stream behavior. However, such predictions show how management actions will affect the stream and its environment.

  9. Stream Gauges and Satellite Measurements

    Science.gov (United States)

    Alsdorf, D. E.

    2010-12-01

    Satellite measurements should not be viewed as a replacement for stream gauges. However, occasionally it is suggested that because satellite-based measurements can provide river discharge, a motivation for satellite approaches is an increasing lack of stream gauges. This is an argument for more stream gauges, but not necessarily for satellite measurements. Rather, in-situ and spaceborne methods of estimating discharge are complementary. Stream gauges provide frequent measurements at one point in the river reach whereas satellites have the potential to measure throughout all reaches but at orbital repeat intervals of days to weeks. The Surface Water and Ocean Topography satellite mission (SWOT) is an opportunity to further develop these complements. The motivation for SWOT, and indeed for any satellite based method of estimating discharge, should not be as a replacement for stream gauges. Scientific and application uses should motivate the measurements. For example, understanding floods with their dynamic water surfaces are best sampled from remote platforms that provide water surface elevations throughout the floodwave. As another example, today’s water and energy balance models are giving outputs at increasing spatial resolution and are making use of water surface elevations throughout the modeled basin. These models require a similar resolution in the calibrating and validating observations. We should also be aware of practical limitations. In addition to providing spatially distributed hydrodynamic measurements on rivers, SWOT will be able to measure storage changes in the estimated 30 million lakes in the world that are larger than a hectare. Knowing the storage changes in these lakes is especially important in certain regions such as the Arctic but gauging even a small fraction of these is impractical. Another motivator for satellite methods is that even in the presence of stream gauges, discharge data is not always well shared throughout all countries

  10. Academic Self-Concepts in Ability Streams: Considering Domain Specificity and Same-Stream Peers

    Science.gov (United States)

    Liem, Gregory Arief D.; McInerney, Dennis M.; Yeung, Alexander S.

    2015-01-01

    The study examined the relations between academic achievement and self-concepts in a sample of 1,067 seventh-grade students from 3 core ability streams in Singapore secondary education. Although between-stream differences in achievement were large, between-stream differences in academic self-concepts were negligible. Within each stream, levels of…

  11. The long term response of stream flow to climatic warming in headwater streams of interior Alaska

    Science.gov (United States)

    Jeremy B. Jones; Amanda J. Rinehart

    2010-01-01

    Warming in the boreal forest of interior Alaska will have fundamental impacts on stream ecosystems through changes in stream hydrology resulting from upslope loss of permafrost, alteration of availability of soil moisture, and the distribution of vegetation. We examined stream flow in three headwater streams of the Caribou-Poker Creeks Research Watershed (CPCRW) in...

  12. Efecto de la estructuración por macrófitas y por recursos alimentarios en la distribución horizontal de tecamebas y rotíferos en un lago andino patagónico Effect of macrophytes and food resources on the horizontal distribution of testate amoebae and rotifers in an Andean-Patagonian lake

    Directory of Open Access Journals (Sweden)

    MARCELA BASTIDAS-NAVARRO

    2007-09-01

    Full Text Available La presencia de macrófitas en la zona litoral lacustre trae aparejada condiciones diferentes con respecto a la zona pelágica, en particular en la disponibilidad de recursos. Por esta razón, las zonas litorales pueden presentar una mayor biodiversidad. En este trabajo se analizó la distribución horizontal de tecamebas y rotíferos en el lago Escondido (Argentina, vinculándola con los recursos alimentarios presentes en las diferentes zonas. Se tomaron muestras para el estudio del fitoplancton y zooplancton durante verano y primavera (2001-2003 en cuatro estaciones litorales y una pelágica. Se realizó el recuento de rotíferos y tecamebas y se determinó la abundancia y la biomasa fitoplanctónica. Los recursos alimentarios fueron clasificados en nanoplancton ( 20 μm. El nanoplancton estuvo compuesto por nanoflagelados y el fitoplancton de red por diatomeas, cianófitas y clorófitas. La biomasa de estas fracciones varió significativamente, observándose una predominancia del nanoplancton en la zona pelágica y del fitoplancton de red en la zona litoral. Los mayores valores de riqueza y de diversidad de tecamebas y rotíferos fueron observados en las estaciones litorales, no hallándose diferencias significativas entre las zonas con diferentes macrófitas. El análisis de ACC evidenció cuatro grupos. Por un lado, Keratella cochlearis, Synchaeta spp., Polyarthra vulgaris y Collotheca mutabilis, asociadas a las muestras pelágicas, se relacionaron con una alta abundancia de nanoplancton. Por otro lado, los rotíferos Trichocerca spp., Lecane spp. y Euchlanis spp., y las tecamebas Dijflugia pyriformis y Trinema enchelys se relacionaron con el fitoplancton de red y las muestras litorales. Además, un tercer grupo reunió a especies (Lecane spp. y Arcella spp. presentes en ambas zonas y en relación con una baja abundancia del fitoplancton de red. Por último, el rotífero Synchaeta spp. y las muestras pelágicas de primavera se relacionaron con el aumento de la abundancia de la cianofita Coelosphaerium kuetzingianum. Las diferencias señaladas indican que los recursos alimentarios serían un factor determinante en la distribución de especies de tecamebas y rotíferos en el lago Escondido. Para estos zoopláncteres de pequeño tamaño las macrófitas litorales brindarían alimento al favorecer el incremento del fitoplancton de redThe presence of macrophytes in the littoral zone of lakes produces particular conditions including higher resource availability for consumers. For this reason, the littoral zone is generally the area with the highest diversity of lakes and rivers. In this work we studied the horizontal distribution of testate amoebae and rotifers in Lago Escondido (Argentina in relation to food resources availability. The study was carried out along a north-south transect that includes the littoral and the pelagic zone of the lake. Phytoplankton and zooplankton were sampled during summer and spring (2001-2003 in five sampling stations: one pelagic and four littoral. Rotifers and testate amoebae, as well as phytoplanktonic algae abundance and biomass were estimated. Food resources were classified as nanoplankton ( 20 μm and the biovolume of these fractions varied significantly within the pelagic and littoral zones of the lake. Nanoplankon dominated the pelagic zone and was mainly composed by nanoflagellates while net phytoplankton prevailed in the littoral zone and was composed by diatoms, cyanophytes and chlorophytes. The highest number of species and diversity of testate amoebae and rotifers were observed in the littoral stations; nevertheless, no significant differences between the zones colonized by different macrophytes were observed. The CCA analysis showed four different groups. Keratella cochlearis, Synchaeta spp., Polyarthra vulgaris and Collotheca mutabilis characterized the pelagic samples and were related with a high abundance of nanoplankton. On the other hand, rotifers like Trichocerca spp., Lecane spp. and Euchlanis spp. and the testate amoebae Dijflugia pyriformis and Trinema enchelys associated with the littoral samples were related with high abundances of net phytoplankton. Besides, a third group of species {Lecane spp. and Arcella spp., presented in both zones, was mainly related with a decrease in abundance of net phytoplankton. Finally, the rotifer Synchaeta spp. was associated with the spring pelagic samples when the cyanophyte Coelosphaerium kuetzingianum increased its abundance. Summarizing, in Lago Escondido, food resources could be an important factor driving testate amoeba and rotifer distribution. Therefore the major role of macrophytes for this small-bodied zooplankton is food supply through an increment of net phytoplankton

  13. Improving photosynthetic efficiency to address food security in the 21st century: Strategies for a more efficient crop canopy

    Science.gov (United States)

    VanLoocke, A. D.; Slattery, R.; Bernacchi, C.; Zhu, X.; Ort, D. R.

    2013-12-01

    Global food production will need to increase by approximately 70% by mid-century to meet the caloric and nutritional demand of population and economic growth. Achieving this goal will require successfully implementing a wide range of strategies, spanning the social and physical sciences. Here we will present opportunities for improving crop production through increasing photosynthetic rates for a crop canopy that do not require additional agronomic inputs. We will focus on a specific strategy related optimizing the distribution of light within a crop canopy because it is a possible way to improve canopy photosynthesis in crops that form dense canopies, such as soybean, by increasing the transmission of light within a canopy via reduced chlorophyll content. We hypothesized that if decreasing chlorophyll content in soybean leaves will result in greater light penetration into the canopy then this will enhance canopy photosynthesis and improve yields. In addition, if current chlorophyll content in soybean results in excess light absorption, then decreasing chlorophyll content will result in decreased photoprotection that results in the suppression of upper canopy photosynthesis associated with super-optimal light. These hypotheses were tested in 2012 and 2013 in the field on the soybean cultivar 'Clark' (WT) and a nearly isogenic chlorophyll-b deficient mutant (Y11y11). Throughout the season, profiles of light sensors measured incident and reflected light intensity at the canopy surface as well as light levels at ten heights within the canopy. Analyses of these data indicated greater reflectivity, transmissivity and within-canopy light levels for the Y11y11 canopy relative to WT especially in the top half of the canopy. A Gas exchange method was used to determine photosynthetic capacity and suppression high light levels. Daily integrals of leaf-level photosynthesis in sun leaves were greater in Y11y11 compared to WT at several times during the growing season and

  14. Xylobolus subpileatus, a specialized basidiomycete functionally linked to old canopy gaps

    DEFF Research Database (Denmark)

    Taudiere, A.; Bellanger, J. M.; Moreau, P. A.

    2017-01-01

    canopy gaps in oak forests. In one of the last remaining Quercus ilex L. old-growth forests (on the island of Corsica, western Mediterranean basin), we systematically recorded and conducted molecular analyses of X. subpileatus basidiomes in 80 dated natural canopy gaps representing a 45-year long...... sequence of residence time of tree logs on the forest floor. Xylobolus subpileatus fruited exclusively on Q. ilex logs. The probability of fruiting of X. subpileatus significantly increases during the process of wood decomposition to reach its maximum in the oldest gaps, approximately 40 years after......Documenting succession in forest canopy gaps provides insights into the ecological processes governing the temporal dynamics of species within communities. We analyzed the fruiting patterns of a rare but widely distributed saproxylic macromycete, Xylobolus subpileatus, during the ageing of natural...

  15. [Characteristics of canopy plant substratum in a low land humid tropical forest (Upper Orinoco, Venezuela)].

    Science.gov (United States)

    Hernández-Rosas, José Ibrahin

    2004-01-01

    By international agreement (Austria-Venezuela) a tower crane was installed near Surumoni river, Upper Orinoco, for canopy research in a tropical rain forest. From the 1.5 ha crane-accessible area of the forest, an experimental plot was selected for assessment of the canopy plants' aerial substrates and to determine their relationship with spatial distribution, presence or absence of vascular plants, and some of the strategies used in their ecological space. In the middle and lower canopy strata myrmecophytic associations appear, where the conformation of the aerial substrates determines the establishment and maintenance of these associations. The high content of nutrients of these aerial substrata represents a reservoir for the forest, where the mirmecophytic activity is determining. A higher fertility of aerial substrates of the ants gardens can be related to a higher number of vascular epiphytes present in these gardens.

  16. Simulating soybean canopy temperature as affected by weather variables and soil water potential

    Science.gov (United States)

    Choudhury, B. J.

    1982-01-01

    Hourly weather data for several clear sky days during summer at Phoenix and Baltimore which covered a wide range of variables were used with a plant atmosphere model to simulate soybean (Glycine max L.) leaf water potential, stomatal resistance and canopy temperature at various soil water potentials. The air and dew point temperatures were found to be the significant weather variables affecting the canopy temperatures. Under identical weather conditions, the model gives a lower canopy temperature for a soybean crop with a higher rooting density. A knowledge of crop rooting density, in addition to air and dew point temperatures is needed in interpreting infrared radiometric observations for soil water status. The observed dependence of stomatal resistance on the vapor pressure deficit and soil water potential is fairly well represented. Analysis of the simulated leaf water potentials indicates overestimation, possibly due to differences in the cultivars.

  17. Regional and historical factors supplement current climate in shaping global forest canopy height

    DEFF Research Database (Denmark)

    Zhang, Jian; Nielsen, Scott; Mao, Lingfeng

    2016-01-01

    Summary Canopy height is a key factor that affects carbon storage, vegetation productivity and biodiversity in forests, as well as an indicator of key processes such as biomass allocation. However, global variation in forest canopy height and its determinants are poorly known. We used global data...... the relative importance of the different hypothesized factors. Hmax was inversely related to latitude (i.e. tall canopies at the equator), but with high geographical variability. Actual evapotranspiration and annual precipitation were the factors most correlated to Hmax globally, thus supporting the water......–energy dynamics hypothesis. However, water limitation emerged as a key factor in tropical and temperate biomes within specific geographic regions, while energy limitation was a more important factor in boreal regions where temperature is more limiting to trees than water. Hmax exhibited strong variation among...

  18. High-dose therapy improved the bone remodelling compartment canopy and bone formation in multiple myeloma

    DEFF Research Database (Denmark)

    Hinge, Maja; Delaissé, Jean-Marie; Plesner, Torben

    2015-01-01

    Bone loss in multiple myeloma (MM) is caused by an uncoupling of bone formation to resorption trigged by malignant plasma cells. Increasing evidence indicates that the bone remodelling compartment (BRC) canopy, which normally covers the remodelling sites, is important for coupled bone remodelling....... Loss of this canopy has been associated with bone loss. This study addresses whether the bone remodelling in MM is improved by high-dose therapy. Bone marrow biopsies obtained from 20 MM patients, before and after first-line treatment with high-dose melphalan followed by autologous stem cell...... transplantation, and from 20 control patients with monoclonal gammopathy of undetermined significance were histomorphometrically investigated. This investigation confirmed that MM patients exhibited uncoupled bone formation to resorption and reduced canopy coverage. More importantly, this study revealed...

  19. Modelling the vertical distribution of canopy fuel load using national forest inventory and low-density airbone laser scanning data.

    Directory of Open Access Journals (Sweden)

    Eduardo González-Ferreiro

    Full Text Available The fuel complex variables canopy bulk density and canopy base height are often used to predict crown fire initiation and spread. Direct measurement of these variables is impractical, and they are usually estimated indirectly by modelling. Recent advances in predicting crown fire behaviour require accurate estimates of the complete vertical distribution of canopy fuels. The objectives of the present study were to model the vertical profile of available canopy fuel in pine stands by using data from the Spanish national forest inventory plus low-density airborne laser scanning (ALS metrics. In a first step, the vertical distribution of the canopy fuel load was modelled using the Weibull probability density function. In a second step, two different systems of models were fitted to estimate the canopy variables defining the vertical distributions; the first system related these variables to stand variables obtained in a field inventory, and the second system related the canopy variables to airborne laser scanning metrics. The models of each system were fitted simultaneously to compensate the effects of the inherent cross-model correlation between the canopy variables. Heteroscedasticity was also analyzed, but no correction in the fitting process was necessary. The estimated canopy fuel load profiles from field variables explained 84% and 86% of the variation in canopy fuel load for maritime pine and radiata pine respectively; whereas the estimated canopy fuel load profiles from ALS metrics explained 52% and 49% of the variation for the same species. The proposed models can be used to assess the effectiveness of different forest management alternatives for reducing crown fire hazard.

  20. STREAM: A First Programming Process

    DEFF Research Database (Denmark)

    Caspersen, Michael Edelgaard; Kölling, Michael

    2009-01-01

    programmers learn faster and better while at the same time laying the foundation for a more thorough treatment of more advanced aspects of software engineering. In this article, two examples demonstrate the application of STREAM. The STREAM process has been taught in the introductory programming courses......Programming is recognized as one of seven grand challenges in computing education. Decades of research have shown that the major problems novices experience are composition-based—they may know what the individual programming language constructs are, but they do not know how to put them together....... Despite this fact, textbooks, educational practice, and programming education research hardly address the issue of teaching the skills needed for systematic development of programs. We provide a conceptual framework for incremental program development, called Stepwise Improvement, which unifies best...