WorldWideScience

Sample records for andean-patagonian canopied stream

  1. Feeding Ecology of Two Plecopterans in Low Order Andean-Patagonian Streams

    Science.gov (United States)

    Albariño, Ricardo J.; Díaz Villanueva, Verónica

    2006-05-01

    Feeding plasticity of the Andean plecopteran Klapopteryx kuscheli and Notoperla archiplatae larvae was assessed through a field experiment using enclosures. K. kuscheli has previously been described as a shredder and N. archiplatae as a scraper. Further information on gut contents from different populations supported those results. In the experiment, larvae of both species were exposed to contrasting food items: leaf litter and periphyton. Consumption, growth and the efficiency of food conversion were measured. K. kuscheli was able to feed on periphyton, though it did not grow. N. archiplatae failed to feed on leaf litter. While K. kuscheli might be considered a facultative shredder, N. archiplatae functions as a specialist scraper. The natural distribution and seasonal abundance in two small streams showed contrasting habitat use of both species. N. archiplatae inhabited high velocity runs and riffles underneath large substrates while K. kuscheli presented a higher habitat plasticity. Implications of those results for ecosystem function are discussed.

  2. Temporal variations in the diet of the exotic rainbow trout (Oncorhynchus mykiss in an Andean-Patagonian canopied stream Variación temporal en la dieta de la trucha exótica arco iris (Oncorhynchus mykiss en un arroyo forestado de los Andes patagónicos

    Directory of Open Access Journals (Sweden)

    LEONARDO M BURIA

    2009-03-01

    Full Text Available We examined seasonal and diel variation in prey species composition and biomass in the diet of the exotic rainbow trout Oncorhynchus mykiss (Walbaum, 1972. The study was carried out in the upper-forested sections of a low order stream in Andean-Patagonia. We studied the importance of functional feeding groups of aquatic invertebrates and the relative contribution of terrestrial and aquatic prey items in order to assess the pathways connecting terrestrial and aquatic ecosystems along a stream food web. Trout fed on approximately 40 invertebrate species and scrapers were consistently selected, suggesting their increased vulnerability to predation. However in terms of biomass, rainbow trout diet was mostly composed by shredders which emphasized the role of the allochthonous plant detritus pathway in food webs of forested small streams. Trout individuals fed more intensively in spring and summer and during daytime. Terrestrial items constituted a minor proportion of the diet implying that this component did not represent a significant subsidy for this fish population. As a consequence, the top-down effect on the aquatic community does not appear to be dampened since trout do not strongly preyed on terrestrial invertebrates.Se estudió la variación estacional y diaria en la composición y biomasa de las especies presa en la dieta de la exótica trucha arco iris Oncorhynchus mykiss (Walbaum, 1972 en la sección superior de un arroyo boscoso de bajo orden en los Andes patagónicos. Se analizó la importancia de los grupos funcionales alimentarios de invertebrados acuáticos y la contribución relativa de las presas de origen terrestre y acuático para evaluar las vías tróficas que conectan los ecosistemas acuático y terrestre circundantes. Las truchas consumieron aproximadamente unas 40 especies de invertebrados y los raspadores fueron consistentemente seleccionados, sugiriendo una alta vulnerabilidad a la depredación. Sin embargo en términos de

  3. Taxonomic review of the species of Helina R.-D. (Diptera: Muscidae) from Andean-Patagonian forests.

    Science.gov (United States)

    Patitucci, Luciano Damián; Mulieri, Pablo Ricardo; Mariluis, Juan Carlos

    2016-01-01

    Helina Robineau-Desvoidy, 1830 is the second genus of Muscidae in terms of richness. This genus includes several species collected at high altitudes and high latitudes, and is poorly studied in the Neotropical region. Only 12 species of Helina have been recorded in the southern limit of South America in the Andean-Patagonian forests. In the present work, we studied all the species known from the Andean-Patagonian forests, with the exception of H. viola Malloch, 1934, present three new species, H. araucana sp. nov., H. dorada sp. nov., and H. ouina sp. nov., and provide the first description of the females of H. australis Carvalho & Pont, 1993 and H. rufoapicata Malloch, 1934. We also propose four new synonymies: H. nigrimana basilaris (Carvalho & Pont, 1993) and H. nigrimana grisea (Malloch, 1934) as new junior synonyms of H. nigrimana (Macquart, 1851); and H. fulvocalyptrata Malloch, 1934 and H. simplex Malloch, 1934 as new junior synonyms of H. chilensis Malloch, 1934. Finally, we provide a generic diagnosis and a new key for the Helina species of the Andean-Patagonian forests, as well as notes on the biology and distribution maps of each specimen, and discuss a preliminary contruction of groups of species. PMID:27515658

  4. Advances in stream shade modelling. Accounting for canopy overhang and off-centre view

    Science.gov (United States)

    Davies-Colley, R.; Meleason, M. A.; Rutherford, K.

    2005-05-01

    Riparian shade controls the stream thermal regime and light for photosynthesis of stream plants. The quantity difn (diffuse non-interceptance), defined as the proportion of incident lighting received under a sky of uniform brightness, is useful for general specification of stream light exposure, having the virtue that it can be measured directly with common light sensors of appropriate spatial and spectral character. A simple model (implemented in EXCEL-VBA) (Davies-Colley & Rutherford Ecol. Engrg in press) successfully reproduces the broad empirical trend of decreasing difn at the channel centre with increasing ratio of canopy height to stream width. We have now refined this model to account for (a) foliage overhanging the channel (for trees of different canopy form), and (b) off-centre view of the shade (rather than just the channel centre view). We use two extreme geometries bounding real (meandering) streams: the `canyon' model simulates an infinite straight canal, whereas the `cylinder' model simulates a stream meandering so tightly that its geometry collapses into an isolated pool in the forest. The model has been validated using a physical `rooftop' model of the cylinder case, with which it is possible to measure shade with different geometries.

  5. On the behaviour of a stressed cotton canopy in a direct air stream

    Science.gov (United States)

    Schutt, J. B.; Newcomb, W. W.

    1986-01-01

    Reflectance variations of a stressed cotton canopy were conducted in the presence of a fan-generated air stream to investigate the effects of air movement and the resulting temperature changes on remotely-sensed data. The initial drop in reflectance after application of the air stream was found to be greatest in the morning because leaf turgor was at a maximum, enabling leaves on the windward side of the canopy to assume surprisingly stable vertical positions. By afternoon, a reduction in leaf turgor was responsible for less stem displacement and consequently a reduction in light-trapping capability. However, reflectance oscillations were greater because the leaves had become sufficiently limp to flutter at the edges and about the petioles exposing both adaxial and abaxial surfaces to the incident light.

  6. Assessing the Utility of Green LiDAR for Characterizing Forest Canopy Structure and Stream Bathymetry in Riparian Zones.

    Science.gov (United States)

    Moskal, L. M.; Richardson, J.

    2014-12-01

    Forested riparian zones serve many ecosystem functions from species habitat through stream shading and large woody debris recruitment, to improvements in water quality. Moreover, stream depth and bathymetry in forested environments is difficult and costly to measure in the field, but critically important for stream-dwelling organisms. Green (bathymetric) LiDAR (G-L) can be used to characterize stream bathymetry, but little is known of its ability to accurately characterize stream bathymetry in narrow (width less than 5 m), heavily forested streams. Canopy characterization with green LiDAR is also poorly understood. We compared canopy and digital elevation models (DEMs) derived from green and near-infrared LiDAR (NIR-L) to field measurements in a narrow, forested stream in Oregon, USA, as well as comparing the two canopy models and DEMs to each other along the length of the stream and to estimates of leaf area index. We observed that the canopy models from the G-L are lower in accuracy compared to NIR-L canopy models. Canopy height models from the G-L were up to 26% less accurate in dense stands, compared to the NIR-L accuracy of 94%. We attribute these errors in part to the lower quality of DEMs generated from the G-L as compared to the NIR-L DEMs. As for bathymetry, the G-L DEM was 0.05 cm higher in elevation than the field measured stream elevation, while the NIR-L ground model was 0.17mm higher. The elevation difference tended to increase with stream depth for both types of LiDAR-derived DEMs, but stream depth only explained a small portion of the variability (coefficient of determination equals 0.09 for NIR-L DEM and 0.05 for G-L DEM). Our results suggest that G-L may be limited in accurately characterizing the bathymetry of narrow streams in heavily forested environments due to difficulty penetrating canopy and interactions with complex topography.

  7. Evaluation of a solid stream radial nozzle on fixed-wing aircraft for penetration of spray within a soybean canopy

    Science.gov (United States)

    Experiments were conducted to evaluate the Accu-Flo® multiple orifice nozzle for penetration of spray into a soybean (Glycine max L.) canopy by comparing results to those from a popular straight stream nozzle and rotary atomizer. Water was applied at three different spray release heights in a random...

  8. Distribution of detritivores in tropical forest streams of peninsular Malaysia: role of temperature, canopy cover and altitude variability

    Science.gov (United States)

    Che Salmah, Md Rawi; Al-Shami, Salman Abdo; Abu Hassan, Ahmad; Madrus, Madziatul Rosemahanie; Nurul Huda, Abdul

    2014-07-01

    The diversity and abundance of macroinvertebrate shredders were investigated in 52 forested streams (local scale) from nine catchments (regional scale) covering a large area of peninsular Malaysia. A total of 10,642 individuals of aquatic macroinvertebrates were collected, of which 18.22 % were shredders. Biodiversity of shredders was described by alpha (αaverage ), beta (β) and gamma diversity (γ) measures. We found high diversity and abundance of shredders in all catchments, represented by 1,939 individuals (range 6-115 and average per site of 37.29 ± 3.48 SE) from 31 taxa with 2-13 taxa per site (αaverage = 6.98 ± 0.33 SE) and 10-15 taxa per catchment (γ = 13.33 ± 0.55 SE). At the local scale, water temperature, stream width, depth and altitude were correlated significantly with diversity (Adj- R 2 = 0.205). Meanwhile, dissolved oxygen, stream velocity, water temperature, stream width and altitude were correlated to shredder abundance (Adj- R 2 = 0.242). At regional scale, however, water temperature was correlated negatively with β and γ diversity ( r 2 = 0.161 and 0.237, respectively) as well as abundance of shredders ( r 2 = 0.235). Canopy cover was correlated positively with β diversity ( r 2 = 0.378) and abundance ( r 2 = 0.266), meanwhile altitude was correlated positively with β (quadratic: r 2 = 0.175), γ diversity (quadratic: r 2 = 0.848) as well as abundance (quadratic: r 2 = 0.299). The present study is considered as the first report describing the biodiversity and abundance of shredders in forested headwater streams across a large spatial scale in peninsular Malaysia. We concluded that water temperature has a negative effect while altitude showed a positive relationship with diversity and abundance of shredders. However, it was difficult to detect an influence of canopy cover on shredder diversity.

  9. Acclimation of plants to light gradients in leaf canopies; evidence for a possible role for cytokinins transported in the transpiration stream

    NARCIS (Netherlands)

    Pons, T.L.; Jordi, W.; Kuiper, D.

    2001-01-01

    The mechanism of response of plants to vertical light intensity gradients in leaf canopies was investigated. Since shaded leaves transpire less than leaves in high light, it was hypothesized that cytokinins (CKs) carried by mass transport in the transpiration stream would be distributed over the lea

  10. Climate-driven terrestrial inputs in ultraoligotrophic mountain streams of Andean Patagonia revealed through chromophoric and fluorescent dissolved organic matter.

    Science.gov (United States)

    Garcia, Roberto D; Reissig, Mariana; Queimaliños, Claudia P; Garcia, Patricia E; Dieguez, Maria C

    2015-07-15

    Fluvial networks transport a substantial fraction of the terrestrial production, contributing to the global carbon cycle and being shaped by hydrologic, natural and anthropogenic factors. In this investigation, four Andean Patagonian oligotrophic streams connecting a forested catchment (~125km(2)) and draining to a double-basin large and deep lake (Lake Moreno complex, Northwestern Patagonia), were surveyed to analyze the dynamics of the allochthonous subsidy. The results of a 30month survey showed that the catchment supplies nutrients and dissolved organic matter (DOM) to the streams. The eruption of the Puyehue-Cordón Caulle at the beginning of the study overlapped with seasonal precipitation events. The largest terrestrial input was timed with precipitation which increased particulate materials, nutrients and DOM through enhanced runoff. Baseline suspended solids and nutrients were very low in all the streams (suspended solids: ~1mg/L; total nitrogen: ~0.02mg/L; total phosphorus: ~5μg/L), increasing several fold with runoff. Baseline dissolved organic carbon concentrations (DOC) ranged between 0.15 and 1mg/L peaking up to three-fold. Chromophoric and fluorescent analyses characterized the DOM as of large molecular weight and high aromaticity. Parallel factor modeling (PARAFAC) of DOM fluorescence matrices revealed three components of terrestrial origin, with certain degree of microbial processing: C1 and C2 (terrestrial humic-like compounds) and C3 (protein-like and pigment derived compounds). Seasonal changes in MOD quality represent different breakdown stages of the allochthonous DOM. Our survey allowed us to record and discuss the effects of the Puyehue-Cordón Caulle eruption, showing that due to the high slopes, high current and discharge of the streams the volcanic material was rapidly exported to the Moreno Lake complex. Overall, this survey underscores the magnitude and timing of the allochthonous input revealing the terrestrial subsidy to food webs in

  11. A Generalized Layered Radiative Transfer Model in the Vegetation Canopy

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this paper, a generalized layered model for radiation transfer in canopy with high vertical resolution is developed. Differing from the two-stream approximate radiation transfer model commonly used in the land surface models, the generalized model takes into account the effect of complicated canopy morphology and inhomogeneous optical properties of leaves on radiation transfer within the canopy. In the model, the total leaf area index (LAI) of the canopy is divided into many layers. At a given layer, the influences of diffuse radiation angle distributions and leaf angle distributions on radiation transfer within the canopy are considered. The derivation of equations serving the model are described in detail, and these can deal with various diffuse radiation transfers in quite broad categories of canopy with quite inhomogeneous vertical structures and uneven leaves with substantially different optical properties of adaxial and abaxial faces of the leaves. The model is used to simulate the radiation transfer for canopies with horizontal leaves to validate the generalized model. Results from the model are compared with those from the two-stream scheme, and differences between these two models are discussed.

  12. NLCD 2001 - Tree Canopy

    Data.gov (United States)

    Minnesota Department of Natural Resources — The National Land Cover Database 2001 tree canopy layer for Minnesota (mapping zones 39-42, 50-51) was produced through a cooperative project conducted by the...

  13. A Comparison of Two Canopy Radiative Models in Land Surface Processes

    Institute of Scientific and Technical Information of China (English)

    DAI Qiudan; SUN Shufen

    2007-01-01

    This paper compares the predictions by two radiative transfer models-the two-stream approximation model and the generalized layered model (developed by the authors) in land surface processes-for different canopies under direct or diffuse radiation conditions. The comparison indicates that there are significant differences between the two models, especially in the near infrared (NIR) band. Results of canopy reflectance from the two-stream model are larger than those from the generalized model. However, results of canopy absorptance from the two-stream model are larger in some cases and smaller in others compared to those from the generalized model, depending on the cases involved. In the visible (VIS) band, canopy reflectance is smaller and canopy absorptance larger from the two-stream model compared to the generalized model when the Leaf Area Index (LAI) is low and soil reflectance is high. In cases of canopies with vertical leaf angles, the differences of reflectance and absorptance in the VIS and NIR bands between the two models are especially large.Two commonly occurring cases, with which the two-stream model cannot deal accurately, are also investigated. One is for a canopy with different adaxial and abaxial leaf optical properties; and the other is for incident sky diffuse radiation with a non-uniform distribution. Comparison of the generalized model within the same canopy for both uniform and non-uniform incident diffuse radiation inputs shows smaller differences in general. However, there is a measurable difference between these radiation inputs for a canopy with high leaf angle. This indicates that the application of the two-stream model to a canopy with different adaxial and abaxial leaf optical properties will introduce non-negligible errors.

  14. Photon recollision probability in heterogeneous forest canopies: Compatibility with a hybrid GO model

    Science.gov (United States)

    Mõttus, Matti; Stenberg, Pauline; Rautiainen, Miina

    2007-02-01

    Photon recollision probability, or the probability by which a photon scattered from a phytoelement in the canopy will interact within the canopy again, has previously been shown to approximate well the fractions of radiation scattered and absorbed by homogeneous plant covers. To test the applicability of the recollision probability theory to more complicated canopy structures, a set of modeled stands was generated using allometric relations for Scots pine trees growing in central Finland. A hybrid geometric-optical model (FRT, or the Kuusk-Nilson model) was used to simulate the reflectance and transmittance of the modeled forests consisting of ellipsoidal tree crowns and, on the basis of the simulations, the recollision probability (p) was calculated for the canopies. As the recollision probability theory assumes energy conservation, a method to check and ensure energy conservation in the model was first developed. The method enabled matching the geometric-optical and two-stream submodels of the hybrid FRT model, and more importantly, allowed calculation of the recollision probability from model output. Next, to assess the effect of canopy structure on the recollision probability, the obtained p-values were compared to those calculated for structureless (homogeneous) canopies with similar effective LAI using a simple two-stream radiation transfer model. Canopy structure was shown to increase the recollision probability, implying that structured canopies absorb more efficiently the radiation interacting with the canopy, and it also changed the escape probabilities for different scattering orders. Most importantly, the study demonstrated that the concept of recollision probability is coherent with physically based canopy reflectance models which use the classical radiative transfer theory. Furthermore, it was shown that as a first approximation, the recollision probability can be considered to be independent of wavelength. Finally, different algorithms for

  15. Plant photomorphogenesis and canopy growth

    Science.gov (United States)

    Ballare, Carlos L.; Scopel, Ana L.

    1994-01-01

    An important motivation for studying photomorphogenesis is to understand the relationships among plant photophysiology in canopies, canopy productivity, and agronomic yield. This understanding is essential to optimize lighting systems used for plant farming in controlled environments (CE) and for the design of genetically engineered crop strains with altered photoresponses. This article provides an overview of some basic principles of plant photomorphogenesis in canopies and discusses their implications for (1) scaling up information on plant photophysiology from individual plants in CE to whole canopies in the field, and (2) designing lighting conditions to increase plant productivity in CE used for agronomic purposes (e.g. space farming in CE Life Support Systems). We concentrate on the visible (lambda between 400 and 700 nm) and far-infrared (FR; lambda greater than 700 nm) spectral regions, since the ultraviolet (UV; 280 to 400 nm) is covered by other authors in this volume.

  16. Streams with Strahler Stream Order

    Data.gov (United States)

    Minnesota Department of Natural Resources — Stream segments with Strahler stream order values assigned. As of 01/08/08 the linework is from the DNR24K stream coverages and will not match the updated...

  17. Graphical Analysis Facilitates Evaluation of Stream Temperature Monitoring Data

    OpenAIRE

    Kenneth W. Tate; Lile, David; Lancaster, Donald; Porath, Marni; Morrison, Julie; Sado, Yukako

    2005-01-01

    Watershed groups, individuals, and land management and regulatory agencies are collecting stream-temperature data in order to understand, protect and enhance cold-water fisheries. While great quantities of data are being generated, its analysis and interpretation are often not adequate to identify stream reaches that are gaining or losing temperature, or to correlate temperature changes with factors such as vegetative canopy cover or stream-flow levels. We use a case study from the Lassen and...

  18. Ailinella mirabilis gen. n., sp. n. (eucestoda: pseudophyllidea) from Galaxias maculatus (Pisces: Galaxiidae) in the Andean-Patagonian region of Argentina.

    Science.gov (United States)

    de Pertierra, Alicia A Gil; Semenas, Liliana G

    2006-12-01

    Ailinella gen. n. (Pseudophyllidea: Triaenophoridae) is proposed to accommodate Ailinella mirabilis sp. n. from Galaxias maculatus (Jenyns, 1842), a freshwater fish inhabiting the Andean lakes in Argentinean Patagonia. Ailinella belongs to the Triaenophoridae because it has a marginal genital pore, a follicular vitelline gland, and a ventral uterine pore. The new genus can be distinguished from other triaenophorids by the following combination of characters: a small body size, a low number of proglottides, which are longer than wide, a truncated pyramidal to globular scolex, a rectangular apical disc, presence of the neck, lack of internal longitudinal musculature separating the cortex from the medulla, testes distributed in one central field surrounding the ovary laterally and posteriorly, the vagina predominantly anterior to the cirrus sac, vitelline follicles circum-medullary, the genital pores post-equatorial, a saccate uterus, and operculate eggs. Blade-like spiniform microtriches were present on all tegument surfaces, and tumuli on all surfaces of the scolex and the anterior surface of the neck. Microtriches were characterized according to their size and density, and tumuli according to their size, inter-tumulus distance and density. Ailinella mirabilis is the first cestode described from G. maculatus and the second triaenophorid species recorded from a South American freshwater fish. PMID:17256203

  19. Population dynamics of Philureter trigoniopsis (Monogenea: Ancyrocephalinae) from urinary organs of Galaxias maculatus (Osmeriformes: Galaxiidae) in a cold temperate Andean Patagonian lake (Argentina).

    Science.gov (United States)

    Viozzi, Gustavo P; Semenas, Liliana G; Gutiérrez, Pablo

    2005-12-01

    Philureter trigoniopsis parasitizes the ureters and urinary bladder of Galaxias maculatus in Patagonian Andean lakes. To investigate factors associated with variation in the prevalence and intensity of this monogenean, fish were sampled periodically over 2 yr in Lake Gutiérrez. Prevalence and mean intensity are higher in smaller fishes than in larger ones. A seasonal pattern was observed, with peak recruitment and peak mean intensity occurring in early spring (September), followed by lows in late summer (January-February). Galaxias maculatus length classes are spatially segregated due to seasonal migrations, so the annual infection cycle is characterized by higher prevalence and intensity from late winter to early summer in the smaller fish from the deep zone of the lake. PMID:16539018

  20. Canopy Dynamics in Nanoscale Ionic Materials

    KAUST Repository

    Jespersen, Michael L.

    2010-07-27

    Nanoscale ionic materials (NIMS) are organic - inorganic hybrids in which a core nanostructure is functionalized with a covalently attached corona and an ionically tethered organic canopy. NIMS are engineered to be liquids under ambient conditions in the absence of solvent and are of interest for a variety of applications. We have used nuclear magnetic resonance (NMR) relaxation and pulse-field gradient (PFG) diffusion experiments to measure the canopy dynamics of NIMS prepared from 18-nm silica cores modified by an alkylsilane monolayer possessing terminal sulfonic acid functionality, paired with an amine-terminated ethylene oxide/propylene oxide block copolymer canopy. Carbon NMR studies show that the block copolymer canopy is mobile both in the bulk and in the NIMS and that the fast (ns) dynamics are insensitive to the presence of the silica nanoparticles. Canopy diffusion in the NIMS is slowed relative to the neat canopy, but not to the degree predicted from the diffusion of hard-sphere particles. Canopy diffusion is not restricted to the surface of the nanoparticles and shows unexpected behavior upon addition of excess canopy. Taken together, these data indicate that the liquid-like behavior in NIMS is due to rapid exchange of the block copolymer canopy between the ionically modified nanoparticles. © 2010 American Chemical Society.

  1. Is methane released from the forest canopy?

    DEFF Research Database (Denmark)

    Mikkelsen, Teis Nørgaard; Bruhn, Dan; Ambus, Per;

    2011-01-01

    , based on lab results, have be conducted with varying results, but until now field measurements based on profile and eddy covariance measurements have failed to show CH4 emissions from forest canopies. To detect CH4 production or consumption in the canopy of a beech stand we connected a CH4 analyzer to a...

  2. Bone Canopies in Pediatric Renal Osteodystrophy

    Science.gov (United States)

    Pereira, Renata C.; Andersen, Thomas L.; Friedman, Peter A.; Tumber, Navdeep; Salusky, Isidro B.; Wesseling-Perry, Katherine

    2016-01-01

    Pediatric renal osteodystrophy (ROD) is characterized by changes in bone turnover, mineralization, and volume that are brought about by alterations in bone resorption and formation. The resorptive and formative surfaces on the cancellous bone are separated from the marrow cavity by canopies consisting of a layer of flat osteoblastic cells. These canopies have been suggested to play a key role in the recruitment of osteoprogenitors during the process of bone remodeling. This study was performed to address the characteristics of the canopies above bone formation and resorption sites and their association with biochemical and bone histomorphometric parameters in 106 pediatric chronic kidney disease (CKD) patients (stage 2–5) across the spectrum of ROD. Canopies in CKD patients often appeared as thickened multilayered canopies, similar to previous reports in patients with primary hyperparathyroidism. This finding contrasts with the thin appearance reported in healthy individuals with normal kidney function. Furthermore, canopies in pediatric CKD patients showed immunoreactivity to the PTH receptor (PTHR1) as well as to the receptor activator of nuclear factor kappa-B ligand (RANKL). The number of surfaces with visible canopy coverage was associated with plasma parathyroid hormone (PTH) levels, bone formation rate, and the extent of remodeling surfaces. Collectively, these data support the conclusion that canopies respond to the elevated PTH levels in CKD and that they possess the molecular machinery necessary to respond to PTH signaling. PMID:27045269

  3. Canopy Structure in Relation to Rainfall Interception

    Science.gov (United States)

    Fathizadeh, Omid; Mohsen Hosseini, Seyed; Keim, Richard

    2016-04-01

    Spatial variation of throughfall (TF) is linked to canopy structure. The effects of canopy structure on the spatial redistribution of rainfall in deciduous stands remains poorly documented. Therefore, the objective of this study is to evaluate the influence of canopy structure such as stand density on the partitioning of incident rainfall when passing through the canopy of Brant's oak (Quercus branti) forest stands. The study site is the Zagros forests in the western Iranian state of Ilam, protected forests of Dalab region. Twelve TF plots (50 m × 50 m) with 30 gauges randomly placed within each plot were established. Interception loss was computed as the difference between rain and TF. Canopy cover (%) and leaf area index (LAI, m2 m‑2) were estimated from the analysis of hemispherical photographs obtained during the fully leafed period. Relative interception varied from ˜4% at 0.1 LAI and canopy cover of 10% to ˜25% at 1.5 LAI and canopy cover of 65%. Interception represents a significant component of the seasonal water balance of oak forests, particularly in the case of intensive plantings. Keywords: Canopy Structure, Rainfall redistribution, Zagros forests, Quercus branti

  4. Is methane released from the forest canopy?

    DEFF Research Database (Denmark)

    Mikkelsen, T.N.; Bruhn, D.; Ambus, P.; Larsen, Klaus Steenberg; Ibrom, I.; Pilegaard, K.

    2011-01-01

    (4), based on lab results, have be conducted with varying results, but until now field measurements based on profile and eddy covariance measurements have failed to show CH(4) emissions from forest canopies. To detect CH(4) production or consumption in the canopy of a beech stand we connected a CH(4...

  5. Methods for estimating solar radiation under canopy

    International Nuclear Information System (INIS)

    The life of vegetation under a woodland canopy is greatly influenced by the quantity and the quality of solar radiation reaching the forest floor. A method was developed to estimate the distribution of solar radiation under canopy throughout the year. This paper describes in detail a technique for interpreting canopy picture taken with a fisheye lens. Through a scanner for digitazing the photographs and a personal computer for their interpretation accurate readings have been obtained at a low cost. The results show the mean monthly sunnines and the length and intensity of each sunflecks throughout the year for each site where a picture is taken; the values are calculated considering every single opening in the canopy, as visible from the site. The paper also describes the application of tridimensional models of the canopy to estimate the same radiation parameters for any site within the forest

  6. Nondestructive, stereological estimation of canopy surface area

    DEFF Research Database (Denmark)

    Wulfsohn, Dvora-Laio; Sciortino, Marco; Aaslyng, Jesper M.; García-Fiñana, Marta

    2010-01-01

    We describe a stereological procedure to estimate the total leaf surface area of a plant canopy in vivo, and address the problem of how to predict the variance of the corresponding estimator. The procedure involves three nested systematic uniform random sampling stages: (i) selection of plants from...... a canopy using the smooth fractionator, (ii) sampling of leaves from the selected plants using the fractionator, and (iii) area estimation of the sampled leaves using point counting. We apply this procedure to estimate the total area of a chrysanthemum (Chrysanthemum morifolium L.) canopy and...... counting is high. Using a grid intensity of 1.76 cm2/point we estimated plant and canopy surface areas with accuracies similar to or better than those obtained using image analysis and a commercial leaf area meter. For canopy surface areas of approximately 1 m2 (10 plants), the fractionator leaf approach...

  7. Spatio-Temporal Canopy Complexity and Leaf Acclimation to Variable Canopy Microhabitats.

    Science.gov (United States)

    Fotis, A. T.

    2014-12-01

    The theory that forests become carbon (C) neutral with maturity has recently been challenged. While a growing body of evidence shows that net C accumulation continues in forests that are centuries old, the reasons remain poorly known. Increasing canopy structural complexity, quantified by high variability in leaf distribution, has been proposed as a mechanism for sustained rates of C assimilation in mature forests. The goal of our research was to expand on these findings and explore a new idea of spatio-temporal canopy structural complexity as a mechanism linking canopy structure to function (C assimilation).Our work takes place at the UMBS AmeriFlux core facility (US-UMB) in northern Michigan, USA. Canopy structure was quantified over 6 seasons with portable canopy LiDAR (PCL) and canopy spatial microhabitat variability was studied using hemispherical photographs from different heights within the canopy. We found a more even distribution of irradiance in more structurally complex canopies within a single year, and furthermore, that between-year variability of spatial leaf arrangement decreased with increasing canopy complexity. We suggest that in complex canopies less redistribution of leaf material over time may lead to more similar light microhabitats within and among years. Conversely, in less complex canopies this relationship can lead to a year-to-year time lag in morphological leaf acclimation since the effects of the previous-year's light environment are reflected in the morphological characteristics of current-year leaves.Our study harnesses unique spatio-temporal resolution measurements of canopy structure and microhabitat that can inform better management strategies seeking to maximize forest C uptake. Future research quantifying the relationship between canopy structure and light distribution will improve performance of ecosystem models that currently lack spatially explicit canopy structure information.

  8. Modelling the canopy development of bambara groundnut

    DEFF Research Database (Denmark)

    Karunaratne, A.S.; Azam-Ali, S.N.; Al-Shareef, I.;

    2010-01-01

    Canopy development of bambara groundnut (Vigna subterranea (L.) Verdc) is affected by temperature stress, drought stress and photoperiod. The quantification of these documented effects by means of a suitable crop model, BAMGRO is presented in this paper. Data on canopy development from five growth...... drought stress. The leaf area expansion is calculated as a function of leaf number and individual leaf size. The canopy development of bambara groundnut is modelled (and tested) in BAMGRO model by means of leaf initiation and leaf area expansion and branching and stem production are not considered. Nash...

  9. Stream Evaluation

    Data.gov (United States)

    Kansas Data Access and Support Center — Digital representation of the map accompanying the "Kansas stream and river fishery resource evaluation" (R.E. Moss and K. Brunson, 1981.U.S. Fish and Wildlife...

  10. Stream Computing

    CERN Document Server

    Kak, Subhash

    2008-01-01

    Stream computing is the use of multiple autonomic and parallel modules together with integrative processors at a higher level of abstraction to embody "intelligent" processing. The biological basis of this computing is sketched and the matter of learning is examined.

  11. VitiCanopy: A Free Computer App to Estimate Canopy Vigor and Porosity for Grapevine

    Science.gov (United States)

    De Bei, Roberta; Fuentes, Sigfredo; Gilliham, Matthew; Tyerman, Steve; Edwards, Everard; Bianchini, Nicolò; Smith, Jason; Collins, Cassandra

    2016-01-01

    Leaf area index (LAI) and plant area index (PAI) are common and important biophysical parameters used to estimate agronomical variables such as canopy growth, light interception and water requirements of plants and trees. LAI can be either measured directly using destructive methods or indirectly using dedicated and expensive instrumentation, both of which require a high level of know-how to operate equipment, handle data and interpret results. Recently, a novel smartphone and tablet PC application, VitiCanopy, has been developed by a group of researchers from the University of Adelaide and the University of Melbourne, to estimate grapevine canopy size (LAI and PAI), canopy porosity, canopy cover and clumping index. VitiCanopy uses the front in-built camera and GPS capabilities of smartphones and tablet PCs to automatically implement image analysis algorithms on upward-looking digital images of canopies and calculates relevant canopy architecture parameters. Results from the use of VitiCanopy on grapevines correlated well with traditional methods to measure/estimate LAI and PAI. Like other indirect methods, VitiCanopy does not distinguish between leaf and non-leaf material but it was demonstrated that the non-leaf material could be extracted from the results, if needed, to increase accuracy. VitiCanopy is an accurate, user-friendly and free alternative to current techniques used by scientists and viticultural practitioners to assess the dynamics of LAI, PAI and canopy architecture in vineyards, and has the potential to be adapted for use on other plants. PMID:27120600

  12. VitiCanopy: A Free Computer App to Estimate Canopy Vigor and Porosity for Grapevine

    Directory of Open Access Journals (Sweden)

    Roberta De Bei

    2016-04-01

    Full Text Available Leaf area index (LAI and plant area index (PAI are common and important biophysical parameters used to estimate agronomical variables such as canopy growth, light interception and water requirements of plants and trees. LAI can be either measured directly using destructive methods or indirectly using dedicated and expensive instrumentation, both of which require a high level of know-how to operate equipment, handle data and interpret results. Recently, a novel smartphone and tablet PC application, VitiCanopy, has been developed by a group of researchers from the University of Adelaide and the University of Melbourne, to estimate grapevine canopy size (LAI and PAI, canopy porosity, canopy cover and clumping index. VitiCanopy uses the front in-built camera and GPS capabilities of smartphones and tablet PCs to automatically implement image analysis algorithms on upward-looking digital images of canopies and calculates relevant canopy architecture parameters. Results from the use of VitiCanopy on grapevines correlated well with traditional methods to measure/estimate LAI and PAI. Like other indirect methods, VitiCanopy does not distinguish between leaf and non-leaf material but it was demonstrated that the non-leaf material could be extracted from the results, if needed, to increase accuracy. VitiCanopy is an accurate, user-friendly and free alternative to current techniques used by scientists and viticultural practitioners to assess the dynamics of LAI, PAI and canopy architecture in vineyards, and has the potential to be adapted for use on other plants.

  13. VitiCanopy: A Free Computer App to Estimate Canopy Vigor and Porosity for Grapevine.

    Science.gov (United States)

    De Bei, Roberta; Fuentes, Sigfredo; Gilliham, Matthew; Tyerman, Steve; Edwards, Everard; Bianchini, Nicolò; Smith, Jason; Collins, Cassandra

    2016-01-01

    Leaf area index (LAI) and plant area index (PAI) are common and important biophysical parameters used to estimate agronomical variables such as canopy growth, light interception and water requirements of plants and trees. LAI can be either measured directly using destructive methods or indirectly using dedicated and expensive instrumentation, both of which require a high level of know-how to operate equipment, handle data and interpret results. Recently, a novel smartphone and tablet PC application, VitiCanopy, has been developed by a group of researchers from the University of Adelaide and the University of Melbourne, to estimate grapevine canopy size (LAI and PAI), canopy porosity, canopy cover and clumping index. VitiCanopy uses the front in-built camera and GPS capabilities of smartphones and tablet PCs to automatically implement image analysis algorithms on upward-looking digital images of canopies and calculates relevant canopy architecture parameters. Results from the use of VitiCanopy on grapevines correlated well with traditional methods to measure/estimate LAI and PAI. Like other indirect methods, VitiCanopy does not distinguish between leaf and non-leaf material but it was demonstrated that the non-leaf material could be extracted from the results, if needed, to increase accuracy. VitiCanopy is an accurate, user-friendly and free alternative to current techniques used by scientists and viticultural practitioners to assess the dynamics of LAI, PAI and canopy architecture in vineyards, and has the potential to be adapted for use on other plants. PMID:27120600

  14. US Forest Service LANDFIRE Canopy Fuel

    Data.gov (United States)

    US Forest Service, Department of Agriculture — LANDFIRE canopy fuel data describe the composition and characteristics of wildland surface fuel and can be implemented within models to predict wildland fire...

  15. Interactions between Fragmented Seagrass Canopies and the Local Hydrodynamics

    Science.gov (United States)

    El Allaoui, Nazha; Colomer, Jordi; Soler, Marianna; Casamitjana, Xavier; Oldham, Carolyn

    2016-01-01

    The systematic creation of gaps within canopies results in fragmentation and the architecture of fragmented canopies differs substantially from non-fragmented canopies. Canopy fragmentation leads to spatial heterogeneity in hydrodynamics and therefore heterogeneity in the sheltering of canopy communities. Identifying the level of instability due to canopy fragmentation is important for canopies in coastal areas impacted by human activities and indeed, climate change. The gap orientation relative to the wave direction is expected to play an important role in determining wave attenuation and sheltering. Initially we investigated the effect of a single transversal gap within a canopy (i.e. a gap oriented perpendicular to the wave direction) on hydrodynamics, which was compared to fully vegetated canopies (i.e. no gaps) and also to bare sediment. The wave velocity increased with gap width for the two canopy densities studied (2.5% and 10% solid plant fraction) reaching wave velocities found over bare sediments. The turbulent kinetic energy (TKE) within the gap also increased, but was more attenuated by the adjacent vegetation than the wave velocity. As expected, denser canopies produced a greater attenuation of both the wave velocity and the turbulent kinetic energy within an adjacent gap, compared to sparse canopies. Using non-dimensional analysis and our experimental data, a parameterization for predicting TKE in a canopy gap was formulated, as a function of easily measured variables. Based on the experimental results, a fragmented canopy model was then developed to determine the overall mixing level in such canopies. The model revealed that canopies with large gaps present more mixing than canopies with small gaps despite having the same total gap area in the canopy. Furthermore, for the same total gap area, dense fragmented canopies provide more shelter than sparse fragmented canopies. PMID:27227321

  16. Interactions between Fragmented Seagrass Canopies and the Local Hydrodynamics.

    Science.gov (United States)

    El Allaoui, Nazha; Serra, Teresa; Colomer, Jordi; Soler, Marianna; Casamitjana, Xavier; Oldham, Carolyn

    2016-01-01

    The systematic creation of gaps within canopies results in fragmentation and the architecture of fragmented canopies differs substantially from non-fragmented canopies. Canopy fragmentation leads to spatial heterogeneity in hydrodynamics and therefore heterogeneity in the sheltering of canopy communities. Identifying the level of instability due to canopy fragmentation is important for canopies in coastal areas impacted by human activities and indeed, climate change. The gap orientation relative to the wave direction is expected to play an important role in determining wave attenuation and sheltering. Initially we investigated the effect of a single transversal gap within a canopy (i.e. a gap oriented perpendicular to the wave direction) on hydrodynamics, which was compared to fully vegetated canopies (i.e. no gaps) and also to bare sediment. The wave velocity increased with gap width for the two canopy densities studied (2.5% and 10% solid plant fraction) reaching wave velocities found over bare sediments. The turbulent kinetic energy (TKE) within the gap also increased, but was more attenuated by the adjacent vegetation than the wave velocity. As expected, denser canopies produced a greater attenuation of both the wave velocity and the turbulent kinetic energy within an adjacent gap, compared to sparse canopies. Using non-dimensional analysis and our experimental data, a parameterization for predicting TKE in a canopy gap was formulated, as a function of easily measured variables. Based on the experimental results, a fragmented canopy model was then developed to determine the overall mixing level in such canopies. The model revealed that canopies with large gaps present more mixing than canopies with small gaps despite having the same total gap area in the canopy. Furthermore, for the same total gap area, dense fragmented canopies provide more shelter than sparse fragmented canopies. PMID:27227321

  17. Four-stream Radiative Transfer Parameterization Scheme in a Land Surface Process Model

    Institute of Scientific and Technical Information of China (English)

    ZHOU Wenyan; GUO Pinwen; LUO Yong; Kuo-Nan LIOU; Yu GU; Yongkang XUE

    2009-01-01

    Accurate estimates of albedos are required in climate modeling. Accurate and simple schemes for radiative transfer within canopy are required for these estimates, but severe limitations exist. This paper developed a four-stream solar radiative transfer model and coupled it with a land surface process model. The radiative model uses a four-stream approximation method as in the atmosphere to obtain analytic solutions of the basic equation of canopy radiative transfer. As an analytical model, the four-stream radiative transfer model can be easily applied efficiently to improve the parameterization of land surface radiation in climate models. Our four-stream solar radiative transfer model is based on a two-stream short wave radiative transfer model. It can simulate short wave solar radiative transfer within canopy according to the relevant theory in the atmosphere. Each parameter of the basic radiative transfer equation of canopy has special geometry and optical characters of leaves or canopy. The upward or downward radiative fluxes are related to the diffuse phase function, the G-function, leaf reflectivity and transmission, leaf area index, and the solar angle of the incident beam.The four-stream simulation is compared with that of the two-stream model. The four-stream model is proved successful through its consistent modeling of canopy albedo at any solar incident angle. In order to compare and find differences between the results predicted by the four-and two-stream models, a number of numerical experiments are performed through examining the effects of different leaf area indices, leaf angle distributions, optical properties of leaves, and ground surface conditions on the canopy albcdo. Parallel experiments show that the canopy albedos predicted by the two models differ significantly when the leaf angle distribution is spherical and vertical. The results also show that the difference is particularly great for different incident solar beams.One additional

  18. Surface-atmosphere interactions with coupled within-canopy aerodynamic resistance and canopy reflection.

    Science.gov (United States)

    Timmermans, J.; van der Tol, C.; Verhoef, W.; Su, Z.

    2009-04-01

    Models that describe the exchange of CO2 and H2O between the surface and atmosphere use bulk-parametrization of the within-canopy aerodynamic resistance and leaf area density (eq. LAI). This bulk parametrization is based on the Monin-Obukhov Similarity (MOS) theory. The MOS theory however breaks down for sparse canopies and it cannot couple profiles in the leaf density to profiles in the within-canopy aerodynamic resistance. The objective of this research is to create a simple model that is able to couple the within-canopy aerodynamic resistance and canopy reflection for different levels in the canopy. This model should be able to represent the canopy using as fewer parameters as possible, in order to facilitate inversion of remote sensing imagery. A virtual canopy was simulated using an L-systems approach, Lindenmayer 1968. The L-system approach was chosen because it describes the canopy with fractals. It therefore needs very little inputs to simulate a virtual canopy. A vertical profile of leaf density was calculated for 60 levels from this virtual canopy. The within-canopy aerodynamic resistance was modeled from the vertical leaf density profile using foliage drag coefficient, Massman 1997. A modified version of the SCOPE (Soil Canopy Observations and Photosynthesis) model was used to calculate the H2O and CO2 fluxes using the vertical profiles of leaf density and within-canopy aerodynamic resistance. The simulated fluxes are compared with field measurements over a vineyard and a forested area. The field measurements in both areas are acquired using the same setup: a basic flux tower in addition with an eddy-covariance setup. We present in this article the methodology and the results, as a proof of concept. references Massman, W.J., An Analytical One-Dimensional Model of Momentum Transfer by vegetation of arbitrary structure, Boundary-Layer Meteorology, 1997, 83, 407-421 Lindenmayer, A., Mathematical Models for Cellular Interactions in Development, Journal of

  19. Anisotropy of thermal infrared exitance in sunflower canopies

    Science.gov (United States)

    Tha Paw u, Kyaw; Ustin, Susan L.; Zhang, Chang-An

    1989-01-01

    Anisotropy of thermal infrared exitance above and within a relatively closed fully irrigated sunflower canopy is detailed. Azimuthal variation in thermal infrared exitance above canopies was weakly (statistically) related to solar position and was comparable to or larger than errors in satellite-based canopy estimates. Anisotropy within canopies was significantly lower and decreased with canopy closure and depth into the canopy. Measured azimuthal isotropy within canopies supports the use of this assumption in radiative transfer models. Significant differences in canopy temperature measurements were found depending upon whether the instruments were within or above the canopy. These differences could produce errors of 20-35 percent in latent energy estimates during periods of high evapotranspiration (ET) and greater errors in periods of restricted ET.

  20. Dependence of solar radiation transport in rice [Oryza sativa] canopies on developmental stage

    International Nuclear Information System (INIS)

    Solar radiation in a rice canopy plays an important role in the energy balance on both the plant leaves and soil/water surface. A simple model was derived from the two-stream model to estimate two important factors characterizing radiation in a plant canopy, namely, transmissivity of the canopy (tausub(c)) and the albedo of the canopy (ref), from the absorption coefficient of leaves (alpha) and leaf inclination factor (F). To clarify the seasonal variation in alpha and F with growth, season-long observations were conducted in paddy fields during three different cropping seasons. Values of alpha were almost constant throughout the growing period; however, values of F tended to increase with growth. Values of F were larger than 0.5 (the theoretical value for random leaf distribution) in the late growth stage mainly due to the alterations in leaf geometry with the change in leaf inclination angle along a more horizontal axis after flowering, while in contrast, values of F were less than 0.5 in the early growth stage mainly due to the distribution bias of leaves after transplanting. Seasonal variation in F during different cropping seasons could commonly be expressed as a function of developmental stage (DVS). Using this function, tausub(c) and ref could be estimated with more accuracy. The proposed radiation model and function is expected to be applicable in more accurate evaluation of solar radiation, dry matter production and soil/water temperature in paddy fields

  1. Modelling Canopy Flows over Complex Terrain

    Science.gov (United States)

    Grant, Eleanor R.; Ross, Andrew N.; Gardiner, Barry A.

    2016-06-01

    Recent studies of flow over forested hills have been motivated by a number of important applications including understanding CO_2 and other gaseous fluxes over forests in complex terrain, predicting wind damage to trees, and modelling wind energy potential at forested sites. Current modelling studies have focussed almost exclusively on highly idealized, and usually fully forested, hills. Here, we present model results for a site on the Isle of Arran, Scotland with complex terrain and heterogeneous forest canopy. The model uses an explicit representation of the canopy and a 1.5-order turbulence closure for flow within and above the canopy. The validity of the closure scheme is assessed using turbulence data from a field experiment before comparing predictions of the full model with field observations. For near-neutral stability, the results compare well with the observations, showing that such a relatively simple canopy model can accurately reproduce the flow patterns observed over complex terrain and realistic, variable forest cover, while at the same time remaining computationally feasible for real case studies. The model allows closer examination of the flow separation observed over complex forested terrain. Comparisons with model simulations using a roughness length parametrization show significant differences, particularly with respect to flow separation, highlighting the need to explicitly model the forest canopy if detailed predictions of near-surface flow around forests are required.

  2. BOREAS TE-9 NSA Canopy Biochemistry

    Science.gov (United States)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Margolis, Hank; Charest, Martin; Sy, Mikailou

    2000-01-01

    The BOREAS TE-9 team collected several data sets related to chemical and photosynthetic properties of leaves. This data set contains canopy biochemistry data collected in 1994 in the NSA at the YJP, OJR, OBS, UBS, and OA sites, including biochemistry lignin, nitrogen, cellulose, starch, and fiber concentrations. These data were collected to study the spatial and temporal changes in the canopy biochemistry of boreal forest cover types and how a high-resolution radiative transfer model in the mid-infrared could be applied in an effort to obtain better estimates of canopy biochemical properties using remote sensing. The data are available in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  3. Ecosystem Function in Appalachian Headwater Streams during an Active Invasion by the Hemlock Woolly Adelgid

    OpenAIRE

    Northington, Robert M.; Jackson R Webster; Ernest F Benfield; Cheever, Beth M.; Niederlehner, Barbara R.

    2013-01-01

    Forested ecosystems in the southeastern United States are currently undergoing an invasion by the hemlock woolly adelgid (HWA). Previous studies in this area have shown changes to forest structure, decreases in canopy cover, increases in organic matter, and changes to nutrient cycling on the forest floor and soil. Here, we were interested in how the effects of canopy loss and nutrient leakage from terrestrial areas would translate into functional changes in streams draining affected watershed...

  4. Simple Forest Canopy Thermal Exitance Model

    Science.gov (United States)

    Smith J. A.; Goltz, S. M.

    1999-01-01

    We describe a model to calculate brightness temperature and surface energy balance for a forest canopy system. The model is an extension of an earlier vegetation only model by inclusion of a simple soil layer. The root mean square error in brightness temperature for a dense forest canopy was 2.5 C. Surface energy balance predictions were also in good agreement. The corresponding root mean square errors for net radiation, latent, and sensible heat were 38.9, 30.7, and 41.4 W/sq m respectively.

  5. Wireless sensor networks for canopy temperature sensing and irrigation management

    Science.gov (United States)

    For researchers, canopy temperature measurements have proven useful in characterizing crop water stress and developing protocols for irrigation management. Today, there is heightened interest in using remote canopy temperature measurements for real-time irrigation scheduling. However, without the us...

  6. 100-Meter Resolution Tree Canopy of Alaska - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer contains tree canopy data for Alaska, in an Albers Equal-Area Conic projection and at a resolution of 100 meters. The tree canopy data were derived...

  7. Downstream Propagation of Thermal Pollution in Urban Streams

    Science.gov (United States)

    Somers, K. A.; Urban, D. L.; Bernhardt, E. S.; Losordo, M.

    2011-12-01

    Cities create "heat islands" with air temperatures up to 12 degrees C greater than surrounding areas and impervious surface temperatures reaching 50 degrees C greater than the air. Streams that drain urban areas tend to be hotter at baseflow due to warmer air temperatures and decreased riparian canopy cover. Further, urban stormflow routes precipitation over hot impervious surfaces and through storm drains directly into streams, creating rapid changes in stream temperatures. The resulting alterations in stream thermal regimes directly stress aquatic organisms and indirectly lead to changes in stream microbial activity and dissolved oxygen concentrations. To date, there has been little work done to understand how urban heating of streams propagates downstream from thermal pollution sources. In response to this lack, we used a fiber optic distributed temperature sensor as well as multiple individual temperature loggers to measure high spatiotemporal resolution patterns of stream temperature along 1.5 km of Mud Creek in Durham, NC. Mud Creek originates in the storm drains of a suburban neighborhood, where high-density residential complexes with large amounts of impervious surface are connected directly to the stream. The stream flows in a confined channel alongside apartment complexes for 0.5 km before entering a protected forest area. At baseflow, we found temperature was heterogeneous and explained primarily by canopy openness, rather than the amount of development upstream of the location. During summer stormflows, stream temperatures became more homogeneous and increased by up to 4 degrees C due to runoff at the top of the reach. These peak temperatures were dampened to only 2 degrees C increases after 1 km of travel through mature forest. In contrast, a fully forested tributary to Mud Creek decreased in temperature for the same storm events. This spatial propagation of stormflow heat pulses will substantially limit our ability to protect urban stream ecosystems.

  8. LASER ALTIMETER CANOPY HEIGHT PROFILES: METHODS AND VALIDATION FOR CLOSED-CANOPY, BROADLEAF FORESTS. (R828309)

    Science.gov (United States)

    AbstractWaveform-recording laser altimeter observations of vegetated landscapes provide a time-resolved measure of laser pulse backscatter energy from canopy surfaces and the underlying ground. Airborne laser altimeter waveform data was acquired using the Scanning Lid...

  9. [Estimation of canopy chlorophyll content using hyperspectral data].

    Science.gov (United States)

    Dong, Jing-Jing; Wang, Li; Niu, Zheng

    2009-11-01

    Many researches have developed models to estimate chlorophyl content at leaf and canopy level, but they were species-specific. The objective of the present paper was to develop a new model. First, canopy reflectance was simulated for different species and different canopy architecture using radiative transfer models. Based on the simulated canopy reflectance, the relationship between canopy reflectance and canopy chlorophyll content was studied, and then a chlorophyll estimation model was built using the method of spectral index. The coefficient of determination (R2) between spectral index based model and canopy chlorophyll content reached 0.75 for simulated data. To investigate the applicability of this chlorophyll model, the authors chose a field sample area in Gansu Province to carry out the measurement of leaf chlorophyll content, canopy reflectance and other parameters. Besides, the authors also ordered the synchronous Hyperion data, a hyperspectral image with a spatial resolution of 30 m. Canopy reflectance from field measurment and reflectance from Hyperion image were respectively used as the input parameter for the chlorophyll estimation model. Both of them got good results, which indicated that the model could be used for accurate canopy chlorophyll estimation using canopy reflectance. However, while using spaceborne hyperspectral data to estimate canopy chlorophyll content, good atmospheric correction is required. PMID:20101973

  10. Evaluating radiative transfer schemes treatment of vegetation canopy architecture in land surface models

    Science.gov (United States)

    Braghiere, Renato; Quaife, Tristan; Black, Emily

    2016-04-01

    Incoming shortwave radiation is the primary source of energy driving the majority of the Earth's climate system. The partitioning of shortwave radiation by vegetation into absorbed, reflected, and transmitted terms is important for most of biogeophysical processes, including leaf temperature changes and photosynthesis, and it is currently calculated by most of land surface schemes (LSS) of climate and/or numerical weather prediction models. The most commonly used radiative transfer scheme in LSS is the two-stream approximation, however it does not explicitly account for vegetation architectural effects on shortwave radiation partitioning. Detailed three-dimensional (3D) canopy radiative transfer schemes have been developed, but they are too computationally expensive to address large-scale related studies over long time periods. Using a straightforward one-dimensional (1D) parameterisation proposed by Pinty et al. (2006), we modified a two-stream radiative transfer scheme by including a simple function of Sun zenith angle, so-called "structure factor", which does not require an explicit description and understanding of the complex phenomena arising from the presence of vegetation heterogeneous architecture, and it guarantees accurate simulations of the radiative balance consistently with 3D representations. In order to evaluate the ability of the proposed parameterisation in accurately represent the radiative balance of more complex 3D schemes, a comparison between the modified two-stream approximation with the "structure factor" parameterisation and state-of-art 3D radiative transfer schemes was conducted, following a set of virtual scenarios described in the RAMI4PILPS experiment. These experiments have been evaluating the radiative balance of several models under perfectly controlled conditions in order to eliminate uncertainties arising from an incomplete or erroneous knowledge of the structural, spectral and illumination related canopy characteristics typical

  11. Biophysical information in asymmetric and symmetric diurnal bidirectional canopy reflectance

    Science.gov (United States)

    Vanderbilt, Vern C.; Caldwell, William F.; Pettigrew, Rita E.; Ustin, Susan L.; Martens, Scott N.; Rousseau, Robert A.; Berger, Kevin M.; Ganapol, B. D.; Kasischke, Eric S.; Clark, Jenny A.

    1991-01-01

    The authors present a theory for partitioning the information content in diurnal bidirectional reflectance measurements in order to detect differences potentially related to biophysical variables. The theory, which divides the canopy reflectance into asymmetric and symmetric functions of solar azimuth angle, attributes asymmetric variation to diurnal changes in the canopy biphysical properties. The symmetric function is attributed to the effects of sunlight interacting with a hypothetical average canopy which would display the average diurnal properties of the actual canopy. The authors analyzed radiometer data collected diurnally in the Thematic Mapper wavelength bands from two walnut canopies that received differing irrigation treatments. The reflectance of the canopies varied with sun and view angles and across seven bands in the visible, near-infrared, and middle infrared wavelength regions. Although one of the canopies was permanently water stressed and the other was stressed in mid-afternoon each day, no water stress signature was unambiguously evident in the reflectance data.

  12. Stream Temperature Estimation From Thermal Infrared Images

    Science.gov (United States)

    Handcock, R. N.; Kay, J. E.; Gillespie, A.; Naveh, N.; Cherkauer, K. A.; Burges, S. J.; Booth, D. B.

    2001-12-01

    data for atmospheric effects we combine radiosonde profiles with a physically based radiative transfer model (MODTRAN) and an in-scene relative correction adapted from the ISAC algorithm. Laboratory values for water emissivities are used as a baseline estimate of stream emissivities. Emitted radiance reflected by trees in the stream near-bank environment is estimated from the height and canopy temperature, using a radiosity model.

  13. Seagrass canopy photosynthetic response is a function of canopy density and light environment: a model for Amphibolis griffithii.

    Directory of Open Access Journals (Sweden)

    John D Hedley

    Full Text Available A three-dimensional computer model of canopies of the seagrass Amphibolis griffithii was used to investigate the consequences of variations in canopy structure and benthic light environment on leaf-level photosynthetic saturation state. The model was constructed using empirical data of plant morphometrics from a previously conducted shading experiment and validated well to in-situ data on light attenuation in canopies of different densities. Using published values of the leaf-level saturating irradiance for photosynthesis, results show that the interaction of canopy density and canopy-scale photosynthetic response is complex and non-linear, due to the combination of self-shading and the non-linearity of photosynthesis versus irradiance (P-I curves near saturating irradiance. Therefore studies of light limitation in seagrasses should consider variation in canopy structure and density. Based on empirical work, we propose a number of possible measures for canopy scale photosynthetic response that can be plotted to yield isoclines in the space of canopy density and light environment. These plots can be used to interpret the significance of canopy changes induced as a response to decreases in the benthic light environment: in some cases canopy thinning can lead to an equivalent leaf level light environment, in others physiological changes may also be required but these alone may be inadequate for canopy survival. By providing insight to these processes the methods developed here could be a valuable management tool for seagrass conservation during dredging or other coastal developments.

  14. Comparison between Vertical-Axis Wind Turbine Arrays and Plant Canopies

    Science.gov (United States)

    Kinzel, Matthias; Araya, Daniel; Dabiri, John

    2014-11-01

    We present experimental results from three different full scale arrays of vertical-axis wind turbines (VAWTs) under natural wind conditions. One array consists of a row of four single turbines while the other two are made up of nine counter rotating turbine pairs. The wind velocities throughout the turbine arrays are measured using a portable meteorological tower with seven, vertically-staggered, three-component ultrasonic anemometers. Furthermore, the power output of each turbine is measured simultaneously with the free stream wind velocity and direction. These measurements yield detailed understanding of the aerodynamics inside the VAWT arrays and the resulting power productions. Quadrant hole analysis is employed to gain a better understanding of the vertical energy transport at the top of the VAWT array. Results comparing the energy transport and the responsible mechanisms between the larger turbine arrays and the four single turbines configuration will be presented. Furthermore, results are compared to the flow in urban and plant canopies. Emphasis is given to the flow physics in the adjustment region of the canopy, i.e. the region where the flow transitions from an atmospheric surface layer to a canopy flow. This project is funded by the Gordon and Betty Moore Foundation through Grant 2645.

  15. River and Stream Pollution

    Science.gov (United States)

    ... Topics Games Activities Lessons MENU River and Stream Pollution Kids Homepage Topics Pollution River and Stream Pollution ... stream in the first place by disturbing the land as little as possible. Farmers and construction workers ...

  16. Discriminating crop and other canopies by overlapping binary image layers

    Science.gov (United States)

    Doi, Ryoichi

    2013-02-01

    For optimal management of agricultural fields by remote sensing, discrimination of the crop canopy from weeds and other objects is essential. In a digital photograph, a rice canopy was discriminated from a variety of weed and tree canopies and other objects by overlapping binary image layers of red-green-blue and other color components indicating the pixels with target canopy-specific (intensity) values based on the ranges of means ±(3×) standard deviations. By overlapping and merging the binary image layers, the target canopy specificity improved to 0.0015 from 0.027 for the yellow 1× standard deviation binary image layer, which was the best among all combinations of color components and means ±(3×) standard deviations. The most target rice canopy-likely pixels were further identified by limiting the pixels at different luminosity values. The discriminatory power was also visually demonstrated in this manner.

  17. Portable Airborne Laser System Measures Forest-Canopy Height

    Science.gov (United States)

    Nelson, Ross

    2005-01-01

    (PALS) is a combination of laser ranging, video imaging, positioning, and data-processing subsystems designed for measuring the heights of forest canopies along linear transects from tens to thousands of kilometers long. Unlike prior laser ranging systems designed to serve the same purpose, the PALS is not restricted to use aboard a single aircraft of a specific type: the PALS fits into two large suitcases that can be carried to any convenient location, and the PALS can be installed in almost any local aircraft for hire, thereby making it possible to sample remote forests at relatively low cost. The initial cost and the cost of repairing the PALS are also lower because the PALS hardware consists mostly of commercial off-the-shelf (COTS) units that can easily be replaced in the field. The COTS units include a laser ranging transceiver, a charge-coupled-device camera that images the laser-illuminated targets, a differential Global Positioning System (dGPS) receiver capable of operation within the Wide Area Augmentation System, a video titler, a video cassette recorder (VCR), and a laptop computer equipped with two serial ports. The VCR and computer are powered by batteries; the other units are powered at 12 VDC from the 28-VDC aircraft power system via a low-pass filter and a voltage converter. The dGPS receiver feeds location and time data, at an update rate of 0.5 Hz, to the video titler and the computer. The laser ranging transceiver, operating at a sampling rate of 2 kHz, feeds its serial range and amplitude data stream to the computer. The analog video signal from the CCD camera is fed into the video titler wherein the signal is annotated with position and time information. The titler then forwards the annotated signal to the VCR for recording on 8-mm tapes. The dGPS and laser range and amplitude serial data streams are processed by software that displays the laser trace and the dGPS information as they are fed into the computer, subsamples the laser range and

  18. CANOPY STRUCTURE AND DEPOSITION EFFICIENCY OF VINEYARD SPRAYERS

    OpenAIRE

    Gianfranco Pergher; Raffaella Petris

    2007-01-01

    A field study was performed to analyse how deposition efficiency from an axial-fan sprayer was affected by the canopy structure of vines trained to the High Cordon, Low Cordon and Casarsa systems, at beginning of flowering and beginning of berry touch growth stages. An empirical calibration method, providing a dose rate adjustment roughly proportional to canopy height, was used. The canopy structure was assessed using the Point Quadrat method, and determining the leaf area index (LAI) and the...

  19. Summertime canopy albedo is sensitive to forest thinning

    OpenAIRE

    Otto, J.; Berveiller, D.; F.-M. Bréon; Delpierre, N.; Geppert, G.; Granier, A.; Jans, W.; Knohl, A; Kuusk, A.; B. Longdoz; Moors, E.; Mund, M.; Pinty, B.; M.-J. Schelhaas; Luyssaert, S.

    2013-01-01

    Despite an emerging body of literature linking canopy albedo to forest management, understanding of the process is still fragmented. We combined a stand-level forest gap model with a canopy radiation transfer model and satellite-derived model parameters to quantify the effects of forest thinning, that is removing trees at a certain time during the forest rotation, on summertime canopy albedo. The effects of different forest species (pine, beech, oak) and four thinning strategies (light to int...

  20. Mechanistic study of aerosol dry deposition on vegetated canopies

    International Nuclear Information System (INIS)

    The dry deposition of aerosols onto vegetated canopies is modelled through a mechanistic approach. The interaction between aerosols and vegetation is first formulated by using a set of parameters, which are defined at the local scale of one surface. The overall deposition is then deduced at the canopy scale through an up-scaling procedure based on the statistic distribution parameters. This model takes into account the canopy structural and morphological properties, and the main characteristics of the turbulent flow. Deposition mechanisms considered are Brownian diffusion, interception, initial and turbulent impaction, initially with coniferous branches and then with entire canopies of different roughness, such as grass, crop field and forest. (author)

  1. Modeling directional thermal radiance from a forest canopy

    International Nuclear Information System (INIS)

    Recent advances in remote sensing technology have increased interest in utilizing the thermal-infared region to gain additional information about surface features such as vegetation canopies. Studies have shown that sensor view angle, canopy structure, and percentage of canopy coverage can affect the response of a thermal sensor. These studies have been primarily of agricultural regions and there have been relatively few examples describing the thermal characteristics of forested regions. This paper describes an extension of an existing thermal vegetation canopy radiance model which has been modified to partially account for the geometrically rough structure of a forest canopy. Fourier series expansion of a canopy height profile is used to calculate improved view factors which partially account for the directional variations in canopy thermal radiance transfers. The original and updated radiance model predictions are compared with experimental data obtained over a deciduous (oak-hickory) forest site. The experimental observations are also used to document azimuthal and nadir directional radiance variations. Maximum angular variations in measured canopy temperatures were 4–6°C (azimuth) and 2.5°C (nadir). Maximum angular variations in simulated temperatures using the modified rough surface model was 4°C. The rough surface model appeared to be sensitive to large gaps in the canopy height profile, which influenced the resultant predicted temperature. (author)

  2. Radar return from a continuous vegetation canopy

    Science.gov (United States)

    Bush, T. F.; Ulaby, F. T.

    1975-01-01

    The radar backscatter coefficient, sigma deg, of alfalfa was investigated as a function of both radar parameters and the physical characteristics of the alfalfa canopy. Measurements were acquired with an 8-18 GHz FM-CW mobile radar over an angular range of 0 - 70 deg as measured from nadir. The experimental data indicates that the excursions of sigma deg at nadir cover a range of nearly 18 dB during one complete growing cycle. An empirical model for sigma deg was developed which accounts for its variability in terms of soil moisture, plant moisture and plant height.

  3. Evaporation from rain-wetted forest in relation to canopy wetness, canopy cover, and net radiation

    NARCIS (Netherlands)

    Klaassen, W.

    2001-01-01

    Evaporation from wet canopies is commonly calculated using E-PM, the Penman-Monteith equation with zero surface resistance. However, several observations show a lower evaporation from rain-wetted forest. Possible causes for the difference between E-PM and experiments are evaluated to provide rules f

  4. Subtropical Modern Greenhouse Cucumber Canopy Transpiration Under Summer Climate Condition

    Institute of Scientific and Technical Information of China (English)

    LUO Wei-hong; WANG Xiao-han; DING Wei-min; CHEN Yu-qing; DAI Jian-feng

    2002-01-01

    Greenhouse canopy transpiration not only has effects on greenhouse air temperature and humidity, but also is important for determining the set-point of fertigation. In this study, Penman-Monteith equation was used to calculate the greenhouse cucumber canopy transpiration under summer climate condition.The effects of greenhouse environmental factors on canopy transpiration were analyzed based on the measurements of greenhouse microclimate factors and canopy transpiration. The results showed that Penman-Monteith equation was reliable and robust in estimating greenhouse cucumber canopy transpiration under summer climate condition. Greenhouse cucumber canopy transpiration rate increased linearly with the increase of net radiation and water vapor pressure deficit (VPD) above the canopy. But the maximum value of the canopy transpiration rate occurred at the same time as that of VPD whereas about two hours later than that of net radiation. Based on the results, it was concluded that in addition to radiation, air humidity should also be considered when determine the set-point of fertigation.

  5. Hierarchical Canopy Dynamics of Electrolyte-Doped Nanoscale Ionic Materials

    KAUST Repository

    Jespersen, Michael L.

    2013-12-23

    Nanoscale ionic materials (NIMs) are organic-inorganic hybrids prepared from ionically functionalized nanoparticles (NP) neutralized by oligomeric polymer counterions. NIMs are designed to behave as liquids under ambient conditions in the absence of solvent and have no volatile organic content, making them useful for a number of applications. We have used nuclear magnetic resonance relaxation and pulsed-field gradient NMR to probe local and collective canopy dynamics in NIMs based on 18-nm silica NPs with a covalently bound anionic corona, neutralized by amine-terminated ethylene oxide/propylene oxide block copolymers. The NMR relaxation studies show that the nanosecond-scale canopy dynamics depend on the degree of neutralization, the canopy radius of gyration, and crowding at the ionically modified NP surface. Two canopy populations are observed in the diffusion experiments, demonstrating that one fraction of the canopy is bound to the NP surface on the time scale (milliseconds) of the diffusion experiment and is surrounded by a more mobile layer of canopy that is unable to access the surface due to molecular crowding. The introduction of electrolyte ions (Na+ or Mg2+) screens the canopy-corona electrostatic interactions, resulting in a reduced bulk viscosity and faster canopy exchange. The magnitude of the screening effect depends upon ion concentration and valence, providing a simple route for tuning the macroscopic properties of NIMs. © 2013 American Chemical Society.

  6. Summertime canopy albedo is sensitive to forest thinning

    NARCIS (Netherlands)

    Otto, J.; Berveiller, D.; Bréon, F.M.; Delpierre, N.; Geppert, G.; Granier, A.; Jans, W.W.P.; Knohl, A.; Moors, E.J.

    2013-01-01

    Despite an emerging body of literature linking canopy albedo to forest management, understanding of the process is still fragmented. We combined a stand-level forest gap model with a canopy radiation transfer model and satellite-derived model parameters to quantify the effects of forest thinning, th

  7. Optimality of nitrogen distribution among leaves in plant canopies.

    Science.gov (United States)

    Hikosaka, Kouki

    2016-05-01

    The vertical gradient of the leaf nitrogen content in a plant canopy is one of the determinants of vegetation productivity. The ecological significance of the nitrogen distribution in plant canopies has been discussed in relation to its optimality; nitrogen distribution in actual plant canopies is close to but always less steep than the optimal distribution that maximizes canopy photosynthesis. In this paper, I review the optimality of nitrogen distribution within canopies focusing on recent advancements. Although the optimal nitrogen distribution has been believed to be proportional to the light gradient in the canopy, this rule holds only when diffuse light is considered; the optimal distribution is steeper when the direct light is considered. A recent meta-analysis has shown that the nitrogen gradient is similar between herbaceous and tree canopies when it is expressed as the function of the light gradient. Various hypotheses have been proposed to explain why nitrogen distribution is suboptimal. However, hypotheses explain patterns observed in some specific stands but not in others; there seems to be no general hypothesis that can explain the nitrogen distributions under different conditions. Therefore, how the nitrogen distribution in canopies is determined remains open for future studies; its understanding should contribute to the correct prediction and improvement of plant productivity under changing environments. PMID:27059755

  8. INDIRECT SENSING OF PLANT CANOPY STRUCTURE WITH SIMPLE RADIATION MEASUREMENTS

    Science.gov (United States)

    A technique for indirectly sensing canopy structure from simple, manageable measurements of sunlight transmission through the canopy is examined. he need for reliable measures of leaf area Index and leaf angle distributions has been clearly established in the literature for many ...

  9. Calculation of canopy resistance with a recursive evapotranspiration model

    Science.gov (United States)

    The calculation of hourly and daily crop evapotranspiration (ETc) from weather variables requires a corresponding hourly or daily value of canopy resistance (rc). An iterative method first proposed by MI Budyko to calculate ETc finds the surface canopy temperature (Ts) that satisfies the crop’s ener...

  10. Measuring canopy structure with an airborne laser altimeter

    International Nuclear Information System (INIS)

    Quantification of vegetation patterns and properties is needed to determine their role on the landscape and to develop management plans to conserve our natural resources. Quantifying vegetation patterns from the ground, or by using aerial photography or satellite imagery is difficult, time consuming, and often expensive. Digital data from an airborne laser altimeter offer an alternative method to quantify selected vegetation properties and patterns of forest and range vegetation. Airborne laser data found canopy heights varied from 2 to 6 m within even-aged pine forests. Maximum canopy heights measured with the laser altimeter were significantly correlated to measurements made with ground-based methods. Canopy shape could be used to distinguish deciduous and evergreen trees. In rangeland areas, vegetation heights, spatial patterns, and canopy cover measured with the laser altimeter were significantly related with field measurements. These studies demonstrate the potential of airborne laser data to measure canopy structure and properties for large areas quickly and quantitatively

  11. Riparian forest as a management tool for moderating future thermal conditions of lowland temperate streams

    Directory of Open Access Journals (Sweden)

    P. B. Kristensen

    2013-05-01

    Full Text Available Predictions of the future climate infer that stream water temperatures may increase in temperate lowland areas and that streams without riparian forest will be particularly prone to elevated stream water temperature. Planting of riparian forest is a potential mitigation measure to reduce water temperatures for the benefit of stream organisms. However, no studies have yet determined the length of a forested reach required to obtain a significant temperature decrease. To investigate this we measured the temperature in five small Danish lowland streams from June 2010 to July 2011, all showing a sharp transition between an upstream open reach and a downstream forested reach. In all stream reaches we also measured canopy cover and a range of physical variables characterizing the streams reaches. This allowed us to analyse differences in mean daily temperature and amplitude per month among forested and open sections as well as to study annual temperature regimes and the influence of physical conditions on temperature changes. Stream water temperature in the open reaches was affected by heating, and in July we observed an increase in temperature over the entire length of the investigated reaches, reaching temperatures higher than the incipient lethal limit for brown trout. Along the forest reaches a significant decrease in July temperatures was recorded immediately (100 m when the stream moved into the forested area. In three of our study streams the temperature continued to decrease the longer the stream entered into the forested reach, and the temperature decline did not reach a plateau. The temperature increases along the open reaches were accompanied by stronger daily temperature variation; however, when the streams entered into the forest, the range in daily variation decreased. Multiple regression analysis of the combined effects on stream water temperature of canopy cover, Width/Depth ratio, discharge, current velocity and water temperature

  12. Momentum and scalar transport within a vegetation canopy following atmospheric stability and seasonal canopy changes: the CHATS experiment

    Directory of Open Access Journals (Sweden)

    S. Dupont

    2012-02-01

    Full Text Available Momentum and scalar (heat and water vapor transfer between a walnut canopy and the overlying atmosphere are investigated for two seasonal periods (before and after leaf-out, and for five thermal stability regimes (free and forced convection, near-neutral condition, transition to stable, and stable. Quadrant and octant analyses of momentum and scalar fluxes followed by space-time autocorrelations of observations from the Canopy Horizontal Array Turbulence Study's (CHATS thirty meter tower help characterize the motions exchanging momentum, heat, and moisture between the canopy layers and aloft.

    During sufficiently windy conditions, i.e. in forced convection, near-neutral and transition to stable regimes, momentum and scalars are generally transported by sweep and ejection motions associated with the well-known canopy-top "shear-driven" coherent eddy structures. During extreme stability conditions (both unstable and stable, the role of these "shear-driven" structures in transporting scalars decreases, inducing notable dissimilarity between momentum and scalar transport.

    In unstable conditions, "shear-driven" coherent structures are progressively replaced by "buoyantly-driven" structures, known as thermal plumes; which appear very efficient at transporting scalars, especially upward thermal plumes above the canopy. Within the canopy, downward thermal plumes become more efficient at transporting scalars than upward thermal plumes if scalar sources are located in the upper canopy as the heat source. We explain these features by suggesting that: (i downward plumes within the canopy correspond to large downward plumes coming from above, and (ii upward plumes within the canopy are local small plumes induced by canopy heat sources where passive scalars are first injected if there sources are at the same location than heat sources. Above the canopy, these small upward thermal plumes aggregate to form larger scale upward thermal plumes

  13. Tv meteor streams searching

    OpenAIRE

    Jopek, Tadeusz J.

    1993-01-01

    Using a modified D-criterion (threshold Do=0.2), among 531 TV meteor orbits, 23 streams has been identified. Adout 30% of the orbits belongs to the stream component. Only 3 streams have orbits inclined more than 30deg. Four streams have reciprocal orbits. The major stream Herculids shown to be a complex structure, sensitive on the choice of the D- threshold value. The Taurids complex differs slightly from the photographic one. The theta Piscids stream has very small orbit, the mean semi-major...

  14. Radiation and photosynthesis in kiwifruit canopies

    International Nuclear Information System (INIS)

    Inclination angles, incident radiation, and photosynthesis were measured for leaves of kiwifruit vines in the field. Soon after flowering, mean leaf inclination angles were 29.5° and 27.6° for vines on T-bar and pergola trellises respectively. The diurnal integral of incident radiation for the upward-facing part of a T-bar vine exceeded that for the inclined part, by 50–100%. The radiation saturated rate of photosynthesis increased from 8–10 μmol CO2 m-2 s-1 about 1 month after leaf emergence to about 16–17 μmol CO2 m-2 s-1 at 3–5 months after leaf emergence, before declining as leaves senesced in autumn. The quantum efficiency increased marginally with leaf age. Simulated canopy photosynthesis early in the season was strongly related to leaf area development. (author)

  15. Turbulence in vertical axis wind turbine canopies

    Science.gov (United States)

    Kinzel, Matthias; Araya, Daniel B.; Dabiri, John O.

    2015-11-01

    Experimental results from three different full scale arrays of vertical-axis wind turbines (VAWTs) under natural wind conditions are presented. The wind velocities throughout the turbine arrays are measured using a portable meteorological tower with seven, vertically staggered, three-component ultrasonic anemometers. The power output of each turbine is recorded simultaneously. The comparison between the horizontal and vertical energy transport for the different turbine array sizes shows the importance of vertical transport for large array configurations. Quadrant-hole analysis is employed to gain a better understanding of the vertical energy transport at the top of the VAWT arrays. The results show a striking similarity between the flows in the VAWT arrays and the adjustment region of canopies. Namely, an increase in ejections and sweeps and decrease in inward and outward interactions occur inside the turbine array. Ejections are the strongest contributor, which is in agreement with the literature on evolving and sparse canopy flows. The influence of the turbine array size on the power output of the downstream turbines is examined by comparing a streamwise row of four single turbines with square arrays of nine turbine pairs. The results suggest that a new boundary layer forms on top of the larger turbine arrays as the flow adjusts to the new roughness length. This increases the turbulent energy transport over the whole planform area of the turbine array. By contrast, for the four single turbines, the vertical energy transport due to turbulent fluctuations is only increased in the near wake of the turbines. These findings add to the knowledge of energy transport in turbine arrays and therefore the optimization of the turbine spacing in wind farms.

  16. Inventory of miscellaneous streams

    International Nuclear Information System (INIS)

    Miscellaneous streams discharging to the soil column on the Hanford Site are subject to requirements of several milestones identified in Consent Order No. DE 9INM-177 (Ecology and DOE 1991). The Plan and Schedule for Disposition and Regulatory Compliance for Miscellaneous Stream (DOE/RL-93-94) provides a plan and schedule for the disposition of miscellaneous streams to satisfy one of the Section 6.0 requirements of the Consent Order. One of the commitments (Activity 6-2.2) established in the plan and schedule is to annually update, the miscellaneous streams inventory. This document constitutes the 1998 revision of the miscellaneous streams inventory. Miscellaneous stream discharges were grouped into four permitting categories (Table 1). The first miscellaneous streams Permit (ST 4508) was issued May 30, 1997, to cover wastewater discharges from hydrotesting, maintenance, and construction activities. The second miscellaneous streams Permit (ST4509) covers discharges from cooling water and condensate discharges. The third permit application for category three waste streams was eliminated by recategorizing waste streams into an existing miscellaneous streams permit or eliminating stream discharges. Elimination of the third categorical permit application was approved by Ecology in January 1997 (Ecology 1997). The fourth permit application, to cover storm water, is due to Ecology in September 1998. Table 1 provides a history of the miscellaneous streams permitting activities

  17. Inventory of miscellaneous streams

    Energy Technology Data Exchange (ETDEWEB)

    Haggard, R.D.

    1998-08-14

    Miscellaneous streams discharging to the soil column on the Hanford Site are subject to requirements of several milestones identified in Consent Order No. DE 9INM-177 (Ecology and DOE 1991). The Plan and Schedule for Disposition and Regulatory Compliance for Miscellaneous Stream (DOE/RL-93-94) provides a plan and schedule for the disposition of miscellaneous streams to satisfy one of the Section 6.0 requirements of the Consent Order. One of the commitments (Activity 6-2.2) established in the plan and schedule is to annually update, the miscellaneous streams inventory. This document constitutes the 1998 revision of the miscellaneous streams inventory. Miscellaneous stream discharges were grouped into four permitting categories (Table 1). The first miscellaneous streams Permit (ST 4508) was issued May 30, 1997, to cover wastewater discharges from hydrotesting, maintenance, and construction activities. The second miscellaneous streams Permit (ST4509) covers discharges from cooling water and condensate discharges. The third permit application for category three waste streams was eliminated by recategorizing waste streams into an existing miscellaneous streams permit or eliminating stream discharges. Elimination of the third categorical permit application was approved by Ecology in January 1997 (Ecology 1997). The fourth permit application, to cover storm water, is due to Ecology in September 1998. Table 1 provides a history of the miscellaneous streams permitting activities.

  18. Comparison of Stream Restoration and Vegetation Restoration on Stream Temperature in the Middle Fork John Day River, Oregon

    Science.gov (United States)

    Diabat, M.; Wondzell, S. M.; Haggerty, R.

    2013-12-01

    Stream temperature is an important component of aquatic ecosystems. During the past century, various anthropogenic activities (such as timber harvest, mining, and agriculture) reduced riparian vegetation and channel complexity along many streams around the world. As a result, stream temperature increased and suitable habitat for cool- and cold-water organisms declined. Stream temperatures are expected to increase even more under future climate. The effects of warmer climate and anthropogenic activities are proposed to be mitigated by restoration projects aimed to reduce stream temperatures. Common restoration practices are replanting natural vegetation along stream banks and restoring channel complexity. The Middle Fork John Day River, in northeastern Oregon, USA is an example of such a process. We modeled stream temperature along a 37-km section of the Middle Fork John Day River for current and projected conditions of climate, restored riparian vegetation along 6.6-km, and restored channel meanders along 1.5 km. Preliminary simulations suggest that if current riparian vegetation remains unchanged, an average summertime air warming of 4°C increased the 7-day average daily maximum (7DADM) by about 1.3°C. However, restored riparian vegetation reduced the 7DADM by about 0.7°C relative to the current temperature. Restored channel meanders reduced the 7DADM by less than 0.05°C relative to the current temperature. These preliminary simulations assume no hyporheic exchange and riparian vegetation that is 10 m tall and has 30% canopy density.

  19. Forest Canopy Height Estimation from Calipso Lidar Measurement

    Science.gov (United States)

    Lu, Xiaomei; Hu, Yongxiang; Lucker, Patricia L.; Trepte, Charles

    2016-06-01

    The canopy height is an important parameter in aboveground biomass estimation. Lidar remote sensing from airborne or satellite platforms, has a unique capability for forestry applications. This study introduces an innovative concept to estimate canopy height using CALIOP two wavelengths lidar measurements. One main advantage is that the concept proposed here is dependent on the penetration depths at two wavelengths without making assumption about the last peak of waveform as the ground location, and it does not require the ancillary Digital Elevation Model (DEM) data in order to obtain the slope information of terrain. Canopy penetration depths at two wavelengths indicate moderately strong relationships for estimating the canopy height. Results show that the CALIOP-derived canopy heights were highly correlated with the ICESat/GLAS-derived values with a mean RMSE of 3.4 m and correlation coefficient (R) of 0.89. Our findings present a relationship between the penetration difference and canopy height, which can be used as another metrics for canopy height estimation, except the full waveforms.

  20. Canopy wetness patterns in a Mediterranean deciduous stand

    Science.gov (United States)

    Llorens, P.; Domingo, F.; Garcia-Estringana, P.; Muzylo, A.; Gallart, F.

    2014-05-01

    This study provides detailed information on the canopy drying process subsequent to rainfall events in a Mediterranean deciduous stand. Since this is a study of a deciduous forest (Quercus pubescens Willd.), it has been possible to assess the differences in canopy structure as well as in meteorological conditions between seasons. Results show clear seasonal differences in wetness duration during the drying phase after rainfall, with longer wetness duration in the leafed period (8 h) than in the leafless one (4 h). There is better canopy ventilation in the leafless season, increasing canopy boundary layer conductance. However, there is a wind shelter effect in the leafed season, which entails low turbulence transfer within the canopy. Likewise, canopies remain wet longer at night in both seasons, but the differences in wetness duration between day and night are greater in the leafless season. Finally, the results indicate that the methods commonly used to separate rainfall events give an erroneous indication of the real canopy drying duration. This leads to inaccuracy in the number and duration of rainfall events and, thus, in their properties (such as rainfall depth and intensity) and represents a challenge to rainfall interception models.

  1. CFD modelling and wind tunnel validation of airflow through plant canopies using 3D canopy architecture

    International Nuclear Information System (INIS)

    The efficiency of pesticide application to agricultural fields and the resulting environmental contamination highly depend on atmospheric airflow. A computational fluid dynamics (CFD) modelling of airflow within plant canopies using 3D canopy architecture was developed to understand the effect of the canopy to airflow. The model average air velocity was validated using experimental results in a wind tunnel with two artificial model trees of 24 cm height. Mean air velocities and their root mean square (RMS) values were measured on a vertical plane upstream and downstream sides of the trees in the tunnel using 2D hotwire anemometer after imposing a uniform air velocity of 10 m s-1 at the inlet. 3D virtual canopy geometries of the artificial trees were modelled and introduced into a computational fluid domain whereby airflow through the trees was simulated using Reynolds-Averaged Navier-Stokes (RANS) equations and k-ε turbulence model. There was good agreement of the average longitudinal velocity, U between the measurements and the simulation results with relative errors less than 2% for upstream and 8% for downstream sides of the trees. The accuracy of the model prediction for turbulence kinetic energy k and turbulence intensity I was acceptable within the tree height when using a roughness length (y0 = 0.02 mm) for the surface roughness of the tree branches and by applying a source model in a porous sub-domain created around the trees. The approach was applied for full scale orchard trees in the atmospheric boundary layer (ABL) and was compared with previous approaches and works. The simulation in the ABL was made using two groups of full scale orchard trees; short (h = 3 m) with wider branching and long (h = 4 m) with narrow branching. This comparison showed good qualitative agreements on the vertical profiles of U with small local differences as expected due to the spatial disparities in tree architecture. This work was able to show airflow within and above the

  2. StreamCat

    Data.gov (United States)

    U.S. Environmental Protection Agency — The StreamCat Dataset provides summaries of natural and anthropogenic landscape features for ~2.65 million streams, and their associated catchments, within the...

  3. Streaming potential in nature

    Science.gov (United States)

    Schuch, M.

    For the first time, QUINCKE found in 1859 the phenomenon of electric streaming potential. Twenty years later HELMHOLTZ published a mathematical expression for the streaming potential. In the following years a number of scientists studied the phenomenon. BIKERMAN (1932) showed that each electric streaming potential causes an electric current in the contrary direction. SWARTZENDRUBER postulated in 1967 that this electric field tries to stop the streaming potential as a result of the energy balance.

  4. Querying JSON Streams

    OpenAIRE

    Bo, Yang

    2010-01-01

    A data stream management system (DSMS) is similar to a database management system (DBMS) but can search data directly in on-line streams. Using its mediator-wrapper approach, the extensible database system, Amos II, allows different kinds of distributed data resource to be queried. It has been extended with a stream datatype to query possibly infinite streams, which provides DSMS functionality. Nowadays, more and more web applications start to offer their services in JSON format which is a te...

  5. Productivity of stream definitions

    NARCIS (Netherlands)

    Endrullis, J.; Grabmayer, C.A.; Hendriks, D.; Isihara, A.; Klop, J.W.

    2008-01-01

    We give an algorithm for deciding productivity of a large and natural class of recursive stream definitions. A stream definition is called ‘productive’ if it can be evaluated continually in such a way that a uniquely determined stream in constructor normal form is obtained as the limit. Whereas prod

  6. Patrones de distribución espacial de ensambles de macroinvertebrados bentónicos de un sistema fluvial Andino Patagónico Spatial distribution patterns of benthic macroinvertebrates assemblages in an Andean Patagonian fluvial system

    Directory of Open Access Journals (Sweden)

    CAROLINA MOYA

    2009-01-01

    Full Text Available En enero de 2006 se estudiaron los patrones espaciales de distribución de comunidades de macroinvertebrados bentónicos de la cuenca hidrográfica del río Baker (45°50' O y 47°55' S y los principales factores controladores, intentando cubrir la mayor variedad de ecosistemas lóticos. Para llevar a cabo el estudio se seleccionaron 27 estaciones de muestreo ubicadas en las diferentes subcuencas del río. En cada estación se realizó una caracterización fisicoquímica del agua (conductividad, oxígeno disuelto, pH, temperatura y turbidez, y se documentaron las características del tramo de río (e.g. ancho del cauce y tipo de sedimento e información cartográfica utilizando un sistema de información geográfica (SIG. Se identificaron un total de 51 taxa que correspondieron en su mayoría a larvas de insectos (80 %. Los grupos con mayor riqueza fueron los órdenes Ephemeroptera (15 taxa, Plecoptera (8 taxa y Trichoptera (8 taxa. Los análisis de clasificación y ordenación realizados con los datos de abundancia, permitieron reconocer siete grupos de estaciones diferentes (A-F que fueron estadísticamente significativos (P In January of 2006 we studied the distributional patterns of benthic macroinvertebrate communities of the Baker river basin (45°50' O and 47°55' S and their main controlling factors trying to cover the greater variety of the lotic ecosystems. To carry out the study, 27 sampling stations were located in the different sub basins of the river. In each station, physical-chemical parameters of the column of water were quantified (conductivity, dissolved oxygen, pH, temperature and turbidity, and documented characteristics of the segment (e.g. wide of the channel and sediment type and cartographic information using a geographic information system (GIS and complemented with cartographic information using GIS. Identified a total of 51 taxa, are mostly insect larvae (80 %. The groups most richness were orders Ephemeroptera (15 taxa, Plecoptera (8 taxa and Trichoptera (8 taxa. The classification and ordination analyses carried out with the data of abundance, allowed to recognize seven groups stations (A-F statistically significant (P < 0.05. The múltiple regression analysis, showed that the environmental variable that accounts for the observed biological patterns, was coverage cobble, explaining 45.1 % the variance of the biological data (r² = 0.44 P < 0.05.

  7. Efficient modeling of sun/shade canopy radiation dynamics explicitly accounting for scattering

    Directory of Open Access Journals (Sweden)

    P. Bodin

    2011-08-01

    Full Text Available The separation of global radiation (Rg into its direct (Rb and diffuse constituents (Rd is important when modeling plant photosynthesis because a high Rd:Rg ratio has been shown to enhance Gross Primary Production (GPP. To include this effect in vegetation models, the plant canopy must be separated into sunlit and shaded leaves, for example using an explicit 3-dimensional ray tracing model. However, because such models are often too intractable and computationally expensive for theoretical or large scale studies simpler sun-shade approaches are often preferred. A widely used and computationally efficient sun-shade model is a model originally developed by Goudriaan (1977 (GOU, which however does not explicitly account for radiation scattering.

    Here we present a new model based on the GOU model, but which in contrast explicitly simulates radiation scattering by sunlit leaves and the absorption of this radiation by the canopy layers above and below (2-stream approach. Compared to the GOU model our model predicts significantly different profiles of scattered radiation that are in better agreement with measured profiles of downwelling diffuse radiation. With respect to these data our model's performance is equal to a more complex and much slower iterative radiation model while maintaining the simplicity and computational efficiency of the GOU model.

  8. Planarity of Streamed Graphs

    OpenAIRE

    Da Lozzo, Giordano; Rutter, Ignaz

    2015-01-01

    In this paper we introduce a notion of planarity for graphs that are presented in a streaming fashion. A $\\textit{streamed graph}$ is a stream of edges $e_1,e_2,...,e_m$ on a vertex set $V$. A streamed graph is $\\omega$-$\\textit{stream planar}$ with respect to a positive integer window size $\\omega$ if there exists a sequence of planar topological drawings $\\Gamma_i$ of the graphs $G_i=(V,\\{e_j \\mid i\\leq j < i+\\omega\\})$ such that the common graph $G^{i}_\\cap=G_i\\cap G_{i+1}$ is drawn the sa...

  9. Comparative study of Suits and SAIL canopy reflectance models

    Science.gov (United States)

    Badhwar, G. D.; Verhoef, W.; Bunnik, N. J. J.

    1985-01-01

    A detailed understanding of the relationships between the canopy reflectance and the characteristics of canopy elements is an important factor for the full exploitation of the potential of remote sensing from aircraft and spacecraft altitudes to map vegetation and estimate key agronomic parameters such as the leaf area index (LAI) and biomass (BM). Suits (1972) idealized the canopy geometry by replacing each plant component with three orthogonal projections of that component. Verhoeff and Bunnik (1981) extended the Suits model, henceforth called the SAIL (Scattering from Arbitrarily Inclined Leaves) model, by removing certain constraints. The present investigation is concerned with an evaluation of the performance of the Suits and SAIL models, taking into account two data sets on soybean and corn. It was found that the tested models have significant deficiencies. However, the performance of the SAIL model is better than that of the Suits model because it provides a more realistic description of the canopy architecture.

  10. BOREAS TE-18 GeoSail Canopy Reflectance Model

    Science.gov (United States)

    Hall, Forrest G. (Editor); Huemmrich, K. Fred

    2000-01-01

    The SAIL (Scattering from Arbitrarily Inclined Leaves) model was combined with the Jasinski geo metric model to simulate canopy spectral reflectance and absorption of photosynthetically active radiation for discontinuous canopies. This model is called the GeoSail model. Tree shapes are described by cylinders or cones distributed over a plane. Spectral reflectance and transmittance of trees are calculated from the SAIL model to determine the reflectance of the three components used in the geometric model: illuminated canopy, illuminated background, shadowed canopy, and shadowed background. The model code is Fortran. sample input and output data are provided in ASCII text files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Activity Archive Center (DAAC).

  11. Leaf Aging of Amazonian Canopy Trees: Insights to Tropical Ecological Processes and Satellited Detected Canopy Dynamics

    Science.gov (United States)

    Chavana-Bryant, C.; Malhi, Y.; Gerard, F.

    2015-12-01

    Leaf aging is a fundamental driver of changes in leaf traits, thereby, regulating ecosystem processes and remotely-sensed canopy dynamics. Leaf age is particularly important for carbon-rich tropical evergreen forests, as leaf demography (leaf age distribution) has been proposed as a major driver of seasonal productivity in these forests. We explore leaf reflectance as a tool to monitor leaf age and develop a novel spectra-based (PLSR) model to predict age using data from a phenological study of 1,072 leaves from 12 lowland Amazonian canopy tree species in southern Peru. Our results demonstrate monotonic decreases in LWC and Pmass and increase in LMA with age across species; Nmass and Cmassshowed monotonic but species-specific age responses. Spectrally, we observed large age-related variation across species, with the most age-sensitive spectral domains found to be: green peak (550nm), red edge (680-750 nm), NIR (700-850 nm), and around the main water absorption features (~1450 and ~1940 nm). A spectra-based model was more accurate in predicting leaf age (R2= 0.86; %RMSE= 33) compared to trait-based models using single (R2=0.07 to 0.73; %RMSE=7 to 38) and multiple predictors (step-wise analysis; R2=0.76; %RMSE=28). Spectral and trait-based models established a physiochemical basis for the spectral age model. The relative importance of the traits modifying the leaf spectra of aging leaves was: LWC>LMA>Nmass>Pmass,&Cmass. Vegetation indices (VIs), including NDVI, EVI2, NDWI and PRI were all age-dependent. This study highlights the importance of leaf age as a mediator of leaf traits, provides evidence of age-related leaf reflectance changes that have important impacts on VIs used to monitor canopy dynamics and productivity, and proposes a new approach to predicting and monitoring leaf age with important implications for remote sensing.

  12. Using airborne lasers to estimate forest canopy and stand characteristics

    International Nuclear Information System (INIS)

    The physical components of an airborne laser system are described and the use of the system to estimate tree ht. and infer canopy density is explained. Regression techniques are used to relate laser canopy profile measurements to ground measurements of forest biomass and timber volume. The technique was used to estimate biomass and volume over a large forest tract in SW Georgia, USA. The precision and accuracy of the estimates are reported

  13. Seasonal changes in radiation penetration within mustard crop canopy

    OpenAIRE

    Adak, Tarun; Chakravarty, NVK

    2012-01-01

    Green leaf area index, dry matter production and economic seed yield are significantly influenced by dynamics of radiation penetration within oilseed crop canopy. Keeping this in view, following a two years field experiment with Indian mustard cultivars in IARI research farm, it was revealed that the radiation penetration at the early crop growth stage was high and then decreased within the canopy as the leaf area developed. The study indicated significant seasonal changes in radiation penetr...

  14. Simulations of tropical rainforest albedo: is canopy wetness important?

    OpenAIRE

    Silvia N.M. Yanagi; Costa, Marcos H.

    2011-01-01

    Accurate information on surface albedo is essential for climate modelling, especially for regions such as Amazonia, where the response of the regional atmospheric circulation to the changes on surface albedo is strong. Previous studies have indicated that models are still unable to correctly reproduce details of the seasonal variation of surface albedo. Therefore, it was investigated the role of canopy wetness on the simulated albedo of a tropical rainforest by modifying the IBIS canopy radia...

  15. Effects of species selection and management on forest canopy albedo

    OpenAIRE

    Otto, Juliane; Berveiller, Daniel; Bréon, François-Marie; Delpierre, Nicolas; Geppert, Gernot; Granier, André; Gunia, Katja; Jans, Wilma; Knohl, Alexander; Kuusk, Andres; Longdoz, Bernard; Moors, Eddy; Mund, Martina; Pinty, Bernard; Rautiainen, Miina

    2013-01-01

    Forest management is considered to be one of the key instruments available to mitigate climate change as it can lead to increased sequestration of atmospheric carbon dioxide. However, the changes in canopy albedo may neutralise or offset the climate benefits of carbon sequestration. Although there is an emerging body of literature linking canopy albedo to management, understanding is still fragmented. We make use of a generally applicable approach: we combine a stand-level forest gap model wi...

  16. The Golden Canopies (Infant Radiant Warmer)

    Science.gov (United States)

    1978-01-01

    The cradle warmer is based on technology in heated transparent materials developed by Sierracin Corporation, Sylmar, California he original application was in heated faceplates for the pressure suit heated faceplates worn by pilots of an Air Force/NASA reconnaissance and weather research plane. Later, Sierracin advanced the technology for other applications, among them the cockpit windows of the NASA X-15 supersonic research vehicle and the helmet faceplates of Apollo astronauts. Adapting the technology to hospital needs, Sierracin teamed with Cavitron Corporation, Anaheim, California, which produces the cradle warmer and two other systems employing Sierracin's electrically-heated transparencies. Working to combat the infant mortality rate, hospitals are continually upgrading delivery room and nursery care techniques. Many have special procedures and equipment to protect infants during the "period of apprehension," the critical six to 12 hours after delivery. One such item of equipment is an aerospace spinoff called the Infant Radiant Warmer, a "golden canopy" which provides uniform, controlled warmth to the infant's cradle. Warmth is vitally important to all newborns, particularly premature babies; they lose heat more rapidly than adults because they have greater surface area in comparison with body mass.

  17. CANOPY STRUCTURE AND DEPOSITION EFFICIENCY OF VINEYARD SPRAYERS

    Directory of Open Access Journals (Sweden)

    Gianfranco Pergher

    2007-06-01

    Full Text Available A field study was performed to analyse how deposition efficiency from an axial-fan sprayer was affected by the canopy structure of vines trained to the High Cordon, Low Cordon and Casarsa systems, at beginning of flowering and beginning of berry touch growth stages. An empirical calibration method, providing a dose rate adjustment roughly proportional to canopy height, was used. The canopy structure was assessed using the Point Quadrat method, and determining the leaf area index (LAI and the leaf layer index (LLI. Spray deposits were measured by colorimetry, using a water soluble dye (Tartrazine as a tracer. Correlation between deposits and canopy parameters were analysed and discussed. Foliar deposits per unit leaf area were relatively constant, suggesting that empirical calibration can reduce deposit variability associated with different training systems and growth stages. Total foliar deposition ranged from 33.6% and 82.3% of total spray volume, and increased proportionally with the LLI up to LLI<4. Deposits on bunches significantly decreased with the LLI in the grape zone. The results suggest that sprayer efficiency is improved by a regular, symmetrical canopy, with few leaf layers in the grape zone as in Low Cordon. However, a LLI<3 over the whole canopy and >40% gaps in the foliage both reduced total deposition, and may increase the risk for larger drift losses.

  18. The Puzzling Ophiuchus Stream

    Science.gov (United States)

    Kohler, Susanna

    2016-01-01

    Dwarf galaxies or globular clusters orbiting the Milky Way can be pulled apart by tidal forces, leaving behind a trail of stars known as a stellar stream. One such trail, the Ophiuchus stream, has posed a serious dynamical puzzle since its discovery. But a recent study has identified four stars that might help resolve this streams mystery.Conflicting TimescalesThe stellar stream Ophiuchus was discovered around our galaxy in 2014. Based on its length, which appears to be 1.6 kpc, we can calculate the time that has passed since its progenitor was disrupted and the stream was created: ~250 Myr. But the stars within it are ~12 Gyr old, and the stream orbits the galaxy with a period of ~350 Myr.Given these numbers, we can assume that Ophiuchuss progenitor completed many orbits of the Milky Way in its lifetime. So why would it only have been disrupted 250 million years ago?Fanning StreamLed by Branimir Sesar (Max Planck Institute for Astronomy), a team of scientists has proposed an idea that might help solve this puzzle. If the Ophiuchus stellar stream is on a chaotic orbit common in triaxial potentials, which the Milky Ways may be then the stream ends can fan out, with stars spreading in position and velocity.The fanned part of the stream, however, would be difficult to detect because of its low surface brightness. As a result, the Ophiuchus stellar stream could actually be longer than originally measured, implying that it was disrupted longer ago than was believed.Search for Fan StarsTo test this idea, Sesar and collaborators performed a search around the ends of the stream, looking for stars thatare of the right type to match the stream,are at the predicted distance of the stream,are located near the stream ends, andhave velocities that match the stream and dont match the background halo stars.Histogram of the heliocentric velocities of the 43 target stars. Six stars have velocities matching the stream velocity. Two of these are located in the main stream; the other

  19. Isotopic characteristics of canopies in simulated leaf assemblages

    Science.gov (United States)

    Graham, Heather V.; Patzkowsky, Mark E.; Wing, Scott L.; Parker, Geoffrey G.; Fogel, Marilyn L.; Freeman, Katherine H.

    2014-11-01

    The geologic history of closed-canopy forests is of great interest to paleoecologists and paleoclimatologists alike. Closed canopies have pronounced effects on local, continental and global rainfall and temperature patterns. Although evidence for canopy closure is difficult to reconstruct from the fossil record, the characteristic isotope gradients of the "canopy effect" could be preserved in leaves and proxy biomarkers. To assess this, we employed new carbon isotopic data for leaves collected in diverse light environments within a deciduous, temperate forest (Maryland, USA) and for leaves from a perennially closed canopy, moist tropical forest (Bosque Protector San Lorenzo, Panamá). In the tropical forest, leaf carbon isotope values range 10‰, with higher δ13Cleaf values occurring both in upper reaches of the canopy, and with higher light exposure and lower humidity. Leaf fractionation (Δleaf) varied negatively with height and light and positively with humidity. Vertical 13C enrichment in leaves largely reflects changes in Δleaf, and does not trend with δ13C of CO2 within the canopy. At the site in Maryland, leaves express a more modest δ13C range (∼6‰), with a clear trend that follows both light and leaf height. Using a model we simulate leaf assemblage isotope patterns from canopy data binned by elevation. The re-sampling (bootstrap) model determined both the mean and range of carbon isotope values for simulated leaf assemblages ranging in size from 10 to over 1000 leaves. For the tropical forest data, the canopy's isotope range is captured with 50 or more randomly sampled leaves. Thus, with a sufficient number of fossil leaves it is possible to distinguish isotopic gradients in an ancient closed canopy forest from those in an open forest. For very large leaf assemblages, mean isotopic values approximate the δ13C of carbon contributed by leaves to soil and are similar to observed δ13Clitter values at forested sites within Panamá, including the

  20. An Algorithm for Streaming Clustering

    OpenAIRE

    Tang, Jiaowei

    2011-01-01

    A simple existing data stream clustering algorithm DenStream based on DBScan is studied. Based on DenStream a modified algorithm called DenStream2 is proposed. It follows most of the framework and theory of DenStream. Denstream2 is implemented as a foreign function in an extensible data stream management system (DSMS), where queries over streams are allowed. The generated clusters inferred from each window of an input a data stream are emitted as new stream clusters. The output stream can be ...

  1. Forest canopy water fluxes can be estimated using canopy structure metrics derived from airborne light detection and ranging (LiDAR)

    DEFF Research Database (Denmark)

    Schumacher, Johannes; Christiansen, Jesper Riis

    2015-01-01

    Forests contribute to improve water quality, affect drinking water resources, and therefore influence water supply on a regional level. The forest canopy structure affects the retention of precipitation (Pr) in the canopy and hence the amount of water transferred to the forest floor termed canopy...... impacts water resources on a large scale in regions where forests play a major role in water resource management....

  2. Characterizing canopy nonrandomness with a multiband vegetation imager (MVI)

    Science.gov (United States)

    Kucharik, C. J.; Norman, J. M.; Murdock, L. M.; Gower, S. T.

    1997-12-01

    A new method for measuring plant canopy nonrandomness and other architectural components has been developed using a 16 bit (65535 gray scale levels) charged-coupled device (CCD) camera that captures images of plant canopies in two wavelength bands. This complete system is referred to as a multiband vegetation imager (MVI). The use of two wavelength bands (visible (VIS) 400-620 nm and near infrared (NIR) 720-950 nm) permits identification of sunlit and shaded foliage, sunlit and shaded branch area, clouds, and blue sky based on the camera's resolution, and the varying spectral properties that scene components have in the two wavelength bands. This approach is different from other canopy imaging methods (such as fish-eye photography) because it emphasizes measuring the fraction of an image occupied by various scene components (branches, shaded leaves, sunlit leaves) under different sky conditions rather than simply the canopy gap fraction under uniform sky conditions. The MVI has been used during the Boreal Ecosystem-Atmosphere Study (BOREAS) in aspen (Populus tremuloides) and balsam poplar (Populus balsamifera) to estimate architectural characteristics of each canopy. The leaf area index (LAI), sunlit LAI, and degree of nonrandomness within a canopy are architectural properties that have been measured with the MVI. Using a crown-based Monte Carlo model for nonrandom canopies, nonrandomness factors are calculated from MVI data using two approaches (gap fraction and gap-size distribution theories) to correct total and sunlit LAI estimates from indirect methods that assume random foliage distributions. Canopy nonrandomness factors obtained from analyzing the gap-size distribution in a Monte Carlo model are shown to be a function of path length (angle) through the canopy (Ωe(θ)); thus we suggest that LAI-2000 indirect measurements of LAI be adjusted with the value of Ωe(θ) at θ=35° because this is the mean angle at which the canopy gap fraction is measured by the

  3. The Andromeda Stream

    CERN Document Server

    Lewis, G F; Ferguson, A M N; Ibata, R A; Irwin, M J; McConnachie, A W; Tanvir, N

    2004-01-01

    The existence of a stream of tidally stripped stars from the Sagittarius Dwarf galaxy demonstrates that the Milky Way is still in the process of accreting mass. More recently, an extensive stream of stars has been uncovered in the halo of the Andromeda galaxy (M31), revealing that it too is cannibalizing a small companion. This paper reports the recent observations of this stream, determining it spatial and kinematic properties, and tracing its three-dimensional structure, as well as describing future observations and what we may learn about the Andromeda galaxy from this giant tidal stream.

  4. Inventory of miscellaneous streams

    International Nuclear Information System (INIS)

    On December 23, 1991, the US Department of Energy, Richland Operations Office (RL) and the Washington State Department of Ecology (Ecology) agreed to adhere to the provisions of the Department of Ecology Consent Order. The Consent Order lists the regulatory milestones for liquid effluent streams at the Hanford Site to comply with the permitting requirements of Washington Administrative Code. The RL provided the US Congress a Plan and Schedule to discontinue disposal of contaminated liquid effluent into the soil column on the Hanford Site. The plan and schedule document contained a strategy for the implementation of alternative treatment and disposal systems. This strategy included prioritizing the streams into two phases. The Phase 1 streams were considered to be higher priority than the Phase 2 streams. The actions recommended for the Phase 1 and 2 streams in the two reports were incorporated in the Hanford Federal Facility Agreement and Consent Order. Miscellaneous Streams are those liquid effluents streams identified within the Consent Order that are discharged to the ground but are not categorized as Phase 1 or Phase 2 Streams. This document consists of an inventory of the liquid effluent streams being discharged into the Hanford soil column

  5. Hydrography - Streams and Shorelines

    Data.gov (United States)

    California Department of Resources — The hydrography layer consists of flowing waters (rivers and streams), standing waters (lakes and ponds), and wetlands -- both natural and manmade. Two separate...

  6. Inventory of miscellaneous streams

    Energy Technology Data Exchange (ETDEWEB)

    Lueck, K.J.

    1995-09-01

    On December 23, 1991, the US Department of Energy, Richland Operations Office (RL) and the Washington State Department of Ecology (Ecology) agreed to adhere to the provisions of the Department of Ecology Consent Order. The Consent Order lists the regulatory milestones for liquid effluent streams at the Hanford Site to comply with the permitting requirements of Washington Administrative Code. The RL provided the US Congress a Plan and Schedule to discontinue disposal of contaminated liquid effluent into the soil column on the Hanford Site. The plan and schedule document contained a strategy for the implementation of alternative treatment and disposal systems. This strategy included prioritizing the streams into two phases. The Phase 1 streams were considered to be higher priority than the Phase 2 streams. The actions recommended for the Phase 1 and 2 streams in the two reports were incorporated in the Hanford Federal Facility Agreement and Consent Order. Miscellaneous Streams are those liquid effluents streams identified within the Consent Order that are discharged to the ground but are not categorized as Phase 1 or Phase 2 Streams. This document consists of an inventory of the liquid effluent streams being discharged into the Hanford soil column.

  7. Accretion Stream Mapping

    CERN Document Server

    Vrielmann, S; Vrielmann, Sonja; Schwope, Axel D.

    1998-01-01

    We present a new mapping algorithm, the Accretion Stream Mapping, which uses the complete emission-line light curve to derive spatially resolved intensity distributions along the stream on a surface created as a duodecadon shaped tube. We successfully test this method on artificial data and then applied it to emission line light curves in Hbeta, Hgamma and HeII 4686 of the magnetic CV HU Aqr. We find Balmer emission near the threading point in the stream facing the white dwarf and Helium emission all over the magnetic part of the stream.

  8. Depletion of gaseous polycyclic aromatic hydrocarbons by a forest canopy

    Directory of Open Access Journals (Sweden)

    S.-D. Choi

    2008-07-01

    Full Text Available Rapid uptake of gaseous polycyclic aromatic hydrocarbons (PAHs by a forest canopy was observed at Borden in Southern Ontario, Canada during bud break in early spring 2003. High volume air samples were taken on 12 individual days at three different heights (44.4, 29.1, and 16.7 m on a scaffolding tower and on the forest floor below the canopy (1.5 m. Concentrations of PAHs were positively correlated to ambient temperature, resulting from relatively warm and polluted air masses passing over the Eastern United States and Toronto prior to arriving at the sampling site. An analysis of vertical profiles and gas/particle partitioning of the PAHs showed that gaseous PAHs established a concentration gradient with height, whereas levels of particulate PAHs were relatively uniform, implying that only the uptake of gaseous PAHs by the forest canopy was sufficiently rapid to be observed. Specifically, the gaseous concentrations of intermediate PAHs, such as phenanthrene, anthracene, and pyrene, during budburst and leaf emergence were reduced within and above the canopy. When a gradient was observed, the percentage of PAHs on particles increased at the elevations experiencing a decrease in gas phase concentrations. The uptake of intermediate PAHs by the canopy also led to significant differences in gaseous PAH composition with height. These results are the most direct evidence yet of the filter effect of forest canopies for gaseous PAHs in early spring. PAH deposition fluxes and dry gaseous deposition velocities to the forest canopy were estimated from the concentration gradients.

  9. The influence of the forest canopy on nutrient cycling.

    Science.gov (United States)

    Prescott, Cindy E

    2002-11-01

    Rates of key soil processes involved in recycling of nutrients in forests are governed by temperature and moisture conditions and by the chemical and physical nature of the litter. The forest canopy influences all of these factors and thus has a large influence on nutrient cycling. The increased availability of nutrients in soil in clearcuts illustrates how the canopy retains nutrients (especially N) on site, both by storing nutrients in foliage and through the steady input of available C in litter. The idea that faster decomposition is responsible for the flush of nitrate in clearcuts has not been supported by experimental evidence. Soil N availability increases in canopy gaps as small as 0.1 ha, so natural disturbances or partial harvesting practices that increase the complexity of the canopy by creating gaps will similarly increase the spatial variability in soil N cycling and availability within the forest. Canopy characteristics affect the amount and composition of leaf litter produced, which largely determines the amount of nutrients to be recycled and the resulting nutrient availability. Although effects of tree species on soil nutrient availability were thought to be brought about largely through differences in the decomposition rate of their foliar litter, recent studies indicate that the effect of tree species can be better predicted from the mass and nutrient content of litter produced, hence total nutrient return, than from litter decay rate. The greater canopy complexity in mixed species forests creates similar heterogeneity in nutritional characteristics of the forest floor. Site differences in slope position, parent material and soil texture lead to variation in species composition and productivity of forests, and thus in the nature and amount of litter produced. Through this positive feedback, the canopy accentuates inherent differences in site fertility. PMID:12414379

  10. Simulation of Snow Processes Beneath a Boreal Scots Pine Canopy

    Institute of Scientific and Technical Information of China (English)

    LI Weiping; LUO Yong; XIA Kun; LIU Xin

    2008-01-01

    A physically-based multi-layer snow model Snow-Atmosphere-Soil-Transfer scheme (SAST) and a land surface model Biosphere-Atmosphere Transfer Scheme (BATS) were employed to investigate how boreal forests influence snow accumulation and ablation under the canopy. Mass balance and energetics of snow beneath a Scots pine canopy in Finland at different stages of the 2003-2004 and 2004-2005 snow seasons are analyzed. For the fairly dense Scots pine forest, drop-off of the canopy-intercepted snow contributes, in some cases, twice as much to the underlying snowpack as the direct throughfall of snow. During early winter snow melting, downward turbulent sensible and condensation heat fluxes play a dominant role together with downward net longwave radiation. In the final stage of snow ablation in middle spring, downward net all-wave radiation dominates the snow melting. Although the downward sensible heat flux is comparable to the net solar radiation during this period, evaporative cooling of the melting snow surface makes the turbulent heat flux weaker than net radiation. Sensitivities of snow processes to leaf area index (LAI) indicate that a denser canopy speeds up early winter snowmelt, but also suppresses melting later in the snow season. Higher LAI increases the interception of snowfall, therefore reduces snow accumulation under the canopy during the snow season; this effect and the enhancement of downward longwave radiation by denser foliage outweighs the increased attenuation of solar radiation, resulting in earlier snow ablation under a denser canopy. The difference in sensitivities to LAI in two snow seasons implies that the impact of canopy density on the underlying snowpack is modulated by interannual variations of climate regimes.

  11. Characterization of Canopy Layering in Forested Ecosystems Using Full Waveform Lidar

    Science.gov (United States)

    Whitehurst, Amanda S.; Swatantran, Anu; Blair, J. Bryan; Hofton, Michelle A.; Dubayah, Ralph

    2013-01-01

    Canopy structure, the vertical distribution of canopy material, is an important element of forest ecosystem dynamics and habitat preference. Although vertical stratification, or "canopy layering," is a basic characterization of canopy structure for research and forest management, it is difficult to quantify at landscape scales. In this paper we describe canopy structure and develop methodologies to map forest vertical stratification in a mixed temperate forest using full-waveform lidar. Two definitions-one categorical and one continuous-are used to map canopy layering over Hubbard Brook Experimental Forest, New Hampshire with lidar data collected in 2009 by NASA's Laser Vegetation Imaging Sensor (LVIS). The two resulting canopy layering datasets describe variation of canopy layering throughout the forest and show that layering varies with terrain elevation and canopy height. This information should provide increased understanding of vertical structure variability and aid habitat characterization and other forest management activities.

  12. Streams in the urban heat island: spatial and temporal variability in temperature

    Science.gov (United States)

    Somers, Kayleigh A.; Bernhardt, Emily S.; Grace, James B.; Hassett, Brooke A.; Sudduth, Elizabeth B.; Wang, Siyi; Urban, Dean L.

    2013-01-01

    Streams draining urban heat islands tend to be hotter than rural and forested streams at baseflow because of warmer urban air and ground temperatures, paved surfaces, and decreased riparian canopy. Urban infrastructure efficiently routes runoff over hot impervious surfaces and through storm drains directly into streams and can lead to rapid, dramatic increases in temperature. Thermal regimes affect habitat quality and biogeochemical processes, and changes can be lethal if temperatures exceed upper tolerance limits of aquatic fauna. In summer 2009, we collected continuous (10-min interval) temperature data in 60 streams spanning a range of development intensity in the Piedmont of North Carolina, USA. The 5 most urbanized streams averaged 21.1°C at baseflow, compared to 19.5°C in the 5 most forested streams. Temperatures in urban streams rose as much as 4°C during a small regional storm, whereas the same storm led to extremely small to no changes in temperature in forested streams. Over a kilometer of stream length, baseflow temperature varied by as much as 10°C in an urban stream and as little as 2°C in a forested stream. We used structural equation modeling to explore how reach- and catchment-scale attributes interact to explain maximum temperatures and magnitudes of storm-flow temperature surges. The best predictive model of baseflow temperatures (R2  =  0.461) included moderately strong pathways directly (extent of development and road density) and indirectly, as mediated by reach-scale factors (canopy closure and stream width), from catchment-scale factors. The strongest influence on storm-flow temperature surges appeared to be % development in the catchment. Reach-scale factors, such as the extent of riparian forest and stream width, had little mitigating influence (R2  =  0.448). Stream temperature is an essential, but overlooked, aspect of the urban stream syndrome and is affected by reach-scale habitat variables, catchment-scale urbanization

  13. Influence of canopy foliage on turbulence above tall deciduous vegetation

    Science.gov (United States)

    Shapkalijevski, Metodija; Moene, Arnold; Ouwersloot, Huug; Patton, Edward; Vilà-Guerau de Arellano, Jordi

    2015-04-01

    In this study, the role of tree phenology on the atmospheric turbulence over tall vegetation is investigated. Our aim is to study dimensionless mean gradients, variances, and the turbulent kinetic energy (TKE) within the roughness sublayer (RSL), and their dependence on the leaf state of the canopy and the stability regimes. To do this, we analyse observations, that are continuously collected over a whole season above and in a walnut tree orchard during the Canopy Horizontal Array Turbulence Study (CHATS) field experiment near Dixon, California. To support this data analysis, we compare profiles of vertical fluxes and co-variances, as well as vertical gradients of mean wind, temperature and humidity, with empirically derived dimensionless gradients from previous studies and results from a second-order closure turbulence diagnostic model. In doing so, we study the differences in the calculation of the dimensionless gradients between recently developed model approaches that account for the RSL effects on these gradients against representations that omit those effects. The observations and model results are non-dimensionalized using atmospheric surface layer scaling, paying special attention to the displacement height. The latter is calculated from the observations and depends on the variable under consideration and the leaf state. Our results for the dimensionless gradients of momentum, heat and moisture show a reduction of these variables closer to the canopy top compared to the standard Monin-Obukhov similarity theory (MOST) for both unstable and near neutral conditions. We find that the reduction is larger for canopy with leaves than for leafless canopy. This confirms the applicability of the aforementioned RSL models. Their results are in better agreement with the observations for the fully vegetated canopy then for the leafless canopy. With regard to the TKE-budget, our analysis shows that turbulent transport is increasingly important term of the budget when

  14. A new approach for remote sensing of canopy absorbed photosynthetically active radiation. II. Proportion of canopy absorption

    International Nuclear Information System (INIS)

    The amount of photosynthetically active radiation (PAR) absorbed by canopy (APARCAN) is essential to the productivity of vegetation. Monitoring APARCAN from space has been achieved through the retrievals of two quantities, namely, the PAR incident at the surface (PARSFC↓) and the fraction of PAR intercepted by the canopy, FPAR. We propose a new approach that splits APARCAN into the PAR absorbed in the surface layer below the top of the canopy (APARSFC) and the ratio of APARCAN / APARSFC, RPAR. The method is introduced in two parts. Part I develops a simple parameterization that retrieves APARSFC more readily and accurately than PARSFC↓. Part II, presented in this paper, deals with the retrieval of RPAR. It is shown that RPAR can be derived as accurately and readily as FPAR. Hence, it is envisaged that the new approach offers an easier and more accurate means of estimating APARCAN than the traditional one. As an investigation tool, a one-dimensional multistream and multilayer model of canopy radiative transfer is first formulated. Extensive canopy modeling is conducted with input parameters of large ranges to represent a variety of canopies and ground conditions. For vegetated land, RPAR is found to correlate well with FPAR and thus RPAR can be estimated from FPAR. RPAR is also related with the surface vegetation indices (VIs) such as NDVI, SAVI, and DVI. The relationships between RPAR and VIs are driven by the changes in leaf area index. They are not sensitive to the solar zenith angle and the fractions of direct and diffuse radiation, but to the optical properties of the canopy. The models for inferring RPAR from various VIs are given, together with the correction models to account for the dependencies of RPAR on time and cloud cover. (author)

  15. Performance of an Ultrasonic Ranging Sensor in Apple Tree Canopies

    Directory of Open Access Journals (Sweden)

    Alexandre Escolà

    2011-02-01

    Full Text Available Electronic canopy characterization is an important issue in tree crop management. Ultrasonic and optical sensors are the most used for this purpose. The objective of this work was to assess the performance of an ultrasonic sensor under laboratory and field conditions in order to provide reliable estimations of distance measurements to apple tree canopies. To this purpose, a methodology has been designed to analyze sensor performance in relation to foliage ranging and to interferences with adjacent sensors when working simultaneously. Results show that the average error in distance measurement using the ultrasonic sensor in laboratory conditions is ±0.53 cm. However, the increase of variability in field conditions reduces the accuracy of this kind of sensors when estimating distances to canopies. The average error in such situations is ±5.11 cm. When analyzing interferences of adjacent sensors 30 cm apart, the average error is ±17.46 cm. When sensors are separated 60 cm, the average error is ±9.29 cm. The ultrasonic sensor tested has been proven to be suitable to estimate distances to the canopy in field conditions when sensors are 60 cm apart or more and could, therefore, be used in a system to estimate structural canopy parameters in precision horticulture.

  16. Mechanistic study of aerosols dry deposition onto vegetated canopies

    International Nuclear Information System (INIS)

    Aerosols dry deposition onto agricultural and forest areas is investigated. A special attention is given to highly rough surfaces and sub-micron aerosols, for which the estimation of the deposition is still uncertain. In fact the models used in radiological risk or air quality assessment studies are highly empirical and fail to reproduce the results of the most recent measurement campaigns. Therefore a theoretical framework, based on a mechanistic description, has been developed. The proposed approach consists in two steps. First, the interaction between aerosols and foliar surface is formulated by using a set of parameters, which are defined on the local scale of one foliar element. In the second step, the collective effect of the foliage is taken into account through statistical distribution of these parameters. The model integrates the three main aspects of aerosol dry deposition. These are the local aerodynamic characteristics of the flow within the canopy, the aerosol mechanisms governing the deposition, and the structural and morphological properties of the canopy. The physical processes considered in the study are inertial impaction, gravitational settling, brownian and turbulent diffusion, interception and turbulent impaction. The canopy characteristics considered are the spatial distribution, orientation and micro-structure of the foliar surfaces. The applicability of this framework is demonstrated in a realistic situation: for a given canopy and aerodynamic conditions, the spatial distribution of the aerosol captation by the foliage can be quantified. It enables to simulate numerically the distribution of aerosol concentration within the canopy and the overall deposition flux. (author)

  17. The nocturnal water cycle in an open-canopy forest

    Science.gov (United States)

    Berkelhammer, M.; Hu, J.; Bailey, A.; Noone, D. C.; Still, C. J.; Barnard, H.; Gochis, D.; Hsiao, G. S.; Rahn, T.; Turnipseed, A.

    2013-09-01

    The movement of moisture into, out-of, and within forest ecosystems is modulated by feedbacks that stem from processes which couple plants, soil, and the atmosphere. While an understanding of these processes has been gleaned from Eddy Covariance techniques, the reliability of the method suffers at night because of weak turbulence. During the summer of 2011, continuous profiles of the isotopic composition (i.e., δ18O and δD) of water vapor and periodic measurements of soil, leaf, and precipitation pools were measured in an open-canopy ponderosa pine forest in central Colorado to study within-canopy nocturnal water cycling. The isotopic composition of the nocturnal water vapor varies significantly based on the relative contributions of the three major hydrological processes acting on the forest: dewfall, exchange of moisture between leaf waters and canopy vapor, and periodic mixing between the canopy and background air. Dewfall proved to be surprisingly common (˜30% of the nights) and detectable on both the surface and within the canopy through the isotopic measurements. While surface dew could be observed using leaf wetness and soil moisture sensors, dew in the foliage was only measurable through isotopic analysis of the vapor and often occurred even when no dew accumulated on the surface. Nocturnal moisture cycling plays a critical role in water availability in forest ecosystems through foliar absorption and transpiration, and assessing these dynamics, as done here, is necessary for fully characterizing the hydrological controls on terrestrial productivity.

  18. Seasonal bird use of canopy gaps in a bottomland forest.

    Energy Technology Data Exchange (ETDEWEB)

    Bowen, Liessa, T,; Moorman, Christopher, E.; Kilgo, John, C.

    2007-04-01

    ABSTRACT.—Bird use of small canopy gaps within mature forests has not been well studied, particularly across multiple seasons. We investigated seasonal differences in bird use of gap and forest habitat within a bottomland hardwood forest in the Upper Coastal Plain of South Carolina. Gaps were 0.13- to 0.5-ha, 7- to 8-year-old group-selection timber harvest openings. Our study occurred during four bird-use periods (spring migration, breeding, postbreeding, and fall migration) in 2001 and 2002. We used plot counts and mist netting to estimate bird abundance in canopy gaps and surrounding mature forest habitats. Using both survey methods, we observed more birds, including forest-interior species, forest-edge species, field-edge species, and several individual species in canopy gap and gap-edge habitats than in surrounding mature forest during all periods. Interactions between period and habitat type often were significant in models, suggesting a seasonal shift in habitat use. Bird activity generally shifted between the interior of canopy gaps and the immediate gap edge, but many species increased their use of forested habitat during the breeding period. This suggests that many species of birds selectively choose gap and gap-edge habitat over surrounding mature forest during the non-breeding period. Creation of small canopy gaps within a mature forest may increase local bird species richness. The reasons for increased bird activity in gaps remain unclear.

  19. The MODIS Vegetation Canopy Water Content product

    Science.gov (United States)

    Ustin, S. L.; Riano, D.; Trombetti, M.

    2008-12-01

    Vegetation water stress drives wildfire behavior and risk, having important implications for biogeochemical cycling in natural ecosystems, agriculture, and forestry. Water stress limits plant transpiration and carbon gain. The regulation of photosynthesis creates close linkages between the carbon, water, and energy cycles and through metabolism to the nitrogen cycle. We generated systematic weekly CWC estimated for the USA from 2000-2006. MODIS measures the sunlit reflectance of the vegetation in the visible, near-infrared, and shortwave infrared. Radiative transfer models, such as PROSPECT-SAILH, determine how sunlight interacts with plant and soil materials. These models can be applied over a range of scales and ecosystem types. Artificial Neural Networks (ANN) were used to optimize the inversion of these models to determine vegetation water content. We carried out multi-scale validation of the product using field data, airborne and satellite cross-calibration. An Algorithm Theoretical Basis Document (ATBD) of the product is under evaluation by NASA. The CWC product inputs are 1) The MODIS Terra/Aqua surface reflectance product (MOD09A1/MYD09A1) 2) The MODIS land cover map product (MOD12Q1) reclassified to grassland, shrub-land and forest canopies; 3) An ANN trained with PROSPECT-SAILH; 4) A calibration file for each land cover type. The output is an ENVI file with the CWC values. The code is written in Matlab environment and is being adapted to read not only the 8 day MODIS composites, but also daily surface reflectance data. We plan to incorporate the cloud and snow mask and generate as output a geotiff file. Vegetation water content estimates will help predicting linkages between biogeochemical cycles, which will enable further understanding of feedbacks to atmospheric concentrations of greenhouse gases. It will also serve to estimate primary productivity of the biosphere; monitor/assess natural vegetation health related to drought, pollution or diseases

  20. The Atmospheric Chemistry and Canopy Exchange Simulation System (ACCESS: model description and application to a temperate deciduous forest canopy

    Directory of Open Access Journals (Sweden)

    R. D. Saylor

    2013-01-01

    Full Text Available Forest canopies are primary emission sources of biogenic volatile organic compounds (BVOCs and have the potential to significantly influence the formation and distribution of secondary organic aerosol (SOA mass. Biogenically-derived SOA formed as a result of emissions from the widespread forests across the globe may affect air quality in populated areas, degrade atmospheric visibility, and affect climate through direct and indirect forcings. In an effort to better understand the formation of SOA mass from forest emissions, a 1-D column model of the multiphase physical and chemical processes occurring within and just above a vegetative canopy is being developed. An initial, gas-phase-only version of this model, the Atmospheric Chemistry and Canopy Exchange Simulation System (ACCESS, includes processes accounting for the emission of BVOCs from the canopy, turbulent vertical transport within and above the canopy and throughout the height of the planetary boundary layer (PBL, near-explicit representation of chemical transformations, mixing with the background atmosphere and bi-directional exchange between the atmosphere and canopy and the atmosphere and forest floor. The model formulation of ACCESS is described in detail and results are presented for an initial application of the modeling system to Walker Branch Watershed, an isoprene-emission-dominated forest canopy in the southeastern United States which has been the focal point for previous chemical and micrometeorological studies. Model results of isoprene profiles and fluxes are found to be consistent with previous measurements made at the simulated site and with other measurements made in and above mixed deciduous forests in the southeastern United States. Sensitivity experiments are presented which explore how canopy concentrations and fluxes of gas-phase precursors of SOA are affected by background anthropogenic nitrogen oxides (NOx. Results from these experiments suggest that the

  1. Canopy interactions and physical stress gradients in subtidal communities.

    Science.gov (United States)

    Bennett, Scott; Wernberg, Thomas; de Bettignies, Thibaut; Kendrick, Gary A; Anderson, Robert J; Bolton, John J; Rodgers, Kirsten L; Shears, Nick T; Leclerc, Jean-Charles; Lévêque, Laurent; Davoult, Dominique; Christie, Hartvig C

    2015-07-01

    Species interactions are integral drivers of community structure and can change from competitive to facilitative with increasing environmental stress. In subtidal marine ecosystems, however, interactions along physical stress gradients have seldom been tested. We observed seaweed canopy interactions across depth and latitudinal gradients to test whether light and temperature stress structured interaction patterns. We also quantified interspecific and intraspecific interactions among nine subtidal canopy seaweed species across three continents to examine the general nature of interactions in subtidal systems under low consumer pressure. We reveal that positive and neutral interactions are widespread throughout global seaweed communities and the nature of interactions can change from competitive to facilitative with increasing light stress in shallow marine systems. These findings provide support for the stress gradient hypothesis within subtidal seaweed communities and highlight the importance of canopy interactions for the maintenance of subtidal marine habitats experiencing environmental stress. PMID:25975532

  2. Does canopy nitrogen uptake enhance carbon sequestration by trees?

    Science.gov (United States)

    Nair, Richard K F; Perks, Micheal P; Weatherall, Andrew; Baggs, Elizabeth M; Mencuccini, Maurizio

    2016-02-01

    Temperate forest (15) N isotope trace experiments find nitrogen (N) addition-driven carbon (C) uptake is modest as little additional N is acquired by trees; however, several correlations of ambient N deposition against forest productivity imply a greater effect of atmospheric nitrogen deposition than these studies. We asked whether N deposition experiments adequately represent all processes found in ambient conditions. In particular, experiments typically apply (15) N to directly to forest floors, assuming uptake of nitrogen intercepted by canopies (CNU) is minimal. Additionally, conventional (15) N additions typically trace mineral (15) N additions rather than litter N recycling and may increase total N inputs above ambient levels. To test the importance of CNU and recycled N to tree nutrition, we conducted a mesocosm experiment, applying 54 g N/(15) N ha(-1)  yr(-1) to Sitka spruce saplings. We compared tree and soil (15) N recovery among treatments where enrichment was due to either (1) a (15) N-enriched litter layer, or mineral (15) N additions to (2) the soil or (3) the canopy. We found that 60% of (15) N applied to the canopy was recovered above ground (in needles, stem and branches) while only 21% of (15) N applied to the soil was found in these pools. (15) N recovery from litter was low and highly variable. (15) N partitioning among biomass pools and age classes also differed among treatments, with twice as much (15) N found in woody biomass when deposited on the canopy than soil. Stoichiometrically calculated N effect on C uptake from (15) N applied to the soil, scaled to real-world conditions, was 43 kg C kg N(-1) , similar to manipulation studies. The effect from the canopy treatment was 114 kg C kg N(-1) . Canopy treatments may be critical to accurately represent N deposition in the field and may address the discrepancy between manipulative and correlative studies. PMID:26391113

  3. Experimental canopy removal enhances diversity of vernal pond amphibians.

    Science.gov (United States)

    Skelly, David K; Bolden, Susan R; Freidenburg, L Kealoha

    2014-03-01

    Vernal ponds are often treated as protected environments receiving special regulation and management. Within the landscapes where they are found, forest vegetation frequently dominates surrounding uplands and can grow to overtop and shade pond basins. Two bodies of research offer differing views of the role of forest canopy for vernal pond systems. Studies of landscape conversion suggest that removing forest overstory within uplands can cause local extinctions of amphibians by altering terrestrial habitat or hindering movement. Studies of canopy above pond basins imply an opposite relationship; encroachment of overstory vegetation can be associated with local extinctions potentially via changes in light, thermal, and food resource environments. Unresolved uncertainties about the role of forest canopy reveal significant gaps in our understanding of wetland species distributions and dynamics. Any misunderstanding of canopy influences is simultaneously important to managers because current practices emphasize promoting or conserving vegetation growth particularly within buffers immediately adjacent to ponds. We evaluated this apparent contradiction by conducting a landscape-scale, long-term experiment using 14 natural vernal ponds. Tree felling at six manipulated ponds was limited in spatial scope but was nevertheless effective in increasing water temperature. Compared with eight control ponds, manipulated ponds maintained more amphibian species during five years post-manipulation. There was little evidence that any species was negatively influenced, and the reproductive effort of species for which we estimated egg inputs maintained pretreatment population densities in manipulated compared with control ponds. Overall, our experiment shows that a carefully circumscribed reduction of overhead forest canopy can enhance the capacity of vernal ponds to support wildlife diversity and suggests a scale dependence of canopy influences on amphibians. These findings have

  4. Convergent elevation trends in canopy chemical traits of tropical forests.

    Science.gov (United States)

    Asner, Gregory P; Martin, Roberta E

    2016-06-01

    The functional biogeography of tropical forests is expressed in foliar chemicals that are key physiologically based predictors of plant adaptation to changing environmental conditions including climate. However, understanding the degree to which environmental filters sort the canopy chemical characteristics of forest canopies remains a challenge. Here, we report on the elevation and soil-type dependence of forest canopy chemistry among 75 compositionally and environmentally distinct forests in nine regions, with a total of 7819 individual trees representing 3246 species collected, identified and assayed for foliar traits. We assessed whether there are consistent relationships between canopy chemical traits and both elevation and soil type, and evaluated the general role of phylogeny in mediating patterns of canopy traits within and across communities. Chemical trait variation and partitioning suggested a general model based on four interconnected findings. First, geographic variation at the soil-Order level, expressing broad changes in fertility, underpins major shifts in foliar phosphorus (P) and calcium (Ca). Second, elevation-dependent shifts in average community leaf dry mass per area (LMA), chlorophyll, and carbon allocation (including nonstructural carbohydrates) are most strongly correlated with changes in foliar Ca. Third, chemical diversity within communities is driven by differences between species rather than by plasticity within species. Finally, elevation- and soil-dependent changes in N, LMA and leaf carbon allocation are mediated by canopy compositional turnover, whereas foliar P and Ca are driven more by changes in site conditions than by phylogeny. Our findings have broad implications for understanding the global ecology of humid tropical forests, and their functional responses to changing climate. PMID:26582427

  5. Investigation of the Loads on a Conventional Front and Rear Sliding Canopy

    Science.gov (United States)

    Dexter, Howard E.; Rickey, Edward A.

    1947-01-01

    As one phase of a comprehensive canopy load investigation, conventional front and rear sliding canopies which are typified by installation on the SB2C-4E airplane, were tested in the Langley full-scale tunnel to determine the pressure distributions and the aerodynamic loads on the canopies. A preliminary analysis of the results of these tests is presented in this report. Plots are presented that show the distribution of pressure at four longitudinal stations through each canopy for a range of conditions selected to determine the effects of varying canopy position, yaw, lift coefficient, and power. The results indicate that the maximum loads, based on the external-internal pressure differential, for the front and rear canopies were obtained with the airplane simulating the high speed flight condition. The highest loading on the front canopy was in the exploding direction for the configuration with the front and rear canopies closed. The highest loads on the rear canopy were in the crushing direction with the front canopy open and the rear canopy closed. For most of the simulated flight conditions, the highest loads on the front canopy, per unit area, were over twice as great as the highest loads on the rear canopy when the comparison was made for the most critical canopy configuration in each case. The external pressure distribution over the front and rear canopies, which were fairly symmetrical to 0 degree angle of yaw, were greatly distorted at other yaw attitudes, particularly for the propeller operating conditions. These distorted pressure distributions resulted in local exploding and crushing loads on both canopies which were often considerably higher than the average canopy loads.

  6. Percent Agriculture Adjacent to Streams

    Data.gov (United States)

    U.S. Environmental Protection Agency — The type of vegetation along a stream influences the water quality in the stream. Intact buffer strips of natural vegetation along streams tend to intercept...

  7. Percent Forest Adjacent to Streams

    Data.gov (United States)

    U.S. Environmental Protection Agency — The type of vegetation along a stream influences the water quality in the stream. Intact buffer strips of natural vegetation along streams tend to intercept...

  8. Coherent Effects in Microwave Backscattering Models for Forest Canopies

    Science.gov (United States)

    Saatchi, Sasan; McDonald, Kyle

    1995-01-01

    In modeling forest canopies, several scattering mechanisms are taken into account: 1) volume scattering, 2) surface-volume interaction, and 3) surface scattering from forest floor. Depending on the structural and dielectric characteristics of forest canopies, the relative contribution of each mechanism in the total backscatter signal of an imaging radar can vary. In this paper, two commonly used first order discrete scattering models, Distorted Born Approximation (DBA) and Radiative Transfer (RT) are used to simulate the backscattered power received by polarimetric radars at P-, L-, and C-bands over coniferous and deciduous forests. The difference between the two models resides on the coherent effect in the surface-volume interaction terms.

  9. Academic streaming in Europe

    DEFF Research Database (Denmark)

    Falaschi, Alessandro; Mønster, Dan; Doležal, Ivan;

    2004-01-01

    The TF-NETCAST task force was active from March 2003 to March 2004, and during this time the mem- bers worked on various aspects of streaming media related to the ultimate goal of setting up common services and infrastructures to enable netcasting of high quality content to the academic community...... in Europe. We report on a survey of the use of streaming media in the academic community in Europe, an open source content delivery network, and a portal for announcing live streaming events to the global academic community....

  10. Responses of canopy transpiration and canopy conductance of peach (Prunus persica) trees to alternate partial root zone drip irrigation

    Science.gov (United States)

    Gong, Daozhi; Kang, Shaozhong; Zhang, Jianhua

    2005-08-01

    We investigated canopy transpiration and canopy conductance of peach trees under three irrigation patterns: fixed 1/2 partial root zone drip irrigation (FPRDI), alternate 1/2 partial root zone drip irrigation (APRDI) and full root zone drip irrigation (FDI). Canopy transpiration was measured using heat pulse sensors, and canopy conductance was calculated using the Jarvis model and the inversion of the Penman-Monteith equation. Results showed that the transpiration rate and canopy conductance in FPRDI and APRDI were smaller than those in FDI. More significantly, the total irrigation amount was greatly reduced, by 34.7% and 39.6%, respectively for APRDI and FPRDI in the PRDI (partial root zone drip irrigation) treatment period. The daily transpiration was linearly related to the reference evapotranspiration in the three treatments, but daily transpiration of FDI is more than that of APRDI and FPRDI under the same evaporation demand, suggesting a restriction of transpiration water loss in the APRDI and FPRDI trees. FDI needed a higher soil water content to carry the same amount of transpiration as the APRDI and FPRDI trees, suggesting the hydraulic conductance of roots of APRDI and FPRDI trees was enhanced, and the roots had a greater water uptake than in FDI when the average soil water content in the root zone was the same. By a comparison between the transpiration rates predicted by the Penman-Monteith equation and the measured canopy transpiration rates for 60 days during the experimental period, an excellent correlation along the 1:1 line was found for all the treatments (R2 > 0.80), proving the reliability of the methodology.

  11. Does canopy mean nitrogen concentration explain variation in canopy light use efficiency across 14 contrasting forest sites?

    Science.gov (United States)

    Peltoniemi, Mikko; Pulkkinen, Minna; Kolari, Pasi; Duursma, Remko A; Montagnani, Leonardo; Wharton, Sonia; Lagergren, Fredrik; Takagi, Kentaro; Verbeeck, Hans; Christensen, Torben; Vesala, Timo; Falk, Matthias; Loustau, Denis; Mäkelä, Annikki

    2012-02-01

    The maximum light use efficiency (LUE = gross primary production (GPP)/absorbed photosynthetic photon flux density (aPPFD)) of plant canopies has been reported to vary spatially and some of this variation has previously been attributed to plant species differences. The canopy nitrogen concentration [N] can potentially explain some of this spatial variation. However, the current paradigm of the N-effect on photosynthesis is largely based on the relationship between photosynthetic capacity (A(max)) and [N], i.e., the effects of [N] on photosynthesis rates appear under high PPFD. A maximum LUE-[N] relationship, if it existed, would influence photosynthesis in the whole range of PPFD. We estimated maximum LUE for 14 eddy-covariance forest sites, examined its [N] dependency and investigated how the [N]-maximum LUE dependency could be incorporated into a GPP model. In the model, maximum LUE corresponds to LUE under optimal environmental conditions before light saturation takes place (the slope of GPP vs. PPFD under low PPFD). Maximum LUE was higher in deciduous/mixed than in coniferous sites, and correlated significantly with canopy mean [N]. Correlations between maximum LUE and canopy [N] existed regardless of daily PPFD, although we expected the correlation to disappear under low PPFD when LUE was also highest. Despite these correlations, including [N] in the model of GPP only marginally decreased the root mean squared error. Our results suggest that maximum LUE correlates linearly with canopy [N], but that a larger body of data is required before we can include this relationship into a GPP model. Gross primary production will therefore positively correlate with [N] already at low PPFD, and not only at high PPFD as is suggested by the prevailing paradigm of leaf-level A(max)-[N] relationships. This finding has consequences for modelling GPP driven by temporal changes or spatial variation in canopy [N]. PMID:22323526

  12. USGS Small-scale Dataset - 100-Meter Resolution Tree Canopy of Alaska 201301 GeoTIFF

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer contains tree canopy data for Alaska, in an Albers Equal-Area Conic projection and at a resolution of 100 meters. The tree canopy data were derived...

  13. USGS Small-scale Dataset - 100-Meter Resolution Tree Canopy of Hawaii 201301 GeoTIFF

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer contains tree canopy data for Hawaii, in an Albers Equal-Area Conic projection and at a resolution of 100 meters. The tree canopy data were derived...

  14. The dynamics of aerosol behaviour and fate within spruce canopies

    International Nuclear Information System (INIS)

    The current work was intended to provide data on aerosol inputs to forest ecosystems and their subsequent fate. The background to the project was the Chernobyl accident which highlighted the importance of forests and other semi-natural ecosystems as a link in the transfer of radioactivity to man. In the aftermath of the Chernobyl accident, forests were identified as a specific type of semi-natural ecosystem for which radioecological data were almost completely absent within the countries of the European Union. Information on radionuclide behaviour and transfer in forest ecosystems was therefore needed to establish and test radiological assessment models which can be used to evaluate the likely contribution to radiological dose-to-man contaminated forests may make. The objective of this study was thus to provide data on dry deposition, resuspension and field loss of aerosols to forest canopies, in particular those of Norway spruce (Picea abies), from wind tunnel experiments conducted with small scale 'model' canopies. An aerosol generation system was developed to produce aerosol particles in the size range of 0.13-1.37 μm (VMD). Particle size distributions can be controlled within desired limits and with sufficient stability over time allowing the technique to be suitable for use in extended aerosol deposition studies. A full scale dry deposition experiment using 0.82 μm (VMAD) uranium particles was performed in the wind tunnel using Norway spruce saplings of approximately 45 cm height. Deposition velocities (Vg) were obtained and these were related to meteorological measurements (wind speed, friction velocity, turbulence intensity) inside the wind tunnel and LAI of the canopy. The latter was divided into five horizontal layers and both horizontal and vertical variations in deposition were assessed. A Vg value of 0.497 cm s-1 was obtained for the canopy as a whole with the highest and lowest fluxes of 2.85 x 10-8 and 8.14 x 10-9 μgU cm-2 s-1 occurring at the top

  15. Canopy reflectance, photosynthesis, and transpiration. III - A reanalysis using improved leaf models and a new canopy integration scheme

    Science.gov (United States)

    Sellers, P. J.; Berry, J. A.; Collatz, G. J.; Field, C. B.; Hall, F. G.

    1992-01-01

    The theoretical analyses of Sellers (1985, 1987), which linked canopy spectral reflectance properties to (unstressed) photosynthetic rates and conductances, are critically reviewed and significant shortcomings are identified. These are addressed in this article principally through the incorporation of a more sophisticated and realistic treatment of leaf physiological processes within a new canopy integration scheme. The results indicate that area-averaged spectral vegetation indices, as obtained from coarse resolution satellite sensors, may give good estimates of the area-integrals of photosynthesis and conductance even for spatially heterogenous (though physiologically uniform) vegetation covers.

  16. An approach to modelling canopy and litter interception in indigenous and commercial forest plantations in South Africa

    Science.gov (United States)

    Bulcock, Hartley; Jewitt, Graham

    2010-05-01

    There is a gap in the knowledge of both canopy and litter interception in South African forest hydrology. Interception is typically considered to constitute only a small portion of the total evaporation and in some models is disregarded. Interception is a threshold process, as a certain amount of water is required before successive processes can take place. Therefore an error introduced in modelling interception, especially disregarding it, will automatically introduce errors in the calibration of subsequent models/processes. Field experiments to assess these processes, viz. canopy and litter interception were established for the three main commercial forestry genera in South Africa, namely, Pinus, Acacia and Eucalyptus which takes account of both 'broadleaf' and 'needle-leaf' trees. The study took place in the well known CSIR Two Streams research catchment, located in the Seven Oaks area, about 70km north-east of Pietermaritzburg in the KwaZulu-Natal Midlands. In this study, 4 year old Eucalyptus grandis and Acacia mearnsii, as well as 15 year old Pinus patula stands with Leaf Area Index (LAI) values of 2.7, 1.1, and 1.9 respectively were considered. For the importance of interception in South Africa to be more fully understood the study is being extended into an indigenous Podocarpus falcatus (Outeniqua Yellowwood) forest in Karkloof which has been classified as a southern mistbelt forest. In order to establish a baseline water-use by indigenous trees under natural conditions, canopy and litter interception studies are required to facilitate the evaluation of the likely impact on water resources associated with a change in land use. This takes into account different bioclimatic areas/zones, vegetation types and tree ages. Drawing on both field and laboratory data, models to represent these processes were developed using parameters that are easily attainable. The litter interception model is based on site and species specific drying curves and the canopy

  17. Acoustic streaming in microchannels

    DEFF Research Database (Denmark)

    Tribler, Peter Muller

    , and experimental results for the streaming-induced drag force dominated motion of particles suspended in a water-filled microchannel supporting a transverse half-wavelength resonance. The experimental and theoretical results agree within a mean relative dierence of approximately 20%, a low deviation given state......This thesis presents studies of boundary-driven acoustic streaming in microfluidic channels, which is a steady flow of the fluid initiated by the interactions of an oscillating acoustic standing wave and the rigid walls of the microchannel. The studies present analysis of the acoustic resonance......, the acoustic streaming flow, and the forces on suspended microparticles. The work is motivated by the application of particle focusing by acoustic radiation forces in medical, environmental and food sciences. Here acoustic streaming is most often unwanted, because it limits the focusability of particles...

  18. Channelized Streams in Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — This draft dataset consists of all ditches or channelized pieces of stream that could be identified using three input datasets; namely the1:24,000 National...

  19. Future Roads Near Streams

    Data.gov (United States)

    U.S. Environmental Protection Agency — Roads are a source of auto related pollutants (e.g. gasoline, oil and other engine fluids). When roads are near streams, rain can wash these pollutants directly...

  20. Trout Stream Special Regulations

    Data.gov (United States)

    Minnesota Department of Natural Resources — This layer shows Minnesota trout streams that have a special regulation as described in the 2006 Minnesota Fishing Regulations. Road crossings were determined using...

  1. DNR 24K Streams

    Data.gov (United States)

    Minnesota Department of Natural Resources — 1:24,000 scale streams captured from USGS seven and one-half minute quadrangle maps, with perennial vs. intermittent classification, and connectivity through lakes,...

  2. Roads Near Streams

    Data.gov (United States)

    U.S. Environmental Protection Agency — Roads are a source of auto related pollutants (e.g. gasoline, oil and other engine fluids). When roads are near streams, rain can wash these pollutants directly...

  3. Greenness indices from digital cameras predict the timing and seasonal dynamics of canopy-scale photosynthesis

    OpenAIRE

    Toomey, Michael; Friedl, Mark; Frolking, Steve; Hufkens, Koen; Klosterman, Stephen; Sonnentag, Oliver; Baldocchi, Dennis; Bernacchi, Carl; Biraud, Sebastien; Bohrer, Gil; Brzostek, Edward; Burns, Sean P.; Coursolle, Carole; Hollinger, David Y.; Margolis, Hank A.

    2014-01-01

    The proliferation of digital cameras co-located with eddy covariance instrumentation provides new opportunities to better understand the relationship between canopy phenology and the seasonality of canopy photosynthesis. In this paper we analyze the abilities and limitations of canopy color metrics measured by digital repeat photography to track seasonal canopy development and photosynthesis, determine phenological transition dates, and estimate intra-annual and interannual variability in can...

  4. Elevated stream inorganic nitrogen impacts on a dominant riparian tree species: Results from an experimental riparian stream system

    Science.gov (United States)

    Hultine, K. R.; Jackson, T. L.; Burtch, K. G.; Schaeffer, S. M.; Ehleringer, J. R.

    2008-12-01

    fertilized trees relative to the control trees. Stem diameter growth in 2007 was 15% greater in the fertilized trees, although there were no differences in either canopy radial or canopy height growth throughout the experiment. Results from this investigation suggest that increases in stream inorganic nitrogen affect water use, litter quality, and productivity of dominant riparian vegetation. These effects may have important feedbacks on several ecohydrological processes.

  5. Predicting lettuce canopy photosynthesis with statistical and neural network models

    Science.gov (United States)

    Frick, J.; Precetti, C.; Mitchell, C. A.

    1998-01-01

    An artificial neural network (NN) and a statistical regression model were developed to predict canopy photosynthetic rates (Pn) for 'Waldman's Green' leaf lettuce (Latuca sativa L.). All data used to develop and test the models were collected for crop stands grown hydroponically and under controlled-environment conditions. In the NN and regression models, canopy Pn was predicted as a function of three independent variables: shootzone CO2 concentration (600 to 1500 micromoles mol-1), photosynthetic photon flux (PPF) (600 to 1100 micromoles m-2 s-1), and canopy age (10 to 20 days after planting). The models were used to determine the combinations of CO2 and PPF setpoints required each day to maintain maximum canopy Pn. The statistical model (a third-order polynomial) predicted Pn more accurately than the simple NN (a three-layer, fully connected net). Over an 11-day validation period, average percent difference between predicted and actual Pn was 12.3% and 24.6% for the statistical and NN models, respectively. Both models lost considerable accuracy when used to determine relatively long-range Pn predictions (> or = 6 days into the future).

  6. Tree diversity and canopy cover in cocoa systems in Ghana

    DEFF Research Database (Denmark)

    Asare, Richard; Ræbild, Anders

    2016-01-01

    Cocoa (Theobroma cacao L.) growing systems in Ghana and West Africa consist of diverse tree species and densities.This study was conducted to determine factors that influence tree species configurations and how tree characteristics affect canopy cover in cocoa farms. Eighty-six farmers and...

  7. System Approach for Improved Whole Canopy Photosynthesis Measurement

    Science.gov (United States)

    Whole canopy photosynthetic rate (Pn) measurement is used for quantifying short term integral plant responses to the environment and for determining the final yield of a crop. Pn of an Open assimilation chamber is determined using the product of air flow rate of the chamber and CO2 differential bet...

  8. Development of inspection technique for CRDM housing canopy seals

    International Nuclear Information System (INIS)

    Canopy seals in CRDM (Control Rod Drive Mechanism) housing are welded seals joining stainless steel material in approximately 2 mm thickness and play an important role in leakproof for CRDM Housing. In the past, a leakage phenomenon from lower canopy seal occurred in 1984, and those from middle occurred in 1995 and 1996 respectively at domestic power plants. The cause was the stress corrosion cracking (hereafter we call it SCC) generated in the adjoining base metal of the canopy seal weld (heat affected zone). Taking the opportunity of this phenomenon, in order to detect SCC in the earlier stage and to protect leakage occurrence in advance, the technical development of the surface and volumetric inspection for the canopy seals has become an urgent task. Development and improvement for the eddy current flaw detection testing (hereafter we call it ECT) and ultrasonic flaw detection testing (hereafter we call it UT) have been conducted from 1984 up to now. This paper summarizes changes of the development of these inspection techniques and the outlines of the developed inspection techniques. (author)

  9. Modeling canopy CO2 exchange in the European Russian Arctic

    DEFF Research Database (Denmark)

    Kiepe, Isabell; Friborg, Thomas; Herbst, Mathias;

    2013-01-01

    In this study, we use the coupled photosynthesis-stomatal conductance model of Collatz et al. (1991) to simulate the current canopy carbon dioxide exchange of a heterogeneous tundra ecosystem in European Russia. For the parameterization, we used data obtained from in situ leaf level measurements ...

  10. Canopy and seasonal profiles of nitrate reductase in soybeans

    Energy Technology Data Exchange (ETDEWEB)

    Harper, J.E.; Hageman, R.H.

    1972-01-01

    Nitrate reductase activity of soybeans (Glycine max L. Merr.) was evaluated in soil plots and outdoor hydroponic gravel culture systems throughout the growing season. Nitrate reductase profiles within the plant canopy were also established. Mean activity per gram fresh weight per hour of the entire plant canopy was highest in the seedling stage while total activity (activity per gram fresh weight per hour times the total leaf weight) reached a maximum when plants were in the full bloom to midpod fill stage. Nitrate reductase activity per gram fresh weight per hour was highest in the uppermost leaf just prior to full expansion and declined with leaf positions lower in the canopy. Total nitrate reductase activity per leaf was also highest in the uppermost fully expanded leaf during early growth stages. Maximum total activity shifted to leaf positions lower in the plant canopy with later growth stages. Nitrate reductase activity of soybeans grown in hydroponic systems was significantly higher than activity of adjacent soil grown plants at later growth stages, which suggested that under normal field conditions the potential for nitrate utilization may not be realized. Nitrate reductase activity per gram fresh weight per hour and nitrate content were positively correlated over the growing season with plants grown in either soil or solution culture. Computations based upon the nitrate reductase assay of plants grown in hydroponics indicated that from 1.7 to 1.8 grams N could have been supplied to the plant via the nitrate reductase process. 11 references, 9 figures, 3 tables.

  11. Transient water stress in a vegetation canopy - Simulations and measurements

    Science.gov (United States)

    Carlson, Toby N.; Belles, James E.; Gillies, Robert R.

    1991-01-01

    Consideration is given to observational and modeling evidence of transient water stress, the effects of the transpiration plateau on the canopy radiometric temperature, and the factors responsible for the onset of the transpiration plateau, such as soil moisture. Attention is also given to the point at which the transient stress can be detected by remote measurement of surface temperature.

  12. Estimating foliar biochemistry from hyperspectral data in mixed forest canopy

    DEFF Research Database (Denmark)

    Huber Gharib, Silvia; Kneubühler, Mathias; Psomas, Achilleas;

    2008-01-01

    data to estimate the foliar concentration of nitrogen, carbon and water in three mixed forest canopies in Switzerland. With multiple linear regression models, continuum-removed and normalized HyMap spectra were related to foliar biochemistry on an individual tree level. The six spectral wavebands used...

  13. Influence of Solar Exposure on Stream Water Temperature: Implications for Conservation

    Science.gov (United States)

    Rich, P. M.; Weiss, S. B.; Launer, A. E.

    2007-12-01

    Stream water temperature is determined by a complex interplay of prevailing meteorology, local riparian canopy structure as it affects solar exposure, streambed morphology, and surface and subsurface flow patterns. We examined spatio-temporal variation in temperature regimes with respect to conservation of aquatic organisms of San Francisquito Creek (San Francisco Peninsula, California). Analyses synthesized measurements of meteorology from nearby weather stations, water temperature from a network of sensors, riparian canopy structure and solar exposure from hemispherical (fisheye) photography, stream morphology from field characterization and geographic information system (GIS) analysis, and stream flow and water temperature from gauging stations. We modeled stream temperature dynamics based on energy balance, with a focus on energy input from solar radiation. Water temperature co-varied with air temperature, with diurnal and seasonal lags. Stream reaches with high solar exposure displayed relatively high temperature variability (up to 5° C differential from baseline), whereas shaded reaches displayed only modest temperature variability (0.5-1.0° C differential). Subsurface flow through gravel beds decreased temperature (2-3° C decrease). Management of stream habitat to include a diversity of suitable temperature regimes is essential for conservation of species such as steelhead trout ( Oncorhynchus mykiss), which requires relatively cool conditions, and California red-legged frog ( Rana aurora draytonii) and western pond turtle ( Clemmys marmorata), which require warmer conditions. This approach can be applied to a broad spectrum of streams for habitat assessment, for stream conservation and restoration to accommodate diverse habitat needs, and for examination of potential impacts of climate change.

  14. Endogenous and exogenous control of ecosystem function: N cycling in headwater streams.

    Science.gov (United States)

    Valett, H M; Thomas, S A; Mulholland, P J; Webster, J R; Dahm, C N; Fellows, C S; Crenshaw, C L; Peterson, C G

    2008-12-01

    Allochthonous inputs act as resource subsidies to many ecosystems, where they exert strong influences on metabolism and material cycling. At the same time, metabolic theory proposes endogenous thermal control independent of resource supply. To address the relative importance of exogenous and endogenous influences, we quantified spatial and temporal variation in ecosystem metabolism and nitrogen (N) uptake using seasonal releases of 15N as nitrate in six streams differing in riparian-stream interaction and metabolic character. Nitrate removal was quantified using a nutrient spiraling approach based on measurements of downstream decline in 15N flux. Respiration (R) and gross primary production (GPP) were measured with whole-stream diel oxygen budgets. Uptake and metabolism metrics were addressed as z scores relative to site means to assess temporal variation. In open-canopied streams, areal uptake (U; microg N x m(-2) x s(-1)) was closely related to GPP, metabolic rates increased with temperature, and R was accurately predicted by metabolic scaling relationships. In forested streams, N spiraling was not related to GPP; instead, uptake velocity (v(f); mm/s) was closely related to R. In contrast to open-canopied streams, N uptake and metabolic activity were negatively correlated to temperature and poorly described by scaling laws. We contend that streams differ along a gradient of exogenous and endogenous control that relates to the relative influences of resource subsidies and in-stream energetics as determinants of seasonal patterns of metabolism and N cycling. Our research suggests that temporal variation in the propagation of ecological influence between adjacent systems generates phases when ecosystems are alternatively characterized as endogenously and exogenously controlled. PMID:19137956

  15. SPATIAL CONTAGIOUSNESS OF CANOPY DISTURBANCE IN TROPICAL RAIN FOREST : AN INDIVIDUAL-TREE-BASED TEST

    NARCIS (Netherlands)

    Jansen, Patrick A.; Van Der Meer, Peter J.; Bongers, Frans

    2008-01-01

    Spatial contagiousness of canopy dynamics-the tendency of canopy disturbances to occur nearby existing canopy openings due to an elevated risk of tree fall around gaps-has been demonstrated in many temperate-zone forests, but only inferentially for tropical forests. Hypothesized mechanisms increasin

  16. Estimation of in-canopy ammonia sources and sinks in a fertilized Zea mays field

    Science.gov (United States)

    An analytical model was developed that describes the in-canopy vertical distribution of NH3 source and sinks and vertical fluxes in a fertilized agricultural setting using measured in-canopy concentration and wind speed profiles. This model was applied to quantify in-canopy air-s...

  17. Canopy storage capacity of xerophytic shrubs in Northwestern China

    Science.gov (United States)

    Wang, Xin-ping; Zhang, Ya-feng; Hu, Rui; Pan, Yan-xia; Berndtsson, Ronny

    2012-08-01

    SummaryThe capacity of shrub canopy water storage is a key factor in controlling the rainfall interception. Thus, it affects a variety of hydrological processes in water-limited arid desert ecosystems. Vast areas of revegetated desert ecosystems in Northwestern China are occupied by shrub and dwarf shrub communities. Yet, data are still scarce regarding their rainwater storage capacity. In this study, simulated rainfall tests were conducted in controlled conditions for three dominant xerophytic shrub types in the arid Tengger Desert. Eight rainfall intensities varying from 1.15 to 11.53 mm h-1 were used to determine the canopy water storage capacity. The simulated rainfall intensities were selected according to the long-term rainfall records in the study area. The results indicate that canopy storage capacity (expressed in water storage per leaf area, canopy projection area, biomass, and volume of shrub respectively) increased exponentially with increase in rainfall intensity for the selected shrubs. Linear relationships were found between canopy storage capacity and leaf area (LA) or leaf area index (LAI), although there was a striking difference in correlation between storage capacity and LA or LAI of Artemisia ordosica compared to Caragana korshinskii and Hedysarum scoparium. This is a result of differences in biometric characteristics, especially canopy morphology between the shrub species. Pearson correlation coefficient indicated that LA and dry biomass are better predictors as compared to canopy projection area and volume of samples for precise estimation of canopy water storage capacity. In terms of unit leaf area, mean storage capacity was 0.39 mm (range of 0.24-0.53 mm), 0.43 mm (range of 0.28-0.60 mm), and 0.61 mm (range of 0.29-0.89 mm) for C. korshinskii, H. scoparium, and A. ordosica, respectively. Correspondingly, divided per unit dry biomass, mean storage capacity was 0.51 g g-1 (range of 0.30-0.70 g g-1), 0.41 g g-1 (range of 0.26-0.57 g g-1), and

  18. Fractal geometry for atmospheric correction and canopy simulation

    Science.gov (United States)

    Tornow, Carmen

    1996-06-01

    Global climate modeling needs a good parameterization of the vegetative surface. Two of the main important parameters are the leaf area index (LAI) and the fraction of absorbed photosynthetically active radiation (FPAR). In order to derive these values from space and airborne spectral radiance measurements one needs information on the actual atmospheric state as well as good canopy models. First we have developed a retrieval method for the optical depth to perform an atmospheric correction of remote sensing data. The atmospheric influence reduces the global image contrast and acts as a low pass filter. We found that the autocorrelation function [ACF(lambda )(h)] of the image depends on the global image contrast C and on the fractal dimension s. Using multiple regression the spectral optical depth in the visible range can be estimated from C and s with an absolute accuracy of 0.021. This method was applied and tested for a number of rural TM scenes. Atmospheric correction allows us to calculate the canopy reflectance from the image data. The relationships between the canopy reflectance and LAI or FPAR can be determined from canopy radiative transfer modeling. Row and shadowing effects influence the bi-directional reflectance distribution function (BRDF) since the leaves and stems are real 3D objects. In order to use a ray tracer for 3D radiative transfer simulation the canopy should be described by simple shapes (discs, cylinders) and polygones. Lindenmayer systems which are based on the ideas of fractal geometry allow the construction of plants and trees in this way. We have created simple artificial plants and arranged them into rows to study shadowing and row effects and compute the BRDF in various spectral channels.

  19. Streams and their future inhabitants

    DEFF Research Database (Denmark)

    Sand-Jensen, K.; Friberg, N.

    2006-01-01

    In this fi nal chapter we look ahead and address four questions: How do we improve stream management? What are the likely developments in the biological quality of streams? In which areas is knowledge on stream ecology insuffi cient? What can streams offer children of today and adults of tomorrow?...

  20. Streams and their future inhabitants

    OpenAIRE

    K. Sand-Jensen; Friberg, N.

    2006-01-01

    In this fi nal chapter we look ahead and address four questions:How do we improve stream management?What are the likely developments in the biological quality of streams?In which areas is knowledge on stream ecology insuffi cient?What can streams offer children of today and adults of tomorrow?

  1. Influence of canopy biochemical and biophysical variables on reflectance spectra based on canopy radiative transfer model with adding noise

    Science.gov (United States)

    Liu, Pudong; Shi, Runhe; Wang, Hong; Liu, Chaoshun; Sun, Zhibin; Gao, Wei

    2015-09-01

    To provide a reference for canopy parameters inversion, sensitivity analysis of plant canopy parameters based on remote sensing model is a prerequisite for the inversion. Because the local sensitivity analysis do not consider the coupling effect among the parameters, the EFAST (i.e., Extended Fourier Amplitude Sensitivity Test), a global sensitivity analysis, can be used not only for the analysis of each parameter, but also consider the interacted effect among each parameter. Based on PROSAIL model, the paper focused on the parameters' sensitivity by using simulated data and EFAST method. The results showed that the EFAST considered not only the contribution of single parameter, but also the interactive effects among each parameter, and four parameters, leaf area index (LAI), leaf mesophyll structure (N), the controller factor of the average leaf slope (LIDFa) and soil moisture condition (psoil) had great effect on the canopy reflectance in the whole wavelength from 400 to 2500 nm than other canopy parameters, and the EFAST method enlarged the contribution of some parameters that had little effects.

  2. Radon 222 tracing of soil and forest canopy trace gas exchange in an open canopy boreal forest

    Science.gov (United States)

    Ussler, William, III; Chanton, Jeffrey P.; Kelley, Cheryl A.; Martens, Christopher S.

    1994-01-01

    A set of continuous, high-resolution atmospheric radon (Rn-222) concentration time series and radon soil flux measurements were acquired during the summer of 1990 at a micrometeorological tower site 13 km northwest of Schefferville, Quebec, Canada. The tower was located in a dry upland, open-canopy lichen-spruce woodland. For the period July 23 to August 1, 1990, the mean radon soil flux was 41.1 +/- 4.8 Bq m(exp -2)/h. Radon surface flux from the two end-member forest floor cover types (lichen mat and bare soil) were 38.8 +/- 5.1 and 61.8 +/- 15.6 Bq m(exp -2)/h, respectively. Average total forest canopy resistances computed using a simple 'flux box' model for radon exchange between the forest canopy and the overlying atmosphere range from 0.47 +/- 0.24 s cm(exp -1) to 2.65 +/- 1.61 cm(exp -1) for daytime hours (0900-1700 LT) and from 3.44 +/- 0.91 s cm(exp -1) to 10.55 +/- 7.16 s cm(exp -1) for nighttime hours (2000-0600) for the period July 23 to August 6, 1990. Continuous radon profiling of canopy atmospheres is a suitable approach for determining rates of biosphere/atmosphere trace gas exchange for remote field sites where daily equipment maintenance is not possible. where daily equipment maintenance is not possible.

  3. Instantaneous Canopy Photosynthesis: Analytical Expressions for Sun and Shade Leaves Based on Exponential Light Decay Down the Canopy and an Acclimated Non‐rectangular Hyperbola for Leaf Photosynthesis

    OpenAIRE

    THORNLEY, J. H. M.

    2002-01-01

    Analytical expressions for the contributions of sun and shade leaves to instantaneous canopy photosynthesis are derived. The analysis is based on four assumptions. First, that the canopy is closed in the sense that it is horizontally uniform. Secondly, that there is an exponential profile of light down the canopy with the same decay constant for light from different parts of the sky. Thirdly, that the leaf photosynthetic response to incident irradiance can be described by a three‐parameter no...

  4. Forest canopy analysis in the Alpine environment: comparison among assessment methods

    OpenAIRE

    Pastorella F; Paletto A

    2013-01-01

    Forest canopy analysis in the Alpine environment: comparison among assessment methods. Forest canopy is an important ecological feature of forest stands and can be expressed as Leaf Area Index (LAI) or canopy cover percentage. LAI is the ratio between leaf area and ground area (m2 m-2) and it can be measured using an angle of 180°. Instead, the canopy cover is the percentage of forest area occupied by the vertical projection of tree crowns; consequently, LAI expresses the canopy closure rathe...

  5. Flow Structure and Turbulence Characteristics downstream of a Spanwise Suspended Linear Canopy through Laboratory Experiments

    Science.gov (United States)

    Qiao, Jundong; Delavan, Sarah

    2014-11-01

    Laboratory experiments were conducted to explore the mean flow structure and turbulence properties downstream of a spanwise suspended linear canopy in a 2-D open channel flow using the Particle Tracking Velocimetry technique. This canopy simulated the effect of one long-line structure of a mussel farm. Four experimental scenarios with the approach velocities 50, 80, 110, and 140 mm s-1 were under investigation. Three sub-layers formed downstream of the canopy. An internal canopy layer, where the time-averaged velocity decreases linearly with increasing distance downstream, a canopy mixing layer increasing in vertical extent with increasing distance downstream of the canopy, and an external canopy layer with higher velocity under the canopy, which may bring nutrients from the local ambient environment into this layer. The canopy turbulence results in upward momentum transport downstream of the canopy within a distance of 0.60 of the canopy depth and downward momentum transport beyond 1.20 of it. In the scenarios with relatively lower approach velocities 50 and 80 mm s1 , the wake turbulence results in upward momentum transport. The broader goal of this study is to offer guidelines for the design and site selection of more productive mussel farms. The results suggest that distance interval between the parallel long-lines in a mussel farm should be less than 0.6 times the height of a long-line dropper. Also, potential farm locations that are characterized with current velocity from 50 to 80 mm s1 are suggested.

  6. A comparative analysis of simulated and observed photosynthetic CO2 uptake in two coniferous forest canopies

    DEFF Research Database (Denmark)

    Ibrom, A.; Jarvis, P.G.; Clement, R.;

    2006-01-01

    uptake rates were a slightly smaller quantum yield and lower absorptance of the Norway spruce stand because of a more clumped canopy structure. The model did not represent the scatter in the turbulent CO2 flux densities, which was of the same order of magnitude as the non......Gross canopy photosynthesis (Pg) can be simulated with canopy models or retrieved from turbulent carbon dioxide (CO2) flux measurements above the forest canopy. We compare the two estimates and illustrate our findings with two case studies. We used the three-dimensional canopy model MAESTRA...... abies L. (Karst.)) canopy took up 25% less CO2 from the atmosphere than a young Scottish Sitka spruce (Picea sitchensis (Bong.) Carr.) plantation. The average magnitudes of Pg and the differences between the two canopies were satisfactorily represented by the model. The main reasons for the different...

  7. Visualizing Data Streams

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Pak C.; Foote, Harlan P.; Adams, Daniel R.; Cowley, Wendy E.; Leung, Lai R.; Thomas, James J.

    2004-12-01

    We introduce two dynamic visualization techniques using multi-dimensional scaling to analyze transient data streams such as newswires and remote sensing imagery. While the time-sensitive nature of these data streams requires immediate attention in many applications, the unpredictable and unbounded characteristics of this information can potentially overwhelm many scaling algorithms that require a full re-computation for every update. We present an adaptive visualization technique based on data stratification to ingest stream information adaptively when influx rate exceeds processing rate. We also describe an incremental visualization technique based on data fusion to project new information directly onto a visualization subspace spanned by the singular vectors of the previously processed neighboring data. The ultimate goal is to leverage the value of legacy and new information and minimize re-processing of the entire dataset in full resolution. We demonstrate these dynamic visualization results using a newswire corpus and a remote sensing imagery sequence.

  8. Value stream analysis

    OpenAIRE

    Hrnčíř, Roman

    2013-01-01

    The aim of the diploma thesis “Value stream mapping” is to analyse the montage workplace of the company IFE-CR, a.s. with focus on the value stream and the methods of lean production. The thesis aims to identify priorities for applying lean production methods at the montage workplace and to propose concrete measures in order to reduce different types of wasting. The first part of the thesis is dealing with the theory, understanding the main principles and methods of lean production, as well a...

  9. Landscape-scale changes in forest canopy structure across a partially logged tropical peat swamp

    Science.gov (United States)

    Wedeux, B. M. M.; Coomes, D. A.

    2015-07-01

    Forest canopy structure is strongly influenced by environmental factors and disturbance, and in turn influences key ecosystem processes including productivity, evapotranspiration and habitat availability. In tropical forests increasingly modified by human activities, the interplaying effects of environmental factors and disturbance legacies on forest canopy structure across landscapes are practically unexplored. We used high-fidelity airborne laser scanning (ALS) data to measure the canopy of old-growth and selectively logged peat swamp forest across a peat dome in Central Kalimantan, Indonesia, and quantified how canopy structure metrics varied with peat depth and under logging. Several million canopy gaps in different height cross-sections of the canopy were measured in 100 plots of 1 km2 spanning the peat dome, allowing us to describe canopy structure with seven metrics. Old-growth forest became shorter and had simpler vertical canopy profiles on deeper peat, consistently with previous work linking deep peat to stunted tree growth. Gap Size Frequency Distributions (GSFDs) indicated fewer and smaller canopy gaps on the deeper peat (i.e. the scaling exponent of pareto functions increased from 1.76 to 3.76 with peat depth). Areas subjected to concessionary logging until 2000, and informal logging since then, had the same canopy top height as old-growth forest, indicating the persistence of some large trees, but mean canopy height was significantly reduced; the total area of canopy gaps increased and the GSFD scaling exponent was reduced. Logging effects were most evident on the deepest peat, where nutrient depletion and waterlogged conditions restrain tree growth and recovery. A tight relationship exists between canopy structure and the peat deph gradient within the old-growth tropical peat swamp. This relationship breaks down after selective logging, with canopy structural recovery being modulated by environmental conditions.

  10. Relationships between NDVI, canopy structure, and photosynthesis in three California vegetation types

    International Nuclear Information System (INIS)

    In a range of plant species from three Californian vegetation types, we examined the widely used ''normalized difference vegetation index'' (NDVI) and ''simple ratio'' (SR) as indicators of canopy structure, light absorption, and photosynthetic activity. These indices, which are derived from canopy reflectance in the red and near-infrared wavebands, highlighted phenological differences between evergreen and deciduous canopies. They were poor indicators of total canopy biomass due to the varying abundance of non-green standing biomass in these vegetation types. However, in sparse canopies (leaf area index (LAI) apprxeq 0-2), NDVI was a sensitive indicator of canopy structure and chemical content (green biomass, green leaf area index, chlorophyll content, and foliar nitrogen content). At higher canopy green LAI values ( gt 2; typical of dense shrubs and trees), NDVI was relatively insensitive to changes in canopy structure. Compared to SR, NDVI was better correlated with indicators of canopy structure and chemical content, but was equivalent to the logarithm of SR. In agreement with theoretical expectations, both NDVI and SR exhibited near-linear correlations with fractional PAR intercepted by green leaves over a wide range of canopy densities. Maximum daily photosynthetic rates were positively correlated with NDVI and SR in annual grassland and semideciduous shrubs where canopy development and photosynthetic activity were in synchrony. The indices were also correlated with peak springtime canopy photosynthetic rates in evergreens. However, over most of the year, these indices were poor predictors of photosynthetic performance in evergreen species due to seasonal reductions in photosynthetic radiation-use efficiency that occurred without substantial declines in canopy greenness. Our results support the use of these vegetation indices as remote indicators of PAR absorption, and thus potential photosynthetic activity, even in

  11. Effects of canopy interception on energy conversion processes in a Chinese fir plantation ecosystem

    Institute of Scientific and Technical Information of China (English)

    Wenxing KANG; Xiangwen DENG; Zhonghui ZHAO

    2008-01-01

    The functions of canopy interception on energy conversion processes in a Chinese fir plantation ecosystem were studied with the aid of long-term obser-vation data in Huitong. The results showed that the absorbed, penetrated and reflected amounts of solar (reflection rate of 0.091) by the canopy. The conversion of net solar radiation to latent heat in the process of evap-oration from canopy interception amounted to ecosystem net radiation and 30.4% of ecosystem evapora-tion), which was an important part of the budget of the energy system. Canopy interception consumed kinetic energy of raindrops in overcoming resistance of branches and leaves, which collected raindrops, followed with the conversion of potential energy in raindrops to kinetic energy with falling raindrops. In general, the diameter of raindrops from the canopy is larger than that of the rain-drops above the canopy as a result of the collection effort by the canopy. The kinetic energy of raindrops from the canopy, therefore, was higher than that of raindrops in the atmosphere. The drop-size distribution from the canopy was affected by the structure of the canopy layer rather than the amount of precipitation and precipitation intens-ity. The canopy had no important nor efficient effects on decreasing the kinetic energy of raindrops in our case study with a first branch height of 7 m and precipitation amounts over 3 ram. However, the canopy would play a key role in decreasing kinetic energy of raindrops in two cases, that of a small amount of precipitation and one of heavy precipitation intensity, in which the canopy could intercept the largest amount of precipitation in the former condition and the canopy could scatter bigger raindrops to smaller raindrops with striking leaves in the case of heavy precipitation.

  12. Landscape-scale changes in forest canopy structure across a partially logged tropical peat swamp

    Science.gov (United States)

    Wedeux, B. M. M.; Coomes, D. A.

    2015-11-01

    Forest canopy structure is strongly influenced by environmental factors and disturbance, and in turn influences key ecosystem processes including productivity, evapotranspiration and habitat availability. In tropical forests increasingly modified by human activities, the interplay between environmental factors and disturbance legacies on forest canopy structure across landscapes is practically unexplored. We used airborne laser scanning (ALS) data to measure the canopy of old-growth and selectively logged peat swamp forest across a peat dome in Central Kalimantan, Indonesia, and quantified how canopy structure metrics varied with peat depth and under logging. Several million canopy gaps in different height cross-sections of the canopy were measured in 100 plots of 1 km2 spanning the peat dome, allowing us to describe canopy structure with seven metrics. Old-growth forest became shorter and had simpler vertical canopy profiles on deeper peat, consistent with previous work linking deep peat to stunted tree growth. Gap size frequency distributions (GSFDs) indicated fewer and smaller canopy gaps on the deeper peat (i.e. the scaling exponent of Pareto functions increased from 1.76 to 3.76 with peat depth). Areas subjected to concessionary logging until 2000, and illegal logging since then, had the same canopy top height as old-growth forest, indicating the persistence of some large trees, but mean canopy height was significantly reduced. With logging, the total area of canopy gaps increased and the GSFD scaling exponent was reduced. Logging effects were most evident on the deepest peat, where nutrient depletion and waterlogged conditions restrain tree growth and recovery. A tight relationship exists between canopy structure and peat depth gradient within the old-growth tropical peat swamp forest. This relationship breaks down after selective logging, with canopy structural recovery, as observed by ALS, modulated by environmental conditions. These findings improve our

  13. Winter radiation extinction and reflection in a boreal pine canopy: measurements and modelling

    International Nuclear Information System (INIS)

    Predicting the rate of snow melt and intercepted snow sublimation in boreal forests requires an understanding of the effects of snow-covered conifers on the exchange of radiant energy. This study examined the amount of intercepted snow on a jack pine canopy in the boreal forest of central Saskatchewan and the shortwave and net radiation exchange with this canopy, to determine the effect of intercepted snow and canopy structure on shortwave radiation reflection and extinction and net radiation attenuation in a boreal forest. The study focused on clear sky conditions, which are common during winter in the continental boreal forest. Intercepted snow was found to have no influence on the clear-sky albedo of the canopy, the extinction of short wave radiation by the canopy or ratio of net radiation at the canopy top to that at the surface snow cover. Because of the low albedo of the snow-covered canopy, net radiation at the canopy top remains positive and a large potential source of energy for sublimation. The canopy albedo declines somewhat as the extinction efficiency of the underlying canopy increases. The extinction efficiency of short wave radiation in the canopy depends on solar angle because of the approximately horizontal orientation of pine branches. For low solar angles above the horizon, the extinction efficiency is quite low and short wave transmissivity through the canopy is relatively high. As the solar angle increases, extinction increases up to angles of about 50°, and then declines. Extinction of short wave radiation in the canopy strongly influences the attenuation of net radiation by the canopy. Short wave radiation that is extinguished by branches is radiated as long wave, partly downwards to the snow cover. The ratio of net radiation at the canopy top to that at the snow cover surface increases with the extinction of short wave radiation and is negative for low extinction efficiencies. For the pine canopy examined, the daily mean net radiation at

  14. Monitoring leaf photosynthesis with canopy spectral reflectance in rice

    International Nuclear Information System (INIS)

    We determined the quantitative relationships between leaf photosynthetic characteristics (LPC) and canopy spectral reflectance under different water supply and nitrogen application rates in rice plants. The responses of reflectance at red radiation (680 nm) to different water contents and N rates were parallel to those of leaf net photosynthetic rate (PN). The relationships of reflectance at 680 nm and ratio index of R(810,680) (near infrared/red) to PN of different leaf positions and layers indicated that the top two full leaves were the best positions for quantitative monitoring of PN with remote sensing technique, and the index R(810,680) was the best ratio index for evaluating LPC. Testing of the models with independent data sets indicated that R(810,680) could well estimate PN of the top two leaves and canopy leaf photosynthetic potential. Hence R(810,680) can be used to monitor LPC in rice under diverse growing conditions

  15. Strengthening the Ubuntu social canopy after the Afrophobic attacks

    Directory of Open Access Journals (Sweden)

    Zorodzai Dube

    2016-03-01

    Full Text Available In view of the aftermath of the Afrophobic attacks in South Africa, this study regards Paul�s emphasis concerning common humanity and morality as a possible lacuna towards strengthening Ubuntu. Paul taught that both the Jews and the Gentiles have their common ancestor � Adam, and that good morality is a better identity marker than ethnicity. In view of the aftermath of the Afrophobic attacks in South Africa, this study suggests that similar arguments can be used to amend the Ubuntu social canopy.Intradisciplinary and/or interdisciplinary implications: This study is interdisciplinary in nature in that it uses perspectives from social sciences to seek solutions towards a more inclusive communityKeywords: Afrophobia; Xenophobia; Ubuntu; Social Canopy; Christ-like Anthropology

  16. Canopy Measurements with a Small Unmanned Aerial System

    Science.gov (United States)

    Peschel, J.

    2015-12-01

    This work discusses the use of a small unmanned aerial system (UAS) for the remote placement of wireless environmental sensors in tree canopies. Remote presence applications occur when one or more humans use a robot to project themselves into an environment in order to complete an inaccessible or time-critical mission. The more difficult problem of physical object manipulation goes one step further by incorporating physical-based interaction, in additional to visualization. Forested environments present especially unique challenges for small UAS versus similar domains (e.g., disaster response, inspection of critical infrastructure) due to the navigation and interaction required with dense tree canopies. This work describes two field investigations that inform: i) the type of physical object manipulation and visualization necessary for sensor placement (ventral, frontal, dorsal), ii) the necessary display form (hybrid) for piloting and sensor placement, and iii) visual feedback mechanisms useful for handling human-robot team role conflicts.

  17. Spectral-agronomic relationships of corn, soybean and wheat canopies

    Science.gov (United States)

    Bauer, M. E. (Principal Investigator); Daughtry, C. S. T.; Vanderbilt, V. C.

    1981-01-01

    During the past six years several thousand reflectance spectra of corn, soybean, and wheat canopies were acquired and analyzed. The relationships of biophysical variables, including leaf area index, percent soil cover, chlorophyll and water content, to the visible and infrared reflectance of canopies are described. The effects on reflectance of cultural, environmental, and stress factors such as planting data, seeding rate, row spacing, cultivar, soil type and nitrogen fertilization are also examined. The conclusions are that several key agronomic variables including leaf area index, development stage and degree of stress are strongly related to spectral reflectance and that it should be possible to estimate these descriptions of crop condition from satellite acquired multispectral data.

  18. Study of momentum transfers within a vegetation canopy

    Indian Academy of Sciences (India)

    Mahendra Mohan; M K Tiwari

    2004-03-01

    Two models have been developed by applying conditions of continuity between the roughness sub- layer and the top of vegetation canopy having constant foliage distribution. Massman's cosh-type of wind profile and Albini's exponential wind profile have been used to derive expressions for shear stress, displacement height and roughness length in analytical forms. The computed results compared with those of Massman models (1987, 1997) show similarity with the present models.

  19. Computing energy budget within a crop canopy from Penmann's formulae

    Indian Academy of Sciences (India)

    Mahendra Mohan; K K Srivastava

    2001-06-01

    The Lhomme's model (1988a), that extended Penmann's formulae to a multi-layer model, is rede-fined as a function of micrometeorological and physiological profiles of crop canopy. The sources and sinks of sensible and latent heat uxes are assumed to lie on a fictitious plane called zero-displacement plane. Algorithms are given to compute sensible and latent heat ux densities. Per-formance of the algorithms is compared with that of earlier algorithms.

  20. Sensitivity and stability analysis of a rigid canopy flow

    OpenAIRE

    Luminari, Nicola; Airiau, Christophe

    2015-01-01

    The present research project aims at examining the possibility of using walls covered by fexible filaments as a mean of reducing drag; we first study a rigid canopy flow model that involve several initial parameters. A sensitivity study using adjoints allows to pinpoint the parameters which influence the most both the shape of the profile and integral quantities associated to it. The intrinsic stability properties of the flow, which result from the model, are analysed with a linear local stab...

  1. Estimates of forest canopy height and aboveground biomass using ICESat

    OpenAIRE

    Lefsky, Michael A; Harding, David J.; Keller, Michael; Cohen, Warren B.; Carabajal, Claudia C.; Espirito-Santo, Fernando Del Bom; Hunter, Maria O.; de Oliveira, Raimundo

    2005-01-01

    Exchange of carbon between forests and the atmosphere is a vital component of the global carbon cycle. Satellite laser altimetry has a unique capability for estimating forest canopy height, which has a direct and increasingly well understood relationship to aboveground carbon storage. While the Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud and land Elevation Satellite (ICESat) has collected an unparalleled dataset of lidar waveforms over terrestrial targets, processing of IC...

  2. Radiation distribution measurement for forest plant canopies tracing

    Science.gov (United States)

    Wan, Xuefen; Cui, Jian; Yang, Yi; Liu, Hui

    2012-11-01

    Plant canopies structures are important biophysical parameters required in many ecological and climate models. To obtain precise canopies characteristic, the radiation distribution in forest gap should be tracing. In this paper, a radiation transmission measuring method with gyroscope correction for forest gap radiation distribution measurement is present. And a Zigbee wireless network is imbedded for communicating between portable full-trace radiation detector and host computer. Using the solar beam as a probe, the measuring nodes collect radiation distribution in forest gap. Because the constant pace of operator in forest and other outdoor occasion is hard to validate, radiation distribution curves suffer some error. We present a Forest radiation distribution meter with Gyro correction for TRAC measuring. In this meter, A Gyroscope records transect route data and provide speed correction for canopy gaps curve in tracing route. A Microchip PIC16F877 MCU is employed for radiation data collection. The collected data is sent to central station by Zigbee wireless network or CF376 in-line USB flash drives/SD card. Solar radiation spike data and other environment parameters (Temperature and Humidity) are sampled simultaneously. So the gap removal processes suffer less error. A portable node provides full-trace radiation distribution. Host computer can get potential relationship in tracing-line LAI and FPAR and compute them in long-term. A portable full-trace radiation detector and host computer is tested. The experimental results show our design could be a competitive candidate for radiation distribution measurement for forest plant canopies tracing.

  3. Canopy gap colonization in the Atlantic Montane Rain Forest

    OpenAIRE

    Renato A. Ferreira de Lima; Leila Cunha de Moura

    2006-01-01

    In the Atlantic Montane Rain Forest of South-eastern Brazil, a study was carried out to describe and evaluate canopy gap colonization. Gap composition by herb species was assessed through their soil coverage and woody species by measuring and identifying all individuals taller than one meter. Gap structure (gap size, number and diameter of treefalls), topographic position and surrounding vegetation were also measured. Two genera of Marantaceae were markedly frequent and abundant inside gaps. ...

  4. Modeling Biomass and Canopy Fuel Attributes Using LIDAR Technology

    OpenAIRE

    Mitchell, Brent

    2011-01-01

    Within the last decade LIDAR technology has been increasingly utilized as a tool for resource management by the U.S. Forest Service. The agency has been engaged in a wide variety of lidar projects and applications ranging from the development and exploration of basic LIDAR derivatives to pursuing advanced modeling of forest inventory parameters based on lidar canopy metrics. This presentation will provide an overview of how LIDAR technology can be used for modeling forest biomass and c...

  5. The Magellanic Stream: new observations

    International Nuclear Information System (INIS)

    New HI observations of the Magellanic Stream have been made using the Parkes 64 m telescope. These observations highlight in detail its complicated structure and uncover new features of the Stream. The extreme velocity clouds are morphologically linked to the Stream indicating that these HI clouds are very likely truly part of the Stream. Also it is suggested that many of the high velocity clouds seen around the Steam are indeed part of the Magellanic Stream itself, and that the stream consists of many different velocity components in bulk motion. 18 refs., figs

  6. Music Streaming in Denmark

    DEFF Research Database (Denmark)

    Pedersen, Rasmus Rex

    This report analyses how a ’per user’ settlement model differs from the ‘pro rata’ model currently used. The analysis is based on data for all streams by WiMP users in Denmark during August 2013. The analysis has been conducted in collaboration with Christian Schlelein from Koda on the basis of d...

  7. The Rabbit Stream Cipher

    DEFF Research Database (Denmark)

    Boesgaard, Martin; Vesterager, Mette; Zenner, Erik

    2008-01-01

    The stream cipher Rabbit was first presented at FSE 2003, and no attacks against it have been published until now. With a measured encryption/decryption speed of 3.7 clock cycles per byte on a Pentium III processor, Rabbit does also provide very high performance. This paper gives a concise...... description of the Rabbit design and some of the cryptanalytic results available....

  8. Proteins in biomass streams

    NARCIS (Netherlands)

    Mulder, W.J.

    2010-01-01

    The focus of this study is to give an overview of traditional and new biomasses and biomass streams that contain proteins. When information was available, the differences in molecular structure and physical and chemical properties for the different proteins is given. For optimal biomass use, isolati

  9. Clustering Text Data Streams

    Institute of Scientific and Technical Information of China (English)

    Yu-Bao Liu; Jia-Rong Cai; Jian Yin; Ada Wai-Chee Fu

    2008-01-01

    Clustering text data streams is an important issue in data mining community and has a number of applications such as news group filtering, text crawling, document organization and topic detection and tracing etc. However, most methods are similarity-based approaches and only use the TF*IDF scheme to represent the semantics of text data and often lead to poor clustering quality. Recently, researchers argue that semantic smoothing model is more efficient than the existing TF.IDF scheme for improving text clustering quality. However, the existing semantic smoothing model is not suitable for dynamic text data context. In this paper, we extend the semantic smoothing model into text data streams context firstly. Based on the extended model, we then present two online clustering algorithms OCTS and OCTSM for the clustering of massive text data streams. In both algorithms, we also present a new cluster statistics structure named cluster profile which can capture the semantics of text data streams dynamically and at the same time speed up the clustering process. Some efficient implementations for our algorithms are also given. Finally, we present a series of experimental results illustrating the effectiveness of our technique.

  10. Numerical Modelling of Streams

    DEFF Research Database (Denmark)

    Vestergaard, Kristian

    In recent years there has been a sharp increase in the use of numerical water quality models. Numeric water quality modeling can be divided into three steps: Hydrodynamic modeling for the determination of stream flow and water levels. Modelling of transport and dispersion of a conservative...

  11. Streaming-video produktion

    DEFF Research Database (Denmark)

    Grønkjær, Poul

    2004-01-01

     E-learning Lab på Aalborg Universitet har i forbindelse med forskningsprojektet Virtuelle Læringsformer og Læringsmiljøer foretaget en række praktiske eksperimenter med streaming-video produktioner. Hensigten med denne artikel er at formidle disse erfaringer. Artiklen beskriver hele produktionsf...... E-learning Lab på Aalborg Universitet har i forbindelse med forskningsprojektet Virtuelle Læringsformer og Læringsmiljøer foretaget en række praktiske eksperimenter med streaming-video produktioner. Hensigten med denne artikel er at formidle disse erfaringer. Artiklen beskriver hele...... produktionsforløbet: fra ide til færdigt produkt, forskellige typer af præsentationer, dramaturgiske overvejelser samt en konceptskitse. Streaming-video teknologien er nu så udviklet med et så tilfredsstillende audiovisuelt udtryk at vi kan begynde at fokusere på, hvilket indhold der er velegnet til at blive gjort...... tilgængeligt uafhængigt af tid og sted. Afslutningsvis er der en række kildehenvisninger, blandt andet en oversigt over de streaming-video produktioner, som denne artikel bygger på....

  12. A Vegetated Urban Canopy Model for Meteorological and Environmental Modelling

    Science.gov (United States)

    Lee, Sang-Hyun; Park, Soon-Ung

    2008-01-01

    An urban canopy model is developed for use in mesoscale meteorological and environmental modelling. The urban geometry is composed of simple homogeneous buildings characterized by the canyon aspect ratio ( h/ w) as well as the canyon vegetation characterized by the leaf aspect ratio (σ l ) and leaf area density profile. Five energy exchanging surfaces (roof, wall, road, leaf, soil) are considered in the model, and energy conservation relations are applied to each component. In addition, the temperature and specific humidity of canopy air are predicted without the assumption of thermal equilibrium. For radiative transfer within the canyon, multiple reflections for shortwave radiation and one reflection for longwave radiation are considered, while the shadowing and absorption of radiation due to the canyon vegetation are computed by using the transmissivity and the leaf area density profile function. The model is evaluated using field measurements in Vancouver, British Columbia and Marseille, France. Results show that the model quite well simulates the observations of surface temperatures, canopy air temperature and specific humidity, momentum flux, net radiation, and energy partitioning into turbulent fluxes and storage heat flux. Sensitivity tests show that the canyon vegetation has a large influence not only on surface temperatures but also on the partitioning of sensible and latent heat fluxes. In addition, the surface energy balance can be affected by soil moisture content and leaf area index as well as the fraction of vegetation. These results suggest that a proper parameterization of the canyon vegetation is prerequisite for urban modelling.

  13. Canopy leaching of subtropical mixed forests under acid rain

    Institute of Scientific and Technical Information of China (English)

    Renjun XIANG; Liyuan CHAI; Xilin ZHANG; Gong ZHANG; Guifang ZHAO

    2008-01-01

    Leaching of major ions from acid precipitation in a subtropical forest was examined based on an experi-ment in four sample sites in Shaoshan City, Hunan Province, China, from January 2001 to June 2002. Results clearly show that when rain passed through the canopy, pH increased and the evidence of ion uptake was presented for SO42- , NO3-, Mg2+ and NH4+ ions, espe-cially of NH4+ and NO3-. The percentages of dissolved SO42-, Ca2+ and Mg2+ show a decreasing trend with increasing rainfall. Percentages of leaching Ca2+, K+ and Cl- ions show an increasing trend as a function of increased pH values. The forest canopy in Shaoshan City has a strong effect on the uptake of SO42- and NO3- ions under acid rain conditions. The decreasing order of ions leaching in the forest canopy is as follows: K+> Ca2+ > Cl- > Mg2+ > SO42- > NO3- > NH4+ > Na+.

  14. Ripe Fuji Apple Detection Model Analysis in Natural Tree Canopy

    Directory of Open Access Journals (Sweden)

    Dongjian He

    2012-11-01

    Full Text Available In this work we develop a novel approach for the automatic recognition of red Fuji apples within a tree canopy using three distinguishable color models in order to achieve automated harvesting. How to select the recognition model is important for the certain intelligent harvester employed to perform in real orchards. The L*a*b color model, HSI (Hue, Saturation and Intensity color model and LCD color difference model, which are insensitive to light conditions, are analyzed and applied to detect the fruit under the different lighting conditions because the fruit has the highest red color among the objects in the image. The fuzzy 2-partition entropy, which could discriminate the object and the background in grayscale images and is obtained from the histogram, is applied to the segment the Fuji apples under complex backgrounds. A series of mathematical morphological operations are used to eliminate segmental fragments after segmentation. Finally, the proposed approach is validated on apple images taken in natural tree canopies. A contribution reported in this work, is the voting scheme added to the natural tree canopy which recognizes apples under different light influences.

  15. Relationships Between the Distribution of Relative Canopy Light Intensity and the Peach Yield and Quality

    Institute of Scientific and Technical Information of China (English)

    HE Feng-li; WANG Fei; WEI Qin-ping; WANG Xiao-wei; ZHANG Qiang

    2008-01-01

    The aim of the present experiment was to study the relationship between the distribution of relative light intensity in canopy and yield and quality of Wanmi peach.The optimum relative canopy light intensity was judged to be 36.3% for high quality peaches,when canopy volumes of Wanmi peach trees with a relative light intensity<30%accounted for 7.7 and 47.9%of the total canopy volume in June and September,respectively.The canopy volume with a relative light intensity>80%was 27.7 and 3.1%of the total canopy volume in June and September.respectively.Peach canopies were divided into 0.5m×0.5m×0.5m cubes.with the relative light intensity being measured at different positions of the canopy during the growing season.Yield and fruit quality were also measured at these positions at harvest.The results showed that the relative light intensity decreased gradually from outside to inside and from top to bottom of the tree canopy.Fruit were mainly distributed in the upper and middle portions of the canopy,1.5-3.0m above ground. Regression results showed that single fruit weight and soluble solid content were positively related to relative light intensity.

  16. Canopy carbon budget of Siebold's beech (Fagus crenata) sapling under free air ozone exposure

    International Nuclear Information System (INIS)

    To determine the effects of ozone (O3) on the canopy carbon budget, we investigated photosynthesis and respiration of leaves of Siebold's beech saplings under free air O3 exposure (60 nmol mol−1, during daytime) in relation to the within-canopy light gradient; we then calculated the canopy-level photosynthetic carbon gain (PCG) and respiratory carbon loss (RCL) using a canopy photosynthesis model. Susceptibilities of photosynthesis and respiration to O3 were greater in leaves of upper canopy than in the lower canopy. The canopy net carbon gain (NCG) was reduced by O3 by 12.4% during one growing season. The increased RCL was the main factor for the O3-induced reduction in NCG in late summer, while contributions of the reduced PCG and the increased RCL to the NCG were almost the same in autumn. These results indicate contributions of changes in PCG and RCL under O3 to NCG were different between seasons. -- Highlights: • Upper canopy leaf of Siebold's beech is sensitive to ozone. • The net carbon gain of canopy was reduced by ozone. • Enhanced respiration by ozone highly contributes to net carbon gain in late summer. -- Contributions of ozone-induced reduction in photosynthesis and increase in respiration to canopy net carbon gain of beech sapling were different between seasons

  17. Relationships between MODIS black-sky shortwave albedo and airborne lidar based forest canopy structure

    Science.gov (United States)

    Korhonen, Lauri; Rautiainen, Miina; Arumäe, Tauri; Lang, Mait; Flewelling, James; Tokola, Timo; Stenberg, Pauline

    2016-04-01

    Albedo is one of the essential climate variables affecting the Earth's radiation balance. It is however not well understood how changes in forest canopy structure influence the albedo. Canopy structure can be mapped consistently for fairly large areas using airborne lidar sensors. Our objective was to study the relationships between MODIS shortwave black sky albedo product and lidar-based estimates of canopy structure in different biomes ranging from arctic to tropical. Our study is based on six structurally different forest sites located in Finland, Estonia, USA and Laos. Lidar-based mean height of the canopy, canopy cover and their transformations were used as predictor variables to describe the canopy structure. Tree species composition was also included for the three sites where it was available. We noticed that the variables predicting albedo best were different in open and closed canopy forests. In closed canopy forests, the species information was more important than canopy structure variables (R2=0.31-0.32) and using only structural variables resulted in poor R2 (0.13-0.15). If the 500 m MODIS pixel contained a mixture of forests and other land cover types, the albedo was strongly related to the forest area percent. In open canopy forests, structural variables such as canopy cover or height explained albedo well, but species information still improved the models (R2=0.27-0.52). We obtained the highest R2=0.52 using only structural variables in Laos on a partially degraded tropical forest with large variation in canopy cover. The different canopy structure variables were often correlated and the one that provided the best model changed from site to site.

  18. The Atmospheric Chemistry and Canopy Exchange Simulation System (ACCESS): model description and application to a temperate deciduous forest canopy

    OpenAIRE

    R. D. Saylor

    2012-01-01

    Forest canopies are primary emission sources of biogenic volatile organic compounds (BVOCs) and have the potential to significantly influence the formation and distribution of secondary organic aerosol (SOA) mass. Biogenically-derived SOA formed as a result of emissions from the widespread forests across the globe may affect air quality in populated areas, degrade atmospheric visibility, and affect climate through direct and indirect forcings. In an effort to better understand the formati...

  19. Canopy spectral invariants: A new concept in remote sensing of vegetation

    International Nuclear Information System (INIS)

    The concept of canopy spectral invariants expresses the observation that simple algebraic combinations of leaf and canopy spectral reflectances become wavelength independent and determine two canopy structure specific variables - the re-collision and escape probabilities. These variables specify an accurate relationship between the spectral response of a vegetation canopy to incident solar radiation at the leaf and the canopy scale. They are sensitive to important structural features of the canopy such as forest cover, tree density, leaf area index, crown geometry, forest type and stand age. We will discuss the theoretical basis of the concept and show how the spectral invariants are related to the maximum eigenvalue of the radiative transfer equation. (authors)

  20. Abundance of green tree frogs and insects in artificial canopy gaps in a bottomland hardwood forest.

    Energy Technology Data Exchange (ETDEWEB)

    Horn, Scott; Hanula, James L.; Ulyshen, Michael D.; Kilgo, John C.

    2005-01-01

    Horn, Scott, James L. Hanula, Michael D. Ulyshen, and John C. Kilgo. 2005. Abundance of green tree frogs and insects in artificial canopy gaps in a bottomland hardwood forest. Am. Midl. Nat. 153:321-326. Abstract: We found more green tree frogs (Hyla cinerea) in canopy gaps than in closed canopy forest. Of the 331 green tree frogs observed, 88% were in canopy gaps. Likewise, higher numbers and biomasses of insects were captured in the open gap habitat. Flies were the most commonly collected insect group accounting for 54% of the total capture. These data suggest that one reason green tree frogs were more abundant in canopy gaps was the increased availability of prey and that small canopy gaps provide early successional habitats that are beneficial to green tree frog populations.

  1. Streaming gravity mode instability

    International Nuclear Information System (INIS)

    In this paper, we study the stability of a current sheet with a sheared flow in a gravitational field which is perpendicular to the magnetic field and plasma flow. This mixing mode caused by a combined role of the sheared flow and gravity is named the streaming gravity mode instability. The conditions of this mode instability are discussed for an ideal four-layer model in the incompressible limit. (author). 5 refs

  2. The LHCb Turbo stream

    Science.gov (United States)

    Puig, A.

    2016-07-01

    The LHCb experiment will record an unprecedented dataset of beauty and charm hadron decays during Run II of the LHC, set to take place between 2015 and 2018. A key computing challenge is to store and process this data, which limits the maximum output rate of the LHCb trigger. So far, LHCb has written out a few kHz of events containing the full raw sub-detector data, which are passed through a full offline event reconstruction before being considered for physics analysis. Charm physics in particular is limited by trigger output rate constraints. A new streaming strategy includes the possibility to perform the physics analysis with candidates reconstructed in the trigger, thus bypassing the offline reconstruction. In the Turbo stream the trigger will write out a compact summary of physics objects containing all information necessary for analyses. This will allow an increased output rate and thus higher average efficiencies and smaller selection biases. This idea will be commissioned and developed during 2015 with a selection of physics analyses. It is anticipated that the turbo stream will be adopted by an increasing number of analyses during the remainder of LHC Run II (2015-2018) and ultimately in Run III (starting in 2020) with the upgraded LHCb detector.

  3. The third RAdiation transfer Model Intercomparison (RAMI) exercise: Documenting progress in canopy reflectance models

    OpenAIRE

    Widlowski, J. L.; Taberner, M.; Pinty, B.; Bruniquel-Pinel, V.; Disney, M. I.; Fernandes, R.; Gastellu-Etchegorry, J. P.; Gobron, N; Kuusk, A.; T. Lavergne; LeBlanc, S.; Lewis, P. E.; Martin, E.; Mõttus, M.; North, P.R.J.

    2007-01-01

    [1] The Radiation Transfer Model Intercomparison ( RAMI) initiative benchmarks canopy reflectance models under well-controlled experimental conditions. Launched for the first time in 1999, this triennial community exercise encourages the systematic evaluation of canopy reflectance models on a voluntary basis. The first phase of RAMI focused on documenting the spread among radiative transfer (RT) simulations over a small set of primarily 1-D canopies. The second phase expanded the scope to inc...

  4. Third Radiation Transfer Model Intercomparison (RAMI) exercise: Documenting progress in canopy reflectance models

    OpenAIRE

    WIDLOWSKI Jean-Luc; Taberner, Malcolm; Pinty, Bernard; Bruniquel-Pinel, Véronique; Disney, Mathias; Fernandes, Richard; Gastellu-Etchegorry, Jean-Philippe; Gobron, Nadine; Kuusk, Andres; Lavergne, Thomas; Leblanc, Sylvain; Lewis, Philip; Martin, Eric; Mottus, Matti; Peter R. J. North

    2007-01-01

    The Radiation Transfer Model Intercomparison (RAMI) initiative benchmarks canopy reflectance models under well-controlled experimental conditions. Launched for the first time in 1999, this triennial community exercise encourages the systematic evaluation of canopy reflectance models on a voluntary basis. The first phase of RAMI focused on documenting the spread among radiative transfer (RT) simulations over a small set of primarily 1-D canopies. The second phase expanded the scope to include ...

  5. TREE CANOPY COVER MAPPING USING LiDAR IN URBAN BARANGAYS OF CEBU CITY, CENTRAL PHILIPPINES

    OpenAIRE

    Ejares, J. A.; Violanda, R. R.; Diola, A. G.; Dy, D. T.; Otadoy, J. B.; R. E. S. Otadoy

    2016-01-01

    This paper investigates tree canopy cover mapping of urban barangays (smallest administrative division in the Philippines) in Cebu City using LiDAR (Light Detection and Ranging). Object-Based Image Analysis (OBIA) was used to extract tree canopy cover. Multi-resolution segmentation and a series of assign-class algorithm in eCognition software was also performed to extract different land features. Contextual features of tree canopies such as height, area, roundness, slope, length-width and ell...

  6. Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications

    OpenAIRE

    J. M. Chen; J. Liu; Cihlar, J; Goulden, M. L.

    1999-01-01

    Because Farquhar’s photosynthesis model is only directly applicable to individual leaves instantaneously, considerable skill is needed to use this model for regional plant growth and carbon budget estimations. In many published models, Farquhar’s equations were applied directly to plant canopies by assuming a plant canopy to function like a big-leaf. This big-leaf approximation is found to be acceptable for estimating seasonal trends of canopy photosynthesis but inadequate for simulating its ...

  7. Efficiency of light energy used by leaves situated in different levels of a sweet pepper canopy

    OpenAIRE

    Dueck, T. A.; Grashoff, C.; Broekhuijsen, A.G.M.; Marcelis, L. F. M.

    2006-01-01

    In order to make the most use of the available light in glasshouse crops, measurements of light penetration, leaf photosynthesis, respiration and transpiration were performed at five levels in a sweet paper canopy at two commercial farms, from July to November 2004. Light response curves of leaf photosynthesis showed that photosynthesis, transpiration respiration decreased from top to bottom in the canopy. These reductions in gas exchange lower in the canopy likely result from adaptation to l...

  8. LEAF MICROMORPHOMETRY OF Schinus molle L. (ANARCADIACEAE) IN DIFFERENT CANOPY HEIGHTS.

    OpenAIRE

    Marinês Ferreira Pires; Márcio Paulo Pereira; Evaristo Mauro de Castro; Sandro Barbosa; Fabricio José Pereira

    2015-01-01

    Leaf characterization of trees is essential for its identification and use, as well as to understand its relationships with environment. The objective of this work is to study the leaflet anatomy and leaf biometrical characteristics at different canopy heights of Schinus molle plants as a function of its environmental and physiological modifications. Leaves were collected at three different canopy heights: base, middle and upper canopy in a plantation of S. molle. Leaves were u...

  9. Canopy and leaf gas exchange of Haloxylon ammodendron under different soil moisture regimes

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In order to reveal the drought resistance and adaptation of the C4 desert plant Haloxylon ammodendron under artificially controlled soil moisture regimes,representative plants were selected to measure canopy photosynthesis using canopy photosynthetic measurement system.The results showed that appropriate soil moisture significantly enhances the canopy and leaf photosynthetic capacity,and extremely high soil moisture is not conducive to the photosynthesis of H.ammodendron.

  10. Re-Meandering of Lowland Streams

    DEFF Research Database (Denmark)

    Pedersen, Morten Lauge; Kristensen, Klaus Kevin; Friberg, Nikolai

    2014-01-01

    We evaluated the restoration of physical habitats and its influence on macroinvertebrate community structure in 18 Danish lowland streams comprising six restored streams, six streams with little physical alteration and six channelized streams. We hypothesized that physical habitats and macroinver...

  11. [Temporal-spatial distribution characteristics of microclimate in tropical secondary forest canopy gap in Xishuangbanna].

    Science.gov (United States)

    Zhang, Yiping; Dou, Junxia; Ma, Youxin; Liu, Yuhong; Guo, Ping

    2003-12-01

    Based on the data obtained from vertical gradient measurements of microclimatic elements of canopy gap in tropical secondary forest of Xishuangbanna in fog-cool and dry-hot season, the daytime characteristics of temporal-spatial distribution and variation of trunk surface temperature, air temperature, water vapor pressure and relative humidity in canopy gap were discussed. The data showed that gap edge had not only a remarkable thermal effect, but also a significant water vapor effect. These effects resulted in environmental heterogeneity in canopy gap. The results provided a basis for further studying heat and water vapor transport, microclimatic formation, biodiversity, and forest succession in canopy gap. PMID:15031901

  12. Retrieval of surface parameters from microwave radiometry over open canopies at high frequencies

    International Nuclear Information System (INIS)

    Methods for interpreting the microwave high-frequency emission of open canopies are proposed in this article. Three frequencies are considered: 23.8, 36.5, and 90 GHz. The microwave data were collected simultaneously with the canopy infrared temperature, and ground measurements of moisture, temperature, and bulk density of the soil together with water content and volume fraction of the vegetation. Soil emission is modeled using dielectric permittivity and roughness parameters previously determined over bare soil surfaces. Two kinds of vegetation canopies are considered: a sparse-growing sorghum and a wheat canopy composed of dense, large patches. The microwave mixed soil-vegetation emission is analyzed using three modeling approaches. At 23.8 and 36.5 GHz, a random continuous approach can be applied. The sparse canopy emission is efficiently described by considering the vegetation layer as homogeneous. Conversely, a mixing equation must be used for the patchy canopy. At 90 GHz, another technique is applied. It consists of including vegetation in soil roughness parameters. The problem with retrieving the canopy temperature and the near-surface soil moisture at high frequencies is addressed. For the sparse canopy, soil moisture retrieval is possible. The canopy temperature is retrieved with poor accuracy, however. Over the patchy surface, geophysical parameter retrieval with high frequencies alone seems much more difficult. (author)

  13. A revised terrain correction method for forest canopy height estimation using ICESat/GLAS data

    Science.gov (United States)

    Nie, Sheng; Wang, Cheng; Zeng, Hongcheng; Xi, Xiaohuan; Xia, Shaobo

    2015-10-01

    Although spaceborne Geoscience Laser Altimeter System (GLAS) can measure forest canopy height directly, the measurement accuracy is often affected by footprint size, shape and orientation, and terrain slope. Previous terrain correction methods only took into account the effect of terrain slope and footprint size when estimating forest canopy height. In this study, an improved terrain correction method was proposed to remove the effect of all aforementioned factors when estimating canopy height over sloped terrains. The revised method was found significantly better than the traditional ones according to the canopy height tested using small footprint LiDAR data in China. It reduced the RMSE of the canopy height estimates by up to 1.2 m. The effect of slope on canopy height estimation is almost eliminated by the proposed method since the slope had little correlation with the canopy heights estimated by revised method. When the footprint eccentricity is small, the canopy height error due to the footprint shape and orientation is small. However, when the footprint eccentricity is large enough, the height estimation error due to footprint shape and orientation is large. Therefore, it is necessary to take into account the influence of footprint shape and orientation on forest canopy estimation.

  14. A canopy-type similarity model for wind farm optimization

    Science.gov (United States)

    Markfort, Corey D.; Zhang, Wei; Porté-Agel, Fernando

    2013-04-01

    The atmospheric boundary layer (ABL) flow through and over wind farms has been found to be similar to canopy-type flows, with characteristic flow development and shear penetration length scales (Markfort et al., 2012). Wind farms capture momentum from the ABL both at the leading edge and from above. We examine this further with an analytical canopy-type model. Within the flow development region, momentum is advected into the wind farm and wake turbulence draws excess momentum in from between turbines. This spatial heterogeneity of momentum within the wind farm is characterized by large dispersive momentum fluxes. Once the flow within the farm is developed, the area-averaged velocity profile exhibits a characteristic inflection point near the top of the wind farm, similar to that of canopy-type flows. The inflected velocity profile is associated with the presence of a dominant characteristic turbulence scale, which may be responsible for a significant portion of the vertical momentum flux. Prediction of this scale is useful for determining the amount of available power for harvesting. The new model is tested with results from wind tunnel experiments, which were conducted to characterize the turbulent flow in and above model wind farms in aligned and staggered configurations. The model is useful for representing wind farms in regional scale models, for the optimization of wind farms considering wind turbine spacing and layout configuration, and for assessing the impacts of upwind wind farms on nearby wind resources. Markfort CD, W Zhang and F Porté-Agel. 2012. Turbulent flow and scalar transport through and over aligned and staggered wind farms. Journal of Turbulence. 13(1) N33: 1-36. doi:10.1080/14685248.2012.709635.

  15. Canopy assemblages of ants in a New Guinea rain forest

    Czech Academy of Sciences Publication Activity Database

    Janda, Milan; Konečná, M.

    2011-01-01

    Roč. 27, č. 1 (2011), s. 83-91. ISSN 0266-4674 R&D Projects: GA AV ČR KJB612230701; GA MŠk LC06073; GA MŠk ME09082; GA ČR GD206/08/H044; GA ČR GA206/09/0115; GA ČR GAP505/10/0673 Institutional research plan: CEZ:AV0Z50070508 Keywords : bait traps * canopy * dominance Subject RIV: EH - Ecology, Behaviour Impact factor: 1.401, year: 2011

  16. Validation of Canopy Height Profile methodology for small-footprint full-waveform airborne LiDAR data in a discontinuous canopy environment

    OpenAIRE

    Fieber, Karolina D.; Davenport, Ian J.; Tanase, Mihai A.; Ferryman, James M.; Gurney, Robert J.; Victor M. Becerra; Walker, Jeffrey P.; Hackerf, Jorg M.

    2015-01-01

    A Canopy Height Profile (CHP) procedure presented in Harding et al. (2001) for large footprint LiDAR data was tested in a closed canopy environment as a way of extracting vertical foliage profiles from LiDAR raw-waveform. In this study, an adaptation of this method to small-footprint data has been shown, tested and validated in an Australian sparse canopy forest at plot- and site-level. Further, the methodology itself has been enhanced by implementing a dataset-adjusted reflectance ratio calc...

  17. Modeling radiative transfer in tropical rainforest canopies: sensitivity of simulated albedo to canopy architectural and optical parameters

    Directory of Open Access Journals (Sweden)

    Sílvia N. M. Yanagi

    2011-12-01

    Full Text Available This study evaluates the sensitivity of the surface albedo simulated by the Integrated Biosphere Simulator (IBIS to a set of Amazonian tropical rainforest canopy architectural and optical parameters. The parameters tested in this study are the orientation and reflectance of the leaves of upper and lower canopies in the visible (VIS and near-infrared (NIR spectral bands. The results are evaluated against albedo measurements taken above the K34 site at the INPA (Instituto Nacional de Pesquisas da Amazônia Cuieiras Biological Reserve. The sensitivity analysis indicates a strong response to the upper canopy leaves orientation (x up and to the reflectivity in the near-infrared spectral band (rNIR,up, a smaller sensitivity to the reflectivity in the visible spectral band (rVIS,up and no sensitivity at all to the lower canopy parameters, which is consistent with the canopy structure. The combination of parameters that minimized the Root Mean Square Error and mean relative error are Xup = 0.86, rVIS,up = 0.062 and rNIR,up = 0.275. The parameterizations performed resulted in successful simulations of tropical rainforest albedo by IBIS, indicating its potential to simulate the canopy radiative transfer for narrow spectral bands and permitting close comparison with remote sensing products.Este estudo avalia a sensibilidade do albedo da superfície pelo Simulador Integrado da Biosfera (IBIS a um conjunto de parâmetros que representam algumas propriedades arquitetônicas e óticas do dossel da floresta tropical Amazônica. Os parâmetros testados neste estudo são a orientação e refletância das folhas do dossel superior e inferior nas bandas espectrais do visível (VIS e infravermelho próximo (NIR. Os resultados são avaliados contra observações feitas no sítio K34 pertencente ao Instituto Nacional de Pesquisas da Amazônia (INPA na Reserva Biológica de Cuieiras. A análise de sensibilidade indica uma forte resposta aos parâmetros de orienta

  18. From precipitation to stream

    OpenAIRE

    Peralta-Tapia, Andres

    2015-01-01

    Understanding the journey water makes from precipitation entering a catchment, traveling through soils, and the time it takes before it exits as stream water are questions of great relevance for both scientists and environmental managers. Natural stable isotopes such as δ¹⁸O and δ²H have been extensively used over the last decades to trace water through diverse catchments across the world. In this thesis I analyzed over 2500 isotope samples to create long-term time series of precipitation and...

  19. HTTP Live Streaming

    OpenAIRE

    Honkanen, Kalle

    2011-01-01

    Tässä työssä käsiteltävä HTTP Live Streaming -protokolla on nopeasti yleistyvä vakiintuneisiin Internet-standardeihin perustuva suoratoistoprotokolla, jonka avulla voidaan rakentaa esimerkiksi korkealaatuinen mobiililaajakaistaverkon kautta toimiva radio- tai televisiopalvelu, jonka sisältöä voidaan muokata käyttäjäkohtaisesti. Protokollan määrittävä standardi ei ole vielä aivan täysin valmis, mutta se on jo laajalti käytössä Applen päätelaitteille tuotetuissa palveluissa, heidän asettami...

  20. [Effects of free air CO2 enrichment on rice canopy energy balance].

    Science.gov (United States)

    Luo, Weihong; Yoshimoto, Mayumi; Dai, Jianfeng; Zhu, Jianguo; Han, Yong; Liu, Gang

    2003-02-01

    The change of crop canopy energy balance will affect crop growth and development and its water use efficiency. In this study, the FACE system (setup at at Anzhen, Wuxi, Jiangsu Province in 2001) was used to investigate the effects of FACE on rice canopy energy balance. The rice canopy microclimate observations were carried out from August 26 to October 13, 2001 when the rice crops were at the heading to maturing stage. The results showed that the maximum difference of rice canopy sensible and latent heat fluxes between ambient and FACE occurred at the same time of minimum air humidity, i.e., at about 14:00. From flowering to maturing stage, the maximum difference of rice canopy sensible and latent heat flux between FACE and ambient varied between 12-55 J.m-2.s-1 and -15(-)-65 J.m-2.s-1, respectively. The daytime total canopy sensible and latent heat fluxes of FACE were higher and lower than those of ambient, respectively, throughout flowering to maturing stage. The differences of daytime total canopy sensible and latent heat fluxes between ambient and FACE increased with the increase of net radiation above canopy during the same development stage, but decreased with the progress of the development stage. From flowering to maturing stage, the average difference of daytime total canopy latent heat flux between ambient and FACE was about 6.7%. FACE increased and decreased the ratio of daytime total canopy sensible and latent heat flux to daytime total net radiation above canopy, respectively, the ratio differences between FACE and ambient were 5.5%. PMID:12827883

  1. Validating spatial structure in canopy water content using geostatistics

    Science.gov (United States)

    Sanderson, E. W.; Zhang, M. H.; Ustin, S. L.; Rejmankova, E.; Haxo, R. S.

    1995-01-01

    Heterogeneity in ecological phenomena are scale dependent and affect the hierarchical structure of image data. AVIRIS pixels average reflectance produced by complex absorption and scattering interactions between biogeochemical composition, canopy architecture, view and illumination angles, species distributions, and plant cover as well as other factors. These scales affect validation of pixel reflectance, typically performed by relating pixel spectra to ground measurements acquired at scales of 1m(exp 2) or less (e.g., field spectra, foilage and soil samples, etc.). As image analysis becomes more sophisticated, such as those for detection of canopy chemistry, better validation becomes a critical problem. This paper presents a methodology for bridging between point measurements and pixels using geostatistics. Geostatistics have been extensively used in geological or hydrogeolocial studies but have received little application in ecological studies. The key criteria for kriging estimation is that the phenomena varies in space and that an underlying controlling process produces spatial correlation between the measured data points. Ecological variation meets this requirement because communities vary along environmental gradients like soil moisture, nutrient availability, or topography.

  2. Mapping Amazonian Canopy Foliar Traits with Imaging Spectroscopy

    Science.gov (United States)

    Asner, G. P.; Martin, R.; Anderson, C. B.; Knapp, D. E.

    2014-12-01

    Spatial and temporal information on plant functional traits is lacking in ecology, which limits our understanding of how plant communities and ecosystems are changing. This problem is acute in remote tropical regions such as in Andean and Amazonian forests, where information on plant functional traits is difficult to ascertain. We used Carnegie Airborne Observatory visible-to-shortwave infrared (VSWIR) imaging spectroscopy with light detection and ranging (LiDAR) to assess the chemical composition of tropical forests along a 3000 m elevation gradient from lowland Amazonia to the Andean treeline. We calibrated and validated the retrieval of 15 canopy foliar chemicals and leaf mass per area (LMA) in 81 one-hectare field plots using a new VSWIR-LiDAR fusion approach. Remotely sensed estimates of elevational changes in forest foliar pigments, nitrogen, phosphorus, water, soluble and total carbon, cellulose and LMA were similar to those derived via laborious field survey and laboratory analysis. This new airborne approach addresses the inherent limitations and sampling biases associated with field-based studies of forest functional traits, particularly in structurally and floristically complex tropical canopies.

  3. Spatial variation in atmospheric nitrogen deposition on low canopy vegetation

    International Nuclear Information System (INIS)

    Current knowledge about the spatial variation of atmospheric nitrogen deposition on a local scale is limited, especially for vegetation with a low canopy. We measured nitrogen deposition on artificial vegetation at variable distances of local nitrogen emitting sources in three nature reserves in the Netherlands, differing in the intensity of agricultural practices in the surroundings. In the nature reserve located in the most intensive agricultural region nitrogen deposition decreased with increasing distance to the local farms, until at a distance of 1500 m from the local nitrogen emitting sources the background level of 15 kg N ha-1 yr-1 was reached. No such trend was observed in the other two reserves. Interception was considerably lower than in woodlands and hence affected areas were larger. The results are discussed in relation to the prospects for the conservation or restoration of endangered vegetation types of nutrient-poor soil conditions. - Areas with low canopy vegetation are affected over much larger distances by nitrogen deposition than woodlands

  4. A coupled energy transport and hydrological model for urban canopies

    Science.gov (United States)

    Wang, Z.; Bou-Zeid, E.; Smith, J. A.

    2011-12-01

    Urban land-atmosphere interaction has been attracting more research efforts in order to understand the complex physics of flow and mass and heat transport in urban surfaces and the lower urban atmosphere. In this work, we developed and implemented a new physically-based single-layer urban canopy model, coupling the surface exchange of energy and the subsurface transport of water/soil moisture. The new model incorporates sub-facet heterogeneity for each urban surface (roof, wall or ground). This better simulates the energy transport in urban canopy layers, especially over low-intensity built (suburban type) terrains that include a significant fraction of vegetated surfaces. We implemented detailed urban hydrological models for both natural terrains (bare soil and vegetation) and porous engineered materials with water-holding capacity (concrete, gravel, etc). The skill of the new scheme was tested against experimental data collected through a wireless sensor network deployed over the campus of Princeton University. The model performance was found to be robust and insensitive to changes in weather conditions or seasonal variability. Predictions of the volumetric soil water content were also in good agreement with field measurements, highlighting the model capability of capturing subsurface water transport for urban lawns. The new model was also applied to a case study assessing different strategies, i.e. white versus green roofs, in the mitigation of urban heat island effect.

  5. Bidirectional reflectance modeling of non-homogeneous plant canopies

    Science.gov (United States)

    Norman, John M.

    1986-01-01

    The objective of this research is to develop a 3-dimensional radiative transfer model for predicting the bidirectional reflectance distribution function (BRDF) for heterogeneous vegetation canopies. Leaf bidirectional reflectance and transmittance distribution functions were measured for corn and soybean leaves. The measurements clearly show that leaves are complex scatterers and considerable specular reflectance is possible. Because of the character of leaf reflectance, true leaf reflectance is larger than the nadir reflectances that are normally used to represent leaves. A 3-dimensional reflectance model, named BIGAR (Bidirectional General Array Model), was developed and compared with measurements from corn and soybean. The model is based on the concept that heterogeneous canopies can be described by a combination of many subcanopies, which contain all the foliage, and these subcanopy envelopes can be characterized by ellipsoids of various sizes and shapes. The model/measurement comparison results indicate that this relatively simple model captures the essential character of row crop BRDF's. Finally, two soil BDRF models were developed: one represents soil particles as rectangular blocks and the other represents soil particles as spheres. The sphere model was found to be superior.

  6. Infrasonic wind noise under a deciduous tree canopy.

    Science.gov (United States)

    Webster, Jeremy; Raspet, Richard

    2015-05-01

    In a recent paper, the infrasonic wind noise measured at the floor of a pine forest was predicted from the measured wind velocity spectrum and profile within and above the trees [Raspet and Webster, J. Acoust. Soc. Am. 137, 651-659 (2015)]. This research studies the measured and predicted wind noise under a deciduous forest with and without leaves. A calculation of the turbulence-shear interaction pressures above the canopy predicts the low frequency peak in the wind noise spectrum. The calculated turbulence-turbulence interaction pressure due to the turbulence field near the ground predicts the measured wind noise spectrum in the higher frequency region. The low frequency peak displays little dependence on whether the trees have leaves or not. The high frequency contribution with leaves is approximately an order of magnitude smaller than the contribution without leaves. Wind noise levels with leaves are very similar to the wind noise levels in the pine forest. The calculated turbulence-shear contribution from the wind within the canopy is shown to be negligible in comparison to the turbulence-turbulence contribution in both cases. In addition, the effect of taller forests and smaller roughness lengths than those of the test forest on the turbulence-shear interaction is simulated based on measured meteorological parameters. PMID:25994698

  7. Realistic Representation of Trees in an Urban Canopy Model

    Science.gov (United States)

    Ryu, Young-Hee; Bou-Zeid, Elie; Wang, Zhi-Hua; Smith, James A.

    2016-05-01

    A single-layer urban canopy model that captures sub-facet heterogeneity and various hydrological processes is further developed to explicitly incorporate trees within the urban canyon. The physical processes associated with trees are shortwave/longwave radiation exchange, including mutual interception and shading by trees and buildings and multiple reflections, sensible heat and latent heat (through transpiration) exchange, and root water uptake. A computationally-efficient geometric approach is applied to the radiation exchanges, requiring a priori knowledge of view factors. These view factors are first obtained from independent Monte Carlo ray-tracing simulations, and subsequently simple relations, which are functions of canyon aspect ratio and tree-crown ratio, are proposed to estimate them. The developed model is evaluated against field observations at two urban sites and one suburban site, showing improved performance for latent heat flux compared to the previous version that only includes ground vegetation. The trees in the urban canopy act to considerably decrease sensible heat flux and increase latent heat flux, and these effects are found to be more significant in the more dense urban site. Sensitivity tests are then performed to examine the effects of tree geometry relative to canyon geometry. The results indicate that the tree-crown size relative to canyon width is the most influential parameter to decrease sensible heat flux and increase latent heat flux, resulting in cooling of the urban area.

  8. Overview of an Urban Canopy Parameterization in COAMPS

    Energy Technology Data Exchange (ETDEWEB)

    Leach, M J; Chin, H S

    2006-02-09

    The Coupled Atmosphere/Ocean Mesoscale Prediction System (COAMPS) model (Hodur, 1997) was developed at the Naval Research Laboratory. COAMPS has been used at resolutions as small as 2 km to study the role of complex topography in generating mesoscale circulation (Doyle, 1997). The model has been adapted for use in the Atmospheric Science Division at LLNL for both research and operational use. The model is a fully, non-hydrostatic model with several options for turbulence parameterization, cloud processes and radiative transfer. We have recently modified the COAMPS code to include building and other urban surfaces effects in the mesoscale model by incorporating an urban canopy parameterization (UCP) (Chin et al., 2005). This UCP is a modification of the original parameterization of (Brown and Williams, 1998), based on Yamada's (1982) forest canopy parameterization and includes modification of the TKE and mean momentum equations, modification of radiative transfer, and an anthropogenic heat source. COAMPS is parallelized for both shared memory (OpenMP) and distributed memory (MPI) architecture.

  9. [Study on spectral reflectance characteristics of hemp canopies].

    Science.gov (United States)

    Tian, Yi-Chen; Jia, Kun; Wu, Bing-Fang; Li, Qiang-Zi

    2010-12-01

    Hemp (Cannabis sativa L.) is a special economic crop and widely used in many field. It is significative for the government to master the information about planting acreage and spatial distribution of hemp for hemp industrial policy decision in China. Remote sensing offers a potential way of monitoring large area for the cultivation of hemp. However, very little study on the spectral properties of hemp is available in the scientific literature. In the present study, the spectral reflectance characteristics of hemp canopy were systematically analyzed based on the spectral data acquired with ASD FieldSpec portable spectrometer. The wavebands and its spectral resolution for discriminating hemp from other plants were identified using difference analysis. The major differences in canopy reflectance of hemp and other plants were observed near 530, 552, 734, 992, 1 213, 1 580 and 2 199 nm, and the maximal difference is near 734 nm. The spectral resolution should be 30 nm or less in visible and near infrared regions, and 50 nm or less in middle infrared regions. PMID:21322234

  10. Phylogenetic Structure of Foliar Spectral Traits in Tropical Forest Canopies

    Directory of Open Access Journals (Sweden)

    Kelly M. McManus

    2016-02-01

    Full Text Available The Spectranomics approach to tropical forest remote sensing has established a link between foliar reflectance spectra and the phylogenetic composition of tropical canopy tree communities vis-à-vis the taxonomic organization of biochemical trait variation. However, a direct relationship between phylogenetic affiliation and foliar reflectance spectra of species has not been established. We sought to develop this relationship by quantifying the extent to which underlying patterns of phylogenetic structure drive interspecific variation among foliar reflectance spectra within three Neotropical canopy tree communities with varying levels of soil fertility. We interpreted the resulting spectral patterns of phylogenetic signal in the context of foliar biochemical traits that may contribute to the spectral-phylogenetic link. We utilized a multi-model ensemble to elucidate trait-spectral relationships, and quantified phylogenetic signal for spectral wavelengths and traits using Pagel’s lambda statistic. Foliar reflectance spectra showed evidence of phylogenetic influence primarily within the visible and shortwave infrared spectral regions. These regions were also selected by the multi-model ensemble as those most important to the quantitative prediction of several foliar biochemical traits. Patterns of phylogenetic organization of spectra and traits varied across sites and with soil fertility, indicative of the complex interactions between the environmental and phylogenetic controls underlying patterns of biodiversity.

  11. Riparian deforestation, stream narrowing, and loss of stream ecosystem services.

    Science.gov (United States)

    Sweeney, Bernard W; Bott, Thomas L; Jackson, John K; Kaplan, Louis A; Newbold, J Denis; Standley, Laurel J; Hession, W Cully; Horwitz, Richard J

    2004-09-28

    A study of 16 streams in eastern North America shows that riparian deforestation causes channel narrowing, which reduces the total amount of stream habitat and ecosystem per unit channel length and compromises in-stream processing of pollutants. Wide forest reaches had more macroinvertebrates, total ecosystem processing of organic matter, and nitrogen uptake per unit channel length than contiguous narrow deforested reaches. Stream narrowing nullified any potential advantages of deforestation regarding abundance of fish, quality of dissolved organic matter, and pesticide degradation. These findings show that forested stream channels have a wider and more natural configuration, which significantly affects the total in-stream amount and activity of the ecosystem, including the processing of pollutants. The results reinforce both current policy of the United States that endorses riparian forest buffers as best management practice and federal and state programs that subsidize riparian reforestation for stream restoration and water quality. Not only do forest buffers prevent nonpoint source pollutants from entering small streams, they also enhance the in-stream processing of both nonpoint and point source pollutants, thereby reducing their impact on downstream rivers and estuaries. PMID:15381768

  12. The Phoenix Stream: A Cold Stream in the Southern Hemisphere

    Science.gov (United States)

    Balbinot, E.; Yanny, B.; Li, T. S.; Santiago, B.; Marshall, J. L.; Finley, D. A.; Pieres, A.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Benoit-Lévy, A.; Bernstein, G. M.; Bertin, E.; Brooks, D.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Estrada, J.; Flaugher, B.; Frieman, J.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; March, M.; Martini, P.; Miquel, R.; Nichol, R. C.; Ogando, R.; Romer, A. K.; Sanchez, E.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Thomas, D.; Tucker, D.; Walker, A. R.; DES Collaboration

    2016-03-01

    We report the discovery of a stellar stream in the Dark Energy Survey Year 1 (Y1A1) data. The discovery was made through simple color-magnitude filters and visual inspection of the Y1A1 data. We refer to this new object as the Phoenix stream, after its resident constellation. After subtraction of the background stellar population we detect a clear signal of a simple stellar population. By fitting the ridge line of the stream in color-magnitude space, we find that a stellar population with age τ = 11.5 ± 0.5 Gyr and [Fe/H] Gaussian profile, indicating that a globular cluster (GC) is a probable progenitor. There is no known GC within 5 kpc that is compatible with being the progenitor of the stream, assuming that the stream traces its orbit. We examined overdensities (ODs) along the stream, however, no obvious counterpart-bound stellar system is visible in the coadded images. We also find ODs along the stream that appear to be symmetrically distributed—consistent with the epicyclic OD scenario for the formation of cold streams—as well as a misalignment between the northern and southern part of stream. Despite the close proximity we find no evidence that this stream and the halo cluster NGC 1261 have a common accretion origin linked to the recently found EriPhe OD.

  13. Streamlining of Plant Patches in Streams

    DEFF Research Database (Denmark)

    Sand-Jensen, Kaj; Pedersen, Morten Lauge

    2008-01-01

    . Sediment elevation within patches (avg. 4.1 cm) increased significantly with patch length, but did not differ between unstable sand or more stable coarse sediment for the same patch length. Shape of canopy and root area did not change significantly with sediment type. 4. Pressure drag on the canopy as a...

  14. Variations in leaf physiological properties within Amazon forest canopies

    Directory of Open Access Journals (Sweden)

    J. Lloyd

    2009-05-01

    Full Text Available Vertical profiles in leaf mass per unit leaf area (MA, foliar 13C composition (δ13C and leaf nitrogen (N, phosphorus (P, carbon (C, potassium (K, magnesium (Mg and calcium (Ca concentrations were estimated for 204 rain forest trees growing in 57 sites across the Amazon Basin. Data was analysed using a multilevel modelling approach, allowing a separation of gradients within individual tree canopies (intra-tree gradients as opposed to stand level gradients occurring because of systematic differences occurring between different trees of different heights (inter-tree gradients. Significant positive intra-tree gradients (i.e. increasing values with increasing sampling height were observed for MA and [C]DW (the subscript denoting on a dry weight basis with negative intra-tree gradients observed for δ13C, [Mg]DW and [K]DW. No significant intra-tree gradients were observed for [N]DW, [P]DW or [Ca]DW. Although the magnitudes of inter-tree gradients were not significantly different for MA, δ13C, [C]DW, [K]DW, [N]DW, [P]DW and [Ca]DW, for [Mg]DW there no systematic difference observed between trees of different heights, this being in contrast to the strongly negative intra-tree gradients also found to exist.

    When expressed on a leaf area basis, significant positive gradients were observed for N, P and K both within and between trees, these being attributable to the positive intra- and inter-tree gradients in MA mentioned above. No systematic intra-tree gradient was observed for either Ca or Mg when expressed on a leaf area basis, but with a significant positive gradient observed for Mg between trees (i.e. with taller trees tending to have a higher Mg per unit area.

    In contrast to the other

  15. The LHCb Turbo Stream

    CERN Document Server

    Benson, Sean

    2015-01-01

    The LHCb experiment will record an unprecedented dataset of beauty and charm hadron decays during Run II of the LHC, set to take place between 2015 and 2018. A key computing challenge is to store and process this data, which limits the maximum output rate of the LHCb trigger. So far, LHCb has written out a few kHz of events containing the full raw sub-detector data, which are passed through a full offline event reconstruction before being considered for physics analysis. Charm physics in particular is limited by trigger output rate constraints. A new streaming strategy includes the possibility to perform the physics analysis with candidates reconstructed in the trigger, thus bypassing the offline reconstruction. In the "turbo stream" the trigger will write out a compact summary of "physics" objects containing all information necessary for analyses, and this will allow an increased output rate and thus higher average efficiencies and smaller selection biases. This idea will be commissioned and developed during...

  16. Top-down and bottom-up processes in grassland and forested streams.

    Science.gov (United States)

    Nyström, Per; McIntosh, Angus R; Winterbourn, Michael J

    2003-08-01

    The influence of predatory fish on the structure of stream food webs may be altered by the presence of forest canopy cover, and consequent differences in allochthonous inputs and primary production. Eight sites containing introduced brown trout ( Salmo trutta) and eight sites that did not were sampled in the Cass region, South Island, New Zealand. For each predator category, half the sites were located in southern beech (Nothofagus) forest patches (range of canopy cover, 65-90%) and the other half were in tussock grassland. Food resources used by two dominant herbivores-detritivores were assessed using stable isotopes. (13)C/(12)C ratios were obtained for coarse particulate organic matter (CPOM), fine particulate organic matter (FPOM), algal dominated biofilm from rocks, and larvae of Deleatidium (Ephemeroptera) and Olinga (Trichoptera). Total abundance and biomass of macroinvertebrates did not differ between streams with and without trout, but were significantly higher at grassland sites than forested sites. However, taxon richness and species composition differed substantially between trout and no-trout sites, irrespective of whether streams were located in forest or not. Trout streams typically contained more taxa, had low biomass of predatory invertebrates and large shredders, but a high proportion of consumers with cases or shells. The standing stock of CPOM was higher at forested sites, but there was less FPOM and more algae at sites with trout, regardless of the presence or absence of forest cover. The stable carbon isotope range for biofilm on rocks was broad and encompassed the narrow CPOM and FPOM ranges. At trout sites, carbon isotope ratios of Deleatidium, the most abundant invertebrate primary consumer, were closely related to biofilm values, but no relationship was found at no-trout sites where algal biomass was much lower. These results support a role for both bottom-up and top-down processes in controlling the structure of the stream communities

  17. An empirical model that uses light attenuation and plant nitrogen status to predict within-canopy nitrogen distribution and upscale photosynthesis from leaf to whole canopy

    OpenAIRE

    Louarn, Gaëtan; Frak, Elzbieta; Zaka, Serge; Prieto, Jorge; Lebon, Eric

    2015-01-01

    Modelling the spatial and temporal distribution of leaf nitrogen is central to specify photosynthetic parameters and simulate canopy photosynthesis. Leaf photosynthetic parameters depend both on local light availability and whole plant N status. The interaction between these two levels of integration has generally been modelled by assuming an optimal canopy functioning, which is not supported by experiments. During this study we examined how a set of empirical relationships with measurable pa...

  18. Soil and canopy CO2, 13CO2, H2O and sensible heat flux partitions in a forest canopy inferred from concentration measurements

    OpenAIRE

    Styles, Julie M.; Raupach, Michael R.; Farquhar, Graham D.; Kolle, Olaf; Lawton, Kieran A.; Brand, Willi A.; Werner, Roland A.; Jordan, Armin; Schulze, E.-Detlef; Shibistova, Olga; Lloyd, Jon

    2002-01-01

    A canopy scale model is presented that utilises Lagrangian dispersal theory to describe the relationship between source distribution and concentration within the canopy. The present study differs from previous studies in three ways: (1) source/sink distributions are solved simultaneously for CO2, 13CO2, H2O and sensible heat to find a solution consistent with leaf-level constraints imposed by photosynthetic capacity, stomatal and boundary layer conductance, available energy and carbon isotopi...

  19. Towards Automated Characterization of Canopy Layering in Mixed Temperate Forests Using Airborne Laser Scanning

    Directory of Open Access Journals (Sweden)

    Reik Leiterer

    2015-11-01

    Full Text Available Canopy layers form essential structural components, affecting stand productivity and wildlife habitats. Airborne laser scanning (ALS provides horizontal and vertical information on canopy structure simultaneously. Existing approaches to assess canopy layering often require prior information about stand characteristics or rely on pre-defined height thresholds. We developed a multi-scale method using ALS data with point densities >10 pts/m2 to determine the number and vertical extent of canopy layers (canopylayer, canopylength, seasonal variations in the topmost canopy layer (canopytype, as well as small-scale heterogeneities in the canopy (canopyheterogeneity. We first tested and developed the method on a small forest patch (800 ha and afterwards tested transferability and robustness of the method on a larger patch (180,000 ha. We validated the approach using an extensive set of ground data, achieving overall accuracies >77% for canopytype and canopyheterogeneity, and >62% for canopylayer and canopylength. We conclude that our method provides a robust characterization of canopy layering supporting automated canopy structure monitoring.

  20. Integrating soil information into canopy sensor algorithms for improved corn nitrogen rate recommendation

    Science.gov (United States)

    Crop canopy sensors have proven effective at determining site-specific nitrogen (N) needs, but several Midwest states use different algorithms to predict site-specific N need. The objective of this research was to determine if soil information can be used to improve the Missouri canopy sensor algori...

  1. Regeneration in canopy gaps of tierra-firme forest in the Peruvian Amazon

    DEFF Research Database (Denmark)

    Karsten, Rune Juelsborg; Jovanovic, Milos; Meilby, Henrik;

    2013-01-01

    the regeneration dynamics of logging gaps with naturally occuring canopy gaps. In the concession of Consorcio Forestal Amazonico in the region of Ucayali in the Peruvian Amazon, a total of 210 circular sample plots were established in 35 gaps in unmanaged natural forest and 35 canopy gaps in forest...

  2. Analyzing transient closed chamber effects on canopy gas exchange for optimizing flux calculation timing

    NARCIS (Netherlands)

    Langensiepen, M.; Kupisch, M.; Wijk, van M.T.; Ewert, F.

    2012-01-01

    Transient type canopy chambers are still the only currently available practical solution for rapid screening of gas-exchange in agricultural fields. The technique has been criticized for its effect on canopy microclimate during measurement which affects the transport regime and regulation of plant g

  3. Three-dimensional modeling of canopy tree interception of wind-driven rainfall

    Science.gov (United States)

    Herwitz, Stanley R.; Slye, Robert E.

    1995-06-01

    Field measurement of interception loss from rainforest vegetation in the cyclone-prone tropics is complicated by high wind speeds that cause incident rainfall to be inclined from vertical fall paths. Given the characteristic roughness of tropical rainforest canopies, we hypothesized that the more prominent canopy tree crowns create lateral rainshadows and intercept greater volumes of rainwater per unit projected crown area than less prominent neighboring canopy trees under inclined rainfall conditions. This hypothesis was tested by: (1) modeling the three-dimensional (3-D) geometry of a tropical rainforest canopy surface in northeast Queensland, Australia, using photogrammetrically derived crown elevation data; (2) computing the inclination angles and azimuths of wind-driven rainfall for raindays on which net rainfall was measured from selected canopy trees; (3) creating and applying a ray-tracing program to the 3-D canopy model to quantify lateral rainshadows and the effective rainfall-intercepting crown areas of the selected canopy trees; (4) calculating the {C e}/{C} index (effective rainfall-intercepting crown area/projected crown area ratio) of each tree; (5) analyzing the relationship between the {C e}/{C} index values and the measured net rainfall totals after correcting for differences in the trees' interception storage capacities. A significant correlation ( P floor. We conclude that more meaningful measures of interception loss could be obtained by accounting for differences in gross rainfall intercepted by canopy trees sampled for net rainfall.

  4. Modeling photosynthesis of discontinuous plant canopies by linking Geometric Optical Radiative Transfer model with biochemical processes

    OpenAIRE

    Xin, Q; P. Gong; Li, W.

    2015-01-01

    Modeling vegetation photosynthesis is essential for understanding carbon exchanges between terrestrial ecosystems and the atmosphere. The radiative transfer process within plant canopies is one of the key drivers that regulate canopy photosynthesis. Most vegetation cover consists of discrete plant crowns, of which the physical observation departs from the underlying assumption of a homogenous and uniform medium in classic radiative transfer theory. Here we a...

  5. Piracy in the high trees: ectomycorrhizal fungi from an aerial 'canopy soil' microhabitat.

    Science.gov (United States)

    Orlovich, David A; Draffin, Suzy J; Daly, Robert A; Stephenson, Steven L

    2013-01-01

    The mantle of dead organic material ("canopy soil") associated with the mats of vascular and nonvascular epiphytes found on the branches of trees in the temperate rainforests along the southwestern coast of the South Island of New Zealand were examined for evidence of ectomycorrhizal fungi. DNA sequencing and cluster analysis were used to identify the taxa of fungi present in 74 root tips collected from the canopy soil microhabitat of three old growth Nothofagus menziesii trees in the South West New Zealand World Heritage Area. A diverse assemblage of ectomycorrhizal fungi was found to infect an extensive network of adventitious canopy roots of Nothofagus menziesii in this forest, including 14 phylotypes from nine genera of putative ectomycorrhizal fungi. Seven of the genera identified previously were known to form ectomycorrhizas with terrestrial roots of Nothofagus: Cortinarius, Russula, Cenococcum, Thelephora/Tomentella, Lactarius and Laccaria; two, Clavulina and Leotia, previously have not been reported forming ectomycorrhizas with Nothofagus. Canopy ectomycorrhizas provide an unexpected means for increased host nutrition that may have functional significance in some forest ecosystems. Presumably, canopy ectomycorrhizas on host adventitious roots circumvent the tree-ground-soil nutrient cycle by accessing a wider range of nutrients directly in the canopy than would be possible for non-mycorrhizal or arbuscular mycorrhizal canopy roots. In this system, both host and epiphytes would seem to be in competition for the same pool of nutrients in canopy soil. PMID:22778170

  6. Modeling photosynthesis of discontinuous plant canopies by linking Geometric Optical Radiative Transfer model with biochemical processes

    Science.gov (United States)

    Xin, Q.; Gong, P.; Li, W.

    2015-02-01

    Modeling vegetation photosynthesis is essential for understanding carbon exchanges between terrestrial ecosystems and the atmosphere. The radiative transfer process within plant canopies is one of the key drivers that regulate canopy photosynthesis. Most vegetation cover consists of discrete plant crowns, of which the physical observation departs from the underlying assumption of a homogenous and uniform medium in classic radiative transfer theory. Here we advance the Geometric Optical Radiative Transfer (GORT) model to simulate photosynthesis activities for discontinuous plant canopies. We separate radiation absorption into two components that are absorbed by sunlit and shaded leaves, and derive analytical solutions by integrating over the canopy layer. To model leaf-level and canopy-level photosynthesis, leaf light absorption is then linked to the biochemical process of gas diffusion through leaf stomata. The canopy gap probability derived from GORT differs from classic radiative transfer theory, especially when the leaf area index is high, due to leaf clumping effects. Tree characteristics such as tree density, crown shape, and canopy length affect leaf clumping and regulate radiation interception. Modeled gross primary production (GPP) for two deciduous forest stands could explain more than 80% of the variance of flux tower measurements at both near hourly and daily time scales. We also demonstrate that the ambient CO2 concentration influences daytime vegetation photosynthesis, which needs to be considered in state-of-the-art biogeochemical models. The proposed model is complementary to classic radiative transfer theory and shows promise in modeling the radiative transfer process and photosynthetic activities over discontinuous forest canopies.

  7. Directed manipulation of crop water status through canopy temperature-based irrigation management

    Science.gov (United States)

    While the relationship between canopy temperature and plant water status is well established, canopy temperature as a means of controlling crop irrigation has been limited in production applications due to the cost and complexity of temperature monitoring. A new low-cost infrared thermometry system...

  8. Distributed Streaming with Finite Memory

    OpenAIRE

    Neven, Frank; Schweikardt, Nicole; Servais, Frédéric; Tan, Tony

    2015-01-01

    We introduce three formal models of distributed systems for query evaluation on massive databases: Distributed Streaming with Register Automata (DSAs), Distributed Streaming with Register Transducers (DSTs), and Distributed Streaming with Register Transducers and Joins (DSTJs). These models are based on the key-value paradigm where the input is transformed into a dataset of key-value pairs, and on each key a local computation is performed on the values associated with that key resulting in an...

  9. Data streams algorithms and applications

    CERN Document Server

    Muthukrishnan, S

    2014-01-01

    Data stream algorithms as an active research agenda emerged only over the past few years, even though the concept of making few passes over the data for performing computations has been around since the early days of Automata Theory. The data stream agenda now pervades many branches of Computer Science including databases, networking, knowledge discovery and data mining, and hardware systems. Industry is in synch too, with Data Stream Management Systems (DSMSs) and special hardware to deal with data speeds. Even beyond Computer Science, data stream concerns are emerging in physics, atmospheric

  10. Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: NLCD 2001 Tree Canopy

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents the mean percentage of tree canopy from the Canopy Layer of the National Land Cover Dataset 2001, (LaMotte and Wieczorek, 2010), compiled...

  11. Employing lidar to detail vegetation canopy architecture for prediction of aeolian transport

    Science.gov (United States)

    Sankey, Joel B.; Law, Darin J.; Breshears, David D.; Munson, Seth M.; Webb, Robert H.

    2013-01-01

    The diverse and fundamental effects that aeolian processes have on the biosphere and geosphere are commonly generated by horizontal sediment transport at the land surface. However, predicting horizontal sediment transport depends on vegetation architecture, which is difficult to quantify in a rapid but accurate manner. We demonstrate an approach to measure vegetation canopy architecture at high resolution using lidar along a gradient of dryland sites ranging from 2% to 73% woody plant canopy cover. Lidar-derived canopy height, distance (gaps) between vegetation elements (e.g., trunks, limbs, leaves), and the distribution of gaps scaled by vegetation height were correlated with canopy cover and highlight potentially improved horizontal dust flux estimation than with cover alone. Employing lidar to estimate detailed vegetation canopy architecture offers promise for improved predictions of horizontal sediment transport across heterogeneous plant assemblages.

  12. Co-optimal Distribution of Leaf Nitrogen and Hydraulic Conductance in Plant Canopies

    Science.gov (United States)

    Peltoniemi, M.; Medlyn, B. E.; Duursma, R.

    2012-12-01

    Leaf properties vary significantly within plant canopies, due to the strong gradient in light availability through the canopy. Leaves near the canopy top have high nitrogen (N) and phosphorus content per unit leaf area, high leaf mass per area, and high photosynthetic capacity, compared to leaves deeper in the canopy. Variation of leaf properties has been explained by the optimal distribution of resources, particularly nitrogen, throughout the canopy. Studies of the optimal distribution of leaf nitrogen (N) within canopies have shown that, in the absence of other constraints, the optimal distribution of N is proportional to light. This is an important assumption in the big-leaf models of canopy photosynthesis and widely applied in current land-surface models. However, measurements have shown that the gradient of N in real canopies is shallower than the optimal distribution. One thing that has not yet been considered is how the constraints on water supply to leaves influence leaf properties in the canopy. Leaves with high stomatal conductance tend to have high stomatal conductance and transpiration rate, which suggests that for the the efficient operation of canopy, high light leaves should be serviced by more water. The rate of water transport depends on the hydraulic conductance of the soil-leaf pathway. We extend the work on optimal nitrogen gradients by considering the optimal co-allocation of nitrogen and water supply within plant canopies. We developed a simple "toy" two-leaf canopy model and optimised the distribution of N and hydraulic conductance (K) between the two leaves. We asked whether the hydraulic constraints to water supply can explain shallow N gradients in canopies. We found that the optimal N distribution within plant canopies is proportional to the light distribution only if hydraulic conductance is also optimally distributed. The optimal distribution of K is that where K and N are both proportional to incident light, such that optimal K is

  13. Analytical discrete ordinate method for radiative transfer in dense vegetation canopies

    Science.gov (United States)

    Picca, Paolo; Furfaro, Roberto

    2013-03-01

    The radiative transfer (RT) in dense vegetation canopies can be approximated via linear Boltzmann equation. However, the directionality of the basic scattering element (i.e. the canopy leaf) makes the medium inherently anisotropic and introduces special features in the definition of both scattering kernel and total cross section. In this paper, a classical methodology for the solution of transport problem, namely the analytical discrete ordinate (ADO) method, is extended to account for the peculiarities of photon transport into dense vegetation canopies. It is demonstrated that the special symmetries arising from modeling the leaf as a bi-Lambertian scatterer, enable the derivation of the ADO equations for canopy transport. Several numerical tests have been performed to evaluate the accuracy of ADO against numerical benchmarks available in the literature. The results show that the proposed methodology is highly accurate, computationally efficient and may set future standards for numerical transport in dense vegetation canopies.

  14. A vertically discretised canopy description for ORCHIDEE (SVN r2290) and the modifications to the energy, water and carbon fluxes

    Science.gov (United States)

    Naudts, K.; Ryder, J.; McGrath, M. J.; Otto, J.; Chen, Y.; Valade, A.; Bellasen, V.; Berhongaray, G.; Bönisch, G.; Campioli, M.; Ghattas, J.; De Groote, T.; Haverd, V.; Kattge, J.; MacBean, N.; Maignan, F.; Merilä, P.; Penuelas, J.; Peylin, P.; Pinty, B.; Pretzsch, H.; Schulze, E. D.; Solyga, D.; Vuichard, N.; Yan, Y.; Luyssaert, S.

    2015-07-01

    Since 70 % of global forests are managed and forests impact the global carbon cycle and the energy exchange with the overlying atmosphere, forest management has the potential to mitigate climate change. Yet, none of the land-surface models used in Earth system models, and therefore none of today's predictions of future climate, accounts for the interactions between climate and forest management. We addressed this gap in modelling capability by developing and parametrising a version of the ORCHIDEE land-surface model to simulate the biogeochemical and biophysical effects of forest management. The most significant changes between the new branch called ORCHIDEE-CAN (SVN r2290) and the trunk version of ORCHIDEE (SVN r2243) are the allometric-based allocation of carbon to leaf, root, wood, fruit and reserve pools; the transmittance, absorbance and reflectance of radiation within the canopy; and the vertical discretisation of the energy budget calculations. In addition, conceptual changes were introduced towards a better process representation for the interaction of radiation with snow, the hydraulic architecture of plants, the representation of forest management and a numerical solution for the photosynthesis formalism of Farquhar, von Caemmerer and Berry. For consistency reasons, these changes were extensively linked throughout the code. Parametrisation was revisited after introducing 12 new parameter sets that represent specific tree species or genera rather than a group of often distantly related or even unrelated species, as is the case in widely used plant functional types. Performance of the new model was compared against the trunk and validated against independent spatially explicit data for basal area, tree height, canopy structure, gross primary production (GPP), albedo and evapotranspiration over Europe. For all tested variables, ORCHIDEE-CAN outperformed the trunk regarding its ability to reproduce large-scale spatial patterns as well as their inter

  15. A vertically discretised canopy description for ORCHIDEE (SVN r2290 and the modifications to the energy, water and carbon fluxes

    Directory of Open Access Journals (Sweden)

    K. Naudts

    2014-12-01

    Full Text Available Since 70% of global forests are managed and forests impact the global carbon cycle and the energy exchange with the overlying atmosphere, forest management has the potential to mitigate climate change. Yet, none of the land surface models used in Earth system models, and therefore none of today's predictions of future climate, account for the interactions between climate and forest management. We addressed this gap in modelling capability by developing and parametrizing a version of the land surface model ORCHIDEE to simulate the biogeochemical and biophysical effects of forest management. The most significant changes between the new branch called ORCHIDEE-CAN (SVN r2290 and the trunk version of ORCHIDEE (SVN r2243 are the allometric-based allocation of carbon to leaf, root, wood, fruit and reserve pools; the transmittance, absorbance and reflectance of radiation within the canopy; and the vertical discretisation of the energy budget calculations. In addition, conceptual changes towards a~better process representation occurred for the interaction of radiation with snow, the hydraulic architecture of plants, the representation of forest management and a~numerical solution for the photosynthesis formalism of Farquhar, von Caemmerer and Berry. For consistency reasons, these changes were extensively linked throughout the code. Parametrization was revisited after introducing twelve new parameter sets that represent specific tree species or genera rather than a group of unrelated species, as is the case in widely used plant functional types. Performance of the new model was compared against the trunk and validated against independent spatially explicit data for basal area, tree height, canopy strucure, GPP, albedo and evapotranspiration over Europe. For all tested variables ORCHIDEE-CAN outperformed the trunk regarding its ability to reproduce large-scale spatial patterns as well as their inter-annual variability over Europe. Depending on the data

  16. Waveform- and Terrestrial Lidar Assessment of the Usual (Structural) Suspects in a Forest Canopy

    Science.gov (United States)

    van Aardt, J. A.; Romanczyk, P.; Kelbe, D.; van Leeuwen, M.; Cawse-Nicholson, K.; Gough, C. M.; Kampe, T. U.

    2015-12-01

    Forest inventory has evolved from standard stem diameter-height relationships, to coarse canopy metrics, to more involved ecologically-meaningful variables, such as leaf area index (LAI) and even canopy radiative transfer as a function of canopy gaps, leaf clumping, and leaf angle distributions. Accurate and precise measurement of the latter set of variables presents a challenge to the ecological and modeling communities; however, relatively novel remote sensing modalities, e.g., waveform lidar (wlidar) and terrestrial lidar systems (TLS), have the potential to adress this challenge. Research teams at Rochester Institute of Technology (RIT) and the Virginia Commonwealth University (VCU) have been collaborating with the National Ecological Observation Network (NEON) to assess vegetation canopy structure and variation at the University of Michigan Biological Research Station and the NEON Northeast domain (Harvard Forest, MA). Airborne small-footprint wlidar data, in-situ TLS data, and first-principles, physics-based simulation tools are being used to study (i) the impact of vegetation canopy geometric elements on wlidar signals (twigs and petioles have been deemed negligible), (ii) the analysis of airborne wlidar data for top-down assessment of canopy metrics such as LAI, and (iii) our ability to extract "bottom-up" canopy structure from TLS using scans registered to each other using a novel marker-free registration approach (e.g., basal area: R2=0.82, RMSE=7.43 m2/ha). Such studies indicate that we can potentially assess radiative transfer through vegetation canopies remotely using a vertically-stratified approach with wlidar, and augment such an approach via rapid-scan TLS technology to gain a better understanding of fine-scale variation in canopy structure. This in turn is key to quantifying and modeling radiative transfer based on understanding of forest canopy structural change as a function of ecosystem development, climate, and anthropogenic drivers.

  17. Fire legacies in Mediterranean streams: the key roles of the riparian canopy and the top predator on food webs

    OpenAIRE

    Rodríguez Lozano, Pablo

    2016-01-01

    Wildfires are expected to increase in frequency and intensity because of climate change and changes in land use and management. In last decades, the research on fire effects on aquatic systems has grown, but it has been mainly conducted in the short- and mid-term (

  18. Canopy Level Chlorophyll Fluorescence and the PRI in a Cornfield

    Science.gov (United States)

    Middleton, Elizabeth M.; Cheng, Yen-Ben; Corp, Lawrence A.; Campbell, Petya K. E.; Huemmrich, K. Fred; Zhang, Qingyuan; Kustas, William P.

    2012-01-01

    Two bio-indicators, the Photochemical Reflectance Index (PRI) and solar-induced red and far-red Chlorophyll Fluorescence (SIF), were derived from directional hyperspectral observations and studied in a cornfield on two contrasting days in the growing season. Both red and far-red SIF exhibited higher values on the day when the canopy in the early senescent stage, but only the far-red SIF showed sensitivity to viewing geometry. Consequently, the red/far-red SIF ratio varied greatly among azimuth positions while the largest values were obtained for the "hotspot" at both growth stages. This ratio was lower (approx.0.88 +/- 0.4) in early July than in August when the ratio approached equivalence (near approx.1). In concert, the PRI exhibited stronger responses to both zenith and azimuth angles and different values on the two growth stages. The potential of using these indices to monitor photosynthetic activities needs further investigation

  19. Radiation regime and canopy architecture in a boreal aspen forest

    International Nuclear Information System (INIS)

    This study was part of the Boreal Ecosystem-Atmosphere Study (BOREAS). It took place in a mature aspen forest in Prince Albert National Park, Saskatchewan, Canada. The aspen trees were 21.5 m high with a 2–3 m high hazelnut understory. The objectives were: (1) to compare the radiation regime beneath the overstory before and after leaf emergence; (2) to infer the structural characteristics of the aspen canopy leaf inclination and clumping; (3) to determine the seasonal course of the leaf area index (L) for both the overstory and understory. Above-stand radiation measurements were made on a 39m walk-up tower, and understory radiation measurements were made on a tram which moved horizontally back and forth at 0.10 m s−1 on a pair of steel cables 65m in length suspended 4 m above the ground. In addition, several LI-COR LAI-2000 Plant Canopy Analyzers were used to determine the effective leaf area index and the zenith angle dependent extinction coefficient (G(θ)) for both the aspen and the hazelnut throughout the growing season. These measurements were supplemented with destructive sampling of the hazelnut at the peak of the growing season. Before leaf emergence, the ratios of below- to above-aspen solar radiation (S), photosynthetic photon flux density (PPFD) and net radiation (Rn) during most of the day were 0.58, 0.55 and 0.47, respectively. By midsummer, these ratios had fallen to 0.33, 0.26 and 0.26, respectively. The aspen G(θ) was relatively invariant with θ, within ±0.05 of 0.5 throughout the growing season, indicating a spherical distribution of leaf inclination angles (i.e. the leaves were randomly inclined). The hazelnut G(θ) has a cosine response with respect to θ, which was consistent with the generally planophile leaf distribution for hazelnut. Using canopy gap size distribution theories developed by Chen and Black (1992b, Agric. For. Meteorol., 60: 249–266) and Chen and Cihlar (1995a, Appl. Opt., 34: 6211–6222) based on Miller and Norman

  20. Canopy resistance modelling for crops in contrasting water conditions

    Science.gov (United States)

    Rana, G.; Katerji, N.; Mastrorilli, M.

    Although canopy resistance to vapour water transport (r c) depends on climatic conditions and crop water status, standard constant daily values are usually used. Thus models using r c to predict evapotranspiration (ET) fail if applied to water stressed crops. On the other hand, in the scientific literature it is possible to find daily r c models dependent on soil moisture, but, in such cases, these need to be calibrated for each crop and site. Here a “climatic resistance” (r∗) is introduced as function of available energy, vapour pressure deficit and air temperature. Therefore a model of canopy resistance is presented on a hourly and daily time scale, where r c is expressed as function of r∗, aerodynamic resistance, r a, and predawn leaf water potential (PLWP), independently on the soil type. The model has been tested in Southern Italy on grass (reference crop), sorghum, sunflower and soybean and validated in France on soybean, without further calibration. The field crops were submitted to several water stress cycles: PLWP ranged between -0.1 and -1.2 MPa. The experiments showed that this model works well both under and without soil water constraints. On an hourly scale calculated ET in function of PLWP always presented a small underestimation (maximum 6% for soybean in Italy under senescence and water stress); on a daily scale these underestimations are reduced in general. The model test showed that it is independent of the site but depends only on the crop species. On a daily scale the model is presented also with available water (AW) as input, but in this case it needs local calibration. When AW is used as input the model showed an underestimation of 5% and 7% for sorghum and sunflower respectively.

  1. Linkages of Biodiversity and Canopy Lidar Metrics in Central Africa

    Science.gov (United States)

    Laporte, N. T.; Horning, N.; Morgan, D.

    2012-12-01

    Central Africa contains the second largest dense humid forest in the world, and one of the largest carbon and biodiversity reservoirs on Earth. With 60% of the forest currently under logging concessions, the Congo basin is poised to undergo extensive land use change. Increases in bushmeat trade, resulting from extensification of logging roads, have already been well documented. From a quantitative standpoint, little is known of the structure of these forests, how logging affects forest biomass or functioning, and how canopy habitat heterogeneity relates to animal species richness or diversity. Here we document, using random forest and MaxEnt, how information from GLAS lidar metrics, ALOS-PalSAR and Landsat imagery, combined with field observations of great ape nest locations ( figure 1) and vegetation types, can be merged to create a map of gorilla and chimpanzee habitat in a region spanning Cameroon, the Republic of Congo, and the Central African Republic. From an initial selection of 48 variables we found the most important for mapping habitat suitability were a combination of PalSAR backscatter, NDVI image texture. Landsat ETM+ top of the atmosphere reflectance and principle component images. While NDVI from ETM+bands was an important predictor of gorilla and chimpanzee nest presence, species-specific differences in habitat use were also identified. Tree canopy height from GLAS was the most important variable predicting chimpanzee nesting habitat, while Landsat ETM+ bands were most important for gorilla nesting habitat. These preliminary results indicate merging field observations with satellite imagery promises to significantly improve our understanding of ape habitat-use at the landscape scale.ombining GLAS lidar metrics, ALOS-PalSAR and Landsat imager with field observations of great ape nest locations for habitat mapping in C. Africa

  2. Estimating Canopy Nitrogen Concentration in Sugarcane Using Field Imaging Spectroscopy

    Directory of Open Access Journals (Sweden)

    Marc Souris

    2012-06-01

    Full Text Available The retrieval of nutrient concentration in sugarcane through hyperspectral remote sensing is widely known to be affected by canopy architecture. The goal of this research was to develop an estimation model that could explain the nitrogen variations in sugarcane with combined cultivars. Reflectance spectra were measured over the sugarcane canopy using a field spectroradiometer. The models were calibrated by a vegetation index and multiple linear regression. The original reflectance was transformed into a First-Derivative Spectrum (FDS and two absorption features. The results indicated that the sensitive spectral wavelengths for quantifying nitrogen content existed mainly in the visible, red edge and far near-infrared regions of the electromagnetic spectrum. Normalized Differential Index (NDI based on FDS(750/700 and Ratio Spectral Index (RVI based on FDS(724/700 are best suited for characterizing the nitrogen concentration. The modified estimation model, generated by the Stepwise Multiple Linear Regression (SMLR technique from FDS centered at 410, 426, 720, 754, and 1,216 nm, yielded the highest correlation coefficient value of 0.86 and Root Mean Square Error of the Estimate (RMSE value of 0.033%N (n = 90 with nitrogen concentration in sugarcane. The results of this research demonstrated that the estimation model developed by SMLR yielded a higher correlation coefficient with nitrogen content than the model computed by narrow vegetation indices. The strong correlation between measured and estimated nitrogen concentration indicated that the methods proposed in this study could be used for the reliable diagnosis of nitrogen quantity in sugarcane. Finally, the success of the field spectroscopy used for estimating the nutrient quality of sugarcane allowed an additional experiment using the polar orbiting hyperspectral data for the timely determination of crop nutrient status in rangelands without any requirement of prior

  3. Stream Deniable-Encryption Algorithms

    Directory of Open Access Journals (Sweden)

    N.A. Moldovyan

    2016-04-01

    Full Text Available A method for stream deniable encryption of secret message is proposed, which is computationally indistinguishable from the probabilistic encryption of some fake message. The method uses generation of two key streams with some secure block cipher. One of the key streams is generated depending on the secret key and the other one is generated depending on the fake key. The key streams are mixed with the secret and fake data streams so that the output ciphertext looks like the ciphertext produced by some probabilistic encryption algorithm applied to the fake message, while using the fake key. When the receiver or/and sender of the ciphertext are coerced to open the encryption key and the source message, they open the fake key and the fake message. To disclose their lie the coercer should demonstrate possibility of the alternative decryption of the ciphertext, however this is a computationally hard problem.

  4. Stream processing health card application.

    Science.gov (United States)

    Polat, Seda; Gündem, Taflan Imre

    2012-10-01

    In this paper, we propose a data stream management system embedded to a smart card for handling and storing user specific summaries of streaming data coming from medical sensor measurements and/or other medical measurements. The data stream management system that we propose for a health card can handle the stream data rates of commonly known medical devices and sensors. It incorporates a type of context awareness feature that acts according to user specific information. The proposed system is cheap and provides security for private data by enhancing the capabilities of smart health cards. The stream data management system is tested on a real smart card using both synthetic and real data. PMID:22127523

  5. Dynamical modeling of tidal streams

    CERN Document Server

    Bovy, Jo

    2014-01-01

    I present a new framework for modeling the dynamics of tidal streams. The framework consists of simple models for the initial action-angle distribution of tidal debris, which can be straightforwardly evolved forward in time. Taking advantage of the essentially one-dimensional nature of tidal streams, the transformation to position-velocity coordinates can be linearized and interpolated near a small number of points along the progenitor orbit, thus allowing for efficient computations of a stream's properties in observable quantities. I illustrate how to calculate the stream's average location (its 'track') in different coordinate systems, how to quickly estimate the dispersion around its track, and how to draw mock stream data. As a generative model, this framework allows one to compute the full probability distribution function and marginalize over or condition it on certain phase-space dimensions as well as convolve it with observational uncertainties. This will be instrumental in proper data analysis of str...

  6. Dynamical modeling of tidal streams

    Energy Technology Data Exchange (ETDEWEB)

    Bovy, Jo, E-mail: bovy@ias.edu [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States)

    2014-11-01

    I present a new framework for modeling the dynamics of tidal streams. The framework consists of simple models for the initial action-angle distribution of tidal debris, which can be straightforwardly evolved forward in time. Taking advantage of the essentially one-dimensional nature of tidal streams, the transformation to position-velocity coordinates can be linearized and interpolated near a small number of points along the stream, thus allowing for efficient computations of a stream's properties in observable quantities. I illustrate how to calculate the stream's average location (its 'track') in different coordinate systems, how to quickly estimate the dispersion around its track, and how to draw mock stream data. As a generative model, this framework allows one to compute the full probability distribution function and marginalize over or condition it on certain phase-space dimensions as well as convolve it with observational uncertainties. This will be instrumental in proper data analysis of stream data. In addition to providing a computationally efficient practical tool for modeling the dynamics of tidal streams, the action-angle nature of the framework helps elucidate how the observed width of the stream relates to the velocity dispersion or mass of the progenitor, and how the progenitors of 'orphan' streams could be located. The practical usefulness of the proposed framework crucially depends on the ability to calculate action-angle variables for any orbit in any gravitational potential. A novel method for calculating actions, frequencies, and angles in any static potential using a single orbit integration is described in the Appendix.

  7. The Phoenix stream: a cold stream in the Southern hemisphere

    CERN Document Server

    Balbinot, E; Li, T S; Santiago, B; Marshall, J L; Finley, D A; Pieres, A; Abbott, T M C; Abdalla, F B; Allam, S; Benoit-Lévy, A; Bernstein, G M; Bertin, E; Brooks, D; Burke, D L; Rosell, A Carnero; Kind, M Carrasco; Carretero, J; Cunha, C E; da Costa, L N; DePoy, D L; Desai, S; Diehl, H T; Doel, P; Estrada, J; Flaugher, B; Frieman, J; Gerdes, D W; Gruen, D; Gruendl, R A; Honscheid, K; James, D J; Kuehn, K; Kuropatkin, N; Lahav, O; March, M; Martini, P; Miquel, R; Nichol, R C; Ogando, R; Romer, A K; Sanchez, E; Schubnell, M; Sevilla-Noarbe, I; Smith, R C; Soares-Santos, M; Sobreira, F; Suchyta, E; Tarle, G; Thomas, D; Tucker, D; Walker, A R

    2015-01-01

    We report the discovery of a stellar stream in the Dark Energy Survey (DES) Year 1 (Y1A1) data. The discovery was made through simple color-magnitude filters and visual inspection of the Y1A1 data. We refer to this new object as the Phoenix stream, after its residing constellation. Through the subtraction of the background stellar population we detect a clear signal of a simple stellar population. By fitting the ridge line of the stream in color-magnitude space, we find that a stellar population with age $\\tau=11.5\\pm0.5$ Gyr and ${\\rm [Fe/H]}<-1.6$ located 17.5$\\pm$0.9 kpc from the Sun gives an adequate description of the stream stellar population. The stream is detected over an extension of 8$^{\\circ}$.1 (2.5 kpc) and has a width of $\\sim$54 pc assuming a Gaussian profile, indicating that a globular cluster is a probable progenitor. There is no known globular cluster within 5 kpc compatible with being the progenitor of the stream, assuming that the stream traces its orbit. We examined overdensities along...

  8. Modeling of the radiative energy balance within a crop canopy for estimating evapotranspiration: Studies on a row planted soybean canopy

    International Nuclear Information System (INIS)

    The spatial distribution and density of the leaf area within a crop canopy were used to estimate the radiational environment and evapotranspiration. Morphological measurements were pursued on the soybean stands in the early stage of growth when the two-dimensional foliage distribution pattern existed. The rectangular tube model was used to calculate the light absorption by parallel row of crops both short-wave radiation (direct and diffuse solar radiation, and scattered radiation by plant elements) and long-wave radiation (emanated radiation from the sky, ground and leaves). The simulated profiles are in close agreement with the experimentally measured short-wave and net radiation data. The evapotranspiration of a row was calcuated using a simulated net radiation. The model calculation also agreed well with the evapotranspiration estimated by the Bowen ratio method

  9. Relationship between radiation interception and photosynthesis in forest canopies: effect of stand structure and latitude

    International Nuclear Information System (INIS)

    Interception of radiation and the consequent potential photosynthesis was studied, by sing a simulation model, in structurally different forest stands at latitudes 40° and 60°. The studied stands were of two different types with respect to the leaf-area distribution: horizontally homogenous canopies and canopies with an aggregation of leaves into individual crowns. The effect of canopy structure on interception of radiation and photosynthesis was studied by varying leaf area index, stand density, and crown size and shape. In none of the studied cases was the relationship between accumulated radiation interception and photosynthesis strictly linear, but on a longer time-scale (one growing season) this non-linearity was not very pronounced. Neither canopy structure nor latitude substantially affected the slope of the relationship. In conclusion, while properties of canopy structure and incoming radiation determine the actual amount of radiation intercepted by the canopy, the conversion efficiency between intercepted radiation and photosynthesis appeared to be rather insensitive to differences in canopy structure and in properties of incoming radiation. (author)

  10. Role of canopy interception on water and nutrient cycling in Chinese fir plantation ecosystem

    Institute of Scientific and Technical Information of China (English)

    KANG Wenxing; DENG Xiangwen; ZHAO Zhonghui

    2007-01-01

    The role of canopy interception on nutrient cycling in Chinese fir plantation ecosystem was studied on the basis of the position data during four years.Results indicate that the average canopy interception amount was 267.0 mm/year.Canopy interception play a significant role in water cycle and nutrient cycle processes in ecosystem,and was an important part of evaporation from the Chinese fir plantation ecosystem,being up to 27.2%.The evaporation from the canopy interception was an important way of water output from ecosystem,up to 19.9%.The flush-eluviation of branches and leaves caused by canopy interception brought nutrient input of 143.629 kg/(hm2·year),which was 117.2% of the input 63.924kg/(hm2·year)from the atmospheric precipitation.The decreased amount of 80.1 mm precipitation input caused by canopy interception reduced the amount of rainfall into the stand surface and infiltration into the soil,reduced the output with runoff and drainage,and decreased nutrient loss through output water.Therefore,the additional preserve of nutrient by canopy interception was 8.664 kg/(hm2·year).

  11. Forest canopy structural parameters and Leaf Area Index retrieval using multi-sensors synergy observations

    Science.gov (United States)

    Fu, Zhuo; Wang, Jindi; Song, Jinling; Zhou, Hongmin; Pang, Yong; Cai, Wenwen; Chen, Baisong

    2009-08-01

    Leaf Area Index (LAI) is a key vegetation structural parameter in ecosystem. Our new approach is on forest LAI retrieval by GOMS model (Geometrical-Optical model considering the effect of crown shape and Mutual Shadowing) inversion using multi-sensor observations. The mountainous terrain forest area in Dayekou in Gansu province of China is selected as our study area. The model inversion method by integrating MODIS, MISR and LIDAR data for forest canopy LAI retrieval is proposed. In the MODIS sub-pixel scale, four scene components' spectrum (sunlit canopy, sunlit background, shaded canopy and shaded background) of GOMS model are extracted from SPOT data. And tree heights are extracted from airborne LIDAR data. The extracted four scene components and tree heights are taken as the a priori knowledge applied in GOMS model inversion for improving forest canopy structural parameters estimation accuracy. According to the field investigation, BRDF data set of needle forest pixels is collected by combining MODIS BRDF product and MISR BRF product. Then forest canopy parameters are retrieved based on GOMS. Finally, LAI of forest canopy is estimated by the retrieved structural parameters and it is compared with ground measurement. Results indicate that it is possible to improve the forest canopy structural parameters estimation accuracy by combining observations of passive and active remote sensors.

  12. Canopy interaction with precipitation and sulphur deposition in two boreal forests of Quebec, Canada

    International Nuclear Information System (INIS)

    The interaction of atmospheric sulphur (S) was investigated within the canopies of two boreal forests in Québec, Canada. The net canopy exchange approach, i.e. the difference between S–SO4 in throughfall and precipitation, suggests high proportion of dry deposition in winter (up to 53%) as compared to summer (1–9%). However, a 3.5‰ decrease in δ18O–SO4 throughfall in summer compared to incident precipitation points towards a much larger proportion of dry deposition during the warm season. We suggest that a significant fraction of dry deposition (about 1.2 kg ha−1 yr−1, representing 30–40% of annual wet S deposition) which contributed to the decreased δ18O–SO4 in throughfall was taken up by the canopy. Overall, these results showed that, contrary to what is commonly considered, S interchanges in the canopy could be important in boreal forests with low absolute atmospheric S depositions. - Highlights: ► We investigated sulphur interactions with the canopy of two boreal forests, Québec. ► Sulphur interchanges within the canopy were large and vary with seasons. ► About 1.2 kg S–SO4 ha−1 yr−1 was taken up by the canopy during warm seasons. ► This represents 30–40% of annual wet S–SO4 deposition. ► Canopy uptake must be considered for sulphur budget estimations in boreal forests. - The equivalent of 30–40% of annual wet S–SO4 deposition was taken up by the canopy of two boreal forests during warm seasons.

  13. Quantifying the rain forest canopy reduction of biogenic nitric oxide emissions from soil

    Science.gov (United States)

    Amman, C.; Rummel, U.; Gut, A.; Andreae, M. O.; Meixner, F. X.

    2003-04-01

    The soils of tropical rainforests are known as a strong biogenic source of nitric oxide (NO). How ever, only a fraction of the soil emitted NO is able to escape from the rainforest canopy into the atmospheric boundary layer. This is due to the strong interaction of in-canopy turbulent transport and fast chemical reactions of the NO-NO2-O3 triad converting a substantial part of the NO to NO2 which is prone to uptake by vegetation. During April/May and September/October 1999 we intensively studied this phenomenon at the Reserva Biologica Jarú primary rainforest site (Rondônia/ Brazil). Measurements of NO, NO2 and O3 concentra tion profiles within and above the canopy were accompanied by flux measurements at the forest floor (dynamic chambers), within and above the canopy (eddy covariance). During daytime, high O3 concentrations (mixed into the canopy from aloft) prevent the soil emitted NO to reach levels higher than 5 m above the forest floor. Budget calculations show that during daytime the chemical sink by the reaction with ozone completely balances the measured soil emission. During night-time, a considerable part of the emitted NO could leave the forest canopy due to the very low ozone concentration and the unstable thermal stratification within the forest. The NO2 deposited to vegetation elements originates from the atmospheric boundary layer as well as from the soil emitted NO. Corresponding (net) flux measurements can not identify the individual contributions. In order to address the overall NOx emission of the primary rainforest and to quantify the canopy reduction effect on NOx, measured profiles and fluxes are compared to the results of a multi-layer canopy model. We derived a mean canopy reduction factor of about 43%, which may be compared to corresponding model results of 25% (Jacob and Wofsy, 1990), 50% (Yienger and Levy, 1995), and 40-50% (Ganzeveld et al., 2002).

  14. Response of clonal plasticity of Fargesia nitida to different canopy conditions of subalpine coniferous forest

    Institute of Scientific and Technical Information of China (English)

    Jianping TAO; Lixia SONG; Yongjian WANG; Weiyin ZHANG

    2008-01-01

    The aim of this study is to explore the effects of canopy conditions on clump and culm numbers, and the morphological plasticity and biomass distribution patterns of the dwarf bamboo species Fargesia nitida. Specifically, we investigated the effects of canopy condi-tions on the growth and morphological characteristics of F. nitida, and the adaptive responses of F. nitida to dif-ferent canopy conditions and its ecological senses. The results indicate that forest canopy had a significant effect on the genet density and culm number per clump, while it did not affect the ramet density. Clumps tended to be few and large in gaps and forest edge plots, and small under forest understory plots. The ramets showed an even distribution under the closed canopy, and clus-ter distribution under gaps and forest edge plots. The forest canopy had a significant effect on both the ramets'biomass and biomass allocation. Favourable light conditions promoted ramet growth and biomass accumulation. Greater amounts of biomass in gaps and forest edge plots were shown by the higher number of culms per clump and the diameter of these culms. Under closed canopy, the bamboos increased their branching angle, leaf biomass allocation, specific leaf area and leaf area ratio to exploit more favourable light conditions in these locations. The spacer length, specific spacer length and spacer branching angles all showed significant differences between gaps and closed canopy conditions. The larger specific spacer length and spacer branching angle were beneficial for bamboo growth, scattering the ramets and exploiting more favourable light conditions. In summary, this study shows that to varying degrees, F nitida exhibits both a wide ecological amplitude and high degree of morphological plasticity in response to differing forest canopy conditions. More-over, the changes in plasticity enable the plants to optimize their light usage efficiency to promote growth and increase access to resources available in

  15. Forest canopy height estimation using double-frequency repeat pass interferometry

    Science.gov (United States)

    Karamvasis, Kleanthis; Karathanassi, Vassilia

    2015-06-01

    In recent years, many efforts have been made in order to assess forest stand parameters from remote sensing data, as a mean to estimate the above-ground carbon stock of forests in the context of the Kyoto protocol. Synthetic aperture radar interferometry (InSAR) techniques have gained traction in last decade as a viable technology for vegetation parameter estimation. Many works have shown that forest canopy height, which is a critical parameter for quantifying the terrestrial carbon cycle, can be estimated with InSAR. However, research is still needed to understand further the interaction of SAR signals with forest canopy and to develop an operational method for forestry applications. This work discusses the use of repeat pass interferometry with ALOS PALSAR (L band) HH polarized and COSMO Skymed (X band) HH polarized acquisitions over the Taxiarchis forest (Chalkidiki, Greece), in order to produce accurate digital elevation models (DEMs) and estimate canopy height with interferometric processing. The effect of wavelength-dependent penetration depth into the canopy is known to be strong, and could potentially lead to forest canopy height mapping using dual-wavelength SAR interferometry at X- and L-band. The method is based on scattering phase center separation at different wavelengths. It involves the generation of a terrain elevation model underneath the forest canopy from repeat-pass L-band InSAR data as well as the generation of a canopy surface elevation model from repeat pass X-band InSAR data. The terrain model is then used to remove the terrain component from the repeat pass interferometric X-band elevation model, so as to enable the forest canopy height estimation. The canopy height results were compared to a field survey with 6.9 m root mean square error (RMSE). The effects of vegetation characteristics, SAR incidence angle and view geometry, and terrain slope on the accuracy of the results have also been studied in this work.

  16. Stochastic Transport Theory for Investigating the Three-Dimensional Canopy Structure from Space Measurements

    Science.gov (United States)

    Huang, Dong; Knyazikhin, Yuri; Wang, Weile; Deering, Donald W,; Stenberg, Pauline; Shabanov, Nikolay; Tan, Bin; Myneni, Ranga B.

    2008-01-01

    Radiation reflected from vegetation canopies exhibits high spatial variation. Satellite-borne sensors measure the mean intensities emanating from heterogeneous vegetated pixels. The theory of radiative transfer in stochastic media provides the most logical linkage between satellite observations and the three-dimensional canopy structure through a closed system of simple equations which contains the mean intensity and higher statistical moments directly as its unknowns. Although this theory has been a highly active research field in recent years, its potential for satellite remote sensing of vegetated surfaces has not been fully realized because of the lack of models of a canopy pair-correlation function that the stochastic radiative transfer equations require. The pair correlation function is defined as the probability of finding simultaneously phytoelements at two points. This paper presents analytical and Monte Carlo generated pair correlation functions. Theoretical and numerical analyses show that the spatial correlation between phytoelements is primarily responsible for the effects of the three-dimensional canopy structure on canopy reflective and absorptive properties. The pair correlation function, therefore, is the most natural and physically meaningful measure of the canopy structure over a wide range of scales. The stochastic radiative transfer equations naturally admit this measure and thus provide a powerful means to investigate the three-dimensional canopy structure from space. Canopy reflectances predicted by the stochastic equations are assessed by comparisons with the PARABOLA measurements from coniferous and broadleaf forest stands in the BOREAS Southern Study Areas. The pair correlation functions are derived from data on tree structural parameters collected during field campaigns conducted at these sites. The simulated canopy reflectances compare well with the PARABOLA data.

  17. Photosynthesis-transpiration coupling model at canopy scale in terrestrial ecosystem

    Institute of Scientific and Technical Information of China (English)

    REN; Chuanyou; YU; Guirui; WANG; Qiufeng; GUAN; Dexin

    2005-01-01

    At the hypothesis of big leaf, an ecosystem photosynthesis-transpiration coupling cycle model was established by the scaled SMPT-SB model from single leaf to canopy, and model parameterization methods were discussed. Through simulating the canopy light distribution, canopy internal conductance to CO2 can be scaled from single leaf to canopy by integrating to canopy using the relationship between single internal conductance and photosynthetic photon flux density. Using the data observed by eddy covariance method from the Changbai Mountains site of ChinaFLUX, the application of the model at the canopy scale was examined. Under no water stress, the simulated net ecosystem photosynthesis rate fitted with the observed data very well, the slope and R2 of the line regression equation of the observed and simulated values were 0.7977 and 0.8892, respectively (n = 752), and average absolute error was 3.78 μmol CO2 m-2s-1; the slope, R2 and average absolute error of transpiration rate were 0.7314, 0.4355 and 1.60mmol H2O m-2 s-1, respectively (n = 752). The relationship between canopy photosynthesis,transpiration and external environmental conditions was discussed by treating the canopy as a whole and neglecting the comprehensive feedback mechanism within canopy, and it was noted that the precipitation course affected the transpiration rate simulation badly. Compared to the models based on eco-physiological processes, the SMPT-SB model was simple and easy to be used. And it can be used as a basic carbon and water coupling model of soil-plant-atmosphere continuum.

  18. Stream Habitat Reach Summary - NCWAP [ds158

    Data.gov (United States)

    California Department of Resources — The Stream Habitat - NCWAP - Reach Summary [ds158] shapefile contains in-stream habitat survey data summarized to the stream reach level. It is a derivative of the...

  19. Percent Agriculture Adjacent to Streams (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The type of vegetation along a stream influences the water quality in the stream. Intact buffer strips of natural vegetation along streams tend to intercept...

  20. Percent Forest Adjacent to Streams (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The type of vegetation along a stream influences the water quality in the stream. Intact buffer strips of natural vegetation along streams tend to intercept...

  1. Abundance of Green Tree Frogs and Insects in Artificial Canopy Gaps in a Bottomland Hardwood Forest.

    Energy Technology Data Exchange (ETDEWEB)

    Horn, Scott; Hanula, James, L.; Ulyshen, Michael D.; Kilgo, John, C.

    2005-04-01

    ABSTRACT - We found more green tree frogs ( Hyla cinerea) n canopv gaps than in closed canopy forest. Of the 331 green tree frogs observed, 88% were in canopv gaps. Likewise, higher numbers and biomasses of insects were captured in the open gap habitat Flies were the most commonlv collected insect group accounting for 54% of the total capture. These data suggest that one reason green tree frogs were more abundant in canopy gaps was the increased availability of prey and that small canopy gaps provide early successional habitats that are beneficial to green tree frog populations.

  2. Detecting Canopy Water Status Using Shortwave Infrared Reflectance Data From Polar Orbiting and Geostationary Platforms

    DEFF Research Database (Denmark)

    Fensholt, Rasmus; Huber Gharib, Silvia; Proud, Simon Richard;

    2010-01-01

    Various canopy water status estimates have been developed from recent advances in Earth Observation (EO) technology. A promising methodology is based on the sensitivity of shortwave infrared (SWIR) reflectance to variations in leaf water content. This study explores the potential of SWIR......-based canopy water status detection from geostationary Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI) data as compared to polar orbiting environmental satellite (POES)-based moderate resolution imaging spectroradiometer (MODIS) data. The EO-based SWIR water stress index...... for SWIR-based canopy water status and stress monitoring in a semi-arid environment....

  3. Streaming patterns in Faraday waves

    CERN Document Server

    Périnet, Nicolas; Urra, Héctor; Mujica, Nicolás; Gordillo, Leonardo

    2016-01-01

    Waves patterns in the Faraday instability have been studied for decades. Besides the rich dynamics that can be observed on the waves at the interface, Faraday waves hide beneath them an elusive range of flow patterns --or streaming patterns-- which have not been studied in detail until now. The streaming patterns are responsible for a net circulation in the flow which are reminiscent of convection cells. In this article, we analyse these streaming flows by conducting experiments in a Faraday-wave setup. To visualize the flows, tracers are used to generate both trajectory maps and to probe the streaming velocity field via Particle Image Velocimetry (PIV). We identify three types of patterns and experimentally show that identical Faraday waves can mask streaming patterns that are qualitatively very different. Next we propose a three-dimensional model that explains streaming flows in quasi-inviscid fluids. We show that the streaming inside the fluid arises from a complex coupling between the bulk and the boundar...

  4. Plant science in forest canopies--the first 30 years of advances and challenges (1980-2010).

    Science.gov (United States)

    Lowman, Margaret D; Schowalter, Timothy D

    2012-04-01

    As an emerging subdiscipline of forest biology, canopy science has undergone a transition from observational, 'oh-wow' exploration to a more hypothesis-driven, experimental arena for rigorous field biology. Although efforts to explore forest canopies have occurred for a century, the new tools to access the treetops during the past 30 yr facilitated not only widespread exploration but also new discoveries about the complexity and global effects of this so-called 'eighth continent of the planet'. The forest canopy is the engine that fixes solar energy in carbohydrates to power interactions among forest components that, in turn, affect regional and global climate, biogeochemical cycling and ecosystem services. Climate change, biodiversity conservation, fresh water conservation, ecosystem productivity, and carbon sequestration represent important components of forest research that benefit from access to the canopy for rigorous study. Although some canopy variables can be observed or measured from the ground, vertical and horizontal variation in environmental conditions and processes within the canopy that determine canopy-atmosphere and canopy-forest floor interactions are best measured within the canopy. Canopy science has matured into a cutting-edge subset of forest research, and the treetops also serve as social and economic drivers for sustainable communities, fostering science education and ecotourism. This interdisciplinary context of forest canopy science has inspired innovative new approaches to environmental stewardship, involving diverse stakeholders. PMID:22348430

  5. Temporal Dynamics and Environmental Controls on Carbon Isotope Discrimination at the Canopy Scale

    Science.gov (United States)

    Billmark, K. A.; Griffis, T. J.; Lee, X.; Welp, L. R.; Baker, J. M.

    2007-12-01

    Much is currently known about 13C isotopic discrimination by C3 plants at the leaf scale. Multidisciplinary techniques from micrometeorology and the stable isotope community have exploited this knowledge to better understand the dynamic processes and environmental controls on atmosphere/biosphere exchange. Unfortunately, there remains a dearth of measurements relating carbon isotope discrimination at the canopy scale (Δcanopy) with the net carbon ecosystem flux. Our goals here are to evaluate temporal fluctuations in Δcanopy as a result of variable environmental conditions and to critically assess the efficacy of leaf-level assumptions applied at the canopy scale. At the University of Minnesota's Rosemount Research and Outreach Center (RROC), the exchange of 12CO2 and 13CO2 isotopologues are continuously measured using tunable diode laser (TDL) and micrometeorological techniques (eddy covariance-TDL and gradient-TDL methods). We utilize these data in conjunction with eddy flux and ancillary meteorological measurements to estimate Δcanopy, a key parameter for understanding ecosystem carbon source/sink behavior. Traditionally, Δcanopy is estimated using stomatal conductance models and leaf level isotopic discrimination parameters. In this study, we similarly calculated Δcanopy (Big-Leaf approach), where stomatal conductance was obtained through inversion of the Penman-Monteith equation. Additionally, given the high resolution of eddy flux and isoflux measurements at the RROC site, we were able to calculate Δcanopy using an inverse flux approach. For this approach, we partitioned the net ecosystem flux using eddy covariance measurements and a nighttime temperature regression method, and then calculated Δcanopy from the isoflux mass balance. Both calculations of Δcanopy emphasized the diurnal, daily and seasonal variability of this important parameter. In particular, atypically hot weather strongly influenced canopy isotope discrimination. Trends in the two Δcanopy

  6. Continuous sampling from distributed streams

    DEFF Research Database (Denmark)

    Graham, Cormode; Muthukrishnan, S.; Yi, Ke;

    2012-01-01

    A fundamental problem in data management is to draw and maintain a sample of a large data set, for approximate query answering, selectivity estimation, and query planning. With large, streaming data sets, this problem becomes particularly difficult when the data is shared across multiple...... for each participant. In this article, we present communication-efficient protocols for continuously maintaining a sample (both with and without replacement) from k distributed streams. These apply to the case when we want a sample from the full streams, and to the sliding window cases of only the W most...

  7. Effects of Recent Debris Flows on Stream Ecosystems and Food Webs in Small Watersheds in the Central Klamath Mountains, NW California

    Science.gov (United States)

    Cover, M. R.; de La Fuente, J.

    2008-12-01

    Debris flows are common erosional processes in steep mountain areas throughout the world, but little is known about the long-term ecological effects of debris flows on stream ecosystems. Based on debris flow histories that were developed for each of ten tributary basins, we classified channels as having experienced recent (1997) or older (pre-1997) debris flows. Of the streams classified as older debris flow streams, three streams experienced debris flows during floods in 1964 or 1974, while two streams showed little or no evidence of debris flow activity in the 20th century. White alder (Alnus rhombifolia) was the dominant pioneer tree species in recent debris flow streams, forming localized dense patches of canopy cover. Maximum temperatures and daily temperature ranges were significantly higher in recent debris flow streams than in older debris flow streams. Debris flows resulted in a shift in food webs from allochthonous to autochthonous energy sources. Primary productivity, as measured by oxygen change during the day, was greater in recent debris flow streams, resulting in increased abundances of grazers such as the armored caddisfly Glossosoma spp. Detritivorous stoneflies were virtually absent in recent debris flow streams because of the lack of year-round, diverse sources of leaf litter. Rainbow trout (Oncorhynchus mykiss) were abundant in four of the recent debris flow streams. Poor recolonizers, such as the Pacific giant salamander (Dicamptodon tenebrosus), coastal tailed frog (Ascaphus truei), and signal crayfish (Pacifistacus leniusculus), were virtually absent in recent debris flow streams. Forest and watershed managers should consider the role of forest disturbances, such as road networks, on debris flow frequency and intensity, and the resulting ecological effects on stream ecosystems.

  8. Studies of microwave scattering and canopy architecture for boreal forests

    Science.gov (United States)

    Lockhart, G. Lance; Gogineni, S. P.

    1994-01-01

    Our primary objectives during the last year have been to develop a helicopter-borne radar system for measuring microwave backscatter from vegetation and to use this system to study the characteristics of backscatter from the boreal forest. Our research is aimed at refining the current microwave models and using these improvements for more accurate interpretation of SAR data. SAR data are very useful for monitoring the boreal forest region because of the microwave signal's ability to penetrate clouds and to see at night. Meeting these objectives involves several stages of development. The first stage is the design and implementation of a frequency-modulated continuous-wave (FM-CW) radar system with the capability of measuring backscatter at three frequencies and four polarizations at each frequency. These requirements necessitate a twelve-channel radar system. Using three frequencies is advantageous because it allows us to look at different parts of the canopy. For instance, the lower frequency signal penetrates deeper into the canopy and allows us to see the ground while the high frequency signal is scattered more by the leaves and needles and typically does not penetrate to the floor of the forest. We designed the radar starting with the antenna system. We then developed the intermediate frequency (IF) and radio frequency (RF) sections of the radar. Also, the need to collect data from twelve channels during each flight line presented a complex data acquisition problem that we solved by using a high-speed data acquisition board. After construction, the radar was tested at the lab. We performed extensive testing of the IF and RF systems of the radar during this time. Once we were satisfied with the operation of the radar it was shipped to Canada for use in the second intensive field campaign (IFC-2) from July 16 - August 8, 1994. During IFC-2, we collected backscatter data over the experimental sites in the southern study area (SSA). Additionally, we used a ground

  9. ATLAS Live: Collaborative Information Streams

    Science.gov (United States)

    Goldfarb, Steven; ATLAS Collaboration

    2011-12-01

    I report on a pilot project launched in 2010 focusing on facilitating communication and information exchange within the ATLAS Collaboration, through the combination of digital signage software and webcasting. The project, called ATLAS Live, implements video streams of information, ranging from detailed detector and data status to educational and outreach material. The content, including text, images, video and audio, is collected, visualised and scheduled using digital signage software. The system is robust and flexible, utilizing scripts to input data from remote sources, such as the CERN Document Server, Indico, or any available URL, and to integrate these sources into professional-quality streams, including text scrolling, transition effects, inter and intra-screen divisibility. Information is published via the encoding and webcasting of standard video streams, viewable on all common platforms, using a web browser or other common video tool. Authorisation is enforced at the level of the streaming and at the web portals, using the CERN SSO system.

  10. ATLAS Live: Collaborative Information Streams

    CERN Document Server

    Goldfarb, S; The ATLAS collaboration

    2011-01-01

    I report on a pilot project launched in 2010 focusing on facilitating communication and information exchange within the ATLAS Collaboration, through the combination of digital signage software and webcasting. The project, called ATLAS Live, implements video streams of information, ranging from detailed detector and data status to educational and outreach material. The content, including text, images, video and audio, is collected, visualised and scheduled using digital signage software. The system is robust and flexible, utilizing scripts to input data from remote sources, such as the CERN Document Server, Indico, or any available URL, and to integrate these sources into professional-quality streams, including text scrolling, transition effects, inter and intra-screen divisibility. Information is published via the encoding and webcasting of standard video streams, viewable on all common platforms, using a web browser or other common video tool. Authorisation is enforced at the level of the streaming and at th...

  11. Hydrography - Boating Special Regulation Streams

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This layer contains those streams/rivers within Pennsylvania that have specifc special regulations related to boating as defined by the Pennsylvania Fish and Boat...

  12. ATLAS Live: Collaborative Information Streams

    International Nuclear Information System (INIS)

    I report on a pilot project launched in 2010 focusing on facilitating communication and information exchange within the ATLAS Collaboration, through the combination of digital signage software and webcasting. The project, called ATLAS Live, implements video streams of information, ranging from detailed detector and data status to educational and outreach material. The content, including text, images, video and audio, is collected, visualised and scheduled using digital signage software. The system is robust and flexible, utilizing scripts to input data from remote sources, such as the CERN Document Server, Indico, or any available URL, and to integrate these sources into professional-quality streams, including text scrolling, transition effects, inter and intra-screen divisibility. Information is published via the encoding and webcasting of standard video streams, viewable on all common platforms, using a web browser or other common video tool. Authorisation is enforced at the level of the streaming and at the web portals, using the CERN SSO system.

  13. Cellular Subcompartments through Cytoplasmic Streaming.

    Science.gov (United States)

    Pieuchot, Laurent; Lai, Julian; Loh, Rachel Ann; Leong, Fong Yew; Chiam, Keng-Hwee; Stajich, Jason; Jedd, Gregory

    2015-08-24

    Cytoplasmic streaming occurs in diverse cell types, where it generally serves a transport function. Here, we examine streaming in multicellular fungal hyphae and identify an additional function wherein regimented streaming forms distinct cytoplasmic subcompartments. In the hypha, cytoplasm flows directionally from cell to cell through septal pores. Using live-cell imaging and computer simulations, we identify a flow pattern that produces vortices (eddies) on the upstream side of the septum. Nuclei can be immobilized in these microfluidic eddies, where they form multinucleate aggregates and accumulate foci of the HDA-2 histone deacetylase-associated factor, SPA-19. Pores experiencing flow degenerate in the absence of SPA-19, suggesting that eddy-trapped nuclei function to reinforce the septum. Together, our data show that eddies comprise a subcellular niche favoring nuclear differentiation and that subcompartments can be self-organized as a consequence of regimented cytoplasmic streaming. PMID:26305593

  14. In situ hyperspectral data analysis for canopy chlorophyll content estimation of an invasive species spartina alterniflora based on PROSAIL canopy radiative transfer model

    Science.gov (United States)

    Ai, Jinquan; Gao, Wei; Shi, Runhe; Zhang, Chao; Sun, Zhibin; Chen, Wenhui; Liu, Chaoshun; Zeng, Yuyan

    2015-09-01

    Spartina alterniflora is one of the most serious invasive species in the coastal saltmarshes of China. An accurate quantitative estimation of its canopy leaf chlorophyll content is of great importance for monitoring plant physiological state and vegetation productivity. Hyperspectral reflectance data representing a range of canopy chlorophyll content were simulated by using the PROSAIL radiative transfer model at a 1nm sampling interval, which was based on prior knowledge of S.alterniflora. A set of indices was tested for estimating canopy chlorophyll content. Subsequently, validation were performed for testing the performance of indices, based on the PROSAIL model using in situ data measured by a Spectroradiometer with spectral range of 350-2500nm in a late autumn in a sub-tropical estuarine marsh. PROSAIL simulations showed that the most readily available indices were not good to be directly used in canopy chlorophyll estimation of S.alterniflora. The modified Chlorophyll Absorption in Reflectance Index MCARI[705,750] was linear related to the canopy chlorophyll content (R2=0.94) , but did not achieve a satisfactory estimation results with a high RMSE (RMSE=0.95 g.m-2). We optimized the index MCARI[705,750] by introducing a scale conversion coefficient to the formula to solve data units inconsistent, which is between the practical application unit and the unit used in the process of establishing the index, and balance scale transformation through radiative transfer models and examing corresponding canopy reflectance index values. We proposed index Optimized modified Chlorophyll Absorption in Reflectance Index OMCARI[705, 750]. The results showed that the index OMCARI[705, 750] had higher precision of prediction of chlorophyll for S.alterniflora (R2=0.94,RMSE=0.41 g.m-2 ).

  15. Soil and canopy CO2, 13CO2, H2O and sensible heat flux partitions in a forest canopy inferred from concentration measurements

    International Nuclear Information System (INIS)

    A canopy scale model is presented that utilises Lagrangian dispersal theory to describe the relationship between source distribution and concentration within the canopy. The present study differs from previous studies in three ways: (1) source/sink distributions are solved simultaneously for CO2, 13CO2, H2O and sensible heat to find a solution consistent with leaf-level constraints imposed by photosynthetic capacity, stomatal and boundary layer conductance, available energy and carbon isotopic discrimination during diffusion and carboxylation; (2) the model is used to solve for parameters controlling the nonlinear source interactions rather than the sources themselves; and (3) this study used plant physiological principles to allow the incorporation of within- and above-canopy measurements of the 13C/12C ratios of CO2 as an additional constraint. Source strengths of CO2, H2O, sensible heat and 13CO2 within a Siberian mixed-coniferous forest were constrained by biochemical and energy-balance principles applied to sun and shaded leaves throughout the canopy. Parameters relating to maximum photosynthetic capacity, stomatal conductance, radiation penetration and turbulence structure were determined by the optimisation procedure to match modelled and measured concentration profiles, effectively inverting the concentration data. Ground fluxes of CO2, H2O and sensible heat were also determined by the inversion. Total ecosystem fluxes predicted from the inversion were compared to hourly averaged above-canopy eddy covariance measurements over a ten-day period, with good agreement. Model results showed that stomatal conductance and maximum photosynthetic capacity were depressed due to the low temperatures experienced during snow melt; radiation penetrated further than simple theoretical predictions because of leaf clumping and penumbra, and stability effects were important in the morning and evening. The inversion was limited by little vertical structure in the concentration

  16. Tree Canopy Characterization for EO-1 Reflective and Thermal Infrared Validation Studies: Rochester, New York

    Science.gov (United States)

    Ballard, Jerrell R., Jr.; Smith, James A.

    2002-01-01

    The tree canopy characterization presented herein provided ground and tree canopy data for different types of tree canopies in support of EO-1 reflective and thermal infrared validation studies. These characterization efforts during August and September of 2001 included stem and trunk location surveys, tree structure geometry measurements, meteorology, and leaf area index (LAI) measurements. Measurements were also collected on thermal and reflective spectral properties of leaves, tree bark, leaf litter, soil, and grass. The data presented in this report were used to generate synthetic reflective and thermal infrared scenes and images that were used for the EO-1 Validation Program. The data also were used to evaluate whether the EO-1 ALI reflective channels can be combined with the Landsat-7 ETM+ thermal infrared channel to estimate canopy temperature, and also test the effects of separating the thermal and reflective measurements in time resulting from satellite formation flying.

  17. The arthropod community of Scots pine (Pinus sylvestris L.) canopies in Norway

    Czech Academy of Sciences Publication Activity Database

    Thunes, K. H.; Skartveit, J.; Gjerde, I.; Starý, Josef; Solhoy, T.; Fjellberg, A.; Kobro, S.; Nakahara, S.; zur Strassen, R.; Vierbergen, G.; Szadziewski, R.; Hagan, D. V.; Grogan Jr., W. L.; Jonassen, T.; Aakra, K.; Anonby, J.; Greve, L.; Aukema, B.; Heller, K.; Michelsen, V.; Haenni, J.-P.; Emeljanov, A. F.; Douwes, P.; Berggren, K.; Franzen, J.; Disney, R. H. L.; Prescher, S.; Johanson, K. A.; Mamaev, B.; Podenas, S.; Andersen, S.; Gaimari, S. D.; Nartshuk, E.; Soli, G. E. E.; Papp, L.; Midtgaard, F.; Andersen, A.; von Tschirnhaus, M.; Bächli, G.; Olsen, K. M.; Olsvik, H.; Földvári, M.; Raastad, J. E.; Hansen, L. O.; Djursvoll, P.

    2004-01-01

    Roč. 15, - (2004), s. 65-90. ISSN 0785-8760 Institutional research plan: CEZ:AV0Z6066911 Keywords : arthropod community * Scots pine * canopies Subject RIV: EH - Ecology, Behaviour Impact factor: 0.298, year: 2004

  18. Do changes in the azimuthal distribution of maize leaves over time affect canopy light absorption?

    International Nuclear Information System (INIS)

    In maize canopies, when modelling the architecture and light regime one usually assumes leaf azimuths are distributed uniformly. Once we had demonstrated azimuthal re-orientation of maize leaves during the vegetative phase, we tested the weight of this hypothesis on the light absorbed daily by the canopy. We thus modelled the three-dimensional (3D) geometry of maize canopies with various plant densities and at different developmental stages using plant digitizing under field conditions. We simulated radiative transfer using a volume-based approach within actual and hypothetical canopies, obtained by simply rearranging leaf azimuths. Simulations indicated that changes to horizontal heterogeneity have little effect on daily light absorption efficiency. It is concluded that changes in leaf azimuths do not have to be taken into account in crop-functioning models. (author)

  19. A comparison of Stokes parameters for sky and a soybean canopy

    Science.gov (United States)

    Schutt, John B.; Holben, Brent N.; Mcmurtrey, James E., III

    1991-01-01

    An evaluation of the polarization signatures obtained from the four Stokes parameters is reported for the atmosphere and a soybean canopy. The polarimeter design and operation are set forth, and the Stokes parameters' relationships are discussed. The canopy polarization was different from the sky at azimuths of 90 and 270 degrees, demonstrating a response that reflecting the sky polarization signatures across a plane parallel to the polarization axis and passing through a phase angle of about 90 degrees would produce. Classical behavior in terms of electromagnetic theory was found in the fourth Stokes parameter of the canopy which was obtained in the principal plane. Only the third Stokes parameter is demonstrated to be unambiguously affected in a comparison of sky polarization signatures and aerosol optical densities. The similarity between the sky at azimuth 180 degrees and the soybean canopy data at the principal plane is interesting considering the disparity of the subjects.

  20. Upper canopy pollinators of Eucryphia cordifolia Cav., a tree of South American temperate rain forest

    Directory of Open Access Journals (Sweden)

    Cecilia Smith-Ramírez

    2016-05-01

    Full Text Available Ecological processes in the upper canopy of temperate forests have been seldom studied because of the limited accessibility. Here, we present the results of the first survey of the pollinator assemblage and the frequency of insect visits to flowers in the upper branches of ulmo, Eucryphia cordifolia Cav., an emergent 30-40 m-tall tree in rainforests of Chiloé Island, Chile. We compared these findings with a survey of flower visitors restricted to lower branches of E. cordifolia 1- in the forest understory, 2- in lower branches in an agroforestry area. We found 10 species of pollinators in canopy, and eight, 12 and 15 species in understory, depending of tree locations. The main pollinators of E. cordifolia in the upper canopy differed significantly from the pollinator assemblage recorded in lower tree branches. We conclude that the pollinator assemblages of the temperate forest canopy and interior are still unknown.

  1. 100-Meter Resolution Tree Canopy of the Conterminous United States - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer contains tree canopy data for the conterminous United States, in an Albers Equal-Area Conic projection and at a resolution of 100 meters. The tree...

  2. Performance of the Cray T3D and emerging architectures on canopy QCD applications

    CERN Document Server

    Fischler, M; Fischler, Mark; Uchima, Mike

    1995-01-01

    The Cray T3D, an MIMD system with NUMA shared memory capabilities and in principle very low communications latency, can support the Canopy framework for grid-oriented applications. CANOPY has been ported to the T3D, with the intent of making it available to a spectrum of users. The performance of the T3D running Canopy has been benchmarked on five QCD applications extensively run on ACPMAPS at Fermilab, requiring a variety of data access patterns. The net performance and scaling behavior reveals an efficiency relative to peak Gflops almost identical to that achieved on ACPMAPS. Detailed studies of the major factors impacting performance are presented. Generalizations applying this analysis to the newly emerging crop of commercial systems reveal where their limitations will lie. On these applications efficiencies of above 25\\% are not to be expected; eliminating overheads due to Canopy will improve matters, but by less than a factor of two.

  3. Determination of Wind Pressure Coefficients for Arc-Shaped Canopy Roof with Numerical Wind Tunnel Method

    Institute of Scientific and Technical Information of China (English)

    YIN Yue; ZHANG Tianshu; HAN Qinghua; YANG Huidong

    2009-01-01

    In this paper, the wind load on an arc-shaped canopy roof was studied with numerical wind tunnel method(NWTM). Three-dimensional models were set up for the canopy roof with opened or closed skylights. The air flow around the roof under wind action from three directions was analysed respectively. Wind pressure coeffi-cients on the canopy roof were determined by NWTM. The results of NWTM agreed well with those of wind tunnel test for the roof with opened skylights, which verified the applicability and rationality of NWTM. The effect of the closure of skylights was then investigated with NWTM. It was concluded that the closure of the skylights may in-crease the wind suction on the top surface of the roof greatly and should be considered in the structure design of the canopy roof.

  4. Effect of canopy density on litter invertebrate community structure in pine forests

    Directory of Open Access Journals (Sweden)

    Brygadyrenko Viktor V.

    2016-03-01

    Full Text Available We investigated the structure of the litter invertebrate community in 141 pine (Pinus sylvestris Linnaeus, 1753 forest sites with five variants of canopy density (30-44, 45-59, 60-74, 75-89 and 90-100% in the steppe zone of Ukraine. The total number of litter macrofauna specimens collected at each site decreased from an average of 84/100 trap-days in the sparsest stands (30-40% density to 4-39 specimens/100 trap-days in the forests with a denser canopy. The number of macrofauna species caught in the pitfall traps does not vary significantly with different degrees of canopy density. The Shannon-Weaver and Pielou diversity indexes show increases corresponding to increasing stages of canopy density. The average share of phytophages in the trophic structure of the litter macrofauna does not vary with canopy density. The relative number of saprophages decreases from 54% in the forests with the sparsest canopy to 11-13% in the forests with denser canopies. The relative number of saprophages in pine forests (22% is lower than that in deciduous forests (40%. The share of zoophages in the trophic structure of the litter macrofauna increases significantly with the increase in the pine forest canopy density (from 21% in the sparsest plots to 59% in the densest. The relative number of polyphages is highest (47-65% when the canopy density is 45-89%. At canopy densities below or above this range, the share of polyphages in the community decreases to 20 and 24%, respectively. Regardless of canopy density, Formicidae and Lycosidae invariably rank amongst the first three dominant families. Nine families of invertebrates dominate in the pine forest stands with the highest density (90-100%, and 5-7 families dominate in the stands with lower density. For the pine forest litter macrofauna, we have observed an extreme simplification of the community size structure compared with natural and planted deciduous forests of the steppe zone of Ukraine.

  5. Ecohydrological responses of dense canopies to environmental variability: 1. Interplay between vertical structure and photosynthetic pathway

    Science.gov (United States)

    Drewry, D. T.; Kumar, P.; Long, S.; Bernacchi, C.; Liang, X.-Z.; Sivapalan, M.

    2010-12-01

    Vegetation acclimation to changing climate, in particular elevated atmospheric concentrations of carbon dioxide (CO2), has been observed to include modifications to the biochemical and ecophysiological functioning of leaves and the structural components of the canopy. These responses have the potential to significantly modify plant carbon uptake and surface energy partitioning, and have been attributed with large-scale changes in surface hydrology over recent decades. While the aggregated effects of vegetation acclimation can be pronounced, they often result from subtle changes in canopy properties that require the resolution of physical, biochemical and ecophysiological processes through the canopy for accurate estimation. In this paper, the first of two, a multilayer canopy-soil-root system model developed to capture the emergent vegetation responses to environmental change is presented. The model incorporates both C3 and C4 photosynthetic pathways, and resolves the vertical radiation, thermal, and environmental regimes within the canopy. The tight coupling between leaf ecophysiological functioning and energy balance determines vegetation responses to climate states and perturbations, which are modulated by soil moisture states through the depth of the root system. The model is validated for three growing seasons each for soybean (C3) and maize (C4) using eddy-covariance fluxes of CO2, latent, and sensible heat collected at the Bondville (Illinois) Ameriflux tower site. The data set provides an opportunity to examine the role of important environmental drivers and model skill in capturing variability in canopy-atmosphere exchange. Vertical variation in radiative states and scalar fluxes over a mean diurnal cycle are examined to understand the role of canopy structure on the patterns of absorbed radiation and scalar flux magnitudes and the consequent differences in sunlit and shaded source/sink locations through the canopies. An analysis is made of the impact of

  6. Theory of radiative transfer models applied in optical remote sensing of vegetation canopies.

    OpenAIRE

    Verhoef, W.

    1998-01-01

    In this thesis the work of the author on the modelling of radiative transfer in vegetation canopies and the terrestrial atmosphere is summarized. The activities span a period of more than fifteen years of research in this field carried out at the National Aerospace Laboratory NLR.For the interpretation of optical remote sensing observations of vegetation canopies from satellites or aircraft the use of simulation models can be an important tool, as these models give insight in the relations be...

  7. A New Airborne Lidar for Remote Sensing of Canopy Fluorescence and Vertical Profile

    OpenAIRE

    Ounis A.; Bach J.; Mahjoub A.; Daumard F.; Moya I.; Goulas Y.

    2016-01-01

    We report the development of a new lidar system for airborne remote sensing of chlorophyll fluorescence (ChlF) and vertical profile of canopies. By combining laserinduced fluorescence (LIF), sun-induced fluorescence (SIF) and canopy height distribution, the new instrument will low the simultaneous assessment of gross primary production (GPP), photosynthesis efficiency and above ground carbon stocks. Technical issues of the lidar development are discussed and expected performances are presented.

  8. A New Airborne Lidar for Remote Sensing of Canopy Fluorescence and Vertical Profile

    Science.gov (United States)

    Ounis, A.; Bach, J.; Mahjoub, A.; Daumard, F.; Moya, I.; Goulas, Y.

    2016-06-01

    We report the development of a new lidar system for airborne remote sensing of chlorophyll fluorescence (ChlF) and vertical profile of canopies. By combining laserinduced fluorescence (LIF), sun-induced fluorescence (SIF) and canopy height distribution, the new instrument will low the simultaneous assessment of gross primary production (GPP), photosynthesis efficiency and above ground carbon stocks. Technical issues of the lidar development are discussed and expected performances are presented.

  9. Thermal canopy photography in forestry - an alternative to optical cover photography

    OpenAIRE

    Nölke N; Beckschäfer P; Kleinn C

    2015-01-01

    Hemispherical canopy photography is a widely used technique to observe crown-related forest variables. However, standardization of this technique remains challenging, as exposure and threshold settings continue to constitute the main sources of variation of such photographs. This paper, therefore, presents a new method to overcome standardization issues by using thermal canopy photography. With a thermal camera, images are produced which are not critically limited in their dynamic range so th...

  10. Canopy spectral invariants, Part 2: Application to classification of forest types from hyperspectral data

    International Nuclear Information System (INIS)

    Many studies have been conducted to demonstrate the ability of hyperspectral data to discriminate plant dominant species. Most of them have employed the use of empirically based techniques, which are site specific, requires some initial training based on characteristics of known leaf and/or canopy spectra and therefore may not be extendable to operational use or adapted to changing or unknown land cover. In this paper we propose a physically based approach for separation of dominant forest type using hyperspectral data. The radiative transfer theory of canopy spectral invariants underlies the approach, which facilitates parameterization of the canopy reflectance in terms of the leaf spectral scattering and two spectrally invariant and structurally varying variables-recollision and directional escape probabilities. The methodology is based on the idea of retrieving spectrally invariant parameters from hyperspectral data first, and then relating their values to structural characteristics of three-dimensional canopy structure. Theoretical and empirical analyses of ground and airborne data acquired by Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) over two sites in New England, USA, suggest that the canopy spectral invariants convey information about canopy structure at both the macro- and micro-scales. The total escape probability (one minus recollision probability) varies as a power function with the exponent related to the number of nested hierarchical levels present in the pixel. Its base is a geometrical mean of the local total escape probabilities and accounts for the cumulative effect of canopy structure over a wide range of scales. The ratio of the directional to the total escape probability becomes independent of the number of hierarchical levels and is a function of the canopy structure at the macro-scale such as tree spatial distribution, crown shape and size, within-crown foliage density and ground cover. These properties allow for the natural

  11. Comparative locomotor ecology of gibbons and macaques: selection of canopy elements for crossing gaps.

    Science.gov (United States)

    Cannon, C H; Leighton, M

    1994-04-01

    To examine functional questions of arboreal locomotor ecology, the selection of canopy elements by Bornean agile gibbons (Hylobates agilis) and long-tailed macaques (Macaca fascicularis) was contrasted, and related to locomotor behaviors. The two species, and in some cases, the macaque sexes, varied in their use of most structural elements. Although both species traveled most frequently in the main canopy layer (macaques: 56%, gibbons: 48%), the gibbons strongly preferred the emergent canopy layer and traveled higher than the macaques (31 vs. 23 m above ground) in larger trees (48 vs. 26 cm dbh). Macaques preferred to cross narrower gaps (50% were in the class 0.1-0.5 m wide) than gibbons (42% were 1.6-3.0 m wide), consistent with the maximum gap width each crossed (3.5 m for macaques, 9 m for gibbons). Macaques could cross only 12% of the gaps encountered in the main canopy, and < 5% of the gaps in each of the other four layers. In contrast, all layers appear relatively continuous for gibbons. Specialized locomotor modes were used disproportionately at the beginning and end of travel segments, further indicating that behavior was organized around gap crossings. A model is defined, the Perceived Continuity Index (PCI), which predicts the relative use of canopy strata for each species, based on the percentage of gaps a species can cross, the frequency of gaps, and median length of continuous canopy structure in each canopy layer. The results support the hypothesis that locomotor behaviors, and strategies of selecting canopy strata for travel, are strongly constrained by wide gaps between trees and are ultimately based on selection for efficient direct line travel between distant points. PMID:8048471

  12. Modelling the impact of green infrastructures on local microclimate within an idealized homogeneous urban canopy

    OpenAIRE

    Tavares, Richard; CALMET, Isabelle; DUPONT, Sylvain

    2015-01-01

    Aiming to overcome some of well-known limitations of existing models when applied to analyse the impact of green infrastructures in urban areas, we propose the ARPS-VUC model, a new urbanized version of the APRS model, applicable from neighbourhood to city scales. It results from the integration of the Vegetated Urban Canopy (VUC) model in the ARPS meteorological code. The novelty is the integration of an intermediate multilayer canopy modelling approach, where meteorological fields ...

  13. Hyperspectral indices for detecting changes in canopy reflectance as a result of underground natural gas leakage

    OpenAIRE

    Noomen, M.F.; Smith, K. L.; Colls, J.J.; Steven, M.D.; A. K. Skidmore; Meer, Van Der

    2008-01-01

    Natural gas leakage from underground pipelines is known to affect vegetation adversely, probably by displacement of the soil oxygen needed for respiration. This causes changes in plant and canopy reflectance, which may serve as indicators of gas leakage. In this study, a covariance analysis was performed between reflectance indices of maize (Zea mays) and wheat (Triticum aestivum) canopies and oxygen concentrations in a simulated natural gas leak. Twenty-nine days after oxygen shortage occurr...

  14. Quantifying Ancient Maya Land Use Legacy Effects on Contemporary Rainforest Canopy Structure

    Directory of Open Access Journals (Sweden)

    Jessica N. Hightower

    2014-11-01

    Full Text Available Human land use legacies have significant and long-lasting ecological impacts across landscapes. Investigating ancient (>400 years legacy effects can be problematic due to the difficulty in detecting specific, historic land uses, especially those hidden beneath dense canopies. Caracol, the largest (~200 km2 Maya archaeological site in Belize, was abandoned ca. A.D. 900, leaving behind myriad structures, causeways, and an extensive network of agricultural terraces that persist beneath the architecturally complex tropical forest canopy. Airborne LiDAR enables the detection of these below-canopy archaeological features while simultaneously providing a detailed record of the aboveground 3-dimensional canopy organization, which is indicative of a forest’s ecological function. Here, this remote sensing technology is used to determine the effects of ancient land use legacies on contemporary forest structure. Canopy morphology was assessed by extracting LiDAR point clouds (0.25 ha plots from LiDAR-identified terraced (n = 150 and non-terraced (n = 150 areas on low (0°–10°, medium (10°–20°, and high (>20° slopes. We calculated the average canopy height, canopy openness, and vertical diversity from the LiDAR returns, with topographic features (i.e., slope, elevation, and aspect as covariates. Using a PerMANOVA procedure, we determined that forests growing on agricultural terraces exhibited significantly different canopy structure from those growing on non-terraced land. Terraces appear to mediate the effect of slope, resulting in less structural variation between slope and non-sloped land and yielding taller, more closed, more vertically diverse forests. These human land uses abandoned >1000 years ago continue to impact contemporary tropical rainforests having implications related to arboreal habitat and carbon storage.

  15. The canopy effect in AEM revisited : investigations using laser and radar altimetry

    OpenAIRE

    Beamish, David; Levaniemi, Hanna

    2010-01-01

    This study considers a specific issue, often termed the canopy effect that relates to our ability to provide accurate conductivity models from airborne electromagnetic (AEM) data. The central issue is one of the correct determination of sensor height(s) above the ground surface (terrain clearance) to the appropriate accuracy. The present study uses the radar and laser systems installed on a fixedwing AEM system to further investigate the effect. The canopy effect can arise due to a variety of...

  16. Canopy arthropods community within and among oak species in central Mexico

    OpenAIRE

    Efraín TOVAR-SANCHEZ

    2009-01-01

    Quercus rugosa and Q.laurina are species that presents a wide geographical distribution range in temperate forests of Mexico. Oak canopies contain a considerable portion of arthropod diversity and the arthropods fauna fulfill a wide variety of ecological roles. We examined the effect of oak species and seasonal changes on some community structure parameters (diversity, composition, similarity, biomass, rare species, and density of arthropod fauna) of canopy arthropods. In total, 40 oak ca...

  17. Impact of Canopy Openness on Spider Communities: Implications for Conservation Management of Formerly Coppiced Oak Forests.

    Directory of Open Access Journals (Sweden)

    Ondřej Košulič

    Full Text Available Traditional woodland management created a mosaic of differently aged patches providing favorable conditions for a variety of arthropods. After abandonment of historical ownership patterns and traditional management and the deliberate transformation to high forest after World War II, large forest areas became darker and more homogeneous. This had significant negative consequences for biodiversity. An important question is whether even small-scale habitat structures maintained by different levels of canopy openness in abandoned coppiced forest may constitute conditions suitable for forest as well as open habitat specialists. We investigated the effect of canopy openness in former traditionally coppiced woodlands on the species richness, functional diversity, activity density, conservation value, and degree of rareness of epigeic spiders. In each of the eight studied locations, 60-m-long transect was established consisting of five pitfall traps placed at regular 15 m intervals along the gradient. Spiders were collected from May to July 2012. We recorded 90 spider species, including high proportions of xeric specialists (40% and red-listed threatened species (26%. The peaks of conservation indicators, as well as spider community abundance, were shifted toward more open canopies. On the other hand, functional diversity peaked at more closed canopies followed by a rapid decrease with increasing canopy openness. Species richness was highest in the middle of the canopy openness gradient, suggesting an ecotone effect. Ordinations revealed that species of conservation concern tended to be associated with sparse and partly opened canopy. The results show that the various components of biodiversity peaked at different levels of canopy openness. Therefore, the restoration and suitable forest management of such conditions will retain important diversification of habitats in formerly coppiced oak forest stands. We indicate that permanent presence of small

  18. Impact of Canopy Openness on Spider Communities: Implications for Conservation Management of Formerly Coppiced Oak Forests

    Science.gov (United States)

    Košulič, Ondřej; Michalko, Radek; Hula, Vladimír

    2016-01-01

    Traditional woodland management created a mosaic of differently aged patches providing favorable conditions for a variety of arthropods. After abandonment of historical ownership patterns and traditional management and the deliberate transformation to high forest after World War II, large forest areas became darker and more homogeneous. This had significant negative consequences for biodiversity. An important question is whether even small-scale habitat structures maintained by different levels of canopy openness in abandoned coppiced forest may constitute conditions suitable for forest as well as open habitat specialists. We investigated the effect of canopy openness in former traditionally coppiced woodlands on the species richness, functional diversity, activity density, conservation value, and degree of rareness of epigeic spiders. In each of the eight studied locations, 60-m-long transect was established consisting of five pitfall traps placed at regular 15 m intervals along the gradient. Spiders were collected from May to July 2012. We recorded 90 spider species, including high proportions of xeric specialists (40%) and red-listed threatened species (26%). The peaks of conservation indicators, as well as spider community abundance, were shifted toward more open canopies. On the other hand, functional diversity peaked at more closed canopies followed by a rapid decrease with increasing canopy openness. Species richness was highest in the middle of the canopy openness gradient, suggesting an ecotone effect. Ordinations revealed that species of conservation concern tended to be associated with sparse and partly opened canopy. The results show that the various components of biodiversity peaked at different levels of canopy openness. Therefore, the restoration and suitable forest management of such conditions will retain important diversification of habitats in formerly coppiced oak forest stands. We indicate that permanent presence of small-scale improvements

  19. Portable and Airborne Small Footprint LiDAR: Forest Canopy Structure Estimation of Fire Managed Plots

    OpenAIRE

    Claudia M.C.S. Listopad; Drake, Jason B.; Weishampel, John F.; Ron. E. Masters

    2011-01-01

    This study used an affordable ground-based portable LiDAR system to provide an understanding of the structural differences between old-growth and secondary-growth Southeastern pine. It provided insight into the strengths and weaknesses in the structural determination of portable systems in contrast to airborne LiDAR systems. Portable LiDAR height profiles and derived metrics and indices (e.g., canopy cover, canopy height) were compared among plots with different fire frequency and fire season...

  20. Canopy structural alterations to nitrogen functions of the soil microbial community in a Quercus virginiana forest

    Science.gov (United States)

    Moore, L. D.; Van Stan, J. T., II; Rosier, C. L.; Gay, T. E.; Wu, T.

    2014-12-01

    Forest canopy structure controls the timing, amount and chemical character of precipitation supply to soils through interception and drainage along crown surfaces. Yet, few studies have examined forest canopy structural connections to soil microbial communities (SMCs), and none have measured how this affects SMC N functions. The maritime Quercus virginiana Mill. (southern live oak) forests of St Catherine's Island, GA, USA provide an ideal opportunity to examine canopy structural alterations to SMCs and their functioning, as their throughfall varies substantially across space due to dense Tillandsia usneoides L. (spanish moss) mats bestrewn throughout. To examine the impact of throughfall variability on SMC N functions, we examined points along the canopy coverage continuum: large canopy gaps (0%), bare canopy (50-60%), and canopy of heavy T. usneoides coverage (>=85%). Five sites beneath each of the canopy cover types were monitored for throughfall water/ions and soil leachates chemistry for one storm each month over the growing period (7 months, Mar-2014 to Sep-2014) to compare with soil chemistry and SMC communities sampled every two months throughout that same period (Mar, May, Jul, Sep). DGGE and QPCR analysis of the N functioning genes (NFGs) to characterize the ammonia oxidizing bacterial (AOB-amoA), archaea (AOA-amoA), and ammonification (chiA) communities were used to determine the nitrification and decomposition potential of these microbial communities. PRS™-probes (Western Ag Innovations Inc., Saskatoon, Canada) were then used to determine the availability of NO3-N and NH4+N in the soils over a 6-week period to evaluate whether the differing NFG abundance and community structures resulted in altered N cycling.

  1. The estimation of canopy attributes from digital cover photography by two different image analysis methods

    OpenAIRE

    Chianucci F; Chiavetta U; Cutini A

    2014-01-01

    Proximal sensing methods using digital photography have gained wide acceptance for describing and quantifying canopy properties. Digital hemispherical photography (DHP) is the most widely used photographic technique for canopy description. However, the main drawbacks of DHP have been the tedious and time-consuming image processing required and the sensitivity of the results to the image analysis methods. Recently, an alternative approach using vertical photography has been proposed, namely, d...

  2. Effect of wheat canopy architecture and rain characteristics on Septoria tritici splash borne spores

    OpenAIRE

    Girardin, Guillaume; Gigot, Christophe; Robert, Corinne; Pope De Vallavieille, Claude; Suffert, Frederic; Saint-Jean, Sebastien

    2012-01-01

    Canopy architecture and distances between organs of plants susceptible to fungal airborne diseases are two factors influencing disease epidemics. It has been shown that wheat architecture can affect the progression of septoria tritici blotch (STB) within the canopy. During the epidemic stage, STB progression is mainly due to rain splash, which induces upward vertical, and lateral transport of spores. We investigated, in controlled conditions, the effects of both plant architecture and rainfal...

  3. A Study of Ultrasonic Sensors to Intelligent Estimation of Tree Canopy Volumes

    OpenAIRE

    Eskandari, M.; A Hosainpour

    2016-01-01

    Many research projects have been conducted about using ultrasonic sensors to estimate canopy volume. This study investigates using software applications such as artificial neural network (ANN) to improve the estimation of canopy volume by using ultrasonic sensors. A special experimental system was built. The system had three ultrasonic sensors mounted vertically on a wooden pole with an equal distance of 0.6 m. As the wooden pole moves with a constant speed, the ultrasonic sensors measure the...

  4. Impacts of tree canopy structure on wind flows and fire propagation simulated with FIRETEC

    OpenAIRE

    Pimont, François; Dupuy, Jean-Luc; Linn, Rodman R.; Dupont, Sylvain

    2011-01-01

    Forest fuel management in the context of fire prevention generally induces heterogeneous spatial patterns of vegetation. However, the impact of the canopy structure on both wind flows and fire behavior is not well understood. Here, a coupled atmosphere wildfire behavior model, HIGRAD/FIRETEC, was used to investigate the effects of canopy treatment on wind field and fire behavior in a typical Mediterranean pine ecosystem. First, the treatment-induced winds were simulated with the model. We obs...

  5. An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance

    OpenAIRE

    Van der Tol, C.; W. Verhoef; Timmermans, J.; Verhoef, A.; Su, Z

    2009-01-01

    This paper presents the model SCOPE (Soil Canopy Observation, Photochemistry and Energy fluxes), which is a vertical (1-D) integrated radiative transfer and energy balance model. The model links visible to thermal infrared radiance spectra (0.4 to 50 μm) as observed above the canopy to the fluxes of water, heat and carbon dioxide, as a function of vegetation structure, and the vertical profiles of temperature. Output of the model is the spectrum of outgoing radiation in the viewing dir...

  6. SUNLIT AND SHADED MAIZE CANOPY WATER LOSS UNDER VARIED WATER STRESS

    OpenAIRE

    Antonio Odair Santos; Homero Bergamaschi; Marcel Fuchs; Luís Mauro G. Rosa; João Ito Bergonci

    1999-01-01

    ABSTRACT The precise estimation of transpiration from plant canopies is important for the monitoring of crop water use and management of many agricultural operations related to water use planning. The aim of this study was to estimate transpiration from sunlit and shaded fractions of a maize ( Zea mays L.) canopy, using the Penman-Monteith energy balance equation with modifications introduced by Fuchs et al. (1987) and Fuchs & Cohen (1989). Estimated values were validated by a heat pulse syst...

  7. Impact of Canopy Openness on Spider Communities: Implications for Conservation Management of Formerly Coppiced Oak Forests.

    Science.gov (United States)

    Košulič, Ondřej; Michalko, Radek; Hula, Vladimír

    2016-01-01

    Traditional woodland management created a mosaic of differently aged patches providing favorable conditions for a variety of arthropods. After abandonment of historical ownership patterns and traditional management and the deliberate transformation to high forest after World War II, large forest areas became darker and more homogeneous. This had significant negative consequences for biodiversity. An important question is whether even small-scale habitat structures maintained by different levels of canopy openness in abandoned coppiced forest may constitute conditions suitable for forest as well as open habitat specialists. We investigated the effect of canopy openness in former traditionally coppiced woodlands on the species richness, functional diversity, activity density, conservation value, and degree of rareness of epigeic spiders. In each of the eight studied locations, 60-m-long transect was established consisting of five pitfall traps placed at regular 15 m intervals along the gradient. Spiders were collected from May to July 2012. We recorded 90 spider species, including high proportions of xeric specialists (40%) and red-listed threatened species (26%). The peaks of conservation indicators, as well as spider community abundance, were shifted toward more open canopies. On the other hand, functional diversity peaked at more closed canopies followed by a rapid decrease with increasing canopy openness. Species richness was highest in the middle of the canopy openness gradient, suggesting an ecotone effect. Ordinations revealed that species of conservation concern tended to be associated with sparse and partly opened canopy. The results show that the various components of biodiversity peaked at different levels of canopy openness. Therefore, the restoration and suitable forest management of such conditions will retain important diversification of habitats in formerly coppiced oak forest stands. We indicate that permanent presence of small-scale improvements

  8. Tree-mycorrhizal associations detected remotely from canopy spectral properties.

    Science.gov (United States)

    Fisher, Joshua B; Sweeney, Sean; Brzostek, Edward R; Evans, Tom P; Johnson, Daniel J; Myers, Jonathan A; Bourg, Norman A; Wolf, Amy T; Howe, Robert W; Phillips, Richard P

    2016-07-01

    A central challenge in global ecology is the identification of key functional processes in ecosystems that scale, but do not require, data for individual species across landscapes. Given that nearly all tree species form symbiotic relationships with one of two types of mycorrhizal fungi - arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi - and that AM- and ECM-dominated forests often have distinct nutrient economies, the detection and mapping of mycorrhizae over large areas could provide valuable insights about fundamental ecosystem processes such as nutrient cycling, species interactions, and overall forest productivity. We explored remotely sensed tree canopy spectral properties to detect underlying mycorrhizal association across a gradient of AM- and ECM-dominated forest plots. Statistical mining of reflectance and reflectance derivatives across moderate/high-resolution Landsat data revealed distinctly unique phenological signals that differentiated AM and ECM associations. This approach was trained and validated against measurements of tree species and mycorrhizal association across ~130 000 trees throughout the temperate United States. We were able to predict 77% of the variation in mycorrhizal association distribution within the forest plots (P < 0.001). The implications for this work move us toward mapping mycorrhizal association globally and advancing our understanding of biogeochemical cycling and other ecosystem processes. PMID:27282323

  9. Flocculent flows in the chromospheric canopy of a sunspot

    CERN Document Server

    Vissers, Gregal

    2012-01-01

    High-quality imaging spectroscopy in the H{\\alpha} line, obtained with the CRisp Imaging SpectroPolarimeter (CRISP) at the Swedish 1-m Solar Telescope (SST) at La Palma and covering a small sunspot and its surroundings, are studied. They exhibit ubiquitous flows both along fibrils making up the chromospheric canopy away from the spot and in the superpenumbra. We term these flows "flocculent" to describe their intermittent character, that is morphologically reminiscent of coronal rain. The flocculent flows are investigated further in order to determine their dynamic and morphological properties. For the measurement of their characteristic velocities, accelerations and sizes, we employ a new versatile analysis tool, the CRisp SPectral EXplorer (CRISPEX), which we describe in detail. Absolute velocities on the order of 7.2-82.4 km/s are found, with an average value of 36.5\\pm5.9 km/s and slightly higher typical velocities for features moving towards the sunspot than away. These velocities are much higher than th...

  10. Vegetation Biochemistry: What Can Imaging Spectrometry Tell Us About Canopies?

    Science.gov (United States)

    Goetz, Alexander F. H.; Gao, Bo-Cai; Wessman, Carol

    1991-01-01

    Changes in ecosystem processes such as productivity and decomposition may be expressed in the canopy foliar chemistry resulting from altered carbon allocation patterns, metabolic processes and nutrient availability. Understanding carbon balance on land over large regions requires quantitative determination of leaf constituents such as lignin and total nitrogen from remote sensing imaging systems. Results from spectral reflectance measurements of stacked leaves in the laboratory show that spectrum matching techniques are applicable to the derivation of the equivalent liquid water thickness in plants as well as to the extraction of dry leaf matter reflectance spectra from spectra of green leaves. The residual spectra derived by subtracting water spectra from the spectra of green leaves shows a feature at 1.72 micrometers that can be related to the lignin content of the leaves. Oak leaves have a deeper residual absorption feature than do cotton leaves which is consistent with their relative lignin content. Similar results are achieved when deriving the residuals from images taken over areas of grass and pine trees. Imaging spectrometry provides promise in developing images of various foliar biochemical constituents.

  11. CrossVit: Enhancing Canopy Monitoring Management Practices in Viticulture

    Science.gov (United States)

    Matese, Alessandro; Vaccari, Francesco Primo; Tomasi, Diego; Di Gennaro, Salvatore Filippo; Primicerio, Jacopo; Sabatini, Francesco; Guidoni, Silvia

    2013-01-01

    A new wireless sensor network (WSN), called CrossVit, and based on MEMSIC products, has been tested for two growing seasons in two vineyards in Italy. The aims are to evaluate the monitoring performances of the new WSN directly in the vineyard and collect air temperature, air humidity and solar radiation data to support vineyard management practices. The WSN consists of various levels: the Master/Gateway level coordinates the WSN and performs data aggregation; the Farm/Server level takes care of storing data on a server, data processing and graphic rendering; Nodes level is based on a network of peripheral nodes consisting of a MDA300 sensor board and Iris module and equipped with thermistors for air temperature, photodiodes for global and diffuse solar radiation, and an HTM2500LF sensor for relative humidity. The communication levels are: WSN links between gateways and sensor nodes by ZigBee, and long-range GSM/GPRS links between gateways and the server farm level. The system was able to monitor the agrometeorological parameters in the vineyard: solar radiation, air temperature and air humidity, detecting the differences between the canopy treatments applied. The performance of CrossVit, in terms of monitoring and reliability of the system, have been evaluated considering: its handiness, cost-effective, non-invasive dimensions and low power consumption. PMID:23765273

  12. CrossVit: Enhancing Canopy Monitoring Management Practices in Viticulture

    Directory of Open Access Journals (Sweden)

    Alessandro Matese

    2013-06-01

    Full Text Available A new wireless sensor network (WSN, called CrossVit, and based on MEMSIC products, has been tested for two growing seasons in two vineyards in Italy. The aims are to evaluate the monitoring performances of the new WSN directly in the vineyard and collect air temperature, air humidity and solar radiation data to support vineyard management practices. The WSN consists of various levels: the Master/Gateway level coordinates the WSN and performs data aggregation; the Farm/Server level takes care of storing data on a server, data processing and graphic rendering; Nodes level is based on a network of peripheral nodes consisting of a MDA300 sensor board and Iris module and equipped with thermistors for air temperature, photodiodes for global and diffuse solar radiation, and an HTM2500LF sensor for relative humidity. The communication levels are: WSN links between gateways and sensor nodes by ZigBee, and long-range GSM/GPRS links between gateways and the server farm level. The system was able to monitor the agrometeorological parameters in the vineyard: solar radiation, air temperature and air humidity, detecting the differences between the canopy treatments applied. The performance of CrossVit, in terms of monitoring and reliability of the system, have been evaluated considering: its handiness, cost-effective, non-invasive dimensions and low power consumption.

  13. Nitrogen vertical distribution by canopy reflectance spectrum in winter wheat

    International Nuclear Information System (INIS)

    Nitrogen is a key factor for plant photosynthesis, ecosystem productivity and leaf respiration. Under the condition of nitrogen deficiency, the crop shows the nitrogen deficiency symptoms in the bottom leaves, while excessive nitrogen will affect the upper layer leaves first. Thus, timely measurement of vertical distribution of foliage nitrogen content is critical for growth diagnosis, crop management and reducing environmental impact. This study presents a method using bi-directional reflectance difference function (BRDF) data to invert foliage nitrogen vertical distribution. We developed upper-layer nitrogen inversion index (ULNI), middle-layer nitrogen inversion index (MLNI) and bottom-layer nitrogen inversion index (BLNI) to reflect foliage nitrogen inversion at upper layer, middle layer and bottom layer, respectively. Both ULNI and MLNI were made by the value of the ratio of Modified Chlorophyll Absorption Ration Index to the second Modified Triangular Vegetation Index (MCARI/MTVI2) referred to as canopy nitrogen inversion index (CNII) in this study at ±40° and ±50°, and at ±30° and ±40° view angles, respectively. The BLNI was composed by the value of nitrogen reflectance index (NRI) at ±20° and ±30° view angles. These results suggest that it is feasible to measure foliage nitrogen vertical-layer distribution in a large scale by remote sensing

  14. A review of the roles of forest canopy gaps

    Institute of Scientific and Technical Information of China (English)

    Adele Muscolo; Silvio Bagnato; Maria Sidari; Roberto Mercurio

    2014-01-01

    Treefall gap, canopy opening caused by the death of one or more trees, is the dominant form of disturbance in many forest systems worldwide. Gaps play an important role in forest ecology helping to pre-serve bio-and pedo-diversity, influencing nutrient cycles, and maintain-ing the complex structure of the late-successional forests. Over the last 30 years, numerous reviews have been written describing gap dynamics. Here we synthesize current understanding on gap dynamics relating to tree regeneration with particular emphasis on gap characteristics consid-ered critical to develop ecologically sustainable forest management sys-tems and to conserve native biodiversity. Specifically, we addressed the question:how do gaps influence forest structure? From the literature re-viewed, the size of gaps induces important changes in factors such as light intensity, soil humidity and soil biological properties that influence tree species regeneration and differ in gaps of different sizes. Shade-tolerant species can colonize small gaps; shade-intolerant species need large gaps for successful regeneration. Additionally, gap dynamics differ between temperate, boreal, and tropical forests, showing the importance of climate differences in driving forest regeneration. This review summa-rizes information of use to forest managers who design cutting regimes that mimic natural disturbances and who must consider forest structure, forest climate, and the role of natural disturbance in their designs.

  15. A novel regulatory circuit underlying plant response to canopy shade.

    Science.gov (United States)

    Carabelli, Monica; Possenti, Marco; Sessa, Giovanna; Ciolfi, Andrea; Sassi, Massimiliano; Morelli, Giorgio; Ruberti, Ida

    2008-02-01

    A plant growing in the field has the unique ability to sense the presence of other plants growing near by and adjust its growth rate accordingly. This ability to detect neighbors, which is referred to as shade avoidance response, is mediated by members of the phytochrome family which detect light in the red (R) and far-red (FR) region of the spectrum. Work done by several laboratories has shown that low R/FR provides the signal for shade avoidance response during which the elongation of stem-like organs occurs at the expense of leaf development. However, the mechanism by which the low R/FR signal is transduced to attenuate leaf development has remained largely unknown. In the August issue of Genes and Development, we have shown that low R/FR rapidly and transiently arrests the growth of the leaf primordium. By exploiting mutant analysis in combination with genome wide expression profiling, we have identified a novel regulatory circuit underlying plant response to canopy shade. Together, the data demonstrate that the growth arrest induced by low R/FR depends on auxin-induced cytokinin breakdown in pre-procambial cells of developing primordia. In this addendum, we discuss open questions to be addressed in the future. PMID:19704735

  16. Using Canopy Temperature to Infer Hydrologic Processes in Floodplain Forests

    Science.gov (United States)

    Lemon, M. G.; Allen, S. T.; Keim, R.; Edwards, B. L.; King, S. L.

    2015-12-01

    Decreased water availability due to hydrologic modifications, groundwater withdrawal, and climate change threaten the hydrological architecture of floodplain forests globally. The relative contributions of different sources of water (e.g., precipitation, surface flooding, and groundwater) to soil moisture on floodplains is poorly constrained, so identification of areas of water stress within a floodplain can provide valuable information about floodplain hydrology. Canopy temperature is a useful indicator of moisture stress and has long been used in agricultural and natural landscapes. Accordingly, thermal infrared (TIR) remote sensing data (spatial resolution of 1 km) from NASA's MODIS sensor was used to examine patterns of spatiotemporal variation in water stress in two floodplain forests over 12 growing seasons. On the upper Sabine River floodplain, Texas, increasing rainfall-derived soil moisture corresponded with increased heterogeneity of LST but there was weak association between river stage and heterogeneity. On the lower White River floodplain, Arkansas, distinct differences in LST between two reaches were observed during low flow years, while little relationship was observed between LST spatial variability and rainfall-derived soil moisture on either reach. The differences in hydrological control on these floodplain ecosystems have important ramifications for varying resilience to climate change and water resource management.

  17. A cereal crop canopy light distribution and photosynthesis model based on multiple factors - modeling and simulation

    International Nuclear Information System (INIS)

    Canopy light distribution and photosynthesis modeling is fundamental to cereal crop cultivation, breeding and crop informatics. It also has a great theoretical and practical significance for the evaluation and optimization of plant types and computer simulations of crop growth. This study has developed a cereal crop canopy photosynthesis model based on the improved stratified-clipping method, which combines morphology, physiology and optics. This model includes a canopy shape model, a single leaf photosynthesis rate model, a canopy light distribution model and a photosynthetic rate model. In this study we carried out a numerical simulation of the photosynthetic rates of the 15625 rice plant types. The numerical results showed that the photosynthesis rate was closely related to the following five factors: leaf density, leaf nitrogen content, leaf length, leaf width and leaf angle. The model led us to the conclusion that the ideal rice plant type has large values around the vectors for the five factors in the upper part of the canopy, but should decreases downwardly along the canopy. (author)

  18. The estimation of canopy attributes from digital cover photography by two different image analysis methods

    Directory of Open Access Journals (Sweden)

    Chianucci F

    2014-08-01

    Full Text Available Proximal sensing methods using digital photography have gained wide acceptance for describing and quantifying canopy properties. Digital hemispherical photography (DHP is the most widely used photographic technique for canopy description. However, the main drawbacks of DHP have been the tedious and time-consuming image processing required and the sensitivity of the results to the image analysis methods. Recently, an alternative approach using vertical photography has been proposed, namely, digital cover photography (DCP. The method captures detailed vertical canopy gaps and performs canopy analysis by dividing gap fractions into large between-crown gaps and small within- crown gaps. Although DCP is a rapid, simple and readily available method, the processing steps involved in gap fraction analysis have a large subjective component by default. In this contribution, we propose an alternative simple, more objective and easily implemented procedure to perform gap fraction analysis of DCP images. We compared the performance of the two image analysis methods in dense deciduous forests. Leaf area index (LAI estimates from the two image analysis methods were compared with reference LAI measurements obtained through the use of litter traps to measure leaf fall. Both methods provided accurate estimates of the total gap fraction and, thus, accurate estimates of the LAI. The new proposed procedure is recommended for dense canopies because the subjective classification of large gaps is most error-prone in stands with dense canopy cover.

  19. CAN Canopy Addition of Nitrogen Better Illustrate the Effect of Atmospheric Nitrogen Deposition on Forest Ecosystem?

    Science.gov (United States)

    Zhang, Wei; Shen, Weijun; Zhu, Shidan; Wan, Shiqiang; Luo, Yiqi; Yan, Junhua; Wang, Keya; Liu, Lei; Dai, Huitang; Li, Peixue; Dai, Keyuan; Zhang, Weixin; Liu, Zhanfeng; Wang, Faming; Kuang, Yuanwen; Li, Zhian; Lin, Yongbiao; Rao, Xingquan; Li, Jiong; Zou, Bi; Cai, Xian; Mo, Jiangming; Zhao, Ping; Ye, Qing; Huang, Jianguo; Fu, Shenglei

    2015-06-01

    Increasing atmospheric nitrogen (N) deposition could profoundly impact community structure and ecosystem functions in forests. However, conventional experiments with understory addition of N (UAN) largely neglect canopy-associated biota and processes and therefore may not realistically simulate atmospheric N deposition to generate reliable impacts on forest ecosystems. Here we, for the first time, designed a novel experiment with canopy addition of N (CAN) vs. UAN and reviewed the merits and pitfalls of the two approaches. The following hypotheses will be tested: i) UAN overestimates the N addition effects on understory and soil processes but underestimates those on canopy-associated biota and processes, ii) with low-level N addition, CAN favors canopy tree species and canopy-dwelling biota and promotes the detritus food web, and iii) with high-level N addition, CAN suppresses canopy tree species and other biota and favors rhizosphere food web. As a long-term comprehensive program, this experiment will provide opportunities for multidisciplinary collaborations, including biogeochemistry, microbiology, zoology, and plant science to examine forest ecosystem responses to atmospheric N deposition.

  20. Relationship Between Canopy Temperature at Flowering Stage and Soil Water Content, Yield Components in Rice

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wen-zhong; HAN Ya-dong; DU Hong-juan

    2007-01-01

    The canopy temperature of rice at the flowering stage and the soil water content were investigated under different soil water treatments (the soil water contents were 24%, 55%, 90% and 175% at the flowering stage). The canopy temperature was lower than air temperature, and the soil water content significantly influenced the canopy temperature. The lower the soil water content, the higher the canopy temperature, the less the accumulative absolute value of canopy-air temperature difference. Moreover, the maximum difference between treatments and CK in the accumulative absolute value of canopy-air temperature difference appeared at 13:00 p.m. in a day, thus, it could be considered as a suitable measuring time. Under the lowest water content treatment, the peak flowering occurred in the first three days (about 70% of panicles flowered), resulting in shortened and lightened panicle of rice. As to the CK and the high water content treatments, the peak flowering appeared in the middle of flowering duration, with longer panicle length and higher panicle weight. Results indicated the lower the soil water content, the less the filled grain number and grain yield.

  1. LEAF MICROMORPHOMETRY OF Schinus molle L. (ANARCADIACEAE IN DIFFERENT CANOPY HEIGHTS.

    Directory of Open Access Journals (Sweden)

    Marinês Ferreira Pires

    2015-03-01

    Full Text Available Leaf characterization of trees is essential for its identification and use, as well as to understand its relationships with environment. The objective of this work is to study the leaflet anatomy and leaf biometrical characteristics at different canopy heights of Schinus molle plants as a function of its environmental and physiological modifications. Leaves were collected at three different canopy heights: base, middle and upper canopy in a plantation of S. molle. Leaves were used for anatomical and biometrical analysis. For the anatomical analysis, leaves were fixed in FAA and stored in ethanol 70% and further submitted to transversal and paradermical sections. Slides were photomicrographed and image analysis was performed in UTHSCSA-Imagetool. For biometrical analysis leaf area, length, width, dry mass and specific leaf area were evaluated. The leaflets exhibited single layer epidermis, anomocytic and ciclocytic stomata, isobilateral mesophyll, subepidermal parenchyma layer in both adaxial and abaxial faces of epidermis, secretory vessels and lamellar collenchyma in midrib and leaf border. Leaf anatomy modifications occurred in cuticle and mesophyll thickness, vascular system, phloem thickness, and stomatal density in accordance with leaf canopy position. Leaves were smaller and with reduced leaf area at higher canopy positions. S. molle leaf anatomy is different from other species within Schinus genre with modifications under different environmental and physiological modifications promoted by its canopy height.

  2. Seedling mycorrhizal type and soil chemistry are related to canopy condition of Eucalyptus gomphocephala.

    Science.gov (United States)

    Ishaq, Lily; Barber, Paul A; Hardy, Giles E St J; Calver, Michael; Dell, Bernard

    2013-07-01

    The health of Eucalyptus gomphocephala is declining within its natural range in south-western Australia. In a pilot study to assess whether changes in mycorrhizal fungi and soil chemistry might be associated with E. gomphocephala decline, we set up a containerized bioassay experiment with E. gomphocephala as the trap plant using intact soil cores collected from 12 sites with E. gomphocephala canopy condition ranging from healthy to declining. Adjacent soil samples were collected for chemical analysis. The type of mycorrhiza (arbuscular or ectomycorrhizal) formed in containerized seedlings predicted the canopy condition of E. gomphocephala at the sites where the cores were taken. Ectomycorrhizal fungi colonization was higher in seedling roots in soil taken from sites with healthy canopies, whereas colonization by arbuscular mycorrhizal fungi dominated in roots in soil taken from sites with declining canopies. Furthermore, several soil chemical properties predicted canopy condition and the type of mycorrhizal fungi colonizing roots. These preliminary findings suggest that large-scale studies should be undertaken in the field to quantify those ectomycorrhiza (ECM) fungi sensitive to E. gomphocephala canopy decline and whether particular ECM fungi are bioindicators of ecosystem health. PMID:23314749

  3. Implementation of spaceborne lidar-retrieved canopy height in the WRF model

    Science.gov (United States)

    Lee, Junhong; Hong, Jinkyu

    2016-06-01

    Canopy height is closely related to biomass and aerodynamic properties, which regulate turbulent transfer of energy and mass at the soil-vegetation-atmosphere continuum. However, this key information has been prescribed as a constant value in a fixed plant functional type in atmospheric models. This paper is the first to report impacts of using realistic forest canopy height, retrieved from spaceborne lidar, on regional climate simulation by using the canopy height data in the Weather Research and Forecasting (WRF) model's land surface model. Numerical simulations were conducted over the Amazon Basin during summer season. Over this region, the lidar-retrieved canopy heights were higher than the default values used in the WRF, which are dependent only on plant functional type. By modifying roughness length and zero-plane displacement height, the change of canopy height resulted in changes in surface energy balance by regulating aerodynamic conductances and vertical temperature gradient, thus modifying the lifting condensation level and equivalent potential temperature in the atmospheric boundary layer. Our analysis also showed that the WRF model better reproduced the observed precipitation when lidar-retrieved canopy height was used over the Amazon Basin.

  4. Assessment of Light Environment Variability in Broadleaved Forest Canopies Using Terrestrial Laser Scanning

    Directory of Open Access Journals (Sweden)

    Dimitry Van der Zande

    2010-06-01

    Full Text Available Light availability inside a forest canopy is of key importance to many ecosystem processes, such as photosynthesis and transpiration. Assessment of light availability and within-canopy light variability enables a more detailed understanding of these biophysical processes. The changing light-vegetation interaction in a homogeneous oak (Quercus robur L. stand was studied at different moments during the growth season using terrestrial laser scanning datasets and ray tracing technology. Three field campaigns were organized at regular time intervals (24 April 2008; 07 May 2008; 23 May 2008 to monitor the increase of foliage material. The laser scanning data was used to generate 3D representations of the forest stands, enabling structure feature extraction and light interception modeling, using the Voxel-Based Light Interception Model (VLIM. The VLIM is capable of estimating the relative light intensity or Percentage of Above Canopy Light (PACL at any arbitrary point in the modeled crown space. This resulted in a detailed description of the dynamic light environments inside the canopy. Mean vertical light extinction profiles were calculated for the three time frames, showing significant differences in light attenuation by the canopy between April 24 on the one hand, and May 7 and May 23 on the other hand. The proposed methodology created the opportunity to link these within-canopy light distributions to the increasing amount of photosynthetically active leaf material and its distribution in the considered 3D space.

  5. Canopy induced aberration correction in airborne electro-optical imaging systems

    Science.gov (United States)

    Harder, James A.; Sprague, Michaelene W.

    2011-11-01

    An increasing number of electro-optical systems are being used by pilots in tactical aircraft. This means that the afore mentioned systems must operate through the aircrafts canopy, unfortunately the canopy functions as a less than ideal lens element in the electro-optical sensor optical path. The canopy serves first and foremost as an aircraft structural component, considerations like minimizing the drag co-efficient and the ability to survive bird strikes take precedence over achieving optimal optical characteristics. This paper describes how the authors characterized the optical characteristics of an aircraft canopy. Families of modulation transfer functions were generated, for various viewing geometries through the canopy and for various electro-optical system entrance pupil diameters. These functions provided us with the means to significantly reduce the effect of the canopy "lens" on the performance of a representative electro-optical system, using an Astigmatic Corrector Lens. A comparison of the electro-optical system performance with and without correction is also presented.

  6. Soil types and forest canopy structures in southern Missouri: A first look with AIS data

    Science.gov (United States)

    Green, G. M.; Arvidson, R. E.

    1986-01-01

    Spectral reflectance properties of deciduous oak-hickory forests covering the eastern half of the Rolla Quadrangle were examined using Thematic Mapper (TM) data acquired in August and December, 1982 and Airborne Imaging Spectrometer (AIS) data acquired in August, 1985. For the TM data distinctly high relative reflectance values (greater than 0.3) in the near infrared (Band 4, 0.73 to 0.94 micrometers) correspond to regions characterized by xeric (dry) forests that overlie soils with low water retention capacities. These soils are derived primarily from rhyolites. More mesic forests characterized by lower TM band 4 relative reflectances are associated with soils of higher retention capacities derived predominately from non-cherty carbonates. The major factors affecting canopy reflectance appear to be the leaf area index (LAI) and leaf optical properties. The Suits canopy reflectance model predicts the relative reflectance values for the xeric canopies. The mesic canopy reflectance is less well matched and incorporation of canopy shadowing caused by the irregular nature of the mesic canopy may be necessary. Preliminary examination of high spectral resolution AIS data acquired in August of 1985 reveals no more information than found in the broad band TM data.

  7. Thermal canopy photography in forestry - an alternative to optical cover photography

    Directory of Open Access Journals (Sweden)

    Nölke N

    2015-02-01

    Full Text Available Hemispherical canopy photography is a widely used technique to observe crown-related forest variables. However, standardization of this technique remains challenging, as exposure and threshold settings continue to constitute the main sources of variation of such photographs. This paper, therefore, presents a new method to overcome standardization issues by using thermal canopy photography. With a thermal camera, images are produced which are not critically limited in their dynamic range so that photographic exposure becomes irrelevant. Moreover, the high temperature contrast between “sky” and “non-sky”, resulting from extreme low sky temperatures, facilitates the unambiguous selection of a threshold which separates “sky” from “non-sky” pixels. For our comparison, we have taken canopy images with a high-resolution thermal camera (VarioCam hr head [Infratec, Dresden, Germany] and an optical camera (Nikon D70s. The correlation of canopy closure values derived from the image pairs was r = 0.98. Our findings thus show that thermal canopy photography is a promising and simple to use alternative to optical canopy photography, because it limits possible sources of variability, since exposure settings and threshold definition cease to be an issue.

  8. Restoration of a forested wetland ecosystem in a thermally impacted stream corridor

    International Nuclear Information System (INIS)

    The Savannah River Swamp is a 3,020 Ha forested wetland on the floodplain of the Savannah River and is located on the Department of Energy's Savannah River Site (SRS). Major impacts to the swamp hydrology occurred with the completion of the production reactors and one coal-fired powerhouse at the SRS in the early 1950's. Water was pumped from the Savannah River, through secondary heat exchangers of the reactors, and discharged into three of the tributary streams that flow into the swamp. This continued from 1954 to 1988 at various levels. The sustained increases in water volume resulted in overflow of the original stream banks and the creation of additional floodplains. Accompanying this was considerable erosion of the original stream corridor and deposition of a deep silt layer on the newly formed delta. Heated water was discharged directly into Pen Branch and water temperature in the stream often exceeded 50 C. The nearly continuous flood of the swamp, the thermal load of the water, and the heavy silting resulted in complete mortality of the original vegetation in large areas of the floodplain. Research has been ongoing to determine methods to reintroduce tree species characteristic of more mature forested wetlands. The goal of the restoration is to create structural and biological diversity in the forest canopy by establishing a mix of species typically present in riparian and wetland forests of the area

  9. Nutrient and chlorophyll relations in selected streams of the New England Coastal Basins in Massachusetts and New Hampshire, June-September 2001

    Science.gov (United States)

    Riskin, Melissa L.; Deacon, J.R.; Liebman, M.L.; Robinson, K.W.

    2003-01-01

    The U.S. Environmental Protection Agency is developing guidance to assist states with defining nutrient criteria for rivers and streams and to better describe nutrient-algal relations. As part of this effort, 13 wadeable stream sites were selected, primarily in eastern Massachusetts, for a nutrient-assessment study during the summer of 2001. The sites represent a range of water-quality impairment conditions (reference, moderately impaired, impaired) based on state regulatory agency assessments and previously assessed nitrogen, phosphorus, and dissolved-oxygen data. In addition, a combination of open- and closed-canopy locations were sampled at six of the sites to investigate the effect of sunlight on algal growth. Samples for nutrients and for chlorophyll I from phytoplankton and periphyton were collected at all stream sites. Total nitrogen (dissolved nitrite + nitrate + total ammonia + organic nitrogen) and total phosphorus (phosphorus in an unfiltered water sample) concentrations were lowest at reference sites and highest at impaired sites. There were statistically significant differences (p Chlorophyll a concentrations from phytoplankton were not significantly different among site impairment designations. Concentrations of chlorophyll a from periphyton were highest at nutrient-impaired open-canopy sites. Chlorophyll a concentrations from periphyton samples were positively correlated with total nitrogen and total phosphorus at the open- and closed-canopy sites. Correlations were higher at open-canopy sites (p chlorophyll a from periphyton samples were observed between the open- and closed-canopy sites (p chlorophyll criteria for streams in the New England coastal region, relations between total nitrogen and total phosphorus to periphyton chlorophyll a in wadeable streams from this study were quantified to present potential techniques for determining nutrient concentrations. Linear regression was used to estimate the total nitrogen and total phosphorus

  10. What Can Hierarchies Do for Data Streams?

    DEFF Research Database (Denmark)

    Yin, Xuepeng; Pedersen, Torben Bach

    2007-01-01

    -time multidimensional and summarized views of stream data. In this paper, we introduce a multi-dimensional stream query language and its formal semantics. Our approach turns low-level data streams into informative high-level aggregates and enables multi-dimensional and granular OLAP queries against data streams, which...

  11. Jet stream related observations by MST radars

    Science.gov (United States)

    Gage, K. S.

    1983-01-01

    An overview of the jet stream and its observation by MST radar is presented. The climatology and synoptic and mesoscale structure of jet streams is briefly reviewed. MST radar observations of jet stream winds, and associated waves and turbulence are then considered. The possibility of using a network of ST radars to track jet stream winds in near real time is explored.

  12. What Can Hierarchies Do for Data Streams?

    DEFF Research Database (Denmark)

    Yin, Xuepeng; Pedersen, Torben Bach

    Much effort has been put into building data streams management systems for querying data streams. Here, data streams have been viewed as a flow of low-level data items, e.g., sensor readings or IP packet data. Stream query languages have mostly been SQL-based, with the STREAM and Telegraph......CQ languages as examples. However, there has been little work on supporting OLAP-like queries that provide multi-dimensional and summarized views of stream data. In this paper, we introduce a multidimensional stream query language and its formal semantics. Our approach enables powerful OLAP queries against...... data streams with dimension hierarchies, thus turning low-level data streams into informative high-level aggregates. A comparison with STREAM shows that our approach is more flexible and powerful for high-level OLAP queries, as well as far more compact and concise....

  13. Fuel-cell engine stream conditioning system

    Science.gov (United States)

    DuBose, Ronald Arthur

    2002-01-01

    A stream conditioning system for a fuel cell gas management system or fuel cell engine. The stream conditioning system manages species potential in at least one fuel cell reactant stream. A species transfer device is located in the path of at least one reactant stream of a fuel cell's inlet or outlet, which transfer device conditions that stream to improve the efficiency of the fuel cell. The species transfer device incorporates an exchange media and a sorbent. The fuel cell gas management system can include a cathode loop with the stream conditioning system transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell related to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.

  14. Experimental observations on sediment resuspension within submerged model canopies under oscillatory flow

    Science.gov (United States)

    Ros, Àlex; Colomer, Jordi; Serra, Teresa; Pujol, Dolors; Soler, Marianna; Casamitjana, Xavier

    2014-12-01

    A set of laboratory experiments were conducted to study the effect of submerged aquatic vegetation in sediment resuspension under progressive waves. Three vegetation models (rigid, flexible and real plants of Ruppia maritima), six wave frequencies (in the range F=0.6-1.6 Hz) and four plant densities (Solid Plant Fractions, SPF in the range of 1-10%) were used. The sediment bed properties corresponded to a salt marsh wetland with a bimodal particle size distribution with two particle populations (population 1: particle diameters in the range of 2.5 to 6.0 μm, and population 2: particle diameters in the range of 6.0 to 100 μm). Within the canopy, wave velocities were attenuated for all the canopies studied and for all the frequencies analyzed. The change in the TKE (ΔTKE) compared with the case without plants was studied. For the rigid canopy model, in comparison to the unimpeded experiment, an increase in ΔTKE inside the canopy for smaller frequencies (F=0.6-1.2 Hz) was observed together with stem Reynolds numbers Rep above 250. As a result, sediment resuspension for both sediment populations was higher than that of the unimpeded experiment. However, at higher frequencies (F=1.4 and 1.6 Hz) and higher plant densities (SPF=5%, 7.5% and 10%), the ΔTKE inside the canopy decreased, coinciding with stem Reynolds number Rep below 250. As a result, sediment resuspension for larger canopy densities and larger frequencies was reduced. For the flexible vegetation model, in comparison with the unimpeded experiment, a reduction in the ΔTKE inside the canopy was nearly always found. Resuspended sediment concentrations were found to decrease as flexible canopy densities increased. For the flexible vegetation the stem Reynolds number was Rep<250 and no production of ΔTKE was observed. The real case of a canopy of R. maritima behaved similarly to the flexible model canopy.

  15. Measurement of Effective Canopy Temperature: The Missing Link to Modeling Transpiration in Controlled Environments

    Science.gov (United States)

    Monje, O. A.; McCormack, Ann; Bugbee, Bruce; Jones, Harry W., Jr. (Technical Monitor)

    1994-01-01

    The objectives were to apply energy balance principles to plant canopies, and to determine which parameters are essential for predicting plant canopy transpiration (E) in controlled environments. Transpiration was accurately measured in a gas-exchange system. Absorbed radiation (R(sub abs)) by the canopy was measured with a net radiometer and calculated from short and long-wave radiation components. Average canopy foliar temperature T(sub L) can be measured with an infrared radiometer, but since T(sub L) is seldom uniform, a weighed average measurement of T(sub L) must be made. The effective canopy temperature T(sub C) is that temperature that balances the energy flux between absorbed radiation and latent heat L(sub E) and sensible heat (H) fluxes. TC should exactly equal air temperature T(sub A) when L(sub E) equals R(sub abs). When unnecessary thermal radiation from the lighting system is removed by a water filter, the magnitude of L(sub E) from transpiration approaches Rabs and T(sub C) is close to T(sub A). Unlike field models, we included the energy used in photosynthesis and found that up to 10% of Rabs was used in photosynthesis. We calculated aerodynamic conductance for H from measurements of wind speed and canopy height using the wind profile equation. Canopy aerodynamic conductance ranged from.03 to.04 m/s for wind speeds from.6 to 1 m/s; thus a 0.1 C canopy to air temperature difference results in a sensible heat flux of about 4 W/sq m, which is only 1% of R(sub abs). We examined the ability of wide angle infrared transducers to accurately integrate T(sub L) from the top to the bottom of the canopy. We measured evaporation from the hydroponic media to be approximately 1 micro mol/sq m s or 10% of R(sub abs). This result indicates that separating evaporation from transpiration is more important than exact measurement of canopy temperature.

  16. Effects of Streambed Conductance on Stream Depletion

    OpenAIRE

    Greg Lackey; Roseanna M. Neupauer; John Pitlick

    2015-01-01

    Stream depletion, which is the reduction in flow rate of a stream or river due to the extraction of groundwater in a hydraulically connected stream-aquifer system, is often estimated using numerical models. The accuracy of these models depends on the appropriate parameterization of aquifer and streambed hydraulic properties. Streambed conductance is a parameter that relates the head difference between the stream and aquifer to flow across the stream channel. It is a function of streambed hydr...

  17. Canopy uptake of atmospheric N deposition at a conifer forest: part I -canopy N budget, photosynthetic efficiency and net ecosystem exchange

    Energy Technology Data Exchange (ETDEWEB)

    Sievering, H. E-mail: Herman.Sievering@cudenver.edu; Tomaszewski, T.; Torizzo, J. [Dept. of Geography and Environmental Science, Univ. of Colorado-Denver, Denver, CO 80217 (United States)

    2007-07-15

    Global carbon cycle assessments of anthropogenic nitrogen (N) deposition influences on carbon sequestration often assume enhanced sequestration results. This assumption was evaluated at a Rocky Mountains spruce-fir forest. Forest canopy N uptake (CNU) of atmospheric N deposition was estimated by combining event wet and throughfall N fluxes with gradient measured HNO{sub 3} and NH{sub 3} as well as inferred (NO{sub x} and particulate N) dry fluxes. Approximately 80% of the growing-season 3 kg N/ha total deposition is retained in canopy foliage and branches. This CNU constitutes {approx}1/3 of canopy growing season new N supply at this conifer forest site. Daytime net ecosystem exchange (NEE) significantly (P = 0.006) and negatively (CO{sub 2} uptake) correlated with CNU. Multiple regression indicates {approx}20% of daytime NEE may be attributed to CNU (P < 0.02); more than soil water content. A wet deposition N-amendment study (Tomaszewski and Sievering), at canopy spruce branches, increased their growing-season CNU by 40-50% above ambient. Fluorometry and gas exchange results show N-amended spruce branches had greater photosynthetic efficiency and higher carboxylation rates than control and untreated branches. N-amended branches had 25% less photoinhibition, with a 5-9% greater proportion of foliar-N-in-Rubisco. The combined results provide, partly, a mechanistic explanation for the NEE dependence on CNU.

  18. Fish populations in Plynlimon streams

    Directory of Open Access Journals (Sweden)

    D. T. Crisp

    1997-01-01

    Full Text Available In Plynlimon streams, brown trout (Salmo trutta L. are widespread in the upper Wye at population densities of 0.03 to 0.32 fish m-2 and show evidence of successful recruitment in most years. In the upper Severn, brown trout are found only in an area of c. 1670 -2 downstream of Blaenhafren Falls at densities of 0.03 to 0.24 fish -2 and the evidence suggests very variable year to year success in recruitment (Crisp & Beaumont, 1996. Analyses of the data show that temperature differences between afforested and unafforested streams may affect the rates of trout incubation and growth but are not likely to influence species survival. Simple analyses of stream discharge data suggest, but do not prove, that good years for recruitment in the Hafren population were years of low stream discharge. This may be linked to groundwater inputs detected in other studies in this stream. More research is needed to explain the survival of the apparently isolated trout population in the Hafren.

  19. Specifics of soil temperature under winter oilseed rape canopy

    Science.gov (United States)

    Krčmářová, Jana; Středa, Tomáš; Pokorný, Radovan

    2014-09-01

    The aim of this study was to evaluate the course of soil temperature under the winter oilseed rape canopy and to determine relationships between soil temperature, air temperature and partly soil moisture. In addition, the aim was to describe the dependence by means of regression equations usable for pests and pathogens prediction, crop development, and yields models. The measurement of soil and near the ground air temperatures was performed at the experimental field Žabiče (South Moravia, the Czech Republic). The course of temperature was determined under or in the winter oilseed rape canopy during spring growth season in the course of four years (2010 - 2012 and 2014). In all years, the standard varieties (Petrol, Sherpa) were grown, in 2014 the semi-dwarf variety PX104 was added. Automatic soil sensors were positioned at three depths (0.05, 0.10 and 0.20 m) under soil surface, air temperature sensors in 0.05 m above soil surfaces. The course of soil temperature differs significantly between standard (Sherpa and Petrol) and semi-dwarf (PX104) varieties. Results of the cross correlation analysis showed, that the best interrelationships between air and soil temperature were achieved in 2 hours delay for the soil temperature in 0.05 m, 4 hour delay for 0.10 m and 7 hour delay for 0.20 m for standard varieties. For semi-dwarf variety, this delay reached 6 hour for the soil temperature in 0.05 m, 7 hour delay for 0.10 m and 11 hour for 0.20 m. After the time correction, the determination coefficient (R2) reached values from 0.67 to 0.95 for 0.05 m, 0.50 to 0.84 for 0.10 m in variety Sherpa during all experimental years. For variety PX104 this coefficient reached values from 0.51 to 0.72 in 0.05 m depth and from 0.39 to 0.67 in 0.10 m depth in the year 2014. The determination coefficient in the 0.20 m depth was lower for both varieties; its values were from 0.15 to 0.65 in variety Sherpa. In variety PX104 the values of R2 from 0.23 to 0.57 were determined. When using

  20. Canopy Level Solar Induced Fluorescence for Vegetation in Controlled Experiments

    Science.gov (United States)

    Middleton, E. M.; Corp, L. A.; Campbell, P. K. Entcheva

    2007-01-01

    Solar induced chlorophyll fluorescence (SIF) was retrieved from high resolution reflectance spectra acquired one meter above saplings of three deciduous tree species during springtime (three weeks after leaf flush) and in late summer when foliage was mature. SIF was determined by application of the Fraunhofer Line Depth (FLD) Principal to above-canopy spectra acquired with an Analytical Spectral Devices (ASD) Fieldspec spectroradiometer (3.2 nm resolution with 1.2 nm sampling interval). SIF retrievals were made at the two atmospheric oxygen (O2) absorption features that occur in the chlorophyll fluorescence (ChlF) region (660 -780 nm). These telluric features are 02V, the broader and deeper feature centered at 760 nm, but located on the shoulder of the far-red ChlF peak at 740 nm; and 023, a narrow feature centered at 688 nm that is positioned near the red ChlF peak at 685 nm. Supporting, coincident leaf level fluorescence, reflectance, photochemical and other measurements were also made. At the leaf level, these measurements included in situ photosynthetic capacity (Pmax) and light adapted total chlorophyll fluorescence (Fs') collected at steady state under high light and controlled chamber conditions (e.g., temperature, PAR, humidity, and COz); optical properties (reflectance, transmittance, absorptance); chlorophyll and carotenoid content; specific leaf mass; carbon (C) and nitrogen (N) content; fluorescence emission spectra at multiple excitation wavelengths; the ChlF contribution to red (R) and far-red (FR) reflectance; fluorescence imagery; and fluorescence excitation-emission matrices (EEMs). The tree species examined were tulip poplar (Liriodendron tulipifera L.), red maple (Acer rubrum L.), and sweetgum (Liquidambar styraczflua L.), and each had been provided four levels of N augmentation (0, 19, 37, and 75 kg Nhectare seasonally) to simulate atmospheric deposition from air pollution. Whole-plant SIF measurements of these species were compared with SIF

  1. Quantitative detection of settled dust over green canopy

    Science.gov (United States)

    Brook, Anna

    2016-04-01

    The main task of environmental and geoscience applications are efficient and accurate quantitative classification of earth surfaces and spatial phenomena. In the past decade, there has been a significant interest in employing hyperspectral unmixing in order to retrieve accurate quantitative information latent in hyperspectral imagery data. Recently, the ground-truth and laboratory measured spectral signatures promoted by advanced algorithms are proposed as a new path toward solving the unmixing problem of hyperspectral imagery in semi-supervised fashion. This paper suggests that the sensitivity of sparse unmixing techniques provides an ideal approach to extract and identify dust settled over/upon green vegetation canopy using hyperspectral airborne data. Atmospheric dust transports a variety of chemicals, some of which pose a risk to the ecosystem and human health (Kaskaoutis, et al., 2008). Many studies deal with the impact of dust on particulate matter (PM) and atmospheric pollution. Considering the potential impact of industrial pollutants, one of the most important considerations is the fact that suspended PM can have both a physical and a chemical impact on plants, soils, and water bodies. Not only can the particles covering surfaces cause physical distortion, but particles of diverse origin and different chemistries can also serve as chemical stressors and cause irreversible damage. Sediment dust load in an indoor environment can be spectrally assessed using reflectance spectroscopy (Chudnovsky and Ben-Dor, 2009). Small amounts of particulate pollution that may carry a signature of a forthcoming environmental hazard are of key interest when considering the effects of pollution. According to the most basic distribution dynamics, dust consists of suspended particulate matter in a fine state of subdivision that are raised and carried by wind. In this context, it is increasingly important to first, understand the distribution dynamics of pollutants, and

  2. Nitrate dynamics within a stream-lake network through time and space

    Science.gov (United States)

    Loken, L. C.; Crawford, J. T.; Childress, E. S.; Casson, N. J.; Stanley, E. H.

    2014-12-01

    Nitrate dynamics in streams are governed by biology, hydrology, and geomorphology, and the ability to parse these drivers apart has improved with the development of accurate high-frequency sensors. By combining a stationary Eulerian and a quasi-Lagrangian sensor platform, we investigated the timing of nitrate flushing and identified locations of elevated biogeochemical cycling along a stream-lake network in Northern Wisconsin, USA. Two years of continuous oxygen, carbon dioxide, and discharge measurements were used to compute gross primary production (GPP) and ecosystem respiration (ER) downstream of a wetland reach of Allequash Creek. Metabolic rates and flow patterns were compared with nitrate concentrations measured every 30 minutes using an optical sensor. Additionally, we floated a sensor array from the headwater spring ponds through a heterogeneous stream reach consisting of wetlands, beaver ponds, forested segments, and two lakes. Two distinct temporal patterns of stream nitrate concentrations were observed. During high flow events such as spring snowmelt and summer rain events, nitrate concentrations increased from ~5 μM (baseflow) to 12 μM, suggesting flushing from catchment sources. During baseflow conditions, nitrate followed a diel cycle with a 0.3-1.0 μM daytime draw down. Daily nitrate reduction was positively correlated with GPP calculated from oxygen and carbon dioxide records. Lastly, spatial analyses revealed lowest nitrate concentrations in the wetland reach, approximately 2-3 μM lower than the upstream spring ponds, and downstream lakes and forested reaches. This snapshot implies greater nitrate removal potential in the wetland reach likely driven by denitrification in organic rich sediments and macrophyte uptake in the open canopy stream segment. Taken together the temporal and spatial results show the dynamics of hydrology, geomorphology, and biology to influence nitrate delivery and variability in ecosystem processing through a stream

  3. Bromeliad catchments as habitats for methanogenesis in tropical rainforest canopies

    Directory of Open Access Journals (Sweden)

    Shana K. Goffredi

    2011-12-01

    Full Text Available Tropical epiphytic plants within the family Bromeliaceae are unusual in that they possess foliage capable of retaining water and impounded material. This creates an acidic (pH 3.5-6.5 and anaerobic (< 1 ppm O2 environment suspended in the canopy. Results from a Costa Rican rainforest show that most bromeliads (n = 75/86 greater than ~20 cm in plant height or ~4-5 cm tank depth, showed presence of methanogens within the lower anoxic horizon of the tank. Archaea were dominated by methanogens (77-90% of recovered ribotypes and community structure, although variable, was generally comprised of a single type, closely related to either hydrogenotrophic Methanoregula or Methanocella, a specific clade of aceticlastic Methanosaeta, or Methanosarcina. Juvenile bromeliads, or those species, such as Guzmania, with shallow tanks, generally did not possess methanogens, as assayed by PCR specific for methanogen 16S rRNA genes, nor did artificial catchments (~ 100 ml volume, in place 6-12 months prior to sample collection. Methanogens were not detected in soil (n = 20, except in one case, in which the dominant ribotype was different from nearby bromeliads. Recovery of methyl coenzyme M reductase genes supported the occurrence of hydrogenotrophic and aceticlastic methanogens within bromeliad tanks, as well as the trend, via QPCR analysis of mcrA, of increased methanogenic capacity with increased plant height. Methane production rates of up to 300 nmol CH4 ml tank water -1 day-1 were measured in microcosm experiments. These results suggest that bromeliad-associated archaeal communities may play an important role in the cycling of carbon in neotropical forests.

  4. Missing Peroxy Radical Sources Within a Rural Forest Canopy

    Science.gov (United States)

    Wolfe, G. M.; Cantrell, C.; Kim, S.; Mauldin, R. L., III; Karl, T.; Harley, P.; Turnipseed, A.; Zheng, W.; Flocke, F.; Apel, E. C.; Hornbrook, R. S.; Hall, S. R.; Ullmann, K.; Henry, S. B.; DiGangi, J. P.; Boyle, E. S.; Kaser, L.; Schnitzhofer, R.; Hansel, A.; Graus, M.; Nakashima, Y.; Kajii, Y.; Guenther, A.; Keutsch, F. N.

    2013-01-01

    Organic peroxy (RO2) and hydroperoxy (HO2) radicals are key intermediates in the photochemical processes that generate ozone, secondary organic aerosol and reactive nitrogen reservoirs throughout the troposphere. In regions with ample biogenic hydrocarbons, the richness and complexity of peroxy radical chemistry presents a significant challenge to current-generation models, especially given the scarcity of measurements in such environments. We present peroxy radical observations acquired within a Ponderosa pine forest during the summer 2010 Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics and Nitrogen - Rocky Mountain Organic Carbon Study (BEACHON-ROCS). Total peroxy radical mixing ratios reach as high as 180 pptv and are among the highest yet recorded. Using the comprehensive measurement suite to constrain a near-explicit 0-D box model, we investigate the sources, sinks and distribution of peroxy radicals below the forest canopy. The base chemical mechanism underestimates total peroxy radicals by as much as a factor of 3. Since primary reaction partners for peroxy radicals are either measured (NO) or under-predicted (HO2 and RO2, i.e. self-reaction), missing sources are the most likely explanation for this result. A close comparison of model output with observations reveals at least two distinct source signatures. The first missing source, characterized by a sharp midday maximum and a strong dependence on solar radiation, is consistent with photolytic production of HO2. The diel profile of the second missing source peaks in the afternoon and suggests a process that generates RO2 independently of sun-driven photochemistry, such as ozonolysis of reactive hydrocarbons. The maximum magnitudes of these missing sources (approximately 120 and 50 pptv min-1, respectively) are consistent with previous observations alluding to unexpectedly intense oxidation within forests. We conclude that a similar mechanism may underlie many such observations.

  5. Effect of rootstock and canopy management on peach fruit quality

    International Nuclear Information System (INIS)

    Fruit quality was evaluated on peach as affected by rootstock, Summer pruning and solar radiation profile inside the canopy. Trials were performed in 2004, at the experimental farms of the DCDSL of Pisa University (Italy), on a peach orchard, cv Flavorcrest, planted in February 1998 and grafted onto GF 677, Barrier 1, Mr.S. 2/5 and Ishtara-Ferciana. Two Summer pruning intensity treatments were applied: half of the trees were not pruned, while in the second treatment a Summer pruning was performed every 15 days. Solar radiation intercepted by the selected branches was measured daily and seasonally. Starting from the end of June, four fruit samples were collected at weekly intervals on the selected branches and some fruit quality parameters were measured (i.e. weight, diameter, SSC and flesh firmness). All considered factors showed to be important for fruit quality. Particularly, medium vigour rootstocks and a good light availability induced a better fruit quality. On medium vigour rootstocks, that shift a high percentage of nutrients to the growing fruits, fruit quality was positively affected and they induced also a slightly earlier ripening time. The best quality was obtained from fruits on well illuminated fruiting shoots, independently from rootstock; consequently, Summer pruning strongly affected fruit characteristics. Between the tested rootstocks, Ishtara and Barrier 1 appear to be very interesting. The first one for its positive effect on soluble solid content and size of the fruit. The second one induced a delay in growth and ripening time of the fruit (6-8 days) but, at maturity stage, fruits on this rootstocks showed the highest SSC and size values with a good flesh firmness (5.2 kg); on the contrary, the other tested rootstocks showed the best fruit quality when the flesh firmness was at very low level (1.3-3.0 kg)

  6. Fossil Leaves and Fossil Leaf n-Alkanes: Reconstructing the First Closed Canopied Rainforests

    Science.gov (United States)

    Graham, H. V.; Freeman, K. H.

    2013-12-01

    Although the age and location is disputed, the rise of the first closed-canopy forest is likely linked with the expansion of angiosperms in the late Cretacous or early Cenozoic. The carbon isotope 'canopy effect' reflects the extent of canopy closure, and is well documented in δ13C values of the leaves and leaf lipids in modern forests. To test the extent of canopy closure among the oldest documented angiosperm tropical forests, we analyzed isotopic characteristics of leaf fossils and leaf waxes from the Guaduas and Cerrejón Formations. The Guaduas Fm. (Maastrichtian) contains some of the earliest angiosperm fossils in the Neotropics, and both leaf morphology and pollen records at this site suggest an open-canopy structure. The Cerrejón Fm. (Paleocene) contains what are believed to be the first recorded fossil leaves from a closed-canopy forest. We analyzed the bulk carbon isotope content (δ13Cleaf) of 199 fossil leaves, as well as the n-alkane concentration and chain-length distribution, and δ13C of alkanes (δ13Clipid) of 73 fossil leaves and adjacent sediment samples. Fossil leaves are dominated by eudicots and include ten modern plant families (Apocynaceae, Bombaceae, Euphorbaceae, Fabaceae, Lauraceae, Malvaceae, Meliaceae, Menispermaceae, Moraceae, Sapotaceae). We interpreted extent of canopy coverage based on the range of δ13Cleaf values. The narrow range of δ13C values in leaves from the Guaduas Fm (2.7‰) is consistent with an open canopy. A significantly wider range in values (6.3‰) suggests a closed-canopy signature for site 0315 of the Cerrejón Fm,. In contrast, at Site 0318, a lacustrine deposit, leaves had a narrow range (3.3‰) in δ13C values, and this is not consistent with a closed-canopy, but is consistent with leaf assemblages from a forest edge. Leaves that accumulate in lake sediments tend to be biased toward plants living at the lake edge, which do not experience closed-canopy conditions, and do not express the isotopic

  7. Parameterization and sensitivity analyses of a radiative transfer model for remote sensing plant canopies

    Science.gov (United States)

    Hall, Carlton Raden

    A major objective of remote sensing is determination of biochemical and biophysical characteristics of plant canopies utilizing high spectral resolution sensors. Canopy reflectance signatures are dependent on absorption and scattering processes of the leaf, canopy properties, and the ground beneath the canopy. This research investigates, through field and laboratory data collection, and computer model parameterization and simulations, the relationships between leaf optical properties, canopy biophysical features, and the nadir viewed above-canopy reflectance signature. Emphasis is placed on parameterization and application of an existing irradiance radiative transfer model developed for aquatic systems. Data and model analyses provide knowledge on the relative importance of leaves and canopy biophysical features in estimating the diffuse absorption a(lambda,m-1), diffuse backscatter b(lambda,m-1), beam attenuation alpha(lambda,m-1), and beam to diffuse conversion c(lambda,m-1 ) coefficients of the two-flow irradiance model. Data sets include field and laboratory measurements from three plant species, live oak (Quercus virginiana), Brazilian pepper (Schinus terebinthifolius) and grapefruit (Citrus paradisi) sampled on Cape Canaveral Air Force Station and Kennedy Space Center Florida in March and April of 1997. Features measured were depth h (m), projected foliage coverage PFC, leaf area index LAI, and zenith leaf angle. Optical measurements, collected with a Spectron SE 590 high sensitivity narrow bandwidth spectrograph, included above canopy reflectance, internal canopy transmittance and reflectance and bottom reflectance. Leaf samples were returned to laboratory where optical and physical and chemical measurements of leaf thickness, leaf area, leaf moisture and pigment content were made. A new term, the leaf volume correction index LVCI was developed and demonstrated in support of model coefficient parameterization. The LVCI is based on angle adjusted leaf

  8. Quantitative detection of settled dust over green canopy

    Science.gov (United States)

    Brook, Anna

    2016-04-01

    The main task of environmental and geoscience applications are efficient and accurate quantitative classification of earth surfaces and spatial phenomena. In the past decade, there has been a significant interest in employing hyperspectral unmixing in order to retrieve accurate quantitative information latent in hyperspectral imagery data. Recently, the ground-truth and laboratory measured spectral signatures promoted by advanced algorithms are proposed as a new path toward solving the unmixing problem of hyperspectral imagery in semi-supervised fashion. This paper suggests that the sensitivity of sparse unmixing techniques provides an ideal approach to extract and identify dust settled over/upon green vegetation canopy using hyperspectral airborne data. Atmospheric dust transports a variety of chemicals, some of which pose a risk to the ecosystem and human health (Kaskaoutis, et al., 2008). Many studies deal with the impact of dust on particulate matter (PM) and atmospheric pollution. Considering the potential impact of industrial pollutants, one of the most important considerations is the fact that suspended PM can have both a physical and a chemical impact on plants, soils, and water bodies. Not only can the particles covering surfaces cause physical distortion, but particles of diverse origin and different chemistries can also serve as chemical stressors and cause irreversible damage. Sediment dust load in an indoor environment can be spectrally assessed using reflectance spectroscopy (Chudnovsky and Ben-Dor, 2009). Small amounts of particulate pollution that may carry a signature of a forthcoming environmental hazard are of key interest when considering the effects of pollution. According to the most basic distribution dynamics, dust consists of suspended particulate matter in a fine state of subdivision that are raised and carried by wind. In this context, it is increasingly important to first, understand the distribution dynamics of pollutants, and

  9. A tale of two communities: Neotropical butterfly assemblages show higher beta diversity in the canopy compared to the understory.

    Science.gov (United States)

    Fordyce, James A; DeVries, Philip J

    2016-05-01

    Tropical fruit-feeding nymphalid butterflies generally restrict adult foraging exclusively to either the canopy or understory strata. We compared canopy and understory butterfly communities using data from four long-term studies in Central and South America. At all study sites we found little similarity in species composition between canopy and understory, with most species showing a strong affinity for one of the two habitats. There was a consistent phylogenetic signal for canopy and understory association, suggesting a substantial evolutionary history with these habitats. In addition to compositional differences, we found different patterns of beta diversity between canopy and understory communities. Across all study sites, the canopy had greater temporal and spatial beta diversity compared to the understory. Although these two communities are composed of the same feeding guild and separated only by a relatively small vertical space, each has its own stratum-specific species composition and community dynamics. PMID:26815366

  10. Developing a global mixed-canopy, height-variable vegetation structure dataset for estimating global vegetation albedo by a clumped canopy radiative transfer scheme in the NASA Ent Terrestrial Biosphere Model and GISS GCM

    Science.gov (United States)

    Montes, Carlo; Kiang, Nancy Y.; Ni-Meister, Wenge; Yang, Wenze; Schaaf, Crystal; Aleinov, Igor; Jonas, Jeffrey A.; Zhao, Feng; Yao, Tian; Wang, Zhuosen; Sun, Qingsong; Carrer, Dominique

    2016-04-01

    Processes determining biosphere-atmosphere coupling are strongly influenced by vegetation structure. Thus, ecosystem carbon sequestration and evapotranspiration affecting global carbon and water balances will depend upon the spatial extent of vegetation, its vertical structure, and its physiological variability. To represent this globally, Dynamic Global Vegetation Models (DGVMs) coupled to General Circulation Models (GCMs) make use of satellite and/or model-based vegetation classifications often composed by homogeneous communities. This work aims at developing a new Global Vegetation Structure Dataset (GVSD) by incorporating varying vegetation heights for mixed plant communities to be used as boundary conditions to the Analytical Clumped Two-Stream (ACTS) canopy radiative transfer scheme (Ni-Meister et al., 2010) incorporated into the NASA Ent Terrestrial Biosphere Model (TBM), the DGVM coupled to the NASA Goddard Institute for Space Studies (GISS) GCM. Information sources about land surface and vegetation characteristics obtained from a number of earth observation platforms and algorithms include the Moderate Resolution Imaging Spectroradiometer (MODIS) land cover and plant functional types (PFTs) (Friedl et al., 2010), soil albedo derived from MODIS (Carrer et al., 2014), along with vegetation height from the Geoscience Laser Altimeter System (GLAS) on board ICESat (Ice, Cloud, and land Elevation Satellite) (Simard et al., 2011; Tang et al., 2014). Three widely used Leaf Area Index (LAI) products are compared as input to the GVSD and ACTS forcing in terms of vegetation albedo: Global Data Sets of Vegetation (LAI)3g (Zhu et al. 2013), Beijing Normal University LAI (Yuan et al., 2011), and MODIS MOD15A2H product (Yang et al., 2006). Further PFT partitioning is performed according to a climate classification utilizing the Climate Research Unit (CRU; Harris et al., 2013) and the NOAA Global Precipitation Climatology Centre (GPCC; Scheider et al., 2014) data. Final

  11. ATLAS Live: Collaborative Information Streams

    CERN Document Server

    Goldfarb, S; The ATLAS collaboration

    2010-01-01

    I report on a pilot project launched in 2010 focusing on facilitating communication and information exchange within the ATLAS Collaboration, through the combination of digital signage software and webcasting. The project, called ATLAS Live, implements video streams of information, ranging from detailed detector and data status to educational and outreach material. The content, including text, images, video and audio, is collected, visualised and scheduled using the SCALA digital signage software system. The system is robust and flexible, allowing for the usage of scripts to input data from remote sources, such as the CERN Document Server, Indico, or any available URL, and to integrate these sources into professional-quality streams, including text scrolling, transition effects, inter and intrascreen divisibility. The video is made available to the collaboration or public through the encoding and webcasting of standard video streams, viewable on all common platforms, using a web browser or other common video t...

  12. Interactions between canopy structure and herbaceous biomass along environmental gradients in moist forest and dry Miombo woodland of Tanzania

    OpenAIRE

    Shirima, Deo D.; Pfeifer, Marion; Platts, Philip J.; Totland, Ørjan; Moe, Stein Ragnar

    2015-01-01

    We have limited understanding of how tropical canopy foliage varies along environmental gradients, and how this may in turn affect forest processes and functions. Here, we analyse the relationships between canopy leaf area index (LAI) and above ground herbaceous biomass (AGBH) along environmental gradients in a moist forest and miombo woodland in Tanzania. We recorded canopy structure and herbaceous biomass in 100 permanent vegetation plots (20 m × 40 m), stratified by elevation. We quantifie...

  13. Germination and establishment of Tillandsia eizii (Bromeliaceae) in the canopy of an oak forest in Chiapas, Mexico

    OpenAIRE

    Toledo-Aceves, T.; Wolf, J.H.D.

    2008-01-01

    We assessed the effectiveness of repopulating the inner canopy and middle canopy of oak trees with seeds and seedlings of the epiphytic bromeliad Tillandsia eizii. Canopy germination was 4.7 percent, considerably lower than in vitro (92%). Of the tree-germinated seedlings, only 1.5 percent survived 6 mo. In contrast, 9.3 percent of transplanted laboratory seedlings survived 15 mo. To repopulate trees, we recommend transplanting laboratory-grown seedlings, as large as practically possible, to ...

  14. Using a stand-level model to predict light absorption in stands with vertically and horizontally heterogeneous canopies

    OpenAIRE

    David I. Forrester; Rubén Guisasola; Xiaolu Tang; Axel T Albrecht; Tran Lam Dong; Guerric le Maire

    2014-01-01

    Background Forest ecosystem functioning is strongly influenced by the absorption of photosynthetically active radiation (APAR), and therefore, accurate predictions of APAR are critical for many process-based forest growth models. The Lambert-Beer law can be applied to estimate APAR for simple homogeneous canopies composed of one layer, one species, and no canopy gaps. However, the vertical and horizontal structure of forest canopies is rarely homogeneous. Detailed tree-level models can ac...

  15. Changes in leaf area, nitrogen content and canopy photosynthesis in soybean exposed to an ozone concentration gradient.

    Science.gov (United States)

    Oikawa, Shimpei; Ainsworth, Elizabeth A

    2016-08-01

    Influences of ozone (O3) on light-saturated rates of photosynthesis in crop leaves have been well documented. To increase our understanding of O3 effects on individual- or stand level productivity, a mechanistic understanding of factors determining canopy photosynthesis is necessary. We used a canopy model to scale photosynthesis from leaf to canopy, and analyzed the importance of canopy structural and leaf ecophysiological characteristics in determining canopy photosynthesis in soybean stands exposed to 9 concentrations of [O3] (37-116 ppb; 9-h mean). Light intensity and N content peaked in upper canopy layers, and sharply decreased through the lower canopy. Plant leaf area decreased with increasing [O3] allowing for greater light intensity to reach lower canopy levels. At the leaf level, light-saturated photosynthesis decreased and dark respiration increased with increasing [O3]. These data were used to calculate daily net canopy photosynthesis (Pc). Pc decreased with increasing [O3] with an average decrease of 10% for an increase in [O3] of 10 ppb, and which was similar to changes in above-ground dry mass production of the stands. Absolute daily net photosynthesis of lower layers was very low and thus the decrease in photosynthesis in the lower canopy caused by elevated [O3] had only minor significance for total canopy photosynthesis. Sensitivity analyses revealed that the decrease in Pc was associated with changes in leaf ecophysiology but not with decrease in leaf area. The soybean stands were very crowded, the leaves were highly mutually shaded, and sufficient light for positive carbon balance did not penetrate to lower canopy leaves, even under elevated [O3]. PMID:27261884

  16. Ranking a Stream of News

    OpenAIRE

    Del Corso, Gianna; Gulli, Antonio; Romani, Francesco

    2004-01-01

    searching on news is one of the most important activity on line. Indeed, Google, Yahoo, MSN and many others have proposed commercial search engines for indexing news feeds. Despite this commercial interest, no academic research has focused on ranking a stream of news and a set of news sources. In this paper, we introduce this problem by proposing a ranking framework which models: (1) the process of news stream generation, (2) the news clustering by topics, and (3) the evolution of news over t...

  17. Pollutant transport in natural streams

    International Nuclear Information System (INIS)

    A mathematical model has been developed to estimate the downstream effect of chemical and radioactive pollutant releases to tributary streams and rivers. The one-dimensional dispersion model was employed along with a dead zone model to describe stream transport behavior. Options are provided for sorption/desorption, ion exchange, and particle deposition in the river. The model equations are solved numerically by the LODIPS computer code. The solution method was verified by application to actual and simulated releases of radionuclides and other chemical pollutants. (U.S.)

  18. Detecting forest canopy layering: applying lidar remote sensing to further understand the role of vertical structure in species habitat preference

    Science.gov (United States)

    Whitehurst, A. S.; Dubayah, R.; Swatantran, A.

    2011-12-01

    Full waveform lidar reflects off all forest canopy elements, showing not only height, but also the structure within the canopy from the top to the forest floor, making it an ideal remote sensing technology for research in forest ecosystem dynamics. Vertical stratification or canopy layering has long been noted as an essential element in the forest ecosystem and of importance for species habitat. This project explores the utility of lidar for characterizing forest canopy layering and applying canopy layering information to better understand species habitat preference. Canopy layering will be mapped across the landscape using full-waveform lidar remote sensing data from the NASA Goddard Space Flight Center Laser Vegetation Imaging Sensor (LVIS). Two methods for quantifying layering have been developed from LVIS data collected during the summer of 2009 for Hubbard Brook Experimental Forest, New Hampshire. The two layering datasets (one categorical, one continuous) describe how vertical stratification varies across the forest with canopy height and elevation. The relationships between of canopy layering and avian species habitat preference will also be assessed for bird species within Hubbard Brook Experimental forest. These results will provide ecologically meaningful information and a relevant method for quantifying canopy layering at the landscape scale, which will aid in a better understanding of forest ecosystem dynamics for forest management and species habitat research.

  19. Comparison of active and passive stream restoration

    DEFF Research Database (Denmark)

    Kristensen, Esben Astrup; Thodsen, Hans; Dehli, Bjarke; Quiroga Kolbe, Pablo Eduardo; Glismand, Lasse; Kronvang, Brian

    2013-01-01

    methods are plentiful, it is difficult to determine which one to use to get the anticipated result. The aim of this study was to compare two commonly used methods in small Danish streams to improve the physical condition: re-meandering and passive restoration through cease of maintenance. Our...... investigation included measurement of the physical conditions in 29 stream reaches covering four different groups: (1) re-meandered streams, (2) LDC streams (the least disturbed streams available), (3) passively restored streams (>10 years stop of aintenance) and (4) channelized and non-restored streams. The in......-stream habitats were compared through analysis of the measured physical parameters and by applying a habitat model. We found that re-meandering is a more effective way of re-creating near-natural physical conditions in small streams compared to passive restoration. This is probably due to the limited energy in...

  20. Regional Estimates of Drought-Induced Tree Canopy Loss across Texas

    Science.gov (United States)

    Schwantes, A.; Swenson, J. J.; González-Roglich, M.; Johnson, D. M.; Domec, J. C.; Jackson, R. B.

    2015-12-01

    The severe drought of 2011 killed millions of trees across the state of Texas. Drought-induced tree-mortality can have significant impacts to carbon cycling, regional biophysics, and community composition. We quantified canopy cover loss across the state using remotely sensed imagery from before and after the drought at multiple scales. First, we classified ~200 orthophotos (1-m spatial resolution) from the National Agriculture Imagery Program, using a supervised maximum likelihood classification. Area of canopy cover loss in these classifications was highly correlated (R2 = 0.8) with ground estimates of canopy cover loss, measured in 74 plots across 15 different sites in Texas. These 1-m orthophoto classifications were then used to calibrate and validate coarser scale (30-m) Landsat imagery to create wall-to-wall tree canopy cover loss maps across the state of Texas. We quantified percent dead and live canopy within each pixel of Landsat to create continuous maps of dead and live tree cover, using two approaches: (1) a zero-inflated beta distribution model and (2) a random forest algorithm. Widespread canopy loss occurred across all the major natural systems of Texas, with the Edwards Plateau region most affected. In this region, on average, 10% of the forested area was lost due to the 2011 drought. We also identified climatic thresholds that controlled the spatial distribution of tree canopy loss across the state. However, surprisingly, there were many local hot spots of canopy loss, suggesting that not only climatic factors could explain the spatial patterns of canopy loss, but rather other factors related to soil, landscape, management, and stand density also likely played a role. As increases in extreme droughts are predicted to occur with climate change, it will become important to define methods that can detect associated drought-induced tree mortality across large regions. These maps could then be used (1) to quantify impacts to carbon cycling and regional

  1. Canopy structure effects on the wind at a complex forested site

    International Nuclear Information System (INIS)

    We investigated the effect of the canopy description in a Reynolds-averaged Navier-Stokes method based on key flow results from a complex forested site. The canopy structure in RANS is represented trough the frontal area of canopy elements per unit volume, a variable required as input in canopy models. Previously difficult to estimate, this variable can now be easily recovered using aerial LiDAR scans. In this study, three approaches were tested which were all based on a novel method to extract the forest properties from the scans. A first approach used the fully spatial varying frontal area density. In a second approach, the vertical frontal area density variations were ignored, but the horizontally varying forest heights were kept represented. The third approach ignored any variations: the frontal area density was defined as a constant up to a fixed tree height over the whole domain. The results showed significant differences among the cases. The large-scale horizontal heterogeneities produced the largest effect on the variability of wind fields. Close to the surface, specifying more details about the canopy resulted in an increase of x – y area-averaged fields of velocity and turbulent kinetic energy

  2. Fractal Characteristics of Population Canopy Structure of the Mangrove, Bruguiera gymnorrhiza (L.) Lamk

    Institute of Scientific and Technical Information of China (English)

    Liang Shichu; Wang Bosun

    2003-01-01

    The fractal characteristics of the canopy structure of B. gvmnorrhiza population are investigated by fractal dimension analysis in the National Shankou Mangrove Nature Reserve. The 3-year-old branches have box dimensions between 1.22 and 1.55, showing the complexity degree of branching structure and the ability of occupying and utilizing ecological space. It may be considered that fractal dimension provides a useful index for the study of light utilization efficiencies and growth processes of B. gymnorrhiza. Calculated by using the two-surface method, the fractal dimensions for the crown pattern of individuals with ages of 20 to 50 years range from 2.21 to 2.54, indicating that the filling degree of foliage to a tree crown is relatively low and B. gymnorrhiza has the property of a sun plant.Along with the increase of ages of individuals, the filling degree of foliage to a tree crown changes from high to low, and so does the fractal dimension. The box dimensions obtained from the grayscale curves of population canopy are between 1.47 and 1.61. The greater the box dimension, the more loosely organized the canopy spatial structure, and the more the light spots. The canopy structural information and complexity of a population can be effectively captured by box dimensions obtained from canopy grayscale curves.

  3. Components of ecosystem evaporation in a temperate coniferous rainforest, with canopy transpiration scaled using sapwood density.

    Science.gov (United States)

    Barbour, M M; Hunt, J E; Walcroft, A S; Rogers, G N D; McSeveny, T M; Whitehead, D

    2005-02-01

    Here we develop and test a method to scale sap velocity measurements from individual trees to canopy transpiration (E(c)) in a low-productivity, old-growth rainforest dominated by the conifer Dacrydium cupressinum. Further, E(c) as a component of the ecosystem water balance is quantified in relation to forest floor evaporation rates and measurements of ecosystem evaporation using eddy covariance (E(eco)) in conditions when the canopy was dry and partly wet. Thermal dissipation probes were used to measure sap velocity of individual trees, and scaled to transpiration at the canopy level by dividing trees into classes based on sapwood density and canopy position (sheltered or exposed). When compared with ecosystem eddy covariance measurements, E(c) accounted for 51% of E(eco) on dry days, and 22% of E(eco) on wet days. Low transpiration rates, and significant contributions to E(eco) from wet canopy evaporation and understorey transpiration (35%) and forest floor evaporation (25%), were attributable to the unique characteristics of the forest: in particular, high rainfall, low leaf area index, low stomatal conductance and low productivity associated with severe nutrient limitation. PMID:15720665

  4. Observing the Forest Canopy with a New Ultra-Violet Compact Airborne Lidar

    Directory of Open Access Journals (Sweden)

    Dominique Guyon

    2010-08-01

    Full Text Available We have developed a new airborne UV lidar for the forest canopy and deployed it in the Landes forest (France. It is the first one that: (i operates at 355 nm for emitting energetic pulses of 16 mJ at 20 Hz while fulfilling eye-safety regulations and (ii is flown onboard an ultra-light airplane for enhanced flight flexibility. Laser footprints at ground level were 2.4 m wide for a flying altitude of 300 m. Three test areas of ~500 × 500 m2 with Maritime pines of different ages were investigated. We used a threshold method adapted for this lidar to accurately extract from its waveforms detailed forest canopy vertical structure: canopy top, tree crown base and undergrowth heights. Good detection sensitivity enabled the observation of ground returns underneath the trees. Statistical and one-to-one comparisons with ground measurements by field foresters indicated a mean absolute accuracy of ~1 m. Sensitivity tests on detection threshold showed the importance of signal to noise ratio and footprint size for a proper detection of the canopy vertical structure. This UV-lidar is intended for future innovative applications of simultaneous observation of forest canopy, laser-induced vegetation fluorescence and atmospheric aerosols.

  5. Canopy arthropods community within and among oak species in central Mexico

    Institute of Scientific and Technical Information of China (English)

    Efraín TOVAR-SANCHEZ

    2009-01-01

    Quercus rugosa and Q.laurina are species that presents a wide geographical distribution range in temperate forests of Mexico. Oak canopies contain a considerable portion of arthropod diversity and the arthropods fauna fulfill a wide variety of ecological roles. We examined the effect of oak species and seasonal changes on some community structure parameters (diversity, composition, similarity, biomass, rare species, and density of arthropod fauna) of canopy arthropods. In total, 40 oak canopies were fogged during rainy and dry season. A total of 614 identified arthropod morphospecies were recognized belonging to 22 orders associated with tree canopies. A separation of host tree species during both seasons, suggesting a different community structure on host plants species was demonstrated by the principal component analyses (PCA), therefore, differences between oak species results in phenotypes that structure the composition of the arthropod community. Q.laurina registered the highest densities, diversity index and number of rare species in comparison with Q.rugosa. While arthropod biomass showed an inverse pattern. Trees more close to one another (spatial distance) register a more similar canopy arthropod fauna. This study suggests that the trees of Q.laurina could act as a center of biodiversity by the accumulation of arthropod fauna with a considerable number of rare species, which presents wide ecological roles or is involved in critical processes that maintain forest ecosystems[Current Zoology 55(2):132-144,2009].

  6. Developing a regional canopy fuels assessment strategy using multi-scale lidar

    Science.gov (United States)

    Peterson, Birgit; Nelson, Kurtis

    2011-01-01

    Accurate assessments of canopy fuels are needed by fire scientists to understand fire behavior and to predict future fire occurrence. A key descriptor for canopy fuels is canopy bulk density (CBD). CBD is closely linked to the structure of the canopy; therefore, lidar measurements are particularly well suited to assessments of CBD. LANDFIRE scientists are exploring methods to integrate airborne and spaceborne lidar datasets into a national mapping effort. In this study, airborne lidar, spaceborne lidar, and field data are used to map CBD in the Yukon Flats Ecoregion, with the airborne lidar serving as a bridge between the field data and the spaceborne observations. The field-based CBD was positively correlated with airborne lidar observations (R2=0.78). Mapped values of CBD using the airborne lidar dataset were significantly correlated with spaceborne lidar observations when analyzed by forest type (R2=0.62, evergreen and R2=0.71, mixed). Though continued research is necessary to validate these results, they do support the feasibility of airborne and, most importantly, spaceborne lidar data for canopy fuels assessment.

  7. Canopy Gap Mapping from Airborne Laser Scanning: An Assessment of the Positional and Geometrical Accuracy

    Directory of Open Access Journals (Sweden)

    Stéphanie Bonnet

    2015-09-01

    Full Text Available Canopy gaps are small-scale openings in forest canopies which offer suitable micro-climatic conditions for tree regeneration. Field mapping of gaps is complex and time-consuming. Several studies have used Canopy Height Models (CHM derived from airborne laser scanning (ALS to delineate gaps but limited accuracy assessment has been carried out, especially regarding the gap geometry. In this study, we investigate three mapping methods based on raster layers produced from ALS leaf-off and leaf-on datasets: thresholding, per-pixel and per-object supervised classifications with Random Forest. In addition to the CHM, other metrics related to the canopy porosity are tested. The gap detection is good, with a global accuracy up to 82% and consumer’s accuracy often exceeding 90%. The Geometric Accuracy (GAc was analyzed with the gap area, main orientation, gap shape-complexity index and a quantitative assessment index of the matching with reference gaps polygons. The GAc assessment shows difficulties in identifying a method which properly delineates gaps. The performance of CHM-based thresholding was exceeded by that of other methods, especially thresholding of canopy porosity rasters and the per-pixel supervised classification. Beyond assessing the methods performance, we argue the critical need for future ALS-based gap studies to consider the geometric accuracy of results.

  8. A Comparison of Mangrove Canopy Height Using Multiple Independent Measurements from Land, Air, and Space

    Directory of Open Access Journals (Sweden)

    David Lagomasino

    2016-04-01

    Full Text Available Canopy height is one of the strongest predictors of biomass and carbon in forested ecosystems. Additionally, mangrove ecosystems represent one of the most concentrated carbon reservoirs that are rapidly degrading as a result of deforestation, development, and hydrologic manipulation. Therefore, the accuracy of Canopy Height Models (CHM over mangrove forest can provide crucial information for monitoring and verification protocols. We compared four CHMs derived from independent remotely sensed imagery and identified potential errors and bias between measurement types. CHMs were derived from three spaceborne datasets; Very-High Resolution (VHR stereophotogrammetry, TerraSAR-X add-on for Digital Elevation Measurement, and Shuttle Radar Topography Mission (TanDEM-X, and lidar data which was acquired from an airborne platform. Each dataset exhibited different error characteristics that were related to spatial resolution, sensitivities of the sensors, and reference frames. Canopies over 10 m were accurately predicted by all CHMs while the distributions of canopy height were best predicted by the VHR CHM. Depending on the guidelines and strategies needed for monitoring and verification activities, coarse resolution CHMs could be used to track canopy height at regional and global scales with finer resolution imagery used to validate and monitor critical areas undergoing rapid changes.

  9. Simulating sunflower canopy temperatures to infer root-zone soil water potential

    Science.gov (United States)

    Choudhury, B. J.; Idso, S. B.

    1983-01-01

    A soil-plant-atmosphere model for sunflower (Helianthus annuus L.), together with clear sky weather data for several days, is used to study the relationship between canopy temperature and root-zone soil water potential. Considering the empirical dependence of stomatal resistance on insolation, air temperature and leaf water potential, a continuity equation for water flux in the soil-plant-atmosphere system is solved for the leaf water potential. The transpirational flux is calculated using Monteith's combination equation, while the canopy temperature is calculated from the energy balance equation. The simulation shows that, at high soil water potentials, canopy temperature is determined primarily by air and dew point temperatures. These results agree with an empirically derived linear regression equation relating canopy-air temperature differential to air vapor pressure deficit. The model predictions of leaf water potential are also in agreement with observations, indicating that measurements of canopy temperature together with a knowledge of air and dew point temperatures can provide a reliable estimate of the root-zone soil water potential.

  10. Airborne X-Hh Incidence Angle Impact on Canopy Height Retreival: Implications for Spaceborne X-Hh Tandem-X Global Canopy Height Model

    Science.gov (United States)

    Tighe, M. L.; King, D.; Balzter, H.; Bannari, A.; McNairn, H.

    2012-07-01

    To support international climate change mitigation efforts, the United Nations REDD+ initiative (Reducing Emissions from Deforestation and Degradation) seeks to reduce land use induced greenhouse gas emissions to the atmosphere. It requires independent monitoring of forest cover and forest biomass information in a spatially explicit form. It is widely recognised that remote sensing is required to deliver this information. Synthetic Aperture Radar interferometry (InSAR) techniques have gained traction in the last decade as a viable technology from which vegetation canopy height and bare earth elevations can be derived. The viewing geometry of a SAR sensor is side-looking where the radar pulse is transmitted out to one side of the aircraft or satellite, defining an incidence angle (θ) range. The incidence angle will change from near-range (NR) to far-range (FR) across of the track of the SAR platform. InSAR uses image pairs and thus, contain two set of incidence angles. Changes in the InSAR incidence angles can alter the relative contributions from the vegetation canopy and the ground surface and thus, affect the retrieved vegetation canopy height. Incidence angle change is less pronounced in spaceborne data than in airborne data and mitigated somewhat when multiple InSAR-data takes are combined. This study uses NEXTMap® single- and multi-pass X-band HH polarized InSAR to derive vegetation canopy height from the scattering phase centre height (hspc). Comparisons with in situ vegetation canopy height over three test sites (Arizona-1, Minnesota-2); the effect of incidence angle changes across swath on the X-HH InSAR hspc was examined. Results indicate at steep incidence angles (θ = 35º), more exposure of lower vegetation canopy structure (e.g. tree trunks) led to greater lower canopy double bounce, increased ground scattering, and decreased volume scattering. This resulted in a lower scattering phase centre height (hspc) or a greater underestimation of vegetation

  11. Coastal Applications of the Canopy Biomass Lidar (CBL)

    Science.gov (United States)

    Paynter, I.; Saenz, E.; Peri, F.; Schaaf, C.; Wang, Z.; Erb, A.; Yang, Y.; Rouhani, S.; Liu, Y.; Yang, X.; Chen, R. F.; Oktay, S.; Gontz, A. M.; Douglas, E. M.; Kim, J.; Sun, Q.; Strahler, A. H.; Li, Z.; van Aardt, J. A.; Kelbe, D.; Romanczyk, P.; Cawse-Nicholson, K.

    2013-12-01

    Airborne discrete and full waveform lidars have increasingly been utilized to augment multispectral and hyperspectral imaging of coastal ecosystems. While these data provide important landscape assessments of the shore and nearshore environment, they often lack the frequency that is really needed to monitor complex vegetative systems such as salt marshes and mangroves and provide rapid evaluations in the aftermath of severe storms. One solution is to augment the sparse airborne and satellite acquisitions with terrestrial laser scanning (TLS) information. However, most institutions with fine resolution discrete or full waveform TLS instruments are unwilling to risk these expensive (and often heavy) lidar in marine or estuarine environments. The Canopy Biomass Lidar (CBL) is an inexpensive, highly portable, fast-scanning, time-of-flight, TLS instrument, originally conceived by the Katholieke Universiteit Leuven (KUL) and refined by the Rochester Institute of Technology (RIT). Two new CBLs, constructed by the University of Massachusetts Boston (UMB), have been successfully deployed in deciduous and conifer forests at Long Term Ecological Research (LTER) and National Ecological Observatory Network (NEON) sites in Massachusetts (Harvard Forest) and California (Sierra National Forest), and in eucalypt forests at long-term and Terrestrial Ecosystem Research Network (TERN) sites in Queensland, Australia. Both the UMB and RIT CBLs have also been deployed in savanna systems at the San Joaquin Rangeland (and NEON site) in California. The UMB CBLs are now being deployed in salt marsh systems in Massachusetts with plans underway to deploy them in mangrove forests later in the year. In particular, they are being used to characterize the water facing edge of saltmarsh at UMB's Nantucket Island field station and remnant salt marshes on the highly urbanized Neponset estuary draining into Boston Harbor. While CBL's 905nm nearIR wavelength is of little use in nearshore inundated

  12. Canopy gap colonization in the Atlantic Montane Rain Forest

    Directory of Open Access Journals (Sweden)

    Renato A. Ferreira de Lima

    2006-11-01

    Full Text Available In the Atlantic Montane Rain Forest of South-eastern Brazil, a study was carried out to describe and evaluate canopy gap colonization. Gap composition by herb species was assessed through their soil coverage and woody species by measuring and identifying all individuals taller than one meter. Gap structure (gap size, number and diameter of treefalls, topographic position and surrounding vegetation were also measured. Two genera of Marantaceae were markedly frequent and abundant inside gaps. The more abundant and frequent woody species were shade tolerant. Species-rich families found inside gaps did not differ from the forest as a whole. Results revealed that direct and indirect influences of topography were important to determine gap composition of woody species. Evidently gap colonization had a considerable influence of topography and pre-established individuals besides variables of gap structure.Na Floresta Pluvial Atlântica Montana do Sudeste Brasileiro, foi realizado um estudo para descrever e avaliar a colonização de clareiras. A composição de clareiras foi levantada através da cobertura do solo para as espécies herbáceas enquanto que todos os indivíduos lenhosos maiores que um metro de altura foram mensurados e identificados. Também foram coletadas informações sobre a estrutura das clareiras (área da clareira, número e diâmetro das quedas, posição topográfica e vegetação circundante. Dois gêneros de Marantaceae apresentaram considerável freqüência e abundância nas clareiras. As espécies lenhosas mais freqüentes e abundantes pertenceram ao grupo não-pioneiro e as famílias mais ricas encontradas nas clareiras não diferiram quando comparado à floresta como um todo. Como para as variáveis do estrato herbáceo e da vegetação circundante, os resultados revelaram que efeitos diretos e indiretos da topografia são importantes na determinação da composição interna de clareiras por espécies lenhosas. Estes

  13. Stretch-minimising stream surfaces

    KAUST Repository

    Barton, Michael

    2015-05-01

    We study the problem of finding stretch-minimising stream surfaces in a divergence-free vector field. These surfaces are generated by motions of seed curves that propagate through the field in a stretch minimising manner, i.e., they move without stretching or shrinking, preserving the length of their arbitrary arc. In general fields, such curves may not exist. How-ever, the divergence-free constraint gives rise to these \\'stretch-free\\' curves that are locally arc-length preserving when infinitesimally propagated. Several families of stretch-free curves are identified and used as initial guesses for stream surface generation. These surfaces are subsequently globally optimised to obtain the best stretch-minimising stream surfaces in a given divergence-free vector field. Our algorithm was tested on benchmark datasets, proving its applicability to incompressible fluid flow simulations, where our stretch-minimising stream surfaces realistically reflect the flow of a flexible univariate object. © 2015 Elsevier Inc. All rights reserved.

  14. Estimated Perennial Streams in Idaho

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Perennial streams in Idaho have been modeled using regression equations for 7-day, 2-year low flows (7Q2) described in Wood and others (2009, U.S. Geological Survey...

  15. SEDIMENT TRANSPORT AND STREAM POWER

    Institute of Scientific and Technical Information of China (English)

    Chih Ted YANG

    2002-01-01

    This paper provides a step-by-step derivation of the sediment transport functions by Engelund and Hansen (1967) and by Ackers and White (1973). The theoretical derivations demonstrate that these two functions are closely related to Bagnold's (1966) stream power and efficiency concepts.

  16. Miscellaneous Waste Stream strategy document

    International Nuclear Information System (INIS)

    This strategy document addresses objectives and implementation for the Miscellaneous Waste Stream (MWS) program through FY1996. Its intention is to develop's comprehensive pollution prevention/hazard minimization program for MWS projects. The overall focus of this program is aimed at pollution prevention/hazard minimization for MWS processes and involves the elimination/minimization of processes and materials that result in pollutant releases to all environmental media. The document is divided into three categories of initial issues identified from funded MWS projects: waste streams, assessment tools, and waste characterization and worker exposure methods development. Initial strategy requires the development of a baseline of major waste streams at each facility and the identification of MWS issues and proposed solutions. Goals and schedules will evolve as these new issues are identified. Applicable pollution prevention/hazard minimization technologies will be identified, prioritized, and employed to address each issue commensurate with funding availability. Options will then be chosen and the proven technologies transferred to other sites, including commercial industry. Most notably, this strategy document calls for a 50 percent volume and toxicity reduction by CY1995 in the miscellaneous waste streams generated by processes within the MWS

  17. ALIENS IN WESTERN STREAM ECOSYSTEMS

    Science.gov (United States)

    The USEPA's Environmental Monitoring and Assessment Program conducted a five year probability sample of permanent mapped streams in 12 western US states. The study design enables us to determine the extent of selected riparian invasive plants, alien aquatic vertebrates, and some ...

  18. Tidal Streams of Intracluster Light

    CERN Document Server

    Rudick, Craig S; Frey, Lucille H; McBride, Cameron K

    2009-01-01

    Using N-body simulations, we have modeled the production and evolution of substructures in the intracluster light (ICL) of a simulated galaxy cluster. We use a density-based definition of ICL, where ICL consists of luminous particles which are at low densities, to identify ICL particles and track their evolution. We have implemented a friends-of-friends-type clustering algorithm which finds groups of particles correlated in both position and velocity space to identify substructures in the ICL, hereafter referred to as ``streams''. We find that ~40% of the cluster's ICL is generated in the form of these massive (M > 7.0x10^8 Msun), dynamically cold streams. The fraction of the ICL generated in streams is greater early in the cluster's evolution, when galaxies are interacting in the group environment, than later in its evolution when the massive cluster potential has been assembled. The production of streams requires the strong tidal fields associated with close interactions between pairs of galaxies, and is us...

  19. INFORMATION STREAMS OF LOGISTICAL SYSTEMS

    OpenAIRE

    E. N. Zhivitskaya

    2015-01-01

    The problem of formalisation and practical realisation of information streams of logistical systems, as the basic component of a separate kind of systems the logistical information systems having the features and properties that allows to investigate them by means of methods, applicable to information systems is considered.

  20. Spatial Stream Segregation by Cats.

    Science.gov (United States)

    Javier, Lauren K; McGuire, Elizabeth A; Middlebrooks, John C

    2016-06-01

    Listeners can perceive interleaved sequences of sounds from two or more sources as segregated streams. In humans, physical separation of sound sources is a major factor enabling such stream segregation. Here, we examine spatial stream segregation with a psychophysical measure in domestic cats. Cats depressed a pedal to initiate a target sequence of brief sound bursts in a particular rhythm and then released the pedal when the rhythm changed. The target bursts were interleaved with a competing sequence of bursts that could differ in source location but otherwise were identical to the target bursts. This task was possible only when the sources were heard as segregated streams. When the sound bursts had broad spectra, cats could detect the rhythm change when target and competing sources were separated by as little as 9.4°. Essentially equal levels of performance were observed when frequencies were restricted to a high, 4-to-25-kHz, band in which the principal spatial cues presumably were related to sound levels. When the stimulus band was restricted from 0.4 to 1.6 kHz, leaving interaural time differences as the principal spatial cue, performance was severely degraded. The frequency sensitivity of cats in this task contrasts with that of humans, who show better spatial stream segregation with low- than with high-frequency sounds. Possible explanations for the species difference includes the smaller interaural delays available to cats due to smaller sizes of their heads and the potentially greater sound-level cues available due to the cat's frontally directed pinnae and higher audible frequency range. PMID:26993807

  1. Improving photosynthetic efficiency to address food security in the 21st century: Strategies for a more efficient crop canopy

    Science.gov (United States)

    VanLoocke, A. D.; Slattery, R.; Bernacchi, C.; Zhu, X.; Ort, D. R.

    2013-12-01

    Global food production will need to increase by approximately 70% by mid-century to meet the caloric and nutritional demand of population and economic growth. Achieving this goal will require successfully implementing a wide range of strategies, spanning the social and physical sciences. Here we will present opportunities for improving crop production through increasing photosynthetic rates for a crop canopy that do not require additional agronomic inputs. We will focus on a specific strategy related optimizing the distribution of light within a crop canopy because it is a possible way to improve canopy photosynthesis in crops that form dense canopies, such as soybean, by increasing the transmission of light within a canopy via reduced chlorophyll content. We hypothesized that if decreasing chlorophyll content in soybean leaves will result in greater light penetration into the canopy then this will enhance canopy photosynthesis and improve yields. In addition, if current chlorophyll content in soybean results in excess light absorption, then decreasing chlorophyll content will result in decreased photoprotection that results in the suppression of upper canopy photosynthesis associated with super-optimal light. These hypotheses were tested in 2012 and 2013 in the field on the soybean cultivar 'Clark' (WT) and a nearly isogenic chlorophyll-b deficient mutant (Y11y11). Throughout the season, profiles of light sensors measured incident and reflected light intensity at the canopy surface as well as light levels at ten heights within the canopy. Analyses of these data indicated greater reflectivity, transmissivity and within-canopy light levels for the Y11y11 canopy relative to WT especially in the top half of the canopy. A Gas exchange method was used to determine photosynthetic capacity and suppression high light levels. Daily integrals of leaf-level photosynthesis in sun leaves were greater in Y11y11 compared to WT at several times during the growing season and

  2. Turbulent Transfer Coefficients and Calculation of Air Temperature inside Tall Grass Canopies in Land Atmosphere Schemes for Environmental Modeling.

    Science.gov (United States)

    Mihailovic, D. T.; Alapaty, K.; Lalic, B.; Arsenic, I.; Rajkovic, B.; Malinovic, S.

    2004-10-01

    A method for estimating profiles of turbulent transfer coefficients inside a vegetation canopy and their use in calculating the air temperature inside tall grass canopies in land surface schemes for environmental modeling is presented. The proposed method, based on K theory, is assessed using data measured in a maize canopy. The air temperature inside the canopy is determined diagnostically by a method based on detailed consideration of 1) calculations of turbulent fluxes, 2) the shape of the wind and turbulent transfer coefficient profiles, and 3) calculation of the aerodynamic resistances inside tall grass canopies. An expression for calculating the turbulent transfer coefficient inside sparse tall grass canopies is also suggested, including modification of the corresponding equation for the wind profile inside the canopy. The proposed calculations of K-theory parameters are tested using the Land Air Parameterization Scheme (LAPS). Model outputs of air temperature inside the canopy for 8 17 July 2002 are compared with micrometeorological measurements inside a sunflower field at the Rimski Sancevi experimental site (Serbia). To demonstrate how changes in the specification of canopy density affect the simulation of air temperature inside tall grass canopies and, thus, alter the growth of PBL height, numerical experiments are performed with LAPS coupled with a one-dimensional PBL model over a sunflower field. To examine how the turbulent transfer coefficient inside tall grass canopies over a large domain represents the influence of the underlying surface on the air layer above, sensitivity tests are performed using a coupled system consisting of the NCEP Nonhydrostatic Mesoscale Model and LAPS.

  3. Nitrogen cycling in canopy soils of tropical montane forests responds rapidly to indirect N and P fertilization.

    Science.gov (United States)

    Matson, Amanda L; Corre, Marife D; Veldkamp, Edzo

    2014-12-01

    Although the canopy can play an important role in forest nutrient cycles, canopy-based processes are often overlooked in studies on nutrient deposition. In areas of nitrogen (N) and phosphorus (P) deposition, canopy soils may retain a significant proportion of atmospheric inputs, and also receive indirect enrichment through root uptake followed by throughfall or recycling of plant litter in the canopy. We measured net and gross rates of N cycling in canopy soils of tropical montane forests along an elevation gradient and assessed indirect effects of elevated nutrient inputs to the forest floor. Net N cycling rates were measured using the buried bag method. Gross N cycling rates were measured using (15) N pool dilution techniques. Measurements took place in the field, in the wet and dry season, using intact cores of canopy soil from three elevations (1000, 2000 and 3000 m). The forest floor had been fertilized biannually with moderate amounts of N and P for 4 years; treatments included control, N, P, and N + P. In control plots, gross rates of NH4 (+) transformations decreased with increasing elevation; gross rates of NO3 (-) transformations did not exhibit a clear elevation trend, but were significantly affected by season. Nutrient-addition effects were different at each elevation, but combined N + P generally increased N cycling rates at all elevations. Results showed that canopy soils could be a significant N source for epiphytes as well as contributing up to 23% of total (canopy + forest floor) mineral N production in our forests. In contrast to theories that canopy soils are decoupled from nutrient cycling in forest floor soil, N cycling in our canopy soils was sensitive to slight changes in forest floor nutrient availability. Long-term atmospheric N and P deposition may lead to increased N cycling, but also increased mineral N losses from the canopy soil system. PMID:24965673

  4. A state-space modeling approach to estimating canopy conductance and associated uncertainties from sap flux density data.

    Science.gov (United States)

    Bell, David M; Ward, Eric J; Oishi, A Christopher; Oren, Ram; Flikkema, Paul G; Clark, James S

    2015-07-01

    Uncertainties in ecophysiological responses to environment, such as the impact of atmospheric and soil moisture conditions on plant water regulation, limit our ability to estimate key inputs for ecosystem models. Advanced statistical frameworks provide coherent methodologies for relating observed data, such as stem sap flux density, to unobserved processes, such as canopy conductance and transpiration. To address this need, we developed a hierarchical Bayesian State-Space Canopy Conductance (StaCC) model linking canopy conductance and transpiration to tree sap flux density from a 4-year experiment in the North Carolina Piedmont, USA. Our model builds on existing ecophysiological knowledge, but explicitly incorporates uncertainty in canopy conductance, internal tree hydraulics and observation error to improve estimation of canopy conductance responses to atmospheric drought (i.e., vapor pressure deficit), soil drought (i.e., soil moisture) and above canopy light. Our statistical framework not only predicted sap flux observations well, but it also allowed us to simultaneously gap-fill missing data as we made inference on canopy processes, marking a substantial advance over traditional methods. The predicted and observed sap flux data were highly correlated (mean sensor-level Pearson correlation coefficient = 0.88). Variations in canopy conductance and transpiration associated with environmental variation across days to years were many times greater than the variation associated with model uncertainties. Because some variables, such as vapor pressure deficit and soil moisture, were correlated at the scale of days to weeks, canopy conductance responses to individual environmental variables were difficult to interpret in isolation. Still, our results highlight the importance of accounting for uncertainty in models of ecophysiological and ecosystem function where the process of interest, canopy conductance in this case, is not observed directly. The StaCC modeling

  5. Progressive forest canopy water loss during the 2012-2015 California drought.

    Science.gov (United States)

    Asner, Gregory P; Brodrick, Philip G; Anderson, Christopher B; Vaughn, Nicholas; Knapp, David E; Martin, Roberta E

    2016-01-12

    The 2012-2015 drought has left California with severely reduced snowpack, soil moisture, ground water, and reservoir stocks, but the impact of this estimated millennial-scale event on forest health is unknown. We used airborne laser-guided spectroscopy and satellite-based models to assess losses in canopy water content of California's forests between 2011 and 2015. Approximately 10.6 million ha of forest containing up to 888 million large trees experienced measurable loss in canopy water content during this drought period. Severe canopy water losses of greater than 30% occurred over 1 million ha, affecting up to 58 million large trees. Our measurements exclude forests affected by fire between 2011 and 2015. If drought conditions continue or reoccur, even with temporary reprieves such as El Niño, we predict substantial future forest change. PMID:26712020

  6. Estimation of dry deposition fluxes of major inorganic species by canopy throughfall approach

    Institute of Scientific and Technical Information of China (English)

    JIN Lei; SHAO Min; ZENG Limin; ZHAO Dawei; TANG Dagang

    2006-01-01

    Dry deposition in China has not yet been intensively studied even though it constitutes an important pathway for acid deposition. The total deposition was monitored at Tieshanping catchment, a regional remote site in Chongqing City. The dry deposition loads of sulphur, calcium and nitrogen are estimated by using a canopy throughfall approach. The results indicate that the annual dry deposition loads of sulphur and calcium at Tieshanping site are much higher than those measured in forestry areas in other countries, while the dry deposition flux of nitrogen is at a comparable level. The dry deposition loads of sulphur, calcium and nitrogen are all higher than the wet deposition loads. Applying a canopy budget model has proven that the routine, simplified canopy throughfall approach may underestimate the dry deposition flux of nitrogen-containing species.

  7. Airborne remote sensing of canopy water thickness scaled from leaf spectrometer data

    Science.gov (United States)

    Hunt, E. Raymond, Jr.

    1991-01-01

    The reflectance ratio of the middle-infrared band (MIR) to the near-infrared band (NIR) is linearly related to the log(10) equivalent water thickness (EWT) for single leaves of different morphologies, whereas the MIR/NIR radiance ratio is correlated with the leaf area index (LAI). The hypothesis that the MIR/NIR ratio measures canopy EWT was tested by reanalyzing airborne Thematic Mapper Simulator and field data obtained across a large gradient of LAI in western Oregon, U.S.A. The measured airborne MIR/NIR reflectance ratios for canopies were not significantly different from the predicted ratios using leaf data for canopy EWT, except for two desert woodland sites. The interpretation of the MIR/NIR ratio is scale-dependent, because leaf EWT is determined primarily by variations in LAI.

  8. Photosynthesis and stomatal conductance related to reflectance on the canopy scale

    Science.gov (United States)

    Verma, S. B.; Sellers, P. J.; Walthall, C. L.; Hall, F. G.; Kim, J.; Goetz, S. J.

    1993-01-01

    Field measurements of carbon dioxide and water vapor fluxes were analyzed in conjunction with reflectances obtained from a helicopter-mounted Modular Multiband Radiometer at a grassland study site during the First International Satellite Land Surface Climatology Project Field Experiment. These measurements are representative of the canopy scale and were made over a range of meteorological and soil moisture conditions during different stages in the annual life cycle of the prairie vegetation, and thus provide a good basis for investigating hpotheses/relationships potentially useful in remote sensing applications. We tested the hypothesis (Sellers, 1987) that the simple ratio vegetation index should be near-linearly related to the derivatives of the unstressed canopy stomatal conductance and the unstressed canopy photosynthesis with respect to photosynthetically active radiation. Even though there is some scatter in our data, the results seem to support this hypothesis.

  9. High-dose therapy improved the bone remodelling compartment canopy and bone formation in multiple myeloma

    DEFF Research Database (Denmark)

    Hinge, Maja; Delaissé, Jean-Marie; Plesner, Torben; Clasen-Linde, Erik; Salomo, Morten; Levin Andersen, Thomas

    2015-01-01

    . Loss of this canopy has been associated with bone loss. This study addresses whether the bone remodelling in MM is improved by high-dose therapy. Bone marrow biopsies obtained from 20 MM patients, before and after first-line treatment with high-dose melphalan followed by autologous stem cell......Bone loss in multiple myeloma (MM) is caused by an uncoupling of bone formation to resorption trigged by malignant plasma cells. Increasing evidence indicates that the bone remodelling compartment (BRC) canopy, which normally covers the remodelling sites, is important for coupled bone remodelling...... transplantation, and from 20 control patients with monoclonal gammopathy of undetermined significance were histomorphometrically investigated. This investigation confirmed that MM patients exhibited uncoupled bone formation to resorption and reduced canopy coverage. More importantly, this study revealed that a...

  10. Assessing the vegetation canopy influences on wind flow using wind tunnel experiments with artificial plants

    Science.gov (United States)

    Hong, Youngjoo; Kim, Dongyeob; Im, Sangjun

    2016-04-01

    Wind erosion causes serious problems and considerable threat in most regions of the world. Vegetation on the ground has an important role in controlling wind erosion by covering soil surface and absorbing wind momentum. A set of wind tunnel experiments was performed to quantitatively examine the effect of canopy structure on wind movement. Artificial plastic vegetations with different porosity and canopy shape were introduced as the model canopy. Normalized roughness length ( Z 0/ H) and shear velocity ratio ( R) were analyzed as a function of roughness density ( λ). Experiments showed that Z 0/ H increases and R decreases as λ reaches a maximum value, λ max, while the values of Z 0/ H and R showed little change with λ value beyond as λ max.

  11. Two-color, Polarimetric Laser Altimeter Measurements of Forest Canopy Structure and Composition

    Science.gov (United States)

    Dabney, P.; Yu, A. W.; Harding, D. J.; Valett, S. R.; Hicks, E.; Shuman, C. A.; Vasilyev, A. A.

    2010-12-01

    Over the past decade lidar remote sensing has proven to be a highly effective method for characterization of forest canopy structure and estimation of biomass stocks. However, traditional measurements only provide information on the vertical distribution of surfaces without ability to differentiate surface types. Also, an unresolved aspect of traditional measurements is the contribution of within-canopy multiple scattering to the lidar profiles of canopy structure. Slope Imaging Multi-polarization Photon-counting Lidar (SIMPL) data was acquired in July and August, 2010 for three sites with well-characterized forest structure in order to address these issues. SIMPL is an airborne, four-beam laser altimeter developed through the NASA Earth Science Technology Office Instrument Incubator Program. It acquires single-photon laser ranging data at 532 and 1064 nm, recording range-resolved measurements of reflected energy parallel and perpendicular to the transmit pulse polarization plane. Prior work with a non-ranging, multi-wavelength laser polarimetry demonstrated differentiation of tree species types based on depolarization differences related to surface and volume multiple scattering at the leaf scale. By adding the ranging component, SIMPL provides a means to investigate the vertical and horizontal distribution of optical scattering properties to better understand the interaction of pulsed laser energy with the foliage, stem and branch components of forest canopies. Data were acquired for the deciduous forest cover at the Smithsonian Environmental Research Center in Maryland and mixed deciduous and pine cover in the New Jersey Pine Barrens, two sites being used by the ICESat-2 project to assess micropulse, single-photon measurements of forest canopies. A third site, in the Huron National Forest in Michigan, has had diverse forest silviculture management practices applied to pine stands. The contrasts in forest stands between these sites will be used to illustrate

  12. A modified micrometeorological gradient method for estimating O3 dry deposition over a forest canopy

    Directory of Open Access Journals (Sweden)

    Z. Y. Wu

    2015-01-01

    Full Text Available Small pollutant concentration gradients between levels above a plant canopy result in large uncertainties in estimated air–surface exchange fluxes when using existing micrometeorological gradient methods, including the aerodynamic gradient method (AGM and the modified Bowen-Ratio method (MBR. A modified micrometeorological gradient method (MGM is proposed in this study for estimating O3 dry deposition fluxes over a forest canopy using concentration gradients between a level above and a level below the canopy top, taking advantage of relatively large gradients between these levels due to significant pollutant uptake at top layers of the canopy. The new method is compared with the AGM and MBR methods and is also evaluated using eddy-covariance (EC flux measurements collected at the Harvard Forest Environmental Measurement Site, Massachusetts during 1993–2000. All the three gradient methods (AGM, MBR and MGM produced similar diurnal cycles of O3 dry deposition velocity (Vd(O3 to the EC measurements, with the MGM method being the closest in magnitude to the EC measurements. The multi-year average Vd(O3 differed significantly between these methods, with the AGM, MBR and MGM method being 2.28, 1.45 and 1.18 times of that of the EC. Sensitivity experiments identified several input parameters for the MGM method as first-order parameters that affect the estimated Vd(O3. A 10% uncertainty in the wind speed attenuation coefficient or canopy displacement height can cause about 10% uncertainty in the estimated Vd(O3. An unrealistic leaf area density vertical profile can cause an uncertainty of a factor of 2.0 in the estimated Vd(O3. Other input parameters or formulas for stability functions only caused an uncertainly of a few percent. The new method provides an alternative approach in monitoring/estimating long-term deposition fluxes of similar pollutants over tall canopies.

  13. Reconstruction of forest geometries from terrestrial laser scanning point clouds for canopy radiative transfer modelling

    Science.gov (United States)

    Bremer, Magnus; Schmidtner, Korbinian; Rutzinger, Martin

    2015-04-01

    The architecture of forest canopies is a key parameter for forest ecological issues helping to model the variability of wood biomass and foliage in space and time. In order to understand the nature of subpixel effects of optical space-borne sensors with coarse spatial resolution, hypothetical 3D canopy models are widely used for the simulation of radiative transfer in forests. Thereby, radiation is traced through the atmosphere and canopy geometries until it reaches the optical sensor. For a realistic simulation scene we decompose terrestrial laser scanning point cloud data of leaf-off larch forest plots in the Austrian Alps and reconstruct detailed model ready input data for radiative transfer simulations. The point clouds are pre-classified into primitive classes using Principle Component Analysis (PCA) using scale adapted radius neighbourhoods. Elongated point structures are extracted as tree trunks. The tree trunks are used as seeds for a Dijkstra-growing procedure, in order to obtain single tree segmentation in the interlinked canopies. For the optimized reconstruction of branching architectures as vector models, point cloud skeletonisation is used in combination with an iterative Dijkstra-growing and by applying distance constraints. This allows conducting a hierarchical reconstruction preferring the tree trunk and higher order branches and avoiding over-skeletonization effects. Based on the reconstructed branching architectures, larch needles are modelled based on the hierarchical level of branches and the geometrical openness of the canopy. For radiative transfer simulations, branch architectures are used as mesh geometries representing branches as cylindrical pipes. Needles are either used as meshes or as voxel-turbids. The presented workflow allows an automatic classification and single tree segmentation in interlinked canopies. The iterative Dijkstra-growing using distance constraints generated realistic reconstruction results. As the mesh representation

  14. Canopy structure and physiology related to rootstock vigour in early-ripening peach cultivar Flordastar

    International Nuclear Information System (INIS)

    Canopy architectural and eco-physiological traits were measured on five-year-old early-ripening peach cv Flordastar trees grafted on GF 677 and MrS 2/5 rootstocks. Data are reported both on measurements performed directly on the trees, for branches and twigs characters, and on the fractal dimension (D), estimated by the 'box counting' method taken from digital images of Winter-dormant trees, adopted as an indicator of canopy complexity. Results are discussed in relation to the modification of the canopy microclimate as a consequence of the effects of rootstock on tree architecture and water consumption, the latter measured by using sap flow (HPV) probes. A lower degree of canopy complexity was observed in trees grafted onto MrS 2/5 and this, in turn, was related to a higher degree of aerodynamic contact of the tree with the atmosphere (expressed in terms of leaf boundary conductance) and to a higher solar radiation intensity along the canopy profile. These differences did not affect fruit quality in terms of size, red skin over-colour and soluble solid content. In MrS 2/5, the higher light availability at all levels along canopy profile was related to a moderate water deficit status, even under full-irrigation conditions, as evidenced by the lower stem water potential (below -1.3 MPa) and by a lower transpiration rate (about one-half of the values observed on GF 677). At tree-level, MrS 2/5 had a daily water consumption that, also in relation to the lower leaf area per tree, resulted as low as 25% of the values observed on GF 677. The latter, even carrying a significantly higher leaf area and higher water consumption, never showed apparent symptoms of water deficit

  15. Measuring sub-canopy evaporation in a forested wetland using an ensemble of methods

    Science.gov (United States)

    Allen, S. T.; Edwards, B.; Reba, M. L.; Keim, R.

    2013-12-01

    Evaporation from the sub-canopy water surface is an integral but understudied component of the water balance in forested wetlands. Previous studies have used eddy covariance, energy balance approaches, and water-table fluctuations to assess whole-system evapotranspiration. However, partitioning evaporation from transpiration is necessary for modeling the system because of different controls over each process. Sub-canopy evaporation is a physically controlled process driven by relatively small gradients in residual energy transmitted through the canopy. The low-energy sub-canopy environment is characterized by a spatiotemporally varying light environment due to sunflecks, small and often inverse temperature and vapor gradients, and a high capacity for heat storage in flood water, which each present challenges to common evapotranspiration measurement techniques. Previous studies have examined wetland surface evaporation rates with small lysimeter experiments, but this approach does not encapsulate micrometeorological processes occurring at the scale of natural wetlands. In this study, we examine a one year time series of in situ sub-canopy flux measurements from a seasonally flooded cypress-tupelo swamp in southeast Louisiana. Our objective is to apply these data towards modeling sub-canopy energy flux responses to intra-annual hydrologic, phenologic, and climatic cycles. To assess and mitigate potential errors due to the inherent measurement challenges of this environment, we utilized multiple measurement approaches including eddy covariance, Bowen ratio energy balance (with both air to air gradients and water surface to air gradients) and direct measurement using a floating evaporation pan. Preliminary results show that Bowen ratio energy balance measurements are useful for constraining evaporation measurements when low wind speed conditions create a non-ideal setting for eddy covariance. However, Bowen ratios were often highly erratic due to the weak temperature

  16. Correlations between canopy gaps and species diversity in broad-leaved and Korean pine mixed forests

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiuhai; ZHANG Chunyu; ZHENG Jingming

    2006-01-01

    Regeneration of tree species associated with canopy gaps in broad-leaved Korean pine forests was investigated.Species diversity in gaps and under closed canopy was compared,the relationship between biodiversity and gap structure was analyzed.Results indicate that there were significant differences between tree species diversity in gaps and that under canopy (p<0.01).In terms of Shannon-Wiener index,evenness index,and abundance index,the biodiversity in gap community were higher than those under forest canopy in regeneration layer.In terms of Simpson's dominance index,the dominance of certain species in the regeneration layer increased from gaps to closed canopy (p<0.01).In contrast,trends of biodiversity changes of succession layer in gaps and under closed canopy were opposite.Tree species diversity of different layers reacted directly to the change of gap size class.For example,Shannon-Wiener index and abundance index is higher and Simpson's dominance index is the lowest in succession layer of medium-size gap (100-250 m2) in the broad-leaved Korean pine forest of Changbai Mountains.Shannon-Wiener index reached the highest in a size of≥250 m2 and<100 m2,reached the lowest in a size of 200-250 m2 in the regeneration layer.Simpson's dominance index reached its maximum when the gap size was between 200 and 250m2.Generally,species of different layers reacted differently to the changes of gap size classes.The gap size class with more seedlings did not correspond to size class containing more medium-size trees.Tree species diversity indices in the two layers behaved reciprocally during the development process of forest gaps.

  17. Potassium effects on canopy light interception and earliness of no-tillage cotton

    International Nuclear Information System (INIS)

    Earliness of maturity is essential for adaptation of cotton (Gossypium hirsutum L.) to regions with short growing seasons, and it may be influenced by potassium nutrition. Our objectives were to determine effects of K fertilization on interception of photosynthetically active radiation and earliness, and to describe the relationship between earliness and light interception at different in-canopy heights. Research was conducted with no tillage on a Memphis silt loam (fine-silty, mixed, active, thermic Typic Hapludalf) with low extractable K. Using a split-plot randomized complete block design, 0 and 112 kg K ha-1 were soil-applied before planting each year as mainplot treatments, and 0 and 4.1 kg K ha-1 were foliar applied four times per season as subplot treatments. Canopy interception of photosynthetic photon flux density (PPFD) was measured at 23-cm vertical increments in 1993 and 1994. Plots were spindle-picked twice each year. Earliness was measured as the percent of total yield picked at first harvest. Relative to no fertilizer K, soil-applied K increased canopy PPFD interception at all heights measured. Neither soil-applied nor foliar K affected earliness in 1993, a drought year, but soil-applied K decreased percent first harvest from 78 to 65% in 1994. Foliar K did not affect canopy light interception in 1993, and it increased interception in 1994 only with no soil-applied K. At 111 d after planting, percent first harvest was negatively correlated with PPFD interception at all measured heights in the canopy, suggesting that higher K fertility delayed maturity as it increased upper-canopy light interception. In short-season environments, optimum K fertilization needs to be accompanied by cultivar selection and management that promote earliness of maturity

  18. A modified micrometeorological gradient method for estimating O3 dry depositions over a forest canopy

    Science.gov (United States)

    Wu, Z. Y.; Zhang, L.; Wang, X. M.; Munger, J. W.

    2015-07-01

    Small pollutant concentration gradients between levels above a plant canopy result in large uncertainties in estimated air-surface exchange fluxes when using existing micrometeorological gradient methods, including the aerodynamic gradient method (AGM) and the modified Bowen ratio method (MBR). A modified micrometeorological gradient method (MGM) is proposed in this study for estimating O3 dry deposition fluxes over a forest canopy using concentration gradients between a level above and a level below the canopy top, taking advantage of relatively large gradients between these levels due to significant pollutant uptake in the top layers of the canopy. The new method is compared with the AGM and MBR methods and is also evaluated using eddy-covariance (EC) flux measurements collected at the Harvard Forest Environmental Measurement Site, Massachusetts, during 1993-2000. All three gradient methods (AGM, MBR, and MGM) produced similar diurnal cycles of O3 dry deposition velocity (Vd(O3)) to the EC measurements, with the MGM method being the closest in magnitude to the EC measurements. The multi-year average Vd(O3) differed significantly between these methods, with the AGM, MBR, and MGM method being 2.28, 1.45, and 1.18 times that of the EC, respectively. Sensitivity experiments identified several input parameters for the MGM method as first-order parameters that affect the estimated Vd(O3). A 10% uncertainty in the wind speed attenuation coefficient or canopy displacement height can cause about 10% uncertainty in the estimated Vd(O3). An unrealistic leaf area density vertical profile can cause an uncertainty of a factor of 2.0 in the estimated Vd(O3). Other input parameters or formulas for stability functions only caused an uncertainly of a few percent. The new method provides an alternative approach to monitoring/estimating long-term deposition fluxes of similar pollutants over tall canopies.

  19. Multiple-Morphs Adaptive Stream Architecture

    Institute of Scientific and Technical Information of China (English)

    Mei Wen; Nan Wu; Hai-Yan Li; Chun-Yuan Zhang

    2005-01-01

    In modern VLSI technology, hundreds of thousands of arithmetic units fit on a 1cm2 chip. The challenge is supplying them with instructions and data. Stream architecture is able to solve the problem well. However, the applications suited for typical stream architecture are limited. This paper presents the definition of regular stream and irregular stream,and then describes MASA (Multiple-morphs Adaptive Stream Architecture) prototype system which supports different execution models according to applications' stream characteristics. This paper first discusses MASA architecture and stream model, and then explores the features and advantages of MASA through mapping stream applications to hardware.Finally MASA is evaluated by ten benchmarks. The result is encouraging.

  20. Hydrography - Class A Wild Trout Streams - points

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — Class A streams are streams that support a population of wild (natural reproduction) trout of sufficient size and abundance to support a long-term and rewarding...

  1. Hydrography - Class A Wild Trout Streams

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — Class A streams are streams that support a population of wild (natural reproduction) trout of sufficient size and abundance to support a long-term and rewarding...

  2. Mapping and Monitoring Stream Aquatic Habitat With a Narrow-Beam Green Lidar

    Science.gov (United States)

    McKean, J.; Wright, W.; Kinzel, P.; Isaak, D.

    2006-12-01

    Stream environments are structured by complex biophysical processes that operate across multiple spatial and temporal scales. Disentangling these multiscalar and multicausal relationships is difficult, but fundamental to understanding, managing, and monitoring channel aquatic ecosystems. Standard field wading surveys of stream physical habitat are limited by cost and logistics to relatively small, isolated samples. Traditional remotely sensed surveys, including methods such as photogrammetry and near-infrared lidar, suffer from attenuation by water and do not directly map submerged channel topography. The Experimental Advanced Airborne Research Lidar (EAARL) is a full-waveform lidar with a unique ability to simultaneously map, with relatively high resolution, subaqueous and subaerial topography and the vegetation canopy. We have used the EAARL instrument to investigate two dissimilar stream ecosystems. We mapped 40km of low gradient, meandering, gravel-bed streams in central Idaho that are spawning habitat for threatened Chinook salmon. We are using the continuous three-dimensional channel maps to quantitatively explore how channel features affect the distribution of salmon spawning at multiple spatial scales and how modern stream and floodplain topography is related to post-glacial valley evolution. In contrast, the Platte River in central Nebraska is a wide and shallow, sand-bedded river that provides habitat for migratory water birds, including endangered species such as the whooping crane and least tern. Multi-temporal EAARL data are being used to map and monitor the physical response of the Platte River to habitat improvement projects that include in-channel and riparian vegetation removal and river flow augmentation to limit vegetation encroachment.

  3. Directional and temporal variability of the APAR/VI relationships - The case of a sunflower canopy

    Science.gov (United States)

    Baret, F.; Vanderbilt, V. C.; Rondeaux, G.; Pettigrew, R. E.; Hanocq, J. F.; Biehl, L. L.; Sarrouy, C.; Daughtry, C. S. T.; Steven, M. D.; Sarto, A. W.

    1992-01-01

    Detailed biomass and structure measurements as well as photosynthetically active radiation (PAR) balance and bidirectional and polarized reflectances in various wavebands from 450 nm to 1750 nm have been conducted over a sunflower canopy in France. Preliminary results show that the vegetation indices (NDVI or TSAVI) computed from the red and near-infrared reflectances exhibit strong directional and temporal (variation with the sun zenith angle) features. The relationship between the vegetation indices and the PAR fraction absorbed or intercepted by the canopy is likely to vary greatly with these factors.

  4. Mapping forest canopy fuels in Yellowstone National Park using lidar and hyperspectral data

    Science.gov (United States)

    Halligan, Kerry Quinn

    The severity and size of wildland fires in the forested western U.S have increased in recent years despite improvements in fire suppression efficiency. This, along with increased density of homes in the wildland-urban interface, has resulted in high costs for fire management and increased risks to human health, safety and property. Crown fires, in comparison to surface fires, pose an especially high risk due to their intensity and high rate of spread. Crown fire models require a range of quantitative fuel parameters which can be difficult and costly to obtain, but advances in lidar and hyperspectral sensor technologies hold promise for delivering these inputs. Further research is needed, however, to assess the strengths and limitations of these technologies and the most appropriate analysis methodologies for estimating crown fuel parameters from these data. This dissertation focuses on retrieving critical crown fuel parameters, including canopy height, canopy bulk density and proportion of dead canopy fuel, from airborne lidar and hyperspectral data. Remote sensing data were used in conjunction with detailed field data on forest parameters and surface reflectance measurements. A new method was developed for retrieving Digital Surface Model (DSM) and Digital Canopy Models (DCM) from first return lidar data. Validation data on individual tree heights demonstrated the high accuracy (r2 0.95) of the DCMs developed via this new algorithm. Lidar-derived DCMs were used to estimate critical crown fire parameters including available canopy fuel, canopy height and canopy bulk density with linear regression model r2 values ranging from 0.75 to 0.85. Hyperspectral data were used in conjunction with Spectral Mixture Analysis (SMA) to assess fuel quality in the form of live versus dead canopy proportions. Severity and stage of insect-caused forest mortality were estimated using the fractional abundance of green vegetation, non-photosynthetic vegetation and shade obtained from

  5. Chlorophyll Fluorescence Emissions of Vegetation Canopies From High Resolution Field Reflectance Spectra

    Science.gov (United States)

    Middleton, E. M.; Corp, L. A.; Daughtry, C. S. T.; Campbell, P. K. Entcheva

    2006-01-01

    A two-year experiment was performed on corn (Zea mays L.) crops under nitrogen (N) fertilization regimes to examine the use of hyperspectral canopy reflectance information for estimating chlorophyll fluorescence (ChlF) and vegetation production. Fluorescence of foliage in the laboratory has proven more rigorous than reflectance for correlation to plant physiology. Especially useful are emissions produced from two stable red and far-red chlorophyll ChlF peaks centered at 685V10 nm and 735V5 nm. Methods have been developed elsewhere to extract steady state solar induced fluorescence (SF) from apparent reflectance of vegetation canopies/landscapes using the Fraunhofer Line Depth (FLD) principal. Our study utilized these methods in conjunction with field-acquired high spectral resolution canopy reflectance spectra obtained in 2004 and 2005 over corn crops, as part of an ongoing multi-year experiment at the USDA/Agriculture Research Service in Beltsville, MD. A spectroradiometer (ASD-FR Fieldspec Pro, Analytical Spectral Devices, Inc., Boulder, CO) was used to measure canopy radiances 1 m above plant canopies with a 22deg field of view and a 0deg nadir view zenith angle. Canopy and plant measurements were made at the R3 grain fill reproductive stage on 3-4 replicate N application plots provided seasonal inputs of 280, 140, 70, and 28 kg N/ha. Leaf level measurements were also made which included ChlF, photosynthesis, and leaf constituents (photosynthetic pigment, carbon (C), and N contents). Crop yields were determined at harvest. SIF intensities for ChlF were derived directly from canopy reflectance spectra in specific narrowband regions associated with atmospheric oxygen absorption features centered at 688 and 760 nm. The red/far-red S F ratio derived from these field reflectance spectra successfully discriminated foliar pigment levels (e.g., total chlorophyll, Chl) associated with N application rates in both corn crops. This canopy-level spectral ratio was also

  6. Ozone Flux Measurement and Modelling on Leaf/Shoot and Canopy Scale

    Directory of Open Access Journals (Sweden)

    Ludger Grünhage

    Full Text Available The quantitative study of the ozone effects on agricultural and forest vegetation requires the knowledge of the pollutant dose absorbed by plants via leaf stomata, i.e. the stomatal flux. Nevertheless, the toxicologically effective dose can differ from the stomatal flux because a pool of scavenging and detoxification processes reduce the amount of pollutant responsible of the expression of the harmful effects. The measurement of the stomatal flux is not immediate and the quantification of the effective dose is still troublesome. The paper examines the conceptual aspects of ozone flux measurement and modelling in agricultural and ecological research. The ozone flux paradigm is conceptualized into a toxicological frame and faced at two different scales: leaf/shoot and canopy scales. Leaf and shoot scale flux measurements require gas-exchange enclosure techniques, while canopy scale flux measurements need a micrometeorological approach including techniques such as eddy covariance and the aerodynamical gradient. At both scales, not all the measured ozone flux is stomatal flux. In fact, a not negligible amount of ozone is destroyed on external plant surfaces, like leaf cuticles, or by gas phase reaction with biogenic volatile compounds. The stomatal portion of flux can be calculated from concurrent measurements of water vapour fluxes at both scales. Canopy level flux measurements require very fast sensors and the fulfilment of many conditions to ensure that the measurements made above the canopy really reflect the canopy fluxes (constant flux hypothesis. Again, adjustments are necessary in order to correct for air density fluctuations and sensor-surface alignment break. As far as regards flux modelling, at leaf level the stomatal flux is simply obtained by multiplying the ozone concentration on the leaf with the stomatal conductance predicted by means of physiological models fed by meteorological parameter. At canopy level the stomatal flux is

  7. AREA-BASED SNOW DAMAGE CLASSIFICATION OF FOREST CANOPIES USING BI- TEMPORAL LIDAR DATA

    OpenAIRE

    M. Vastaranta; Korpela, I.; Uotila, A.; Hovi, A.; M. Holopainen

    2012-01-01

    Multitemporal LiDAR data provide means for mapping structural changes in forest canopies. We demonstrate the use of area-based estimation method for snow damage assessment. Change features of bi-temporal LiDAR point height distributions were used as predictors in combination with in situ training data. In the winter 2009–2010, snow damages occurred in Hyytiälä (62°N, 24°E), southern Finland. Snow load resulted in broken, bent and fallen trees changing the canopy structure. The damages w...

  8. Effect of canopy density on litter invertebrate community structure in pine forests

    OpenAIRE

    Brygadyrenko Viktor V.

    2016-01-01

    We investigated the structure of the litter invertebrate community in 141 pine (Pinus sylvestris Linnaeus, 1753) forest sites with five variants of canopy density (30-44, 45-59, 60-74, 75-89 and 90-100%) in the steppe zone of Ukraine. The total number of litter macrofauna specimens collected at each site decreased from an average of 84/100 trap-days in the sparsest stands (30-40% density) to 4-39 specimens/100 trap-days in the forests with a denser canopy. The number of macrofauna species cau...

  9. Seasonal variability of interception evaporation from the canopy of a mixed deciduous forest

    DEFF Research Database (Denmark)

    Herbst, Mathias; Rosier, Paul T.W.; McNeil, David D.;

    2008-01-01

    . The gross rainfall was corrected for catch losses due to high turbulence. Reliable net rainfall data were obtained from a combined application of simple storage gauges and troughs connected to automatic tipping bucket gauges. The evaporation rates from the wet canopy were calculated with the Penman......-Monteith equation using the measured aerodynamic conductance to the momentum flux and, additionally, with the eddy covariance energy balance approach. Both methods agreed in the observation that the average wet canopy evaporation rate was slightly higher in the leafless period, due to higher wind speeds and the...

  10. Quantifying dominance of intra-storm phase of interception process by small isolated canopies

    Science.gov (United States)

    Yerk, Walter; Montalto, Franco

    2014-05-01

    Precipitation interception by vegetation canopies has long been recognized as a major component of the hydrologic cycle; however, historically most research has been dedicated to closed or sparse canopy forests. The goal of our research was to quantify rainfall partitioning by small isolated canopies in an urban setting. The field experiment involved small forms of four shrub species (Prunus laurocerasus, Cornus sericea, Itea virginica and Hydrangea quercifolia) with crown heights 40 - 80 cm and diameters 35 - 60 cm. Each plant had ten rain gauges to measure throughfall with a sampling frequency of 5 seconds. An on-site automated weather station provided meteorological data. Leaf area index (LAI) was measured by manual counting. We estimated the canopy storage capacities of all four species to be less than 0.5 mm. The obtained data showed statistically significant differences in interception properties among all four species, except between Cornus and Itea. Cumulative interception loss for the period of August-December 2013 was 10% for Cornus, 16% for Itea, 29% for Hydrangea, and 49% for Prunus. The observations revealed a weak relationship between interception abilities and LAI for all four species. Throughfall and precipitation intensities (mm/hr) expressed very strong linear relationship (adjusted coefficients of determination were from 0.80 to 0.95) for the entire range of observed rainfall intensities. For Cornus the ratio of throughfall to precipitation intensity was close to 0.93:1, for Itea it was 0.82:1. The ratios were lesser for Hydrangea (0.65:1), and especially for Prunus (0.48:1). Therefore we show that reduced by the canopy, throughfall intensity results in the bulk of precipitation depth intercepted during the rain events. In contrast, the amount of water stored on the canopy and evaporated between and after rain events contributes minimally to interception. Simulations of potential evaporation based on the Penman-Monteith method showed a large

  11. Streaming Property Testing of Visibly Pushdown Languages

    OpenAIRE

    François, Nathanaël; Magniez, Frédéric; de Rougemont, Michel; Serre, Olivier

    2016-01-01

    In the context of formal language recognition, we demonstrate the superiority of streaming property testers against streaming algorithms and property testers, when they are not combined. Initiated by Feigenbaum et al., a streaming property tester is a streaming algorithm recognizing a language under the property testing approximation: it must distinguish inputs of the language from those that are eps-far from it, while using the smallest possible memory (rather than limiting its number of inp...

  12. Streaming Property Testing of Visibly Pushdown Languages

    OpenAIRE

    François, Nathanaël; Magniez, Frédéric; de Rougemont, Michel; Serre, Olivier

    2015-01-01

    In the context of language recognition, we demonstrate the superiority of streaming property testers against streaming algorithms and property testers, when they are not combined. Initiated by Feigenbaum et al., a streaming property tester is a streaming algorithm recognizing a language under the property testing approximation: it must distinguish inputs of the language from those that are $\\varepsilon$-far from it, while using the smallest possible memory (rather than limiting its number of ...

  13. Concerning bodies [stream convenors and panel chairs

    OpenAIRE

    Bartram, Angela; O'Neill, Mary

    2013-01-01

    The 'Concerning Bodies' stream is a collaboration with Eric Daffron (USA) and Becky McLaughlin (USA) that is part of the London Conference of Critical Thought, Royal Holloway University of London, 6-7 June 2013. The stream has two parallel strands detailed below: Stream Title: Concerning Bodies This stream has two points of focus: firstly, the representation, and ethical implications, of bodies (both human and animal) in visual cultures and, secondly, the account of the body (and bod...

  14. Time of travel of selected Arkansas streams

    Science.gov (United States)

    Lamb, T.E.

    1982-01-01

    Between 1971 and 1981, time-of-travel and dispersion measurements were made in 15 streams in Arkansas. Most of the streams studied were at or near base flow. Graphs are presented for predicting traveltime of solutes in segments of the streams studied. The relationship of time of passage and peak unit concentration to traveltime is presented for two of the streams. Examples of use and application of the data are given. (USGS)

  15. Relationship of transpiration and evapotranspiration to solar radiation and spectral reflectance in soybean [Glycine max] canopies: A simple method for remote sensing of canopy transpiration

    International Nuclear Information System (INIS)

    Abstract The study investigated diurnal and seasonal dynamics of evapotranspiration (ET) and transpiration (Tr) in a soybean canopy, as well as the relationships among ET, Tr, solar radiation and remotely sensed spectral reflectance. The eddy covariance method (ECM) and stem heat balance method (SHBM) were used for independent measurement of ET and Tr, respectively. Micrometeorological, soil, and spectral reflectance data were acquired for the entire growing season. The instantaneous values of canopy-Tr estimated by SHBM and ET by ECM were well synchronized with each other, and both were strongly affected by the solar radiation. The daily values canopy-Tr increased rapidly with increasing leaf area index (LAI), and got closer to the ET even at a low value of LAI such as 1.5-2. The daily values of ET were moderately correlated with global solar radiation (Rs), and more closely with the potential evapotranspiration (ETp), estimated by the 'radiation method.' This fact supported the effectiveness of the simple radiation method in estimation of evapotranspiration. The ratio of Tr/ET as well as the ratio of ground heat flux (G) to Rs (G/Rs) was closely related to LAI, and LAI was a key variable in determining the energy partitioning to soil and vegetation. It was clearly shown that a remotely sensed vegetation index such as SAVI (soil adjusted vegetation index) was effective for estimating LAI, and further useful for directly estimating energy partitioning to soil and vegetation. The G and Tr/ET were both well estimated by the vegetation index. It was concluded that the combination of a simple radiation method with remotely sensed information can provide useful information on energy partitioning and Tr/ET in vegetation canopies

  16. Spectral variations of canopy reflectance in support of precision agriculture

    Science.gov (United States)

    Kancheva, Rumiana; Georgiev, Georgi; Borisova, Denitsa; Nikolov, Hristo

    2014-05-01

    VIs values contributed to reliable yield prediction and showed very good correspondence with the estimates from biophysical models. For dates before full maturity most of the examined VIs proved to be meaningful statistical predictors of crop state-indicative biophysical variables. High correlations were obtained for canopy cover fraction, LAI, and biomass. Sensitivity to red, near-infrared and green reflectance showed both vigorous and stressed plants. As crops attained advanced growth stages, decreased sensitivity of VIs and weaker correlations with bioparameters were observed, yet still significant in a statistical sense. The results highlight the capability of the presented approach to track the dynamics of crop growth from multitemporal spectral data, and illustrate the prediction accuracy of the spectral models. The results are useful in assessing the efficiency of various spectral band ratios and other vegetation indices often used in remote sensing studies of natural and agricultural vegetation. They suggest that the used algorithm for data processing is particularly suitable for airborne cropland monitoring and could be expanded to sites at farm or municipality scale. The results reported are from pilot study carried out on a plot located in one of the established polygons for experimental crop monitoring. In the mentioned research GIS database is established for supporting the experiments and modelling process. Recommendations on good farming practices for medium sized farms for monitoring stress conditions such as drought and overfertilizing are developed.

  17. Changes in radiative properties of soot contaminated maize canopy

    Science.gov (United States)

    Illes, B.; Anda, A.

    2012-04-01

    always proved statistically. Albedo reduced significantly in the polluted maize stand. Decline in reflectance of maize with soot cause an increase in net radiation. The latent heat of soot contaminated plants was higher, in contrast to the sensible heat. The ability of soot to absorb irradiation increased the absolute values of energy (latent and sensible heat fluxes) in polluted canopy. The Bowen ratio of polluted crops declined below the control values, probably because it was a dry summer, except a few days. Season of 2011 was characteristic of arid, dry summer minimum rainfall. This article was made under the project TÁMOP-4.2.1/B-09/1/KONV-2010-0003 and TÁMOP-4.2.2/B-10/1-2010-0025. These projects are supported by the European Union and co-financed by the European Social Fund.

  18. Travelling waves above the canopy of aquatic vegetation

    Science.gov (United States)

    Lyubimov, D.; Lyubimova, T.; Baidina, D.

    2012-04-01

    When fluid moves over a saturated porous medium with high permeability and porosity, the flow partially involves the fluid in porous medium, however, because of the great resistance force there arises sharp drop of tangential velocity. This leads to the development of instability similar to the Kelvin-Helmholtz instability on discontinuity surface of the tangential velocities of homogeneous fluids. Analogy becomes even more complete if we take into account the deformability of porous medium under the influence of pressure changes. Intensive vortices above the canopy of aquatic vegetation can lead to the coherent oscillations of vegetation, such traveling waves are called monami [1]. In the present paper we investigate stability of steady flow over a saturated porous medium. The importance of this problem is related to the applications to the dynamics of pollutants in the bottom layer of vegetation: the accumulation at low flow and salvo emissions with increasing velocity. We consider a two-layer system consisting of a layer of a viscous incompressible fluid and porous layer saturated with the same fluid located underneath. The lower boundary of the system is assumed to be rigid, the upper boundary - free and non-deformable. Weak slope of the river is taken into account. The problem is solved within the framework of single approach in which a two-layer system is described by a single system of equations for saturated porous medium and the presence of two layers is modeled by introducing variable permeability and porosity, depending on vertical coordinate. The flow in a saturated porous medium is described by the Brinkman model. Solution of the problem for steady flow shows that the velocity profile has two inflection points, which leads to the instability. The neutral curves are obtained for different values of the ratio d of porous layer thickness to full thickness. It is found that the dependence of critical Reynolds number on d is non-monotonic and the wave

  19. Dynamical Properties of Collisionless Star Streams

    Science.gov (United States)

    Carlberg, R. G.

    2015-02-01

    A sufficiently extended satellite in the tidal field of a host galaxy loses mass to create nearly symmetric leading and trailing tidal streams. We study the case in which tidal heating drives mass loss from a low mass satellite. The stream effectively has two dynamical components, a common angular momentum core superposed with episodic pulses with a broader angular momentum distribution. The pulses appear as spurs on the stream, oscillating above and below the stream centerline, stretching and blurring in configuration space as they move away from the cluster. Low orbital eccentricity streams are smoother and have less differential motion than high eccentricity streams. The tail of a high eccentricity stream can develop a fan of particles that wraps around at apocenter in a shell feature. We show that scaling the essentially stationary action-angle variables with the cube root of the satellite mass allows a low mass satellite stream to accurately predict the features in the stream from a satellite a thousand times more massive. As a practical astrophysical application, we demonstrate that narrow gaps in a moderate eccentricity stream, such as GD-1, blur out to 50% contrast over approximately six radial periods. A high eccentricity stream, such as Pal 5, will blur small gaps in only two radial orbits as can be understood from the much larger dispersion of angular momentum in the stream.

  20. Spreadsheets for Stream Partitions and Windows

    OpenAIRE

    Hirzel, Martin; Rabbah, Rodric; Suter, Philippe; Tardieu, Olivier; Vaziri, Mandana

    2015-01-01

    We discuss the suitability of spreadsheet processors as tools for programming streaming systems. We argue that, while spreadsheets can function as powerful models for stream operators, their fundamental boundedness limits their scope of application. We propose two extensions to the spreadsheet model and argue their utility in the context of programming streaming systems.

  1. A Photogrammetric Workflow for the Creation of a Forest Canopy Height Model from Small Unmanned Aerial System Imagery

    Directory of Open Access Journals (Sweden)

    Philippe Lejeune

    2013-11-01

    Full Text Available The recent development of operational small unmanned aerial systems (UASs opens the door for their extensive use in forest mapping, as both the spatial and temporal resolution of UAS imagery better suit local-scale investigation than traditional remote sensing tools. This article focuses on the use of combined photogrammetry and “Structure from Motion” approaches in order to model the forest canopy surface from low-altitude aerial images. An original workflow, using the open source and free photogrammetric toolbox, MICMAC (acronym for Multi Image Matches for Auto Correlation Methods, was set up to create a digital canopy surface model of deciduous stands. In combination with a co-registered light detection and ranging (LiDAR digital terrain model, the elevation of vegetation was determined, and the resulting hybrid photo/LiDAR canopy height model was compared to data from a LiDAR canopy height model and from forest inventory data. Linear regressions predicting dominant height and individual height from plot metrics and crown metrics showed that the photogrammetric canopy height model was of good quality for deciduous stands. Although photogrammetric reconstruction significantly smooths the canopy surface, the use of this workflow has the potential to take full advantage of the flexible revisit period of drones in order to refresh the LiDAR canopy height model and to collect dense multitemporal canopy height series.

  2. Canopy BRF simulation of forest with different crown shape and height in larger scale based on Radiosity method

    Science.gov (United States)

    Song, Jinling; Qu, Yonghua; Wang, Jindi; Wan, Huawei; Liu, Xiaoqing

    2007-06-01

    Radiosity method is based on the computer simulation of 3D real structures of vegetations, such as leaves, branches and stems, which are composed by many facets. Using this method we can simulate the canopy reflectance and its bidirectional distribution of the vegetation canopy in visible and NIR regions. But with vegetations are more complex, more facets to compose them, so large memory and lots of time to calculate view factors are required, which are the choke points of using Radiosity method to calculate canopy BRF of lager scale vegetation scenes. We derived a new method to solve the problem, and the main idea is to abstract vegetation crown shapes and to simplify their structures, which can lessen the number of facets. The facets are given optical properties according to the reflectance, transmission and absorption of the real structure canopy. Based on the above work, we can simulate the canopy BRF of the mix scenes with different species vegetation in the large scale. In this study, taking broadleaf trees as an example, based on their structure characteristics, we abstracted their crowns as ellipsoid shells, and simulated the canopy BRF in visible and NIR regions of the large scale scene with different crown shape and different height ellipsoids. Form this study, we can conclude: LAI, LAD the probability gap, the sunlit and shaded surfaces are more important parameter to simulate the simplified vegetation canopy BRF. And the Radiosity method can apply us canopy BRF data in any conditions for our research.

  3. Modeling photosynthesis of discontinuous plant canopies by linking the Geometric Optical Radiative Transfer model with biochemical processes

    Science.gov (United States)

    Xin, Q.; Gong, P.; Li, W.

    2015-06-01

    Modeling vegetation photosynthesis is essential for understanding carbon exchanges between terrestrial ecosystems and the atmosphere. The radiative transfer process within plant canopies is one of the key drivers that regulate canopy photosynthesis. Most vegetation cover consists of discrete plant crowns, of which the physical observation departs from the underlying assumption of a homogenous and uniform medium in classic radiative transfer theory. Here we advance the Geometric Optical Radiative Transfer (GORT) model to simulate photosynthesis activities for discontinuous plant canopies. We separate radiation absorption into two components that are absorbed by sunlit and shaded leaves, and derive analytical solutions by integrating over the canopy layer. To model leaf-level and canopy-level photosynthesis, leaf light absorption is then linked to the biochemical process of gas diffusion through leaf stomata. The canopy gap probability derived from GORT differs from classic radiative transfer theory, especially when the leaf area index is high, due to leaf clumping effects. Tree characteristics such as tree density, crown shape, and canopy length affect leaf clumping and regulate radiation interception. Modeled gross primary production (GPP) for two deciduous forest stands could explain more than 80% of the variance of flux tower measurements at both near hourly and daily timescales. We demonstrate that ambient CO2 concentrations influence daytime vegetation photosynthesis, which needs to be considered in biogeochemical models. The proposed model is complementary to classic radiative transfer theory and shows promise in modeling the radiative transfer process and photosynthetic activities over discontinuous forest canopies.

  4. Exploring the spatial distribution of light interception and photosynthesis of canopies by means of a functional-structural plant model

    NARCIS (Netherlands)

    Sarlikioti, V.; Visser, de P.H.B.; Marcelis, L.F.M.

    2011-01-01

    Background and Aims - At present most process-based models and the majority of three-dimensional models include simplifications of plant architecture that can compromise the accuracy of light interception simulations and, accordingly, canopy photosynthesis. The aim of this paper is to analyse canopy

  5. Acoustic streaming in superfluid helium

    International Nuclear Information System (INIS)

    Quantitative measurements of acoustic streaming velocity in liquid helium as a function of sound intensity (up to the cavitation threshold), frequency (1, 3, and 10 MHz), and temperature (1.43 K< or =T< or =2.19 K) are reported. A transition to superfluid turbulence, several flow regions and flow fluctuations are observed. Comparison with the predictions of the second-order Khalatnikov two- fluid hydrodynamic equations indicates good functional and quantitative agreement

  6. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: NLCD 2001 Tree Canopy

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This tabular data set represents the mean percent tree canopy from the Canopy Layer of the National Land Cover Dataset 2001 (LaMotte and Wieczorek, 2010), compiled...

  7. Multitier image streaming teleradiology system

    Science.gov (United States)

    Swarnakar, Vivek; Eldar, Adi; Pourfathi, Shahrzad; Keselbrener, Laurence; Genant, Harry K.

    2001-08-01

    With the advent of real-time image streaming, a new paradigm for development of image display and viewing systems that communicate with Picture Archiving and Communication (PACS) systems can be proposed. In this paradigm, the high bandwidth requirements of current systems can be significantly relaxed and security features can be seamlessly adopted and enforced. Based upon this paradigm RealTimeImage and OARG have developed a multi-tiered web-based image display and analysis system for teleradiology. The system architecture consisted of a backend module to communicate with the PACS system via direct file system access or standard DICOM protocols, an Image Server to stream image data to its clients using RealTimeImage Pixel-On-DemandTM streaming technology and a web-based client to provide image display and analysis functionality. The system was used in a clinical research study that required analysis of several hundred images and included participants located at various remote geographical locations. Performance and maintainability of the system were objectively quantified. Usability issues were subjectively identified by the various users of the system. It was observed that the performance of such a system is comparable to that of today's systems over fast LAN, even if the user is connected via standard, dial-up connections. This level of performance was achieved without compromising the usability of the system required for the research study.

  8. Efecto de la estructuración por macrófitas y por recursos alimentarios en la distribución horizontal de tecamebas y rotíferos en un lago andino patagónico Effect of macrophytes and food resources on the horizontal distribution of testate amoebae and rotifers in an Andean-Patagonian lake

    Directory of Open Access Journals (Sweden)

    MARCELA BASTIDAS-NAVARRO

    2007-09-01

    Full Text Available La presencia de macrófitas en la zona litoral lacustre trae aparejada condiciones diferentes con respecto a la zona pelágica, en particular en la disponibilidad de recursos. Por esta razón, las zonas litorales pueden presentar una mayor biodiversidad. En este trabajo se analizó la distribución horizontal de tecamebas y rotíferos en el lago Escondido (Argentina, vinculándola con los recursos alimentarios presentes en las diferentes zonas. Se tomaron muestras para el estudio del fitoplancton y zooplancton durante verano y primavera (2001-2003 en cuatro estaciones litorales y una pelágica. Se realizó el recuento de rotíferos y tecamebas y se determinó la abundancia y la biomasa fitoplanctónica. Los recursos alimentarios fueron clasificados en nanoplancton ( 20 μm. El nanoplancton estuvo compuesto por nanoflagelados y el fitoplancton de red por diatomeas, cianófitas y clorófitas. La biomasa de estas fracciones varió significativamente, observándose una predominancia del nanoplancton en la zona pelágica y del fitoplancton de red en la zona litoral. Los mayores valores de riqueza y de diversidad de tecamebas y rotíferos fueron observados en las estaciones litorales, no hallándose diferencias significativas entre las zonas con diferentes macrófitas. El análisis de ACC evidenció cuatro grupos. Por un lado, Keratella cochlearis, Synchaeta spp., Polyarthra vulgaris y Collotheca mutabilis, asociadas a las muestras pelágicas, se relacionaron con una alta abundancia de nanoplancton. Por otro lado, los rotíferos Trichocerca spp., Lecane spp. y Euchlanis spp., y las tecamebas Dijflugia pyriformis y Trinema enchelys se relacionaron con el fitoplancton de red y las muestras litorales. Además, un tercer grupo reunió a especies (Lecane spp. y Arcella spp. presentes en ambas zonas y en relación con una baja abundancia del fitoplancton de red. Por último, el rotífero Synchaeta spp. y las muestras pelágicas de primavera se relacionaron con el aumento de la abundancia de la cianofita Coelosphaerium kuetzingianum. Las diferencias señaladas indican que los recursos alimentarios serían un factor determinante en la distribución de especies de tecamebas y rotíferos en el lago Escondido. Para estos zoopláncteres de pequeño tamaño las macrófitas litorales brindarían alimento al favorecer el incremento del fitoplancton de redThe presence of macrophytes in the littoral zone of lakes produces particular conditions including higher resource availability for consumers. For this reason, the littoral zone is generally the area with the highest diversity of lakes and rivers. In this work we studied the horizontal distribution of testate amoebae and rotifers in Lago Escondido (Argentina in relation to food resources availability. The study was carried out along a north-south transect that includes the littoral and the pelagic zone of the lake. Phytoplankton and zooplankton were sampled during summer and spring (2001-2003 in five sampling stations: one pelagic and four littoral. Rotifers and testate amoebae, as well as phytoplanktonic algae abundance and biomass were estimated. Food resources were classified as nanoplankton ( 20 μm and the biovolume of these fractions varied significantly within the pelagic and littoral zones of the lake. Nanoplankon dominated the pelagic zone and was mainly composed by nanoflagellates while net phytoplankton prevailed in the littoral zone and was composed by diatoms, cyanophytes and chlorophytes. The highest number of species and diversity of testate amoebae and rotifers were observed in the littoral stations; nevertheless, no significant differences between the zones colonized by different macrophytes were observed. The CCA analysis showed four different groups. Keratella cochlearis, Synchaeta spp., Polyarthra vulgaris and Collotheca mutabilis characterized the pelagic samples and were related with a high abundance of nanoplankton. On the other hand, rotifers like Trichocerca spp., Lecane spp. and Euchlanis spp. and the testate amoebae Dijflugia pyriformis and Trinema enchelys associated with the littoral samples were related with high abundances of net phytoplankton. Besides, a third group of species {Lecane spp. and Arcella spp., presented in both zones, was mainly related with a decrease in abundance of net phytoplankton. Finally, the rotifer Synchaeta spp. was associated with the spring pelagic samples when the cyanophyte Coelosphaerium kuetzingianum increased its abundance. Summarizing, in Lago Escondido, food resources could be an important factor driving testate amoeba and rotifer distribution. Therefore the major role of macrophytes for this small-bodied zooplankton is food supply through an increment of net phytoplankton

  9. Stream biogeochemical and suspended sediment responses to permafrost degradation in stream banks in Taylor Valley, Antarctica

    Science.gov (United States)

    Gooseff, Michael N.; Van Horn, David; Sudman, Zachary; McKnight, Diane M.; Welch, Kathleene A.; Lyons, William B.

    2016-03-01

    Stream channels in the McMurdo Dry Valleys are characteristically wide, incised, and stable. At typical flows, streams occupy a fraction of the oversized channels, providing habitat for algal mats. In January 2012, we discovered substantial channel erosion and subsurface thermomechanical erosion undercutting banks of the Crescent Stream. We sampled stream water along the impacted reach and compared concentrations of solutes to the long-term data from this stream ( ˜ 20 years of monitoring). Thermokarst-impacted stream water demonstrated higher electrical conductivity, and concentrations of chloride, sulfate, sodium, and nitrate than the long-term medians. These results suggest that this mode of lateral permafrost degradation may substantially impact stream solute loads and potentially fertilize stream and lake ecosystems. The potential for sediment to scour or bury stream algal mats is yet to be determined, though it may offset impacts of associated increased nutrient loads to streams.

  10. Oil Road Effects on the Anuran Community of a High Canopy Tank Bromeliad (Aechmea zebrina) in the Upper Amazon Basin, Ecuador

    OpenAIRE

    Shawn F. McCracken; Michael R. J. Forstner

    2014-01-01

    Tropical forest canopies are among the most species-rich terrestrial habitats on earth and one of the remaining relatively unexplored biotic frontiers. Epiphytic bromeliads provide microhabitat for a high diversity of organisms in tropical forest canopies and are considered a keystone resource. A number of amphibians inhabit these phytotelmata, yet their ecological role and status in forest canopies remains unknown. For this study, anurans were collected from an upper canopy tank bromeliad (A...

  11. About the theory of congested transport streams

    Directory of Open Access Journals (Sweden)

    Valeriy GUK

    2009-01-01

    Full Text Available Talked about a theory, based on integrity of continuous motion of a transport stream. Placing of car and its speed is in a stream - second. Principle of application of the generalized methods of design and new descriptions of the states of transport streams opens up. Travelling and transport potentials are set, and also external capacity of the system a «transport stream» is an exergy, that allows to make differential equation and decide the applied tasks of organization of travelling motion. Efficiency of application theory of waves is underlined with the new parameters of streams for management and increase of carrying capacity.

  12. Dynamics of stream-subhalo interactions

    OpenAIRE

    Sanders, Jason L.; Bovy, Jo; Erkal, Denis

    2015-01-01

    We develop a formalism for modelling the impact of dark matter subhaloes on cold thin streams. Our formalism models the formation of a gap in a stream in angle-frequency space and is able to handle general stream and impact geometry. We analyse an $N$-body simulation of a cold stream formed from a progenitor on an eccentric orbit in an axisymmetric potential, which is perturbed by a direct impact from a $10^8 M_\\odot$ subhalo, and produce a complete generative model of the perturbed stream th...

  13. STREAM

    DEFF Research Database (Denmark)

    Godsk, Mikkel

    This paper presents a flexible model, ‘STREAM’, for transforming higher science education into blended and online learning. The model is inspired by ideas of active and collaborative learning and builds on feedback strategies well-known from Just-in-Time Teaching, Flipped Classroom, and Peer...... model supports a relatively diverse use of educational technologies and may also be used to transform teaching into completely online learning. So far both teachers and educational developers have positively received the model and the initial design experiences show promise....

  14. The impact of high resolution surface properties retrieved from Satellite in the urban canopy model

    International Nuclear Information System (INIS)

    This study aims to improve the atmospheric boundary condition in mesoscale model by satellite derived-land surface temperature. We have performed the WRF-UCM (Urban Canopy Model) using land surface temperature (LST) retrieved from MODIS satellite data. We evaluate the performance of the coupled WRF-UCM modeling system using LST against surface observation in Seoul, South Korea

  15. A Note on Two-Equation Closure Modelling of Canopy Flow

    DEFF Research Database (Denmark)

    Sogachev, Andrey

    2009-01-01

    The note presents a rational approach to modelling the source/sink due to vegetation or buoyancy effects that appear in the turbulent kinetic energy, E, equation and a supplementary equation for a length-scale determining variable, φ, when two-equation closure is applied to canopy and atmospheric...

  16. Landscape biogeochemistry reflected in shifting distributions of chemical traits in the Amazon forest canopy

    Science.gov (United States)

    Asner, Gregory P.; Anderson, Christopher B.; Martin, Roberta E.; Tupayachi, Raul; Knapp, David E.; Sinca, Felipe

    2015-07-01

    Tropical forest functional diversity, which is a measure of the diversity of organismal interactions with the environment, is poorly understood despite its importance for linking evolutionary biology to ecosystem biogeochemistry. Functional diversity is reflected in functional traits such as the concentrations of different compounds in leaves or the density of leaf mass, which are related to plant activities such as plant defence, nutrient cycling, or growth. In the Amazonian lowlands, river movement and microtopography control nutrient mobility, which may influence functional trait distributions. Here we use airborne laser-guided imaging spectroscopy to develop maps of 16 forest canopy traits, throughout four large landscapes that harbour three common forest community types on the Madre de Dios and Tambopata rivers in southwestern Amazonia. Our maps, which are based on quantitative chemometric analysis of forest canopies with visible-to-near infrared (400-2,500 nm) spectroscopy, reveal substantial variation in canopy traits and their distributions within and among forested landscapes. Forest canopy trait distributions are arranged in a nested pattern, with location along rivers controlling trait variation between different landscapes, and microtopography controlling trait variation within landscapes. We suggest that processes of nutrient deposition and depletion drive increasing phosphorus limitation, and a corresponding increase in plant defence, in an eastward direction from the base of the Andes into the Amazon Basin.

  17. Integrating soil and weather information into canopy sensor algorithms for improved corn nitrogen rate recommendation

    Science.gov (United States)

    Corn production can be often limited by the loss of nitrogen (N) due to leaching, volatilization and denitrification. The use of canopy sensors for making in-season N fertilizer applications has been proven effective in matching plant N requirements with periods of rapid N uptake (V7-V11), reducing ...

  18. Economic and Environmental Benefits of Canopy Sensing for Variable-Rate Nitrogen Corn Fertilization

    Science.gov (United States)

    Nitrogen (N) available to support corn production can be highly variable within fields. Canopy reflectance sensing for assessing crop N health has been proposed as a technology on which to base top-dress variable-rate N application. The objective of this research in Missouri and Nebraska was to eval...

  19. [Responses of canopy stomatal conductance of Acacia mangium forest to environmental driving factors].

    Science.gov (United States)

    Zhao, Ping; Rao, Xingquan; Ma, Ling; Cai, Xi'an; Zeng, Xiaoping

    2006-07-01

    Employing Granierś probes, this paper measured the sap flow of 14 sample trees in an Acacia mangium forest on the Heshan hilly lands of Guangdong Province, and recorded the photosynthetic active radiation (PAR), air relative humidity (RH) , and air temperature (T) above the forest canopy. The whole-tree transpiration (E), stand transpiration (Et), and mean canopy stomatal conductance (gc) were calculated, and the relationships between tree morphological characters and whole-tree water use as well as the responses of gc to PAR and vapor pressure deficit (D) were analyzed. The results showed that the whole-tree transpiration had logarithmical positive correlations with tree diameter at breast height (DBH) (P < 0.0001) , sapwood area (P < 0.0001) and canopy size (P = 0.0007), and an exponential positive correlation with tree height (P = 0. 014). The maximum gc (gc max) changed with PAR hyperbolically (P < 0.0001), and with D logarithmically (P < 0.0001). The sap flow measurement system used in this study was reliable and accurate in estimating the transpiration of whole-tree and stand and the canopy stomatal conductance, being an effective tool in studying the relationships between forest water use and environmental factors. PMID:17044483

  20. Premature loss of bone remodeling compartment canopies is associated with deficient bone formation

    DEFF Research Database (Denmark)

    Jensen, Pia Rosgaard; Andersen, Thomas Levin; Søe, Kent; Hauge, Ellen Margrethe; Bollerslev, Jens; Amling, Michael; Barvencik, Florian; Delaissé, Jean-Marie

    2011-01-01

    support to this hypothesis by analyzing the changes in prevalence of BRC canopies during the progress of the remodeling cycle in a cohort of healthy individuals and in patients with endogenous Cushing's syndrome (CS), and by relating these changes in prevalence with the extent of bone forming surfaces...

  1. Estimating canopy leaf area index in the late stages of wheat growth using continuous wavelet transform

    Science.gov (United States)

    Huang, Yan; Tian, Qingjiu; Wang, Lei; Geng, Jun; Lyu, Chunguang

    2014-01-01

    The existing hyperspectral vegetation indices used for estimating the canopy leaf area index (LAI) of winter wheat (Triticum aestivum L.) performed well, but the use of such indices at late growth stages can lead to inaccurate results. To improve the performance of LAI models for wheat in late growth stages, the continuous wavelet transform (CWT) method was applied in this study and used to decompose the canopy reflectance and its first derivative into wavelet coefficients. The correlation scalograms of wavelet coefficients and the LAI were then constructed and used to extract the top 1% correlated region as the wavelet feature. The canopy LAI estimation model for late growth wheat was established at last and compared with models based on 12 different types of hyperspectral vegetation indices. The results showed that, compared with the estimation models using the hyperspectral vegetation indices (for which the R2 values were all less than 0.15 and the root-mean-square errors (RMSEs) were greater than 1), the CWT-based canopy LAI estimation model for late growth wheat had obvious improvements in accuracy (maximum R2 of 0.53 and minimum of RMSE of 0.78). Hence, this new method shows promise for use in agricultural and ecological applications.

  2. Testing the Application of Terrestrial Laser Scanning to Measure Forest Canopy Gap Fraction

    Directory of Open Access Journals (Sweden)

    F. Mark Danson

    2013-06-01

    Full Text Available Terrestrial laser scanners (TLS have the potential to revolutionise measurement of the three-dimensional structure of vegetation canopies for applications in ecology, hydrology and climate change. This potential has been the subject of recent research that has attempted to measure forest biophysical variables from TLS data, and make comparisons with two-dimensional data from hemispherical photography. This research presents a systematic comparison between forest canopy gap fraction estimates derived from TLS measurements and hemispherical photography. The TLS datasets used in the research were obtained between April 2008 and March 2009 at Delamere Forest, Cheshire, UK. The analysis of canopy gap fraction estimates derived from TLS data highlighted the repeatability and consistency of the measurements in comparison with those from coincident hemispherical photographs. The comparison also showed that estimates computed considering only the number of hits and misses registered in the TLS datasets were consistently lower than those estimated from hemispherical photographs. To examine this difference, the potential information available in the intensity values recorded by TLS was investigated and a new method developed to estimate canopy gap fraction proposed. The new approach produced gap fractions closer to those estimated from hemispherical photography, but the research also highlighted the limitations of single return TLS data for this application.

  3. Sealed environment chamber for canopy light interception and trace hydrocarbon analyses

    Science.gov (United States)

    Dixon, M. A.; Grodzinski, B.; Côté, R.; Stasiak, M.

    1999-01-01

    Two sealed chambers were constructed, each measuring approximately 4.5 m × 3 m × 2.5 m (L×W×H). Heat exchangers and air handling components were integrated within the sealed environment. Construction materials were chosen to minimize off-gassing and oxidation. Acceptable materials included stainless steel, TeflonTM, glass and HeresiteTM or baked enamel coated metal parts. The glass-topped chambers have externally mounted microwave powered light sources providing minimum PAR at canopy level of 1000 μm.m-2.s-1. Major gases (CO2, O2) were monitored. Other environmental variables relevant to plant production (humidity, temperature, nutrient solution) were monitored and controlled continuously. Typical environment control capability and system specifications are presented. The facility is described as a venue ideally suited to address specific research objectives in plant canopy light interception, such as the roles of novel microwave powered overhead and inner-canopy light sources for dense plant canopies. In addition, control of recycled hydroponic nutrient solutions and analysis of trace atmospheric hydrocarbons in the context of sealed environment life support can be concurrently monitored.

  4. Comparison of deficit irrigation scheduling methods that use canopy temperature measurements

    Science.gov (United States)

    Canopy temperature provides an easy-to-acquire indication of crop water deficit that has been used in irrigation scheduling systems, but interpretation of this measurement has proven difficult. We compared the timing of irrigation application of the Stress Time (ST) method of irrigation scheduling w...

  5. Comparison of Deficit Irrigation Scheduling Methods that Use Canopy Temperature Measurements

    Science.gov (United States)

    Canopy temperature (Tc) provides an easy to acquire indication of crop water deficit that has been used in irrigation scheduling systems, but interpretation of this measurement has proven difficult. We compared the timing of irrigation application of the Stress Time (ST) method of irrigation schedu...

  6. Spatial and temporal variability of canopy structure in a tropical moist forest

    Science.gov (United States)

    Wirth, Rainer; Weber, Bettina; Ryel, Ronald J.

    2001-12-01

    Tree fall gaps are widely considered to play a prominent role in the maintenance of species diversity, while the spatiotemporal variability of canopy structure within closed forest stands is largely ignored. In this study we examined the vertical and horizontal components of canopy structure and its seasonal variability in a tropical wet semideciduous rainforest in Panama. Leaf area indices (LAI) were derived from measurements of diffuse radiation and empirically-based leaf angle distribution by mathematical inversion of a light interception model. Vertical distribution of LAI was non-homogeneous with 50% of the leaf area being concentrated in the uppermost 5 m of the canopy. In the wet season, when foliage is most abundant, the horizontal distribution of LAI in a 2100 m 2 plot ranged widely from 3 to 8, with a mean of 5.41. Changes in mean LAI between wet and dry seasons were small but highly significant. While ca 40% of the area was not affected by local changes in LAI, sizeable small scale changes in LAI did occur between wet and dry season in some locations. Local changes in LAI ranged from -2.3 to 2.4. These changes resulted in a 50% or more increase in light reaching the forest floor at 29% of the measuring locations, and a doubling or more at 13% of the location. Our results imply that structural heterogeneity by simple tree fall gaps do not adequately describe the dynamics of forest canopies.

  7. Theory of radiative transfer models applied in optical remote sensing of vegetation canopies.

    NARCIS (Netherlands)

    Verhoef, W.

    1998-01-01

    In this thesis the work of the author on the modelling of radiative transfer in vegetation canopies and the terrestrial atmosphere is summarized. The activities span a period of more than fifteen years of research in this field carried out at the National Aerospace Laboratory NLR.For the interpretat

  8. Physical Interpretation of the Correlation Between Multi-Angle Spectral Data and Canopy Height

    Science.gov (United States)

    Schull, M. A.; Ganguly, S.; Samanta, A.; Huang, D.; Shabanov, N. V.; Jenkins, J. P.; Chiu, J. C.; Marshak, A.; Blair, J. B.; Myneni, R. B.; Knyazikhin, Y.

    2007-01-01

    Recent empirical studies have shown that multi-angle spectral data can be useful for predicting canopy height, but the physical reason for this correlation was not understood. We follow the concept of canopy spectral invariants, specifically escape probability, to gain insight into the observed correlation. Airborne Multi-Angle Imaging Spectrometer (AirMISR) and airborne Laser Vegetation Imaging Sensor (LVIS) data acquired during a NASA Terrestrial Ecology Program aircraft campaign underlie our analysis. Two multivariate linear regression models were developed to estimate LVIS height measures from 28 AirMISR multi-angle spectral reflectances and from the spectrally invariant escape probability at 7 AirMISR view angles. Both models achieved nearly the same accuracy, suggesting that canopy spectral invariant theory can explain the observed correlation. We hypothesize that the escape probability is sensitive to the aspect ratio (crown diameter to crown height). The multi-angle spectral data alone therefore may not provide enough information to retrieve canopy height globally

  9. Five-year measurements of ozone fluxes to a Danish Norway spruce canopy

    DEFF Research Database (Denmark)

    Mikkelsen, Teis Nørgaard; Ro-Poulsen, H.; Hovmand, M.F.;

    2004-01-01

    averaged over 5 years correlate, but the correlation is primarily based on two different uncoupled processes outside and inside the stomates: (1) The ozone destruction in the canopy occurring outside the stomates is much influenced by temperature, light and humidity, e.g. surface reactions, NO- and VOC...

  10. Modelling canopy and litter interception in commercial forest plantations in South Africa

    Science.gov (United States)

    Bulcock, H. H.; Jewitt, G. P. W.

    2012-07-01

    There is a gap in the knowledge of both canopy and litter interception in South African forest hydrology. Interception is typically considered to constitute only a small portion of the total evaporation and in some models is disregarded. Interception is a threshold process, as a certain amount of water is required before successive processes can take place. Therefore an error introduced in modelling interception, especially disregarding it, will automatically introduce errors in the calibration of subsequent models/processes. Field experiments to assess these processes, viz. canopy and litter interception were established for the three main commercial forestry genera in South Africa, namely, Pinus, Acacia and Eucalyptus. Drawing on both field and laboratory data, the "variable storage Gash" model for canopy interception and an idealised drying curve litter interception model were developed to represent these processes. It was found that canopy and litter interception can account for as much as 26.6% and 13.4% of gross precipitation, respectively, and are therefore important hydrological processes. The models developed were able to adequately represent these interception processes and provide a way forward for more representative water resources planning modelling.

  11. Rising ozone concentrations decrease soybean evapotranspiration and water use efficiency whilst increasing canopy temperature.

    Science.gov (United States)

    VanLoocke, Andy; Betzelberger, Amy M; Ainsworth, Elizabeth A; Bernacchi, Carl J

    2012-07-01

    • Here, we investigated the effects of increasing concentrations of ozone ([O(3)]) on soybean canopy-scale fluxes of heat and water vapor, as well as water use efficiency (WUE), at the Soybean Free Air Concentration Enrichment (SoyFACE) facility. • Micrometeorological measurements were made to determine the net radiation (R(n)), sensible heat flux (H), soil heat flux (G(0)) and latent heat flux (λET) of a commercial soybean (Glycine max) cultivar (Pioneer 93B15), exposed to a gradient of eight daytime average ozone concentrations ranging from approximately current (c. 40 ppb) to three times current (c. 120 ppb) levels. • As [O(3)] increased, soybean canopy fluxes of λET decreased and H increased, whereas R(n) and G(0) were not altered significantly. Exposure to increased [O(3)] also resulted in warmer canopies, especially during the day. The lower λET decreased season total evapotranspiration (ET) by c. 26%. The [O(3)]-induced relative decline in ET was half that of the relative decline in seed yield, driving a 50% reduction in seasonal WUE. • These results suggest that rising [O(3)] will alter the canopy energy fluxes that drive regional climate and hydrology, and have a negative impact on productivity and WUE, key ecosystem services. PMID:22524697

  12. Spectral reflectance from plant canopies and optimum spectral channels in the near infrared

    Science.gov (United States)

    Allen, W. A.; Gausman, H. W.; Wiegand, C. L.

    1970-01-01

    Theoretical and experimental aspects of the interaction of light with a typical plant canopy are considered. Both theoretical and experimental results are used to establish optimum electromagnetic wavelength channels for remote sensing in agriculture. The spectral range considered includes half of the visible and much of the near-infrared regions.

  13. Regeneration in bottomland forest canopy gaps 6 years after variable retention harvests to enhance wildlife habitat

    Science.gov (United States)

    Twedt, Daniel J.; Somershoe, Scott G.

    2013-01-01

    To promote desired forest conditions that enhance wildlife habitat in bottomland forests, managers prescribed and implemented variable-retention harvest, a.k.a. wildlife forestry, in four stands on Tensas River National Wildlife Refuge, LA. These treatments created canopy openings (gaps) within which managers sought to regenerate shade-intolerant trees. Six years after prescribed harvests, we assessed regeneration in 41 canopy gaps and 4 large (>0.5-ha) patch cut openings that resulted from treatments and in 21 natural canopy gaps on 2 unharvested control stands. Mean gap area of anthropogenic gaps (582 m²) was greater than that of natural gaps (262 m²). Sweetgum (Liquidambar styraciflua) and red oaks (Quercus nigra, Q. nuttallii, and Q. phellos) were common in anthropogenic gaps, whereas elms (Ulmus spp.) and sugarberry (Celtis laevigata) were numerous in natural gaps. We recommend harvest prescriptions include gaps with diameter >25 m, because the proportion of shade-intolerant regeneration increased with gap area up to 500 m². The proportion of shade-intolerant definitive gap fillers (individuals likely to occupy the canopy) increased with gap area: 35 percent in natural gaps, 54 percent in anthropogenic gaps, and 84 percent in patch cuts. Sweetgum, green ash (Fraxinus pennsylvanica), and red oaks were common definitive gap fillers.

  14. Carbon dioxide control in an open system that measures canopy gas exchanges

    Science.gov (United States)

    Atmospheric carbon dioxide concentration ([CO2]) effects both C3 net assimilation (A) as well as crop water use. Methods for measuring whole canopy gas exchange responses under [CO2] enrichment are needed for breeding programs aiming to develop crop cultivars resistant to stresses like drought in a...

  15. Canopy and physiological controls of GPP during drought and heat wave

    Science.gov (United States)

    Zhang, Yao; Xiao, Xiangming; Zhou, Sha; Ciais, Philippe; McCarthy, Heather; Luo, Yiqi

    2016-04-01

    Vegetation indices (VIs) derived from satellite reflectance measurements are often used as proxies of canopy activity to evaluate the impacts of drought and heat wave on gross primary production (GPP) through production efficiency models. However, GPP is also regulated by physiological processes that cannot be directly detected using reflectance measurements. This study analyzes the co-limitation of canopy and plant physiology (represented by VIs and climate anomalies, respectively) on GPP during the 2003 European summer drought and heat wave for 15 Euroflux sites. During the entire drought period, spatial pattern of GPP anomalies can be quantified by relative changes in VIs. We also find that GPP sensitivity to relative canopy changes is higher for nonforest ecosystems (1.81 ± 0.32%GPP/%enhanced vegetation index), while GPP sensitivity to physiological changes is higher for forest ecosystems (-0.18 ± 0.05 g C m-2 d-1/hPa). A conceptual model is further built to better illustrate the canopy and physiological controls on GPP during drought periods.

  16. Estimating crop water stress with standard deviation of canopy temperature in thermal imagery

    Science.gov (United States)

    A new crop water stress index using standard deviation of canopy temperature as an input was developed to monitor crop water status. In this study, thermal imagery was taken from maize under various levels of deficit irrigation treatments in different crop growing stages. The Expectation-Maximizatio...

  17. Acclimation of Photosynthesis to Light and Canopy Nitrogen Distribution: an Interpretation

    OpenAIRE

    Thornley, J. H. M.

    2004-01-01

    • Background and Aims Acclimation of photosynthesis to light and its connection with canopy nitrogen (N) distribution are considered. An interpretation of a proportionality between light‐saturated photosynthesis and local averaged leaf irradiance is proposed by means of a simple model.

  18. Modelling canopy and litter interception in commercial forest plantations in South Africa

    Directory of Open Access Journals (Sweden)

    H. H. Bulcock

    2012-07-01

    Full Text Available There is a gap in the knowledge of both canopy and litter interception in South African forest hydrology. Interception is typically considered to constitute only a small portion of the total evaporation and in some models is disregarded. Interception is a threshold process, as a certain amount of water is required before successive processes can take place. Therefore an error introduced in modelling interception, especially disregarding it, will automatically introduce errors in the calibration of subsequent models/processes. Field experiments to assess these processes, viz. canopy and litter interception were established for the three main commercial forestry genera in South Africa, namely, Pinus, Acacia and Eucalyptus. Drawing on both field and laboratory data, the "variable storage Gash" model for canopy interception and an idealised drying curve litter interception model were developed to represent these processes. It was found that canopy and litter interception can account for as much as 26.6% and 13.4% of gross precipitation, respectively, and are therefore important hydrological processes. The models developed were able to adequately represent these interception processes and provide a way forward for more representative water resources planning modelling.

  19. Climate phase drives canopy condition in a large semi-arid floodplain forest.

    Science.gov (United States)

    Wen, Li; Saintilan, Neil

    2015-08-15

    To maintain and restore the ecological integrity of floodplains, allocating water for environmental benefits (i.e. environmental water) is widely practised globally. To efficiently manage the always limited environmental water, there is pressing need to advance our understanding of the ecological response to long-term climate cycles as evidence grows of intensification of extreme climatic events such as severe drought and heat waves. In this study, we assessed the alleviating effects of artificial flooding on drought impact using the canopy condition of the iconic river red gum forests in Australia's Murray Darling Basin (MDB). To achieve this, we jointly analysed spatial-temporal patterns of NDVI response and drought conditions for the period of 2000-2013, during which the MDB experienced an extreme dry-wet cycle. Our results indicated that while NDVI-derived canopy condition was better at the sites receiving environmental water during the dry phases, both watered and unwatered sites displayed great similarity in seasonality and trends. Furthermore, we did not find any significant difference in NDVI response of the canopy between the sites to suggest significant differences in ecosystem stability and resilience, with watered and unwatered sites showing similar responses to the extreme wet conditions as the drought broke. The highly significant relationship between long-term drought index and NDVI anomaly suggest that climate phase is the main forcing driving canopy condition in semi-arid floodplain forests. PMID:26027753

  20. Canopy photosynthesis and transpiration in microgravity: gas exchange measurements aboard Mir.

    Science.gov (United States)

    Monje, O; Bingham, G E; Carman, J G; Campbell, W F; Salisbury, F B; Eames, B K; Sytchev, V; Levinskikh, M A; Podolsky, I

    2000-01-01

    The SVET Greenhouse on-board the Orbital Station Mir was used to measure canopy photosynthesis and transpiration rates for the first time in space. During the Greenhouse IIB experiment on Mir (June-January 1997), carbon and water vapor fluxes from two wheat (cv. Superdwarf) canopies were measured using the US developed Gas Exchange Measurement System (GEMS). Gas analyzers capable of resolving CO2 concentration differences of 5 micromoles mol-1 against a background of 0.9% CO2, are necessary to measure photosynthetic and respiratory rates on Mir. The ability of the GEMS gas analyzers to measure these CO2 concentration differences was determined during extensive ground calibrations. Similarly, the sensitivity of the analyzers to water vapor was sufficient to accurately measure canopy evapotranspiration. Evapotranspiration, which accounted for over 90% of the water added to the root zone, was estimated using gas exchange and used to estimate substrate moisture content. This paper presents canopy photosynthesis and transpiration data during the peak vegetative phase of development in microgravity. PMID:11543166

  1. Comparison of Three Canopy Reflectance Sensors for Variable-Rate Nitrogen Application in Corn

    Science.gov (United States)

    In recent years, canopy reflectance sensing has been investigated for in-season assessment of crop nitrogen (N) health and subsequent control of N fertilization. The several sensor systems that are now commercially available have design and operational differences. One difference is the sensed wavel...

  2. SUNLIT AND SHADED MAIZE CANOPY WATER LOSS UNDER VARIED WATER STRESS

    Directory of Open Access Journals (Sweden)

    Antonio Odair Santos

    1999-12-01

    Full Text Available ABSTRACT The precise estimation of transpiration from plant canopies is important for the monitoring of crop water use and management of many agricultural operations related to water use planning. The aim of this study was to estimate transpiration from sunlit and shaded fractions of a maize ( Zea mays L. canopy, using the Penman-Monteith energy balance equation with modifications introduced by Fuchs et al. (1987 and Fuchs & Cohen (1989. Estimated values were validated by a heat pulse system, which was used to measure stem sap flow and by a weighing lysimeter. A relationship between incident radiation and leaf stomatal conductance for critical levels of leaf water potential was used to estimate transpiration. Results showed that computed transpiration of the shaded canopy ranged from 27 to 45% of the total transpiration when fluctuations in atmospheric demand and the level of water stress were taken in account. Hourly and daily estimates of transpiration showed agreement with lysimeter and heat pulse measurements on the well-watered plots. For the water-limited plots the precision of the estimate decreased due to difficulties in simulating the canopy stomatal conductance.

  3. Transmission and conversion of magnetoacoustic waves on the magnetic canopy in a quiet Sun region

    CERN Document Server

    Kontogiannis, Ioannis; Tziotziou, Kostas

    2014-01-01

    We present evidence for the conversion and transmission of wave modes on the magnetic flux tubes that constitute mottles and form the magnetic canopy in a quiet Sun region, highlighting the details and key parameters of the mechanism that produces power halos and magnetic shadows at the magnetic network observed in H{\\alpha}. We use calculations of the magnetic field vector and the height of the magnetic canopy and simple assumptions to determine the turning height, i.e., the height at which the fast magneto-acoustic waves reflect. We compare the variation of acoustic power in the magnetic shadow and the power halo with the results of a two-dimensional model on mode conversion and transmission. The key parameter of the model is the attack angle, which is related to the inclination of the magnetic field vector at the canopy height. Our analysis takes also into account that 1) there are projection effects on the propagation of waves, 2) the magnetic canopy and the turning height are curved layers, 3) waves with...

  4. Field test of an open system to measure canopy gas exchange

    Science.gov (United States)

    Measurements of CO2 and H2O fluxes of crop plants are essential to understanding the impacts of environmental variables on crop productivity. A portable, CETA (Canopy Evapo-Transpiration and Assimilation) chamber system was built and evaluated at Big Spring, TX. This chamber system is an open or f...

  5. The effects of the canopy created velocity inflection in the wake development

    Science.gov (United States)

    Agafonova, O.; Avramenko, A.; Chaudhari, A.; Hellsten, A.

    2016-06-01

    The aim of this paper is to study the effects of forest on the turbine wakes. Initially, the ACL (actuator line) model as well as a Canopy model are validated with the experiments separately. The models are further applied to simulate the flow over two wind turbines in a row located within the forest.

  6. Remote Sensing of Canopy Leaf Area Index in Non-Forested Wetlands

    Science.gov (United States)

    Dronova, I.; Byrd, K. B.; Gong, P.

    2014-12-01

    Canopy leaf area index (LAI; one-sided leaf area per unit ground area) is a key instrumental variable used in models of plant-atmosphere carbon and water exchange, greenhouse gas and energy budgets and canopy-based habitats. Multiple studies have measured LAI in upland terrestrial landscapes and explored methods to up-scale field values to regional extents using remote sensing. However, in wetland ecosystems globally, much uncertainty still exists on magnitude of LAI, its spatial and temporal variation and on robust approaches to measure this index in the field and from remote sensing. We assessed LAI in different wetlands of the Sacramento-San Joaquin Delta, California, USA (the Delta) in growing seasons of 2013-2014 and tested its empirical relationships with spectral indices of vegetation function derived from Landsat satellite images. Peak-season site-average LAI ranged from 3.3m2m-2 in a diked marsh to 6.5m2m-2 in a young engineered wetland. Results also indicate high within-site dispersion of LAI (coefficient of variation from 0.13 in rice paddy to >0.5 in tall-canopy reed-dominated marshes) attributed to complex surface composition, variable canopy height and non-uniform contribution of litter. Optically measured field LAI significantly correlated (p<0.001) with several Landsat-based indicators of vegetation greenness; however, the strongest univariate relationships explained only 45-50% of LAI variance due to variable canopy characteristics and sub-pixel wetland complexity. Goodness of fit in these relationships improved following corrections based on subpixel spectral unmixing of the green cover fraction. Results indicate that single site-level "mean" LAI values may not sufficiently characterize complex Delta wetland canopies, and models of wetland ecosystem function and greenhouse gas fluxes should incorporate within-site spatial variation in canopy properties. Landsat satellite imagery is promising for regional-scale modeling of LAI, however, simple

  7. The Spatio-temporal Statistical Structure and Ergodic Behaviour of Scalar Turbulence Within a Rod Canopy

    Science.gov (United States)

    Ghannam, Khaled; Poggi, Davide; Porporato, Amilcare; Katul, Gabriel G.

    2015-12-01

    Connections between the spatial and temporal statistics of turbulent flow, and their possible convergence to ensemble statistics as assumed by the ergodic hypothesis, are explored for passive scalars within a rod canopy. While complete ergodicity is not expected to apply over all the spatial domain within such heterogeneous flows, the fact that canopy turbulence exhibits self-similar characteristics at a given depth within the canopy encourages a discussion on necessary conditions for an `operational' ergodicity framework. Flows between roughness elements such as within canopies exhibit features that distinguish them from their well-studied classical boundary-layer counterparts. These differences are commonly attributed to short-circuiting of the energy cascade and the prevalence of intermittent von Kármán vortex streets in the deeper layers of the canopy. Using laser-induced fluorescence measurements at two different depths within a rod canopy situated in a large flume, the spatio-temporal statistical properties and concomitant necessary conditions for ergodicity of passive scalar turbulence statistics are evaluated. First, the integral time and length scales are analyzed and their corresponding maximum values are used to guide the construction of an ensemble of independent realizations from repeated spatio-temporal concentration measurements. As a statistical analysis for an operational ergodicity check, a Kolmogorov-Smirnov test on the distributions of temporal and spatial concentration series against the ensemble was conducted. The outcome of this test reveals that ergodicity is reasonably valid over the entire domain except close to the rod elements where wake-induced inhomogeneities and damped turbulence prevail. The spatial concentration statistics within a grid-cell (square domain formed by four corner rods) appear to be less ergodic than their temporal counterparts, which is not surprising given the periodicity and persistence of von Kármán vortices in

  8. Soil properties in forest gaps and under canopy in broad-leaved Pinus koraiensis forests in Changbai Mountainous Region, China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chunyu; ZHAO Xiuhai

    2007-01-01

    The species composition and diversities,and soil properties under canopy gaps in broad-leaved Pinus koraiensis forests were studied in the Changbai Mountains.The results indicated that the species composition and diversifies in gap were different from those under canopy.The Shannon-Wiener index,evenness index,and abundance index in gap were higher than those under canopy in the seedling layer,while the community dominance in the seedling layer increased in closed canopy.The physicochemical properties of soil changed with the change of space and resource availability in gaps.The thickness,standing crop,and water holding capacity of the litter layer under canopy were significantly (p < 0.01) higher than those in gap.The content of total nitrogen and total potassium of litter in gap were 10.47% and 20.73% higher than those under canopy,however,the content of total phosphorus and organic carbon under canopy were 15.23% and 12.66% more than those under canopy.The water content of 0-10 cm and 10-20 cm of soil layer in gap were 17.65% and 16.17% more than those under canopy.The soil buck density of 0-10 cm were slightly higher under canopy than that in gaps,but there was no significant difference in the soil buck density of the 10-20 cm soil layer.The soil pH values were 5.80 and 5.85 in gap and under canopy,respectively,and were not significantly different.The content of soil organic matter,total nitrogen,and total potassium in gap were 12.85%,7.67%,and 2.38% higher than those under canopy.The content of NH4+-N,available phosphorus,available potassium,and total phosphorus in soil under canopy were 13.33%,20.04%,16.52%,and 4.30% higher than those in gap.

  9. An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance

    Science.gov (United States)

    van der Tol, C.; Verhoef, W.; Timmermans, J.; Verhoef, A.; Su, Z.

    2009-12-01

    This paper presents the model SCOPE (Soil Canopy Observation, Photochemistry and Energy fluxes), which is a vertical (1-D) integrated radiative transfer and energy balance model. The model links visible to thermal infrared radiance spectra (0.4 to 50 μm) as observed above the canopy to the fluxes of water, heat and carbon dioxide, as a function of vegetation structure, and the vertical profiles of temperature. Output of the model is the spectrum of outgoing radiation in the viewing direction and the turbulent heat fluxes, photosynthesis and chlorophyll fluorescence. A special routine is dedicated to the calculation of photosynthesis rate and chlorophyll fluorescence at the leaf level as a function of net radiation and leaf temperature. The fluorescence contributions from individual leaves are integrated over the canopy layer to calculate top-of-canopy fluorescence. The calculation of radiative transfer and the energy balance is fully integrated, allowing for feedback between leaf temperatures, leaf chlorophyll fluorescence and radiative fluxes. Leaf temperatures are calculated on the basis of energy balance closure. Model simulations were evaluated against observations reported in the literature and against data collected during field campaigns. These evaluations showed that SCOPE is able to reproduce realistic radiance spectra, directional radiance and energy balance fluxes. The model may be applied for the design of algorithms for the retrieval of evapotranspiration from optical and thermal earth observation data, for validation of existing methods to monitor vegetation functioning, to help interpret canopy fluorescence measurements, and to study the relationships between synoptic observations with diurnally integrated quantities. The model has been implemented in Matlab and has a modular design, thus allowing for great flexibility and scalability.

  10. Can we use photography to estimate radiation interception by a crop canopy?

    Science.gov (United States)

    Chakwizira, E; Meenken, E D; George, M J; Fletcher, A L

    2015-03-01

    Accuracy of determining radiation interception, and hence radiation use efficiency, depends on the method of measuring photosynthetically active radiation intercepted. Methods vary, from expensive instruments such as Sunfleck ceptometers to simple methods such as digital photography. However, before universal use of digital photography there is need to determine its reliability and compare it with conventional, but expensive, methods. In a series of experiments at Lincoln, New Zealand, canopy development for barley, wheat, white clover and four forage brassica species was determined using both digital photographs and Sunfleck ceptometer. Values obtained were used to calculate conversion coefficient (Kf/Ki) ratios between the two methods. Digital photographs were taken at 45° and 90° for barley, wheat and white clover and at only 90° for brassicas. There was an interaction of effects of crop and cultivar for the cereal crops. Barley closed canopies earlier than wheat, and 'Emir' barley and 'Stettler' wheat had consistently higher canopy cover than 'Golden Promise' and 'HY459', respectively. Canopy cover was consistently larger at 45° than 90° for cereals. However, for white clover, the angle of digital photography was not important. There was also an interaction between effects of species and method of determining canopy cover for brassicas. Photographs gave higher cover values than ceptometer for forage rape and turnip, but the relationship was variable for forage kale and swede. Kf/Ki ratios of 1.0-1.10 for cereals, white clover and forage rape and turnip show that digital photographs can be used to estimated radiation interception, in place of Sunfleck ceptometer, for these crops. PMID:25348838

  11. Canopy conductance decrease in Florida as a result of anthropogenic CO2 increase

    Science.gov (United States)

    Lammertsma, E.; Wagner-Cremer, F.

    2009-04-01

    Precipitation is one of the main factors controlling vegetation cover, but in turn vegetation has a considerable effect on regional climate by modifying the atmospheric energy and water budget. In Florida approximately 20% of the annual precipitation originates from local evapotranspiration. Transpiration is in large parts controlled by the stomatal conductance of the vegetation. Stomatal conductance of trees in turn is influenced by the atmospheric CO2 concentration ([CO2]), which has increased by 100ppmv since the industrial revolution. The potential consequences of the anthropogenic [CO2] increase on stomatal conductance, however, are not well quantified yet, which hampers parameterization of this variable in models. In this study we assess the change in transpiration rates in Florida by calculating the canopy conductance over the [CO2] increase of the past century. Past and present stomatal conductance levels are calculated from stomatal density and dimensions measured on modern leaves and historical herbarium specimen for the in Florida most common canopy taxa. These values are consequently upscaled to canopy level by calculating the relative abundance of the taxa in the various vegetation units providing an indication of the general change in canopy conductance in each unit. A significant negative correlation of stomatal conductance and [CO2] over the past century is found in various Florida tree taxa leading to a decrease of up to 40% in canopy conductance for major forest types. For Florida, where extreme land-use changes and urbanization significantly alter the hydrological system, the vegetation adaptation to increasing [CO2] levels may amplify the disturbance of the water budget. Our results may help to improve model attempts to quantify the past, present and future hydrological conditions by providing more accurate assessments on the biosphere-atmosphere feedback. The description of the undisturbed, pre-industrial state will also provide more realistic

  12. Do we (need to care about canopy radiation schemes in DGVMs? An evaluation and assessment study

    Directory of Open Access Journals (Sweden)

    A. Loew

    2013-10-01

    Full Text Available Dynamic Global Vegetation Models (DGVM are an essential part of current state-of-the-art Earth System Models. In recent years, the complexity of DGVM has increased by incorporating new important processes, like e.g. nutrient cycling and land cover dynamics while biogeophysical processes, like surface radiation have been not much further developed. Canopy radiation models are however very important for the estimation of absorption and reflected fluxes and are essential for a proper estimation of surface carbon, energy and water fluxes. The present study provides an overview about current implementations of canopy radiation schemes in a couple of state-of-the-art DGVMs and evaluates their accuracy in simulating canopy absorption and reflection for a variety of different surface conditions. Systematic deviations in surface albedo and fraction of absorbed photosynthetic active radiation (faPAR are identified and potential impacts are assessed. The results show clear deviations for both, absorbed and reflected, surface solar radiation fluxes. FaPAR is typically underestimated which results in an underestimation of Gross Primary Productivity (GPP for the investigated cases. The deviation can be as large as 25% in extreme cases. Deviations in surface albedo range between −0.15 ≤ Δ α ≤ 0.36 with slight positive bias in the order of Δ α ≈ 0.04. Potential radiative forcing caused by albedo deviations is estimated as −1.25 ≤ RF ≤ −0.8 [W m−2] caused by a neglecting the diurnal cycle of surface albedo. The present study is the first one that provides an evaluation of canopy RT schemes in different currently used DGVMs together with an assessment of the potential impact of the identified deviations. The paper illustrates that there is a general need to improve the canopy radiation schemes in DGVMs and provides different perspectives for their improvement.

  13. Water-borne hyphomycetes in tree canopies of Kaiga (Western Ghats, India

    Directory of Open Access Journals (Sweden)

    Naga M. Sudheep

    2013-12-01

    Full Text Available The canopy samples such as trapped leaf litter, trapped sediment (during summer, stemflow and throughfall (during monsoon from five common riparian tree species (Artocarpus heterophyllus, Cassia fistula, Ficus recemosa, Syzygium caryophyllatum and Xylia xylocarpa in Kaiga forest stand of the Western Ghats of southwest India were evaluated for the occurrence of water-borne hyphomycetes. Partially decomposed trapped leaf litter was incubated in bubble chambers followed by filtration to assess conidial output. Sediments accumulated in tree holes or junction of branches were shaken with sterile leaf disks in distilled water followed by incubation of leaf disks in bubble chamber and filtration to find out colonized fungi. Stemflow and throughfall samples were filtered directly to collect free conidia. From five canopy niches, a total of 29 water-borne hyphomycetes were recovered. The species richness was higher in stemflow and throughfall than trapped leaf litter and sediments (14-16 vs. 6-10 species. Although sediments of Syzygium caryophyllatum were acidic (5.1, the conidial output was higher than other tree species. Stemflow and throughfall of Xylea xylocarpa even though alkaline (8.5-8.7 showed higher species richness (6-12 species as well as conidial load than rest of the tree species. Flagellospora curvula and Triscelophorus acuminatus were common in trapped leaf litter and sediments respectively, while conidia of Anguillospora crassa and A. longissima were frequent in stemflow and throughfall. Diversity of water-borne hyphomycetes was highest in throughfall of Xylea xylocarpa followed by throughfall of Ficus recemosa. Our study reconfirms the occurrence and survival of diverse water-borne hyphomycetes in different niches of riparian tree canopies of the Western Ghats during wet and dry regimes and predicts their possible role in canopy as saprophytes, endophytes and alternation of life cycle between canopy and aquatic habitats.

  14. Modelling pollutant deposition to vegetation: scaling down from the canopy to the biochemical level

    International Nuclear Information System (INIS)

    In the atmosphere, pollutants exist in either the gas, particle or liquid (rain and cloud water) phase. The most important gas-phase pollutants from a biological or ecological perspective are oxides of nitrogen (nitrogen dioxide, nitric acid vapor), oxides of sulfur (sulfur dioxide), ammonia, tropospheric ozone and mercury vapor. For liquid or particle phase pollutants, the suite of pollutants is varied and includes hydrogen ion, multiple heavy metals, and select anions. For many of these pollutants, plant canopies are a major sink within continental landscapes, and deposition is highly dependent on the (i) physical form or phase of the pollutant, (ii) meteorological conditions above and within the plant canopy, and (iii) physiological or biochemical properties of the leaf, both on the leaf surface and within the leaf interior. In large measure, the physical and chemical processes controlling deposition at the meteorological and whole-canopy levels are well characterized and have been mathematically modelled. In contrast, the processes operating on the leaf surface and within the leaf interior are not well understood and are largely specific for individual pollutants. The availability of process-level models to estimate deposition is discussed briefly at the canopy and leaf level; however, the majority of effort is devoted to modelling deposition at the leaf surface and leaf interior using the two-layer stagnant film model. This model places a premium on information of a physiological and biochemical nature, and highlights the need to distinguish clearly between the measurements of atmospheric chemistry and the physiologically effective exposure since the two may be very dissimilar. A case study of deposition in the Los Angeles Basin is used to demonstrate the modelling approach, to present the concept of exposure dynamics in the atmosphere versus that in the leaf interior, and to document the principle that most forest canopies are exposed to multiple chemical

  15. Effect of smoke and clouds on the transmissivity of photosynthetically active radiation inside the canopy

    Directory of Open Access Journals (Sweden)

    M. A. Yamasoe

    2006-01-01

    Full Text Available Biomass burning activities emit high concentrations of aerosol particles to the atmosphere. Such particles can interact with solar radiation, decreasing the amount of light reaching the surface and increasing the fraction of diffuse radiation through scattering processes, and thus has implications for photosynthesis within plant canopies. This work reports results from photosynthetically active radiation (PAR and aerosol optical depth (AOD measurements conducted simultaneously at Reserva Biológica do Jaru (Rondonia State, Brazil during LBA/SMOCC (Large-Scale Biosphere-Atmosphere Experiment in Amazonia/ Smoke, Aerosols, Clouds, Rainfall, and Climate and RaCCI (Radiation, Cloud, and Climate Interactions in the Amazon during the Dry-to-Wet Transition Season field experiments from 15 September to 15 November 2002. AOD values were retrieved from an AERONET (Aerosol Robotic Network radiometer, MODIS (Moderate Resolution Spectroradiometer and a portable sunphotometer from the United States Department of Agriculture – Forest Service. Significant reduction of PAR irradiance at the top of the canopy was observed due to the smoke aerosol particles layer. This radiation reduction affected turbulent fluxes of sensible and latent heats. The increase of AOD also enhanced the transmission of PAR inside the canopy. As a consequence, the availability of diffuse radiation was enhanced due to light scattering by the aerosol particles. A complex relationship was identified between light availability inside the canopy and net ecosystem exchange (NEE. The results showed that the increase of aerosol optical depth corresponded to an increase of CO2 uptake by the vegetation. However, for even higher AOD values, the corresponding NEE was lower than for intermediate values. As expected, water vapor pressure deficit (VPD, retrieved at 28m height inside the canopy, can also affect photosynthesis. A decrease in NEE was observed as VPD increased. Further studies are needed

  16. Simultaneous improvement in water use, productivity and albedo through canopy structural modification

    Science.gov (United States)

    Drewry, Darren; Kumar, Praveen; Long, Stephen

    2015-04-01

    Agricultural lands provide a tremendous opportunity to address challenges at the intersection of food and water security and climate change. Global demand for the major grain and seed crops is beginning to outstrip production, while population growth and the expansion of the global middle class have motivated calls for a doubling of food production by the middle of this century. This is occurring as yield gains for the major food crops have stagnated. At current rates of yield improvement this doubling will not be achieved. Plants have evolved to maximize the capture of radiation in the upper leaves, resulting in sub-optimal monoculture crop fields for maximizing productivity and other biogeophysical services. Using the world's most important protein crop, soybean, as an example, we show that by applying numerical optimization to a micrometeorological crop canopy model that significant, simultaneous gains in water use, productivity and reflectivity are possible with no increased demand on resources. Here we apply the MLCan multi-layer canopy biophysical model, which vertically resolves the radiation and micro-environmental variations that stimulate biochemical and ecophysiological functions that govern canopy-atmosphere exchange processes. At each canopy level photosynthesis, stomatal conductance, and energy balance are solved simultaneously for shaded and sunlit foliage. A multi-layer sub-surface model incorporates water availability as a function of root biomass distribution. MLCan runs at sub-hourly temporal resolution, allowing it to capture variability in CO2, water and energy exchange as a function of environmental variability. By modifying total canopy leaf area, its vertical distribution, leaf angle, and shortwave radiation reflectivity, all traits available in most major crop germplasm collections, we show that increases in either productivity (7%), water use (13%) or albedo (34%) could be achieved with no detriment to the other objectives, under climate

  17. Mapping Urban Tree Canopy Cover Using Fused Airborne LIDAR and Satellite Imagery Data

    Science.gov (United States)

    Parmehr, Ebadat G.; Amati, Marco; Fraser, Clive S.

    2016-06-01

    Urban green spaces, particularly urban trees, play a key role in enhancing the liveability of cities. The availability of accurate and up-to-date maps of tree canopy cover is important for sustainable development of urban green spaces. LiDAR point clouds are widely used for the mapping of buildings and trees, and several LiDAR point cloud classification techniques have been proposed for automatic mapping. However, the effectiveness of point cloud classification techniques for automated tree extraction from LiDAR data can be impacted to the point of failure by the complexity of tree canopy shapes in urban areas. Multispectral imagery, which provides complementary information to LiDAR data, can improve point cloud classification quality. This paper proposes a reliable method for the extraction of tree canopy cover from fused LiDAR point cloud and multispectral satellite imagery data. The proposed method initially associates each LiDAR point with spectral information from the co-registered satellite imagery data. It calculates the normalised difference vegetation index (NDVI) value for each LiDAR point and corrects tree points which have been misclassified as buildings. Then, region growing of tree points, taking the NDVI value into account, is applied. Finally, the LiDAR points classified as tree points are utilised to generate a canopy cover map. The performance of the proposed tree canopy cover mapping method is experimentally evaluated on a data set of airborne LiDAR and WorldView 2 imagery covering a suburb in Melbourne, Australia.

  18. Curating and Preserving the Big Canopy Database System: an Active Curation Approach using SEAD

    Science.gov (United States)

    Myers, J.; Cushing, J. B.; Lynn, P.; Weiner, N.; Ovchinnikova, A.; Nadkarni, N.; McIntosh, A.

    2015-12-01

    Modern research is increasingly dependent upon highly heterogeneous data and on the associated cyberinfrastructure developed to organize, analyze, and visualize that data. However, due to the complexity and custom nature of such combined data-software systems, it can be very challenging to curate and preserve them for the long term at reasonable cost and in a way that retains their scientific value. In this presentation, we describe how this challenge was met in preserving the Big Canopy Database (CanopyDB) system using an agile approach and leveraging the Sustainable Environment - Actionable Data (SEAD) DataNet project's hosted data services. The CanopyDB system was developed over more than a decade at Evergreen State College to address the needs of forest canopy researchers. It is an early yet sophisticated exemplar of the type of system that has become common in biological research and science in general, including multiple relational databases for different experiments, a custom database generation tool used to create them, an image repository, and desktop and web tools to access, analyze, and visualize this data. SEAD provides secure project spaces with a semantic content abstraction (typed content with arbitrary RDF metadata statements and relationships to other content), combined with a standards-based curation and publication pipeline resulting in packaged research objects with Digital Object Identifiers. Using SEAD, our cross-project team was able to incrementally ingest CanopyDB components (images, datasets, software source code, documentation, executables, and virtualized services) and to iteratively define and extend the metadata and relationships needed to document them. We believe that both the process, and the richness of the resultant standards-based (OAI-ORE) preservation object, hold lessons for the development of best-practice solutions for preserving scientific data in association with the tools and services needed to derive value from it.

  19. Transpiration and canopy conductance variations of shelterbelt in an arid inland river basin of northwest China

    Science.gov (United States)

    Gao, G.

    2015-12-01

    The knowledge of plant water use characteristics under changing environmental conditions is essential for ecosystem management and water resources distribution in water-stressed environments. This study was conducted to quantify variations in transpiration and canopy conductance in a shelterbelt in the middle of the Heihe River Basin, China. Sap flow of eight Gansu Poplar trees (Populus gansuensis) with different diameters at breast height (DBH) was measured over three consecutive growing seasons (2012-2014). The evapotranspiration of groundwater via plant use was estimated by the White method, with diurnal water table fluctuations. Results showed that mean sap flow density varied between 30.62 ±11.44 and 101.88 ±28.98 kg m-2 h-1, and it increased linearly with the DBH. Variations of sap flow density were mainly controlled by meteorological factors in addition to water table depth. Average stand transpiration during the growing season was about 4.85 mm day-1, and it had a logarithmic relationship with reference crop evapotranspiration. Precipitation increased stand transpiration, but not at a statistically significant level (p>0.05). The recharge of soil water by irrigation significantly accelerated stand transpiration (p<0.05). Stand transpiration and canopy conductance increased by 27% and 31%, respectively, when soil water conditions changed from dry to wet. Canopy conductance decreased logarithmically with vapor pressure deficit, whereas there was no apparent relationship between canopy conductance and solar radiation. The sensitivity of canopy conductance to vapor pressure deficit decreased under dry soil conditions. Groundwater evapotranspiration (0.6-7.1 mm day-1) was linearly correlated with stand transpiration (1.1-6.5 mm day-1) (R2 = 0.71). During the drought period, approximately 80% of total stand transpiration came from groundwater evapotranspiration. This study highlighted the critical role of irrigation and groundwater for shelterbelts, and might

  20. An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance

    Directory of Open Access Journals (Sweden)

    C. van der Tol

    2009-12-01

    Full Text Available This paper presents the model SCOPE (Soil Canopy Observation, Photochemistry and Energy fluxes, which is a vertical (1-D integrated radiative transfer and energy balance model. The model links visible to thermal infrared radiance spectra (0.4 to 50 μm as observed above the canopy to the fluxes of water, heat and carbon dioxide, as a function of vegetation structure, and the vertical profiles of temperature. Output of the model is the spectrum of outgoing radiation in the viewing direction and the turbulent heat fluxes, photosynthesis and chlorophyll fluorescence. A special routine is dedicated to the calculation of photosynthesis rate and chlorophyll fluorescence at the leaf level as a function of net radiation and leaf temperature. The fluorescence contributions from individual leaves are integrated over the canopy layer to calculate top-of-canopy fluorescence. The calculation of radiative transfer and the energy balance is fully integrated, allowing for feedback between leaf temperatures, leaf chlorophyll fluorescence and radiative fluxes. Leaf temperatures are calculated on the basis of energy balance closure. Model simulations were evaluated against observations reported in the literature and against data collected during field campaigns. These evaluations showed that SCOPE is able to reproduce realistic radiance spectra, directional radiance and energy balance fluxes. The model may be applied for the design of algorithms for the retrieval of evapotranspiration from optical and thermal earth observation data, for validation of existing methods to monitor vegetation functioning, to help interpret canopy fluorescence measurements, and to study the relationships between synoptic observations with diurnally integrated quantities. The model has been implemented in Matlab and has a modular design, thus allowing for great flexibility and scalability.